

9 Networks

symbolics

Cambridge, Massachusetts

Networks
996095

March 1985

This document corresponds to Release 6.0 and later releases.

The software, data, and Information contained herein are proprietary to, and comprise
valuable trade secrets of, Symbollcs, Inc. They are given In confidence by Symbollcs
pursuant to a written license agreement, and may be used, copied, transmitted, and
stored only In accordance with the terms of such license.

This document may not be reproduced In whole or In part without the prior written
consent of Symbolics, Inc.

Copyright C 1985, 1984, 1983, 1982, 1981, 1980 Symbollcs, Inc. All Rights Reserved.
Font Ubrary Copyright C 1984 Bitstream Inc. All Rights Reserved.

Symbolics, Symbollcs 3600, Symbollcs 3670, Symbollcs 3640, SYMBOUCS-USP,
ZETAUSP, MACSYMA, S-GEOMETRY, S-PAINT, and S-RENDER are trademarks of
Symbolics, Inc.

UNIX Is a trademark of Bell laboratories, Inc. VAX, UNIBUS, Qbus, TOPS-20, VMS,
PDP, and VT are trademarks of Digital Equipment Corporation. TENEX Is a registered
trademark of Bolt Beranek and Newman Inc.

Restricted Rights Legend
Use, duplication, or disclosure by the government Is subject to restrictions as set forth
in subdivision (b)(3)(ii) of the Rights In Technical Data and Computer Software Clause
at FAR 52.227-7013.

Text written and produced on Symbolics 3600-family computers by the Documentation
Group of Symbolics, Inc.

Text typography: Century Schoolbook and Helvetica produced on Symbolics 3600-
family computers from Bitstream, Inc., outlines; text masters printed on Symbolics LGP-1
Laser Graphics Printers.
Cover design: Schafer/laCasse
Cover printer: W.E. Andrews Co., Inc.
Text printer: ZBR Publications, Inc.

Printed in the USA.

Printing year and number: 87 86 85 9 8 7 6 5 4 3 2 1

iii

March 1985 Networks

Table of Contents

Page

I. General Information on Network~ 1

1. Namespace System 3

1.1 In troduction to the N amespace System 3
1.1.1 N amespace System Classes 4
1.1.2 Namespace System Attributes 4
1.1.3 Data Types of Namespace System Attributes 4
1.1.4 Names and Namespaces 5

1.2 N amespace System Object Definitions 7
1.2.1 Namespace System Host Objects 7
1.2.2 Namespace System User Objects 11
1.2.3 Namespace System Network Objects 14
1.2.4 Namespace System Printer Objects 16
1.2.5 Namespace System Site Objects 18
1.2.6 Namespace Objects 21

1.3 User Interface to the Namespace System 22
1.4 Managing the Namespace Database 24

1.4.1 Lisp Machine N amespace Server Files 24
1.4.2 Namespace Database Descriptor Files 24
1.4.3 Namespace System Administrative Functions 28

1.5 Software Interface to the Namespace System 29
1.5.1 Namespace System Lisp Data Types 29
1.5.2 Namespace System Variables 29
1.5.3 Namespace System Functions 29
1.5.4 Messages to Namespace Names and Objects 31

1.6 Implementation of the Namespace System 33
1.6.1 Network Namespace Protocol 33
1.6.2 Namespace Timestamp Protocol 35
1.6.3 Defining Namespace Classes 35

2. The Lisp Machine Generic Network System 37

2.1 Networks and Addresses 37
2.2 Protocols and Services 38
2.3 Invoking Services: Lisp Machine Generic Network System 40

2.3.1 Service Descriptions: Lisp Machine Generic Network System 41
2.3.2 Service Futures: Lisp Machine Generic Network System 42

2.4 Finding Paths to Hosts: Lisp Machine Generic Network System 44
2.5 Defining Protocols: Lisp Machine Generic Network System 49

2.5.1 Users: DefIning Protocols: Lisp Machine Generic Network 50
System

iv

Networks March 1985

2.5.2 Servers: Defming Protocols: Lisp Machine Generic Network 51
System

2.5.3 File Users: Defming Protocols: Lisp Machine Generic Network 55
System

2.6 Defined Media: Lisp Machine Generic Network System 55
2.6.1 Byte Stream Media: Lisp Machine Generic Network System 55
2.6.2 Datagram Media: Lisp Machine Generic Network System 56

2.7 Defined Services and Protocols: Lisp Machine Generic Network 56
System
2.7.1 band-transfer Service 56
2.7.2 file Service 56
2.7.3 hardcopy Service 56
2.7.4 hardcopy-device-status Service 57
2.7.5 hardcopy-status Service 58
2.7.6 lispm-finger Service 58
2.7.7 login Service 58
2.7.8 mail-to-user Service 59
2.7.9 namespace Service 60
2.7.10 namespace-timestamp Service 60
2.7.11 notify Service 60
2.7.12 packet-gateway Service 60
2.7.13 print-disk-Iabel Service 61
2.7.14 pseudonet-gateway Service 61
2.7.15 screen-spy Service 61
2.7.16 send Service 61
2.7.17 show-users Service 62
2.7.18 status Service 62
2.7.19 store-and-forward-mail Service 62
2.7.20 tape Service 63
2.7.21 tcp-gateway Service 63
2.7.22 time Service 63
2.7.23 uptime Service 63
2.7.24 who-am-i Service 64

II. Remote Login

3. Overview of Remote Login Capability

4. Using the Remote Login Facilities

III. Symbolics Dialnet

5. Introduction to Dialnet

6. Physical Connection to the Dial Network

65

67

69

73

75

77

v

March 1985 Networks

7. Dialnet Representation in the Namespace Database 79

8. Dialnet Registries 81

8.1 Contents of a Dialnet Registry 82
8.2 Loading a Dialnet Registry 84

9. Dialnet and Internet Domain Names 85

10. Using the Terminal Program with the Dial Network 87

11. An Example Dialnet Installation 89

12. dial Network Medium 93

13. Dial Network Addressing 95

14. Reducing Call Cost with Public Carrier Networks 97

IV. Programmer's Reference on Networks 99

15. Chaosnet 101

15.1 Introduction to Chaosnet 101
15.2 Chaosnet Hardware Protocol 101

15.2.1 Chaosnet Ether 102
15.2.2 Chaosnet Packets 102
15.2.3 Chaosnet Transceiver 103
15.2.4 Chaosnet Interface 103
15.2.5 Details of Chaosnet Hardware Protocols 104
15.2.6 Ether Contention 105

15.3 Chaosnet Software Protocol - Overview 108
15.3.1 Connections: Chaosnet Software Protocol 108
15.3.2 Contact Names: Chaosnet Software Protocol 109
15.3.3 Addresses and Indices: Chaosnet Software Protocol 110
15.3.4 Packet Numbers: Chaosnet Software Protocol 111
15.3.5 Packet Contents: Chaosnet Software Protocol 112
15.3.6 Data Formats: Chaosnet Software Protocol 113
15.3.7 Routing: Chaosnet Software Protocol 114
15.3.8 Flow and Error Control: Chaosnet Software Protocol 117

15.4 Chaosnet Software Protocol - Details 120
15.4.1 Connection Establishment: Chaosnet Software Protocol 120
15.4.2 Status Packets: Chaosnet Software Protocol 123
15.4.3 Data: Chaosnet Software Protocol 124
15.4.4 End-of-data: Chaosnet Software Protocol 124
15.4.5 Broadcast: Chaosnet Software Protocol 125
15.4.6 Low-level: Chaosnet Software Protocol 127
15.4.7 Chaosnet Connection States 127

vi

Networks March 1985

15.5 Higher-level Chaosnet Protocols 129
15.5.1 Chaosnet Status Protocols 129
15.5.2 Chaosnet Pulsar Protocol 130
15.5.3 Chaosnet Telnet and Supdup Protocols 131
15.5.4 Chaosnet File Access Protocol 131
15.5.5 Chaosnet Mail Protocol 131
15.5.6 Chaosnet Send Protocol 132
15.5.7 Chaosnet Name Protocol 132
15.5.8 Chaosnet Time Protocol 133
15.5.9 Chaosnet Arpanet Gateway Protocol 133
15.5.10 Chaosnet Host Table Protocol 133
15.5.11 Chaosnet Dover Printer Protocol 134

15.6 Using Foreign Protocols in Chaosnet 135
15.7 Chaosnet Hardware Programming Information 137
15.8 Chaosnet Lisp Machine Implementation 140

15.8.1 Opening and Closing Connections: Chaosnet Lisp Machine 140
Implementation

15.8.2 Connection States: Chaosnet Lisp Machine Implementation 143
15.8.3 Stream I/O: Chaosnet Lisp Machine Implementation 143
15.8.4 Packet I/O: Chaosnet Lisp Machine Implementation 144
15.8.5 Connection Interrupts: Chaosnet Lisp Machine 146

Implementation
15.8.6 Information and Control: Chaosnet Lisp Machine 147

Implementation
15.9 Chaosnet V AXNMS Implementation 148

15.9.1 Opening and Closing: Chaosnet VAXNMS Implementation 148
15.9.2 Stream I/O: Chaosnet V AXNMS Implementation 149
15.9.3 Packet I/O 150
15.9.4 Checking the State: Chaosnet V AXNMS Implementation 150

15.10 Chaosnet UNIX Implementation 152
15.10.1 Header Files: Chaosnet UNIX Implementation 152
15.10.2 Special Files for Creating Connections: Chaosnet UNIX 153

Implementation
15.10.3 Stream-mode Connections: Chaosnet UNIX Implementation 154
15.10.4 Record-mode Connections: Chaosnet UNIX Implementation 154
15.10.5 Tty-mode Connections: Chaosnet UNIX Implementation 155
15.10.6 Foreign-protocol-mode Connections: Chaosnet UNIX 155

Implementation
15.10.7 ioctl System Call Commands: Chaosnet UNIX 155

Implementation
15.10.8 Signals: Chaosnet UNIX Implementation 156
15.10.9 Software Installation: Chaosnet UNIX Implementation 156

15.11 Chaosnet References 157

vii

March 1985 Networks

16. Chaosnet File Protocol 159

16.1 Introduction: Chaosnet File Protocol 159
16.2 Qfile File Transfer Philosophy 160

16.2.1 Opening a File with Qfile 161
16.2.2 Transferring Data with Qfile 161
16.2.3 Ending the Qfile Transfer 161

16.3 Qfile Character Set Translation 162
16.4 Qfile Command and Response Format 164
16.5 Qfile Packet Opcodes 165
16.6 Qfile Packet Data Contents 165

16.6.1 Qfile Tokens 166
16.6.2 Qfile String Values 166
16.6.3 Qfile Syntax 166

16.7 Qfile Marks and EOF Packets 168
16.8 Qfile Command Descriptions 169

16.8.1 Data-connection Qfile Command 169
16.8.2 Undata-connection Qfile Command 170
16.8.3 Open Qfile Command 170
16.8.4 Close Qfile Command 181
16.8.5 Finish Qfile Command 184
16.8.6' Filepos Qfile Command 185
16.8.7 Delete Qfl1e Command 186
16.8.8 Rename Qfile Command 186
16.8.9 Continue Qfl1e Command 188
16.8.10 Create-link Qfl1e Command 188
16.8.11 Create-directory Qfile Command 188
16.8.12 Expunge Qfl1e Command 189
16.8.13 Set-file-system Qfl1e Command 190
16.8.14 Login Qfl1e Command 190
16.8.15 Directory Qfile Command 191
16.8.16 Properties Qfl1e Command 195
16.8.17 Change-properties Qfl1e Command 196
16.8.18 Complete Qfile Command 197

16.9 Qfile Errors and Asynchronous Marks 197
16.9.1 Qfile Error Responses 197
16.9.2 Qfile Asynchronous Marks 198
16.9.3 Qfile Error Codes 198

17. Interfacing to the Network System 201

17.1 Packets: Interfacing to the Network System 201
17.1.1 The Packet Pool 201
17.1.2 Reference Material:· Packets 203
17.1.3 Subpackets and Coercing Packets 204
17.1.4 Example: Interfacing to the Network System 206
17.1.5 Miscellaneous: Packets 208

viii

Networks M81Ch 1985

17.2 Interfaces: Interfacing to the Network System 209
17.2.1 Standard Communication with Interfaces 209
17.2.2 Sending a Packet to an Interface 211
17.2.3 Miscellaneous: Interfaces 212

17.3 Networks: Interfacing to the Network System 212
17.3.1 Defining a Network 212
17.3.2 Network Addresses: Interfacing to the Network System 213
17.3.3 Interfacing to the Service Lookup Mechanism 214
17.3.4 Invoking Mediums: Interfacing to the Network System 215
17.3.5 Packet Reception: Interfacing to the Network System 216
17.3.6 Packet Transmission: Interfacing to the Network System 216
17.3.7 Network Errors: Interfacing to the Network System 216
17.3.8 Initialization, Reset, and Enable: Interfacing to the Network 217

System
17.3.9 Byte Stream Conventions: Interfacing to the Network System 218
17.3.10 Interfacing to Ethemets 218
17.3.11 Interaction with Peek Network Mode 219

17.4 Starting Servers: Interfacing to the Network System 220
17.4.1 Finding a Server Description 220
17.4.2 Calling the Server Function 220
17.4.3 Reference Material: Starting Servers 222

Index 225

List of Tables

Table 1. Translations Between Symbolics Characters and Standard ASCII 163
Table 2. Translations in SUPER-IMAGE Mode 164

1

March 1985 General Information on Networks

PART I.

General Information on Networks

2

Networks March 1985

3

March 1985 General Information on Networks

1. Namespace System

1.1 Introduction to the Namespace System

When computers are connected by means of networks to form a distributed
computing environment, the computers should all be able to share information that
describes that environment. For example, all the computers need to know or be able
to find out about the names and addresses of the other computers to which they
can communicate. A personal workstation computer might want to know what
printers are available on which server computers. A computer trying to send mail to
a particular user might want to know on which computer that user's mailbox resides
on.

The Symbolics system has a convention by which such information can be
maintained and shared in a simple database. The database is maintained by a
namespace server. Other systems can query or make changes to the database by
communicating over the network with the server. This database is the namespace
database, a specific example of a distributed network database. Both the more
specific term namespace database and the generic term network database are used to
refer to it. However, in general, namespace database refers to the Symbolics
implementation of network databases and namespace system refers to the namespace
database and the tools to use it.

The database is structured to understand that there can be many different networks
in a distributed environment, and so there are network objects to represent different
networks. Hosts can be on more than one network, and some hosts that are on
two networks can serve as gateways from one network to the other. One of the
purposes of the database is to let a user host find a path to a server host, using
whichever networks and gateways are necessary.

The database is designed so that it is not specific to the Symbolics computer; in
theory, any computer system could be made to use the database, and act as a user
or server.

The database consists of a collection of objects. Each object has
• A class. See the section "Namespace System Classes", page 4.
• Attributes. See the section "Namespace System Attributes", page 4.
• A name. See the section "Names and Namespaces", page 5.-

All objects except namespaces themselves are added to the namespace database by
using the namespace editor, which is invoked with Edit Namespace Object (or from
Lisp with tv:edit-namespace-object). See the section "Updating the Namespace
Database" in User's Guide to Symoolics Computers.

4

Networks March 1985

1.1.1 Namespace System Classes

Every object has a class, which tells what kind of object it is. Every class is
identified by a global-name.

The following classes are especially important to the Symbolics system:

host

user

network

printer

site

namespace

A host object represents any computer, usually connected to a
network.

A user object represents a person who uses any of the hosts, or a
daemon user, for example, a Symbolics computer.

A network object represents a computer network, to which some
hosts are attached.

A printer object represents a device for producing hardcopy.

A site object represents a collection of hosts, printers, and
networks that are grouped together in one physical location.

A namespace object represents a mapping from names of objects
to objects.

1.1.2 Namespace System Attributes

Attributes represent characteristics of the object. Each attribute has an indicator
(the name of the attribute) and a value; they work like property lists in Lisp. For
example, every host has a system-type (saying which operating system it runs), every
printer has a type (saying what type of printer it is), and every user has a personal
name.

Each object class has one or more required attributes. However, most attributes are
optional; for example, hosts can optionally have a pretty-name, printers can have a
default-font, and a user can have a home-address. Some attributes can occur more
than once for a given object; for example, a host object can have multiple addresses
if it is attached to more than one network.

Each object has a fIxed set of attributes: you cannot create additional attributes.

1.1.3 Data Types of Namespace System Attributes

Each class has attributes that are defined to have specific data types. Since the
actual representation of the various types of data represented in the database varies
from system to system, the namespace system uses the following system-independent
'types:

5

March 1985 General Information on Networks

Data type

object-class

name

global-name

token

set

pair

triple

Value

An object in the database, for example, a site object. See the
sectiQn "Namespace System Classes", page 4.

A name in some namespace; name is not shared by all
namespaces.

A name which is not specific to a particular namespace but is
shared by all namespaces.

An arbitrary character string.

An ordered set of elements of the same data type. For example,
a value can be a set of names or a set of triples.

A list of two elements of specific data types; each element can be
of a different data type.

A list of three elements; each element can be of a different data
type.

Name, global-name, and token require simple values, whereas set, pair, and triples
require compound values.

Note: The namespace data types specific to the Symbolics computer are described
elsewhere: See the section "Namespace System Lisp Data Types", page 29.

1.1.4 Names and Namespaces

Every object has a name, which is a character string. Two objects of different
classes can have the same name; for example, there can be a printer named george
and a user named george; the two are unrelated. An object is identified by its class
and its name; if you want to look up an object in the database and you know its
name, you have to say "Find the printer named george" or "Find the user named
george", not just "Find george".

When long-distance networks are used to link together different sites, however, the
possibility of name conflicts arises; that is, two sites may use the same name in the
same class for conflicting purposes. For example, suppose you had a host named
orange, and you wanted to connect your site over a long-distance network to some
other site that happens to have picked the name orange for one of its own hosts.
Neither site is forced to change its host names just because it wants to connect to
the other site.

To avoid these naming conflicts, the database can include more than one namespace.
A names pace is a mapping from names to objects, and names in one namespace are
unrelated to names in another namespace. (More strictly, it is a mapping from
[name, class] pairs to objects, since an object is identified by its class and its name.)
Normally each site has one namespace, and the names of all the objects at that site
are in that namespace. An object in some other namespace than your own
namespace can be referred to using a qualified name, which consists of the name of
the namespace, a vertical bar, and the name of the object in that namespace.

6

Networks March 1985

For example, suppose both Harvard and Yale had computer centers. Harvard has
three hosts named yellow, orange, and blue, and Yale has three hosts named apple,
orange, and banana. Each computer center would have its own namespace, one
named harvard and one named yale. At· Harvard, the Harvard computers would be
referred to by their unqualified names (yellow, orange, and blue), whereas the Yale
computers would be referred to (by users at Harvard) by qualified names (yale I apple,
yalelorange, and yale I banana). At Yale it would all work the other way around.

Each namespace also has a list of namespaces called search rules. When a name is
looked up, each of the namespaces in the search rules list is consulted in tum, until
an object of that name is found in one of the namespaces. If you have some other
namespace in your search list, it is easier to refer to objects in that namespace,
because you do not have to use qualified names unless a name conflict exists.

For example, in the scenario above, the search list for the harvard namespace could
have the harvard namespace first and the yale namespace second. Then users at
Harvard could refer to Yale's computers as apple, yalelorange, and banana. The
qualified name is only necessary because of the name conflict.

Actually, only some classes of objects have names that are in namespaces; other
classes of objects are globally named, which means that the names are universal,
and conflicts are not permitted. In particular, classes, namespaces, and sites are
globally named; networks, hosts, printers, and users are named within namespaces.
There is never a need for multiply-qualified names; the names of namespaces are
global and never need to be qualified themselves.

Some namespaces do not correspond to any local site. Most large nationwide or
worldwide networks have their own host naming convention. For example, the
Department of Defense Arpanet has its own set of host names, and this is
considered a namespace. If a local site includes some hosts that are on the Arpanet,
it might want to put the Arpanet namespace into its search list, and install
gateways on its Arpanet machine so that other machines on the local network can
access the Arpanet.

Some objects can also have nicknames. In particular, networks and hosts can have
nicknames; objects of other classes cannot. A nickname serves as an alternative
name by which the object can be referred. Sometimes you give an object a
nickname because its full name is too long to type conveniently, like some host
whose name you type frequently. However, each object always has one primary
name, which is used when the object is printed.

It is possible for an object to be in several namespaces at once. For example, a host
which is on both the Arpanet and a local network at some site might be in both the
Arpanet namespace and the local namespace. In this case, each namespace
maintains its own separate information on the object. The information from each
namespace is merged before being presented to the user.

Note: Search lists are not followed recursively. If a user at Harvard looks up a

7

March 1985 General Information on Networks

name and Yale's namespace is in Harvard's search list, Yale's search list is not
relevant.

1.2 Namespace System Object Definitions

This chapter provides a description of the attributes and values for the following
classes:

host
user
network
printer
site
namespace

1.2.1 Namespace System Host Objects

A host object represents any computer connected to a network. The database lists
what networks a host is connected to, and at what addresses. It also says what
high-level services the host provides to the network community.

The following is a list of all attributes that hosts can have together with examples of
what those attributes can look like. The name and system-type attributes are
required; all others are optional. Some of the attributes are useful only for
Symbolics computer hosts.

name: Host Object Attribute

Specifies the primary name of the host; a name (required).

yellow

site: Host Object Attribute

Specifies the site at which this host is located; a site object.

harvard

nickname: Host Object Attribute

Specifies alternate names for the host; a set of" names.

yel

short-name: Host Object Attribute

Specifies additional nicknames; a set of names. A
short-name is used when a program wants to display a
host's name without using up too much space. It is also
used in the printed representation of pathnames.

V

8

Networks March 1985

user-property: Object Attribute

Specifies a user-chosen property for this object; a pair whose fIrst
element is an indicator (by analogy with property lists) and whose
second element is a token denoting whatever the user chooses to
associate with that indicator.

(next-door-neighbor HHr. RogersH)

machine-type: Host Object Attribute

Specifies the kind of machine out of which this host is made; a
global-name. Common values are:

lispm
pdp10
pdp11
vax
honeywell-dps-8m
alto
ibmpc
pe3230
3600
cadr

system-type: Host Object Attribute

Specifies the operating system run on the host; a global-name
(required). The Symbolics system uses this information to figure
out how to parse pathnames for a given host; be sure to enter
this information correctly. Common values are:

lispm
unix
vms
tops-20
alto
its
multics
minits
magicsix
mos
ms-dos

address: Host Object Attribute

Specifies the network addresses of this host; a set of pairs or
triples. Each triple is of the form (network address interface),
where network is a network object, address is a token, and

March 1985

9

General Information on Networks

interface (optionally) identifies the interface for which this address
is valid. Addresses are always represented as tokens because each
kind of network has a different kind of address; the individual
network types and their corresponding address conventions are
discussed later in this document. An example of a pair:

(chaos "401")

pretty-name: Host Object Attribute

Specifies a "pretty" version of the name of the host; a token.
Unlike the real name, the nicknames, and the short name, this
does not count as a name as far as the database system is
concerned (you cannot use it to find the host).

"Yellow Computer"

finger-location: Host Object Attribute

Specifies a description of the physical location of the host; a token.
This is used by the lispm-finger and show-users services.

"The Out-of-Town News kiosk in Harvard Square"

location: Host Object Attribute

Specifies a description of the physical location suitable for
programs to understarid; a pair. The first element is a token that
identifies the building the machine is in. The second element is a
token that says what floor of the building the machine is on.

Kiosk 1

printer: Host Object Attribute

Specifies the preferred printer for this host; a printer object. This
printer is used by default when files are hardcopied from this
host. If this attribute is not provided, the site's default-printer
attribute is used.

bitmap-printer: Host Object Attribute

Specifies the preferred bitmap printer for this host; a printer
object. This printer is used by default when screen images are
hardcopied from this host. If this attribute is not provided, site's
default-bitMap-printer attribute is used.

10

Networks March 1985

print-spooler-options: Host Object Attribute

Specifies options for any print spoolers running on this host; a set
of pairs of global-names and tokens. A keyword for print-spooler
options is:

home-directory Directory where hardcopy requests are stored.
The default for Symbolics computers is
local:>print-spooler> .

spooled-printer: Host Object Attribute

Specifies printers for which this host provides a spooling service; a
printer object followed by a set of pairs of global-names and tokens
describing the spooling service for that printer. Allowed global
names are:

spool-via

file-nrone

protocol

home-directory

Method of spooling, for example, "network" (the
default) or "file".

N arne of spooling file of spool-via file.

Special spooling protocol, when spool-via is
"network". If not present, the generic hardcopy
service to the host is used.

Directory where hardcopy requests are stored.
The default for Symbolics computers is
local:>print-spooler>.

For Symbolics spoolers no keywords are normally necessary.

Example:

caspian-sea spool-via file file-name yellowunix:print;request

service: Host Object Attribute

Specifies services and protocols supported by this host; a list of
triples of the form service medium protocol. Each triple specifies
that the host is capable of providing service when you connect to
it using medium and protocol. Services, media, and protocols are
discussed elsewhere: See the section "The Lisp Machine Generic
Network System", page 37.

March 1985

11

General Information on Networks

«file chaos qfi1e)
(lispm-finger chaos-simple 1ispm-finger)
(namespace-timestamp chaos-simple namespace-timestamp)
(namespace chaos namespace)
(mai1-to-user chaos chaos-mail)
(send chaos send)
(login chaos te1net)
(uptime chaos-simple uptime-simple)
(time chaos-simple time-simple)
(show-users chaos name)
(chaos-status chaos-simple chaos-status»

server-machine: Host Object Attribute

Specifies whether the object described is a server machine; a
token. If the value is the string "yes", then this host is a server
machine; if the attribute is not present, the host is not a server
machine. Values other than "yes" are undefined and should not
be used. This attribute only applies to Symbolics computers.
Server machines do not automatically enable their services when
they are booted. This is to prevent premature creation of servers
before the machine has completely initialized. See the function
sys:enable-services.

file-control-lifetime: Host Object Attribute

Specifies the lifetime of a file control connection; a token. The
value is a string representing a number in decimal. When a
Symbolics computer connects to this host as a user of the rIle
service, it will automatically close its control connection if that
connection has been idle for this number of sixtieths of a second.

"108000 N

peripheral: Host Object Attribute

Specifies a peripheral device; a set of pairs. The first element is a
peripheral type and is a global-name. The second element
describes the device and is a set of pairs of global-names and
tokens.

kanji-tablet unit 2 baud 2400

1.2.2 Namespace System User Objects

A user object represents either a person who uses any of the hosts, or a daemon
pseudouser. Each person who uses Symbolics computers should be registered in the
database; this means that there is a corresponding user object. Daemon users are

12

Networks March 1985

what Symbolics computers log in as when they need to conduct operations even
though there is no particular person identifiable as the user. This typically happens
when the Symbolics computer is acting as a file server or a mail server, or when it is
performing maintenance functions such as saving a band with new patches loaded.

The following is a list of all attributes that users can have. The name,
lispm-name, personal-name, home-host, and mail-address attributes are
required; all others are optional.

name: User Object Attribute

Specifies the name of the user. It can be used as an argument to
the login command on a Symbolics computer.

george

login-name: User Object Attribute

Specifies the appropriate login name for each of several hosts, a
set of pairs. The first element of each pair is a token giving the
login name, and the second element is a host object.

The Symbolics computer uses these login names when it connects
to a host to log in a file server or a tape server. login-name is
not required, but lack of this attribute causes the Lisp Machine to
ask for the name to use for each server, which is likely to be
inconvenient. Passwords are not stored in the database because it
is not secure; the Symbolics computer prompts the user for a
password interactively when one is required. Generally, you have
one element on this list for every account that you have on a host
on the network.

«"George" blue)
("Washington.States" mitlmultics)
("GW" mitlmc»

Iispm-name: User Object Attribute

Specifies the name displayed in the status line; a token. U sed in
the lispm-finger service as the user name. The Lisp variable
user-id is set from this attribute. Typically it is similar to the
actual name of the user object, but uses upper- and lower-case.

"George"

personal-name: User Object Attribute

Specifies the user's personal name; a token. Place the last name
first.

"Washington, George"

13

March 1985 General In/ormation on Networks

home-host: User Object Attribute

Specifies the user's host machine; a token.

"Vixen"

nickname: User Object Attribute

Specifies a personal nickname; a token. Unlike host nicknames,
user nicknames cannot be used to look up the user.

"Georgie"

user-property: Object Attribute

Specifies a user-chosen property for this object; a pair whose first
element is an indicator (by analogy with property lists) and whose
second element is a token denoting whatever the user chooses to
associate with that indicator.

(next-door-neighbor "Hr. Rogers")

work-address: User Object Attribute

Specifies a work (business) address; a token.

"The White House, Washington D.C., 10001"

work-phone: User Object Attribute

Specifies the work (business) phone number; a token.

"202-555-1212"

home-address: User Object Attribute

Specifies the home address; a token.

"Hount Vernon VA"

home-phone: User Object Attribute

Specifies the home phone number; a token.

"202-999-1234"

mail-address: User Object Attribute

Specifies the network mailbox at which the user wants to receive
mail. The value is a pair; the first element is the mailbox name
(a token), and the second is a host object. Defaults to
name@home-host

("George" blue)

14

Networks March 1985

birthday: User Object Attribute

Specifies the user's birthday; a token.

"Feb 22"

project: User Object Attribute

Specifies a description of what the user is working on; a token.

"being President of the United States"

supervisor: User Object Attribute

Specifies who the user is working for; a token.

"the People"

affiliation: User Object Attribute

Specifies the user's group affiliation; a singie-character token. The
letter is arbitrary and can refer to different sets of users at
different sites.

"p"

remarks: User Object Attribute

Specifies other relevant information; a token.

"I cannot tell a lie."

1.2.3 Namespace System Network Objects

A network object represents a computer network, to which some hosts are attached.
The name and type attributes are required; all others are optional.

name: Network Object Attribute

Specifies the name of the network; a name object (required).

harvnet

nickname: Network Object Attribute

Specifies alternate names for the network; a set of names. The
network may be found by these names.

site: Network Object Attribute

Specifies the site at which this network is located; a site object.
--

harvard

15

March 1985 General Information on Networks

type: Network Object Attribute

Specifies the type of network; a global-name. Common network
types include:

chaos

internet

dial

x25

A network using the MIT Chaos protocols.
Addresses are I6-bit numbers represented in
octal.

17006

A network using the DOD Internet protocols.
Addresses are the 32-bit Internet addresses as
four octets represented in decimal separated by
periods.

10.0.0.6

A direct-dial telephone network. Usually there
is only one of these, called dial by convention.
Addresses are telephone numbers relative to the
dialing conventions of the installation.

15551212

A packet-switching network with a CCITT
Recommendation X.25 interface. Addresses are
X.12I addresses.

311061700138

gateway-pseudonet

user-property: Object Attribute

A network actually implemented by direct
connection of a gateway to a terminal line.
Address is service-name = contact name on
gateway host, for example, tty-login=prime.

Specifies a user-chosen property for this object; a pair whose first
element is an indicator (by analogy with property lists) and whose
second element is a token denoting whatever the user chooses to
associate with that indicator.

(next-door-neighbor HHr. RogersH)

sub net: Network Object Attribute

Specifies characteristics of a subnetwork for this network; a pair.
The first element is a token naming the subnet in that network's
conventions. The second element is a set of pairs of global-names
and tokens that provide extra information on that subnet.

16

Networks March 1985

Example:

«"81" «cable-start "Rick's office" cable-end "Jane's office"»»

1.2.4 Namespace System Printer Objects

A printer object represents a hardcopy output device. The name, type, and host
attributes are required; the rest are optional.

name: Printer Object Attribute

Specifies the name of the printer (required); a name.

caspian-sea

type: Printer Object Attribute

Specifies the device type of the printer; a global-name (required).
This attribute implies some data formats that are interpreted by
the device. Common values are:

19p
ascii
press
xgp

site: Printer Object Attribute

The site where the printer is located; a site object. Generally all
printers at a site are offered in menus of potential output devices
for the destination of a hardcopy request.

HARVARD

pretty-name: Printer Object Attribute

Specifies a name for the printer; a token.

"Caspian Sea"

user-property: Object Attribute

Specifies a user-chosen property for this object; a pair whose fIrst
element is an indicator (by analogy with property lists) and whose
second element is a token denoting whatever the user chooses to
associate with that indicator.

(next-door-neighbor "Hr. Rogers")

17

March 1985 General Information on Networks

format: Printer Object Attribute

Specifies the print formats supported by the device; a set of global
names. These are in addition to those implied by the type
attribute. Common print formats are:

19p
press
xgp
ascii
tektronics

interface: Printer Object Attribute

Specifies the type of interface by which this printer is attached to
its host; a global-name. Possible values are:

serial
drll-c '

interface-options: Printer Object Attribute

Specifies parameters of the hardware interface; a set of pairs of
global-names and tokens. For each interface type attribute, give
the permissible option names and their default values.

host: Printer Object Attribute

Specifies the host to which the' printer is directly connected; a
host object (required).

protocol: Printer Object Attribute

Specifies the protocols to use for direct un spooled printing; a set of
global-names. If not specified, the HARDCOPY service is invoked
on the host to which the printer is directly connected.

default·font: Printer Object Attribute

Specifies the name of the font that should normally be used for
this printer; a token. If not specified, the default-font is usually
determined by the type of printer.

header·font: Printer Object Attribute

Specifies the name of the header font that should normally be
used; a token. If not specified, the header-font is usually
determined by the type of printer.

18

Networks March 1985

dplt-Iogo: Printer Object Attribute

Specifies the name of the logo printed by DPLT; a global-name.

Symbolics

character-size: Printer Object Attribute

Specifies the size of a character in micas; a pair of width and
height, in decimal. (A mica is 10 microns, or 1/2540 of an inch.)

page-size: Printer Object Attribute

Specifies the size of the page in device units; a pair of width and
height, in decimal.

"135" "80"

font-widths-file: Printer Object Attribute

Specifies the name of the fonts.widths file for this printer; a
token. It is best if this is a fully qualified physical path name
instead of a logical pathname, for example:
SCRC I ARGUS:>sys>stats>lgp-l>fonts. widths.

1.2.5 Namespace System Site Objects

A site object represents a collection of hosts, printers, and networks that are grouped
together in one physical location, within one timezone. The name,
local-namespace, site-directory, host-for-bug-reports, and timezone attributes
are required; the rest are optional.

pretty-name: Site Object Attribute

Specifies a version of the name suitable for people to read; a
token.

"Harvard University"

user-property: Object Attribute

Specifies a user-chosen property for this object; a pair whose first
element is an indicator (by analogy with property lists) and whose
second element is a token denoting whatever the user chooses to
associate with that indicator.

<next-door-neighbor "Hr. Rogers")

19

March 1985 General Information on Networks

local-namespace: Site Object Attribute

Specifies the site's local namespace; a namespace object (required).
This is the namespace that will be used at that site. Normally,
there is exactly one namespace for each site.

harvard

site-directory: Site Object Attribute

Specifies the file name of the directory that holds the Symbolics
computer system's site-specific files at this site; a token (required).
This is used only to find the files that define the logical hosts,
such as sys:. All other site-specific pathnames are managed by
logical pathname translations or by the descriptor file attribute of
a namespace.

blue:>sys>site>

site-system: Site Object Attribute

Specifies the name of a system (in the defsystem sense) to be
loaded automatically into Symbolics computer worlds at this site; a
token.

"HARV-SPECIFIC"

default-printer: Site Object Attribute

Specifies the default printer to use for printing text files at this
site; a printer object. This will be used by hosts that do not have
their own printer attribute.

default-bitmap-printer: Site Object Attribute

Specifies the default printer to use for printing screen images at
this site; a printer object. This attribute is for hosts that do not
have their own bitmap-printer attribute.

host-for-bug-reports: Site Object Attribute

Specifies the host to which bug reports should be sent, by the
Debugger c-M command, the Bug (M-)O command, and the Zmail
bug commands (required); a host object.

blue

host-protocol-desirability: Site Object Attribute

Specifies a tuning factor to be used in the Generic Network
System's cost estimates when trying to construct a path to a

20

Networks March 1985

service; a triple of the form (host protocol desirability), in which
host represents a host, protocol names some protocol that host
supports, and desirability is a token expressing a floating-point
factor for the cost calculations. Services and protocols are
discussed elsewhere: See the section "The Lisp Machine Generic
Network System", page 37. Desirability is discussed elsewhere:
See the section "Interfacing to the Network System", page 201.

(yukon chaos-mail "0.75")

timezone: Site Object Attribute

The timezone at this site; a global-name (required).

est

secure-subnets: Site Object Attribute

Specifies an association of networks and secure subnet numbers; a
set of pairs. The first element of each pair is a network; it must
be of type chaos. The second element of each pair is a set of
subnet numbers, the interpretation of which depends on the type
of the network. For a chaos network, the set is represented as
octal character strings.

This attribute controls the subnet security feature of the
Symbolics file server as well as other servers which use the
:trusted-p or :reject-unIess-trusted keywords to
net: define-server. Hosts on these subnets are considered
trustworthy.

dont-reply-to-mailing-lists: Site Object Attribute

Specifies a set of names of mailing lists to which Zmail does not
reply by default; tokens. This attribute is useful only to those
who have not set the PEOPLE NOT TO REPLY TO option in
their Zmail init files.

other-sites-ignored-in-zmail-summary: Site Object Attribute

Specifies a set of site objects. Zmail does not display the host
names of hosts from the specified sites in its summary window as
well as not doing so for this site.

standalone: Site Object Attribute

Specifies whether the host at this site is a standalone machine; a
token. If the value is the string "yes", then only one host exists
at this site and no response to the who-am-J network broadcast
request at boot time is expected. If the attribute is not present

March 1985

21

General Information on Networks

or the value is not "yes", then multiple Symbolics computer hosts
exist at this site; when one host is booted, another host answers
its who-am-! query.

validate-Imfs-dump-tapes: Site Object Attribute

Specifies whether the LMFS backup dumper attempts to validate
backup tapes. If the value is "yes", then the LMFS backup
dumper validates backup tapes. If the value is not "yes" or if the
attribute is not provided, no validation is done.

terminal-f-argument: Site Object Attribute

An associate set of specifications for what the various arguments
to the FUNCTION F key should do. Each component is a triple
consisting of a number (a string of the decimal number) or the
string "none", a global name, and a set of hosts. The keywords
can be:

:login The login fIle computer.

:local-lisp-machines
All Symbolics computers at this site.

:all-lisp-machines

:host

All Symbolics computers on the local network.

The hosts in the third element of the triple.

(("none" :login nil)
(HO" :read nil)
(Hl" :local-lisp-machines nil)
(H2" :host (yellow blue read»)

1.2.6 Namespace Objects

A namespace object represents a mapping from names of objects to objects. The
name, search-rules, and descriptor-iIle attributes are required; the rest are
optional. Normally, no or one site is contained in each namespace.

search-rules: Namespace Object Attribute

Specifies the search rules, expressed as a set of namespaces
(required).

(harvard yale)

22

Networks March 1985

descriptor-file: Namespace Object Attribute

Specifies the descriptor file for the namespace; a token (required).
See the section "Namespace Database Descriptor Files", page 25.

blue: >sys>si te>harvard-namespace. text

primary-name-server: Namespace Object Attribute

Specifies those hosts that are primary namespace servers for this
namespace; a set of host objects. A primary server is an authority
regarding its namespace. The namespace data are stored in files
controlled by the primary namespace server.

(blue)

secondary-name-server: Namespace Object Attribute

A set of host objects, representing those hosts that are secondary
namespace servers for this namespace. A secondary server is not
an authority on a namespace, but can provide a backup in case
the primary server is temporarily unavailable. It attempts to keep
a copy of the namespace information current by querying the
primary server more often than a non server machine would.

(orange pink)

internet-domain-name: Namespace Object Attribute

The Internet Domain Name associated with the namespace; a token. See the
section "Dialnet and Internet Domain Names", page 85.

SCRC.Symbolics.COH

user-property: Object Attribute

Specifies a user-chosen property for this object; a pair whose first
element is an indicator (by analogy with property lists) and whose
second element is a token denoting whatever the user chooses to
associate with that indicator.

(next-door-neighbor HHr. RogersH)

1.3 User Interface to the Namespace System

To add new objects to the namespace database or edit existing ones, use the
namespace editor. You can invoke the namespace editor by using the Edit
Namespace Object command, clicking on [Namespace] in the System Menu, or calling
tv:edit-namespace-object.

23

March 1985 General Information on Networks

When editing an object that lives in more than one namespace (for example, a host
that is on both the local Chaosnet and the Arpanet), a pop-up window appears that
lists the name of each namespace and asks which '.'view" (that is, which namespace)
you want to edit.

It lists each attribute (shown in Roman type) for the user object and its permissible
data type(s). Attributes followed by an asterisk (*) are required; all others are
optional. Data types are shown in regular italics and bold italics. By cliCking on the
data types shown in italics, you can enter values for the attribute. The value
replaces the data type in the display. Data types shown in bold italics indicate
compound values and remain in the display, as in Login Name: Pair: sr VIXEN.
Existing values are also mouse-sensitive; click right on a value to edit it.

Some attributes can occur more than once for the same object (for example, login
name); each attribute-value appears on its own line. An attribute with multiple
values is not the same as an attribute having its value be a set.

Example: The spooled printer attribute entries for a particular host object look like
this:

Spooled Printer: Pair: WALDEN Set: Pair: DIRECTORY p:>printer> Pair:
Spooled Printer: Pair: Printer Set: Pair: Global-name Token

The two entry lines for spooled printer indicate that the host object can have more
than one such attribute. The second line, as yet not filled in, shows that the value
of the spooled printer attribute is a pair, whose first element is a printer object and
whose second element is a set of one or more pairs. Each pair consists of a global
name and a token. Pair: at the end of the first line indicates that you can continue
to enter pair values for the printer object called Walden.

The following diagram illustrates the above entries.

SPOOLED PRINTER

I \
I \

Walden ---SET----------
I \ \

I \

I

PAIR
I \

I \

I
Directory

PAIR
I \

I \

etc.

\ GLOBAL-NAME TOKEN
\

p:>printer>

SPOOLED PRINTER

I \
I \

PRINTER ---SET----------
1\\
I \

I

PAIR
I \

I \

I
GLOBAL-NAME

PAIR
I \

I \

etc.

\ GLOBAL-NAME TOKEN
\
TOKEN

24

Networks March 1985

1.4 Managing the Namespace Database

To run with the namespace database you must designate one machine as the
primary namespace server for your namespace. This selection is made when
software supporting the database is first installed at your site. The primary
namespace server maintains permanent copies of the namespace database in some
file system, usually its own, and distributes the information to other systems across
the network.

1.4.1 Lisp Machine Namespace Server Files

The Namespace Server maintains four kinds of files to store the namespace
information.

• N amespace database descriptor files

• Object files

• Log files

• Changes files

All of these are text files. Characters from a semicolon to the end of a line are
considered to be comments .

. 1.4.1.1 Record Format

The printed representation of an object and its attributes in files and over a network
byte stream is in records. A record is a set of lines followed by a blank line. Each
line is a set of tokens separated by spaces. A token is a sequence of characters
except space, newline, semicolon, and double quote, or any sequence of characters
between double quotes. Quoting within the double-quoted case is via the backslash
character. Double quotes and backslashes must be quoted inside of double quotes.

For example,

SIZE EXTRA-LARGE
COLORS RED WHITE BLUE
MANUFACTURER "Symbolics, Inc."
SLOGAN "\"Vow!\", he said."

Due to the similarity to a property list, the first token in a line is called the
indicator and the other tokens the value.

1.4.2 Namespace Database Descriptor Files

Each namespace has one descriptor fue. Its pathname is stored as the
descriptor-file attribute of the namespace. This file gives the locations of the
other files which make up the name space.

Each line of the fue is either a comment or an indicator followed by a pathname.

25

March 1985 General Information on Networks

Valid indicators are the names of the classes and the special indicators version,
changes, and •.

Indicator

class name

Value

The pathname of the object file for that class. See the section
"Namespace Database Object Files", page 25.

version

changes

The pathname of the log file.

The pathname of the changes file.

•

;-*-Text-*-

The pathname of the object file for all classes that have not been
explicitly named. See the section "Namespace Database Object
Files", page 25.

VERSION BLUE:>SYS>SITE>HARVARD-NAMESPACE-LOG.TEXT
CHANGES BLUE:>SYS>SITE>HARVARD-NAMESPACE-CHANGES.TEXT
HOST BLUE:>SYS>SITE>HARVARD-HOSTS.TEXT
USER BLUE:>SYS>SITE>HARVARD-USERS.TEXT
* BLUE:>SYS>SITE>HARVARD-OTHERS.TEXT

1.4.2.1 Namespace Database Object Files

Object files, the heart of the namespace database, contain the stored attributes of all
database objects. An object file contains the information for some subset of the
classes in a namespace, as specified in that namespace's descriptor file. It begins
with an file attribute list which specifies the namespace to which it belongs with the
network-namespace attribute. This is followed by a series of records separated by
blank lines.

Each record describes one object. The first line of the record consists of the class
name and the primary name of the object. Each following line contains an indicator
and a value for that attribute. Indicators defined as elements in the class definition
may occur several times. The values are gathered together into a set.

A sample of HARVARD-USERS. TEXT, which contains only one record:

26

Networks

;-*- Mode: Text; Network-Namespace: Harvard -*
USER GEORGE
LISPM-NAME George
PERSONAL-NAHE "Washington, GeorgeM

HOME-HOST BLUE
MAIL-ADDRESS George BLUE
LOGIN-NAME George BLUE
LOGIN-NAME Washington.States MITIMULTICS
LOGIN-NAME GW MITIMC
NICKNAME Georgie
WORK-ADDRESS "The White House, Washington D.C., 10001"
WORK-PHONE 202-555-1212
HOME-ADDRESS "Hount Vernon VA"
HOME-PHONE 202-999-1234
PROJECT "being President of the United States H

SUPERVISOR "the People H

REMARKS "I cannot tell a lie."

1.4.2.2 Namespace Database Log Files

March 1985

The log file for a namespace is a text file containing all changes to the database. In
addition, its file system version number is used as a timestamp for the change which
resulted in that version being written out. This timestamp is used by the database
system to identify obsolete data. For file systems that lack version numbers, such as
UNIX, the creation date is used as a substitute for a version number.

An example from HARVARD-NAMESPACE-LOG.TEXT:

10/24/83 16:39:22 USER GEORGE by George. Old timestamp was 607.
10/24/83 22:09:10 HOST BLUE by JAdams. Old timestamp was 608.
10/26/83 07:23:45 HOST GREEN deleted by JAdams.

1.4.2.3 Namespace Database Changes Files

The changes file for a namespace is a chronological record of all changes to the
namespace. It is kept so that systems need only process changes since the last time
they contacted the namespace server, rather than the entire database.

Each entry in the changes file consists of:
• a timestamp line an optional series of deleted object lines a blank line an

optional series of changed or added object records

The timestamp line consists of the word TIMESTAMP followed by the version
number of the log file before the change was made. Deleted objects are identified by
their class name and primary name. Changed objects appear just as they do in the
object file.

As changes are made, old entries in the changes file are winnowed. Thus, if an
object is changed twice, only the newest record for it will appear. Older entries in
the file are thus likely to consist of just a timestamp line and a blank line. Run
neti:prune-namespace-changes-file.

27

March 1985 General Information on Networks

An example from HARVARD-NAME SPACE-CHANGE S.TEXT:

TIMESTAMP 607

USER GEORGE
LISPM-NAME George
PERSONAL-NAME "Washington, George"
HOME-HOST BLUE
MAIL-ADDRESS George BLUE
LOGIN-NAME George BLUE
LOGIN-NAME Washington.States HITIHULTICS
LOGIN-NAME GW MITIMC
NICKNAME Georgie
WORK-ADDRESS "The White House, Washington D.C., 10001"
WORK-PHONE 202-555-1212
HOME-ADDRESS "Mount Vernon VA"
HOME-PHONE 202-999-1234
PROJECT "being President of the United States"
SUPERVISOR "the People"
REMARKS "I cannot tell a lie."

TIMESTAMP 608

HOST BLUE
SYSTEM-TYPE LISPM
SERVICE CHAOS-STATUS CHAOS-SIMPLE CHAOS-STATUS
SERVICE SHOW-USERS CHAOS NAME
SERVICE TIME CHAOS-SIMPLE TIME-SIMPLE
SERVICE UPTIME CHAOS-SIMPLE UPTIME-SIMPLE
SERVICE LOGIN CHAOS TELNET
SERVICE SEND CHAOS SEND
SERVICE MAIL-TO-USER CHAOS CHAOS-MAIL
SERVICE NAMES PACE CHAOS NAHESPACE
SERVICE NAMESPACE-TIHESTAMP CHAOS-SIMPLE NAMESPACE-TIMESTAMP
SERVICE LISPH-FINGER CHAOS-SIMPLE LISPM-FINGER
SERVICE FILE CHAOS QFILE
LOCATION Kiosk 1
FINGER-LOCATION "Harvard Square Kiosk"
PRETTY-NAME Yellow
ADDRESS CHAOS 24412
MACHINE-TYPE LISP"
NICKNAME VEL
SHORT-NAME Y
SITE HARVARD

TIMESTAMP 609
HOST GREEN

TIMESTAMP 610

28

Networks March 1985

1.4.3 Namespace System Administrative Functions

neti:read-object-file-and-update names pace class-name Function
Update the namespace database from an object file. namespace can be a
namespace object or the name of one. This function is used for namespaces
which are maintained outside of the Symbolics namespace database, but
which should be accessible to it. It reads an object file (usually generated
from some external source of information) and makes the namespace
database agree with it by adding, changing, and deleting objects. The
changes and log files are updated. It can be invoked only on the primary
namespace server for the namespace to be updated.

(neti:read-object-file-and-update
:arpanet :host)

neti:prune-namespace-changes-flle names pace starting-timestamp Function
Eliminate the record of changes to names pace before starting-timestamp.
This reduces the amount of information which must be processed by the
primary namespace server when it is booted. The changes file is best pruned
only when there are no world load files that were saved before the earliest
remaining change; they will take quite awhile to boot.

neti:translate-hosts. text-file &key input-host-file input-lmlocs-file Function
output-file allowed-prefixes destination-names pace
short-names file-control-lifetimes server-machines
tape-lisp-machines hosts-with-printers
hosts-with-kanji-tablets

Convert the M. I. T. files HOSTS. TEXT and LMLOCS into the namespace
database format. Do only the Chaosnet part of hosts.text. Additionally, if
the host is on the Arpanet, its primary name is given as a nickname to the
corresponding name in the arpanet namespace, so that the object is properly
shared. allowed-prefixes is a list of strings that can start the primary name.
Give (nn) to get everything, normally this would be ("MIT-").
destination-names pace is put in the file attribute list. The other arguments
provide information that was not present in the M. I. T. files. Use of this
function should generally be followed by using
neti:read-object-file-and-update to update the database.

neti:write-hosts.text-file output-file &rest args Function
Writes an ITS-style HOSTS. TEXT file from the namespace database. This
file can be used to initialize the the host table on a timesharing system from
the database being maintained on the Symbolics computer.

29

March 1985 General Information on Networks

1.5 Software Interface to the Namespace System

Symbolics computer programmers who want to use the capabilities provided by the
network database should read this section. It describes the Lisp data types»
variables» and functions for interacting with the network facilities.

1.5.1 Namespace System Lisp Data Types

The various database data types are implemented on the Lisp Machine as follows:

object

name

An instance of some flavor based on net:object.

An instance of flavor neti:name.

global-name

token

A symbol in the keyword package.

A string.

set

pair

triple

A list.

A list of two elements.

A list of three elements.

1.5.2 Namespace System Variables

net:*local-site* Variable
Specifies the site object representing the local site» that is, the value of this
variable answers the question "What site am 1 at?"

net:*local-host* Variable
Specifies the host object representing the local host» that is» the value of this
variable answers the question ''What host am I?"

si:*user* Variable
Specifies the user object representing the user logged in to the machine, that
is» the value of this variable answers the question ''What user am I?"

net:*namespace* Variable
Specifies the current namespace object.

net:*namespace-search-list* Variable
Specifies the search rules» represented as a list of namespace objects.

1.5.3 Namespace System Functions

net:find-object-named class name &optional (error-p t) Function
Returns the object of the given class named name. class is a keyword
symbol; name is a string. This function searches through all namespaces in

30

Networks March 1985

the search rules in order. If no object is found, the action taken depends on
error-p:

t

nil

Signal a neti:object-not-found-in-search-Iist error. This
is the default.

Return nil.

net:find-object-named also returns a second value, which is t if the object
is valid and nil if it is not.

Cnet:find-object-named :host "apple") =) '<HOST APPLE)
Cnet:find-object-named :host "yalelorangeH

) =) II<HOST VALEIORANGE)

net:find-object-from-property-Iist class property-list... Function
Returns the first object of class that matches all of the properties in
property-list. class is a keyword symbol; property-list is an alternating list of
keywords and values. If no object is found, the function returns nil. If
many objects are found, returns one of them. This function searches
through all namespaces in the search rules in. order.

For example, to find one UNIX host:

Cnet:find-object-from-property-list
:host
:system-type :unix)

net:find-objects-from-property-list class property-list... Function
Returns a list of all objects of class that match all of the properties in
property-list. class is a keyword symbol; property-list is an alternating list of
keywords and values. If no objects are found, it returns nil. Objects from
all namespaces in the search rules are accumulated.

Example: To get a list of all Symbolics computers at the local site:

Cnet:find-objects-from-property-list
:host
:system-type :lispm
:site net:*local-site*)

A property value from an object matches a pattern from the arguments to
this function if one of the following conditions holds:

• The Lisp function equal returns true.

• The attribute is of the element or pair type and each element of the
pattern list matches some element of the value; wildcards in the
elements of a pattern are considered to match anything.

A wildcard is the keyword symbol :* or the string ".". (Note: The
symbol • is not a wildcard.>

31

March 1985 General Information on Networks

Example: To find a user who has an account on the blue host, use the
:* to match any login name.

(net:find-objects-from-property-list
:user
:login-name C((:* ,(net:parse-host "blue"»»

site-name Variable
The value is a keyword, the name of the site at which this machine is
located. site-name can be used to conditionalize programs. For example:

(when (eq site-name :acme)
(load "apricot:>smith>cerebrum-serverH »

Site names are described in more detail: See the section "N amespace System
Site Objects", page 18.

si:get-site-option keyword Function
Finds out the value of a site option. keyword is the keyword symbol naming
the option. This function returns the value of the option.

(si:get-site-option :timezone)
:EST

si:parse-host host &optional no-error-p ignore Function
host is a string representing the name of a host. The namespace database is
searched for a host object corresponding to the name supplied. If the host is
not found, an error is signalled unless no-error-p is supplied and is non-null.

1.5.4 Messages to Namespace Names and Objects

1.5.4.1 Messages to neti:name

:namespace
Returns the namespace for the name.

Message

(send (send si:*user* :name) :namespace) => I<NAHESPACE HARVARD>

:qualified-string Message
Returns a qualified character string representation of a name.

(send (send si:*user* :name) :qualified-string) => "HARVARDIGEORGEH

:string . Message
Returns an unqualified character string representation of a name.

(send (send si:*user* :name) :string) => HGEORGE"

32

Networks March 1985

:possihly-qualified-string Message
Returns the qualified name if shadowed. The single argument is a class
name. See the section "Shadowing Symbols" in Reference Guide to
Symbolics-lisp.

(send (send si:*user* :name) :possibly-qualified-string :user) =>
"GEORGE H or "HARVARDIGEORGEH

1.5.4.2 Messages to neti :object

: class
Returns the name of the class of the object, as a keyword symbol.

(send net:*local-host* :class) => :host

Message

:get indicator Message

:name

Gets the value of this object's indicator attribute. indicator is a keyword
symbol. If there is no such attribute, returns nil.

(send net:*local-host* :get :system-type) => :lispm

Message
Returns the primary name of the object, as a character string.

(send si:*user* :name) => #<NAHE HARVARD I GEORGE 2346253>

Note: For compatibility with older releases, the :name message to a host
returns a character string, rather than a name instance as would be
expected. Use the :primary-name message to be sure of getting a name
object.

:primary-name Message
Returns the primary name of the object, as a name instance.

(send net:*local-host* :primary-name)
#<NAHE SCRCITAGUS 36747263>

(send net:*local-host* :name)
"TAGUS H

:names Message
Returns a list of all of the names by which an object can be found.

(send net:*local-host* :names) => ('<NAHE HARVARDIVEllOW 2346253>
'<NAHE HARVARDIV 2346267>
'<NAHE HARVARDIVEl 2346303»

:user-get indicator Message
Gets the value of this object's particular user-property attribute as indicated
by indicator. indicator is a keyword symbol. If no such user-property
attribute exists, :user-get returns nil.

33

March 1985 General Information on Networks

(send si:*user* :user-get :favorite-color) => HDusty PlumH

1.6 Implementation of the Namespace System

This chapter is for programmers who need to implement the namespace database on
another system.

1.6.1 Network Namespace Protocol

Queries and updates to the network database are done over a byte stream with the
names pace protocol. The general format of a request is a single record. The
response is a series of records followed by a blank line. Queries can be serviced by a
primary or secondary namespace server or by a non-server Symbolics computer; but
in case of a secondary namespace server, the information in the response might be
incomplete or out-of-date. Updates.can be serviced by the primary namespace server
only.

In the case of a query, you send a record which must at least specify a namespace
and a class. Any additional attributes in the record are matched against objects in
that namespace of that class. The response records describe those objects. Here the
name of the object is given by the name attribute, rather than the value of the
class name attribute. For attribute values that are pairs or elements, the special
token • matches anything. Actually,· matches anything at any level, but putting it
in as a value with a simple indicator is equivalent to leaving out that attribute
entirely.

For example, the query

NAHESPACE HIT
CLASS HOST
NAHE AI

might elicit the response

HOST MIT-AI
NICKNAME AI
SYSTEM-TYPE ITS
MACHINE-TVPE KA-l0
ADDRESS CHAOS 2026

(Note the two blank lines at the end; the first ends the record describing MIT-AI.
The second ends the blank record that marks the end of the response.)

34

Networks March 1985

Or the query

NAMES PACE MIT
CLASS HOST
SYSTEM-TYPE ITS
ADDRESS CHAOS *

might elicit

HOST MIT-AI
NICKNAME AI
SYSTEM-TYPE ITS
MACHINE-TYPE KA-10
ADDRESS CHAOS 2026

HOST MIT-MC
NICKNAME MC
SYSTEM-TYPE ITS
MACHINE-TYPE KL-10
ADDRESS CHAOS 1440

The format of an update is the same as that of a query, except that the additional
update-by attribute is included. The value of this attribute is the user name of the
person changing the information, for logging purposes. Additional tokens might be
required by some servers for a password if security of the database is important.

A database deletion request has the special indicator delete in addition to
update-by. The value of this attribute is the name of the object to be deleted from
the database.

Incremental updates are accomplished in two ways. Any attribute list can have a
timestamp indicator in addition to the match requests. The server reply lists only
objects that have changed after that timestamp. In other words, the timestamp
corresponds to the user's idea of when encached information was last valid.

A user can also request an incremental update of the database by supplying the
incremental indicator. The value of this indicator is one of the special tokens
brief, tull, or complete. In this case, the timestamp indicator is mandatory and
indicates from when the user is requesting an update. A brief incremental update
starts with a record that is one of these:

• The word current if the timestamp supplied is still the correct timestamp for
the namespace.

• A record with just a too-old attribute whose value is the current timestamp.

• A record that starts with a timestamp attribute whose value is the current
timestamp and is followed by the class and name of each object that has been
deleted from the namespace since the given timestamp. This last case is then
followed by a record with a line giving the class and name of each object that
has been changed or added to the namespace.

35

March 1985 General Information on Networks

A full update has the same format as a changes file. See the section "N amespace
Database Changes Files", page 26.

Finally, an incremental complete update results in one record containing a
timestamp attribute for the namespace, followed by all the objects in the namespace.

1.6.2 Namespace Timestamp Protocol

A simple protocol is provided for determining whether any information in a
namespace has changed. On the Chaosnet, this is implemented via a RFC/ANS
transaction. The RFC specifies the name of the namespace and the corresponding
ANS contains the timestamp as characters representing a decimal number.

1.6.3 Defining Namespace Classes

New namespace classes can be defined with the special operator neti:define-class.
The definitions for the classes used in the system can be found in
SYS:NETWORK;CLASS-DEFINITIONS.LISP.

36

Networks March 1985

37

March 1985 General Information on Networks

2. The Lisp Machine Generic Network System

2.1 Networks and Addresses

The tenn network in this document means an entity that connects together a set of
hosts. Any two hosts on the same network can communicate directly with each
other. Each host has at least one address on the network; in order to talk to
another host on the same network, you must know the address of that host.

The real world contains many distinct networks. The network database model takes
account of this and provides abstract network objects to represent individual
networks.

The Symbolics computer supports several different types of networks, including:
• Chaosnet
• Internet

The network type is determined by the level of protocol that (1) decides how
addresses are represented and (2) figures out how to get a packet from a source
address to a destination address. (This is the "network" level of the ISO OSI
model.) Bear in mind that "type of network" does not refer to hardware. In
particular, Ethernet is not a type of network; Ethernet cable can be used to
transport Chaosnet packets or Internet packets (or both!).

Each type of network can support many actual networks. For example, two
different Chaosnet networks can exist in the world, even though both are
Chaosnets. The network database can represent this distinction. The network
database also has a clear idea of what makes up "two different Chaosnets", as
opposed to what it considers one. Two subnets (pieces of cable, as defined in
Chaosnet) connected by a bridge, which automatically copies packets from one subnet
to the next, make up a single network, not two networks. It is only one network
because both subnets are using the same mapping of addresses into hosts; the same
address means the same thing on each subnet. Bridges that connect subnets are
invisible to the software described in this document, which considers a whole
network to be one big "bus" configuration, with everything directly connected to
everything else. The job of getting data from one host to another directly over a
single network is below this level of modularity and therefore is not discussed herein.

However, this document does discuss the problem of getting infonnation between
two hosts that do not have any network in common. This is done with gateways:
hosts that are on more than one network. If you are only on a network called jane
and want to talk to a host that is only on network sarah, then you need to fmd a
third gateway host that is on both networks jane and sarah. Then, by using.a
gateway service provided by that host, you might be able to communicate.

38

Networks March 1985

Sometimes it might even be necessary to have more than one intermediate host; a
path to a destination might "hop" through many gateways.

In order to deal with getting information between two hosts that do not share a
network, the local host needs to know what networks various hosts are on and what
their addresses on those networks are. This information is stored in the network
database, in the :address attribute of each host. When the local host wants to
connect to some target host, it looks at the host objects for itself and for the target,
compares the :address attributes, and looks for a network in common. If it does
not find one, then it must find a more complex path. It searches through the
database in search of a gateway host that shares some network with the local host
and shares some other network with the target host. The details of the path of the
communication, including the choice of gateway host, are determined entirely by the
local host, on the basis of its examination of the database, and some information
that it builds dynamically to estimate relative costs of different paths.

Each type of network has its own representation for addresses; the database just
stores a string to represent an address. Each individual network is given those
strings, and most, but not all, parse them into an internal numerical representation.
For each type of network understood by the Symbolics computer, a set of procedures
exists to do network-specific things such as address parsing and operating the
network communications protocols.

Adding a new type of network to the Symbolics computer can be done in a
straigh tforward way; the system is designed to be extensible. However, it requires a
reasonable amount of programming and a good understanding of the modularity of
the network system. Adding a new network of an existing type, at your site, is
relatively easy and requires no programming; it is just an update to the database.
Generally, user sites create new networks rather than network types.

2.2 Protocols and Services

The term protocol refers to a particular high-level network protocol, supported by
server hosts, that provides some particular service to user hosts. (This definition is
based on the concept of generic services.) Typical services include remote login
service, mail delivery service, and file transfer service. When an application program
needs to use networks, it calls a function in the network system, saying "Please get
me this particular service on that particular host", or "Please get me this particular
service on any host that provides it". Because many different ways exist to provide
such service, the job of the network system is to figure out how to provide it in the
most efficient way.

Each of the many different kinds of networks has its own protocols for providing the
various services. For example, the service of getting mail to a user is provided by the
chaos-mail protocol on Chaosnet, but by the smtp protocol on Internet. The

39

March 1985 General Information on Networks

network system understands both of these protocols and uses the appropriate
protocol to provide the service, based on how the local host is connected to the target
host; for example, if both hosts are on an Internet together, the network system
would decide to use the smtp protocol. This process is invisible to the application
program.

The network system's selection of which protocol to use is actually more complex
than the above example suggests, for the following reasons.

• Some protocols do not require a particular kind of network. For example, some
protocols can operate over any network that is capable of providing a reliable
byte-stream.

The network system has to be aware of just what the need of each protocol is,
and it also must understand when and how it can fulfill that need over
different networks.

• Sometimes the two hosts are not connected by any kind of network at all but
by a gateway. The network system must find a gateway host that provides
the appropriate gateway service and then determine how communication can
proceed over that gated connection.

Note that provision of gateway service to another network is considered a
generic service just like any other, and many different protocols can be used to
implement gateway service.

When the network system needs to provide a service, how does it really select which
protocol to use? Each service has a list of all protocols capable of providing that
service. Each protocol has a demand: The protocol can provide the service only if
an appropriate connection can be made to the target host. A connection is
appropriate only if the appropriate medium of communication can be established
between the local host and the target host. A medium represents the demand that
a protocol makes.

In the database, each host has a :service attribute. The value is a list of all the
services provided by this host. Each element of the list is a triple, of the form:

(service medium protocol)

Each element says that the host is capable of providing the given service, using the
given protocol, if the network system can form a connection to it using the given
medium. For example, suppose one element of a host's :service attribute were:

(:mail-to-user :c~aos :chaos-mail)

This means that the host can provide the :mail-to-user service by using the
:chaos-mail protocol, provided you can form a connection to it that supports the
:chaos medium.

Note that services, media, and protocols are all represented as Lisp keyword symbols
(global names in the network database).

40

Networks March 1985

Every host that provides services to other hosts has a list of entries of this sort.
Usually, every host running a certain operating system and on the same types of
network has the same entries. However, hosts can differ under certain
circumstances; for example, one host might not offer a service even though it could,
or one host has a special-purpose server that the others do not. Generally, though,
the set of services that a host can provide, and the protocols that it provides those
services with, are a function of what software runs on that host.

A single host might have two entries for the same service. This means that the
host knows two different ways to provide a particular service, based on different
media. If a host is on two different kinds of network, it might provide the same
service in different ways on each network. For example, a host that was on both a
Chaosnet and an Internet might provide :mail-to-user service on both networks,
using different media and different protocols on each one. The network system
picks which one to use, based on what kind of network connection it can establish.

The network system takes these steps to find you a path to service s on target host
h.

1. It looks up h in the database and gets its :service attribute.

2. It looks for all of the entries for service s. Every time it finds one, it looks at
the medium over which the service is provided and tries to find a path to h
using that medium. The network system ignores any entries that mention
protocols or media it does not understand.

3. It collects all the entries it finds during this search, and then at the end,
chooses from the list of entries the most desirable one based on some cost
criteria accumulated during the search.

2.3 Invoking Services: Lisp Machine Generic Network System

The simplest usage for invoking services requires the use of
net:invoke-service-on-host.

net:invoke-service-on-host seroice host &rest seroice-args Function
seroice is a keyword symbol, host a host object. seroice-args and the values
returned are service dependent. For example, the following invocation prints
host MIT-MC's idea of the current time.

(time:print-universal-time
(net:invoke-service-on-host :time (net:parse-host "HIT-He"»)

Whether or not net:invoke-service-on-host automatically tries all paths
depends on the value of the variable
neti:*invoke-service-automatic-retry* .

41

March 1985 General Information on Networks

neti:*invoke-service-automatic-retry* Variable
If the value of this variable is not nil, net:invoke-service-on-host
automatically tries all paths. The default is nil.

2.3.1 Service Descriptions: Lisp Machine Generic Network System

Often more than one path to a service exists on a particular host, or more than one
host provides a service. A service access path is a structure representing one of
these paths, including the particular protocol to be used to get the service and how
to establish any network connections needed.

Some protocols implement a service better or more efficiently than others. For these
reasons, service access paths include a desirability, which is a number between 0
and 1 that represents how good a job this service access path does.

net:find-paths-to-service service Function
Returns a list of service access paths for the particular service and only one
service access path for any given host. The list is sorted by decreasing
desirability.

net:find-paths-to-service-on-host service host Function
Returns a list of all possible paths to a particular service on a given host.
The list is sorted by decreasing desirability.

net:find-path-to-service-on-host service host Function
Returns a single access path or signals an error if none can be found.

net:find-paths-to-protocol-on-host protocol host Function
Similar to net:find-paths-to-service-on-host, except that the actual protocol
is specified and only the network path is computed by the system. It is
preferable to specify a service rather than a specific protocol in order to allow
future transparent extension to a new protocol.

net:find-path-to-protocol-on-host protocol host Function
Similar to net:find-path-to-service-on-host, except that the actual protocol
is specified and only the network path is computed by the system. It is
preferable to specify a service rather than a specific protocol in order to allow
future transparent extension to a new protocol.

net:invoke-service-access-path service-access-path service-args Function
Takes a service access path and returns the service dependent values, as
net:invoke-service-on-host would.

Note that net:find-paths-to-service is not given service-args. This is because the
service-path-finding mechanism does not implement a very fme weeding-out process.
Network protocols and hosts are only known to implement a service, not that -service
under some restricted set of arguments, since that information is -not present in the

42

Networks March 1985

network database. A higher-level mechanism must handle this filtering. For
example, the network namespace service is sought only among hosts known to be
namespace servers for the particular namespace desired.

neti:most-desirable-service-access-path service-access-path-list Function
Takes a list of service access paths sorted by desirability, as returned by
net:find-paths-to-service or net:find-paths-to-service-on-host, and
randomly chooses one from the equally desirable subset at the front. Since
most paths to a service are equally desirable (such as a service provided by all
Symbolics computers at the local site), this function should be used in
preference to first for selection, since it distributes the server load evenly in
the long run.

2.3.2 Service Futures: Lisp Machine Generic Network System

A service future is a request for a service whose connection establishment is
outstanding. For simple services, like time, this allows you to have requests

. outstanding to more than one host at the same time. You can then pick the first
or best of several responses without a long waiting period.

net:start-service-access-path-future service-access-path &rest Function
service-args

Initiates the request for service. service-access-path and service-args are as
for net:invoke-service-access-path. If the service is not implemented over
the network, or the connection medium does not support asynchronous
connections, the values nil and the values normally returned by this service
are returned. Otherwise, the value t is returned.

net:service-access-path-future-connected-p service-access-path Function
Takes a service access path previously given to
net:start-service-access-path-future and returns t if the connection is now
complete. This can mean either successful or unsuccessful completion. This
is useful for constructing wait predicates.

net:continue-service-access-path-future service-access-path Function
Takes a service access path which is connected (or which you have timed out
on) and returns the values that invoking the service would. If the
connection was not completed successfully, an error is signalled. If you are
starting up several services but only looking for one answer, that means you
must be prepared to intercept the error sys:network-error and go on to the
next one. This is in practice necessary anyway, since byte-stream-oriented
protocols can crash in the middle, datagram-oriented protocols can return
malformatted answers that are not detected by the NCP itself, and so on.
The net:invoke-multiple-services macro aids in writing programs that do
this.

43

March 1985 General Information on Networks

net:abort-service-access-path-future service-access-path Function
Takes a service access path previously given to
net:start-service-access-path-future and cancels the outstanding
connection. Useful for cleanup handlers.

net:invoke-multiple-services (services timeout &optional whostate Special Form
service-variable) (host &rest service-results)
&body clauses

A useful macro for dealing with multiple paths to a service at once. It starts
up futures for multiple hosts, running the specified code when each is
finished.

services A form that will return a list of service access paths, for
example, a call to net:find-paths-to-service.

timeout The maximum time to wait for anyone host to respond,
in sixtieths of a second.

whostate Optional; the state to put in the status line while waiting
for a future to complete. Defaults to "service ~lait".

service-variable Optional; the name of a variable to be bound to the service
access path describing the service.

host A variable name to be bound to the host on which the
service was invoked.

service-results Variables to be bound to the results of invoking the
service.

clauses Clauses as for condition-case. Actually, that means that
the service-results variables are bound inside the
condition-case form, so that the first of service-results
would be the error object if an error were generated.

For example:

(defun all-hosts-time ()
(net:invoke-multiple-services

«net:find-paths-to-service :time) (* 60. 10.) "Time")
(host time)

(sys:network-error
(format t "-&-A: -A" host time»

(:no-error
(format t "-&-A: -:[unknown-;-\TIME\-]"

(if (eq host net:*local-host*) "local" host)
time time»»

44

Networks March 1985

2.4 Finding Paths to Hosts: Lisp Machine Generic Network System

The description of how the network system decides what protocol to use leaves open
a question: How does the network system find a path to a host using a particular
medium? Each medium is defmed by a special form called net:define-medium.
The definition of a medium includes a set of alternative implementations of the
medium, each of which describes a way to form a network connection using that
medium.

Each implementation contains one or more steps. A one-step implementation is a
way to connect directly to the target host. A two-step implementation is a way to
connect first to a gateway (a host on more than one network), which then connects,
in tum, to the target. (A three-step implementation would be a way to go through
two levels of gateway; none of the defined media actually do this, but it could be
done to any number of levels.)

Steps are of the following three types:
:network
:medium
: service

The last step of any implementation must be either :network or :medium; steps
other than the last step must be :service. This means that a one-step path must
be either :network or :medium.

Ste:ps and implementations are represented as lists. An implementation is a list of
steps. A step is a two-element list whose first element is the type of step (either
:network, :medium, or :service).

The three types of steps are defined as follows:

(:network network-type)
Succeeds if the local host and the target host are both on
some network of type network-type. The connection can be
formed directly over that network. When a function is
associated with the step, it is a function to actually open the
connection over the network.

(:medium medium) Succeeds if a connection can be formed over medium. When
a function is associated with the step; it is a function to
create the encapsulated connection. See examples below.

(:service seroice) Succeeds if a connection can be formed to a server providing
service, and that server can connect to the next step.
Functions are never associated with :service steps.

The body of a net:define-medium form is made of implementations, or
implementations associated with functions.

45

March 1985 General Information on Networks

net:define-medium medium ([built-on-medium}J. body Special Form
Defines a medium named medium, which is built on built-on-medium, if
built-on-medium is supplied. An element of the body can either be an
implementation, or a list of the following form:

(implementation lambda-list . body)

The latter syntax provides a function associated with the last step of the
implementation. Note that in a multi-step implementation, steps before the
last must be :service steps, which cannot have an associated function.

The following form defines a medium called :tcp (the Transmission Control Protocol
of the Department of Defense) and provides two implementations. The first one
says that you can establish a :tcp connection with a host if you are on the same
:intemet as it. The second one says that you can establish a :tcp connection by
finding a path to any gateway host that provides the :tcp-gateway service, and that
can, itself, form a :tcp connection to the target host.

Note that the last step is a :medium step. This allows many levels of gateway to
be used.

(define-medium :tcp (:byte-stream)
«:network :internet»
«:service :tcp-gateway) (:medium :tcp»)

To establish a :chaos or :chaos-simpJe connection to a target host, you both have
to be on a :chaos network together. There is an associated Lisp function provided
to open the connection. Note that the keyword :chaos is being used in two
independent ways here: as a medium, and as a network type.

(define-medium :chaos (:byte-stream)
«(: network :chaos» (seroice-access-path &rest connection-args)
body»

(define-medium :chaos-simple (:datagram)
« (:network :chaos» (seroice-access-path &rest connection-args)
body»

There was no Lisp function in the TCP example because on the assumption that
there is no actual network control program in the machine for TCP protocols. The
(:network :intemet) clause is still useful even though Symbolics computers cannot
connect directly, because it tells the network system that a gateway and a target
can connect using medium :tcp if they are both on an :intemet network.

The following :diaI example is just like :chaos, and the :x25 example is just like
:tcp. Again, note that the symbols :diaI and :x25 are being used in two distinct
ways: as media, and as network types.

(define-medium :dial (:byte-stream)
« (:network :dial» (seroice-access-path &rest connection-args)
body))

46

Networks

(define-medium :x25 (:byte-stream)
«:network :x25»
«:service :x25-gateway) (:medium :x25»)

March 1985

The :mmdf example has something new: a Lisp function associated with a
:medium step. This is an encapsulated medium. MMDF is an error-correcting
"protocol" that creates a reliable byte-stream, building it out of an unreliable byte
stream. The Lisp procedure takes the connection opened by the :dial or :x25
medium, and returns a new connection that uses the first connection but also
supplies MMDF error-correction.

(define-medium :mmdf (:byte-stream)
«(:medium :byte-stream»

(service-access-path stream &rest connection-args)
body))

The :pseudonet medium always uses a gateway to access a network of type
:gateway-pseudonet. This is explained later in the documentation of the
:gateway-pseudonet network type; it is used for accessing hosts that are not really
on a network but are connected to some other host via something weaker, like serial
lines.

(define-medium :pseudonet (:byte-stream)
«:service :pseudonet-gateway) (:network :gateway-pseudonet»)

In order to explain the following two forms, we have to explain the built-on-medium
argument.

(define-medium :byte-stream (»

(define-medium :datagram (»

Whenever a medium :x uses built-on-medium, it is as if the medium
built-on-medium is given a new implementation, namely (:medium :x). So, it is as
if the definition of these media really were

(define-medium :byte-stream ()
« :medium :tcp»
«:medium :chaos»
«:medium :dial»
« :medium :x25»
«:medium :mmdf»
«:medium :pseudonet»)

(define-medium :datagram ()
«:medium :chaos-simple»)

In other words, the :byte-stream medium can be implemented out of any of :tcp,
:chaos, and so on, and the :datagram medium can be implemented out of
:chaos-simple.

47

March 1985 General Information on Networks

These are useful because some protocols are written in such a way that they only
need generic byte streams, or generic datagrams, and do not care about the details
of how those things are implemented. Such generic protocols are more useful than
non generic protocols, because they can operate over many different kinds of network.

The network system allows you to have both generic and nongeneric protocols. The
generic ones are more flexible, because they can operate over many kinds of network,
but the nongeneric ones can sometimes take advantage of the features peculiar to a
specific network in order to provide higher performance or special services. Of
course, a dualistic distinction between generic and non generic does not really exist;
one medium can be implemented out of another, which is implemented out of a
third, and so on. The structure is really a directed graph rather than a pair of
layers.

Generic media rarely appear in the :service attributes of host objects. If a host
claimed to provide some service over the :byte-stream medium, it would have to
support every kind of medium that is built on :byte-stream, which is unlikely.
Generic media often appear in protocol definitions, however, and when the protocol is
used, a specific nongeneric medium is chosen based on what is found in the :service
attribute of the target host.

As the following example indicates, there is actually a fourth kind of step, called
:local, which is only used by the medium named :local. The t is just a placeholder.
Some network services can be satisfied locally, without actually using the network.
For example, some computers have their own built-in time-of-day clocks, and so a
server can be provided for the time-of-day service that is implemented out of this
medium.

(define-medium :local ()
« : 1 Dca 1 t»)

Here is an extensive example to show how all this works. In this example, there are
three hosts, named: Muddy, Collie, Boston-PAD.

Muddy and Collie are Symbolics computers, and Muddy is trying send mail to Collie.
Boston-PAD is a computer owned by GTE-Telenet to which you can dial up to
connect to hosts on Telenet (GTE-Telenet provides an X.25 long-haul network as a
common carrier). Muddy has a dial-out unit, and Collie is connected to another
Telenet PAD over a serial line. For purposes of this example, Collie and the Telenet
PAD to which it is connected are considered a single host; the Telenet PAD is
considered a peripheral device.

Three networks are involved.

• A Chaosnet that connects Muddy directly to Collie; its name is Chaos and its
network type is :chaos.

• A :dial network that Muddy and Boston-PAD are both on; its name is Dial
and its network type is :dial. The only network of type :dial, it is physically

48

Networks March 1985

implemented out of the international phone network and any host with
appropriate modems is on it.

• GTE-Telenet's long-haul network; its name is Telenet and its type is :x25.

All of this information is in the network database. The database includes three host
objects and three network objects. The state of which host is on which network is
expressed in the :address attributes of the host objects. Muddy's :address
attribute has two elements, one for Chaos (giving its octal Chaosnet address) and
one for Dial (giving its phone number as the address). Boston-PAD has two
addresses also, one for Dial and one for Telenet. Collie has two addresses, one for
Chaos and one for Telenet.

The host objects also have :service attributes. Collie's :service attribute includes
two entries of interest to us:

(:mail-to-user :chaos :chaos-mail)
(:mail-to-user :mmdf :chaos-mail)

This says that Collie can provide :mail-to-user service, using either the :cbaos
medium or the :mmdf medium, in either. case using :chaos-mail protocol.

Boston-PAD's :service attribute has one interesting entry:

(:x25-gateway :dial :telenet-pad)

This says that Boston-PAD can provide :x25-gateway service, using the :diaI
medium and the :telenet-pad protocol.

Since Muddy wants to send mail to Collie, it calls the network system, asking it to
find a path to Collie that provides the :mail-to-user service. Muddy calls
neti:find-paths-to-service-on-host. See the section "Service Descriptions: Lisp
Machine Generic Network System", page 41. The network system looks at the
:service attribute on Collie and finds two entries for the :mail-to-user service. It
considers each in turn.

The first entry says that Collie can provide the service if Muddy can connect using
the :chaos medium. To figure out whether it can or not, the network system looks
at the net:define-medium special form for the :chaos medium and finds that
success can be achieved if Muddy and Collie are both on some network of type
:chaos. So it examines the :address attribute of both host objects together and
finds that, indeed, both are connected to such a network, namely Chaos. The
network system has found the first path.

Next, the network system tries the second :service entry, which says that Collie
can provide the service if Muddy can connect to it using the :mmdf medium. So
the network system looks at the definition of :mmdf to see how this might be done.
There are two possible implementations, and it will consider each of them.

The first implementation of :mmdf requires a connection using the :dial medium;
this becomes a new subgoal. So the network system examines the definition of the

49

March 1985 General Information on Networks

:dial medium and finds that the two hosts need to be on the same :dial network.
It examines the :address attributes of Muddy and Collie and does not fmd such a
network; indeed, Collie is not on any :dial network (it has no modem). So this
subgoal fails, and the network system moves on to the next possible implementation
of :mmdf.

The second implementation of :mmdf requires a connection using the :x25 medium;
this becomes a new subgoal. So the network system examines the definition of the
:x25 medium and fmds two possibilities. First, a connection can be formed if the
two hosts are on the same :x25 network. Unfortunately, the :address attributes
show that they are not (Muddy is not on Telenet). This has failed, so the network
system tries the other possibility: a two-step path, which becomes a new subgoal.

In order to achieve this new subgoal, two conditions must be satisfied, namely the
two steps of the path. The first step is to fmd a host that provides :x25-gateway
service, and the second step is to find a way to connect that host to the target host
using the :x25 medium. So the network system searches the network database for
hosts that provide :x25-gateway service. This is a recursive call; originally we were
looking for :mail-to-user service, but now we are looking for :x25-gateway service.
A difference is that this time we are not asking for the service on a specific host but
on any host; the function net:find-path-to-service is used. See the section
"Service Descriptions".

The network system searches the database for :x25-gateway servers, prepared to
check each one to see whether it can connect via :x25 to the target host. It fmds
Boston-PAD, whose service attribute says that it will provide :x25-gateway service if
Muddy can connect to it using the :dial medium. :dial's defmition says that the
two hosts both have to be on the same :dial network; fortunately, they are, namely
the Dial network.

Now it has to see whether Boston-PAD can connect to Collie using :x25. The first
implementation in the definition of the :x25 medium says that you can connect if
the two hosts are on the same :x25 network; fortunately, they are, namely Telenet.

The network system has now succeeded a second time in its top-level goal. The
answer is a list of two paths. One is a one-step path, going directly through the
Chaos network. The other is a two-step path, going through the Dial network to
the Boston-PAD host, and from there through the Telenet network to Collie.

2.5 Defining Protocols: Lisp Machine Generic Network System

Each network protocol has two implementations, a seroer and a user. A seroer runs
in the system on which the service was invoked, and actually performs the service.
A user runs in the system which requested the invocation and uses the network to
cause the server to run. In the case of a locally provided service, the server is . called
as a subroutine by the user.

50

Networks March 1985

2.5.1 Users: Defining Protocols: Lisp Machine Generic Network System

net:define-protocol name (service base-medium) &body options Special Form
Defines the protocol name, a keyword symbol, which provides the service
service. base-medium is the minimum medium needed for this protocol; it
can be a specific medium, such as :chaos for protocols that require those
features, or :datagram or :byte-stream, for more generic protocols. Also,
specially, it can be :local, meaning that the protocol is not implemented in
the network at all, but via some functions running on the local machine.

options are each a list whose first element is a keyword. Defined keywords
are:

(:desirability number)
number is a number between 0 and 1 that describes how
well this protocol provides the service. The default is 1.

(:property indicator property)
U sed for higher level protocol-defining macros that save
their own information.

(:invoke function) When the service is invoked, function is called with the
service access path as an argument.

(:invoke-with-stream {unction)
Similar to : invoke , except that a network stream is gotten
first via the appropriate medium, using
net:get-connection-for-service, and it is the argument
to {unction. The first argument to {unction is the stream,
and the remaining arguments are the arguments to the
service invocation.

(:invoke-with-stream-and-close {unction)
Similar to :invoke-with-stream, except that the stream is
closed when {unction returns.

In : invoke , :invoke-with-stream, and :invoke-with-stream-and-close,
function can either be a symbol, which is the name of a function, or the rest
of the list can be a lambda-list and body for the function. For
:invoke-with-stream and :invoke-with-stream-and-close the first element
of the lambda-list is the stream variable, which will be bound to the stream
returned by net:get-connection-for-service; the other elements are
arguments to the service invocation. See the function
net:get-connection-for-service, page 51. If you want to pass
connection-args to net:get-connection-for-service, the fIrst element of the
lambda-list should not be a stream variable, but rather a list whose first
element is the stream variable and whose other elements are the
connection-args.

51

March 1985 General Information on Networks

For example, the following defines a local version of the time service. Note that nil
is returned if the time is not known locally. In general, how a protocol indicates
that it cannot provide a service after all is defined by the service itself. For some
services, such as time, this is done via the returned value. For others, an error
would be signalled. This error could then be caught by the
net:invoke-multiple-services macro.

(net:define-protocol :local-time (:time :local)
(:invoke (ignore)
(and time:*time-is-known-p*

(time:get-universal-time»»

The following example defines the Chaosnet RFC/ANS version of the time protocol.
time-simple is a function that just takes the bytes from the :read-input-buffer
message to stream and deposits them together into a 32-bit time, returning nil if
the datagram is malformatted (for example, does not contain exactly four data bytes).

(define-protocol :time-simple (:time : datagram)
(:desirability.75)
(:invoke-with-stream-and-close (stream)
(time-simple stream nil»)

net:get-connection-for-service service-access-path &rest Function
connection-args

Can be used inside of a :invoke clause to get a network stream to the
service on the correct medium. connection-args "are passed on to the stream
creator; normally they would be keyword pairs such as :ascii-translation t,
specifying that the ASCII character set was to be used over the network.

This gets the contact identifier from the protocol field of the service access
path, over the medium given by the medium field.

Higher-level protocols such as login and file provide their own mechanisms for
informing the service system of implementation of new protocols. These are macros
that expand into a net:define-protocol form with suitable options.

2.5.2 Servers: Defining Protocols: Lisp Machine Generic Network System

A network server does not actually provide a generic service but rather implements a
specific protocol. This protocol works over some specific medium, which mayor may
not be generic.

net:define-server protocol-name options &body body Special Form
Define the top-level function of a network server. protocol-name is a
keyword, the ~e as for net:define-protocol. options is an alternating list
of keywords and values. Some of these keyword-value pairs specify the
names of variables which are bound inside body, which is the server itself.
How the names are extracted is explained presently. This is in fact

52

Networks March 1985

implemented by the system's defining a function whose arguments are those
variables and whose body is body.

The main keyword in the options list is :medium, whose value is a keyword
specifying the medium type over which this protocol operates. Normally, this
is a generic medium, such as :byte-stream or :datagram. Sometimes it is a
specific medium, such as :cba08. It is usually preferable to use the generic
medium, when possible, even if the protocol is only used over some particular
type of network.

The following other keywords are recognized for all values of the :medium
keyword.

:address The value of this keyword is the name of a variable that is
bound to the parsed address of the host that is the user of
the server.

:error-disposition
A keyword that determines what should happen if an error
occurs in the server . Valid error dispositions are:

nil or :notity

:ignore

:debugger

A notification is given when any error
occurs and the server exits (abnormally
because of the error). :notify is the
default.

For finer control of error notification,
you can specify the :notify keyword
with one or more error flavors, as
follows: (:notify error-flavor-l
error-flavor-2 ...). For example,
:error-disposition (:notify ~s:remote
network-error) means send notifications
of errors of the
sys:remote-network-error flavor and
ignore all others.

The server exits but no notification is
given. As with :notity you can exercise
fmer control over error notification by
specifying one or more error flavors with
the :ignore keyword. For example,
:error-disposition (: ignore ~s:remote
network-error) means ignore errors of
the sys:remote-network-error flavor
but notify for all others.

The server process enters the debugger
when an error occurs.

53

March 1985 General Information on Networks

:host The value of this keyword is the name of a variable that is
bound to the host object that is the user of the server.

:network The value of this keyword is the name of a variable that is
bound to network object through which user is connected.

:process-name A string, defaulting to I''protocol-name server/", which is
the name of the process created to run the server.

:reject-unless-trusted

:trusted-p

:who-line

The value of this keyword is t by convention. It causes
the server request to be rejected if the host wanting the
service is not trusted.

The value of this keyword is the name of a variable that is
bound to t if the host using the service is /"trustedJ".

The value of this keyword is t by convention. It causes a
message to be displayed in the status line while the server
is active. It also causes the server to appear in the Peek
active server display.

The following keywords are recognized for the :byte-stream medium type.

:stream

:no-close

:no-eof

The value of this keyword is either a symbol, which is the name
of a variable that is bound to a bidirectional stream, or a list of
such a variable name and alternating keyword and value options
that specify how the stream is made. Keywords at this level are:

:ascii-translationThe protocol uses the ASCII character set

:accept-p

:direction

rather than the Symbolics character set.

If nil, :accept-p says that the stream should
not be fully opened, but the body is allowed to
decide whether to accept, by sending the
:accept message, or reject the service by
sending the stream a :reject message along
with a reason for rejection.

:input or :output if server needs only one
direction. Note that the connection itself is
bidirectional, but the stream accepts only one
class of messages. Default is a bidirectional
stream.

The value of this keyword is t by convention. It causes the
network stream to be left untouched when the body returns,
rather than closed or aborted. This is used for some protocols in
which closing the stream is part of the protocol.

The value of this keyword is t by convention. It causes the

54

Networks March 1985

network stream to be aborted when the body returns, rather than
closed. This is used for some protocols in which closing the
stream is part of the protocol.

The following keywords are recognized for the :datagram medium type.

: request-array The value of this keyword is a list of three variable names, which
are bound to an array, its starting index, and its ending index. If
any of the variable names is nil, or the list is not long enough to
include it, no such variable is bound. The array within the given
bounds contains any arguments to the service that the user
specified. On the Chaos network, that means that it points to
the portion of the RFC packet after the space following the
contact name.

:response-array A list of variable names like : request-array. The server fills in
the array with the response data and returns two values; the first
is t, if the service is successful, or nil, if the request should be
rejected. The second value is the byte index after the last byte
stored in the array. Alternatively, the body can return a second
value that is a string, which the system will store as the contents
of the array itself. In that case, it is not necessary to specify the
:response-array keyword.

The :chaos medium is provided for compatibility with older Chaos network protocols
that are inconvenient to implement over a generalized medium, or for people who do
not wish to spend time completely updating a program that used to use
chaos:server-alist. The :conn keyword is used with this medium; the value is a
variable to be bound to the Chaos connection, which will be in RFC-Received state.
It is not necessary to do a chaos:listen. It is still necessary to do chaos:accept or
chaos:reject as appropriate, and to do chaos:remove-conn when done.

chaos:add-contact-name-for-protocol protocol &optional Function
(contact-name (string protocol»)

Creates an association between a protocol and a Chaosnet contact name
when opening connections. protocol is a keyword that identifies the protocol.
contact-name is a string that the Chaosnet uses when opening a connection
(sending an RFC or listening for a request). contact-name defaults to
(string protocol).

Examples:

(chaos:add-contact-name-for-protocol ':111oad)
(chaos:add-contact-name-for-protocol ':chaos-status "STATUS")

neti:with-server-error-disposition server &body body Macro
Creates an environment for handling errors within a server. Using the
server's error-disposition property, this macro sets up a condition-case-if
to handle any errors not caught by the server itself.

55

March 1985 General Information on Networks

A server's error-disposition property is set in one of two ways: by explicit
specification when the server is defined (using the :error-disposition
keyword argument to define-server) or by explicitly changing the
error-disposition of a defined server with the
neti:change-server-error-disposition function.

A server's error-disposition property is ignored when
neti:*server-debug-t1a~ evaluates to something other than nil; if this is
the case, the server process always enters the Debugger on an error not
caught by the server itself.

Note that the environment for error disposition is set up when the server is
started, and subsequent use of neti:change-server-error-disposition or
binding of neti:*server-debug-flag* has no effect on that server.

neti:change-server-error-disposition protocol-name neW-disposition Function
Changes the error disposition for the server handling protocol-name. Valid
dispositions are the same as those used in net:define-server.

2.5.3 File Users: Defining Protocols: Lisp Machine Generic Network System

The Symbolics pathname system provides generic file access regardless of where a file
resides, what operating system runs on the file system, or how files are named on
that operating system. An instance of a pathname cannot contain specific
information on how to access the file system, however, since that information might
change as a world load containing the pathname is moved from one host to another
or from one site to another. For this reason, the network system provides file access
paths. Generic pathname operations on most pathnames pass the message on to the
file access path for the file system.

Usually, a file access path is a user implementation of some file transfer and
manipulation protocol. A file access path is found via the normal service lookup
mechanism. Invoking a service access path for :file service returns a file access
path. The fs:define-file-protocol macro is used to interface the service and file
access path subsystems.

2.6 Defined Media: Lisp Machine Generic Network System

2.6.1 Byte Stream Media: Lisp Machine Generic Network System

byte-stream

chaos

dial

tcp

medium

medium

medium

medium

56

Networks March 1985

pseudo-net medium

2.6.2 Datagram Media: Lisp Machine Generic Network System

chaos-simple medium

2.7 Defined Services and Protocols: Lisp Machine Generic Network
System

2.7.1 band-transfer Service

band-transfer service

band-transfer protocol

2.7.2 file Service

file service

Returns

User-protocols

file-access-path. See the section "File Users:
Defining Protocols: Lisp Machine Generic
Network System", page 55.

local-file (local)· - access to the local file system
directly.

qfile (chaos) - See the section "Chaosnet File
Protocol", page 159.

tcp-ftp (byte-stream) - IEN149

Server-protocols qfile

local-file

qfile

tcp-ftp

protocol

protocol

protocol

2.7.3 hardcopy Service

hardcopy service

Arguments

Returns

Printer-object Options

Options as to si:make-hardcopy-stream

A stream that outputs the hardcopy device
eventually, possibly through a spooler. The

March 1985

User-protocols

57

General Information on Networks

characters to send to the stream are format
specific. Programs should almost always use
si:make-hardcopy-stream instead, which
returns a stream that accepts device
independent messages. See the function
si:make-hardcopy-stream in Text Editing and
Processing.

local-hardcopy (local) - connects directly to a
spooler running on this machine or a directly
attached hardware device.

Igp (chaos) - contact name is

chaos </ilename>< 1 i ne><printer-name>
< 1 i ne><user-name>< 1 i ne><user-personal-name>
< 1 i ne><date>

(where <date> is a decimal universal time.)

dover(chaos) - via ai-chaos-ll.

Server-protocols Igp

dover protocol

eftp protocol

Igp protocol

local-hardcopy protocol

2.7.4 hardcopy-device-status Service

hardcopy-device-status
service

Prints some descriptions of the status of the device on standard
output.

Arguments printer-object

user-protocols 19p-status (datagram)

rfc is Igp-status <printer>.

ans is status information.

ears-status (datagram)

dover-status (datagram) - Amber 5.10.
ai-chaos-ll version of above.

Server-protocols Igp-status

58

Networks

dover-status

19p-status

protocol

protocol

March 1985

2.7.5 hardcopy-status Service

hardcopy-status service

ears-status

19p-queue

Prints some descriptions of the status of the device and its spooler
on standard-output.

Arguments printer-object

user-protocols 19p-queue (byte-stream)

Qontact name is 19p-queue <printer>.

Server-protocols 19p-queue

protocol

protocol

2.7.6 lispm-finger Service

lispm-finger

lispm-finger

service

Returns list of (user-name machine-location idle-time
personal-name affiliation-letter)

User-protocols lispm-finger (chaos) - Amber 5.7.

Server-protocols same

protocol

2.7.7 login Service

login service

Returns four value:

• A stream to the remote virtual terminal.

• A set of input side filters.

• A set of output side filters.

• A string describing the route used,
suitable for a window's label.

March 1985

chat

eva!

supdup

telnet

telsup

tty-login

59

General Information on Networks

The middle two are specific to the Terminal program. The
si:define-Iogin-protocol special form is
described elsewhere: See the section "File
Users: DefIning Protocols: Lisp Machine Generic
Network System", page 55.

User-protocols supdup (byte-stream) - RFC734

telnet (byte-stream) - IEN148

telsup (byte-stream) - input side is like
supdup, output side is like telnet with ImIac
simulation enabled.

tty-login (byte-stream) - protocol suitable for
talking ascii to a normal serial terminal line.

Server-protocols telnet

protocol

protocol

protocol

protocol

protocol

protocol

2.7.8 mail·to-user Service

mail-to-user

chaos-mail

smtp

service

Sends mail via some host. mail-to-user sends mail to a mailbox
on that host. The format of mail-to-user is Zmail specific. See
the section "store-and-forward-mail Service", page 62.

Arguments

User-protocols

recipients template-expansion

smtp (byte-stream) - RFC821

chaos-mail (chaos) - Amber 5.5.

dummy-mailer (local) - Implements store-and
forward-mail in terms of mail-to-user. Takes
the place of having the real mailer loaded.

Server-protocols chaos-mail.

protocol

protocol

60

Networks March 1985

2.7.9 namespace Service

namespace service

Returns byte-stream to namespace server talking
network namespace protocol. See the section
"Protocols and Services", page 3S.

User-protocols namespace (byte-stream), IEN-Sll
(byte-stream)

Server-protocols namespace.

ien-811 protocol

namespace protocol

2.7.10 namespace-timestamp Service

namespace-timestamp
service

Arguments

Returns

User-protocols

Server-protocols

namespace-timestamp
protocol

2.7.11 notify Service

notify

notify

service

protocol

2.7.12 packet-gateway Service

packet-gateway service

N amespace-object

Timestamp for that namespace.

namespace-timestamp (datagram) See the
section "Datagram Media: Lisp Machine Generic
Network System", page 56.

same

Performs packet forwarding

61

March 1985 General Information on Networks

2.7.13 print-disk-Iabel Service

print-disk-Iabel service

Prints a description of the host's disk label to standard-output.

User-protocols loca1-print-disk-label (local) - interface for
printing local label.

print-disk-Iabel (byte-stream)

Server-protocols print-disk-Iabel.

local-print-disk-Iabel
protocol

network-print-disk-Iabel
protocol

2.7.14 pseudonet-gateway Service

pseudonet-gateway
service

Connects to another host through a gateway attached to its serial
line, etc.

User-protocols

pseudonet-gateway
protocol

2.7.15 screen-spy Service

screen-spy service

chaos-screen-spyprotocol

2.7.16 send Service

send service

pseudonet-gateway (chaos) - Contact name
encoded in "address".

Sends an interactive message containing text to the user on the
particular host.

Arguments

User-protocols

&key date from to text

smtp (byte-stream) - RFC821

send (chaos) - Amber 5.6.

62

Networks March 1985

send

smtp

Server-protocols same

protocol

protocol

2.7.17 show-users Service

show-users

ascii-name

name

service

Prints "finger" information on standard-output, optionally for user,
optionally with' "whois" information.

Arguments

User-protocols

&key user who is

ascii-name (byte-stream) - RFC742

name (chaos) - Amber 5.7.

Server-protocols same

protocol

protocol

2.7.18 status Service

status

chaos-status

service

protocol

2.7.19 store-and-forward-mail Service

store-and-forward-Mail
service

Sends mail via some host. store-and-forward send mail
(possibly) to some user on another host, to which this host is
presumably closer. The format of store-and-forward-mail is
Zmail specific.

Arguments

User-protocols

recipients template-expansion

smtp (byte-stream) - RFC821

chaos-mail (chaos) - Amber 5.5.

dummy-mailer (local) - Implements store-and
forward-mail in terms of mail-to-user. Takes
the place of having the real mailer loaded.

Server-protocols chaos-mail.

63

March 1985 General Information on Networks

chaos-mail protocol

dummy-mailer protocol

smtp protocol

2.7.20 tape Service

tape

rtape

service

protocol

2.7.21 tcp-gateway Service

tcp-gateway

tcp-gateway

service

protocol

2.7.22 time Service

time service

Returns

User-protocols

the current universal time.

local-time (local) - interface to local idea of
the time.

time-msb (byte-stream) - IEN142

time-simple-msb (byte-stream) - IEN142

time-simple (chaos) - Amber 5.S.

Server-protocols time

local-time

time-msb

protocol

protocol

time-simple protocol

time-simple-msb protocol

2.7.23 uptime Service

uptime service

Returns the host's uptime in sixtieths of a second.

User-protocols uptime-simple (datagram) - ans with four
bytes as for time.

Server-protocols uptime-simple

64

Networks March 1985

uptime-simple protocol

2.7.24 who-am-i Service

who-am-i

who-am-i

service

Returns three values: namespace name (a keyword),
host name (or :unknown), and host who gave
the answer.

User-protocols who-am-i (datagram) - ans with
namespacelhost-name. *unknown· for a
host you do not know about.

Server-protocols same.

protocol

65

March 1985 Remote Login

PART II.

Remote Login

66

Networks March 1985

67

March 1985 Remote Login

3. Overview of Remote Login Capability

The remote login facilities allow up to three ASCII terminals to be connected directly
via the Symbolics computer's serial ports. Any number of terminals can be
connected via the network. If a modem is connected to the machine, it is also
possible to dial up the machine from an ASCII terminal or from another Symbolics
computer. Video operations are supported only on ASCII terminals that support
ANSI X3.64 display codes (Ann Arbor Ambassador, Digital Equipment VT100, and so
forth).

Network servers are available for the remote login protocols TELNET, SUPDUP,
TTYLINK, and 3600-LOGIN. TELNET and SUPDUP are standard protocols used
on the Arpanet. TTYLINK is a raw byte-stream. 3600-LOGIN is used only in
communication between two Symbolics computers.

The following programs can be run from terminals connected via a network, a serial
port, or a modem:

• Lisp Listener
• Input editor
• Debugger (not the Window Debugger)
• Command processor

Zmacs, Zmail, and other programs that use the window system or the mouse cannot
be used.

The remote login facility is useful for applications such as the following:

• Examining the status of a physically distant machine, such as a file server.
• Monitoring the status of a long computation from home.
• Simple data-entry or query-and-answer applications.

Note that the remote login feature cannot support several programmers on the same
machine, because program-development tools, such as Zmacs, cannot be used
remotely.

For further information on remote login: See the section "Using the Remote Login
Facilities", page 69.

For information on the new functions dealing with remote login:

See the function neti:ask-terminaI-parameters, page 69.
See the function neti:set-terminaI-parameters, page 69.
See the function neti:enable-seriaI-terminaI, page 69.
See the function net:remote-Iogin-on, page 70.

68

Networks March 1985

69

March 1985 Remote Login

4. Using the Remote Login Facilities

To use the 3600-LOGIN protocol, add the service attribute "LOGIN medium 3600-
LOGIN" to the host object, where medium is the link-level network protocol (such as
CHAOS or TCP) being used for communication between Symbolics computers.

The SUPDUP protocol is used in cases where ANSI X3.64 terminals are connected
to Symbolics computers or where they are connected to foreign hosts that are using
SUPDUP servers to connect to Symbolics computers. When the SUPDUP protocol is
being used, terminal information is communicated automatically.

When using TTYLINK, TELNET, or the serial line, you should use the function
neti:ask-terminal-parameters or the function neti:se~tei:minal-parameters to
describe the terminal.

neti:ask-terminal-parameters Function
Asks you for information about the ASCII terminal currently associated with
terminal-io. You are asked whether the terminal supports ANSI x3.64
escape sequences, whether it has a META key, and for its height and width in
characters. Your answers are used to set or change the terminal's
parameters. If you supply nil for height and width, the current settings are
unchanged.

neti:set-terminal-parameters x3.64 meta-key? width height Function
Sets the parameters of the terminal associated with terminal-io. The
argument x3.64 specifies whether the terminal supports escape sequences
meeting this ANSI standard; meta-key? says whether the terminal has a Meta
key; width and height are the tenninal's width and height in characters,
respectively. If you supply nil for height and width, the current settings are
unchanged.

To use a terminal connected via a serial line, invoke the function
neti:enable-serial-terminal.

neti:enable-serial-terminal &key (top-level 'si:lisp-top-IeveI1) Function
(herald t) (x3.64 nil) (width 79) (height
1073741824.) (unit 1) (share-kill-history nil)
&allow-other-keys

The function neti:enable-serial-terminal allows an ASell terminal to
communicate with a Symbolics computer process through one of the
machine's serial ports (specified by the unit argument).

The argument x3.64 specifies whether the terminal supports escape sequences
meeting this ANSI standard; meta-key? says whether the terminal. has a
Meta key; width and height are the terminal's width and height in

70

Networks March 1985

characters, respectively. If you supply nil for height· and width, the current
settings are unchanged.

The keyword argument :top-leveJ specifies the process, and :heraId specifies
whether the herald is displayed on the terminal.

Sample use:

(neti:enable-serial-terminal :X3.64 T :HEIGHT 48.
:WIDTH 80. :UNIT 3 :BAUD 9600.)

This creates a Lisp Listener process to communicate with the terminal. If
you wish to have some other program communicating with the terminal,
either invoke the program from the Lisp Listener, or use the :top-Ievel
keyword argument. The value of this keyword should be a function of one
argument, which is the stream going to the terminal.

To kill the process, use neti:disable-seriaI-terminaI; its single argument is the
unit number.

If the terminal automatically echoes a newline when a character is printed in the
rightmost column, then decrement the width by one.

If you are logging in from one Symbolics computer to another, the keyboard
operation is identical except that these keys do not work:

• FUNCTION

• SELECT

• c-ABORT

• c-M-ABORT

• c-SUSPEND

• C-M-SUSPEND

If you are logging in from an ASCII keyboard, a translation scheme exists to allow
you to refer to Symbolics computer keys that do not exist on an ASCII keyboard.
From the logged-in ASCII keyboard, type c-_ H for online documentation.

If no user is logged into the Symbolics computer, there are no restrictions on logging
into it from a remote terminal. If a user is logged in, remote login connections are
rejected by default. The function neti:remote-Iogin-on can be used to change this.

net:remote-Iogin-on &optional (mode t) Function
The function neti:remote-Iogin-on controls the acceptance or rejection of
remote login requests to a Symbolics computer that has a user logged in at
the main console. The mode argument specifies the treatment of remote
login requests, as follows:

t or unspecified Allow remote login connections even when the main
console is in use.

nil Reject remote login requests.

March 1985

:notify

Additional notes:

71

Remote Login

Allow remote login requests but send the main-console user
a notification.

• The SUPDUP server works only if the terminal supports character insertion
and deletion.

• There are no asynchronous characters. If your program starts looping, it must
be aborted from the main console.

• Only one interactive process is allowed per remote terminal.

72

Networks March 1985

73

March 1985 Symbolics Dia/net

PART III.

Symbolics Dialnet

74

Networks March 1985

75

March 1985 Symbolics Dialnet

5. Introduction to Dialnet

Symbolics Dialnet is the component of the generic network system that supports the
international dial network. The function of Dialnet is to provide a reliable transport
medium over possibly unreliable common carrier facilities. The primary uses of this
transport medium are mail transfer and remote login. Mail transfer is handled by
the Symbolics mail reading and sending program (Zmail) and by the Symbolics store
and-forward mailer. Remote login is handled by the Terminal program.

76

Networks March 1985

77

March 1985 Symbolics Dialnet

6. Physical Connection to the Dial Network

The first step in the connection of your Symbolics computer to the dial network is to
find a Symbolics machine at your site that has a modem. At least one machine at
the site must have a modem; this is the machine that was designated the "site
support system" in your initial Symbolics purchase. Other machines may also have
modems, probably ordered from Symbolics as item COMM-MOD2.

The mechanics of the physical connection of your host to the dial network depend
on the model of the processor:

• Symbolics 3600 processors contain a Vadic 3450 modem mounted inside the
processor cabinet. Both a modular jack and a male EIA connector are brought
out to the 110 bulkhead. The modular jack (labeled MODEM TELCO) accepts
a standard modular plug from the data circuit provided by the telephone
company. The male EIA connector (labeled EIA 4) should be connected (via a
short cable, see below) to anyone of the three female EIA connectors that
provide access to the serial lines (labeled EIA 1, EIA 2, and EIA 3). EIA 1
corresponds to serial unit 1, EIA 2 to serial unit 2, and EIA 3 to serial unit 3.

The cable between EIA 4 and EIA 1, EIA 2, or EIA 3 should pass the
following signals on the pins given below:

o Pin 2 (TXD ; Transmitted Data)

o Pin 3 (RXD ; Received Data)

o Pin 4 (RTS ; Request To Send)

o Pin 5 (CTS ; Clear To Send)

o Pin 6 (DSR ; Data Set Ready)

o Pin 7 (SG ; Signal Ground)

o Pin 8 (CXR ; Carrier Detect)

o Pin 20 (DTR ; Data Terminal Ready)

This cable should be terminated with one male and female connector. If you
would prefer not to build such a cable yourself, it can be ordered from
Symbolics.

If your 3600 will be upgraded to support audio and phase-encoded video [via
UPGR-SY70], then the gender of the serial ports will be male. The cable

78

Networks March 1985

should be constructed as above except that both connectors on the cable will be
female. Again, should you prefer not to build such a cable yourself, it can be
ordered from Symbolics.

Earlier versions of the FEP proms installed in 3600 processors do not support
all the features of the 3600 serial lines. FEP version 22 or higher is required
if Dialnet is to be used. The easiest way to determine what version of FEP
proms are installed is the FEP Show Version command.

• Symbolics 3640 and 3670 processors have no internal modem, but instead
expect an external Vadic 3451 or CDS-224 modem to be connected to one of
the three serial ports.

The modem should be connected to the data circuit provided by the telephone
company via the modem's modular jack, and to one of the 3640 or 3670's serial
lines. These serial lines are brought out to the 110 bulkhead and terminate in
male EIA connectors. On the 3640 processor, these connectors are labeled
SERIAL 1, SERIAL 2, and SERIAL 3. On the 3670 processor, these
connectors are labeled EIA 1, EIA 2, and EIA 3.

The cable used to connect the modem to the serial port should convey all the
signals described above for 3600 cabling; only the gender of the serial port
connector will differ. If you would prefer not to build this cable yourself, it can
be ordered from Symbolics.

79

March 1985 Symbolics Dialnet

7. Dialnet Representation in the Namespace Database

The physical connection of your machine to the dial network must be recorded in
the namespace database so that the generic network system can decide how
connections over the dial network can best be established. The connection is
represented by adding a peripheral attribute to the local view of the host object in
the network database that corresponds to the host with the physical connection to
the dial network.

The term "local view" is used here in contrast to the dial namespace view of the
object. If you are editing a host that has already been identified as being in both
the local and the dial namespace view namespaces, you will be asked to choose (via a
small pop-up menu) between the local and the dial namespace view of the object
before you begin to actually edit the object. Choose the local view; there are no
servers for the dial namespace, so you would have no way to save your changes.

The Dialnet registry must also be informed that the Dialnet host corresponds to the
host object. See the section "Dialnet Registries", page 81.

Finally, an Internet Domain Name should be specified for the local namespace object,
to identify your hosts in the Internet Domain hierarchy. See the section "Dialnet
and Internet Domain Names", page 85.

The peripheral attribute is used here to represent the modem that connects this
host to the dial network. There are four relevant indicators for the peripheral
attribute: unit, model, phone-number, and autoanswer.

unit Corresponds to the serial port number on the 110 bulkhead of the
machine. The value should be a number between 1 and 3.

model Corresponds to the type of modem attached to this serial port.
The value should be a one of the following: va212, va3450, va3451,
or cds-224.

phone-number Corresponds to the telephone number of the telephone trunk to
which this modem is attached. The phone-number associates this
particular modem with a particular dial network address. (The
address, in tum, associates this peripheral with a host in the dial
namespace. This latter mapping is done via the Dialnet registry.)

autoanswer Corresponds to the ability of this modem to receive incoming calls
from other sites. If you wish to be able to receive calls from other
sites, then this indicator should have a value of yes. If it has a
value other than yes, then incoming calls will not be answered
and communication with other sites can only be initiated by the
local site.

80

Networks March 1985

In general, if two sites wish to communicate over the dial network, at least one of
the sites needs to enable autoanswer.

An example peripheral attribute might be:

peripheral modem unit 2 model va3450 phone-number 16175777348 autoanswer yes

81

March 1985 Symbolics Dialnet

8. Dialnet Registries

The shape of and possible connections on the dial network are represented in
Dialnet registries. These files really contain namespace information in a form
suitable for periodic distribution by separate administrative groups. The following
registries exist:

The public dialnet registry
This registry is maintained and distributed by Symbolics. It
contains information on publicly accessible Symbolics hosts and
domains, on Telenet PADs (the GTE Telenet equivalent of the
Arpanet TIP), and on dialing conventions for the international dial
network. For example, information in this registry might be the
addresses of Symbolics software support groups, all the GTE
Telenet PAD access numbers, and enough information about the
international phone system so as to most cheaply place calls to the
Symbolics hosts described in the registry. This registry might also
contain the domain of and address for the users' group, so that
new customers could easily contact the group.

This file is sys: site; public-dialnet-registry.lisp.

The users' group dialnet registry
This registry is maintained and distributed by the Symbolics users'
group, and contains whatever host and domain information the
group's members see fit to enter and distribute.

For example, the users' group might distribute the addresses and
domains of all members that wanted to share information via the
dial network.

This file is sys: site; users-group-dialnet-registry.lisp.

The private dialnet registry
This registry is maintained at the local site. It contains local
dialing conventions and any private host and domain information
for the site.

A private dialnet registry might contain the names, addresses, and
domains of the following:

• Other sites in the organization

• Other organizations that did not want to be published by
the users' group

• Common carriers (for example, Tymnet)

82

Networks March 1985

• Subscriber data services (for example, Dow Jones
Information Services)

• Gateways to other domains (for example, .ARP A)

This file is sys: site; private-dialnet-registry.lisp.

Information moves into the users' group registry when someone at the local site
contacts the group, and the group distributes a registry. Information moves into the
public registry when someone at the local site contacts someone at Symbolics, and
Symbolics next distributes a registry.

Because of delays in the distribution of registries, the private registry may be useful
as a repository for advance copies of public or users' group information. When two
registries contain differing information about the same object, any conflict is resolved
as follows:

1. The public registry is assumed to be least current.

2. The users' group registry is assumed to be more current than the public
registry.

3. The private registry is assumed to be more current than either public or users'
group.

8.1 Contents of a Dialnet Registry

A Dialnet registry actually contains Lisp forms. The forms are lists of alternating
keywords and values. The first keyword in a form (the car of the list) indicates the
type of information being conveyed and is one of the following:

:subnet

:host

Specifies the cost of and dialing information for a subnet of the
dial network. The keywords and values for this form are
described elsewhere. See the section "Dial Network Addressing',
page 95.

(:subnet "1xxxyyyyyyy>1800zzzzzzz" :dial "1800zzzzzzz" :cost "1")

Specifies a host on the dial network and its address. The name
specified by the :host keyword is the name of the host in the dial
name space. To avoid duplicate names in this namespace, we use
the site name as a prefix. (Remember that site names are
guaranteed to be unique because they are centrally administered
by Symbolics Software Support). As an example, consider a site
named Trilogy, one of whose hosts with a dial network address is
named Cerebrus. The unique dial namespace name of this host is
then constructed to be trilogy-cerebrus.

March 1985

:domain

83

Symbofics Diafnet

(:host "trilogy-cerebrus" :address "14151515151")

The address for the host is a string representing the address of
the host on the international dial network. In our examples,
drawn typically from hosts in the United States, the country code
is 1, the area code a three-digit number whose second digit is
always 0 or 1, and the rest of the address is the familiar seven
digit number one most often dials. The address is the
concatenation of these three fields.

If a host is present in a local namespace other than the dial
namespace, its local name should be noted with the :local-name
keyword. For example, the following specifies a host whose name
(in the dial namespace) is USMC-Gomer, whose address on the
dial network (that is, the network named "dial" in the dial
namespace) is 14155551212, and whose name in the local
namespace (here, the namespace named USMC) is Gomer.

(:host "USMC-Gomer" :address "14155551212"
:local-name "USMCIGomer")

Each host in the dialnet registry is assumed to provide the
following services:

• STORE-AND-FORWARD-MAIL (over the DIAL medium,
using the SMTP protocol)

• MAIL-TO-USER (over the DIAL medium, using the SMTP
protocol)

• MAIL-PROBE (over the DIAL medium, using the MAIL
PROBE protocol)

The format of :host entries will probably change in the future to
allow more flexible representation of dialnet host services.

Specifies an Internet mail domain and the name of the associated
gateway host. Internet mail domains are used by ZMail and the
store-and-forward mailer to direct mail around the dial network, in
the absence of other namespace information. For example, if the
following forms were present in the users' group registry

(:host "CSNY-Young" :address "12121234567")
(:domain "CSNY.DialNet.Symbolics.COM"
:host "CSNY-Young")

then mail to the following addresses would be routed via DialNet
to CSNY-Young for further distribution:

84

Networks

:telenet-pad

Neil@CSNV-Voung.CSNV
Nei H2CSNV-Voung
Neil@anyhost.cSNV

March 1985

Specifies the name and address of a GTE Telenet PAD. These
gateways to the Telenet network can be an economical way of
routing traffic across the dial network and are also useful in their
own right as access to higher level GTE Telenet services such as
TeleMail. The Symbolics DiaInet implementation will use Telenet
automatically when it determines that by doing so it can make a
cheaper connection.

(:telenet-pad "boston-telenet-pad"
:address "16172920662")

8.2 Loading a Dialnet Registry

All the information in the three Dialnet registries (public, users' group, and private,
if present) is loaded into the local host with the diaI:load-diaInet-registry function.

(dial:load-dialnet-registry)

This function can be called by the user (to load the names and addresses of all
Telenet PADs, for instance); it is also called by some system programs (for example,
the store-and-forward mailer).

85

March 1985 Symbolics Dialnet

9. Dialnet and Internet Domain Names

The dialnet registries allow the user to associate Internet Domain Names with
individual hosts; in particular, they allow the user to specify that a given host will
serve as a mail gateway for a given Internet Domain.

Internet Domain Names are part of a tree-structured naming scheme used by the
Internet community for distributed administration of a very large nam,espace. That
namespace is the set of all hosts connected with the Internet. This set of hosts is
too large for any particular organization to handle, so a naming hierarchy is set up,
with naming authority for each node parceled out to local adminstrators.

At the top of the naming tree is an implicit root node. Below that node are several
very general classifications:

GOV

EDU
COM

MIL

ARPA

United States government

educational institutions

commercial institutions

military

Arpanet community (temporary, pending reclassification of member
hosts)

and other domains representing countries outside of the United States; this last set
would be two-letter codes drawn from the ISO standard for codes for the
representation of names of countries.

Symbolics networks are represented under the second-level domain name
Symbolics.COM, and the Symbolics dial namespace is a third-level domain named
DialNet.Symbolics.COM. The namespaces of individual Symbolics customer sites are
usually represented as fourth-level domains, subdomains of the Symbolics Dial
Network. The dial namespace host named CSNY-Young (to borrow from a previous
example in this section) would be in the CSNY.DialNet.Symbolics.COM domain.

The customer specifies the Internet Domain Name to be associated with the
namespace in which local hosts are registered by editing the
Internet Domain Name attribute of the namespace object that represents the local
namespace itself. This Internet Domain Name will be associated with all hosts that
are named within that namespace.

Not all sites will belong in subdomains of the DialNet.Symbolics.COM domain
(although most will). Sites that are already resident in another Internet domain
(such as .ARPA) will want to maintain their residency in that domain. This is why
the user must explicitly edit the namespace object to place the local namespace into
a subdomain of the DialNet.Symbolics.COM domain, should that be desired.

86

Networks March 1985

Internet Domain Names are used by ZMail and by the store-and-forward mailer to
help route mail through the network, in the absence of other namespace
information. The key point in this routing is that a mail server at a given domain
in the hierarchy is assumed to know the addresses of mail servers for all the
subdomains within that domain. Thus, if a mailer in the source domain doesn't
know how to directly reach the destination domain, it can pass the mail up to a mail
server at a higher-level domain, which will then apply the same routing algorithm.
The "best" route between domains is considered to be the route with the least
number of levels traversed.

i

For further information on Internet Domain Names, see the following document:

RFC 882: Domain Names - Concepts and Facilities
Paul Hockapetris
Network Working Group, USC 151

which is available from:

Network Information Center
SRI International
Henlo Park, CA 94025

87

March 1985 Symbolics Dialnet

10. Using the Terminal Program with the Dial Network

Once you have set up the hardware and namespace information that describes how
your host is connected to the dial network, you can use that host to dial up other
hosts. This is an excellent test of the hardware and software configuation even if
you don't usually dial up other hosts. And, of course, it can be very useful in its
own right, providing access to hosts accessible only via dial-up lines.

Type SELECT T to get to the Terminal program, then type a host name at the
Connect to Host: prompt. 'Host names are of the form dial I dial I 16175777348. To
break that down a bit, that's the host at address 16175777348 on the network
named dial I dial, which in turn is the network named dial in the dial namespace. If
you need to make the same call frequently, you can add hosts to your own local
namespace (not the dial namespace) with addresses on the diaI I dial network. In
addition to an address attribute, you will probably want to give such a host a service
attribute of:

login dial-raw tty-login

Telenet PADs have names in the dial namespace, names like diallboston-telenet-pad.
Telenet PADs are listed in the public dialnet registry, so to dial up a PAD you will
have to load the dialnet registry first. See the section "Loading a Dialnet Registry",
page 84.

88

Networks March 1985

89

March 1985 Symbolics Dialnet

11. An Example Dialnet Installation

This section details an example installation at site NYC. The goal of this installation
is to bring up this site on the dial network, both to exchange electronic mail with
other sites and to use the Terminal program to access other hosts over dialup lines.
There are five machines at site NYC, named Bronx, Queens, Manhattan, Brooklyn,
and Staten-Island. Bronx (a 3600) was the first machine installed at the site, so it
bears the title of "site support system" and has an inboard Vadic modem. In this
example it also has an attached Kanji tablet for Japanese language work, and
supports an LGP printer. When Manhattan (a 3670 with a large disk) later arrived,
it was made the SYS host and the namespace server, and Bronx was given over to
being a file server for user files, in addition to its continued use as a Japanese
workstation and spooler for the LGP printer.

• Find the modem. In this example, Bronx has an internally-mounted Vadic
V A3450 modem by virtue of being the first system shipped to the site (the so
called "site support system").

• Connect the modem to a serial port. The serial port, of course, should be
otherwise free. In this example, serial ports 1 and 2 are already in use (for
example, they could be supporting a tablet and a printer), so you will be
attaching the modem to serial unit 3. A short cable should be used to connect
EIA 3 and EIA 4, where EIA 3 is the connector for serial port 3 and EIA 4 is
the connector for the inboard modem. For details on how to make this cable
(if such a cable wasn't shipped to you by Symbolics) or on how cabling should
be done for a 3640 or 3670: See the section "Physical Connection to the Dial
Network", page 77.

• Connect the modem to the phone company's data circuit. This requires
a telephone line with modular connectors on both ends, of sufficient length to
reach from the telephone jack to the MODEM TELCO jack on the 3600 I/O
bulkhead. (3640 and 3670 installations use the same type of cable but the
connection is from telephone jack to the LINE jack in the CDS modem). In
this example, the data circuit is on a private branch exchange (PBX) that
supports direct inward dialing, allows other extensions to be called by dialing
their 4-digit trunk numbers, but requires a 9 be dialed fIrst when making calls
outside the PBX extensions. The example phone number for Bronx will be
area code 212, phone number 765-4321 (SOho5-4321, if you prefer).

• Register the modem in the namespace database. Use the namespace
editor to add a peripheral attribute to the local view of the host to which the
modem is attached. In this example, you are attaching the modem to serial
unit 3, the modem is a Vadic VA3450, the phone number is 1-212-765-4321 (1
(US) country code, 212 area code, 765 exchange, 4321 trunk). Furthermore,

90

Networks March 1985

this example supposes you want other sites to dial your site and assume some
of the communications costs themselves, so you want to enable the autoanswer
feature. Thus the peripheral attribute you add and save looks like:

peripheral modem unit 3 model va3450 phone-number 12127654321 autoanswer yes

Past the modem indicator, the order of indicatorlvalue pairs is irrelevant; you
could just as well have said:

peripheral modem phone-number 12127654321 autoanswer yes unit 3 model va3450

For further information on registering the modem in the namespace database:
See the section "Dialnet Representation in the Namespace Database", page 79.

• Create a private dialnet registry. You need to enter into the private
dialnet registry information concerning

o local dialing conventions,

o hosts connected to the dial network and their addresses, and

o locally supported Internet mail domains.

This is done by creating a private dialnet registry. You should edit the file
sys:site;private-dialnet-registry.lisp and enter the following:

;;; -*- Hode: LISP; Package: DIAL; Base: 10 -*-
'" one PBX number to another: just dial the extension.
;;; local external phone number: dial 9, then the number.
;;; different area code: dial 9, then the number.
'" WATS number: dial 9, then the number.
;;; Note that WATS is cheaper than long-distance.
(:subnet "1212765ssss>1212765ddddH :dial "dddd" :cost "0")
(:subnet "1212765ssss>1212xxxddddH :dial "9xxxdddd" :cost "1")
(:subnet "1212765ssss>laaaxxxdddd" :dial "9aaaxxxdddd" :cost "2")
(:subnet "1212765ssss>1800xxxdddd" :dial "91800xxxdddd" :cost "1")

;;; modem is on DIALINYC-Bronx, phone (212) 765-4321,
;;; and the local name of the host is Bronx.
(:host HNYC-BronxH :address "12127654321" :local-name "NYCIBronxH)

;;; DIALINYC-Bronx will run a store-and-forward mailer,
;;; servicing the domain named NYC.DialNet.Symbolics.COH.
(:domain "NYC.DialNet.Symbolics.COH" :host "NYC-Bronx")

For more information on dialnet registries: See the section "Dialnet Registries",
page 81. For more information on Internet domains: See the section "Dialnet
and Internet Domain Names", page 85. For more information on the store-

March 1985

and-forward mailer: See the section "Overview of the Mailer" in
Communicating with Other Users.

91

Symbolics Dialnet

• Give the local namespace an Internet Domain Name. Both ZMail and
the store-and-forward mailer use the Internet Domain Name to route mail in
some circumstances. Unless the namespace that names the site in which your
hosts are registered already has an associated Internet Domain Name, you
should use the namespace editor to add this attribute. In this example it is
assumed that your site has no previous connection with the Internet, so you
would edit the namespace object for the NYC namespace itself, and add an
Internet Domain Name property of NYC.DialNet.Symbolics.COM.

• Load the dialnet registry. Type the following form:

(dial:load-dialnet-registry)

• Test the dial network connection with the Terminal program. This step
is optional, of course, since you may not have a dial-accessible host handy.
This example supposes there exists a timesharing host named NYC-Tammany,
with a single dialup line at (212) 666-1040. You select the terminal program
with SELECT T and enter the address of NYC-Tammany, in this case
dial I dial I 12126661040. The number is dialed, ,the connection is made, the
screen clears and any subsequent communication is taking place with NYC
Tammany. After the session with the foreign host is complete, the connection
can be broken by typing NETWORK L. For more information on using the
Terminal program to access hosts via dialup lines: See the section "Using the
Terminal Program with the Dial Network", page 87.

92

Networks March 1985

93

March 1985 Symbolics Dialnet

12. dial Network Medium

The dial network transport mechanism is interfaced to the Symbolics generic
network system and can be used via the dial medium. This medium is a reliable
byte stream built on the bare serial line connection between two modems. It
provides the error detection and retransmission functions associated with most other
networks, to protect the communication against line noise and against the loss of
chatacters due to slow system response.

Any sufficiently generic network protocol can operate using the dial medium. Of
course, the low transfer rates provided by modems make most interactive uses
impractical. The supplied Symbolics software uses the dial medium only for
transmitting electronic mail and for limited (that is, text-only) remote login.

94

Networks March 1985

95

March 1985 Symbolics Dialnet

13. Dial Network Addressing

The international dial network is modeled by a single namespace object: the dial
network in the dial namespace. Addresses on this network are telephone numbers.
Of course, area codes and other dialing prefIXes make things more complicated.

Addresses for the dial network are complete telephone numbers, including country
and area codes. For North American customers, the country code is 1, so a fully
specified number looks like a common long distance sequence. Trunk 7348 in the
577 exchange of the 617 area code would be fully specified as 16175777348.

It is not generally appropriate to just dial a fully specified address; numbers within
the same area code do not require the area code, and often require a 1 prefIX if it is
a toll call. The subnet attributes of the dial network encode the neccessary dialing
prefIXes. Each subnet represents a telephone company connection between two
exchanges.

Since there are some rules stating which dialing prefix to use, it is not necessary to
specify every possible binary combination of world-wide phone exchanges and their
associated prefIXes. Instead, Dialnet provides a simple pattern matcher that can be
used to express both specific and general dialing rules. The name of each subnet on
the dial network gives the input pattern to the pattern-matching system; these
patterns are matched against the combined source and destination addresses for the
connection, that is, against the local and foreign telephone numbers.

The pattern consists of two sequences of digits and letters. The digits represent the
fixed parts of the pattern and the letters represent the variable parts. The two
sequences are separated by a > character, indicating that the left-hand part of the
pattern is the calling party and the right-hand part of the pattern is the called
party. Contiguous occurrences of the same letter make up the same variable.
Variable assignment takes place from left to right. If a letter is seen that has no
assignment, the variable sub-sequence is tentatively assigned a value of the
corresponding sub-sequence of the pattern to be matched. IT the variable has an
assignment (binding), or if there is a constant digit, it must match the corresponding
part of the pattern to be matched.

A specific example will make this more clear. Suppose we are calling from
16175777348 to 14155200142. Given the subnet pattern
brxxyyyyyyy>lzzzwwwwwww, we want to match it against 16175771212>14155200142.
1 is a fIXed constant and matches. x has no binding so it is tentatively assigned 617.
Likewise y is assigned 5777348, z 415, and w 5200142. The match is successful and
the result is these four bindings.

Now suppose instead the subnet pattern was brxxyyyyyyy>lxxxzzzzzzz. The x
assignment is the same, 617. Similarly the y assignment. On the second occurrence
of x, however, it already has a binding, so this must be matched against the input.
617 does not match 415, so the whole subnet match fails.

96

Networks March 1985

The subnet that best represents a particular phone call is simply the one with the
fewest variable bindings. So, if we were making the call 16175777348>16175777344,
the pattern lxxx.yyyyyyy> lxxxzzzzzzz would have only three bindings, and so would
be better than lxxx.yyyyyyy>1zzzwwwwwww, which has four.

The map between abstract subnet patterns and actual dialing sequences is
maintained by the subnet attributes of the namespace object representing the
international dial network. (This network is named diaIldial.) Each subnet
pattern has associated pairs of indicators and values that encode the actual dialing
sequence and the relative expense of the phone call.

The dial indicator is a string of numbers and letters that represents the actual
dialing pattern. All of the variables in this attribute must have been assigned values

. as a result of the subnet matching process. The cost attribute is a small number
(typically between 1 and 10) indicating the relative expense of the call. cost
attributes are used for hosts with more than one address on the dial network (that
is, hosts with more than one autoanswer modem) to determine the number to call,
and to weigh use of a direct call against routing through a public carrier network.

Here is an example of typical subnet attributes for the dial I dial network:

subnet lxxxyyyyyyy>lxxxzzzzzzz dial zzzzzzz cost 0
subnet lxxxyyyyyyy>lzzzwwwwwww dial lzzzwwwwwww cost 5
subnet 1212xxxxxxx>lyyyzzzzzzz dial yyyzzzzzzz cost 5
subnet 1617864xxxx>1617774yyyy dial 1774yyyy cost 3
subnet lxxxyyyyyyy>1800zzzzzzz dial 1800zzzzzzz cost 1

These mean, respectively:

1. When dialing a call within the same area code, just dial the number.

2. When dialing a number outside the local area code, dial a 1, then the area code
and number.

3. When dialing from the 212 area code, long-distance calls do not require a 1
prefIX.

4. Within the 617 area code (Massachusetts), you need to dial a 1 to get from
Cambridge (864) to East Boston (774).

5. The cost of a wide-area telephone service (WATS) call is less than a normal
long distance call. Note that the cost of WATS is still declared higher than a
local call; this is to avoid making a WATS call when a local call would do,
leaving the WATS trunks available for those who need them.

97

March 1985 Symbofics Dia/net

14. Reducing Call Cost with Public Carrier Networks

Dialnet can make use of public carrier networks that provide terminal mUltiplexers.
The cost of using this service is often considerably cheaper than a direct long
distance phone call. GTE Telenet, for example, provides local dial-ups attached to
terminal concentrators, called PADs. These PADs connect through their X.25
network to other PADs and to multiplexors at other sites. Connection of a
Symbolics computer to such a multiplexor is straightforward.

The public Dialnet registry shipped by Symbolics contains the dial network addresses
of many Telenet PADs, as well as the Telenet addresses of some hosts.

So far as most of Dialnet is concerned, there is just a serial line connecting the two
hosts. The intervening X.25 network is invisible. The part of Dialnet that knows
how to make phone calls also knows how to make a phone call to the Telenet PAD
and to negotiate with the PAD for a connection to another host on Telenet.
Routing through Telenet occurs automatically if such a route would be cheaper than
a direct dial network call to the same host.

98

Networks March 1985

99

March 1985 Programmer's Reference on Networks

PART IV.

Programmer's Reference on Networks

100

Networks March 1985

101

March 1985 Programmer's Reference on Networles

15. Chaosnet

15.1 Introduction to Chaosnet

Chaosnet is a local network, that is, a system for communication among a group of
computers located within one or two kilometers of each other. The name Chaosnet
refers to the lack of any centralized control element in the network.

Chaosnet was originally developed in 1975 by the Artificial Intelligence Laboratory of
the Massachusetts Institute of Technology as the internal communications medium
of early Lisp Machine systems. Chaosnets also exist at several other universities and
research laboratories.

In a network of Symbolics computers, each user is assigned a "personal" computer
consisting of a processor, a suitable amount of memory, a.nd a ~wapping~isk. Files
are stored in a central file system acc~s$ed through Ohaosnet. This shared flle
system retains the traditional advantages of a timesharing system, namely, interuser
communication, shared programs, and centralized backup and maintenance.
Chaosnet is also used to access other shared resources; these include printers, tape
drives, and one-of-a-kind specialized processors and 110 devices.

The design of Chaosnet was greatly simplified by ignoring problems irrelevant to local
networks. Chaosnet contains no special provisions for things such as low-speed links,
noisy (very high error-rate) links, multiple paths, and long-distance links with
significant transit time. This means that Chaosnet is not particularly suitable for
use across the continent or in satellite applications. Chaosnet also makes no attempt
to provide unnecessary features (for local-area networks) such as multiple levels of
service or secure communication (other than by end-to-end encryption).

Chaosnet consists of two parts-the hardware and the software-which, while
logically separable, were designed for each other. The hardware provides a carrier
sense multiple-access structure such as usually found in Ethernet interfacing
hardware. Network nodes contend for access to a cable, or ether, over which they
may transmit packets addressed to other network nodes. The software defines
higher-level protocols in terms of packets. These protocols can be (and are) used
with media other than the Chaosnet cable, and with multiple interconnected cables.

15.2 Chaosnet Hardware Protocol

102

Networks March 1985

15.2.1 Chaosnet Ether

The transmission medium of Chaosnet is called the ether. Physically, it is a coaxial
cable, of the semi-rigid 112-inch low-loss type used for cable TV, with 75-ohm
termination at both ends. At each network node a cable transceiver is attached to
the cable. A 10-meter flat -cable connects the transceiver to an interface which is
attached to a computer's 110 bus.

A network node consists of this transceiver and interface and a computer that
executes the Network Control Program (NCP), which manages and controls
Chaosnet, in addition to application software.

One network node at a time can seize the ether and transmit a packet, which
arrives at all other nodes; each node decides in hardware whether to ignore the
packet or to receive it.

A single ether must be a linear cable; it cannot contain branches nor stubs, and the
ends cannot be joined in a circle. The maximum length of an ether cable is about 1
kilometer. The maximum number of nodes on a single ether is a few dozen.

The protocol provides for multiple ethers, joined together by nodes called bridges,
which relay packets from one ether to another. A bridge is a computer with two or
more network interfaces attached to it. A bridge node usually performs other tasks
as well, such as interfacing terminals. Bridges attach other network media as well
as ethers; some computers connect to the network through their manufacturer's
high speed computer-to-computer interface to a nearby bridge, rather than being
interfaced directly to an ether.

15.2.2 Chaosnet Packets

The basic unit of transmission is called a packet. This is a sequence of up to 4032
data bits, plus 48 bits of header information used by the hardware. Packets' bits are
normally grouped into 16-bit words. The division of a transmitted bit stream into
packets provides a conveniently sized unit for resource allocation and error control.
The job of the hardware is to deliver a packet from one node to another.

The packet's hardware header consists of three 16-bit words, called destination,
source, and check:

Source

Destination

Check

Identifies the node that transmitted this packet onto this ether.
This is not necessarily the original source of the message, since it
may have originated on a different ether.

Identifies the node intended to receive this packet from this ether.
This is not necessarily the final destination of the message. It
may be a bridge that should relay the packet to another ether;
from there, it will eventually reach its final destination.

A cyclic-redundancy checksum, generated and checked by

March 1985

103

Programmer's Reference on Networks

hardware, which detects errors in transmission through the ether,
entirely spurious packets created by noise on the cable, and
memory errors in the transmitting and receiving packet buffers.

Software protocols define the meanings of the data bits in a packet, manage the
hardware, compensate for imperfections of the hardware, and provide more useful
services than simple transmission of packets from one computer to another. See the
section "Packet Contents: Chaosnet Software Protocol", page 112.

15.2.3 Chaosnet Transceiver

All nodes are connected to the ether through a transceiver, which is a small box
mounted directly on the cable via a UHF connector and a T-joint. All nodes use
identical transceivers (the interface varies depending on what computer it is designed
to interface to). The transceiver contains the analog portion of the interface logic,
provides ground isolation between the ether cable and the computer, and contains
some protective circuitry designed to prevent a malfunctioning program or interface
from continuously jamming the ether.

The transceiver receives a differential digital signal from the computer interface and
impresses it onto the cable as a level of about 8 volts for a 1, or 0 volts (open circuit)
for a 0, through a very fast VMOS power FET. When the cable is idle it is held at
o volts by the terminations. This simple unipolar scheme is adequate for medium
cable lengths and transmission speeds. The transceiver monitors the cable by
comparing it against a reference voltage, and returns a differential signal to the
interface. In addition, it detects interference (another transceiver transmitting at
the same time as this one) and informs the interface.

The transceiver includes indicators (light-emitting diodes) for power OK, transmitted
data, received data, and interface attempting to jam the ether. A test button
simulates an input of continuous Is from the interface, which should light all the
lights (dimly) if the transceiver is working. These indicators and the test button are
useful for rapidly tracking down network problems. The transceiver requires its own
power supply mounted nearby; one power supply can service three transceivers if
they are all adjacent. High-voltage isolation between the cable and the computer is
provided by optical isolators within the transceiver.

15.2.4 Chaosnet Interface

The interface is typically a wire-wrap board containing about 120 TTL logic chips,
which plugs into the I/O bus of a computer and connects it to the ether (through a
transceiver.) The interface implements the hardware protocols, buffers incoming and
outgoing packets, generates and checks checksums, and interrupts the host computer
when a packet is to be read out of the receive packet buffer or stored into the
transmit packet buffer. These packet buffers shield the host computer from the
high speed of data transmission on the cable. Instead of having to produce bits at· a

104

Networks March 1985

high rate, the host can produce them at a lower rate, collect them into a packet,
and then tell the interface to transmit the packet in a single burst of high-speed
transmission. Programming information for the interface is supplied elsewhere. See
the section "Chaosnet Hardware Programming Information", page 137.

15.2.5 Details of Chaosnet Hardware Protocols

The purpose of these protocols is to deliver packets intact from one node to another
node on the same ether, with fairly high probability of success, and to guarantee to
give an error indication or lose the packet entirely if it is not delivered intact. An
additional purpose is to provide high performance and not to bog down when
subjected to a heavy load.

Bits are represented on the ether using a technique which is called Upright Biphase
NRZI. Each bit cell, which is approximately 250 nanoseconds long, begins with a
transition in state, from high to low or from low to high. This transition marks the
beginning of a bit cell and provides self-clocking. 3/4 of the way through the bit cell,
the state of the cable is sampled; high represents a 1 and low represents a o. If the
bit being represented is the same as the previous bit, there will be one transition at
the beginning of the bit cell and a second in the middle of the bit cell. If the bit
being represented is the opposite of the previous bit, there will be no transition in
the middle of the bit cell since the clock transition will have set the cable to the
desired state. The AC frequency of the signal on the cable varies between 112 the
bit rate and the full bit rate. The information bit-rate is 4 million bits per second . .
The self-clocking feature allows for slight variations in transmission and cable
propagation speed. However, since the 3/4 of a bit cell delay is a fIxed delay, only
modest variations in speed can be tolerated. A crystal clock is used as the source of
the transmit timing in the interface.

Since there is always at least one state-transition per bit cell, the states where the
ether remains high or low for an appreciable time are available for nondata uses. If
the ether remains low for more than about two bit cells, it is considered to be not
busy. This condition marks the end of a packet and allows someone else to
transmit. Note that if no transceivers are active, the terminations will hold the
ether low.

If the ether remains high for about two bit cells, this is an "abort signal". Abort
signals are used for two purposes. If the transceiver detects a collision (two nodes
trying to transmit at the same time), each transmitting interface ceases to transmit
and sends an abort signal <four bit cells long), which tells all receivers to ignore the
aborted packet and ensures that the other transmitter also aborts. Thus when a
collision occurs, the ether is cleared as soon as possible to help prevent long tie-ups
under conditions of heavy load. The other use for the abort signal is in hardware
flow-control. When a receiving interface determines that an incoming packet is
addressed to it, but its receive buffer already contains a packet, it sends an abort
signal which causes the transmitter to stop. This serves the dual purpose of

105

March 1985 Programmer's Reference on Networks

immediately informing the transmitter that its message did not get through, and
preventing the ether from being tied up while a long packet is transmitted which
the receiver cannot receive.

Packets are transmitted over the ether in reverse bit-order, for hardware
convenience. The three header words, which to the software appear to be at the
end of the packet, are transmitted first, in the order check, source, destination. The
data words, in reverse order, follow. Words are transmitted least-significant bit first.
Of course, the software need not be aware of this reversal; packets arrive at the
destination in the same form as they were created by the source. At the end of the
packet, an extra zero bit is appended to bring the ether to the low state so that an
extra spurious clock-transition will not be generated when it goes idle. This bit is
stripped off by the interface and is never seen by software.

The check word is used for error detection, as described above. The source word is
made available to the software, which ignores it in most cases, and also serves to
synchronize the clocks in the collision-avoidance mechanism. The destination word is
compared by each receiver against its own address. If they match, or if the
destination is zero, or if the software selects the "match any destination" mode, the
packet is placed in the receive packet buffer and the host computer is interrupted.
The zero destination feature is used for "broadcast" messages. Note that a receiver
whose packet buffer is full will only generate an abort signal if the packet was
specifically addressed to it.

15.2.6 Ether Contention

Chaosnet has no centralized control element; when a network node has a message to
transmit, its interface seizes the ether and transmits a packet. The time when it
seizes the ether is determined only by state inside that particular interface and by
the local state of the cable at the point where that interface's transceiver is
attached.

If two interfaces should decide to seize the ether and transmit at the same time,
their transmissions will interfere and no useful information will be transmitted.
This is called a collision. Collisions are the principal limitation on the bandwidth of
a heavily loaded ether-type network, and should be avoided.

Chaosnet uses a novel collision-avoidance technique. First, an interface will never
initiate transmission unless the ether is seen to be not busy, that is, it has been in
the low state for some time. This ensures that collisions can occur only near the
beginning of a packet. Once transmission of a packet has gotten well started, the
ether is effectively "seized" (all interfaces realize that it is busy) and transmission will
continue successfully through to the end of the packet. The amount of ether
transmission time wasted by a collided packet is therefore limited to the round-trip
cable propagation delay. This technique is called carrier sense.

Secondly, the hardware uses a time-division technique to attempt to prevent two

106

Networks March 1985

interfaces from initiating transmission at the same time. This technique should
prevent essentially all collisions while imposing only a modest delay in the initiation
of transmission. It is designed so that it works better as the load on the ether
increases; the wasted time between packets and the relative rate of collisions both
decrease.

The basic idea is that each interface is assigned a time-slot, or turn, according to its
address. It may only initiate transmission during its tum. The turns are spaced far
enough apart that if one interface initiates transmission, every other interface will
perceive that the ether is busy by the time its own turn arrives, and will not initiate
an interfering transmission. Each interface contains a time-slot counter which
counts while the ether is not busy, keeping track of whose tum it is. Each packet
synchronizes the counters in all of the interfaces by setting them from the source
address of that packet; at the time the packet was transmitted, it must have been
the turn of the interface that transmitted it.

Another way to think of this is to make an analogy with ring networks. One can
imagine a virtual token which passes down the cable until it gets to the end, then
jumps to the beginning of the cable and repeats. An interface may only initiate
transmission at the instant the token passes by it. When an interface transmits,
the token stops moving and remains at that interface until the end of the packet,
whereupon it continues down the cable, passing every other interface, giving them
each a chance to transmit before letting the first interface transmit a second packet.

The token is not represented by any physical transmission on the cable. That would
constitute a form of centralized control, and would lead to reliability problems if the
token was lost or duplicated. Instead, every interface contains a time-slot counter
which keeps track of where the token is thought to be. Every time a packet is
transmitted these counters are brought up-to-date. The token cannot be lost
because a counter by its nature eventually returns to all previous states. It does not
matter if the token is duplicated (that is, the counters lose synchronization)
occasionally, since this will only cause collisions, which we know how to detect and
deal with, and since the first successful transmission will resynchronize all counters.
The basic mechanism of the ether network with contention and collisions is known
to work, and the collision-avoidance scheme is an added-on optimization which
improves performance without changing the basic mechanism.

There is a finite propagation delay time between interfaces, and this time is not
small compared with the bit-rate of Chaosnet, nor when compared with the desirable
length of a time slot. This time consists of the delay in the cable, about 5
nanoseconds per meter, and the delay through the two transceivers, about 220
nanoseconds. This propagation delay means that the time-slot counters in two
different interfaces cannot be exactly synchronized, and that when interface A
initiates transmission interface B will not instantaneously see that the ether is busy.
Special relativity tells us that in fact the concept "exactly synchronized" is
meaningless. Since the two time-slot counters are not in the same place, the only
way we can compare them is to send a message from one to the other, through the

107

March 1985 Programmer's Reference on Networks

ether, containing the reading of the counter. But this message takes nonzero time
to get there, so the counter-reading it contains is wrong by the time it is compared
against the other counter! We in fact do send messages containing counter readings;
the source address in a packet equals the reading of the time-slot counter in the
interface that sent it-at the time it was sent. Since the network nodes are not in
relative motion, we can measure the distance between them and use that
information to improve their synchronization.

What we are trying to do is to prevent collisions. This means that if interface A
starts transmitting a packet in its tum, then by the time interface B thinks that its
own turn has arrived, it must perceive the ether as busy. We will assign addresses
(and hence time slots) and set the length of a time slot in such a way that this will
happen. Suppose the maximum delay through the ether between A and B is t.
This would be the delay for one of them sending a packet to the other; the delay
between A's receipt of a third party's packet and B's receipt of that packet is less,
especially if the third party is between A and B on the cable. Then the maximum
perceived difference between a clock at A and a clock at B is 2t; if a message is sent
from B to A synchronizing the clocks, and then a message is sent from A to B
containing A's clock reading, at B this clock reading will be slow by 2t.

When a packet transmitted by A arrives at B, B's clock may read as much as 2t
earlier or later than A's tum, depending on the transmission direction of the last
synchronizing message. In order to guarantee that B's tum has not yet happened,
the time between any of A's turns and any of B's turns must always be at least 2t,
twice the maximum propagation delay through the ether between A and B. This is
the important idea! We cause this to be true by assigning addresses starting at one
end of the cable; each node's address is the previous node's address plus twice the
propagation delay between them, divided by the length of a turn. It is easy to see
that if this is done for all adjacent pairs, the condition will automatically be true for
nonadjacent pairs as well. When we get to the end of the cable, we must assign a
number of empty slots equal to twice the propagation delay of the full length of
cable, to· provide the necessary separation between the turns of the two nodes at the
ends of the cable.

The virtual token travels through the network at a substantially slower speed than a
real signal such as a packet; in the fastest case, when nodes are very far apart, it
travels at just half the speed of a real signal. Since a Chaosnet ether has the
geometry of a line, as compared to the ring net's . circle, the virtual token is also
slowed down by the need to return from the end of the cable to the beginning.
This slower speed of the token is the price one pays for the increased robustness of
Chaosnet as compared with a ring network. In a real system, we slow the token
down even more to provide a margin of safety. The speed of the network is not
significantly affected by the slow token, since the interval between packet
transmissions by a single node is much longer than the round-trip time of the token.
Indeed, if the network is being used primarily for file transfer, and hence the
packets are large, the transmission time alone for a typical packet is several times

108

Networks March 1985

the round-trip time of the token. A typical value for the token's round-trip time is
64 microseconds.

In spite of all this, sometimes collisions will occur anyway. If the cable has been idle
for a long time, the various clocks will have lost synchronization. If a source address
is corrupted by a transmission error, any interface that sees that source address will
set its clock to an incorrect value. Sometimes a packet will collide with random noise
rather than another legitimate packet. In addition, the transmitter does not
distinguish receiver-busy aborts from real collisions.

When a collision does occur, we recover from it (in software) by retransmitting the
packet again a couple of times, hoping that we will be lucky enough not to have
another collision, or that the receiver will soon clear its packet buffer. This
retransmission is done by the software, not the hardware, since the hardware
destroys the packet in its packet buffer in the process of transmitting it. But if
collisions continue to occur, we give up and let somebody else have the ether. The
packet is lost. A higher level of protocol will soon realize that it has been lost and
retransmit it. We assume that there is enough randomness in the higher-level
software that the two nodes which originally collided will not collide again on the
retransmission by deciding to retransmit at precisely the same instant.

15.3 Chaosnet Software Protocol - Overview

The purpose of the basic software protocol of Chaosnet is to allow high-speed
communication among processes on different machines, with no undetected
transmission errors. The speed for file transfers in real-life circumstances was to be
comparable with an inexpensive magnetic tape drive (30000 characters per second, or
about 10 times the speed of the Arpanet). We actually get about double this in
some favorable cases. To achieve this speed it was important to design out
bottlenecks such as are found in the Arpanet, for instance the control-link which is
shared between multiple connections and the need to acknowledge each message
before the next message can be sent. The protocol must be simple, for the sake of
reliability and to allow its use by modest computer systems. A full Chaosnet
Network Control Program is.just about half the size of an Arpanet NCP on the
same machine, and the protocol allows low-performance implementations to omit
BOme features. A minimal implementation exists for a single-chip microcomputer.

15.3.1 Connections: Chaosnet Software Protocol

The principal service provided by Chaosnet is a connection between two user
processes. This is a full-duplex reliable packet-transmission channel. The network
undertakes never to garble, lose, duplicate, or resequence the packets; in the event of
a serious error it may break the connection off entirely, informing both user
processes. User programs may either deal in terms of packets, or ignore packet

109

March 1985 Programmer's Reference on Networks

boundaries and treat the connection as two uni-directional streams of 8-bit or 16-bit
bytes.

On top of the connection facility ''user'' programs build other facilities, such as file
access, interactive terminal connections, and data in other byte sizes, such as 36 bits.
The meaning of the packets or bytes transmitted through a connection is defined by
the particular higher-level protocol in use.

In addition to reliable communication, the protocol provides flow control, includes a
way by which prospective communicants may get in touch with each other (called
contacting or rendezvous), and provides various network maintenance and
housekeeping facilities. These are discussed later.

15.3.2 Contact Names: Chaosfl~ Software Protocol

Wl\~n firs~ esta1Jli~l1~ng I;l ~oJl,nection, it is necessary for the two communicating
processes to contact each other. In addition, in the usual user/server situation, the
server process does not exist beforehand and needs to be created and made to
execute the appropriate program.

We chose to implement contacting in an asymmetric way. (Once the connection has
been established everything is completely symmetric.) One process is designated the
user, and the other is designated the server. The server has some contact name to
which it listens. The user process requests its local operating system to connect it
to the server, specifying the network node and contact name of the server. The
local operating system sends a message (a Request for Connection) to the remote
operating system, which examines the contact name and creates a connection to a
listening process, creates a new server process and connects to it, or rejects the
fequ~st.

Automatically discovering to which host to connect in order to obtain a particular
service is a subject for higher-level protocols and for further research. It is not dealt
with by Chaosnet.

Once a connection. has been established, there is no more need for the contact name
and it is discarded. Indeed, often the contact name is simply the name of a service
(such as "TELNET") and several users should be able to have simultaneous connections
to separate instances of that service, so contact names must be reusable.

In the case where two existing processes that already know about each other want
to establish a connection, we arbitrarily designate one as the listener (server) and
the other as the requester (user). The listener somehow generates a "unique"
contact name, somehow communicates it to the requester, and listens for it. The
requester requests to connect to that contact name and the connection is
established. In the most common case of establishing a second connection between
two processes which are already connected, the index number of the flrst connection
can serve as a unique contact name.

110

Networks March 1985

Contact names are restricted to strings of uppercase letters, numbers, and AScn
punctuation. The maximum length of a contact name is limited only by the packet
size, although on ITS hosts the names of automatically started servers are limited by
the file system to six characters.

The contact names for Chaosnet connections are retained in the connection data
structures. The accessor function is chaos:contact-name.

The complete details about establishing a connection are given elsewhere. See the
section "Connection Establishment: Chaosnet Software Protocol" t page 120.

15.3.3 Addresses and Indices: Chaosnet Software Protocol

Each node (or host) on the network is identified by an address, which is a l6-bit
number. These addresses are used in the routing of packets. There is a table (the
system hosts table, SVSBIN; HOSTS2, in the case of ITS) which relates symbolic host
names to numeric host addresses.

An address consists of two fields. The most-significant 8 bits identify a subnet, and
the least-significant 8 bits identify a host within that subnet. Both fields must be
nonzero. A subnet corresponds to a single transmission path. Some subnets are
physical Chaosnet cables (ethers), while others are other media, for instance an
interface between a PDP-lO and a PDP-ll. The significance of subnets will become
clear when routing is discussed. See the section "Routing: Chaosnet Software
Protocol", page 114.

When a host is connected to an ether, the host's hardware address on that ether is
the same as its software address, including the subnet field.

A connection is specified by the names of its two ends. Such a name consists of a
l6-bit host address and a l6-bit connection index, which is assigned by that host, as
the name of the entity inside the host which owns the connection. The only
requirements placed by the protocol on indices are that they be nonzero and that
they be unique within a particular host; that is, a host may not assign the same
index number to two different connections unless enough time has elapsed between
the closing of the first connection and the opening of the second connection that
confusion between the two is unlikely.

Typically the least-significant n bits of an index are used as a subscript into the
operating system's tables, and the most-significant 16-n bits are incremented each
time a table slot is reused, to provide uniqueness. The number of uniquizing bits
must be sufficiently large, compared to the rate at which connection-table slots are
reused, that if two connections have the same index, a packet from the old
connection cannot sit around in the network (for example, in buffers inside hosts or"
bridges) long enough to be seen as belonging to the new connection.

It is important to note that packets are not sent between hosts (physical computers).
They are sent between user processes; more exactly, between channels attached to

111

March 1985 Programmer's Reference on Networks

user processes. Each channel has a 32-bit identification, which is divided into
subnet, host, index, and uniquization fields. From the point of a view of a user
process using the network, the Network Control Program section of the host's
operating system is part of the network, and the multiplexing and demultiplexing it
performs is no different from the routing performed by other parts of the network.
It makes no difference whether two communicating processes run in the same host
or in different hosts.

Certain control packets, however, are sent between hosts rather than users. This is
visible to users when opening a connection; a contact name is only valid with respect
to a particular host. This is a compromise in the design of Chaosnet, which was
made so that an operational system could be built without first solving the research
and engineering problems associated with making a diverse set of hosts into a
uniform, one-level name space.

15.3.4 Packet Numbers: Chaosnet Software Protocol

There are two kinds of packets, controlled and uncontrolled. Controlled packets are
subject to error-control and flow-control protocols, which guarantee that each
controlled packet is delivered to its destination exactly once, that the controlled
packets belonging to a single connection are delivered in the same order they were
sent, and that a slow receiver is not overwhelmed with packets from a fast sender.
(See the section "Flow and Error Control: Chaosnet Software Protocol", page 117.)
Uncontrolled packets are simply transmitted; they will usually but not always arrive
at their destination exactly once. The protocol for using them must take this into
account.

Each controlled packet is identified by an unsigned 16-bit packet number. Successive
packets are identified by sequential numbers, with wrap-around from all Is to all Os.
When a connection is first opened, each end numbers its flrst controlled packet (RFC
or OPN) however it likes, and that sets the numbering for all following packets.

Packet numbers should be compared modulo 65536 (2 to the 16th), to ensure correct
handling of wrap-around cases. On a PDP-ll, use the instructions

CHP A,B
BHI A_is_less

Do not use the BlT or BlO instruction. On a PDP-10, use the instructions

SUB A,B
TRNE A,100000

JRST A_is_less

Do not use the CAHGE instruction. On a Symbolics computer, use the code

(IF (BIT-TEST 10100000 (- A B»
<A is less»

Do not use the lESSP (or <) function.

112

Networks March 1985

15.3.5 Packet Contents: Chaosnet Software Protocol

A packet consists of a header, which is 8 IS-bit words, and zero or more 8-bit or 16-
bit bytes of accompanying data. In addition there are three words put on by the
hardware, described earlier in this paper.

The following are the 8 header words:

Operation
The most-significant 8 bits of this word are the Opcode of the packet, a
number which tells what the packet means. The 128 opcodes with high
order bit 0 are for the use of the network itself. The 128 opcodes with high
order bit 1 are for use by users. The various opcodes are described elsewhere.
See the section "Chaosnet Software Protocol - Details", page 120.

The least-significant 8 bits of this word are reserved for future use, and must
be zero.

Count The most-significant 4 bits of this word are the forwarding count, which tells
how many times this packet has been forwarded by bridges. Its use is
explained elsewhere; See the section "Routing: Chaosnet Software Protocol",
page 114.

The least-significant 12 bits of this word are the data byte count, which tells
the number of 8-bit bytes of data in the packet. The minimum value is 0
and the maximum value is 488. Note that the count is in 8-bit bytes even if
the data are regarded as IS-bit bytes. .

The byte count must be consistent with the actual length of the hardware
packet. Since the hardware cyclic redundancy check algorithm is not
sensitive to extra zero bits, packets whose hardware length disagrees with
their software length are discarded as hardware errors.

Destination Address
This word contains the network address of the destination host to which this
packet should be sent.

Destination Index
This word contains the connection index at the destination host of the
connection to which this packet belongs, or 0 if this packet does not belong
to any connection.

Source Address
This word contains the network address of the source host which originated
this packet.

Source Index ~
This word' contains the connection index at the source host of the connection
to which this packet belongs, or 0 if this packet does not belong to any
connection.

Packet Number
If this is a controlled packet, this word contains its identifying number.

113

March 1985 Programmer's Reference on Networks

Acknowledgement
The use of this word is described elsewhere. See the section "Flow and Error
Control: Chaosnet Software Protocol", page li7.

15.3.6 Data Formats: Chaosnet Software Protocol

Data transmitted through Chaosnet generally follow Symbolics standards. Bits and
bytes are numbered from right to left, or least-significant to most-significant. The
first 8-bit byte in a IS-bit word is the one in the arithmetically least-significant
position. The first IS-bit word in a 32-bit double-word is the one in the
arithmetically least-significant position.

The character set used is dictated by the higher-level protocol in use. Telnetand
Supdup, for example, each specifies its own ASCIT-based. character set. The "default"
character set, used for new protocols and for text that appears in the basic Chaosnet
protocol (such as contact names) is the Symbolics character set. See the section
"The Character Set" in Reference Guide to Streams, Files, and 1/0. This is basically
ASCIT augmented with additional printing characters and a different set of format
effector (or "control") characters.

Because the rules for bit numbering conflict with the native byte-ordering in
PDP-lOs, and because it is quite expensive to rearrange the bytes using the PDP-IO
instruction set, PDP-lis which act as front-ends for PDP-lOs must reformat packets
passing through them, and PDP-lOs interfaced directly to the network must have
interfaces capable of rearranging the bytes. This requires that the network protocols
explicitly specify which portions of each type of packet are 8-bit bytes and which are
IS-bit bytes. In general the header is IS-bit bytes and the data field is 8-bit bytes,
but certain packet types (OPN, STS, RUT, and opcodes 300 through 377) have 16-
bit bytes in the data field. Use of 32-bit data is rare, so no provision is made for
putting 32-bit data into the standard format for PDP-lOs. On our current network
PDP-lOs are the only hosts which require this packet reformatting assistance,
because most modem computers number their bits and bytes from least-significant to
most-significant.

The effect of this is that user programs that use the Chaosnet always see the data
in a packet and its header in the native form of the machine they are running on,
and the necessary conversions are automatically applied by the network. This
statement applies to the order of bits and bytes within a word, but not to the
character set (when packets contain textual data) which is dictated by protocols.

Unlike some other network protocols, Chaosnet does not use any software
checksumming. Because of the diversity of hosts with different architectures
attached to the Chaosnet, it is impossible to devise a checksumming algorithm which
can be executed compatibly and efficiently on all hosts. Instead, Chaosnet relies on
error-checking hardware in the network interfaces, and assumes that other sources
of packet damage that checksums could detect, such as software bugs in a Network
Control Program, either do not occur or will produce symptoms so obvious that they
will be detected and fIXed immediately.

114

Networks March 1985

15.3.7 Routing: Chaosnet Software Protocol

Routing consists of deciding how to deliver a packet to the network node specified by
the destination address field of the packet. Having reached that node, the packet
can trivially be delivered to the destination user process via the destination index. In
general routing may be a multistep process involving transmission through several
subnets, since there may not be a direct hardware connection between the source
and the destination. Note that the routing decision is made separately for each
packet, with no reference to the concept of connections.

Any host that is connected to more than one subnet acts as a bridge and fonvards
packets from one subnet to another when necessary. There could also be hardware
bridges which are not hosts, although we have not yet designed any such device.
Since routing does not depend on connections, a bridge is a very simple device (or
program) which does not need much state. This makes the bridge function
inexpensive to piggyback onto a computer which is also performing other functions,
and makes reliable bridge software easy to implement.

The difference between a bridge and a gateway, in our terminology, is that a bridge
forwards packets from one sub-Chaosnet to another, without modifying the packets
or understanding them other than to look at the destination address and increment
the forwarding count, and does not deal with connections nor with flow control,
while a gateway interconnects two networks with differing protocols and must
understand and translate the information passing through it. Gateways may also
have to deal with flow and error control because they connect networks with slow or
differing speeds. Bridges are suitable for local networks while gateways are suitable
for long-distance networks and for connecting networks not produced by the same
organization.

To prevent routing loops, each packet contains a forwarding-count field. Each bridge
that forwards the packet increments this count; if the count reaches its maximum
value the packet is discarded. The error-control protocol will recover discarded
packets, or decide that no viable connection can be established between the two
hosts.

The implementation of routing in an operating system is as follows, given a packet
to be routed, which may have come in from the network or may have been
originated by the local host. First, check the packet's destination address. If it is
this host, receive the packet. Otherwise, increment the forwarding count and
discard the packet if it has been forwarded too many times. If the destination is
some other host on a subnet to which this host is directly connected, transmit the
packet on that subnet; the destination host should receive it. If the destination is a
host on a subnet of which this host has no knowledge, look up the subnet in the
host's routing table to find the best bridge to that subnet, and transmit the packet
to that bridge.

Each host has a routing table, indexed by subnet number, which tells how to get
packets to hosts on that subnet. Each entry contains: (exact details may vary
depending on implementation)

115

March 1985 Programmer's Reference on Networks

Type The type of connection between the host and this subnet. This can be one
of Direct, Bridge) or Fixed Bridge. Direct means a physical connection such
as a Chaosnet interface. Bridge means an indirect connection, via a packet
forwarding bridge. Which bridge is best to use is to be discovered by this
routing mechanism. Fixed Bridge is the same except that the automatic
mechanism is not to change which bridge is used. This is useful to set up
explicit routing for purposes such as network debugging.

Address
Identifies the connection to this subnet in a way which depends on the type.
For a direct connection, this identifies the piece of hardware which
implements the connection. (It might be a UNIBUS address.) For a bridge
or a fixed bridge, this is the network address of the bridge.

Cost A measure of the cost of sending a packet through this route. Costs are
used to select the best route from among alternatives in a way described
below. For a direct connection, the cost is 10 for a direct interface between
two computers (for example, between a PDP-I0 and its front-end PDP-ll), 11
for a Chaosnet ether cable, 20 for a slow medium such as an asynchronous
line, and so on. For a bridge or a fJXed bridge, the cost is specified by the
bridge in a RUT packet.

The routing table is initialized with the number of a more or less arbitrary existent
host and a high cost, for each subnet to which the host is not directly connected.
Until the correct bridge is discovered (which normally happens within a minute of
coming up), packets for that subnet will be bounced off of that arbitrary host, which
probably knows the right bridge to forward them to.

The cost for subnets accessed via bridges is increased by 1 every 4 seconds, thus
typically doubling after a minute. When the cost reaches a "high" value, it sticks
there, preventing problems with arithmetic overflow. The purpose of the increasing
cost is to discount the value of old information. The cost for subnets accessed via
direct connections and fJXed bridges does not increase.

Every 15 seconds, a bridge advertises its presence by broadcasting a routing (RUT)
packet on each subnet to which it is directly connected. Each host on that subnet
receives the RUT packet and uses it to update its routing table. If the host's
routing table says to access a certain subnet via bridges, and the RUT packet says
that this is the best bridge to that subnet, the routing table is updated to say that
this bridge should be used.

Note that it is important that the rate at which the costs increase with time be
slow enough that it takes more than twice the broadcast interval to increase the
cost of one hop to be more than the cost of two hops. Otherwise the routing
algorithm is not well-behaved. Suppose subnet A has two bridges (CI and In on it,
and bridge CI is connected to subnet B but bridge fJ is not (it goes to some other
irrelevant subnet). Then if the costs increase too fast and bridges CI and fJ do not
broadcast their RUT packets exactly simultaneously, sometimes packets for subnet B

116

Networks MarCh 1985

may be sent to bridge ~ because its cost appears lower. Bridge ~ will then send
them to bridge a, where they should have gone directly. In more complicated
situations packets can go around in a circle some of the time.

The source address of a RUT packet must be the hardware address of the bridge on
the particular subnet on which the packet is broadcast. The destination address of a
RUT packet must be zero; RUT packets are not forwarded onto other subnets. The
byte count of a RUT packet is a multiple of 4 and the packet contains up to 122
pairs of 16-bit words:

word I The subnet number of a subnet which this bridge can get to, directly or
indirectly, right-adjusted.

word 2 The cost of sending to that subnet via this bridge. This is the current cost
from the bridge's routing table, plus the cost for the subnet on which the
routing packet is being broadcast. Adding the subnet cost eliminates loops,
and prefers one-hop paths over two-hop paths.

When a host receives a RUT packet, it processes each 2-word entry by comparing
the cost for that subnet against its current cost; if it is less or equal the cost and
the address of the bridge are entered into the routing table, provided that that
subnet's routing table entry is not of the Direct or Fixed Bridge type.

When there are multiple equivalent bridges, the traffic is spread among them only
by virtue of their RUT packets being sent at different times, so that sometimes one
bridge has the lower cost, and sometimes the other. If this isn't adequate, hosts
could have hairier routing tables which remember more than one possible route and
use them according to their relative costs, but so far this has not been necessary
since the network traffic is not so high as to saturate anyone bridge .

. The design of this routing scheme is predicated on the assumption that the network
geometry is simple, there are few mUltiple paths, and the length of any path is quite
short. This makes more sophisticated schemes unnecessary.

An important feature of this routing scheme is that the size of the table is
proportional to the number of subnets, not to the number of hosts. Thus it does
not take up an inordinate amount of memory in a small computer, and no
complicated dynamic allocation schemes are required.

In the case of a PDP-IO which accesses the Chaosnet through a front-end PDP-II,
we define the interface between the two computers to be a subnet, and regard the
PDP-ll as a bridge which forwards packets between the network and the PDP-IO.
This gives the PDP-IO and the PDP-ll separate addresses so that we can choose to
talk to either one, even though they are part of the same computer system. This is
occasionally useful for maintenance purposes. It becomes more useful when the
front-end PDP-ll has peripherals which are to be accessed through the Chaosnet,
since they can simply look like hosts on that PDP-ll's private subnet.

In the case of a host which is attached to more than one subnet, it is undesirable

117

March 1985 Programmer's Reference on Networks

for the host to have more than one address, since this would complicate user
programs which use addresses. Instead, one of the host's network attachments is
designated as primary, and that address is used as the host's single address. The
other attachments are regarded as bridges which can forward to that host.
Sometimes, we simplify the routing by inventing a new subnet which contains only
that host and has no physical realization. The host's address is an address on that
fake subnet. All of the host's network attachments are regarded as bridges which
know how to forward packets to that subnet.

The ITS host table allows a host to have multiple addresses on multiple networks,
but when you ask for the address of a certain host on a certain network you only
get back the primary address. All packets coming from that host have that as their
source address.

15.3.8 Flow and Error Control: Chaos net Software Protocol

The Network Control Programs (NCPs) conspire to ensure that data packets are
sent from user to user with no garbling, duplications, omissions, or changes of order.
Secondarily, the NCPs attempt to achieve a maximum rate of flow of data, and a
minimum of overhead and retransmission.

The fundamental basis of flow-control and error-control in Chaosnet is
retransmission. Packets which are damaged in transmission, which won't fit in
buffers, which are duplicated or out-of-sequence, or which otherwise are
embarrassing are simply discarded. Packets are periodically retransmitted until an
indication that they have been successfully received is returned. This retransmission
is end-to-end; any intermediate bridges do not participate in flow-control and error
control, and hence are free to discard any packets they wish.

There are actually two kinds of packets, controlled and uncontrolled. Controlled
packets are retransmitted and delivered reliably; most packets, including all packets
used by the user (except for UNC packets), are of this type. Uncontrolled packets
are not retransmitted; these are used for certain lower-level functions of the protocol
such as the implementation of flow and error control. The usage of these packets is
designed so that they need not be delivered reliably.

Retransmission of a packet continues until stopped by a signal from the r~eiver to
the sender called a receipt. A receipt contains a packet number, and indicates that
all controlled packets with a packet number less than or equal (modulo 65536) to
that number have been successfully received, and therefore need not be
retransmitted any more. A receipt does not indicate that these packets have been
processed by the destination user process; it simply indicates that they have
successfully arrived in the destination host, and are guaranteed to be there when
the user process asks for them.

There is another signal from the receiver to the sender, called an acknowledgement.
An acknowledgement also contains a packet number, and indicates that all controlled

118

Networks March 1985

packets with a packet number less than or equal (modulo 65536) to that number
have been read by the destination user process. This is used to implement flow
control. Note that acknowledgement of a packet implies receipt. of that packet. In
fact, if the receiving process does not fall behind, explicit receipts need not be sent,
because the receiving host will not have to buffer any packets, but will acknowledge
them as soon as they arrive.

The purpose of flow-control is to match the speeds of the sending and receiving
processes. The extremes to be avoided are, on the one hand, too small a "buffer
size" causing the data transmission rate to be slower than it could be, and on the
other hand, large numbers of packets piling up in the network because the sender is
sending faster than the receiver is receiving. It is also necessary to be aware that
receipts and acknowledgements must be transmitted through the network, and
hence have an associated cost.

Chaosnet flow-control operates by controlling the number of packets "in the
network". These are packets which have been emitted by the sending user process,
but have not been acknowledged. We define a window into the set of packet
numbers. The beginning of this window is the first packet number which has not
been acknowledged, and the width of the window is a fixed number established
when the connection is opened. The sending process is only allowed to emit packets
whose packet numbers lie within the window. Once it has emitted all of the packets
in the window, the window is said to be full. Thus, the size of the window is the
"buffer size" for the connection, and is the maximum number of packets that may
need to be buffered inside an NCP (sending or receiving). Acknowledgements move
the window, making it not full, and allowing the sending process to emit additional
packets.

We do not receipt and acknowledge every single controlled packet that is transmitted
through a connection, since that would double or triple the number of packets sent
through the network to move a given amount of data. Instead we batch the
receipts and acknowledgements. But if acknowledgements are not sent sufficiently
often, the data will not flow smoothly, because the window will often appear full to
the sender when it is not. If receipts are not sent sufficiently often, there will be
unnecessary retransmissions.

Whenever a packet is sent through a connection, an acknowledgement for the
reverse direction of that connection is "piggy-backed" onto it, using the
Acknowledgement field in the packet header. For interactive applications, where
there is much traffic in both directions, this provides all the necessary
acknowledgement and receipting with no need to send any extra packets through
the network.

When this does not suffice, STS (status) packets are generated to carry receipts and
acknowledgements. STS packets are uncontrolled, since they are part of the
mechanism that implements controlled packets. If an STS packet is duplicated, it
does no harm. If an STS packet is lost, mechanisms exist which will cause a

119

March 1985 Programmer's Reference on Networks

replacement to be generated later. An STS packet carries separate receipt ~d
acknowledgement packet numbers.

When a user process reads a packet from the network, if the number of packets
which should have been acknowledged but have not been is more than 1/3 the
window size, an STS is generated to acknowledge them. Thus the preferred batch
size for acknowledgement is 1/3 the window size. The advantage of this size is that
if one STS is lost, another will be generated before the window fills up (at the 213
point).

When a packet is received with the same packet number as one which has already
been successfully received, this is evidence of unnecessary retransmission, and an
STS is generated to carry a receipt back to the sender. If this STS is lost, the next
retransmission will stimulate another one. Thus receipts are normally implied by
acknowledgements, and only sent separately when there is evidence of unnecessmy
retransmission.

Retransmission consists of sending allunreceipted controlled packets, except those
that were last sent very recently (within 1/30'th of a second in ITS.)
Retransmission occurs every 1/2 second. This interval is somewhat arbitrary, but
should be close to the response time of the systems involved. Retransmission also
occurs in response to an STS packet, so that a receiver may cause a faster
retranmission rate than twice a second if it so desires. This should never cause
useless retransmission, since STS carries a receipt, and very-recently-transmitted
packets, which might still be in transit through the· network, are not retransmitted.

Another operation is probing, which consists of sending a SNS packet, in the hope of
eliciting either an STS or a LOS, depending on whether the other side believes the
connection exists. Probing is used periodically as a way of testing that the
connection i~ still open, and also serves as a way to get STS packets retransmitted
as a hedge against the loss of an acknowledgement, which could otherwise stymie
the connection. SNS packets are uncontrolled.

We probe every five seconds on connections which have unacknowledged packets
outstanding (a nonempty window) and on connections which have not received any
packets (neither data nor control) for one minute. If. a connection receives no
packets for 1 1/2 minutes, this means that at least 5 probes have been ignored, and
the connection is declared to be broken; either the remote host is down or there is
no viable path through the network between the two hosts.

The receiver can generate "spontaneous" STSs, to stimulate retransmission and keep
things moving on fast devices with insufficient buffering for 1/2 second worth of
packets. This provides a way for the receiver to speed up the retransmission
timeout in the sender, and to make sure that acknowledges are happening often
enough.

Note that the network still functions if either or both parties to a connection ignore
the window. The window is simply an improver of efficiency. Receipts have the

120

Networks March 1985

same property. This allows very small implementations to be compatible with the
same protocol, which is useful for applications such as bootstrapping through the
network.

It would be possible to have dynamic acljustment of the window size in response to
observed behavior. The STS packet includes the window size so that changes to it
can be communicated. However, this has not been found necessary in practice.
Each higher-level protocol has a standard pre-determined window size, which it
establishes when it first opens a connection, and this seems to be close enough to
optimum that careful dynamic adjustment of it wouldn't make a big difference.

This scheme for flow-control and error-control is based on several assumptions. It is
assumed that the underlying transmission media have their own checking, so that
they discard all damaged packets, making packet checksums unnecessary at the
protocol level. The transit time through the network is assumed to be fast, so that
a fairly small retransmission interval is practical, and negative acknowledgements are
not necessary. The error rate is assumed to be low so that overall efficiency is not
affected by the simple error recovery scheme of simply retransmitting all outstanding
packets. It is assumed that no reformatting of packets occurs inside the network, so
that flow-control and error-control can operate on a packet basis rather than a byte
basis.·

15.4 Chaosnet Software Protocol - Details

In the following sections, each of the packet Opcodes and the use of that packet
type in the protocol is described. Opcodes are given as an octal number, a three
letter code, and a name.

Unless otherwise specified, the use of the fields in the packet header is as follows.
The source and destination address and index denote the two ends of the
connection; when an end does not exist, as during initial connection establishment,
that index is zero. The opcode, byte count, and forwarding count fields have no
variations. The packet number field contains sequential numbers in controlled
packets; in uncontrolled packets it contains the same number as the next controlled
packet will contain. The acknowledgement field· contains the packet number of the
last packet seen by the user.

15.4.1 Connection Establishment: Chaosnet Software Protocol

The following packet types are associated with creating and destroying connections.
First the packets are described and then the details of the various connection
establishment protocols are given.

All cQnnections are initiated by the transmission of an RFC from the user to the
server. The data field of the packet contains the contact name. The contact name

121

March 1985 Programmer's Reference on Networks

can be followed by arbitrary arguments to the server, delimited by a space character.
The destination index field of an RFC contains 0 since the destination index is not
known yet.

RFC is a controlled packet; it is retransmitted until some sort of response is received.
Because RFCs are not sent over normal, error-controlled connections, a special way of
detecting and discarding duplicates is required. When an NCP receives an RFC
packet, it checks all pending RFCs and all connections which are in the Open or
RFC-received state, to see if the source address and index match; if so, the RFC is a
duplicate and is discarded. (See the section "Chaosnet Connection States", page 127.)

A server process informs the local NCP of the contact name to which it is listening
by sending a LSN packet, with the contact name in the data field. This packet is
never transmitted anywhere through the network. It simply serves as a convenient
buffer to hold the server's contact name. When an RFC and a LSN containing the
same contact name meet, the LSN is discarded and the RFC is given to the server,
putting its connection into the RFC-received state. (See the section "Chaosnet
Connection States", page 127.) The server reads the RFC and decides whether or
not to open the connection.

OPN is the usual positive response to RFC. The source index field conveys the
ser,ver's index number to the user; the user's index number was conveyed in the
RFC. The data field of OPN is the same as that of STS; it serves mainly to convey
the server's window-size to the user. The Acknowledgement field of the OPN
acknowledges the RFC so that it will no longer be retransmitted.

OPN is a controlled packet; it is retransmitted until it is acknowledged. Duplicate
OPN packets are detected in a special way; if an OPN is received for a connection
which is not in the RFC-sent state, it is simply discarded and an STS is sent. (See
the section "Chaosnet Connection States", page 127.) This happens if the
connection is opened while a retransmitted OPN packet is in transit through the
network, or if the STS which acknowledges an OPN is lost in the network.

CLS is the negative response to RFC. It indicates that no server was listening to
the contact name, and one couldn't be created, or for some reason the server didn't
feel like accepting this request for a connection, or the destination NCP was unable
to complete the connection (for example, connection table full.)

CLS is also used to close a connection after it has been open for a while. Any data
packets in transit may be lost. Protocols which require a reliable end-of-data
indication should use the mechanism for that before sending CLS. (See the section
"End-of-data: Chaosnet Software Protocol", page 124.)

The data field of a CLS contains a character-string explanation of the reason for
closing, intended to be returned to a user as an error message.

CLS is an uncontrolled packet, so that the program which sends it may go away
immediately afterwards, leaving nothing to retransmit the CLS. Since there is no
error recovery or retransmission mechanism for CLS, the use of CLS is necessarily

122

Networks March 1985

optional; a process could simply stop responding to its connection. However, it is
desirable to send a CLS when possible to provide an error message for the user.

This is a response to RFC which indicates that the desired service is not available
from the process contacted, but may be available at a possibly different contact name
at a possibly different host. The data field contains the new contact name and the
Acknowledgement field--exceptionally-contains the new host number. The issuer of
the RFC should issue another RFC to that address. FWD is an uncontrolled packet;
if it is lost in the network, the retransmission of the RFC will presumably stimulate
an identical FWD.

This is another kind of response to RFC. The data field contains the entirety of the
response, and no connection is established. ANS is an uncontrolled packet; if it is
lost in the network, the retransmission of the RFC will presumably stimulate an
identical ANS.

There are several connection-initiation protocols implemented with these packet
types. In addition to those described here, there is also a broadcast mechanism. See
the section "Broadcast: Chaosnet Software Protocol", page 125.

When an RFC arrives at a host, the NCP finds a user process that is listening for
this. RFC's contact name, or creates a server process to provide the desired service, or
responds to the RFC itself if it knows how to provide the requested service, or
refuses the request for connection. The process that serves the RFC chooses which
connection-initiation protocol to follow. This process is given the RFC as data, so
that it can look at the contact name and any arguments that may be present.

A stream connection is initiated by an RFC, transmitted from user to server. The
server returns an OPN to the user, which responds with an STS. These three
packets convey the source and destination addresses, indices, initial packet numbers,
and window sizes between the two NCPs. In addition a character-string argument
can be conveyed from the user to the server in the RFC.

The OPN serves to acknowledge the RFC and extinguish its retransmission. It also
carries the server's index, initial packet number, and window size. The STS serves
to acknowledge the OPN and extinguish its retransmission. It also carries the user's
window size; the user's index and initial packet number were carried by the RFC.
Retransmission of the RFC and the OPN provides reliability in the face of lost
packets. If the RFC is lost, it will be retransmitted. If the STS is lost, the OPN
will be retransmitted. If the OPN is lost, the RFC will be retransmitted
superfluously and the OPN will be retransmitted since no STS will be sent.

The exchange of an OPN and an STS tells each side of the connection that the
other side believes the connection is open; once this has happened data may begin to
flow through the connection. The user process may begin transmitting data when it
sees the OPN. The server process may begin transmitting data when it sees the
STS. These rules ensure that data packets cannot arrive at a receiver before it
knows and agrees that the connection is open. If data packets did arrive before

123

March 1985 Programmer's Reference on Networks

then, the receiver would reject them with a LOS, believing them to be a violation of
protocol, and this would destroy the connection before it was ever fully established.

Once data packets begin to flow, they are subject to the flow and error control
protocol. (See the section "Flow and Error Control: Chaosnet Software Protocol",
page 117.) Thus a stream connection provides the desired reliable, bidirectional data
stream.

A refusal is initiated by an RFC in the same way, but the server returns CLS
rather than OPN. The data field of the CLS contains the reason for refusal to
connect.

A fonvarded connection is initiated by an RFC in the same way, but the server
returns a FWD, telling the user another place to look for the desired service.

A simple transaction is initiated by an RFC from user to server, and completed by
an ANS from server to user. Since a full connection is not established and the
reliable-transmission mechanism of connections is not used, the user process cannot
be sure how many copies of the RFC the server saw, and the server process cannot
be sure that its answer got back to the user. This means that simple transactions
should not be used for applications where it is important to know whether the
transaction was really completed, nor for applications in which repeating the same
query might produce a different answer. Simple transactions are a simple efficient
mechanism for applications such as extracting a small piece of information (for
example, the time of day) from a central data-base.

15.4.2 Status Packets: Chaosnet Software Protocol

STS is an uncontrolled packet which is used to convey status information between
NCPs. The Acknowledgement field in the packet header contains an
acknowledgement, that is, the packet number of the last packet given to the
receiving user process. The first 16-bit byte in the data field contains a receipt, that
is, a packet number such that all controlled packets up to and including that one
have been successfully received by the NCP. The second 16-bit byte in the data field
contains the window size for packets sent in the opposite direction (to the end of the
connection which sent the STS). The byte count is. presently always 4. This will
change if the protocol is revised to add additional items to the STS packet.

SNS is an uncontrolled packet whose sole purpose is to cause the other end of the
connection to send back an STS. This is used by the probing mechanism. See the
section "Flow and Error Control: Chaosnet Software Protocol", page 117.

LOS is an uncontrolled packet which is used by one NCP to inform another of an
error. The data field contains a character-string explanation of the problem. The
source and destination addresses and indices are simply the destination and source
addresses and indices, respectively, of the erroneous packet, and do not necessarily
correspond to a connection. When an NCP receives a LOS whose destination
corresponds to an existent connection and whose source corresponds to the supposed

124

Networks March 1985

other end of that connection, it breaks the connection and makes the data field of
the LOS available to the user as an error message. Other LOSs that don't
correspond to connections are simply ignored.

LOS is sent in response to situations such as: arrival of a data packet or an STS for
a connection that does not exist or is not open, arrival of a packet from the wrong
source for its destination, arrival of a packet containing an undefined opcode or too
large a byte count, and so on.

LOSs are given to the user process so that it may read the error message.

No LOS is given in response to an OPN to a connection not in the RFC-Sent state,
nor in response to a SNS to a connection not in the Open state, nor in response to
a LOS to a nonexistent or broken connection. These rules are important to make
the protocols work without timing errors. An OPN or a SNS to a nonexistent
connection elicits a LOS.

15.4.3 Data: Chaosnet Software Protocol

Opcodes 200 through 277 (octal) are controlled packets with user ,data in 8-bit bytes
in the data field. The NCP treats all 64 of these opcodes identically; some higher
level protocols use the opcodes for their own purposes. The standard default opcode
is 200.

Opcodes 300 through 377 (octal) are controlled packets with user data in 16-bit bytes
in the data field. The NCP treats all 64 of these opcodes identically; some higher
level protocols use the opcodes for their own purposes. The standard default opcode
for 16-bit data is 300.

This is an uncontrolled packet with user data in 8-bit bytes in the data field. It
exists so that user-level programs may bypass the flow-control mechanism of
Chaosnet protocol. Note that the NCP is free to. discard these packets at any time,
since they are uncontrolled. Since UNCs are not subject to flow control, discarding
may be necessary to avoid running out of buffers. A connection may not have more
input packets queued awaiting the attention of the user program than the window
size of the connection, except that you are always allowed to have one UNC packet
queued. If no normal data packets are in use, up to one more UNC packet than
the window size may be queued.

UNC packets are also used by the standard protocol for encapsulating packets of
foreign protocols for transmission through Chaosnet. See the section "Using
Foreign Protocols in Chaosnet", page 135.

15.4.4 End-of-data: Chaosnet Software Protocol

EOF is a controlled packet which serves as a "logical end of data" mark. in the
packet stream. When the user program is ignoring packets and treating a Chaosnet
connection as a conventional byte-stream 110 device, the NCP uses the EOF packet

125

March 1985 Programmer's Reference on Networks

to convey the notion of conventional end-of-flle from one end of the connection to
the other. When the user program is working at the packet level, it may transmit
and receive EOFs.

It is illegal to put data in an EOF packet; in other words, the byte count should
always be zero. Most Chaosnet implementations will simply ignore any data that is
present in an EOF.

EOF packets are used in the following protocol which is the recommended way to
reliably determine that all data have been transferred before closing a connection (in

applications where that is an important consideration).

The important issue is that neither side may send a CLS until both sides are sure
that all the data have been transmitted. After sending all the data it is going to
send, including an EOF packet to mark the end, the sending process waits for all
packets to be acknowledged. This ensures that the receiver has seen all the data
and knows that no more data are to come. The sending process then closes the
connection. When the receiving process sees an EOF, it knows that there are no
more data. It does not close the connection until it sees the sender close it, or until
a brief timeout elapses. The timeout is to provide for the case where the sender's
CLS gets lost in the network (CLS cannot be retransmitted). The timeout is long
enough (a few seconds) to make it unlikely that the sender will not have seen the
acknowledgement of the EOF by the time the timeout is over.

To use this protocol in a bidirectional fashion, where both parties to the connection
are sending data simultaneously, it is necessary to use an asymmetrical protocol.
Arbitrarily call one party the user and the other the server. The protocol is that
after sending all its data, each party sends an EOF and waits for it to be
acknowledged. The server, having seen its EOF acknowledged, sends a second EOF.
The user, having seen its EOF acknowledged, looks for a second EOF and then
sends a CLS and goes away. The server goes away when it sees the user's CLS, or
after a brief timeout has elapsed. This asymmetrical protocol guarantees that each
side gets a chance to know that both sides agree that all the data have been
transferred. The first CLS will only be sent after both sides have waited for their
(first) EOF to be acknowledged.

15.4.5 Broadcast: Chaosnet Software Protocol

Chaosnet includes a generalized broadcast facility, intended to satisfy needs such as:

Locating services when it is not known what host they are on.

Internal communications of other protocols using Chaosnet as a transmission
medium, such as routing in their own address spaces.

Reloading and remote debugging of Chaosnet bridge computers.

Experiments with radically different protocols.

126

Networks March 1985

A BRD packet works much like an RFC packet; it contains the name of a server to
be communicated with, and possibly some arguments. Unlike an RFC, which is
delivered to a particular host, a BRD is broadcast to all hosts. Only hosts which
understand the service it is looking for will respond. The response can be anything
which is valid as a response to RFC. Typically BRD will be used in a simple
transaction mode, and the response will be an ANS packet. Actually it can be any
number of ANS packets since multiple hosts may respond. BRD can also be used to
open a full byte-stream connection to a server whose host is not known. In this
case the response will be an OPN packet; only the first OPN succeeds in opening a
connection. CLS is also a valid response, but only as a true negative response; BRDs
for unrecognized or unavailable services should be ignored and no CLS should be
sent, since some other host might be able to provide the service.

The TIME and STATUS protocols will work through BRD packets as well as RFC
packets. (See the section "Higher-level Chaosnet Protocols", page 129.) No other
standard protocols need to be able to work with BRD packets.

The data field of a BRD contains a subnet bit map followed by a contact name and
possible arguments. The subnet bit map has a "1" for each subnet on which this
packet is to be broadcast to all hosts; these bits are turned ofT as the packets flow
through the network, to avoid loops. The sender initializes the bit map with 1s for
whichever subnets he desires (often all of them).

In the packet header, the destination host and index are O. The source host and
index are who to send the reply (ANS or OPN) to. The acknowledgement field
contains the number of bytes in the bit map (this would normally be 32, but may be
changed in the future). The number of bytes in the bit map is required to be a
multiple of 4. Bits in the bitmap are numbered from right to left within a byte and
from earlier to later bytes; thus the bit for subnet 1 is the bit with weight 2 in the
first byte of the data field. Bits that lie outside of the declared length of the bit
map are considered to be zero; thus the BRD is not transmitted to those subnets.

After the subnet bit map there is a contact name and arguments, exactly as in an
RFC. Operating systems should treat incoming BRD packets exactly like RFC, even
to the extent that a contact name of STATUS must retrieve the host's network
throughput and error statistics. BRD packets will never be refused with a "CLS",
however; broadcast requests to nonexistent servers should simply be ignored, and no
CLS reply should be sent. Most operating systems will simplify incoming BRD
handling for themselves and their users by reformatting incoming BRD packets to
look like RFCs; deleting the subnet bit map from the data field and decreasing the
byte count. For consistency when this is done the bit map length (in the
acknowledgement field) should be set to zero. The packet opcode will remain BRD
(rather than RFC).

Operating systems should handle outgoing BRD packets as follows. When a user
process transmits a BRD packet over a closed connection, the connection enters a
special "Broadcast Sent" state. In this state, the user process is allowed to transmit

127

March 1985 Programmer's Reference on Networks

additional BRD packets. All incoming packets other than OPNs should be made
available for the user process to read, until the allowed buffering capacity is
exceeded; further incoming packets are then simply discarded. These incoming
packets would normally be expected to consist of ANS, FWD, and CLS packets only.
If an OPN is received, and there are no queued input packets, a regular byte-stream
connection is opened. ftillY OPNs from other hosts elicit a LOS reply as usual, as do
any ANSs, CLSs, and so on received at this point.

Operating systems should not retransmit BRD packets, but should leave this up to
the user program, since only it knows when it has received enough answers (or a
satisfactory answer).

BRD packets can be delivered to a host in mUltiple copies when there are multiple
paths through the network between the sender and that host. The bit map only
serves to cut down looping more than the forwarding-count would, and to allow the
sender to broadcast selectively to portions of the net, but cannot eliminate mUltiple
copies. The usual mechanisms for discarding duplicated RFCs will also cause most
duplicated BRDs to be discarded.

BRD packets put a noticeable load on every host on the network, so they should be
used judiciously. "Beacons" that send a BRD every 30 seconds all day long should
not be used.

15.4.6 Low-level: Chaosnet Software Protocol

MNT is a special packet type reserved for the use of network maintenance programs.
Normal NCPs should simply discard any MNT packets they receive. MNT packets
are an escape mechanism to allow special programs to send packets that are
guaranteed not to get confused with normal packets. MNT packets are forwarded
by bridges although usually one would not be depending on this.

RUT is a special packet type broadcast by bridges to inform other nodes of the
bridge's ability to forward packets between subnets. The source address is the
network address of the bridge on the subnet on which the RUT was broadcast. The
destination address is zero. The byte count is a mUltiple of 4, and the data field
contains a series of pairs of 16-bit bytes: a subnet number and the "cost" of getting
to that subnet via this bridge. The packet number and acknowledgement fields are
not used and should contain zero. See the section "Routing: Chaosnet Software
Protocol", page 114.

15.4.7 Chaosnet Connection States

A user process gets to Chaosnet by means of a capability or channel (dependent on
the host operating system) which corresponds to one end of a connection. Associated
with this channel are a number of buffers containing controlled packets output by
the user and not yet receipted, and data packets received from the network but not
yet read by the user; some of these incoming packets are in-order by packet number

128

Networks March 1985

and hence may be read by the user, while others are out of order and cannot be
read until packets earlier in the stream have been received. Certain control packets
are also given to the user as if they were data packets. These are RFC, ANS, CLS,
LOS, EOF, and UNC. EOF is the only type that can ever be out-of-order.

Also associated with the channel is a state, usually called the connection state. Full
<. understanding of these states depends on the descriptions of packet-types. The state
can be one of:

Open The connection exists and data may be transferred.

Closed The channel does not have an associated connection. Either it never had
one or it has received or transmitted a CLS packet, which destroyed the
connection.

Listening
The channel does not have an associated connection, but it has a contact
name (usually contained in a LSN packet) for which it is listening.

RFC Received
A Listening channel enters this state when an RFC arrives. It can become
Open if the user process accepts the request.

RFC Sent
The user has transmitted an RFC. The state will change to Open or Closed
when the reply to the RFC comes back.

Broadcast Sent
The user has transmitted a BRD. In this state, the user process is allowed
to transmit additional BRD packets. All incoming packets other than OPNs
are made available for the user process to read, until the allowed buffering
capacity is exceeded; further incoming packets are then simply discarded.
These incoming packets would normally be expected to consist of ANS, FWD,
and CLS packets only. If an OPN is received, and there are no queued input
packets, a regular byte-stream connection is opened (the connection enters
the Open state). Any OPNs from other hosts elicit a LOS reply as usual, as
do any ANSs, CLSs, and so on received at this point.

Lost The connection has been broken by receiving a LOS packet.

Incomplete Transmission
The connection has been broken because the other end has ceased to
transmit and to respond to SNS. Either the network or the foreign host is
down. (This can also happen if the local host goes down for a while and
then is revived, if its clock runs in the meantime.)

Foreign
The channel is talking some foreign protocol, whose packets are encapsulated
in UNC packets. As far as Chaosnet is concerned there is no connection.
See the section "Using Foreign Protocols in Chaosnet", page 135.

129

March 1985 Programmer's Reference on Networks

15.5 Higher-level Chaosnet Protocols

This section briefly documents some of the higher-level protocols of the most general
interest. There are quite a few other protocols which are too specialized to mention
here. All protocols other than the STATUS protocol are optional and are only
implemented by those hosts that need them. All hosts are required to implement
the STATUS protocol since it is used for network maintenance.

15.5.1 Chaosnet Status Protocols

All network nodes, even bridges, are required to answer RFCs with contact name
STATUS, returning an ANS packet in a simple transaction. This protocol is
primarily used for network maintenance. The answer to a STATUS request should
be generated by the Network Control Program, rather than by starting up a server
process, in order to provide rapid response.

The STATUS protocol is used to determine whether a host is up, to determine
whether an operable path through the network exists between two hosts, to monitor
network error statistics, and to debug new Network Control Programs and new
Chaosnet hardware. The hostat function on the Symbolics computer, and, the
Hostat command of the CHATST program on ITS are user ends for this protocol.

The first 32 bytes of the ANS contain the name of the node, padded on the right
with zero bytes. The rest of the packet contains blocks of information expressed in
16-bit and 32-bit words, low byte first (PDP-lllSymbolics style). The low-order half
of a 32-bit word comes first. Since ANS packets contain 8-bit data (not 16-bit),
machines such as PDP-lOs which store numbers high byte first will have to shuffle
the bytes when using this protocol. The first 16-bit word in a block is its
identification. The second 16-bit word is the number of 16-bit words to follow. The
remaining words in the block depend on the identification.

This is the only block type currently defined. All items are optional, according to
the count field, and extra items not defined here may be present and should be
ignored. Note that items after the first two are 32-bit words.

word 0 A number between 400 and 777 octal. This is 400 plus a subnet number.
This block contains information on this host's direct connection to that
subnet.

word 1 The number of 16-bit words to follow, usually 16.

words 2-3
The number of packets received from this subnet.

words 4-5
The number of packets transmitted to this subnet.

130

Networks March 1985

words 6-7
The number of transmissions to this subnet aborted by collisions or because
the receiver was busy.

words 8-9
The number of incoming packets from this subnet lost because the host had
not yet read a previous packet out of the interface and consequently the
interface could not capture the packet.

words 10-11
The number of incoming packets from this subnet with CRC errors. These
were either transmitted wrong or damaged in transmission.

words 12-13
The number of incoming packets from this s.ubnet which had no CRC error
when received, but did have an error after being read out of the packet
buffer. This error indicates either a hardware problem with the packet
buffer or an incorrect packet length.

words 14-15
The number of incoming packets from this subnet which were rejected due
to incorrect length (typically not a multiple of 16 bits).

words 16-17
The number of incoming packets from this subnet rejected for other reasons
(for example, too short to contain a header, garbage byte-count, forwarded too
many times.)

If the identification is a number between 0 and 377 octal, this is an obsolete format
of block. The identification is a subnet number and the counts are as above except
that they are only 16 bits instead of 32, and consequently may overflow. This
format should no longer be sent by any hosts.

Identification numbers of 1000 octal and up are reserved for future use.

15.5.2 Chaosnet Pulsar Protocol

For network maintenance purposes, certain network nodes support a simple
transaction with contact name PULSAR, which controls a "pulsar" feature. This
feature periodically transmits a short packet which can be used to test and adjust
cable transceivers. The packet consists of the three header words, a zero word, and
a word of alternating ones and zeros. It is addressed to host 177777 which is
guaranteed not to exist.

The returned ANS contains a single character, which is a digit. A 0 means that the
pulsar is turned off. Any other digit indicates the number of sixtieths of a second
between pulses. Sending an RFC with a digit as an argument sets the state of the
pulsar to that digit, and returns an ANS containing the new state. Pulsars should
be off by default, and should only be turned on when debugging the network. The
waste of cable bandwidth and machine resources is negligible except in extremely

131

March 1985 Programmer's Reference on Networks

large networks, since pulsar packets are so short, but when debugging or making
measurements on cables using pulsar packets it is important to know where the
packets are coming from.

Bridge nodes which implement the PULSAR protocol and possess more than one
network interface should should have a single pulsar which transmits on all network
interfaces, rather than bothering to provide a more complex protocol by which
pulsars on the individual interfaces could be turned on and off.

15.5.3 Chaosnet Telnet and Supdup Protocols

The Telnet and Supdup protocols of the Arpanet [TELNET] [SUPDUP] exist in
identical form in Chaosnet. These protocols allow access to a computer system as an
interactive terminal from another network node.

The contact names are TELNET and SUPDUP. The direct borrowing of the Telnet and
Supdup protocols was eased by their use of 8-bit byte streams and only a single
connection. Note that these protocols define their own character sets, which differ
from each other and from the Chaosnet standard character set.

Chaosnet contains no counterpart of the INRIINS attention-getting feature of the
Arpanet. The Telnet protocol sends a packet with opcode 201 in place of the INS
signal. This is a controlled packet and hence does not provide the "out of band"
feature of the Arpanet INS, however it is satisfactory for the Telnet "interrupt
process" and "discard output" operations on the kinds of hosts attached to Chaosnet.

15.5.4 Chaosnet File Access Protocol

The FILE protocol is primarily used by Symbolics computers to access files on
network file servers. ITS and TOPS-20 are equipped to act as file servers. A user
end for the file protocol also exists for TOPS-20 and is used for general-purpose fue
transfer. For complete documentation on the file protocol, see [FILE].

15.5.5 Chaosnet Mail Protocol

The MAIL protocol is used to transmit in teruser messages through the Chaosnet.
This simple protocol is by no means the last word in mail protocols; however, it is
adequate for the mail systems we presently possess.

The sender of mail connects to contact name MAIL and establishes a stream
connection. It then sends the names of all the recipients to which the mail is to be
sent at (or via) the server host. The names are sent one to a line and terminated
by a blank line (two carriage returns in a row). The Symbolics character set is used.
A reply is immediately returned for each recipient. A recipient is typically just the
name of a user, but it can be a user-atsign-host sequence or anything else acceptable
to the mail system on the server machine. After sending the recipients, the sender
sends the text of the message, terminated by an EOF. After the mail has been

132

Networks March 1985

successfully swallowed, a reply is sent. After the sender of mail has read the reply,
both sides close the connection.

In the MAIL protocol, a reply is a signal from the server to the user (or sender)
indicating success or failure. The first character of a reply is a plus sign for success,
a minus sign for permanent failure (for example, no such user exists), or a percent
sign for temporary failure (for example, unable to receive message because disk is
full). The rest of a reply is a human-readable character string explaining the
situation, followed by a carriage return.

The message text transmitted through the mail protocol normally contains a header
. formatted in the Arpanet standard fashion.

15.5.6 Chaosnet Send Protocol

The SEND protocol is used to transmit an interactive message (requiring immediate
attention) between users. The sender connects to contact name SEND at the
machine to which the recipient is logged in. The remainder of the RFC packet
contains the name of the person being sent to. A stream connection is opened and
the message is transmitted, followed by an EOF. Both sides close after following the
end-of-data protocol. (See the section "End-of-data: Chaosnet Software Protocol",
page 124.) The fact that the RFC was responded to affirmatively indicates that the
recipient is in fact present and accepting messages. The message text should begin
with a suitable header, naming the user that sent the message. The standard for
such headers, not currently adhered to by all hosts, is one line formatted as in the
following example:

Hoon@HIT-HC 6/15/81 02:20:17

Automatic reply to the sender can be implemented by searching for the first "@" and
using the SEND protocol to the host following the "@" with· the argument preceding
it.

15.5.7 Chaosnet Name Protocol

The NamelFinger protocol of the Arpanet [FINGER] exists in identical form on the
Chaosnet. Both Symbolics computers and timesharing machines support this
protocol and provide a display of the user(s) currently logged in to them.

The contact name is NAME which can be followed by a space and a string of
arguments like the "command line" of the Arpanet protocol. A stream connection is
established and the "finger" display is output in Lisp Machine character set, followed
by an EOF.

Symbolics computers also support the FINGER protocol, a simple-transaction version
of the NAME protocol. An RFC with contact name FINGER is transmitted and the
response is an ANS containing the following items of information separated by
carriage returns: the logged-in user ID, the location of the terminal, the idle time in

133

March 1985 Programmer's Reference on Networks

minutes or hours-colon-minutes, the user's full name, and the user's group
affiliation.

15.5.8 Chaosnet Time Protocol

The Time protocol of the Arpanet [TIME] exists on Chaosnet as a simple
transaction. An RFC to contact name TIME evokes an ANS containing the number
of seconds since midnight Greenwich Mean Time, Jan 1, 1900 as a 32-bit number in
four 8-bit bytes, least-significant byte first. Some computers-Symbolics computers,
for example-which don't have hardware ca1endar-clocks use this protocol to find out
the date and time when they first come up.

15.5.9 Chaosnet Arpanet Gateway Protocol

This protocol allows a Chaosnet host to access almost any service on the Arpanet.
The gateway server runs on each ITS host that is connected to both networks. It
creates an Arpanet connection and a Chaosnet connection and forwards data bytes
from one to the other. It also provides for a one-way auxiliary connection, used for
the data connection of the Arpanet File Transfer Protocol.

The RFC packet contains a contact name of ARPA, a space, the name of the Arpanet
host to be connected to, optionally followed by a space and the con tact-socket
number in octal, which defaults to 1 if omitted. The Arpanet Initial Connection
Protocol is used to establish a bi-directional 8-bit connection.

If a data packet with opcode 201 (octal) is received, an Arpanet INS signal will be
transmitted. Any data bytes in this packet are transmitted normally.

If a data packet with opcode 210 (octal) is received, an auxiliary connection on each
network is opened. The first eight data bytes are the Chaosnet contact name for
the auxiliary connection; the user should send an RFC with this name to the server.
The next four data bytes are the Arpanet socket number to be connected to, in the
wrong order, most-significant byte first. The byte-size of the auxiliary connection is
8 bits.

The normal closing of an Arpanet connection corresponds to an EOF packet.
Closing due to an error, such as Host Dead, corresponds to a CLS packet.

15.5.10 Chaosnet Host Table Protocol

The HOSTAB protocol may be used to access tables of host addresses on other
networks, such as the Arpanet. Servers for this protocol currently exist for Tenex
and TOPS-20.

The user connects to contact name HOSTAB, undertakes a number of transactions,
then closes the connection. Each transaction is initiated by the user transmitting a
host name followed by a carriage return. The server responds with information
about that host, terminated with an EOF, and is then ready for another

134

Networks March 1985

transaction. The server's response consists of a number of attributes of the host.
Each attribute consists of an identifying name, a space character, the value of the
attribute, and a carriage return. Values may be strings (free of carriage returns and
not surrounded by double-quotes) or octal numbers. Attribute names and most
values are in uppercase. There can be more than one attribute with the same
name; for example, a host may have more than one name or more than one
network address.

The standard attribute names defined now are as follows.

ERROR The value is an error message. The only error one might expect to get is
"no such host".

NAME The value is a name of the host. There may be more than one NAME
attribute; the first one is always the official name, and any additional names
are nicknames.

MACHINE-TYPE
The value is the type of machine, such as LISPM, PDP-10, and so on.

SYSTEM-TYPE
The value is the type of software running on the machine, such as LIS PM,
ITS, and so on.

ARPA The value is an address of the host on the Arpanet, in the form host/imp.
The two numbers are decimal.

CHAOS The value is an address of the host on Chaosnet, as an octal number.

DIAL The value is an address of the host on Dialnet, as a telephone number.

LCS The value is an address of the host on the LCSnet, as two octal numbers
separated by a slash.

SU The value is an address of the host on the SUnet, in the form net#host.
The two numbers are octal.

15.5.11 Chaosnet Dover Printer Protocol

A press file may be sent to the Dover printer by connecting to contact name
DOVER at host AI-CHAOS-11. This host provides a protocol translation service
which translates from Chaosnet stream protocol to the EFTP protocol spoken by the
Dover printer. Only one file at a time can be sent to the Dover, so an attempt to
use this service may be refused by a CLS packet containing the string "BUSY".
Once the connection has been established, the press file is transmitted as a sequence
of 8-bit bytes in data packets (opcode 200). It is necessary to provide packets rapidly
enough to keep the Dover'S program (Spruce) from timing out; a packet every five
seconds suffices. Of course, packets are normally transmitted much more rapidly.

Once the file has been transmitted, an EOF packet must be sent. The transmitter
must wait for that EOF to be acknowledged, send a second one, then close the

135

March 1985 Programmer's Reference on Networks

connection. The two EOFs are necessary to provide the proper connection-closing
sequence for the EFI'P protocol. Once the press file has been transmitted to the
Dover in this way and stored on the Dover's local disk, it will be processed and
prepared for printing, and then printed.

If an error message is returned by the Dover while the press flle is being
transmitted, it will be reported back through the Chaosnet as a LOS containing the
text of the error message. Such errors are fairly common; the sender of the press
file should be prepared to retry the operation a few times.

Most programs that send press files to the Dover first wait for the Dover to be idle,
using the Foreign Protocol mechanism of Chaosnet to check the status of the Dover.
This is optional, but is courteous to other users since it prevents printing from being
held up while additional files are sent to the Dover and queued on its local disk.

It would be possible to send to a press file to the Dover using its EFrP protocol
through the Foreign Protocol mechanism, rather than using the AI-CHAOS-ll
gateway service. This is not usually done because EFTP, which requires a
handshake for every packet, tends to be very slow on a timesharing system.

15.6 Using Foreign Protocols in Chaosnet

Foreign protocols which are based on the idea of a bidirectional (or unidirectional)
stream of 8-bit bytes can simply be adopted wholesale into Chaosnet, using a
Chaosnet stream connection instead of whatever stream protocol the protocol was
originally designed for. This was done with the Arpanet Telnet protocol, for
example.

When using such protocols between a Chaosnet process and a process on a foreign
network, a protocol-translating gateway stands at the boundary between the two
networks and has a connection on both networks. Bytes received from one
connection are transmitted out the other. If the protocol uses any features besides a
simple stream of bytes, for instance special out-of-band signals, these are translated
appropriately by the gateway. The connection is initially set up by the user end
connecting explicitly to the protocol-translating gateway and demanding of it a
certain service from a certain host on the other network; the gateway then opens
the appropriate pair of connections. For an example: See the section "Chaosnet
Arpanet Gateway Protocol", page 133.

However, there are many packet-oriented protocols in the world and sometimes it is
desirable to access these protocols at the packet level rather than the connection
level, and to transport the packets of these protocols through Chaosnet links without
using a Chaosnet connection. For example, there are gateways attached to Chaosnet
which provide connections to other networks that use Internet as their packet
protocol. User processes in Chaosnet hosts may talk to these other networks in
those networks' own protocols by using the foreign-protocol protocol of Chaosnet.

136

Networks March 1985

A foreign packet is transmitted through Chaosnet by storing it in the data field of
an UNC packet. The foreign packet is regarded as being composed of 8-bit bytes.
The source and destination addresses of the UNC packet are used in the usual
fashion to control the delivery of the packet within Chaosnet. The packet number
and acknowledgement fields of the packet header are not used for their normal
purposes, since this packet is not associated with a Chaosnet stream connection. By
convention, the acknowledgement field of the packet contains a protocol number.
The number 100000 octal means Internet. Other numbers will be assigned as
needed. The packet number field of the packet can be used for any purpose.

If a user process transmits an UNC packet through a Chaosnet channel which is in
the Closed state, the channel goes into the Foreign state and the NCP assumes that
the user is not talking normal Chaosnet protocol, but is using Chaosnet to transport
packets of some other protocol. See the section "Chaosnet Connection States", page
127. The NCP fills in the source address and index in these packets, but believes
whatever destination address and index are placed in the packet by the user. The
packet number and acknowledgement fields of the UNC packets are not touched by
the NCP. Any incoming UNC packets addressed to the user's index on this host
will be given to the user, regardless of their source address/index; it is up to the user
program to filter out any unwanted packets. The NCP should also provide a way for
one user to receive any unclaimed incoming UNC packets, so that rendezvous
subprotocols of foreign protocols may be simulated.

When a packet-translating gateway to a foreign network receives an UNC packet
with the appropriate protocol number, it extracts the foreign packet from the data
field and fires it into the foreign network. When it receives packets from the foreign
network, it maps the destination address of the packet into a Chaosnet address and
index in some suitable fashion, encapsulates the packet in an UNC, and launches it
into Chaosnet.

In the case of Internet, only protocols built on the idea of ports can be
straightforwardly supported without a table of connections in the gateway. The
Internet address space includes the Chaosnet host address space as a subset but
does not provide any address breakdown within a host unless ports are used.
However, it appears that most protocols are built on a protocol that uses ports, such
as the User Datagram Protocol [UDP] or the Transmission Control Protocol [TCP].

In the case of foreign protocols where the addressing structure is not identical to
Chaosnet, a program must somehow know the Chaosnet address of a packet
translating gateway to the foreign network. By sending UNC packets to this
gateway, a user program can initiate connections to processes on that other network
without requiring the local NCP (nor any bridges involved in routing the packets) to
know anything about the protocol the program is using. If the inter-network
gateway translates rendezvous protocols appropriately, connections may be initiated in
the reverse direction also-from a user process on the foreign network to a server for
the foreign protocol that resides on a Chaosnet host.

137

March 1985 Programmer's Reference on Networks

The foreign-protocol protocol may also be used between two user processes on
Chaosnet, with no foreign network involved, if they simply wish to speak a different
protocol from Chaosnet. They are on their own for a rendezvous mechanism,
however, unless they use a Chaosnet simple transaction for rendezvous or otherwise
have some way of conveying their addresses and index numbers to each other.

When foreign packets are too large to fit in the data field of a Chaosnet packet
(more than 488 bytes), the user program and the packet-translating gateway must
agree on a technique for dividing packets into fragments and reassembling them,
unless the foreign protocol itself provides for this, as Internet does. The packet
number field in an UNC packet is available for use by such a technique, since UNC
packets are not normally numbered.

UNC packets not associated with a connection are useful for other things besides
encapsulating foreign protocols. Any application which wants to use Chaosnet as
simply a packet transmission medium, essentially the raw hardware, should use UNC
packets so that its packets do not interfere with standard packets and so that the
standard routing mechanisms may be used. For example, the M.I.T. Architecture
Machine uses UNC packets to communicate with non-stream-oriented I/O devices
such as graphi~ tablets. Here Chaosnet is being used as an I/O bus which may be
attached to more than one computer. Numbers between 140000 and 177777 octal in
the acknowledgement field of an UNC packet are reserved for such applications.
Note that this number is not part of the protocol; it is simply a hint about what a
packet is being used for. Normally no program that is not specifically supposed to
deal with such packets would ever receive one.

15.7 Chaosnet Hardware Programming Information

This section describes the UNIBUS version of the Chaosnet interface, which attaches
to PDP-lIs and Symbolics computers. The interface contains one buffer which holds
a received packet and a second buffer which holds a packet to be transmitted.
Packets are moved between these buffers and the computer under program control.
Direct memory access (DMA) is not used; the small gain in performance was not
thought to be worth the extra hardware complexity. The usual performance penalty
of programmed I/O is not incurred since the packet buffers can transfer data at the
full speed of the computer and neither b~sy waiting nor multiple interrupts are
required.

To transmit a packet, successive 16-bit words of the packet are written into the
outgoing packet buffer. First the eight 16-bit words of the header should be written,
then exactly the number of 16-bit data words implied by the byte count in the
header. If the byte count is odd, the last 16-bit word will contain the last byte in its
low half and a garbage padding byte in its high half. After writing the data words,
the last 16-bit word to be written is the cable address of the destination of the
packet, or 0 to broadcast it. The hardware is then told to initiate transmission. It

138

Networks March 1985

waits until the cable is not busy and this node's tum to transmit arrives, then shifts
the packet out onto the cable. At the completion of transmission transmit-done is
set and the computer is interrupted. If transmission is aborted by a collision,
transmit-done and transmit-abort are set and the computer is interrupted. As the
packet is written into the outgoing packet buffer, a 16-bit cyclic redundancy
checksum is computed by the hardware. This checksum is transmitted with the
packet and checked by the receiver.

To receive a packet, the clear-receiver bit is asserted by the program. The next
packet on the cable which is addressed to this node, or is broadcast, will be stored
into the incoming packet buffer. After the packet has been stored, the computer is
interrupted. The packet buffer will then not be changed until the next clear
receiver operation is performed, giving the computer a chance to read out the packet.
If a packet appears on the cable addressed to this node while the incoming packet
buffer is busy, a collision is simulated so as to abort the transmission. As a packet is
stored into the incoming packet buffer, the 16-bit cyclic redundancy checksum is
checked, and it is checked again as the packet is read out of the packet buffer. This
provides full checking for errors in the network and in the packet buffers.

The standard interrupt-vector address for the Chaosnet interface is 270. The
standard interrupt priority level is 5. The standard UNIBUS address is 764140.
These are the device registers:

764140 Command/Status Register
This register contains a number of bits, in the usual PDP-11 style. All
read/write bits are initialized to zero on power-up. Identified by their masks,
these are:

" 1" Timer Interrupt Enable (read/write). Enables interrupts from the
interval timer present in some versions of the interface (not described
here).

"2" Loop Back (read/write). If this bit is 1, the cable and transceiver are
not used and the interface is looped back to itself. This is for
maintenance.

"4" Spy (read/write). If this bit is 1, the interface will receive all packets
regardless of their destination. This is for maintenance and network
monitoring.

"10" Clear Receiver (write only). Writing a 1 into this bit clears Receive
Done and enables the receiver to receive another packet.

"20" Receive Interrupt Enable (read/write). If Receive Done and Receive
Interrupt Enable are both 1, the computer is interrupted.

"40" Transmit Interrupt Enable (read/write). If Transmit Done and
Transmit Interrupt Enable are both 1, the computer is interrupted.

" 100" Transmit Abort (read only). This bit is 1 if the last transmission was
aborted, by a collision or because the receiver was busy.

139

March 1985 Programmer's Reference on Networks

" 200" Transmit Done (read only). This bit is set to 1 when a transmission
is completed or aborted, and cleared to 0 when a word is written into
the outgoing packet buffer.

" 400" Clear Transmitter (write only). Writing a 1 into this bit stops the
transmitter and sets Transmit Done. This is for maintenance.

" 17000" .
Lost Count (read only). These 4 bits contain a count of the number
of packets which would have been received if the incoming packet
buffer had not been busy. Setting Clear Receiver resets the lost
count to O.

" 20000"
Reset (write only). Writing a 1 into this bit completely resets the
interface, just as at power up and UNIBUS Initialize.

" 40000"
CRC Error (read only). If this bit is 1 the receiver'S cyclic redundancy
checksum indicates an error. This bit is only valid at two times:
when the incoming packet buffer contains a fresh packet, and when
the packet has been completely read out of the packet buffer.

"100000"
Receive Done (read only). A 1 in this bit indicates that the incoming
packet buffer contains a packet.

764142 My Address (read)
Reading this location returns the network address of this interface (which is
contained in a set of DIP switches on the board).

764142 Write Buffer (write)
Writing this location writes a word into the outgoing packet buffer. The last
word written is the destination address.

764144 Read Buffer (read only)
Reading this location reads a word from the incoming packet buffer. The
last three words read are the destination address, the source address, and the
checksum.

764146 Bit Count (read only)
This location contains the number of bits in the incoming packet buffer,
minus one. After the whole packet has been read out, it will contain 7777 (a
12-bit minus-one).

764152 Start Transmission (read only)
Reading this location initiates transmission of the packet in the outgoing
packet buffer. The value read is the network address of this interface. This
method for starting transmission may seem strange, but it makes it easier for
the hardware to get the source address into the packet.

140

Networks March 1985

15.8 Chaosnet Lisp Machine Implementation

Lisp Machine Chaosnet support consists of a set of Lisp functions and data-structure
definitions in the chaos: package. There are three important data structures. A
conn represents a connection. A pkt represents a packet. A stream is a standard
110 stream which transmits to and receives from a connection. The details of these
data structures are described later.

There are two processes which belong to the Chaosnet NCP. The receiver process
looks at packets as they arrive from the network. Control packets are processed
immediately. Data packets are put on the input packet queue of the connection to
which they are directed. The background process wakes up periodically to do
retransmission, probing, and certain "background tasks" such as starting up a server
when an RFC arrives and processing "connection interrupts."

15.8.1 Opening and Closing Connections: Chaosnet Lisp Machine Implementation

15.8.1.1 User-side: Opening and Closing Connections: Chaosnet Lisp Machine
Implementation

chaos:connect host contact-name &optional window-size timeout Function
Opens a stream connection, and returns a conn if it succeeds or a string
giving the reason for failure. host may be a number or the name of a known
host. contact-name is a string containing the contact name and any
additional arguments to go in the RFC packet. If window-size is not specified
it defaults to 13. If timeout is not specified it defaults to 600 (ten seconds).

chaos:simple host contact-name &optional timeout Function
Taking arguments similar to those of chaos:connect, this performs the user
side of a simple-transaction. The returned value is either an ANS packet or
a string containing a failure message. The ANS packet should be disposed of
(using chaos:return-pkt) when you are done with it.

chaos:remove-conn conn Function
Makes conn null and void. It becomes inactive, all its buffered packets are
freed, and the corresponding Chaosnet connection (if any) goes away.

chaos:close-conn conn &optional reason Function
Closes and removes the connection. If it is open, a CLS packet is sent
containing the string reason. Don't use this to reject RFCs; use
chaos:reject for that.

chaos:open-foreign-connection host index &optional Function
pkt-allocation distinguished-port

Creates a conn which may be used to transmit and receive foreign protocols
encapsulated in UNC packets. host and index are the destination address for

141

March 1985 Programmer's Reference on Networks

packets sent with chaos:send-unc-pkt. pkt-allocation is the "window· size",
that is, the maximum number of input packets which may be buffered. It
defaults to 10. If distinguished-port is supplied, the local index is set to it.
This is necessary for protocols which d,:fine the meanings of particular index
numbers.

chaos:host-up host &optional timeout Function
Asks a host whether or not it is up (alive, functional, responding). If it is
up, this function returns t; if not, it returns two values: nil, and the error
that occurred (usually "Host not responding."). host can be a host object or
the name of a host; timeout is in 60ths of a second and defaults to three
seconds. If the host does not respond after this much time, it is assumed to
be down.

Note that if this function returns nil, it is possible that the host is up but is
not connected to the Chaosnet. This function tests whether the Symbolics
computer is capable of communicating with the host over the Chaosnet.

chaos:notify-Iocal-lispms &optional (message Function
(zwei:qsend-get-message "all lisp machines"»

Sends message to all Lisp Machines at your site based u:Jon information it
gets from the namespace database about the Lisp Machines at the local site.
message should be a string; if it is not provided, the function prompts for a
message. Each recipient receives the message as a notification, rather than
as an interactive message.

chaos:notify host &optional message Function
Sends a message to the specified host. host should be a host (the host name,
as a string, or a host object). message is a string; if it is not provided, the
function prompts for a message. The recipient receives the message as a
notification, rather than as an interactive message.

net:finger-Iocation Variable
This variable sets the location reported by the finger functions. Its value
should be a string to print as the location part of a finger display. When
this variable is nil, (the default), the system uses the value
si:local-finger-Iocation, which is set automatically by remote fue servers.
When the variable has a string value, it overrides the value in
si:local-finger-Iocation.

net:finger-local-lispms Function
Displays a list of who is using each of the Symbolics computers at the
current site. (It uses si:machine-location-alist.) This function replaces the
function chaos:finger-aIl-lms from previous releases.

142

Networks March 1985

net:finger-all-lispms Function
Displays a list of who is using each of the Symbolics computers in the host
table. (It uses si:host-alist.)

15.8.1.2 Server-side: Opening and Closing Connections: Chaosnet Lisp Machine
Implementation

chaos:listen contact-name &optional window-size wait-for-rfc Function
Waits for an RFC for the specified con tact name to arrive, then returns a
conn which will be in the RFC Received state. If window-size is not
specified it defaults to 13. If wait-for-rfc is specified as nil (it defaults to t)
then the conn will be returned immediately without waiting for an RFC to
arrive.

chaos:server-alist Variable
Contains an entry for each server which always exists. When an RFC
arrives for one of these servers, the specified form is evaluated in the
background process; typically it creates a process which will then do a
chaos:listen. Use the add-initialization function to add entries to this
list.

chaos:accept conn Function
conn must be in the RFC Received state. An OPN packet will be
transmitted and conn will enter the Open state. If the RFC packet has not
already been read with chaos:get-next-pkt, it is discarded. You should read
it before accepting if it contains arguments in addition to the contact name.

chaos:reject conn reason Function
conn must be in the RFC Received state. A CLS packet containing the
string reason will be sent and conn will be removed.

chaos:answer-string conn string Function
conn must be in the RFC Received state. An ANS packet containing the
string string will be sent and conn will be removed.

chaos:answer conn pkt Function
conn must be in the RFC Received state. pkt is transmitted as an ANS
packet and conn is removed. Use this function when the answer is some
binary data rather than a text string.

chaos:fast-answer-string contact-name string Function
If a pending RFC exists to contact-name, an ANS containing string is sent in
response to it and t is returned. Otherwise nil is returned. This function
involves the minimum possible overhead. No conn is created.

143

March 1985 Programmer's Reference on Networks

15.8.2 Connection States: Chaosnet Lisp Machine Implementation

cbaos:state conn Function
Returns the current state of the connection, as one of the following symbols:

cbaos:inactive-state
A conn which does not correspond to any Chaosnet connection.

cbaos:open-state
An open connection.

chaos:rfc-sent-state
An RFC has been transmitted and no response has yet been received.

chaos:answered-state
An ANS has been received.

chaos:cls-received-state
A CLS has been received.

chaos:los-received-state
A LOS has been received.

cbaos:bost-down-state
The connection is in the Incomplete Transmission state;
communications with the foreign host have broken down.

chaos:listening-state
A LSN has been "transmitted" and the connection is awaiting an
RFC.

cbaos:rfc-received-state
An RFC has been received while listening and has not yet been
responded to.

chaos:foreign-state
The connection is being used with a foreign protocol encapsulated in
UNC packets.

chaos:wait conn state timeout &optional whostate Function
Waits until the state of conn is not the symbol state, or until timeout 60ths
of a second have elapsed. If the timeout occurs, nil is returned; otherwise t
is returned. whostate is the process state to put in the status line; it defaults
to "net wait".

15.8.3 Stream I/O: Chaosnet Lisp Machine Implementation

cbaos:make-stream connection &key Function
(direction ':bidirectionaI) (characters t) (ascii-translation nil) (accept-p t)

Creates a bidirectional stream that accesses connection, which should be open
as a stream connection, as 8-bit bytes. In addition to the usual I/O
operations, the following special operations are supported:

144

Networks March 1985

:force-output

:finish

:eof

:clear-eof

:close

Any buffered output is transmitted. Normally output is
accumulated until a full packet's worth of bytes are
available, so that maximum-size packets are transmitted.

Waits until either all packets have been sent and
acknowledged, or the connection ceases to be open. If
successful, returns t; if the connection goes into a bad
state, returns nil.

Forces out any buffered output, sends an EOF packet, and
does a :finisb.

Allows you to read past an EOF packet on input. Each
:tyi will return nil or signal the specified eof error until a
:clear-eof is done.

Behaves like the :eof message if not given an abort-p
argument. The connection is also freed, so this need not
be done manUally.

Keyword arguments are:

:direction

:characters

: input , :output, or :bidirectional. The default is
:bidirectional.

Boolean. The default is t. If not nil, character rather
than binary data are to be sent.

:ascii-translationIf not nil, characters are translated from ASCII to the
Symbolics internal character set on input, and to ASCII on
output. The default is nil.

:accept-p When not nil and the connection is in RFC Received
state, accepts the connection. The default is t.

15.8.4 Packet 1/0: Chaosnet Lisp Machine Implementation

Input and output on a Chaosnet connection can be done at the whole-packet level,
using the functions in this section. A packet is represented by a pkt data structure.
Allocation of pkts is controlled by the system; each pkt that it gives you must be
given back. There are functions to convert between pkts and strings. A pkt is an
art-16b array containing the packet header and data; the
chaos:first-data-word-in-pkt'th element of the array is the first I6-bit data word.
The leader of a pkt contains a number of fields used by the system.

cbaos:pkt-opcode pkt Function
Accessor for the opcode field of pllt's header. For each standard opcode a
symbol exists in the chaos: package, consisting of the standard 3-letter code
and a suffIx of "_Op", chaos:rfc-op for example. The value of the symbol is
the numeric opcode.

145

March 1985 Programmer's Reference on Networks

chaos:pkt-nbytes pkt Function
Accessor for the number-of-data-bytes field of pkt's header.

chaos:pkt-string pkt Function
An indirect array which is the data field of pkt as a string of B-bit bytes.
The length of this string is equal to (chaos:pkt-nbytes pkt).

chaos:set-pkt-string pkt &rest strings Function
Copies the strings into the data field of pkt, concatenating them, and sets
(chaos:pkt-nbytes pkt) accordingly.

chaos:get-pkt Function
Allocates a pkt for use by the user.

chaos:return-pkt pkt Function
Deallocates a pkt.

chaos:send-pkt conn pkt &optional (opcode chaos:dat-op) Function
Transmits pkt on conn. pkt should have been allocated with chaos:get-pkt
and then had its data field and n-bytes filled in. opcode must be a data
opcode (200 or more) or EOF. An error is signalled, with condition
chaos:not-open-state, if conn is not open. chaos:send-pkt automatically
returns the packet via chaos:return-pkt.

chaos:send-string conn &rest strings Function
Sends a data packet containing the concatenation of strings as its data.

chaos:send-unc-pkt conn pkt &optional pkt-number ack-number Function
Transmits pkt, an UNC packet, on conn. The opcode, packet number, and
acknowledge number fields in the packet header are filled in (the latter two
only if the optional arguments are supplied). chaos:send-unc-pkt does an
implicit chaos:return-pkt, which returns the packet to the free pool at the
appropriate time.

chaos:may-transmit conn Function
A predicate which returns t if there is any space in the window.

chaos:finish-conn conn &optional (whostate "Net Finish") Function
Waits until either all packets have been sent and acknowledged, or the
connection ceases to be open. If successful, returns t; if the connection goes
into a bad state, returns nil. whostate is the process state to display in the
status line while waiting.

chaos:conn-finished-p conn Function
A predicate that returns something other than nil if all data that have been
output have been received and acknowledged by the foreign side of the
connection.

146

Networks March 1985

chaos:get-next-pkt conn &optional (no-hang-p nil) Function
Returns the next input packet from conn. When you are done with the
packet you must give it back to the system with chaos:return-pkt. This
can return an RFC, CLS, or ANS packet, in addition to data, UNC, or EOF.
If no-hang-p is t, nil will be returned if there are no packets available or the
connection is in a bad state. Otherwise an error will be signalled if the
connection is in a bad state, with condition name chaos:host-down,
chaos:los-received-state, or chaos:read-on-closed-connection. If no
packets are available and no-hang-p is nil, chaos:get-next-pkt will wait for
packets to come in or the state to change. The process state in the status
line is "NETI".

chaos:data-available conn Function
A predicate which returns t if there any input packets available from conn.

15.8.5 Connection Interrupts: Chaosnet Lisp Machine Implementation

chaos:interrupt-function conn Function
This attribute of a conn is a function to be called in the background process
when certain events occur on this connection. Normally this is nil, which
means not to call any function, but you can use setf to store a function
here. Since the function is called in the Chaosnet background process, it
should not do any operations that might have to wait for the network, since
that could permanently hang the background process.

The function's first argument is one of the following symbols, giving the
reason for the "interrupt". The function's second argument is conn.
Additional arguments may be present depending on the reason. The possible
reasons are:

:input A packet has arrived for the connection when it had no input packets
queued. It is now possible to do chaos:get-next-pkt without having
to wait. There are no additional arguments.

: output
An acknowledgement has arrived for the connection and made space
in the window when formerly it was full. Additional output packets
may now be transmitted with chaos:send-pkt without having to
wait. There are no additional arguments.

:change-of-state
The state of the connection has changed. The third argument to the
function is the symbol for the new state.

chaos:read-pkts conn Function
Some interrupt functions will want to look at the queued input packets of a
connection when they get a :input interrupt. chaos:read-pkts returns the

147

March 1985 Programmer's Reference on Networks

first packet available for reading. Successive packets can be found by
following chaos:pkt-link.

chaos:pkt-link pkt Function
Lists of packets in the NCP are threaded together by storing each packet in
the chaos:pkt-link of its predecessor. The list is terminated with nil.

15.8.6 Information and Control: Chaosnet Lisp Machine Implementation

chaos:host-data &optional host Function
host may be a number or a known host name, and defaults to the local host.
Two values are returned. The first value is the host name and the second is
the host number. If the host is a number not in the table, it is asked its
name using the STATUS protocol; if no response is received the name
"Unknown" is returned.

hostat &rest hosts Function
Asks each of the hosts for its status, and prints the results. If no hosts are
specified, all hosts on the Chaosnet are asked. Hosts can be specified by
either name or octal number.

For each host, a line is displayed that either says that the host is not
responding or gives metering information for the host's network attachments.
If a host is not responding, probably it is down or there is no such host at
that address. A Lisp Machine can fail to respond if it is looping inside
without-interrupts or paging extremely heavily, such that it is simply
unable to respond within a reasonable amount of time.

To abort the host status report produced by hostat or FUNCTION H, press
c-ABORT.

chaos:print-conn conn &optional (short t) Function
Prints everything the system knows about the connection. If short is nil it
also prints everything the system knows about each queued input and output
packet on the connection.

chaos:prjnt-pkt pkt &optional (short nil) Function
Prints everything the system knows about the packet, except its data field.
If short is t, only the first line of the information is printed.

cbaos:print-all-pkts pkt &optional (short t) Function
Calls chaos:print-pkt on pkt and all packets on the threaded list emanating
from it.

chaos:status Function
Prints the hardware status.

148

Networks March 1985

neti:reset Function
Resets the local networks. Disables and then resets the interfaces. After
using neti:reset you must call neti:enable if you want to tum the network
back on.

chaos:assure-enabled Function
Turns on the network if it is not already on. It is normally always on unless
you call one of these functions.

neti:enable Function
Enables the local networks and interfaces.

neti:disable Function
Disables the local networks and interfaces. If you want to reset the local
networks and interfaces and then tum them back on, you should call
neti:reset and then neti:enable.

15.9 Chaosnet VAXNMS Implementation

This describes the interface to Chaosnet through the routines in the "CHAOS.B32"
BLISS-32 subroutine package. Definitions of standard values are in
"NCPDEFS.R32". Though it is possible to interface to the NCP at the VAXlVMS
110 level, it is not recommended practice. All references to Chaosnet in this text are
with respect to the subroutine package, and not V AXlVMS QIOs.

A Chaosnet connection is represented by a one longword "channel number", which
has no direct relationship to a VAXlVMS channel number. However, for every
Chaosnet channel currently allocated, there is an associated V AXlVMS channel
maintained. by the subroutine package.

All of the routines described below are declared "global".

15.9.1 Opening and Closing: Chaosnet VAXNMS Implementation

parse_host (host, ret-host-num) Function
Parses the string pointed to by host (which points to a standard VAXlVMS
string descriptor), and stores the resulting host number in the word pointed
to by ret-host-num. Returns a status code.

chaos_rfc (ret-chan, host, contact-name, wait-time) Function
Opens a new Chaosnet channel and sends an RFC. ret-chan is a longword to
receive the channel number. host is a string acceptable to parse_host.
contact-name is a pointer to a string descriptor. wait-time is either zero,
which means to wait indefinitely for a response to the RFC, or a pointer to a
quadword block acceptable to the $8ETIMR system service. A status code is
returned, which will be 88$_ TIMEOUT if the routine times out.

149

March 1985 Programmer's Reference on Networks

chaos_lsn (ret-chan, contact-name, wait-time) Function
Like chaos_rfc, but "sends" a LSN instead of an RFC. No host is specified.

chaos_accept (chan, window, rfc-arg, ret-r{c-arg-size) Function
Accepts an incoming RFC. The connection must be in RFC-received state.
window is the window size. rfc-arg is an optional string descriptor which
receives the argument to the RFC. ret-rfc-arg-size is also optional, and gets
the argument's length.

chaos_aDS (chan, data, wait-time) Function
Sends an ANS packet to the Chaosnet channel. data points to a string
descriptor, wait-time is ignored. A status code is returned, and if an error
occurs, the channel is deassigned.

chaos_close (chan, reason) Function
Closes the connection, and deassigns the channel. reason is a pointer to a
string descriptor of a string to be included in the CLS packet.

chaos_assign (ret-chan) Function
Assigns a Chaosnet channel, and stores it in the longword pointed to by
ret-chan. This routine allocates a V AXlVMS channel. A status code is
returned.

chaos_deassign (chan) Function
Given a Chaosnet channel previously assigned by chaos_assign, deassigns it
and the associated V AXlVMS channel.

15.9.2 Stream 1/0: Chaosnet VAXNMS Implementation

chaos_in_char (chan, ret-char, timeout) Function
Returns the next character from the channel in the longword pointed to by
ret-char .. Waits until a character is available or until timeout, whichever
comes first. A status code is returned.

chaos_out_char (chan, char) Function
Outputs one character. Characters are buffered until a packet fills up or
until the output is forced out by chaos_force_out. A status code is
returned.

chaos_sout (chan, string) Function
Like repeated calls to chaos_out_char: sends string from string descriptor
pointed to by string.

chaos_force_out (chan) Function
If doing serial output, and a partial packet is buffered, force it to be sent.

150

Networks March 1985

chaos_finish (chan) Function
Does a chaos_force_out, then waits for all packets to be acknowledged by
the foreign end.

chaos_eof (chan) Function
Sends an EOF packet after forcing out any buffered output.

15.9.3 Packet 1/0

a11ocate_pkt (size, chan, ret-pkt) Function
Allocates a packet suitable for cbaos_in_pkt and cbaos_out_pkt. The
packet can hold up to size bytes of data; the number of bytes field in the
packet's header is filled in from size. ret-pkt points to a longword to receive a
pointer to the packet. A status code is returned.

deallocate_pkt (pkt) Function
Returns a previously allocated packet to the free pool. A packet may be
reused, since the I/O routines do not deallocate them, as long as the I/O is
being done synchronously. Returns a status code.

chaos_out_pkt (chan, pkt, efn, astadr, astprm) Function
Outputs pkt to chan, waiting if there is no window room available. efn is the
event channel to use for waiting. astadr and astprm are as for V AXNMS
system services: an AST address and parameter, respectively, that get
signalled when the packet is read by the NCP. cbaos_out_pkt returns as
soon as there is space in the window, without waiting for the NCP to finish
transmitting the packet.

cbaos_in_pkt (chan, efn, pkt, astadr, astprm) Function
Reads the next input packet, whatever opcode it may be, from the
connection, waiting indefinitely if there are no input packets. efn is the
event channel to wait on, and astadr and astprm are for an AST to be
delivered when the read completes. chaos_in_pkt does not return until the
read completes. A status code is returned.

15.9.4 Checking the State: Chaosnet VAXNMS Implementation

chaos_xmit_room (chan, wait) Function
Returns SS$_NORMAL if there is room left in the transmit window.
Returns an error if the connection went into a bad state. If wait is true,
and there is no room left, then chaos_xmit_room waits until room is
available. If there is no room left and wait is false, it returns
SS$_EXQUOTA.

151

March 1985 Programmer's Reference on Networks

chaos_state (chan) Function
Updates the state of the Chaosnet channel via a request to the NCP.
Returns a status code. To check the state of the connection, first call this
rou tine then look at chan_state in the channel block.

chaos_wait (chan, old-state, timeout) Function
Waits until the channel goes out of the specified state or until timeout
occurs. Timeout is either zero (no timeout) or a pointer to a quadword block
acceptable to $SETIMR. A status code is returned.

chaos_ wait_til (chan, state, timeout) Function
Waits until the channel goes into the specified state or until timeout occurs.
Timeout is either zero (no timeout) or a pointer to a quadword block
acceptable to $SETIMR. A status code is returned.

The channel number is used as an index into the global blockvector channel,
defined in the "CHAOS.B32" fue. Since BLISS-32 does not allow the field definitions
to be global, they should be copied into any program that needs to look inside the
channel blockvector. The most useful fields are

chan_state
One of the state codes defined below.

chan_sta_txw
The window size in the transmit direction.

chan_sta_rxw
The window size in the receive direction.

chan_sta_txwa
The number of packet slots available in the transmit window.

chan_sta_rxav
The number of input packets available.

The states are as follows:

conn_st_closed (0)
Connection closed by a CLS packet.

conn_st_rfcrcv (1)
RFC received by listening connection.

conn_st_rfcsnt (2)
RFC sent, no response yet.

conn_st_open (3)
Connection open.

conn_st_los (4)
Connection broken by a LOS packet.

152

Networks March 1985

conn_st_incom (5)
Incomplete transmission (no response from foreign host).

conn_st_new (6)
Connection newly allocated.

co~st_lsn (7)
Listening for an incoming RFC.

conn_st_full (%0'400')
This bit is set when the transmit window is full. Usually, the remainder of
the state will be CODJLst_open.

15.10 Chaosnet UNIX Implementation

Chaosnet support on UNIX is implemented as a device driver in the operating
system and a set of user and server programs. The code runs on VAX systems
running the current Berkeley UNIX.

The Network Control Program is implemented entirely in the kernel as a device
driver, and is thus accessed from user programs with the normal input/output
system calls. Packets received from the network are processed at interrupt level. All
other processing is done with system calls issued by user processes.

15.10.1 Header Files: Chaosnet UNIX Implementation

All header files relevant to the Chaosnet software are kept in the chaos subdirectory
of the global header file directory. They are:

<chaos/user.h>
Normally the only useful header file for user programs on the network. This
file contains ioctl command definitions, associated data structures and
constants, and pathnames of special files needed to access the network.

<chaos/contacts.h>
The contact names to access network services (names to put in RFC packets).

<chaos/dev.h>
The bit fields, constants, and macros used to encode and decode the minor
device numbers for the Chaosnet special files.

<chaos/chaos.h>
All definitions of data structures used in the kernel. Rarely used by any user
program.

153

March 1985 Programmer's Reference on Networks

15.10.2 Special Files for Creating Connections: Chaosnet UNIX Implementation

There are several special files in the fue system that provide ways of creating and
accessing connections. Their names are defined in <chaos/user.h>.

CHRFCDEV
Opening this file creates a connection to a remote host. Specify the host
address as an additional pathname component following the file name. It
should contain the ASCII digits that represent the Chaosnet address in
decimal (soon to be octal). The rest of the pathname after the host address
is taken as the contact name: that will be sent in the RFC packet. For
example, to open a Telnet connection to the host at address 234 use:

#include <chaos/user.h>
#include <chaos/contacts.h>
char pathbuf[100];
int fd;
sprintf(pathbuf,

HXs/Xd/%s", CHRFCDEV, 234, CHAOS_TELNET)j
fd = open(pathbuf, 2);

To send a message to User at host address 567 use:

spri ntf(pathbuf,
HXs/Xd/Xs Xs H

, CHRFCDEV, 567, CHAOS __ SEND, User);
fd = open(pathbuf, 1);

Opening CHRFCDEV returns when the response to the RFC is received from
the remote host or a fIXed timeout, whichever happens first. Other timeouts
may be implemented by the user program, with the alarm-system call. ANS
packets are acceptable responses. The data in the ANS packet are readable,
and are followed by end-of-file, as with a full connection or a normal file.

CHRFCADEV
This device provides the same functions as CHRFCDEV except that it
returns immediately after transmission of the RFC packet with the
connection in the CSRFCSENT state. This allows the user program to have
access to the contents of packets refusing the connection (CLS, LOS). See
CHIOCSWAIT and CHIOCPREAD; See the section "ioctl System Call
Commands: Chaosnet UNIX Implementation", page 155.

CHLISTDEV
Opening this file creates a connection in the listening state. Express the
contact name as the pathname component following the device name. For
example, to listen for a Telnet connection use:

sprintf(pathbuf, "XS/XSH, CHLISTDEV, CHAOS_TELNET);
fd = open(pathbuf, 2);

Use the CHIOCSWAIT ioctl to wait for a RFC to arrive, and
CHIOCREJECT, CHIOCACCEPT, or CHIOCANSWER to respond. See the
section "ioctl System Call Commands: Chaosnet UNIX Implementation", page
155.

154

Networks March 1985

CHURFCDEV
When this file (the unmatched RFC seroer device) is opened and read, it
returns the contents of RFC packets that have no listener. Read calls on
this connection just return RFC data. If another read on this file is done
before the RFC is matched, it is discarded. This file may only be opened by
one user at a time. Normally this file is opened by the system unmatched
RFC server process.

15.10.3 Stream-mode Connections: Chaosnet UNIX Implementation

Stream mode is the default when a Chaosnet device is opened. This mode makes
the connection behave like a UNIX file, with the exception that seek system calls
are disallowed and read calls will return any available data (rather than returning
the full number of bytes requested). Thus, standard 110 library routines can easily
be used to read and write on these connections. A normal UNIX end-of-file
indication is returned when an EOF packet is received; it will continue to be
returned until either the connection is closed or more data arrive on the connection.
If the connection is closed before an EOF packet is received (because of the arrival of
a CLS or LOS packet, or the occurrence of a connection timeout), an error is
returned after all data and EOF packets are read.

If the file has been opened for writing (open mode 1 or 2), an EOF packet is sent
and its acknowledgement awaited when the file is closed (unless the connection has
already been closed).

In stream mode all nondata packets are discarded and data packet opcodes are all
treated the same. ioctls can be used to read nondata packets (RFC, CLS, LOS, and
so on) and perform other network-specific functions.

The contents of ANS and UNC packets are read as data in the stream, just as if
they had been data packets.

15.10.4 Record-mode Connections: Chaosnet UNIX Implementation

Record mode is set on a connection by issuing

ioctl(fd, CHIOCSMODE, CHRECORD);

It gives the user program access to packet opcodes and packet boundaries. No
further awareness of network data structures is necessary. Read calls from the
connection return all the data in a single packet; the first byte of the data is the
opcode in the packet. The count of bytes transferred, including the opcode, is
returned. Opcodes are defined in chaos/user.h. See the section "Header Files:
Chaosnet UNIX Implementation", page 152.

RFC, ANS, CLS, LOS, EOF, UNC, FWD, and data packets are returned to the user.
The specified buffer must be large enough to fit the entire packet, including the
opcode byte, or an error is returned.

155

March 1985 Programmer's Reference on Networks

In write calls, the first byte of data must include the desired opcode; this byte must
also be reflected in the byte count. The data to be written must not exceed the
maximum packet size.

If a record-mode connection is closed in the OPEN state, a CLS packet is
automatically sent. The CHIOCREJECT ioctl should be used to send a CLS packet
containing a specific reason. See the section "ioctl System Call Commands:
Chaosnet UNIX Implementation", page 155.

15.10.5 Tty-mode Connections: Chaosnet UNIX Implementation

TTY mode (via CHTTY) allows the connection to act exactly like a UNIX tty. This
allows, for example, remote log in service with no extra process for the NVT.
Unfortunately, none of the remote protocols (Telnet, Supdup) can work over a
transparent connection that just acts like a terminal. This mode is currently unused.

15.10.6 Foreign-protocol-mode Connections: Chaosnet UNIX Implementation

This mode is used to transmit and receive foreign protocols encapsulated in UNC
packets. It is currently unimplemented.

15.10.7 ioetl System Call Commands: Chaosnet UNIX Implementation

The following ioctI codes can be used on Chaosnet connections.

CHIOCSMODE
Sets the connection mode. Argument is CHSTREAM, CHRECORD, CHTTY,
or CHFOREIGN.

CHIOCSWAIT
Waits until the connection state changes from the given state (in the third
argument). Typically used for listeners waiting for an RFC:

ioctl(fd, CHIOCSWAIT, CSLISTEN);

or for an end user waiting for a response to an RFC:

ioctl(fd, CHIOCSWAIT, CSRFCSENT);

CHIOCFLUSH
In stream mode, sends out any data waiting for a full packet. This is done
every half-second at clock level.

CHIOCOWAIT
Waits for all transmitted data (after doing a CmOCFLUSH) to be
acknowledged by the other end of the connection. If the argument is
nonzero, an EOF packet is sent first; it must also be acknowledged.

CHIOCGSTAT
Gets the status of the connection. The argument is the address to which

156

Networks March 1985

the status structure (struct chst in chaosluser.h is returned. See the
section "Header Files: Chaosnet UNIX Implementation", page 152. This is
frequently used to ascertain the state of the connection after a
CHIOCSW AIT call, or to find out the Chaosnet address of the other end.

CHIOCANSWER
When a connection is in the CSRFCRCVD state, this code causes data writes
on the connection to be sent with an ANS packet. In stream mode, the
packet is filled incrementally. In record mode, the first packet sent is made
into an ANS. In every case, only one packet is sent and the connection is
closed.

CHIOCACCEPf
When a connection is in the CSRFCRCVD state, this code causes an OPEN
packet to be sent and the connection to be opened.

CHIOCREJECT
When the connection is in either the CSRFCRCVD or CSOPEN state, this
code causes a CLS packet to be sent, thus closing the connection. The
argument is the address of a null-terminated string, which is copied into the
close packet.

CHIOCPREAD
Reads a packet from the received packet queue. Used in stream mode to
read control packets that are otherwise ignored. Typically used to read RFC
or CLS packets.

CHIOCRSKIP It

Skips over the unmatched RFC at the head of the unmatched RFC queue
and marks it to be only matched against a listen, not queued as an
unmatched RFC. This is used by the unmatched RFC server to ignore RFCs
it knows someone else might want.

FIONREAD
A normal UNIX ioctl, this code returns an integer at the address specified
by the argument, which contains the number of bytes available to be read.

15.10.8 Signals: Chaosnet UNIX Implementation

All read, write, open, close, and ioctls are interruptable, except when waiting for
buffer allocation. On VAX UNIX, read and write calls are automatically restarted.
All others currently return EINTR errors.

15.10.9 Software Installation: Chaosnet UNIX Implementation

Global header files are placed in a chaos subdirectory of the system header file
directory (usually lusr/include) so that #include <chaoslfoo.h> works.

The kernel code is found in two subdirectories of the kernel source directory, parallel
to sys, dev, and conf:

157

March 1985 Programmer's Reference on Networks

chncp This directory contains the parts of the NCP which do not depend on the
operating system. It also contains the actual Chaosnet interface drivers,
which have some operating-system-dependent code. These drivers interface
only to the Chaosnet code (except interrupt vectors) and thus are not usable
as UNIX device drivers.

chunix
This directory contains the top-level device-driver interface from the system
call level (through cdevsw) to the NCP, and some system dependent utilities
(for example, buffer allocation).

The NCP needs two entries in the character-device switch and one other small
change in conf.c.

In the UNIX kernel proper, several small changes are required:

nami.cA four-line change is required to nami to allow Chaosnet special files to have
additional pathname components after the one that matches the special fue
in the file system.

fio.c pty.c mx2.c autoconf.c locore.s
Several small bugs which never were encountered by other drivers need
fIXing.

In the normal (Berkeley) VAX configuration scheme, normal entries made in the
configuration file are sufficient to cause all the right files to be included in the
system, if the CHAOS option is included in the options line and the following line is
specified:

pseudo-device chaos

The files file gets a few more lines.

For PDP-11 UNIX, the configuration system is much more primitive; therefore, some
handwork is usually required to make the kernel correctly.

All user program sources can be put in /usr/src/cmd/chaos,
/usr/local/src/cmd/chaos, and /usr/src/local/cmd/chaos. The make fue
contains variables for destinations of all programs. The default destination for user
programs is /usr/local. Server programs are placed in /usr/local/lib/chaos. The
unmatched RFC server (chserver) is placed in /ete and should be started in the
/ete/rc file at boot time. It may be killed and restarted at any time.

15.11 Chaosnet References

The following documents are of some related interest. AIM is an AI Memo of the
M.I.T. Artificial Intelligence Laboratory. RFC is a Request for Comments of the
Arpanet Network Working Group. lEN is an Internet Experiment Note of the
Arpanet Network Working Group.

158

Networks

[CPR] C. Ryland, TOPS-20 Chaosnet Manual, unpublished.

[FILE] Documented online on the file AI:LMDOC;CHFILE >.

[FINGER] K. Harrenstien, NamelFinger, RFC-742.

March 1985

[RFC733] D. Crocker et al., Standard for the Format of Arpa Network Text
Messages, RFC-733.

[SUPDUP] M. Crispin, Supdup Protocol, RFC-747, RFC-734.

[TCP] DOD Standard Transmission Control Protocol, IEN-129.

[TELNET] Telnet Protocol Specification, RFC-542.

[TIME] K. Harrenstien, Time Server, RFC-73S.

[UDP] J. Postel, User Datagram Protocol, IEN-SS.

[UNIBUS] PDP-II Peripherals Handbook, Digital Equipment Corporation.

159

March 1985 Programmer's Reference on Networks

16. Chaosnet File Protocol

16.1 Introduction: Chaosnet File Protocol

The QFILE protocol is the Lisp Machine implementation of the Chaosnet File
Protocol. It allows reading and writing of files, and other manipulations of host fue
systems, from remote hosts. It was originally designed for Chaosnet only, but is
now being adapted for implementation over more general media. Although originally
designed with Symbolics computers as the intended user ends, other user ends
(CFTPs) can be written. Chaos File Transfer Protocols (CFTPs) have been written
for all hosts for which servers have been written.

The QFILE protocol operates over several logical user-to-server data paths, or
connections. Each connection is assumed to be capable of data transfer· in both
directions, although not necessarily full duplex (allowing truly simultaneous
bidirectional transfer). Currently, the connections must meet the following
requirements:

• They must be capable of transmitting discrete parcels of data, minimum or
maximum length not specified, each such parcel integral (a host cannot
transmit any of one without transmitting it all).

• Each parcel must be capable of carrying an opcode, an arbitrary 8-bit tag
defined by the protocol.

The Chaosnet implementation of these parcels is as Chaosnet packets; for
convenience, we use the term packet for these parcels.

The user seeking file service on a server host establishes and maintains contact with
a seroer process, or seroer, on the server machine, over one such data path, the
control connection. This contact, the user-seroer dialogue, is expected to last for a
long time, perhaps hours.

Communication over the control connection is, with one exception, synchronous, and
initiated by the user. By preparing and issuing commands to the server, the user
instructs the server to perform file operations. Each command is sent as one packet
over the control connection. The server responds, unconditionally, to each command,
by sending a response packet. A response packet reports the success or failure of the
requested operation, and might contain return values, information requested or
required by the user as a result of this operation.

Part of the information in each command is a transaction identifier, or TID,
generated by the user, uniquely identifying the command within the context of this
user-server dialogue. A response packet contains, among other things, the TID for
the command for which it is a response. The TID identifies the response as a

160

Networks March 1985

response to that command. The server is not required to issue responses in the
same order as it received the corresponding commands.

When reading or writing files, actual data are sent over separate connections called
data connections. Each data connection, being bidirectional, is divided into two data
connection halves, or data channels. Each active data transfer requires a data
channel. Transfers on each half of a data connection can be completely unrelated.
At any time during the user-server dialogue, some (possibly empty) set of data
connections between user and server exists. When data connections exist, some data
channels might be allocated to active data transfers. Such channels are known as
active channels. Data channels not active are called free. Both user and server
must keep track of the active/free status of each data channel.

Data connections are established and disestablished at user request, by means of a
control connection command. Hence, the control connection must be established
before any data connections. Data connections are associated with a specific
dialogue, and thus with a specific instance of a server, and thus, indirectly, with a
specific control connection. Data channels are serially re-usable: they can be used for
many data transfers, in sequence. The number of data connections per server
instance is often limited by server operating system constraints, such as limits on the
number of open network channels per job.

Each data channel has, on the server side, a logical process associated with it. A
physical process mayor may not be the implementation of choice. This process has
several well-defined states. State transitions are provoked by receipt of special
packets (marks), reaching ends of files, and reactions to commands received on the
control connection. When a data transfer is active on a data channel, the process is
in a loop; it is either reading bytes from the data channel and writing them to the
file, or vice versa. Reactions to commands on the control connection must be able to
interrupt this loop in a clean, well-defined, resumable way.

The protocol nomenclature is defined from the point of view of the user side.
Hence, terms such as read, write, input, and output are from the user side's point
of view, unless explicitly indicated otherwise.

16.2 Qfile File Transfer Philosophy

The user accesses file data by requesting the server to open a file, then transferring
data, then requesting the server to close the file. Actually, there is no such thing as
"closing a file". The result of opening a file, in any program on any system, is an
open stream. It is this stream that one closes, not the file. One may open a fIle,
but one can only close a stream.

161

March 1985 Programmer's Reference on Networks

16.2.1 Opening a File with Qfile

Opening an input file implicitly requests the server to start sending the entire
content of the file over a data channel, as fast as the network medium and path
allow. The user side expects an uninterrupted stream of bytes to appear
immediately on its side of the data channel.

Similarly, opening an output file instructs the server to prepare to receive an
uninterrupted stream of bytes over a data channel, and write them to a file until
the user indicates that he has sent the entire content to be transmitted. The user
side sends bytes over the data channel until it has sent what it considers to be the
whole file, and then sends special indicators signalling the end. See the section
"Ending the Qfile Transfer", page 161.

16.2.2 Transferring Data with Qfile

To effect a transfer, the user side selects a free data channel of the correct direction
(input or output). If no free data channels are available, the user must negotiate
with the server beforehand to establish a new data connection. The user then
issues the OPEN command to the server. The OPEN command <like many other
commands) contains a field, the file handle, by which the user identifies the selected
data channel. The server, on receiving this command, opens the file, and if
successful, binds the data channel to the resulting open stream. Binding the data
channel to the open stream means that the server considers the data channel active,
and is prepared to transfer data between the channel and the stream. The server
replies to the user and considers the OPEN transaction complete. The user side,
upon receipt of a successful response to the OPEN command, begins transferring
data over the data channel (for an output opening); the server begins transferring
input data (for an input opening). In either case, the logical process associated with
the data channel at the server side begins transferring data between the open
stream and the data channel until it reaches the end of data in the file.

It is an error~ a protocol violation, if the server finds the channel designated by the
user to be already bound (active) at OPEN time. Unfortunately, this can happen in
all current user end implementations if the user interrupts the user-side file-protocol
program at certain critical points.

16.2.3 Ending the Qfile Transfer

To end the transfer, the user side issues a CLOSE command. (In the input case,
this is usually motivated by receipt of an end-at-file (EOF) over the data connection).
On receiving this command, the server performs the following actions:

• Goes through a synchronization procedure to ensure that all data have been
transferred. For details on the synchronization procedure: See the section
"Close Qfile Command", page 181.

162

Networks March 1985

• Closes the open stream. On different operating systems, this may correspond
to closing the file, setting the segment's bit count and terminating it,
renaming the file from its temporary to its real name, and so forth.

• Unbinds the data channel, that is, declares it to not be in use.

• Replies to the user.

The user, on receipt of the successful response, marks the data channel as no longer
active: it is now free for further use.

Opening a file always requires a preexisting data channel and uses that channel
until the CLOSE.

The user can request the server to close-abort the open stream, instead of simply
closing it. To close-abort a stream means to close it in such a way, if possible, that
it is as if the file had never been opened. In the specific case of a file being created,
it must appear as if the file had never been created. This may be more difficult to
implement on certain operating systems than others, but tricks with temporary
names and close-time renamings by the server can usually be used to implement
close-abort in these cases. In the case of a file being appended to, close-abort means
to forget the appended data.

The default and most common mode of Symbolics computer output is to create new
files. Except for specialized applications, no software overwrites old files. "Output"
openings are thus "create and write" openings. Opening a file for output is thus
both the means and equivalent of creating a new file. There are OPEN options for
overwriting old files: See the section "Qfile Open Options", page 172. However, most
of the protocol has been designed with the assumption that writing and file creation
are one and the same.

16.3 Qfile Character Set Translation

All numbers designating values of character codes are to be interpreted in octal.

The QFILE protocol was designed to provide access to ASCII -based file systems for
Symbolics computers. Symbolics computers support 8-bit characters and have 256
characters in their character set. This results in difficulties when communicating
with ASCII machines, which have 7 -bit characters.

The server, on machines not using the Symbolics character set, is required to
perform character translations for any CHARACTER (not BINARY) opening. Table
1 shows the translations between Lisp Machine characters and the standard ASCII
representation, as used on the PDP-I0 (where the sequence CRLF, 015 012
represents a new line). Some Symbolics characters expand to more than one ASCII
character. Thus, for character files, when we speak of a given position in a file or

163

March 1985 Programmer's Reference on Networks

the length of a file, we must specify whether we are speaking in Symbolics units or
server units, for the counting of characters is different.

This causes major problems in file position reckoning. Specifically, it is futile for the
Symbolics computer (or other user side) to carefully monitor file position, counting
characters, during output, when character translation is in effect. This is because
the operating system interface for "position to point x in a file", which the server
must use, operates in server units, but the Symbolics computer (or other user end)
has counted in Symbolics units. The user end cannot b.y to second-guess the
translation-counting process without losing host-independence. (Although the
Symbolics mail reader, Zmail, does anyway, as certain types of PDP-10 mail files
contain embedded encoded character counts that are measured in server units.) See
the section "Filepos Qfile Command", page 185.

Table 1 contains the standard ASCII table (all values octal). The notation x in (cl,
c2> means "for all character codes x such that c1 <= x <= c2." Hosts using other
variations of ASCII, or other character sets, must translate accordingly.

Table 1. Translations Between Symbolics Characters and Standard ASCII

Symbolics character

x in <000, 007>
x in <010, 012>
013
x in <014, 015>
x in <016, 176>
177
x in <200, 207>
x in <210, 212>
213
214
215
x in <216, 376>
377

ASCII character(s)

x
177 x
013
177 x
x
177 177
177 <X - 200>
<X - 200>
177 013
014
015 012
177 <X - 200>
no corresponding code

Table 1 might seem confusing at first, but there are some general rules about it that
should make it appear more sensible. First, Symbolics characters in the range <000,
177> are generally represented as themselves, and x in <200, 377> is generally
represented as 177 followed by <X - 200>. That is, 177 is used to quote the second
200 Symbolics characters. It was deemed that 177 is more useful and common
character than 377, so 177 177 means 177, and there is no way to describe 377 with
Asen characters. On the Symbolics computer, the formatting control characters
appear offset up by 200. This explains why the preferred mode of expressing 210
(backspace) is 010, and 010 turns into 177 010. The same reasoning applies to 211
(Tab), 212 (Linefeed), 214 (Formfeed), and 215 (Newline).

164

Networks March 1985

More special care is needed for the Newline character, which is the mapping of the
system-independent representation of "the start of a new line". Thus, for Ascn as
used on many systems, Symbolics Newline (215) is equivalent to 015 012 (CRLF) in
ASCII characters. When converting AScn characters to Lisp machine characters,
an 015 followed by an 012 therefore turns into a 215. A "stray CR", that is, an 015
not followed by an 012, therefore causes character-counting problems. To address
this, a stray CR is arbitrarily translated into a single M (115).

Table 1 applies in the case of NORMAL translation, that is, the default character
translation mode.

The other translation modes available are:

RAW Performs no translation. Ascn characters are obtained by simply
discarding the high order bit of Symbolics characters, and
Symbolics characters supplied by an ASCn server are always in
the range <000, 177>.

SUPER-IMAGE Suppresses the use of Rubout for quoting. That is, each entry
beginning with a 177 in the ASCn column of the translation table
presented above has the 177 removed. The AScn character 015
always maps to the Symbolics character 215, as in normal
translation. Here is the SUPER-IMAGE mode table:

Table 2. Translations in SUPER-IMAGE Mode

Symbolics character

x in <000, 177>
x in <200, 214>
215
x in <216, 376>
377

ASCII character(s)

X

<X - 200>
015 012
<X - 200>
no corresponding code

In SUPER-IMAGE mode as well, stray CR is translated to
Symbolics character M.

16.4 Qfile Command and Response Format

Commands and responses are indivisible, single parcels of data sent over the control
connection. User end always sends commands to server and server sends responses
to user.

165

March 1985 Programmer's Reference on Networks

16.5 Qfile Packet Opcodes

The parcel (packet) opcode associated with both commands and responses is
chaos:dat-op (= 200 octal). The data content of both packet types are character
strings in the Symbolics character set: See the section "Qfile Packet Data
Contents", page 165.

Responses to commands, successful or not, come as data packets (that is,
cbaos:dat-op) on the control connection.

In normal usage, only packets with opcode chaos:dat-op are sent on the control
connection. There are three other types of packet that can be sent over the control
connection in unusual circumstances:

1. EOF
From user to server. Opcode = chaos:eof-op (= 14 octal). EOF provides a
clean way for the user to close out the dialogue: the server aborts any
transfers in progress, disestablishes all data connections associated with this
dialogue, and disestablishes the control connection. Since this is what the
server should be doing if the control connection is broken (by the medium
supporting it) in any case, sending the EOF packet is optional.

2. Notification
From server to user. Opcode = fs:%file-notification-opcode (= 203 octal).
The server can send notification to the user at any time. This is an
unsolicited user-directed message by the server. The data content of the
packet is a string to be printed at the user (where he is clearly identifiable) in
real time. It generally warns of impending system shutdown or similar
notifications.

3. Asynchronous mark
From server. to user. Opcode = fs:%file-asynchronous-mark-opcode (= 202
octal). Asynchronous mark is sent over data channels to report an error
during active user-to-server data transfer. (There is no other obvious channel
over which to communicate this error.) See the section "Qfile Errors and
Asynchronous Marks", page 197.

16.6 Qfile Packet Data Contents

The contents of both command and response packets contain some number of tokens
followed by some number of string values.

166

Networks March 1985

16.6.1 Qfile Tokens

There are always some tokens in each command or response. The tokens are fIxed
format, protocol-specified strings, such as operation and option names, and protocol
specified identifIers, such as TIDs. Nonnegative decimal integers, with no trailing
decimal point or other random punctuation, (<1lum >S), are valid tokens. All other
tokens must be in uppercase. Tokens thus never contain spaces or funny characters
that could cause parsing ambiguities. Tokens are separated by spaces; in most
contexts, exactly one space separates tokens and multiple spaces imply the existence
of missing tokens.

16.6.2 Qfile String Values

String values convey file pathnames, properties, error messages, and other string
data whose content cannot be so syntactically restricted. Except in the case of error
messages, string values are only constrained to not contain the Symbolics Newline
(215 octal) character. (This does create certain problems and is a known deficiency).
If there are string values, a Lisp Machine Newline (215 octal, henceforth <NL»
follows all the tokens, followed by the string values, themselves separated by <NL>.
If there are no string values, there is no <NL>. When there are string arguments,
the protocol requires a <NL> following the last argument. Servers are inconsistent
about requiring the fInal <NL>, though.

16.6.3 Qfile Syntax

In the following syntactic descriptions:

• Brackets ([]) followed by an asterisk (*) represent optional groups repeated 0 to
more times.

• Brackets ([]) not followed by an asterisk (*) represent an optional construct.

• Braces ({}) denote precedence grouping.

• <SF> is a Symbolics Space character (40 octal).

• <NL> is a Symbolics Newline character (215 octal).

• Actual spaces are for legibility only.

The general syntax of command and response packets:

token [<SP> I {<SP> token}]*
[<NL> string-value [<NL> string-value]* <NL>]

167

March 1985 Programmer's Reference on Networks

The format of the common part of the token portions of command and response
packets:

command: TID <SP> [FH] <SP> CMD [<SP> token-arg]*
[<NL> string-arg [<NL> string-arg]* <NL>]

response: TID <SP> [FH] <SP> CMD [<SP> token-result]*
[<NL> string-result [<NL> string-result]* <NL>]

The tokens shown above specifying TID, FH, and CMD are all required in every
command or response. Their interpretation and format:

TID

FH

CHO

Transaction identifier - Generated by the user in the command
packet and sent back by the server in the response packet. This
field is required in every command or response packet. Via the
TID, the user can tell which response is for which command.
(Remember that the server is not constrained to reply in order.)
The TID is limited to a maximum of 5 characters.

File handle - Identifies a data channel or open file. Although
not every command or response contains a file handle, this field is
required, and its value (a null file handle) is an empty string to
indicate omission. Thus, if the file handle is omitted, both the
space that would precede it and the space that would follow it
remain. Like TIDS, file handles are limited to a maximum of 5
characters.

Each data channel has a unique file handle associated with it.
The user side defines the file handles for a given data connection
at the time the data connection is established. The user and the
server use these file handles to identify the data channels of that
connection for the life of the dialogue. Thus, there are input file
handles for data channels from user to server and output file
handles for data channels from server to user. Data channels are
thus said to have a direction, polarity, or gender.

There is a one-to-one mapping between data channels and files
that the server has opened at the request of the user. Thus, one
can think of input and output file handles as identifying both an
open file stream and a data channel.

Command name - An arbitrary-length string identifying the
required operation. These command names must be presented in
uppercase, and are chosen from the fixed set described below. We
reserve the right to extend this set arbitrarily. All characters are
significant.

The args and results vary depending on the command and are included in the
description of each command. The successful response to a particular command has:

168

Networks March 1985

• The same TID as the command.

• The same file handle (null or nonnull).

• The same command name.

An error response is identical, but has the command name ERROR in all cases.
The values of success and error response are described in the appropriate command
descriptions.

16.7 Qfile Marks and EOF Packets

The protocol designates three special types of packets:

Packet Type Opcode

EOF chaos:eof-op (= 14 octal)

Synchronous mark fs:%file-synchronous-mark-opcode (= 201 octal)

Asynchronous mark fs:%file-asynchronous-mark-opcode (= 202 octal)

EOFs on the control connection are rare (maximum one per): See the section "Qfile
Packet Opcodes", page 165. EOFs are sent on data channels to mark the end of the
data in the file when reading or writing. That is, when the user is writing a file
and wishes to show that there is no more data, he sends an EOF packet on the
relevant data channel to tell the server it has reached the end. This is necessary,
over and above the CLOSE command, so that the server can know that all data
have been read from the data channel before closing the file. Similarly, the server
sends an EOF packet after the last byte of file data when reading. EOF packets are
always empty (contain no data). The user side detects end of file on input by
receipt of this packet.

Synchronous marks are sent on data channels to signal synchronization points,
corresponding to control connection events, other than end of file. There is no data
in the synchronous mark; its opcode conveys all its meaning. For example, when
the server recieves a FILEPOS (set file position) command to an input file, it sends
a synchronous mark over the data channel before actually setting the new file
position and pumping the new data into the data channel. Since the user side has
requested an unbounded amount of data, there is no way that the user side could
tell where the old data (sent before the new fIle position was set) ended and the
new data (sent after) began, save for the synchronous mark. The command
descriptions describe the use of synchronous marks where appropriate: See the
section "Qfile Command Descriptions", page 169.

169

March 1985 Programmer's Reference on Networks

Asynchronous marks are sent over the control connection to signal errors during
active user-to-server data transfer. For details on asynchronous marks: See the
section "Qfile Errors and Asynchronous Marks", page 197.

16.8 Qfile Command Descriptions

Conventions used in the descriptions:

• Byte sizes are expressed as decimal numbers. Any other number larger than
one digit is explicitly stated to be octal or decimal.

• <none> means that there are no arguments of this type.

• <num> means a sequence of ASCII characters that are all digits (octal codes
060 through 071, that is, 0 through 9). Such numbers are always expressed in
decimal. These numbers are unsigned but can have leading zeroes.

The descriptions of the commands include listings of each of the types of arguments
and results. For a detailed description of the handling of <SF> and <NL>
characters: See the section "Qfile String Values", page 166. We use lines and line
breaks in the descriptions freely; a <NL> is not implied in the packet format when
we continue a description on a second line.

Bear in mind that the end of a command or response is not marked by a special
character. The medium supporting the packets is assumed to be able to convey the
length of transmitted data.

16.8.1 Data-connection Qfile Command

DATA-CONNECTION
token args = IFH OFH
string args = <none)
token results = (none)
string results = (none)

This establishes a new data connection. The IFH and OFH fields are the input and
output file handles to be associated with this data connection. The user side
generates the file handles, which must be distinct from all other file handles of other
data connections of this dialogue. The file handle (FH) field of the command must be
omitted. The input fue handle describes the server-to-user data channel of the
connection to be established and the output file handle describes the user-to-server
channel.

When the server receives a DATA-CONNECTION command, it attempts to contact
the user host in some way derivable from the values of the file handles. The user
side must be prepared to complete this new data connection. The server responds to

170

Networks March 1985

the DATA-CONNECTION command immediately, even though the new data
connection might not yet be established. Of course, the user side cannot use the
data connection until its establishment is complete.

The Chaosnet implementation of this transaction uses the OFH as a contact name.
The user sends the DATA-CONNECTION command to the server, and then listens
on the contact name equal to the OFH, while awaiting the response to the DATA
CONNECTION command. This requires a parallel wait, is difficult to get right, and
is an acknowledged deficiency. The server attempts to contact to the name equal to
the OFH received in the DATA-CONNECTION command and reports success via the
response packet. This Chaosnet connection becomes the new data connection.

16.8.2 Un data-connection Qfile Command

UNDATA-CONNECTION
token args = <none)
string args = <none)
token results = <none)
string results = <none)

This command explicitly disestablishes a data connection from the user side. The
user side has the option of disestablishing data connections at its discretion; the
Symbolics computer user side disestablishes data connections that have not been
used for long periods of time. There is no place in the protocol where
disestablishment of data connections is required, other than at the end of the
dialogue, where it is implicit.

The data connection to be disestablished is the one whose input or output file
handle appears in the FH field of the UNDATA-CONNECTION command.

It is not permitted to explicitly disestablish a data connection either of whose
channels is active. If the dialogue is terminated by breaking of the control
connection, all file handles become meaningless, and the server must close all data
connections known to it and close-abort all files opened on behalf of the user during
the dialogue.

16.8.3 Open Qfile Command

OPEN
token args = [option]
string args = filename
token results = creation-date length qfaslp characters

[author [byte-size [filepos]]]
string results = truename

The author, byte-size, and filepos results are optional (they are optional tokens as
well).

This command opens a file for reading, writing, or direct access at the server host.

171

March 1985 Programmer's Reference on Networks

That means, in general, asking the host file system to access the file and obtaining
a file number, pointer, or other quantity for subsequent rapid access to the file.

The fi lename argument is the pathname of the fue to be opened. It is in the full
pathname syntax of the server host. It contains no host identifier of any kind. It
is always fully defaulted, in the sense that it has a directory and file name (and file
type if the operating system concerned supports fue type). It might or might not
reference a device, if that is appropriate. If the file system of the server supports
version numbers, there is always an explicit version number, even if that number or
other specification is "newest" or "oldest". For some purposes (for example, the
OPEN option PROBE-DIRECTORY), only the directory specified by this pathname is
utilized. See the section "Qfue Open Options", page 172.

The FH field of the OPEN command specifies a file handle that is used in all future
commands (in this dialogue) to talk about the open stream that is created by
opening the specified file. If an input file handle is given in the file handle field of
the command, then the file is to be opened for reading. If an output file handle is
given, then the file is to be opened for writing. In either case the file handle serves
to indicate not only the direction of transfer, but also the data channel to be used
for the transfer. A file handle must be supplied, unless a PROBE (a file status
request) is being done. In the case of PROBE, a null (omitted) fue handle is given in
the FH field. For a description on the OPEN option PROBE: See the section "Qfile
Open Options", page 172.

The option field of the OPEN command consists of a number of options, which are
optional tokens. The options encode all the conceptual arguments to the file system
for the OPEN operation except the pathname of the file. Some options also
influence server treatment of the result of the opening. The. options are a mixture
of singleton keywords and keywords followed by single token values. Some options
are always singleton keywords; the remainder of the options are always followed by
values. It is impossible to parse the OPEN command unless the server knows which
are which. Other than for preserving keyword/value pairs, the order of options is
not significant. For a description of all the supported OPEN options: See the section
"Qfile Open Options", page 172.

The token results reflect information about the file opened, when opening is
successful. In the case of a PROBE opening, this information is returned, when the
file exists and is accessible, even though the file is not opened. For detail on the
format and semantics of these values: See the section "Qfile Open Response Result
Values", page 178.

The single string results of a successful opening is a truename of the file actually
opened. This value is discussed more fully: See the section "Qfile Open Response
Result Values", page 178.

172

Networks March 1985

16.8.3.1 Qfile Open Options

Here are the known open options. All are assumed to be· singleton keywords unless
otherwise noted.

READ

WRITE

PROBE

CHARACTER

BINARY

Specifies that the file is to be opened for input (server-to-user
transfer). The READ, WRITE, and PROBE options are mutually
exclusive. One and only one must always be supplied. This
option is redundant, as the direction and presence of the supplied
fIle handle is sufficient to select READ, WRITE or PROBE. The
server should check for consistency anyway.

Specifies that the fIle is to be opened for output (user-to-server
transfer). The READ, WRITE, and PROBE options are mutually
exclusive. One and only one must always be supplied. This
option is redundant, as the direction and presence of the supplied
file handle is sufficient to select READ, WRITE or PROBE. The
server should check for consistency anyway.

Specifies that the fIle is not to be opened at all, but only checked
for existence. If the file does not exist or is not accessible, the
error indications and actions are identical to those that would be
given by READ. If the file does exist, the successful response
packet contains the same information as it would have if the file
had been opened for READ. No (a null) file handle is to be
supplied. The READ, WRITE, and PROBE options are mutually
exclusive. One and only one must always be supplied. This
option is redundant, as the direction and presence of the supplied
file handle is sufficient to select READ, WRITE or PROBE. The
server should check for consistency anyway.

Specifies that we will be transferring character data as opposed to
binary. This affects the mode in which the server opens a file, as
well as whether or not character set translations are performed.
CHARACTER is the default, so it need never be specified. The
server performs character set translation between its native
character set and the Symbolics character set. The data are
transferred over the data connection one character per eight-bit
byte. The check (described in the DEFAULT OPEN option) for
Symbolics object files is not performed. For the effect of
CHARACTER on PROBE openings: See the section "Qfile Open
Response Result Values", page 178.

Specifies that we will be transferring binary data. This affects
the mode in which the server opens the fIle, as well as requesting
it not to attempt character set translation. The user side supplies
the byte size via the BYTE-SIZE option; if not supplied, the
default byte size is 16 bits. No matter what the byte size, the
server transfers each byte of the fIle as two eight-bit bytes, low-

March 1985

DEFAULT

BYTE-SIZE

173

Programmer's Reference on Networks

order first. (The Chaosnet implementation also stipulates that no
16-bit data byte shall be split across two Chaos packets). The
check for Symbolics object files is not performed. Specification of
BINARY for PROBE openings is the nominal default: See the
section "Qfile Open Response Result Values", page 178.

Specifies that the server is to figure out whether to transfer
binary or character data. (The BINARY or CHARACTER options
explicitly specify this information.) This is only meaningful for
input openings: it is an error for output or PROBE openings.
For file systems that maintain the innate binary or character
nature of a file, the server simply asks the file system which case
is in force; the server tells the file system. (If the file was created
by the file server, it establishes this information from the BINARY
or DEFAULT options). For file systems that do not maintain this
information, the server is required to perform a heuristic check for
Symbolics object files upon the first two l6-bit bytes of the file. If
the file is thus determined to be a Symbolics object file, the server
performs a BINARY opening; otherwise, it performs a
CHARACTER opening.

The details of the check are as follows: if the first two 16-bit bytes
are the octal numbers 143150 and 071660 respectively, the file is
recognized as a Symbolics object file. Alternatively, if the first 16-
bit byte is the octal number 170023 and the second 16-bit byte is
any number between 0 and 77 octal, inclusive, it is also recognized
as a Symbolics object fue. In any other case, it is not.

Must be followed by a decimal <num> between 1 and 16, inclusive.
BYTE-SIZE can only be supplied for BINARY openings and can be
ignored for PROBE openings.

If a BINARY opening is requested and BYTE-SIZE is not supplied,
the assumed value is 16 for output openings. For input BINARY
openings, the default is the host file system's stored conception of
the file's byte size (for those hosts that natively support byte
size). This information is of great value to the Symbolics
computer fue copier when it does not know about the particular
file type involved. For file systems that do not natively support
byte size, the default on BINARY input is 16.

For fue systems that support byte size, the server should supply
this number to the appropriate operating system interface that
performs the semantics of opening the fue. For other operating
systems, a file written with a given byte size must produce the
same bytes in the same order when read with that byte size. . In
this case, the server can choose any packing scheme that complies
with this rule.

174

Networks

DELETED

RAW

SUPER

March 1985

Operating systems that do not support byte size are only required
that binary files written from user ends of the current protocol
can be read back correctly. However, the server can increase the
utility of the Symbolics computer at a customer site by choosing
packing schemes that allow all bits of the server host's word to be
accessed and concur with other packing schemes used by native
host software.

For example, the Multics server packs:

Byte Size" Packing Scheme

7, 8, or 9 bits four per 36-bit word

10, 11, or 12 bits three per 36-bit word

13, 14, 15, or 16 bits two per 36-bit word

In the 9-bit packing mode, native Multics character-oriented
software can access each logical byte sequentially. In l8-bit
packing mode, each Symbolics byte is in a halfword, easily
accessible and visible in an octal representation. To achieve
maximum data transfer rate and access all bits of a Multics word,
a byte size of 12 can be specified.

Specifies that "deleted" files are to be treated as though they were
not "deleted". This is only meaningful for operating systems that
support "soft deletion", or undeletion of files. Other operating
systems must ignore this option. Normally, deleted files are not
visible to the OPEN operation; this option makes them visible.
For output openings, DELETED is meaningless and an error if
supplied; instead, use the IF-EXISTS option.

Specifies that character set translation is not to be performed, but
characters are to be transferred intact, without inspection. This
option is only meaningful for CHARACTER openings; it is an
error otherwise, and an error for PROBE openings. Servers
operating natively in the Symbolics character set (for example,
Symbolics computers) can ignore this option.

Specifies that Rubout quoting is not to be performed. This
operation is only meaningful in CHARACTER mode; it is an error
otherwise or in PROBE mode. This reads or writes character files
where ASCII Rubout characters are a significant part of the file
content (such as ITS XGP files), not where they are an escape for
this protocol. Nevertheless, this is different than RAW, for other
translations are still to be performed: See the section "Qfile
Character Set Translation", page 162.

March 1985

TEMPORARY

175

Programmer's Reference on Networks

The PDP-IO (all operating systems) server considers SUPER
IMAGE to be the official name of this option, but two
counteracting bugs, namely the PDP-IO server's comparing of only
five characters and the Symbolics computer's belief that SUPER is
the name of this option, mask this fact.

It is felt that the name of this option should be neither of the
above, but NO-ESCAPE, NO-RUBOUT-ESCAPE, NO-ESC-177, or
something similarly descriptive.

Used by the TOPS-20 server only: says to use GJ%TMP in the
GTJFN. This is useful mainly when writing files, and indicates
that the foreign operating system is to treat the file as temporary.
See TOPS-20 documentation for more about the implications of
this option. Other servers can ignore it.

This option is meaningless and an error for input or PROBE openings.

PRESERVE-DATES
Specifies that the server is to make an attempt to prevent the
operating system from updating the "reference date" or "date-time
used" of the file. This is only meaningful and legal for input
openings. The Symbolics computer operating system invokes this
option for operations such as View File in the editor, where it
wishes to assert that nobody "read" the file, but just "looked at
it". Servers on operating systems that either do not support
reference dates or do not support users fraudulating or
suppressing update of the reference dates can ignore this option.

INHIBIT-LINKS Only meaningful and permitted for PROBE openings. This option
controls what happens when an attempt is made to open, for
PROBE, something that turns out to be a link. When an
attempt is made to read or write a file that turns out to be a
link, normally, the target file of that link is read or written
instead: that is the contract of links. Normally, PROBE openings
act the same way, describing the target file of the link. If,
however, the INHIBIT-LINKS option is specified, information
about the link itself is returned in the OPEN response, not
information about the target. If the file being opened for PROBE
turns out not to be a link, the INHIBIT-LINKS option can be
ignored. It must be completely ignored by servers for operating
systems that do not support links.

PROBE-DffiECTORY
Only meaningful and permitted for PROBE openings. When
PROBE-DIRECTORY is specified, information is sought about the
directory designated by the fue pathname. Every file pathnfu~e
designates some directory: normally, it is the directory containing
the file to be opened. In this case, it is the directory about which

176

Networks

SUBMIT

March 1985

information is sought. The file name and type of the flle
pathname are ignored as long as they are syntactically valid. This
option exists because on some systems it is syntactically impossible
to explicitly specify a directory any way other than as the
directory portion of a pathname. Such a pathname is called a
directory pathname.

VMS uses SUBMIT. SUBMIT is for output only. It submits the
contents of the flle being written to the operating system as a job,
after the file is closed.

ESTIMATED-LENGTH

IF-EXISTS

An optional parameter. When specified, it must be followed by a
decimal integer value. This option is only meaningful and
permitted for output openings. It allows the user end to suggest
to the server's file system how long the file is going to be. This
can be useful for flle systems that must preallocate files or file
maps or that accrue performance benefits from knowing this
information at the time the file is first opened. This estimate, if
supplied, is not required to be exact. It can be ignored by servers
to whom it is not useful or interesting. The units of the estimate
are characters for CHARACTER openings and bytes of the agreed
upon size for BINARY openings. The CHARACTER units should
be server units, if possible, but since this is only an estimate,
Symbolics units are acceptable. See the section "Qfile Character
Set Translation", page 162.

Meaningful only for output openings, ignored otherwised, but not
diagnosed as an error. It specifies the action to be taken if a file
of the specified name already exists. IF-EXISTS always takes a
value that specifies the action taken. The semantics of the values
are derived from the Common Lisp specification and repeated here
for completeness. If the file does not already exist, the IF-EXIST
option and its value are ignored. The default value of the IF
EXIST parameter (that is, the action taken if IF-EXISTS is not
specified) depends on whether or not the file system supports file
versions. If it does, the default is ERROR (if an explicit version is
given in the file pathname) and NEW-VERSION (if the version
therein is the newest version). For file systems not supporting
versions, the default is SUPERSEDE.

IF-EXISTS provides the mechanism where files can be overwritten
or appended to. With the default setting of IF-EXISTS, new files
are created by every output opening.

Operating systems supporting soft deletion can have different
native policies of what to do if there is already a "deleted" file
with the same name (and type and version, where appropriate) as
a file to be created. The Symbolics computer native file system

March 1985

177

Programmer's Reference on Networks

(LMFS) effectively opts for SUPERSEDE, silently, even if not
asked to do so. Other servers and flle systems are urged to do
similarly. Recommended action is to not allow deleted files from
preventing successful flle creation (with specific version number)
even if an IF-EXISTS option weaker than SUPERSEDE,
RENAME, or RENAME-AND-DELETE is specified or implied.

Here' are the possible values and their meanings:

ERROR Reports an error.'

NEW-VERSION Creates a new flle with the same flle name but
with a larger version number. This is the
default when the version component of the
fllename is newest. File systems without
version numbers can choose to implement this
by effectively treating it as SUPERSEDE.

RENAME Renames the existing file to some other name
and then creates a new file with the specified
name. On most flle systems, this renaming
happens at the time of a successful close.

RENAME-AND-DELETE

OVERWRITE

TRUNCATE

APPEND

SUPERSEDE

Renames the existing flle to some other name
and then deletes it (but does not expunge it, on
those systems that distinguish deletion from
expunging). Then it creates a new file with
the specified name. On most file systems, this
renaming happens at the time of a successful
close.

Output operations on the stream destructively
modify the existing file. New data starts
replacing old data at the very beginning of the
file; however, it does not truncate the file back
to length zero upon opening.

Output operations on the stream destructively
modify the existing file. The flle pointer is
initially positioned at the beginning of the file;
at that time, TRUNCATE truncates the file to
length zero and frees disk storage occupied by,
it.

Output operations on the stream destructively
modify the existing file. New data are placed at
the current end of the flle.

Supersedes the existing file. This means that
the old flle is totally destroyed, that is, removed

178

Networks March 1985

or deleted/expunged. The new fIle takes its
place. If possible, the fIle system does not
destroy the old file until the new stream is
closed, against the possibility that the stream
will be close-aborted. This differs from NEW
VERSION in that SUPERSEDE creates a new
file with the same name as the old one, rather
than a file name with a higher version number.

There are currently no standards on what a server can do if it
cannot implement some of these actions.

IF-DOES-NOT-EXIST
Meaningful for input openings, never meaningful for PROBE
openings, and sometimes meaningful for output openings. IF
DOES-NOT-EXIST takes a value token, which specifies the action
to be taken if the file does not already exist. Like IF-EXISTS, it
is Common Lisp-derived. The default is as follows: If this is a
PROBE or read opening, or if the IF-EXISTS option is specified as
OVERWRITE, TRUNCATE, or APPEND, the default is ERROR.
Otherwise, the default is CREATE.

These are the values for IF-DOES-NOT-EXIST:

ERROR

CREATE

Reports an error.

Creates an empty file with the specified name
and then proceeds as if it already existed.

16.8.3.2 Qfile Open Response Result Values

The results of a successful open operation are reported in the response packet.
They describe the file that is opened. We repeat here the specification of the OPEN
results:

truename

token results = creation-date length qfaslp characters
[author [byte-size [filepos]]]

string results = truename

The full, correct name of the file, all links and nonspecific version
numbers having been resolved. This is a pathname string in the
native syntax of the server host. It should be computed by the
server once it has opened the file, via some request to its
operating system. The request can be of the form: ''What file
corresponds to this JFN, file number, pointer, etc.?" If the
operating system supports version numbers, there is always an
explicit version number in this string. (There is always a
directory name, a file name, and so on.)

Some operating systems might not know the truename of an

March 1985

creation-date

length

179

Programmer's Reference on Networks

output file until it is closed. It is permissible not to supply an
explicit version number in the pathname in the OPEN response in
this specific case.

The creation date of the file, expressed in the form
mm/dd/yy <SP> hh :mm:ss. Note the space between the date and the
time; thus, the creation date is really two tokens, not one.
Leading zeros in the all fields are mandatory. The Symbolics
computer software expects the logical quantity "creation date" to
be the "data creation date" of the information in the file. By
"data creation date", we mean the time that the bits in the file
were decided upon.

This is a fairly tricky and subtle thing. Creation date does not
necessarily mean the time the file system created the directory
entry or records of the file. For systems that support modification
or appending to files, it is usually the modification date of the file.
Creation date can mean the date that the bit count or byte count
of the file was set by an application program.

In the best case, the host file system supports a user-settable
quantity, which the user set to an arbitrary time, to indicate that
the data in this file were created a long time ago by someone else
on another computer. The default value of this quantity, if the
user has not set it, is the time someone last modified the
information in the file. This is the ideal creation date.

This quantity, in the OPEN response for an output file, is
disregarded by the user side, but must be syntactically valid
anyway. See the section "Close Qfile Command", page 181.

The Symbolics computer system software uses this quantity as a
unique identifier of file contents, for a given file name, type, and
version, to prove that a file has not changed since it last recorded
this quantity for a file.

The value of this time is expressed in the local time zone. The
identification of this time zone is not communicated or negotiated
in the protocol; this is a known deficiency.

A <num> reporting the length of the file, in characters for
CHARACTER openings and bytes of the agreed-upon size for
BINARY openings. It is to be returned as 0 for output openings,
even if appending to an existing file. The server usually only
knows the length for a CHARACTER opening in server units,
thus, it reports length in server units.

The handling of PROBE is ambiguous here. Nominally, the
server should return the value of the length that it would return
if the file were opened in the requested (BINARY or

180

Networks

qfaslp

characters

March 1985

CHARACTER) mode. This is what, for example, the PDP-IO
server does. The LMFS server ignores CHARACTERIBINARY in
PROBE and always gives the LMFS idea of the fIle length. No
one has ever complained, which indicates that nobody uses this
capability (to specify CHARACTER). But then again, LMFS
knows innately whether a file is binary or character and thus
knows the correct file length. PROBEF gives you no way to
specify CHARACTERIBINARY in PROBE, although anyone
certainly can open a file for :PROBE via open. Thus, it is fair to
say that the servers should implement this distinction in behavior.

is an indicator of whether or not this is thought to be a Symbolics
binary flle. The acceptable values are the strings T and NIL. It
is obsolete, and present for compatibility. The characters value is
the current way to convey this information: See the value
characters. The qfas 1 p value can be reported as the Lisp inverse
of the characters value.

is an indicator of whether or not this is a CHARACTER opening,
as opposed to a BINARY one. The permissible values are the
strings T and NIL, for CHARACTERS and BINARY, respectively.
In the case of DEFAULT openings, the user end does not know
this information by itself, but the value must be returned in any
case. See the OPEN option DEFAULT. In other cases, it can be
reported as the (represented) value of the CHARACTERSIBINARY
parameter of the OPEN command. PROBE openings are never
specified with DEFAULT.

The next three OPEN response values are optional in a restricted way: Only
trailing values can be omitted and their delimiting spaces are omitted with them.
That is, fil epos can be omitted, if byte-s i ze is omitted then fi 1 epos must also be,
and if author is omitted then all three values must be omitted.

author The "name" of the "author" of the file. This is some kind of user
identifier, whose format is highly system-specific. If the name is
all numbers (or contains any nonalphanumeric characters) or if
the server wants, the server can supply this value in Lisp String
printed-representation (enclosed in ASCII doublequotes (042 octal),
with embedded ASCII quotes or slashes (057 octal) preceded by
ASCII slashes).

As with the creation date value, this quantity is supposed to
represent the logical determinor of the current data content of the
file, not necessarily the agency that actually created the flle. In
the best possible case, this is a user-settable quantity that the
Symbolics computer software can set to assert a time-and-space
distant creation of the data in the flle. The Symbolics computer
software uses it, too, as part of a unique identifier of the data
content of the file.

March 1985

byte-size

filepos

181

Programmer's Reference on Networks

The byte-size agreed upon via the rules described for the BYTE
SIZE option. See the OPEN option BYTE-SIZE. This parameter
is only meaningful for BINARY openings, but must be returned
anyway for character openings, if present, which it must be if the
fi lepos value is returned. See the value fi lepos. A numeric
value or the string NIL is acceptable to byte-size.

A <num> giving the position of the logical file pointer, in
characters or bytes as appropriate for the opening. This is always
zero for an input opening and for an output opening creating a
new file. For an output opening appending to an existing file,
fi 1 epos is the number of characters or bytes, as appropriate,
currently in the file. This number, for CHARACTER openings, is
measured in server units: See the section "Qfile Character Set
Translation", page 162.

16.8.4 Close Qfile Command

CLOSE
token args = <none>
string args = <none>
token results = creation-date length qfaslp characters

[author [byte-size [filepos]]]
string-results = truename

Terminates a data transfer. See the section "Qfile File Transfer Philosophy", page
160. A direct file handle must be given and a transfer must be active on that
handle. Steps include:

• A synchronous mark is sent or awaited accordingly.

• The data channels, if any, are unbound from the open stream.

• The file is closed.

"Closing the file" has highly operating-system specific implementations and
implications. It generally implies invalidation of the pointer or logical identifier
obtained from the operating system when the file was "opened", and freeing of
operating system and/or job resources associated with active file access. For output
flies, it involves ensuring that every last bit sent by the user has been successfully
written to disk. The server should not send a successful response until all these
things have completed successfully.

If a DELETE command has been sent to the stream during the time it is open, the
file is "abort-closed" instead of closed normally. See the section "Delete Qflle
Command", page 186.

The results are syntactically identical to the results of the OPEN command, with
some semantic differences. For output, the creation date is known and must be

182

Networks March 1985

reported in such a way that that value is reported by the OPEN command if this
file is later opened for input. Similarly, the exact truename is known after all close
time renaming of output files is done and must be reported with its version number
(for operation systems supporting version numbers) resolved. Similarly, the length of
an output file in characters is known and is reported (for CHARACTER openings) in
server units.

In an earlier implementation, a. formula for determining file length on PDP-lOs
stated that on TOPS-20 file length is the number of bytes in the file, if it was
written using 7-bit bytes, otherwise, length is five times the number of words. For
binary input, it is twice the number of words in the file. For ASCII output, "len" is
the exact number of characters written, and for binary output, it is the number of
words times the number of bytes per word for the current byte size.

What this actually means is that the reported length is always the number of bytes
or characters (in PDP-IO character set, not Symbolics character set) in the file,
except in a variety of circumstances the length is rounded up to the next even
multiple of the number of bytes/characters packed per word. The system does not
fail to remember the byte length; the problem is that some programs write the same
files with a different byte size, so the file server must compensate. This applies to
all PDP-IO operating systems (but the circumstances alluded to above are different
for each operating system. For example, ITS TECO and DUMP write character files
in 36-bit bytes. On TOPS-20 the file server writes binary files in 36-bit bytes rather
than the BYTE-SIZE option to OPEN. KST files are naturally 36-bit bytes, but
accessed as 9-bit bytes through the FILE protocol because of the 16-bit maximum
byte-size limitation.)

16.8.4.1 Qfile Close and Synchronous Marks

The transmission and receipt of a synchronous mark must occur as part of closing
an open stream. For an output opening, the user side sends a synchronous mark on
the data channel at the same time as the CLOSE command on the control
connection. The server, upon receipt of the CLOSE command, must await the
synchronous mark on the active data channel before closing the file (indicating
successful completion). There is no other way to make sure all the data to be
transmitted have been transmitted. This has some functional overlap with the EOF
packet in the case of a normal close, but in the case of a premature close, there is
no EOFpacket. Even if the data are to be thrown away (for an opening abort
closed), data must be read out of the data channel up to and including the
synchronous mark. Unless this is done, garbage can remain in the data channel and
inadvertently be read during its next use. Note that the process (if that is the
implementation) handling the data channel might receive (and process) the
synchronous mark before the CLOSE command is read: the server must be aware of
this possibility.

There is no difference in synchronous mark processing and synchronization between
the two cases of normal and aborting close of an output transfer. In the aborting

183

March 1985 Programmer's Reference on Networks

case, the data channel never sees an EOF, but sees the synchronous mark occur in
the data stream. The EOF conveys no information in the output CLOSE case, and
is currently thought to be gratuitous (in design). See the section "Waiting for
Acknowledgement of the EOF Packet on Writing with QfIle", page 183.

For an input opening (including data streams produced by the DIRECTORY and
PROPERTIES commands), the server sends a synchronous mark on the data
channel as part of the processing of the CLOSE command. The user awaits the
control connection response before reading the data channel for the synchronous
mark. Thus, to ensure that the server and user do not deadlock in output blocks,
the server should send the synchronous mark after sending the control connection
response.

In the input case, there is a substantial difference between premature and normal
close: the CLOSE command is normally initiated by the user after receipt of the
EOF from the data channel. In this (normal case), the data channel has sent the
EOF and already stopped transferring data. In the premature close case, the user
decides to issue the CLOSE command before receipt of the EOF: he has no way of
knowing (and does not care) whether or not the server has sent the EOF. In this
case, the server must actively stop the data channel's logical process from
transferring data, if it is still transferring data (not yet having reached EOF) before
responding to the CLOSE command. It does not matter to the user side whether or
not the server actually has to stop its data channel or it has arrived at a stop by
itself. The user wades through data, even no data, until passing a synchronous
mark, EOF or no EOF.

16.8.4.2 Waiting for Acknowledgement of the EOF Packet on Writing with Qfile

Formerly, we warned user-side writers that when the EOF packet is sent for a write
opening, it is critical that server acknowledgement (that is, of reading the packet, a
Chaosnet possibility) be awaited before the CLOSE command is sent, lest the server
truncate the file. Chaosnet provides a way for the sender of a packet to determine
if it has been read by the foreign program.

Some research has been done to determine the need for this, or for that matter, the
need for the EOF on output at all, since the synchronous mark seems to convey all
necessary information. The server, upon receipt of a CLOSE command, should not
touch the file (open stream) until receipt of the synchronous mark. In the absence
of data transfer errors, it is now believed to be superfluous (designwise) and a simple
bug that the PDP-10 server closes its ftIe before receipt of the synchronous mark.

On the other hand, the detection of asynchronous marks reporting write errors near
the end of the file (specifically, after the user side has sent the final synchronous
mark) does not work at all in the current protocol. This is an acknowledged
deficiency. When the user sends the synchronous mark, the server is usually still
writing data from the data channel to the stream, and might get an error and send
an asynchronous mark to the user. See the section "Qfl1e Errors and Asynchronous
Marks", page 197. Once the user side sends the CLOSE command, it (probably)

184

Networks March 1985

stops looking for asynchronous marks. There is no clearly defmable time after
sending the synchronous mark when it is safe to send the CLOSE command. This
is a bug. The EOF acknowledgment is thought to be an an attempt to solve this
problem, but does not, for two reasons. First, the reading of the EOF does not
(depending on implmentation) mean that the actual disk 110 has completed. Second,
the asynchronous mark is received via a different channel than the EOF
acknowledgement and can thus still be arbitrarily delayed.

18.8.5 Finish Qfile Command

FINISH
token args = (none>
string args = (none>
token results = creation-date length qfaslp characters

[author [byte-size [filepos]]]
string-results = truename

This command finishes a file, that is, closes it but leaves it open for further 110.
The arguments, results, and their meaning are identical to those of the CLOSE
command. See the section "Close Qflle Command", page 181. FINISH requires a file
handle, which has same meaning as the file handle with the CLOSE command.
The mark processing and synchronization protocol are identical to that of the
CLOSE command. No EOF is ever involved.

Instead of closing the file, the server, for output, writes out all buffers and sets the
byte count of the file. It leaves the flle in such a state that if the system or server
crashes at any time between now and the (later) time that the flle was supposed to
be closed, it would later appear as though the file had been CLOSEd by this
command. FINISH is a reliability feature.

FINISH can be thought of as closing the file and reopening it with the file position
pointer saved. It is somewhat pointless in the input case, but legal. The native
Symbolics file system (LMFS) implements FINISH on an output file by an internal
operation that effectively goes through the work of closing but leaves the file open
for appending.

After successful response and synchronous mark-sending in the input case, active
data transfer is resumed. That is, for a read opening, the data channel is
reactivated and resumes sending data from the file at the point where the control
channel interrupted it. See the section "Close Qfile Command", page 181. In the
case of an output opening, the output channel is set back into a state where it is
prepared to receive data to transmit to ~ the file at the point it left off (when it
received the synchronous mark).

185

March 1985 Programmer's Reference on Networks

16.8.6 Filepos Qfile Command

FIlEPOS
token args = <nurn>
string args = <none>
token results = <none>
string results = <none>

This is QFILE's "set pointer", or file-position setting command.

An input file handle must be supplied in the FH field.

The FILEPOS command requests the server to reset its file access pointer to the
indicated <num> of the file currently open. <num> can indicate either a byte
number according to the current byte size being used or characters for character
openings. If this is a CHARACTER opening, the <num> is measured in server
units, not Symbolics units. See the section "Qfile Character Set Translation", page
162.

The user side expects and awaits a synchronous mark from the senrer after it has
received a successful response to the FILEPOS command. By means of this mark,
the user can differentiate data sent before the new file position was set from data
sent thereafter. Thus, the server's required sequence of actions is:

1. Stop the data channel from transferring data.
2. Set the new file position in the open stream.
3. Issue a response.
4. If the setting of file position was successful, send a synchronous mark.
5. Successful or not, resume input (server sending) data flow in the data channel.

16.8.6.1 The Filepos Qfile Command Byte Size Problem

There is a major design problem with FILEPOS and character set translation, with
regard to character files only. Since there is not a one-to-one correspondence
between characters in the host's file and characters perceiv.ed at the user end, for
hosts that translate, the user has no way to determine file positions via a user-end
program (as opposed to a native program running on the host). The user cannot
determine file positions by counting the number of characters he has output, for
some characters output might correspond to more than one character on some hosts,
and might not on others. Thus, flle positions in character flies obtained by user-side
programs writing files are worthless, as is the FILEPOS operation on character files.
If the user is willing to compromise generality (that is, assume a Symbolics
computer, non translating server), he can evade this problem.

See the section "Qfile Character Set Translation", page 162.

186

Networks

16.8.7 Delete Qfile Command

DELETE
token args = <none)
string args = [filename]
token results = <none)
string results = (nGne)

March 1985

This is the QFILE interface to the "delete" action of host operating systems.

The filename string argument is the full pathname of a file to be deleted. The
same syntactic and other constraints that apply to file pathnames in the OPEN
command apply here. If there is a string argument, the file handle must not be
supplied in the FH field.

"Delete" signifies whatever the word delete means to users of the host operating
system concerned. That is, delete means soft deletion on TOPS-20 and LMFS and
hard deletion on UNIX and Multics. If you try to delete a delete-through link on a
LMFS, you delete its target instead.

If a file handle is given, the string argument must not be supplied. For example,
with a file handle and no string argument, DELETE does not delete anything now.
Instead, it sets a flag in the server or the operating system implementation of the
open stream (ITS DELEWO - "delete while open") that causes the server, at the
time the file (open stream) is closed, to "close-abort" it instead. See the section
"Qfile File Transfer Philosophy", page 160. In the output case, this usually results
in deletion of the file. For a file being appended to, the appendage is reverted or
ignored.

The previous implementation stated that in the file handle case, the file is to be
deleted at close time, input or output, no matter what. The combination of the
Symbolics computer server and native file system do not implement this abort close
deletion for input files.

We currently feel that the better definition of close-abort makes it look as though
you never opened it. See the section "Qfile File Transfer Philosophy', page 160.
The historical behavior seems to have an origin in the fact that the ITS DELEWO
system call implements both sides of the file handle case of DELETE and its
behavior for an input file is to delete the file. However, DELEWO deletes it
immediately in this case, not at close time.

It has also been pointed out that the current protocol feature of implementing close
aborting via the DELETE command is misplaced and instead should be a parameter
to CLOSE, as it is for Symbolics computer programs.

16.8.8 Rename Qfile Command

187

March 1985 Programmer's Reference on Networks

RENAME
token args = <none)
string args = [filenamel] filename2
token results = (none)
string results = [new-truename [old-truename]]

This is the QFILE command to rename files.

There are either one or two string args. If there is a file handle given in the FH
field, only one string arg, filename2 is present. Otherwise, two are present.

The parameters fi 1 enamel (if present) and fi 1 ename2 are pathnames. For a
discussion of file pathnames: See the section "Open Qfile Command", page 170.
They both have directory, file name, and file type (as appropriate to certain
systems). Some operating systems can only rename within a directory.
Nevertheless, the target pathname of the rename is fully specified in any case and it
is up to the server on these systems to check for and reject an attempted cross
directory rename.

If there are two string args, the file designated by filenamel should immediately be
renamed to filename2. This should be an interface to the system's native rename
operation, with all of its system-specific semantics and constraints.

If a file handle is given, only the second filename should be supplied. A supplied FU

also means that the current command is a request to rename the file that is open
on the data channel designated by the handle to fi lename2. The file is renamed at
"some time", perhaps now or perhaps at CLOSE time. For a file that is going to be
renamed at CLOSE time anyway, care must be taken to rename it to the new name
at CLOSE time.

On ITS, this is called a "rename while open" (RENMWO) and is done immediately.
On ,TOPS-20, a GTJFN is done to the open stream. Then, when a CLOSE is later
performed, the CLOSF is done with CO%NRJ set and a RNAMF is subsequently
done to the JFN so obtained.

The string results are optional in a restricted way: Only trailing values can be
omitted and their 'delimiting spaces are omitted with them. That is, old-truename
can be omitted, if new-truename is omitted then old-truename must also be. They are
full pathnames, that is, truenames as described in the OPEN command description.
They specify, respectively, what the new name of the file is and what the old name
was. These quantities are fully known by the user side for operating systems such
as UNIX that support neither version numbers nor subtle interactions of links with
renaming. However, for operating systems that support either version numbers or
interactions of links with renaming, the user side cannot know what the new name
of the file is unless told by the server. For example, if you: rename foo.l isp. 7 to
bar.l isp . newest, which version of bar. 1 isp results?

188

Networks

16.8.9 Continue Qfile Command

CONTINUE
token args = (none)
string args = (none)
token results = (none)
string results = (none)

March 1985

Resumes a data transfer that was temporarily suspended due to an error. For a
discussion of errors: See the section "QfIle Errors and Asynchronous Marks", page
197.

A file handle must be supplied. The data channel designated by that handle must
be in the asynchronously marked state, which data channels enter when an error of
some kind occurs during data transfer. If the error is potentially recoverable,
CONTINUE tries to resume from it. If the error is nonrecoverable, CONTINUE
gives an error response.

16.8.10 Create-link Qfile Command

CREATE-LINK
token args = (none)
string args = link-pathname target-pathname
token results = (none)
string results = (none)

This command, on file systems that support links, creates a link.

A file handle must not be supplied. The pathname strings are host pathnames, as
described in the OPEN command. The pathname strings might or might not have
specific version, but always specify the pathname in the full pathname syntax of the
server host.

A link named by 1 i nk-pathname, which is a link to target-pathname, is created. If
links have esoteric attributes on this system, a reasonable default set is applied.

CREATE-LINK is currently deficient insofar as it should return a truename.

16.8.11 Create-directory Qfile Command

CREATE-DIRECTORY
token args = (none)
string args = directory-pathname
token results = (none)
string results = <none)

This command, on file systems that support such an activity, creates a directory.
Default access and creation attributes apply and should be assured by the server.

189

March 1985 Programmer's Reference on Networks

A file handle must not be supplied. The di rectory-pathname string is a directory
pathname for the directory to be created. The PROBE-DIRECTORY option to the
OPEN command discusses this: See the section "Qfile Open Options", page 172.
The directory portion of the valid pathname di rectory-pathname is the specification of
the directory to be created.

CREATE-DIRECTORY is currently deficient insofar as it should retum a truename
in some form, although there is no parallel for directory truenames in the protocol.

16.8.12 Expunge Qfile Command

EXPUNGE
token args = [temporary]
string args = directory-pathname
token results = number-of-records
string results = <none>

This command effects expunging of directories (final, actual removal of soft deleted
files). For file systems that do not support soft deletion, the command is to be
ignored, that is, responded to positively with no action.

A file handle must not be supplied. The directory-pathname string is a directory
pathname for the directory to be created. The PROBE-DIRECTORY option to the
OPEN command discusses this: See the section "Qfile Open Options", page 172.
The directory portion of the valid pathname directory-pathname is the specification of
the directory to be expunged.

The single optional argument temporary is the token TEMPORARY, when supplied,
and is recognized by the PDP-10 server to mean that it should expunge temporary
flIes, as well as deleted ones. The Lisp Machine user side, however, cannot send
this.

The single token result is a <Dum> specifying how many records, blocks, or whatever
unit is used to measure file storage on the host system, were recovered. The server
should return 0 if it does not know.

There is currently a definitional unclarity as to whether di rectory-pathname is really
a directory pathname or a wildcard pathname of files to be expunged. Thus, using
TOPS-20 as an example, should a pathname of:

<FOO>A.B.::t

expunges all deleted files in <FOO> or just versions of A.B?

There is also unclarity about whether or not wildcards are permitted, or required to
be supported, in the directory portion of the pathname (representing an implicit
request to expunge many directories). The TOPS-20 server allows this and TOPS-20
uses it. TENEX has such a facility but the server does not utilize it.

190

Networks

16.8.13 Set-file-system Qfile Command

SET-FILE-SVSTEM
token args = varies
string args = (none)
token results = (none)
string results = (none)

March 1985

On hosts having multiple file systems, this command selects the identity of the file
system to which all following commands in this dialogue are to be directed. Use it
when that file system is other than the default file system that one gets by
initiating a dialogue with that host.

The token args specify the file system. Their number and format is completely
dependent on host-dependent parameters.

The only current use of this is for Symbolics computer servers to select the FEP
hosts. In this case, the first token arg is the string FEP and the second is a
<num> specifying the disk unit associated with the FEP host.

16.8.14 Login Qfile Command

LOGIN
token args = [userid [password]]
string args = (none)
token results = username home-directory
string results = personname [usergroup]

This command is for logging in the file server at the foreign host. This might or
might not be necessary (depending on operating system and server) to allow the
sheer possibility of a running a program (in this case, the QFILE server program) on
the host. It establishes a user identity that is used by the operating system, among
other things, for establishing file authors and determining file access rights.

The server has the option to reject with error any command except LOGIN if a
successful LOGIN command has not been performed. This is recommended. Many
operating systems perform the login function in a different process and/or
environment than user programs. This above allowance allows the portion of the
QFILE server running in the special login environment to have only the capability of
processing the LOGIN command.

The userid argument specifies the user identity, in the server host's terms, to be
established; the password is the password for that user identity. Both are optional.

_ The fact that these are token args, and not string args, is a known deficiency and
causes problems with user names containing spaces. An omitted user name means
to log out, not in, and has the same semantics as an EOF packet on the control
connection. An omitted password is valid if the host allows password-less login for

191

March 1985 Programmer's Reference on Networks

the specified userid. If the first character of the password is an AScn asterisk (052
octal), user capabilities should be enabled.

The return values are somewhat subtle. username is the operating system's idea of
the user's user identifier. This may be different than the userid argument, if, for
instance, the user logs in with a synonym or short name.

home-directory is a representation of the name of the home directory of the user
identity established. This has system-specific meaning. There is special-case code in
each operating system's user side in the Symbolics computer to interpret various
formats of this representation. It is thus impossible to write a consistent CFTP
without knowing the behavior of each existing server in this regard. The canonical,
default expected behavior, however, is that the representation of the home directory
is a directory pathname for the home directory. The PROBE-DffiECTORY option to
the OPEN command discusses this: See the section "Qflle Open Options", page 172.

It is a known deficiency that home-directory is a token result instead of a string
result.

personname is the user's personal name, last name first, for example, "McGillicuddy,
Aloysius X.". The server can pass a null string if this information is not available to
it.

usergroup is an optional string value, currently returned only by the PDP-10 family
systems. It is a one-character code identifying user group affiliation (project, user
class, and so on). It is not required for other servers to return this argument.

16.8.15 Directory Qfile Command

DIRECTORY
token args = [option]*
string args = pathname
token results = <none>
string result = <none>

This is the command for directory listing, that is, fmding the identities and
attributes for spatially-related groups of files, directories, and links.

Using the DIRECTORY command is much like opening an input file. It starts a
complex multiphase operation that must be terminated with a CLOSE command. A
free input data channel must be selected by the user side and specified by its file
handle in the FH field of the DIRECTORY command. Upon successful response, the
requested data start flowing on this data channel and are followed by an EOF and a
synchronous mark. See the section "Qfile Directory Data Format", page 192.

A CLOSE command must be issued to terminate the DIRECTORY operation, either
after all the data have been read, or before then, if it is decided to abort the
operation. The CLOSE is identical to that for an input file: the server stops data
channel flow if it has not ended by itself and sends a synchronous mark after the
CLOSE response, and so on. See the section "Close Qfile Command", page 181.

192

Networks March 1985

The pathname, in host syntax, specifies the files that are to be described. For a
description of the constraints on pathnames of this type: See the section "Open QfIle
Command", page 170. The pathname generally contains wildcard characters, in
operating-system-specific format, describing potential file name matches. Most
operating systems provide a facility that accepts such a pathname and disgorges vast
quanitities of data about all· files matching this pathname. Some operating systems
allow wildcard (potential multiple) matches in the directory or'device portions of the
pathname; other operating systems do not. There is no clear contract at this time
about what is expected, in this regard, of servers on systems that do not.

18.8.15.1 Qfile Directory Data Format

The data sent over the data channel are a <directory-list>, in the following language:

<directory-list>
<global-info>
<file-info>
<prop-line>

= <global-info> [<file-info>]*
= <NL> [<prop-line> <NL>]* <NL>
= <truename> <NL> [<prop-line> <NL>]* <NL>
= <property-name> [<SP> <property-value>]

Each <file-info> gives the truename of one file and lists its properties. For a
description of truename: See the section "Open Qfile Command", page 170. Each
<prop~ 1 i ne> describes one property and its value for that file. The <g 1 oba 1- info>
describes properties of the file system as a whole.

The following properties are required to be among those listed in the <global-info>:

FREE-SPACE-DESCRIPTION
A string-type property containing a Symbolics Character Set
description of the amount of free file space available on the
system. For a description of string properties: See the section
"Qfile Directory Options", page 194.

SETT ABLE-PROPERTIES
A keyword-list-type property enumerating all <property-name>s for
properties of the files listed that the server and operating system:

• Consider user-settable

• Support the change thereof via the CHANGE-PROPERTIES
command

There is a definitional ambiguity around the issue of listing
changeable properties. Suppose many files (and, potentially,
directories and links) are listed. Some changeable properties are
appropriate to some files listed and some to others. The question
is: which changeable properties shall be listed? It does not matter
anymore what the server does, since the PROPERTIES command
solves this. No one any longer looks at the <changeable-info>
result of a directory list, or should. See the section "Properties
Qfile Command", page 195.

193

March 1985 Programmer's Reference on Networks

Each <property-name> is an alphanumeric (although hyphens are permitted),
uppercase token. Each <property-value> is an encoded form of a property value.
The only overall syntactic constraint on <property-value>s is that they cannot
contain <NL>s. Exactly how each <property-value> is encoded depends on the type
of property. There are defined types of conversion as follows:

Numbers Numeric properties (for example, generation retention count) are
encoded as <nUIn>S.

Dates As with creation date in the OPEN and CLOSE responses, that
is, mmlddlyy <SP> hh:mm:ss, with mandatory leading zeros and
time zone interpreted in the local time zone (acknowledged
deficiency).

Date-or-never's Like a date, but the string Never (case not significant) is
permitted to mean "never". This is appropriate for values such as
the time a directory was last expunged.

Time intervals An interval of time, or the string Never (case not significant).
The range of values here is fairly complex to describe: it is the
set of valid inputs to the function time:parse-interval-or-never.
Examples of such strings are: 6 hours 4 mi nutes 2 seconds, 3 days
5 hours, and 2 days 5 hours 6 seconds. No resolution finer than
seconds can be used.

Keyword lists Some, possibly none, uppercase tokens separated by single <SP>s.
The list of settable properties is an example.

Boolean values The two strings T or NIL, for true and false respectively. An
omitted <property-value> (this is the only case where
<property-value> can be omitted) implies a boolean value of true.
When the <property-value> is omitted, the <SP> preceding it is
also omitted.

Strings The default conversion when the type of a property is not known.
The string value of the property, converted per site specification, is
used. It cannot contain <NL>s - this is an acknowledged
deficiency.

Here is the list of known <property-names>, sorted by conversion, known to the
system:

Numbers BLOCK-SIZE, BYTE-SIZE, GENERATION-RETENTION-COUNT,
LENGTH-IN-BLOCKS, LENGTH-IN-BYTES, DEFAULT
GENERATION-RETENTION-COUNT

Dates CREATION-DATE, MODIFICATION-DATE

Date-or-never's REFERENCE-DATE, INCREMENTAL-DUMP-DATE,
COMPLETE-DUMP-DATE, DATE-LAST-EXPUNGED,
EXPIRATION-DATE

194

Networks March 1985

Time intervals AUTO-EXPUNGE-INTERVAL

Keyword Lists SETTABLE-PROPERTIES, LINK-TRANSPARENCIES,
DEFAULT-LINK-TRANSPARENCIES

Boolean values DELETED, DONT-DELETE, DONT-DUMP, DONT-REAP,
DELETE-PROTECT, SUPERSEDE-PROTECT, NOT-BACKED
UP, OFFLINE, TEMPORARY, CHARACTERS, DUMPED,
DIRECTORY

Strings ACCOUNT, AUTHOR, LINK-TO, PHYSICAL-VOLUME,
PROTECTION, VOLUME-NAME, PACK-NUMBER, READER,
DISK-SPACE-DESCRIPTION, and all others by default.

The semantics of the properties are not documented here; they are defined by the
Symbolics operating system.

16.8.15.2 Qfile Directory Options

The following options to DIRECTORY are recognized:

DELETED

FAST

Treats soft-deleted files as though they were there. Without this
option, they are not to be included among the files listed. Such
files have the DELETED property indicated as "true" among their
properties.

Speeds up the operation and data transmission by not listing any
properties, that is, a null set of <prop-l ine>s, for the files
concerned. It has been proposed that this option cause listing of
the DIRECTORY property as "true" in spite of this, for directories
that are elements of the list.

NO-EXTRA-INFO Speeds up the File System Editor (FSEdit) when listing the top
level of hierarchichal directory systems. This option affects the
appearance of directories in the listing. When given, it shortens
the set of properties listed for directories (as opposed to files and
links). The set of properties is abbreviated by the following rule:
Any property requiring that FSEdit go to the actual directory file
to extract information out of it (as opposed to information
extractable out of the directory's directory entry) need not be
listed. This typically eliminates listing of directory-specific
properties such as information about default generation counts
and expunge dates.

DIRECTORIES-ONLY
This subtle and powerful option changes the semantics of
DIRECTORY fairly drastically. Normally, the server returns
information about all files, directories, and links whose pathnames
match componentwise with the supplied pathname. This means
that for each file, directory, or link to be listed, its directory name
must match the (potentially wildcarded) directory name in the

March 1985

195

Programmer's Reference on Networks

supplied pathname, its file name must match the file name in the
supplied pathname, and so on.

When DIRECTORIES-ONLY is supplied, the server is to list only
directories, not whose pathname matches componentwise with the
supplied pathname, but whose pathnames expressed as directory
pathnames match the (potentially wildcarded) directory portion of
the supplied pathname. The PROBE-DIRECTORY option to the
OPEN command discusses this: See the section "Qfile Open
Options", page 172. What is more, the returned <truename>s in
the directory list must be expressed as directory pathnames as
well.

It is not yet established what servers on hosts who do not support
this type of action natively are to do when presented with
DIRECTORIES-ONLY and a pathname with a wildcard directory
component.

16.8.16 Properties Qfile Command

PROPERTIES
token args = [AFH]
string args = [pathname]
token results = <~one>
string results ~ <none>

This command finds out the properties of one file. It operates like the DffiECTORY
command, requiring an input data channel and a CLOSE cycle. It is conceptually
different from DIRECTORY in the following ways:

1. There is no wildcard matching. This makes lookup more efficient in some
systems. It is an error if the file specified does not exist or is not accessible:
An appropriate specific error is reported by the server in this case. It is not
an error if a DIRECTORY does not match any files.

2. All possible information is returned and there are no abbreviation options.

3. The fIle can be identified by fIle handle as the fIle that is open through the
open stream operation. This solves some timing problems and is needed by the
Symbolics computer system.

4. The list of settable properties returned in the directory listing is defmable,
exact, and relevant to the one specific file listed.

The file handle in the FH field specifies an otherwise-free, user-side-selected input
data channel for the listing transfer as with DIRECTORY. The fIle whose
properties are sought is specified in one of two ways:

196

Networks March 1985

1. Its pathname, a host-syntax pathname via the pathname string argument. AFH
must not be supplied. For a description of host-syntax pathnames: See the
section "Open Qfile Command", page 170.

2. An active file handle that is given as the token argument AFH. If supplied, it
is the same file, which is open via this handle, about which properties are
requested. The path name string argument must not be supplied.

The data transfer, closing, and aborting protocol is identical to that of the
DIRECTORY command: See the section ''Directory Qfile Command", page 191. The
data format, however, is somewhat different. It has a <file-properties> in the
following addition to the DIRECTORY syntax:

<file-properties> = <settable-props-list> <file-info>
<settable-props-list> = [<property-name>]* <Nl>

The <property-name>s given in the <settable-props-l ist> are the settable properties
for the single file listed. For a description of settable properties: See the section
"Qfile Directory Data Format", page 192.

18.8.17 Change-properties Qfile Command

CHANGE-PROPERTIES
token args = <none>
string args = [pathname] [<prop-line>]*
token results = <none>
string results = <none>

This changes one or more properties of a file. The properties that can be changed
are those listed in the SETTABLE-PROPERTIES property of the commands
DIRECTORY or PROPERTIES.

The file is specified either by the pathname string argument or the active file handle
in the FH field of the command. The presence of a nonnull FH field implies that the
pathname string argument is not present.

The <prop-l ines> have the same syntax and semantics as for DIRECTORY and
PROPERTIES. The values of the properties are expressed in the converted
representations: See the section "Directory Qfile Command", page 191.

The server is to attempt to modify all the properties indicated to their values
indicated. There is currently no definition about what it should do if it can change
some and not others.

In the file handle case, there is some craft required in the setting of attributes that
are modified by the act of closing the file. For example, the Symbolics computer
system changes the creation date of files open for output in certain circumstances.

197

March 1985 Programmer's Reference on Networks

On most systems, closing a stream open for output implictly sets the creation date.
If this is the case, the server must either inhibit the system from doing so, change
the creation date of the open stream with CHANGE-PROPERTIES, or reset the
creation date to its required value after closing the file.

16.8.18 Complete Qfile Command

COMPLETE
token args = [option]*
string args = default-pathname string
token results = status
string results = new-string

This command performs file pathname completion.

No file handle must be supplied.

string is a partial filename typed in by the user and default-pathname is the default
name against which it is being typed. The filename is completed according to the
files present in the. host file system and the possibly-expanded string is returned.

Allowed options are DELETED, READ, WRITE, OLD, NEW-OK DELETED means
not to ignore deleted files - this applies to TENEX. READ means the file is going
to be read (this is the default). WRITE means the file is going to be written, and
affects version number defaulting. OLD means an existent file is required (this is
the default). NEW-OK means that it is permissible for the string to complete to the
name of a file that does not exist.

The returned status is NIL, OLD, or NEW. NIL means that an error occurred,
OLD means that the string completed to the name of an existent file, NEW means
that the string completed to a legal filename that is not the name of an existent
file.

16.9 Qfile Errors and Asynchronous Marks

16.9.1 Qfile Error Responses

If a command is rejected, the server returns an error response that is a Symbolics
character set data packet with an opcode of chaos:dat-op (= 200 octal). It has the
format:

TID <SP> FH <SP> ERROR <SP> ere <SP> e <SP> message

The TID and FH are the TID and file handle from the command that failed. The
other fields (ere, e, and message) indicate the type of error in three different ways.

198

Networks March 1985

The ere part is a 3-character error code: See the section "Qfile Error Codes", page
198. (The error codes are subject to change and extension without notice.) e is a
singie-character that is either F (l06 octal) for a "fatal" error or R (122 octal) for a
restartable one. All errors in response to commands are "fatal". Errors occurring
during data transfer that generate asynchronous marks are allowed to be restartable
if they can be resumed. See the section "Qfile Asynchronous Marks", page 198.
The message part is a human-readable (Symbolics character set) error message,
usually obtained from the host operating system. The message can contain <NL>
characters.

16.9.2 Qfile Asynchronous Marks

When a data channel process, in either direction, encounters an error condition, an
asynchronous mark is sent. Typically, asynchronous marks indicate error conditions
in the transfer, such as running out of disk space or allocation, or a bad disk record.
Some of these might be recoverable; some of these might not be recoverable. When
reading, the asynchronous mark is sent over the data channel over which the data
were being read. When writing, it is sent on the control connection. This is the
one case where an asynchronous event happens on the control connection. (The data
connection is not used in this case because its two channels are unrelated and the
receive half might be in use for another transfer.)

An asynchronous mark is a packet with opcode
fs:%file-asynchronoUB-mark-opcode (= 202 octal). Its data content is identical to
an error response: See the section "Qfile Error Responses", page 197. The
Symbolics server tries to install the TID of the OPEN, nffiECTORY, or
PROPERTIES command that started the transfer. The file handle, FH, must be the
one for the data channel that encountered the error.

When a data channel process encounters an error, it should send the asynchronous
mark and enter the "asynchronous marked" state. It should also be prepared to exit
this state and resume the transfer if the error can be proceeded from and it is given
instruction to do so by the receipt of a CONTINUE command from the control
connection. The data channel process should also be prepared to exit this state in
response to a CLOSE command (as is necessary with all "fatal" errors and might be
requested for restartable ones) if the server receives a CLOSE command for the
channel instead of a CONTINUE command. In this case, the data channel process
must exit the "asynchronous marked" state into performance of the CLOSE cycle:
See the section "Close Qfile Command", page 181.

16.9.3 Qfile Error Codes

The selection of the three. letter code that represents the type of error encountered
is a complex subject. The basic scheme is for the server to map operating-system
dependent error representations into these three-letter codes shown in this section,
which try to characterize all possible file-access-related errors.

199

March 1985 Programmer's Reference on Networks

We do not describe the semantics of these errors here, but just give the phrases for
which these three-letter codes are abbreviations. The current intended semantics of
these phrases are described fully elsewhere. See the section "File-system Errors" in
Reference Guide to Symbolics-lisp. The server should attempt to map operating
system-specific errors into these codes as defined by the meaning of the phrases
(encoded in the names error flavors) therein.

One of the largest unresolved problems in the choice of error codes is whether, for
example, an "access violation causing a rename to fail" is to be reported as an access
violation or rename failure and why. Basically, the space of errors is two
dimensional (for example, RENAMEIDELETE x DNF/ATD) and the current error
flavor structure does not allow this.

In general, the Cannot XXX File codes (where XXX is the three letter code) are
catchalls for things that do not have more specific codes.

Although this is what the Multics server does, it would be more helpful if it were
more descriptive.

This is the current state of the error table:

ATD
ATF
DND
laD
IOL
IBS
!WC
RAD
REF
WNA
ACC
BUG
CCD
CCL
CDF
CIR
CRF
CSP
DAE
DAT
DEV
DNE
DNF
FAE
FNF
Faa
FOR

Incorrect access to directory
Incorrect access to file
"Don't delete" flag set
Invalid operation for directory
Invalid operation for link
Invalid byte size
Invalid wildcard
Rename across directories
Rename to existing file
Wildcard not allowed
Access error
File system bug. This includes all protocol violations.
Cannot create directory
Cannot create link
Cannot delete file
Circular link
Rename failure
Change property failure
Directory already exists
Data error
Device not found
Directory not empty
Directory not found
File already exists
File not found
File open for output
Filepos out of range

200

Networks

FTB
HNA
ICO
IP?
IPS
IPV
LCK
LNF
LIP
MSC
NAV
NER '
NET
NFS
NLI
NMR
UKC
UKP
UNK
UUO
WKF

File too big
Host not available
Inconsistent 'options
Invalid password
Invalid pathname syntax
Invalid property value
File locked
Link target not found
Login problems
Miscellaneous problems
Not available
Not enough resources
Network lossage
No file system
Not logged in
No more room
Unknown operation
Unknown property
Unknown user
Unimplemented option
Wrong kind of file

March 1985

201

March 1985 Programmer's Reference on Networks

17. Interfacing to the Network System

This document describes the interface to the lower levels of the network system. It
does not describe the user interface or the service interface. It will help you
implement a network protocol and integrate it with the existing mechanisms
provided by the system. Before reading this document, you should be familiar with
the standard issues involved with implementing network protocols.

The functions described here are not intended to be used by application programs
nor directly by the service mechanism. Application programs interact with the user
interface provided by specific network protocols (for example, Chaosnet) or preferably
with the generic service mechanism that chooses the appropriate network protocol.
See the section "The Lisp Machine Generic Network System", page 37.

The core network provides a standard model for dealing with packets (the basic unit
of communication), interfaces (software and hardware to move packets from one
machine to another), and network protocol implementations. It is this standard
model and the interactions with it that are described elsewhere: See the section
"Subpackets and Coercing Packets", page 204.

17.1 Packets: Interfacing to the Network System

Packets are the basic unit of communication between network nodes. The Symbolics
computer implements a packet as an array of flXIlums, typically art-8b or art-1Gb,
depending on what the packet is being used for. For example, a Chaosnet packet is
an art-1Gb array, but a TCP packet might be an art-8b array.

art-string is another useful array type. The Chaosnet often views the data portion
of the packet as a string, and it uses the subpacket mechanism to make an
art-string "packet" out of the data portion of the Chaos packet.

17.1.1 The Packet Pool

Packets are the most volatile item of the network. They are allocated (and
deallocated) at rates of possibly hundreds per second. It is inefficient and impractical
in both time and space to create a new packet each time one is needed. Therefore,
a pool of packets exists from which users request and to which they return packets.

Certain decisions have been made to make the network more efficient. You should
understand these decisions when you implement network protocols.

The microcode operates under one restriction: the packets with which it dews must
be wired (that is, not pageable), because it is not allowed to take a page fault during
packet transmission or reception. This restriction leaves the network four ways to
implement packets:

202

Networks March 1985

• Have two pools of packets: one wired that is acceptable to the microcode, and
another for users and networks that is not wired. Unwired packets are copied
to wired packets for transmission, and wired packets are copied to unwired
packets after reception.

• Have one pool of packets. Some packets are wired and accessible to the
microcode for reception, and are unwired after reception. The other packets
are available to users and networks that are wired before transmission.

• Have one pool of packets that are always wired.

• Have two pools of packets: one that is wired that is acceptable to the
microcode, and a second pool of packets that are created and wired as
necessary. When a user requests a packet, the wired pool is checked first. If
the wired pool is empty, the unwired pool is checked. If the unwired pool is
empty, more packets are created (with restrictions) and put on the unwired
pool. When a packet is taken from the unwired pool, it is wired and is
considered part of the wired pool.

The first two possibilities allow for a large number of user packets, because these
packets do not need to be wired in physical memory and can therefore be created if
more are needed immediately. However, the first possibility (used before Release 5.0)
requires copying between the wired and unwired packets. Copying can be a time
consuming operation and might take a page fault on the unwired packet. The
second possibility does not require copying, but wiring and unwiring also take time.

The third possibility does not require extra time to copy or to wire and unwire, nor
can it take page faults on the packets. It also removes the need to keep track of
the exact state of each packet (copied, wired, or unwired). For these reasons, the
core network system for Release 5 implemented one pool of always-wired packets.

This implementation had a few drawbacks. Because all packets were wired, there
had to be a limited number so they would not take up too much physical space.
Extreme had to be taken to ensure that applications and protocol implementations
deallocated all packets.

The Release 6.0 Chaosnet implementation uses the fourth possibility. The rationale
is that under extreme circumstances or heavy load, as on a file server, the
preallocated number of wired packets might not be enough. However, to keep from
wiring and unwiring packets continuously, the user still sees a wired packet.

The restriction for creating more packets is that not more than one-fifth of the
physical memory is wired. Therefore, a server machine with four memory boards
might have more packets than a user machine with one memory board.

To minimize the number of wired packets, the system unwires packets in an
attempt to make the number of wired packets no greater than the value of
neti:*target-number-of-wired-packet-buffers*. Packets are created and wired as
the need arises, and possibly unwired to minimize physical memory requirements.

203

March 1985 Programmer's Reference on Networks

You can use unwind-protect to be sure to deallocate all packets that are allocated.
For example:

(defun do-something-eventually-freeing-packet (packet)
(unwind-protect

(progn ... do some things ...
(pass-the-packet-along-eventually-freeing-packet

(progl packet (setq packet nil»)
... do some more things ...)

(when packet (deallocate-packet packet»»

If while doing some things an error occurs and the function is exited, the
unwind-protect will free the packet, which is part of the function's contract. When
the packet is passed along, the progl arranges for the packet to be passed as an
argument and the variable to be set to nil in the seoping of the outer function. It
is now the responsibility of the called function to return the packet. Doing some
more things is not allowed to use the packet (because it is supposed to have been
freed) and the unwind-protect clause will not free the packet, both because the
variable packet was set to nil.

17.1.2 Reference Material: Packets

neti:aIlocate-packet-buffer &optional (wait-p t) Function
Gets a packet from the free pool if there is one available and returns it to
the caller. If there is no available packet and wait-p is nil, then
allocate-packet-buffer returns nil. Otherwise the function waits for an
available packet and returns it. There is also an :allocate-packet message
to interfaces, which might be useful in some applications. See the message
:allocate-packet, page 212.

a11ocate-packet-buffer is the lowest level function to allocate a packet and
is not normally the function for networks or applications to call directly.
Networks usually define their own packet allocation routine which, in addition
to calling allocate-packet-buffer, coerces the packet to its own format and
fills in default fields. See the section "Example: Interfacing to the Network
System", page 206.

The variable neti:raw-packet-buffer-size has the number of bytes in the
array returned by the function. See the variable
neti:raw-packet-buffer-size, page 204.

neti:deallocate-packet-buffer packet-buffer Function
Gives packet-buffer back to the free pool of packets. packet-buffer may be a
packet or any of its subpackets. deallocate-packet-buffer is the lowest
level function to deallocate a packet. Networks usually defme their own
packet deallocate routine, which can be a stub (that is, it just calls
deaIlocate-packet-buffer) or which can adjust meters and do other internal
bookkeeping.

204

Networks March 1985

neti:raw-packet-buffer-size Variable
The variable stores the number of bytes in the array returned by
neti:allocate-pa~ket-buffer. This is the maximum number of bytes that
any packet can have. The value depends on the architecture of the machine
and, to a lesser extent, on the particular system release. It is not
guaranteed to be the same from one release to another. Nevertheless, since
packet buffers can be used as temporary storage, knowing their size can be
important.

neti:*target-number-of-wired-packet-buffers* Variable
The number of packet buffers the system tries to keep wired. Users may set
this to a higher value on machines that have a need for many packets (for
example, on a server machine).

neti:*actual-number-of-wired-packet-buffers* Meter
The number· of wired packet buffers actually wired. When a packet is
returned to the packet pool this is compared with
neti:*target-number-of-wired-packet-buffers* to determine whether the
packet should be unwired.

neti:*number-of-unwired-packet-buffers* Meter
The number of unwired packet buffers. This can be thought of as the
number of extra packets needed during the most extreme use of the
network.

17.1.3 Subpackets and Coercing Packets

The packet that neti:allocate-packet-buffer returns is an art-8b array of some
length that is dependent on the architecture of the machine (currently 1498 bytes
on the 3600 family; these numbers might change slightly in future releases). See
the variable neti:raw-packet-buffer-size, page 204. Raw art-8b arrays are often
insufficient for network purposes. For example:

• The Chaosnet views the packet as IS-bit words, so it prefers an art-1Gb array.
The Chaosnet also views the data portion of the Chaos packet (that is offset 16
bytes from the beginning of the packet) as a string. Control information is
associated with each packet that is not part of the packet data.

• It is desirable to give the array a name using the named-structure-symbol
feature of arrays so the packet prints out nicely and describe prints out the
fields of the packet.

The array type and byte offset can be done with displaced arrays. The extra control
information can be stored in the array leader. The named-structure-symbol can also
be stored in the array leader. We refer to an array of this type that is displaced to
a packet as a subpacket. The function neti:get-sub-packet takes a packet or
subpacket and returns a subpacket with the desired attributes.

205

March 1985 Programmer's Reference on Networks

neti:get-sub-packet sub-packet array-type nbytes &optional Function
leader-length named-structure-symbol

Returns an array of type array-type that is displaced nbytes (not array
elements) from the beginning of SUb-p.ltket with a leader length of
leader-length, if supplied, and a named structure symbol of
named-structure-symbol, if supplied. Note: array-type must be a symbol. For
example, the following is wrong:

(netiiget-sub-packet sub-packet art-8b 0)

It should be:

(neti:get-sub-packet sub-packet 'art-8b 0).

The byte offset is from the beginning of the subpacket passed as the arglunent,
which is not necessarily the beginning of the network packet. The byte offset is in
bytes, not array elements. For example, a TCP packet is offset from the beginning
of an Internet packet, and the data portion of the TCP packet is offset from the
beginning of the TCP packet, not the beginning of the Internet packet. A simplified
TCPIIP implementation might look like this:

(setq ip-packet (neti:get-sub-packet packet 'art-8b 0»
(setq tcp-packet (neti:get-sub-packet ip-packet 'art-8b tcp-packe~otrset»
(setq tcp-data (neti:get-sub-packet tcp-packet 'art-string tcp-data-otrset»

A common way to define the elements of an array leader is to use the
:array-Ieader option of defstruct. This is not sufficient for subpackets. The
system requires several array-leader elements for its own use. The proper method is
to include the neti:sub-packet structure using the :include option of defstruct.
See the section "Example: Interfacing to the Network System", page 206. You
should also use the :size-symboJ option to get the size of the resulting leader,
which can then be used as the leader-length argument to get-sub-packet.

The leader-length argument to get-sub-packet is not required. If it is not supplied,
the system will supply its own. Subpackets always have a fill-pointer that is
available for general use. The named-structure-symbol argument to get-sub-packet
is also not required.

get-sub-packet only creates new displaced arrays if it needs to. When it does have
to create a new subpacket with specific attributes, it caches the information in the
packet buffer. The next time the same attributes are requested, get-sub-packet
will return the cached subpacket instead of creating a new one.

Note: When using art-1Gb arrays, the fll"st byte is the least significant byte of the
16-bit word and the second byte is the most significant. This Symbolics computer
byte ordering (known as little-ender) is the same as that of PDP-lis and VAX-lis,
but is reversed from the big-ender ordering of PDP-lOs, PDP-20s and 68000s, for
example. Chaosnet is a little-ender protocol, but the DoD Internet Protocol (lP) and
the DoD Transmission Control Protocol (TCP) are big-ender protocols, so care must
be taken when forming multibyte words from a packet or depositing a multibyte
word into a packet.

206

Networks March 1985

A negative byte offset can be used to get space for a header at the beginning of a
sub-packet. When this is done, it is necessary to copy the packet if there is not
enough space at the beginning for the new header. Unless the caller knows that
enough space is available, it should call neti:get-sUb-packet-maybe-copying
instead of neti:get-sub-packet.

neti:get-sub-packet-maybe-copying free-flag length sub-packet Function
array-type nbytes &optional (leader-length
neti:sub-packet-size) (named-structure-symbol
nil)

Returns an array of type array-type that is displaced nbytes (not array
elements) from the beginning of sub-packet with a leader length of
leader-length, if supplied, and a named structure symbol of
named-structure-symbol, if supplied. It also returns a new value for the
free-flag. If a negative offset (nbytes) forces copying of the data, free-flag
indicates whether the old packet should be freed. In this case, T is returned
as its new value.

17.1.4 Example: Interfacing to the Network System

In this example we define a packet named my-packet that we abbreviate to
mypkt. mypkts have a protocol header that is 16-bit words, so we view a mypkt
as an art-1Gb array. We view the data, however, as a string (an array of type
art-string). In order to link mypkts together, we define a Unk slot in the packet's
array-leader. This avoids creating conses that are likely to be scattered throughout
virtual memory and that will soon be discarded.

First we define the packet structure and the byte offset to the data portion. Note
that my-packet-Ieader includes the structure neti:sub-packet. This is required
for all packets that have a meaningful array leader.

(defstruct (my-packet :array (:conc-name mypkt-)

opcode
destination-address
source-address
number)

(:constructor nil) (:size-symbo1 mypkt-data-start»
;packet opcode
;protoco1 address of the packet's destination
;protoco1 address of the packet's origin
;packet number for sequencing

(defstruct (my-packet-1eader (:inc1ude neti:sub-packet) (:constructor nil)
(:conc-name mypkt-)
(:size-symbo1 mypkt-leader-length»

link) ;the link to the next packet in a list.
;NIl means end of list, T means not on list.

;;; we multiply by 2 because we consider my-packet an art-16b array,
;;; which has two bytes per element.
(defconst mypkt-data-start-byte-offset (* mypkt-data-start 2»

207

March 1985 Programmer's Reference on Networks

We now define coercion routines to convert a packet given to us by somebody else
into a mypkt. We also defme a routine that, given a mypkt, extracts the data
portion as a string. Note in packet-My-packet both the leader length and the
named structure symbol are supplied. The leader length is required here since we
define and use a link slot in the array leader. The named structure symbol is
supplied so a packet will print as #<MY'-PACKET 7042346> and so describe will
print the header fields. my-packet-data-string supplies neither the leader length
nor a named structure symbol because we have no immediate need for either of
them. The string does have a fill-pointer, which we are allowed to modify.

(defun packet-my-packet (packet)
(neti:get-sub-packet packet 'art-16b 0 mypkt-leader-length 'my-packet»

(defun my-packet-data-string (mypkt)
(neti:get-sub-packet mypkt 'art-string mypkt-data-start-byte-offset»

Here we define allocation and deallocation meters, and a simple routine that allocates
a mypkt.

;;; Allocation and deallocation meters.
(defvar *mypkts-allocated* 0)
(defvar *mypkts-deallocated* 0)

(defun get-mypkt ()
(prog1 (packet-my-packet (neti:allocate-packet-buffer»

(incf *mypkts-allocated*»)

Alternatively, if we want to wait optionally and fill in some extra fields, we could
define get-mypkt this way:

(defun get-mypkt (&optional (wait-p t»
(let* «packet (neti:allocate-packet-buffer waii-p»

(mypkt nil»
(when packet

(incf *mypkts-allocated*)
(setq mypkt (packet-my-packet packet»
(alter-my-packet mypkt

opcode initial-opcode
des tina t ion -address initial-destination-address
source-address· initial-destination-address
number initial-number)

(alter-my-packet-leader mypkt link T» ;not on a list
mypkt»

Finally, we create a routine to free a mypkt:

(defun return-mypkt (mypkt)
(incf *mypkts-deallocated*)
(neti:deallocate-packet-buffer mypkt»

208

Networks March 1985

17.1.5 Miscellaneous: Packets

neti:packet-being-transmitted sub-packet Function
Returns non-nil if sub-packet is on the transmit list of some interface and nil
if not. A packet may be deallocated when it is on a transmit list
(deallocate-packet-buffer is careful), but packets may not be queued for
transmission more than once. This routine is commonly used by
retransmission routines. If a packet is already on some transmit list, it may
not be requeued for transmission.

neti:map-packet-buffers function &rest other-function-args Function
Applies function (with any given arguments other-function-args) to each
packet buffer, not just allocated packet buffers, not just free packet buffers.
For example:

(neti:map-packet-buffers *'print)

will print each packet buffer. This is primarily a debugging tool to scan all
the packets. A network implementor might determine some module is not
freeing packets. By scanning all existing packet buffers, the implementor
might be able to find the missing packets and determine why and/or where
they were not freed.

Because there are a limited number of packet buffers, and because some network
implementations have internal packet buffering (for example, the Chaosnet buffers
packets that arrive out of order), it is possible to run out of packets in the free pool.
When this happens a deadlock is reached, since no packets can be allocated to cause
communication to relieve the deadlock and no packets can be received by the
microcode. allocate-packet-buffer is usually the first to notice when there are no
packet buffers in the free pool. After too long a period of inactivity, connections
might timeout, close down, and return packets. This might spark a complete
recovery, but at the expense of losing one or more connections.

To try and recover before timeouts happen a packet buffer panic is triggered. A
packet buffer panic informs all known networks and all known interfaces that a
packet buffer panic is happening. Networks and interfaces then try to deallocate
packet buffers in such a way that no information is lost. For example, interfaces
that do not guarantee packet delivery might free packets on the transmit list, and
networks that do not depend on reliable transmission might free packets on out of
order lists. In both of these cases the packets will be retransmitted eventually so no
information is lost.

Packet buffer panics can be triggered for two reasons:

• allocate-packet-buffer will trigger one if there are no packets in the free
pool of packets.

• The free pool can be periodically checked and a packet buffer panic triggered if
it is empty.

209

March 1985 Programmer's Reference on Networks

These are accomplished using the following two functions:

neti:packet-buffer-panic Function
Triggers a packet buffer panic. All known networks and all known interfaces
are sent a :packet-buffer-panic message inside a without-interrupts.
This function should not be called unless a packet buffer panic is needed.

neti:maybe-packet-buffer-panic Function
Triggers a packet buffer panic if the free pool of packets is empty. It is safe
to call this function periodically; the Chaosnet does so every 15 seconds.

17.2 Interfaces: Interfacing to the Network System

An interface, here, means the software that communicates with an individual piece
of hardware (or sometimes software) that causes packets to be moved from one host
to another. An interface's contract is twofold. On transmit, an interface formats
the packet so that it is acceptable to the hardware. For example, the 3600 family
determines the Ethernet address, does some extra formatting of the packet, and
puts the packet on the microcode's transmit list. On receive, an interface accepts a
packet from the hardware, performs some validity checks, determines for what
network the packet is, and delivers the packet to the network.

An interface can also be an encapsuLation interface. For example, it is possible to
put non-Chaosnet protocol packets in Chaos UNC packets and use the Chaosnet as
the transmission medium. In this case the interface puts the non-Chaosnet packet
in a Chaos UNC packet for transmitting. On reception it extracts the non-Chaosnet
packet from the UNC packet (using neti:get-sub-packet) and delivers it to the
appropriate network.

Interfaces (and networks) are represented as flavor instances. Interfaces and
networks send messages to each other to agree on parameters, to determine state,
and to transmit and receive packets.

17.2.1 Standard Communication with Interfaces

This section describes the common uses of interfaces. It does not describe how to
write your own interface. The information here should be sufficient for you to make
your network protocol implementation communicate correctly with the existing
software.

All active interfaces are kept on the variable neti:*interfaces*. Networks should
use this list when they need to know about all the available interfaces. When a
network is enabled it usually adds itself as one of the network users of each
interface that supports the network protocol. This list can also be used to initialize
routing information and to distribute routing information.

210

Networks March 1985

neti:·interfaces· Variable
The list of all active interfaces. Interfaces add themselves to this list as part
of network initialization.

Interfaces such as the Symbolics 3600's Ethernet interface support many protocols.

Just as an interface might respond to a network's request for infonnation, it might
in turn query the network for certain parameters in order to determine whether or
not it really can support the network. Ethernet interfaces currently send an
:address-resolution-parameters message back to the network as part of this
determination. See the section ''Interfacing to Ethernets", page 218. To detennine
if an interface can support a network, the :protocol-supported message may be
sent to an interface.

:protocol-supported network Message
Queries the interface whether it can support network network. Three classes
of values can be returned.

1. The keyword :unsupported means the interface cannot transmit or
receive packets for network.

2. A number or array (depending on the protocol address format of
network) means the interface can support the network and that the
interface insists the protocol address of the interface for network is the
returned value.

3. The symbol t means the interface can support network but does not
insist on a protocol address.

Interfaces and networks do not automatically start sending packets back and forth;
they are explicitly informed about each other. Specifically, for each interface in
·interfaces· a network should determine if the interface supports the network and
if there is a local protocol address that can be assigned to the interface. If these
conditions are met, the interface can add itself as one of the network users of the
interface. This is done with the :add-network message to interfaces.

:add-network network local-address Message
Requests the interface to start receiving packets for, and to start accepting
packets for transmit from, network. protocol-address is to be the interface's
local protocol address for network.

If the network wishes, all of this can be perfonned automatically by the function
neti:find-network-interfaces.

neti:find-network-interfaces network Function
Asks all known interfaces whether they support network. Returns a list of
conses, one cons for each interface that supports network. Each cons is of

211

March 1985 Programmer's Reference on Networks

the form (interface. protocol-address). An interface that requests a specific
address gets it if it is available; other interfaces are assigned the remaining
addresses arbitrarily. neti:find-network-interfaces returns nil if no
interface supports network. An :add-network message is sent to each
interface that is assigned an address.

It is not necessary for networks to remember the protocol address of each interface.
Instead, you can use the :protocol-address message to an interface. This can be
useful for initializing and distributing routing information, and for determining if the
interface is currently supporting the network.

:protocol-address network Message
Returns network's local protocol address of the interface if the interface is
currently supporting the network. Otherwise, nil is returned.

17.2.2 Sending a Packet to an Interface

After networks and interfaces negotiate and a network adds itself as one of the
users of an interface, it is possible to receive and transmit packets on the interface.
Networks transmit packets by sending a message to the appropriate interface, as
described in this section. In the other direction, interfaces deliver packets to
networks. See the section "Packet Reception: Interfacing to the Network System",
page 216.

Simply asking an interface to transmit a raw (sub)packet is not sufficient. If the
packet contains data that may need to be retransmitted, the interface should not
free the packet. Networks also send control information that is not retransmitted,
so it is allowable for the interface to free such a packet after transmission.
Therefore, an interface needs to be told whether or not it must free the (sub)packet
after transmission.

The interface must also know to whom to send the packet. A network is
responsible for determining to what protocol address the packet should be sent, but
it is not responsible for determining the hardware address of the foreign host. An
interface is given both the network and the protocol address of the destination and
does whatever is necessary to deliver the packet to the network implementation of
the foreign host.

:transmit-packet protocol-packet free-flag network protocol-address Message
Causes protocol-packet to be transmitted on the interface. The destination of
the packet is protocol-address within network's addressing domain. It is the
responsibility of the interface to convert the protocol address into a hardware
address, if necessary. It uses protocol-address, network, and the information
communicated during the :add-network message to do the conversion. If
free-flag is nil the packet is not freed by the interface after it is transmitted.
This is common for packets that might need to be retransmitted. If free-flag
is not nil, the packet will be freed by the interface after transmission.

212

Networks March 1985

17.2.3 Miscellaneous: Interfaces

Some interfaces need to prepend bytes to a packet before transmission. A Chaosnet
UNC encapsulation interface would require 16 bytes for the Chaosnet header. If it
can be determined beforehand which interface will probably transmit a packet, it is
desirable to allocate a packet with the necessary number of available bytes at the
beginning. Otherwise, the packet would have to be copied in order to make room
for the additional bytes. The :a1locate-packet message to a network interface
returns such a packet.

:a11ocate-packet &optional (wait-p t) Message
Similar to the allocate-packet-buffer function. It gets a packet from the
free pool of packets if one is available, possibly waiting. The (sub)packet that
is returned to the caller might have an addition byte offset, depending on the
transmit needs of the interface.

17.3 Networks: Interfacing to the Network System

An implementor of a network protocol or protocols usually writes code for routing
packets on output, processing packets on input, connection control, handling overdue
events (timeouts), opening and closing of connections, and receiving packets from and
delivering packets to users and applications. These issues are quite specific to the
particular protocol(s) being implemented and are beyond the scope of this document.
What is documented here are the conventions for integrating a network protocol
implementation with the mechanisms of the system.

17.3.1 Defining a Network

Networks are represented as flavor instances. Networks that are in the namespace
database are based on the network flavor. Each network flavor has a keyword
associated with it that identifies the type of the network. The namespace system
uses this to convert from the network type to the appropriate flavor to instantiate.
The flavor the namespace system uses is stored on the net:network-type-f1avor
property of the type keyword.

net:network Flavor
The flavor on which networks that are in the namespace database are built.

net:network-type-f1avor Property
A property given to keyword symbols. The symbol identifies the type of
network; the value is the flavor to instantiate. If there is no such property,
the namespace system defaults the flavor to network.

For example, the first step in the system's defInition of the Chaosnet is:

213

March 1985 Programmer's Reference on Networks

(defflavor chaos-network () (network»
(defprop :chaos chaos-network net:network-type-flavor)

You can define a network that is not in the namespace database. This is useful
when developing and debugging a network or when implementing a private network
that does not need to be in the namespace database. You must define appropriate
methods to sufficiently masquerade as a network based on the network flavor. As
part of this masquerading, simply define a flavor without any base flavors. You need
not define a type and give the type symbol a net:network-type-f1avor, but it will
not do any harm. For example:

(defflavor magic-network () (»
(defprop :magic magic-network net:network-type-flavor)

As an inverse of the net:network-type-f1avor property, networks based on the
network flavor can be sent a :type message that returns the keyword identifying
the type of the network. By convention, a method should be defined for
masquerading networks as well.

:typs Message
Returns the type keyword of the network.

For our magic network, this would be defined as:

(defmethod (magic-network :type) () ':magic)

17.3.2 Network Addresses: Interfacing to the Network System

Humans usually refer to hosts by textual names. Applications usually convert the
name into a host object by calling si:parse-host. The lower-level portions of
networks, however, deal with parsed addresses. A parsed address is an object that
represents the network address of a host in the form most convenient for the
machine and network implementation. This representation is often not very useful
for a human or for transmitting as text (for example, when transacting with a
namespace server). The textual form of an address is the un parsed address and is a
string. For example, the hexadecimal number #X+OA000006 is the parsed form of
the unparsed Internet address "10.0.0.6". To convert between the two formats,
methods for :parse-address and :unparse-address need to be defmed.

:parse-address address Message
Returns a network address by parsing address, which is a string. address is
a textual representation of a network address. The result may be any object
and depends on the addressing format and needs of the network, and is
usually a number or art-Sb array. The method of the network base flavor
returns the argument address.

214

Networks March 1985

:unparse-address parsed-address Message
Returns a string that is the textual representation of the network address
parsed-address. The methods for :parse-address and :unparse-address
should be inverses; eq-ness is not required. The method of the network
base flavor returns the argument parsed-address.

For example, parsing "401" as a Chaosnet address returns the octal number 401,
which in tum unparses as a string "401". This is accomplished by the following
definitions.

(defmethod (chaos-network :parse-address) (string)
(parse-number string 0 nil 8 t»

(defmethod (chaos-network :unparse-address) (address)
(format nil "-0" address»

17.3.3 Interfacing to the Service Lookup Mechanism

The service lookup mechanism and the concepts of services, protocols, mediums, and
desirability are discussed elsewhere. (See the section "The Lisp Machine Generic
Network System", page 37.) Briefly, given a high-level goal such as remote login to
a host, the system searches for possible ways to realize the goal. This involves such
things as determining what services a host provides, what paths there are to the
host, what protocols the Symbolics computer implements, what mediums those
protocols require, and how those mediums are implemented. Interfacing a network
to this search is rather straightforward. It is not necessary to define methods for
the messages in this section if the network will not participate in the service lookup
mechanism.

All networks are not created equal. Networks (and implementations) can differ in
processing speed, amount of overhead, time to recover from lost packets or errors,
size of packets, and supported features (for example, broadcast or existence of out-of
band signals). Desirability is the result of weighing these factors. The desirability is
a floating-point number between 0.0 and 1.0. Most networks have a constant
desirability, though a network may determine the desirability dynamically. For
example, a network based on telephone calls might compute the desirability based on
time of day.

:desirability Message
Returns a floating-point number between 0.0 and 1.0 that is the relative
desirability of using the network as a medium.

Some networks can support broadcasting a request for a service throughout the
network. Sometimes the ability to broadcast is based on the protocol. For example,
it is often reasonable to broadcast a request for the current time, but it might not
be reasonable to broadcast a request for login service.

215

March 1985 Programmer's Reference on Networks

:supports-broadcast protocol-name Message
Returns non-nil if protocol-name, a keyword, can be supported by
broadcasting a request throughout the network. Otherwise, nil is returned.
The method of the network base flavor returns nil.

The implementation of a protocol communicates over a medium. General protocols
usually use a :byte-stream or :datagram medium. More specialized protocols can
use more specialized mediums. To actually implement a protocol and its base
medium over a particular network, the network-specific medium must be determined.

:possible-medium-for-protocol protocol-name base-medium Message
Returns the name of the medium to use to implement base-medium on the
network. If protocol is not supported, or a medium cannot be determined
from base-medium, then nil may be returned. The method of the network
base flavor returns nil.

Some networks have services that all machines on the network are expected (though
not required) to support.

: default-services Message
Returns a list of three element lists that are the default services that each
host that implements the network is expected to provide. The elements of
the lists are:

1. generic protocol name
2. network specific medium name
3. network specific protocol name

For example, the Chaosnet might return the following:

«:chaos-status :chaos-simple :chaos-status)
(:uptime :chaos-simple :uptime-simple»

The method of the network base flavor returns nil.

17.3.4 Invoking Mediums: InterfaCing to the Network System

The service lookup mechanism now has enough information to know what to do, but
it is not quite able to do it yet. It can ask the network to convert a base medium
for a protocol into a network-specific medium. It must also be able to invoke the
specific medium. To do this, you use the net:deime-medium macro. If the
network medium implements a generic base medium (for example, :byte-stream or
:datagram), then existing protocol implementations defmed with
net:define-protocol will be able to use the network medium. For nongeneric
mediums you can use net:define-protocol to support high-level protocols in the
ways specific to the network. net:define-medium and net:define-protocol are
described elsewhere. See the section "The Lisp Machine Generic Network System",
page 37.

216

Networks March 1985

17.3.5 Packet Reception: Interfacing to the Network System

After a network adds itself as a user of an interface, using the :add-network
message to interfaces, the interface may start receiving packets on behalf of the
network. When a packet arrives and the interface determines to which network the
packet should be delivered, it sends the network a :receive-packet message with
the packet as the first argument. The interface supplies two more arguments: the
interface on which the packet was received, and the network's protocol address of
the interface. These arguments might be useful in updating routing tables or
implementing an interface keep-alive count. Additional arguments may be added in
future releases.

The packet that is delivered to the network is just a packet. One of the first things
that should be done is to extract the protocol packet from the packet by using
neti:get-sub-packet or by using a function for that purpose as in the
packet-my-packet example described elsewhere: See the section "Example: Interfacing
to the Network System", page 206.

Note: There are some circumstances when the interface argument is nil. This
usually happens when a network or an interface determines that the packet is
destined for itself. In this case, the interface on which the packet was received does
not really have a meaning since the packet was not really received. Even though
the interface is nil, the network's protocol address of the intended interface is still
supplied.

:receive-packet packet interface interface-protocol-address Message
Processes packet according to the definition of the network. interface is the
interface from which the packet was received, or possibly nil if the packet
was not really received by an interface. interface-protocol-address is the
network's protocol address of the interface and is always valid even if
interface is nil.

17.3.6 Packet Transmission: Interfacing to the Network System

The routing layer of a network determines the interface and the immediate
destination host for a packet by using algorithms and databases defined by the
particular network. The routing layer then sends the packet and immediate
destination host as arguments in the :transmit-packet message to the interface.
See the section "Sending a Packet to an Interface", page 211.

17.3.7 Network Errors: Interfacing to the Network System

For information on network errors: See the section "Conditions" in Reference Guide
to Symbolics-lisp.

217

March 1985 Programmer's Reference on Networks

17.3.8 Initialization, Reset, and Enable: Interfacing to the Network System

Once a network is fully dermed, instances of it can be made. This is often done
automatically by the namespace system as needed. Of all the known networks, only
local networks, networks to which the machine is attached, actually receive and
transmit packets. They must be initialized when the machine is cold or warm
booted. You may also reinitialize individual networks or the entire network system
manually.

The first part of initializing local networks is for the networks to be declared local.
This is done by putting them on the list neti:*loca1-networks*. When Lisp is
initialized during booting, the system scans the network addresses of the local
machine, as determined by the namespace database, and puts the networks it finds
there on *Iocal-networks*.

neti:*I~aI-networks* Variable
The list of networks to which the local machine is directly attached.

If a network is local but is masquerading as a namespace object then it will not be
automatically put on *locaI-networks*. To interact with global network operations,
the network should add itself to *loca1-networks*. The proper time to do this is
after the primary network is enabled but before the system enables all other local
networks. This is done by adding an initialization to the following list.

net:after-network-initiaIization-list Variable
This variable is an initialization list that contains initializations that are
performed after the primary network is determined and enabled.

For example (remember, this is only for masquerading networks):

::: make an instance that we always consider to be local
(defvar *magic-network* (make-instance 'magic-network»

ii; put it on *local-networks* when the file is loaded
(push *magic-network* neti:*local-networks*)

:ii and make sure it gets on *local-networks* when the
ii; machine is warm or cold booted.
(add-initialization "Add Hagic Network"

'(push *magic-network* neti:*local-networks*)
nil 'neti:after-network-initialization-list)

You can perform two major operations on networks: reset and enable. There is also
a minor operation that some networks support optionally or internally: disable.
Resetting a network completely shuts down the operation of the network and
everything associated with it. Enabling a network initializes databases, attaches the
network to interfaces that support it, and makes the network available for use.
Disabling a network puts it in a quiescent state where packets are not processed.

218

Networks March 1985

The network can later be enabled and should continue operation from the point at
which it was disabled. As part of the system's initialization of the network system it
sends each network on ·loca1-networks* a :reset message followed by an :enable
message.

: reset Message
Requests the network to reset itself. This normally involves closing down
connections, freeing queued packets awaiting processing, entering a state that
refuses to receive or transmit packets, and perhaps informing users and
applications of the network that it is shutting down.

:enable Message
Requests the network to enable itself. This normally involves (re)initializing
databases, attaching to interfaces that support the network, and perhaps
announcing to users and applications that the network is now available.

: disable Message
Requests the network to disable itself. This normally involves freeing
queued-up packets and entering a state that refuses to receive or transmit
packets. It does not affect connections. If the network is then enabled, all
connections should be intact (provided timeout intervals did not expire) and
the network should be able to continue from the point just before disabling.
If disabling is supported, it is usually the first step in a reset operation.

17.3.9 Byte Stream Conventions: Interfacing to the Network System

If the network provides a byte stream interface, the stream should support some
additional messages in addition to the standard stream messages.

:foreign-host Message
Returns the host object of the foreign side of the connection.

: accept Message
Accepts a request for connection.

:reject &optional reason Message
Rejects a request for connection. Reason, if supplied, is a textual reason for
refusal and should be communicated to the requestor if the network is able
to do so.

17.3.10 Interfacing to Ethernets

To convert from protocol addresses to Ethernet hardware addresses, Symbolics uses
the address resolution scheme as described in An Ethernet Address Resolution
Protocol, ARPA document RFC 826. Part of the initial negotiation between
Ethernet interfaces and networks is for the interface to determine what the value of

219

March 1985 Programmer's Reference on Networks

the Ethernet type field is for the network and other relevant parameters for address
resolution.

:address-resolution-parameters Message
Returns multiple values describing the network's Ethernet attributes.
Inapplicable values need not be returned or may be returned as nil. The
values are:

1. The 16-bit Ethernet type field as assigned to this network protocol by
Xerox. Note: The first byte that is transmitted is the most significant
byte of this 16-bit word. This is the opposite of the normal Symbolics
byte ordering within words.

2. The number of bytes in a protocol address for the network.

3. A keyword describing the format of an address for the network. This
may be :little if the address is a number and the first byte is the least
significant byte of the address, :big if the address is a number and the
first byte is the most significant byte of the address, :array if the
address is an art-8b array, or :ilXllum-big if the address is a flXIlum
and the first byte is the most significant.

4. The network protocol address that should cause hardware broadcast if
the interface supports hardware broadcast and if the interface is asked
to transmit a packet to this protocol address.

For example, the Chaosnet defines this method as:

(defmethod (chaos-network :address-resolution-parameters) ()
(values Ix+0804 2 ':little 0»

17.3.11 Interaction with Peek Network Mode

The Peek program can maintain visual information about networks and interfaces.

Networks that are not based on the network base flavor may define methods for
the following messages that return nil.

:peek-header Message
Returns a scroll item that is the header display for the network. The
method of the network base flavor returns a scroll item that enables one to
reset, enable, describe or inspect the network. It is usually unnecessary to
provide a primary method.

:peek Message
Returns a scroll item (usually a list of scroll items) detailing various parts of
the network. This can include details of connections, meters, debugging
information, and routing tables. The method of the network base flavor
returns nil.

220

Networks March 1985

17.4 Starting Servers: Interfacing to the Network System

Most of the discussion so far has assumed that the Symbolics computer is requesting
a service. The Symbolics computer can also be a server, that is, the provider of a
service. A request for a service is handled in a way specific to the definition of the
network. The code that provides the service is often general. Servers are usually
defined with net:define-server. To invoke a server, a network must do several
things.

17.4.1 Finding a Server Description

The network first converts the network specific request (for example, contact name
in Chaosnet or port number in TCP) into a protocol keyword. This is done in a
network-dependent manner using a database defined and maintained by the
network.

The network next finds a seroer description for the protocol. In this discussion a
server description is a structure that identifies what protocol the server implements,
what medium the implementation uses, the function to call to provide the service,
the number and type of arguments the function expects, and a list of additional
properties associated with the server. Server descriptions are kept in the list
neti:·servers· and the protocol the server implements can be obtained by calling
neti:server-protocol-name with the server as the argument.

If a server is found for the protocol, it is customary to spawn a process at this point
(using process-ron-function). This allows the network to continue its duties
independently of server establishment and operation. One of the properties on the
property list of the server description is :process-name. Its value is the suggested
name for the process.

17.4.2 Calling the Server Function

At this point, things get involved. The function that eventually gets called to set up
for calling the server function is neti:funcall-server-intemal-function. The first
argument is the server description. The rest. of the arguments are keyword-value
pairs. Some of the pairs are based on the property list of the server, some are based
on which medium the server uses, and some are based on the arguments to the
server. It is acceptable to supply pairs that are not necessarily needed. Arguments
to the server that are needed but not supplied default to nil.

17.4.2.1 General Arguments: Starting Servers: Interfacing to the Network System

If the :reject-unIess-trusted property is not nil and the host requesting the service
is not trusted, the request for the service should be refused.

If :trusted-p is one of the arguments to the server, then :trusted-p and a
determination of the requested host's trustedness should be one of the keyword
value pairs given to neti:funcall-server-intemal-function.

221

March 1985 Programmer's Reference on Networks

If the :who-Iine property is not nil and if the network supports noting the
establishment and closing of servers, then net:note-server-established should be
called. When the connection is closed the network should call
net:note-server-closed.

If :host is one of the arguments to the server, then :host and the host object for
the foreign host should be one of the keyword-value pairs given to
neti:funcall-server-internaI-function.

If :network is one of the arguments to the server, then :network and the network
invoking the server should be one of the keyword-value pairs given to
neti:funcaIl-server-internaI-function.

17.4.2.2 Medium Arguments: Starting Servers: Interfacing to the Network System

The major dispatch is based on which medium the server uses. Networks may
support two generic mediums: :byte-stream and :datagram. A network may also
implement network-specific mediums and network-specific servers that use them.

If the server uses the :byte-stream medium, :stream and a stream should be one
of the keyword-value pairs given to neti:funcall-server-internaI-function. Unless
there is an explicit :accept-p nil pair in the :stream-options property of the
server, the request for connection is automatically accepted. If the :accept-p
property is nil, the server is responsible for accepting or rejecting the request by
sending either the :accept or :reject message, respectively, to the stream. If the
server returns normally and if the :no-eof property of the server is nil or not
specified, the stream should be closed synchronously. Otherwise, the stream should
be closed in abort mode.

If the server uses the :datagram medium, a different set of arguments is passed to
neti:funcall-server-internaI-function. Three keyword-value pairs are always
supplied. The server does not need to accept these keywords.

• :response-array is an art-8b or art-string array for the response
• :response-array-start is the first array index available for the response
• :response-array-end is the last array index <exclusive) available for the

response

If :request-array is one of the arguments to the server, then three additional
keyword-value pairs are supplied.

• :request-array is an art-8b or art-string array that contains the request
• :request-array-start is the first array index that contains the request
• :request-array-end is the last array index <exclusive) that contains the

request

Server functions for datagram protocols return two values. The first is a success
flag. If this is nil, the request is refused. If it is not nil, a reply is generated.
The second value is either a number that is the number of bytes in the response

222

Networks March 1985

array that are valid, or a string that is the response and that must be copied into
the response array.

If the server uses a network-specific medium, the network should supply whatever
keyword-value pairs it determines are needed by the server.

Remember, it is acceptable to supply keyword-value pairs to
neti:funcall-server-internal-function that are not needed by the server. This
might make setting up the argument list to neti:funcall-server-internal-function
easier.

17.4.3 Reference Material: Starting Servers

neti:*servers· Variable
The list of all supported servers, as defined by the net:define-server macro.

neti:server-protocol-name server Function
Returns the keyword that identifies the protocol the server implements.

neti:server-medium-type server Function
Returns the keyword that identifies what medium the server uses.

neti:server-function server Function
Returns the function that gets called to perform the service.

neti:server-number-of-arguments server Function
Returns the number of arguments the function expects,

neti:server-argument-descriptions server Function
Returns a list of keywords that identify the expected arguments. For
example, the list (:stream :host) means the first argument is a stream and
the second argument is the host object of the requesting host.

neti:server-property-list server Function
Additional properties of the server. This might include a suggested process
name and stream options.

neti:funcall-server-internal-function server &rest arguments Function
This is the general function for invoking a server after the network has
determined the necessary arguments for the server function. server is a
server description structure. arguments are keyword-value pairs off the
possible information the server may need to know.
funcall-server-internal-function matches the supplied keywords with the
argument descriptions in server and invokes the server function. This
function is just an argument matcher and does not close byte streams or
handle the result of a datagram server.

223

March 1985 Programmer's Reference on Networks

Note: In the following two functions, server-description is a description of an instance
of a server, not a description of the characteristics of a server.

net:note-server-established network protocol-name foreign-host Function
connection &rest plist

Informs the system that a new server has been established. The server will
appear in Peek Server mode and might appear in the status line. A server
description, which is a copy of the arguments in a structure, is returned.

net:note-server-closed connection by-foreign-host &optional Function
server-description

Informs the system that the server for server-description has closed. If
server-description is not given, the system searches for connection in the list
of active servers. by-foreign-host is nil if the connection was closed locally, or
not nil if the connection was closed by the foreign host.

224

Networks March 1985

March 1985

\

*

A

225

Index

Index

\ \
Backslash (\) character 24

Transmit
net:

chaos:

Service
File

Chaosnet File

Waiting for

QFILE
netl:

chaos:

Host

Networks and
Numeric host

Network

Dial Network
Connection

Destination
Source

My

Namespace System

net:

Sending message to
netl:

*

A

* * string 30
:* keyword symbol 30
* descriptor file Indicator 24

A
Abort bit 137
abort-servlce-access-path-future function 43
Abort signals 104
accept function 142
:accept message 218
:accept-p property 221
:accept-p stream option for net:define-server 51
Access files on network file servers 131
access path 41
access paths 55
Access Protocol 131
Acknowledgement 117
Acknowledgement of the EOF Packet on Writing with

Qfjle 183
Acknowledgement packet header field 112. 117. 123
active channel 159
actual-number-of-wlred-packet-buffers

meter 204
add-contact-name-for-protocol function 54
Adding new networks 37
Adding new objects to the namespace database 22
:add-network message 210
:add-network message to Interfaces 216
Address 37
address 114
:address attribute 37
Addresses 37
addresses 110
Addresses and Indices: Chaosnet Software

Protocol 110
Addresses: Interfacing to the Network System 213
address: Host Object Attribute 8
Addressing 95
address In routing table 114
:address option for net:define-server 51
Address packet header field 112
Address packet header field 112
Address register 137
:address-resolutlon-parameters message 219
Administrative Functions 28
affiliation: User Object Attribute 14
after-network-Initlalization-list variable 217
AI-CHAOS-11 135
ail-lisp-machines 21
all Usp Machines at site 141
allocate-packet-butrer function 203
:allocate-packet message 212

226

Networks

Ust

Chaos:
chaos:
chaos:

ANS

General

Medium

Chaosnet

art-16
Packets with

Displaced

Remote

netl:
chaos:

Qfjle
Qfjle Errors and

Channels
Arpanet INR/INS

:address
address: Host Object

affiliation: User Object
birthday: User Object

bHmap-printer: Host Object
character-size: Printer Object

defauH-bitmap-printer: Site Object
default-font: Printer Object
default-prlnter: Site Object

descriptor-file
descriptor-file keyword for termlnal-f-argument

descriptor-file: Namespace Object
dont-reply-to-mailing-lists: Site Object

dplt-Iogo: Printer Object
flie-control-lifetlme: Host Object

finger-location: Host Object
font-wldths-flle: Printer Object

format: Printer Object
header-font: Printer Object

home-address: User Object
home-host: User Object

home-phone: User Object
host-for-bug-reports: Site Object

host: Printer Object
host-protocol-desirability: Site Object

Interface-options: Printer Object
Interface: Printer Object

Intemet-domaln-name: Namespace Object
IIspm-name: User Object

local-namespace: Site Object
location: Host Object

login-name: User Object
maChine-type: Host Object
mall-address: User Object

allocate-pkt function 150
all supported servers 222

March 1985

ANS Answer to a simple transaction packet 120
answered-state connection state 143
answer function 142
answer-string function 142
Answer to a simple transaction packet 120
Answer to STATUS request 129
Arguments: Starting Servers: InterfaCing to the

Network System 220
Arguments: Starting Servers: InterfaCing to the

Network System 221
Arpanet Gateway Protocol 133
Arpanet INR/INS anentlon-genlng feature 131
Arpanet Name/Finger protocol 132
Arpanet Telnet and Supdup protocols 131

. Arpanet Time protocol 133
array 204
array leader 206
arrays 204
811-16 array 204
art-16b 204
art-Sb 201
ASCII terminal 69, 70
:ascll-translatlon stream option for

net:deflne-server 51
ask-termlnal-parameters function 69
assure-enabled function 148
Asynchronous Marks 198
Asynchronous Marks 197
anached to user processes 110
anention-gening feature 131
anribute 37
Anribute 8
Anribute 14
Anribute 14
Anribute 9
Anribute 18
Anribute 19
Anribute 17
Anribute 19
anribute 24
attribute 22
Attribute 22
Attribute 20
Attribute 18
Attribute 11
Attribute 9
Attribute 18
Attribute 17
Attribute 17
Attribute 13
Attribute 13
Attribute 13
Attribute 19
Attribute 17
Attribute 19
Attribute 17
Attribute 17
Attribute 22
Attribute 12
Attribute 19
Attribute 9
Attribute 12
Attribute 8
Attribute 13

227

March 1985 Index

name: Host Object Attribute 7
name keyword for termlnal-f-argument attribute 7

name: Network Object Attribute 14
name: Printer Object Attribute 16

name: User Object Attribute 12
network-namespace attribute 25

nickname: Host Object Attribute 7
nickname: Network Object Attribute 14

nickname: User Object Attribute 13
other-sltas-lgnored-ln-zmaJl-summary: Site Object Attribute 20

page-size: Printer Object Attribute 18
peripheral: Host Object Attribute 11

personal-name: User Object Attribute 12
pretty-name: Host Object Attribute 9

pretty-name: Printer Object Attribute 16
pretty-name: Site Object Attribute 18

. prlmary-name-server keyword for termlnal-f-argument
attribute 22

prlmary-name-server: Namespace Object Attribute 22
printer: Host Object Attribute 9

prlnt-apooler-optlonl: Host Object Attribute 10
project: User Object Attribute 14

protocol: Printer Object Attribute 17
remarks: User Object Attribute 14

search-rules keyword for termlnal-f-argument attribute 21
search-rules: Namespace Object Attribute 21

secondary-name-server keyword for termlnal-f-argument

secondary-name-server: Namespace Object
secure-subnetl: Site Object

server-machine: Host Object
:servlce

service: Host Object
Ihort-name: Host Object

IHe-dlrectory: Site Object
lite: Host Object

sHe: Network Object
site: Printer Object

sHe-system: Site Object
spooled-printer: Host Object

standalone: Site Object
lubnet: Network Object .
lupervlsor: User Object

Iystem-type: Host Object
termlnal-f-argument: Site Object

tlmazone: Site Object
type: Network Object

type: Printer Object
update-by

uler-property: Object
valldate-Imfs-du·mp.tapes: Site Object

work-address: User Object
work-phone: User Object

Data Types of Namespace System
Ethernet

Host
Namespace

Namespace System
Network

Printer
Site

Storing database object
User

attribute 22
Attribute 22
Attribute 20
Attribute 11
attribute 38, 44
Attribute 10
Attribute 7
Attribute 19
Attribute 7
Attribute 14
Attribute 16
Attribute 19
Attribute 10
Attribute 20
Attribute 15
Attribute 14
Attribute 8
Attribute 21
Attribute 20
Attribute 15
Attribute 16
attribute 33
Attribute 8, 13, 15, 16, 18, 22
Attribute 21
Attribute 13
Attribute 13
Attribute Indicator 4
Attributes 4
attributes 219
attributes 7
attributes 21
Attributes 4
attributes 14
attributes 16
attributes 18
attributes 25
attributes 11
Attribute value 4

Number of Input packets available 150

228

Networks March 1985

B

Number of packet slots available In transmit window 150
Collision avoidance 105

Loop

OFILE
Upright

Clear Receiver
Clear Transmitter

CRC Error
Loop Back
Lost Count

Receive Done
Receive Interrrupt Enable

Reset
Spy

Timer Interrupt Enable
Transmit Abort
Transmit Done

Transmit Interrupt Enable

·CHAOS.B32"
Chan_state channel

Chan_st~rxav channel
Chan_st~rxw channel
Chan_st~txwa channel
Chan_stB-txw channel

Fixed

BRD

Size in bytes of packet
Packet

Read
Write
Data

The Filepos Qfjle Command

Size in

Generic

B
Back bit 137
Background process 140
Backslash (\) character 24
band-transfer Service 56
BINARY OFILE OPEN option 172
binding 161
Blphase NRZI technique 104
birthday: User Object Attribute 14
bit 137
bit 137
bit 137
bit 137
bit 137
bit 137
bit 137
bit 137
bit 137
bit 137
bit 137
bit 137
bit 137
Bit Count register 137

B

bltmap-prlnter: Host Object Attribute 9
Bit numbering convention 113
Bit representation 104
BUSS-32 subroutine package 148
blockvector field 150
blockvector field 150
blockvector field 150
blockvector field 150
blockvector field 150
BRD Broadcast packet 125
Bridge connection type 114
bridge connection type 114
Bridge node 102
Bridges 37. 114
Broadcast: Chaosnet Software Protocol 125
Broadcast packet 125
Broadcast Sent connection state 127
buffer 204
buffer panic 208
Buffer register 137
Buffer register 137
byte count 112
Byte offset 204
Byte Size Problem 185
BYTE-SIZE OFILE OPEN option 172
bytes of packet buffer 204
Byte Stream Conventions: Interfacing to the Network

System 218
Byte Stream Media: Usp Machine Generic Network

System 55
:byte-stream medium 221
:byte-stream medium type 51
byte streams 44

March 1985

c
Chaosnet

loctl System
Reducing

OVerview of Remote Login
Reducing Gall Cost with Public

Eliminate record of

netl:

Namespace Database

QFILE active
QFILE data
QFILE free
Chan_state

Chan_stB-rxav
Chan_stB-rxw
Chan_stB-txw

Chan_stB-txwa

229

Index

c c
cable 102
Gable transceiver 102
Gall Commands: Chaosnet UNIX Implementation 155
Call Cost with Public Garrier Networks 97
Galling the Server Function 220
Capability 67
Garrier Networks 97
Garrier sense 105
CCIlT Recommendation X.25 Interface 15
CFT? 159
Change-properties Qfjle Command 196
changes 28
changes descriptor file Indicator 24
change-server-error-dlsposltlon function 55
Changes files 24
Changes Flies 26
Changes to database 26
Changes to namespace 26
channel 159
channel 159
channel 159
channel blockvector field 150
channel blockvector field 150
channel blockvector field 150
channel blockvector field 150
channel blockvector field 150
Channel number 148
Channels attached to user processes 110
Chan_state channel blockvector field 150
Chan_sarxav channel blockvector field 150
Chan_stB-rxw channel blockvector field 150
Chan_stB-txwa channel blockvector field 150
Chan_stB-txw channel blockvector field 150
chaos:accept function 142
chaos:add-contact-name-for-protocol function 54
Chaos:answered-state connection state 143
chaos:answer function 142
chaos:answer-strlng function 142
chaos:assure-enabled function 148
chaos:close-conn function 140
Chaos:cls-received-state connection state 143
chaos:connect function 140
:chaos connection 44
chaos:conn-flnlshed-p function 145
chaos:data-avallable function 146
chaos:dat-op variable 165
chaos:eof-op variable 165
chaos:fast-answer-strlng function 142
chaos:flnlsh-conn function 145
Chaos:foreign-state connection state 143
chaos:get-next-pkt function 146
chaos:get-pkt function 145
chaos:host-data function 147
Chaos:host-down-state connection state 143
chaos:host-up function 141
Chaos:lnactlve-state connection state 143
chaos:lnterrupt-functlon function 146
chaos:lIsten function 142
Chaos:lIstenlng-state connection state 143
~haos:los-received-state connection state 143
chaos:make-stream function 143
chaos:may-tranamlt function 145
:chaol medium 51
Chaosne1 101

230

Networks

Introduction to
Using Foreign Protocols In

Introduction:

Introduction:

Details of

UNIBUS

Connection Interrupts:
Connection States:

Information and Control:
Opening and Closing Connections:

Packet 110:
Server-side: Opening and Closing Connections:

Stream 110:
User-side: Opening and Closing Connections:

Higher-level

Addresses and Indices:
Broadcast:

Connection Establishment:
Connections:

Contact Names:
Data:

Data Formats:
End-of-data:

Flow and Error Control:
Low-level:

Packet Contents:
Packet Numbers:

Routing:
Status Packets:

Forelgn-protocol-mode Connections:
Header Files:

loctl System Call Commands:
Record-mode Connections:

Signals:
Software Installation:

Special Flies for Creating Connections:

Chaosnet 101
Chaosnet 135

March 1985

Chaosnet Arpanet Gateway Protocol 133
Chaosnet cable 102
Chaosnet Connection States 127
Chaosnet Dover Printer Protocol 134
Chaosnet Ether 102
Chaosnet File Access Protocol 131
Chaosnet File Protocol 159
Chaosnet File Protocol 159
Chaosnet File Protocol (QFILE) 159
Chaosnet File Protocol (QFILE) 159
Chaosnet File Transfer Protocol 159
Chaosnet Hardware Programming Information 137
Chaosnet Hardware Protocol 101
Chaosnet Hardware Protocols 104
Chaosnet Host Table Protocol 133
Chaosnet Interface 103
Chaosnet Interface 137
Chaosnet Usp Machine Implementation 140
Chaosnet Usp Machine Implementation 146
Chaosnet Usp Machine Implementation 143
Chaosnet Usp Machine Implementation 147
Chaosnet Usp Machine Implementation 140
Chaosnet Usp Machine Implementation 144
Chaosnet Usp Machine Implementation 142
Chaosnet Usp Machine Implementation 143
Chaosnet Usp Machine Implementation 140
Chaosnet Mall Protocol 131
Chaosnet Name Protocol 132
Chaosnet Network Control Program 108
Chaosnet Packets 102
Chaosnet Protocols 129
Chaosnet Pulsar Protocol 130
Chaosnet References 157
Chaosnet RFCI ANS time protocol 50
Chaosnet Send Protocol 132
Chaosnet Software Protocol 110
Chaosnet Software Protocol 125
Chaosnet Software Protocol 120
Chaosnet Software Protocol 108
Chaosnet Software Protocol 109
Chaosnet Software Protocol 124
Chaosnet Software Protocol 113
Chaosnet Software Protocol 124
Chaosnet Software Protocol 117
Chaosnet Software Protocol 127
Chaosnet Software Protocol 112
Chaosnet Software Protocol 111
Chaosnet Software Protocol 114
Chaosnet Software Protocol 123
Chaosnet Software Protocol - Details 120
Chaosnet Software Protocol - OVerview 108
Chaosnet Status Protocols 129
Chaosnet Telnet and Supdup Protocols 131
Chaosnet Time Protocol 133
Chaosnet Transceiver 103
Chaosnet UNC encapsulation Interface 212
Chaosnet UNIX Implementation 152
Chaosnet UNIX Implementation 155
Chaosnet UNIX Implementation 152
Chaosnet UNIX Implementation 155
Chaosnet UNIX Implementation 154
Chaosnet UNIX Implementation 156
Chaosnet UNIX Implementation 156
Chaosnet UNIX Implementation 153

March 1985

Stream-mode Connections:
Tty-mode Connections:

Checking the State:
Opening and Closing:

Stream I/O:

Backslash (\)
VAXNMS

Qfjle
QFILE NORMAL

QFILE RAW
QFILE SUPER-IMAGE

QFILE synchronization

Chaosnet UNIX Implementation 154
Chaosnet UNIX Implementation 155
Chaosnet VAX/VMS Implementation 148
Chaosnet VAX/VMS Implementation 150
Chaosnet VAX/VMS Implementation 148
Chaosnet VAX/VMS Implementation 149
chaos network type 15
chaos:notlfy function 141
chaos:notify-local-lIspms function 141
chaos:open-forelgn-connectlon function 140
Chaos:open-state connection state 143
Chaos: package 140
Chaos packet 204
chaos:pkt-link function 147
chaos:pkt-nbytes function 145
chaos:pkt-opcode function 144
chaos:pkt-strlng function 145
chaos:prlnt-all-pkts function 147
chaos:prlnt-conn function 147
chaos:prlnt-pkt function 147
chaos:read-pkts function 146
chaos:reJect function 142
chaos:remove-conn function 140
chaos:retum-pkt function 145
Chaos:rfc-received-state connection state 143
Chaos:rfc-sent-state connection state 143
chaos:send-pkt function 145
chaos:send-strlng function 145
chaos:send-unc-pkt function 145
chaos:server-allst 51
chaos:server-allst variable 142
chaos:set-pkt-Btrlng function 145
:chaos-slmple connection 44
chaos:slmple function 140
chaos:state function 143
chaos:status function 147
chaos:waH function 143
chaos_accept function 149
chaos_ans function 149
chaos_assign function 149
chaos_close function 149
chaos_deassign function 149
chaos_eof function 150
chaos_finish function 150
chaos_foree_out function 149
chaos_ln_char function 149
chaos_inJJkt function 150
chaos_lsn function 149
chaos_out_char function 149
chaos_out-pkt function 150
Ch80s_rfc function 148
chaos_sout function 149
chaos_state function 151
chaos_walt function 151
chaos_walt_til function 151
chaos_xmlt_room function 150
character 24
character output 149
CHARACTER QFILE OPEN option 172
Character sets 113. 131
Character Se1 Translation 162
character set translation mode 162
character set translation mode 162
character set translation mode 162
character-size: Printer Object Attribute 18
check 172

231

Index

232

Networks

Defining Namespace
Namespace System

QFILE unbinding QFILE
Qfjle
CLS

chaos:

Opening and
Opening and

Server-side: Opening and

User-side: Opening and

Sending a
Chaos:

Qfjle Error
Subpackets and

Change-properties Qfjle
CLOSE QFILE
Complete Qfjle
Continue Qfjle

Create-directory Qfjle
Create-link Qfjle

Data-connection Qfjle
Delete Qfjle

Directory Qfile
Edit Namespace Object

Expunge Qfjle
Filepos Qfjle
Finish Qfjle

FUNCTION F
FUNCTION H

ITS Hostat
Login Qfjle

OPEN QFILE
Properties Qfjle

QFILE
Rename Qfjle

Set-file-system Qfjle
Undata-connection Qfjle

Qfjle
The Fllepos Qfjle

Qfjle
loctl System Call

Standard

chaos:
:chaos

:chaos-slmple
Closing a

March 1985

Checking the State: Chaosnet VAX/VM S
Implementation 150

Check word 102, 104
Classes 5
Classes 35
Classes 4
:clsss message 32
Clear Receiver bit 137
Clear Transmitter bit 137
close-abort QFILE OPEN options 161
Close and Synchronous Marks 182
Close connection packet 120
close-conn function 140
Closed connection state 127
CLOSE QFILE command 161, 181, 182
Closing a connection 120, 124, 140, 149
Closing: Chaosnet VAX/VMS Implementation 148
Closing Connections: Chaosnet Usp Machine

Implementation 140
Closing Connections: Chaosnet Usp Machine

Implementation 142
Closing Connections: Chaosnet Usp Machine

Implementation 140
CLS Close connection packet 120
CLS packet 124
cls-received-state connection state 143
CMD QFILE token 166
Codes 198
Coercing Packets 204
Collision avoidance 105
Collisions 105
Command 196
command 161, 181, 182
Command 197
Command 188
Command 188
Command 188
Command 169
Command 186
Command 191
command 22
Command 189
Command 185
Command 184
command 21
command 147
command 129
Command 190
command 161, 170
Command 195
command 159
Command 186
Command 190
Command 170
Command/Status Register 137
Command and Response Format 164
Command Byte Size Problem 185
Command Descriptions 169
Commands: Chaosnet UNIX Implementation 155
Communication with Interfaces 209
Complete Qfjle Command 197
Conn 140
connect function 140
connection 44
connection 44
connection 120, 124, 140, 149

March 1985

Establishing a
Forwarded

Open a stream
QFILE

QFILE control
QFILE data

Stream
:tcp

CLS Close
FWD Forward a request for

OPN Open
RFC Request for

Opening and Closing

Server-side: Opening and Closing

User-side: Opening and Closing

Foreign-protocol-mode
Record-mode

Special Files for Creating
Stream-mode

Tty-mode
Broadcast Sent

Chaos:answerecf-state
Chaos:cls-receivecf-state

Chaos:foreign-state
Chaos:host-down-state

Chaos:lnactive-state
Chaos:llstening-state

Chaos:los-received-state
Chaos:open-state

Chaos:rfc-recelved-state
Chaos:rfc-sent-state

Closed
Conn_sLclosed VAX//VMS

Conn_sLtu" VAX/VMS
Conn_sUncom VAX/VMS

Conn_stJos VAX/VMS
Conn_stJsn VAX/VMS

Conn_sLnew VAX/VMS
Conn_sLopen VAXNMS
Conn_sLrfcrcv VAX/VMS
Conn_sLrfcsnt VAXNMS

Foreign
Incomplete Transmission

Ustenlng
Lost

Open
RFC Received

RFC Sent
Chaosnet

Physical
Bridge

connection 109, 120, 140, 148
connection 120
connection 140
connection 159
connection 159
connection 159
connection 120
connection 44
Connection address In routing table 114
Connection cost in routing table 114
Connection Establishment: Chaosnet Software

Protocol 120
Connection index 110
Connection-Initiation protocols 120
Connection Interrupt functions 146
Connection Interrupts: Chaosnet Lisp Machine

Implementation 146
connection packet 120
connection packet 120
connection packet 120
connection packet 120
Connections: Chaosnet Usp Machine

Implementation 140
Connections: Chaos net Lisp Machine

Implementation 142
Connections: Chaosnet Lisp Machine

Implementation 140

233

Index

Connections: Chaosnet Software Protocol 108
Connections: Chaosnet UNIX Implementation 155
Connections: Chaosnet UNIX Implementation 154
Connections: Chaosnet UNIX Implementation 153
Connections: Chaosnet UNIX Implementation 154
Connections: Chaosnet UNIX Implementation 155
connection state 127
connection state 143
connection state 143
connection state 143
connection state 143
connection state 143
connection state 143
connection state 143
connection state 143
connection state 143
connection state 143
connection state 127
connection state 150
connection state 150
connection state 150
connection state 150
connection state 150
connection state 150
connection state 150
connection state 150
connection state 150
connection state 127
connection state 127
connection state 127
connection state 127
connection state 127
connection state 127
connection state 127
Connection States 127
Connection States: Chaosnet Usp Machine

Implementation 143
Connection to the Dial Network n
connection type 114

234

Networks

D

Direct
Fixed bridge

chaos:

Ether
Qfjle Packet Data

Packet

net:
Information and
Flow and Error

QFILE

Chaosnet Network
Network

Transmission
Bit numbering

Byte Stream
Connection

Reducing Call
Data byte

Forwarding
Lost

Time-slot

Bit

Special Files for

Logical end of
chaos:

Adding new objects to the namespace
Changes to

Dlalnet Representation In the Namespace
Editing objects In the names pace

Managing the Namespace
Network

Network not In namespace
Queries to network
Updates to network

Update the namespace
Namespace

D

March 1985

connection type 114
connection type 114
Connection type In routing table 114
conn-flnished-p function 145
:conn option· for net:define-server 51
Conn_sLclosed VAXIIVMS connection state 150
Conn_sLfull VAX/VMS connection state 150
Conn_stjncom VAX/VMS connection state 150
Conn_stJos VAX/VMS connection state 150
Conn_sUsn VAX/VMS connection state 150
Conn_sLnew VAX/VMS connection state 150
Conn_sLopen VAXNMS connection state 150
Conn_sLrfcrcv VAX/VMS connection state 150
Conn_sLrfcsnt VAX/VMS connection state 150
Contact Names: Chaosnet Software Protocol 109
Contention 105
Contents 165
Contents: Chaosnet Software Protocol 112
Contents of a Dialnet Registry 82
Continue Qfjle Command 188
continue-servlce-access-path-future function 42
Control: Chaosnet Lisp Machine Implementation 147
Control: Chaosnet Software Protocol ·117
control connection 159
Controlled packets 111, 117
Control packets 140
Control Program 108
Control Program 102
Control Protocol 44, 135
convention 113
Conventions: Interfacing to the Network System 218
cost in routing table 114
Cost with Public Carrier Networks 97
count 112
count 112
Count bit 137
counter 105
Count packet header field 112
Count register 137
CRC Error bit 137
Create-directory Qfjle Command 188
Create-link Qfjle Command 188
Creating Connections: Chaosnet UNIX

Implementation 153

Daemon users 11
OAT 16-bit Data packet 124
OAT 8-bit Data packet 124
data 124
data-avallable function 146
database 22
database 26
DatabaSe 79
database 22
Database 24
database 37
database 212
database 33
database 33
database 28
Database Changes Flies 26
Database data types 4. 29
Database deletion request 33

D

March 1985

Namespace
Namespace

Storing
Namespace

QFILE

QFILE

Qfjle Packet
Qfjle Directory

User
Server functions for

Generic
OAT 16-bit
OAT a-bit

UNC Uncontrolled

Database
Namespace System Lisp

Transferring
chaos:

netl:

fs:
net:
net:
net:
net:

File Users:

Servers:

Users:

Namespace System Object
Propagation

Database

Finding a Server
Qfjle Command

Service

235

Index

database descriptor files 24
Database Log Files 26
database object attributes 25
Database Object Files 25
Data byte count 112
data channel 159
Data: Chaosnet Software Protocol 124
data connection 159
Data-connectlon Qfjle Command 169
Data Contents 165
Data Format 192
Data Formats: Chaosnet Software Protocol 113
Datagram Media: Lisp Machine Generic Network

System 56
:datagram medium 221
Datagram Protocol 135
datagram protocols 221
datagrams 44
Data packet 124
Data packet 124
Data packet 124, 135
Data packets 140
data types 4, 29
Data Types 29
Data Types of Namespace System Attributes 4
Data with Qfile 161
dat-op variable 165
deallocate-packet-buffer function 203
dealiocateJ)kt function 1SO
defauH-bHmap-printer: Site Object Attribute 19
default-font: Printer Object Attribute 17
defauH-printer: Site Object Attribute 19
DEFAULT QFILE OPEN option 172
:defauH-servlces message 215
Defined Media: Lisp Machine Generic Network

System 55
Defined Services and Protocols: Lisp Machine

Generic Network System 56
deflne-file-protocol macro 55
define-medium macro 215
define-medium special form 45
deflne-protocol special form SO, 215
define-server special form 51
Defining a Network 212
Defining Namespace Classes 35
Defining Protocols: Lisp Machine Generic Network

System 49
Defining Protocols: Lisp Machine Generic Network

System 55
Defining Protocols: Lisp Machine Generic Network

System 51
Defining Protocols: Lisp Machine Generic Network

System 50
Definitions 7
delay time 105
DELETED QFILE DIRECTORY option 194
DELETED QFILE OPEN option 172
delete Indlca10r 33
Delete Qfjle Command 186
deletion request 33
Delivering packets 211
DeSCription 220
Descriptions 169
Descriptions: Lisp Machine Generic Network

System 41
descriptor-file attribute 24

236

Networks

E

*
changes
version

Namespace database

Chaosnet Software Protocol -

Introduction to
Symbolics

An Example

Contents of a
Loading a

Physical Connection to the
Using the Terminal Program with the

OFILE user-server

Window size In the receive
Window size in the transmit

Qfile
DELETED OFILE

DIRECTORIES-ONL Y OFILE
FAST OFILE

NQ-EXTRA-INTO OFILE
Ome

neti:

Dlalnet and Internet
Receive

Transmit

Sending press files to
Chaosnet

E

March 1985

descriptor file Indicator 24
descriptor file Indicator 24
descriptor file Indicator 24
descriptor-file keyword for termlnal-f-argument

attribute 22
descriptor-file: Namespace Object Attribute 22
descriptor files 24
Desirability 41
:desirability message 214
:desirability option for net:deflne-protocol 50
Destination Address packet header field 112
Destination Index packet header field 112
Destination word 102, 104
Details 120
Details of Chaosnet Hardware Protocols 104
:dlal example 44
Dialnet 75
Dialnet 73
Dialnet and Internet Domain Names 85
Dlalnet Installation 89
Dialnet Registries 81
Dlalnet Registry 82
Dlalnet Registry 84
Dialnet Representation In the Namespace

Database 79
Dial Network n
Dial Network 87
Dial Network Addressing 95
dial Network Medium 93
dial network type 15
dialogue 159
Direct connection type 114
Direct-dial telephone network 15
direction 150
direction 150
:dlrection stream option for net:define-server 51
DIRECTORIES-ONLY OFILE DIRECTORY option 194
Directory Data Format 192
DIRECTORY option 194
DIRECTORY option 194
DIRECTORY option 194
DIRECTORY option 194
Directory Options 194
Directory Qfjle Command 191
disable function 148
:dlsable message 218
Displaced arrays 204
DOD Internet 15
Domain Names 85
Done bit 137
Done bit 137
dont-reply-to-malllng-lists: Site Object Attribute 20
Double Quotes 24
Dover printer 134
Dover Printer Protocol 134
dplt-Iogo: Printer Object Attribute 18

Editing objects in the namespace database 22
Edit Namespace Object command 22

E

tv: edlt-namespace-obJect function 22
Namespace editor 22

EFTP protocol 134
Eliminate record of changes 28

March 1985

F

Receive Interrrupt
Timer Interrupt

Transmit Interrupt
netl:

Initialization, Reset, and

netl:

Chaosnet UNC

QFILE EOF
Logical

EOF
QFILE

chaos:
Waiting for Acknowledgement of the

Qfjle Marks and
CRC
Qfjle

Flow and

Passing packet
Qfjle
Qfile

Network

Connection

Chaos net

Interfacing to
:dlal

:mmdf
:125

An

Using the Remote Login
chaos:

FUNCTION
Arpanet INRIINS attention-getting

Acknowledgement packet header
Chan_state channel blockvector

Chan_sta...rxav channel blockvector
Chan_sta...rxw channel blockvector

Chan_sta...txwa channel blockvector
Chan_sta...txw channel blockvector

Count packet header
Destination Address packet header

Destination Index packet header
Forwarding-count

Opcode pkt header
Operation packet header

Packet Number packet header

F

237

Index

Enable bit 137
Enable bit 137
Enable bit 137
enable function 148
Enable: Interfacing to the Network System 217
:enable message 218
enable-serial-terminal function 69
Encapsulated medium 44
Encapsulation Interface 209
encapsulation Interface 212
Ending the Qfjle Transfer 161
Ending the Transfer with QFILE 161
end of data 124
E nd-of-d at a: Chaosnet Software Protocol 124
End of File packet 124
EOF Ending the Transfer with QFILE 161
EOF End of File packet 124
eof-op variable 165
EOF Packet on Writing with Qfile 183
EOF Packets 168
Error bit 137
Error Codes 198
Error Control: Chaosnet Software Protocol 117
Error-correcting protocol 44
:error-dlsposltlon option for net:deflne-server 51
error Information 123
Error Responses 197
Errors and Asynchronous Marks 197
Errors: Interfacing to the Network System 216
Establishing a connection 109, 120. 140. 148
Establishment: Chaosnet Software Protocol 120
ESTIMATED-LENGTH QFILE OPEN option 172
Ether 102
Ether Contention 105
Ethernet 37
Ethernet attributes 219
Ethernets 218
example 44
example 44
example 44
Example Dialnet Installation 89
Example: Interfacing to the Network System 206
Expunge Qfjle Command 189

Facilities 69
fast-answer-strlng function 142
FAST QFILE DIRECTORY option
F command 21
feature 131
FH QFILE token 166
field 112, 117, 123
field 150
field 150
field 150
field 150
field 150
field 112
field 112
field 112
field 114
field 144
field 112
field 112

194

F

238

Networks

Source Address packet header
Source Index packet header

Packet header

Chaosnet
fa:

CFILE
changes descriptor

* deSCriptor
venlon descriptor

fa:
EOF End of

The

Chaosnet
Introduction: Chaosnet

Chaosnet
Introduction: Chaosnet

Changes
Lisp Machine Namespace Server

Log
Namespace Database Changes
Namespace database deSCriptor

Namespace Database Log
Namespace Database Object

Object
Header

Access files on network

Special

Access
Sending press

FREE-SPACE-DESCRIPTlON
SETTABLE-PROPERTlES

Qfile
Chaosnet

Opening a

netl:
net:
net:
net:
net:
net:
net:
net:
net:
net:
net:

net:

chaos:

net: network

field 112
field 112
fields 112, 120
File access paths 55

March 1985

File Access Protocol 131
%flle-asynchronous-mark-opcode variable 165
flle-control-llfetlme: Host Object Attribute 11
file handle 161
file Indicator 24
file indicator 24
file indicator 24
%flle-notlflcatlon-opcode variable 165
File packet 124
Fllepos Qfile COmmand 185
Fllepos Qfile COmmand Byte Size Problem 185
File properties 192
FILE protocol 131
File Protocol 159
File Protocol 159
File Protocol (CFILE) 159
File Protocol (CFILE) 159
files 24
Flies 24
files 24
Files 26
files 24
Files 26
Files 25
files 24
Files: Chaosnet UNIX Implementation 152
file servers 131
file Service 56
file: Service 56
Files for Creating COnnections: Chaosnet UNIX

Implementation 153
files on network file servers 131
files to Dover printer 134
file system property 192
file system property 192
File system version number 26
File Transfer Philosophy 160
File Transfer Protocol 159
File Users: Defining Protocols: Lisp Machine Generic

Network System 55
File with Qfile 161
Finding a Server Description 220
Finding Paths to Hosts:Usp Machine Generic

Network System 44
flnd-network-Interfaces function 210
find-object-from-property-list function 30
flnd-objecl-named function 29
find-objects-from-property-list function 30
find-paths-to-protocol-on-host function 41
find-paths-to-service function 41
find-paths-to-service-on-host function 41
find-path-to-protocol-on-host function 41
find-path-to-service-on-host function 41
finger-aIl-lIspms function 142
flnger-local-lIspms function 141
finger-location: Host Object Attribute 9
finger-location variable 141
FINGER protocol 132
flnish-conn function 145
Finish Qfjle COmmand 184
Fixed bridge connection type 114
flavor 212

March 1985

Using
Chaos:

net:deflne-medlum special
net:deflne-protocol special

net:deflne-server special
net:lnvoke-multlple-servlces special

unwind-protect special
Qfile Command and Response

Qfile Directory Data
Record

Print
Data
FWD

Packet

QFILE

:request-array-end option to netl:
:request-array option to netl:

:request-array-start option to netl:
:response-array-end option to netl:

:response-array option to netl:
:response-array-start option to netl:

netl:
aliocateJ)kt

Galling the Server
chaos:accept

chaoa:add-contact-name-for-protocol
chaos:answer

chaos:answer-strtng
chaos:assure-enabled

chaos:close-conn
chaos:connect

chaos:conn-flnlshed-p
chaoa:data-available

chaos:fast-answer-strtng
chaos:flnlsh-conn
chaos:get-next-pkt

chaos:get-pkt
chaos:host-data

chaos:host-up
chaos:interrupt-funcllon

chaos: listen
chaos:make-stream
chaoa:may-transmlt

chaos:notlfy
chaos:notlfy-local-llspms

chaos:open-forelgn-connecllon

Flow and Error Control: Chaosnet Software
Protocol 117

Flow-control 117
font-widths-file: Printer Object Attribute 18
Foreign connection state 127
:foreign-host message 218
Foreign packet 135

239

Index

Forelgn-protocol-mode Connections: Chaosnet UNIX
Implementation 155

Foreign Protocols In Chaosnet 135
foreign-state connection state 143
form 45
form 50, 215
form 51
form 43
form 201
Format 164
Format 192
Format 24
format: Printer Object Attribute 17
formats 17
Formats: Chaosnet Software Protocol 113
Forward a request for connection packet 120
Forwarded connection 120
forwarding 114
Forwarding count 112
Forwarding-count field 114
free channel 159
Freeing packets 211
Free pool of packets 208
FREE-SPACE-DESCRIPTION file system

property 192
fs:deflne-flle-protocol macro 55
fs:%flle-asynchronous-mark-opcode variable 165
fs:%flle-notlflcatlon-opcode variable 165
funcall-server-Intemal-functlon 221
funcall-server-Intemal-functlon 221
funcall-server-Intemal-functlon 221
funcall-server-Intemal-functlon 221
funcall-server-intemal-funcllon 221
funcall-server-Intemal-functlon 221
funcall-server-Intemal-function function 220, 222
function 150
Function 220
function 142
function 54
function 142
function 142
function 148
function 140
function 140
function 145
function 146
function 142
function 145
function 146
function 145
function 147
function 141
function 146
function 142
function 143
function 145
function 141
function 141
function . 140

240

Networks

chaos:pkt-link
chaos:pkt-nbytes

chaos:pkt-opcode
chaos:pkt-strlng

Ch80S:prlnt-all-pktl
chaos:prlnt-conn

Ch80S:prlnt-pkt
chaos:read-pkts

chaos:reJect
chaos: remove-con n

ch80s:retum-pkt
chaol:send-pkt

chaos:send-Itrlng
chaos:send-unc-pkt
chaos:set-pkt-strlng

chaos:slmple
chaos:state

chaos:status
chaos:waH

chaos_accept
chaos_ans

chaos_assign
chaos_close

chaos_deassign
ch808_eof

chaos_finish
chaos_force_out

chaos_ln_char
chaos_ln-pkt

chaos_lsn
chaos_out_char

Ch808_out-pkt
Ch80S_rfc

chaos_sout
chaos_state
chaos_waH

chaos_walt_til
chaos_xmH_room

deallocate-pkt
hostat

net:abort-servlc8-access-path-future
net:contlnue-servlce-access-path-future

net:fJ nd-object-from-property-I 1st
net:f1nd-object-named

net:f1nd-objects-from-property-llst
net:f1nd-paths-to-protocol-on-host

net :f1nd-paths-to-servlce
net:fJnd-paths-to-servlce-on-host
net:fJnd-path-to-protocol-on-host
net:find-path-to-servlce-on-host

net:f1nger-all-llspms
net:flnger-local-llspms

net:get-connection-for-servlce
netl :allocale-packet-buffer

neti:ask-terminal-parameters
netl :change-server -error-disposition

neli :deallocate-packet-buffer
netl:dlsable
netl:enable

netl:enable-serlal-termlnal
netl:f1nd-network-lnterfaces

netl:funcall-server-Internal-functlon
netl:get-sub-packet

netl :gel-sub-packet-maybe-copylng
netl:map-packet-buffers

netl:maybe-packet-buffer-panlc

function 147
function 145
function 144
function 145
function 147
function 147
function 147
function 146
function 142
function 140
function 145
function 145
function 145
function 145
function 145
function 140
function 143
function 147
function 143
function 149
function 149
function 149
function 149
function 149
function 150
function 150
function 149
function 149
function 150
function 149
function 149
function 150
function 148
function 149
function 151
function 151
function 151
function 150
function 150
function 129. 147
function 43
function 42
function 30
function 29
function 30
function 41
function 41
function 41
function 41
function 41
function 142
function 141
function 51
function 203
function 69
function 55
function 203
function 148
function 148
function 69
function 210
function 220. 222
function 205
function 206
function 208
function 209

March 1985

March 1985

G

netl:most-deslrable-servlce-access-path
net:lnvoke-servlce-access-path

nel:lnvoke-servlce-on-host
netl:packet-belng-transmlHed

netl:packet-butfer-panlc
netl:prune-namer,pace-changes-flle

nell : re8d-obJecI-file-and-update
netl:reset

netl:server-argument-descrlptlons
nell:server-functlon

netl:server-medlum-!ype
netl:server-number-of-arguments

netl :server-property-list
netl:server-protocol-name

netl:set-termlnal-parametera
netl :tranllate-hoats.text-flle

netl :wrlte-hosts.text-flle
net:note-aerver-closed

net:note-server-eltabllshed
net:remote-Iogln-on

net:servlce-access-path-future-connected-p
net:start-aervlce-accesa-palh-future

parse_host
II:get-slte-optlon

sl:parse-host
tv:edlt-namespace-obJecI

Connection interrupt
Namespace System

Namespace System Administrative
Server
Server

Service
Service

Protocol-translating

Chaosnet Arpanet

Byte Stream Media: Lisp Machine
Datagram Media: Lisp Machine

Defined Media: Lisp Machine
Defined Services and Protocols: Lisp Machine

Defining Protocols: Lisp Machine
File Users: Defining Protocols: Lisp Machine

Finding Paths to Hosts: Lisp Machine
Invoking Services: Lisp Machine

Servers: Defining Protocols: Lisp Machine
Service Descriptions: Lisp Machine

Service Futures: Usp Machine
The Lisp Machine

Users: Defining Protocols: Lisp Machine

function 42
function 41
function 40
function 208
function 209
function 28
function 28
function 148
function 222
function 222

. function 222
function 222
function 222
function 220, 222
function 69
function 28
function 28
function 223
function 220, 223
function 70
function 42
function 42
function 148
function 31
function 31
function 22
FUNCTION F command 21
FUNCTION H command 147
functions 146
Functions 29
Functions 28
functions 142
functions for datagram protocols 221
Mure 42

241

Index

Futures: Lisp Machine Generic Network System 42
FWD Forward a request for connection packet 120

G
gateway 135
Gateway host 37
Gateway Protocol 133
gateway-pseudonet network type 15
:gateway-pseudonet network type 44
Gateways 37, 114
Gateway server 133
General Arguments: Starting Servers: Interfacing to

the Network System 220
General Information on Networks
Generic byte streams 44
Generic datagrams 44
Generic Network System 55
Generic Network System 56
Generic Network System 55
Generic Network System 56
Generic Network System 49
Generic Network System 55
Generic Network System 44
Generic Network System 40
Generic Network System 51
Generic Network System 41
Generic Network System 42
Generic Network System 37
Generic Network System 50
Generic path name operations 55

G

242

Networks

H

net:

chaos:
chaos:

al:
netl:
netl:

QFILE file

Chaosnet
Chaosnet

Details of Chaosnet
FUNCTION

Acknowledgement packet
Count packet

Destination Address packet
Destination Index packet

Opcode pkt
Operation packet

Packet Number packet
Source Address packet

Source Index packet
Packet

Gateway
Physical location of

Protocols supported by
Services supported by

Numeric
Quitting

ITS

chaos:
Chaos:

Symbolic

address:
bHmap-prlnter:

file-control-Ilfetlme:
finger-location:

location:
machine-type:

name:
nickname:
peripheral:

H

March 1985

Generic pro1ocols 44
get-connectlon-for-servlce function 51
:get message 32
get-next.pkt function 146
get.pkt function 145
get-sHe-optlon function 31
get-aub-packet function 205
get-aub-packet-maybe-copying function 206
Globally named objects 5
Global-name 4. 29

handle 161
hardcopy-devlce-Btatus: Service 57
hardcopy-devlce-statu8 Service 57
hardcopy: Service 56
hardcopy Service 56
hardcopy-status Service 58
hardcopy-status: Service 58
Hardware Programming Information 137
Hardware Protocol 101
Hardware Protocols 104
H command 147
header field 112. 117. 123
header field 112
header field 112
header field 112
header field 144
header field 112
header field 112
header field 112
header field 112
header fields 112. 120
Header Files: Chaosnet UNIX Implementation
header-font: Printer Object Attribute 17
Higher-level Chaosnet Protocols 129
home-address: User Object Attribute 13
home-host: User Object Attribute 13
home-phone: User Object Attribute 13
:host 21
host 37
host 9
host 10
host 10
Host address 114
host addresses 110
Hostat 147
Hostat command 129
hostat function 129. 147
Host attributes 7
host-data function 147
host-down-state connection state 143

152

host-for -bug-reports: Site Object Attribute 19
host names 110
Host object 4
Host Object Attribute 8
Host Object Attribute 9
Host Object Attribute 11
Host Object Attribute 9
Host Object Attribute 9
Host Object Attribute 8
Host Object Attribute 7
Host Object Attribute 7
Host Object Attribute 11

H

March 1985

pretty-name:
printer:

print-spooler -optIons:
server-machine:

service:
short-name:

sHe:
spooled-prlnter:

system-type:
Namespace System

Finding Paths to

ITS
Chaosnet

chaos:

Packet
Packet
Stream
Stream

QFILE transaction

243

Index

Host Object Attribute 9
Host Object Attribute 9
Host Object Attribute 10
Host Object Attribute 11
Host Object Attribute 10
Host Object Attribute 7
Host Object Attribute 7
Host Object Attribute 10
Host Object Attribute 8
Host Objects 7
:host option for net:deflne-server 51
:host option for server 220
host: Printer Object Attribute 17
host-protocol-desirabillty: Site Object Attribute 19
Hosts 5, 37
Hosts: Lisp Machine Generic Network System 44
Host Status 147
Host status report 147
hos1 table 114
Host Table Protocol 133
host-up function 141

I/O 150
I/O: Chaosnet Lisp Machine Implementation 144
I/O: Chaosnet Lisp Machine Implementation 143
I/O: Chaosnet VAXNMS Implementation 149
Identifier 159
IF-OOES-NOT-EXIST QFILE OPEN option 172
IF-EXISTS QFILE OPEN option 172
IF-EXISTS QFILE OPEN option values 172

Chaosnet Lisp Machine Implementation 140
Chaosnet UNIX Implementation 152

Chaosnet VAX/VMS Implementation 148
Checking the State: Chaosnet VAX/VMS Implementation 150

Connection Interrupts: Chaosnet Lisp Machine Implementation 146
Connection States: Chaosnet Usp Machine Implementation 143

Forelgn-protocol-mode Connections: Chaosnet UNIX Implementation 155
Header Files: Chaosnet UNIX Implementation 152

Information and Control: Chaosnet Usp Machine Implementation 147
loctl System Call Commands: Chaosnet UNIX Implementation 155

Opening and Closing: Chaosnet VAX/VMS Implementation 148
Opening and Closing Connections: Chaosnet Lisp Machine

Implementation 140
Packet I/O: Chaosnet Usp Machine Implementation 144

Record-mode Connections: Chaosnet UNIX Implementation 154
Server-side: Opening and Closing Connections: Chaosnet Lisp Machine

Implementation 142
Signals: Chaosnet UNIX Implementation 156

Software Installation: Chaosnet UNIX . Implementation 156
Special Files for Creating Connections: Chaosnet UNIX

Implementation 153
Stream I/O: Chaosnet Usp Machine Implementation 143

Stream I/O: Chaosnet VAX/VMS Implementation 149
Stream-mode Connections: Chaosnet UNIX Implementation 154

Tty-mode Connections: Chaosnet UNIX Implementation 155
User-side: Opening and Closing Connections: Chaosnet Lisp Machine

Implementation 140
Implementation of the Namespace System 33
Implementations 44
Implementing protocols 51

Chaos: inactive-state connection state 143
Incomplete Transmission connection state 127
Incremental indicator 33

244

Networks

Connection
Destination

Source

Attribute
changes descriptor file

delete
* descriptor file

Incremental
timestamp

version descriptor file
Addresses and

Chaosnet Hardware Programming
Passing packet error

General
RUT Routing

Number of
Arpanet

An Example Dialnet
Software

Transmitting
CCITT Recommendation X.25

Chaosnet
Chaosnet UNC encapsulation

Encapsulation
Sending a Packet to an

UNIBUS Chaosnet

:add-network message to
Miscellaneous:

Standard Communication with

netl:
Software

User

Byte Stream Conventions:
Example:

General Arguments: Starting Servers:
Initialization, Reset, and Enable:

Interfaces:
Invoking Mediums:

Medium Arguments: Starting Servers:
Network Addresses:

Network Errors:
Networks:

Packet Reception:
Packets:

Packet Transmission:
Starting Servers:

DOD

Dlalnet and

Incremental updates 33
Index 110
Index packet header field 112
Index packet header field 112
Indicator 24
Indicator 4
Indicator 24
Indicator 33
Indicator 24
Indicator 33
Indicator 33
Indicator 24
Indices: Chaosnet Software Protocol 110
Information 137
Information 123

March 1985

Information and Control: Chaosnet Usp Machine
Implementation 147

Information on Networks 1
Information packet 127
INHIBIT-UNKS QFILE OPEN option 172
Initialization, Reset, and Enable: Interfacing to the

Network System 217
Input packets available 150
INRIINS attentlon-getting feature 131
Installation 89
Installation: Chaos net UNIX Implementation 156
Interaction with Peek Network Mode 219
Interactive messages 132
Interface 15
Interface 103
Interface 212
Interface 209
Interface 211
Interface 137
Interface-optlons: Printer Object Attribute 17
Interface: Printer Object Attribute 17
Interfaces 216
Interfaces 212
Interfaces 209
Interfaces: Interfacing to the Network System 209
Interfaces variable 210
Interface to the Namespace System 29
Interface to the Namespace System 22
Interfacing to Ethernets 218
Interfacing to the Network System 201
Interfacing to the Network System 218
Interfacing to the Network System 206
Interfacing to the Network System 220
InterfaCing to the Network System 217
Interfacing to the Network System 209
Interfacing to the Network System 215
Interfacing to the Network System 221
Interfacing to the Network System 213
Interfacing to the Network System 216
Interfacing to the Network System 212
Interfacing to the Network System 216
Interfacing to the Network System 201
Interfacing to the Network System 216
Interfacing to the Network System 220
Interfacing to the Service Lookup Mechanism 214
Internet 15
Internet-domaln-name: Namespace Object

Attribute 22
Internet Domain Names 85
Internet network type 15
Internet protocol 135

March 1985

K

Receive
Timer

Transmit
chaos:

Connection
:change-of-state

:Input
:output

Connection

Transmitting
net:
net:

net:
netl:
net:

:*
Packets with array

Namespace System

Sending message to all

Transmit

chaos:

Chaos:
LSN

net:

netl:
net:

Physical

Namespace Database

Remote
OVerview of Remote

Using the Remote

Interrrupt Enable bit 137
Interrupt Enable bit 137
Interrupt Enable bit 137
Interrupt-function function 146
Interrupt functions 146
Interrupt reason 146
Interrupt reason 146
Interrupt reason 146
Interrupts: Chaosnet Usp Machine

Implementation 146
Inter-user messages 131
Invoke-muHlple-services macro 50
Invoke-muHlple-servlces special form 43
:Invoke option for net:deflne-protocol 50
Invoke-servlce-access-path function 41
Invoke-servlce-automatlc-retry variable 41
Invoke-servlce-on-host function 40
:lnvoke-wHh-stream-and-close option for

net:deflne-protocol 50
:lnvoke-wHh-stream option for

net:deflne-protocol 50
Invoking a server 222
Invoking Mediums: Interfacing to the Network

System 215

245

Index

Invoking Services: Usp Machine Generic Network
System 40

K

loctl System Gall Commands: Chaosnet UNIX
Implementation 155

ITS Hostat command 129
ITS host table 114

keyword symbol 30
leader 206
Usp Data Types 29
Usp Machine Namespace Server Files 24
Usp Machines at site 141
IIspm-flnger Service 58
IIspm-flnger: Service 58
IIspm-name: User Object Attribute 12
list 208
Ust all supported servers 222
listen function 142
Ustenlng connection state 127
listening-state connection state 143
Usten packet 120
Loading a Dlalnet Registry 84
Iocal-host variable 29
:locaJ-lIsp-machlnes 21
:Iocal medium 44
local-namespace: Site Object Attribute 19
local networks 217
Iocal-networks variable 217
local-sHe variable 29
:locaI step type 44
location: Host Object Attribute 9
location of host 9
log files 24
Log Files 26
Logical end of data 124
:Iogln 21
login 65
Login capability 67
Login Facilities 69

K

246

Networks

M

Remote
Interfacing to the Service

Chaos:
LOS

Remote login with
Usp

Sending message to all Usp

b:d8fIne-file-protocol
net:define-medlum

net:lnvoke-multlple-servlces
netl:wHh-server-error-dlsposHlon

Chaosnet

Network
MNT

chaos:

netl:

QFILE
Qfjle Asynchronous

Qfjle Close and Synchronous
Qfjle Errors and Asynchronous

QFILE synchronous
Qfjle

Reference
Reference

netl:
chaos:

Interfacing to the Service Lookup

Byte Stream
Datagram

Defined
:byte-stream

:chaos
:datagram

dial Network
Encapsulated

: local
:pseudonet

Invoking

:byte-stream

M

March 1985

login-name: User Object Attribute 12
Login Qfjle Command 190
login: Service 58
login Service 58
login with machine In use 70
Lookup Mechanism 214
Loop Back bit 137
LOS Lossage packet 123
los-received-state connection state 143
Lossage packet 123
Lost connection state 127
Lost Count bit 137
Low-level: Chaosnet Software Protocol
LSN Usten packet 120

machine in use 70
Machine Namespace Server Files 24
Machines at site 141
machine-type: Host Object Attribute 8
macro 55
macro 215
macro 50
macro 54
mall-address: User Object Attribute 13
MAIL protocol 131
Mail Protocol 131
MAIL protocol reply 131
mall-to-user: Service 59
mall-to-user Service 59
maintenance 130
Maintenance packet 127
make-stream function 143

127

Managing the Namespace Database 24
map-packet-buffers function 208
Mapping names to objects 5
mark 159
Marks 198
Marks 182
Marks 197
marks 182
Marks and EOF Packets 168
Material: Packets 203
Material: Starting Servers 222
maybe-packet-buffer-panlc function 209
may-transmit function 145
Mechanism 214
Media 38,44

M

Media: Usp Machine Generic Network System 55
Media: Usp Machine Generic Network System 56
Media: Usp Machine Generic Network System 55
medium 221
medium 51
medium 221
Medium 93
medium 44
medium 44
medium 44
Medium Arguments: Starting Servers: InterfaCing to

the Network System 221
:medlum option for net:define-server 51
Mediums: Interfacing to the Network System 215
:medlum step type 44
medium type 51

March 1985

N

[Namespace] System
:accept

:add-network
:address-resolutlon-parameters

:allocate-packet
:class

:defauH-servlces
:desirability

:dlsable
:enable

:foreign-host
:get

:name
:names

:namespace
:parse-address

:peek
:peek-header

:posslble-medlum-for-protocol
:posslbly-quallfled-strlng

:prlmary-name
:protocol-address

:protocol-supportec:t
:qualifled-strlng
:recelve-packet

:reJect
: reset

:strlno
:supports-broadcast

:transmH-packet
:type

:unparse-address
:user-get

Transmitting Interactive
Transmitting Inter-user

Sending
:add-network

netl:*actual-number-of-wfred-packet-buffers*
netl:*number-of-unwlred-packet-buffers*

Interaction wl1h Peek Network
QFILE NORMAL character set translation

QFILE RAW character set translation
QFILE SUPER-IMAGE character set translation

netl:

Messages to netl:
Qualified
Arpanet
Globally

N

247

Index

Menu l1em 22
message 218
message 210
message 219
message 212
message 32
message 215
message 214
message 218
message 218
message 218
message 32
message 32
message 32
message 31
message 213
message 219
message 219
message 215
message 32
message 32
message 211
message 210
message 31
message 216
message 218
message 218
message 31
message 215
message 211
message 213
message 214
message 32
messages 132
messages 131
Messages to Namespace Names and Objec1s 31
Messages to netl:name 31
Messages to netl:obJect 32
message to all Usp Machines at site 141
message to Interfaces 216
meter 204
meter 204
Mica 16. 18
Miscellaneous: Interfaces 212
Miscellaneous: Packets 208
:mmdf example 44
MNT Maintenance packet 127
Mode 219
mode 162
mode 162
mode 162
most-deslrable-servlce-access-path function 42
Multlbyte words 204
Multiple paths to a service 43
My Address register 137

Name 4.29
name 31
name 5
Name/Finger protocol 132
named objec1s 5
name: Host Objec1 Attribute 7

N

name keyword for termlnaJ-f-argument attribute 7

248

Networks

Primary

Chaosnet
Dlatnet and Internet Domain

Symbolic host

Messages to Namespace
Contact

Changes to

Deflnlng
Adding new objects to the

Dlatnet Representation In the
Editing objects In the

Managing the
Network not In

Update the

Messages to

descriptor-file:
Intemet-domaln-name:

prlmary-name-server:
search-rules:

secondary-name-server:
Edit

Network

Names and
net:

Primary
Usp Machine

Implementation of the
Introduction to the

Software Interface to the
User Interface to the

Data Types of

:name message 32
name: Network Object Attribute 14
name of object 32
name: Printer Object Attribute 16
NAME protocol 132
Name Protocol 132
Names 85
names 110
Names and Namespaces 5
Names and Objects 31

March 1985

Names: Chaosnet Software Protocol 109
:names message 32
names pace 26
Namespace attributes 21
Namespace Classes 35
namespace database 22
Namespace Database 79
namespace database 22
Namespace Database 24
namespace database 212
namespace database 28
Namespace Database Changes Files 26
Namespace database deSCriptor flies 24
Namespace Database Log Files 26
Namespace Database Object Files 25
Namespace editor 22
:namespace message 31
Namespace Names and Objects 31
Namespace object 4
. Namespace Object Attribute 22
Namespace Object Attribute 22
Namespace Object Attribute 22
Namespace Object Attribute 21
Namespace Object Attribute 22
Namespace Object command 22
Namespace Objects 21
Namespace Protocol 33
Namespaces 5
Namespaces 5
namespace-search-lIsf variable 29
namespace server 24
Namespace Server Flies 24
namespace: Service 60
namespace Service 60
Namespace System 3
Namespace System 33
Namespace System 3
Namespace System 29
Namespace System 22
Namespace System Administrative Functions 28
Namespace System Attributes 4
Namespace System Attributes 4
Namespace System Classes 4
Namespace System Functions 29
Namespace System Host Objects 7
Namespace System Usp Data Types 29
[Namespace] System Menu Item 22
Namespace System Network Objects 14
Namespace System Object Definitions 7
Namespace System Printer Objects 16
Namespace System Site Objects 18
Namespace System User Objects 11
Namespace System Variables 29
Namespace Timestamp Protocol 35
namespace-tlmestamp: Service 60
namespace-tlmestamp Service 60

March 1985

net:
Mapping

Messages to

Messages to

249

Index

namespace variable 29
names to objects 5
name: User Object Attribute 12
net:abort-servlce-access-path-future function 43
net:after-network-lnHlallzatlon-list variable 217
net:contlnue-servlce-access-path-future

function 42
net:deflne-medlum macro 215
net:deflne-medlum special form 45
net:deflne-protocol special form SO, 215
net:deflne-server special form 51
net:flnd-object-from-property-list function 30
net:flnck>bject-named function 29
net:flnd-objects-trom-property-list function 30
net:flnd-paths-to-protocol-on-host function 41
net:flnd-paths-to-servlce function 41
net:flnd-paths-to-servlce-on-host function 41
net:flnd-path-to-protocol-on-host function 41
net:flnd-path-to-servlce-on-host function 41
net:flnger-all-lIspms function 142
net:flnger-local-lIspms function 141
net:flnger-Iocatlon variable 141
net:get-connecllon-for-servlce function 51
netl:*actual-number-of-wlred-packet-butrers*

meter 204
netl:allocate-packet-butrer function 203
netl:ask-termlnal-parameters function 69
netl:change-server-error-dlsposHlon function 55
netl:deallocate-packet-butrer function 203
netl:dlsable function 148
netl:enable function 148
netl:enable-serlal-termlnal function 69
netl :fInd-network-lnterfaces function 21 0
netl:funcall-server-Intemal-functlon function 220,

222
netl:get-sub-packet function 205
netl:get-sub-packet-maybe-copylng function 206
netl:*lnterfaces* variable 210
netl:*lnvoke-servlce-automatlc-retry* variable 41
netl:*local-networks* variable 217
netl:map-packet-buffera function 208
netl:maybe-packet-buffer-panlc function 209
neti:most-deslrable-servlce-access-path

function 42
netl:name 31
netl:*number-of-unwlred-packet-buffers*

meter 204
net:lnvoke-muHlple-servfcea macro SO
net:lnvoke-muHlple-servlcea special form 43
net:lnvoke-servlce-access-path function 41
net:lnvoke-servlce-on-host function 40
netl:object 32
netl:packet-belng-transmltted function 208
netl:packet-buffer-panlc function 209
netl:prune-namespace-changes-flle function 28
netl:raw-packet-butrer-alze variable 204
netl:read-object-flle-and-update function 28
netl:reset function 148
netl:server-argument-descrlptlons function 222
netl:server-functlon function 222
netl:server-medlum-type function 222
netl:server-number-of-arguments function 222
netl:server-property-liat function 222
netl:server-protocol-name function 220, 222
netl:*servera* variable 220, 222
netl:set-termlnal-parametera function 69

250

Networks

Defining a
Dlrect..<flal telephone

Packet-switching
Physical Connection to the Dial

Using the Terminal Program with the Dial

March 1985

netl:*t8rget-number-of-wlred-packet-buffers*
variable 204

netl:translate-hosts.text-file function 28
netl:wHh-server-error-dlsposHlon macro 54
netl:wrlte-hosts.text-flle function 28
net:*local-host* variable 29
net:*locaI-slte* variable 29
net:*namespace-search-lIst* variable 29
net:*namespace* variable 29
net:network flavor 212
net:network-type-flavor property 212
net:note-server-closed function 223
net:note-server-establlshed function 220, 223
net:remole-Iogln-on function 70
net:servlce-access-path-future-connected-p

function 42
net:start-servlce-access-path-future function 42
Network 37
Network 212
network 15
network 15
Network n
Network 87
Network Addresses: Interfacing to the Network

System 213
Dial Network Addressing 95

Network attributes 14
Network Control Program 102

Chaosnet Network Control Program 108
Network database 37

Queries to network database 33
Updates to network database 33

Network Errors: Interfacing to the Network
System 216

Access files on network file servers 131
net: network flavor 212

Network maintenance 130
dial Network Medium 93

Interaction with Peek Network Mode 219
network-namespace attribute 25
Network Namespace Protocol 33
Network node 102

name:
nickname:

sHe:
subnel:

type:
Namespace System

Adding new
General Information on

Local
Programmer's Reference on

Reducing Gall Cost with Public carrier

Network not In namespace database 212
Network object 4
Network Object Attribute 14
Network Object Attribute 14
Network Object Attribute 14
Network Object Attribute 15
Network Object Attribute 15
Network Objects 14
:network option for net:define-server 51
Networks 5
networks 37
Networks 1
networks 217
Networks 99
Networks 97
Networks and Addresses 37
Networks: Interfacing to the Network System 212
:network step type 44

Byte Stream Conventions: Interfacing to the Network System 218
Byte Stream Media: Usp Machine Generic Network System 55

Datagram Media: Usp Machine Generic Network System 56
Defined Media: Usp Machine Generic Network System 55

Defined Services and Protocols: Usp Machine Generic
Network System 56

251

March 1985 Index

Defining Protocols: Usp Machine Generic Network System 49
Example: Interfacing to the Network System 206

File Users: Defining Protocols: Usp Machine Generic Network System 55
Finding Paths to Hosts: Usp Machine Generic Network System 44

General Arguments: Starting Servers: Interfacing to the
Network System 220

Initialization, Reset, and Enable: Interfacing to the Network System 217
Interfaces: Interfacing to the Network System 209

Interfacing to the Network System 201
Invoking Mediums: Interfacing to the Network System 215

Invoking Services: Usp Machine Generic Network System 40
Medium Arguments: Starting Servers: Interfacing to the

Network Addresses: Interfacing to the
Network Errors: Interfacing to the

Networks: Interfacing to the
Packet Reception: Interfacing to the

Packets: Interfacing to the
Packet Transmission: Interfacing to the

Servers: Defining Protocols: Usp Machine Generic
Service Descriptions: Usp Machine Generic

Service Futures: Usp Machine Generic
Starting Servers: Interfacing to the

The Usp Machine Generic
Users: Defining Protocols: Usp Machine Generic

chaos
dial

:gateway-pseudon6t
gateway-pseudonet

Internet
x25
net:

Adding
Adding

Network System 221
Network System 213
Network System 216
Network System 212
Network System 216
Network System 201
Network System 216
Network System 51
Network System 41
Network System 42
Network System 220
Network System 37
Network System 50
network type 15
network type 15
network type 44
network type 15
network type 15
network type 15
network-type-flavor property 212
new networks 37
new objects to the names pace database 22
nickname: Host Object Attribute 7
nickname: Network Object Attribute 14
Nicknames 5
nickname: User Object Attribute 13
:no-close stream option for net:deflne-server 51

Bridge node 102
Network node 102

:no-eof property 221
:no-eof stream option for net:deflne-server 51
NO-EXTRA-INTO QFILE DIRECTORY option 194
Nongeneric protocols 44

QFILE NORMAL character set translation mode 162
net:
net:

chaos:
chaos:

Network
Upright Biphase

Channel
File system version

Bit

netl:
Packet

Window Into the set of packet
Packet

note-server-closed function 223
note-server-establlshed function 220. 223
notify function 141
notlfy-local-lIspms function 141
notify Service 60
not in namespace database 212
NRZI technique 104
number 148
number 26
numbering convention 113
Number of Input packets available 150
Number of packet slots available In transmit

window 150
number-of-unwlred-packet-buffera meter 204
Number packet header field 112
numbers 117
Numbers: Chaosnet Software Protocol 111
Numeric host addresses 110

252

Networks

o
Host

Messages to netl:
Namespace

Network
Primary name of

Printer
Site

User
Storing database
Edit Namespace

Namespace System

Namespace Database
Globally named

Mapping names to
Messages to Namespace Names and

Namespace
Namespace System Host

Namespace System Network
Namespace System Printer

Namespace System Site
Namespace System User

Editing
Adding new

Byte
Packet

Packet
Qfjle Packet

OPN

chaos:

Server-side:

User-side:

PROBE-DIRECTORY QFILE
BINARY QFILE

BYTE-SIZE QFILE
CHARACTER QFILE

DEFAULT QFILE
DELETED QFILE

ESTIMATED-LENGTH QFILE
IF-DOES-NOT-EXIST QFILE

IF-EXISTS QFILE
INHIBIT-UNKS QFILE

PRESERVE-DATES QFILE
PROBE QFILE

RAW QFILE
READ QFILE

SUBMIT QFILE
SUPER QFILE

TEMPORARY QFILE
WRITE QFILE

Qfile
QFILE unbinding QFILE close-abort QFILE

IF-EXISTS QFILE

March 1985

o
Object 29
object 4
object 32
object 4
object 4
object 32
object 4
object 4
object 4
object attributes 25
Object command 22
Object Definitions 7
Object files 24
Object Files 25
objects 5
objects 5
Objects 31
Objects 21
Objects 7
Objects 14
Objects 16
Objects 1'8
Objects 11
objects In the namespace database 22
objects to the namespace database 22
offset 204
opcode 112
Opcode pkt header field 144
Opcodes 120
Opcodes 165
Open a stream connection 140
Open connection packet 120
Open connection state 127
open-forelgn-connectlon function 140
Opening a File with Qfile 161
Opening and Closing: Chaosnet VAXNMS

Implementation 148
Opening and Closing Connections: Chaosnet Usp

Machine Implementation 140
Opening and Closing Connections: Chaosnet Usp

Machine Implementation 142
Opening and Closing Connections: Chaosnet Usp

Machine Implementation 140
OPEN optlo 172
OPEN option 172
OPEN option 172
OPEN option 172
OPEN option 172
OPEN option 172
OPEN option 172
OPEN option 172
OPEN option 172
OPEN option 172
OPEN option 172
OPEN option 172
OPEN option 172
OPEN option 172
OPEN option 172
OPEN option 172
OPEN option 172
OPEN option 172
Open Options 172
OPEN options 161
OPEN option values 172

o

March 1985

p

Qfjle
Chaos:
QFILE

:clear-eof
:close

:eof
:finish

:force-output

Generic pathname

Qfjle Directory
Qfjle Open

VAXNMS character
Chaosnet Software Protocol -

·CHAOS.B32" BUSS-32 subroutine
Chaos:

ANS Answer to a simple transaction
Chaos

CLS Close connection
OAT 16-bit Data
OAT 8-bl1 Data

EOF End of File
Foreign

FWD Forward a request for connection
LOS Lossage

LSN Usten
MNT Maintenance

OPN Open connection
QFILE

RFC Request for connection
Routing

RUT
RUT Routing Information

Sending a CLS
SNS Sense status

STS Status
UNC Uncontrolled Data

BRD Broadcast
netl:

Size in bytes of

netl:

Qfjle
Passing

Acknowledgement
Count

Destination Address
Destination Index

Operation
Packet Number

Source Address
Source Index

p

OPEN QFILE command 161, 170
Open Response Result Values 178
open-state connection state 143
open stream 160
operation 143
operation 143
operation 143
operation 143
operation 143
Operation packet header field 112
operations 55
OPN Open connection packet 120
Options 194

253

Index

Options 172
other-sHes-lgnored-ln-zmall-summary: Site Object

Attribute 20
output 149
OVerview 108
OVerview of Remote Login Capability 67

package 148
package 140
packet 120
packet 204
packet 120
packet 124
packet 124
packet 124
packet 135
packet 120
packet 123
packet 120
packet 127
packet 120
packet 159
packet 120
packet 114
packet 114
packet 127
packet 124
packet 123
packet 123
packet 124, 135
packet 125
packet-belng-transmHted function 208
packet buffer 204
Packet buffer paniC 208
packet-buffer-panlc function 209
Packet Contents: Chaosnet Software Protocol 112
Packet Data Contents 165
packet error information 123
Packet forwarding 114
packet-gateway Service 60
packet-gateway: Service 60
packet header field 112, 117, 123
packet header field 112
packet header field 112
packet header field 112
packet header field 112
packet header field 112
packet header field 112
packet header field 112
Packet header fields 112, 120

p

254

Networks

Window Into the set of

Waiting for Acknowledgement of the EOF

Qfjle
The

Chaosnet
Control

Controlled
Data

Delivering
Freeing

Free pool of
Miscellaneous:

Qfjle Marks and EOF
Reference Material:

SNS
Status

STS
Subpackets and Coercing

Uncontrolled
Wired

Number of Input
Status

Number of

Sending a

QFILE

Packet buffer
QFILE

81:

Service access
Generic

File access
Selecting

Multiple
Finding

Interaction with

Qfjle File Transfer

Packet I/O 150
Packet 1/0: Chaosnet Usp Machine

Implementation 144
Packet Number packet header field 112
packet numbers 117

March 1985

Packet Numbers: Chaosnet Software Protocol 111
Packet on Writing with Qfjle 183
Packet opcode 112
Packet Opcodes 120
Packet Opcodes 165
Packet Pool 201
Packet Reception: Interfacing to the Network

System 216
Packets 102
packets 140
packets 111, 117
packets 140
packets 211
packets 211
packets 208
Packets 208
Packets 168
Packets 203
packets 117
packets 117
packets 117
Packets 204
packets 111, 117
packets 201
packets available 150
Packets: Chaosnet Software Protocol 123
Packets: Interfacing to the Network System 201
packet slots available in transmit window 150
Packet-switching network 15
Packets with array leader 206
Packet to an Interface 211
Packet Transmission: Interfacing to the Network

System 216
Packet types 120
packet types 168
page-size: Printer Object Attribute 18
Pair 4,29
paniC 208
parcel 159
:parse-address message 213
parse-host function 31
parse_host function 148
Passing packet error Information 123
path 41
path name operations 55
Path name system 55
paths 55
paths 38
paths to a service 43
Paths to Hosts: Usp Machine Generic Network

System 44
:peek-header message 219
:peek message 219
Peek Network Mode 219
peripheral: Host Object Attribute 11
personal-name: User Object Attribute 12
Philosophy 160
Physical Connection to the Dial Network n
Physical location of host 9
Pkt 140
Pkt 144

March 1985

Opcode
chaos:
chaos:
chaos:
chaos:

The Packet
Free

Sending

chaos:
chaos:

Sending press files to Dover

character-size:
defsun-font:

dpn-Iogo:
font-wldths-file:

format:
header-font:

host:
Interface:

Interface-optlons:
name:

page-size:
pretty-name:

protocol:
Ine:

type:
Namespace System

Chaosnet Dover

chaos:

The Fllepos Qfile Command Byte Size
Background

Receiver
Server

User
Channels attached to user

Chaosnet Network Control
Network Control

Chaosnet Hardware
Using the Terminal

255

Index

pkt header field 144
pkt-link function 147
pkt-nbytes function 145
pkt-opcode function 144
pkt-strlng function 145
Pool 201
pool of packets 208
Ports 135
:posslble-medlum-for-protocol message 215
:posslbly-quallfied-strlng message 32
PRESERVE-DATES QFILE OPEN option 172
press files to Dover printer 134
pretty-name: Host Object Attribu1e 9
pretty-name: Printer Object Attribu1e 16
pretty-name: SHe Object Attribu1e 18
:prlmary-name message 32
Primary name of object 32
primary-name-selVer keyword for terminal-f-

argument attribu1e 22
prlmary-name-selVer: Namespace Object

Attribu1e 22
Primary namespace server 24
prlnt-all-pkts function 147
prlnt-conn function 147
prlnt-dlsk-Iabel Service 61
prlnt-dlsk-Iabel: Service 61
printer 134
Printer attribu1es 16
printer: Host Object Attribu1e 9
Printer object 4
Printer Object Attribu1e 18
Printer Object Attribu1e 17
Printer Object Attribu1e 18
Printer Object Attribu1e 18
Printer Object Attribu1e 17
Printer Object Attribu1e 17
Printer Object Attribu1e 17
Printer Object Attribu1e 17
Printer Object Attribu1e 17
Printer Object Attribu1e 16
Printer Object Attribu1e 18
Printer Object Attribu1e 16
Printer Object Attribu1e 17
Printer Object Attribu1e 16
Printer Object Attribu1e 16
Printer Objects 16
Printer Protocol 134
Primers 5
Print formats 17
prlnt-pkt function 147
print-spooler-optlons: Host Object Attribu1e 10
PROBE-DIRECTORY QFILE OPEN optio 172
PROBE QFILE OPEN option 172
Probing 117, 123
Problem 185
process 140
process 140
process 109
process 109
processes 110
:process-name option for net:define-server 51
Program 108
Program 102
Programmer's Reference on Networks 99
Programming Information 137
Program with the Dial Network 87

256

Networks

File

:accept-p
FREE-SPACE-DESCRIPTION file system

. net:network-type-f1avor
:no-eof

:reJect-unless-trustect
SETTABLE-PROPERTIES file system

:stream-optlona
:who-line

Addresses and Indices: Chaosnet Software
Arpanet Name/Finger

Arpanet Time
Broadcast: Chaosnet Software

Chaosnet Arpanet Gateway
Chaosnet Dover Printer

Chaosnet File
Chaos net File Access

Chaosnet File Transfer
Chaosnet Hardware

Chaosnet Host Table
Chaosnet Mall

Chaosnet Name
Chaosnet Pulsar

Chaosnet RFCI ANS time
Chaosnet Send
Chaosnet Time

Connection Establishment: Chaosnet Software
Connections: Chaosnet Software

Contact Names: Chaosnet Software
Data: Chaosnet Software

Data Formats: Chaosnet Software
EFTP

End-of-data: Chaosnet Software
Error -correcting

FILE
FINGER

Flow and Error Control: Chaosnet Software
Internet

Introduction: Chaosnet File
Low-level: Chaosnet Software

MAIL
NAME

Namespace Timestamp
Network Namespace

Packet Contents: Chaosnet Software
Packet Numbers: Chaosnet Software

PULSAR
Routing: Chaosnet Software

Selecting
SEND

STATUS
Status Packets: Chaosnet Software

Supdup
Telnet
TIME

Transmission Control
User Datagram

Chaosnet Software
Chaosnet Software

project: User Object Attribute 14
Propagation delay time 105
properties 192
Properties Qfjle Command 195
property 221
property 192
property 212
property 221
property 220
property 192
property 221
property 220

March 1985

:property option for net:deflne-protocol 50
Protocol 38
Protocol 110
protocol 132
protocol 133
Protocol 125
Protocol 133
Protocol 134
Protocol 159
Protocol 131
Protocol 159
Protocol 101
Protocol 133
Protocol 131
Protocol 132
Protocol 130
protocol 50
Protocol 132
Protocol 133
Protocol 120
Protocol 108
Protocol 109
Protocol 124

. Protocol 113
protocol 134
Protocol 124
protocol 44
protocol 131
protocol 132
Protocol 117
protocol 135
Protocol 159
Protocol 127
protocol 131
protocol 132
Protocol 35
Protocol 33
Protocol 112
Protocol 111
protocol 130
Protocol 114
protocol 38
protocol 132
protocol 125. 129
Protocol 123
protocol 131
protocol 131
protocol 125. 133
Protocol 44. 135
Protocol 135
:protocol-addreaa message 211
Protocol - Details 120
Protocol - OVerview 108
protocol: Printer Object Attribute 17

March 1985

Q

Chaosnet File
Introduction: Chaosnet File

MAIL
Arpanet Telnet and Supdup

Chaos net Status
Chaos net Telnet and Supdup

Connection-Initiation
Details of Chaosnet Hardware

Generic
Higher-level Chaosnet

Implementing
Nongeneric

Server functions for datagram

Protocol (QFILE) 159
Protocol (QFILE) 159
protocol reply 131
protocols 131
Protocols 129
Protocols 131
protocols 120
Protocols 104
protocols 44
Protocols 129
protocols 51
protocols 44
protocols 221
Protocols and Services 38
Protocols in Chaosnet 135

257

Index

Using Foreign
Defined Services and

Defining
File Users: Defining

Servers: Defining
Users: Defining

Protocols: Usp Machine Generic Network System 56
Protocols: Usp Machine Generic Network System 49
Protocols: Usp Machine Generic Network System 55
Protocols: Usp Machine Generic Network System 51
Protocols: Usp Machine Generic Network System 50
Protocols supported by host 10

netl:

Reducing Gall Cost with

Chaosnet

:prolocol-suppoFted message 210
Protocol-translating gateway 135
prune-namespace-changes-flle function 28
pseudonet-gateway Service 61
pseudonet-gateway: Service 61
:pseudonet medium 44
Public carner Networks 97
PULSAR protocol 130
Pulsar Protocol 130

Q Q
QFILE 159

Opening a File with Qfjle 161
QFILE EOF Ending the Transfer with QFILE 161

Transferrtng Data with Orlle 161
Waiting for Acknowledgement of the EOF Packet on Writing with

Qfile 183
Chaosnet File Protocol (QFILE) 159

Introduction: Chaosnet File Protocol (QFILE) 159
QFILE active channel 159
Qfjle Asynchronous Marks 198
QFILE binding 161
Qfile Character Set Translation 162

QFILE unbinding QFILE close-abort QFILE OPEN options 161
Qfile Close and Synchronous Marks 182
QFILE command 159

Change-properties Qfjle Command 196
CLOSE QFILE command 161.181. 182

Complete Cflle Command 197
Continue Cflle Command 188

Crea1e-dlrectory Cflle Command 188
Create-link Cflle Command 188

Data-connectlon Cflle Command 169
Delete Cflle Command 186

Directory Qfile Command 191
Expunge Cflle Command 189

Fllepos Cfjle Command 185
Finish Cflle Command 184
Login Cflle Command 190

OPEN QFILE command 161. 170
Properties Cflle Command 195

Rename Cflle Command 186
Set-flle-system Cflle Command 190

258

Networks

Undata-connectlon

The Filepos

DELETED
DIRECTORIES-ONL Y

FAST
ND-EXTRA-INTO

PROBE-DIRECTORY
BINARY

BYTE-SIZE
CHARACTER

DEFAULT
DELETED

ESTIMATED-LENGTH
IF-DOES-NOT-EXIST

IF-EXISTS
INHIBIT-LINKS

PRESERVE-DATES
PROBE

RAW
READ

SUBMIT
SUPER

TEMPORARY
WRITE

QFILE unbinding QFILE close-abort
IF-EXISTS

CMD
FH

TID

March 1985

Qfile Command 170
Qfile Command and Response Format 164
Qfile Command Byte Size Problem 185
Qfile Command Descriptions 169
QFILE connection 159
QFILE control connection 159
QFILE data channel 159
QFILE data connection 159
Qfile Directory Data Format 192
QFILE DIRECTORY option 194
QFILE DIRECTORY option 194
QFILE DIRECTORY option 194
QFILE DIRECTORY option 194
Qfile Directory Options 194
QFILE EOF Ending the Transfer with QFILE 161
Qfile Error Codes 198
Qfile Error Responses 197
Qfile Errors and Asynchronous Marks 197
QFILE file handle 161
Qfile File Transfer Philosophy 160
QFILE free channel 159
QFILE mark 159
Qfile Marks and EOF Packets 168
QFILE NORMAL character set translation mode 162
QFILE OPEN optio 172
QFILE OPEN option 172
QFILE OPEN option 172
QFILE OPEN option 172
QFILE OPEN option 172
QFILE OPEN option 172
QFILE OPEN option 172
QFILE OPEN option 172
QFILE OPEN option 172
QFILE OPEN option 172
QFILE OPEN option 172
QFILE OPEN option 172
QFILE OPEN option 172
QFILE OPEN option 172
QFILE OPEN option 172
QFILE OPEN option 172
QFILE OPEN option 172
QFILE OPEN option 172
Qfile Open Options 172
QFILE OPEN options 161
QFILE OPEN option values 172
Qfile Open Response Result Values 178
QFILE open stream 160
QFILE packet 159
Qfile Packet Data Contents 165
Qfile Packet Opcodes 165
QFILE packet types 168
QFILE parcel 159
QFILE RAW character set translation mode 162
QFILE response 159
QFILE return value 159
Qfile S1ring Values 166
QFILE SUPER-IMAGE character set translation

mode 162
QFILE synchronization check 172
QFILE synchronous marks 182
Qfjle Syntax 166
QFILE TID 159
QFILE token 166
QFILE token 166
QFILE token 166
Qfile Tokens 166

259

March 1985 Index

R

QFILE transaction Identifier 159
Ending the Qfile Transfer 161

QFILE unbinding QFILE close-abort QFILE OPEN
options 161

QFILE user-server dialogue 159
Qualified name 5
:quallfied-slring message 31
Queries to network database 33
Quitting Hostat 147

Double quotes 24
Quoting 24

QFILE
nell:

nell:
chaos:

:change-of-state interrupt
:input interrupt

:output interrupt

RFC
Window size In the

Clear

Packet
CCITT

Eliminate

R
RAW character set translation mode 162
raw-packet-bu1Ter-slze variable 204
RAW QFILE OPEN option 172
Read Buffer register 137
read-object-file-and-update function 28
read-pkls function 146
READ QFILE OPEN option 172
reason 146
reason 146
reason 146
Receipt 117
Received connection state 127
receive direction 150
Receive Done bit 137
Receive Interrrupt Enable bit 137
:recelve-packet message 216
Receiver bit 137
Receiver process 140
Reception: Interfacing to the Network System 216
Recommendation X.25 Interface 15
Record Format 24
Record-mode Connections: Chaosnet UNIX

Implementation 154
record of changes 28

R

Reducing Call Cost with Public Carrier Networks 97
Reference Material: Packets 203

Programmer's
Chaosnet

Bit Count
Command/Status

My Address
Read Buffer

Start Transmission
Write Buffer

Dlalnet
Contents of a Dlalnet

Loading a Dlalnet
chaos:

OVerview of
Using the

net:

Reference Material: Starting Servers 222
Reference on Networks 99
References 157
Refusal 120
register 137
Register 137
register 137
register 137
register 137
register 137
Registries 81
Registry 82
Regls1ry 84
reject function 142
:reject message 218
:reject-unless-lrusted option for

net:define-seIVer 51
:reject-unless-trusted property 220
remarks: User Object Attribute 14
Remote ASCII terminal 69, 70
Remote Login 65
Remote login Gapabllity 67
Remote Login Facilities 69
remote-Iogln-on function 70
Remote login with machine In use 70

260

Networks

s

chaos:

MAIL protocol
Host status

Bit
Dlalnet

Answer to STATUS
Database deletion

FWD Forward a
RFC

Initialization,

netl:

QFILE

Qfjle Command and
Qfile Open
Qfile Error

Qfile Open Response

chaos:
QFILE

Chaosnet

Chaos:

Chaos:

RUT

Connection address In
Connection cost In
Connection type in

Search

s

March 1985

remove-conn function 140
Rename Qfile Command 186
Rendezvous subprotocols 135
reply 131
report 147
representation 104
Representation In the Namespace Database 79
request 129
request 33
:request-array-end option to

netl:funcall-server-Internal-functlon 221
:request-array option for net:define-server 51
:request-array option to

netl:funcall-server-Internal-function 221
:request-array-start option to

netl :funcall-server-Internal-functlon 221
request for connection packet 120
Request for connection packet 120
Reset, and Enable: Interfacing to the Network

System 217
Reset bit 137
reset function 148
:reset message 218
response 159
:response-array-end option to

netl :funcall-server-Internal-functlon 221
:response-array option for net:define-server 51
:response-array option to

netl :funcall-server-Internal-functlon 221
:response-array-start option to

netl :funeall-server -Internal-function 221
Response Format 164
Response Result Values 178
Responses 197
Result Values 178
Retransmission 117
return-pkt function 145
return value 159
RFCI ANS time protocol 50
RFCI ANS transaction 35
RFC Received connection state 127
rfc-received-state connection state 143
RFC Request for connection packet 120
RFC Sent connection state 127
rfc-sent-state connection state 143
Routing: Chaosnet Software Protocol 114
Routing Information packet 127
Routing packet 114
Routing table 114
routing table 114
routing table 114
routing table 114
rules 5
RUT packet 114
RUT Routing Information packet 127

screen-spy Service 61
Search rules 5
search-rules keyword for termlnal-f-argument

attribute 21
search-rules: Namespace Object Attribute 21
secondary-name-server keyword for termlnal-f

argument attribute 22

s

March 1985

chaos:

Chaosnet

chaos:
chaos:
Carrier

SNS
Broadcast

RFC

Gateway
:host option for

Invoking a
Primary namespace

:trust.., option for
chaos:
chaos:

netl:
Finding a

Usp Machine Namespace
calling the

netl:

netl:
netl:

netl:
netl:

Access files on network file
Ust all supported

Reference Material: Starting

General Arguments: Starting
Medium Arguments: Starting

Starting
netl:

band-transfer
file
file:

hardcopy
hardcopy:

hardcopy-devlce-statu.
hardcopy-devlce-status:

hardcopy-statu.
hardcopy-statu.:

IIspm-flnger
IIspm-flnger:

login
login:

maJl-to-uaer

secondary-name-server: Namespace Object
Attribute 22

aecure-subnets: Site Object Attribute 20
Selecting paths 38
Selecting protocol 38
Sending a CLS packet 124
Sending a Packet to an Interface 211

261

Index

Sending message to all Usp Machines at site 141
Sending press files to Dover printer 134
send-pkt function 145
SEND protocol 132
Send Protocol 132
send Service 61
send: Service 61
send-siring function 145
send-unc-pkt function 145
sense 105
Sense status packet 123
Sent connection state 127
Sent connection state 127
Server 49
server 133
server 220
server 222
server 24
server 220
server-allst 51
server-aJlst variable 142
server-argument-descriptlons function 222
Server Desert ption 220
Server Files 24
Server Function 220
server-function function 222
Server functions 142
Server functions for datagram protocols 221
server-machine: Host Object Attribute 11
server-medium-type function 222
server-number-of-argumenta function 222
Server process 109
server-property-list function 222
server-protocol-name function 220, 222
servers 131
servers 222
Servers 222
Servers: Defining Protocols: Usp Machine Generic

Network System 51
Server-side: Opening and Closing Connections:

Chaosnet Usp Machine Implementation 142
Servers: InterfaCing to the Network System 220
Servers: InterfaCing to the Network System 221
Servers: InterfaCing to the Network System 220
servera variable 220, 222
Service 56
Service 56
Service 56
Service 56
Service 56
Service 57
Service 57
Service 58
Service 58
Service 58
Service 58
Service 58
Service 58
Service 59

262

Networks

mall-Io-user:
Multiple paths to a

namespace
namespace:

namespace-Ilmestamp
namespace-Ilmeslamp:

notify
packet-gateway
packet-gateway:
prlnl-dlsk-Iabel
prlnl-dlsk-Iabel:

pseudonet-gateway
pseudonet-gateway:

screen-spy
send

send:
show-users
show-users:

&tatus
store-and-forward-mall

&tore-and-forward-mall:
tape

Icp-gateway
lime
lime:

uptime
uptime:

who-am-I
who-am-I:

net:

InterfaCing to the

Protocols and
Defined

Invoking

Window Into the
chaos:

Character

netl:
Qfjle Character

CFILE NORMAL character
CFILE RAW character

QFILE SUPER-IMAGE character

Abort

chaos:

Service 59
service 43
Service 60
Service 60
Service 60
Service 60
Service 60
Service 60
Service 60
Service 61
Service 61
Service 61
Service 61
Service 61
Service 61
Service 61
Service 62
Service 62
Service 62
Service 62
Service 62
Service 63
Service 63
Service 63
Service 63
Service 63
Service 63
Service 64
Service 64

March 1985

Service access path 41
servlce-access-palh-future-connecled-p

function 42
:servlce at1ribute 38, 44
Service Descriptions: Usp Machine Generic Network

System 41
Service Mure 42
Service Futures: Usp Machine Generic Network

System 42
service: Host Object At1ribute 10
Service Lookup Mechanism 214
Services 38
Services 38
Services and Protocols: Usp Machine Generic

Network System 56
Services: Usp Machine Generic Network System 40
Services supported by host 10
:servlce step type 44
Set 4, 29
Set-file-system Qfjle Command 190
set of packet numbers 117
sel-pkt-strlng function 145
sets 113, 131
SElTABLE-PROPERTlES file system property 192
8eI-lermlnal-parameters function 69
Set Translation 162
set translation mode 162
set translation mode 162
set translation mode 162
short-name: Host Object At1ribute 7
show-users: Service 62
show-users Service 62
sl:get-slte-optlon function 31
signals 104
Signals: Chaosnet UNIX Implementation 156
simple function 140
Simple transaction 120

March 1985

ANS Answer to a

Sending message to all Usp Machines at

aefauH-bltmap-printer:
defauH-printer:

dont-reply-to-malling-ilsts:
host-for -bug-reports:

host-protocol-desirability:
local-namespace:

other-sHes-lgnored-ln-zmall-summary:
pretty-name:

secure-subnets:
sHe-dl rectory:

site-system:
standalone:

termlnal-f-argument:
tlmezone:

valldate-Imfs-dump-tapea:
Namespace System

Window
Window

The Filepos Qfjle Command Byte
Number of packet

Addresses and Indices: Chaosne1
Broadcast: Chaosnet

Connection Establishment: Chaosnet
Connections: Chaosnet

Contact Names: Chaosnet
Data: Chaosnet

Data Formats: Chaosnet
End-of-data: Chaosnet

Flow and Error Control: Chaosnet
Low-level: Chaosnet

Packet Contents: Chaosnet
Packet Numbers: Chaosnet

Routing: Chaosnet
Status Packets: Chaosnet

Chaosnet
Chaosnet

net:define-medlum
net:deflne-protocol

net:define-server
net:lnvoke-muHlple-aervlcn

unwlnd-protect

Simple transaction packet 120
sl:parse-host function 31
site 141
Site attributes 18
sHe-dlrectory: Site Object Attribute 19
site: Host Object Attribute 7
site-name variable 31
sHe: Network Object Attribute 14
Site object 4
Site Object Attribute 19
Site Object Attribute 19
Site Object Attribute 20
Site Object Attribute 19
Site Object Attribute 19
Site Object Attribute 19
Site Object Attribute 20
Site Object Attribute 18
Site Object Attribu~e 20
Site Object Attribute 19
Site Object Attribute 19
Site Object Attribute 20
Site Object Attribute 21
Site Object Attribute 20
Site Object Attribute 21
Site Objects 18
sHe: Printer Object Attribute 16
Sites 5
sHe-system: Site Object Attribute 19
sl:*user* variable 29
Size In bytes of packet buffer 204
size In the receive direction 1SO
size in the transmit direction 1SO
Size Problem 185
slots available in transmit window 1SO
SNS packets 117
SNS Sense status packet 123
Software Installation: Chaosnet UNIX

Implementation 156

263

Index

Software Interface to the Namespace System 29
Software Protocol 110
Software Protocol 125
Software Protocol 120
Software Protocol 108
Software Protocol 109
Software Protocol 124
Software Protocol 113
Software Protocol 124
Software Protocol 117
Software Protocol 127
Software Protocol 112
Software Protocol 111
Software Protocol 114
Software Protocol 123
Software Protocol - Details 120
Software Protocol - OVerview 108
Source Address packet header field 112
Source Index packet header field 112
Source word 102, 104
Special Files for Creating Connections: Chaosnet

UNIX Implementation 153
special form 45
special form SO, 215
special form 51
special form 43
special form 201
spooled-prlnter: Host Object Attribute 10

264

Networks

Reference Material:

General Arguments:

Medium Arguments:

net:

Broadcast Sent connection
Chaos:answered-state connection

Chaos:cls-recelved-state connection
Chaos:forelgn-state connection

Chaos:host-down-state connection
Chaos:lnactlve-state connection
Chaos:listenlng-state connection

Chaos:los-recelved-state connection
Chaos:open-state connection

Chaos:rfc-recelved-state connection
Chaos:rfc-sent-state connection

Closed connection
Conn_sCclosed VAX//VMS connection

Conn_stJull VAX/VMS connection
Conn_sUncom VAXNMS connection

Conn_stJos VAX/VMS connection
Conn_stJsn VAX/VMS connection

Conn_sCnew VAX/VMS connection
Conn_sCopen VAX/VMS connection
Conn_sCrfcrcv VAX/VMS connection
Conn_sCrfcsnt VAX/VMS connection

Foreign connection
Incomplete Transmission connection

Ustening connection
Lost connection

Open connection
RFC Received connection

RFC Sent connection
Checking the.

chaos:
Chaosnet Connection

Connection
Host

chaos:
SNS Sense

STS

Chaosnet
Host

Answer to

: local
:medlum
:network
:servlce

QFILE open

March 1985

Spy bit 137
standalone: Site Object Attribute 20
Standard Communication with Interfaces 209
Starting Servers 222
Starting Servers: Interfacing to the Network

System 220
Starting Servers: Interfacing to the Network

System 220
Starting Servers: Interfacing to the Network

System 221
start-servlce-access-path-future function 42
Start Transmission register 137
state 127
state 143
state 143
state 143
state 143
state 143
state 143
state 143
state 143
state 143
state 143
state 127
state 150
state 150
state 150
state 150
state 150
state 150
state 150
state 150
state 150
state 127
state 127
state 127
state 127
state 127
state 127
state 127
State: Chaosnet VAX/VMS Implementation 150
state function 143
States 127
States: Chaosnet Usp Machine Implementation 143
Status 147
status function 147
status packet 123
Status packet 123
Status packets 117
Status Packets: Chaosnet Software Protocol 123
STATUS protocol 125, 129
Status Protocols 129
status report 147
STATUS request 129
status Service 62
Steps 44
step type 44
step type 44
step type 44
step type 44
store-and-forwani-mall: Service 62
store-and-forwarcl-mall Service 62
Storing database object attributes 25
Stream 140
stream 160
Stream connection 120

March 1985

Open a stream connection 140
Byte Stream Conventions: Interfacing to the Network

System 218
Stream 110: Chaosnet Lisp Machine

Implementation 143

265

Index

Stream 1/0: Chaosnet VAXNMS Implementation 149
Byte Stream Media: Lisp Machine Generic Network

System 55
Stream-mode Connections: Chaosnet UNIX

Implementation 154
:ltream option for net:define-server 51
:stream-optlons property 221

Generic byte streams 44
* string 30

:strlng message 31
Qfjle String Values 166

STS packets 117
STS Status packet 123
SUBMIT QFILE OPEN option 172
Subnet 110, 114
subnet: Network Object Attribute 15
Subnets 37
Subpackets and CoerCing Packets 204

Rendezvous subprotocols 135
·CHAOS.B32" BLlSS-32 subroutine package 148

Supdup protocol 131
Arpanet Telnet and Supdup protocols 131

Chaosnet Telnet and Supdup Protocols 131
QFILE SUPER-IMAGE character set translation mode 162

SUPER QFILE OPEN option 172
supervisor: User Object Attribute 14

Protocols supported by host 10
Services supported by host 10

List all supported servers 222
:8Upports-broadcast message 215

:* keyword symbol 30
Symbolic host names 110
Symbollcs Dialnet 73

QFILE synchronization check 172
QFILE synchronous marks 182

Qfjle Close and Synchronous Marks 182
OfJIe Syntax 166

Byte Stream Conventions: Interiaclng to the Network System 218
Byte Stream Media: Lisp Machine Generic Network System 55

Datagram Media: Lisp Machine Generic Network System 56
Defined Media: Lisp Machine Generic Network System 55

Defined Services and Protocols: Lisp Machine Generic Network
System 56

Defining Protocols: Lisp Machine Generic Network System 49
Example: Interfacing to the Network System 206

File Users: Defining Protocols: Lisp Machine Generic Network
System 55

Finding Paths to Hosts: Lisp Machine Generic Network
System 44

General Arguments: Starting Servers: InterfaCing to the Network
System 220

Implementation of the Namespace System 33
Initialization, Reset, and Enable: InterfaCing to the Network

System 217
Interfaces: InterfaCing to the Network System 209

Interfacing to the Network System 201
Introduction to the Namespace System 3

Invoking Mediums: Interfacing to the Network System 215
Invoking Services: Lisp Machine Generic Network System 40

Medium Arguments: Starting Servers: Interfacing to the Network
System 221

266

Networks March 1985

Namespace System 3
Network Addresses: Interfacing to the Network System 213

Network Errors: Interfacing to the Network System 216
Networks: Interfacing to the Network System 212

Packet Reception: Interfacing to the Network System 216
Packets: Interfacing to the Network System 201

Packet Transmission: Interfacing to the Network System 216
Path name system 55

Servers: Defining Protocols: Lisp Machine Generic Network
System 51

Service Descriptions: Lisp Machine Generic Network System 41

T

Service Futures: Lisp Machine Generic Network System 42
Software Interface to the Namespace System 29

Starting Servers: Interfacing to the Network System 220
The Lisp Machine Generic Network System 37

User Interface to the Namespace System 22
Users: Defining Protocols: Lisp Machine Generic Network

Namespace
Data Types of Namespace

Namespace
loctl

Namespace
Namespace
Namespace
Namespace

[Namespace]
Namespace
Namespace
Namespace

FREE-SPACE-DESCRIPTION file
SETTABLE-PROPERTIES file

Namespace

System 50
System Administrative Functions 28
System Attributes 4
System Attributes 4
System Gall Commands: Chaosnet UNIX

Implementation 155
System Classes 4
System Functions 29
System Host Objects 7
System Lisp Data Types 29
System Menu item 22
System Network Objects 14
System Object Definitions 7
System Printer Objects 16
system property 192
system property 192
System Site Objects 18
system-type: Host Object Attribute 8

Namespace System User Objects 11
Namespace System Variables 29

File system version number 26

Connection address In routing
Connection cost in routing
Connection type in routing

ITS host
Routing

Chaosnet Host

netl:

Upright Biphase NAZI
Direct-dial

Arpanet
Chaosnet

Remote ASCII

Using the
QFILE

Propagation delay

T
table 114
table 114
table 114
table 114
table 114
Table Protocol 133
tape Service 63
t8rget-number-of-wlred-packet-buffers

variable 204
:tcp connection 44
tcp-gateway Service 63
technique 104
telephone network 15
Telnet and Supdup protocols 131
Telnet and Supdup Protocols 131
Telnet protocol 131
TEMPORARY QFILE OPEN option 172
terminal 69, 70
termlnal-f-argument: Site Object Attribute 21
Terminal Program with the Dial Network 87
TID 159
TID QFILE token 166
time 105
TI M E protocol 125, 133

T

March 1985

Arpanet
Chaosnet

Chaosnet RFCI ANS

Namespace

CMD QFILE
FH QFILE

TID QFILE
Virtual

Qfile
RFC/ANS

Simple
QFILE

ANS Answer to a simple
Cable

Chaos net
Ending the Qfile

Qfile File
Chaosnet File

QFILE EOF Ending the
netl:

Qfile Character Set
QFILE NORMAL character set

QFILE RAW character set
QFILE SUPER-IMAGE character set

Incomplete

Packet
Start

Window size In the

Clear

Number of packet slots available in

Bridge connection
:byte-stream medium

chaos network
dial network

Direct connection
Fixed bridge connection

:gateway-pseudonet network
gateway-pseudonet network

Internet network
:locaI step

:medlum step
:network step

Time protocol 133
Time Protocol 133
time protocol 50
Timer Interrupt Enable bit 137
time: Service 63
time Service 63
TIme-slot counter 105
TImestamp 26, 33
timestamp Indicator 33
Timestamp Protocol 35
tlmezone: Site Object Attribute 20
Token 4, 24, 29
token 166
token 166
token 166
token 105
Tokens 166
transaction 35
transaction 120
transaction Identifier 159
transaction packet 120
transceiver 102
Transceiver 103
Transfer 161
Transfer Philosophy 160
Transfer Protocol 159
Transferring Data with Qflle 161
Transfer with QFILE 161
translate-hosts. text-file function 28
Translation 162
translation mode 162
translation mode 162
translation mode 162
Transmission connection state 127
Transmission Control Protocol 44, 135

267

Index

Transmission: Interfacing to the Network System 216
Transmission register 137
Transmission voltage 103
Transmit Abort bit 137
transmit direction 150
Transmit Done bit 137
Transmit Interrupt Enable bit 137
Transmit list 208
:transmlt-packet message 211
Transmitter bit 137
Transmitting interactive messages 132
Transmitting inter-user messages 131
transmit window 150
Triple 4,29
:trusted-p option for net:define-server 51
:trusted-p option for server 220
Tty-mode Connections: Chaosnet UNIX

Implementation 155
tv:edlt-namespace-obJ8Ct function 22
type 114
type 51
type 15
type 15
type 114
type 114
type 44
type 15
type 15
type 44
type 44
type 44

268

Networks

u

:l8l'Vlce step
x25 network
Connection

Database data
Namespace System Usp Data

Packet
OFILE packet

Data

QFILE

Chaosnet
UNC

Chaosnet
Forelgn-protocol-mode Connections: Chaosnet

Header Flies: Chaosnet
loctl System call Commands: Chaosnet

Record-mode Connections: Chaosnet
Signals: Chaosnet

Software Installation: Chaosnet
Special Flies for Creating Connections: Chaosnet

Stream-mode Connections: Chaosnet
Tty-mode Connections: Chaosnet

Incremental

affiliation:
birthday:

home-address:
home-host:

home-phone:
IIspm-name:
login-name:

mall-addresa:
name:

nickname:
personal-name:

project:
remarks:

supervisor:
work-addresa:

work-phone:
Namespace System

u

March 1985

type 44
type 15
type In routing table 114
:type message 213
type: Network Object Attribute 15
type: Printer Object Attribute 16
types 4.29
Types 29
types 120
types 168
Types of Namespace System Attributes 4

unbinding QFILE close-abort OFILE OPEN options
161

UNC encapsulation Interface 212
Uncontrolled Data packet 124. 135
Uncontrolled packets 111. 117
UNC Uncontrolled Data packet 124. 135
Undata-connectlon Ofile Command 170
UNIBUS Chaosnet Interface 137
UNIX Implementation 152
UNIX Implementation 155
UNIX Implementation 152
UNIX Implementation 155
UNIX Implementation 154
UNIX Implementation 156
UNIX Implementation 156
UNIX Implementation 153
UNIX Implementation 154
UNIX Implementation 155
:unparse-addren message 214
unwlnd-protect special form 201
update-by attribute 33
updates 33
Updates to network database 33
Update the namespace database 28
Upright Blphase NRZI technique 104
uptime Service 63
uptime: Service 63
User 49
User attributes 11
User Datagram Protocol 135
:user-get message 32
User Interface to the Namespace System 22
User object 4
User Object Attribute 14
User Object Attribute 14
User Object Attribute 13
User Object Attribute 13
User Object Attribute 13
User Object Attribute 12
User Object Attribute 12
User Object Attribute 13
User Object Attribute 12
User Object Attribute 13
User Object Attribute 12
User Object Attribute 14
User Object Attribute 14
User Object Attribute 14
User Object Attribute 13
User Object Attribute 13
User Objects 11
User process 109

u

269

March 1985 Index

v

Channels attached to user processes 110
user-property: Object Attribute 8, 13, 15, 16, 18, 22
Users 5

Daemon users 11
Users: Defining Protocols: Usp Machine Generic

Network System 50
File Users: Defining Protocols: Usp Machine Generic

Network System 55
QFILE user-server dialogue 159

User-side: Opening and Closing Connections:
Chaosnet Usp Machine Implementation 140

II: *user* variable 29

v v
Attribute

QFILE return
IF-EXISTS QFILE OPEN option

Qfile Open Response Result
Qfjle String

ch8Ol:daI-op
chaos:eof-op

ch8Ol:server-alist .
fs:%flle-asynchronous-mark-opcode

fs:%flle-notlflcatlon-opcode
net:after-network~lnltlaJlzatlon-llst

net:flnger -Ioeatlon
netl:*lnter1aces*

netl:*lnvoke-aervice-automatlc-retry*
netl:*locaJ-networb*

netl:JlIW-packet-bu1fer-llze
netl:*aervera*

netl:*target-number-of-wlred-packet-bu1fera*
net:*local-host*
net:*locaI-slte*

net:*namespace*
net:*namespac8-search-llst*

lite-name
al:*user*

Namespace System
Conn_sLclosed

valldate-Irnfl..dump-tapea: Site Object Attribute 21
value 4

Conn_stJull
Conn_sUncom

Conn_sUos
Conn_sUsn

Conn_st_new
Conn_sLopen
Conn_sLrfcrcv
Conn_sLrfcsn1

Chaosnet
Checking the State: Chaosnet

Opening and Closing: Chaosnet
Stream 110: Chaosnet

File system

Transmission

value 159
values 172
Values 178
Values 166
variable 165
variable 165
variable 142
variable 165
variable 165
variable 217
variable 141
variable 21 0
variable 41
variable 217
variable 204
variable 220, 222
variable 204
variable 29
variable 29
variable 29
variable 29
variable 31
variable 29
Variables 29
VAX/NMS connection state 150
VAXNMS character output 149
VAXNMS connection state 150
VAXNMS connection state 150
VAXNMS connection state 150
VAXNMS connection state 150
VAXNMS connection state 150
VAXNMS connection stOOe 150
V AXNMS connection state 150
VAXNMS connection state 150
VAX/VMS Implemen1atlon 148
VAXNMS Implementation 150
V AXNMS Implementation 148
V AXNMS Implementation 149
version descriptor file Indicator 24
version number 26
Virtual token 105
voltage 103

270

Networks

w
chaos:

Number of packet slots available In transmit

netl:
Check

Destination
Source

Multlbyte

netl:

March 1985

w w
. walt function 143

Waiting for Acknowledgement of the EOF Packet on
Writing with Qflle 183

who-am-I Service 64
who-am-I: Service 64
:who-line option for net:define-aerver 51
:who-line property 220
Wildcard 30
window 150
Window Into the set of packet numbers 117
Window size In the receive direction 150
Window size In the transmit direction 150
Wired packets 201
wHh-server-error-disposltlon macro 54
word 102, 104
word 102, 104
word 102, 104
words 204
work-address: User Object Attribute 13
work.phone: User Object Attribute 13
Write Buffer register 137
wrHe-hosts.text-file function 28
WRITE QFILE OPEN option 172

Waiting for Acknowledgement of the EOF Packet on Writing with Qflle 183

x X
ccrrr Recommendation X.25 Interface 15

:x25 example 44
x25 network type 15

x

