
Tandem ,NonStopTM & NonStop n™ Systems

ENFORM™ Reference Manual

ABSTRACT: This manual provides detailed information about the syntax
of the EN FORM language.

PRODUCT VERSION: EN FORM C11

OPERATING SYSTEM VERSION: GUARDIAN A05 (NonStop IT System)
GUARDIAN E06 (NonStop System)

Part No. 82348 BOO

Tandem Computers Incorporated
19333 Vallco Parkway

Cupertino, California 95014-2599

April 1983
Printed in U.S.A.

October 1982 Manual released.

April 1983 Revised.

Copyright © 1983 by Tandem Computers Incorporated.

All rights reserved. No part of this document may be reproduced in any form, including photocopying or translation to another
language, without the prior written consent of Tandem Computers Incorporated.

The following are trademarks or servicemarks of Tandem Computers Incorporated:

AXCESS ENABLE EXPAND PERUSE TMF
BINDER ENCOMPASS GUARDIAN TANDEM TRANSFER
CROSSREF ENFORM INSPECT TAL XRAY
DDL ENSCRIBE NonStop TGAL XREf'
DYNABUS ENVOY NonStop II THL
EDIT EXCHANGE PATHWAY TIL

INFOSAT is a trademark in which both Tandem and American Satellite have rights.

HYPER channel is a trademark of Network Systems Corporation.

IBM is a registered trademark of International Business Machines Corporation.

NEW AND CHANGED INFORMATION

This revision documents the HELP command and changes to the FIND statement. Miscellaneous
technical and editorial corrections are also included.

iii

-----_. -_ _ .. _ _--_ .. _ -

CONTENTS

PREFACE ... xi

SYNTAX CONVENTIONS IN THIS MANUAL .. xiii

SECTION 1. INTRODUCTION .. 1-1

SECTION 2. RUNNING ENFORM .. 2-1
Interactive Mode . 2-2
Noninteractive Mode .. 2-2
The Current Output Listing File . 2-3
Pressing the Terminal BREAK Key .. 2-3
Logical File Assignments . 2-4
Passing Parameters to Compiled Query Files ... 2-5
A Server Query Processor . 2-5

The Command Interpreter ASSIGN Command .. 2-7
The Command Interpreter P ARAM Command .. 2-8
The Command Interpreter QP Command ... 2-9
Example of Server Query Processor Creation ... 2-9

Generic Files .. 2-10
Generic Files and a Dedicated Query Processor 2-12
Generic Files and a Server Query Processor .. 2-12
Generic Files and the Current Output Listing File . 2-12

SECTION 3. ENFORM LANGUAGE ELEMENTS 3-1
Reserved Words and Keywords ... 3-3
Special Characters .. 3-4
Comments . 3-4
Statements .. 3-4
Clauses .. 3-5
Commands . 3-5
Rules for Naming User-Defined Elements .. 3-6
Rules for Referencing Data Base Elements . 3-6

Record Name References . 3-6
Field Name References . 3-6
Primary Key References ... 3-7

Subscripts ... 3-8

v

Contents

Aggregates .. 3-11
Predefined Aggregates ... 3-13
User Aggregates .. 3-14
Target Aggregates .. 3-15

Target Aggregate with OVER ALL Syntax .. 3-15
Target Aggregate with OVER Syntax .. 3-16

Qualification Aggregates .. 3-17
Qualification Aggregate with OVER ALL Syntax 3-17
Qualification Aggregate with OVER Syntax .. 3-17
Qualification Aggregate with Embedded WHERE clause > •••••• 3-19

Literals .. 3-19
Numeric Literals .. 3-19
String Literals 3-20

Arithmetic Expressions ... 3-21
Evaluation Order of Arithmetic Expressions ... 3-21
Scale Factor of the Result ... 3-21

Logical Expressions . 3-22
Effect of Parentheses on Compound Logical Expressions 3-24
BEGINS WITH and CONTAINS ... 3-25
Range of Values in Logical Expressions . 3-25
Pattern Match in Logical Expressions ... 3-26

IF/THEN/ELSE Expressions . 3-26
Parameters .. 3-27
User Variables ... 3-27

User Variable as a Target-Item .. 3-27
A User Variable in Request-Qualification .. 3-29
User Tables ... 3-29

SECTION 4. STATEMENTS ... 4-1
A T END Statement ... 4-3

Specifying a Field Name in an AT END Statement 4-3
Spacing Considerations .. 4-3
A T END Information for Current Report or All Reports 4-4
Cancelling Session-Wide AT END Information .. 4-4

AT START Statement .. 4-5
Specifying a Field Name in an AT START Statement 4-5
Spacing Considerations .. 4-5
AT START Information for Current Report or All Reports 4-6
Cancelling Session-Wide AT START Information 4-6

CLOSE Statement .. 4-7
The Effect of a CLOSE Statement on the Internal Table 4-7

DECLARE Statement ... 4-8
Declaring a User Aggregate .. 4-9
Declaring a User Variable or User Table ... 4-10

DELINK Statement .. 4-11
DICTIONARY Statement ... 4-12

Identifying the Location of the Dictionary . 4-12
Clearing the Internal Table .. 4-12

}4~XIT Statement .. 4-13
FIND Statement .. 4-14

Output Record Dictionary Description .. 4-15
Group Definition and Sorting . 4-15
Output Fields ... 4-16

vi

--

Contents

Input Elements .. 4-17
Request-Qualification ... 4-18
Summary Records ... 4-18
Statements and Clauses that Do Not Apply to the FIND Statement 4-19

FOOTING Statement ... 4-20
Specifying a Field Name in a FOOTING Statement 4-20
Spacing Considerations ... 4-20
FOOTING for Current Report or All Reports .. 4-21
Cancelling Session-Wide FOOTING ... 4-21

LINK Statement .. 4-22
Using the LINK Statement to Connect Files ... 4-22
Clearing a LINK . 4-23

LIST Statement ... 4-24
Group Definition and Sorting . 4-25
How Values are Displayed in Report Columns .. 4-26
Request-Qualification ... 4-27
Conditional Printing .. 4-27
Summary Reports ... 4-28
Optional Clauses ... 4-29

OPEN Statement . 4-30
OPEN AS A COpy OF .. 4-30

P ARAM Statement .. 4-32
SET Statement .. 4-33

Initializing User-Defined Elements ... 4-34
Redefining Option Variables ... 4-34

SUBFOOTING Statement ... 4-35
Specifying Field Names within a SUBFOOTING Statement 4-35
Spacing Considerations ... 4-35
SUBFOOTING for Current Report or All Reports 4-36
Cancelling Session-Wide SUBFOOTING ... 4-36

SUBTITLE Statement ... 4-37
Specifying a Field Name within a SUBTITLE Statement 4-37
Spacing Considerations ... 4-37
SUBTITLE for Current Report or All Reports 4-38
Cancelling Session-Wide SUBTITLE ... 4-38

TITLE Statement . 4-39
Specifying a Field Name within a TITLE Statement 4-39
Spacing Considerations ... 4-39
TITLE for Current Report or All Reports . 4-40
Cancelling Session-Wide Title ... 4-40

SECTION 5. CLA USES .. 5-1
AFTER CHANGE Clause .. 5-4

Specifying a Field Name within an AFTER CHANGE Clause 5-4
Spacing Considerations .. 5-4

ASCD and DESC Clauses .. 5-6
AS Clause ' ... 5-7

Repeatable Edit Descriptors .. 5-9
Alphanumeric Edit Descriptor . 5-9
Integer Edit Descriptor ... 5-10
Fixed Format Edit Descriptor ... 5-11
Mask Edit Descriptor ... 5-12

Nonrepeatable Edit Descriptors .. 5-13
Scale Factor Edit Descriptor ... 5-13
Optional Plus Edit Descriptor .. 5-14

vii

Contents

Modifiers ... 5-14
Field Blanking Modifiers .. 5-15
Fill Character Modifier 5-15
Overflow Character Modifier .. 5-16
Justification Modifiers .. 5-17
Symbol Substitution Modifier .. 5-17

Decorations ... " 5-18
Conditions 5-19
Location .. 5-19
Processing Order .. " 5-19
Default Decorations .. 5-20

AS DATE Clause .. 5-22
Default Display Format .. , 5-23
Examples of Date Display Formats , 5-23

AS TIME Clause ... 5-24
Default Display Format .. 5-24
Examples of Time Display Formats ... 5-24

A T END PRINT Clause 5-25
Specifying a Field Name within an AT END Clause 5-25
Spacing Considerations .. , 5-25
A T END Information for Current Report or All Reports 5-26
Overriding Session-Wide AT END Information 5-26

AT START PRINT Clause .. 5-·27
Specifying a Field Name in an AT START Clause 5··27
Spacing Considerations ... 5··27
AT START Information for Current Report or All Reports 5··28
Overriding Session-Wide AT STAHT Information 5-28

BEFORE CHANGE Clause .. 5-29
Specifying a Field Name within a BEFORE CHANGE Clause 5··29
Spacing Considerations ... 5 .. 29

BY and BY DESC Clauses .. 5,·31
CENTER Clause ... 5 .. 32

Centering Single Report Items .. 5-32
Centering All Report I terns 5-32
Centering a Print List 5-32

CUM Clause .. " 5-33
CUM With OVER ALL .. 5-33
CUM With OVER .. 5-33
CUM With User Variable .. , 5-34
Restrictions . 5-34

FOOTING Clause .. 5-35
Specifying a Field Name within a F~OOTING Clause 5-35
Spacing Considerations ... 5-35
FOOTIN G for Current Report or All Reports . 5-36

FORM Clause 5-37
FORM Clause with a By-Item ... 5-37
FORM Clause with a Target-Item .. 5-37
FORM Clause within a Print List ... 5-37

HEADING Clause ... 5-38
Default Headings .. 5-38
Multiple Line Headings ... 5-38
Printing / in a Column Heading , 5-38
Heading for Subscripted Elements ... 5-39

INTERNAL Clause .. 5-40

viii

Contents

JULIAN-DATE Clause ... 5-41
Conversion to Internal Format ... 5-41
Display Format .. 5-41

NOHEAD Clause .. 5-43
No Headings for Single Report Items . 5-43
No Headings for All Report Items .. 5-43

NOPRINT Clause .. 5-44
Suppress Single Report Items ... 5-44
Suppress All Report Items .. ; 5-44

Option Variable Clauses . 5-45
PCT Clause . 5-51

Using PCT OVER ALL ... 5-51
Using PCT OVER By-Item .. 5-51
Combining Percentages and Subtotals .. 5-52
PCT Clause with User Variable .. 5-52
Restrictions . 5-52

SKIP Clause .. 5-53
SKIP Clause with LIST Target-Item or By-Item 5-53
SKIP Clause within a Print List .. 5-53

SPACE Clause .. 5-54
SPACE Clause with a LIST Target-Item or By-Item 5-54
SPACE Clause with a Print List ... 5-54

SUBFOOTING Clause .. 5-55
Specifying Field Names in a SUBFOOTING Clause 5-55
Spacing Considerations ... 5-55
SUBFOOTING for Current Report or All Reports 5-56

SUBTITLE Clause ... 5-57
Specifying a Field Name in a SUBTITLE Clause 5-57
Spacing Considerations ... 5-57
SUBTITLE for Current Report or All Reports 5-58

SUBTOTAL Clause .. 5-59
SUPPRESS Clause ... 5-60
System Variable Clauses .. 5-61

Printing the Current Date or Time ... 5-61
Printing Line Numbers ... 5-61
Printing Page Numbers ... 5-61

TAB Clause . 5-62
TAB Clause with a LIST Target-item or By-item 5-62
TAB Clause with a Print List . 5-62

TIMEST AMP-DA TE Clause .. 5-63
TIMESTAMP-TIME Clause ... 5-64
TITLE Clause ... 5-65

Specifying Field Names in a TITLE Clause .. 5-65
Spacing Considerations ... 5-65
TITLE for Current Report or All Reports . 5-66
Overriding Session-Wide Title ... 5-66

TOT AL Clause .. 5-67
WHERE Clause . 5-68

Using the WHERE Clause to Specify a LINK .. 5-68

SECTION 6. COMMANDS... 6-1
?ASSIGN Command ... 6-3
?ATTACH Command .. 6-6
?COMPILE Command ... 6-7
?DICTIONARY Command ... 6-8
?EDIT Command . 6-9

ix

Contents

?EXECUTE Command ... 6-10
?EXIT Command ... " 6-11
?HELP Command , ... " . , " " 6-12
'lOUT Command , .. , .. , ... " 6-14
?RUN Command , " , ... , .. , 6-15
'lSECTION Command .. 6-16
'lSHOW Command , 6-17
?SOURCE Command ... , " , 6-19

APPENDIX A. ENFORM SYNTAX SUMMARy A-I
Language Elements ... , . A-1
Statements .. A-2
Clauses " " , , .. A-5
Commands .. A -10
ENFORM Procedures .. A-l1

APPENDIX B. ERROR MESSAGES ... B-1
EN FORM Initialization Messages , , B-2
!!! Error and ***Warning Type Messages . B-2
*** File Error Type Messages . B-ll
ENFORM Trap Messages .. , B-12
BUILDMK Messages ... B-13

GLOSSARY .. C-l

INDEX .. Index-l

FIGURES

1-1. Typical ENFORM Session ... 1-2
2-1. Server Query Processor with Several Compiler/Report Writer Processes 2-6
3-1. ENFORM Language Elements ... 3-2
3-2. Records with Duplicate Field Names .. 3-'1
3-3. Query Outline of Target-Aggregate with OVER ALL Syntax 3-15
3-4. Query Outline of Target-Aggregate with OVER Syntax 3-16
3-5. Query Outline of Qualification Aggregate with OVER Over-Item syntax 3-18

TABLES

2-1. ENFORM Generic Files and Their Uses .. 2-10
2-2. ENFORM Output Files . 2-13
3-1. ENFORM Reserved Words .. 3-3
3-2. Special Characters ... 3-4
3-3. Arithmetic Operators ... 3-21
3-4. Conditional Operators . 3-22
4-1. Summary of Statements .. 4-2
5-1. ENFORM Clauses and Their Functions .. 5-2
5-2. Permissible Modifiers and Edit Descriptors " 5-15
6-1. Summary of Commands ... 6-2
6-2. Environment Information Displayed by ?SHOW Command 6-18

x

------------- ._--------

PREFACE

This manual is one of three volumes that describe the ENFORM language. This manual, which con
cerns syntax only, should be used as a reference by experienced EN FORM users. For other infor
mation about ENFORM and related products, refer to the publications listed in alphabetical order
below.

Data Definition Language (DDL) Programming Manual

EDIT Manual

ENFORM User's Guide

ENSCRIBE Programming Manual

GUARDIAN Operating System Command Language and Utilities Manual

GUARDIAN Operating System Programming Manual- Volumes 1 and 2

Introduction to EN FORM

xi

SYNTAX CONVENTIONS IN THIS MANUAL

This table describes the characters and symbols used in this manual's syntax notation. For distinc
tion, syntactical elements appear in a typeface different from that of ordinary text.

Notation

UPPERCASE
LETTERS

lowercase
letters

Brackets

Braces

Ellipsis

Punctuation

Meaning

All keywords and reserved words appear in capital letters. If a keyword can be
abbreviated, the part that can be omitted is enclosed in brackets.

All variable entries supplied by the user are shown in lower-case characters.

Square brackets ([]) enclose all optional syntax elements. A vertically-aligned
group of elements enclosed in brackets represents a list of selections from which
to choose one or none.

A vertically-aligned group of syntax elements enclosed in braces ({ }) represents
a list of selections from which exactly one must be chosen.

When an ellipsis C ..) immediately follows a pair of brackets or a pair of braces, the
enclosed syntax can be repeated any number of times.

Parentheses, commas, and other punctuation or symbols not described above
must be entered precisely as shown. If any of the punctuation above appears
enclosed in quotation marks, that character is not a syntax descriptor but a
required character, and must actually be entered.

xiii

SECTION 1

INTRODUCTION

This publication documents:

• The syntax of the Command Interpreter ENFORM command needed to call the ENFORM pro
cess, the Command Interpreter commands needed to create a server query processor, and the
names of generic files that can be assigned using either the Command Interpreter ASSIGN com
mand or the EN FORM ?ASSIGN command.

• The syntax of the ENFORM language elements including statements, clauses, commands,
aggregates, expressions, literals, and variables. These elements are alphabetized wherever
appropriate.

• The error messages generated by ENFORM.

The special features of ENFORM, such as using the host language interface, writing an ENFORM
server, or redefining ENFORM reserved words and message text are not discussed. For this infor
mation and for information about using the ENFORM language elements, refer to Introduction to
ENFORM or to the ENFORM Users Guide.

The examples in this manual use the data base described in the ENFORM Users Guide.

ENFORM TERMINOLOGY

This manual uses special terms to describe the various components and features of the ENFORM
language. Figure 1-1 illustrates these terms by showing a typical ENFORM session (the period of
time that begins when you enter the ENFORM command and ends when you exit ENFORM). The
following paragraphs describe some of the terms illustrated in Figure 1-1. Become familiar with
these terms, because they are used throughout the manual.

1-1

Introduction

r-------------------------

f Begin session :ENFORM

~l
II~'-;J 1''::'::1'' :1

,I :'1)~ ,

~?
Enter query specifications

r--------------------------~
>?DICTIONARY $mkt.sample ., Command

>OPEN employee; ----,---~ Statement

> LIST BY empnum, I I I ----- By-item

'------------... ., .. Clause T~~~t-
empname,salary,

L..I ---------1., Target-items

WHERE salary GT 2000;

I I

_____ Clause

- ______ Request-Qualification

Statement
Query

L_-________ -_ _____ -__________ .J

Report

L __

""--------------------------,--

,;::::~
I I

Taooet- I
I Records I
\ __ ... 1

Figure 1-1. Typical ENFORM Session

The important terms are:

Query specifications - the language elements (statements, clauses, commands, .. .) that you specify
to provide ENFORM with the information it needs to retrieve data and to establish the query
environment.

Query - one complete LIST or FIND statement. Both statements specify the information to be
retrieved.

Target-list-a part of the query; a target-list consists of target-items and a special type of target
item called a by-item.

Targe t-items - any record names, field names, variable names, aggregate names, literals, or
expressions, excluding by-items, whose values you want to appear as output from your query.

By-items - field names modified by the BY or BY DESC clauses described ltn Section 5. The
values of the fields are used to sort and group the query output.

1-2

Introduction

Request-qualification-a condition or conditions that a data base element must meet before it is
selected to contribute to your query output. A request-qualification begins with a WHERE
keyword followed by a logical expression.

Compiler/report writer-the ENFORM process that compiles your query and writes a report (if
one is requested). The compiler/report writer issues error messages for syntax errors. If no errors
exist, the compiler/report writer passes your compiled query specifications along with information
obtained from the dictionary to the query processor. After the query processor returns the retrieved
data (in the form of the target-records described later in this section), the compiler/report writer
formats and writes the report.

Dictionary-physical files that contain information called record descriptions. A record description
provides ENFORM with information about the name of the record being accessed, the name and
data type of any fields within the record, the record and field length, the name of any primary or
alternate key fields, and the name of the physical file associated with the record description. The
dictionary is created by the Data Definition Language (DDL) compiler from record descriptions
written in DDL. The dictionary must exist before your query specifications are processed. Refer to
the Data Definition Language (DDL) Reference Manual and the EN FORM User's Guide for more
information about the dictionary.

Query processor-the ENFORM process that uses the information provided by the compiler/report
writer to retrieve information from the data base. The query processor also performs other func
tions such as creating a new physical file and transmitting records to a host language program.
Creating a new physical file is described with the FIND statement in Section 5 of this manual. The
host language interface is described in the EN FORM User's Guide.

Target-records-the records built by the query processor from which your ENFORM output is pro
duced. The query processor returns the target-records to the compiler/report writer if the EN FORM
output is to be formatted and written as a report.

Data base -the collection of physical files from which the query processor retrieves data. Any
physical file from which data is retrieved must be associated with the record description obtained
from the dictionary.

1-3

SECTION 2

RUNNING ENFORM

The ENFORM command issued from the Command Interpreter calls the ENFORM subsystem. If no
parameters are specified, the ENFORM command appears as:

:ENFORM

The terminal from which the ENFORM command is entered is called the home terminal. The syntax
for the ENFORM command is:

ENFORM [I [IN input-fiLename] [, [OUT output-fiLename]] I]

[dict-subvoL-name] [, message-tabLe-fiLename]

where

IN input-fiLename

specifies either the name of an EDIT file containing ENFORM source code or the name of
a compiled query file.

If this option is specified, ENFORM executes the code in the specified file and returns
you to the Command Interpreter prompt at the end of execution.

If this option is omitted, the ENFORM prompt (» appears and you can enter commands
and statements either directly by typing them or indirectly by specifying either the
?RUN or ?SOURCE commands. When this option is omitted, the home terminal becomes
the default input file.

OUT output-fiLename

specifies the name of the physical file to which output is directed. If this option is omit
ted, EN FORM directs the output to the current output listing file (explained later in this
section.)

dict-subvoL-name

is the name of the volume and subvolume upon which the dictionary resides. If this
parameter is omitted, ENFORM assumes the dictionary resides on the current volume
and subvolume. Either the DICTIONARY statement or the ?DICTIONARY command
can be used to supply or change the dictionary name.

2-1

Running ENFORM

message-tabLe-fiLename

is the name of the key-sequenced file containing a user-defined ENFORM message table.
ENFORM retrieves error and informational message text, help messaglB text, and/or the
list of any redefined reserved words, system variables, option variables, or command
names from this file when this parameter is specified. If this parameter is omitted,
ENFORM retrieves message text from a message table supplied by Tandem. Refer to the
ENFORM Users Guide for information about creating a user-defined message table.

The Command Interpreter ASSIGN command (described later in this section) can be used
to make up to 32 logical file assignments before the ENFORM subsystem is called.

INTERACTIVE MODE

EN FORM functions in interactive mode when the ENFORM source code is entered from a terminal
keyboard. ENFORM prompts for input by printing the right angle bracket (». When a carriage
return is entered, ENFORM issues another prompt. For example:

:ENFORM
ENFORM - T9102C09 - (02APR82) DATE - TIME: 6/16/81 - 10:14:52
>

ENFORM commands and statements can be entered either directly or indirectly. Commands and
statements are entered directly when you type them in response to the ENFORM prompt. Com
mands and statements are entered indirectly when you use either the ?RUN or ?SOURCE com
mands to supply the ENFORM source code.

When you enter commands and statements directly, the Command Interpreter FC command pro
vides you with the ability to edit or repeat a line. Refer to the GUARDIAN Operating System Com
mand Language and Utilities Manua~ for more information about this command.

When you specify the ?EDIT command, the Edit prompt (*) appears and all the functions of the Edit
process are available for your use. Either the ?RUN or the ?SOURCE command can be used to
execute the source code created in the Edit process. These commands are described in Section 6.

Exit interactive mode by entering the EXIT statement, the ?EXIT command, or by pressing the
CTRL and Y terminal keys simultaneously.

NON INTERACTIVE MODE

EN FORM functions in noninteractive mode when commands and statements are entered through an
input file other than a terminal. The input file can be an edit file or a compiled query file. For example:

:ENFORM lIN input-fiLename, OUT output-fiLenamel

In this example, ENFORM reads the commands and statements from the input file.

When ENFORM functions in noninteractive mode, all commands, statements, and clauses must be
part of the input file. When the file specified in the IN option is a compiled query file, values for
parameters can be specified by using the P ARAM command of the Command Interpreter prior to
the ENFORM command. More information about passing parameters to compiled ENFORM queries
is available later in this section.

ENFORM terminates when an end-of-file, EXIT statement, or ?EXIT command is encountered on
the input file.

2-2

Running EN FORM

THE CURRENT OUTPUT LISTING FILE

The current output listing file is the file to which EN FORM directs output. During the course of an
ENFORM session, the current output listing file can change.

At the beginning of an ENFORM session, the current output listing file is the default output file.
EN FORM determines the default output file by the following process:

• If the OUT option is included in the ENFORM command, the default output file is the file
specified in the OUT option.

• If the OUT option is omitted from the ENFORM command, the default output file is the file
specified in the IN option of the ENFORM command if that file is a terminal.

• If the file specified for the IN option is not a terminal, the default output file is the home terminal.

• If both the IN option and the OUT option are omitted from the ENFORM command, the default
output file is the home terminal.

As the session progresses, the current output listing file might change as follows:

• If a QUERY-COMPILER-LISTING file is specified, that file becomes the current output listing
file whenever ENFORM commands and statements are being processed.

• If either a QUERY-REPORT-LISTING file or an ?OUT command file is specified, that file
becomes the current output listing file whenever a report (the output from a LIST statement) is
being processed.

The QUERY-COMPILER-LISTING file and the QUERY-REPORT-LISTING file are discussed later
in this section. The ?OUT command file is discussed in Section 6.

PRESSING THE TERMINAL BREAK KEY

ENFORM acknowledges the terminal BREAK key whenever the input file is a terminal. The input
file is a terminal under the following conditions:

• the IN option is omitted from the ENFORM command making the home terminal the default
input file.

• the terminal (whether the home terminal or another terminal) is the file specified in the IN
option of the ENFORM command.

Pressing the terminal BREAK key on any terminal, including the home terminal, has no effect
unless the terminal is the input file.

The current activity determines the action taken as follows:

• Pressing the terminal BREAK key when ENFORM is processing a query, producing a report, or
producing output from the ?SHOW command, returns the terminal to the ENFORM prompt (».
Query execution and any output (the report or the output produced by the ?SHOW command)
terminates.

• Pressing the terminal BREAK key when commands or statements are being entered (either
directly or indirectly), returns the terminal to the Command Interpreter prompt (:).

2-3

Running ENFORM

'. Pressing the terminal BREAK key when you have entered the EDIT process from the
EN FORM prompt has the same effect as when the EDIT process is entered from the Command
Interpreter prompt with one exception: pressing the terminal BREAK key at the EDIT prompt
(*) has no effect.

If the @BREAK-KEY option variable (described in Section 5) is set to OFF, pressing the BREAK
key returns the terminal to the Command Interpreter prompt. It neither terminates output nor
query execution. In this case, ENFORM continues to run and any output directed to the terminal is
temporarily interrupted. The PAUSE command of the Command Interpreter can be issued to
resume output.

lOGICAL FILE ASSIGNMENTS

ENFORM allows logical file assignments to be made either before or after the Command Inter··
preter ENFORM command is entered. When the logical file assignment is made from within the
ENFORM subsystem, use the EN FORM ?ASSIGN command described in Section 6. When the
logical file assignment is made before the ENFORM command is entered, use the Command Inter
preter ASSIGN command to either associate a physical file with a dictionary record description or
to assign some form of EN FORM output to a generic file.

When ENFORM is used in noninteractive mode, the Command Interpreter ASSIGN command over
rides an EN FORM ?ASSIGN command that is part of the input file. When ENFORM is used in
interactive mode, the ENFORM ? ASSIGN command overrides any Command Interpreter ASSIGN
commands.

rrhe syntax of the Command Interpreter ASSIGN command is:

ASSIGN[,recor~-na~e t ' physicaL-fiLename [, excLusion-mode]]
1generlc-flLe-name~

where

record-name

is the name of a dictionary record description.

generic-fiLe-name

is the name of one of the following generic files: QUERY-WORK-AREA, QUERY-SORT
AREA, QUERY-QPSTATISTICS, and QUERY-QPSTATUS-MESSAGES. All other
names are ignored.

physicaL-fiLename

is a fully qualified Tandem file name. Refer to the GUARDIAN Operating System
Programming Manual for the exact form of a Tandem file name.

excLusion-mode

is either SHARED, PROTECTED, or EXCLUSIVE. The default is SHAHED for an input
file. Valid values for generic files are described later in this section.

Refer to the GUARDIAN Operating System Programming Manual for more information about the
ASSIGN command.

2-4

,--

Running ENFORM

PASSING PARAMETERS TO COMPILED QUERY FILES

ENFORM allows you to pass parameters to a compiled query file. The compiled query file must con
tain a PARAM statement defining the parameter. The PARAM statement is discussed in Section 4.

Use the PARAM command of the Command Interpreter to specify parameters prior to execution of
the compiled query file. The PARAM command overrides any values specified in a SET statement
for a parameter. The syntax of the Command Interpreter PARAM command is:

PARAM [parameter-name parameter-value J , •••

where

parameter-name

is the name of a parameter defined in a PARAM statement.

parameter-value

is the value to be assigned to parameter-name. parameter-value can have either of the
following forms:

character-string
"character-string"

If the first form is used, the string must not contain any embedded commas, and
leading and trailing blanks are not included as part of parameter-value.

If the second form is used, all the characters, including leading and trailing blanks,
between the quotation marks are included as part of parameter-value.

Refer to the GUARDIAN Operating System Command Language and Utilities manual for more
information about the PARAM command.

A SERVER QUERY PROCESSOR

Unless otherwise specified, each ENFORM session uses a dedicated query processor. To avoid some
overhead, several compiler/report writer processes can be assigned to share a single server query
processor and sort process. The assignment is made by an ? ATTACH command. A server query
processor processes one query at a time. Figure 2-1 shows several compiler/report writer processes
assigned to one server query processor.

One or more server query processors can be created. Each server query processor runs NonStop,
handling queries from one compiler/report writer process at a time.

A host language program (described in the ENFORM Users Guide) can also use a server query
processor.

2-5

Running ENFORM

~--~--... - .. - .. -~ .. -.-....• ---.--------------------,

Figure 2-1. Server Query Processor With Several Compiler/Report Writer Processes

:~NFORM server query processors are created by a system manager, using the Command Inter
preter ASSIGN and PARAM commands followed by the Command Interpreter ~~P command.

2-6

------,-----------------------,--,-----,_._---,-, -----,

Running ENFORM

The Command Interpreter ASSIGN Command

For every physical file an ENFORM application accesses, the server query processor must do
open/close operations that add to the processing time. This processing time can be reduced
significantly if ENFORM applications that frequently use the same physical files are processed by a
common server query processor. A server query processor allows for heavily accessed physical files
to be kept open.

The ASSIGN command of the Command Interpreter defines the physical file or files kept open. The
syntax is:

ASSIGN { Fnumber } , physical-filename [, exclusion-mode]
generic-file-name

where

Fnumber

specifies the logical file name. Legal values for logical file names range from Fl through
F31.

generic-file-name

is the name of one of the following generic files: QUERY-WORK-AREA, QUERY-SORT
AREA, QUERY-QPSTATISTICS, and QUERY-QPSTATUS-MESSAGES. All other
names are ignored.

physical-filename

is a fully qualified Tandem file name. Refer to the GUARDIAN Operating System Pro
gramming Manual for the exact form of a Tandem file name.

exclusion-mode

is either SHARED, PROTECTED, or EXCLUSIVE. The default is SHARED for an input
file. Valid values for generic files are described later in this section.

2-7

Running ENFORM

The Command Interpreter PARAM Command

To create a server query processor, you must include a PARAM command specifying a
REQUESTORS parameter. The REQUESTORS parameter defines the maximum number of
requestors the server query processor can accept. The other parameters are optional and can be
specified in the same or in a different PARAM statement.

PARAM REQUESTORS

where

max-requestors [,COST max-cost l
,TIMEOUT time-out
,READS max-reads
,CPU number

REQUESTORS max-requestors

, ...

sets the maximum number of requestors a query processor can accept. A requestor can
be any EN FORM application or a host language program. (Host language programs are
described in the EN FORM Users Guide).

2-8

COST max-cost

sets a strategy cost limit for each ENFORM query using this server query processor. If
an ENFORM query exceeds the limit, it is terminated and an error message is displayed.
Refer to the @COST-TOLERANCE option variable in the Option Variable clauses in Sec
tion 5 for an explanation of strategy cost limits.

Max-cost must be an integer between one and eight. The default is no limit.

TIMEOUT time-out

sets the number of minutes a server query processor sits idle before stopping itself. The
default is no limit, meaning the query processor continues to run indefinitely.

READS max-reads

sets the maximum number of logical data base reads per ENFORM sessilon. If that many
reads are performed, the ENFORM session is terminated and an error message is
displayed.

Max-reads must be an integer. The default is no limit.

CPU number

is an integer value that sets the number of the CPU where a server query processor
resides.

---,--------------------,-------------------------------

Running ENFORM

The Command Interpreter QP Command

After the parameters are initialized and the physical files to be kept open are specified, the server
query processor is created. The syntax is:

QP / NOWAIT, NAME process-name [, CPU number
[, PRI priority] [, MEM pages] /

where:

NAME process-name

is a process name for the server query processor. The name must begin with a dollar sign
($) followed by an alphabetic character and one to four alphanumeric characters.

CPU number

is the number of the CPU where this server query processor resides. The default is the
same CPU where the Command Interpreter resides. A CPU number specified in the QP
command overrides a CPU number specified in the PARAM command.

PRI priority

is the priority at which this server query processor is to run.

MEM pages

is the maximum number of virtual data pages used for this server query processor. It
must be an integer from one to 64. The default is 64.

Example of Server Query Processor Creation

Issue the following instructions to create a server query processor named $qpl that keeps open
parts, order, and odetail, accepts up to 15 requestors, sets a limit of 2 on the cost strategy, and waits
idle up to 3 minutes before stopping.

:ASSIGN F1, $data.database.parts
:ASSIGN F2, $data.database.order
:ASSIGN F3, $data.database.odetail
:PARAM REQUESTORS 15, COST 2, TIMEOUT 3
:QP / NOWAIT, NAME $qp1 /

2-9

Running ENFORM

GENERIC FILES

A generic file is a file that is used to store some form of ENFORM output. ENFOHM produces many
different forms of output, such as statistics and error messages. To enable control over each class of
output, generic file names have been defined for each class. These generic file names can be used in
Command Interpreter ASSIGN commands or ENFORM ? ASSIGN commands (described in Section
6) as the record-name to be assigned to a physical-file-name.

When you assign an ENFORM generic file to a physical file, the physical file must exist at the time
ENFORM attempts to open the file. If you specify an exclusion mode, it is used. An unspecified or
meaningless exclusion mode (for example, protected for terminals) causes the default (SHARED for
terminals and EXCLUSIVE for other devices) to be used. If you specify an exclusion mode for the
generic files QUERY-WORK-AREA and QUERY-SORT-AREA, it is ignored.

Assigning a generic output file name to a process name causes the process to be treated as if it were
the spooler. EN FORM OPENs the process, calls SETMODE, and WRITEs to the process. It is not
possible to ASSIGN a FIND file to a process because ENFORM will create an unstructured file and
rename the file as the last step in processing the FIND statement. Table 2-1 shows the ENFORM
generic file names and their uses.

Table 2-1. ENFORM Generic Files and Their Uses

Generic File Name Use

QUERY-COMPILER-liSTING All compilation output produced during an ENFORM session
(that is, entering a query either directly or indirectly); compiler
errors and warnings; including output, errors, and warnings
from other ENFORM commands (such as ?ASSIGN and
?SHOW).

QUERY-REPORT-liSTING

QUERY-STATISTICS

QU ERY -STATUS-M ESSAG ES

2-10

Output is produced in ASCII with a record length of 132 bytes.

All reports produced as a result of the execution of a LIST
statement.

Output is produced in ASCII with a record lenglth of 132 bytes.

All statistics produced during an ENFORM session by the
query processor while processing a FIND or LIST statement
when @STATS is SET to ON. Several sets of statistics can be
produced during a session. A set is identified by the
requestor's PID and the beginning and ending times of the
query execution.

Output is produced in ASCII. For each query pmcessed, the
output consists of (72 * (the number of record .. types in the
query + 3)). For display purposes, each output record is 72
characters long.

All compiler/report writer error and warning messages pro
duced during an ENFORM session. All error messages pro
duced during an ENFORM session by the query processor or
SORT while processing a FIND or LIST statement. These
messages also appear in the listings.

The output is produced in ASCII with a record length of 132
bytes.

Running ENFORM

Table 2-1. ENFORM Generic Files and Their Uses (Concluded)

Generic File Name Use

QUERY-WORK-AREA The volume where all temporary files (except SORT work files)
are built by the query processor while processing a FIND or
LIST statement during an ENFORM session. The QUERY
WORK-AREA file name should contain only a volume name.

QUERY-SORT-AREA The location where all temporary files are built by the SORT
process while processing a FIND or LIST statement during an
ENFORM session. The QUERY-SORT-AREA file name can be a
volume name or an explicit file name.

QUERY-QPSTATISTICS

QUERY-QPSTATUS-MESSAGES

The statistics produced for every FIND or LIST statement that
is successfully processed by the query processor during an
ENFORM session (regardless of the setting of @STATS). Each
set of statistics is identified by a line containing the requestor's
PID and the beginning and ending times of the query execution.

If @STATS is set to ON, statistics are also reported to the
QUERY-STATISTICS file.

The output is produced in ASCII. For each query processed,
the output consists of (72 * (the number of record-types in the
query + 3». For display purposes, each output record is 72
characters in length.

All error messages produced by the query processor or SORT
during the processing of a FIND or LIST statement during an
ENFORM session. To identify the query in error, each
message is preceded by the requestor's PID and the time of
the error.

Errors are also reported to the QUERY-STATUS-MESSAGES
file.

The output is produced in ASCII with a record length of 132
bytes.

In most cases, a generic output file is an unstructured file. When ENFORM opens an unstructured
file to write records, the records are written starting at the beginning of the file and the existing
records are overwritten.

2-11

Running EN FORM

Generic Files and a Dedicated Query Processor

'rhe generic files QUERY-WORK-AREA, QUERY-SORT-AREA, QUERY-QPSTATISTICS, and
QUERY-QPSTATUS-MESSAGES can be specified for a dedicated query processor by using either
the EN FORM ?ASSIGN command (see Section 6) or the Command Interpreter ASSIGN command
(see Logical File Assignments earlier in this section). The ASSIGN command is passed through the
EN FORM compiler/report writer to the query processor for each LIST or FIND statement until the
ASSIGN is cleared.

'rhe query processor opens both QUERY-QPSTATISTICS and QUERY-QPSTATUS-MESSAGES
for every FIND or LIST request. Generally, statistics and errors for multiple requests to a
dedicated query processor cannot be collected in a disc file because the results are written over
each other. However, by assigning the generic file to a process, the statistics and errors can be col·
lected for multiple requests to a dedicated query processor.

Generic Files and the Server Query Processor

The generic files QUERY-WORK-AREA, QUERY-SORT-AREA, QUERY-QPSTATISTICS, and
QUERY-QPSTATUS-MESSAGES can be held open for the lifetime of a server query processor if
the Command Interpreter ASSIGN command (see A Server Query Processor earlier in this section)
is specified at the time the server query processor is created.

lBy using the generic file names with a server query processor, you can specify where the server
query processor: builds the temporary files, performs sorts, sends statistics, and sends error
messages. Since the QUERY-QPSTATISTICS and QUERY.·QPSTATUS-MESSAGES files are held
open for the lifetime of the associated server query processor, collection of statistics and errors for
multiple requests is possible.

The Command Interpreter ASSIGN commands specified when the server query processor is
started cannot be overridden by either ENFORM ?ASSIGN commands nor Command Interpreter
ASSIGN commands specified when the EN FORM process is initiated. (The server query processor
must be stopped and restarted to alter these file assignments.)

If you assign generic files by specifying either the ENFORM ? ASSIGN command (during ENFORM
processing) or the Command Interpreter ASSIGN command (before ENFORM is initiated) the
server query processor directs output to these generic files until you clear the ASSIGN command.
Generic files that were not assigned when the server query processor was created are re-opened for
each FIND or LIST statement.

Generic Files and the Current Output listing File

If the Generic files QUERY-REPORT-LISTING and QUERY-COMPILER-LISTING are assigned,
these files become the current output listing files under the following conditions:

• QUERY-COMPILER-LISTING file is the current output listing file whenever ENFORM
statements and commands are processed.

• QUERY-REPORT-LISTING file is the current output listing file whenever a report (the output
from the LIST statement) is produced unless the ?OUT command specifies an ?OUT file.

Assignment of any of the other generic files does not affect the current output l:isting file.

Table 2-2, shows the forms of ENFORM output (that is, reports, statement and command output,
statistics, and error messages) and the corresponding output file when generic files are assigned.
The default output file is described earlier in this section.

2-12

Running ENFORM

Table 2-2. EN FORM Output Files

ENFORM Output Output File

ENFORM banner and trailer
Commands
Statements
Command output (e.g.,?SHOW)

Report from a LIST statement

Statistics
@STATS on

@STATS off

Error messages from the
command processor and
query compiler

Error messages from the
report writer

Error messages from the
Query processor or SORT

1) The QUERY-COMPILER-LiSTING file if assigned, otherwise
2) to the default output file

1) The ?OUT file if specified, otherwise
2) QUERY-REPORT-LiSTING file if assigned, otherwise
3) to the default output file

The QUERY-QPSTATISTICS file if assigned and, in addition, to
the following:

1) QUERY-STATISTICS file if assigned, otherwise
2) QUERY-COMPILER-LiSTING file if assigned, otherwise
3) to the default output file.

1) The QUERY-QPSTATISTICS file if assigned, otherwise
2) the output is not written.

The QUERY-STATUS-MESSAGES file if assigned and, in
addition, to the following:

1) QUERY-COMPILER-LiSTING if assigned, otherwise
2) to the default output file.

Note that if the QUERY-STATUS-MESSAGES file is not assigned
and the QUERY COMPILER-LISTING file is not the default out
put file, the error messages are also written to the default out
put file.

The QUERY.STATU~.MESSAGES file if assigned, and, in
addition, to the following:

1) ?OUT file if specified, otherwise
2) QUERY·REPORT~LlSTING if assigned, otherwise
3) to the default output file.

Note that if the QUERY·STATUS·MESSAGES file is not assigned
and the list file is not a the default output file, the error
messages are also written to the default output file.

The QUERY·QPSTATUS·MESSAGES file if assigned, and to the
QUERY·STATUS·MESSAGES file if assigned, and in
addition to the following:

1) QUERY·COMPILER·LlSTING if assigned, otherwise
2) to the default output fi Ie.

Note that if the QUERY·STATUS·MESSAGES file is not assigned
and the current output listing file is not the default output file,
the error messages are also written to the default output file.

The numbers in the Output File column indicate the order in which ENFORM directs output to the
files. If the file with the number 1 exists, ENFORM directs output to this file only. If this file does not
exist, ENFORM directs output to the file with the number 2, and so on.

2-13

--... --..................................... I

SECTION 3

EN FORM LANGUAGE ELEMENTS

An ENFORM query is built with elements of the EN FORM language. This section contains:

• An explanation of the ENFORM language elements that are used throughout query specifica
tions. These elements are: reserved words, special characters, and comments.

• A brief explanation of the functions of the ENFORM statements, clauses, and commands. The
syntax of these language elements is described later in this manual.

• The syntax and functions of the ENFORM language elements that can be used either in a target
list or in request-qualification. (Both target-lists and request-qualification are defined in Sec
tion 1). These language elements include aggregates, literals, arithmetic expressions, logical
expressions, IF/THEN/ELSE expressions, parameters, user variables, and user tables.

• The rules to be used when referencing data base records, fields, and primary keys, when
including subscripts, and when naming using defined elements such as user variables, user
tables, user aggregates, or parameters.

Figure 3-1 shows a query specification and some of the language elements discussed in this section.

3-1

EN FORM Language Elements

-------_._----------"._----_._-_._------------

?DICTIONARY $mkt.sample ---------------....... Command I L..' --------------.--------... Keyword
--------.. Special Character

DECLARE user-var; -----------------. .. StatemEmt

I
I' .. Special Character

• L... ------------.------____ .. User Variable
'---------------------.---........... Keyword

AT END PRINT "The End"; -------------............ Statement

T
i' .. Special Character

_ L... ----------------........... String Literal
~--------------------------.. Keywords

-

OPEN employee; -------------------.. Statement

I
I' .. Special Character

_ L... ___________________________ Record IName

~------------------------... Keyword

LIST empnum,empname,salary, -TL.. ______________ . ____ Field Names

1 -------------.......... Arithmetic Expression

user-var : = (salary + 10)

I
I L..' ---------.---"""'l Numeric Literal

. --------1 SpeCial Character
~--------------------...... User Variable

1..---------..... Aggregate

WH ERE salary EO AVG (salary OVER empnum) ; -........ Clause

I
' .. Special Character

T .. Logical Expression
'---------------------............ Keyword

.... Keyword

Figure 3.1. EN FORM Language Elements

3-2

ENFORM Language Elements

RESERVED WORDS AND KEYWORDS

Reserved words are words with special meaning to ENFORM. Both in syntax and elsewhere in this
publication reserved words are shown in uppercase characters. Reserved words must be spelled
exactly as shown.

Do not use reserved words to name records, fields, variables, tables, or parameters. Reserved
words can be redefined or translated to a language other than English. Refer to the ENFORM
Users Guide for instructions on redefining the ENFORM reserved words. Table 3-1 shows the
ENFORM reserved words.

ACROSS *
AFTER
ALL
AND
AS
ASCD
AT
AVG
BEFORE
BEGINS
BLANK
BLANKS
BY
CENTER
CHANGE
CLOSE
CONTAINS
COPY
COUNT
CUM
DATE
DECLARE
DEFINE *
DELINK

Table 3-1. EN FORM Reserved Words

DESC
DICTIONARY
ELSE
END
EQ
EQUAL
EXIT
FILE *
FIND
FOOTING
FORM
GE
GREATER
GT
HEADING
IF
INTERNAL
INVOKE *
IS
JULIAN-DATE
KEY
LE
LESS
LINK

LIST
LT
MAX
MIN
NE
NOHEAD
NOPRINT
NOT
NULL
OF
OFF
ON
OPEN
OPTION
OPTIONAL
OR
OVER
PARAM
PCT
PRINT
RECORD
ROW-SUBTOTAL *
ROW-TOTAL *
SAVE

SET
SKIP
SPACE
START
SUBFOOTING
SUBTITLE
SUBTOTAL
SUM
SUPPRESS
TAB
THAN
THEN
THRU
TIME
TIMESTAMP-DATE
TIMESTAMP-TIME
TITLE
TO
TOTAL
UNIQUE
USING *
VIA
WHEN *
WHERE

* These words are reserved for future extensions to EN FORM.

WITH
WITHOUT
ZERO
ZEROS

+

<

>
@

[
]

Keywords are reserved words that indicate the beginning of statements or clauses to the ENFORM
compiler.

3-3

}t~NFORM Language Elements

SPECIAL CHARACTERS

Table 3-2 shows the EN FORM special characters and describes their functions within a query.

Character Name

blank

quotation mark

assignment syntax

apostrophe

parenthesis

brackets

question mark

comma

semicolon

Table 3-2. Special Characters

Character

()

[]

?

Description

Separates keywords and other langua!Je elements.

Serves as delimiter for various langua,ge elements,
such as alphanumeric literals, and some disp~ay
formats.

ASSigns a value to a target-item.

Serves as a delimiter for display formats, some con
ditional operators.

Delimits various language elements. Must appear in
balanced pairs.

Delimits subscripts, modifiers, and decorations. Must
appear in balanced pairs.

Denotes commands when directly followed by a
keyword.

Separates multiple query specifications in the same
statement; always optional.

Terminates statements

COMMENTS

A comment clarifies and documents the purpose of the your query. A comment is denoted by the
exclamation character (D. A comment can be the only text on a line, the last text on a line, or text
embedded within a line. When a comment is embedded within a line, it must be enclosed with
exclamation marks. For example, consider the following comments:

!This query produces Finance Report 301

DICTIONARY finance.subvoL; ! Information is confidentiaL

OPEN finance1, !OnLy two fiLes are needed! finance2;

STATEMENTS

Statements contain specifications for selecting and formatting elements from your data base. Com
posed of keywords, clauses, and target-lists, the EN FORM statements LIST and FIND provide the
basic specifications for information selection. Additional statements establish the query environ
ment and provide some report structuring capability.

3-4

--_________ 1

ENFORM Language Elements

With the exception of the LIST and FIND statement, ENFORM statements remain in effect (unless
cancelled, reset, or overridden) for the duration of an entire ENFORM session. ENFORM requires
the LIST and FIND statements to be terminated with a semicolon. The other ENFORM statements
should be terminated with a semicolon since ENFORM does not report errors until it encounters
either a terminating semicolon or the beginning of a new statement.

Refer to Section 4 for the syntax of the ENFORM statements.

CLAUSES

Clauses are optional elements of ENFORM statements. With the exception of the option variable
clauses and the system variable clauses, EN FORM clauses only apply to the LIST or FIND state
ment of which they are a part.

Some of the operations performed by ENFORM clauses are:

• Sorting and grouping target-records.

• Calculating subtotals, totals, percentages, and running totals.

• Printing user supplied information within a report.

• Formatting a report.

• Extracting the current date, time, line number, and page number.

• Converting data to internal or display format.

Refer to Section 5 for the syntax of the ENFORM clauses.

COMMANDS

Commands are compiler directives that tell the compiler/report writer to perform a specific action.
For example, commands tell the compiler/report writer to:

• Associate a new physical file with a record description.

• Attach a specific query processor.

• Enter the Tandem text editor without leaving ENFORM.

• Compile a program and save it in a compiled query file.

• Compile and execute an EDIT file containing source code.

• Execute a compiled query file.

• Include part of an EDIT file in the input to ENFORM.

• Display information about the current ENFORM environment.

Refer to Section 6 for the syntax of the ENFORM commands.

3-5

ENFORM Language Elements

RULES FOR NAMING USER DEFINED ELEMENTS

When you name variables, tables, aggregates or parameters, the name:

o Must be unique.

o Must start with either an alphabetic character or a circumflex (").

o Can contain numbers, hyphens (-), or circumflexes (").

o Can be from 1 to 31 characters in length.

o Must not contain embedded blanks.

• Must not end with a hyphen (-).

RULES FOR REFERENCING DATA BASE ELEMENTS

When you reference a data base element within your query, you must follow certain rules. The rules
used to reference a record name, a field name, and a primary key are described in the following
paragraphs.

Record Name References

When you reference a record name within a query, the record name must be unique. If a record
name is the same as a field name in an open record description, ENFORM assumes the unqualified
reference refers to the field name.

Referencing a record name as a target-item is the same as referencing each oceurrence of each of
the fields individually. A record name cannot be specified as an element in a print list. (A print list is
part of the AT END statement and clause, the AT START statement and clause, the FOOTING
statement and clause, the SUBFOOTING statement and clause, the SUBTITLE statement and
dause, the TITLE statement and clause, and the BEFORE CHANGE and AFTER CHANGE
elauses.)

Field Name References

The same field name can exist in more than one data base file. If your query involves data base files
with duplicate field names, the field name must be uniquely qualified.

Field names can be qualified by using two different conventions. The first convention joins the
record or group name to the field name with a period:

record-name.field-name

or

group.name.field-name

The second convention joins the record or group name to the field name with the keyword OF.
When the OF syntax is used the field name or group name is written first followed by OF and the
qualifier needed:

field-name OF record-name

or

field-name OF group-name

3·-6

ENFORM Language Elements

A field name requires as much qualifying as necessary to uniquely identify the field to ENFORM.
The necessary qualification might be as simple as combining the field name with the record name or
group name. It might require combining the field name with both a group name and a record name
or with two group names. Consider the record descriptions shown in Figure 3-2.

RECORD stock-items. RECORD shelf-items.
FILE IS "stock" KEY-SEQUENCED. FILE is "shelf" KEY-SEQUENCED.

02 depot-num PIC 99. 02 dept-num PIC 99.
02 cont-num PIC 99. 02 dept-name PIC X(10).
02 erasers. 02 cont-num PIC 99.

05 ink PIC 99. 02 pens.
05 gum PIC 99. 05 b-point PIC 99.
05 pink PIC 99. 05 felt-tip PIC 99.

02 ink pens. 02 erasers.
05 felt-tip PIC 99. 05 ink PIC 99.
05 b-point PIC 99. 05 gum PIC 99.
05 fountain PIC 99. 05 gray PIC 99.

Figure 3-2. Records With Duplicate Field Names

If both the stock-items and shelf-items record descriptions are open, ink must be qualified. To
qualify ink within shelf-items, one of the following must be entered:

ink OF erasers OF she L f-i terns

sheLf-items.erasers.ink

Primary Key References

The records in data base files can be uniquely identified by the value of a primary key. For data
base files with key-sequenced file structure, the primary key is part of the record. For data base
files with relative, unstructured, or entry-sequenced file structure, the primary key is not part of
the record. Primary keys can be referenced in two forms:

KEY OF record-name

or

record-name. KEY

The form record-name.KEY can appear for only one relative, entry-sequenced, or unstructured file
per query.

The primary key for files with key-sequenced file structure is a field within the record. For key
sequenced files, referencing the primary key using the form record-name.KEY is the same as
explicitly naming the field described as the primary key. The advantage of the form
record-name.KEY is that you do not have to know the name of the primary key field in order to
reference it. A listing of the primary key values of the parts file can be obtained by:

OPEN parts;
LIST parts. KEY;

3-7

ENFORM Language Elements

The record with the primary key value of 1403 can be referenced by:

WHERE parts. KEY = 1403

For files with relative file structure, the primary key is a record number. The record number is the
ordinal position of the record relative to the beginning of the physical file. The first record in the
physical file has position zero. A listing of the primary keys of a relative file can be obtained by:

OPEN re II i
LIST KEY OF rell;

The primary key of the fifth record in the file can be referenced by:

WHERE KEY OF rell = 4

Remember, the fifth record in a file with relative file structure has position four because the first
record has position zero.

For files with entry-sequenced and unstructured file structures, the primary key is a record
address. A record address is the byte offset from zero of the record you want . .A record address is
always an even number. A listing of the primary keys of an entry-sequenced file can be obtained by:

OPEN entryseqi
LIST entryseq.KEY;

The third record in the file entryseq has a primary key whose byte offset is 16. The record can be
referenced by:

WHERE entryseq.KEY = 16

For more information about file structures, refer to the ENSCRIBE Data Base Manager Program
ming ManuaL

SUBSCRIPTS

Subscripts, although they are not required, are usually used to reference elements in a user table or
data base table. (A data base table is created when the dictionary description of a data base field
contains an OCCURS clause.) Subscripts are needed for references to user tables and data base
tables because all the elements in such tables have the same name. Subscripts can be used in
references to data base fields and user variables although they are not necessary.

3-8

ENFORM Language Elements

The syntax for including subscripts is:

{
fieLd-name-ref1} {"["SUbscriPt"]" }
user-tabLe-name "["subscript-range"]"

grp-name {"[" subscript "]" } .fieLd-name-ref2- {"["SUbscriPt"]" }
"["subscript-range"]" "["subscript-range "]"

where

fieLd-name-ref1

is the qualified name of a data base field.

user-tabLe-name

is the name of a user table defined by the DECLARE statement.

subscript

is an integer. The lowest valid value for subscript is 1. The highest valid value is the max
imum number of elements defined for the user or data base table. (Refer to the following
discussion for more information.)

subscript-range

has the form subsc r i pt i subsc r i pt j.

where

subscripti

is the first element being referenced.

subscriptj

is the last element being referenced.

grp-name

is the name of a group described in the dictionary. A group is defined as a record element
whose level number (02, 03, 04, ...) is less than that of the next record element.

fieLd-name-ref2

is the name of a subordinate field. A subordinate field is defined as a record element
whose level number (05, 06, 07, .. .) is greater than that of grp-name.

3-9

ENFORM Language Elements

When a subscript is included with a reference to a table name, a user variable name, or a field name,
ENFORM determines whether the subscript is a valid subscript value allowed for the table,
variable, or field. A valid subscript value for a field or user variable is 1. Valid subscript values for a
user table are defined in the DECLARE statement. 11'or example, consider the following user table
declaration:

DECLARE u-var[24 Ji

The valid subscript values for u-var are 1 through 24. Valid subscript values for data base tables are
defined by the OCCURS clause in the dictionary description of the table. For exa.mple:

02 monthly-sales OCCURS 12 TIMES.

The valid subscript values for monthly-sales are 1 through 12.

Both user and data base tables can be referenced without a subscript. ENFORM assumes a
subscript of 1. For example:

u-var Refers to the first element of the user table.

monthly-sales Refers to the first element of the data base table.

Including a subscript with a user or data base table reference identifies the individual elements of
the table. For example:

u-var [2 J Refers to the second element of the user table.

monthly-sales [4 J Refers to the fourth element of the data base table.

Subscript-range can be included in user or data base table references when the table is used as a
target-item in a LIST statement. Subscript-range is illegal if a data base table is modified by a BY,
BY DESC, ASCD, or DESC clause. {Refer to Section 5 for information about these clauses.}
Including subscript-range is the same as referencing the table elements individually. For example:

u-var [3:8 J

monthly-sales [1:4 J

Refers to the third through eighth elements of the user table.

Refers to the first through fourth elements of the data base
table.

In the dictionary record description, a data base table can be defined as a group element with sub-
ordinate data base field entries. For example:

02 sales OCCURS 12 TIMES.
10 month PIC X(3).
10 top-dept PIC 9999.

ENFORM allows you to refer to the subordinate data base fields as follows:

sales

sales 2 J.top-dept

sales 2:3 J.month

3-10

Refers to month and top-dept within the first element of sales.

Refers to top-dept within the second element of sales.

Refers to month within the second through third elements of
sales.

ENFORM Language Elements

The subordinate elements of a data base table can themselves contain a data base table resulting in
nested data base tables. For example, consider the following record description:

02 tot-sales
10 month
10 top-dept
10 wkly-sales

OCCURS 12 times.
PIC X(3).
PIC 999.
PIC 99999 OCCURS 4 TIMES.

ENFORM allows you to reference nested data base tables. For example:

tot-sales

tot-sales[4].wkly-sales[2]

tot-sales[1:S].wkly-sales[3]

tot-sales[2:3].wkly-sales[1:4]

AGGREGATES

Refers to month, top-dept, and the first element of
wkly-sales within the first element of tot-sales.

Refers to the second element of wkly-sales within
the fourth element of tot-sales.

Refers to the third element of wkly-sales within the
first thru fifth elements of tot-sales.

Refers to the first thru fourth elements of wkly
sales within the second thru third elements of tot
sales.

An aggregate is the result of a cumulative operation performed for each value that contributes to
the aggregate. An aggregate yields a single value for the group of values over which it is processed.
Aggregates can only be specified as a target-item or in a request-qualification. Aggregates specified
as a target-item are called target aggregates. Aggregates specified in a request-qualification are
called qualification aggregates.

ENFORM provides two types of aggregates: predefined and user-defined.

The syntax used for an aggregate is:

,--._-----------------_.

AVG
COUNT
MAX
MIN
SUM
user-aggregate

AVG
COUNT
SUM
MAX
MIN
user-aggregate

{
fie ld-name t [OVER ALL]
expression~ OVER over-item

[WHERE logicaL-expression])

[UNIQUE] field-name

[WHERE logicaL-expression])

'--------------------------------------.--.-------

3-11

EN FORM Language Elements

where

3-12

AVG

is a predefined EN FORM aggregate that computes an average value for ;a set of numbers
or expressions.

COUNT

is a predefined ENFORM aggregate that tallies the occurrences of a field defined as
either numeric or alphanumeric.

MAX

is a predefined ENFORM aggregate that finds the highest number in a set of numbers or
expressions, or finds the alphanumeric string with the highest value based on the ASCII
collating sequence.

MIN

is a predefined EN FORM aggregate that either finds the lowest number in a set of
numbers or expressions or finds the alphanumeric string with the lowest value based on
the ASCII collating sequence.

SUM

is a predefined ENFORM aggregate that totals a set of numbers or expressions.

user-aggregate

is the name of an aggregate defined by a DECLARE statement. (See Section 4).

fieLd-name

is the name of a data base field.

expression

is a arithmetic or IF/THEN/ELSE expression (explained later in this seetion.)

over-item

is a field used to sort and group the records over which the aggregate is processed. For a
target aggregate, over-item must be a by-item (the name of a field modified by a BY or
BY DESC clause). For a qualification aggregate, over-item can be any field name.

OVER ALL

defines the range of the aggregate operation as over all the values specified.

-

ENFORM Language Elements

OVER

defines a range for the aggregate operations. The aggregate operation takes place only
over the specified over-item. The operation yields one aggregate value for each unique
value of over-item.

UNIQUE

excludes duplicate values from contributing to the collecting operation of the aggregate.
UNIQUE adds considerable processing overhead and should not be specified unless you
know unwanted duplicate values exist. UNIQ UE is redundant with MAX or MIN. While
the same answer is returned when UNIQUE is specified with these aggregates, process
ing time increases greatly.

Predefined Aggregates

The five predefined ENFORM aggregates are: AVG, COUNT, MAX, MIN, and SUM.

AVG finds an average value for a set of numbers. For each record containing a field value to be
averaged, the field value is added to the running total of the contributing field values. After all con
tributing field values are processed, the final total is divided by the number of field values that
made up the total. The following example finds the average of the partcost field over the suppnum
field:

LIST BY suppnum,
AVG(partcost OVER suppnum)i

COUNT tallies the instances of an element. In the following example, the number of parts kept in
stock are counted by counting the part numbers in parts:

OPEN partsi
LIST COUNT(partnum)i

MIN determines the lowest number in a set of numbers or expressions. MAX determines the
highest number in a set of numbers or expressions. The following example finds both the lowest and
the highest price of a part:

OPEN fromsuPi
LIST BY partnum,

MIN(partcost OVER partnum),
MAX(partcost OVER partnum)i

SUM totals a set of numbers or expression values. In the following example, the sum of the sales
made by each salesman is obtained:

OPEN order,odetaiL,partsi
LINK order to odetaiL VIA ordernumi
LINK odetaiL to parts VIA partnumi
LIST BY saLesman,

SUM (price * quantity) OVER saLesman)i

3-13

gNFORM Language Elements

User Aggregates

When the predefined aggregates do not meet your needs, you can define your own aggregates with
a DECLARE statement. A user-defined aggregate can be used anywhere a predefined aggregate
can appear with two exceptions:

.. A user aggregate cannot be referenced in the end expression of the declaration of another user
aggregate.

.. A user aggregate declared with an end expression cannot be used as a qualification aggregate
OVER a by-item.

'rhe syntax of a user-defined aggregate is shown in Section 5 with the DECLAHE statement. The
syntax is also shown here to clarify this discussion.

user-aggregate-name formal-argument) = (step-expression
[, [end-expression] [,initialize-constant]])

where

user-aggregate-name

is a unique name you give your aggregate. The name must follow tlhe naming rules
described earlier in this section. This name is also used to obtain the current value of the
aggregate in step-expression and end-expression.

formal-argument

is a unique name used to represent the actual field name or expression in the aggregate
definition.

step-expression

is an arithmetic expression to be computed for each value contributing to the aggregate.
Normally step-expression includes a reference to the user-aggregate··name so that a
value is accumulated over the contributing values.

end-expression

is an arithmetic expression to be computed after all qualifying values for the aggregate
are processed. End-expression can contain a pre-defined aggregate name. If end
expression is omitted and initialize-constant is present, an extra comma must precede
initialize-cons tant.

initialize-constant

is a numeric literal that is the starting value of the aggregate. Zero is the default. When
end-expression is omitted and initialize-constant is present, an extra comma must
precede initialize-constant.

Parentheses must appear exactly as shown in this syntax.

3-14

ENFORM Language Elements

Consider the following user aggregate:

DECLARE grossavg (x) = (grossavg = .10 * x, grossavg/COUNT (x»;

The user-aggregate name is grossavg. The formal-argument is x. The step expression is (grossavg
+ .10 * x). The end-expression is grossavg/COUNT (x).

This user-aggregate could be used to compare the new gross salaries to the old average salary:

LIST AVG (salary),
grossavg (salary);

Target Aggregates

A target aggregat~ appears as part of the ENFORM output. To specify a target aggregate, follow
these rules:

• The field names in the target aggregate syntax can come from different data base records.

• Over-item must be a by-item.

• Target aggregates cannot be nested; that is, one aggregate cannot be used as the argument for
another aggregate.

TARGET AGGREGATE WITH OVER All SYNTAX. When you specify a target aggregate without
specifying either 0 VER or 0 VER ALL, ENFORM assumes 0 VER ALL. Figure 3-3 shows both a
query outline using the 0 VER ALL syntax and an output diagram.

LIST BY by-item-1, BY by-item-2,
target-item-1 ... ,
target-item-2 ... ,
AVG (target-item-2 OVER ALL);

I --------- I
by-item-1 by-item-2 target- I target- I AVG

item-1 I item-2 I target-item-2
------ ------ ------ I ------ I -----------
xxxxx xxxxxx xxxxxx I xxxxxxx I xxxxxxxxxxx

xxxxxx I xxxxxxx I
xxxxxx I xxxxxxx I

xxxxxx xxxxxx I xxxxxxx I
xxxxxx I xxxxxxx I

xxxxx xxxxxx xxxxxx I xxxxxxx I
xxxxxx I xxxxxxx I
xxxxxx I xxxxxxx I
xxxxxx I xxxxxxx I

'---T--- '
total/number of target-item-2 =

Figure 3·3. Query Outline of Target-Aggregate With OVER ALL Syntax

3-15

]~NFORM Language Elements

Specifying the aggregate shown in Figure 3-3 is the same as specifying:

AVG(target-item-2);

The query groups target-item-l and target-item-2 within by-item-2. The aggregate AVG is used and
the average value of target-item-2 is found by totaling all of the values of target-item-2 and dividing
that total by the number of target-item-2 values. Notice that AVG target-item-2 prints as a separate
column on the report with only one non-blank entry. This entry corresponds to the aggregate value
of all records in the report.

When a target aggregate is specified in a FIND statement with OVER ALL either present or
assumed, only the first target-record contains the aggregate value. This field is blank in all other
target-records generated by the FIND statement.

TARGET AGGREGATE WITH OVER SYNTAX. If you specify a target aggregate in a LIST or FIND
statement with the OVER syntax, a single aggregated value is returned for each grouped value.
Consider the query outline and output diagram shown in Figure 3-4.

Query outline:

LIST BY by-item-1,
BY by-item-2,

target-item-1
AVG(target-item-1 OVER by-item-2);

Output Diagram:

by-item-1 by-item-2

xxxxxxx xxxxxxx

xxxxxxx

xxxxxxx xxxxxxx

target
item-1

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

xxxxxxx
xxxxxxx

xxxxxxx
xxxxxxx
xxxxxxx I

----,----- I

AVG
target-item-1

xxxxxxxxxxx
----1 •• (totaI/4)

xxxxxxxxxxx
----i •• (totaI/2)

xxxxxxxxxxx
----l.,.~ (totaI/3)

Figure 3-4. Query Outline of Target-Aggregate with OVER Syntax

In this example, AVG target-item-l prints as a separate report column with a non-blank entry only
on the first line of each new by-item-2 group. This entry represents the average of target-item-l
over the by-item-2 group.

When a target aggregate is specified in a FIND statement with the OVER syntax, the aggregate
value is present only in the first target-record for a by-item. This field is blank for all other target
records.

8-16

ENFORM Language Elements

QUALIFICATION AGGREGATES. Qualification aggregates must be specified in a WHERE clause.
When specifying a qualification aggregate, follow these rules:

• Qualification aggregates cannot be nested; that is, one aggregate cannot be used as the argu
ment for another aggregate.

• A qualification aggregate can contain an embedded WHERE clause.

• The embedded WHERE clause can contain another qualification aggregate; however, that
qualification aggregate must be computed OVER ALL.

• All field names used for each individual qualification aggregate expression (the field being
aggregated, any field names appearing in an expression being aggregated, and any field names
appearing in the WHERE clause associated with an aggregate) must come from the same data
base record.

• The UNIQUE syntax cannot be used with a qualification aggregate.

QUALIFICATION AGGREGATE WITH OVER ALL SYNTAX. When you specify a qualification
aggregate without specifying either 0 VER or 0 VER ALL, ENFORM assumes 0 VER ALL.
ENFORM computes the value for the qualification aggregate over all the records in the original
data base (not over the target-records). For example:

LIST odetai l,
WHERE quantity> AVG (quantity>;

restricts the records returned from odetail to those whose quantity field is greater than the
average of all the values of the quantity field.

QUALIFICATION AGGREGATES WITH OVER SYNTAX. When a qualification aggregate is used
with the OVER syntax, ENFORM computes one value for each over-item group. When the WHERE
clause is evaluated, ENFORM uses the qualification aggregate value for the particular group to
restrict the records selected. Figure 3-5 shows a query outline and the process that occurs when the
OVER syntax is used.

3-17

ENFORM Language Elements

~---

3-18

OPEN employee;
LIST regnum,

branchnum,
WHERE salary GT AVG (salary OVER regnum);

The qualification aggregate value lor each group is:

regnum

1
2
5

99

AVG salary

24666
28333
38000
39500

If employee has the following form when grouped by regnum and branchnum:

The report produced is:

regnum branchnum

1

2

5
99

1

2
1

3
1

Region Branch

2 1
1 1
1 1
1 1
1 2

salary

36000
19000
25000
26000
12000
30000
37000
25000
23000
38000
39500

Figure 3-5. Query Outline of Qualification Aggregate With OVER Over-item Syntax

ENFORM Language Elements

QUALIFICATION AGGREGATE WITH AN EMBEDDED WHERE CLAUSE. If a qualification aggre
gate contains a WHERE clause that restricts the records for the aggregate calculation, ENFORM
processes the embedded WHERE clause before the aggregate. If any record for an over-item does
not satisfy the restriction specified in the embedded WHERE clause, ENFORM excludes all records
for that over-item from the aggregate calculation.

For example consider Figure 3-6. This figure shows an ENFORM query containing a qualification
aggregate with a WHERE clause. The query prints the part number and the amount in stock of all
the parts where the price of the part is greater than the average price of all parts not in stock.

OPEN parts;
LIST partnum,

inventory,
WHERE price GT AVG (price WHERE inventory LT 0);

The report produced is:

Part
Number INVENTORY
------ ----------

212 7
244 3

1403 21
5502 6
5504 -1
5505 0
7102 20

Figure 3-6. Qualification Aggregate With Embedded WHERE Clause

LITERALS

Literals can be used in both a target-list and a request-qualification. Literals can also be used in
many ENFORM statements and clauses. Literals are used in titles, headings,special text printed
within a report's body, and in expressions. The two types of literals are numeric and string.

Literals cannot be continued across lines. The maximum length of a literal is 127 characters.

Numeric Literals

Numeric literals are used in all arithmetic expressions. They can be used in logical expressions
when the literal is compared to a data base element described in the data dictionary as numeric.
Numeric literals:

• Are not enclosed in quotation marks.

• Are composed of the digits 0-9.

• Cannot be larger than 32767.

3-19

EN FORM Language Elements

• Can be preceded or followed by a plus or minus sign.

• Must be enclosed in parentheses if they are specified outside of a logical expression or a TAB,
SPACE, SKIP, or FORM clause.

Numeric literals can stand alone as target-items in a LIST or FIND statement. In this case they
must be enclosed in parentheses.

The following are examples of numeric literals:

(104) (123.0444) (+267) (,006) (-15)

String Literals

String literals can be used in many of the EN FORM statements and clauses. String literals can be
used in logical expressions if the data base element to which the string literal is compared is
declared alphabetic or alphanumeric in the data dictionary. String literals:

• Can be composed of any character in the ASCII character set.

• Must be enclosed in quotation marks. If a quotation mark is part of a string literal, the quotation
mark must be doubled.

The following are examples of string literals:

"This is a string LiteraL"

"This string LiteraL contains a " " quotation mark"

"1234.99"

String literals can stand alone as target-items in a LIST statement. Using a string literal in this
manner allows printing of one or more constant characters between two columns of data. For
example:

LIST customer," •... ",address;

produces the following report:

CUSTOMER ADDRESS

CENTRAL UNIVERSITY UNIVERSITY WAY
BROWN MEDICAL CO 100 CALIFORNIA STREET

3-20

ENFORM Language Elements

ARITHMETIC EXPRESSIONS

Arithmetic expressions are some combination of numeric literals, field values, variables, or aggre
gates that are added, subtracted, multiplied, or divided to yield a single value. A JULIAN-DATE
clause, TIMESTAMP-DATE clause, or a TIMESTAMP-TIME clause can also be used in an
arithmetic expression. Arithmetic expressions must be enclosed in parentheses.

Table 3-3 shows the arithmetic operators and their functions.

Table 3-3. Arithmetic Operators
-

Operator Function

+ Addition
- Subtraction
* Multiplication
/ Division

Spaces are not required before any of the arithmetic operators with the exception of the subtrac
tion sign (-). At least one space must precede a subtraction sign that follows a field or variable
name.

Arithmetic expressions can be simple:

(price + 10.00)

or they can be complex: :

«price + 10.00)* quantity)

Evaluation Order of Arithmetic Expressions

Arithmetic expressions are evaluated in this order:

1. Nested parenthesized expressions are evaluated first, beginning with the innermost
expression.

2. Within a nested parenthesized expression, multiplication and division operations are evaluated
next.

3. Within a nested parenthesized expression, addition and subtraction operations are evaluated
last.

Scale Factor of the Result

The scale of the result is determined by the number of digits after the decimal point. In an
arithmetic expression, the result has the same number of digits after the decimal point as the field
or variable in the expression with the greatest precision. This could result in loss of significant
digits if too great a precision is used for the field or variable.

3-21

ENFORM Language Elements

'rhe resulting scale factor can be controlled by assigning the result of the arithm,etic expression to a
user variable. (User variables are explained later in this section.) The precision of the user variable
can be specified by an INTERNAL clause within the DECLARE statement that defines the user
variable. The maximum number of digits allowed i.s 18. All calculations with ENFOHM are per
formed with QUAD arithmetic.

LOGICAL EXPRESSIONS

Logical expressions evaluate to a truth value - either true or false based on a condition specified
within the expression. Both the conditions that can be specified and the conditional operators are
shown in Table 3-4.

Table 3-4. Conditional Operators

Condition Keyword Abbreviation Symbol

Equal EOUAL EO
IS

Not equal NE <>

Greater than GREATER [THAN] GT >

Greater than GE >=
or equal to

Less than LESS [THAN] LT <

Less than or LE <=
equal to

EN FORM provides two other conditional operators: BEGINS WITH and CONTAINS. The three
symbols T are synonymous with BEGINS WITH and the three symbols '>' ar4~ synonymous with
CONTAINS.

3-22

.. _------------------_._-----

ENFORM Language Elements

The syntax of a logical expression is:

[NOT] condition [NOTl condition]

where

condition

has one of the following forms:

field-name

[not] {BEGINS WITH ,] ,
CONTAINS

I>'
conditional

[NOT] EQUAL
EQ
IS
=
NE
< >

}

stri ng-l i tera l

operator

{
va lue-range I
"["pattern-match"]"

{

variable }
field-n~me
expreSSlon

[NOT] condi tiona l-operator {;~:~:~~;me}
expreSSlon

where

conditional-operator

is one of the conditional operators shown in Table 3-4.

expression

is an IF/THEN/ELSE or arithmetic expression.

pattern-match

is a pattern of numbers or characters, enclosed within both quotation marks and
brackets. The syntax for a pattern-match is:

{

"[" n
m, n string-literal •..

n If]"}
m, n

3-23

ENFORM Language Elements

where

n

is an integer indicating that exactly n number of characters must precede or
follow string-literal when it is found in a field value.

string-l iteral

is the pattern of characters or numbers to which the field is being eompared.
String-literal must be enclosed in quotation marks.

m,n

is two integers separated by comma indicating that at least m characters but not
more than n characters must precede or follow string-literal when it is found in a
field value.

is a dash indicating any number of characters (0 thru 255) can precede or follow
string-literal when it is found as a field value. Specification of a dash indicates
you do not care about the contents of this part of the field.

value-range

is a range of values with the form: value-l THRU value-2
'----------------------------

A logical expression can be simple or compound. A simple logical expression consists of one condi
tion. A compound logical expression uses the boolean operators AND, OR, and NOT to operate over
two or more logical expressions.

Using the boolean operators AND, OR, and NOT has the following effect on the evaluation of the
logical expression:

• When you precede a condition with the boolean operator NOT, the result of the expression is
evaluated as true if the condition is evaluated as false.

• When you join two or more conditions with the boolean operator AND, the result of the
expression is evaluated as true only if all the conditions are evaluated as true.

• When you join two or more conditions with the boolean operator OR, the r,esult of the
expression is evaluated as true if any of the conditions are evaluated as true.

Effect of Parentheses on Compound Logical Expressions

Compound logical expressions are evaluated in this order:

1. Conditions within parentheses are evaluated first.

2. Conditions preceded by the boolean operator NOT are evaluated second.

3. Conditions joined with the boolean operator AND are evaluated third.

4. Conditions joined with the boolean operator OR are evaluated last.

3-24

---,------------------

EN FORM Language Elements

BEGINS WITH and CONTAINS

BEGINS WITH and CONTAINS are special conditional operators that can be used to yield a true or
false value if a field either begins with or contains a specific alphanumeric string.

The BEGINS WITH operator determines if a field starts with a specified alphanumeric string. For
example, the following can be used to limit the data retrieved from the supplier field to only those
records whose suppname field begins with TANDEM:

LIST supplier WHERE suppname BEGINS WITH "TANDEM",

In this example, the logical expression is evaluated as true only if the field begins with a value
where TANDEM is in uppercase characters.

The BEGINS WITH operator can only be used with fields specified as alphanumeric in the data
dictionary. A field is alphanumeric when its corresponding data description entry is specified
as PIC X.

The CONTAINS operator determines if a field contains a specified alphanumeric string. For exam
ple, the following determines whether the empname field contains the value GEORGE:

empname CONTAINS "GEORGE"

Range of Values in Logical Expressions

A field can be compared to a range of values in a logical expression. In the range, value-l must be
less than value-2. Values used in a range can be either numeric literals or string literals.

Specifying field EQ value 1 THRU value2 is equivalent to specifying:

field-name GE value-1 AND field-name LE value-2

A range can contain a numeric literal if the field being examined is defined as numeric in the data
dictionary. The inventory field of the parts file is defined as PIC 999. The following logical expres
sion is evaluated as true if the value of the inventory field falls within the range of 5 to 15, including
the values 5 and 15:

inventory EQ 5 THRU 15,

A range expression can also use a string literal if the field being examined is defined as
alphanumeric in the data dictionary. The partname field is defined as PIC X(18). The following
logical expression is evaluated as true if partname field contains a value that falls with in the range
of A to L:

partname EQ "A" THRU "LZZZZZZZZZZZZZZZZZ"

Note that the second string literal is 18 characters long, the length of the partname field. Specifying
the literal in this manner ensures that all of the part names beginning with L are included.

3-25

F~NFORM Language Elements

Pattern·Match in Logical Expressions

In a logical expression a field described as alphanumeric in the data dictionary caltl be compared to a
pattern-match. A pattern-match is actually a comparison template that the field value is compared
to. In the following logical expression, the partname field is compared to a patte~rn-match:

partname = [-"DISK" - "MB"-l,
OR partname = [-"DISK"-"Mb"-l,
OR partname = [-"Disk"-"MB"-l,
OR partname = [-"Disk"-"Mb"-l,

In the following logical expression, two numbers precede the string-literal indic:ating that at least
one character but no more than two characters must precede string-literal in the field value:

partname EQ [1,2 "T"-l,

IF/THEN/ELSE EXPRESSIONS

IF/THEN/ELSE expressions yield a value determined by the result of a logical expression"
IF/THEN/ELSE expressions can be used wherever an arithmetic expression can be used"
IF/THEN/ELSE expressions can be nested. The syntax of an IF/THEN/ELSE expression is:

(IF logical-expression THEN value-1 ELSE value-2)

where:

logical-expression

is a logical expression that evaluates as true or false.

value-1 or value-2

-is a field name, an arithmetic expression, or IF/THEN/ELSE expression, or one' of the
following value keywords: NULL, BLANK, BLANKS, ZERO, ZEROS.

If the logical expression is evaluated as true, value-l is used. If the logical expression is evaluated as
false, value-2 is used. Value-l and value-2 must be the same data type, either both numeric or both
alphanumeric.

The value keywords NULL, BLANK, and BLANKS print blanks on reports. The value keywords
ZERO and ZEROS print zeros on reports.

Consider the following IF/THEN/ELSE expression:

IF partnum = 2001 THEN ZEROS ELSE partnum,

This expression specifies that if partnum is equal to 2001, then zeros are to be printed on the report.
If partnum has any other value except 2001, partnum prints.

3-26

ENFORM Language Elements

PARAMETERS

You can use a parameter either for request qualification or as a target-item. You can pass a
parameter to a stored compiled query file. Define parameters by issuing the P ARAM statement,
described in Section 5.

EN FORM handles parameters syntactically as if they were literals. ENFORM handles any
parameter declared with an alphanumeric internal format as a string literal. ENFORM handles all
other parameters as numeric literals. You must enclose a parameter with parentheses wherever
you would have to enclose a numeric literal with parentheses.

USER VARIABLES

A user variable can be used to store numeric or string literals, save a field value, or hold the result
of a calculation for later printing.

Before the user variable is specified in a query, the DECLARE statement (see Section 4 for the syn
tax of the DECLARE statement) must be entered. This statement defines the variable name and
optionally defines the internal storage format (the default internal storage format is a 64-bit signed
integer), a default display format, and a default heading. The name given to the user variable must
conform to the naming conventions described in this section.

The default value of a user-declared-variable is zero. An initial value for the user variable can be
defined with the SET statement.

User Variable as a Target-Item

When a user variable is specified as a target-item, EN FORM uses the default value or the initial
value, whichever is appropriate. When a user variable is a target-item in a LIST statement, assign
ment syntax can be used to specify a new value for the user variable. The value of a user variable
changes as target list elements are evaluated, so that at any time, the value of the user variable
depends upon the value most recently assigned.

Assignment syntax is:

aggregate (
field-name 1

user-variable-name-1 := literal
user-variable-name-2
expression
~ser-table-element

where

user-variable-name-1

is the name of the user-variable being defined.

field-name

is the name of a data base field.

aggregate

is the value of a predefined or user aggregate.

3-27

ENFORM Language Elements

literal

is a numeric or string-literal that agrees in type with the user variable.

user-variable-name-2

is the name of a previously defined user variable.

expression

is an arithmetic or IF/THEN/ELSE expression.

user-table-element

is the subscripted name of a user table element. You cannot assign a subscript range to a
user variable.

When assignment syntax is used, ENFORM reassigns a value to the user variable for each target
record; therefore, the value of the user variable might be different for each target-record. For
example:

LIST u-var, u-var := salesman;

EN FORM uses the default or initial value for the first occurrence of u-var in every target-record.
For the second occurrence of u-var ENFORM uses the value of the salesman field. This value
changes for every target-record.

A user variable can be assigned the value of an expression that contains the user variable. For
example:

DECLARE u-var;
SET u-var TO 10;
OPEN parts;
LIST partname,

u-var:= (u-var +10);

ENFORM uses the initial or default value of the user variable to determine the value of the expres
sion. In the example the value of the expression is 20. ENFORM then assigns this value to the user
variable. Within the same LIST statement, assignment syntax can subsequently be used to assign
the user variable to another expression containing the user variable. For example:

DECLARE u-var;
SET u-var TO 10;
OPEN parts;
LIST partname,

u-var:= (u-var +10),
u-var:= (u-var +20);

ENFORM uses 20, the value assigned in the first assignment syntax (u-var + 10) for the value of
u-var in the second expression. After determining the value of the expression Hu-var + 10) + 20)),
EN FORM assigns the value of the expression (40) to the user variable.

EN FORM performs this process for every target-record. ENFORM continues the process of
reevaluating the value of a user variable until it encounters the end of the target-list.

8·28

ENFORM Language Elements

A User Variable In Request·Qualification

A user variable can be specified in a request-qualification. When a user variable is used for request
qualification, ENFORM always uses either the default or initial value whichever is appropriate.
Consider the following:

SET u-var to 10;
LIST ordernum,

uvar:= (ordernum + u-var)
WHERE uvar > 10;

The preceding query always returns zero target-records even though in every target-record the
value of u-var (ordernum + 10) is greater than 10. No target-records are returned because
ENFORM uses the initial value of the user variable to evaluate the WHERE clause. Since u-var is
set to 10, no target-records are selected for a WHERE clause with a logical expression u-var > 10.

User Tables

User tables are special kinds of user variables that can store more than one value. Currently a user
table can have a maximum of 64 elements called occurrences. ENFORM issues an error message if
you attempt to define a table with more than 64 occurrences.

The individual elements of a user table can be referenced by using subscripts. Refer to the discus
sion of subscripts in this section for more information.

Like user variables, user tables can be initialized by the SET statement. The default value of all
elements in a user table is zero. When a user table is specified as a target-item, ENFORM deter
mines its value in the same manner the value of a user variable is determined. Assignment syntax
can be used to assign values to single elements of a table.

3-29

--

SECTION 4

STATEMENTS

This section contains the syntax of the EN FORM statements. The statements are arranged in
. alphabetical order to provide ease of access.

The EN FORM statements, with the exception of the LIST and FIND statement, have a session
wide affect unless cancelled or overridden. The LIST and FIND statements effect only the queries
of which they are a part.

The AT END, AT START, FOOTING, SUBFOOTING, SUBTITLE, and TITLE statements apply
only to queries containing a LIST statement. These statements supply information to be printed in
a report.

The LIST and FIND statements must be terminated with a semicolon. The other ENFORM
statements should be terminated with a semicolon. EN FORM neither executes the statement nor
reports any syntax errors until it encounters either a terminating semicolon or the keyword
indicating the start of the next statement; therefore, if you enter a ?SHOW command after a state
ment without a terminating semicolon, the effect of the statement is not shown in the output pro
duced by the ?SHOW command.

Table 4-1 shows the ENFORM statements and their functions.

4-1

Statements
Summary of Statements

4-2

Statement

LIST

FIND

CLOSE

DECLARE

DELINK

DICTIONARY

EXIT

LINK

OPEN

PARAM

SET

AT END

AT START

FOOTING

SUBFOOTING

SUBTITLE

TITLE

Table 4-1. Summary of Statements

Function

Information Selection

specifies the information selected for a report and prints the report.

specifies the information retrieved from the data base and eitller write
information to a physical file or transmits the information to a host la

"'s the
nguage

program.

Query Environment

deletes a user variable, aggregate, or table, a parameter, or a record c lescrip-
tion from the internal table.

defines a user variable, user aggregate, or user table.

clears a connecting relationship between record descriptions.

identifies the subvolume containing a dictionary. It also clears the int ernal
table and reclaims table space.

terminates the current ENFORM session.

specifies a connecting relationship between record descriptions.

accesses a record description.

names and defines a parameter that can receive a value from a Comm and
Interpreter PARAM command.

initializes a user variable, user table, or a parameter and resets optio
variables.

n

Report Information Formatting

prints information at the end of all subsequent reports in the current
See also the AT END PRINT clause in Section 5.

prints information just before the first set of column headings for all
quent reports in the current session. See also the AT START PRINT cl
Section 5.

prints a footing at the bottom of each report page for all subsequent
in the current session. See also the FOOTING clause in Section 5.

session.

subse-
ause in

reports

ent prints a subfooting at the bottom of each report page for all subsequ
reports in the current session. See also SUBFOOTING clause in Secti on 5.

Ie for all prints a subtitle at the top of each page immediately foliowin!J the tit
subsequent reports in the current session. See also the SUBTITLE cia use in
Section 5.

prints a title at the top of each page for all subsequent reports in the current
session. See also the TITLE clause in Section 5.

Statements
A T END Statement

AT END STATEMENT

The AT END statement allows you to specify information that is printed at the end of all subse
quent reports in the current session unless cancelled or reset by another AT END statement or
overridden by an AT END clause. (See the AT END PRINT clause in Section 5.) The syntax of the
A T END statement is:

AT END [PRINT print-List [CENTER]] [

where

print-List

can contain any combination of literals, FORM, SKIP, SPACE, or TAB clauses. Print-list
can also contain the following elements that can be modified by AS, AS DATE or AS
TIME clauses: field names, arithmetic expressions, IF/THEN/ELSE expressions, System
Variable clauses, JULIAN-DATE clauses, TIMESTAMP-DATE clauses, TIMESTAMP
TIME clauses, user tables, user variables, or parameter names.

The clauses that can appear as part of a print-list are described in Section 5. The other
elements are described in Section 3.

Specifying a Field Name in an AT END Statement

If you specify a field name within the print-list of an AT END statement, ENFORM prints the same
field value as in the last row of the report. A field name appearing within the print-list of an AT
END statement need not be explicitly included within the following LIST statements. If the field
name is not included, ENFORM in effect adds the field name with a NOPRINT clause.

Spacing Considerations

By default the information you specify in the print-list of an AT END statement begins printing in
the same column position as the leftmost column of the report. Using either the SPACE or TAB
clause as the first element in the print-list overrides the default. The SPACE or TAB clause can
appear anywhere within the print-list. For example, the SPACE clause in the following AT END
statement causes the two literals to be separated by 15 spaces:

AT END PRINT "Report" SPACE 15 "TotaL SaLes";

Report TotaL SaLes

If you specify either a SKIP clause or the symbol / (slash) within a print-list, ENFORM advances one
or more lines before printing the rest of the AT END print-list. The number of lines advanced can
be affected by one or more of the following: the digit (if any) following the keyword SKIP, the
number of slashes specified, or the option variable @@VSPACE. In the following example, the
SKIP clause in the AT END statement causes ENFORM to print two lines:

AT END PRINT "End of Report for" SKIP "Regi on " regnum;

End of Report for
Region 1

4-3

Statements
AT END Statement

Using a FORM clause within an AT END statement causes ENFORM to print the remainder of the
AT END print-list on a new page and to increment the page number.

Using the CENTER clause following the print-list of an AT END statement centers the information
within the leftmost and rightmost columns of the report.

The CENTER, Option Variable, SKIP, SPACE, and TAB clauses are described in Section 5.

AT END Information for Current Report or All Reports

An AT END statement prints information at the end of all subsequent reports in the current ses
sion. The current AT END statement can be reset by specifying a new AT END statement with a
different print-list. Using an AT END PRINT clause temporarily overrides an AT END statement.
An AT END PRINT clause only prints information for the current report.

Cancelling Session·Wide AT END Information

Cancel the AT END statement by specifying the AT END statement without the print-list
parameter.

4-4

AT START STATEMENT

Statements
AT START Statement

The AT START statement allows you to specify information that is printed just before the first set
of column headings for all subsequent reports in the current session unless cancelled or reset by
another AT START statement or overridden by an AT START clause. (See the AT START PRINT
clause in Section 5,) The syntax of the AT START statement is:

AT START [PRINT print-List [CENTER]] [

where

print-List

can contain any combination of literals, FORM, SKIP, SPACE, or TAB clauses. Print-list
can also contain the following elements that can be modified by AS, AS DATE, AS TIME
clauses: field names, arithmetic expressions, IF/THEN/ELSE clauses, System Variable
clauses, JULIAN-DATE clauses, TIMESTAMP-DATE clauses, TIMESTAMP-TIME
clauses, user variables, or parameter names.

Clauses that can be used in a print-list are described in Section 5. The other elements are
described in Section 3.

If you specify both an AT START statement and a TITLE or SUBTITLE statement, the AT START
information is printed after the title or subtitle. The AT START statement differs from the TITLE
statement in that the AT START information is printed only on the first page of a report while the
title or subtitle is printed on every page of a report.

Specifying a Field Name in an AT START Statement

If you specify a field name within the print-list of an AT START statement, ENFORM prints the
same field value as in the first row of the report. A field name appearing within the print-list of an
AT START statement need not be explicitly included within the following LIST statements. If the
field name is not included, ENFORM effectively adds it with a NOPRINT clause.

Spacing Considerations

By default the AT START information begins printing in the same column position as the leftmost
report column. Using SPACE or TAB clauses as the first element of the print-list overrides this
default. SPACE or TAB clauses can also appear anywhere within the print-list. In the following
example, the SPACE clause causes the two literals to be separated by 15 spaces:

AT START PRINT "Report" SPACE 15 "TotaL SaLes";

Report TotaL SaLes

4-5

Statements
AT START Statement

If you specify either a SKIP clause or the symbol / (slash) within a print-list, the printer advances
one or more lines before printing the rest of the AT START print-list. The number of lines
advanced can be affected by one or more of the following: the digit (if any) following the keyword
SKIP, the number of slashes specified, or the option variable @VSPACE. In the following example,
the SKIP clause of the AT START statement causes two lines to be printed:

AT START PRINT "Report For" SKIP "Region" regnumi

Report For
Region 2

Using the FORM clause within an AT START statement causes the remainder of the AT' START print-list to
be printed on a new page and increments the page number.

Using the CENTER clause following the print-list of an AT START statement centers the informa··
tion within the leftmost and rightmost columns of the report.

'rhe CENTER, Option Variable, SKIP, SPACE, and TAB clauses are described in Section 5.

AT START Information for Current Report or All Reports

An AT START statement prints information just before the first set of column headings for all
subsequent reports in the current session. The current AT START statement can be reset by speci-·
fying a new AT START statement with a different print-list. Using the AT START PHINT clause
within a LIST statement temporarily overrides the AT START statement for the report generated
by the LIST statement.

Cancelling Session-Wide AT START Information

Cancel the AT START statement by using the AT START statement without the print-list
parameter.

4-6

Statements
CLOSE Statement

CLOSE STATEMENT

The CLOSE statement allows you to delete a user variable, user aggregate, user table, a parameter,
or a record description from the internal table. The'syntax of the CLOSE statement is:

r--

record-name
user-variable-name

CLOSE user-aggregate-name , .•. [
user-table-name
param-name

where

record-name

is the name of a dictionary record description previously accessed by an OPEN
statement.

user-variable-name

is the name of a user variable previously defined by a DECLARE statement.

user-aggregate-name

is the name of a user aggregate previously defined by a DECLARE statement.

user-table-name

is the name of a user table previously defined by a DECLARE statement.

param-name

name of a parameter previously defined by a P ARAM statement.
L __ ._._

The Effect of a CLOSE Statement on the Internal Table

As a session progresses, EN FORM maintains an internal table for opened record descriptions, links
of record descriptions, and definitions of user variables, user aggregates, user tables, and
parameters. This internal table grows with each new OPEN, LINK, DECLARE, or PARAM state
ment entered.

ENFORM has no way of knowing when a table entry is no longer required for a subsequent query
within the current session. For this reason, ENFORM allows you to clear unwanted table entries
from the internal table with a CLOSE statement. The CLOSE statement does not reclaim space
from the internal table, but it does eliminate the effect that unwanted entries might have on subse
quent queries. Furthermore, regular use of CLOSE statements reduces the need to qualify fields
that are present in more than one record description.

Closing a dictionary record description also clears all links for that particular record description.

An alternative to the CLOSE statement is the DICTIONARY statement or ?DICTION ARY com
mand. Both completely clear the ENFORM internal table and reclaim table space.

4-7

Statements
DECLARE Statement

DECLARE STATEMENT

The DECLARE statement allows you to define a user variable, user aggregate, or user table. The
syntax of the DECLARE statement is:

user-variabLe-name

user-tabLe-name 11[11 max--subscript 11]11

DECLARE
user-aggregate-name (formaL-argument

= step-expression [, [end-expression
[, initiaLize-constant]])

[INTERNAL internaL-format
[AS dispLay-format]
[HEADING heading-string]

}
where

4-8

user-aggregate-name, user-variabLe-name, or user-tabLe-name

is the name of the declared element. Names of user-defined elements should conform to
the rules described in Section 3.

II [II max-subscript II] II

is the number of occurrences for the user table; the maximum number allowed is 64. Max
subscript must be enclosed within brackets []. Refer to Section 3 for a discussion of
subscripts.

formaL-argument

is the name used to represent the actual argument of the user aggregate.

step-expression

is the operation to be performed for each record contributing to the user aggregate.

end-expression

is the operation to be performed after all qualifying records for the user aggregate are
processed by the step-expression.

initialize-constant

is the numeric literal that will be the starting value for the user aggregate.

internal-format

is the internal format for storing the user variable, aggregate or table.

,---------------------------------

display-format

is the default display format for printing the declared item.

heading-string

Statements
DECLARE Statement

is a string literal that is the default heading for the declared element. Remember string
literals must be enclosed in quotation marks (" ").

Specify the DECLARE statement before you reference a user variable, user aggregate, or user
table. ENFORM stores information about each user-defined element in the internal table. This
information remains in the internal table until you issue a subsequent CLOSE statement for the
user-defined element, issue a DICTIONARY statement or a ?DICTIONARY command, or end the
EN FORM session.

Declaring a User Aggregate

User aggregates are processed just like the predefined aggregates. The step-expression of a user
aggregate can contain:

• Arithmetic expressions

• IF/THEN/ELSE expressions.

The optional end-expression is the final operation to be performed after all of the qualifying records
are processed by the step-expression. The end-expression can contain any of the following:

• Predefined aggregates

• Arithmetic expressions

• IF/THEN/ELSE expressions.

By default, the starting-value for a user aggregate is zero unless the user aggregate is defined with
alphanumeric internal format. In this case, the default value is blanks. An initial value is supplied
when you specify initialize-constant. If you omit end-expression but specify initialize-constant,
precede initialize-constant with two commas.

The following example uses the DECLARE statement to define a user aggregate:

DECLARE project (x) = (IF x < 2000 THEN project + x + .05 * x
ELSE project + x + .04 * x)

More information about user aggregates can be found in Section 3.

4-9

Statements
DECLARE Statement

Declaring a User Variable or User Table

A user variable or table declaration remains in effect until the end of the current ENFORM session
unless you override the user variable or table by declaring a new variable or table with the same
name.

By default both user variables and elements in user tables are stored as 64-bit signed integers. To
change this default, specify the optional INTERNAL clause described in Section 5. In the following
example, the user variable no-orders is defined. The INTERNAL clause indicates that no-orders is
to be stored as alphanumeric with a length of 9 bytes:

DECLARE noAorders INTERNAL A9i

The default display format for either a user variable or an element in a user table is a fourteen
character integer. To change this default, specify the optional AS clause. The display format
specified in the AS clause formats the user variable or table element unless you provide an explicit
AS clause in the LIST statement. The AS clause is described in Section 5.

Specify the HEADING clause to provide a default heading for either a user variable or a user table.
ENFORM uses the default heading for the user variable or table whenever an explicit HEADING
clause is not specified in the LIST statement. The HEADING clause is described in Section 5. In the
following example, the default display heading "Quarterly Totals" is supplied for the table
qtrAtotals:

DECLARE qtrAtotaLs [4] HEADING "QuarterLy TotaLs";

Initialize both user variables and user tables by using the SET statement discussed later in this
section.

Section 3 provides more information about user variables and user tables.

4-10

DELINK STATEMENT

Statements
DELINK Statement

The DELINK statement allows you to clear a connecting relationship between dictionary record
descriptions. The syntax of the DELINK statement is:

record-name1 [TO [OPTIONAL]] record-name2 VIA field-name
DELINK , ••• [i]

qualified-field-name1 [TO [OPTIONAL]] qualified-field-name2

where

record-name1 or record-name2

are the names of dictionary record descriptions.

field-name

is the name of a field common to both of the record descriptions.

qualified-field-name1 or qualified-field-name2

are the names of fields uniquely identified as components of record-namel and record
name2 respectively.

------------------"--

Both forms of the DELINK statement are equivalent. The field names must be specified in the
DELINK statement in the same order as the corresponding LINK statement. For example, if the
LINK statement is:

LINK parts TO odetail VIA partnumi

the corresponding DELINK statement can be:

DELINK parts.partnum TO odetail.partnumi

ENFORM stores all links of record descriptions in the current ENFORM internal table. All links
apply to all subsequent LIST or FIND statements of the current ENFORM session until you issue a
DELINK, CLOSE, DICTIONARY statement, or ?DICTIONARY command. Since unnecessary links
can produce undesirable results, delete relationships which do not apply to the current query from
the internal table. Use a DELINK statement to clear a a linking relationship between two record
descriptions without affecting other links.

If you want to clear all links, use a CLOSE statement, a DICTIONARY statement, or a
?DICTIONARY command. A CLOSE statement for a record description deletes all links refer
encing that record description from the internal table. A DICTIONARY statement or
?DICTION ARY command clears the entire internal table.

4-11

Statements
DICTIONARY Statement

DICTIONARY STATEMENT

The DICTIONARY statement allows you to identify the subvolume containing your dictionary. It
also allows you to clear the internal table. The DICTIONARY statement has the same effect as the
?DICTIONARY command. The syntax of the DICTIONARY statement is:

DICTIONARY [dict-subvol-name] [

where

dict-subvol-name

is the name of the subvolume where your dictionary files reside. Refer to the Guardian
Operating System Programming Manual for information on specifying Tandem file names.

The dictionary identified in a DICTIONARY statement must be created by the Data Definition
Language compiler. Release T9102C10 of ENFORM accepts only dictionaries produced by DDL ver
sion T9100DOO or later. ENFORM issues an error message if an attempt is made to use a. dictionary
compiled with an earlier version of DDL. These dictionaries must be recompiled with DDL version
T9100DOO or later. Refer to the Data Definition Language (DDL) Programmin[)' Manual for more
information about creating and compiling a dictionary.

Identifying the Location of the Dictionary

The location of the dictionary can be indicated by:

• Specifying the volume and subvolume where the dictionary resides as a part of the Command
Interpreter ENFORM command. If you do not specify a volume and subvolume, EN FORM
assumes the dictionary resides on your default volume and subvolume.

• Specifying either the DICTIONARY statement or ?DICTIONARY command to identify where
the dictionary resides. Use of either the DICTIONARY statement or the ?DICTIONARY com
mand overrides the dictionary identified at the time of the Command Interpreter ENFORM
command. When a new dictionary is specified, the internal table associated with the old dic
tionary is cleared.

In the following example, the DICTIONARY statement is used to identify the volume that the dic
tionary resides on as $data and the subvolume as database:

DICTIONARY $data.database;

Clearing the Internal Table

Entering the DICTIONARY statement without a volume and subvolume name is a simple means of
clearing the entire internal table and reclaiming table space without changing the dictionary. To
clear only certain elements of the internal table, refer to the CLOSE and DELINK statements in
this section. The elements cleared by the DICTIONARY statement are:

• All dictionary record descriptions from previous OPEN statements.

• All previous links.

• All user variable, user aggregate, and user table definitions.

• All parameter definitions.

4-12

EXIT STATEMENT

Statements
EXIT Statement

The EXIT statement terminates the current ENFORM session. The syntax of the EXIT state
ment is:

[EXIT []
The EXIT statement returns control to the invoking process, usually the Command Interpreter.
The EXIT statement is the same as the ?EXIT command. Pressing the CTRL and Y terminal keys
simultaneously is an alternate way to exit ENFORM.

4-13

Statements
FIND Statement

FIND STATEMENT

The FIND statement allows you to specify the input fields and records that contribute to the target
record and either write output records to a physical file or transmit output records to a host
language program. The FIND statement must end with a semicolon. The syntax of the FIND state
ment is:

FIND [UNIQUE output-record-name

({[output-field-name :=

[WHERE logical-expression]

{

BY by-i tern }
BY DESC by-item

] target-item
ASCD target-item
DESC target-item

, . ..)

where

4-14

UNIQUE

is an option that prevents duplicate output records. UNIQUE adds processing overhead
and should be avoided unless you know unwanted duplicate records exist.

output-record-name

is the name of the dictionary record description of the output record.

output-field-name

is the name of a field in the dictionary record description of the output record. ENFORM
allows you to qualify output1ield-name. If you do not qualify output-field-name,
ENFORM qualifies output-field-name with output-record-name. In either case, output
field-name must be sufficiently qualified to avoid ambiguity between it and any other
name specified in the query.

by-item

is an input field name. An input field name must be sufficiently qualified to avoid ambi
guity between it and any other name specified in the query.

target-item

is an input field. Valid values for an input field are: a field name, a string- literal enclosed
in parentheses, a predefined aggregate, a user aggregate, an arithmeth! expression, an
IF/THEN/ELSE expression, a user table name, a user variable, or a System Variable. An
input field name must be sufficiently qualified to avoid ambiguity between it and another
name specified in the query.

logical-expression

is an expression returning a true or false value.

Output Record Dictionary Description

Statements
FIND Statement

Before the FIND statement executes, you must include a description of the output record in the dic
tionary. When the FIND statement executes, EN FORM either writes the output records to the
physical file specified in the dictionary or transmits the output records to a host language program.

The following example shows the Data Definition Language (DDL) source code used to produce a
dictionary record description for the output record findfil.

RECORD findfil.
02 custname
02 custnum
02 partcost
end

PIC X(18).
PIC 9(4).
PIC 9(6)V99.

ENFORM allows you to specify data base tables (see the description of subscripts in Section 3 for
information about data base tables) in the record description of the output record. The following
record description contains a data base table named child:

RECORD newemp.
02 name
02 child
end

PIC X(18).
PIC X(18) OCCURS 4 times.

You can specify that the output records are to be written to a particular physical file either by
including the DDL FILE IS clause in the dictionary record description or by specifying the
?ASSIGN command. You can also use the ?ASSIGN command to tell ENFORM to write the records
to a file different from the one described in the dictionary. EN FORM writes a physical file
generated by the FIND statement with an unstructured file type regardless of the file type you
specify in the data dictionary.

In the record description, an output field can differ in data format (picture size, scale, BINARY vs.
ASCII numeric string, ...) from the description of the input field as long as the output field has the
same data type (numeric or alphanumeric) as the input field. ENFORM performs the data format
conversion automatically, including: truncation or padding with blanks for alphanumeric input and
output fields of different lengths, binary to ASCII string conversion (or vice versa), and scaling con
version for numeric input and output fields.

Group Definition and Sorting

The BY and BY DESC clauses group and sort records. The appearance of a BY or BY DESC clause
in a FIND statement causes every occurrence of a grouped by-item value to be written to the output
record (unlike the LIST statement where only the first occurrence of a grouped value is written to
the output record.) The BY and BY DESC clauses are described in Section 5.

The ASCD and DESC clauses sort records in ascending or descending order. They do not identify a
group. The ASCD and DESC clauses are also described in Section 5.

When a FIND statement contains more than one BY, BY DESC, ASCD, or DESC clause, ENFORM
determines a major to minor sort precedence by the order in which the BY, BY DESC, ASCD, or
DESC clauses appear in the FIND statement. The first clause has highest priority and is sorted
first, the next one second priority, down to the last clause.

4-15

Statements
FIND Statement

Output Fields

When the FIND statement executes, ENFORM takes the values from the input elements and stores
them in the output field. Values are stored in the output field by name (when the output field has
the same name as an input field) or by assignment syntax (: =). ENFORM allows you to qualify
output1ield-name.

ENFORM allows you to use subscripted output field names in a FIND statement when the record
description of the output record contains a data base table; however, a subscript range is not valid
anywhere in a FIND statement. (Refer to the discussion of subscripts in Section 3 for the syntax
used to include subscripts.) For example, the following FIND statement is valid!:

FIND new emp (name := emp.name,
child [1] := emp.child1,
child [2] := emp.child2,
child [3] := II II ,
chiLd [4] := II II) . ,

The following rules apply to output-field-name:

1. Output-fieLd-name can be qualified or subscripted.

2. Output-fieLd-name cannot contain a subscript range.

3. If output-fieLd-name is omitted and the input field name is subscripted or qualified, ENFORM
assumes that the same qualifications and subscripts apply to output-fieLd-name,.

4. Output-fieLd-name can be a group name; however, ENFORM might not store the fields within
the group in the manner you expect. To understand the way that EN:~ORM stores group
elements, you must first understand what a group is. A group is defined in DDL as any field
whose level number (03, 04, ...) is less than that of the next field in the record. Consider, for
example, the following DDL record description:

RECORD findfl.
FILE IS $mkt.sample.findfl key-sequenced.
02 account-num.

05 type PIC 9(4).
05 num PIC BINARY 16.

02 custnum PIC 9(4).

Within this record, account-num is a group. The data type of a group is always alphanumeric. When
a group name is specified as output-fieLd-name within a FIND statement, ENFORM stores each ele
ment within the group as alphanumeric data. If one of the fields within the group is defined as
binary, using a group name as output-fieLd-name results in an output record! that might contain
undesirable data.

4-16

Input Elements

Statements
FIND Statement

The output fields receive values from any combination of the following input elements:

• The value of a field from the input record. The assignment to an output-field-name is optional.
When you do not specify the output-field-name, ENFORM assumes it is the same as the field
name from the input record. When the output-field-name is omitted, the input field name must
be fully qualified.

FIND ...
(parts.partnum,

...) ;

• The value of a numeric literal. Remember to enclose numeric literals within parentheses.

FIND •..
(region := (5),

) ;

• The value of a string literal. A string literal must be enclosed in parentheses.

FIND ..•
(jobtitle := ("manager"),
· ..) ;

• The value of an arithmetic expression. Enclose an arithmetic expression within parentheses.
Use any combination of numeric fields, numeric literals, numeric user variables, predefined
aggregates, or user aggregates for the arithmetic expression.

FIND •..
(sales := (price * quantity),
· ..) ;

• The value of an IF/THEN/ELSE expression. Enclose the IF/THEN/ELSE expression within
parentheses.

FIND ..•
(stock := (IF inventory GT 100 THEN inventory

ELSE ZERO),
· ..) ;

• The value of a user variable. Define the user variable by a DECLARE statement before refer
encing it in a FIND statement. The SET statement should be used to initialize the user variable.
If the user variable is not initialized, the value is zero.

DECLARE region;
SET region TO 5;
FIND •..

(reg := region,
· ..) ;

• The value of either a user aggregate or a predefined aggregate.

FIND ...
(BY employee. job,

employee.salary,
rate := AVG (salary OVER job),
. ..) ;

• A group name. EN FORM allows you to specify a group name as an input element. A void this
specification, however, unless the data type of the fields receiving the data is exactly the same
as the data type of the input group.

4-17

Statements
FIND Statement

Although ENFORM allows you to specify an output field name as an input element, this specifica
tion is not recommended and might lead to unexpected results.

'fhe following rules apply to input elements:

1. An input element can be qualified or subscripted.

2. An input element cannot contain a subscript range.

3. An input element must be sufficiently qualified to avoid any ambiguity between it and any
other element specified in the query.

Request·Qua I ification

Use the WHERE clause to limit the records written to the physical output file OJ' transmitted to the
host language program. The WHERE clause is described in Section 5.

Summary Records

A FIND statement can be specified that either creates a new file containing only summary records
or transmits only summary records to a host language program. Such summary records contain
only the first target-record from each group (created by a BY or BY DESC clause) down to some
level. Summary records can only be generated by a query that contains an aggregate.

The two methods of obtaining summary records are:

• Explicitly request summary records by setting the @SUMMARY-ONLY option variable to ON
before issuing the FIND statement.

• Implicitly request summary records by specifying only by-items and aggregates over
by-items in the query.

When you explicitly request summary records you get target-records summarized down to the
lowest level where an aggregate is calculated over that level. For example:

SET @SUMMARY-ONlY TO ON;
FIND findfiL

(BY employee.dept,
BY employee. job,
BY employee.empname,

employee. salary,
COUNT(empLoyee.empname OVER employee. job);

returns one target-record for each job in each department. Only the first employee name (emp
name) for each job is returned.

When you implicitly request summary records, you get target-records summarized down to the
lowest level where an aggregate is computed over that level. (A query requesting only by-items and
aggregates over ALL is not an implicit request for summary records). For example:

SET @SUMMARY-ONlY TO OFF;
FIND findfil

(BY employee.dept,
BY employee. job,
BY employee.empname,
numemp:= COUNT (employee.empname OVER employee,. job»;

returns one target-record for each job in each department. Only the first employee name
(empname) for each job is returned.

4-18

Statements
FIND Statement

If you want summary records that consist of only by-items and aggregates to include those where
the last value of a by-item has not changed but a subordinate by-item value has changed, then you
must include a target-item in the target-list that has not appeared as a by-item or aggregate. Of
course, you must also set @SUMMARY-ONLY to OFF. For example:

SET @SUMMARY-ONLY TO OFF;
FIND findfil2

(BY employee.dept,
BY employee. job,
BY employee.empname,

employee.salary,
numemp: = COUNT (empname OVER job»;

Statements and Clauses That Do Not Apply to the FIND Statement

EN FORM queries with a FIND statement produce records only. There are no report features such
as headings, titles, summary information, and special formatting. The following statements and
clauses apply only to queries using the LIST statement and cannot be used with the FIND
statement.

AFTER CHANGE clause
AS clause
AS DATE clause
AS TIME clause
AT END statement and AT END PRINT clause
AT START statement and AT START PRINT clause
BEFORE CHANGE clause
CENTER clause
CUM clause
FOOTING statement and clause
FORM clause
HEADING clause
NOHEAD clause
NOPRINT clause
PCT clause
SKIP clause
SPACE clause
SUBFOOTING statement and clause
SUBTITLE statement and clause
SUBTOTAL clause
System Variable clauses
TAB clause
TITLE statement and clause
TOTAL clause

4-19

Statements
FOOTING Statement

FOOTING STATEMENT

The FOOTING statement allows you to specify a footing to be printed at the bottom of each report
page for all reports in the current session unless overridden or reset by another FOOTING state
ment or temporarily overridden by a FOOTING clause. (See Section 5 for the FOOTING clause.)
The syntax of the FOOTING statement is:

----------------_. __ ._-_ __ .. _-_ ... _-------------

FOOTING [print-list [CENTER]] [;]

where

print-list

can be any combination of literals, FORM, SKIP, SPACE or TAB clauses. Print-list can
also contain the following elements that can be modified by AS, AS DATE, or AS TIME
clauses: field names, arithmetic expressions, IF/THEN/ELSE expressions, System
Variable clauses, JULIAN-DATE clauses, TIMESTAMP-DATE clauses, TIMESTAMP
TIME clauses, user variables, or parameter names.

The clauses that can be part of a print-list are discussed in Section 5. The other elements
are discussed in Section 3.

Specifying A Field Name Within a FOOTING Statement

If you specify a field name within the print-list of a FOOTING statement, ENFORM prints the same
field value as in the last row of data on the current page. A field name appearing within the
FOOTING statement need not be explicitly included within the following LIST statements. If the
field name is not included, ENFORM effectively adds it to the LIST statement with a NOPRINT
clause.

Spacing Considerations

By default, the footing begins printing in the same column position as the leftmost report column.
Using SPACE or TAB clauses as the first element of the print-list overrides this default. SPACE or
TAB clauses can also appear anywhere within the print-list. In the following example, the SPACE
clause causes the two literals to be separated by 15 spaces:

FOOTING "Inventory" SPACE 15 "Parts in Stock";

4-20

Statements
FOOTING Statement

The following footing appears at the bottom of the next report that is generated without a LIST
statement FOOTING clause.

Inventory Parts in Stock

If you specify either a SKIP clause or the symbol slash (f) within a print-list, ENFORM advances
one or more lines before printing the rest of the FOOTING print-list. The number of lines advanced
can be affected by one or more of the following: the digit (if any) following the keyword SKIP, the
number of slashes specified, or the option variable @VSPACE. In the following example, the SKIP
clause in the FOOTING statement causes two lines to be printed:

FOOTING "Report 2-A" SKIP "TotaL SaLes";

The following footing appears at the bottom of the next report that is generated without a LIST
statement FOOTING clause.

Report 2-A
TotaL SaLes

Using a FORM clause within a FOOTING statement forces a new page. ENFORM continues with
the remainder of the FOOTING print-list. The page number remains the same. A single logical page
can span multiple physical pages such that a TITLE can appear on one page, the data on the next,
and a FOOTING on the next. The same page number applies to all physical pages in a logical page.

Using the CENTER clause within the FOOTING statement centers the footing within the leftmost
and rightmost columns of the report.

The CENTER, Option Variable, SKIP, SPACE, and TAB clauses are described in Section 5.

Footing for Current Report or All Reports

A FOOTING statement prints a footing at the bottom of each page for all subsequent reports in the
current session. Specifying a new FOOTING statement with a different print-list resets the current
FOOTING statement. Using the FOOTING clause within a LIST statement temporarily overrides
the FOOTING statement. A FOOTING clause within a LIST statement prints a footing only for the
current report.

Cancelling Session·Wide Footing

Cancel the FOOTING statement by using the FOOTING statement without the print-list
parameter.

4-21

Statements
LINK Statement

LINK STATEMENT

1'he LINK statement allows you to specify a connecting relationship between dictionary record
descriptions. The syntax of the LINK statement is:

r--~

record-name1 [TO [OPTIONAL]] record-name2 VIA field-name
LINK , ... [

qualified-field-name1 [TO [OPTIONAL]] qualified-field-name2

where

record-name1 and record-name2

are the names of dictionary record descriptions containing a common field.

field-name

is the name of a field common to both of the record descriptions.

qualified-field-name1 and qualified-field-name2

are the names of fields uniquely identified as components of the record descriptions being
linked.

OPTIONAL

indicates that all of the records from the first file specified in the LINK statement are
included whether or not records with matching linking fields are found in the second file.
All of the records in the first file must have a value in the linking field or a sort operation
might fail.

Only one LINK OPTIONAL statement can be specified for a LIST or FIND statement.
While LINK OPTIONAL is in effect, other linking relationships such as another LINK
statement or a linking WHERE clause cannot be specified.

---_.

A LINK statement does not actually link physical files, but forms a logical relationship between the
dictionary record descriptions. Up to 32 linking relationships can exist.

Using the LINK Statement to Connect Files

The LINK statement is a convenient way of expressing a connecting relationship between two
record descriptions. In subsequent LIST or FIND statements, EN FORM treats the linked record
descriptions as one logical record description. The LINK statement is equivalent to the following
'WHERE clause in a LIST or FIND statement:

WHERE qualified-field-name-1 EQ qualified-field-name-2i

Before a LIST or FIND statement is executed, ENFORM actually converts the LINK statement
into a WHERE clause and adds it to the LIST or FIND statement. When several LINK statements
exist, an extra clause for each LINK statement is added to the WHERE clause in the LIST or FIND
statement.

4-22

Clearing a LINK

Statements
LINK Statement

EN FORM stores each LINK and LINK OPTIONAL statement in the internal table. The LINK
statement remains in effect until:

• a CLOSE statement clears one of the record descriptions

• a DELINK statement clears the link

• a DICTIONARY statement or ?DICTIONARY command clears the entire internal table

LINK statements that are not used in processing a query act as unwanted WHERE clauses in
subsequent LIST or FIND statements. Thus, any LINK statements that might be unnecessary
should be cleared when no longer needed.

Unlike the LINK statement, a WHERE clause associated with a LIST or FIND statement clears
after ENFORM processes the statement.

4-23

Statements
LIST Statement

LIST STATEMENT

The LIST statement allows you to select the information printed in a report and prints the report.
The LIST statement must end with a semicolon. The syntax of the LIST statem'ent is:

LIST [UNIQUE]

{

BY by-i tem }
BY DESC by-item
target-item
ASCD target-item
DESC target-item
user-var-name := target-item

CUM [OVER ALL
CUM OVER by-item
PCT [OVER ALL]
PCT OVER by-item
TOTAL
SUBTOTAL
SUBTOTAL OVER by-item
NOHEAD
NOPRINT
CENTER
HEADING string-literal
AS display-format
AS DATE display-format
AS TIME display-format

[~~~~ ~ ~ ~ 1
[/]

SPACE n] , •••
TAB [n]]

WHERE logical-expression

NOHEAD ALL]
NOPRINT ALL]
CENTER ALL]

, ...

, ...

[SUPPRESS [WHERE] logical-expression]

[BEFORE CHANGE [ON] by-item PRINT print-List
[AFTER CHANGE [ON] by-item PRINT print-list
[AT START PRINT print-list
[AT END PRINT print-list
[TITLE print-list
[SUBTITLE print-list
[FOOTING print-list
[SUBFOOTING print-list

where

UNIQUE

CENTER
CENTER
CENTER
CENTER
CENTER
CENTER
CENTER
CENTER

prevents identical records from contributing to the report. UNIQUE adds processing
overhead and should not be used unless undesirable duplicate records are known to exist.

~

Statements
LIST Statement

by-item

is the name of a field modified by a BY or a BY DESC clause. The report is sorted and
grouped according to the value of this field.

target-item

is a record name, a field name, a literal, a predefined aggregate, a user aggregate, an
arithmetic expression, an IF/THEN/ELSE expression, a user table name, a user variable,
or a system variable clause.

user-var-name

is the name of a user variable.

string-literal

is one or more alphanumeric characters enclosed within quotation marks.

display-format

/

is the format in which you want an element displayed.

is a symbol that is equivalent to the SKIP clause. You can specify as many of these sym
bols as you want to indicate the number of lines to advance.

logical-expression

is an expression returning a true or false value.

print-list

contains any combination of literals, FORM, SKIP, SPACE or TAB clauses. A print-list
can also contain the following elements that can be modified by AS, AS DATE, or AS
TIME clauses: field names, arithmetic expressions, IF/THEN/ELSE expressions, system
variable clauses, JULIAN-DATE clauses, TIMESTAMP-DATE clauses, TIMESTAMP
TIME clauses, user variables, and parameter names.

Group Definition and Sorting

BY and BY DESC clauses group and sort records. ENFORM prints the by-item value for a group
only for the first record of all the records that have the same value for the by-item. By-items can be
referred to by CUM OVER, PCT OVER, SUBTOTAL OVER, AFTER CHANGE, and BEFORE
CHANGE clauses. These clauses are described in Section 5.

ASCD and DESC clauses sort records in ascending or descending order. They do not identify a
group. The ASCD and DESC clauses are described in Section 5.

When a LIST statement contains more than one BY, BY DESC, ASeD, or DESC clause, ENFORM
determines a major to minor sorting precedence. ENFORM determines the sorting precedence by
the order in which the clauses appear in the LIST statement. The first clause has highest priority
and is sorted first, the next one second priority, down to the last specified clause.

4-25

Statements
LIST Statement

How Values Are Displayed in Report Columns

EN FORM displays target-items and by-items in report columns, one column per item. If a record
name is a target-item in a LIST statement, EN FORM expands the record to as many target-items as
the number of elementary fields in the record. If a field within the record is described with an
OCCURS clause, ENFORM prints each occurrence of the field in a separate column of the report. Do
not specify a record name as a target-item if it is the same as a field name in a record. Hefer to Sec
tion 3 for information about field names. A target-item in a LIST statement can be:

• a record name

LI ST ... ,
parts;

• the name of a field

LIST ••• ,
partnum;

• a numeric literal. Enclose numeric literals within parentheses.

LIST ••• ,
(5);

• a string literal.

LIST ... ,
"manager";

• an arithmetic expression enclosed in parentheses. The expression can use any combination of
numeric fields, numeric literals, numeric user variables, predefined aggregates, user aggre
gates, JULIAN-DATE clauses, or system variable clauses.

LI ST •.. ,
(price * quantity);

• an IF / THEN / ELSE expression. Enclose IF/THEN/ELSE expressions in parentheses.

LIST .•. ,
(IF inventory GT 0 THEN inventory ELSE ZERO);

• a user variable. Define the user variable with a DECLARE statement. The variable should be
either initialized with a SET statement or assigned a value with assignment syntax. If the
variable value is neither initialized nor assigned, the default value is zero. A user variable can
not be assigned the values of a subscript range.

DECLARE new-sal;
SET new-sal TO (salary * 1.20);
LIST ••• ,

new-sal;

• a system variable clause.

4-26

LIST ••• ,
@LINENO AS 15;

• a user aggregate or predefined aggregate.

LI ST ••• ,
COUNT (branchnum OVER regnum)i

• a field or user table with a sUbscript range.

LIST ..•
months 1:6 Ji

Statements
LIST Statement

• a parameter name. Parameters that have not been declared with an alphanumeric internal
format must be enclosed in parentheses. Parameters declared with an alphanumeric internal
format must not be enclosed within parentheses.

PARAM numi

LIST ... ,
(num)i

ENFORM allows you to specify a group name as a target-item within a LIST statement; however,
EN FORM might not display the fields within the group in the manner you expect. To understand
the way that ENFORM displays group elements, you must first understand what a group is. A
group is defined in DDL as any field whose level number (03, 04, 05, ...) is less than that of the next
field. For example, consider the following DDL record description:

RECORD test.
FILE IS "$mkt.sample.test"
02 account-num.

key-sequenced.

OS type
OS num

02 custnum
end

PIC 9(4).
TYPE BINARY 16.
PIC 9(4).

Within this record, account-num is a group. The data type of group is always alphanumeric. When a
group name is specified as a target-item within a LIST statement, ENFORM displays each field
within the group as alphanumeric data. If one of the fields within a group contains binary data,
using a group name as a target-item causes undesirable results. For example, specifying:

LIST account-numi

causes ENFORM to display account-num without first converting it to a readable form.

Request·Qual ification

Use the WHERE clause to limit the records that contribute to the report. The WHERE clause is
described in Section 5.

Conditional Printing

Use the SUPPRESS clause to define a condition or conditions that prevent specific records from
printing throughout a report. ENFORM still includes the suppressed records in AFTER CHANGE
and BEGIN CHANGE clauses, subtotals, totals, and other calculations specified for the report.
Note that the value of the first record of an AFTER CHANGE clause or the last record of a
BEFORE CHANGE clause is used for the print-list whether or not that record is printed. The
SUPPRESS clause is described in Section 5.

4-27

Statements
LIST Statement

Summary Reports

Summary reports contain only the first target-record from each group (created by a BY or BY
DESe clause) down to some level. Summary reports can only be generated by a query that contains
an aggregate.

The two methods of obtaining a summary report are:

• Explicitly request a summary report by setting the @SUMMARY-ONLY option variable to ON
before issuing the LIST statement.

• Implicitly request a summary report by specifying only by-items and aggregates over by-items
in the query.

When you explicitly request a summary report, you get a report summarized down to the lowest
level where an aggregate is calculated over that level. For example:

SET @SUMMARY-ONLY TO ON;
LIST BY dept, BY job, BY empname, salary,

COUNT(empname OVER job);

returns one record for each job in each department. Only the first employee name (empname) for
each job is returned.

When you implicitly request a summary report, you get a report summarized down to the lowest
level where an aggregate is computed over that level. (A query requesting only b?l-items and
aggregates over ALL is not an implicit request for a. summary report). For example:

SET @SUMMARY-ONLY TO OFF;
LIST BY dept, BY job, BY empname,

COUNT (empname OVER job);

returns one record for each job in each department. Only the first employee name (empname) for
each job is returned.

If you want a report that consists of only by-items and aggregates to contain all report lines
(including those where the last value of a by-item has not changed but a subordinate by-item value
has changed), then you must include a target-item in the target-list that has not appeared as a
by-item or aggregate. This target-item can be modified by the NOPRINT clause if desired. Of
course, you must also set @SUMMARY-ONLY to OFF. For example:

SET @SUMMARY-ONLY TO OFF;
LIST BY dept, ~Y job, BY empname, salary NOPRINT,

COUNT (empname OVER job);

returns more than one record for each job in each department. All the employee names (empname)
for each job are returned.

4-28

Optional Clauses

Statements
LIST Statement

These clauses are optional and are described in Section 5. If you use one of these clauses to modify a
target-item that contains a subscript range, the clause modifies each element in the range. Briefly,
the clauses do the following:

• AFTER CHANGE clause prints information preceding the records for each by-item within a
printed report.

• AS clause specifies the display format for a target-item or a by-item

• AS DATE clause specifies the date format for printing a date

• AS TIME clause specifies the time format for printing a time

• A T END PRINT clause prints information at the end of a report

• AT START PRINT clause prints information at the beginning of a report

• BEFORE CHANGE clause prints information following the records for each by-item within a
printed report

• CENTER clause centers an object within its context

• CUM clause prints a running total for a target-item or by-item

• FOOTING clause prints a footing for a report

• HEADING clause specifies a column heading for a report

• NOHEAD clause suppresses the printing of the column heading for a target-item or by-item

• NOPRINT clause suppresses the printing of a target-item or by-item

• PCT clause prints a percentage for a target-item or by-item

• SUBFOOTING clause prints a subfooting for a report

• SUPPRESS clause defines a condition that prevents specific records from printing in a report.

• SUBTOTAL clause prints a subtotal for a target-item within each by-item

• SUBTITLE clause prints a subtitle for a report

• TITLE clause prints a title for a report

• TOTAL clause prints a total for a target-item or by-item

• WHERE clause limits the records that contribute to the report.

4-29

Statements
OPEN Statement

OPEN STATEMENT

The OPEN statement accesses the dictionary record description. The syntax of the OPEN state
ment is:

OPEN { record-name }
record-name2 [AS] COpy [OF] record-name1 , ... [

where

record-name, record-name1, or record-name2

are the names of dictionary record descriptions.

Specifying an OPEN statement does not actually open a physical file, rather the OPEN statement
causes ENFORM to access the dictionary record description of the file. One OPEN statement can
open several record descriptions. ENFORM stores the record description in the internal table. The
record description remains open until:

I. A CLOSE statement clears the record description.

'. Either a DICTIONARY statement or ?DICTIONARY command clears the entire internal table.

• The current ENFORM session ends.

Using OPEN AS COpy OF

The OPEN AS COpy OF statement is useful when a record description is designed so that records
within a file relate to other records within the identical file. Because LINK statements only
associate record descriptions with different record names, the OPEN AS COpy OF statement
refers to the same record description by a different record name.

Note that although the OPEN AS COpy OF statement opens record-name2, you must open record
namel before specifying this statement.

4-30

PARAM STATEMENT

Statements
P ARAM Statement

The PARAM statement allows you to name and define a parameter that can receive a value from a
Command Interpreter PARAM command. The syntax of the PARAM statement is:

PARAM { param-name [INTERNAL internaL-format] } , •.. [

where

param-name

is the name of the parameter being defined. The name must conform to the naming con
ventions described in Section 3.

internaL-format

is the internal format for storing the parameter. Valid values for internal-format are:

An alphanumeric, where n is the length.

In integer, where n is the length.

Fw. d fixed, where w is the number of digits and d is the number of decimal places.

The default is a 64-bit signed integer.

Up to 32 parameters can be defined per ENFORM session. The SET statement can initialize the
value of the parameter. The following PARAM statement defines a parameter named regno:

PARAM regno INTERNAL 12;

Values for parameters can only be passed to an executing compiled query file. (A compiled query
file is created by the ?COMPILE command described in Section 6.) Before executing the stored com
piled query file, a Command Interpreter PARAM command can be used to pass a value for the
parameter. The value specified by the Command Interpreter PARAM command supersedes the
parameter value specified by a SET statement. The Command Interpreter PARAM command must
precede the Command Interpreter ENFORM command. Refer to the GUARDIAN Operating
System Command Language and Utilities Manual for more information about the Command Inter
preter PARAM command.

Parameter values can also be passed through the host language interface. Refer to the ENFORM
User's Guide for information about the host language interface.

4-31

Statements
P ARAM Statement

How ENFORM Treats Parameters

ENFORM treats a parameter syntactically as if it were a literal. ENFORM handles parameters
declared with an alphanumeric internal format as string literals. ENFORIV[handles all other
parameters as numeric literals. When you specify a parameter with a non-alphanumeric internal
format as a target-item or as an item in a print-list, you must enclose the parameter in parentheses
just as you would an actual numeric literal. For example, suppose rept, a compiled query file, con
tains the following ENFORM statements:

PARAM reptnum 13;
TITLE "REPORT ", (reptnum);
OPEN parts;
LIST parts;

Notice that reptnum is enclosed in parentheses when specified in the TITLE statement. To provide
a value for reptnum, enter the following Command Interpreter P ARAM command:

:PARAM reptnum 333

If you then specify the ENFORM command:

:ENFORM/IN rept,OUT $s/

the resulting report is:

REPORT 333

Part
Number PARTNAME INVENTORY LOCATION PRICE

------------------ --------- --------- ---------
212 SYSTEM 192KB CORE 7 J87 92000.00
244 SYSTEM 192KB SEMI 3 B78 87000.00

1403 PROC 96KB SEMI 21 A21 22000.00

You can use a parameter wherever a literal is allowed. In certain cases, ENFOHM allows you to use
a parameter but treats the parameter strictly as a numeric literal. Therefore, you cannot change
the value of the parameter at execution time. ENFORM treats a parameter strictly as a numeric
literal when you use the parameter as:

• a subscript

• the "max-subscript" in the declaration of a user table

• the integer in a FORM, SKIP, TAB, or SPACE clause

• the integer in a pattern-match string of a logical expression.

ENFORM issues a warning message when you have specified a parameter in this manner.

4-32

SET STATEMENT

Statements
SET Statement

The SET statement allows you to initialize or reset a user variable, user table, or a parameter. The
SET statement also allows you to reset option variables. The syntax of the SET statement is:

r-------------------------------------- ----- --------

SET

user-variable-name
user-table-name"["subscript"J"
param-name !

string-literal I
[TOJ numeric-literal\

option-variable-name [TOJ ON
OFF
unsigned-digit
string-l iteral
display-format

where

user-variable-name or user-table-name"["subscript"J"

is the name of an element defined by a DECLARE statement.

param-name

is the name of a parameter defined by a PARAM statement.

string-literal

, . .. [

is one or more alphanumeric characters enclosed within quotation marks.

unsigned-digit

is an unsigned numeric literal.

option-variable-name

is the name of an option variable.

numeric-literal

is an integer.

display-format

is the default display format enclosed in quotation marks for printing dates or times
when AS DATE * and AS TIME * clauses are used.

'-- --- -------

4-33

Statements
SET Statement

Initializing User Defined Elements

When initializing a user variable, user table, or a parameter, specify values that are consistent with
the internal format type. If the internal format type is alphanumeric, specify a a string literal; if the
internal format type is numeric, specify a numeric literal. In the following example, the user
variable u-var is defined as numeric by the DECLARE statement and set to the value of 99 by the
SET statement:

DECLARE u-var INTERNAL 12;
SET u-var TO 99;

The SET statement can initialize a user table. An unsigned numeric integer subscript must be used.
In the following example, the third element of the months table is set to MARCH:

DECLARE months [12] INTERNAL A10;
SET months [3] TO "MARCH";

Redefining Option Variables

Use the SET statement to redefine option variables. There are several option variables, each with
default values assigned by ENFORM. Refer to the description of the Option Variable Clause in Sec
tion 5 for information about valid values for the option variables.

4-34

SUBFOOTING STATEMENT

Statements
SUBFOOTING Statement

The SUBFOOTING statement allows you to specify a subfooting to be printed at the bottom of each
report page for all reports in the current session unless overridden or reset by another
SUBFOOTING statement or temporarily overridden by a SUBFOOTING clause. See the
SUBFOOTING clause in Section 5. The syntax of the SUBFOOTING statement is:

SUBFOOTING [print-list [CENTER]] [

where

print-list

can be any combination of literals, FORM, SKIP, SPACE or TAB clauses. A print-list can
contain the following elements that can be modified by AS, AS DATE or AS TIME
clauses: field names, arithmetic expressions, IF/THEN/ELSE expressions, System
Variable clauses, JULIAN-DATE clauses, TIMESTAMP-DATE clauses, TIMESTAMP
TIME clauses, user variables, or parameter names.

The clauses that can be used in a print-list are discussed in Section 5. The other elements
are discussed in Section 3.

Specifying Field Names Within a SUBFOOTING Statement

If you specify a field name within a print-list of a SUBFOOTING statement, the field value printed
is the same value as in the last row of data on the current page. A field appearing within the
SUBFOOTING statement need not be explicitly included within the following LIST statements. If a
SUBFOOTING statement field is not included, EN FORM effectively adds it to the LIST statement
with a NOPRINT clause.

Spacing Considerations

By default, the subfooting begins in the same column position as the leftmost report column. Using
either SPACE or TAB clauses as the first element of the print-list overrides this default. The
SPACE or TAB clauses can also appear anywhere within the print-list. In the following example,
the SPACE clause causes the two literals to be separated by 15 spaces:

SUBFOOTING "Inventory" SPACE 15 "Parts in Stock";

The following subfooting will appear at the bottom of the next report that is generated without a
LIST statement SUBFOOTING clause.

Inventory Parts in Stock

If you specify either a SKIP clause or the symbol / (slash) within a print-list, the printer advances
one or more lines before printing the rest of the SUBFOOTING print-list. The number of lines
advanced can be affected by one or more of the following: the digit (if any) following the keyword
SKIP, the number of slashes specified, or the option variable @VSPACE. In the following example,
the SKIP clause of the SUBFOOTING statement causes the subfooting to print on two lines:

SUBFOOTING "Report 2-A" SKIP "Total Sales";

4-35

Statements
SUBFOOTING Statement

The following subfooting will appear at the bottom of the next report that is g-enerated without a
LIST statement SUBFOOTING clause.

Report 2-A
TotaL SaLes

Using the FORM clause within a SUBFOOTING statement forces a new page. The remainder of the
SUBFOOTING print-list is printed on the new page. The page number remains the same. A single
logical page can span multiple physical pages such that a TITLE can appear on one page, the data on
the next, and a SUBFOOTING on the next. The same page number applies to all physical pages in a
logical page.

Using the CENTER clause within the SUBFOOTING statement centers the subfooting within the
leftmost and rightmost columns of the report.

The CENTER, Option Variable, SKIP, SPACE, and TAB clauses are described in Section 5.

Subfooting for Current Report or All Reports

A SUBFOOTING statement prints a subfooting at the bottom of each page for all subsequent
reports in the current session. Specifying a new SUBFOOTING statement with a new print-list
resets the current SUBFOOTING statement. A SUBFOOTING statement can be temporarily over
ridden by a SUBFOOTING clause within a LIST statement. A SUBFOOTINGclause only prints a
subfooting for the current report.

Cancelling Session-Wide Subfooting

A SUBFOOTING statement can be cancelled by using the SUBFOOTING statement without the
print-list parameter.

4-36

SUBTITLE STATEMENT

Statements
SUBTITLE Statement

The SUBTITLE statement allows you to specify a subtitle for all subsequent reports in the current
session. The subtitle is printed at the top of each page immediately following the title. The
SUBTITLE statement can be overridden or reset by another SUBTITLE statement or temporarily
overridden by a SUBTITLE clause. The syntax of the SUBTITLE statement is:

SUBTITLE [print-list [CENTER]] [

where

print-list

can contain any combination of literals, FORM, SKIP, SPACE, or TAB clauses. A print
list can also contain the following elements that can be modified by AS, AS DATE, or AS
TIME clauses: field names, arithmetic expressions, IF/THEN/ELSE expressions, System
Variable clauses, JULIAN-DATE clauses, TIMESTAMP-DATE clauses, TIMESTAMP
TIME clauses, user variables, or parameter names.

The clauses that can be specified in a print-list are discussed in Section 5. The other
elements are discussed in Section 3.

Specifying a Field Name Within a SUBTITLE Statement

If you specify a field name within the print-list of a SUBTITLE statement, the field name has the
same value as in the first row of the page. A field name appearing within the SUBTITLE statement
need not be explicitly included within the following LIST statements. If the field name is not
included, ENFORM effectively adds it with a NOPRINT clause.

Spacing Considerations

By default the subtitle begins printing in the same column position as the leftmost report column.
Using SPACE or TAB clauses as the first element of the print-list overrides this default. SPACE or
TAB clauses can also appear anywhere within the print-list. In the following example, the SPACE
clause causes the two literals to be separated by 15 spaces:

SUBTITLE "Inventory" SPACE 15 "Parts in Stock";

Inventory Parts in Stock

If you specify either a SKIP clause or the slash symbol (f) within a print-list, ENFORM advances one
or more lines before printing the rest of the SUBTITLE print-list. The number of lines advanced
can be affected by one or more of the following: the digit (if any) following the keyword SKIP, the
number of slashes specified, or the option variable @VSPACE. In the following example, the SKIP
clause of the SUBTITLE statement causes two lines to be printed:

SUBTITLE "Report 2-A" SKIP "Total Sales";

Report 2-A
Total Sales

4-37

Statements
SUBTITLE Statement

Using the FORM clause within a SUBTITLE statement forces a new page. ENFORM prints the
remainder of the SUBTITLE print-list, starting at the top of the next physical page. The page num
ber remains the same. A single logical page can span multiple physical pages such that a
SUBTITLE can appear on one page, the data on the next, and a FOOTING on the next. The same
page number applies to all physical pages in a logical page.

Using the CENTER clause within a SUBTITLE statement centers the subtitle within the leftmost
and rightmost columns of the report.

The CENTER, Option Variable, SKIP, SPACE, and TAB clauses are described in Section 5.

Subtitle for Current Report or All Reports

A SUBTITLE statement prints a subtitle at the top of each page immediately following the title for
all subsequent reports in the current session. The SUBTITLE statement can be reset by specifying
a new SUBTITLE statement with a different print··list. A SUBTITLE clause within a LIST state
ment temporarily overrides the SUBTITLE statement. A SUBTITLE clause within a LIST state
ment prints a subtitle only for the current report.

Cancelling Session·Wide Subtitle

Cancel a SUBTITLE statement by using the SUBTITLE statement without the print-list
parameter.

4-38

TITLE STATEMENT

Statements
TITLE Statement

The TITLE statement allows you to specify a title to be printed the top of each page for all subse
quent reports in the current session unless cancelled or reset by another TITLE statement or tem
porarily overridden by a TITLE clause. (See the TITLE clause in Section 5.) The syntax of the
TITLE statement is:

TITLE [print-list [CENTER]] [

where

pri nt-l i st

can contain any combination of literals, FORM, SKIP, SPACE, or TAB clauses. A print
list can also contain the following elements that can be modified by AS, AS DATE, or AS
TIME clauses: field names, arithmetic expressions, IF/THEN/ELSE expressions, System
Variable clauses, JULIAN-DATE clauses, TIMESTAMP-DATE clauses, TIMESTAMP
TIME clauses, user variables, or parameter names.

The clauses that can be used in a print-list are discussed in Section 5. The other elements
are discussed in Section 3.

Specifying a Field Name Within a TITLE Statement

If you specify a field name within the print-list of a TITLE statement, the field has the same value
as in the first row of the page. A field appearing within the TITLE statement need not be explicitly
included within the following LIST statements. If it is not included, ENFORM effectively adds it
with a NOPRINT clause.

Spacing Considerations

By default the title begins printing in the same column position as the leftmost report column.
Using SPACE or TAB clauses as the first element of the print-list overrides this default. SPACE or
TAB clauses can also appear anywhere within the print-list. In the following example, the SPACE
clause causes the two literals to be separated by 15 spaces:

TITLE "Inventory" SPACE 15 "Parts in Stock";

Inventory Parts in Stock

If you specify either a SKIP clause or the symbol / (slash) within a print-list, the printer advances
one or more lines before printing the rest of the TITLE print-list. The number of lines advanced can
be affected by one or more of the following: the digit (if any) following the keyword SKIP, the
number of slashes specified, or the option variable @VSPACE. In the following example, the SKIP
clause of the TITLE statement causes two lines to be printed:

TITLE "Report 2-A" SKIP "Total Sales";

Report 2-A
Total Sales

4-39

Statements
TITLE Statement

Using the FORM clause within a TITLE statement forces a new page. The remainder of the TITLE
print-list is printed, starting at the top of the next physical page. The page nlllmber remains the
same. A single logical page can span multiple physical pages such that a TITLE can appear on one
page, the data on the next, and a FOOTING on the next. The same page number applies to all
physical pages in a logical page.

Using the CENTER clause within a TITLE statement centers the title within the leftmost and
rightmost columns of the report.

'The CENTER, Option Variable, SKIP, SPACE, and TAB clauses are described in Section 5.

Title for Current Report or All Reports

A TITLE statement prints a title at the top of each page for all subsequent reports in the current
session. Specifying a new TITLE statement resets the TITLE statement to the value of the new
print-list. A TITLE statement can be temporarily overridden by a TITLE clause within a LIST
statement. A TITLE clause within a LIST statement only prints a title for the eurrent report.

Cancelling Session-Wide Title

A TITLE statement can be cancelled by using the TITLE statement without the print-list
parameter.

4-40

SECTION 5

CLAUSES

This section describes the syntax of the ENFORM clauses. The clauses are specified in alphabetical
order.

ENFORM clauses are components of statements. They provide additional specifications of the
ENFORM program to be performed. Most of the ENFORM clauses remain in effect only for the
query associated with the LIST OR FIND statement of which they are a part.

An ENFORM program with a FIND statement produces records only; it has no report features such
as headings, titles, summary information, and special formatting. The following clauses are appli
cable only to EN FORM programs with a LIST statement and cannot be used in programs with a
FIND statement:

AFTER CHANGE clause
AS clause
AS DATE clause
AS TIME clause
AT END PRINT clause
AT START PRINT clause
BEFORE CHANGE clause
CENTER clause
CUM clause
FORM clause
FOOTING clause
HEADING clause
NOHEAD clause
Several of the Option Variable clauses

NOPRINT clause
PCT clause
SKIP clause
SPACE clause
SUBFOOTING clause
SUBTITLE clause
SUBTOTAL clause
SUPPRESS clause
System Variable clauses
TAB clause
TITLE cIa use
TOTAL clause
WHERE clause

Table 5-1 shows the ENFORM clauses and their functions.

5-1

Clauses
JlJNFORM Clauses and Their Functions

ASCD and DESC

BY and BY D ESC

SUPPRESS

WHERE

CUM

PCT

SUBTOTAL

TOTAL

Table 5-1. ENFORM Clauses and Their Functions

Field Selection, Grouping, and Sorting

sort target-records in ascending or descending order respectively according
to the value of a specified field.

group and sort target-records according to the value of a specified field.

eliminates certain records from being printed in the report, but does not
limit the records from contributing to the report calculations.

selects which records will contribute to the output.

Calculating Running Total, Total, Subtotal, and Percentage

prints a running total for a numeric target-item. The CUM OVER clause
prints the running group total for a numeric target-item.

prints the value of the percentage of the grand total for a numeric target
item. The peT OVER clause prints the percentage that each grouped value
is of the total of all values in the group.

prints the value of the target-·item subtotals for each group.

prints the value of the grand total for a target-item.

Extracting Current Values for Date, Time, Line Number, and PagEt
~.---

System Variable

TIMESTAMP-DATE

TIMESTAMP-TIME

AFTER CHANGE

AT END PRINT

AT START PRINT

BEFORE CHANGE

5-2

return the current value for the current date, time, line number, and page
number.

extracts the date portion of a timestamp field that has be.~n created by
the GUARDIAN procedure TIMESTAMP.

extracts the time portion of a timestamp field that has been created by
the GUARDIAN procedure TIMESTAMP.

Printing User Supplied Information on a Report

prints information for the current report preceding the records for each
grouped field value.

prints information at the end of the current report. See also the AT END
statement in Section 4.

prints information just before the first set of column headings for the cur
rent report. See also the AT START statement in Section 4.

prints information for the current report following the records for each
grouped field value.

---...

Clauses
ENFORM Clauses and Their Functions

Table 5·1. ENFORM Clauses and Their Functions (Concluded)

FOOTING

SUBFOOTING

SUBTITLE

TITLE

AS

AS DATE

AS TIME

INTERNAL

JULIAN-DATE

CENTER

FORM

HEADING

NOHEAD

NOPRINT

SKIP

SPACE

TAB

prints a footing at the bottom of each page for the current report. See
also the FOOTING statement in Section 4.

prints a subfooting at the bottom of each page immediately preceding the
footing for the current report. See also the SUBFOOTING statement in
Section 4.

prints a subtitle at the top of each page immediately following the title for
current report. See also the SUBTITLE statement in Section 4.

prints a title at the top of each page for the current report. See also the
TITLE statement in Section 4.

Converting Data to Internal or Display Format

specifies a display format for printing a target-item or by-item.

specifies the display format for printing a date.

specifies the display format for printing a time.

specifies the storage format for a user defined element.

translates date information to internal format.

Formatting a Report

centers a target-item within its context.

controls when to skip to a new page.

overrides the default column title for a target-item or by-item in a report.

suppresses the printing of the column heading of a target-item or by-item.

suppresses the printing of a target-item or by-item and its column
heading.

specifies how many lines to skip.

specifies horizontal spacing.

specifies in which report column a target-item or by-item is to begin
printing.

Supplying Operational Variables
1--------------------------------------.---- .--- -------

Option Variable redefines the default values for several operational variables ..

~--

5-3

Clauses
AFTER CHANGE Clause

AFTER CHANGE CLAUSE

The AFTER CHANGE clause prints information preceding the records for each group for the cur
rent report. The AFTER CHANGE clause is an optional part of a LIST statement. The syntax of
the AFTER CHANGE clause is:

AFTER CHANGE [ON] by-item PRINT print-list [CENTER]

where

by-item

is the name of a field that has been grouped by a BY or BY DESC clause.

print-list

contains any combination of literals, FORM, SKIP, SPACE or TAB clauses. A print-list
can also contain the following elements that can be modified by AS, AS DATE, or AS
TIME clauses: field names, arithmetic expressions, IF/THEN/ELSE expressions, System
Variable clauses, JULIAN-DATE clauses, TIMESTAMP-DATE clauses, TIMESTAMP
TIME clauses, user variables, or parameter names.

The clauses that can be used in a print-list are described in this section. The other
elements are described in Section 3.

The AFTER keyword of the AFTER CHANGE clause refers to the values printed, not to the loca
tion of the printed information. For the exact location of where the AFTER CHANGE information
is printed within a report, refer to the ENFORM Users Guide.

When more than one AFTER CHANGE clause is specified, the specified information prints in the
order in which the AFTER CHANGE clauses are entered.

Specifying a Field Name Within an AFTER CHANGE Clause

If you specify a field name within the print-list of an AFTER CHANGE clause, ENFOHM uses the
same field value as in the first row of the next group. A field name appearing within the print-list of
an AFTER CHANGE clause need not be explicitly included within the LIST statement. If the field
name is not included, ENFORM effectively adds it with a NOPRINT clause.

Spacing Considerations

By default the AFTER CHANGE clause information begins printing in the same column position as
the leftmost report column. Using SPACE or TAB clauses as the first element of the p1-int-list over
rides this default. SPACE or TAB clauses can also appear anywhere within the print list. In the
following example, the SPACE clauses causes the two literals to be separated by five spaces:

AFTER CHANGE ON ordernum
PRINT "*****" SPACE 5 "Orders for " ordernum,

***** Orders for 122

5-4

Clauses
AFTER CHANGE Clause

If you specify either a SKIP clause or the slash symbol (f) within a print-list, ENFORM advances one
or more lines before printing the rest of the AFTER CHANGE print-list. The number of lines
advanced can be affected by one or more of the following: the digit (if any) following the keyword
SKIP, the number of slashes specified, or the option variable @VSPACE. In the following example,
the SKIP clause within the AFTER CHANGE clause causes two lines to be printed:

AFTER CHANGE ON regnum PRINT "Beginning of Report for"
SKIP "Region" regnum,

Beginning of Report for
Region 1

Using the CENTER clause following the print-list of an AFTER CHANGE clause centers the infor
mation within the leftmost and rightmost columns of the report.

The CENTER, Option Variables, SKIP, SPACE, and TAB clauses are described in this section.

5-5

Clauses
ASCD and DESC Clauses

.ASCD AND DESC CLAUSES

The AS CD and DESC clauses sort target-records, in ascending or descending order respectively,
according to the value of the specified field. The syntax of the ASCD and DESC clauses is:

1 ASCD}
lDESC

where

target-item

target-item

is the name of a field from an input record which serves as a sort key for the target
records.

The ASCD and DESC clauses do not group field values. If you want field values both grouped and
sorted, use the BY or BY DESC clauses described in this section.

When more than one ASCD, BY, BY DESC, or DESC clause is specified in a LIST or FIND state
ment, ENFORM uses a major to minor sorting precedence. ENFORM determines the sorting
precedence by the order in which the AS CD or DESC clauses appear in the LIST or FIND state
ment. The first sort clause has the highest priority, the next one second priority, down to the last
specified clause.

The following ASCD clause indicates that the target records are to be sorted on the value of partnum:

ASCD partnum,

5-6

Clauses
AS Clause

AS CLAUSE

The AS clause specifies a display format for printing a target-item or by-item. The syntax of the AS
clause is:

report-item AS

report-item AS

report-item AS

where

report-item

nonrepeatabLe-edit-descriptors
repeatabLe-edit-descriptors

II 11[11 [decorations, •••] [modifiers, .•.] 11]11

repeatabLe-edit-descriptors II

II 11[11 [decorations, ...] [modifiers, •..] 11]11

(nonrepeatabLe-edit-descriptors
repeatabLe-edit-descriptors) II

is either a by-item or a target-item.

nonrepeatabLe-edit-descriptors

specify some general ways report-items are to be printed. Nonrepeatable-edit
descriptors should not be specified without a repeatable-edit descriptor. Nonrepeatable
edit-descriptors are:

nP

S,SP,SS

multiplies value by lO**n, n is an integer.

for control of plus (+) sign printing.

repeatabLe-edit-descriptors

specify data conversion to the GUARDIAN Formatter for printing the report-item
values. Valid values for repeatable-edit-descriptors are:

A [w]

Iw [.m

Fw.d

M mask

where

w

m

d

mask

.m

for alphanumeric values.

for integer values.

for fixed point values.

for a template to combine literals and values.

specifies the width of the report-item.

specifies the number of digits that appear to the left of the decimal
for fixed point values and the minimum number of digits for integer
values.

specifies the number of digits to the right of the decimal.

combination of the characters 9, Z, V, .(period) and literals. The
combination must be enclosed within apostrophes (' ') or greater
than and less than symbols « ».

L..--_______________________________ . _____________ _

5-7

Clauses
AS Clause

5-8

"["decorations"]"

specify character strings that can be added to a report-item depending- on a condition.
The syntax is:

conditions location char-string

where

conditions

are one or more of the following:

M add char-string if value is negative.

N add char-string if value is null.

P add char-string if value is positive.

Z add char-string if value is zero.

o add char-string if overflow condition occurs.

location

is where the character string is to be printed:

An indicates char-string is to be printed at absolute position n.

F indicates char-string is to be inserted after the value is formatted. If
condition is satisfied, char-string is printed immediately to the left of
the item value.

P indicates char-string is inserted before the value is formatted. If condi
tion is satisfied, char-string prints to the right of the value.

char-string

is one or more alphanumeric characters enclosed within apostrophes (' ').

"["modifiers"]"

alter the effect of the edit descriptors as follows:

BN,BZ prints blanks for null or zero values respectively.

FL char specifies a substitute fill character.

OC char respecifies the overflow character.

LJ, RJ specifies right or left justification.

SS pr-of-symbo ls allows substitution of symbols.

where

char

is an ASCII character enclosed in apostrophes.

pr-of-symbols

Clauses
AS Clause

is a special mask symbol (see repeatable edit-descriptors) and a substitution
character.

The AS clause identifies how an target-item or by-item is printed in the current report. When the
AS clause is not specified, ENFORM uses the display format from one of these sources:

• the display format specified in the dictionary for the field

• the data picture specified in the dictionary for the field

• the display format in the AS clause of a DECLARE statement

• the internal format specified in a PARAM statement

The AS clause allows you to utilize some of the capabilities of the GUARDIAN Operating System
Formatter. When you specify a display-format, EN FORM passes your format specifications to the
Formatter. Refer to the GUARDIAN Operating System Programming Manual for more informa
tion about the Formatter.

Repeatable Edit Descriptors

Repeatable edit descriptors specify the conversion of data values by the Formatter for the target
item or by-item being printed. The word repeatable has no real meaning in the context of ENFORM;
the word is used to simplify cross references to the FORMATTER terminology. Currently,
ENFORM makes only single target-items or by-items available for modification by edit descriptors.

ALPHANUMERIC EDIT DESCRIPTOR. The alphanumeric edit descriptor specifies the target-item
or by-item is to be printed using alphanumeric display format. The syntax is:

A [w]

where

w

is an unsigned integer that specifies the width in characters of the value of the target
item or by-item to be printed. The maximum value for w is 255 characters.

L-__ _

If you specify w, ENFORM prints the number of characters specified for the value of the target
item or by-item. If you omit w, ENFORM prints the actual number of characters in the value of the
target-item or by-item. In either case, ENFORM prints the value of the target-item or by-item left
justified with blank fill.

If w is too small for the value of the target-item or by-item, an overflow condition occurs and
ENFORM truncates the value.

5-9

Clauses
AS Clause

Examples of the Alphanumeric Edit Descriptors. The following examples show the affect of the A
edit descriptor:

Format Item VaLue Printed Item
-------_._- ------------

A WORD WORD
A4 WORD WORD
A3 WORD WOR
"[LJ] A3/1 WORD WOR
"[RJ] A3" WORD ORO

INTEGER EDIT DESCRIPTOR. The integer edit descriptor specifies an integer display format. The
syntax is:

Iw [. m]

where

w

is an unsigned integer that specifies the width of the output.

m

is an unsigned integer that specifies the number of digits that must be printed. The value
of m must not exceed the value of w.

When you modify an target-item or by-item with an integer edit descriptor, ENFORM prints the
value right-justified with blank fill. ENFORM always prints at least one digit for the valiue of such a

. target-item or by-item. If you specify m, ENFORM prints the number of digits specified, using
leading zeroes if necessary.

Note that if the value to be printed is zero and you specify Iw.O, ENFORM prints blanks.

Examples of the Integer Edit Descriptor. The following examples show the effect of the integer
edit descriptor.

Format Item VaLue Printed Item
---------- ------------

17 100 100
17.2 -1 -01
17.6 100 000100
17.6 -1 -000001

5-10

Clauses
AS Clause

FIXED FORMAT EDIT DESCRIPTOR. The fixed format edit descriptor specifies a fixed point
display format. The syntax is:

Fw.d [.m]

where

w

is an unsigned integer that defines the total width of the target-item or by-item value.

d

is an unsigned integer that defines the number of digits that are to appear to the right of
the decimal point.

m

is an unsigned integer that defines the number of digits that are to appear to the left of
the decimal point.

When you specify the fixed format edit descriptor, ENFORM prints the value of the target-item or
by-item right-justified with leading blanks if necessary. If the value is negative, ENFORM prints a
minus sign before the first digit. Both the minus sign and the decimal point occupy one position of
the format; therefore, w must be wide enough to accomodate the total size of the output field
including the minus sign and the decimal point. if w is not wide enough, an overflow condition
occurs.

If you specify m, ENFORM prints that number of digits using leading zeros if necessary.

Examples of the Fixed Format Edit Descriptor. The following examples show the effect of the
fixed format edit descriptor.

Format Item VaLue Printed Item
---------- ------------

F10.4 123.4567 123.4567
F10.4 0.000123 0.0001
F10.4.3 -4.56789 -004.5679
"[FL'*'] F10.2" 123.4567 ****123.46

5-11

Clauses
AS Clause

MASK EDIT DESCRIPTOR. The mask edit descriptor specifies a display format according to a
template. The syntax is:

M mask

where

mask

is a set of symbols or characters enclosed within quotation marks (" "), apostrophes (' '),
or angle brackets « ». The symbols in a mask that serve a special function are:

Z is a digit selector. Z specifies that if no digit exists, zeros are suppressed. Z can be
used with alphanumeric or numeric data. Note: only a capitol Z is the special
symbol.

9 is a digit selector. If no digit exists, zeros are printed; used for numeric data only.

V indicates decimal alignment for the display format. When V is specified, the decimal
point is not printed. Note: only a capitol V is the special symbol.

indicates decimal alignment for the display format. When the symbol. (period) is
used, the decimal point is printed.

Numeric Values. If the mask specified for a numeric value is too small, an overflow condition
occurs.

The special symbols Z and 9 describe numeric values. If the digit selector is a 9, ENFORM prints the
corresponding data digit. If the digit selector is a Z, ENFORM prints the corresponding data digit
unless it is a leading or trailing zero. In this case, ENFORM blank fills the position held by the zero.

Decimal point location can be indicated for numeric values by using either the symbol. or the sym
bol V. When the symbol. is used, a decimal point prints. When the symbol V is used, it indicates only
decimal alignment and no decimal point prints. If neither the symbol. nor the symbol V is specified,
I~NFORM assumes the decimal point is the rightmost character of the entire mask.

Alphabetic Values. Alphabetic values must be specified by the symbol Z in a mask edit descriptor.

Examples of the Mask Edit Descriptor. The following examples show the affect of the mask edit
descriptor.

Format Item Va lue Printed Item
---------- ------------

M"99/99/99" 103179 10/31/79
M'Z,ZZ9.99' 32.009 32.01
M<Z,ZZZ> 666 666
M<9,999> 666 0,666
M<9,999> 66666 *****
M<$ZZZ,ZZ9.99> 92000.00 $ 92,000.00

5-12

A query with these AS clauses:

amount AS M<$ZZ,ZZ9>,
date AS M<Z9/Z9/99>,
district AS A8,
telephone AS M«999) 999-9999>

for these target-item values:

Amount
Date
District
Telephone

:= 9758 21573 15532
:= 031777 091779 090579
:= West Midwest South
:= 2135296800 2162296270 4047298400

produces this report:

$ 9,758
$21,573
$15,532

3/17/77
9/17/77
9/ 5/79

West
Midwest
South

Nonrepeatable Edit Descriptors

(213) 529-6800
(216) 229-6270
(404) 729-8400

Clauses
AS Clause

Nonrepeatable edit descriptors indicate some ways target-items or by-items are to be printed.
Values described by the nonrepeatable edit descriptors do not require data conversion by the For
matter; however, the Formatter does process these values. When nonrepeatable edit descriptors
are specified with modifiers or decorations, both the nonrepeatable edit descriptor and the
repeatable edit descriptor must be enclosed in parentheses. The types of nonrepeatable edit
descriptors are:

• Scale factor edit descriptor

• Optional plus edit descriptor

SCALE FACTOR EDIT DESCRIPTOR. The scale factor edit descriptor specifies a scale of lO**n for
a fixed point (F) number. The value printed equals the internally represented number multiplied by
lO**n. The syntax is:

nP

where

n

is the exponent for the scale factor (lO**n).

P

is the implied decimal point of the number.

5-13

Clauses
AS Clause

Examples of the Scale Factor Edit Descriptor. The following examples show the effect of the scale
factor edit descriptor.

Format Item Value Printed Item

"2P F1 0.2" 100.00
"-2P F1 0.2" 100.00

10000.00
1.00

OPTIONAL PLUS EDIT DESCRIPTOR. The optional plus edit descriptors are used to control the
printing of a plus (+) sign. The syntax is:

where

S or SS

indicates no plus (+) sign is to be printed.

SP

indicates a plus (+) sign is to be printed.

When an object-item or by-item with a positive value is printed, ENFORM does not normally
precede the value with a plus (+) sign. Specify SP when you want EN FORM to precede a value
with an optional plus sign.

Examples of the Optional Plus Edit Descriptor. The following examples show the effect of the
optional plus edit descriptor.

Format Item Value Printed Item

liSP F1 0.2" 123.00
F10.2 123.00
liSP F10.2" -123.00
liSP F10.2" 000.00

Modifiers

+123.00
123.00

-123.00
.00

Modifiers alter the normal effect of edit descriptors. A modifier must immediately precede the edit
descriptor it modifies. Modifiers are enclosed within brackets ([]) and separated by commas.

Table 5-2 indicates which modifiers can be used with which edit descriptors. An X indicates the com
bination is permitted.

1>-14

Table 5-2. Permissible Modifiers and Edit Descriptors

Edit Descriptors
Modifiers

A F I M

BZ, BN X X X X

LJ, RJ X

OC X X X

FL X X X X

SS X X

Clauses
AS Clause

FIELD BLANKING MODIFIERS. Field blanking modifiers indicate under what circumstances to
print blanks. The syntax is:

where

BN

prints a blank field if value is null.

BZ

prints a blank field if value is zero.

Although most edit descriptors cause a minimum number of characters to be printed regardless of
the value of the field, a field blanking modifier causes the entire field to be filled with blanks if the
specified condition is met.

Examples of the Field Blanking Modifiers. The following examples show the effect of the field
blanking modifiers.

Format Item VaLue Printed Item
---------- ------------

"[BZ] F10.2" .00
"[BN] F10.2" nuLL vaLue
"[BN] F10.2" 100.00 100.00

FILL CHARACTER MODIFIER. The fill character modifier specifies the fill character that is used in
the current display format. The default fill character is a blank. The syntax is:

FL char

where

char

is a single ASCII character enclosed within apostrophes (' ').

5-15

Clauses
AS Clause

A fill character prints in each appropriate character position when one of the following occurs:
alphanumeric data contains fewer characters than the field specified by the alphanumeric edit
descriptor, leading zero suppression is performed, or embedded text in an mask edit descriptor is
not printed because its neighboring digits are not printed.

Examples of the Fill Character Modifier. The following examples show the affect of the fill
character modifier.

Format

"[FL'.'] A10"
"[RJ,FL'>'] A10"
"[FL'*'] M<$ZZ,ZZ9.99>"

Item Va Lue

THEN
HERE
127.39

Printed Item

THEN •.•...
»»»HERE
$***127.39

OVERFLOW CHARACTER MODIFIER. The overflow character modifier temporarily overrides the
global default overflow indicator for the current display format. The overflow indicator is printed
when a value exceeds the width specified in the display format. The syntax is:

OC char

where

char

is a single ASCII character enclosed within apostrophes (' ').

The overflow condition occurs if there are more characters to be printed than the display format
specifies. When the overflow condition occurs, ENFORM prints the overflow character. The default
overflow character is an asterisk (*). The overflow character modifier allows you to temporarily
substitute another ASCII character for the asterisk (*). The overflow character modifier applies
only to the display format where it is specified. The overflow modifier does not apply to the
alphanumeric (A) edit descriptor.

If you want to change the default overflow character for all display formats in the current session,
use the @OVERFLOW option variable described in this section.

Examples of the Overflow Character Modifier. The following examples show the effect of the
overflow character modifier.

Format

"[OC'!'] 12"
"[OC'! '] FS.2"

5-16

Item Va Lue

100
100000.00

Pri nted Item

! !
!! !! !

Clauses
AS Clause

JUSTIFICATION MODIFIERS. The justification modifiers specify right or left justification for the
values of an alphanumeric target-item or by-item. The syntax is:

where

LJ

specifies that an item is to be printed justified to the left of the specified display format
width.

RJ

specifies that an item is to be printed justified to the right of the specified display format
width.

The justification modifiers apply only to alphanumeric (A) edit descriptors. Alphanumeric target
items or by-items are normally left-justified. Padding of the item width automatically takes place. If
the item value is wider than the width specified, truncation occurs.

Examples of the Justification Modifiers. The following examples show the effect of the justifica
tion modifiers.

Format Item Value Printed Item
---------- ------------

"[RJ] A12" HELLO HELLO
A12 HELLO HELLO
"[RJ] A2" HELLO LO

SYMBOL SUBSTITUTION MODIFIER. The symbol substitution modifier allows you to change the
standard symbols ('9', 'V', 'Z', '.' and ',') used in edit descriptors. The syntax is:

SS pair-of-symbols

where

pair-of-symbols

are the standard and substitute symbols enclosed within apostrophes (' '). The standard
symbol must appear first, followed by the substitute symbol.

The symbol substitution modifier allows you to replace the standard symbols used in edit descrip
tors. You can change the symbols for 9, Z, V, . and , in the mask (M) edit descriptor or change the
symbol for decimal point (.) in the fixed point (F) edit descriptor.

The symbol substitution modifier is useful when you need to specify a character string, that is also a
standard mask symbol. An example would be 9 in a mask for a date. Refer to the last example below.

5-17

Clauses
AS Clause

Examples of the Symbol Substitution Modifier. The following examples show the effect of the
symbol substitution modifier.

Format

"[SS'.:'] F6.2"
"[SS'.:'] M<ZZZ.99>"
"[SS ' . , '] F10. 2"
"[SS'9X'] M<XX/XX/19XX>"

Decorations

Item Value

12.45
12.45
12345.67
103179

Printed Item

12:45
12:45

12345,67
10/31/1979

Decorations specify character strings that can be printed along with the value of a target-item or
by-item. Decorations also specify the conditions under which the character string- is added, the loca
tion at which the character string is added, and whether the character string is added before normal
formatting is done or after it is completed. The syntax of a decoration is:

------------------.-------

condition location char-string

where

condition

is one or more of the following:

M add char-string if value is negative.

N add char-string if value is null.

P add char-string if value is positive.

Z add char-string if value is zero.

o add char-string if overflow condition occurs.

location

is one of the following:

An absolute position n.

F floating.

P prior.

char-string

is one or more alphanumeric characters enclosed within apostrophes (' ').

------------------.-----.----------~

5-18

The following rules apply to decorations:

• Separate multiple decorations by commas.

• Enclose decorations in brackets along with any modifiers.

• Specify decorations immediately before the edit descriptor they modify.

Clauses
AS Clause

• Enclose decorations and the edit descriptors they modify within quotation marks (" ").

ENFORM evaluates decorations from left to right.

You are responsible for ensuring that the display format width is large enough to contain both the
target-item or by-item value and the inserted character string.

CONDITIONS. The condition specifiers (negative, positive, zero, null, or overflow) indicate that a
character string prints only when the specified condition occurs. A null condition takes precedence
over negative, positive, and zero conditions. The overflow condition test is done after the other con
ditions are tested. Conditions specified for alphanumeric target-items or by-items can be positive or
null only.

More than one condition specifier can exist for a decoration. Conditions are coded without
separators.

LOCATION. The location specifier indicates where the character string prints in relation to the
value of the target-item or by-item. The uses of the location specifiers are as follows:

• The A location specifier indicates the character string is to be printed starting in the absolute
position n.

• The F specifier indicates the character string is to occupy the position or positions immediately
to the left (for right-justified values) of the leftmost data character. If the value is left-justified,
the F specifier indicates the character string occupies the position or positions immediately to
the right of the rightmost data character.

• The P location specifier indicates that prior to normal formatting, the string is to be inserted in
either the rightmost position (for right-justified values) or the leftmost position for left-justified
values. The data values are shifted an appropriate number of positions.

PROCESSING ORDER. ENFORM processes decorations in the following order:

1. The data is tested to determine if it has a null value.

2. The data is tested to determine if it has a positive, negative, or zero value.

3. If the P location decoration is specified, the character string is added to the item value.

4. Normal formatting according to the edit descriptor (alphanumeric (A), integer (I), or fixed point
(F) is performed.

5. Decorations for alphanumeric and fixed point edit descriptors are performed.

6. The overflow condition is tested.

5-19

Clauses
AS Clause

DEFAULT DECORATIONS. When decorations are not specified, ENFORM prints a negative value
with a preceding negative (-) sign. In other words, [MF' - '] is assumed.

If a decoration is specified that tests for a positive value, such as [PF' + '], the default [MF' - '] no
longer automatically applies. In this case, the negative condition must be explicitly indicated if you
want EN FORM to print the negative sign.

When an overflow condition occurs, ENFORM replaces the value by enough asterisks (lie) to fill the
field. In other words, [OA1'***** ... ***'] is assumed. The OC char modifier temporarily overrides the
default asterisk (*) overflow character.

Examples of Decorations. Possible decorations and their meanings are:

MAn char-string

MF char-string

MP char-string

NAn char-string

NF char-string

NP char-string

PAn char-string

PF char-string

PP char-string

ZAn char-string

ZF char-string

ZP char-string

OAn char-string

5-20

if value is negative, print char-string in position n.

if value is negative, print char-string immediately to the left of right
justified value, immediately to the right of left-justified value.

if value is negative, print char-string immediately to the right of value.

if value is null, print char-string in position n.

if value is null, print char-string immediately to the left of right
justified value; immediately to the right of left-justified value.

if value is null, print char-string immediately to the right of value.

if value is positive, print char-string in position n.

if value is positive, print char-string immediately to the left of value.

if value is positive, print char-string immediately to the right of value.

if value is zero, print char-string in position n.

if value is zero, print cha.r-string immediately to the left of right
justified value, immediately to the right of left-justified value.

if value is zero, print char-string immediately to the right of value.

if overflow condition occurs, print char-string in position n.

----,----,

The following are examples of decorations:

Format Item Value

"[MF' <' , MP' >, , ZPP' b'] F12.2" 1000.00
"[MF'<' ,MP'>' ,ZPP'b'] F12.2" -1000.00

"[MA1'CR' ,MPF'$'] F12.2" 1000.00
"[MA1'CR' ,MPF'$'] F12.2" -100.00
"[MA1'CR' ,MPF'$'] F12.2" 0.00

"[OA1'**overflow**'] F12.2" 1000000.00
"[OA1'**overflow**'] F12.2" 1000000000.00

"[ZPA2'+'] 18" -10
"[ZPA2'+'] 18" 100
"[ZPA2'+'] 18" 0

Printed Item

1,000.00
<1,000.00>

$1,000.00
CR $100.00

0.00

1000000000
overflow

10
+ 100
+ 0

Clauses
AS Clause

5-21

Clauses
AS DATE Clause

AS DATE CLAUSE

The AS DATE clause allows you to specify the display format for printing a date. The syntax of the
AS DATE clause is:

date-in-internal-format AS DATE { * t
di sp lay-format ~

where

date-in-internal-format

*

is the name of a variable or field that contains a date in internal format. The option
variable @DA TE can be specified to give the current date in internal format.

specifies the default display format. The default display format specifies the date in the
form month/day/year. It is comparable to the display-format "M2/D2/Y2"

display-format

is the format for printing a date. Display-format must be specified within quotation
marks (" "). Display-format can include date keywords, and other characters such as
blanks, commas, hyphens, or slashes. The date keywords are:

M specifies a month.

D specifies a day.

Y specifies a year.

A abbrieviates or completely spells out the month or day. If n is specified with the
keyword A, only n letters are displayed.

B suppresses leading zeros,

o abbrieviates or completely spells out the number corresponding to the day. If n is
specified with the keyword 0, only n letters are displayed.

n an integer that specifies the number of characters (1-3) or numbers (2-4) to be
printed.

When you want a date printed, the date must be in internal format. For instructions on how to con
vert a date to internal format, refer to the JULIAN-DATE or TIMESTAMP-DATE clause in this
section. The date can be a target-item within a LIST statement or any element that can be modified
by an AS DATE clause within a print list.

5-22

Default Display Format

Clauses
AS DATE Clause

ENFORM's default date display-format, "M2/D2/Y2 tt
, might handle most of the date formatting

required. Change the default format by redefining the @DA TE-FORMA T option variable discussed
in this section.

Examples of Date Display Formats

These date keywords produce the following:

MA3 JANUARY,FEBRUARY, ... ,DECEMBER
MA3 JAN,FEB, ... ,DEC
M2 01,02, ... ,12
M 1,2, ... ,12
MB2 1, 2, ... ,12
DA MONDAY,TUESDAY, ... ,SUNDAY
DA3 MON,TUE, ... ,SUN
02 01,02, ... ,31
DB2 1, 2, ... ,31
03 001,002, ... ,366
DB3 1, 2, ... ,366
002 1ST, 2ND, ... 31ST
DAO FIRST, SECOND, ... ,THIRTY-FIRST
Y2 00,01, ... ,76,77,78 .. .
YB2 0, 1, •.. ,76,77,78 .. .
Y4 1900,1901, ..• ,1976,1977,1978 •..

5-23

Clauses
AS TIME Clause

AS TIME CLAUSE

The AS TIME clause allows you to specify the display format for printing a time. The syntax of the
AS TIME clause is:

time-in-internal-format AS TIME (* I
display-format

where

time-in-internal-format

is the name of a variable or field which contains a time in internal format.

*
specifies the default display format which specifies the hour, minut(~, and second as
HB2:MB2:SB2 (see the following description of display-format). When the default display
format is used military time is displayed.

display-format

is the format for printing the time. Displayjormat must be specified within quotation
marks (U "). Display-format can be specified by using time keywords and other characters
such as blanks, commas, hyphens, or slashes. In addition alphanumeric characters enclosed
in apostrophes (' ') can be embedded within display-format. The time keywords are:

H specifies an hour.

M specifies a minute.

S specifies a second.

P expresses the hour as modulo 12 with AM or PM.

B suppresses leading zeros.

n an integer digit specifying the number of digits (1 or 2) printed.

-------------------------------------~

If you want ENFORM to print the time, it must be in internal format. For instructions on how to
convert a time to internal format, refer to the TIMESTAMP-TIME clause in this section. The time
can be a target-item within a LIST statement or any element that can be modified by an AS TIME
clause within a print list.

Default Time Display Format

ENFORM's default time format, uHB2:MB2:SB2", might handle most of the time formatting
required. Change the default format by redefining the @TIME-FORMA T option variable discussed
in this section.

Examples of the Time Display Format

These time keywords produce the following:

HB2 1, 2, ,24
HP2 01,02, ,12 AM or PM
HPB2 1, 2, ,12 AM or PM
M2 00,01, ,59
MB2 0, 1, .•.. ,59
S2 00,01, ,59
SB2 0, 1, ,59

5-24

AT END PRINT CLAUSE

Clauses
A T END PRINT Clause

The AT END PRINT clause prints information at the end of the current report. This clause is an
optional part of the LIST statement. The syntax of the AT END PRINT clause is:

AT END PRINT print-list [CENTER]

where

print-list

contains any combination of literals, FORM, SKIP, SPACE and TAB clauses. Print-list
can also contain the following elements that can be modified by AS, AS DATE or AS
TIME clauses: field names, arithmetic expressions, IF/THEN/ELSE expressions, System
Variable clauses, JULIAN-DATE clauses, TIMESTAMP-DATE clauses, TIMESTAMP
TIME clauses, user variables, or parameter names.

Clauses that can be used in a print-list are described in this section. The other elements
are described in Section 3.

Specifying a Field Name Within an AT END PRINT Clause

If you specify a field name within the print-list of an AT END PRINT clause, ENFORM prints the
same value as in the last row of the report. A field name appearing within the print-list of an AT
END PRINT clause need not be explicitly included within the associated LIST statement. If the
field name is not included, ENFORM in effect adds the field to the LIST statement with a
NOPRINT clause.

Spacing Considerations

By default, the information you specify in the print-list of an AT END PRINT clause begins printing
in the same column position as the leftmost column of the report. Using the SPACE or TAB clause
as the first element of the print-list overrides the default. SPACE or TAB clauses can be used
anywhere within the print-list. In the following example, the SPACE clause causes the two literals
to be separated by 15 spaces:

AT END PRINT "Report" SPACE 15 "Tota l Sa les",

Report Total Sales

If you specify either a SKIP clause or the slash symbol (f) within a print-list, EN FORM advances one
or more lines before printing the rest of the AT END print-list. The number of lines advanced can
be affected by one or more of the following: the digit (if any) following the keyword SKIP, the
number of slashes specified, or the option variable @VSPACE. In the following example, the SKIP
clause in the print-list causes ENFORM to print two lines:

AT END PRINT "End of Report for" SKIP "Region" regnum,

End of Report for
Region 1

Using the FORM clause within the print-list causes ENFORM to start a new page, increment the
page number, and continue with the rest of the print-list.

5-25

Clauses
A T END PRINT Clause

Using the CENTER clause following the print-list centers the information within the leftmost and
rightmost columns of the report.

The CENTER, Option Variable, SKIP, SPACE, and TAB clauses are described in this section.

AT END Information for Current Report or All Reports

The optional AT END PRINT clause prints information only for the current report. This clause tern··
porarily overrides the session-wide AT END statement. If you want to print information at the end
of all subsequent reports in the current session, use the AT END statement.

Overriding Session·Wide AT END Information

Temporarily override session-wide AT END information by specifying the AT gND PRINT clause
with" " for the print-list parameter.

5-26

AT START PRINT CLAUSE

Clauses
AT START PRINT Clause

The AT START PRINT clause allows you to specify information to be printed just before the first
set of column headings for the current report. This clause is an optional part of the LIST statement.
The syntax of the AT START PRINT clause is:

AT START PRINT print-list [CENTER]

where

print-list

contains any combination of literals, FORM, SKIP, SPACE or TAB clauses. A print-list
can also contain the following elements that can be modified by AS, AS DATE, or AS
TIME clauses: field names, arithmetic expressions, IF/THEN/ELSE expressions, System
Variable clauses, JULIAN-DATE clauses, TIMESTAMP-DATE clauses, TIMESTAMP
TIME clauses, user variables, or parameter names.

The clauses that can appear in a print-list are described in this section. The other
elements are described in Section 3.

The AT START PRINT clause differs from both the TITLE and SUBTITLE statements and clauses
in that a title or subtitle is printed on every page of a report while the AT START PRINT informa
tion is printed only on the first page of a report. The information supplied in an AT START PRINT
clause prints after either a title or a subtitle.

Specifying a Field Name in an AT START PRINT Clause

If you specify a field name within a print-list of an AT START PRINT clause, ENFORM prints the
same field value as in the first row of the report. A field name appearing within the print list of a AT
START PRINT clause need not be explicitly included within the associated LIST statement. If the
field name is not included, ENFORM in effect adds it with a NOPRINT clause.

Spacing Considerations

By default the AT START PRINT information begins printing in the same column position as the
leftmost report column. Using SPACE or TAB clauses as the first element of the print-list overrides
this default. SPACE or TAB clauses can also appear anywhere within the print-list. In the following
example. the SPACE clause causes the two literals to be separated by 15 spaces:

AT START PRINT "Report" SPACE 15 "Total Sales",

Report Total Sales

5-27

Clauses
AT START PRINT Clause

If you specify either a SKIP clause or the slash symbol (f) within a print-list, EN FORM advances one
or more lines before printing the rest of the print-list. The number of lines advanced can be affected
by one or more of the following: the digit (if any) following the keyword SKIP, the number of slashes
specified, or the option variable @VSPACE. In the following example, the SKIP clause causes two
lines to be printed:

AT START PRINT "End of Report for" SKIP "Region" regnum,

End of Report for
Region 1

The use of the FORM clause within a print-list causes ENFORM to start a new page, increment the
page number, and continue with the rest of the print-list.

Using the CENTER clause following the print-list of the AT START PRINT clause centers the
information within the leftmost and rightmost columns of the report.

The CENTER, Option Variables, SKIP, SPACE, and TAB clauses are described in this section.

AT START Information for Current Report or All Reports

An AT START PRINT clause only prints information for the report generated by the associated
LIST statement. It temporarily overrides the session-wide AT START statement. If you want to
print the same information just before the first set of column headings for all subsequent reports in
the current session, use the AT START statement.

Overriding Session-Wide AT START Information

Temporarily override the session-wide AT START statement by using the AT START PRINT
clause with" " for the print-list parameter.

5-28

iW, _______________________ ,

BEFORE CHANGE CLAUSE

Clauses
BEFORE CHANGE Clause

The BEFORE CHANGE clause allows you to specify information to be printed following the
records for each group for the current report. The BEFORE CHANGE clause is an optional part of
the LIST statement. The syntax of the BEFORE CHANGE clause is:

BEFORE CHANGE [ON] by-item PRINT print-List [CENTER]

where

by-item

is the name of a field grouped by a BY or BY DESC clause.

pri nt- List

is any combination of literals, FORM, SKIP, SPACE or TAB clauses. A print-list can also
contain the following elements that can be modified by AS, AS DATE, or AS TIME
clauses: field names, arithmetic expressions, IF/THEN/ELSE expressions, System
Variable clauses, JULIAN-DATE clauses, TIMESTAMP-DATE clauses, TIMESTAMP
TIME clauses, user variables, or parameter names.

The clauses that can be used in a print-list are described in this section. The other
elements are described in Section 3.

The keyword BEFORE in the BEFORE CHANGE clause refers to the values printed, not to the
location of the printed information. For the exact location of where the BEFORE CHANGE infor
mation is printed within a report, refer to the ENFORM Users Guide.

When more than one BEFORE CHANGE clause is specified, ENFORM prints the BEFORE
CHANGE information in the order in which the BEFORE CHANGE clauses are entered.

Specifying a Field Name Within a BEFORE CHANGE Clause

If you specify a field name within a print-list of a BEFORE CHANGE clause, ENFORM prints the
same field value in the last row of the previous group; that is, before the value changes. A field
name appearing within the print-list of a BEFORE CHANGE clause need not be explicitly included
within the LIST statement. If the field name is not included, ENFORM in effect adds it with a
NOPRINT clause.

Spacing Considerations

By default the BEFORE CHANGE clause information begins printing in the same column position
as the leftmost report column. Using SPACE or TAB clauses as the first element of the print list
overrides this default. SPACE or TAB clauses can also appear anywhere within the print-list. In the
following example, the SPACE clause causes the two literals to be separated by five spaces:

BEFORE CHANGE ON ordernum
PRINT "*****" SPACE 5 "Orders for " ordernum,

***** Orders for 122

5-29

Clauses
BEFORE CHANGE Clause

If you specify either a SKIP clause or the symbol / (slash) within a print-list, EN FORM advances one
or more lines before printing the rest of the BEFORE CHANGE print-list. The number of lines
advanced can be affected by one or more of the following: the digit (if any) fol1owing the keyword
SKIP, the number of slashes specified, or the option variable @VSPACE. In the following example,
the SKIP clause causes two lines to be printed:

BEFORE CHANGE ON regnum PRINT "Begin of Report for"
SKIP "Region" regnum,

Begin of Report for
Region 1

Using the CENTER clause following the print-list of a BEFORE CHANGE clause centers the infor
mation within the leftmost and rightmost columns of the report.

The CENTER, Option Variable, SKIP, SPACE, and TAB clauses are described in in this section.

5-30

BY AND BY DESC CLAUSES

Clauses
BY and BY DESC Clauses

The BY and BY DESC clauses group and sort target-records according to the value of a specified
field. The syntax of the BY and BY DESC clauses is:

{
BY } by-i tem
BY DESC

where

by-item

is the name of a field from an input record whose values are to be used to group and sort
target-records.

BY and BY DESC clauses group and sort records according to the field values. The BY clause sorts
the records in ascending order according to the value of the specified field; the BY DESC clause
sorts in descending order. The following example groups and sorts the partnum field:

BY partnum,

When more than one sort is specified. EN FORM uses a major to minor sort precedence. EN FORM
determines the sort precedence by the order in which a BY or BY DESC clause appears in a LIST or
FIND statement. The first BY or BY DESC clause has the highest priority. the next one second
priority. down to the last BY or BY DESC clause.

When a BY or BY DESC clause is used with a LIST statement. EN FORM prints only the first
instance of a grouped value in a report. When a BY or BY DESC clause is used with a FIND state
ment. EN FORM writes all of the values of a grouped value to the physical output file or transmits
all of the values to the host language program.

Several clauses require that a field be grouped by a preceding BY or BY DESC clause. Refer to the
CUM. PCT. SUBTOTAL. AFTER CHANGE and BEFORE CHANGE clauses in this section and
Target Aggregates in Section 3.

5-31

Clauses
CENTER Clause

CENTER CLAUSE

The CENTER clause centers an object within its context. The syntax of the CENTER clause is:

{ tar~et-item } CENTER
bY-ltem

CENTER ALL

where

target-item

is a record name, a field name, a string literal, a predefined aggregate, a user aggregate,
an arithmetic expression, an IF/THEN/ELSE expression, a user variable, or a System
Variable clause.

by-item

is the name of a field grouped by a BY or BY DESC clause.

Centering Single Report Items

The CENTER clause causes a target-item or by-item to be centered under its column heading.
Numeric data is normally right-justified; alphabetic data is normally left-justified. Target-items and
by-items are centered based on the width for which they are formatted, not their actual values. If
the space divides unevenly, ENFORM places the extra space to the right of the item.

Centering All Report Items

The CENTER ALL clause causes all elements in a LIST statement to be centered under their
headings. It must follow the WHERE clause in the LIST statement. Refer to the Byntax of the LIST
statement in Section 4 for the relative locations of the clauses within a LIST statement.

Centering a Print List

The CENTER clause following the print list of an AT END statement or clause, an AT START
statement or clause, an AFTER CHANG]~ clause, a BEFORE CHANGE clause, a FOOTING state
ment or clause, a SUBTITLE statement or clause, a SUBFOOTING statement or dause, or a TITLE
statement or clause, centers the print list information within the leftmost and rightmost columns of
the report.

5-32

,,'-,--------------------,--------------

CUM CLAUSE

Clauses
CUM Clause

The CUM clause allows you to specify printing of a running total for a numeric target-item either
for all the instances of the target-item or for the instances of the target-item grouped within the
each value of a by-item. The syntax of the CUM clause is:

target-item CUM [OVER ALL]
OVER by-item

where

target-item

is a record name, a field name, a numeric literal, a predefined aggregate, a user
aggregate, an arithmetic expression, an IF/THEN/ELSE expression, a user variable, or a
System Variable clause. The data type of a target-item used in a CUM clause must be
numeric.

by-item

is the name of a field grouped by a BY or BY DESC clause.

CUM With OVER ALL

When you specify the CUM OVER ALL clause, ENFORM prints a running total in place of each
value of the numeric target-item. When you specify only CUM, ENFORM assumes CUM OVER
ALL.

CUM With OVER

When you specify the CUM OVER by-item clause, ENFORM prints a running total for the instances
of the numeric target-item within the by-item in place of the value of the numeric target-item. The
by-item must be previously defined by a BY or BY DESC clause. The running total begins anew
each time the by-item value changes. The following example prints the running total of all parts for
each location:

LIST BY location,
partnum,
inventory,
inventory CUM OVER location;

Part CUM
LOCATION Number INVENTORY INVENTORY
-------- --------- ---------

L98 5103 8 8
5502 6 14

V66 6603 40 40

5-33

Clauses
CUM Clause

CUM Clause Used With User Variable

When a numeric target-item with a CUM clause is assigned to a user variable, ENFORM assigns the
value to the user variable first, before the running total is calculated. When the user variable is
referenced as a target-item element in a LIST statement or as an element within a LIST target
item, ENFORM uses the value of the user variable. When the user variable is referenced in a print
list, EN FORM uses the value of the running total.

Restrictions

Note that you cannot combine the CUM clause with the PCT clause, the TOTAL clause" or the SUB
TOTAL clause.

5-34

FOOTING CLAUSE

Clauses
FOOTING Clause

The FOOTING clause allows you to specify information for printing at the bottom of each page for
the current report. This clause is an optional part of the LIST statement. The syntax of the
FOOTING clause is:

FOOTING print-List [CENTER]

where

print-List

can be any combination of literals, FORM, SKIP, SPACE, or TAB clauses. A print-list can
contain the following elements that can be modified by AS, AS DATE, or AS TIME
clauses: field names, arithmetic expressions, IF/THEN/ELSE expressions, System
Variable clauses, JULIAN-DATE clauses, TIMESTAMP-DATE clauses, TIMESTAMP
TIME clauses, user variable names, or parameter names.

The clauses that can be used in a print-list are described in this section. The other
elements are described in Section 3.

Specifying a Field Name Within a FOOTING Clause

If you specify a field name within a print-list of a FOOTING clause, ENFORM prints the same field
value as in the last row of data on the current report page. A field name appearing within the
FOOTING clause need not be explicitly included within the LIST statement. If the field name is not
included, ENFORM effectively adds it to the LIST statement with a NOPRINT clause.

Spacing Considerations

By default the footing begins printing in the same column position as the leftmost report column.
Using SPACE or TAB clauses as the first element of the print-list overrides this default. SPACE or
TAB clauses can also appear anywhere within the print-list. In the following example, the SPACE
clause causes the two literals to be separated by 15 spaces:

FOOTING "Inventory" SPACE 15 "Parts in Stock",

The following footing is printed on the next report:

Inventory Parts in Stock

If you specify either a SKIP clause or the slash symbol (J) within a print-list, ENFORM advances one
or more lines before printing the rest of the FOOTING print-list. The number of lines advanced can
be affected by one or more of the following: the digit (if any) following the keyword SKIP, the
number of slashes specified, or the option variable @VSPACE. In the following example, the SKIP
clause causes two lines to be printed:

FOOTING "Report 2-A" SKIP "TotaL SaLes",

The following footing prints on the next report:

Report 2-A
TotaL SaLes

5-35

Clauses
FOOTING Clause

Using a FORM clause within a FOOTING statement forces a new page. Printing eontinues with the
remainder of the FOOTING print-list, starting at the top of the next physical page. The page
number remains the same. A single logical page can span multiple physical pages, such that a
TITLE can appear on one page, the data on the next, and a FOOTING on the next. The same page
number applies to all physical pages in the logical page.

Using the CENTER clause centers the footing within the leftmost and rightmost columns of the
report.

The CENTER, Option Variables, SKIP, SPACE, and TAB clauses are described in this section.

Footing for Current Report or All Reports

A FOOTING clause within a LIST statement prints a footing only for the (~urrent report. A
FOOTING clause temporarily overrides a sessionwide FOOTING statement. A FOOTING state
ment prints a footing at the bottom of each page for all subsequent reports in the current session.

5-36

FORM CLAUSE

Clauses
FORM Clause

The FORM clause allows you to control when to skip to a new page. The syntax of the FORM clause
is:

FORM [number]

where

number

is an unsigned integer.

FORM Clause With a By·item

When the FORM clause follows a field name that has been grouped with a BY or BY DESC clause,
ENFORM starts a new page whenever the field value changes. If number is specified, ENFORM
starts a new page only if there are fewer than that number of lines remaining on the current page.
The following example shows the use of the FORM clause with a by-item:

BY regnum FORM,

FORM Clause With a Target·item

When the FORM clause precedes a target-item, ENFORM starts a new page each time the target
item is printed. When the FORM clause follows a target-item, ENFORM prints the target-item
before starting a new page. The number parameter is not allowed when the FORM clause modifies a
target-item.

FORM Clause Within a Print·list

The FORM clause can be part of a print list for an AFTER CHANGE, AT START PRINT, AT END
PRINT, BEFORE CHANGE, FOOTING, SUBFOOTING, SUBTITLE, or TITLE clause or state
ment. ENFORM starts printing on a new page every time the FORM clause is processed. When used
with a print list, the FORM clause does not use the number parameter.

5-37

Clauses
HEADING Clause

HEADING CLAUSE

The HEADING clause allows you to override the default column title for a target-item or by-item in a
report. The HEADING clause also allows you to define a column title for target-items, such as
arithmetic expressions, that do not have a default column title. The syntax of the HEADING clause is:

{
by-i tern. } HEADING "headi ng-st ri ng"
target-ltem

where

by-item

is the name of a field that has been grouped by a BY or BY DESC clause

target-item

is a record name, a field name, a numeric literal, a predefined aggregate, a user ag
gregate, an arithmetic expression, an IF/THEN/ELSE expression, a lLlser variable, a
System Variable clause, or a JULIAN-DATE clause.

heading-string

is a string literal. Remember string literals must be enclosed within quotation marks (" ").

Default Headings

When the HEADING clause is not specified explicitly, EN FORM obtains a heading from one of
these sources:

• the HEADING clause specified either in the dictionary or in a DECLARE statement.

• the field name specified in the dictionary or name of the user variable, aggregate, or table
specified in a DECLARE statement

If you want to print more than one target-item or by-item under the same column heading, use a
NOHEAD clause to prevent ENFORM from printing the unwanted heading. The NOHEAD clause
is discussed later in this section.

Multiple Line Headings

Multiple line headings are created by using a slash (f) within the heading string.

IPrinting I in a Column Heading

Sometimes, the / character needs to appear within a column heading. In this case, use the SET state··
ment described in Section 4 to change the @NEWLINE option variable from a / to a different
character. After the new line character is redefined, the new special character can be used within
the heading string instead of the / character. In the following example, the new line character is
changed to a number sign (H) causing Region and Number to print on two lines, and the symbol / in
side the print list is printed between Branch and Number.

SET @NEWLINE TO "#";
LIST regnum HEADING "Region#Number",

branchnum HEADING "Branch/Number"/;

5-38

Region
Number

1

Branch/Number

2

Clauses
HEADING Clause

Notice that when the / symbol appears outside of the heading clause, it causes ENFORM to advance
1 line before printing the next target-item. Changing the @NEWLINE character does not affect
this use of the / symbol.

Heading for Subscripted Elements

When a single subscripted element is modified by a HEADING clause, ENFORM prints the
specified heading. For example:

LIST month [3], HEADING "MARCH";

causes ENFORM to print:

MARCH

When an element including a subscript range is modified by a HEADING clause, ENFORM includes
the subscript in the specified heading. For example:

LIST month [1:3], HEADING "FIRST QUARTER";

causes ENFORM to print:

FIRST QUARTER FIRST QUARTER FIRST QUARTER
[1] [2] [3]

If a HEADING clause is not included, ENFORM includes the subscript with the default heading.
For example:

LIST month [3];

causes ENFORM to print:

MONTH
[3]

Remember the default heading for a field name is either the heading declared in the dictionary or if
no heading is so declared, the field name. The default heading for a user variable is either the
heading defined in the DECLARE statement, or if no heading is defined, the user variable name.

5-39

Clauses
INTERN AL Clause

INTERNAL CLAUSE

'rhe INTERNAL clause allows you to specify the storage format for a user defined element. The
syntax of the INTERNAL clause is:

INTERNAL internal-format

where

internaL-format

is the format for storing the user-defined element. Internal-format can be:

An alphanumeric, where n is the length.

In integer, where n is the length.

Fw.d fixed, where w is the number of digits and d is the number of decimal places.

The optional INTERNAL clause can appear in a PARAM or DECLARE statement. When the
INTERN AL clause is not used, EN FORM stores user-defined elements (variables, aggregates,
tables, and parameters) as 64-bit signed integers. The following INTERNAL clause specifies the
internal-format as fixed. The element has a total length of 8 digits with 2 digits following the
decimal point:

INTERNAL F8.2

5··40

JULlAN·DATE CONVERSION CLAUSE

Clauses
JULIAN-DATE CONVERSION Clause

The JULIAN-DATE Conversion clause allows you to specify translation of a date target-item into
internal format. The syntax for the JULIAN-DATE Conversion clause is:

JULIAN-DATE (year , month , day)

where

year

is the year in 4 digits.

month

is the month in 2 digits, 1-12.

day

is the day in 2 digits, 1-31.

Dates are a common part of data base records. From an information standpoint, dates need to be
printed on a report in a form recognizable as a date, such as 05/15/72, Apr 1, 1979 or 06-01-1970.
From an analytical standpoint, dates need to be stored in a form for use in calculations or expres
sions, such as 80 11 27. Dates used in calculations or expressions must be in an internal format. If the
date is not in this internal format, it can be converted by using the JULIAN-DATE Conversion
clause. The internal format represents a date as the number of days which have elapsed from an ar
bitrary date in the past.

Conversion to Internal Format

To change a date to internal format, use the JULIAN-DATE Conversion clause. For example,
assume the data description entry of the day and year portion of a data base date is as follows:

05 date.
10 yy
10 mm
10 dd

PIC "99".
PIC "99".
PIC "99".

The month (1-12), day (1-31), and year (4 digit number) can be passed to the JULIAN-DATE Conver
sion clause as follows:

JULIAN-DATE «1900 + yy), mm, dd)

Notice the numeric literal 1900 was added to make a 4 digit year.

Gregorian dates must be converted to an internal date format when used for purposes other than
printing on a report. When the date only needs to be printed, convert it with the JULIAN -DA TE
clause and then use an AS DATE Conversion clause. For example:

JULIAN-DATE «1900 + yy), mm, dd) AS DATE *

5-41

Clauses
JULIAN-DATE CONVERSION Clause

Alternatively, convert the date to an integer that can be formatted with an AS cllause. For example~

date AS M<99-99-99>

To convert a date stored as a yearly Julian date, where the day of the year is relative to January 1
of that year, define each part of the date:

05 yearly-julian-date.
10 day-af-year PIC "999".
10 current-year PIC "99".

Then add day-of-year to the internal date for December 31 of the previous year:

(JULIAN-DATE «1900 + (current-year - 1», 12, 31) + day-af-year)

Display Format

To print a date in internal format on a report, convert the date to a display format with an AS
DA TE clause. The AS DATE clause is discussed in this section.

5-42

NOHEAD CLAUSE

Clauses
NOHEAD Clause

The NOHEAD clause allows you to specify suppression of the printing of the column heading of a
target-item or by-item. The syntax of the NOHEAD clause is:

{
target-i tem } NOHEAD
by-item

NOHEAD ALL

where

target-item

is a record name, a field name, a numeric literal, a predefined aggregate, a user
aggregate, an arithmetic expression, an IF/THEN/ELSE expression, a user table name, a
user variable, a System Variable clause, or a JULIAN-DATE clause.

by-item

is the name of a field grouped by a BY or BY DESC clause.

No Headings for Single Report Items

The NOHEAD clause following a LIST target-item suppresses the column heading for the target
item.

Sometimes it is undesirable to print a column heading for an item such as when you want to print
more than one target-item under the same column heading. In the following example, the address,
city, and state are all printed in the same column:

LI ST suppnum,
address / TAB 10,
city NOHEAD / TAB 10,
state NOHEADi

SUPPNUM ADDRESS

19333 VALLCO PARKWAY
CUPERTINO
CALIFORNIA

2 2000 BAKER STREET
IRVINE
CALIFORNIA

No Headings for All Report Items

The NOHEAD ALL clause suppresses column headings for all the target-items specified in a LIST
statement. It must follow the WHERE clause in the LIST statement. Refer to the syntax of the
LIST statement in Section 4 for the relative locations of the clauses within a LIST statement.

5-43

Clauses
NOPRINT Clause

NOPRINT CLAUSE

The NOPRINT clause allows you to specify suppression of the printing of a target-item or by-item
and its associated column heading. The syntax of the NOPRINT clause is:

{
tar~et-i tern} NOPRINT
bY-ltem

NOPRINT ALL

where

target-item

is a record name, a field name, a numeric literal, a predefined aggregate, a user
aggregate, an arithmetic expression, an IF/THEN/ELSE expression, a user table name, a
user variable, a System Variable clause or a JULIAN-DATE clause.

by-item

is the name of a field grouped by a BY or BY DESC clause.
-----------------------------------_.

Suppress Single Report Items

The NOPRINT clause following a LIST target-item or by-item suppresses the printing of the
target-item or by-item and its heading. The target-item or by-item can still be used for sorting?
grouping, or calculations elsewhere in the report.

You can use the NOPRINT clause to suppress printing of a target-item or by-item within the body
of a report. In the following example, the records are grouped by region, but the region number is
not printed as a by-item in the report. Instead the region number is printed at the end of the group
using a BEFORE CHANGE clause:

LIST BY regnum NOPRINT,
branchnum,
manager,

BEFORE CHANGE ON regnum PRINT "Region" regnumi

BRANCHNUM MANAGER

1 7S
2 129

Region

Suppress All Report Items

The NOPRINT ALL clause suppresses the printing of all column and column headings. It must
follow the WHERE clause in the LIST statement. Refer to the syntax of the LIST statement in Sec
tion 4 for the relative locations of the clauses within a LIST statement.

Title and summary information, using AT END, AT START, FOOTING, SUBFOOTING, SUB
TITLE, TITLE statements and clauses, and AFTER CHANGE and BEFORE CHANGE clauses still
appear in the report. This is useful for reports where only summary information is desired.

5-44

OPTION VARIABLE CLAUSES

Clauses
OPTION VARIABLE Clauses

The Option Variable clauses allow you to redefine the default values for several operational
variables. Refer to the SET statement in Section 4. The Option Variables and their legal values are:

@BLANK-WHEN-ZERO
@BREAK-KEY
@CENTER-PAGE {ON }
@HEADING TO
@STATS OFF
@SUMMARY-ONLY
@WARN

@COPIES
@COST-TOLERANCE
@DISPLAY-COUNT
@LINES
@MARGIN
@PAGES
@PRIMARY-EXTENT-SIZE TO number
@SECONDARY-EXTENT-SIZE
@READS
@SPACE
@TARGET-RECORDS
@VSPACE
@WIDTH

@NEWLINE TO "character"

{

@DECIMAL }

@NONPRINT-REPLACE
@OVERFLOW
@UNDERLINE

@SUBTOTAL-LABEL

J @DATE-FORMAT I
l @TIME-FORMAT

where

number

is an integer.

"character"

TO string-LiteraL

TO dispLay-format

is a single ASCII character enclosed within quotation marks.

string-LiteraL

is a string literal; remember string literals must be enclosed in quotation marks (" 99).

dispLay-format

specifies the default format for printing dates or times when AS DATE * and AS TIME *
clauses are used; must be enclosed in quotation marks.

5-45

Clauses
OPTION VARIABLE Clauses

5-46

@BLANK-WHEN-ZERO

When set to ON, ENFORM suppresses the printing of target-item or by-item values of
zero in reports. When set to OFF, zeros are printed. Default is OFF.

@BREAK-KEY

When set to ON, pressing the BREAK key while a query is executing, either terminates
output (if output is being produced) or terminates the current query and returns you to
the ENFORM prompt. Refer to Section 2 for more information. When set to OFF, press
ing the BREAK key temporarily suspends output and returns you to the Command Inter
preter prompt but it does not terminate processing. Output resumes when you enter the
Command Interpreter PAUSE command. If the file specified in the IN option of the
EN FORM command is not a terminal, ENFORM ignores the BREAK key regardless of
the setting of @BREAK-KEY. Default is ON.

@CENTER-PAGE

When set to ON, ENFORM centers the report body on the page according to the listing
device's maximum page width. If the @MARGIN Option Variable clause is also set, that
margin value is added to the left after centering.

This clause does not center the TITLE, SUBTITLE, AT START, AT END, FOOTING, or
SUBFOOTING information within the report body. In effect the entire report body is
moved enough spaces to the right to cause it to be centered on the page.

When not set or set to OFF the report begins in column one. Default is OFF.

@COPIES

specifies how many copies to print. Default is 1.

@COST-TOLERANCE

can be set to a number between 1 and 8. Setting @COST-TOLERANCE prevents
ENFORM from executing a strategy that is more expensive than the user wants. When a
larger number is specified, the query processor performs more work than when a smaller
number is specified.

This does not mean that an EN FORM session which meets critera for level 2 will always
take less time to run than another ENFORM session which requires level 7. The execu
tion time also depends on the amount of data that must be processed.

When not set or set to 0 (zero), ENFORM proceeds with whatever strategy it chooses.

If the strategy specified is exceeded, an error message is received and the ENFORM pro
gram stops. ---....

Clauses
OPTION VARIABLE Clauses

The desired cost tolerance level can be defined as follows:

o allows the EN FORM session to proceed with no cost limit.

1 keyed access is used on all files.

2 one file might require one full-file read.

3 more than one full-file read is required.

4 one file might be sorted once for a link.

5 two files might be sorted once for a link.

6 one file might be sorted more than once for a link.

7 two files might be sorted more than once for a link.

8 two or more files can require full-file read at least once, with no convenient
strategy for doing the link available.

@DATE-FORMAT

specifies a default format for printing dates when AS DATE * is used. For date format
specifications, refer to the AS DATE clause in this section. The default is "M2/D2/Y2".

@DECIMAL

When set to a single ASCII character, ENFORM prints that character for a decimal
point. EN FORM also accepts the specified character in place of a decimal point in a
numeric literal. The default value is the period character (.).

@DISPLAY-COUNT

determines how many lines to display on output device at one time. When number lines
are displayed, ENFORM pauses. To continue the display, press the carriage return.
Execution of the ENFORM program, while at the pause, can be aborted by:

• Entering two slashes {f /).

• Pressing the CTRL and Y keys simultaneously.

• Pressing the BREAK key.

Control returns to ENFORM. To reset the display count so that the entire EN FORM pro
gram is printed, enter 0 for number. Specifying @DISPLAY-COUNT when using an
ENFORM server (described in the ENFORM Users Guide) is inadvisable. The default
value is O.

@HEADING

When set to ON, EN FORM prints column headings in the report. When set to OFF,
EN FORM does not print headings. OFF is equivalent to NOHEAD ALL for every report.
The default is ON.

@LINES

specifies how many lines are to be printed per page. The default value is 60.

5-47

Clauses
OPTION VARIABLE Clauses

5-48

@MARGIN

specifies the left margin size in columns for reports. The default value is 0 (zero).

@NEWLINE

The new line character can appear within a heading string, inside the quotation marks. It
is used to specify multiple line column headings. The @NEWLINE Option Variable
clause can be reset to any single ASCII character except circumflex (") or hyphen (-). The
default NEWLINE character is / (slash).

@NONPRINT-REPLACE

EN FORM prints the replacement character for values which do not have a printable
character. When this clause is set to a character, that character is printed for values
which do not have a printable character. The default value is OFF.

@OVERFLOW

When a value does not fit within its formatted width, ENFORM replaces the value with
overflow characters. When this clause is set to a single ASCII character, ENFORM
prints that character when overflow occurs. The default overflow character is an asterisk
(*).

@PAGES

specifies a maximum number of pages to print per report. The default value is 32,767
pages.

@PRIMARY-EXTENT-SIZE

specifies the primary extent size of the output file.

When this clause is not set, ENFORM calculates an estimate of the primary and sec
ondary extent sizes needed for each output file. The estimate could be too large, creating
a file system error 43 unable to obtain disc space for file extent; or the estimate could be
too small, producing more data than the file can hold. Each time an output file is full,
ENFORM must create a new output file, with a larger extent size, and copy the data from
the full file into the new file. This results in very inefficient processing.

@READS

specifies the maximum number of records to be returned from the data base per
EN FORM program. This is a useful tool when debugging. For an idea of how many reads
are required by a given ENFORM program, see the @STATS Option Variable clause. To
remove a limit, set the @READS Option Variable to 0 (zero). The default value is
unlimited.

@SECONDARY-EXTENT-SIZE

specifies the extent size of the output files. When this clause is not set, ENFORM uses
the primary-extent size. ~

iilSPACE

Clauses
OPTION VARIABLE Clauses

specifies how many blanks appear between report columns. The default value is two
blanks.

iilSTATS

When set to ON, ENFORM prints the statistics regarding the records after the
ENFORM program is completed. ENFORM prints the following statistics:

FILEN AME physical file name of a set of records.

LEVEL READ order this physical file was read in relation to all physical files
read. The first file read is indicated by the number 1.

RECORDS READ total number of logical records read from this physical file.

POSITIONS total number of positioning operations performed to read this
physical file.

STRATEGY COST number, 1 through 8, used to represent the cost of the strategy
EN FORM developed to handle the ENFORM program. For a
definition of the cost numbers, refer to the @COST
TOLERANCE option variable.

The default value is OFF.

iilSUBTOTAL-LABEL

specifies a character string which is to appear on the same line as and to the left of the
subtotal. ENFORM prints the character string in the column of the group item over
which the subtotal is computed. If the item is defined with the NOPRINT clause,
EN FORM does not print the character string. If the character string does not fit in the
column, ENFORM truncates it on the right. The character string can be from 1 to 15
ASCII characters, enclosed within quotation marks. The default value is an asterisk (*).

iilSUMMARY-ONLY

causes a summary report to be produced. See the explanation of summary reports found
with the LIST and FIND statements in Section 4.

The default value is OFF.

iilTARGET-RECORDS

specifies the maximum number of records to be selected per EN FORM program. The
default value is zero, meaning no limit. Setting @TARGET-RECORDS to number when
your query contains BY, BY DESC, ASCD, or DESC clauses returns the first target
records produced by the query processor which are not necessarily the first records that
appear in a full report. ~

5-49

Clauses
OPTION VARIABLE Clauses

15-50

@TIME-FORMAT

specifies a default format enclosed within quotation marks for printing times when AS
TIME * is used. For time format specifications, refer to the AS TIME clause in this sec
tion. The default value is "H2:M2:S2".

@UNDERLINE

specifies a single ASCII character used to underline headings and totals. To specify no
underlining, set the @UNDERLINE Option Variable clause to blank, " ". The default
character is "_".

@VSPACE

specifies how many lines are skipped before a report line when the SKIP clause is used.
The default number is one.

@WARN

specifies when warning messages are to appear on the terminal. When set to OFF, warn
ing messages do not appear. The default is ON.

@WIDTH

specifies the maximum width of the output. The maximum value is 132 characters.

Verify the device's width before using this clause. This clause is conveni,ent for setting a
report page width smaller than the device's default width. The default wlidth is the width
of the output device being used. The default value for unstructured disc files is 132.

---_. __ ._--------------------_.

PCT CLAUSE

Clauses
PCT Clause

The PCT clause prints the percentage of the grand total for a numeric target-item, based either on a
total figure for all instances of the target-item or a total for the instances of the target-item grouped
over a by-item. The syntax of the PCT clause is:

target-item

where

target-item

PCT lOVER ALL I
OVER by-item

is a field name, a numeric literal, the predefined aggregates SUM and COUNT, an
arithmetic expression, an IF/THEN/ELSE expression, a user table name, a System
Variable clause. The data type of the target-item used in a PCT clause must be numeric.

If target-item is an expression, that expression cannot contain an aggregate except a simple
SUM or COUNT. If target-item is a user variable, that variable must not have been assigned
an aggregate value unless the value is the result of a simple SUM or COUNT operation.

by-item

is the name of a numeric field grouped by a BY or BY DESC clause.

Using PCT OVER ALL

When the PCT OVER ALL clause is used, ENFORM prints a percentage of the grand total for the
numeric target-item in place of each target-item value. When only PCT is specified, ENFORM
assumes PCT OVER ALL.

Using PCT OVER By-item

When the PCT OVER by-item clause is used, ENFORM prints the percentage of the instances of the
numeric target-item within the group in place of each target-item value. The group must have been
defined earlier by a BY or BY DESC clause. In the following example, ENFORM prints the percen
tage value of the cost of one part over the total value of all the parts at each location. For example,
consider the following query and report:

LIST BY location,
partnum,
price,
price PCT OVER location;

Part PCT
LOCATION Number PRICE PRICE
-------- --------- ---------
H76 3102 4800.00 66.67

7301 2400.06 33.33
H57 2402 7500.00 41.67

3103 10500.00 58.33

5-51

Clauses
PCT Clause

Combining Percentages and Subtotals

The SUBTOTAL OVER clause can be combined with the PCT OVER clause, causing ENFORM to
print the percentage the subtotal is of the total value of the target-item. ENFORM does not print
the value of each target-item. The percentage values do not always exactly total 1000/0 due to trunca
tion during division. If you execute the following query for example, the total percentage values do
not equal 100 0/0:

OPEN employee;
LIST BY regnum, empname, salary peT, SUBTOTAL OVER regnum;

PCT Clause Used With User Variable

When a numeric target-item with a PCT clause is assigned to a user variable, ENFORM makes the
assignment to the user variable first, before the percentage is calculated. When the user variable is
referenced as a target-item in a LIST statement or as an element within a target-item, of a LIST
statement, ENFORM uses the value of the user variable. When the user variabh~ is referenced in a
print list, ENFORM uses the value of the percentage for the user variable.

Restrictions

Note that you cannot combine the PCT clause with the CUM clause.

5-52

SKIP CLAUSE

Clauses
SKIP Clause

The SKIP clause allows you to indicate the number of lines ENFORM should move forward before
continuing printing. The syntax of the SKIP clause is:

SKIP [number]

where

number

an integer representing the number of lines.

Sometimes it is desirable to print more than one target-item under the same column heading. If you
want to do this, you can specify a SKIP clause after the first target-item, then use the TAB clause to
position the printing of the second target-item under the first target-item. The second target-item
should be modified by a NOHEAD clause to prevent ENFORM from printing the unwanted column
heading. ENFORM prints the target-items under a a suppressed column heading, one target-item
per line.

The option variable @VSPACE affects the number of lines ENFORM advances when the SKIP
clause is specified. Refer to the Option Variable Clause in this section for more information.

Specifying the symbol / (slash) is equivalent to SKIP or SKIP 1.

SKIP clause With a LIST Target-item or By-item

The SKIP clause can precede or follow a target-item or by-item within a LIST statement. If number
is specified, ENFORM moves forward the specified number of lines before printing continues. If
number is not specified, EN FORM moves forward to the next line.

In the following example, address and city are printed in the same column on separate lines.

LIST address,SKIP,
city NOHEAD SKIP 2;

ADDRESS

UNIVERSITY WAY
PHILADELPHIA

100 CALIFORNIA STREET
SAN FRANCISCO

SKIP Clause With a Print List

The SKIP clause can be part of the print list of an AT END statement or clause, an AT START
statement or clause, a FOOTING statement or clause, a SUBFOOTING statement or clause, a SUB
TITLE statement or clause, or an AFTER CHANGE or BEFORE CHANGE clause. When number
is specified, ENFORM moves forward the specified number of lines every time the SKIP clause is
processed. When number is not specified, EN FORM moves forward to the next line when the SKIP
clause is processed.

5-53

Clauses
SPACE Clause

SPACE CLAUSE

The SPACE clause allows you to specify horizontal spacing. The syntax of the SPACE clause is:

SPACE [number]

where

number

is an integer.

SPACE Clause With a LIST Target-item or By-item

The SPACE clause can precede either a target-item or a by-item within a LIST statement. When
number is specified, ENFORM inserts the specified number of spaces every time the SPACE clause
is processed. When number is not specified, one space is inserted.

The default spacing between columns on a report is initially set to two spaces. It can be temporarily
overriden by using the SPACE clause with the number parameter. To delete all spaces between
columns, use SPACE o.

SPACE Clause With a Print list

The SPACE clause can be part of a print list for an AFTER CHANGE, BEFORE CHANGE, AT
START PRINT, AT END PRINT, FOOTING, SUBFOOTING, SUBTITLE, or TITLE clause or
statement. When number is specified, ENFORM inserts the specified number of spaces every time
the SPACE clause is processed. When number is not specified, one space is inserted.

5-54

SUBFOOTING CLAUSE

Clauses
SUBFOOTING Clause

The SUBFOOTING clause allows you to specify printing of information at the bottom of each page
preceding the footing for the current report. This clause is an optional part of the LIST statement.
The syntax of the SUBFOOTING clause is:

SUBFOOTING print-list [CENTER]

where

print-list

contains any combination of literals, FORM, SKIP, SPACE, or TAB clauses. A print-list
can also contain the following elements that can be modified by AS, AS DATE, or AS
TIME clauses: field names, arithmetic expressions, IF/THEN/ELSE expressions, System
Variable clauses, JULIAN-DATE clauses, TIMESTAMP-DATE clauses, TIMESTAMP
TIME clauses, user variables, or parameter names.

The clauses that can be part of a print-list are described in this section. The other
elements are described in Section 3.

Specifying Field Names in a SUBFOOTING Clause

If you specify a field name within a print-list of a SUBFOOTING clause, ENFORM prints the same
field value as the last row of data on the current page. A field name appearing within the SUB
FOOTING clause need not be explicitly included within the LIST statement. If the field name,
ENFORM effectively adds the field to the LIST statement with a NOPRINT clause.

Spacing Considerations

By default the footing begins in the same position as the leftmost report column. Using SPACE or
TAB clauses as the first element of the print-list overrides this default. SPACE or TAB clauses can
also appear anywhere within the print-list. In the following example, the SPACE clause causes the
two literals to be separated by 15 spaces:

SUBFOOTING "Inventory" SPACE 15 "Parts in Stock",

Inventory Parts in Stock

If you specify either a SKIP clause or the slash symbol (j) within a print-list, ENFORM advances one
or more lines before printing the rest of the SUBFOOTING print-list. The number of lines advanced
can be affected by one or more of the following: the digit (if any) following the keyword SKIP, the
number of slashes specified, or the option variable @VSPACE. In the following example, the SKIP
clause causes two lines to be printed:

SUBFOOTING "Report 2-A" SKIP "Total Sales",

The following subfooting prints on the current report:

Report 2-A
Total Sales

5-55

Clauses
SUBFOOTING Clause

Using the FORM clause within a SUBFOOTING statement forces a new page. ENFORM continues
printing the remainder of the SUBFOOTING print-list, starting at the top of the next physical page.
The page number remains the same. A single logical page can span multiple physical pages, such
that a TITLE can appear on one page, the data on the next, and a SUBFOOTING on the next. The
same page number applies to all physical pages in the logical page.

Using the CENTER clause centers the subfooting within the leftmost and rightmost columns of the
report.

The CENTER, Option Variables, SKIP, SPACE, and TAB clauses are described in this section.

Subfooting for Current Report or All Reports

A SUBFOOTING clause within a LIST statement prints a subfooting only for the current report. A
SUBFOOTING clause temporarily overrides a session-wide SUBFOOTING statement. A SUB-·
FOOTING statement prints a subfooting at the bottom of each page for all subsequent reports in
the current session.

5-56

SUBTITLE CLAUSE

Clauses
SUBTITLE Clause

The SUBTITLE clause allows you to specify printing of information at the top of each page imme
diately following the title for the current report. This clause is an optional part of the LIST state
ment. See also the TITLE clause in this section and the SUBTITLE statement in Section 4. The syn
tax of the SUBTITLE clause is:

SUBTITLE print-list [CENTER]

where

print-list

contains any combination of literals, FORM, SKIP, SPACE, or TAB clauses. A print-list
can also contain the following elements that can be modified by AS, AS DATE, or AS
TIME clauses: field names, arithmetic expressions, IF/THEN/ELSE expressions, System
Variable clauses, JULIAN-DATE clauses, TIMESTAMP-DATE clauses, TIMESTAMP
TIME clauses, user variables, or parameter names.

The clauses that can be part of a print-list are described in this section. The other
elements are described in Section 3.

Specifying a Field Name in a SUBTITLE Clause

If you specify a field name within a print-list of a SUBTITLE clause, EN FORM prints the same field
value as in the first row of the report. A field name appearing within the SUBTITLE clause need
not be explicitly included within the associated LIST statement. If the field name is not included,
ENFORM in effect adds it with a NOPRINT clause.

Spacing Considerations

By default the subtitle begins in the same position as the leftmost report column. Using SPACE or
TAB clauses as the first element of the print-list overrides this default. SPACE or TAB clauses can
also appear anywhere within the print-list. In the following example, the SPACE clause causes the
two literal to be separated by 15 spaces:

SUBTITLE "Inventory" SPACE 15 "Parts in Stock",

Inventory Parts in Stock

If you specify either a SKIP clause or the slash symbol (f) within a print-list, ENFORM advances one
or more lines before printing the rest of the SUBTITLE print-list. The number of lines advanced
can be affected by one or more of the following: the digit (if any) following the keyword SKIP, the
number of slashes specified, or the option variable @VSPACE. In the following example, the SKIP
clause causes two lines to be printed:

SUBTITLE "Report 2-A" SKIP "Total Sales",

Report 2-A
Total Sales

5-57

Clauses
SUBTITLE Clause

Using the FORM clause within the print-list causes EN FORM to start a new page. ENFORM con
tinues with the remainder of the print-list starting at the top of the next physi.cal page. The page
number remains the same.

Using the CENTER clause centers the subtitle within the leftmost and rightmost columns of the
report.

The CENTER, Option Variable, SKIP, SPACE, and TAB clauses are described in this section.

Subtitle for Current Report or All Reports

A SUBTITLE clause within a LIST statement prints a subtitle only for the current report. It tem
porarily overrides the session-wide SUBTITLE statement. A SUBTITLE statement prints a sub
title at the top of each page immediately following the title for all subsequent reports in the current
session.

5-58

SUBTOTAL CLAUSE

Clauses
SUBTOTAL Clause

The SUBTOTAL clause allows you to specify the printing of a subtotal for a numeric target-item.
This clause is an optional part of the LIST statement. The syntax for the SUBTOTAL clause is:

target-item SUBTOTAL [OVER by-item]

where

target-item

is a record name, a field name, a numeric literal, a predefined aggregate, a user
aggregate, an arithmetic expression, an IF/THEN/ELSE expression, a user table name, a
user variable, or a System Variable clause. The data type of the target-item being sub
totaled must be numeric.

by-item

is the name of a field grouped by a BY or BY DESC clause.

When the SUBTOTAL clause is specified, ENFORM prints prints the subtotals for each target-item
within a by-item value. EN FORM prints the subtotal in the column of the target-item being sub
totaled and precedes the subtotal by a row of underline characters specified by the @UNDERLINE
option variable. ENFORM marks the subtotal with a subtotal string specified by the
@SUBTOTAL-LABEL option variable. Refer to the Option Variable clauses in this section.

When a SUBTOTAL OVER clause is used, ENFORM subtotals the target-item each time the value
of the specified by-item changes. When more than one SUBTOTAL OVER clause is specified,
EN FORM prints the subtotals in the order that the clauses are entered in the LIST statement.

When a SUBTOTAL clause is used without OVER, ENFORM prints a subtotal in the specified
target-item column each time the value of any by-item appearing to the left of the target-item
changes. ENFORM prints the subtotals using a minor to major order precedence; that is: ENFORM
prints the subtotal for the first by-item to the left of the targe t-item, followed by the subtotal for
the second by-item to the left of the target-item, and so on until the subtotal for the last by-item
appearing in the report is printed.

SUBTOTAL does not generate a grand total at the end of the report. If a grand total is desired, use
the TOTAL clause. The TOTAL clause is described in this section.

If the width of the value of a subtotal exceeds the width of the format specified for a target-item, an
overflow condition occurs causing asterisks to be printed in place of the value. To prevent this,
enlarge the target-item display format by adding an AS clause to the target-item being subtotaled.
The AS clause is described in this section.

5-59

Clauses
SUPPRESS Clause

SUPPRESS CLAUSE

The SUPPRESS clause allows you to eliminate certain records from being printed in the report. The
records still contribute to the report calculations. This clause is an optional part of the part of the
LIST statement. This clause cannot be used with the FIND statement. The syntax of the SUPPRESS
clause is:

SUPPRESS [WHERE] logical-expression

where

logical-expression

is an expression returning a true or false value. See Section 3 for more information.

The SUPPRESS clause defines a condition or conditions that prevents specific records from print
ing throughout a report. For example, in the following query, the SUPPRI~SS clause causes
!t~NFORM to print only the inventory, part number, and part name where the inventory is greater
than zero:

LIST ASCD inventory,partnum,partname,
SUPPRESS WHERE inventory GT 0;

This query generates the following report:

Part
INVENTORY Number

-100
-32
-16

-1
o

2001
6402
6201
5504
5505

PARTNAME

DECIMAL ARITH
TERM CRT PAGE
SYNC CONTROLLER
LP 900 LPM
LP 1500 LPM

EN FORM still includes the suppressed records in AFTER CHANGE and BEGIN CHANGE clauses,
subtotals, totals, and other calculations specified for the report. Note that the value of the first
record of an AFTER CHANGE clause or the last record of a BEFORE CHANG]~ clause is used for
the print list whether or not that record is printed.

Aggregates cannot be used in a SUPPRESS WHERE clause; however, you can reference a user
variable that has been assigned the aggregate value.

5-60

SYSTEM VARIABLE CLAUSES

Clauses
SYSTEM VARIABLE Clauses

The System Variable clauses allow you to obtain the current value for the current date, time, line
number, and page number. The syntax for the System Variable clauses is:

@DATE
@TIME
@LINENO
@PAGENO

Printing the Current Date or Time

The @DATE and @TIME System Variable clauses return the current date and time in internal
format. When used in an expression, ENFORM treats them as numeric literals.

When the @DATE or @TIME system variables are to be printed on a report, convert them to a
display format using the AS DATE or AS TIME clauses. Frequently the default format is satisfac
tory and can be specified by:

@DATE AS DATE *

For more information on date and time display formats, refer to to AS DATE and AS TIME clauses
in this section.

Printing Line Numbers

The @LINENO System Variable clause prints the current line number within a page of the report.
@LINENO can be a target-item in a LIST statement, part of an AFTER CHANGE, BEFORE
CHANGE, AT START, AT END, FOOTING, TITLE, SUBFOOTING, and SUBTITLE clauses or
statements.

The @LINENO option variable specifies how many lines are printed on a page. It is initially set to
60 lines. To change the number of lines to be printed per page, reset the @LINENO Option Variable
clause. Refer to the SET statement in Section 4 and the Option Variable clauses in this section.

Printing Page Numbers

The @PAGENO System Variable prints the page number. The following example prints the page
number at the top of a page:

TITLE TAB 100 "Page" @PAGENOi

Page 10

5-61

Clauses
TAB Clause

TAB CLAUSE

The TAB clause allows you to specify in which column in the report a target-item or by-item is to
begin. This clause is an optional part of the LIST statement and must not be specified in the FIND
statement. The syntax of the TAB clause is:

TAB [number

where

number

is an integer.

The TAB clause specifies which column to tab to before printing an element on a report. Care must
be taken not to overlap elements. If overlap occurs, the last numbers or characters specified appear
on the printed report. Note that TAB never causes ENFORM to advance to the next line, so you can
tab backwards on the current line.

TAB Clause With a LIST Target-item or By-item

The TAB clause can precede a target-item or by-item within a LIST statement. If number is
specified, EN FORM tabs to that position before the next target-item or by-item is printed; if
number is not specified, ENFORM begins printing in column one.

TAB Clause With a Print list

'I'he TAB clause can be part of a print list for an AT END statement or clause, an AT START state
ment or clause, a FOOTING statement or clause, a SUBFOOTING statement or clause, a SUB
TITLE statement or clause, and the AFTER CHANGE and BEFORE CHANGE clauses. When
number is specified, EN FORM tabs to that position before the next element is printed on the cur
rent line. If number is not specified, ENFORM assumes column one.

5-62

TIMESTAMp·DATE CLAUSE

Clauses
TIMESTAMP-DATE Clause

The TIMESTAMP-DATE clause extracts the date portion of a timestamp field that has been
created by the GUARDIAN procedure TIMESTAMP. The syntax of the TIMESTAMP-DATE
clause is:

TIMESTAMP-DATE (field-name)

where

field-name

is the name of a field to which the TIMESTAMP-DATE clause returns a date value. The
field must be described in the dictionary.

You must define the field that receives the date value from the TIMESTAMP-DATE clause in your
data dictionary. You must define the field as a six-character alphanumeric field, such as:

05 TIME-STAMP TYPE CHARACTER 6.

The value returned to this field is a quantity of days in internal format.

Refer to the TIMESTAMP-TIME clause in this section for extracting the time portion of a
timestamp field.

5-63

Clauses
TIMESTAMP-TIME Clause

TIMESTAMp·TIME CLAUSE

The TIMESTAMP-TIME clause extracts the time portion of a timestamp Held that has been
created by the GUARDIAN procedure TIMESTAMP. The syntax of the TIMESTAMP-TIME
clause is:

TIMESTAMP-TIME (field-name)

where

field-name

is the name of a field to which a time value is returned. The field must be described in
your data dictionary.

Your data dictionary must contain a definition of the field to which the TIMESTAMP-TIME clause
returns a time value. You must define the field as a six-character alphanumeric field, such as:

05 TIME-STAMP TYPE CHARACTER 6.

The value returned to this field is a quantity in one hundredths of a second in internal time format.
You can obtain this value in seconds by using the AS clause with an integer edit descriptor or by
using the AS TIME clause. If you need to obtain this value in one hundredths of :a second, you must
write your own conversion routine.

Refer to the TIMESTAMP-DATE clause in this section for extracting the date portion of a
timestamp field.

5-64

.-----,---

TITLE CLAUSE

Clauses
TITLE Clause

The TITLE clause allows you to specify printing of information at the top of each page for the cur
rent report. See also the SUBTITLE clause in this section and the TITLE statement in Section 4.
The syntax of the TITLE clause is:

TITLE print-List [CENTER J,

where

print-List

contains any combination of literals, FORM, SKIP, SPACE, or TAB clauses. A print-list
can also contain the following elements that can be modified by AS, AS DATE, or AS
TIME clauses: field names, arithmetic expressions, IF/THEN/ELSE expressions, System
Variable clauses, JULIAN-DATE clauses, TIMESTAMP-DATE clauses, TIMESTAMP
TIME clauses, user variables, or parameter names.

The clauses that can be part of a print-list are described in this section. The other
elements are described in Section 3.

Specifying Field Names in a TITLE Clause

If you specify a field name within a print-list of a TITLE clause, ENFORM prints the same field
value as in the first row of the page. A field name appearing within the TITLE clause need not be
explicitly included within the associated LIST statement. If field name is not included, ENFORM in
effect adds it with a NOPRINT clause.

Spacfng Considerations

By default the title begins in the same position as the leftmost report column. Using SPACE or TAB
clauses as the first element of the print-list overrides this default. SPACE or TAB clauses can also
appear anywhere within the print-list. In the following example, the SPACE clauses causes the two
literals to be separated by 15 spaces:

TITLE "Inventory" SPACE 15 "Parts in Stock",

Inventory Parts in Stock

If you specify either a SKIP clause or the slash symbol (f) within a print-list, ENFORM advances one
or more lines before printing the rest of the AFTER CHANGE print-list. The number of lines ad
vanced can be affected by one or more of the following: the digit (if any) following the keyword
SKIP, the number of slashes specified, or the option variable @VSPACE. In the following example,
the SPACE clause causes two lines to be printed:

TITLE "Report 2-A" SKIP "TotaL SaLes",

Report 2-A
TotaL SaLes

5-65

Clauses
TITLE Clause

Using the FORM clause within the print-list causes ENFORM to start a new page and continue with
the rest of the print-list. The page number remains the same. A single logical page can span multi
ple physical pages such that a TITLE appears on one page, the data on the next, :and a FOOTING on
the next. The same page number applies to all physical pages in a logical page.

Using the CENTER clause centers the title within the leftmost and rightmost columns of the
report.

The CENTER, Option Variables, SKIP, SPACE, and TAB clauses are described in this section.

Title for Current Report or All Reports

A TITLE clause within a LIST statement prints a title only for the current report. It temporarily
overrides the session-wide TITLE statement. A TITLE statement prints a title at the top of each
page for all subsequent reports in the current session.

Overriding Session·Wide Title

Temporarily override a session-wide TITLE statement by using the TITLE clause with .. " for the
print-list parameter.

5-66

----------------------------,----------------

TOTAL CLAUSE

Clauses
TOTAL Clause

The TOTAL clause prints the grand total for a numeric target-item. This clause is an optional part
of the LIST statement and cannot be specified in a FIND statement. The syntax of the TOTAL
clause is:

, tar~et-i tem } TOTAL
~ bY-l tem

where

target-item

is a record name, a field name, a numeric literal, a predefined aggregate, a user
aggregate, an arithmetic expression, an IF/THEN/ELSE expression, a user table name, a
user variable, a System Variable clause. The data type of the target-item being totaled
must be numeric.

by-item

is a field whose values are grouped by a BY or BY DESC clause.

When the TOTAL clause is specified, EN FORM prints the grand total for a target-item or by-item
after printing the last value of the target-item or by-item. ENFORM precedes the total by two rows
of underline characters, as specified by the @UNDERLINE option variable. The Option Variable
clauses are discussed in this section.

If the width of the value of a total exceeds the width of the target-item or by-item display format, an
overflow condition occurs causing asterisks to be printed in place of the total. To prevent this,
enlarge the display format by adding an AS clause to the target-item being totaled. The AS clause is
described in this section.

5-67

Clauses
WHERE Clause

WHERE CLAUSE

The WHERE clause allows you to qualify the records that contribute to the target-record. The syn
tax of the WHERE clause is:

WHERE LogicaL-expression

where

LogicaL-expression

is a condition that returns a true or false value. See Section 3 for more information about
logical expressions.

The logical expression in a WHERE clause defines which records are restricted from eontributing'
to the target-record. For example:

WHERE empname BEGINS WITH "BROWN",

IUsing the WHERE Clause to Specify a Link

Using the WHERE clause to specify a link causes only the records which satisfy the condition
specified in the logical expression to be included in the report. The link created by the WHERE
clause remains in effect only for the associated LIST or FIND statement. For a more complete
description of linking, refer to the LINK statement in Section 4. The following example shows how
the WHERE clause is used to specify a link:

WHERE parts.partnum EQ odetail.partnum,

5-68

SECTION 6

COMMANDS

This section contains a complete description of the syntax of the ENFORM commands. The com
mands are arranged in alphabetical order.

EN FORM commands are compiler directives that instruct the ENFORM compiler/report writer to
perform a specific operation. The compiler/report writer recognizes a command by the presence of a
question mark in column 1. You can either enter commands at the level of the ENFORM prompt (>)
or place commands in an EDIT file. EN FORM executes commands in an EDIT file as if they were
entered interactively with one exception: ENFORM ignores a ?RUN command in an EDIT file.

The following commands are not saved in a compiled query file (created by the ?COMPILE com
mand): ?ATTACH, ?COMPILE, ?EDIT, ?EXECUTE, ?EXIT, ?OUT, ?RUN, ?SECTION, ?SHOW,
?SOURCE. For this reason, these commands are not used:

• Through the host language interface (described in the ENFORM Users Guide). The host
language interface uses a compiled query file.

• When you specify the ?EXECUTE command. The ?EXECUTE command can only be used with a
compiled query file.

• If the filename specified in the IN option of the ENFORM command is a compiled query file.

Table 6-1 shows the ENFORM commands and their functions.

6-1

Commands
Summary of Commands

Table 6-1. Summary of Commands

r--
Command

?ASSIGN

?ATTACH

?COMPILE

?DICTIONARY

?EDIT

?EXECUTE

?EXIT

?HELP

?OUT

?RUN

?SECTION

?SHOW

?SOURCE

Function

associates a new physical file with a record description.

specifies a query processor (QP) to use during an ENFORM session.

compiles an ENFORM query and saves it in a compiled query file.

names a subvolume which contains a dictionary. It also clears the internal
table and reclaims table space.

accesses the Tandem Text Editor without leaving ENFORM.

executes a compiled query file.

terminates the current ENFORM session.

displays information about the syntax of the ENFORM language. This command
can also display user-defined information.

specifies the output device for a report.

compiles and executes ENFORM source queries in an EDIT file.

identifies a section of ENFORM commands and statements within an EDIT
file.

displays information about the environment of the current ENFORM session.

reads an EDIT file or a collection of commands and statements within an
EDIT file.

~------------------------------------

6-2

Commands
? ASSIGN Command

?ASSIGN COMMAND

The ?ASSIGN command associates a physical file with a dictionary record description or a generic
file. This command is functionally equivalent to the Command Interpreter ASSIGN command. The
syntax of the ?ASSIGN command is:

[I record-name I []]
?ASSIGN generic-file-name TO physical-filename

[, create-open-spec •..]

?ASSIGN record-name, , create-open-spec

where

record-name

is the name of a record description from a DDL dictionary.

generic-filename

is the name of one of the ENFORM generic files described in Section 2. A generic file is
used to store some class of EN FORM output. The following names are allowed:

QUERY-COMPILER-LISTING
QUERY -REPORT -LISTING
QUERY-STATISTICS
QUERY -STA TUS-MESSA G ES
QUERY-WORK-AREA
QUERY-SORT-AREA
QUERY-QPSTATISTICS
QUERY-QPSTATUS-MESSAGES.

physical-filename

For record-name, physical-filename is the name of a physical file being associated with
the record description. TO must be specified if the file name is TO. A partial file name is
expanded using the default system, volume, and subvolume names.

For generic-file-name, physical-filename is the name of the physical device to which you
want ENFORM to direct output. --..

6-3

Commands
?ASSIGN Command

create-open-spec

is one file creation or open attribute. Only exclusion spec is used by ENFORM. create
open-spec is of the form:

extent-spec
CODE file-code
exclusion-spec
access-spec
REC record-size
BLOCK block-size

where

extent-spec

is one of the following:

{
EXT [(] pri-extent-si ze)] t
EXT ([pri-extent-size] , sec-extent-size) ~

exclusion-spec

is one of the following:

EXCLUSIVE
SHARED
PROTECTED

access-spec

is one of the following:

1-0
INPUT
OUTPUT

The ? ASSIGN command can be entered at any time prior to running a query. Each time an
?ASSIGN command is entered, an entry of the assignment is made in the internal table. The inter
nal table holds up to 32 assignments. When the internal table is full, the? ASSIGN command can be
entered without any parameters to clear all of the assignments.

6-4

Commands
? ASSIGN Command

Each DDL dictionary RECORD statement describes records in a physical file, named by a DDL
FILE IS clause. ENFORM uses the physical file name in the DDL FILE IS clause to locate the
records and retrieve information. There might be times when the actual records desired are not in
the physical file named in the dictionary. An example would be when test records are used in place
of actual records. The ?ASSIGN command temporarily overrides the physical file named by the
DDL FILE IS clause. In the following example, the employee record description is assigned to the
physical file $data.database.sample:

?ASSIGN empLoyee TO $data.database.sampLe

The ?ASSIGN command can be used to assign the generic ENFORM files to a physical device. In
the following example, the generic file QUERY-COMPILER-LISTING is assigned to a printing
device named $ep:

?ASSIGN QUERY-COMPILER-LISTING TO $s.#ep

The? ASSIGN command can be used to change the exclusion specification for a file; the default is
SHARED. If the DDL physical file name is not being overridden, only the record name and the
exclusion specification need be specified. For example:

?ASSIGN empLoyee"SHARED

When ENFORM is run interactively, a ?ASSIGN command overrides a Command Interpreter
ASSIGN command entered before the ENFORM command. When ENFORM is run with a command
file providing the input, however, a Command Interpreter ASSIGN command entered before the
ENFORM command overrides a ? ASSIGN command in the command file.

6-5

Commands
?ASSIGN Command

?ATTACH COMMAND

'rhe ?ATTACH command allows you to specify a query processor to use during an ENFORM ses
sion. The syntax of the ?ATTACH command is:

?ATTACH [process-name]

where

process-name

is the name of a query processor.

When one or more server query processors exist on a Tandem system, you can use the ?ATTACH
command to specify the query processor you want to use. If you do not specify the ?AT'TACH com
mand, ENFORM defaults to a dedicated query processor. A dedicated query processor is an
ENFORM process that is created for and provides services to an individual compiler/report writer
process. The dedicated query processor runs for the duration of an ENFORM session until either an
error occurs or an ?ATTACH command is issued specifying a new query processor. When you enter
the ?ATTACH command without a process name, ENFORM starts a new dedicated query processor
for your use.

An ?ATTACH failure is not evident until the first FIND or LIST statement is executed. The possi··
ble ?ATTACH failures and the actions you can take are as follows:

• The server query processor already has the maximum number of users it can handle. In this
case, you can wait and then try again specifying the same query processor; name a different
server query processor; or select a dedicated query processor.

• The server query processor does not exist. In this case, you can start the server query pro··
cessor, name a server query processor that does exist, or select a dedicated query processor.

• The attached server query processor reached one of two limits set for that particular server
query processor. Either the query reached a data base read limit or the cost strategy specified
by ENFORM exceeded its limit. In this case, you can: name a server query processor with
greater limits or without built-in limits; change the query; or select a dedicated query processor.
The @READS and @COST-TOLERANCE Option Variable clauses are discussed in Section 5.

6··6

... _a: I

Commands
?COMPILE Command

?COMPILE COMMAND

The ?COMPILE command compiles a query and stores it in a physical file. The syntax of the
?COMPILE command is:

?COMPILE edit-filename [(section-name, ...)] TO compiled-physical-filename

where

edit-filename

is the name of the EDIT file containing the EN FORM query.

section-name, ...)

is the name of the section(s) within an EDIT file. The list must be enclosed within
parentheses.

compiled-physical-filename

is the name of the physical file to contain the compiled query.

The ?COMPILE command compiles a query. The ENFORM internal table becomes part of the com
piled query file. If physical-filename existed before compilation, the old version is purged and a new
physical file is created. If errors are produced during a compilation attempt, the original compiled
query file is not affected at all.

The ?COMPILE command only compiles one LIST or FIND statement. If your EDIT file contains
more than one LIST or FIND statement, EN FORM compiles the first LIST or FIND statement to
the compiled query file. ENFORM does not compile any statements or commands following the first
LIST or FIND statement; instead ENFORM continues processing, executing the statements and
commands as they are encountered in the EDIT file.

When the LIST or FIND statement of the query is written to the compiled query file, most of the
commands, options, and other statements that provide environmental information are stored in the
internal table. The internal table is then saved in the compiled query file.

ENFORM assigns a file code of 888 to the compiled query file. ENFORM creates this code to iden
tify the physical file as a stored query produced by ENFORM.

A query called by a host language program must be compiled first. Other queries do not need to be
compiled before run time; however, there are some advantages to creating a compiled query file.
The compiled query file protects the query from being inadvertently changed. Less processing time
is required when the compiled query file is saved and reused for runs.

6-7

Commands
?DICTIONARY Command

?DICTIONARY COMMAND

The ?DICTIONARY command names a subvolume that contains your dictionary. It also clears the
internal table and reclaims table space. The ?DICTION ARY command is the same as the
DICTIONARY statement.

?OICTIONARY [dict-subvol-name]

where

dict-subvol-name

is the name of the subvolume where the dictionary files reside. Refer to the GUARDIAN
Operating System Programming Manual, for information about specifying file names.

The dictionary identified in a ?DICTION ARY command must be created by the Data Definition
Language compiler. Release T9102CIO of ENFORM accepts only dictionaries produced by DDL ver
sion T9100DOO or later. ENFORM issues an error message if an attempt is made to use a dictionary
compiled with an earlier version of DDL. These dictionaries must be recompiled with DDL version
T9100DOO or later before ENFORM is used. Refer to the Data Definition Language (DDL) Pro,
gramming Manual, for complete instructions.

Identifying the Dictionary

There are two ways to indicate where the dictionary resides.

• The volume and subvolume where the dictionary resides can be specified as a part of the Com
mand Interpreter ENFORM command. If none is specified, it is assumed that the dictionary
resides on the default volume and subvolume.

• The DICTIONARY statement or ?DICTIONARY command can specify where the dictionary
resides. Either overrides the dictionary identified at the time of the Command Interpreter
ENFORM command. When a new dictionary is specified, the old internal table is cleared.

Clearing Internal Tables

Entering the ?DICTIONARY command without a volume and subvolume name is a simple means of
clearing the entire internal table, without changing the dictionary. To clear only lCertain items of thE~
internal table, refer to the CLOSE and DELINK statements in Section 4. The items cleared by the
?DICTION ARY command are:

• All record descriptions from previous OPEN statements

• All previous linking relationships

• All user variable, user aggregate, and user table definitions

All parameter definitions.

6-8

?EDIT COMMAND

Commands
?EDIT Command

The ?EDIT command allows you to access the Editor without leaving ENFORM. The syntax of the
?EDIT command is:

?EDIT [edit-filename]

where

edit-filename

is the name of an EDIT file.

A query can be stored in an EDIT file. The EDIT file can be created or changed without leaving
ENFORM. An ?EDIT command invokes the Editor and operates just as if the Command Interpreter
EDIT Command was used. If a new filename is specified while using the Editor, that name becomes
the default edit-filename for use in a subsequent ?EDIT or ?RUN command. To exit the Editor,
enter EXIT at the EDIT prompt (*) and control returns to ENFORM.

6-9

Commands
?EXECUTE Command

?EXECUTE COMMAND

The ?EXECUTE command executes a compiled query file. The syntax of the ?EXECUTE command
is:

--------"--------

?EXECUTE compiled-physical-filename

where

compiled-physical-filename

is the name of the physical file containing the stored compiled query.

The ?EXECUTE command resets the internal table to the same state that existed at time of com
pilation. The ?EXECUTE command changes the dictionary being used for the duration of the execu
tion. Internal table information from the compiled query file is used until execution terminates,
then EN FORM uses the dictionary specified before you entered the ?EXECUTE command.

If the stored compiled query requires a parameter value passed to it during execution, the Com
mand Interpreter PARAM command can be issued prior to executing the query" For information on
the PARAM command, refer to the GUARDIAN Operating System Command Language and
Utilities Manual.

The ?EXECUTE command only accepts a physical file with a file code of 888. ENFORM assigns a
file code of 888 when it creates a compiled query file.

6-10

?EXIT COMMAND

Commands
?EXIT Command

The ?EXIT command terminates the current ENFORM session. The syntax of the ?EXIT command
is:

[?EXIT
--------J

The ?EXIT command returns control to the Command Interpreter. It is the same as the EXIT state
ment. An alternate way of exiting ENFORM is to press the terminal CTRL and Y keys
simultaneously.

6-11

Commands
?HELP Command

·?HELP COMMAND

The ?HELP command displays information about the syntax of the ENFORM language. The ?HELP
command can also display information about user-defined topics if your system manager has provid··
ed this information. The syntax of the ?HELP command is:

?HELP [help-element]

where

help-element

is one of the topics for which help is available. Among these topics is the syntax of the
ENFORM statements, clauses, commands, and language elements. To obtain a current
list of the help-elements, enter the ?HELP command without help-ele·ment. I~NFORM
responds by displaying a list of all the topics for which help is available.

When specifying the ?HELP command, enter help-element in either upper or lower case characters.
ENFORM accepts unambiguous abbreviations for help-element. If you use an ambiguous abbrevia
tion, ENFORM displays help text for all help-elements beginning with those characters .

.A help-element might be an ENFORM keyword (for example, LIST). If help-element is an ENFORM
keyword, ENFORM displays the syntax of the statement, clause, command, or language element
associated with that keyword. Alternatively, a help-element might be a category of ENFORM
keyword (for example, report format). If help-element is a category, ENFORM displays the syntax
for all ENFORM keywords in that category.

ENFORM retrieves the text of help messages from the ENFORM message tabh~. By modifying the
message table, you can modify the help text. Refer to the EN FORM Users GtI.~ide for information
about modifying the message table.

The following example shows a list of topics that might be displayed when YOlLl enter the ?HELP
command witliout he lp-e lement:

>?HELP
Help is available for the following topics:

STATEMENTS:
AT END
DICTIONARY
LIST
SUBTITLE

CLAUSES:

AT START
EXIT
OPEN
TITLE

global modifier
positional control
target-item

OTHER:
aggregate
logical expression
print list

COMMANDS:
?ASSIGN
?EXECUTE
?SHOW

6-12

?ATTACH
?HELP
?SOURCE

CLOSE
FIND
PARAM

DECLARE
FOOTING
SET

modifier
report format

arithmetic expression
option variable
system variable

DELINK
LINK
SUBFOOTING

?COMPILE
?OUT

?DICTIONARY ?EDIT
?RUN ?SECTION

Commands
?HELP Command

In the following example, EN FORM displays information about a target item when ?HELP target
item is entered:

>?HELP target item
A TARGET ITEM is a record name, a field name, a literal,
a user variable name, a parameter name, a system variable
clause, an aggregate, or an arithmetic expression.

Help is also available for SYSTEM VARIABLE, AGGREGATE, and
ARITHMETIC EXPRESSION.

6-13

Commands
?OUT Command

?OUT COMMAND

The ?OUT command specifies the output device for a report. The syntax of the ?OUT command is:

?OUT [physicaL-fiLename]

where

physicaL-fiLename

is the name of the output device to which any subsequent report is directed.

The ?OUT command is used to name the physical device on which a report is printed. The physical
device can be a printing device such as such as $mlp. The physical device can also he a file name. The
?OUT command remains in effect until a new ?OUT command is issued or the session is terminated.

Issuing the ?OUT command without specifying a physical-filename causes the report to be printed
on the listing file specified by EN FORM's run-time OUT option.

The ?OUT command only affects where the report is sent. The source listing goes either to the
default listing file specified by the OUT option of the EN FORM command or to the QUERY
REPORT-LISTING file.

The ?OUT command can be part of the EDIT file or precede an ?EXECUTE or ?RUN command. The
?OUT command is not saved in a compiled query file.

6-14

?RUN COMMAND

Commands
?RUN Command

The ?RUN command executes a query or queries in an EDIT file. The syntax of the ?RUN com
mand is:

?RUN [edit-filename [(section-name, .•.)]]

where

edit-filename

is the name of the EDIT file containing the ENFORM source query.

(section-name, .••)

is the name of one or more sections of the EDIT file. They must be enclosed within
parentheses.

If both edit-filename and section-name are specified, that specific collection of commands and
statements within the EDIT file identified by the section name is executed. Multiple sections of an
EDIT file can be combined to create complete queries.

If only edit-filename is specified, ENFORM compiles and executes the entire EDIT file. If neither
edit-filename nor section-name is specified, ENFORM compiles and executes the EDIT file specified
by the most recent ?EDIT or ?RUN command.

Note that ENFORM issues a warning message and ignores a ?RUN command if:

• The ?RUN command appears in the file specified as the IN option of the ENFORM command.

• The ?RUN command appears in an EDIT file compiled and executed by a ?SOURCE command.

• The ?RUN command appears in an EDIT file compiled and executed by another ?RUN command.

6-15

Commands
?SECTION Command

?SECTION COMMAND

The ?SECTION command names a collection of ENFORM commands and statements within an
EDIT file. The syntax of the ?SECTION command is:

?SECTION section-name

where

section-name

is the name to be used for a collection of ENFORM commands and/or statements within
an EDIT file.

1.'he ?SECTION command names a collection of ENFORM commands and/or statements within an
E~DIT file. The ?COMPILE, ?RUN, and ?SOURCE commands can be used to read a section or sec
tions of an EDIT file.

The names for a section must follow these rules:

• must be unique

• must start with an alphabetic character or circumflex (A)

• can contain from 1-31 characters (names longer than 31 characters are trunca.ted and a warning
message is issued.

.. can include numbers, hyphen (-) and/or circumflex (A)

• cannot contain embedded blanks

o cannot end with a hyphen (-).

6-16

?SHOW COMMAND

Commands
?SHOW Command

The ?SHOW command displays information about the environment of the current ENFORM ses
sion. The syntax of the ?SHOW command is:

?SHOW OPEN
LINK
CONTROL
LIMITS
ASSIGN [record-name
user-variable-name
record-name
param-name

where

user-variable-name

is the name of a user variable.

record-name

is the name of an opened dictionary record description.

param-name

is the name of a parameter.

Table 6-2 shows the environmental information displayed by the ?SHOW command.

6-17

Commands
?SHOW Command

6-18

Table 6·2. Environment Information Displayed by ?SHOW Command

Command Display Message

?SHOW Lists the various items that can be displayed with the ?SHOW
command.

?SHOW OPEN Lists the open record descriptions. If none have been opened,
nothing is displayed. An OPEN statement does not actually
open a physical file, but accesses the record description in
the dictionary.

?SHOW LINK Lists links that are in effect. If no record descriptions have
been linked, nothing is displayed. A LINK state!ment does not
actually link physical files, but accesses their record descrip·
tions from the internal table.

?SHOW CONTROL Displays the current values of all of the option variables.
Option variables can be changed by setting the Option
Variable clauses. Refer to the SET statement in Section 4 and
the Option Variable clauses in Section 5.

?SHOW LIMITS Displays the current space available for the symbol table,
literals and formats, LINK table, PRINT table, PARAM table,
and OVER clause table.

?SHOW ASSIGN Displays all of the opened record descriptions and physical
file name pairs specified by a ?ASSIGN command or Com
mand Interpreter ASSIGN command. If none were assigned,
nothing is displayed.

?SHOW ASSIGN record-name

?SHOW user-var-name

?SHOW record-name

?SHOW param-name

Displays all ASSIGN table information related to the specified
record name.

Displays the current value(s) of the user variable or table.

Displays the following for the specified opened record
description.

• the physical filename for the opened file description

• the length of the file

• each field's name, data type, length offset, number of
occurrences, length of each occurrence, and whetlher a
field is a key field or not.

Displays the current value of the specified palrameter ..

?SOURCE COMMAND

Commands
?SOURCE Command

The ?SOURCE command reads an EDIT file or a collection of commands and statements within an
EDIT file. The syntax of the ?SOURCE command is:

?SOURCE edit-fiLename [(section-name, ...)]

where

edit-fiLename

is the name of the EDIT file containing an ENFORM query.

sect ion-name, ..•)

the name of the sections of the EDIT file. section-name must be enclosed with
parentheses.

The ?SOURCE command can be used to read in an EDIT file or a collection of commands and/or
statements within an EDIT file. When a ?SOURCE command is entered, the specified commands
and/or statements are read in just as if they had been entered a line at a time. ?SOURCE commands
can be nested up to a depth of four.

If both the edit-filename and section-name are specified, that specific collection of commands and
statements of the EDIT file is read in. If only the edit-filename is specified, the entire EDIT file is
read in.

Issuing the ?SOURCE command does not set the default EDIT file name for subsequent ?RUN or
?EDIT commands.

6-19

APPENDIX A

SYNTAX SUMMARY

ENFORM syntax is summarized in this appendix. For specific details of syntax, refer to the
language elements, statement, clause and command sections.

LANGUAGE ELEMENTS

Aggregates:

{

AVG
COUNT
MAX
MIN
SUM
user-aggregate

AVG
COUNT
MAX
MIN
SUM
user-aggregate

Arithmetic operators:

+

*
/

(
fieLd-namel [OVER ALL]
expression OVER over-item

[WHERE LogicaL expression] >,

[UNIQUE] fieLd-name [OVER ALL
[WHERE LogicaL expression] >,

A-l

Syntax Summary
Language Elements

IF/THEN /ELSE expression:

(IF logical expression THEN value-1 ELSE value-2)

Logical Expression:

[NOT] cand; t; an [g~D I [NOT] cand; t; an •••]

where condition has one of the following forms:

field-name

{

BEGINS WITH } ,] ,
CONTAINS

I>'
conditionaL operator

[NOT] EQUAL
EQ
IS
=
NE
<>

string-l iteral

(
value-range I
"["pattern-match"]"

{
~~::~~~;me } [NOT] condi tiona L operator {~~::~~~:me }
expreSSlon expreSSlon

STATEMENTS

AT END [PRINT print-List [CENTER]] [

AT START [PRINT print-List [CENTER]] [

user-variabLe-name

{

record-name }

CLOSE user-aggregate-name , ... [
user-tabLe-name
param-name

A-2

DECLARE

DELINK

user-variabLe-name

user-tabLe-name "[" max-subscripts "]"

user-aggregate-name (formaL-argument)
= (step-expression [, [end-expression

[, initiaLize-constant]])

INTERNAL internaL-format
AS dispLay-format]
HEADING "heading-string" , ... [;]

Syntax Summary
Statements

{

record-name1 TO [OPTIONAL record-name2 VIA fie Ld-name }

quaLified-field-name1 TO [OPTIONAL] quaLified-fieLd-name2 , ... [;]

DICTIONARY [dict-subvoL-name] [

EXIT [

FIND [UNIQUE] output-record-name

[output-fieLd-name :=
] {BY by-i tem } BY DESC by-item

target-item
ASCD target-item
DESC target-item

[WHERE LogicaL-expression]

FOOTING [print-List [CENTER]] [

, ...)

{

record-name1 TO [OPTIONAL record-name2 VIA fie Ld-name }
LINK

quaLified-fieLd-name1 TO [OPTIONAL J quaLified-field-name2 , ... ,

A-3

Syntax Summary
Statements

LIST [UNIQUE BY by-item
BY OESC by-item
target-item
ASCO target-item
DESC target-item
user-var-name := target-item

CUM [OVER ALL]
CUM OVER by-item
PCT [OVER ALL]
PCT OVER by-item
TOTAL
SUBTOTAL
SUBTOTAL OVER by-item
NOHEAD
NOPRINT
CENTER
HEADING "heading-string"
AS display-format
AS DATE display-format
AS TIME display-format

[

FORM [n]]
SKIP [n]
SPACE [n]
TAB [n] ,

WHERE logical-expression

NOHEAD ALL]
NOPRINT ALL]
CENTER ALL]

[SUPPRESS [WHERE] logical expression

, ...

[BEFORE CHANGE [ON] by-item PRINT print-list
[AFTER CHANGE [ON] by-item PRINT print-list
[AT START PRINT print-list
[AT END PRINT print-list
[TITLE print-list
[SUBTITLE print-list
[FOOTING print-list
[SUBFOOTING print-List

A-4

, ...

CENTER]

CENTER]

CENTER]

CENTER]

CENTER]

CENTER]

CENTER]

CENTER]

{

record-name }
OPEN

record-name2 [AS] COpy [OF] record-name1 , ..• [

PARAM { param-name [INTERNAL internaL-format] } , ••• [

{

user-variabLe-name } { string-LiteraL}
SET user-tabLe-name"["subscript"]" TO number

param-name

option-variabLe-name TO ON
OFF
number
"character"
string-L iteraL
dispLay-format

SUBFOOTING [print-List [CENTER]] [

SUBTITLE [print-List [CENTER]] [

TITLE [print-List [CENTER]] [

CLAUSES

AFTER CHANGE [ON] by-item PRINT print-List [CENTER]

{
ASCO }

fieLd-name
OESC

, . .. [

Syntax Summary
Statements

report-item AS [nonrepeatabLe-edit-descriptors] repeatabLe-edit-descriptors

report-item AS

report-item AS

II 11[11 [decorations, •••] [modifiers, ...] 11]11

repeatabLe-edit-descriptors II

II II [II [dec 0 rat ion s, . ..] [mod i fie r s , . ••] II] II

(nonrepeatabLe-edit-descriptors
repeatabLe-edit-descriptors) II

A-5

Syntax Summary
Clauses

where

A-6

report-item

is either a by-item or an target-item.

nonrepeatabLe-edit-descriptors

specify some general ways report-items are to be printed. Nonrepeatble-edit-descriptors
should not be specified without a repeatable-edit descriptor. Nonrepeatable-edit
descriptors are:

P multiplies value by 10**n, n is an integer.

S, SP, SS for control of plus (-I-) sign printing.

repeatabLe-edit-descriptors

specify data conversion to the GUARDIAN Formatter for printing the report-item
values. Valid values for repeatable-edit-descriptors are:

A [w]

Iw [.m

for alphanumeric values.

for integer values.

Fw.d .m for fixed point values.

M mask for a template to combine literals and values.

where

w specifies the width of the report-item.

m specifies the number of digits that appear to the left of the decimal for fixed
point values and the minimum number of digits for integer values.

d specifies the number of digits to the right of the decimal.

mask combination of the characters 9, Z, V, .(period) and literals. The combination
must be enclosed within apostrophes (' ') or greater than and less than sym
bols « >).

"["decorations"]"

specify character strings that can be added to a report-item depending: on a condition.
The syntax is:

conditions Location char-string

where

conditions

are one or more of the following:

M add char-string if value is negative.

N add char-string if value is null.

P add char-string if value is positive.

z add char-string if value is zero.

a add char-string if overflow condition occurs.

location

is where the character string is to be printed:

Syntax Summary
Clauses

An indicates char-string is to be printed at absolute position n.

F indicates char-string is to be inserted after the value is formatted. If
condition is satisfied, char-string is printed immediately to the left of
the item value.

P indicates char-string is inserted before the value is formatted. If condi
tion is satisfied, char-string is prints to the right of the value.

char-string

is one or more alphanumeric characters enclosed within apostrophes (' ').

"["modifiers"]"

alter the effect of the edit descriptors as follows:

BN, BZ prints blanks for null or zero values respectively

FL char specifies a substitute fill character

OC char respecifies the overflow character

LJ, RJ specifies right or left justification

SS pr-of-symbo l s allows substitution of symbols

where:

char

is an ASCII character enclosed in apostrophes.

pr-of-symbols

is a special mask symbol (see repeatable edit-descriptors) and a substitution
character.

date-in-internal-format AS DATE I * I
display-format

time-in-internal-format AS TIME I * I
display-format

AT END PRINT print-list [CENTER]

AT START PRINT print-list [CENTER]

BEFORE CHANGE [ON] by-item PRINT print-list [CENTER]

\
BY I fie ld-name
BY DESC

A-7

Syntax Summary
Clauses

I { tar~et-; tem} CENTER I
bY-ltem

CENTER ALL

target-i tem CUM [OVER ALL]
OVER by-item

FOOTING print-list [CENTER]

FORM [number]

{
tar~et-i tem} HEADING "headi ng-st ri ng"
bY-ltem

INTERNAL internaL-format

JULIAN-DATE (year, month, day)

l{ tar~et-; tem} NOHEAD I
bY-ltem,

NOHEAD ALL

l{ tar~et-i tem} NOPRINT I
bY-ltem

NOPRINT ALL

The Option Variables and their legal values are:

A-8

@BLANK-WHEN-ZERO
@BREAK-KEY
@CENTER-PAGE
@HEADING
@STATS
@SUMMARY-ONLY
@WARN

@COPIES
@COST-TOLERANCE
@DISPLAY-COUNT
@LINES
@MARGIN
@PAGES

TO {ON }
OFF

@PRIMARY-EXTENT-SIZE TO number
@SECONDARY-EXTENT-SIZE
@READS
@SPACE
@TARGET-RECORDS
@VSPACE
@WIDTH

{

@DECIMAL }
@NEWLINE TO "character"
@NONPRINT-REPLACE
@OVERFLOW
@UNDERLINE

@SUBTOTAL-LABEL TO "char-string"

I @DATE-FORMAT I TO display-format
@TIME-FORMAT

target-item PCT [OVER ALL]
OVER by-item

SKIP [number]

SPACE [number]

SUBFOOTING print-list [CENTER]

SUBTITLE print-list [CENTER]

target-item SUBTOTAL [OVER bY-item]
OVER ALL

SUPPRESS [WHERE] logical-expression

System Variables:

@DATE
@TIME
@LINENO
@PAGENO

TAB [number]

TIMESTAMP-DATE (field-name)

TIMESTAMP-TIME (field-name)

Syntax Summary
Clauses

A-9

Syntax Summary
Clauses

TITLE print-list [CENTER

I tar~et-i tem TOTAL I
bY-ltem

WHERE logical-expression

COMMANDS

'?ASSIGN [I ~:~~~~~~~7~e-name I [TO]
{. create-open spec} •.• J

physical-filename

?ASSIGN record-name, { , create-open spec} ..•

?ATTACH [process-name

?COMPILE edit-filename [(section-name, ...)] TO compiled-physical--filename

?DICTIONARY [dict-subvol-name]

?EDIT [edit-filename]

?EXECUTE compiled-physical-filename

?EXIT

?HELP [help-element]

?OUT [physical-filename

?RUN [edit-filename [(section-name, ...)]

?SECTION section-name

OPEN
LINK
CONTROL

?SHOW LIMITS
ASSIGN [record-name
user-variable-name
record-name
param-name

?SOURCE edit-filename [(section-name, ...)]

A-IO

Syntax Summary
ENFORM Procedures

ENFORM PROCEDURES

COBOL:

ENTER ENFORMSTART USING ctlblock
, compiled-physical-filename
, buffer-length

INT:ref
INT:ref
INT:value
INT:ref
INT:value
INT:ref
INT:ref
INT:ref
INT:value
INT:value
INT:32:value
INT:ref

, error-number
[, restart-flag
[, param-list]
[, assign-list]
[, process-name]
[, cpu]
[, priority]
[, timeout]
[, reserved-for-expansion

ENTER ENFORMRECEIVE USING ctlblock, buffer [GIVING count]
!INT:ref INT:ref INT:function!

ENTER ENFORMFINISH USING < ctlblock

FORTRAN:

CALL ENFORMSTART <ctlblock
,compiled-physical-filename
,\buffer-length\
,error-number
[, \restart-flag\]
[, param-list]
[, assign-list]
[, process-name]
[, \cpu\]
[, \priority\]
[, \timeout\]
[, reserved-for-expansion
,\maskword\)

count ENFORMRECEIVE ctlblock, buffer)
!INT:function INT:ref INT:ref

CALL ENFORMFINISH ctlblock)

!INT:ref

INT:ref
INT:ref
INT:value
INT:ref
INT:value
INT:ref
INT:ref
INT:ref
INT:value
INT:value
INT:32:value
INT:ref
INT:value

!INT:ref

A-tt

Syntax Summary
}l~NFORM Procedures

TAL:

CALL ENFORMSTART ctLbLock !INT:ref
, compiLed-physicaL-fiLename !INT:ref
, buffer-Length !INT:vaLue
, error-number !INT:ref
[, restart-fLag !INT:vaLue
[, param-List] !INT:ref
[, assign-List] !INT:ref
[, process-name] !INT:ref
[, cpu] !INT:vaLue
[, priority] !INT:vaLue
[timeout] !INT:32:vaLue
[, reserved-for-expans ion]) ! INT: ref

[count :=] ENFORMRECEIVE
!INT:function

ctLbLock , buffer
INT:ref INT:ref

ENFORMFINISH (ctlblock) !INT:ref

A-12

APPENDIX B

ERROR MESSAGES

This appendix documents the following types of messages:

• !!! ERROR error-number types: mean a serious error has occurred. Statement execution ter
minates. If this type of error occurs for a LIST or FIND statement, the query terminates.

• *** WARNING warning-number types: point out an error that could change the expected
results. The error does not abort the query although it could lead to more serious error condi
tions.

• *** FILE ERROR ... types: mean a serious error has occurred within the file system. If there is a
file error with the run-time IN input file, the dictionary file, or the vocabulary file, the entire
ENFORM session is terminated.

• *** ... types: occur during ENFORM initialization. If this type of error occurs, ENFORM ter
minates abnormally.

• ENFORM [QP] TRAP: means a that either a hardware failure or an unexpected software error
has occurred. Please save the information produced by this message and report the error to
Tandem.

• *** ERROR types: means an error has occurred during execution of the BUILDMK utility.
BUILDMK terminates abnormally. Correct the problem and rerun BUILDMK or you cannot use
the key-sequenced version of the message table with ENFORM.

Error messages are listed in the following order within this appendix.

1. ENFORM initialization errors are listed in alphabetical order.

2. !!! ERROR and *** WARNING type errors are listed together in numeric order with the error
message text and additional comments.

3. *** FILE ERROR type errors are described in alphabetical order.

4. ENFORM TRAP messages are listed in alphabetical order.

5. BUILDMK error messages are listed. These messages consist of the following types of
messages: !!!ERROR and FILE ERROR messages.

B-1

Error Messages

EN FORM INITIALIZATION MESSAGES

*** Current reserved word cannot be used to redefine another reserved word

A reserved word redefinition in the ?VOCABULARY section of the message table contains
an old reserved word where a new word is expected. (The key-sequenced message table file
was not built by the BUILDMK utility or the :file has been modified since it was built).

*** Invalid DICTIONARY file name

The dictionary file name specified on the ENFORM command line is not a. valid GUARDIAN
file name.

*** Invalid MESSAGE TABLE file name

The message table file name specified on the ENFORM command line is not a valid
GUARDIAN file name.

*** Message table does not contain a version number record. Rebuild key-sequenced file

Either the key-sequenced message table file was not built by the BUILDMK utility or the
file has been modified since it was built.

*** Message table must be a disk file

Self-explanatory. Use the BUILDMK utility to build the key-sequenced message table file.

*** Message table must be a key-sequenced file

Self-explanatory. Use the BUILDMK utility to build the key-sequenced m1essage table file.

*** Message table must contain both ?MESSAGES and ?HELP sections

Self-explanatory. Use the BUILDMK utility to build the key-sequenced message table file.

*** Message table version number is not correct

The version number in the message table does not match the version number expected by
ENFORM. Rebuild the key-sequenced message table file using the appropriate version of
BUILDMK.

*** Primary key for message table file must be offset at 0 and have length 34

Self-explanatory. Use the BUILDMK utility to build the key-sequenced message table file.

*** Sorry, you're not allowed to run ENFORM on this processor

This processor does not have the required ENFORM microcode.

I!! ERROR AND *** WARNING TYPE MESSAGES

!!! ERROR [26] Invalid use of range item

B-2

A subscript range may only be used as a target-item (but cannot be usedl when modified by a
BY, BY DESC, ASCD, or DESC clause) in a LIST or FIND statement. Its use is invalid in all
other circumstances.

Error Messages

!!! ERROR [27] Unknown ENFORM directive or syntactically incorrect

A command name has been misspelled or attempt to execute a command from a different
subsystem.

! !! ERROR [28] The boolean operators AND and OR cannot be used in a TITLE or
PRINT statement expression

Only a simple logical expression may be used in an IF/THEN/ELSE expression within an
AFTER CHANGE, AT END, AT START, BEFORE CHANGE, FOOTING, SUBFOOTING,
SUBTITLE, or TITLE, statement or clause.

!!! ERROR [29] Reference has been attempted to an undefined or illegal item
in PRINT statement

An item has been used in a Print List clause that does not appear in the LIST statement.

*** WARNING [30] Name too long. Truncated to 31 characters

The variable or aggregate name must be less than 31 characters.

!!! ERROR [31] Invalid file name

The file name printed with this error message is not a valid Tandem physical file name.

!!! ERROR [32] Invalid SET-variable specification

The '@' symbol is not followed by a legal string for an option variable name.

! !! ERROR [33] Name not found

A field name has been misspelled or the wrong dictionary is being used.

!!! ERROR [34] Name not sufficiently qualified to avoid ambiguity

Field name appears in more than one opened record description. Use more qualification.

!!! ERROR [35] Record description not found in dictionary

The record name has been misspelled or the wrong dictionary is being used.

! !! ERROR [36] Symbol table overflow

The maximum available space for file descriptions, user defined variables, etc., has been
exceeded. All tables are cleared.

!!! ERROR [37] Overflow encountered on input conversion of numeric-literal

Numeric literal exceeds 32767.

!!! ERROR [38] ?SOURCE file nesting> 4

Must have four or fewer levels of nested ?SOURCE commands.

! !! ERROR [39] Too many references to user aggregates

Total number of references to user aggregates exceeds 32.

B-3

Error Messages

! !! ERROR [40] Multiply defined name

The name already exists as a record name, user defined item, or parameter name.

!!! ERROR [41] The maximum target length of 2000 bytes was exceeded. Unable to
process query

The maximum length of a LIST or FIND statement requiring sorting exceeded 2000 bytes,
or the maximum length of a LIST or FIND statement without sorting requirements exceeded
4095 bytes.

! !! ERROR [42] Expression too large to process

Expression must contain fewer than 512 items.

!!! ERROR [43] The specified relation is invalid in the above context

CONTAINS, BEGINS WITH, and pattern match conditions require string arguments. The
pattern match operation allows only EQ and NE operators.

!!! ERROR [44] Too many actual file assignments

Table of assignments exceeds eight entries. Clear the table by entering ?ASSIGN without a
physical file name.

!!! ERROR [45] An integer literal is required in the above context

A number with decimal places is not allowed. Must be an integer.

! !! ERROR [46] Too many LINKs

Number of links exceeds 32: Clear some with a DELINK statement.

*** WARNING [47] Source line was truncated

Line must be 255 characters or less.

!!! ERROR [48] Only field names may appear in a qualification

The item name in the WHERE or SUPPRESS clause has not been defined or is misspelled.
This is usually due to an internal error.

!!! ERROR [49] User variable assignments are illegal in the scope 01: a FIND statement

User defined variable or table is not an acceptable output field name in a FIND statement.

!!! ERROR [50] Insufficient memory available for data buffer (SERVEH-related
failure on name)

An ENFORM server (process file) cannot be opened because there is no space for a message
buffer.

*** WARNING [51] Null target list

LIST or FIND statement is not processed.

!!! ERROR [52] Not currently supported

The indicated feature or operation may not be used.

B-4

Error Messages

!!! ERROR [53] Invalid subscript range specification

The subscript range specified ([x:y]) for an item is wrong. Subscripts must be numeric
literals. The first number (x) must be smaller than the second number (y).

!!! ERROR [54] Invalid AS format description

The display format for AS, AS DATE, or AS TIME is invalid or the INTERNAL format is
invalid.

!!! ERROR [55] A user aggregate may not be used in a user aggregate end-expression

Self-explana tory.

! !! ERROR [56] An aggregate may not be used as the argument to another aggregate

Self-explanatory.

! !! ERROR [57] Item type incompatible with use

Expecting a field or user-defined variable to subscript or illegal use of a condition in an
Arithmetic Expression clause. Similar to a type mismatch.

!!! ERROR [58] Illegal use of KEY item

Record-name.KEY or KEY OF record-name is not allowed in a LINK statement or in an
Aggregate clause.

!!! ERROR [58] Illegal use of KEY item <SERVER-related failure on name)

Record-name.KEY or KEY OF record-name is not allowed when the data for record-name is
from an ENFORM server (process file).

! !! ERROR [59] Maximum read count exceeded

ENFORM has read the limit number of records specified by the @READS Option Variable
clause.

!!! ERROR [60] A user aggregate declaration may not reference the value of
another user aggregate

Self-explana tory.

!!! ERROR [61] Initialization expression must be numeric

Attempted to initialize a user defined aggregate with something other than a number or
using JULIAN-DATE clause within a SET statement that does not evaluate to a literal.

! !! ERROR [62] Too many target items

Number of items or output fields within LIST or FIND statement exceeds 400.

! !! ERROR [63] Too many PRINT statements

Number of items in Print List clauses exceeds 172. Processing of the ENFORM program is
stopped and the contents of the internal table is reset to the values held at start of process
ing the statement which produced the error.

B-5

Error Messages

! !! ERROR [64] By-item not found

Either the grouped item was not defined in a BY or BY DESC clause or was misspelled.

!!! ERROR [65] An aggregate may not be used in a print-list clause.

Self-explana tory.

!!! ERROR [66] Only one OPTIONAL LINK request allowed per LIST or FIND statement

Only one link (whether it is OPTIONAL or not.) can be used when OPTIONAL is specified.

!!! ERROR [67] Field type incompatibility

Data types being compared must both be numeric or alphabetic.

!!! ERROR [68] Illegal LINK field

Misspelled qualified field name or attempted to use a subscripted field where not allowed.

!!! ERROR [68] IllegaL LINK field

Attempted to use an ENFORM server (process file) improperly in a LINK OPTIONAL state
ment. For example, LINK A TO OPTIONAL B ... , A CANNOT be an ENFORM server
because of an implementation restriction.

!!! ERROR [69] Invalid range

Incorrectly defined a range for a comparison pattern or THRU within a Logical Expression
clause.

!!! ERROR [70] Nonnumeric item in arithmetic expression

Used alphanumeric item in an Arithmetic Expression clause.

!!! ERROR [71] The table containing literals, AS formats and headings has overflowed

The literal table overflowed its maximum size of 5,915 words.

!!! ERROR [72] Invalid occurrence number

Attempted to subscript past the end of a table.

! !! ERROR [73] Too many or too few parameters

Wrong number of parameters for JULIAN-DATE, TIMESTAMP-TIME, or TIMESTAMP
DA TE clauses.

! !! ERROR [74] Too many PARAM declarations

Number of parameters for the current ENFORM session exceeds 32. Clear some with the
CLOSE statement.

!!! ERROR [75] Invalid occurrence specification. Not in range [1,64]

User-defined table cannot contain more than 64 elements.

!!! ERROR [76] Variable subscript illegaL in this context

Subscript used must be an explicit numeric literal, not a field name.

B-6

Error Messages

!!! ERROR [77J A destination name must be specified

An item in a FIND statement needs to be assigned to an output field name, because the
"name-correspondence" rules are insufficient here.

!!! ERROR [78J The attribute UNIQUE may not be used with an OVER clause

UNIQUE may not be used with aggregates computed OVER a grouped-item.

! !! ERROR [79J TAB 0, SKIP 0 or FORM 0 not defined

Number must be greater than zero.

*** WARNING [80J Section name not found

Misspelled or nonexistent section in the Edit file.

!!! ERROR [81J The preceding text contains a syntactically incorrect element

Check the preceding line. If ok, check the next few preceding lines.

*** WARNING [82J VaLue is being truncated to one character

The value for this Option Variable must be a single ASCII character

!!! ERROR [83J The type of the argument in the SET cLause is invaLid

Assigning a string to a numeric or vice versa or assigning a non-integer numeric literal.

! !! ERROR [84J Too many OVER cLauses

Number of AFTER CHANGE, BEFORE CHANGE, TOTAL, SUBTOTAL, CUM, or PCT
clauses in the LIST statement exceeds 64.

!!! ERROR [85J More than one PCT or CUM modifies List item

Only one PCT or CUM clause allowed per item.

!!! ERROR [86J Server QP process has faiLed repeatedLy

Either the primary or the backup process for the ENFORM query processor has failed more
than 10 times. The QP terminates abnormally when this condition occurs and must be
restarted (preferably in another CPU).

*** WARNING [87J No RUN fiLe has been named

Specify the Edit file name. No Edit file name has been specified in this session by a previous
?RUN or ?EDIT command.

!!! ERROR [88J ILLegaL CHECKPOINT parameter

The primary process for the ENFORM query processor executed a bad checkpoint call; prob
ably an internal error. The QP terminates abnormally when this condition occurs and must
be restarted.

!!! ERROR [89J Too many expressions in target list

A LIST or FIND statement contains too many Arithmetic Expression or Logical Expression
clauses.

B-7

Error Messages

!!! ERROR [90] All field names referenced in a qualification aggregatl~ must belong
to the same record

All fields in the expression being aggregated, the over-item, and the embedded WHERE
clause must belong to the same record.

*** WARNING [91] No report will be listed. The target list is composed of
literals only

An ENFORM report will not print alphanumeric and/or numeric literals only. Include at
least one field name from an opened file description.

!!! ERROR [92] At least one record has no LINK or a qualification relating it to any
other record

Missing LINK statement or WHERE clause to link file descriptions.

! !! ERROR [93] A user aggregate having an end-expression may not be used in
this context

A user aggregate declared with an end-expression cannot be used as a qualification
aggregate OVER a grouped-item.

!!! ERROR [94] Your dictionary is bad

Refer to the Data Definition Language (DDL) Programming Manual.

!!! ERROR [95] Missing dictionary

Wrong subvolume or dictionary does not exist.

!!! ERROR [96] Invalid dictionary subvolume name

Internal error.

!!! ERROR [98] Insufficient memory available to OPEN record description

Internal error.

! !! ERROR [99] Multiply defined SECTION name

Section name may appear only once in a ?COMPILE, ?RUN, or ?SOURCE: command.

!!! ERROR [100] Undefined SET variable

User-defined item or parameter used in a SET statement has not been defined yet.

*** WARNING [101] The param table would overflow if updated to the SET value

Parameter table is full and the last value has not been added. Use the CLOSE statement to
clear parameter values not needed.

!!! ERROR [102] Field referenced in TITLE statement not found in target list

B-8

Usually an internal error with some unsupported item within an AFTER CHANGE, Arr
END, AT START, BEFORE CHANGE, FOOTING, SUBFOOTING, SUBTITL}t~, or TITLE
statement or clause.

Error Messages

!!! ERROR [103] Invalid ENFORM version. Recompile to execute

The compiled physical file was compiled by a version of ENFORM which is not compatible
with the current EN FORM version. Compile it again.

!!! ERROR [104] Output line would exceed buffer space.

Divide the output line in the LIST statement using SKIP or FORM clauses.

!!! ERROR [105] SUBTOTAL, TOTAL, CUM, and PCT only modify numeric items.

Cannot use alphanumeric'string items. Numeric strings are allowed.

!!! ERROR [106] Field or expression must be numeric.

Self-explanatory.

!!! ERROR [107] Insufficient memory to build query processor representation
of your query

Reduce the size of the requested ENFORM query.

!!! ERROR [108] An aggregate may not be used in a SUPPRESS clause

Self-explanatory.

! !! ERROR [109] An aggregate may not be used as a parameter to a function

Self-explanatory.

!!! ERROR [110] Insufficient memory available to produce the report.

Try running ENFORM with a MEM (refer to the GUARDIAN Operating System Program
ming Manual) greater than 52.

*** WARNING [111] The following LINKs were previously ignored; they are now
being used:

QUALIFIED-FIELD-NAME-1 is linked to QUALIFIED-FIELD-NAME-2 ...

ENFORM now uses all existing LINK statements. To obtain the results this query produced
prior to ENFORM release T9102C09, remove all the LINK statements listed in WARNING
[111]. Refer to the LINK statement discussion in Section 4.

!!! ERROR [112] Illegal dictionary description (SERVER-related failure on name).

The dictionary description for an ENFORM server (process file) must specify a file type of
UNSTRUCTURED or no file type at all.

!!! ERROR [113] An aggregate may not be used in this context with PCT

Only the aggregates SUM and COUNT can be used with PCT and they must be used alone
(not in an expression).

!!! ERROR [114] Incorrect reply length (SERVER-related failure on name)

ENFORM server (process file) returned a reply with an unexpected length to the query pro
cessor. One way to get this error is to specify an odd data record byte size.

!!! ERROR [115] Dictionary is outdated. Recompile with 000 DOL or later

As of release T9102C10, ENFORM accepts only dictionaries compiled with DDL Version DOO
or later. Current dictionary has an old version number; recompile it with a new version of
DDL.

B-9

Error Messages

! ! ! ERROR [t66] String literal must be terminated with a quotation mark

Closing quotation mark is missing. Remember that a string literal cannot be continued from
one source line to the next.

!!! ERROR [167] String literal cannot contain more than 127 characters

Self-explana tory.

!!! ERROR [168] TOTAL may not be specified OVER a BY item

TOTAL can only be specified OVER ALL. If you wish to compute a total over a BY item,
specify SUBTOTAL instead.

!!! ERROR [169] ?RUN command is ignored unless entered interactively

The ?RUN command must be typed in at the terminal.

!!! ERROR [170] Illegal value for this option variable

Check the syntax of the Option Variable clauses in Section 5 for the values allowed.

! ! ! ERROR [172] Item on left side of assign operator must be a field in the
FIND record

The output-field-name in a FIND statement cannot be a field from an input record or the
name of the FIND record itself.

!!! ERROR [173] Value must be a single ASCII character, not IIAII or "_"

This is a restriction on the value for the Option Variable @NEWLINE.

!!! ERROR [174] VaLue is being truncated to 15 characters

The value for this Option Variable must be a string literal containing 15 characters or less.

! ! ! ERROR [175] A subscript range cannot be used in a fieLd in a FIND statement

Specify each item in the range individually.

! !! ERROR [176] HeLp item phrase must be Less than 32 characters long.

The phrase following the ?HELP keyword must be less than 32 characters long, including
embedded blanks and the initial question mark (if present).

!!! ERROR [177] Parameter is treated Like a literal here. Its vaLue cannot be changed.

In certain cases, ENFORM treats a parameter exactly like a numeric literal. This means that
you cannot change the value of the parameter at execution time, either with a Command
Interpreter PARAM command or an ENFORM SET statement. Refer to the PARAM state
ment in Section 4 for more details.

!!! ERROR (SORT failure) sort-error-number [*** FILE ERROR #file-error-number]
[on name]

B-I0

An error occurred in the SORT process. For an explanation of the sort-error-number, refer
to the Sort/Merge Reference Manual.

Error Messages

*** FILE ERROR TYPE MESSAGES

File management errors are reported through ENFORM with *** FILE ERROR ... messages. In the
messages below, #/ile-error-number is a GUARDIAN file management error number. name is the
physical file name.

*** FILE ERROR (Abnormal termination of Query Processor)

Self-explana tory.

*** FILE ERROR (Communication with Query Processor failed)
#file-error-number on name

EN FORM lost communication with the query processor.

*** FILE ERROR (CONTROL failure) #file-error-number on name

A control failure occurred on the physical file named.

*** FILE ERROR (CREATE failure) #file-error-number on name

There was a problem creating the physical file.

*** FILE ERROR (Dictionary file access failure) #file-error-number on name

Refer to the Data Definition Language (DDL) Programming Manual.

*** FILE ERROR (Illegal EN FORM execution file) on name

The file must be a compiled query file created with the ?COMPILE command.

*** FILE ERROR (Illegal list device) on name

Listing device is misspelled or does not exist.

*** FILE ERROR (Illegal input device) on name

The input file name or Edit file name is misspelled or does not exist.

*** FILE ERROR (Not an Edit file) on name

File named is not an Edit file.

*** FILE ERROR (OPEN failure) #file-error-number on name

There was a problem opening the physical file.

*** FILE ERROR (POSITION failure) #file-error-number on name

A position failure occurred on the physical file named.

*** FILE ERROR (Process nonexistent, insufficient system resources or full queue)
#file-error-number on name

The server query processor named in the ?ATTACH command does not exist or cannot
accept more users.

*** FILE ERROR (PURGE failure) on name

There was a problem purging the physical file.

B-ll

Error Messages

*** FILE ERROR (READ failure) #file-error-number on name

ENFORM could not read the physical file named.

*** FILE ERROR (RENAME failure) on name

There was a problem renaming the physical file.

*** FILE ERROR (SERVER-related failure) # number on name

There was a failure related to the use of an ENFORM server (process file). The number and
name are optional values supplied by the server instead of a standard GUARDIAN file error
and file name.

*** FILE ERROR (SETMODE failure) #file-error-number on name

A setmode error occurred on the physical file named.

*** FILE ERROR (Specified ENFORM compile file exists as edit or TAL object file)
on name

The file must be a compiled query file created with an EN FORM ?COMPILE command.

*** FILE ERROR (Unable to open ENFORM message table) #file-error-numbE!r on name

Self-explanatory. EN FORM terminates abnormally. Correct the problem with the message
table and restart the session.

*** FILE ERROR (UnabLe to position ENFORM message table) #file-error-number on name

ENFORM is unable to use the message table file. The session continues but all messages con
tain "???" instead of text.

*** FILE ERROR (Unable to read ENFORM message table) #file-error-number on name

EN FORM is unable to use the message table file. The session continues but all messages con
tain "???" instead of text.

*** FILE ERROR (WRITE failure) #file-error-number on name

A write error occurred on the physical file named.

ENFORM TRAP MESSAGES

ENFORM TRAP: nnn S: xxxxxx P: xxxxxx E: xxxxxx L: xxxxxx

The ENFORM Compiler!Report Writer process has failed. nnn is the trap number as
described in the GUARDIAN Operating System Programming Manua~ Volume 2. xxxxxx
are values in the hardware registers.

ENFORM QP TRAP: nnn S:xxxxxx P: xxxxxx E: xxxxxx L: xxxxxx

B-12

The ENFORM Query Processor process has failed. nnn is the trap number as described in
the GUARDIAN Operating System Programming Manua~ Volume 2. xxxxxx are values in
the hardware registers.

Error Messages

BUILDMK ERROR MESSAGES

*** ERROR Key-sequenced file must be empty.

The key-sequenced file that is to contain the message table must be empty before you run
BUILDMK.

*** ERROR Second parameter in command line must be a key-sequenced file name

The second parameter of the BUILDMK command must be the name of a key-sequenced file.

*** ERROR Primary key for key-sequenced file must be at offset 0 and have length 34

Self-explanatory.

*** ERROR Edit file contains ?HELP section but no ?MESSAGES section

The Edit file version of the message table must contain a ?MESSAGE section if a ?HELP
section is included.

*** ERROR Edit file contains ?MESSAGES section but no ?HELP section

The Edit file version of the message table must contain a ?HELP section if a ?MESSAGES
section is included.

*** ERROR Identifier contains an illegal character

An identifier specified in the Edit file version of the message table contains an illegal
character.

*** ERROR Identifier must begin with an alphabetic character or A

An identifier specified in the Edit file version of the message table must begin with either an
alphabetic character or a circumflex.

*** ERROR Identifier must not end with a hyphen

An identifier specified in the Edit file version of the message table must not end with a
hyphen.

*** ERROR ?HELP subsection must contain at least one subsection

Self-explanatory.

*** ERROR ?MESSAGES section must contain at least one line of text

Self-explanatory.

*** ERROR ?VOCABULARY section must redefine at least one reserved word

Self-explanatory.

*** ERROR Identifier must contain less than 32 characters.

Self-explanatory.

B-13

Error Messages

*** ERROR A ? may only appear as the first char in the first word of a HELP phrase

A question mark can only appear as the first character in the first word of the phrase that
identifies a HELP section or subsection.

*** ERROR First parameter in command line must be an edit file name

The first parameter specified for the BUILDMK command must be the name of an Edit file
containing the Edit version of the message table.

*** ERROR Invalid edit file name was specified

An invalid Edit file name was specified in the BUILDMK command. Gorrect the Edit file
name and re-issue the BUILDMK command.

*** ERROR Invalid key-sequenced file name was specified

An invalid name was specified for the key-sequenced file parameter of the BUILDMK com
mand. Correct the key-sequenced file name and re-issue the BUILDMK command.

*** ERROR ?VOCABULARY must appear in columns 1-11 and all other columns must be blank

The characters ?VOCABULARY must appear in columns 1 through 11 of the first line of the
?VOCABULARY section. All other columns on this line must contain blanks.

*** ERROR ?MESSAGES must appear in columns 1-9 a nd all other columns must be blank

The characters ?MESSAGES must appear in columns 1 through 9 of the first line of the
?MESSAGES section. All other columns on this line must contain blanks.

*** ERROR ?HELP must appear in columns 1 thru 5 and all other columns, must be blank

The characters ?HELP must appear in columns 1 through 5 of the first line of the ?HELP sec
tion. All other columns on this line must contain blanks.

*** ERROR Edit file name parameter is missing

The Edit file name parameter of the BUILDMK command is missing. Re-issue the
BUILDMK command and include the Edit file name parameter.

*** ERROR Key-sequenced file name parameter is missing

The name of the key-sequenced file is missing from the BUILDMK command. Re-issue the
BUILDMK command and include the name of the key-sequenced file.

*** ERROR Edit file must not be empty

The Edit file specified on the BUILDMK command is empty. Specify the Icorrect Edit file and
re-issue the BUILDMK command.

*** ERROR In a reserved word redefinition, the new reserved word is missing

Supply the new reserved word.

B-14

Error Messages

*** ERROR In a reserved word redefinition, the old reserved word is missing

Supply the old reserved word.

*** FILE ERROR (EDITREAD read error) on name

The indicated error occurred on the specified file during the execution of BUILDMK.

*** FILE ERROR (EDITREAD sequence error) on name

The indicated error occurred on the specified file during the execution of BUILDMK.

*** FILE ERROR (EDITREAD text file format error) on name

The indicated error occurred on the specified file during the execution of BUILDMK.

*** FILE ERROR (EDITREADINIT I/O error) on name

The indicated error occurred on the specified file during the execution of BUILDMK.

*** FILE ERROR (OPEN failure) #file-error-number on name

The indicated file error occurred on name during the execution of BUILDMK.

*** FILE ERROR (POSITION failure) #file-error-number on name

The indicated file error occurred on name during the execution of BUILDMK.

*** FILE ERROR (READ failure) #file-error-number on name

The indicated file error occurred on name during the execution of BUILDMK.

*** FILE ERROR (WRITE failure) #file-error-number on name

The indicated file error occurred on name during the execution of BUILDMK.

B-15

APPENDIX C

GLOSSARY

Aggregate - a cumulative operation on set(s) of numbers, producing a single value per set. See
Predefined Aggregate and User Aggregate.

By-item - the field name used to group and sort ENFORM output; always associated with a BY or
BY DESC clause. A by-item is a special kind of target-item.

Clause - component of an EN FORM statement.

Command - a directive to the ENFORM compiler.

Compiler/Report Writer - the ENFORM process that both compiles ENFORM queries and formats
and writes ENFORM reports.

Compiled Query File - the physical file containing a saved query that been compiled by the
?COMPILE command.

Current Output Listing File - the file to which ENFORM directs output; this file can change during
an ENFORM session.

Data Base - a set of related files defined in a dictionary.

Data Description Language (DDL) - the language used to describe the record and file structure of a
data base.

Dictionary - a data base of file descriptions and record types created by the Data Definition
Language (DDL); also called a data dictionary.

Default Output File - the file to which ENFORM directs output at the beginning of an ENFORM
session. See also Current Output Listing File.

Default Input File - the file from which the ENFORM source code is entered when the IN option of
the ENFORM command is omitted; usually the home terminal.

Elementary Field - smallest named unit of a record.

Field - either an elementary field or group field.

C-l

Glossary

Field Name - name given to a field in a DDL RECORD statement.

Field Value - value of a specific field within a specific stored record.

File - a collection of similarly structured records.

File Name - the name of a physical file.

File Type - identifies the organization of the physical file, such as key-sequenced. entry-sequenced,
or relative files.

Front End - the ENFORM process which compiles ENFORM programs, and prints reports. See
Compiler/Report Writer.

Generic File - a file used to store some class of ENFORM output.

Group Field - a collection of one or more fields that can be accessed with a single name.

Group Name - name of one or more fields that can be accessed with a single name.

Home Terminal - the terminal from which the ENFORM command is entered.

Link - specifies a relationship between records in a relational data base to be used in an_ EN FORM
query.

Literal - one or more numeric or alphanumeric characters. See String Literal and Numeric Literal.

Logical Expression - an expression that returns a true or false value.

Normalized - data that has been described in such a manner that only one value exists for every
field position in a record.

Numeric Literal - composed of the digits 0 thru 9. Numeric literals cannot be larger than 32765 and
must be enclosed in parentheses unless they appear in a logical expression or a TAB, SPACE,
SKIP, or FORM clause.

Option Variable - An ENFORM supplied variable that defines certain operational values.

OUT File - the physical device specified in the OUT option of the EN FORM command.

Physical File Name - GUARDIAN file name in the form \system.volume.subvol.file-name.

Predefined Aggregate - one of the ENFORM aggregates: AVG, COUNT, MAX, MIN, or SUM.

Primary Key - the field or group of fields that uniquely identifies a record.

Program - a sequence of related ENFORM commands and statements.

Qualification Aggregate - an aggregate that appears in a request-qualification. See also Aggregate.

C-2

Glossary

Qualified Field Name - a name which uniquely identifies a field as a component of a record
description.

Query - a complete ENFORM LIST or FIND statement specifying which fields and records to
retrieve.

Query Processor (QP) - the ENFORM process which opens the files and retrieves the records from
a relational data base for a report or a new file.

Record - a related set of field values.

Record Description - the dictionary description of a record, including the record name, record type,
field names, and data types, and key definitions.

Record Name - name given a record description in a DDL RECORD statement.

Record Type - a record's structure including field names and data types.

Relational Data Base - a data base in which records are related through fields with common formats
and comparable values.

Report - the printed output of an ENFORM query using an ENFORM LIST statement.

Request-qualification - the condition or conditions that a data base element must satisfy to con
tribute to the target-record; begins with a WHERE clause followed by a logical expression.

Reserved words - keywords with specific meaning and reserved by ENFORM.

Server Query Processor - specific query processor specified by an ?ATTACH command, initiated
separately from the compiler.

Session - period of interaction with ENFORM.

Source Code - the ENFORM statements, clauses, and commands that comprise the query speci
fications.

Source File - the Edit file that contains the source code. See also Source Code.

Statement - main instruction of an EN FORM program.

String Literal - one or more alphanumeric characters enclosed in quotation marks (").

Subscript - a value used to select a particular element.

System Variable - an ENFORM supplied variable that returns the current time, date, line number,
or page number.

Target Aggregate - an aggregate that appears as a part of the target-record.

Target-file - the file produced by the Query Processor that contains records with all the information
requested in the query specifications.

C-3

Glossary

Target-item - the record names, field names, expressions, variables, aggregates, and literals,
including by-items, whose values appear in a target-record.

Target-list - the record names, field names, expressions, variables, aggregates, and literals follow
ing the keywords LIST or FIND that contribute to the target-record. Ta:rget-lists consist of
target-items some of which are by-items. See also By-items and Target-items.

Target-record - the records generated by the Query Processor from which your ENFOHM output is
produced.

Unnormalized - data that has been described such that more than one value exists for each field
position in a record.

User Aggregate - a user declared aggregate. See Aggregate.

User Variable - a user declared element that can be used to store numeric or string literals, field
values, and the results of arithmetic or aggregate calculations.

?OUT File - the physical device specified in the ?OUT command.

C-4

Accessing the text editor from EN FORM 6-9
Adding a character string to a

target-item 5-14
AFTER CHANGE clause

and a field name 5-4
description 5-4
print-list elements 5-4
spacing considerations 5-4
syntax 5-4

Aggregates
described 3-11
embedded WHERE clause 3-18
excluding duplicate values (UNIQUE) 3-13
predefined 3-13
qualification aggregates

described 3-17
example 3-17, 3-18
rules for specifying 3-17
with embedded WHERE clause 3-18
with OVER ALL syntax 3-17
with OVER syntax 3-17

syntax 3-11
target aggregate

example 3-15, 3-16
rules for specifying 3-15
with OVER ALL syntax 3-15
with OVER syntax 3-16

user 3-14
Alphanumeric display format 5-9
Alphanumeric edit descriptor

description 5-9
examples 5-10
syntax 5-9
the overflow character modifier 5-16

Altering the effect of edit descriptors 5-14
Arithmetic expressions

described 3-21
evaluation order 3-21

INDEX

operators 3-21
rules for specifying 3-21
scale factor of the result 3-21

Arithmetic operators 3-21
AS clause

decorations 5-18
default display format 5-9
modifiers

field blanking 5-15
fill character 5-15
justification 5-17
overflow character 5-16
symbol substitution 5-17

nonrepeatable edit descriptors
optional plus 5-14
scale factor 5-13

repeatable edit descriptors
alphanumeric 5-9
fixed format 5-11
integer 5-10
mask 5-12

AS DATE clause
description 5-22
examples 5-23
syntax 5-22
with the JULIAN-DATE CONVERSION

clause 5-41
AS TIME clause

description 5-24
examples 5-24
syntax 5-24
time keywords 5-24

ASCD clause
description 5-6
sorting precedence 5-6
syntax 5-6

Ascending order, sorting 5-6

Index-l

Index

ASSIGN command
and generic files 2-4, 2-7, 2-12
for a server query processor 2-7
maximum file assignments 2-2
syntax 2-4
used for logical file assignments 2-4

ASSIGN internal table information,
displaying 6-18

Assigning
a FIND file to a generic file 2-10
a generic file to a process name 2-10
files before entering ENFORM 2-4
files to a server query processor 2-7
output to generic files 2-10

Assignment syntax
described 3-4
in a FIND statement 4-16
used for a user variable 3-27

Associating a physical file with a
record description 2-4, 6-3

AT END PRINT clause
and a field name 5-25
description 5-25
examples 5-25
overriding session-wide AT END 5-26
print-list elements 5-25
spacing considerations 5-25
syntax 5-25

AT END statement
cancelling 4-4
description 4-3
examples 4-3
overriding 4:'4, 5-26
resetting 4-4
spacing considerations 4-3
syntax 4-3
with a field name 4-3

AT START PRINT clause
and a field name 5-27
description 5-27
examples 5-27
overriding session-wide AT START 5-28
print-list elements 5-27
spacing considerations 5-27
syntax 5-27

AT START statement
cancelling 4-6
description 4-5
examples 4-5
overriding 4-6, 5-28
resetting 4-6
spacing consideratons 4-5
syntax 4-5
with a field name 4-5

Index-2

A ttaching a query processor 6-6
A verage value, finding 3-1:3
AVG 3-13

Backspacing 5-62
BEFORE CHANGE clause

example 5-29
print-list elements 5-29
spacing considerations 5··29
specifying a field name within 5-29
syntax 5-29

Blanking fields for reports 3-26, 5-15, 5-46
Boolean operators 3-24
BREAK key 2-3
BUILDMK messages B-13
BY clause

description 5-31
example 5-31
sorting precedence 5-31
syntax 5-31

BY DESC clause
description 5-31
sorting precedence 5-31
syntax 5-31

By-item
AFTER CHANGE clause 5-4
BEFORE CHANGE clause 5-29
CUM clause 5-33
defined 1-2
described 5-31
displayed in report columns 4-2«>
FIND statement 4-15
FORM clause 5-37
identifying 5-31
in a FIND file 5-31
LIST statement 4-24
PCT clause 5-51
SPACE clause 5-54
SUBTOTAL clause 5-59

Calculating
a percentage value 5-51
a running total 5-33
a running total for grouped elements 5-33
a subtotal 5-59
a total 5-67

Cancelling
AT END statement 4-4
AT START statement 4·6
FOOTING statement 4-2:1
SUBFOOTING statement 4-36
SUBTITLE statement 4·37
TITLE statement 4-40

CENTER clause
description 5-32
specifying in a clause

AFTER CHANGE 5-5
AT END PRINT 5-26
AT START PRINT 5-28
BEFORE CHANGE 5-30
FOOTIN G 5-36
SUBFOOTING 5-56
SUBTITLE 5-58
TITLE 5-66

specifying in a statement 4-24
AT END 4-4
AT START 4-6
FOOTING 4-21
SUBFOOTING 4-36
SUBTITLE 4-38
TITLE 4-40

syntax 5-32
Centering

all reports in the current session 5-46
the body of the current report 5-32

Changing
the default output width 5-50
the default overflow character 5-16
the default underline character 5-50
the session-wide default date display

format 5-47
the session-wide default time display

format 5-50
Clauses

AFTER CHANGE 5-4
AS 5-7
AS DATE 5-22
AS TIME 5-24
AS CD 5-6
AT END PRINT 5-25
AT START PRINT 5-27
BEFORE CHANGE 5-29
BY 5-31
BY DESC 5-31
CENTER 5-32
CUM 5-33
DESC 5-6
FOOT IN G 5-35
FORM 5-37
HEADING 5-38
INTERN AL 5-40
JULIAN-DATE CONVERSION 5-41
NOHEAD 5-43
NOPRINT 5-44
Option Variable 5-45
PCT 5-51
requiring grouping 5-4, 5-29

SKIP 5-53
SPACE 5-54
SUBFOOTING 5-55
SUBTITLE 5-57
SUBTOTAL 5-59
summarized 5-2
SUPPRESS 5-60
System Variable 5-61
TAB 5-62
TIMESTAMP-DATE 5-63
TIMESTAMP-TIME 5-64
TITLE 5-65
TOTAL 5-67
WHERE 5-68

Clearing linked record descriptions 4-11
Clearing the internal table

?DICTIONARY command 6-8
CLOSE statement 4-7
DELINK statement 4-11
DICTIONARY statement 4-12

CLOSE statement
and the internal table 4-7
description 4-7
syntax 4-7

Column headings
specifying 5-38
suppressing 5-43, 5-44

Index

Combining percentages and subtotals 5-52
Command Interpreter

ASSIGN command
for a server query processor 2-7
maximum file assignments 2-2
overriding 6-5
syntax 2-4

ENFORM command
defined 2-1
dictionary option 2-1
IN option 2-1
message table file option 2-2
OUT option 2-1

FC command 2-2
P ARAM command

for a server query processor 2-8
syntax 2-5
to pass parameters 2-5

QP command 2-9
Commands

Command Interpreter
ASSIGN 2-4
ENFORM 2-1
FC 2-2
PARAM 2-5
QP 2-9

Index-3

Index

EN FORM
?ASSIGN 2-4, 6-3
?ATTACH 2-5, 6-6
?COMPILE 6-7
?DICTION ARY 6-8
?EDIT 6-9
?EXECUTE 6-10
?EXIT 6-11
?HELP 6-12
?OUT 6-14
?RUN 6-15
?SECTION 6-16
?SHOW 6-17
?SOURCE 6-19

Commands and statements in an edit file 6-16
Comments

description 3-4
example 3-4

Comparison template
mask edit descriptor 5-12
pattern match in a logical expression 3-26

Compilation output 2-10
Compiled query file

commands not saved 6-1
creating 6-7
defining parameters for 4-31
executing 6-10
passing parameters to 2-5, 4-31

Compiler directives 6-1
Compiler/report writer

defined 1-3
error and warning messages 2-10

Compiling
and executing 6-15
to a compiled query file 6-7

Compound logical expressions
described 3-24
effect of boolean operators 3-24
effect of parenthesis 3-24

Computing 3-21
Condition specifiers 5-19
Conditional operators

BEGINS WITH 3-22, 3-25
CONTAINS 3-22, 3-25
defined 3-22
EQ 3-22
EQUAL 3-22
GE 3-22
GREATER THAN 3-22
GT 3-22
IS 3-22
LE 3-22
LESS THAN 3-22
LT 3-22
NE 3-22

Controlling the printing of a plus sign 5-14
Conventions for referencinl~ field names 3-6
Converting a date to internal format 5-41
Converting data values 5-7
Cost tolerance levels 5-47
COUNT 3-13
Creating a new physical fil4B 4-14
Creating a server query processor

ASSIGN command 2-7
description 2-6
example 2-9
P ARAM command 2-8
QP command 2-9

CUM clause
description 5-33
example 5-33
restrictions 5-34
syntax 5-33

Cumulative operations 3-11, 5-33, 5-59, 5-67
Current ENFORM session, terminating 6-11
Current output listing file

defined 2-3
generic files 2-12
terminating 2-3
the BREAK key 2-3

Current value of option variables 6-18

Data base 1-3
Data base group 3-9
Data base tables

nested 3-11
subscripting 3-8

Data Definition Language (DDL) 1-3, 4-12, 6-8
Date

changing the display format
in the current query 5-22
session-wide 5-47

default display format 5-23
obtaining the current date 5-63

Date keywords 5-22
DDL

data description 1-3
dictionaries produced by 6-8

DECLARE statement
description 4-8
examples 4-9
syntax 4-8
user aggregates 4-9
user table 4-10
user variable 4-9, 4-10

Declaring user elements 4-8
Decorations

conditions 5-19
default 5-20

Index-4

Index

description 5-18
examples 5-21
location 5-19
processing order 5-19
rules for use 5-19
syntax 5-18

Default
column spacing 5-49
date display format 5-23
decorations 5-20
fill character 5-15
heading 5-38
input file 2-1
internal storage format 5-40
margin width 5-48
new line character 5-48
output file 2-3
output width 5-50
subtotal label 5-49
target-item display format 5-9
time display format 5-24
underline character 5-50
value of a user variable 3-27

Delimiters 3-4
DELINK statement

description 4-11
example 4-11
syntax 4-11

DESC clause
description 5-6
sorting precedence 5-6
syntax 5-6

Descending order, sorting 5-6
Descriptors, see also AS clause

alphanumeric 5-9
altering the effect of 5-14
fixed format 5-11
integer 5-10
mask 5-12
nonrepeatable 5-13
optional plus 5-14
repeatable 5-9
scale factor 5-13

Dictionary
described 1-3
identifying 4-12, 6-8
produced by DDL 1-3, 4-12, 6-8
record description of FIND file 4-15

DICTIONARY statement
clearing the internal table 4-12
description 4-12
identifying dictionary location 4-12
syntax 4-12

Display format
date

changing session-wide 5-47
specifying for the current query 5-22

target-item 5-7
template 5-12
time

changing session-wide 5-50
specifying for the current query 5-24

Displaying environmental information
description 6-17
internal table space 6-18
links in effect 6-18
option variables 6-18
record name 6-18

Duplicate field names 3-6
Duration of ENFORM statements 3-5

Edit descriptors
alphanumeric 5-9
altering the effect of 5-14
combined with modifiers 5-15
fixed format 5-11
integer 5-10
mask 5-12
nonrepeatable 5-13
optional plus 5-14
repeatable 5-9
scale factor 5-14

Edit files
containing ENFORM queries 2-2
reading 6-19
storing source code 6-9, 6-16, 6-19

EDIT process
and the BREAK Key 2-4
entering from within ENFORM 6-9
exiting 6-9

Editor
entering 6-9
exiting 6-9

Eliminating
field values 5-44
headings 5-43
records from a report 5-60

Embedded WHERE clause 3-19
ENFORM

clauses 5-1
Command Interpreter command 2-1
commands 6-1
error messages B-1
in interactive mode 2-2
in noninteractive mode 2-2
internal table values 4-7, 6-17
language components 3-1

Index-5

Index

language elements 3-1
output files 2-13
processes 1-3
processing of user variables 3-27
processing strategy, specifying 5-46
prompt 2-1
session

beginning 2-1
terminating 2-2, 6-11

statements 4-1
statistics 5-49
subsystem 2-1
terminating statements 3-4
terms 1-3

ENFORM trap messages B-12
Entering commands and statements

directly 2-2
indirectly 2-2

Entry-sequenced file 3-7
Environment information, displaying

internal table space 6-18
links in effect 6-18
option variables 6-18
record name 6-18

Error messages
!!!errors and ***warnings B-2
***file errors B-ll
BUILDMK B-13
ENFORM initialization B-2
ENFORM trap B-12
reported 3-5
types of B-1

Evaluation order
arithmetic expressions 3-21
compound logical expressions 3-24
decorations 5-19
logical expressions 3-24
user variables 3-27

Exclusion mode
? ASSIGN command 6-3
and a server query processor 2-7
ASSIGN command 2-4
generic files 2-10

Exclusion specification, changing 6-5
Executing

a compiled query file 6-10
and compiling a query 6-15
source code in an Edit file 6-15, 6-19

EXIT statement
description 4-13
syntax 4-13

Exiting
ENFORM 2-2, 4-13, 6-11
interactive mode 2-2

Index-6

noninteractive mode 2-2
the editor 6-9

Extent size, specifying
primary 5-48
secondary 5-48

Field blanking modifiers
description 5-15
examples 5-15
syntax 5-15

Field grouping and sorting clauses 5-31
Field name

qualification required 3-7
references 3-6
specifying in a clause

AFTER CHANGE 5-4
AT END PRINT 5-25
AT START PRINT 5-27
BEFORE CHANGE 5-~~9
FOOT IN G 5-35
SUBFOOTING 5-55
SUBTITLE 5-57
TITLE 5-65

specifying in a statement
AT END 4-3
AT START 4-5
FOOTIN G 4-20
S UBFOOTIN G 4-35
SUBTITLE 4-37
TITLE 4-39

with subscripts 3-8
Field sorting clauses 5-6, 5-81
File error messages B-ll
Fill character modifier

description 5
examples 5
syntax 5

Filling fields with blanks 3-~~6, 5-15. 5-46
FIND statement

description 4-14
examples 4-16
file type of generated file 4-15
grouping and sorting target-records 4-15
input elements 4-17
output fields 4-16
statements and clauses that do not apply

4-19
summary records 4-18
syntax 4-14
with a target aggregate 3-16

Finding the highest number in a group
of numbers 3-13

Finding the lowest number in a group of
numbers 3-13

.--- ----_._ __ ._--

Fixed format edit descriptor
description 5-11
examples 5-11
syntax 5-11

Fixed format number
specifying a display format 5-11
specifying storage format 5-40

FOOTING clause
description 5-35
examples 5-35
overriding a FOOTING statement 5-36
spacing considerations 5-35
syntax 5-35

FOOTING statement
cancelling 4-21
description 4-20
examples 4-20
overriding 4-21
resetting 4-21
spacing considerations 4-20
syntax 4-20
with a field name 4-20

FORM clause
description 5-37
specifying in a cIa use

AT END PRINT 5-25
AT START PRINT 5-28
FOOT IN G 5-36
SUBFOOTING 5-56
SUBTITLE 5-58
TITLE 5-66

specifying in a statement
AT END 4-4
AT START 4-6
FOOTING 4-21
LIST 4-24
SUBFOOTING 4-36
SUBTITLE 4-38
TITLE 4-40

syntax 5-37
with a by-item 5-37
with a target-item 5-37
within a print-list 5-37

Formatter 5-7

Generic files
and a dedicated query processor 2-12
and a server query processor 2-7, 2-12
and the current output listing file 2-12
ASSIGN command 2-4
assigning to a process name 2-10
described 2-10
exclusion mode 2-10
file type 2-11

forms of output 2-13
output record length 2-10
QUERY-COMPILER-LISTING 2-10
QUERY-QPSTATISTICS 2-11
QUERY-QPSTATUS-MESSAGES 2-10
QUERY-REPORT-LISTING 2-10
QUERY-SORT-AREA 2-11
QUERY-STATISTICS 2-10
QUERY-WORK-AREA 2-11
the current output listing file 2-3

Getting help 6-12
Gregorian dates 5-41
Group definition

LIST statement 4-25
Grouping target-records by field

values 4-15, 4-25, 5-31
GUARDIAN Formatter 5-7

Index

GUARDIAN procedure TIMESTAMP 5-63,
5-64

HEADING clause
description 5-38
examples 5-38
multiple line headings 5-38
printing a / in column headings 5-38
syntax 5-38

Heading, suppressing printing of 5-43
Home terminal

and the BREAK Key 2-3
as the default input file 2-3
defined 2-1

Horizontal spacing 5-49, 5-54

Identifying a command 6-1
Identifying a specific query processor 6-6
IF/THEN /ELSE expressions

described 3-26
examples 3-26
syntax 3-26
value keywords 3-26

IN option
and the current output listing file 2-3
defined 2-1

Indicating a new page 5-37
Initial value of a user variable 3-27
Input file 2-2
Integer edit descriptor

description 5
examples 5
syntax 5

Interactive mode
ASSIGN command 2-4
described 2-2
getting help 6-12

Index-7

Index

INTERN AL clause
description 5-40
example 5-40
internal format types 5-40
syntax 5-40

Internal table
clearing 4-7, 4-11, 4-12, 6-8
description 4-7

JULIAN-DATE Conversion clause
converting dates to internal format 5-41
description 5-41
display format 5-41
examples 5-41
Gregorian dates 5-41
syntax 5-41

Justification Modifiers
description 5-17
examples 5-17
syntax 5-17

Keeping files open
for a dedicated query processor 2-4
for a server query processor 2-7

Key-sequenced file 3-7
Keys, see primary keys
Keywords 3-3

Left justification 5-17
Left margin size 5-48
Limiting the number of records per query

5-49
LINK statement

description 4-22
duration 4-23
syntax 4-22

Linking relationships
clearing 4-11, 4-12

Links
clearing 4-7, 4-11, 4-12, 6-8
for the current query 5-68
maximum number 4-22
session-wide 4-22

LIST statement
description 4-24
displaying values in report columns 4-26
examples 4-26
grouping and sorting target-records 4-25
optional clauses 4-29
request-qualification 4-27
summary reports 4-28
syntax 4-24

Literals
described 3-19
examples 3-20

Index-8

numeric 3-19
string 3-20

Location of temporary work files 2-11
Location specifiers 5-19
Logical expression

BEGINS WITH operator 3-25
boolean operators 3-24
compound 3-24
conditional operators 3-22
CONTAINS operator 3-2.5
described 3-22
pattern match 3-23, 3-26
range of values 3-24, 3-25
simple 3-24
syntax 3-23

Logical file assignments
and a server query processor 2-7
defined 2-4
maximum 2-2

Margin 5-48
Mask 5-12
Mask edit descriptor

changing the special symbols 5-17
description 5-12
examples 5-12
syntax 5-12

MAX 3-13
Maximum logical file assignments 2-2, 6-3
Maximum number of pages per report 5-48
Maximum requesters for a server query

processor 2-8
Message table file 2-1, 6-12
MIN 3-13
Modifiers

combined with edit descriptors 5-15
description 5-14
field blanking 5-15
fill character modifier 5-15
justification 5-17
overflow character 5-16
symbol substitution 5-17
syntax 5-7

Naming
a section 6-16
a server query processor 2-9
a subvolume containing a dictionary 2-1, 6-8
fields 3-6
parameters 3-6
records 3-6
the message table file 2-1
user aggregates 3-6
user tables 3-6
user variables 3-6

Nested
arithmetic expressions 3-21
data base tables 3-11

Nesting
?SOURCE commands 6-19
arithmetic expressions 3-21
IF/THEN /ELSE expressions 3-26
logical expressions 3-24

New line character 5-48
NOHEAD clause

description 5-43
example 5-43
no heading for a report item 5-43
syntax 5-43

Noninteractive mode
ASSIGN command 2-4
described 2-2

Nonrepeatable edit descriptors
description 5-13
optional plus edit descriptor 5-14
scale factor edit descriptor 5-13
syntax 5-7

NOPRINT clause
description 5-44
example 5-44
suppressing report items 5-44
syntax 5-44

Number of lines
displayed on output device 5-47
per page to skip 5-48

Numeric literals
described 3-19
examples 3-20
rules for specifying 3-19

Obtaining the current time or date 5-61
OPEN AS COPY OF

description 4-30
syntax 4-30

OPEN statement
description 4-30
syntax 4-30

Opened record description information 6-18
Opening record descriptions 4-30
Operators

arithmetic 3-21
boolean 3-24
conditional 3-22

Option Variable clauses
BLANK-WHEN-ZERO 5-46
@BREAK-KEY 5-46
@CENTER-PAGE 5-46
@COPIES 5-46
@COST-TOLERANCE 5-46

@DATE-FORMAT 5-47
@DECIMAL 5-47
@DISPLAY-COUNT 5-47
@HEADING 5-47
@LINES 5-47
@MARGIN 5-48
@NEWLINE 5-48
@NONPRINT-REPLACE 5-48
@OVERFLOW 5-48
@PAGES 5-48
@PRIMARY-EXTENT-SIZE 5-48
@READS 5-48
@SECONDARY-EXTENT-SIZE 5-48
@SPACE 5-49
@STATS

filename 5-49
level read 5-49
positions 5-49
records read 5-49
strategy cost 5-49

@SUBTOTAL-LABEL 5-49
@SUMMARY-ONLY 5-49
@TARGET-RECORDS 5-49
@TIME-FORMAT 5-50
@UNDERLINE 5-50
@VSPACE 5-50
@WARN 5-50
@WIDTH 5-50
description 5-45
displaying the current value of 6-18
resetting 4-33
setting 4-33
syntax 5-45

Optional plus edit descriptor
description 5-14
syntax 5-14

OUT option
and the current output listing file 2-3
defined 2-1

Output
and generic files 2-10
assigning to a generic file 2-4, 2-10
default width 5-50
files 2-13
specifying an output device 2-10, 6-14
suspending 2-3, 5-46
terminating 2-3
the current output listing file 2-3

Output device for a report,
specifying 2-10, 6-14

Overflow character 5-16, 5-48
Overflow character modifier

description 5-16
examples 5-16
syntax 5-16

Index

Index-9

Index

Overflow condition 5-16
Overriding

AT END statement 4-4,5-26
AT START statement 4-6, 5-28
Command Interpreter ASSIGN command

6-5
EN FORM ?ASSIGN command 6-3
FOOTING statement 4-21, 5-35
parameters specified in a SET statement

2-5
physical file named in DDL FILE IS 6-5
SUBFOOTING statement 4-36, 5-56
SUBTITLE statement 4-37, 5-58
TITLE statement 4-40, 5-65

Page
numbers 5-61
specifying new 5-37

Paginating a report 5-37
PARAM command

for a server query processor 2-8
syntax 2-5
to pass parameters 2-5

P ARAM statement
description 4-31
example 4-31
syntax 4-31

Parameter
as a numeric literal 4-32
as a string literal 4-32
clearing 4-7, 4-12
defining 4-31
deleting from the internal table 4-7
described 3-27
ENFORM handling 3-27, 4-32
in a print-list 4-32
initializing 4-33
maximum number allowed 4-31
passed to a compiled query file 2-5, 4-31
rules for naming 3-6

Parameter name value, displaying 6-18
Passing parameters 2-5
Pattern match, see also Logical

expression 3-23, 3-26
PCT clause

combining percentages and subtotals 5-52
description 5-51
examples 5-51
restrictions 5-52
syntax 5-51
with a by-item 5-51
with user variable 5-52

Percentage of the grand total 5-51
Percentage values 5-51

Index-10

Performing arithmetic op1erations 3-21
Physical file

associated with a record description 6-3
creating 6-7

Precision of arithmetic operations 3-21
Predefined aggregates

AVG 3-13
COUNT 3-13
MAX 3-13
MIN 3-13
SUM 3-13

Pressing the BREAK key 2-3
Preventing specific recordls from

printing 5-68
Primary extent size 5-48
Primary keys

described 3-7
entry-sequenced file 3-8
key-sequenced file 3-7
relative file 3-8
unstructured file 3-8

Print list
and a record name 3-6
centering 5-32

Process file, see ENFORlVI server
Processing order

of compound logical expressions 3-24
of decorations 5-19
of nested arithmetic expressions 3-21

QP command 2-9
Qualification aggregate

example 3-17, 3-18, 3-19
rules for specifying 3-17
with an embedded WHgRE clause 3-19
with OVER ALL syntax 3-17
with OVER syntax 3-17

Qualifying field names 3-6
Query

defined 1-2
in a compiled query file 2-2
stored in an EDIT file 2-2

Query compiler/report writer 1-3
Query processor

defined 1-3
error messages 2-11
identifying with the ?ATTACH command

6-6
Query specifications

defined 1-2
illustrated 3-2
statements 3-5

QUERY-COMPILER-LISTING file
and the current output listing file 2-3
described 2-10

QUERY-QPSTATISTICS 2-11
QUERY-QPSTATUS-MESSAGES 2-11
QUERY-REPORT-LISTING file

and the current output listing file 2-3
described 2-10

QUERY-SORT-AREA 2-11
QUERY-STATISTICS file 2-10
QUERY-STATUS-MESSAGES file 2-10
QUERY-WORK-AREA 2-11

Range of values
described 3-25
syntax 3-24

Reading an Edit file 6-19
Reassigning a physical file 2-4, 6-3
Reclaiming table space 4-12, 6-8
Record

displaying environmental information 6-18
referencing a record name 3-6

Record description
accessing 4-30
and the ASSIGN Command 2-4
clearing links between 4-11
defined 1-3
deleting from the internal table 4-7
linking 4-22, 5-68
list of opened 6-18
output record of a FIND statement 4-15
removing from the internal

table 4-7, 4-12, 6-8
References

field names 3-6
primary keys 3-7
record names 3-6
using subscripts 3-8

Relative file 3-8
Repeatable edit descriptors

alphanumeric 5-9
changing special edit symbols 5-17
description 5-9
fixed format edit descriptor 5-11
integer edit descriptor 5-10
mask edit descriptor 5-12
syntax 5-7

Replacing symbols used in edit
descriptors 5-17

Report lines 5-47, 5-61
Reporting error messages to generic

files 2-10
Reporting statistics to generic files 2-10
Reports

adding character strings to target-items
5-18

centering 5-32, 5-46
creating a running total 5-33

footing 4-21, 5-35
headings 5-38
headings for subscripted elements 5-39
horizontal spacing 5-49, 5-54

Index

including the current date 5-22, 5-61, 5-63
including the current time 5-24, 5-61, 5-64
indicating a new page 5-37
information at the end 4-3, 5-25
information at the start 4-5, 5~27
information within a report 5-4, 5-29
line numbers 5-61
page numbers 5-48, 5-61
preventing records from appearing in 5-68
selecting information 4-24
starting a new line 5-48, 5-53
subfooting 4-36, 5-55
subtitle 4-38, 5-57
summary 4-28, 5-49
suppressing zero values 5-46
the current date or time 5-61
title 4-40, 5-65
title for the current report 5-66
values in report columns 4-26
vertical spacing 5-50, 5-53, 5-62

Request-qualification
aggregates 3-17
defined 1-3
in a FIND statement 4-18
literals 3-19
user variables 3-29
WHERE clause 5-68

REQUESTORS parameter 2-8
Reserved words 3-3
Resetting

AT END statement 4-4
AT START statement 4-6
FOOTING statement 4-21
SUBFOOTING statement 4-36
SUBTITLE statement 4-37
TITLE statement 4-40

Restricting records 5-68
Restricting records for aggregate

calculation 3-19
Result of arithmetic operations

assigning to a user variable 3-22
scale factor 3-21

Right justification 5-17
Rules

decorations 5-19
field names 3-6
for input elements for FIND files 4-18
for output fields in FIND files 4-16
for target-items in a LIST statement 4-26
literals 3-19

Index-11

Index

naming a section 6-16
naming user defined elements 3-6
numeric literals 3-19
parameter names 3-6
qualification aggregates 3-17
referencing a field name 3-6
referencing a record name 3-6
referencing primary keys 3-7
string literals 3-20
target aggregates 3-15
user aggregate names 3-6
user table names 3-6
user variable names 3-6
using user aggregates 3-14

Running ENFORM 2-1

Scale factor edit descriptor
description 5-13
examples 5-14
syntax 5-13

Secondary extent size 5-48
Section

identifying 6-16
rules for naming 6-16

Selecting records that contribute to
output 4-24, 5-68

Server query processor
ASSIGN command 2-7
creating 2-6
creation example 2-9
defined 2-5
P ARAM command 2-8
QP command 2-9

Session
defined 1-1
example 1-2
terminating 6-11

SE~T statement
and option variables 4-34
and user defined elements 4-34
description 4-33
examples 4-34
syntax 4-33

Setting
option variables 4-34
the left margin 5-48
the number of report lines 5-47
values of user elements 4-34

Sharing a server query processor 2-5
Size

determining for a target-item 5-7
left margin 5-48
running total value 5-33
subtotal value 5-59
total value 5-67

Index-12

SKIP clause
and @VSPACE 5-53
description 5-53
example 5-53
specifying in a clause

AFTER CHANGE 5-5
AT END PRINT 5-25
AT START PRINT 5-28
BEFORE CHANGE 5-30
FOOTIN G 5-35
SUBFOOTING 5-55
SUBTITLE 5-57
TITLE 5-65

specifying in a statement
AT END 4-3
AT START 4-6
FOOT IN G 4-21
LIST 4-24
SUBFOOTING 4-35
SUBTITLE 4-37
TITLE 4-39

syntax 5-53
Sort key

in a DESC clause 5-6
in an ASCD clause 5-6

Sorting
in a FIND statement 4-15
in ascending order 5-6, 5-31
in descending order 5-6, 5--31
specifying where query processor sorts

2-11
target-records 5-6, 5-31

Source code
entering 2-2
in an edit file 6-9, 6-16, 6-19

SPACE clause
description 5-54
specifying in a clause

AFTER CHANGE 5-4
AT END PRINT 5-25
AT START PRINT 5-27
BEFORE CHANGE 5-29
FOOTIN G 5-35
SUBFOOTING 5-55
SUBTITLE 5-57
TITLE 5-65

specifying in a statement
AT END 4-3
AT START 4-5
FOOTIN G 4-20
LIST 4-24
SUBFOOTING 4-35
SUBTITLE 4-37
TITLE 4-39

syntax 5-54
with a Print List 5-54
with a target-item or by-item 5-54

Special characters 3-4
Special edit symbols 5-12
Specifying

horizontal spacing 5-54
the primary extent size 5-48
the secondary extent size 5-48
where error messages are sent 2-10
where work files are built 2-10, 2-11

Statements
applying only to queries with a LIST

statement 4-1
AT END 4-3
AT START 4-5
CLOSE 4-7
DECLARE 4-8
DELINK 4-11
DICTIONARY 4-11, 4-12
duration of effect 3-5, 4-1
EXIT 4-13
FIND 4-14
FOOTING 4-20
LINK 4-22
LIST 4-24
OPEN 4-30
PARAM 4-31
SET 4-33
SUBFOOTING 4-35
SUBTITLE 4-37
summary 4-2
terminating 3-5, 4-1
TITLE 4-39

Statistics
described 5-49
specifying an output device for 2-10

Storage format
default 5-40
default for a user table 4-10
default for a user variable 4-10
user specified 5-40

Storing
a date in internal format 5-63
a time in internal format 5-64
source code in an Edit file 6-9, 6-19

Strategy cost
and a server query processor 2-8
described 5-49

String literals
described 3-20
examples 3-20
rules for specifying 3-20

SUBFOOTING clause
description 5-55
examples 5-55
for current reports 5-55
spacing considerations 5-55
specifying field names within 5-55
syntax 5-55

SUBFOOTING statement
cancelling 4-36
description 4-35
examples 4-35
overriding 4-36
resetting 4-36
spacing considerations 4-35
syntax 4-35
with a field name 4-35

Subordinate field 3-9
Subscripted elements

described 3-8
headings 5-39

Subscripts
described 3-8
examples 3-10
for a range 3-10
headings 5-39
syntax for referencing 3-9
valid values 3-9

SUBTITLE clause
and field names 5-57
description 5-57
for current reports 5-57
overriding session-wide subtitle 5-58
spacing considerations 5-57
syntax 5-57

SUBTITLE statement
cancelling 4-38
description 4-37
examples 4-37
overriding 4-38
resetting 4-38
spacing considerations 4-37
syntax 4-37
with a field name 4-37

SUBTOTAL clause
description 5-59
syntax 5-59

SUM 3-13
Summary records 4-18, 5-49
Summary repo"rt 4-28, 5-49
SUPPRESS clause

description 5-60
example 5-60
syntax 5-60

Index

Index-13

Index

Suppressing
column headings for all reports 5-47
column headings for the current report

5-43
printing of target-item and heading 5-44
target-items in reports 5-60

Suspending output 2-3, 5-46
Symbol substitution modifier

description 5-17
examples 5-18
syntax 5-17

Syntax summary A-1
System Variable clauses

@DATE 5-61
@LINENO 5-61
@PAGENO 5-61
@TIME 5-61

TAB clause
description 5-62
specifying in a cIa use

AFTER CHANGE 5-4
AT END PRINT 5-25
AT START PRINT 5-27
BEFORE CHANGE 5-29
FOOTIN G 5-35
SUBFOOTING 5-55
SUBTITLE 5-57
TITLE 5-65

specifying in a statement
AT END 4-3
AT START 4-5
FOOTING 4-20
LIST 4-24
SUBFOOTING 4-35
SUBTITLE 4-37
TITLE 4-39

syntax 5-62
with a LIST target-item or by-item 5-62
with a print list 5-62

Tabbing to a report column 5-62
Tallying the instances of an element 3-13
Target aggregate

described 3-15
example 3-15, 3-16
used in a FIND statement 3-16
with OVER ALL syntax 3-15
with OVER syntax 3-16

Target-item
aggregates 3-11
centering 5-32
defined 1-2
displayed in report columns 4-26
headings 5-38

Index-14

in a LIST statement 4-24:
specifying a display format 5-7
user table 3-29
user variable 3-27
using a record name 3-6

Target-list
aggregates 3-15
defined 1-2
literals 3-19

Target-record
defined 1-3
generated by a LIST statement 4-24
grouping by field values 5-31
sorting 5-6, 5-31
summary records 4-18
summary reports 4-28

Temporarily changing the default
overflow character 5-16

Temporarily changing the fill character 5-15
Terminal BREAK key 2-3
Terminating

query output 2-3
statements 3-5
the current ENFORM session 6-11

Text Editor, accessing from ENFORM 6-9
Time

changing the default display format
all reports in the current session 5-50
the current report 5-24l

current 5-64
default display format 5-:~4
obtaining the current time 5-61

Time keywords 5-24
Timestamp field 5-63, 5-64
TIMESTAMP-DATE clause

description 5-63
example 5-63
GUARDIAN procedure TIMESTAMP 5-63
syntax 5-63
timestamp field 5-63

TIMESTAMP-TIME clause
description 5-64
example 5-64
GUARDIAN procedure TIMESTAMP 5-64
syntax 5-64
timestamp field 5-64

Timing out a server query processor 2-8
TITLE clause

description 5-65
exam pIes 5-65
for current report 5-66
overriding session wide title 5-66
spacing considerations 5-165
syntax 5-65
with a field name 5-65

,--.--------.---,

TITLE statement
cancelling 4-40
description 4-39
examples 4-39
overriding 4-40
resetting 4-40
spacing considerations 4-39
syntax 4-39
with a field name 4-39

TOTAL clause
and the width of element modified 5-67
description 5-67
syntax 5-67

Totaling a set of numbers 3-13
Translating a date to internal format 5-41

Underline character 5-50
Unstructured file 3-8
User aggregate

declaring 4-8
deleting from the internal

table 4-7, 4-12, 6-8
described 3-14
example 3-15
initial value 4-8
names 3-6
rules for using 3-14, 4-9
syntax 3-14, 4-8

User defined elements
aggregates 3-14
declaring 4-8
initializing 4-33
names 3-6
parameters 4-31
tables 3-29
variables 3-27

User table
assignment syntax 3-29
declaring 4-8
default display format 4-10
default storage format 4-10
deleting from the internal table 4-7, 4-12
described 3-29
displaying the current value of 6-18
initializing 4-33
maximum elements 3-29
names 3-6
subscripting 3-8
user defined display format 4-10
user specified storage format 4-10

User variable
as a target-item 3-27
assigning the result of an arithmetic

operation 3-22

assignment syntax 3-27
declaring 4-10
default display format 4-10
default storage format 4-10
deleting from internal table 4-12, 6-8
deleting from the internal table 4-7
described 3-27
displaying current values 6-18
examples 3-28
in request-qualification 3-29
initial value 3-27
initializing 4-33
names 3-6
used to hold a running total 5-34
used to hold percentage values 5-52
user defined storage format 4-10
user specified storage format 4-10

User-written process file, see ENFORM
server

Index

Using the WHERE clause to specify a link
5-68

Value keywords 3-26
Variable, see User variable, System

variables, or Option variables
Vertical spacing 5-50, 5-53, 5-62

Warning messages
appearing on a terminal 5-50
listed B-2

WHERE clause
and a qualification aggregate 3-19
description 5-68
examples 5-68
syntax 5-68
to specify a link 5-68

!!tERROR and *** WARNING messages B-2

***FILE ERROR messages B-l1
***WARNING messages B-1

? ASSIGN command
and generic files 2-12, 6-3
changing the exclusion specification 6-5
examples 6-5
syntax 6-3

?ATTACH command
and a server query processor 2-5
description 6-6
failure 6-6
syntax 6-6

?COMPILE command
creating a physical file 6-7
description 6-7

Index-15

Index

identifying the physical file 6-7
syntax 6-7

?DICTIONARY command
clearing internal tables 6-8
description 6-8
syntax 6-8
where the dictionary resides 6-8

?EDIT command
description 6-9
storing ENFORM programs 6-9
syntax 6-9

?EXECUTE command
description 6-10
syntax 6-10

?EXIT command
description 6-11
syntax 6-11

?HELP command
description 6-12
examples 6-12
syntax 6-12

?OUT command
description 6-14
syntax 6-14

?OUT file 2-3, 6-14
?RUN command

description 6-15
restrictions 6-15
syntax 6-15

?SECTION command
description 6-16
naming a collection of source code 6-16
rules for naming a section 6-16
syntax 6-16

?SHOW command
description 6-17
display messages 6-18

?SOURCE command
description 6-19
nesting of 6-19
syntax 6-19

@BLANK-WHEN-ZERO
description 5-46
resetting 4-31
setting 4-31

@BREAK-KEY
and the BREAK key 2-4
description 5-46
resetting 4-31
setting 4-31

@CENTER-PAGE
description 5-46
resetting 4-33
setting 4-33

Index-16

@COPIES
description 5-46
resetting 4-33
setting 4-33

@COST-TOLERANCE
description 5-46
resetting 4-33
setting 4-33

@DATE, see also System variables 5-61
@DATE-FORMAT

description 5-47
resetting 4-33
setting 4-33

@DECIMAL
description 5-47
resetting 4-33
setting 4-33

@DISPLAY-COUNT
description 5-47
resetting 4-33
setting 4-33

@HEADING
description 5-47
resetting 4-33
setting 4-33

@LINENO, see also System variables 5-61
@LINES

description 5-47
resetting 4-33
setting 4-33

@MARGIN
description 5-48
resetting 4-33
setting 4-33

@NEWLINE
description 5-48
resetting 4-33
setting 4-33

@PAGENO, see also System variables 5-61
@PAGES

description 5-48
resetting 4-33
setting 4-33

@PRIMARY-EXTENT-SIZE
description 5-48
resetting 4-33
setting 4-33

@READS
description 5-48
resetting 4-33
setting 4-33

@SECONDARY-EXTENT-SIZE
description 5-48
resetting 4-33
setting 4-33

@SPACE
description 5-49
resetting 4-33
setting 4-33

@STATS Statistics
description 5-49
resetting 4-33
setting 4-33

@SUBTOTAL-LABEL
description 5-49
resetting 4-33
setting 4-33

@SUMMARY-ONLY
and FIND files 4-18
and summary reports 4-18, 4-28
description 5-49
resetting 4-33
setting 4-33

@TARGET-RECORDS
description 5-49
resetting 4-33
setting 4-33

@TIME, see also System variables 5-61
@TIME-FORMAT

description 5-50
resetting 4-33
setting 4-33

@UNDERLINE
description 5-50
resetting 4-33
setting 4-33

@VSPACE
description 5-50
resetting 4-33
setting 4-33

@WARN
description 5-50
resetting 4-33
setting 4-33

@WIDTH
description 5-50
resetting 4-33
setting 4-33

Index

Index-17

--.--------,-------------..... --.......... ,

YOUR COMMENTS PLEASE

Tandem NonStopTM & NonStop n™ Systems
EN FORM™ Reference Manual

82348 BOO

Tandem welcomes your comments on the quality and usefulness of its publications. Does this publication serve
your needs? If not, how could we improve it? If you have specific comments, please give the page numbers with
your suggestions.

This comment sheet is not intended as an order form. Please order Tandem publications from your local
Sales office.

FROM:

Name __ __ Date ____________ _

Company __ _

Address

City/State _ Zip

111111

BUSINESS REPLY MAIL]
FIRST CLASS PERMIT NO. 482 CUPERTI~O CA U.S.A.

POSTAGE WILL BE PAID BY ADDRESSEE

Tandem Computers Incorporated
19333 Vallco Parkway
Cupertino, CA 95014-9990

Attn: Manager-Technical Communications

TAPE TAPE

C
O POSTAGE

NECESSARY
IF MAILED

IN THE
UNITED STATES

CF

