tnnmnn

SRR

TPAREEM

(

GUARDIAN
Operating System
Programming

Manual
Volume 1

P/N 82336 AOO

GUARDIAN (TM) OPERATING SYSTEM

PROGRAMMING MANUAL

Volume 1

Tandem Computers Incorporated
19333 Vallco Parkway
Cupertino, California 95014

April 1982
Printed in U.S.A.

PREFACE

This manual describes the interface between user programs and the
GUARDIAN operating system on the Tandem NonStop and NonStop II
systems.

Specifically, the manual discusses:

® calling the procedures provided by the GUARDIAN operating
system for file management, process control, general utility,
and checkpointing

® using traps and trap handling
® using the features provided for security of files and processes

e performing advanced memory management on NonStop systems
and managing extended data segments on NonStop II systems

® using the sequential i/o procedures and the i/o formatter

e interfacing between application programs and the GUARDIAN
command interpreter

This manual is for systems and applications programmers with
special needs to call operating system procedures from their
programs. Familiarity with the Tandem Transaction Application
Language (TAL) or some other programming languagde, such as
FORTRAN or COBOL, is recommended. Before using this manual,
it is suggested that users read:

e Introduction to Tandem Computer Systems for a general overview of
the system

e GUARDIAN Operating System Command Language and Utilities Manual,
sections 1 and 2, for information about logging on to the system
and running programs in deneral

The "advanced" subsections in sections 2, 5, and 8 discuss
advanced features and require a knowledge of the system hardware
registers, machine instructions, and/or operating modes.

iii

For NonStop II systems only:

® NonStop II System Description Manual

® NonStop II System Operations Manual

® NonStop II System Manadement Manual

® GUARDIAN Operating System Messages Manual (NonStop II systems)

® DEBUG Reference Manual (NonStop II systems)

For both systems:

® GUARDIAN Operating System Command Language and Utilities Manual

e Transaction Application Language Reference Manual

® ENSCRIBE Programming Manual

® EXPAND Users Manual

® ENVOY Byte-Oriented Protocols Reference Manual

e ENVOYACP Bit-Oriented Protocols Reference Manual

® AXCESS Data Communications Programming Manual

® SORT/MERGE Users Guide

® Spooler/PERUSE Users Guide

® Spooler System Management Guide

e UPDATE/XREF Manual

For a combined index to subjects covered in Tandem technical manuals,
identifying the manual and page number for each reference, refer to
the following publications:

® Master Index (NonStop systems)

® Master Index (NonStop II systems)

For a complete list of technical manuals and manual part numbers for

Tandem NonStop systems and Tandem NonStop II systems, refer to the
following publication:

® Technical Communications Library

CONTENTS

Volume 1

SECTION 1. INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM:.:eeseeeool=1
ProCess CONtrOl.eeeeeeeeesscssecsscsassasasasacsasascsssssnssess eeessl=5
Process Structure....... ceesesessseascsns s e e s esesesssacecsennen 7
Process PairSeceesecccsoocsas cesecesscassssssas cecrscenns ceesane 8
Process Control FUNCEiONS.scsececscscses ceecescessscscanne ceeees 1-9
File SysSteMeseeecesssassosocssss teseces st ecetcssennneesans ceevne 1-10
Utility Procedures........ sessesannes st et aeerescsrastesasnennea 1-13
SYStEmM MESSAJCS . e ssseessssesasssssssscsssssssosssacsnsccsscaes e e eeene 1-13
Checkpointing Facility (Fault-Tolerant Programmlng).............l 14
Traps and Trap Handling..... ceseceascanns e e 1
SECUritYeeeeeeoescacnsensoanas ceenan T S
Command Interpreter.iceeeeescccecssccssascns C e et er et eecseene e 1-18
DebUgG FaACilityVeeeeeetoeessasosesassnsanssnsscnse cesescesecacanaas 1-18
External Declarations for Operating System Procedures........... 1-18

.

DIiSC FileSeeeeeessocoassasosssssssssssscessssscsassocsssasasncs
NON-DiSC DevViCeS.tcvescecscecncas cheese s ceesecsasaasenns
Processes (Interprocess Communication)........... ceceane e
Operator Console..ceceneen s e s cessecsssecsasssenssenesen se e
File AccesS..... e e e ec et scesseeese s et etcccet st ocs e anenen e
DiSC FileSeeesesessossssassssasssnsnns Gttt eaes ceeecesesaens
TerMinNAlS e eeeeesssscscsscssssasssessssassasasccnsess cesecsans
Processes..... sescessensoes tesssecsseseoranncac esseescnescs
Access Coordination Among Multiple ACCESSOIrS..eeessssscssn -
Locking..eeeo.. .
WALt/NO~WALIt T/0¢eeeeeeecocococssnsnsscnssssnssss c e s et eeens
File System ImplementatioN..ccesscecscescscssascs ceseescasreas
File and I/0 System StruUCtUre...eeeecececncasccsnscnccscnsss
File System Procedure ExecutionN...... - A
File Open....... ceesesseacas cesesseraaes St et es e eacaneanas 2.1-21
File TranSferSeeeeceseeeessaceascsossscsnessscsscscnsssnnsssns 2.1-24
Buffering..... e A)
File ClOSEeeeeeeesacacsooseascasscnocsaanns cecsenccaas st s eeeees 2.1-27
Automatic Path Error Recovery for Disc FileS...ceeeee.. ee.2.1-28
MirroOr VOlUMES ceseeeecosasoscecsssssacssscsscscscsanaasnss ee.2.1-34

.

L]
(I}
A WNH O OO~ Wi

.

NN
.
| R e b e b

.
.
L[]
.
L]
.
.
(]
.
.
.
.
L]
.
.
.
.
.
.
.
.
.
L]
.
.
.
*
.
.
-
.
.
.
.
.
*
.
.
DN NN NN N
.
P‘H‘F‘T‘b‘h‘k*-
= e

vii

MONITORNEW Procedure (NonStop II Systems ONly) eceeeececececeel2e3=62
NEXTFILENAME Procedure {(disSC fileS)eeesecsesecsoscscsncssescoseleld=63
OPEN Procedure (Qll f11leS) .eceeesceescoscscsscssacccsocscnscscecsl2eld—65
POSITION Procedure (diSC fileS) eeicseersceccsoscososcescnscsnseeleld=73
PURGE Procedure {(diSC fileS)eeeesceeccccsesssacsscscsasssossesleld—=T75
READ Procedure (AQll fileS) eeeeeceeescecessvscscssasccscssscecssleld—T76
READUPDATE Procedure (disc and SRECEIVE fileS)eeeeeecececceseel2.3-79
RECEIVEINFO Procedure (SRECEIVE fil€).eeeeeeeeecececcscsesessa2e3=-82
REFRESH Procedure (disSC fileS) eeceeeesecssocssccscsncsacsssasesle3—85
REMOTEPROCESSORSTATUS ProCeAUrCececccescsccscsscscssascscssscseslel—86
RENAME Procedure {(diSC fileS)eeeeeeoscsescscesccssscscasancscceelel~88
REPLY Procedure (SRECEIVE fil@) eceeeeeeeeocseceoccacoanoccccsslel~89
REPOSITION Procedure (disSC fileS) .eeeeeeeseascccccscsscsaseeaaleald=91
SAVEPOSITION Procedure (disSC fileS)eeeeeoseecoasesscsccsssassal2eald=92
SETMODE Procedure (All fileS) eeeecesccoceccesccsncsaccsansealal=93
SETMODENOWAIT (Ql]l fileS) eceeessscesscaosccoscsosscsscssssosacsl2eld=95
SETMODE Functions Table (All fileS)eeceececeesocesscsccsscasee2eld=97
UNLOCKFILE Procedure (diSC fileS)eeeeesecescscssscsascssness2ed—107
WRITE Procedure (All fileS) eeeeeecscseccessccacsnsccssccessleld—108
WRITEREAD Procedure (terminal and process files)...eecee...2.3-110
WRITEUPDATE Procedure (disc and magnetic tape filesS).eees..2.3-112

FILE SYSTEM ERRORS AND ERROR RECOVERY0000000-000-0~o-ov---o--oo

Error LiSt..o............-..................................

ELYOY RECOVEIY eeeoeooeeessosansscscassocsssccsnsssscssnnnoses

LI~ -

o I
|
wwpNN

, 2
DEVIiCEeeeesooesscssoasssssossscssasasssscsoscsncsnssscsssoncascel
Path BErrors (Errors 200-255) ¢t eeeeeeeccceasccscsasscccccecl
NO-WAIt T/Oceeoesoessoesssecssssseasssssssassasssassssacessl

File System Error Messages on the Operator Console.eceesces?

|
N NWOWWOWON -

TERMINALS: CONVERSATIONAL MODE/PAGE MODE:.scceccsoscscscccccassss
General Characteristics Of TerminalSeeececcesscecscoccccscsacecss
Summary of Applicable ProCeduUreS..ccccecsesccsscssssosssssosssce
AccessSing TerminalS.ecececeecseascesosssssoscsacsssssoossascssses

Transfer Termination when Reading.c.ceeceecececccscccccccoocns
Transfer MOAES.eeeeeoecscossscsssosssssssossssscsscsosssssessssce
Conversational MOJE cveceeesesesssccsessssscsssscsoscssscscascses
PAge MOAC . et eeoesossssesssesesoscacessssscssssessscssoseses
Transparency Mode (Interrupt Character Checking Disabled)...
Checksum Processing (Read Termination on ETX Character).....

EChO........-...o-..o..-................-.....--..........-.

U'IU'IU'IQ.')'IU'IU'IW

e ¢ o DNDMNMDNMNMNDNN
| I S |
|

Timeouts.............o.......-..o...........................

MOAEMS e e e sencecoseossssssassossassssssascscsssssssssssssssssccse
Break FEaAtUrE..ceeeeesacesscessveansasssocsssscoscscssscoansnas
BREAK SysStem MeSSAgE€ .cecececcscscscscassssscscscscscsossrocsssss
Using BREAK (Single Process per Terminal)eeceeeece-cecoacen
Using BREAK (More than One Process per Terminal)..ceeceecees
Break MOA@.ieeeeeeeeeecesaocscescsasscssnossoeasossssscsossascsas
EIrOr RECOVEIVeseeoesvosossesossssssscssasssssssssssssscssssscss
Operation Timed Out (Error 40) cececeeesscsscscesscsoscccccssss
BREAK (Errors 110 and 1ll) ..cececsscecaasasaccscssocosccases
Preempted by Operator Message (Error 1ll2)...cecececccccces
Modem Error (Error 140) ceeeeeeeeeesscscsscacsanssncsasascsnsns

mmmmmmmmcinu\mmmmmm-
WWWWWRONNNNDNDNDNDNDN -

AUV EROWOANRNTITWWNDDNDNDOAOAAUTLE WH

NNONNONDDNDDNODDNMNMNDNNODDNDMODNDNDODDNDND.

e o © o o

ix

CARD READERS .t et teecercocsasccseccsesscsscsssssssscscocoocssscsossse
General Characteristics Of Card ReAderS.ecececeececccccccaccances
Summary of Applicable ProCeduUreS..ccceesesssscssesccscaceccss
REAA MOAES e et eesocsssnsosesnsassceneccscsoscscscssossscsssssesnocscsscsssss
ACCessing @ Card REAAEr c et e et sesccsessscesoccoanssesncsosssss
ErrOr RECOVEI Y eeeeeeeeeeaosoossosscssseasssscssossssnsssssssccsse

NOt REAAY e e eeeeceeeeesocssoosososessssasssssassscsenssacss
MOtion CheCK. i iieieeeeeeoeeeoeoccaocoossesoascssncsossoscosnes
Read Check...... Ceecescecececcsssassaseactsessssacsssss s nse
Invalid Hollerith.eeeoeeeeeeeeeeeoseessssasesascsasosccsscssssscs
PAth ErrOr S eceseseesassteeesescsctosccosassosssossscsscssssssess

e o o
LI

. L)
LI I |
NN -

. .
NNDDDNDNDNDDNDDNDNDNDN

L] . L]

1

INTERPROCESS COMMUNICATION .t e e eessosscsscsscssscssoscscssasssacssses
General Characteristics of Interprocess CommunicatioN.eceeceeces
Summary of Applicable ProCedUreS....cccceccsacssssssccccscccss
COMMUNLICALION et eeteeeeeeecenscsssssscscsccsescsossnsnsssscssnnes

SYNChroONiZationN.e s eeeeeeeeeseeosseeescssecscssecscssnscasnsas
SRECEIVE FILE..eeeeeseoscessooseassasoasosssssascanssscsscess
NO-WAIt I/0ceeeeeeccosscsssessesasssssassssosssssssnsscncses
OPEN, CLOSE, CONTROL, SETMODE, RESETSYNC, and CONTROLBUF
MESSATES e e eeeceesssasscnsososcsscsosssssssssssassssssasssssacaes
Communication Type..... 6t e e e s eseccsecss et s esccseeasecssnnns
ProCessS FileSeieeeeseeecsseascsocosassessessesascssssssssassssssas
Sync ID for Duplicate Request DeteCtiON..sececcssssscccsssaes
Interprocess Communication EXamPle...ceceecceceeecoscecesasssanse
SYStem MESSAge S eeceeecececescecsenscsscssssscsssssnsssssonsass
ErrOr RECOVEIY e eeeoeeoaoscesecscscsacscossnssssoesssassnsscssses

¢« o o
111
~NSJOY U

O WO W LWWLWW m?ooommoooooooooooo

e o
NN DN

NN N
| \iD\|D\D

. .

. L L[]
\O\O\iO\DO .
W N

OPERATOR CONSOLE .. eeceecsccssssssssssascscssssossssassssssccsssss
General Characteristics of the Operator Console...cessecasee
Summary of Applicable ProcedUreS...ceceeeececssssescccasass
Writing @ MESSAg@ec s cceceeeesseossscssosssssssessssssssssensa
Console Messagde FOrmateeeeceeeceecsesscsosososasessscsssoaccsas
ErrOr RECOVEIY et eeeeoceacosoooecsososcsssossssssssssosnsssssssssoes
Console Logging to an Application ProCeSS..ccessscecssseccsses

HERHE PR

.
NN NN o
| 1
\lO\U"U"I‘—‘l—'l—‘ U W WWwwhN - - = U1 W N YWY oo

e @
OOC)lOOOO
|

FILE SYSTEM ADVANCED FEATURES . ¢ cececeactssscscsssosscsosscssasssess
Reserved Link Control BlOoCKS.eeteeoeeeeossesescsccsscssasscscsscs
RESERVELCBS ProCedUr@.eccececscscsscescssasscscsscscscssssssssscs
Resident Buffering (NonStop systems ONnly)eceeseceeccecccceccns

NN

SECTION 3. PROCESS CONTROLit c e e s vsessscsscscssssssssasssssscssonssesde
INTRODUCTION e e eeeeeas . I
Process DefinitiON.e.eeeececeseecscscssecssocassssassssssssccasssssIa
PrOCeSS StAleSeieeeeeseasceascescssostscosesossoscsscsssssccsassassele
CreationN. e eceececeeeseescssasssssacsssosscacsssscsssncosasscssele

3.

EXeCUthH.--..........o.-.o.....................‘..........

HI*&JPJP‘HPH e

DeletioN.ceeeeeiaceastsceensaasansssssssssssssssssscsasssssasesle
Process ID.eec... ...3.1 8
CreatOr ceeeeeeeesesssssssasscssascasasssssasssscssnsccssssscsesldel=9
PrOCeSS PAirlS.eeeescseecsseeccesscscasscscssosssssoscsssssasssssseeldol=l0
Named Processes (Process—-Pair DirecCtoOry)ecceeecsscessecsesseall-12

Primary PrOCESS.ceeesosssssssssssssscccesnsosnsssssssssssssssdel=l2

BACKUD PrOCESSescccerssscsscscssscsssassscssssssssssssassssesldeal=l2

X1i

INITIALIZER PrOCeAUr . ececscscssssccccsasoocacsoscocccscsooccssnsesseseld=13
LASTADDR ProOCeAUIL@cceeeesssessessasceccccccsasasoncosonsssscsasocessld=1T
NUMIN ProCedUr@ecececesceccccces s i I
NUMOUT ProCeAUICececcescescseccssccsscecsoscsotossoscosoonocscssancesssld=21
SHIFTSTRING ProCeAUrCciceeecccecscccscscscscosssscssoccscsssnsascoccssd=23
TIME PrOCEAUICeceecsssossoscssssscssscsscscscscoscsssoscsccsssosssossessld=24
TIMESTAMP ProOCEAUIC.cececsececsesssscsescscssosscsscscccsosscscsosscncseeasd=25
TOSVERSION PrOCEAUICeccecescessssescscsscssesecsarsscscssssccasscesesld=26

SECTION 5. CHECKPOINTING FACILITY . cceoceeoccccccccsaaococassnoseadel=l
INTRODUCTION .. ceeeeoesoseccscnscscacsocscosssseasosascscsscssscsssssssssedel=l
Overview of Checkpointing ProcedureS..cceceececeeccccscsccscssssedal-1
Overview Of NONStOP PrOgramSecscsceccccccccccassscesosssasescessedsl=2
Overview Of ChecKpointing.eceeeceeceeeeeecsscccssassscenssscesssesdel—4
Data StaACKeeeeeeeeeeesoceesseessoessssssesssssssssssssosnsseedesl=5

Data BUfferSceecceceeceececcesssssocsosccoscsosscesnsscsoscosssssssssedsl=h

SYNC BlOCKS eeeeeeeeeeoseeecesssosssossssssssssssssnsscsscscsssbel=h

CHECKPOINTING PROCEDURES . e s s ecsccecssccoccses cececsocessssscssseDe2=1
CHECKCLOSE PrOCEAUICecescsssscssscsosssscsssoccsssscssescscssssesde2=3
CHECKMONITOR PrOCeAUIE ccsescceasccsesscscscsscscosssoscscssssscseds2=5
CHECKOPEN ProOCEAUrI Ccecscsesccsscasscsscsscssssscscscsscsssscscsscsseesdel=9
CHECKPOINT ProOCEAUrCececessccscssssccsscssscscssscscsscscsssoscesdel2=12
CHECKPOINTMANY ProOCEAUIEC.ececceessssessscssscncscsscsasssssccsesdeld=14
CHECKSWITCH ProCeAUr Ceceecescescscssescssscscsscsscssscsscssscscsedel2=17
GETSYNCINFO Procedure (AiSC fileS) eeeetessvecscecencassocsecade2=18
MONITORCPUS ProCedUr e iceceeceescsessscescscssscssscsossscscsscscscsssde2=19
PROCESSORSTATUS ProCeAUrC.eeeccscssescsssscsssssssnsssasssescceede2=21
RESETSYNC Procedure (disSC fileS)eeseeceescecsssacsccsscsccnseede2=22
SETSYNCINFO Procedure (disC fileS)eeeeeccecscscsscsccccncscesdel2=23

USING THE CHECKPOINTING FACILITY ecceoesessocsscsassassoscscosscsessdeld=1
NonStop Program StrUCtUIE.ceeceeceeeecccccccecascassnssssssssssds3d=1
Process Startup for Named ProcesSsS PairSeeecceccececcecscsceesedald=1
Process Startup for Non-Named Process PairS.cceecececcecsseseda3-9
Main ProCessing LiOOPccssessssosoosccscssssssssssesscssssescsede3d=13
File OPeN.ecceececceececasscoscssssccccccccssosscscscsssssasssssssedeld=13
ChecKkpointingeeeeeoseeeseeeceeesessseacsccccsssssccsossssnssesd.3=14
Guidelines for Checkpointingececeeeeeeeeecssssssccsscsccessde3=15
Example of Where Checkpoints Should OCCUr.ccceevecssscessade3=17
Checkpointing Multiple DisC UpdateS.ceceeececcecececeeasead.3-21
Considerations for NO-Wait I/Ocececesvsccccescccaccsscescassde3d=21
Action for CHECKPOINT FailUr@.cecccccccsccccsccccessscsessde3d~21
SYStem MESSAUECSeeteassssssscsscscsssssassssssassscscsssscssoscsseedeld=22
Recommended ACtiON...cccececssscsevsccccsassscaaccnsssssssssds3=23
Takeover DY BaCKUP:eeoeeeeosocsscsesosssssscscssscscscssescsssedeld=25
Opening a File During ProCesSSiNgecescceacscscscsscsscacascsnsasssda3d=27
Creation of a Descendant Process (PAir)eceeccecccccccoscsesesed3-28

ADVANCED CHECKPOINTINGO.-.oooooo.oo-ooooooooooooooo-ooooooo-.oc504"'l

Backup Open...‘....5.4-1
File Synchronization InformationN...eeeeecesceccccesascsacssasssssed.d=2

xiii

SECTION 9. SEQUENTIAL I/0 PROCEDURES .t cececeescccescocnasscnsscsocassd=l
CHECK " BREAK PrOCEAUI e eeeeeseeescecocscseecssooacsssssossscsceessd=d
CHECK " FILE PrOCeAUrI@.veeeecescccescccscsoasosasncsescsssscsscesssdm=b
CLOSE FILE ProOCEAUIC.ccteeeeeoecescecocsosocsossssosssssscssscssseesd=l2
GIVE"BREAK ProcedUrC..ceeeeceeeeess DU « I
OPEN " FILE PrOCEAUI @ et ceeecsescossossecasoonesesecseseasssssasessdI=l5
READ " FILE PrOCeAUI@ceeeescecscsssosssssscosscsnccccaassessassanesd=2l
SET " FILE PrOCEAUI@ccccececeescesseccsececcoosnonsssecssacacnssessdI=23
TAKE " BREAK PrOCEAUI @ .ccseeeeeeeaseccoessosesaocassonssssssssssasesdI=33
WAIT FILE PrOCEAUL .t seeeccoeccosocsaseccssccacseacococsncocasesosssd=34
WRITE FILE ProOCeAUrC..eceeececcceccccsscseacsscsscscoscsocscsssed=36
B I T OT S et eeeteseaosassescsossssscssssesoscsecsocoscscscscsscscsncsccscncssld=38
FCB StrUCEUIC ieeteecotesseossosssssssceososcscsscnosssasosssssssssssad=dl

Initializing the File FCB:icicerscscessanssssssssocsssccncnsesesd=42
Interface With INITIALIZER and ASSIGN MeSSAJE@ScecssssssscscscscsssI=46
INITIALIZER-Related DefineS.cceeceecsccccccesscccsscancscssscsscseed—46
US@ge EXAMPle e ceeeeecccsosrssssscsssscsacsssossccsssasssssssssssd=b0
Usage Example Without INITIALIZER ProCedUre@..cceecsccscessscsssasd=D4
NO ERROR PrOCEAUIE e e eeecesoeceescesessesssseasscscssssscasecccesd=56
SRECEIVE HAndlinNg.eeeeeoeeseseescsescscscssssassascssssssscseseasd=60
SRECEIVE Data TransSfer ProtoOCOl..ccccececcceccccccnccccccnoccesdI=60
NO-WAit I/0ceveceeccessssscscccccscos O Y X
Summary Of FCB AttribUteS.eceeeeececccccccsscscscscssccnscscsscsacesdI=b64

SECTION 10. FORMATTER: eeeeessscoossssscsassossscsscnssassscsscssssssslO=1
FORMATCONVERT PrOCEAUILC.cceeesscsssccscscsssscssssssssssescceesssll=2
FORMATDATA ProCedUrCecesecesscscssscssscsacssnas D N 0 E)

B Ll OIS e eatsoeesesssasossssssssssssssssesssssssscesosecscccsscseseell=9
EXample.cececeeooss N KBS R0
Format-Directed Formatting.ceeeeeeeeeesosecesscccsassssscnssseeeall=13

Format CharacteriStiCSeeceecccceeocoscsesssecscsssscasssssssssasll~1d

Edit DeSCriptOrSeecececssessosscscccccsssssssossossasscsssscsssell=17

Non-Repeatable Edit DesSCriptOrSeeececeececceeecscsssnssssssssell=20

Tabulation DeSCriptOrS.eceecescscccssesssscsccssssccsccsssssl0=20
Literal DeSCripPtOrS.ceeeesssssssscccccscscsosscsscssssssesessl0=21
Scale Factor DeSCriptOr (P)eeeeceececescessasssscsssoccnsccssesesl(0=22
Optional Plus DesCriptors (S,;SP;SS) ceceessccccscccccsscssseall=23
Blank Descriptors (BN, BZ)ececeeesesscosessessssssssssscssesl0=24
Buffer Control DeSCripPtoOrsS (/r:) ceceecsccccssccecccncessessl0=24
Repeatable Edit DeSCriptOrSeesceccecccesescsccsccascasccsscssessll=26
"A" Edit DeSCripPtOreecieccsecsccceccsccsscsccssssssccssssessasell=26
"D" EJit DESCripPtOr ecceseecsscssscasssssssscssssssssocscesssl0~28
"E" Edit DESCIripPtOr ceeeecseccssscsscsssscssssssassssssssceesl0-28
"F" Edit DeSCriptOrcccececescasassssssocsosesscssccssssseseseall=31
"G" Edit DeSCripPtOrececesscscceesscssccsssscassasccnssssecsssl0=32
"I" EQit DeSCriptOreeceeeeeeseeeceesesososssssossocsssssssesssl0-34
"L" Edit DeSCriptOrececceeccececccssssssssssssssssssssssscaassl0=35
"M" Edit DeSCripPtOr.eicessccecsscssscccsascscssssssasssscsnsssesl0=37
MOAifiErSeeeeeeeseecsossasssssscsssssssscsscssssassccccscsnnssssessl0-40
Field Blanking Modifiers (BN, BZ) eeeecececccossscscscssscssssl0-40
Fill Character Modifier (PL) ceseseecocssssasccscsssssessssasll=40
Overflow Character Modifier (OC) ceceecesosssasssccosscsssssssll~41
Justification Modifiers (LJ; RJ) ceoceeecccccsssscecosascccassll=4l
Symbol Substitution Modifier (SS)esceccccccescssssccccsosessll0=-42

Xv

FIGURES

Volume 1

1-1.
1-2.

NN NDNONDNDNDNDDNDN

[T I Y T O I A R I B
HFHFEWOOIOAUT WNDH O

w

= O e o . o o . . o o .
¢ o

GUARDIAN Operating System: Mirror VOlUMES..eeeeeeessassseasal=2
A Primary/Backup ProCess Pairfeceecscececscscscsccecaccsssces eeeeel=9
FileSeeeeoans ctesssstesssesecesscasnesnnns ceessesscenas ceeesl=11
Checkpointing.eceeec... cecccssesscsecsessenonenee cecesscanas 1-15
Files Open by a Primary/Backup ProCess Pail.eeeceecscccecesssoal—16
Disc File OrganizatiON.cescececsscsss ceeessessnssssescseaesl
Communication with a Process via Process IDeceeecececocceesl
Communication with a Process Pair via Process Nam€..soeees.2
SRECEIVE Fil@eeoeeeeeeesssseeeosoenssssaassscscsssosossons
Wait versus NO-WAit T/0cecececosccecccssssosscsssoscascasss
No-Wait I/0 (Multiple Concurrent OperatioOnsS).cececcscccecs
Hardware I/0 StruUCtUr€ecesssscessssnasascs cescteccsssenens
Primary and Alternate Communication PathSeeecececcecccsss .
File System Procedure EXeCUtiON.:ceeceeecccosccscecssscsess
File OPeNeceesctossscsosccosscsssscssssssscssssssscsssssssse
File TransSferceeesesecccsoscssscesesssssasossssssssscssssssass
Bufferlng............... cececscscecsctsssessssens
Mirror VolUmEeeseeoococosa s e eseceses s rsesesssssssesasenes
Action Of AWAITIO:.ceceeceocssasoascssass ceessecensessenaas
File Security CheCKing.ceeeeeoeoeeossassascasascas ceocscetnnn
File System Path Error RECOVEIVeeescescsscsscsccsocccssncas
Transfer Modes for TerminalS.cccececeescecesccscsccnnnccss .
Conversational Mode Interrupt CharacterS..ceecececececess?,
Page Mode Interrupt CharaCterSecesececccccecccescassssasassala

2

2

¢« o o

il

i
WWNOHFHFHIT WNdFRFWNDNNNNNDHEFEFHFI

N
WNOHBWNUKFAWEBNOYIHNOOOROONUIWOWOUIUITWOOUIN

%(»UJHFHPJTFJHFJFJH'

(O

o o o

DDNODNNDNDNONDNNDNDNDNDDNDNOND
o o & o o o o
| LI I |

BREAK: Single Process pPer TerminNadleecsececcecsscssccscccssss

Break MoOde@..ceeeescccccoces cecescsssssscssseccsscccsceasas

Exclusive Access USing BREAK.::.ccoooosscsascoscesaccascccccs 2
Column-Binary Read Mode fOr CArdS.ecesccecsccsscsssoscscscaes
Packed-Binary Read Mode fOr CardS.ceecescsccsccsccsscccocnas
Link Control BloCKSee et eseeesseseescssssscccaccscacossscsle
Resident Buffering (NonStop SysStems ONnly) ceeeeececccceccesl,
Program VersSUS PrOCESSceccescscscssccsssssscsssscsscsass PR
A Process (NONStOP SYSLEMS) esevereeosossssssassssscancssssl
A Process (NONStOp I SYStEMS) ceeoecscscosssscccsssccnasssel
ProCcess PairSceceeccececescecsctssssssscsesassssssssssssescsassele
Home Terminalecececscesecssscsosscecessscsascscsssscssscssccassle
EffeCt Of STEPMOM .t ceteecacaccascssscsssscssssacsosssasssalde
EXecution Priority EXamPleecseececosscsscsosrscccssassososscsssssl

O Ul Ut e
|

ool

DN o o
e o

o« N e e
K
s

Xvii

SYNTAX CONVENTIONS IN THIS MANUAL

The following is a summary of the characters and symbols used in the
syntax notation in this manual.

NOTATION

UPPER-CASE
CHARACTERS

<lower ~case
characters>

Brackets

Braces

Ellipses

MEANING

All keywords and reserved words appear in capital
letters. (A keyword is defined as one that, if it
is present at all in the context being described,
must be spelled and positioned in a prescribed way,
or an error will result. A reserved word is one
that can only be used as a keyword.) If a keyword is
optional, it is enclosed in brackets. If a keyword
is required, it is underlined.

All variable entries supplied by the user are

shown in lower-case characters and encleosed in angle
brackets. If an entry is optional, it is enclosed
in brackets. If an entry is required, it is
underlined.

Brackets, [], enclose all optional syntactic
elements. A vertically-aligned group of items
enclosed in brackets represents a list of selections
from which one, or none, may be chosen.

A vertically-aligned group of items enclosed in
braces, { , represents a list of selections from
which exactly one must be chosen.

An ellipsis (...) following a pair of brackets that
contains a syntactic element preceded by a separator
character indicates that that element may be
repeated a number of times. An ellipsis following a
pair of braces that contains a series of syntactic
elements preceded by a separator character indicates
that the entire series may be repeated, intact, a
number of times. (NOTE: 1In coding syntax of this

Xix

<parameters> are described as follows:

<parameter>,<type> : 1ref i [: <num elements>],
value

<type> is INT, INT(32), or STRING

"ref" indicates a reference parameter. Note that
if a parameter is a "STRING:ref" parameter, a word-
addressed variable (e.g., INT) can be passed for
that parameter; the TAL compiler will produce
instructions to convert the word address tc a byte
address. Note, however, that on NenStop systems,
an invalid address will result if the word address
is greater than 32767.

<num elements> indicates that the procedure returns
a value of <type> to <parameter> for <num
elements>. An asterisk "*" in this position
indicates that the number of elements returned
varies depending on the number of elements
requested.

"value" indicates a value parameter.

XX1i

SECTION 1

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM

The basic design philosophy of the Tandem NonStop and NonStop II
Systems is that no single module failure will stop or contaminate the
system. This capability is referred to by Tandem Computers as

"NonStop" operation.

Overseeing NonStop system operation is the Tandem GUARDIAN
operating system. The GUARDIAN software provides the multiprocessing
(parallel processing in separate processcr modules), multiprogramming

(interleaved processing in one processor module), and NonStop
capabilities of the system.

In a typical system, master copies of the GUARDIAN operating system,
configured for the specific application, are kept in a "system" area
(for NonStop systems) or a specially named "SYSnn" subvolume (for
NonStop II systems) on a "mirrored" disc volume. (See figure 1-1.)
Critical and frequently used parts of the GUARDIAN operating system
are resident (i.e., always present) in each processor module”s memory.
As such, the system”s capabilities are maintained even if a processor
module, i/o channel, or disc drive fails. Non-critical or less
frequently used parts of the GUARDIAN operating system are virtual,

and are brought into a processor module”s memory from disc only when
needed.

1-1

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM

® The capability for processes to communicate with each other
regardless of the processor module where they are executing

e Providing the virtual memory function by automatically bringing
absent memory pages in from disc when needed

@ Scheduling processor module time among multiple processes according
to their application-assigned priorities (a "process" is an
executing program)

The GUARDIAN operating system provides an additional and extremely
important function. Concurrent with application program execution,
the GUARDIAN operating system continually checks the integrity of the
system. This is accomplished as follows: The GUARDIAN operating
system in each processor module at a predefined interval transmits
"I’m alive" messages to the GUARDIAN operating system in every
processor module (this interval is typically one second). Following
this transmission, the GUARDIAN operating system in in each processor
module checks for receipt of an "I“m alive" message from every other
processor module. If the operating system in one processor module
finds that a message has not been received from another processor
module, it first verifies that it can transmit a message to its own
processor module. If it can, it assumes that the non-transmitting
processor module is inoperative; if it can”t, it takes action to
ensure that its own module does not impair the operation of other
processor modules. In either case, the operating system then informs
system processes and interested application processes of the failure.

An application program "sees" operating system services as a set of
library procedures. The library procedures have names such as

"READ", "WRITE", "OPEN", etc. To request an operating system service
(e.g., input), a call to the appropriate operating system procedure is
written in the application program (e.g., "READ"). (The operating
system library procedures exist in the system code area and therefore
are shared by all processes).

The operating system services that can be requested programmatically
or that affect application program design are categorized as follows
(overviews of each of these services are given in the remainder of
this section):

® Process Control (run, suspend, and stop programs). Process control
services are described in detail in

~ Section 3. PROCESS CONTROL

e File system (perform input/output operations). File system
services are described in detail in

- Section 2. FILE SYSTEM
® System Messages (communicate information from the GUARDIAN

operating system to application processes). System messages are
described in detail in

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM

PROCESS CONTROL

A "process" is the execution of a program under control of the
GUARDIAN coperating system. It is the basic executable unit known to
the operating system. Specifically, the term "program" indicates a
static group of instruction codes and initialized data -- the output
of a compiler; the term "process" denotes the dynamically changing
states of an executing program. The same program file can be
executing concurrently a number of times; each execution is a separate
process.

The executing environment of a given process is a single processor
module (the processor module where a process executes is specified at
run time). A process”’s environment consists of a code area,
containing instruction codes and program constants, and a separate
data area, containing variables and hardware environment information.
A given code area is shared by all processes that are executing the
same program file. This is permissible because information within the
code area cannot be modified. Each process, however, has its own
separate, private data area.

The following terms referring to processes are used throughout this
manual (for a more complete explanation, refer to section 3,
"Process Control"):

@ Process Creation

The term "process creation" refers to the action performed by a
special system process called the "System Monitor" when a program
is initially prepared for execution. Process creation is initiated
by application programs or by the Command Interpreter (COMINT)
through the process control NEWPROCESS procedure.

When the Command Interpreter is used to run a program, a "startup"
interprocess message is sent to the newly created process. This
message contains default disc volume and subvolume names, names of
input and output files, and any application-dependent parameters
specified through the RUN command. The startup message can be read
by the new process via standard GUARDIAN file management
procedures. (See "Interprocess Communication" in section 2.9.)

e Creator
Another term, "creator", refers to the process that initiated a
process creation (by calling the NEWPROCESS procedure). For
example, the Command Interpreter is the "creator" of processes it
starts when the RUN command is given.

Certain attributes are associated with being a creator:

- A creator receives a notification if a process it has created is
deleted.

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM

Process Structure

The process structure provided by the GUARDIAN operating system allows
a program to be written as though it could run on a processor of its
own. This abstraction is possible because

® each process executes independently of and without interference
from all other processes

® ecach process”s environment is private from all other processes

The process structure allows program functions (whether they are
operating system or application functions) to be modularized. Modules
can be written and tested independently of other modules. If a module
is known to execute correctly when run by itself, it will be assured
of running when run concurrently with other modules.

The GUARDIAN operating system is essentially a collection of
processes, each process performing a specific function. For example,
a memory manager process provides the virtual memory function for its
processor; an i/o process (of which there are many) controls one or
more similar i/o devices.

Processes communicate information among one another via messages.

(P1) » MESSAGE » (P2)
(P) = process
For example, a GUARDIAN memory manager process may request that a

GUARDIAN disc i/o process bring an absent memory page in from disc.
The request is sent in the form of an interprocess message:

(MMP) » BRING IN PAGE N » (DISCP)

Applications are structured in much the same way as the operating
system. That is, specific functions are performed by independent
processes which communicate with each other via interprocess messages.

A common structure for applications is the "requestor/server"
process relationship. With this structure, one or more "requestor"
processes make requests of a common "server" process (an application
may consist of several of the requestor/server relationships). A
request is made in the form of an interprocess message (sent via the
file system). The server makes a reply to the message via the file
system (the reply usually consists of the requested data).

> REQUEST >

(RP) (SP)
» REPLY >
(RP) = requestor process (SP) = server process

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM

PRIMARY BACKUP
PROCESS PROCESS
(PERFORMS THE WORK) (MONITORS THE PRIMARY}

CHECKPOINT MESSAGES =l (A’)

o

(A)

(GUARDIAN
OPERATING SYSTEM)

SYSTEM MESSAGES

Figure 1-2. A Primary/Backup Process Pair

A process pair is typically identified by a single process name. A
process pair”s process name is entered into the Process-Pair Directory
(PPD) when the first process of the pair is created. Also at this
time, the identity of the "ancestor process" is entered into the PPD.
(An "ancestor process" is the process responsible for creation of the
first member of a process pair). The PPD provides capabilities that
are useful for NonStop programming. For example, one member of a
process pair is notified if the other member stops executing; the
ancestor process is notified when the process name is deleted from the
PPD (the latter occurs when the last process associated with a process
name stops or fails). There are also NonStop aspects of

communicating with named process pairs (see "File System", section 2).

Process Control Functions

Process control operations are performed by calling the GUARDIAN
process control procedures. These procedures include:

NEWPROCESS creates a process (runs a program) and, optionglly,
gives it a name (if a name is given, the name 1is
entered into the Process-Pair Directory)

MYTERM provides the file name of a process”s home terminal
DELAY suspends the calling process

PRIORITY changes the calling process”s execution priority
STOP deletes a process with a normal indication

ABEND deletes a process with an abnormal indication

1-9

INTRODUCTION TO THE GUARDIAN OPERATING

SYSTEM

INPUT/OUTPUT

APPLICATION
PROCESS

FILES

-

=
=

TERMINAL

e

e.g. “$TERM1”

| uNe
*1 PRINTER

/—

e.g."$LP”

e.g. “STAPE1”

OTHER
PROCESSES

$RECEIVE
process ID

mre—T

TM—4n<n

OPERATOR CONSOLE

30"

e.g. "$VOL1 SVOL1 FNAME”

DISC FILES

—~—

> NON-DISC DEVICES

> INTERPROCESS FILES

$ OPERATOR CONSOLE

Figure 1-3. Files

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM

Then to write (output) to the file, the file system WRITE
procedure might be called in the following manner:

CALL WRITE(filenumber,buffer,count):;
"buffer" is an array in the program”s data area containing the
information to be written. "count" is the number of bytes to be
written.
Or to read (input) from the same file:
CALL READ(filenumber,buffer,count,numread) ;
Several other procedures are provided for performing device-dependent

operations.

UTILITY PROCEDURES

As part of the operating system, procedures are provided to perform
utility operations. These include:

DEBUG calls the system debug facility

FIXSTRING is used to edit a string of characters based on
information supplied in an editing template

HEAPSORT sorts an array of equal-size elements in place

INITIALIZER reads the startup message and, optionally, the ASSIGN
and PARAM messages to prepare global tables and
initialize File Control Blocks (FCB”s)

LASTADDR provides the global (“G”[0] relative) address of last
word in the application®s data area

NUMIN converts the ASCII representation of a number into its
binary equivalent

NUMOUT converts the internal machine representation of a
number to its ASCII equivalent

TIME provides the current date and time

SYSTEM MESSAGES

The operating system sends messages directly to application processes
to inform the application of certain system conditions. These are
referred to as "system messages". System messages are read using the
GUARDIAN file system procedures. Examples of system messages are:

® CPU Down - processor module failed.

PRIMARY
PROCESS

—
A

READ entry from terminal
READ record from disc

update record in memory

CHECKPOINT

WRITE updated record to disc

A —

BACKUP
PROCESS

CHECKMONITOR

ﬁ.
A
READ...
READ. .
update...

CHECKPOINT...

L o~

WRITE...

——

THE BACKUP STAYS IN CHECKMONITOR WHILE THE PRIMARY IS OPERATIONAL .
IF THE PRIMARY FAILS, THE BACKUP LEAVES CHECKMONITOR AND BEGINS
EXECUTING AT THE POINT INDICATED BY THE LAST CALL TO CHECKPOINT BY

THE PRIMARY.

Figure 1-4. Checkpointing

When the checkpointing facility is used, each process in a process
pair has the same set of files open, as shown in figure 1-5.
ensures that the backup process has immediate access to the files in

the event of the primary”s failure.

This

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM

e Uncorrectable Memory Error
e Map Parity Error (NonStop systems only)

Generally, the first four trap conditions are caused by coding errors
in the application program. The last four errors indicate a hardware
failure or, in the case of "nc memory available", a configuration

problem. These are beyond control of the application program.

A procedure, ARMTRAP, is provided so that, if a trap occurs, control

is returned to the application program. The application program is
notified of the particular trap condition.

SECURITY

The GUARDIAN operating system”s security capability is designed to
fulfill four objectives:

e To prevent inadvertent destruction of files through purging or
overwriting

e To prevent unauthorized access to sensitive data files by
programmers or operations personnel

@ To prevent unauthorized interference with running programs
(processes)

e To provide a means of controlling intersystem accesses between
network nodes

Security is enforced by assigning a group name, a user name, and
(optlonally) a password to individuals that are to access the system.
File security may be set at three levels:

e User -- Only the user that created a file (a file”s owner) may
access the file.

@ Group -- Only members of the group asscciated with the file”s owner
may access the file.

e Any -- Any user of the system may access the file.

For each file, file access at each level may be restricted to reading,
writing, executing, and/or purging.

To provide control over system security, a system has a single user
designated the "super ID". The super ID is responsible for creating
new groups in the system. Each group has a single user that is
designated the group manager; the group manager is responsible for
creating new users in its grcocup. The super ID additiconally has full
access to any file in the system.

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM
?SOURCE $SYSTEM.SYSTEM.EXTDECS (OPEN, READ, WRITE, CLOSE,
? NEWPROCESS, ABEND, STOP, MYTERM)

compiles only the external declarations for the OPEN, READ,
WRITE, CLOSE, NEWPROCESS, ABEND, STOP, and MYTERM procedures.

SECTION 2

FILE SYSTEM

This section provides a general overview of the following:

Files

File Access

Access Coordination among Multiple Accessors
Wait/No-Wait I/0

File System Implementation

Error Indication

Error Recovery

FILES

Input/output operations are performed by transmitting blocks of data
between an application process and files. A file can be all or a
portion of a disc, a device such as a terminal or a line printer, a
process (i.e., running program), or the operator console.

A file is referenced by the symbolic file name that is assigned when
the a file is created. A file name consists of two to twenty-four
characters.

Disc Files
The ENSCRIBE (TM) Data Base Record Manager, an integral part of tbe
GUARDIAN operating system, provides access to and operations on disc

files. The ENSCRIBE software supports the following four file types:

°® Key-Sequenced Files (records are placed in a file in ascending
sequence according to the value of a "key field" in the record)

) Relative Files (records are stored relative to the beginning of
the file)

® Entry-Sequenced Files (records are appended to a file in
the order they are presented to the system)

FILE SYSTEM
Introduction

used by other files.

Also specifiable at disc file creation is an optional "file code".
This is an integer whose meaning is entirely application-dependent
(except that codes 100 through 999 are reserved for use by Tandem
Computers Inc.).

For a disc drive having a removable pack, the disc file can be
designated at SYSGEN (system generation) time to have a "logically"
removable volume. (A disc drive may, in fact, have a "physically"
removable volume that will never be removed.) To mount a new volume in
place of a currently mounted volume, the MOUNT command of the
Peripheral Utility Program (PUP) is used. Logical intarlocks exist in
the file system to ensure that an in-use volume cannot be demounted
(this interlock can be overridden) and that once the command is given
to mount a new volume, further accesses to the mounted volume are
prohibited.

Operations with disc files are described in detail in the ENSCRIBE
Programming Manual. -

Non-Disc Devices

Non-disc devices are items such as terminals (both conversational and
page mode), line printers, magnetic tape units, card readers, and data
communications lines. A file representing a non-disc device is
referenced by a symbolic "device name" or a "logical device number”.
Device names and their corresponding logical device numbers are
assigned at SYSGEN time.

What constitutes an input/output transfer with non-disc devices is
dependent on the characteristics of the particular device involved.
On a conversational mode terminal, for example, a transfer is one
line of information; on a page mode terminal, a transfer is one page
of information; on a line printer, a transfer is one line of print;
on a magnetic tape unit, a transfer is one physical record on tape.

Operations with non-disc devices are described in detail in

® Section 2.5. TERMINALS

® Section 2.6. LINE PRINTERS
® Section 2.7. MAGNETIC TAPES
® Section 2.8. CARD READERS

Note: The ENVOY (TM) Data Communications Manager, an extension to the
GUARDIAN operating system, provides an interface between
application programs running in NonStop and NonStop II systems
and data communications networks. Some features of ENVOY are:

FILE SYSTEM

Introduction
ONE-WAY MESSAGE:
ORIGINATOR DESTINATION
(A) MESSAGES > (B)
TWO-WAY MESSAGE:
ORIGINATOR SERVER
REQUEST —-
(A) (B)
<= REPLY

Figure 2-2. Communication with a Process via Process ID

The process name form of the process ID uniquely identifies a

process or a process pair in the system. Process names can be
predefined so that processes can be known throughout the system in the
same manner as other device types (e.g., line printer) are known
throughout the system. If a process [pair] is to be identified by

the process name form of the process ID, its process name (which can
be either application-defined or system generated) is assigned before
the new process is created. A process name consists of a dollar sign
"S$" followed by one to five alphanumeric characters (the first must be
alphabetic), optionally followed by one or two "qualification" names
(see "File Names", section 2.2).

As shown in figure 2-3, there are certain NonStop aspects involved if
communicating with a process pair. The primary process of the pair,
while it is operable, receives (and replies to) all communications.

If the primary process or its processor module fails, the backup
process becomes the primary process and receives (and replies to)
communications. The switch from the primary process to the backup
process as the destination of a communication is performed
automatically by the file system and is invisible to the originator of
the message.

2.1—5

FILE SYSTEM
Introduction

Several interprocess messages can be read and queued by the
application process before a reply need be made. If one or more
messages are to be gqueued, the maximum number of messages that the
application process expects to queue must be specified. To identify
each incoming message and direct a reply back to the originator of the
messade, a "message tag" must be obtained in a call to a file

system procedure. When reply is sent for a particular message,

the message”s associated "message tag" is passed back to the system.

Interprocess communication is described in detail in

® Section 2.9. INTERPROCESS COMMUNICATION

Operator Console

A process may log messages on the operator console through a special
file referenced by the file name $0 (verbally, "dollar zero"). The
operator console is a write-only file (i.e., can be written to only).
Console messages are prefixed with the current date and time and the
ID of the process that logged the message. There is no special format
imposed for logging messages on the operator console.

Operations with the operator console are described in detail in

® Section 2.10. OPERATOR CONSOLE

FILE ACCESS

Communication between an application process and a file is established
through the file system OPEN procedure. An array in the application
process”s data area, containing the symbolic file name of the file to
be accessed, is passed as a parameter to the OPEN procedure. 1In
return, OPEN provides a process-unique "file number" that is used to
identify the file when making subsequent file system procedure calls.

For example, to establish communication (open a file) with a terminal
referenced by the device name "$TERM1", the following would be written
in an application program: '

INT .filename{0:11] := ["STERM1",9 * [" "]], data declarations.

filenum,numxferred,
.buffer[0:35];

!
!
!
Communication is established using the OPEN procedure:

CALL OPEN(filename,filenum);

OPEN establishes communication with the terminal identified by
STERM1. A process-unique file number is returned in "filenum".

FILE SYSTEM
Introduction

CALL OPEN (disc”fname,filenum);

opens a disc file referenced by the file name in "disc”fname".

Associated with each open disc file are three pointers: a
"current-record" pointer, a "next-record" pointer, and an
"end-of-file" pointer. Upon opening a file, the current-record and
next-record pointers are set to point to the first byte in the file.
A read or write operation always begins at the byte pointed to by the
next-record pointer. The next-record pointer is advanced with each
read or write operation by the number of bytes transferred; this
provides automatic sequential access to a file. Following a read or
write operation, the current-record pointer is set to point to the
first byte affected by the operation. The next-record and
current-record pointers can be set to an explicit byte address in a
file, thereby providing random access. The end-of-file pointer
contains the relative byte address of the last byte in a file plus
one. The end-of-file pointer is automatically advanced by the number
of bytes written when appending to the end of a file.

Sequential access to an unstructured disc file is implied. A data
transfer operation with an unstructured disc file always starts at
the location pointed to by the current setting of the next-record
pointer: ‘

CALL READ(filenum,buffer,512,numxferred);

transfers 512 bytes from the disc file starting at relative byte
zero into "buffer". The next-record pointer is incremented by
512, the current-record pointer points to relative byte zero.

CALL READ(filenum,buffer,512,numxferred);

transfers 512 bytes from the disc file starting at file byte 512
into "buffer". The next-record pointer is incremented by 512
and now points to relative byte 1024; the current-record pointer
points to relative byte 512.

Random access to a disc file is provided by the file system POSITION
procedure. This procedure is used to set the current-record and
next-record pointers:

CALL POSITION(filenum,4096D);

positions the file pointers to point at relative byte 4,096.

FILE SYSTEM
Introduction

ORIGINATOR (A) DESTINATION (B)

rname “:=" "SRECEIVE";
CALL OPEN (pidb,bfnum); CALL OPEN (rname,rfnum);

"pidb" contains B“s process ID

CALL WRITE(bfnum,..); —— MESSAGE — CALL READ(rfnum,...);

A sends a message to B via B”s process ID. B reads the
messade via its $SRECEIVE file.

A two-way messade could occur with a process identified by the
process name form of process ID as follows:

ORIGINATOR (A) SERVER ($SERVE)
sname “:=" "$SERVE"; rname “:=" "$SRECEIVE";
CALL OPEN (sname,snum); CALL OPEN (rname,rnum,,l):;

. .
- .
.

r—————REQUEST MESSAGE ————— CALL READUPDATE (rnum, ..);

CALL WRITEREAD (snum, ..); the message is processed
by the server and a reply is
generated
REPLY MESSAGE —— CALL REPLY (..):

A sends a request to $SERVE and waits for a reply in the call to
WRITEREAD. SSERVE reads the message from its SRECEIVE file via a
call to READUPDATE. When the reply is ready, it is sent back to
A via a call to REPLY. When A receives the reply, WRITEREAD
completes and A resumes processing.

ACCESS COORDINATION AMONG MULTIPLE ACCESSORS

A file may be accessed by several different processes at the same

time. 1In order to coordinate simultaneous access, each process must
indicate, when opening the file, how it intends to use the file. Both
an access mode and an exclusion mode must be specified.

The "access mode" specifies the operations that will be performed by
an accessor. The access mode is specified as one of the following:

® Read/Write (default access mode)
@ Read-Only

® Write-Only

2.1-11

FILE SYSTEM
Introduction

WAIT/NO-WAIT I/0O

The file system provides the capability for an application process to
execute concurrently with its file operations.

Two definitions:
e Wait I/0 (the default)

"Wait" i/o means that when designated file operations are performed
(i.e., via file system calls), the application process 1s
suspended, waiting for the operation to complete.

e No-wait I/O

"No-wait" i/o means that when designated file operations are
performed, the application process is not suspended. Rather, the
application process executes concurrently with the file operation.
The application process waits for an i/o completion in a separate
file system call.

The operation of wait and no-wait i/o is illustrated in figure 2-5.

WAIT I/0
! l OPENED AS A “WAIT” FILE
INITIATE
S —— CALL READ (f1, .. .);

COMPLETE

NO-WAIT I/O

OPENED AS A “NO-WAIT” FILE

INITIATE CALL READ (f2,...);

& CONCURRENT
EXECUTION

Yy
COMPLETE CALL AWAITIO (f2,...);

Figure 2-5. Wait versus No-Wait I/O

2.1-13

FILE SYSTEM
Introduction

MULTIPLE CONCURRENT OPERATIONS

ONE FILE:

;

7/
INITIATE 1
y
INITIATE 2 I
COMPLETED
IN THE ORDER —
AS INITIATED
y
COMPLETE 1
\
COMPLETE 2
\

'

TWO FILES, ONE CONCURRENT
OPERATION EACH (1.LE,TWO TOTAL):

f=file number

CALL WRITE (f3,...);

CALL WRITE (f3, ..);

CALL AWAITIO (f3,...);

CALL AWAITIO (f3,...);

TWO FILES, ONE CURRENT OPERATION WITH
ONE, TWO CONCURRENT OPERATIONS WITH
THE OTHER (I.E., THREE TOTAL):

INITIATE fé& CALL READ (f4,...); 'I INITIATE 6 1 l CALL WRITE (f6, .. .);
/
Y / i
I INITIATE 5] CALL READ (f5,...); / I INITIATE 7 I CALL READ (f7,...);
/
Y
/ INITIATE 6 2 CALL WRITE (6, .. .);
// —
COMPLETED IN THE
SAME ORDER AS
anyfile : = —1; INITIATED
s LETE Y anyfile : = -1
FIRST DONE CALL AWAITIO A
(anyfile, . . .); A COMPLETE CALL AWAITIO(anyfile, . . .);
CALL AWAITIO / y
(anyfile, . . .); / COMPLETE CALL AWAITIO (anyfile, . . .);
/ !
/ I COMPLETE l CALL AWAITIO (anyfile, . . .);
FIRST DONE OF l
“f6 1" OR "7

Figure 2-6.

No-Wait I/0 (Multiple

Concurrent Operations)

2.1-15

connected to a single channel.)

e The i/o controller

FILE SYSTEM
Introduction

The i/o controller provides the electrical interface between an i/o

device and the i/o channel.

of controlling multiple devices.)

(I/0 controllers are generally capable

Two physically independent communication paths are accomplished as

follows:

e The two interprocessor buses provide two independent communication

paths between processor modules.

still available.

If either bus fails,

the other is

e 1/0 controllers have two interface ports and are connected to the

i/o channels of two processor modules.

If one channel fails,

control of the i/o controller is accomplished via the i/o channel
connected to the other processor module.

The hardware i/o structure is depicted in figure 2-7.

INTERPROCESSOR BUSES

1/O CHANNEL

TERMINAL

P P

9| puaLrorT |©
? CONTROLLER ?

1/0 CHANNEL

Figure 2-7.

Hardware I/0 Structure

2.1-17

FILE SYSTEM
Introduction

original primary processor module is reloaded. (See the NonStop
System Management Manual or the NonStop II System Management Manual
for an explanation of "cold load" and "reload".)

Figure 2-8 depicts the primary and alternate communication paths to a
device. While the primary path is operable, all i/o transfers occur
via that path. Only when a failure of the primary path is detected
does the alternate path come into use. Once an alternate path is
brought into use, it becomes the primary path and is used exclusively.

PRIMARY PATH

_/

GUARDIAN

GUARDIAN

<

ALTERNATE PATH

f'
GUARDIAN GUARDIAN GUARDIAN
N
N X
A G

- PRIMARY SYSTEM 1/0 PROCESS
~ BACKUP SYSTEM I/O PROCESS
— APPLICATION PROCESS

Figure 2-8. Primary and Alternate Communication Paths

2.1-19

FILE SYSTEM
Introduction

File System Procedure Execution

File system procedures reside in operating system code, but execute in
the application process”s environment. When a file system procedure
(or any operating system procedure, for that matter) is called by an
application process, the system procedure”s local storage is allocated
in the application process®s data stack, as shown in figure 2-9. The
maximum amount of local storage required by a call to a system
procedure is approximately 400 words.

File Open

The OPEN procedure establishes a communication path to a file. The
symbolic file name that identifies a file is used to search a table, a
copy of which resides in each processor module, called the Logical
Device Table. The Logical Device Table contains an entry for each
device connected to the system. Each entry contains a device name or,
in the case of disc files, a volume name, the process ID of the
primary system i/o process that controls the device/volume, and the
process ID of the backup system i/o process that controls the
device/volume.

2.1-21

€T-1°¢

*0T-¢ 2anbtd

usdo STTd

| SYSTEM DATA (I) —|

OR DESTINATION

CONTROL TABLE (II) |

| /7 3SYSTEM /7
LDEV 3
| 7 BACKUE S |
$VOLUME LDEV 4
PRIMARY
| BACKUP ~|——————
L STERMI 77/
LDEV5 - CHECKPOINT
/7 BACKUP 277
/// STERM2 7/}
Y/, PRIMARY ///] LDEV 6 o DISC s
110 PROCESS 110 PROCESS
APPLICATION PROCESS |
|-— —_— _ — W (BACKUP) (PRIMARY) FILE
| DIRECTORY CONTROL
DN, BLOCK
INT.flleAname [0:11}; = $VOLUME $VOL2 MYFILE EOF PTR
[— 7 SVoL2 DATA ADDRESS
1 FILEA \ > R
\ INT filenum: I V" EOF PTR //A :
DA
\ | | | | U DATA ADDRESS 4 \ SRR
\ N\ \ 7. MAIN-MEMORY
\ \ —_— e SYOL2 RESIDENT IN
I | MYFILE 1/0 PROCESS'S
FILE | ___EOF PTR PROCESSOR MODULE
| | LABEL DATA ADDRESS
| CALL OPEN (file“name, filenum,.); / / | :
| / / CA(;:I\?TEF?:L 20022
TFILE
—_— 1 BLOCK l 2oy
- 7/ LDEV 4
l_ FILE NAME
CUR-REC PTR
FILE
T-REC PTR |
TABLE L NEXT-AEC PTR
\©
1 | "ACE ADDRESS
2
3
4 |
5
D
6 NN A 1
MAIN MEMORY RESIDENT OPERATING SYSTEM IN APPLICATION r T T
| PROCESS'S PROCESSOR MODULE A
I: Tandem NonStop Systems
II: Tandem NonStop II Systems

uoT3OoNpoOIUI
WHLSAS dT1Id

S¢-1°¢

*TI1-Z 21inb1d

isjsuei] o1id

APPLICATION PROCESS

| INT buffer [0:127}

L

—

N —
INT filenum;

TN

CALL READ (filenum,buffer,256,.);

SYSTEM DATA (I)

OR DESTINATION
CONTROL TABLE (II)

| MAIN MEMORY RESIDENT OPERATING SYSTEM

[SVOLUME
PRIMARY
| BACKUP
——~
| DISC
| 110 PROCESS
(PRIMARY)
A
r_ ACCESS W
CONTROL
I BLOCK FILE
LDEV 4 FILE
0] FILE NAME Cgsgcﬁgl-
k_l.> 1 ACB ADDRESS /] CUR-REC PTR ﬂ —
2 NEXT-REC PTR
3 ;/;/% DATA ADDRESS
W77 .
sp 72 LOCK QUEUE
B iioon

I: Tandem NonStop Systems
II: Tandem NonStop II Systems

uoT3onpoijul

FILE SYSTEM
Introduction

At this point, the file system (executing on behalf of the
application process) moves the data from the resident File System
buffer to an array in the application process”s (virtual) data area.

On NonStop systems, File System Buffers are obtained from a memory
space pool, called SHORTPOOL, in the operating system”s data area.
Processes redquiring File System Buffers compete for this space on a
first-come, first-served basis. If space is not available when
needed, the application process is suspended until either the needed
space becomes available or a configured timeout period expires; in the
latter case, an error indication is returned to the application
process. When an i/o transfer is completed, the space in use by the
File System Buffer is returned to SHORTPOOL for use in subsequent data
transfers.

On NonStop systems, there are three types of I/0 Buffers (the type of
buffer that a device uses is specified at system generation time):

@ Pooled buffers - buffer space is secured from an i/o buffer pool,
called IOPOOL, in the operating system”s data area. I/0 processes
controlling devices using pooled buffers compete for space on a
first-come, first-served basis. If space is not available when
needed, the i/o process is suspended until either the needed space
becomes available or a configured timeout expires; if a timeout
occurs, an error indication is returned to the application process.
When an i/o transfer is completed, the i/o buffer space is returned
to IOPOOL for use in subsequent data transfers.

e Shared buffers - buffer space in the operating system data area is
shared among two or more i/o devices on the same controller.

@ Dedicated buffers - buffer space in the operating system data area
is dedicated to a single device.

On NonStop II systems, File System Buffers are obtained from the
process”s Process File Segment (PFS). I/0 Buffers are obtained from
the i/c segments as needed by the i/o process. Processes that require
dedicated buffers obtain buffer space during initialization. Once a
process has obtained dedicated buffer space, it keeps that space until
it terminates execution.

File Close

When a file is closed, the communicaticon path to the file is broken.
The Access Control Block is deleted, and the space that it used is
returned for use as another Access Control Block. In the case of disc

files, if no other opens are outstanding for the file, then the File
Control Block is also released, and information such as the

end-of-file pointer and addresses of allocated extents is updated on

the physical disc from the information that was maintained in the File
Control Block.

2 . 1—27

FILE SYSTEM
Introduction

The backup i/o process, when notified of the primary”s failure, takes
over the primary”s duties. The first action that the backup performs
is to execute the i/o operation indicated by the latest checkpoint
message received from the primary i/o process (this occurs regardless
of whether the operation had been completed by the primary).

When the file system receives notification of the primary”s processor
module failure, after an operation has been requested but before it
has been notified by the i/o process of a successful completion, it
reinitiates the operation, this time sending the i/o request message
(containing the data, sync ID, requestor ID, and disc address) to the
backup i/o process.

Following a takeover from its primary, the backup i/o process checks
the sync ID and requestor ID in the i/o request message for a match in
the list of completed operations. If there is a match, the requested
operation has already completed, and the backup i/o process returns
the associated completion status to the file system; no other action
is taken. If there is no match, the backup i/o process has not
performed the operation. The operation is performed in its entirety,
and the operation”s completion status is returned to the file system.

The first operation is performed without incident:
CALL WRITE(fnum,...);

1. The file system sends an i/o0 request message to the primary
disc i/o process.

(A} = APPLICATION PROCESS

—[o] syncipinace

1/0 REQUEST MESSAGE (DATA, SYNCID, REQUESTOR ID)

1/0 = PRIMARY BACKUP = (l/0’)

—[o] svncipinFcs

2. In the primary i/o process:

* - The sector to be updated is read from disc.

- The sector image in memory is updated.
- The next sync ID (1) is saved.

* performed only if partial-sector write

2.1-29

FILE SYSTEM
Introduction

6. The file system increments the sync ID in the ACB.

(A)

I— m SYNC ID IN ACB (INCREMENTED)

The next operation encounters a failure:

CALL WRITE (fnum,...);

1. The file system sends an i/o request messade to the primary
disc i/o process.

(A)

—[1] syncipinAcs

(1/0) REQUEST MESSAGE (DATA, SYNCID, REQUESTOR ID)

(1/0) (1/0°)

2. 1In the primary i/o process:

* - The sector to be updated is read from disc.
-~ The sector image in memory is updated.
- The next sync ID (0) is saved.

(1/0) (1/0')

E SYNC ID IN FCB SYNCID IN FCB

* performed only if partial-sector write

2.1-31

FILE SYSTEM
Introduction

5. The file system, on behalf of the application process,
reinitiates the request, this time to the backup process.

(A)
—[] syncipinace

I/0 REQUEST MESSAGE (DATA, SYNCID, REQUESTOR ID)

6. The backup i/o process compares the requestor ID and sync ID
in the i/o request message with that of operations it has
already performed. (*) The backup recognizes that this is a
request to perform an operation it has already completed.
Therefore, the operation is not performed. Rather, the
completion status from the completed operation is returned to
the file system.

(A)
— [syncipinAcs

1/0 REQUEST MESSAGE (COMPLETION PART)

-

(1/0%)
SYNC ID IN FCB [:::]

7. The file system increments the sync ID in the ACB.
(A)

— [0] sYNCIDINACB ! INCREMENTED

* performed only if partial-sector write

2.1-33

FILE SYSTEM
Introduction

When a write is performed to a mirror volume, the (primary) i/o
process automatically writes the data on the two disc devices
comprising the volume. Both devices, when both are operable, are used
by the i/o process for reading. If one of the devices becomes
inoperable, the i/o process performs all subsequent reading from the
operable device.

When an inoperable device is repaired, the information on the
previously inoperable pack is brought up to date by means of the PUP
(Peripheral Utility Program) "REVIVE" command. The REVIVE command
copies the information from the operable pack onto the previously
inoperable pack in groups of one or more tracks. This copying
operation is carried out concurrently with requests to read or update
data in files on this volume. (An optional parameter to the REVIVE
command specifies a time interval between copying groups of tracks.
This permits the revive operation to take place without a significant
degradation of system performance.)

Four options are provided to optimize mirror volume performance when
both devices of a mirror volume are operable. These options, which
are specified at system generation time, are:

e for reading, SLAVESEEKS or SPLITSEEKS

SLAVESEEKS specifies that both devices of a mirror volume are to .
seek (i.e., perform head positioning) together. The device that is
to be used for reading data is selected at random.

SPLITSEEKS specifies that the device with its head positioned
closest to the desired cylinder is the device to be used for
reading. The alternate device”s head is not repositioned.

e for writing, SERIALWRITES or PARALLELWRITES
(10 MB and 50 MB discs only; available only on NonStop systems)

SERIALWRITES specifies that both devices are to seek together when
preparing to write. The actual data transfer completes on one
device before beginning for the other.

PARALLELWRITES specifies that both devices are to seek together
when preparing to write. Data transfers to both devices occur
concurrently. This option is allowed only if each device is
controlled by a separate hardware controller.

ERROR INDICATION

For all devices, each file system procedure sets the hardware
condition code to indicate the outcome of an operation. The condition
code settings have the following meanings:

(CCL) 1indicates that an error occurred
(CCE) indicates that the operation was successful
(CCG) indicates a warning

v il A

2.1-35

FPILE SYSTEM
Introduction

returns, in "error", the error number associated with the last
operation with the file represented by "filenum".

Specific errors are described in detail in the following sections of
this manual:

® Section 2.4. FILE SYSTEM ERRORS AND ERROR RECOVERY
® Section 2.5. TERMINALS

® Section 2.6. LINE PRINTERS

® Section 2.7. MAGNETIC TAPES

® Section 2.8. CARD READERS

® Section 2.9. INTERPROCESS COMMUNICATION

® Section 2.10. OPERATOR CONSOLE

ERROR RECOVERY

In general, errors can be categorized as follows:
1. No error

2. Informational

3. Soft (recoverable)

4. Hard (not recoverable)

5. Path errors (recoverable)

The "informational" errors are those classified as "warnings". For
example:

1 logical end-of-file encountered
6 system message received

The "soft" errors are those for which programmatic recovery is
possible or the error condition can be expected to go away. These
include errors such as

10 file already exists

11 file not in directory

40 operation timed out

73 file locked
100 device not ready
101 no write ring (magnetic tape)

102 paper out (line printer)

110 only BREAK request allowed to terminal

111 terminal operation aborted because BREAK key typed

Errors 100 - 102 require operator intervention to correct the error
condition.

The "hard" errors are those for which programmatic recovery is not
possible. These include

2.1-37

FILE SYSTEM
File Names

File names are used to access devices, disc files, processes, and the
operator console through the file system OPEN procedure.
Additionally, file names are used when creating new disc files,
purging old disc files, and renaming disc files.

There are two forms of file name - external and internal. The
"external" form is used when entering file names into the system from
the outside world (e.g., by a user to specify a file name to the
Command Interpreter). The external form is described in section 11,
"COMINT/Application Interface". The "internal" form is used within
the system when passing file names between application processes and
the operating system. This section describes the internal form (see
the EXPAND Users Manual for the internal form of the network file
names) .

The conversion from external to internal form is performed)
automatically by the Command Interpreter for the IN and OUT file

parameters of the RUN command (see section 11). For general

conversion of file names from the external to the internal form, the
FNAMEEXPAND procedure is provided.

The internal form of file names is:

<file name> ! 12 words, blank filled.
where
to access permanent disc files, use
$<volume name><blank fill>

<subvol name><blank fill>
<disc file name><blank fill>

<file name>[0:3]
<file name>[4:7]
<file name>[8:11]

to access temporary disc files, use

$<volume name><blank £ill>
the <temporary file name> returned by
CREATE (which is blank filled)

<file name>[0:3]
<file name>[4:11]

to access non-disc devices, use

<file name>[0:11] = $<device name><blank fill> or
$<logical device number><blank £ill>

to communicate with other processes, use
<file name>[0:11] = S$SRECEIVE<blank fill>

to perform READ, READUPDATE, and REPLY operations, and

FILE SYSTEM
File Names

Examples
Permanent disc file:

INT .fname[0:11] := "$STOREl ACCT1 MYFILE ";
Temporary disc file:

INT .fname[0:11] := ["S$SSTOREl ", 8 * [" "]];

only the volume name is supplied. The temporary file name is
returned from CREATE.

CALL CREATE (fname) ;

DEVICE NAMES

Device names identify particular input/output devices in the system.
They are assigned to the logical devices at system generation time. A
device name must be preceded by a dollar sign "$" and consists of a

maximum of seven alphanumeric characters; the first character must be
alphabetical.

Example:

INT .fname[0:11] := ["STERML1", 9 * [" "]];

LOGICAL DEVICE NUMBERS

Logical device numbers identify entries in the logical device table
which, in turn, identify particular input/output devices in the
system. Logical device numbers are assigned to physical i/o devices
when system generation occurs (SYSGEN). A logical device number must
be preceded by a dollar sign "$" and consists of a maximum of four
numerical characters; the maximum logical device number is 2047.

A process can determine the logical device number of its home terminal
by calling the MYTERM utility procedure.

Example:

INT .fname[0:11] := ["§$0012 ", 9 * [" "]];

SRECEIVE

SRECEIVE is a special file name used to receive and reply to messages
from other processes.

Example:

INT .fname[0:11] := ["SRECEIVE", 8 * [" "]];

FILE SYSTEM
File Names

If a process name represents a process pair and the process accessing
the pair is a member of the pair, then the process name references
the opposite member of the pair.

OPTIONAL QUALIFICATION OF PROCESS NAMES. The process name form of

a process ID can be further qualified at file open time by the
addition of one or two optional "qualifier" names. This provides for
process file names of the form:

word:

[0:3] [4:7] [8:11]

$<process name> [#<1lst qualif name> [<2nd qualif name>]]
where

#<lst qualif name>

consists of a number sign "#" followed by one to seven
alphanumer ic characters, the first of which must be
alphabetical.

<2nd qualif name>

consists of one to eight alphanumeric characters, the first
of which must be alphabetical.

Note that only the process name has meaning to the file system (it
indicates the particular process [pair] being opened). The qualifier
names have no particular meaning to the file system (they are,
however, checked for being of the proper format). Instead, their
meaning must be interpreted by the process being opened (these names
are passed to the process being opened in an "OPEN" system message).

Obtaining a Process ID

A process ID can be obtained from a number of sources:

e When the process control NEWPROCESS procedure is called to create a
new process, the process ID of the newly created process is
returned. If a process name was also entered into the PPD in the
call to NEWPROCESS, the process ID returned consists of

1]

<process designator>[0:2] $<process name>
<process designator>[3] = <cpu,pin>

® A process can obtain the process ID of its creator by calling the
process control MOM procedure. If a process”s creator is in the
PPD, the information returned is in the same form as that described
above for the NEWPROCESS procedure.

FILE SYSTEM
File Names

NETWORK FILE NAMES

File names can optionally include a system number that identifies a
file as belonging tc a particular system on a network. (See the
EXPAND Users Manual for information regarding networks of Tandem
systems.)

In this context, a file name beginning with a dollar sign, "S$", is
said to be in "local" form, to distinguish it from a file name
beginning with a backslash, "\", which characterizes the "network"
form. Specifically, the network form of a file name is:

<network file name> ! 12 words, blank filled

word[0].<0:7>
word[0] .<8:15>

\ (ASCII backslash)
<gsystem number>, in octal

word[1l:3] <volume name>, <device name>, or
<process id>
word[4:11] = same as local file name
where

<system number>

is an integer between 0 and 254 that designates a
particular system. The assignment of system numbers is
made at system generation (SYSGEN) time.

<volume name>

consists of at most six alphanumeric characters, the first
of which must be alphabetic.

<device name>

consists of at most six alphanumeric characters, the first
of which must be alphabetic.

<process id>

is in either the timestamp form or the process name
form, both of which are described below.

Note that names of disc volumes and other devices, when embedded
within a network file name, are limited to having six characters, and
do NOT begin with a dollar sign. Similar restrictions apply to the
network form of the process ID, as follows.

.2=-7

N

FILE SYSTEM
File System Procedures

The file system procedures are:

AWAITIO

CANCELREQ

CLOSE

CONTROL

CONTROLBUF

CREATE
DEVICEINFO
EDITREAD
EDITREADINIT

FILEERROR

FILEINFO

FNAMECOLLAPSE

FNAMECOMPARE

FNAMEEXPAND

GETDEVNAME

GETSYSTEMNAME

LASTRECEIVE

LOCATESYSTEM

waits for completion of an outstanding i/o operation
pending on an open file

cancels the oldest outstanding operation, optionally
identified by a tag, on an open file.

stops access to an open file and purges a temporary
disc file

executes device-dependent operations on an open file

executes buffered device-dependent operations on an
open file

creates a new disc file (permanent or temporary)

provides the device type and physical record size
for a file (open or closed)

read text records from an edit format file

is used to decide if an i/o operation should be
retried

provides error information and characteristics about
an open file

collapses an internal file name to its external form

compares two internal format file names within a
local or network environment

expands a partial file name from the compacted form
to the standard twelve-word internal form usable by
the file system procedures

returns the $<device name> or $<volume name>
associated with a logical device number if such a
device exists. Otherwise the name of the next
higher logical device is returned

supplies the system name corresponding to a system
number

provides the process ID and, optionally, the
message tag associated with the last message taken
from the $SRECEIVE file

provides the system number corresponding to a system
name

FILE SYSTEM
File System Procedures

SAVEPOSITION is used to save disc file positioning information so
that a return to that position can be made in a
subsequent call to REPOSITION

SETMODE sets device-dependent functions in an open file

SETMODENOWAIT sets device-dependent functions in a no-wait manner
for an open file.

UNLOCKFILE unlocks an open disc file currently locked by the
caller

WRITE writes information to an open file

WRITEREAD writes, then immediately reads back from an open

terminal or data communications file

For interprocess communication, WRITEREAD is used to
originate a message to a designated process then
wait for a reply message back from that process

WRITEUPDATE is used for open disc files to update data in the
location read by the last call to READ or READUPDATE
(i.e., the position indicated by the setting of the
current record pointer)

For magnetic tapes, WRITEUPDATE is used to replace
an existing record on tape (except on 5106 Tri-
Density Tape Drive)

CHARACTERISTICS

For Procedure Usage by Device Type

ALL DEVICE TYPES. The following basic set of procedures apply to all
device types:

DEVICEINFO, GETDEVNAME, OPEN, READ, WRITE, AWAITIO, CANCELREQ,
SETMODE, SETMODENOWAIT, CONTROL, CONTROLBUF, FILEINFO, and CLOSE

UNSTRUCTURED DISC FILES. In addition to the basic set of procedures,
the following procedures are used with unstructured disc files:

CREATE, NEXTFILENAME, POSITION, READUPDATE, WRITEUPDATE, LOCKFILE,
UNLOCKFILE, RENAME, PURGE, REFRESH, SAVEPOSITION, and REPOSITION

FILE SYSTEM
File System Procedures

<tag> Parameters

An application-specified double integer - INT(32) - tag can be passed
as a calling parameter when initiating an i/o operation (e.g., read or
write) with a no-wait file. The tag is passed back to the application
process, through the AWAITIO procedure, when the i/o operation
completes. The tag is useful for identifying individual file
operations and can be used in application-dependent error recovery
routines.

<buffer> Parameter

The data buffers in an application program used to transfer data
between the application process and the file system must be integer
(INT) or double integer (INT(32)) and must reside in the program”s
data area (“P” relative read-only arrays are not permitted).

<transfer count> Parameter

The transfer count parameter of file system procedures always

refers to the number of BYTES to be transferred. The number of bytes
that can be transferred in a single operation is dependent on the
device involved:

device type transfer count range

disc (o:4096{

terminal 10:4095 (NonStop systems)
0:32767} (NonStop II systems)

line printer {0:4095} (NonStop systems)
0:32767} (NonStop II systems)

magnetic tape ,0:4095} (NonStop systems, 3201 Controller)
0:4096 (NonStop systems, 3202 Controller)

0:327671 (NonStop II systems)
interprocess 10:32000
operator console {0:102}

The above figures are file system/hardware maximums for the indicated
devices. The actual maximum transfer count for a given device may be
less than the above due to the physical characteristics of a
particular device and/or the amount of buffer space assigned to the
device at system generation time (SYSGEN).

For devices permitting odd count transfers, such as terminals and
magnetic tapes, the value of the byte following the last byte of an
odd count read is not meaningful.

The count of bytes is rounded up to an even number for transfers
with unstructured disc files.

2.3-5

FILE SYSTEM
AWAITIO Procedure (all files)

The AWAITIO procedure is used to complete a previously initiated
no-wait i/o operation. AWAITIO can be used to:

e Wait for a completion with a particular file. Application process

execution is suspended until the completicon occurs. A timeout is
considered to be a completion in this case.

e Wait for a completion with any file, or for a timeout to occur. A
timeout is not considered to be completion in this case.

@ Check for a completion with a particular file. The call to AWAITIO
immediately returns to the application process regardless of
whether there is a completion or not. (If there is no completion,
an error indication is returned.)

@ Check for a completion with any file.
If AWAITIO is used to wait for a completion, a time limit can be
specified as to maximum time allotted to completing the waited-for

operation.

The call to the AWAITIO procedure is:

CALL AWAITIO (<file number>
r <buffer address>
, <count transferred>
¢+ <tag>
, <time limit>)

where

<file number>, INT:ref:l,

if a particular file number is passed, AWAITIO applies to
that file. The specific action depends on the value of the
<time limit> parameter. 1If <time limit> is a nonzero
value, the application process is suspended until a
completion occurs or the time limit expires. If passed

as 0D, a completion check is made.

if passed as -1, the call to AWAITIO applies to the oldest
outstanding operation pending on any file. The specific
action depends on the value of the <time limit> parameter.

If <time limit> is a nonzero value, the application process
is suspended until a completion occurs or the time limit
expires. If passed as 0D, a completion check is made. 1In
either case, if an operation completed, AWAITIO returns to
<file number> the file number associated with the completion.

—

2.3-7

FILE SYSTEM
AWAITIO Procedure (all files)

CONSIDERATIONS

Normally, the oldest outstanding i/o operation is always completed
first; therefore AWAITIO completes i/o operations associated with
the particular open of a file in the same order as initiated.

Specifying SETMODE 30 allows no-wait i/o operations to complete in
any order. When initiating an i/o operation, an application
process employing this option can use the <tag> parameter to keep
track of multiple operations associated with an open of a file.

Note: if SETMODE 30 is used, no-wait operations do not necessarily
complete in the order they are returned by the i/o process, or in
any other implied order.

If an error indication is returned (i.e., condition code is CCL or
CCG), the file number that is returned by AWAITIO can be passed

to the FILEINFO procedure to determine the cause of the error. 1If
<file number> = -1 (i.e., any file) is passed to AWAITIO and an
error occurs on a particular file, AWAITIO returns, in <file
number>, the actual file number associated with the error.

Each no-wait operation initiated must be completed with a
corresponding call to AWAITIO.

- If AWAITIO is used to wait for completion (i.e., <time limit> <>
0D) and a particular file is specified (i.e., <file number> <>
-1), then completing AWAITIO for any reason is considered a
completion.

- If AWAITIO is used to check for completion (<time limit> = 0D)
or used to wait on any file (<file number> = - 1), completing
AWAITIO does not necessarily indicate a completion. If an error
indication is returned and a subsequent call to FILEINFO returns
error 40 (i.e., a timeout), then the operation is considered
incomplete (AWAITIO must be called again). Any indication other
than error 40 (i.e., CCE, CCG, CCL and <error> <> 40) indicates
a completion.

If AWAITIO is called and a corresponding no-wait operation has
not been initiated, an error indication is returned (CCL) and a
subsequent call to FILEINFO returns error 26 (no outstanding
operation).

The contents of a buffer being written should not be altered
between a no-wait i/o initiation (e.g., call to WRITE) and the
corresponding no-wait i/o completion (i.e., call to AWAITIO).

If the buffer is altered, application error recovery can become
difficult, if not impossible. 1In addition, some programs which
alter the buffer before AWAITIO completion may operate correctly
on NonStop systems but fail on NonStop II systems.

The action of the AWAITIO procedure is illustrated in figure 2-14.

FILE SYSTEM
CANCEL Procedure (all files)

The CANCEL procedure is used to cancel the oldest outstanding
operation on a no-wait file.

The call to the CANCEL procedure is:

CALL CANCEL (<file number>)

where
<file number>, INT:value,

identifies the file whose oldest outstanding operation is to
be canceled.

condition code settings:

< (CCL) indicates that an error occurred (call FILEINFO).
= (CCE) indicates that the operation was cancelled.
> (CCG) is not returned by CANCEL.

example:

CALL CANCEL (some”file);
IF < THEN ! no operation outstanding.

CONSIDERATIONS

e The function of CANCEL is a subset of those functicons provided by
CANCELREQ.

2.3-11

FILE SYSTEM
CLOSE Procedure (all files)

The CLOSE procedure is used to terminate access to an open file.

When a permanent disc file is closed, if it is not open concurrently,
the file label on disc is updated with pertinent information from the
main-memory resident File Control Block, and the space in use by the
FCB is returned to a system main-memory space pool. When a temporary
disc file is closed, if it is not open concurrently, its name is
deleted from the volume”s directory, and any space that had been
allocated to the file is made available for other files.

For any file close, the space allocated to the Access Control Block
is returned to the system.

The call to the CLOSE procedure is:

CALL CLOSE (<file number> , <tape dispositicn>)

- en - aw wm m ES w S n . — —

where
<file number>, INT:value,
identifies the file to be closed.
<tape disposition>, INT:value,
specifies mag tape disposition:
where

<tape disposition>.<13:15>

rewind and unload, don”t wait for completion
rewind, take offline, don“t wait for completion
rewind, leave online, don“t wait for completion
rewind, leave online, wait for completion

don“t rewind, leave online

W N O

condition code settings:

< (CCL) indicates that the file was not open.
= (CCE) indicates that the CLOSE was successful.
> (CCG) is not returned by CLOSE.

example:

CALL CLOSE (tape”file, 1);

2.3-13

FILE SYSTEM
CONTROL Procedure (all files)

The CONTROL procedure is used to perform device-dependent i/o
operations.

If the CONTROL procedure is being used to initiate an operation with a
file opened with no-wait i/o specified, the operation must be
completed with a corresponding call to the AWAITIO procedure.

The call to the CONTROL procedure is:

CALL CONTROL (<file number> , <operation> , <parameter>
where
<file number>, INT:value,
identifies the file that is to execute the CONTROL operation.
<operation>, INT:value,
is defined by device in table 2-1.
<parameter>, INT:value,
is also defined in table 2-1.
<tag>, INT(32):value,
for no-wait i/o only, if present, is stored by the system,
then passed back to the application process by the AWAITIO
procedure when the CONTROL operation completes.
condition code settings:
(CCL) indicates that an error occurred (call FILEINFO).
(CCE) indicates that the CONTROL was successful.
(cCG) for magnetic tape, indicates that the end-of-file was

encountered while spacing records; for a process

file, indicates that the process is not accepting
CONTROL system messages.

v i A

example:

CALL CONTROL (printer, form“"contrcl, vfu"channel);
IF < THEN 1 error occurred,

2.3-15

FILE SYSTEM
CONTROL Procedure (all files)

Table 2-1. CONTROL Operations

Note: This table gives only a partial list of CONTROL operations,
namely, those used with the i/o devices discussed in this manual.
CONTROL operations used with other Tandem software products, such
as ENVOY and AXCESS, are described in the manuals for those
products.

<operation>

1

terminal/line printer forms control

<parameter> for terminal or line printer (printer subtype 3)

0
1 - 15
16 or greater

form feed (send $%014)
vertical tab (send %013)
skip <parameter> - 16 lines

<parameter> for line printer (subtype 0 or 2)

0 = skip to VFU channel 0 (top-of-form)
1 - 15 = skip to VFU channel 1 (single space)
16 - 79 = skip <parameter> - 16 lines
<parameter> for line printer (subtype 1 or 5)
0 = skip to VFU channel 0 (top-of-form)
1 = skip to VFU channel 1 (bottom-of-form)
2 = skip to VFU channel 2 (single space, top-of-
form eject)
3 = skip to VFU channel 3 (next odd-numbered line)
4 = skip to VFU channel 4 (next third line: 1, 4,
7, 10, etc.)
5 = skip to VFU channel 5 (next one-half page)
6 = skip to VFU channel 6 (next one-fourth page)
7 = skip to VFU channel 7 (next one-sixth page)
8 = skip to VFU channel 8 (user-defined)
9 = skip to VFU channel 9 (user-defined)
10 = skip to VFU channel 10 (user-defined)
11 = skip to VFU channel 11 (user-defined)
16 - 31 = skip <parameter> -~ 16 lines

<parameter> for line printer

= gkip

skip
skip

skip
skip

to
to
to

to
to

VFU
VFU
VFU

VFU
VFU

channel
channel
channel

channel
channel

{subtype 4)

N O

= W

(default DAVFU)

(top of form/line 1)
(bottom of form/line 60)
(single space/lines 1-60,
top-of-form eject)

(next odd-numbered line)
(next third line: 1, 4,
7, 10, etc.)

2.3-17

FILE SYSTEM
CONTROL Procedure (all files)

Table 2-1. CONTROL Operations (cont”d)

10 = mag tape, space backward records
<parameter> = number of records {0:255}

11 = terminal or line printer (subtype 3 or 4), wait for modem
connect

<parameter> = none

12 = terminal or line printer (subtype 3 or 4), disconnect the
modem (i.e., hang up)

<parameter> = none
20 = disc, purge data (write access is required)
<parameter> = none

21 = disc, allocate/deallocate extents (write access is required)

deallocate all extents past the
end-of-file extent
number of extents to allocate

<parameter> = 0

1:16

Note: A write end-of-file to an unstructured disc file sets the
end-of-file pointer to the relative byte address indicated by
the setting of the next-record pointer, and writes the new
end-of-file setting in the file label on disc.

2.3-19

FILE SYSTEM
CONTROLBUF Procedure (all files)

condition code settings:

< (CCL) indicates that an error occurred (call FILEINFO).
= (CCE) indicates that the CONTROLBUF was successful.
> (CCG) for a process file, indicates that the process is
not accepting CONTROLBUF system messages.
example:

CALL CONTROLBUF (printer, load”vfu, vfu“buffer, 132);

IF < THEN ... ! error occurred
CONSIDERATIONS
e If a "wait" CONTROLBUF is executed, the <count transferred>
parameter indicates the number of bytes actually transferred.
e If a "no-wait" CONTROLBUF is executed, <count transferred> has no

meaning and can be omitted. The count of the number of bytes
transferred is obtained when the i/o completes via the <count
transferred> parameter of the AWAITIO procedure.

CONSIDERATIONS FOR INTERPROCESS COMMUNICATION

The issuance of a CONTROLBUF to a file representing another process
causes a CONTROLBUF system message (i.e., system message -35) to

be sent to that process. If the object of the CONTROLBUF operation
is not accepting CONTROL/CONTROLBUF/SETMODE system messages, the
call to CONTROLBUF completes with a condition code of CCG; a
subsequent call to FILEINFO returns error 7 (process not

accepting CONTROL/CONTROLBUF/SETMODE messages) .

Any value may be specified for the <operation> parameter, and any
data may be included in <buffer>. An application-defined protocol
should be established for interpreting non-standard parameter
values.

CONTROLBUF 1is not valid for the SRECEIVE file.

2.3-21

FILE SYSTEM
CREATE Procedure (disc files)

The CREATE procedure is used to define a new disc file. The file can
be either temporary (and therefore automatically deleted when closed)
or permanent. If a temporary file is created, CREATE returns a file

name suitable for passing to the OPEN procedure.

To create a structured disc file, refer to the ENSCRIBE Programming
Manual. The call to the CREATE procedure for unstructured files is:

CALL CREATE (<file name>
r <primary extent size>
, <file code>
+ <secondary extent size>
, <file type>)

where
<file name>, INT:ref,

is an array containing the name of the disc file to be
created:

To create a permanent disc file, <file name> must be of
the form

<file name>[0:3] 1is $<volume name><blank fill>

or \<system number><volume name><blank fill>
<file name>[4:7] is <subvol name><blank fill>
<file name>[8:11] is <disc file name><blank fill>

To create a temporary disc file, <file name> must be of
the form

<file name>[0:11] is $<volume name><blank fill>

When CREATE completes, a temporary file name is returned
in <file name>[4:7]. The temporary file can then be
opened by passing <file name> to OPEN.

<primary extent size>, INT:value,

if present, is the size of the primary extent in 2048-byte
units (maximum extent size is 134,215,680 bytes). 1If
omitted, a primary extent size of one (2048 bytes) is
assigned.

2.3-23

FILE SYSTEM
CREATE Procedure (disc files)

example:

CALL CREATE (filename); primary extent size =1,
file code = 0,
secondary extent size = 1.

— . gy

IF < THEN ...

CREATE failed.

CONSIDERATIONS

® File pointer action:
end-of-file pointer := 0D;

® Execution of the CREATE procedure does not allocate any disc area;
it only provides an entry in the volume”s directory indicating that
the file exists.

® CREATE does not provide access to the new file; the OPEN procedure
must be called.

e If the CREATE fails (i.e., condition code other than CCE returned),
the reason for the failure can be determined by calling the file

system FILEINFO procedure and passing -1 as the <file number>
parameter.

® The file is created with the user”s default security. A file’s
security can be altered by opening the file and issuing the
appropriate SETMODE functions.

® An unstructured disc file can be created for either even
unstructured or odd unstructured access. On reads to and writes
from even unstructured files, odd read counts and write counts
are rounded to the next even number (3 becomes 4, 5 becomes 6,
etc.); and a POSITION for such a file must be to an even byte
address. An odd unstructured file permits reads and writes of
odd byte counts and positioning to an odd byte address. If
<file type>.<13:15> passed to CREATE is all zeros (specifying an
unstructured file) and <file type>.<12> is 0, an even unstructured
file is created. If <file type>.<13:15> is all zeros and
<file type>.<12> is 1, an odd unstructured file is created.
(If the FUP CREATE command is used to create the file, it will

create an even unstructured file unless the ODDUNSTR parameter
is given.)

2.3-25

FILE SYSTEM

DEVICEINFO Procedure (all files)

Table 2-3. Device Types and Subtypes

device type,

<device type>.<4:9>,

0 = Process

1 = Operator Console
2 = S$RECEIVE

3 = Disc

(Note: For discs,
<device type>.<0> =1
denotes a removable
disc volume;

<device type>.<1> =1
denotes a TMF audited
disc volume.)

4 = Magnetic Tape
5 = Line Printer
6 = Terminal

(conversational or
page mode)

device subtype,
<device type>.<10:15>,

0
0

N =O

U WN =~ O

[¢)}

I

[aer]
w oW O
N

LI T R 1A T [

10 MB capacity

(NonStop systems only)
50 MB capacity

(NonStop systems only)
160 MB capacity
(NonStop systems only)
240 MB capacity

64 MB capacity

(P/N 4105, 4106)

64 MB capacity, movable
head portion (P/N 4109)

540 MB capacity (P/N 4116)
(NonStop II systems only)
1.45 MB capacity, fixed
head portion (P/N 4109)
(NonStop systems only)

128 MB capacity

(P/N 4110, 4111)

Nine-Track

Seven-Track
Tri-Density Tape Drive
(P/N 5106)

Belt Printer

Drum or Band
Current-Loop, Belt Type
Matrix Serial (P/N 5508)
Matrix Serial (P/N 5520)
Band, extended char. set

Conversational Mode
Page Mode (6511, 6512)
Page Mode (6520, 6524)
Page Mode (Remote 6520)
Page mode (6530)

Page mode (Remote 6530)
Conversational Mode
(various screen sizes)
Hard-Copy Console

2.3-27

FILE SYSTEM
DEVICEINFO Procedure (all files)

Table 2-3. Device Types and Subtypes (cont”d)

device type, device subtype,
<device type>.<4:9>, <device type>.<10:15>,
59 = AXCESS Data 0 = AM6520 Access Method

Communication Line

60 = AXCESS Data 0 = AaM3270 Access Method
Communication Line 1 = TR3271 Access Method
61 = AXCESS Data 0 = X25AM Access Methoq
Communication Line (any subtype 0-63 1is
accepted with no effect)
62 = EXPAND Network 0
Control Process (NCP)
63 = EXPAND Line Handler 0 = 8Single-Line Path
1 = Path Entry, Multi-Line
Path
2 = Line Entry, Multi-Line
Path

2.3-29

FILE SYSTEM
EDITREAD Procedure (edit-type files)

<buffer length>, INT:value,
is the length, in bytes, of the <buffer> array. This
specifies the maximum number of characters in the text line
that will be transferred into <buffer>.

<sequence number>, INT(32):ref,

is the sequence number multiplied by 1000, in double-word
integer form, of the text line just read.

example:

count := EDITREAD(control”block, line, length, seq”num);

The following extended example illustrates the use of EDITREADINIT and
EDITREAD.

The data is declared as follows:

LITERAL buf”size
length

512, !EDITREAD”s internal buffer size in bytes
80; !length of the application”s buffer (bytes)

INT £num,
fcode,
error,
count,
.control”block[0: (39+buf”size/2)]; ! global data declaration.

STRING .line[0:length-11]; ! application”s buffer.
INT (32) seq”num;

First the text file is opened and verified that it is an edit format
file:

CALL OPEN(fname,fnum,...):

IF < THEN ...;

CALL FILEINFO(fnum,,,,,,,,,fcode);

IF fcode <> 101 THEN ... ! not edit format file.

.

Then EDITREADINIT is called to initialize the edit control block and
specify EDITREAD”s internal buffer size:

2.3-31

FILE SYSTEM
EDITREAD Procedure (edit-type files)

For example:

INT control”block([0: (39+buf”size/2)],
position[0:2];

! EDITREADINIT and one or more EDITREADs are called

position “:=" control”block[l] FOR 3; ! save current position

! more EDITREADs

control”block([1l] “:=" position FOR 3; ! restore saved position
control”block.<0> := 1;

! next EDITREAD returns same record returned after position
! was saved

2.3-33

FILE SYSTEM
EDITREADINIT Procedure (edit-type files)

example:

INT .control”block([0:(39+256/2)1;
n := EDITREADINIT (control”block, fnum, 256);

An extended example using both EDITREADINIT and EDITREAD is given
in the syntax description of the EDITREAD procedure.

203_35

FILE SYSTEM
FILEERROR Procedure (all files)

entered (signalling that the condition cannot be corrected),
FILEERROR returns a zero indicating that the operation should not
be retried. 1If any other data is entered (typically, carriage
return), it signals that the condition has been corrected, and
FILEERROR returns a one, indicating that the operation should be
retried.

@ If the error is caused by an ownership error {error 200) or a
path down error (error 201) and the alternate path is operable,
FILEERROR returns a one, indicating that the operation should be
retried. If the alternate path is inoperable, a zero is returned.

® Any other error results in the file name being prinZed on the home
terminal, followed by the file system error number. A zero is
returned, indicating that the operation should not be retried.

An example:

error := 1;
WHILE error DO
BEGIN
CALL WRITE (fnum,buffer,count);
IF < THEN
BEGIN
IF NOT FILEERROR(fnum) THEN CALL ABEND;
END
ELSE error := 0;
END;

It may be desirable to check for certain errors before calling
FILEERROR. In this case, the program itself should first call
FILEINFO. For example:

2.3-37

FILE SYSTEM

FILEINFO Procedure (all files)

The FILEINFO procedure is used to obtain error and characteristic
information about an open file.

The call to the FILEINFO procedure is:

CALL FILEINFO (<file number>

—— - — n ——— - S D e e = S = = = — e — S — —

<error>

<file name>

<logical device number>
<device type>

<extent size>
<end-of-file location>
<next-record pointer>
<last mod time>

<file code>

<secondary extent size>
<current-record pointer>
<open flags>)

L N T B N IR . D D D I

where

<file number>, INT:value,
identifies the file whose characteristics are to be returned.
<error>, INT:ref:l,

if present, is returned the error number associated with the
last operation on the file (see "Errors and Error Recovery").

<file name>, INT:ref:12,

if present, is returned the file name of this file. See
"Frile Names" for the file name format.

<logical device number>, INT:ref:l,
if present, is returned the logical device number of the
device where this file resides (in binary). (If your files
are partitioned, use the value 16 instead of 1:)

<device type>, INT:ref:l,
if present, is returned the device type of the device

associated with this file. See "DEVICEINFO Procedure",
table 2-3.

2.3-39

FILE SYSTEM
FILEINFO Procedure (all files)

<open flags>.<12:15> is the maximum number of concurrent
no-wait i/o operations that can be in progress on this
file at any given time. <open flags>.<12:15> = 0 implies
wait i/o.

<open flags>.<9:11> is the exclusion mode:

shared access
exclusive access
3 = protected access

<open flags>.<8> = 1 indicates that, for process files,
the OPEN message is to be sent no-wait.

On NonStop systems only, <open flags>.<6> = 1 indicates that
resident buffers have been provided by the application
process for calls to file system i/o routines (see "OPEN
Procedure" and "File System Advanced Features").

<open flags>.<3:5> is the access mode:

= read/write access
1 = read-only access
= write-only access

<open flags>.<1> = 1, for the $RECEIVE file only, means
that the process wants to receive OPEN, CLOSE, CONTROL,
SETMODE, RESETSYNC, and CONTROLBUF system messagdes.

condition code settings:

<

\%

(CCL) indicates that an error occurred; the error number is
returned in <error>.

(CCE) indicates that FILEINFO executed successfully.

(CCG) is not returned by FILEINFO.

example:

CALL FILEINFO (infile, err”num);

CONSIDERATIONS

The error number of a preceding AWAITIO on any file or waited OPEN
that failed can be obtained by passing a -1 in the <file number>
parameter. The error number is returned in <error>.

32 is returned in <error> (if <error> is a parameter present in the
call) if a process has never opened any files and -1 is specified
in the <file number> parameter.

2.3-41

FILE SYSTEM
FNAMECOLLAPSE Procedure (all files)

The FNAMECOLLAPSE procedure converts a file name from its internal to
its external form. The system number of a network file name is
converted to the corresponding system name.

The call to the FNAMECOLLAPSE procedure is:

f <length> := i FNAMECOLLAPSE (<internal name>
CALL | =mmmmmemmmmeo e

where
<length>, INT,
is returned the number of bytes in <external name>.
<internal name>, INT:ref:12,
is the name to be converted. If this is in local form, it
is converted to external local form; if it is in network
form, it is converted to external network form. Network
file names are discussed in the "File Names" section.
<external name>, STRING:ref:26 or STRING:ref:34
contgins, on return, the external form of <internal name>.
If <internal name> is a local file name, <external name>
contains 26 bytes; if a network name is converted,
<external name> contains 34 bytes.
example:

length := FNAMECOLLAPSE (internal, external);

Examples:

local: SSYSTEM SUBVOL MYFILE
is converted to "$SYSTEM.SUBVOL.MYFILE"

network: \<sysnum>SYSTEMSUBVOL MYFILE
is converted to "\<system name>.$SYSTEM.SUBVOL.MYFILE

2.3-43

FILE SYSTEM
FNAMECOMPARE Procedure (all files)

The FNAMECOMPARE procedure compares two file names within a local or
network environment to determine whether these file names refer to the
same file or device. For example, one name may be a logical system
name or a device number, while the other reference is a symbolic name.
The file names compared must be in the standard twelve-word internal
format that is returned by FNAMEEXPAND.

The call to the FNAMECOMPARE procedure is:

{t' <status> := l FNAMECOMPARE (<file name 1> , <file name 2>)
CALL

where
<status>, INT,

is a value indicating the outcome of the comparison.
Values for <status> are:

-1 = (CCL): the file names do not refer to the same
file.
0 = (CCE): the file names refer to the same file.
41 = (CCG): the file names refer to the same volume

name, device name, or process name on the same
system; however, words [4:11] are not the same:
<file name 1>[4] <> <file name 2>[4] FOR 8.
A value less than -1 is the negative of a file system
error code. This indicates that the comparison is not
attempted due to this error condition.

That value returned from the program function determines
the condition code setting.

<file name 1>, INT:ref:12,
is the first comparable file name. Each <file name> array
may contain either a local file name or a network file
name. Definitions of file names are found in the
"File Names" section.

<file name 2>, INT:ref:12,
is the second comparable file name.

condition code settings:

See <status> parameter.

2.3-45

In

FILE SYSTEM
FNAMECOMPARE Procedure (all files)

a non-network system, execution of the example just given returns a

status of -1 and the condition code (CCL).

Whether a system is a network node or not, execution of

In

fnamel “:=" ["$SERVR #START UPDATING"];
fname2 “:=" ["SSERVR #FINISH UPDATING"];
status := FNAMECOMPARE (fnamel, fname2);

It o0 oo
([}

returns a status of +1 and the condition code (CCG).

any system, execution of

fnamel “:=" ["$0013 ", 9 * [" "]];
fname2 “:=" ["SDATAX", 9 * [" "]];
status := FNAMECOMPARE (fnamel, fname2);

returns a status of zero and condition code (CCE) if the device
name S$DATAX is defined as logical device number 13 at SYSGEN
time; otherwise, a status of -1 and the condition code (CCL) is
returned.

FNAMECOMPARE can also verify the specified file names as follows:

assume all variables and procedures have been
properly defined and initialized elsewhere

also assume LITERAL legal = 0;

IF FNAMEEXPAND (external”name, internal”name, default”"names) THEN
BEGIN

! something reasonable was entered.

IF FNAMECOMPARE (internal”name, internal”"name) = legal THEN
! it may not exist, but looks okay.
BEGIN

normal processing.

e eme

EN

ELSE
! the format is not legal.
BEGIN

! error processing.

END:
END;

2.3-47

FILE SYSTEM
FNAMEEXPAND Procedure (all files)

<internal file name>, INT:ref,

is an array of twelve words where FNAMEEXPAND returns the
expanded file name. This cannot be the same array as
<external file name>.

<default names>, INT:ref,
is an array of eight words containing the default volume and

subvol names to be used in file name expansion. <default
names> is of the form:

<default names>[0:3] default <volume name> (blank
filled on right)
default <subvol name> (blank

filled on right)

<default names>[4:7]

<default names>[0:7] corresponds directly to <word>[1:8] of

the Command Interpreter param message. See section 11,

"COMINT/Application Interface", for the param message format.
example:

length := FNAMEEXPAND (inname,outname,pmsg[1l]);

FNAMEEXPAND converts local file names to local names, and network file
names to network names. Network file names are described under

"File Names", section 2.2. When network file names are involved, in
addition to expanding the local part of the name using the defaults,
FNAMEEXPAND converts the system name to the appropriate system number.
(If the system name is unknown, FNAMEEXPAND supplies 255 for the
system number.)

FNAMEEXPAND expands file names as follows:
<disc file name> is returned as
<file name>[0:3]

<file name>[4:7]
<file name>[8:11]

S$<default volume name><blank fill>
<default subvol name><blank fill>

<disc file name><blank fill>

<subvol name>.<disc file name> is returned as

<file name>[0:3]
<file name>[4:7]
<file name>[8:11]

$<default volume name><blank fill>
<subvol name><blank fill>

<disc file name><blank fill>

2.3-49

FILE SYSTEM
FNAMEEXPAND Procedure (all files)

SCAN ext"name WHILE " " -> @p; ! skip leading blanks.
@p := FNAMEEXPAND(p, infile, defaults) + @p;
on the completion of FNAMEEXPAND, <infile> contains
"Svoll svoll filea "
which is suitable for passing to the file system CREATE,
OPEN, RENAME, and PURGE procedures, as well as the process
control procedures NEWPROCESS and NEWPROCESSNOWAIT.
"p" is incremented by the number of characters in the external

file name.

SCAN p WHILE " " -> @p; ! skip intermediate blanks.
CALL FNAMEEXPAND(p, outfile, defaults);

on the completion, "outfile" contains
"$system svoll fileb ",
Another example:

Suppose that system \NEWYORK is assigned system number 4. Then
the external file name "\NEWYORK.S$SDATA.SUB.MYFILE" is converted
by FNAMEEXPAND to

\<%4>DATA SUB MYFILE
where "<%4>" denotes 4 in the second byte.

The use of FNAMEEXPAND in programming network applications is
discussed further in the EXPAND Users Manual.

2.3-51

FILE SYSTEM
GETDEVNAME Procedure (disc files and non-disc devices)

<device name>, INT:ref:4,

is returned the device name or volume name of the
designated device if it exists, or the next higher logical

device if the designated device does not exist. 1If
end of LDT is encountered, <device name> is unchanged.

<system number>, INT,

if present, specifies the system (in a network) whose
Logical Device Table is to be searched for <logical device

no.>.

If absent, the local system is assumed.

condition code settings:
The condition code setting has no meaning following a call to
GETDEVNAME.

example:

! get the names of all logical devices.

ldev := 0;
WHILE NOT GETDEVNAME (ldev , devname) DO

BEGIN
CALL print (ldev , devname);

ldev := ldev + 1;
END;

CONSIDERATIONS

@ If the device specified by <logical device no> is remote, its
in network form; otherwise, the device

device name is returned
name is returned in local form.

If the <system number> parameter is supplied, devices whose names
contain seven characters are not accessible using this procedure.

2.3-53

FILE SYSTEM
LASTRECEIVE Procedure (SRECEIVE file)

The LASTRECEIVE procedure is used to obtain the process ID and/or
the message tag associated with the last message read from the
SRECEIVE file. This information is contained in the file”s main-
memory resident Access Control Block; therefore, the application
process is not suspended because of a call to LASTRECEIVE.

Note: A call to LASTRECEIVE must immediately follow the cal} to
READUPDATE of SRECEIVE or the AWAITIO that completes 1it.
Otherwise, the information returned may be invalid.

The call to the LASTRECEIVE procedure is:

CALL LASTRECEIVE (<process id> , <message tag>)

- - — ——— - o

where
<process id>, INT:ref:4,
if present, is returned the ID of the process that sent the
last message read through the $RECEIVE file. 1If the process
is in the PPD, the information returned consists of

$<process name>
<cpu,pin>

<process id>[0:2]
<process id>[3]

If the process is not in the PPD, the information returned
consists of

<process id>[0:2]
<process id>[3]

<creation time stamp>
<cpu,pin>

<message tag>, INT:ref:l,

is used when the application process performs message
gqueueing. If present, <message tag> is returned a value
that identifies the request message just read among other
requests currently queued. To associate a reply with a
given request, <message tag> is passed in a parameter to the
REPLY procedure. The value of <message tag> will be the
lowest integer between zero and <receive depth> - 1,
inclusive, that is not currently being used as a message tag.
When a reply is made, its associated message tag value is
made available for use as a message tag for a subsequent
request message.

2.3-55

FILE SYSTEM
LOCATESYSTEM Procedure

The LOCATESYSTEM procedure provides the system number corresponding to
a system name, and returns the logical device number of the line
handler controlling the path to a given system.

The call to the LOCATESYSTEM procedure is:

{ <ldev> := 1 LOCATESYSTEM (<system number> , <system name>)
CALL

where
<ldev>, INT,

returns a value as follows:

-1 = all paths to the specified system are down.
0 = the system is not defined.
>0 = the logical device number of the

line handler in the specified system.

<system number>, INT:ref,

if <system name> is provided, is returned the system number
corresponding to <system name>. If <system name> is not
provided, <system number> should contain the system number
to be located.

<system name>, INT:ref:4,
if present, specifies the system to be located, and causes
the corresponding system number to be returned in <system
number>.

example:

ldev := LOCATESYSTEM(sys”num, sys”name);
IF NOT ldev THEN ... ! trouble

CONSIDERATIONS

® Note that if <system name> is provided by the caller, <system
number> is returned the corresponding number; but if <system
name> is omitted, <system number> must be provided by the caller.

2.3-57

FILE SYSTEM
LOCKFILE Procedure (disc files)

condition code settings:

(CCL) indicates that an error occurred (call FILEINFO).
(CCE) indicates that the LOCKFILE was successful.
(CCG) indicates that the file is not a disc file.

v il A

example:

CALL LOCKFILE (file"num);
IF < THEN} ! error

CONSIDERATIONS

Locks are granted on an open file (i.e., file number) basis.
Therefore, if a process has multiple opens of the same file, a lock
of one file number excludes accesses to the file through other

file numbers.

If a call to CONTROL, WRITE, or WRITEUPDATE is made and the file is
locked but not through the file number supplied in the call, the
call is rejected with a "file is locked" error indication (error
73) .

If the default locking mode is in effect when a call to READ or
READUPDATE is made and the file is locked but not locked through
the file number supplied in the call, the caller of READ or
READUPDATE is suspended and queued in the "locking" queue behind
other processes attempting to lock or read the file.

Note that a deadlock condition occurs if a call to READ or
READUPDATE is made by the process having a file locked but not
via the file number supplied to READ or READUPDATE.

If the alternate locking mode is in effect when READ or READUPDATE
is called and the file is locked but not through the file number
supplied in the call, the call is rejected with a "file is locked"
error indication (error 73).

The locking mode is specified via the SETMODE procedure,
function 4.

Locks are not nested.

For example:

CALL LOCKFILE (file™a);

"file™a" becomes locked.

2.3-59

FILE SYSTEM
MONITORNET Procedure

The MONITORNET procedure enables/disables receipt of system messages
concerning the status of processors in remote systems.

The call to the MONITORNET procedure is:

where
<enable>, INT,
has the following meaning:

0
1

disable receipt of messages.
enable receipt of messages.

example:

CALL MONITORNET (1);

CONSIDERATIONS

® A process that has enabled MONITORNET receives a system message via
SRECEIVE whenever a change in the status of a remote processor
occurs. The format of this message is:

word([0]: -8

word[1l].<0:7>: system number

word[1l].<8:15>: number of cpu”s in system

word[2]: current processor status bit mask
word[3]: previous processor status bit mask

The processor status bit masks have a one in bit <cpu number> to
indicate that the processor is up, and a zero to indicate that the
processor is down.

® MONITORNET only provides notification of status changes for remote

processors. To receive notification of status changes for local
processors, an application process must still call MONITORCPUS.

2.3-61

FILE SYSTEM
NEXTFILENAME Procedure (disc files)

The NEXTFILENAME procedure is used to obtain the names of disc files
on a designated volume. NEXTFILENAME returns the next file name in
alphabetical sequence after the file name supplied as a parameter.

The intended use of NEXTFILENAME is in an iterative loop, where the
file name returned in one call to NEXTFILENAME is used to specify the
starting point for the alphabetical search in the subsequent call to
NEXTFILENAME. In this manner, a volume”s file names are returned to
the application process in alphabetical order through succeeding calls
to NEXTFILENAME.

The call to the NEXTFILENAME procedure is:

<error> := NEXTFILENAME (<file name>)

where
<error>, INT

is a file system error number indicating the outcome of
the call. Common error number returns are

0 = no error, next file name in alphabetical sequence is
returned in <file name>.

1l = end-of-file, there is no file in alphabetical

sequence following the file name supplied in <file
name>.

13 = illegal file name specification.

<file name>, INT:ref:12,

on the call, is passed the file name from which search for
the next file name begins. <file name> on the initial call
can be one of the following forms:

<file name>[0:11] = $<volume name><blank fill>
or \<system number><volume name><blank £ill>

This form is used to obtain the name of the first file
on $<volume name>.

<file name>[0:3] = $<volume name><blank fill>
or \<system number><volume name><blank fill>

<file name>[4:11] = <subvol name><blank f£ill>

This form is used to obtain the name of the first file
in <subvol name> on $<volume name>.

2.3-63

FILE SYSTEM
OPEN Procedure (all files)

The OPEN procedure establishes a communication path between an
application process and a file. When OPEN completes, a "file number"
is returned to the application process. The file number identifies
this access to the file in subsequent file system calls.

The call to the OPEN procedure is:

CALL OPEN (<file name> , <file number>

, <flags>

¢+ <sync or receive depth>
, <primary file number> , <primary process id>)

where
<file name>, INT:ref,

is an array containing the name of the file to be opened
(see "File Names").

<file number>, INT:ref:1,

is returned from OPEN and is used to 1dent1fy the file in
subsequent file system calls. R

<flags>, INT:value,

if present, specifies certain attributes of the file. If
omitted, all fields are set to zero. The bit fields in the
<flags> parameter (<flags>.<0> being the leftmost, or high-
order, bit) are defined as follows:

<flags>.<0> = unused; must be 0

<flags>.<1> = opener wishes to receive OPEN, CLOSE,
CONTROL, SETMODE, RESETSYNC, and
CONTROLBUF messages (SRECEIVE only)
0 = no 1l = yes
(must be 0 for all other files)

<flags>.<2> = unstructured access
(ENS<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>