

symbolics

8 Internals, Processes, and
Storage Management

Cambridge, Massachusetts

Internals, Processes, and Storage Management
996085

March 1985

this document corresponds to Release 6.0 and later releases.

The software, data. and Information contained herein are proprietary to, and comprise
valuable trade secrets of, Symbolics, Inc. They are given in confidence by Symbolics
pursuant to a written license agreement. and may be used, copied, transmitted, and
stored only In accordance with the terms of such license.

This document may not be reproduced in whole or In part without the prior written
consent of Symbollcs, Inc.

Copyright C 1985, 1984, 1983, 1982, 1981, 1980 Symbolics, Inc. All Rights Reserved.
Font Ubrary Copyright C 1984 Bltstrearn Inc. All Rights Reserved.

Symbollcs, Symbollcs 3600, Symbollcs 3670, Symbollcs 3640, SYMBOUCS-USP,
ZETAUSP, MACSYMA, S-GEOMETRY. S-PAINT, and S-RENDER are trademarks of
Symbolics, Inc.

Restricted Rights Legend
Use, duplication, or disclosure by the government Is subject to restrictions as set forth
in subdivision (b)(3)(U) of the Rights In Technical Data and Computer Software Clause
at FAR 52.227-7013.

Text written and produced on Symbolics 3600-farnily computers by the Documentation
Group of Symbolics, Inc.

Text typography: Century Schoolbook and Helvetica produced on Symbolics 3600-
family computers from Bltstrearn. Inc., outlines; text masters printed on Symbolics LGP-1
Laser Graphics Printers.
Cover design: Schafer/laCasse
Cover printer: W.E. Andrews Co., Inc.
Text printer: ZBR Publications, Inc.

Printed in the USA.

Printing year and number: 87 86 85 9 8 7 6 5 4 3 2 1

iii

March 1985 Internals, Processes, and Storage Management

Table of Contents

Page

I. Internals 1

L Stack Groups 3

1.1 Resuming of Stack Groups 4
1.2 Stack Group Functions 5
1.3 InpuUOutput in Stack Groups 7
1.4 An Example of Stack Groups 7

2. Subprimitives 11

2.1 Data Type SUbprimitives 12
2.2 Forwarding 14
2.3 Pointer Manipulation 15
2.4 Analyzing Structures 16
2.5 Basic Locking SUbprimitive 17
2.6 Accessing Arrays Specially 18
2.7 Storage Layout DefInitions 18
2.8 Special Memory Referencing 20
2.9 Lambda-binding Subprimitive 23
2.10 Function-calling SUbprimitives 23
2.11 The Paging System 24
2.12 Con sing Lists on the Control Stack 26
2.13 The Data Stack 28

3. 3600-family Disk System User Interface 29

3.1 DefInitions and Constants 29
3.2 Disk Arrays 31
3.3 Disk Events 32

3.3.1 Synchronization Functions 32
3.3.2 Disk Event Accessor Functions 33

3.4 Disk Transfers 35
3.5 Disk Error Handling 36

3.5.1 Disk Error Variables 38
3.5.2 Disk Error Conditions 38
3.5.3 Disk Error Codes 39
3.5.4 Disk Error Meters 41

3.6 FEP File System 42
3.6.1 Naming of FEP Files 43
3.6.2 Accessing FEP Files 43

iv

Interns/s. Processes. and Storage Management

3.6.3 Operating on Disk Streams
3.6.4 Input and Output Disk Streams
3.6.5 Block Disk Streams
3.6.6 FEP File Properties
3.6.7 FEP File Locks
3.6.8 FEP File Types

3.7 Disk Performance
3.8 Examples of High Disk Performance

3.8.1 Initializing a FEP File
3.8.2 Copying FEP Files

3.9 Disk and FEP File System Utilities
3.9.1 Initializing a Disk Unit
3.9.2 Mounting a Disk Unit
3.9.3 Verifying a FEP File System
3.9.4 Writing FEP Files to Tape

4. PC Metering on the 3600 Family

ll. InitiaIizations

5. Introduction to InitiaIizations

8. System Initialization Lists

m. Processes

7. Introduction

8. The Scheduler

9. Locks

10. Creating a Process

10.1 How to Choose Process Priority Levels

lL Process Messages

11.1 Process Attributes
11.2 Run and Arrest Reasons
11.3 Bashing the Process

12. Process Flavors

13. Other Process Functions

IV. Storage Management

March 1985

45
46
47
48
48
49
50
52
52
53
58
58
58
59
59

61

85

67

71

73

75

77

83

85

87

89

89
91
92

95

97

99

v

March 1985 Internals, Processes, and Storage Management

14. Overview of Storage Management 101

14.1 Automatic Storage Management 101
14.2 Manual Storage Management 101

15. Areas 103

15.1 Area Functions and Variables 104
15.2 Interesting Areas 107
15.3 The sys:reset-temporary-area Feature 107
15.4 Memory Mapping Tools 108

15.4.1 Area and Region Predicates 108
15.4.2 Mapping Routines 109

16. The Garbage Collector 113

16.1 Principles of Garbage Collection 113
16.2 U sing the Garbage Collector 114
16.3 Operation of the Garbage Collector 117

16.3.1 Ephemeral-object Garbage Collection 119
16.3.2 Locality of Reference 121

16.4 Storage Requirements for Garbage Collection 122
16.5 Controlling Garbage Collection 124
16.6 Strategy for Unattended Operation with the Garbage Collector 128

17. Reporting the Use of Memory 129

18. Resources 131

Index 137

vi

Internals, Processes, and Storage Management March 1985

vii

March 1985 Internals, Processes, and Storage Management

List of Tables

Table 1. Selected Disk Specifications 52

viII

Internals, Processes, and Storage Management March 1985

1

March 1985 Internals

PART I.

Internals

2

Internals, Processes, and Storage Management March 1985

3

March 1985 Internals

1. Stack Groups

A stack group (usually abbreviated "SG") is a type of Lisp object useful for
implementation of certain advanced control structures such as coroutines and
generators. Processes, which are a kind of coroutine, are built on top of stack
groups. (See the section "Processes", page 73.) A stack group represents a
computation and its internal state, including the Lisp stack.

At any time, the computation being performed by the Lisp Machine is associated
with one stack group, called the current or running stack group. The operation of
making some stack group be the current stack group is called a resumption or a
stack group switch; the previously running stack group is said to have resumed the
new stack group. The resume operation has two parts: first, the state of the
running computation is saved away inside the current stack group, and secondly the
state saved in the new stack group is restored, and the new stack group is made
current. Then the computation of the new stack group resumes its course.

The stack group itself holds a great deal of state information. It contains the
control stack. The control stack is what you are shown by the Debugger's
backtracing commands (c-B, r'I-B, and C-r'l-s); it remembers the function that is
running, its caller, its caller's caller, and so on, and the point of execution of each
function (the "return addresses" of each function). A stack group also contains the
binding (environment) stack. This contains all of the values saved by
lambda-binding of special variables. The name "stack group" derives from the
existence of these stacks. Finally, the stack group contains various internal state
information (contents of machine registers and so on).

When the state of the current stack group is saved away, all of its bindings are
undone, and when the state is restored, the bindings are put back. Note that
although bindings are temporarily undone, unwind-protect handlers are not run by a
stack-group switch. (See the special form let-globally in Reference Guide to
Symbolics-Lisp.)

Each stack group is a separate environment for purposes of function calling,
throwing, dynamic variable binding, and condition signalling. All stack groups run in
the same address space, thus they share the same Lisp data and the same global
(not lambda-bound) variables.

When a new stack group is created, it is empty: it doesn't contain the state of any
computation, so it cannot be resumed. In order to get things going, the stack group
must be set to an initial state. This is done by "presetting" the stack group. To
preset a stack group, you supply a function and a set of arguments. The stack
group is placed in such a state that when it is first resumed, this function calls
those arguments. The function is called the "initial" function of the stack group.

4

Internals. Processes. and Storage Management March 1985

1.1 Resuming of Stack Groups

The interesting thing that happens to stack groups is that they resume each other.
When one stack group resumes a second stack group, the current state of Lisp
execution is saved away in the first stack group, and is restored from the second
stack group. Resuming is also called "switching stack groups".

At any time, there is one stack group associated with the current computation; it is
called the current stack group. The computations associated with other stack groups
have their states saved away in memory, and they are not computing. So the only
stack group that can do anything at aU, in particular resuming other stack groups, is
the current one.

You can look at things from the point of view of one computation. Suppose it is
running along, and it resumes some stack group. Its state is saved away into the
current stack group, and the computation associated with the one it called starts up.
The original computation lies dormant in the original stack group, while other
computations go around resuming each other, until finally the original stack group is
resumed by someone. Then the computation is restored from the stack group and
gets to run again.

There are several ways that the current stack group can resume other stack groups.
This section describes all of them.

Associated with each stack group is a resumer. The resumer is nil or another stack
group. Some forms of resuming examine and alter the resumer of some stack
groups.

Resuming has another ability: it can transmit a Lisp object from the old stack group
to the new stack group. Each stack group specifies a value to transmit whenever it
resumes another stack group; whenever a stack group is resumed, it receives a value.

In the descriptions below, let c stand for the current stack group, s stand for some
other stack group, and x stand for any arbitrary Lisp object.

Stack groups can be used as functions. They accept one argument. If c calls s as a
function with one argument x, then s is resumed, and the object transmitted is x.
When c is resumed (usually - but not necessarily - by s), the object transmitted
by that resumption is returned as the value of the call to s. This is one of the
simple ways to resume a stack group: call it as a function. The value you transmit
is the argument to the function, and the value you receive is the value returned
from the function. Furthermore, this form of resuming sets s's resumer to be c.

Another way to resume a stack group is to use stack-group-return. Rather than
allowing you to specify which stack group to resume, this function always resumes
the resumer of the current stack group. Thus, this is a good way to resume
whoever it was who resumed you, assuming it was done by function-calling.
stack-group-return takes one argument, which is the object to transmit. It

5

March 1985 Internals

returns when someone resumes the current stack group, and returns one value, the
object that was transmitted by that resumption. stack-group-return does not
affect the resumer of any stack group.

The most fundamental way to do resuming is with stack-group-resume, which
takes two arguments: the stack group, and a value to transmit. It returns when
someone resumes the current stack group, returning the value that was transmitted
by that resumption, and does not affect any stack group's resumer.

If the initial function of e attempts to return a value x, the regular kind of Lisp
function return cannot take place, since the function did not have any caller (it got
there when the stack group was initialized). So instead of normal function
returning, a "stack group return" happens. e's resumer is resumed, and the value
transmitted is x. e is left in a state ("exhausted") from which it cannot be resumed
again; any attempt to resume it signals an error. Presetting it makes it work again.

Those are the ''voluntary'' forms of stack group switch; a resumption happens
because the computation said it should. There are also two "involuntary" forms, in
which ~other stack group is resumed without the explicit request of the running
program.

When certain events occur, typically a one-second clock tick, a sequence break occurs.
This forces the current stack group to resume a special stack group called the
scheduler. (See the section "The Scheduler", page 77.) The scheduler implements
processes by resuming, one after another, the stack group of each process that is
ready to run.

sys:sg-previous-stack-group stack-group
Returns the resumer of stack-group.

1.2 Stack Group Functions

Function

make-stack-group name &rest options Function
This creates and returns a new stack group. name may be any symbol or
string; it is used in the stack group's printed representation. options is a list
of alternating keywords and values. The options are not too useful; most
calls to make-stack-group do not need any options at all. The options are:

:sg-area
The area in which to create the stack group structure itself. Defaults
to the default area (the value of permanent-storage-area).

:regular-pdl-area
The area in which to create the stack group's control stack. The
default is stack-area.

:special-pdl-area

6

Internals, Processes, and Storage Management March 1985

The area in which to create the binding (environment) stack.
Defaults to the default area (the value of stack-area).

:regular-pdl-size
How big to make the stack group's control stack. The default is large
enough for most purposes.

:special-pdl-size
How big to make the stack group's special binding pdt. The default is
large enough for most purposes.

:safe If this flag is 1 (the default), a strict call-return discipline among stack
groups is enforced. If 0, no restriction on stack-group switching is
imposed.

stack-group-preset sg function &rest args Function
This sets up sg so that when it is resumed, function is applied to args within
the stack group. Both stacks are made empty; all saved state in the stack
group is destroyed. stack-group-preset is typically used to initialize a stack
group just after it is ~ade, but it may be done to any stack group at any
time. Doing this to a stack group that is not exhausted destroys its present
state without properly cleaning up by running unwind-protects.

stack-group-resume sg value Function
Resumes sg, transmitting the value value. No stack group's resumer is
affected.

stack-group-retum value Function
Resumes the current stack group's resumer, transmitting the value value.
No stack group's resumer is affected.

symeval-in-stack-group sym sg &optional frame as-if-current Function
Evaluates the variable sym in the binding environment of sg. If sg is the
current stack group, this is just symeval. Otherwise it looks inside sg to see
if sym is bound there; if so, the binding is returned; if not, the global value is
returned. If the variable has no value this gets an unbound-variable error.
If frame is specified, the value visible in that frame is returned. If
as-if-current is non-nil, a location is returned indicating where the value
would be if the specified stack group were running; the value, though, is the
current one, not the one stored in that location.

There are a large number of functions in the sys: and dbg: packages for
manipulating the internal details of stack groups. These are not documented here
as they are not necessary for most users or even system programmers to know
about.

7

March 1985 Internals

1.3 Input/Output in Stack Groups

Because each stack group has its own set of dynamic bindings, a stack group does
not inherit its creator's value of terminal-io, nor its caller's, unless you make special
provision for this. See the variable terminal-io in Reference Guide to Streams,
Files, and 1/0. The terminal-io a stack group gets by default is a "background"
stream that does not normally expect to be used. If it is used, it turns into a
"background window" that requests the user's attention. Usually this is because an
error printout is trying to be printed on the stream.

If you write a program that uses multiple stack groups, and you want them all to do
input and output to the terminal, you should pass the value of terminal-io to the
top-level function of each stack group as part of the stack-group-preset, and that
function should bind the variable terminal-io.

Another technique is to use a dynamic closure as the top-level function of a stack
group. This closure can bind terminal-io and any other variables that are desired
to be shared between the stack group and its creator.

1.4 An Example of Stack Groups

The canonical coroutine example is the so-called samefringe problem: Given two
trees, determine whether they contain the same atoms in the same order, ignoring
parenthesis structure. A better way of saying this is, given two binary trees built
out of conses, determine whether the sequence of atoms on the fringes of the trees
is the same, ignoring differences in the arrangement of the internal skeletons of the
two trees. Following the usual rule for trees, nil in the cdr of a cons is to be
ignored.

One way of solving this problem is to use generator coroutines. We make a
generator for each tree. Each time the generator is called it returns the next
element of the fringe of its tree. After the generator has examined the entire tree,
it returns a special "exhausted" flag. The generator is most naturally written as a
recursive function. The use of coroutines, that is, stack groups, allows the two
generators to recurse separately on two different control stacks without having to
coordinate with each other.

The program is very simple. Constructing it in the usual bottom-up style, we first
write a recursive function that takes a tree and stack-group-returns each element
of its fringe. The stack-group-return is how the generator coroutine delivers its
output. We could easily test this function by replacing stack-group-return with
print and trying it on some examples.

8

Internals, Processes, and Storage Management

(defun fringe (tree)
(eond «atom tree) (staek-group-return tree»

(t (fringe (car tree»
(if (not (null (cdr tree»)

(fringe (cdr tree»»»

March 1985

Now we package this function inside another, which takes care of returning the
special "exhausted" flag.

(defun fringe1 (tree exhausted)
(fringe tree)
exhausted)

The samefringe function takes the two trees as arguments and returns t or nil.
It creates two stack groups to act as the two generator coroutines, presets them to
run the fringe! function, then goes into a loop comparing the two fringes. The
value is nil if a difference is discovered, or t if they are still the same when the end
is reached.

(defun samefringe (tree1 tree2)
(let «sgl (make-stack-group "samefringe1"»

(sg2 (make-stack-group "samefringe2"»
(exhausted (neons nil») ;unique item

(staek-group-preset sgl #'fringel tree1 exhausted)
(staek-group-preset sg2 #'fringel tree2 exhausted)
(do «vl) (v2» (nil)

(setq v1 (funea11 sgl nil)
v2 (funea11 sg2 nil»

(eond «neq v1 v2) (return nil»
«eq v1 exhausted) (return t»»»

Now we test it on a couple of examples.

(samefringe '(a b c) '(a (b c») => t
(samefringe '(a b c) '(a bed» => nil

The problem with this is that a stack group is quite a large object, and we make
two of them every time we compare two fringes. This is a lot of unnecessary
overhead. It can easily be eliminated with a modest amount of explicit storage
allocation, using the resource facility. See the special form defresource, page 132.
While we're at it, we can avoid making the exhausted flag fresh each time; its only
important property is that it not be an atom.

(defvar *exhausted-f1ag* (neons nil»

(defresouree samefringe-eoroutine ()
:eonstruetor (make-stack-group "for-samefringe"»

March 1985

(defun samefringe (tree1 tree2)
(using-resource (sgl samefringe-coroutine)

(using-resource (sg2 samefringe-coroutine)
(stack-group-preset sgl #'fringe1 tree1 *exhausted-flag*)
(stack-group-preset sg2 #'fringe1 tree2 *exhausted-flag*)
(do «vl) (v2») (nil)

(setq v1 (funcall sgl nil)
v2 (funcall sg2 nil»

(cond «neq v1 v2) (return nil»
«eq v1 *exhausted-f1ag*) (return t»»»)

Now we can compare the fringes of two trees with no allocation of memory
whatsoever.

9

Internals

10

Internals, Processes, and Storage Management March 1985

11

March 1985 Internals

2. Subprimitives

Subprimitives are functions that are not intended to be used by the average
program, only by "system programs". They allow you to manipulate the
environment at a level lower than normal Lisp. Subprimitives usually have names
that start with a % character. The "primitives" described elsewhere typically use
subprimitives to accomplish their work. The subprimitives take the place of machine
language in other systems, to some extent. Subprimitives are normally hand-coded
in microcode.

Subprimitives by their very nature cannot do full checking. Improper use of
subprimitives can destroy the environment. Subprimitives come in varying degrees of
dangerousness. Those without a % sign in their name cannot destroy the
environment, but are dependent on "internal" details of the Lisp implementation.
The ones whose names start with a % sign can violate system conventions if used
improperly. Note that this chapter does not document all the things you need to
know in order to use them. Still other subprimitives are not documented here
because they are very specialized. Most of these are never used explicitly by a
programmer; the compiler inserts them into the program to perform operations that
are expressed differently in the source code.

The most common problem you can cause using subprimitives, though by no means
the only one, is to create invalid pointers: pointers that, because of one storage
convention or another, are not allowed to exist. The storage conventions are not
documented; as we said, you have to be an expert to correctly use a lot of the
functions in this chapter. If you create such an invalid pointer, it probably will not
be detected immediately, but later on parts of the system might see it, notice that it
is invalid, and (probably) halt the machine.

In a certain sense car, cdr, rplaca, and rplacd are subprimitives. If these are
given a locative instead of a list, they access or modify the cell addressed by the
locative without regard to what object the cell is inside. Subprimitives can be used
to create locatives to strange places.

Many subprimitives that are used only for effect also return values. A few look like
functions but are really macros; they do not evaluate their arguments in left-to-right
order.

Additional information can be found in the system definition files:

sys: l-sys; sysdef.lisp
Data structure defmitions

sys: l-sys; sysdfl.lisp
Communication areas, escape routines

sys: l-sys; opdef.lisp
Instruction set defmition

12

Internals, Processes, and Storage Management March 1985

2.1 Data Type Subprlmitives

data-type arg Function
data-type returns a symbol that is the name for the internal data type of
the "pointer" that represents argo Note that some types as seen by the user
are not distinguished from each other at this level, and some user types can
be represented by more than one internal type. For example,
dtp-extended-number is the symbol that data-type would return for a
double-precision floating-point number, a bignum, a complex number, or a
rational number even though those types are quite different. The typep
function is a higher-level primitive that is more useful in most cases; normal
programs should always use typep rather than data-type. Some of these
type codes are internal tag fields that are never used in pointers that
represent Lisp objects at all, but they are listed here anyway.

dtp-symbol

dtp-nil

dtp-tlx

dtp-tloat

dtp-extended-number

dtp-list

dtp-locative

dtp-array

The object is a symbol.

nil has a data type of dtp-nil, rather than
dtp-symbol, and does not have a pointer field of
zero. symbolp of nil is true, and the address field
points to the same storage representation as all
other symbols.

The object is a flXIlum; the numeric value is
contained in the address field of the pointer.

The object is a single-precision floating-point
number.

The object is a double-precision floating-point,
rational, or complex number, or a bignum. This
value will also be used for future numeric types.

The object is a cons.

The object is a locative pointer.

The object is an array.

dtp-compiled-function The object is a compiled function.

dtp-closure The object is a dynamic closure. See the section
"Closures" in Reference Guide to Symbolics-Lisp.

dtp-IexicaI-closure The object is a lexical closure. See the section
"Closures" in Reference Guide to Symbolics-Lisp.

dtp-instance

dtp-null

The object is an instance of a flavor, that is, an
"active object". See the section "Flavors" in
Reference Guide to Symbolics-Lisp.

Nothing to do with nil. This is used in unbound
value and function cells.

13

March 1985 Internals

dtp-external-value-cell-pointer
An "invisible pointer" used for external value cells,
which are part of the closure mechanism. See the
section "Closures" in Reference Guide to
Symbolics-Lisp.

dtp-header-forward An "invisible pointer" used to indicate that the
structure containing it has been moved elsewhere.
The "header word" of the structure is replaced by
one of these invisible pointers.

dtp-element-forward An "invisible pointer" used to indicate that the
structure containing it has been moved elsewhere.
This points to the new location of the word
containing it.

dtp-one-q-forward An "invisible pointer" used to indicate that the
single cell containing it has been moved elsewhere.

dtp-gc-forward This is used by the garbage collector to flag the
obsolete copy of an object; it points to the new
copy.

dtp-odd-pc,dtp-even-pc The object is a program counter and points to
macroinstructions.

dtp-header-i,dtp-header-p
Internal markers in storage, found at the base of
the storage of structures.

sys:*data-types* Variable
The value of sys*data-types* is a list of all of the symbolic names for data
types described above under data-type. These are the symbols whose print
names begin with "dtp-". The values of these symbols are the internal
numeric data-type codes for the various types.

si:data-types type-code Function
Given the internal numeric data-type code, returns the corresponding
symbolic name. This "function" is actually an array.

sys:%instance-tlavor instance Function
Gets the flavor structure of instance.

sys:%change-list-to-cons list Function
Changes the two-element cdr-coded list to a dotted pair by altering the cdr
codes.

sys:%tlonum number Function
This function sets the data type field to convert a flXllum to a flonum. It is
not the function tloat, but instead provides direct access to the internal bit
representation of single-precision floating-point numbers.

14

Internals, Processes, and Storage Management March 1985

sys:%flxnum number Function
This function sets the data type field to convert a flonum to a f1Xl1um. It is
not the function fix, but instead provides direct access to the internal bit
representation of single-precision floating-point numbers.

2.2 FOlWarding

An invisible pointer is a kind of pointer that does not represent a Lisp object, but
just resides in memory. There are several kinds of invisible pointers, and there are
various rules about where they can or cannot appear. The basic property of an
invisible pointer is that if the machine reads a word of memory and finds an invisible
pointer there, instead of seeing the invisible pointer as the result of the read, it does
a second read, at the location addressed by the invisible pointer, and returns that as
the result instead. Writing behaves in a similar fashion. When the machine writes
a word of memory it first checks to see if that word contains an invisible pointer; if
so it goes to the location pointed to by the invisible pointer and tries to write there
instead. Many subprimitives that read and write memory do not do this checking.

The simplest kind of invisible pointer has the data type code dtp-one-q-forward It
is used to forward a single word of memory to someplace else. The invisible pointers
with data types dtp-header-forward and dtp-element-forward are used for
moving whole Lisp objects (such as cons cells or arrays) somewhere else. The
dtp-external-value-cell-pointer is very similar to the dtp-one-q-forward; the
difference is that it is not "invisible" to the operation of binding. If the (internal)
value cell of a symbol contains a dtp-external-value-cell-pointer that points to
some other word (the external value cell), then symeval or set operations on the
symbol consider the pointer to be invisible and use the external value cell, but
binding the symbol saves away the dtp-external-value-cell-pointer itself, and
stores the new value into the internal value cell of the symbol. This is how dynamic
closures are implemented.

dtp-gc-forward is not an invisible pointer at all; it only appears in old space and is
never seen by any program other than the garbage collector. When an object is
found not to be garbage, and the garbage collector moves it from old space to copy
space, a dtp-gc-forward is left behind to point to the new copy of the object. This
ensures that other references to the same object get the same new copy.

structure-forward old new &optional (old-header-size 1) Function
(new-header-size 1)

This causes references to old to actually reference new, by storing invisible
poin ters in old. It returns old.

An example of the use of structure-forward is adjust-array-size. If the
array is being made bigger and cannot be expanded in place, a new array is
allocated, the contents are copied, and the old array is structure-forwarded to

15

March 1985 Internals

the new one. This forwarding ensures that pointers to the old array, or to
cells within it, continue to work. When the garbage collector goes to copy
the old array, it notices the forwarding and uses the new array as the copy;
thus the overhead of forwarding disappears eventually if garbage collection is
in use.

follow-structure-forwarding object Function
Normally returns object, but if object has been structure-forwarded, returns
the object at the end of the chain of forwardings. If object is not exactly an
object, but a locative to a cell in the middle of an object, a locative to the
corresponding cell in the latest copy of the object is returned.

forward-value-cell from-symbol to-symbol Function
This alters from-symbol so that it always has the same value as to-symbol, by
sharing its value cell. A dtp-one-q-forward invisible pointer is stored into
from-symbol's value cell.

To forward one arbitrary cell to another (rather than specifically one value
cell to another), given two locatives do

(%p-store-tag-and-pointer loeativel dtp-one-q-forward locative2)

follow-ceIl-forwarding loc evcp-p Function
loe is a locative to a cell. Normally loe is returned, but if the cell has been
forwarded, this follows the chain of forwardings and returns a locative to the
final cell. If the cell is part of a structure that has been forwarded, the
chain of structure forwardings is followed, too. If' evcp-p is t, external value
cell pointers are followed; if it is nil they are not.

2.3 Pointer Manipulation

It should be emphasized that improper use of these functions can damage or destroy
the Lisp environment. It is possible to create pointers with illegal data type, to
create pointers to nonexistent objects, and to completely confuse the garbage
collector.

sys:%pointerp object Function
sys:%pointerp returns t when object has an address (as opposed to being an
immediate object).

sys:%pointer-type-p data-type-number Function
sys:%pointer-type-p returns t if the argument is a data type code that has
an associated address (rather than an associated immediate field). The
argument comes from %data-type or %p-data-type.

For example:

16

Internals, Processes, and Storage Management March 1985

(sys:~pointer-type-p (~data-type 'symbol»

sys:%pointer-lessp pl p2
Compares two addresses.

%data-type x
Returns the data-type field of x, as a flXIlum.

Function

Function

%pointer x Function
Returns the pointer field of x, as.a flXIlum. For most types, this is
dangerous since the garbage collector can copy the object and change its
address.

%make-pointer data-type pointer Function
This makes up a pointer, with data-type in the data-type field and the
pointer field of pointer in the pointer field, and returns it. data-type should be
an internal numeric data-type code; these are the values of the symbols that
start with dtp-. pointer can be any object; its pointer field is used. This is
most commonly used for changing the type of a pointer. Do not use this to
make pointers that are not allowed to be in the machine, such as dtp-null,
invisible pointers, etc.

%make-pointer-offset new-dtp pointer offset Function
This returns a pointer with new-dtp in the data-type field, and pointer plus
offset in the pointer field. The new-dtp and pointer arguments are like those
of %make-pointer; offset can be any object but is usually a flXIlum. The
types of the arguments are not checked; their pointer fields are simply added
together. This is useful for constructing locative pointers into the middle of
an object, although %p-structure-offset may be more appropriate.

%pointer-difference pointer-l pointer-2 Function
Returns a flXIlum that is pointer-l minus pointer-2. No type checks are
made. For the result to be meaningful, the two pointers must point into the
same object, so that their difference cannot change as a result of garbage
collection.

2.4 Analyzing Structures

%find-structure-header pointer Function
This subprimitive finds the structure into which pointer points, by searching
backward for a header. It is a basic low-level function used by such things as
the garbage collector. pointer is normally a locative, but its data-type is
ignored.

In structure space, the "containing structure" of a pointer is well-defined by

17

March 1985 Internals

system storage conventions. In list space, it is considered to be the
contiguous, cdr-coded segment of list surrounding the location pointed to. If
a cons of the list has been copied out by rplacd, the contiguous list includes
that pair and ends at that point.

%find-structure-Ieader pointer Function
The result of %find-structure-Ieader is always the lowest address in the
structure (as a locative).

%structure-total-size pointer Function
Returns the total number of words occupied by the representation of the
indicated object.

%find-structure-extent pointer
This is roughly a combination of %find-structure-header,
%find-structure-Ieader, and %structure-total-size.

%find-structure-extent returns three values:

1. The structure into which pointer points.

Function

2. A locative to the base of the structure. This is almost the same as
%find-structure-Ieader, but %find-structure-extent always returns
a locative.

3. The total number of words occupied by the object (the same thing
%structure-total-size returns).

Example:

(defun page-in-structure (obj &optional
(hang-p *default-page-in-hang-p*)
(normalize-p *default-page-in-normalize-p*»

(setq obj (follow-structure-forwarding obj»
(multiple-value-bind (nil leader size)

. (~find-structure-extent obj)
(page-in-words leader size

hang-p normalize-p»)

2.5 Basic Locking Subprimitive

store-conditional pointer old new Function
Takes three arguments: pointer (a locative which addresses some cell), old
(any Lisp object), and new (any Lisp object). It checks to see whether the
cell contains old, and, if so, it stores new into the cell. The test and the set
are done as a single atomic operation. store-conditional returns t if the

18

Internals, Processes, and Storage Management March 1985

test succeeded and nil if the test failed. It behaves like %p-store-contents
in that it leaves the cdr code of the location that is being stored into
undisturbed. You can use store-conditional to do arbitrary atomic
operations to variables that are shared between processes. For example, to
atomically add 3 into a variable x:

(do « 0 1 d»
«store-conditional (loef x) (setq old x) (+ old 3»»

The first argument is a locative so that you can atomically affect any cell in
memory; for example, you could atomically add 3 to an element of an array
or structure.

store-conditionallocks out microtasks but cannot lock out the FEP or
external-DMA devices. Protocols for communicating with such devices must
use locking methods that do not depend on atomic read-modify-write, such as
those based on cells that are only written by one party and only read by the
other party.

The old name for this function, %store-conditional, is still accepted, but
should not be used in new programs.

2.6 Accessi n9 Arrays Specially

sys:array-column-span array Function
sys:array-column-span, given a two-dimensional array, returns the number
of array elements spanned by one of its columns. Normally, this is just equal
to the length of a column (that is,. the number of rows), but for conformally
displaced arrays, the length and the span are not equal. This function is
primarily for users of sys:%ld-aref and the sys:array-register-ld
declaration who need to perform their own subscript calculations and do
special loop optimizations.

A column is the sequence of elements that have the same value in the
second subscript and varying values in the first subscript. Currently, with
column-major order, the screen displays a column horizontally.

2.7 Storage Layout Definitions

The following special variables have values that define the most important attributes
of the way Lisp data structures are laid out in storage. In addition to the variables
documented here, there are many others that are more specialized. They are not
documented here since they are in the system package rather than the global
package. The variables whose names start with %% are byte specifiers, intended to
be used with subprimitives such as %p-Idb. If you change the value of any of these
variables, you will probably bring the machine to a crashing halt.

19

March 1985 Internals

The byte specifiers %%q-iIxnum and %%q-high-type reflect the fact that the
number of bits in a fIXnum does not equal the number of bits in a pointer.

For details about byte specifiers, field values, and accessor macros for the internal
data structures, see the file sys:l-sys;sysdef.lisp.

%%q-cdr-code Variable
The field of a memory word that contains the cdr-code. See the section
"Cdr-coding" in Reference Guide to Symbolics-Lisp.

%%q-data-type Variable
The field of a memory word that contains the data type code. See the
section "Data Types" in Reference Guide to Symbolics-Lisp.

%%q-pointer Variable
The field of a memory that contains the pointer address, or immediate data.

%%q-pointer-within-page Variable
The field of a memory word that contains the part of the address that lies
within a single page.

%%q-typed-pointer Variable
The concatenation of the %%q-data-type and %%q-pointer fields.

%%q-all-but-typed-pointer Variable
The field of a memory word that contains the tag field %%q-cdr-code.

%%q-all-but-pointer Variable
The concatenation of all fields of a memory word except for %%q-pointer.

%%q-all-but-cdr-code Variable
The concatenation of all fields of a memory word except for %%q-cdr-code.

cdr-normal Variable
The value of this variable is one of the numeric values that go in the cdr
code field of a memory word. See the section "Cdr-coding" in Reference Guide
to Symbolics-Lisp.

cdr-next Variable
The value of this variable is one of the numeric values that go in the cdr
code field of a memory word. See the section "Cdr-coding" in Reference Guide
to Symbolics.-Lisp.

cdr-nil Variable
The value of this variable is one of the numeric values that go in the cdr
code field of a memory word. See the section "Cdr-coding" in Reference Guide
to Symbolics-Lisp.

20

Internals, Processes, and Storage Management March 1985

2.8 Special Memory Referencing

sys:%p-structure-offset x offset Function
Does follow-structure-forwarding on x, then %make-pointer-offset
dtp-locative of that and offset. This operation captures the inherent
primitive underlying %p-ldb-offset and the like.

%p-contents-offset pointer offset Function
This checks the cell pointed to by pointer for a forwarding pointer. Having
followed forwarding pointers to the real structure pointed to, it adds offset to
the resulting forwarded pointer and returns the contents of that location.

There is no %p-contents, since location-contents performs that operation.

%p-contents-as-locative x Function
Given a pointer to a memory location containing a pointer that is not allowed
to be "in the machine" (typically an invisible pointer) this function returns
the contents of the location as a dtp-locative. It changes the disallowed
data type to dtp-Iocative so that you can safely look at it and see what it
points to.

%p-contents-as-Iocative-offset pointer offset Function
This checks the cell pointed to by pointer for a forwarding pointer. Having
followed forwarding pointers to the real structure pointed to, it adds offset to
the resulting forwarded pointer, fetches the contents of that location, and
returns it with the data type changed to dtp-Iocative in case it was a type
that is not allowed to be "in the machine" (typically an invisible pointer).

%p-store-contents pointer x Function
x is stored into the data-type and pointer fields of the location addressed by
pointer. The cdr-code field remains unchanged. x is returned.

%p-store-contents-offset value pointer offset Function
This checks the cell pointed to by pointer for a forwarding pointer. Having
followed forwarding pointers to the real structure pointed to, it adds offset to
the resulting forwarded pointer, and stores value into the data-type and
pointer fields of that location. The cdr-code field remains unchanged. value
is returned.

%p-store-tag-and-pointer pointer tag-fields pointer-field Function
The location addressed by pointer is written, without following invisible
pointers, such that the tag fields of the location contain tag-fields and the
pointer field contains pointer-field. This is a good way to store a forwarding
pointer from one structure to another (for example).

21

March 1985 Internals

sys:%p-store-cdr-and-contents pointer x cdr Function
Stores cdr and the object x into a memory location identified by pointer,
without reading the previous contents of that location or following invisible
pointers. Use this subprimitive to store flXIlums and single-precision floating
point numbers, because %p-store-tag-and-pointer cannot be reasonably
used to do so, because the tag overlaps the value.

sys:%p-store-cdr-type-and-pointer pointer cdr-field type-field
pointer-field

This is a more general form of %p-store-tag-and-pointer.

Function

%p-Idb ppss pointer Function
This is like Idb but gets a byte specified by ppss from the location addressed
by pointer. Note that you can load bytes out of the data type, not just the
pointer field, and that the source word need not be a flXIlum. The result
returned is always a positive flXIlum. The size of ppss must be 31 or less,
and the sum of the size and position must be less than or equal to 36.

%p-Idb-offset ppss pointer offset Function
This checks the cell pointed to by pointer for a forwarding pointer. Having
followed forwarding pointers to the real structure pointed to, the byte
specified by ppss is loaded from the contents of the location addressed by the
forwarded pointer plus offset, and returned as a flXIlum. The size of ppss
must be 31 or less, and the sum of the size and position must be less than
or equal to 36.

%p-dpb value ppss pointer Function
The value, a flXIlUIll, is stored into the byte selected by ppss in the word
addressed by pointer. nil is returned. You can use this to alter data types,
cdr codes, and so on. The size of ppss must be 31 or less, and the sum of
the size and position must be less than or equal to 36.

%p-dpb-offset value ppss pointer offset Function
This checks the cell pointed to by pointer for a forwarding pointer. Having
followed forwarding pointers to the real structure pointed to, the value is
stored into the byte specified by ppss in the location addressed by the
forwarded pointer plus offset. nil is returned. The size of ppss must be 31
or less, and the sum of the size and position must be less than or equal to
36.

%p-pointer pointer Function
Extracts the pointer field of the contents of the location addressed by pointer
and returns it as a flXIlum.

22

Internals, Processes, and Storage Management March 1985

%p-data-type pointer Function
Extracts the data-type field of the contents of the location addressed by
pointer and returns it as a flXIlum.

%p-cdr-code pointer Function
Extracts the cdr-code field of the contents of the location addressed by pointer
and returns it as a flXIlum.

%p-store-pointer pointer value Function
Clobbers the pointer field of the location addressed by pointer to value, and
returns value.

%p-store-data-type pointer value Function
Clobbers the data-type field of the location addressed by pointer to value, and
returns value.

%p-store-cdr-code pointer value Function
Clobbers the cdr-code field of the location addressed by pointer to value, and
returns value.

%stack-frame-pointer Function
Returns a locative pointer to its caller's stack frame. This function is not
defined in the interpreted Lisp environment; it only works in compiled code.

sys:%block-store-cdr-and-contents address count cdr contents Function
increment

The contiguous region of memory specified by the beginning address and
count of words is efficiently filled with the object contents and the cdr-code
(cdr). The addresses to be initialized must not be mapped to A memory.
The increment to the object should be 0 if the object is not a flXIlum. The
increment is added to the address field (%%q-pointer) of contents. If
increment is nonzero, it must not be used to increment a pointer across the
boundaries of a garbage collector "space"; otherwise, the garbage collector tags
will be set incorrectly.

sys:%block-store-tag-and-pointer address count tag pointer Function
increment

The contiguous region of memory specified by the beginning address and
count of words is efficiently filled with a word assembled from the tag and
pointer fields, allowing the construction of invisible pointers. The addresses to
be initialized must not be mapped to A memory. The increment to the object
should be 0 if the object is not a flXIlum. If increment is nonzero, it must
not be used to increment a pointer across the boundaries of a garbage
collector "space"; otherwise, the garbage collector tags will be set incorrectly.

23

March 1985 Internals

sys:%unsynchronized-device-read address Function
Reads registers from the revision 2 110 board. It allows data that are not
properly synchronized to the Lbus clock to be read without causing a parity
error.

2.9 Lambda-binding Subprimitive

bind locative value Function
Binds the cell pointed to by locative to value, in the caller's environment.
This function is not defined in the interpreted Lisp environment; it only
works from compiled code. Since it turns into an instruction, the "caller's
environment" really means "the binding block for the stack frame that
executed the bind instruction". The preferred higher-level primitives that
turn into this are let-if, progv, progw, and letf.

2.10 Function-calling Subprimitives

Except for %push and %pop, the subprimitives for calling with a run-time-variable
number of arguments, without consing a list, are the %start-function-call and
%finish-function-call special forms.

%start-function-call and %finish-function-call each take the same four subforms.
The subforms are:

{unction

destination

n-arguments

lexpr

A form evaluated to yield the function to be called.

The disposition of its results. Not evaluated. It takes these
values:

Value

nil

t

return

Meaning

Call for effect.

Receive one value on the stack.

Return all values from the function in which it
is being used.

There is no provision for receiving multiple values.

A form evaluated to yield the number of times %push has to be
done.

True if the last %push is a list of arguments rather than a single
argument; false in the normal case. Not evaluated.

24

Internals, Processes, and Storage Management March 1985

Follow these steps:
1. Do a %start-function-call.

2. Do a %push on each argument.

3. Do a %finish-function-call.

The order of evaluation of the subforms is not guaranteed, and you must make
certain to pass the same subform values to the %start and the %flnish. Generally
it is best to use variables and not do computations in these subforms.

Also, you must not allocate or deallocate any local variables between the %start and
the %finish, because they will get in the way of the %push subprimitives. Thus,
the following will not work:

(Xstart~function-call ...)
(dolist (x 1) (Xpush x»
(Xfinish-function-call ...)

Instead, write:
(let ((x 1»

(Xstart-function-call ...)
(do () ((null x» (Xpush (pop x»)
(Xfinish-function-call ... »

%push value Function
Pushes value onto the stack. Use this to push the arguments.

%pop Function
Pops. the top value ofT of the stack and returns it as its value.

2.11 The Paging System

Note that it is futile to page-in sections of virtual memory that are larger than
physical memory. Be especially wary of page-in-area and page-in-region.

sys:page-in-structure obj &optional (hang-p Function
si:*default-page-in-hang-p*) (normalize-p
si:·default-page-in-normalize-p*)

Makes sure that the storage that represents obj is in main memory. Any
pages that have been swapped out to disk are read in, using as few disk
operations as possible. Consecutive disk pages are transferred together,
taking advantage of the full speed of the disk. If obj is large, this is much
faster than bringing the pages in one at a time on demand. The storage
occupied by obj is defined by the %find-structure-extent subprimitive. If
hang-p is t, the function waits for the disk reads to finish before returning.
Otherwise, the function returns immediately after requesting the disk reads,

25

March 1985 Internals

which may still be in progress. The default value, si:*detault-page-in-hang-p*,
is t by default. normalize-p specifies whether the pages are "normal" (not
flushable from main memory); its default value,
si:*detault-page-in-normalize-p*, is t by default.

sys:page-in-array array &optional from to (hang-p Function
si:·default-page-in-hang-p·) (nonnalize-p
si:*default-page-in-normalize-p·)

This is a version of sys:page-in-structure that can bring in a portion of an
array. from and to are lists of subscripts; if they are shorter than the
dimensionality of array, the remaining subscripts are assumed to be zero.

sys:page-in-words address n-words &optional (hang-p Function
si:*default-page-in-hang-p*) (normalize-p
si:*default-page-in-normalize-p*)

Any pages in the range of address space starting at address and continuing
for n-words that have been swapped out to disk are read in with as few disk
operations as possible.

sys:page-in-area area &optional (hang-p Function
si:·default-page-in-hang-p*) (nonnalize-p
si:·default-page-in-normalize-p*)

All swapped-out pages of the specified area are brought into main memory.

sys:page-in-region region &optional (hang-p Function
si:*default-page-in-hang-p*) (nonnalize-p
si:*default-page-in-normalize-p*)

All swapped-out pages of the specified region are brought into main memory.

sys:page-out-structure obj &optional (hang-p Function
si:*default-page-out-hang-p*)

Similar to sys:page-in-structure, but take pages out of main memory rather
than bringing them in. Any modified pages are written to disk, using as few
disk operations as possible. The pages are then made flushable; if they are
not touched again soon, their memory is reclaimed for other pages. Use this
operation when you are done with a large object, to make the virtual memory
system prefer reclaiming that object's memory over swapping something else
out. hang-p specifies whether the function waits for the disk writes to
complete before returning; its default value, si:Cldefault-page-out-hang-p·, is
nil by default.

sys:page-out-array array &optional from to (hang-p Function
si:*default-page-out-hang-p*)

Similar to sys:page-in-array, but take pages out of main memory rather
than bringing them in. Any modified pages are written to disk, using as few
disk operations as possible. The pages are then made flushable; if they are

26

Internals, Processes, and Storage Management March 1985

not touched again soon their memory is reclaimed for other pages. Use this
operation when you are done with a large object, to make the virtual memory
system prefer reclaiming that object's memory over swapping something else
out.

sys:page-out-words address n-words &optional (hang-p Function
si:*default-page-out-hang-p*)

Similar to sys:page-in-words, but take pages out of main memory rather
than bringing them in. Any modified pages are written to disk, using as few
disk operations as possible. The pages are then made flushable; if they are
not touched again soon their memory is reclaimed for other pages. Use this
operation when you are done with a large object, to make the virtual memory
system prefer reclaiming that object's memory over swapping something else
out.

sys:page-out-area area &optional (hang-p Function
si:*default-page-out-hang-p*)

Similar to sys:page-in-area, but take pages out of main memory rather
than bringing them in. Any modified pages are written to disk, using as few
disk operations as possible. The pages are then made flushable; if they are
not touched again soon their memory is reclaimed for other pages. Use this
operation when you are done with a large object, to make the virtual memory
system prefer reclaiming that object's memory over swapping something else
out.

sys:page-out-region region &optional (hang-p Function
si:*default-page-out-hang-p*)

Similar to sys:page-in-region, but take pages out of main memory rather
than bringing them in. Any modified pages are written to disk, using as few
disk operations as possible. The pages are then made flushable; if they are
not touched again soon their memory is reclaimed for other pages. Use this
operation when you are done with a large object, to make the virtual memory
system prefer reclaiming that object's memory over swapping something else
out.

2.12 Consing Lists on the Control Stack

with-stack-list and with-stack-list* cons lists on the control stack so that when
you are finished, the lists are popped off without leaving any garbage. This is
essentially giving you access to the mechanism that &rest arguments use. Because
these are on the control stack, you cannot return the lists that are made, use
rplacd with them, or place references to them in permanent data structures. The
special form sys:with-stack-array is similar, but it makes arrays on the data stack
instead of lists.

27

March 1985 Internals

The macros stack-let and stack-let· provide an alternative to with-stack-list and
with-stack-list· for consing lists on the control stack. They are especially useful for
building nested list structures on the stack.

with-stack-list (variable &rest list-elements) body... Special Form
with-stack-list is used to bind a variable to a list and evaluate some forms
in the context of that binding. It is like let (in that it binds a variable),
except that it conses the list on the stack.

(with-stack-list (var elementl element2 ... elementn)
body)

is like

(let «var (list elementl element2 ... elementn»)
body)

with-stack-list* (variable &rest list-elements) body... Special Form
with-stack-list· simulates list· instead of list. (See the function list· in
Reference Guide to Symbolics-Lisp.)

(with-stack-list* (var elementl element2 ... elementn)
body)

is like

(let «var (list* elementl element2 ... elementn»)
body)

stack-let clauses &body body Macro
stack-let provides an alternative syntax for constructing lists on the control
stack. It uses the same syntax (and very similar semantics) as let. For
example, the form:

(STACK-LET «A (LIST X Y Z») BODY)

expands into:

(WITH-STACK-LIST (A X Y Z) BODY)

This syntax is convenient for complex expressions involving nested lists, such
as:

(STACK-LET «A '«:FOO ,FOO) (:BAR ,BAR»» BODY)

which expands into three nested with-stack-list forms. If an expression in
a stack-let clause is of the form:

(LIST (REVERSE (LIST ... »)

only the outermost LIST is constructed on the stack. No codewalking is
performed.

28

Interna/s. Processes. and Storage Management March 1985

stack-let· clauses &body body Macro
stack-let· provides an alternative syntax for constructing lists on the control
stack. It is similar to stack-let, but it uses the same syntax and similar
semantics as let·.

2.13 The Data Stack

sys:with-stack-array (var length &key type displaced-to Special Form
displaced-index-offset displaced-conformally
leader-list leader-length named-structure-symbol
initial-value fill-pointer) &body body

This form is like with-stack-list but makes an array. The array has
dynamic lifetime and becomes garbage when this form is exited, just as for
with-stack-list. The array is created on the data stack, which is part of a
stack group. Only arrays can be allocated on the data stack.

This recognizes various special case combinations of make-array keywords
and calls fast specialized runtime routines. It works especially well with one
dimensional indirect arrays.

More information is available about stack arrays and the data stack. See the
function sys:make-stack-array, page 28. See the function
sys:with-data-stack, page 28.

The function return-array is another tool for manually freeing array
storage.

sys:with-data-stack &body body Special Form
This primitive special form takes care of cleaning up the data stack when the
body is exited. You sometimes want to optimize for extra speed by putting a
sys:with-data-stack around a piece of code that calls sys:make-stack-array
multiple times, perhaps even inside a loop that is known not to be executed
more than a few times. This can be more efficient than doing
sys:with-stack-array multiple times.

sys:make-stack-array dimensions &key type displaced-to Function
displaced-index-offset displaced-confonnally
leader-list leader-length named-structure-symbol
initial-value fill-pointer

This function is a special version of make-array that allocates on the data
stack. You should call this only when dynamically inside a
sys:with-data-stack. This is actually a macro that expands into a call to an
appropriate routine, to allocate the desired kind of array on the data stack.

Currently, you cannot make anything but arrays on the data stack.

March 1985

3. 3600-family Disk System User Interface

This chapter describes the portions of the 3600 family's disk system that are
available to the user. The discussion is organized as follows:

29

Internals

Three sections introduce some basic definitions and concepts. For a discussion of the
terms used throughout this chapter: See the section "3600-family Disk System
Definitions and Constants", page 29.

For descriptions of the disk array and disk event data structures that are the basic
buffers for data and synchronization information: See the section "Disk Arrays",
page 31. See the section "Disk Events", page 32.

Three sections describe disk transfers in detail. For a description of the low-level
user disk transfer mechanism that is the basis for more sophisticated interfaces, such
as the FEP file system: See the section "Disk Transfers", page 35.

To learn about the error-handling mechanism: See the section "Disk Error
Handling", page 36.

For a discussion of the FEP file system and disk streams: See the section "FEP File
System", page 42.

For a discussion of disk performance, along with some basic approaches for achieving
high performance: See the section "Disk Performance", page 50.

For examples that illustrate concepts introduced in all the sections mentioned above:
See the section "Examples of High Disk Performance", page 52.

For a description of the disk utilities such as the FEP file system verifier, and of
routines to mount disk units: See the section "Disk and FEP File System Utilities",
page 58.

3.1 Definitions and Constants

The 3600-family disk system is capable of transferring data in either 32-bit mode or
36-bit mode. In 32-bit mode data are packed 32 bits per memory word, with a
flXIlum data type automatically supplied, making the data all integers. In 36-bit
mode the data are packed into all 36 bits of a memory word, so the data type is
supplied by the disk's data. These modes only affect how the data are represented
in memory; the data are stored as a stream of bits on the disk in either case. 32-bit
mode is referred to as user mode and is handled by the disk system user
interface described in this document. This document does not describe 36-bit mode,
also called system mode, since it is used only by the virtual memory system.

Data are stored on a disk pack. To access the disk pack, you must use a disk drive.

30

Internals, Processes, and Storage Management March 1985

The 3600 family can address multiple disk drives, but only one disk pack at a time
can be mounted per di~k drive. Most of the disk drives available on the 3600 family,
such as the Fujitsu M2284 and M2351 and the Maxtor XT-1l40, have nonremovable
disk packs.

Each disk drive is assigned a unique small positive number, called the unit number,
that addresses the drive. A unit number ranges from 0 up to, but excluding, 32
decimal. However, the disk drive hardware can restrict the maximum to a smaller
value, such as 8 decimal. The term disk unit refers to both the disk drive and a
mounted disk pack.

The space available on a disk unit is divided into equal-sized blocks called disk blocks
or disk pages. A disk block is the smallest unit that can be transferred between the
disk and virtual memory. It consists of 64 bits called check words and 9216 bits of
data. In user mode the data bits are packed into si:disk-sector-data-size32 (288)
flXIlums. The two checkword flXIlums are used by the FEP file system for
identifying the block. If the disk block is not part of a FEP file system, the
checkwords are available for use by the user program.

A disk address is a unique identifier for a disk block residing on a mounted disk
pack. A disk address, also called a disk page number (DPN), is composed of a unit
number and a block number relative to that unit.

sys:% %dpn-unit Constant
A byte specifier for accessing the unit number field in a disk address.

sys:%%dpn-page-num Constant
A byte specifier for accessing the block number field in a disk address. Block
numbers are relative to a disk unit, with zero addressing the first disk block,
and successive integers addressing consecutive blocks. The first disk block
resides at cylinder zero, head zero, sector zero, with consecutive blocks being
ordered by increasing sector numbers, then head numbers, and finally
cylinder numbers.

si:disk-sector-data-size32 Variable
The value of this special variable is the number of data cells available in a
disk block, excluding checkwords.

si:disk-block-Iength-in-bytes Variable
The number of bytes available in a disk block, excluding checkwords.

31

March 1985 Internals

3.2 Disk Arrays

Disk arrays are arrays that buffer disk transfers and are specially allocated to satisfy
page alignment constraints imposed by the disk system. The data contained in
consecutive disk blocks are stored in the array elements of a disk array; the blocks'
checkwords are stored in the array's leader.

Disk arrays are resource objects, and so must be allocated and deallocated explicitly
by the allocate-resource and deallocate-resource functions, or by the
using-resource special form. (For more information about resources: See the
section "Resources", page 131.)

si:disk-array &optional length &rest make-array-options Resource
The si:disk-array resource is the set of all disk arrays currently known by
the system. The length resource parameter specifies the minimum number
of elements the disk array should contain; its default value is
si:disk-sector-data-size32. The length of the disk array actually allocated
can be greater. make-array-options is a list of keywords and values to pass to
make-array. Only the following keywords are permitted in
make-array-options:

:area

: type

:initial-value

The area the array should be allocated in. The area's :gc
attribute must be :static. The default area is
si:disk-array-area.

The type of the array to be allocated. Only flXIlums
should be stored into the disk array. The default type is
art-q.

The initial value to fill the array with, which must be a
flXIlum. The default value is zero.

The si:disk-array resource allocator returns a disk array object at least
length elements long and with matching :area and :type values, filled with
the value of :initial-value. If a matching disk array object cannot be found,
a new one is created.

si:disk-array-area Variable
The value of this variable is the default area to allocate disk arrays in.

si:disk-array-block-count disk-array Function
This function accesses the slot in disk-array describing the number of disk
blocks that the disk array can contain.

si:disk-array-checkwords disk-array checkword-index Function
This function accesses the checkwords stored in disk-array's leader. The
value of checkword-index specifies which checkword in disk-array is being

32

Internals, Processes, and Storage Management March 1985

accessed. For example, if check word-index is 0, the first checkword of the
first block stored in disk-array is accessed. A check word-index value of 3
accesses the second checkword of the second block, since there are two
checkwords per disk block.

3.3 Disk Events

Disk events are art-2b arrays used for synchronizing disk transfers and for storing
disk error information. Disk events are resource objects, and so must be allocated
and deallocated explicitly by the allocate-resource and deallocate-resource
functions, or by the using-resource special form. (For more information about
resources: See the section "Resources", page 131.)

Synchronization is accomplished through the use of disk event tasks. A disk event
task is a disk command that is enqueued into the disk queue in the same way that
disk reads and disk writes are enqueued. When the disk system dequeues the task,
the task is flagged as being completed. si:disk-event-task-done-p is a predicate
that examines this flag, returning true when the task is completed. For example, if
the disk queue contains a disk read, then a disk event task, and finally a disk write,
the disk event task is flagged as completed after the disk finishes reading but before
the disk starts writing.

Disk event tasks are identified by a task number that must be explicitly allocated
and deallocated by the si:disk-event-enq-task and si:return-disk-event-task
functions, or by the si:with-disk-event-task special form.

In addition to synchronizing disk transfers, disk events are also associated with disk
transfers in case of a disk error. (For a detailed description of disk error handling:
See the section "Disk Error Handling", page 36.) A disk event is associated with a
disk transfer by the si:disk-read and si:disk-write functions.

si:disk-event Resource
The si:disk-event resource is the set of disk event objects currently known
by the system. The resource allocator returns a disk event object, creating a
new one if all the current disk events are already in use.

3.3.1 Synchronization Functions

The following functions manipulate disk event tasks for synchronizing disk transfers:

si:with-disk-event-task variable disk-event &body body Special Form
Allocates and enqueues a task in disk-event and binds the task number to
variable. The task is deallocated on exit or if the body is aborted.

33

March 1985 Internals

si:disk-event-enq-task disk-event Function
Allocates a free task in disk-event, and enqueues it in the disk queue. The
return value is the task number.

si:return-disk-event-task disk-event task-number
Deallocates the task-number task in disk-event.

Function

si:disk-event-task-done-p disk-event task-number Function
Returns true if the task-number task in disk-event has completed. nil is
returned if it has not completed.

si:wait-for-disk-event-task disk-event task-number Function
Waits for the task-number task in disk-event to complete.

si:wait-for-disk-event disk-event Function
Waits for all outstanding disk transfers associated with disk-event to complete.

si:wait-for-disk-done Function
Waits for all outstanding disk transfers to complete, regardless of which disk
event the transfer is associated with, or whether the transfer is in user or
system mode.

3.3.2 Disk Event Accessor Functions

The following accessor functions refer to the error information and task counters
stored in a disk event. Most of the error information is meaningless if an error has
not occurred yet. The si:disk-event-error-type accessor function is the correct
predicate to use to determine if an error has occurred for a disk transfer associated
with the disk event.

si:disk-event-size disk-event Function
Accesses the slot in disk-event containing the number of disk event tasks that
can be concurrently allocated.

si:disk-event-count disk-event Function
Accesses the slot in disk-event containing the number of disk event tasks
currently allocated.

si:disk-event-error-type disk-event Function
Accesses the slot in disk-event containing a disk error code or nil if no disk
transfer associated with disk-event has generated an error. A disk error code
is a number indicating the type of disk error, as described elsewhere: See
the section "Disk Error Codes", page 39. This accessor function is the
predicate for determining if an error has occurred for a disk transfer
associated with disk-event.

34

Internals, Processes, and Storage Management March 1985

si:disk-event-error-unit disk-event Function
Accesses the slot in disk-event containing the unit number on which the
error occurred. This slot contains a nil if the unit number was unrelated to
the error.

si:disk-event-error-cylinder disk-event Function
Accesses the slot in disk-event containing the cylinder number on which the
error occurred. This slot contains a nil if the cylinder number was unrelated
to the error.

si:disk-event-error-head disk-event Function
Accesses the slot in disk-event containing the head number on which the
error occurred. This slot contains a nil if the head number was unrelated to
the error.

si:disk-event-error-sector disk-event Function
Accesses the slot in disk-event containing the sector number on which the
error occurred. This slot contains a nil if the sector number was unrelated
to the error.

si:disk-event-error-string disk-event Function
Accesses the slot in disk-event containing the error string supplied by the
recovery routine.

si:disk-event-error-flushed-transfer-count disk-event Function
Accesses the slot in disk-event containing the total number of transfers
aborted or removed from the disk queue due to the disk error.

si:disk-event-suppress-error-recovery disk-event Function
Accesses the slot in disk-event that indicates if the automatic error recovery
for specific error codes is suppressed for transfers associated with disk event.
All other transfers are unaffected. The bits in the mask correspond to the
disk error code numbers. If the bit is set (a value of one) the corresponding
error is not automatically recovered from and instead is signalled immediately.
If the bit is clear (a value of zero) an error causes the disk system to attempt
to recover from the error, signalling an error only if it cannot recover from
the disk error. See the section "Disk Error Codes", page 39. Disk error
codes are discussed in that section.

Setting the disk event's si:disk-event-suppress-error-recovery mask
immediately affects any pending disk transfers that are associated with the
disk event in addition to any subsequently associated transfers. The error
recovery remains suppressed until the corresponding bit in the mask is
cleared.

For example, to tum off the automatic recovery of ECC errors so that an
error would be signalled on any ECC error in a transfer associated with a
given disk event, even if the ECC error is correctable, use the form:

35

March 1985 Internals

(setf (ldb (byte 1 sys:Xdisk-error-ecc)
(si:disk-event-suppress-error-recovery disk-event»

1)

The following form returns a value of 1 if the disk event's ECC error
recovery is suppressed, or 0 if it is not.

(ldb (byte 1 sys:Xdisk-error-ecc) ; Hake a PPSS byte specifier
(si:disk-event-suppress-error-recovery disk-event»

si:disk-event-error-dcw disk-event Function
Accesses the slot in disk-event containing the first word of the disk command
word block of the failed transfer.

3.4 Disk Transfers

This section describes the low-level interface for initiating disk read and write
transfers. The FEP file system provides a higher-level interface built upon these
functions and is the standard way to access the disk. For details on the FEP file
system: See the section "FEP File System", page 42.

Disk transfers can be either disk reads or disk writes. A disk read copies data from
the disk into disk arrays. A disk write copies data from disk arrays to the disk.
The data transferred must always be a multiple of a disk block due to constraints
imposed by the disk system.

Transfers are always performed in the order they are enqueued. This permits a
sequence of transfers that must be performed in a particular order to be enqueued
without having to wait for completion between each transfer.

For example, when the FEP flle system creates a new file it f11"st enqueues the
writes of the modified blocks in its free page data structure. It then enqueues a
write of the file's page table, followed by a write of the directory entry pointing to
the file's page table, without waiting for the individual writes to complete before
enqueuing the next. These data structures must be written in this partiCUlar order
to ensure that the copy of the file system on the disk is always consistent. When it
enqueues the writes it specifies a hang-p argument of nil to si:disk-write, and uses
the same disk event for all the transfers in the sequence. Since all the transfers are
associated with the same disk event, if one transfer fails and is aborted all
subsequent transfers will also be aborted. (For more details on error handling: See
the section "Disk Error Handling", page 36.) Thus, if the write of the file's page
table fails and is aborted, the write of the directory page will also be automatically
aborted.

All the disk arrays and the disk event must be wired for the duration of the disk
transfer. (Wiring a structure locks it in memory until it is explicitly unwired,
permitting the disk system to use physical memory addresses for the data transfers.)

36

Interna/s. Processes. and Storage Management March 1985

If the hang-p argument to the disk transfer function is true, the function wires and
unwires the disk arrays and disk event itself. Otherwise these must be wired by the
caller and unwired only after the disk transfer has completed. See the section
"Synchronization Functions", page 32. The functions described there can be used to
determine when the disk transfer has completed.

sys:disk-read disk-arrays disk-event dpn &optional n-blocks Function
(hang-p t)

si:disk-read causes the disk to start reading the consecutive disk blocks
beginning with the block at disk address dpn, storing the data from the disk
into the arrays in disk-arrays. disk-arrays can be a disk array or a list of
disk arrays. n-blocks is the number of disk blocks to read, and defaults to
the number of blocks disk-arrays can contain. When n-blocks is greater than
one each disk array is completely filled before using the next disk array in
disk-arrays. Unused disk arrays or portions of disk arrays remain
unmodified.

When hang-p is t (its default value), si:disk-read waits for all the reads to
complete before returning. If hang-p is false si:disk-read returns
immediately upon enqueuing the disk reads without waiting for completion.
When hang-p is false all of the disk-arrays and the disk-event must be wired
before calling si:disk-read, and must remain wired until the disk reads
complete.

disk-event must be the disk-event to associate with all the disk reads.

sys:disk-write disk-arrays disk-event dpn &optional n-blocks Function
(hang-p t)

si:disk-write causes the disk to start writing the consecutive disk blocks
beginning with the block at disk address dpn with the data stored in the disk
arrays in disk-arrays. The arguments to si:disk-write are identical to those
of si:disk-read.

3.5 Disk Error Handling

The disk system automatically attempts to recover from a disk error by resetting the
relevant disk state and retrying the failed disk transfer. (The associated disk event's
si:disk-event-suppress-error-recovery slot can selectively suppress the automatic
error recovery for a set of disk error types.) After si:*n-disk-retries* retry
attempts fail, the error is considered to be unrecoverable and the failed transfer is
aborted.

The disk system permits related disk transfers to be grouped together by associating
them with the same disk event. If one of the transfers fails the remaining transfers
in its group are aborted. This makes it possible to enqueue transfers that must be

37

March 1985 Internals

performed in a particular order without having to wait for each transfer to complete.
Aborting the remaining transfers in a group does not interfere with transfers in
other groups.

Disk errors are signalled after they actually occur because they are detected at a low
level in the system asynchronous to the execution of the responsible process. In
order to make condition handling of disk errors possible, the error is signalled when
a process waits for the disk transfers to finish.

The disk system performs the following sequence of events when an error is
detected:

1. It suspends processing of the disk queue at the failed disk transfer.

2. It retries the failed disk transfer si:*n-disk-retries· times, depending on the
type of error. If one of the retries succeeds, no error is signalled and
processing of the disk queue resumes.

3. If the disk error recovery logic cannot automatically recover from the error, or
if error recovery is being suppressed, the error becomes unrecoverable and the
failed disk transfer is aborted.

4. If the failed disk transfer does not have an associated disk event the
unrecoverable error becomes fatal and halts the machine. (Most system mode
disk transfers do not have an associated disk event.) Otherwise the
information describing the error is stored in the disk event.

5. The disk system removes from the disk queue any remaining pending transfers
that are associated with same disk event as the failed transfer. The
si:disk-event-error-flushed-transfer-count slot in the disk event contains
the number of transfers that were removed from the disk queue, including the
failed transfer.

6. The disk system resumes processing of the remaining transfers that are not
associated with the failed transfer's disk event.

7. It discards any subsequent attempts to initiate a disk transfer associated with
the failed transfer's disk event (unless
si:·signal-disk-errors-from-enqueue-p· is true, in which case a disk error is
signalled from the disk transfer function, incrementing the disk event's
si:disk-event-error-flushed-transfer-count slot).

8. When si:wait-for-disk-event or si:wait-for-disk-event-task waits for a task
in the failed transfer's disk event, an si:disk-error-event condition (which is
built upon the sys:disk-error condition) is signalled. These synchronization
functions are also used by the transfer functions when their hang-p argument
is true.

38

Internals, Processes, and Storage Management March 1985

The si:disk-event-error-type slot of a disk event can also be explicitly checked to
determine if an error has occurred.

3.5.1 Disk Error Variables

si:·n-disk-retries· Variable
The value of si:·n-disk-retries· is the number of times to retry the failing
disk operation before declaring it unrecoverable.

si:·signaI-disk-errors-from-enqueue-p* Variable
This variable controls whether enqueuing a disk transfer associated with a
disk event that is already associated with an failed transfer will signal an
error or discard the enqueue request. If the value is true, an
si:disk-error-event condition is signalled. If the value is false: which is the
default, an error is not signalled and the transfer is discarded, incrementing
the disk event's si:disk-event-error-flushed-transfer-count slot.

A false value is useful when multiple disk transfers are being enqueued
without waiting for completion and it is not desirable to provide an error
handler for each enqueue. In this case, the condition handler needs to be
provided only for the final synchronization function.

The enqueue function still signals an error if it waits for completion of an
failed transfer. For example, si:disk-read signals an error regardless of the
value of si:·signal-disk-errors-from-enqueue-p· when its hang-p argument
is true.

si:*automatically-recover-from-hung-disks* Variable
When this variable is false, the machine halts when the disk stops responding
to transfer requests. A true value causes the disk system to attempt to
recover from a hung disk. By default the value of the variable is true.

3.5.2 Disk Error Conditions

si:disk-error-event Flavor
This condition flavor is signalled while waiting for a task in a disk event that
is associated with a disk transfer that generated a disk error.
si:disk-error-event is based upon the si:disk-error condition; condition
handlers should use the si:disk-error condition.

:disk-event of si:disk-error-event Method
This method returns the disk event associated with the failed transfer. This
is especially useful when transfers associated with multiple disk events can be
handled by the same condition handler.

39

March 1985 Internals

:error-type of si:disk-error-event Method
This method returns the error type code number, which is also stored in the
disk event's si:disk-event-error-code slot. For a list of the possible disk
error code numbers: See the section "Disk Error Codes", page 39.

:flushed-transfer-count of si:disk-error-event Method
This method returns the number of disk transfers that were not performed
because of the error, including the failed transfer. The value is the same as
is stored in the disk event's si:disk-event-flushed-transfer-count slot.

3.5.3 Disk Error Codes

A disk error code is a number indicating the type of the disk error. System
constants containing the disk error code numbers exist so the codes can be referred
to mnemonically.

sys:*disk-error-codes* Constant
A list of symbols corresponding to the disk error code numbers. You can
convert a disk error code number into the symbol of its corresponding
constant as follows:

(nth disk-error-code-number sys: *disk-error-codes*>

The following list shows the disk error constants and describes the corresponding
error's causes.

sys:%disk-error-select Constant
The disk unit could not be selected. For a disk unit to be selectable the
drive must be properly connected to the machine and a unique disk unit
number set in the drive's unit address switches. The error recovery logic
tries to reselect the unit before failing with an unrecoverable select error.

sys:%disk-error-not-ready Constant
The disk unit was selected, but was not ready. A disk unit is ready when
the drive is spinning at its rated speed. Some drives are not ready when
they are in a device fault. When a disk is started, the unit is not ready for
a short period (10 to 50 seconds for most drives) while the disk is spinning
up.

The error recovery logic waits 60 seconds for the unit to be ready before
signalling this error.

sys:%disk-error-device-check Constant
The disk unit is in a device fault, also called a device check, state. Device
faults indicate a write to a write-protected drive or a malfunction in the disk
system. If the fault was caused by a write to a write-protected drive, an
error is signalled. Otherwise the error recovery logic clears the fault condition

40

Internals, Processes, and Storage Management March 1985

and retries the disk transfer for si:*n-disk-retries* times before signalling
this error.

sys:%disk-error-seek Constant
An error was detected during a seek. This can occur if an invalid disk
address is specified in the transfer request, or if the disk system
malfunctions. Most disk drive specifications allow for a small percentage of
seeks to generate an error. The error recovery logic reca1ibrates the drive
and retries the disk seek for si:*n-disk-retries* times before signalling this
error.

sys:%disk-error-search Constant
The disk block addressed by a disk transfer could not be found. This can
occur if the addressed track on the disk is improperly formatted, if the disk
address is invalid, or if the disk selected the wrong track. The disk system
recalibrates the disk drive and retries the disk transfer for
si:*n-disk-retries* times before signalling this error.

sys:%disk-error-overrun Constant
The disk attempted to transfer data faster than the machine could
accommodate. This error is expected to occur occasionally due to conflicts
when multiple 110 devices attempt to access memory simultaneously. The
error recovery logic retries the disk transfer si:*n-disk-retries* times before
signalling this error.

sys:% disk-error-ecc Constant
The data read from the disk has at least one invalid bit. The disk error
recovery logic first attempts to correct the data, followed by a retry of the
read transfer if the correction failed, for si:*n-disk-retries* times before
signalling an unrecoverable ECC error. The disk array contains the incorrect
data that was read from the disk for the block generating the ECC error. If
a multiple blocks transfer had been requested, the disk array will not be
modified for the blocks following the failed block.

sys:%disk-error-state-machine Constant
The disk hardware detected an error that was not already listed above. This
can be caused by a number of disk system malfunctions. The error recovery
logic resets the disk state and retries the disk transfer for
si:*n-disk-retries* times before signalling this error.

sys:% disk-error-misc Constant
The disk microcode detected an error, but no error flags were set in the
disk's status register. The error recovery logic resets the disk state and
retries the disk transfer si:*n-disk-retries* times before signalling this error.

41

March 1985 Internals

3.5.4 Disk Error Meters

These meters are updated when the disk system detects an error, including errors
that are automatically recovered from. Meters that are primarily affected by system
mode transfers are not included here. Most of these meters can be inspected with
the Peek utility, too; type SELECT P and click left on [Meters].

The value of the following meters is the number of:

si:*count-total-disk-errors*
All types of disk errors.

si:*count-disk-select-errors*
sys:%disk-error-select errors.

si:*count-disk-not-ready*
sys:%disk-error-not-ready errors.

si:*count-disk-search-errors*
sys:%disk-error-search errors.

si:*count-disk-overruns*
sys:%disk-error-overrun errors.

si:*count-disk-ecc-errors*
sys:%disk-error-ecc errors.

si:*count-disk-seek-errors*
sys:%disk-error-seek errors.

si:*count-disk-device-checks*
sys:%disk-error-device-check errors.

si:*count-disk-state-machine-errors*
sys:%disk-error-state-machine errors.

si:*count-disk-other-errors*
sys:%disk-error-misc errors.

Variable

Variable

Variable

Variable

Variable

Variable

Variable

Variable

Variable

Variable

si:*count-disk-hung-restarts· Variable
Times the disk was hung.

si:*count-disk-errors-Iost* Variable
Times the disk was hung due to a disk error not waking up the disk
software.

si:*count-disk-stops-Iost* Variable
Times the disk was hung due to the disk system not waking up after the
disk queue became empty.

42

Internals. Processes. and Storage Management March 1985

3.6 FEP File System

The FEP file system manages the disk space available on a disk pack, grouping sets
of data into named structures called FEP files. All the available space on a disk
pack is described by the FEp· file system. A single FEP fIle system cannot extend
beyond a single disk pack; each disk pack has its own separate FEP file system.

The FEP file system supports all of the generic file system operations. It also
supports multiple file versions, soft deletion and expunging, and hierarchical
directories.

Although "FEP" is an acronym for front-end processor, the FEP file system is
managed by the main Lisp processor. It is called the FEP file system because the
FEP can read files stored in the FEP file system. For example, the FEP uses the
FEP file system for booting the machine and running diagnostics.

Disk streams access FEP files. A disk stream is an 110 stream that performs input
and output operations on the disk. (For information about streams: See the section
"110 Streams" in Reference Guide to Streams, Files, and 110.). When disk streams
are opened with a :direction keyword of :input or :output, the disk stream reads
or writes bytes (respectively), buffering the data internally as required. When the
:direction is :block, the disk stream can both read and write the specified disk
blocks. Block mode disk streams address blocks with a block number relative to the
beginning of the file, starting at file block number zero. This file block number is
internally translated into the corresponding disk address.

The FEP file system is also used by the system for allocating system overhead files,
such as the paging file. See the section "FEP File Types", page 49. This section
lists some of these files and what they are used for.

The ability of the FEP to access FEP files and the use of FEP files by the system
imposes some constraints on the design of the FEP file system. The internal data
structures of the file system must be simple enough to permit the FEP to be able to
read them, and a small amount of concurrent access by both the FEP and Lisp
must be tolerated. A FEP file's data blocks should have a high degree of locality on
the disk to minimize access times. And the FEP file system must be very reliable,
since the FEP needs to use the file system for running diagnostics and for booting
the machine.

Note: Because of these constraints, the FEP file system is not intended to be a
replacement for LMFS. (See the section "Lisp Machine File System" in Reference
Guide to Streams, Files, and 110.) Allocating new blocks for FEP files is slow, so
that creating many files, especially many small files, might impair the performance of
the FEP file system, and ultimately the virtual memory system if paging files or
world load files become highly fragmented.

43

March 1985 Internals

3.6.1 Naming of FEP Files

See the section "Lisp Machine File System" in Reference Guide to Streams, Files,
and I/O. The FEP filename format is similar to the LMFS filename format, with
the following exceptions:

host

directory

name

type

version

The name of the FEP file system host. The format for a FEP
host is host I FEPdisk-unit, where the host field specifies which
machine's FEP file system is being referred to, and disk-unit
specifies the disk unit number on the machine. The host field
defaults to the local machine if it and the terminating vertical bar
(I) are omitted. If both the host and disk-unit fields are omitted,
the FEP host defaults to the disk unit the world was booted from
on the local machine. For example:

HerrimacklFEPO

FEP2

FEP

The FEP file system on Merrimack's unit O.

The FEP file system on the local machine's
unit 2.

The FEP file system the booted world load file
resides on.

The name of the directory. The FEP fue system supports
hierarchical directories in the same format as in LMFS. Each
directory name is limited to a maximum of 32 characters; there is
no limit on the total length of a hierarchical directory specification.

The name of the FEP file, which cannot exceed 32 characters.

The type of the FEP file, which cannot exceed 4 characters.

The version number of the FEP file, which must be a positive
integer or the characters "newest".

3.6.2 Accessing FEP Files

FEP files are accessed by open disk streams. A disk stream is opened by the open
function. (See the section "Accessing Files" in Reference Guide to Streams, Files,
and I/O. That section contains more details on accessing files.) If a FEP file
system residing on a remote host is referred to, a remote stream is returned with
limited operations as specified by the remote file protocol.

In addition to the normal open options, the following keywords are recognized:

:direction Specifies the type of disk stream to open.

: input Open a buffered input disk stream. A buffered
input disk stream can only read bytes of data;
write operations are not permitted. The

44

Internals, Processes, and Storage Management March 1985

:if-ensts

:output

:block

:probe

number of disk blocks to buffer can be specified
by the :number-of-disk-blocks keyword.

Open a buffered output disk stream. A
buffered output disk stream can only write
bytes of data; read operations are not
permitted. The number of disk blocks to buffer
can be specified by the
:number-of-disk-blocks keyword.

Open a bidirectional block disk stream. Block
disk streams are used to read and write random
disk blocks of data as requested. Block disk
streams do not internally buffer disk blocks.

Block disk streams are not supported by the
remote file protocol.

Open a probe disk stream. A probe stream can
read and modify a FEP file's properties, but
cannot read or modify the file's data.

This keyword specifies the action to be taken if the specified file
already exists and the :direction is :output or :block. This
keyword is ignored when the :direction keyword is :input or
:probe. Only the following values are supported:

: error

:new-version

:overwrite

:supersede

nil

Signal an error. This is the default when the
version component of the file name is not
:newest.

Create a new version of the file. This is the
default when the version component of the file
name is :newest.

Use the existing file.

Supersede the existing file by deleting and
expunging it.

Return nil if the file already exists without
creating a file or a stream.

:if-does-not-exist This keyword specifies the action to be taken if the specified fIle
does not exist.

: error

: create

Signal an error. This is the default if the
:direction is :input or :probe, or if the
:if-exists argument is : overwrite.

Create a new file with the specified file name.
This is the default if the :direction is :output

March 1985

:if-Iocked

nil

45

Internals

or :block, and the :if-exists argument is not
:overwrite.

Return nil if the file does not already exist
without creating a file or a stream.

This keyword specifies the action to be taken if the specified file is
locked. This keyword is not supported by the remote file protocol.

:error

: share

Signal an error. This is the default.

Open the specified file even if it is already
locked, incrementing the file's lock count. This
mode permits multiple processes to
simultaneously write to the same file. (See the
section "FEP File Locks", page 48. That
section contains more information on file locks.)

:estimated-Iength
The value of this keyword is the minimum number of bytes to
preallocate for the file. If the file's block length is not large
enough to accommodate :estimated-Iength bytes of data, disk
blocks are allocated and appended to the file. If the file's block
length is greater than is required to satisfy :estimated-Iength, its
size is not adjusted. This keyword is ignored if the :direction
keyword is :input or :probe.

:number-of-disk-blocks
The value of this keyword is the number of disk blocks to buffer
internally if the :direction keyword is :input or : output. This
keyword is ignored for other values of :direction or for files on
remote hosts. The default :number-of-disk-blocks is two.

3.6.3 Operating on Disk Streams

All disk streams to a local FEP ftle system handle the following messages:

:grow &optional n-blocks &key :map-area :zero-p Message
This message allocates n-blocks of free disk blocks and appends them to the
FEP file. The value of n-blocks defaults to one. If :zero-p is true the new
blocks are filled with zeros; otherwise, they are not modified. The return
value of :grow is the file's data map (the format of the data map is described
in :create-data-map's description below). The value of :map-area is the
area to allocate the data map in, which defaults to default-cons-area.

:allocate n-blocks &key :map-area :zero-p Message
This message ensures that the FEP file is at least n-blocks long, allocating
additional free blocks as required. Returns the ftle's data map (the format of

46

Internals, Processes, and Storage Management March 1985

the data map is described in :create-data-map's description below).
:map-area specifies the area to create the data map in, and defaults to
default-eons-area. The newly allocated blocks are filled with zeros if
:zero-p is true. :zero-p defaults to nil.

:file-access-path Message
This message returns the disk stream's file access path.

For example, you can find out what unit number a FEP file resides on as
follows:

(send (send stream :file-access-path) :unit)

:map-block-no block-number grow-p Message
This message translates the relative file block-number into a disk address, and
returns two values: the first value is the disk address, and the second is the
total number of disk blocks starting with block-number that are in
consecutive disk addresses. grow-p specifies if the file should be extended if
block-number addresses a block that does not exist. When grow-p is true,
free disk blocks are allocated and appended to the FEP file to extend it to
include block-number. Otherwise, if grow-p is false, nil is returned if
block-number addresses a block that does not exist.

:create-data-map &optional area Message
This message returns a copy of the FEP file's data map allocated in area
area, which defaults to default-eons-area. A FEP file data map is a one
dimensional art-q array. Each entry in the file data map describes a number
of contiguous disk blocks, and requires two array elements: the first element
is the number of disk blocks described by the entry, and the second element
is the disk address for the first block described by the entry. The array's fill
pointer contains the number of active elements in the data map times two.

:write-data-map new-data-map disk-event Message
This message replaces the file's data map with new-data-map. disk-event is
the disk event to associate with the disk 'writes when the disk copy of the
file's data map is updated. This message overwrites the file's contents and
should be used with caution.

3.6.4 Input and Output Disk Streams

Input and output disk streams are buffered streams. In addition to the standard
buffered stream messages, local input and output disk streams also support the
messages described elsewhere: See the section "Operating on Disk Streams", page
45.

Input disk streams read bytes of data starting at the current byte position in the
FEP file, updating the byte position as the data is read. Output disk streams write
bytes of data in the same way.

47

March 1985 Internals

The bytes of data are stored in buffers internal to the stream. The
:number-of-disk-blocks open keyword controls how many disk blocks the internal
buffers can hold. When the current pointer moves beyond a disk block boundary,
the buffered disk block is written to the file for an output stream, or the next
unbuffered block is read in from the file for an input stream. Output streams also
write out all the buffered disk blocks when the stream is sent a :close message
without an :abort option.

3.6.5 Block Disk Streams

Block disk streams can both read and write disk blocks at specified file block
numbers. A file block number is the relative block offset into the file. The first
block in the file is at file block number zero, the second is at file block number one,
and so on.

Block disk streams do not buffer any blocks internally. They are not supported by
the remote file protocol.

See the section "Operating on Disk Streams", page 45. In addition to the messages
described in that section, block disk streams support the following messages:

:block-length Message
The :block-length message returns the length of the FEP file in disk blocks.

:block-in block-number n-blocks disk-arrays &key :hang-p Message
: disk-event

The :block-in message causes the disk to start reading data from the disk
into the disk arrays in disk-arrays starting with the file block number
block-number for n-blocks. disk-arrays can be a disk array or a list of disk
arrays. The value of n-blocks is the number of disk blocks to read. When
n-blocks is greater than one, each disk array is completely filled before using
the next disk array in disk-arrays. Unused disk arrays or portions of disk
arrays remain unmodified.

When the value of :hang-p is true, which it is by default, the :block-in
message waits for all the reads to complete before returning. If the value of
:hang-p is false, :block-in returns immediately upon enqueuing the disk
reads without waiting for completion. In this case, all disk-arrays and the
disk-event must be wired before sending the :block-in message, and must
remain wired until the disk reads complete.

If the :disk-event keyword is supplied, its value is the disk event to associate
with the disk reads. Otherwise the :block-in message allocates a disk event
for its duration. A :disk-event must be supplied when :hang-p is false.

:block-out block-number n-blocks disk-arrays &key :hang-p Message
:disk-event

The :block-out message causes the disk to start writing the data in the disk

48

Internals. Processes. and Storage Management March 1985

arrays in disk-arrays onto the disk starting with the file block number
block-number for n-blocks. The arguments to the :block-out message are
identical to those of the :block-in message.

3.6.6 FEP File Properties

In addition to having a name and containing data, FEP files also have properties.
These properties store information about the file itself, such as when it was last
written and whether it can be deleted or not. File properties are read by the
fs:file-properties function, and modified by the fs:change-file-properties
function. The fs:directory-list function also returns the file properties of several
files at once. (See the section "Accessing Directories" in Reference Guide to Streams,
Files, and I/O.)

The following file properties can be both read and modified:

:creation-date The universal time the file was last written to. Universal times
are integers. (See the section "Dates and Times" in Programming
the User Interface.)

:author The user-id of the last writer. The user-id must be a string.

:length-in-bytes The length of the file expressed as an integer.

:deleted When t the file is marked as being deleted. A deleted file can
then be marked as being undeleted by changing this property to
be nil. The disk space used by a deleted file is not actually
reclaimed for reuse until the file is expunged.

:dont-delete

:comment

When t, attempting to delete or overwrite the file signals an error,
otherwise nil indicating the file can be deleted or written to.

A comment to be displayed in brackets in the directory listing.
The comment must be a string.

The following file properties are returned by the :properties message, but cannot
be modified by : change-properties:

:byte-size The number of bits in a byte. The value of this property is
always 8.

:length-in-blocks The block length of the file expressed an an integer.

:directory If t, the file is a directory, otherwise nil if the file is not a
directory.

3.6.7 FEP File Locks

A FEP file is locked for the interval from when it is opened for reading or writing
until it is closed. If the :direction keyword is :input, the file is read-locked; if the
:direction keyword is :output or :block, the file is write-locked.

49

March 1985 Internals

When the :if-locked keyword is :error, which is its default, a file that is read
locked can still be opened for reading but signals an error if opened for writing; a file
that is write-locked cannot be opened for reading or writing. This permits multiple
readers to access a file concurrently, while prohibiting writing to the fue being read.

When the :if-locked keyword is :share in an open call for write, it succeeds in
opening the file even if it is already read- or write-locked.

An expunge operation on a file that is either read- or write-locked does not expunge
the file. If expunging a directory fails to expunge a file, the file must be closed and
the directory expunged again.

3.6.8 FEP File Types

By convention, the following file types are used by the FEP fue system for fues used
by the system.

BOOT

LOAD

MIC

FSPT

FILE

PAGE

FLOD

FEP

The file contains FEP commands that can be read be FEP's Boot
command. BOOT files are text files, and can be manipulated by
the editor.

The file contains a world load image that is used to boot the
system. For example, >Release-6.load.NEWEST contains the
release 6 world load image.

The file contains a microcode image. For example, >TMC5-
MIC.MIC.234 contains version 234 of the microcode for version 5
of the TMC.

The fue contains a LMFS partition table. For example,
>FSPT.FSPT.NEWEST is the default partition table used by
LMFS.

The file contains a LMFS partition. For example,
>LMFS.FILE.NEWEST is the default LMFS file partition.

The file contains disk space that can be used by the virtual
memory system. For example, >PAGE.PAGE.NEWEST is the
default file used by the virtual memory system as storage for
swapping pages in and out of main memory.

The file contains a FEP Load file. FEP Load files contain binary
code the FEP can load and execute.

The file contains binary information used by the FEP file system.
These files should not be written to by user programs. Some
examples of these files are:

>FREE-PAGES.FEP
Describes which blocks on the disk are allocated
to existing files.

50

Internals. Processes. and Storage Management March 1985

DIR

>BAD-BLOCKS.FEP
Owns all the blocks that contain a media defect
and should not be used.

>SEQUENCE-NUMBER.FEP
Contains the highest sequence number in use.
The FEP fIle system uses sequence numbers
internally to uniquely identify files to assist in
rebuilding the file system in case of a
catastrophic disk failure.

>DISK-LABEL.FEP
Contains the disk pack's physical disk label.
The label is used to identify the pack and
describe its characteristics.

The file contains a FEP directory. For example, FEPO:>ROOT
DIRECTORY.Dffi.NEWEST contains the top-level root directory.
The directory file for FEPO:>DanG>Examples> would reside in
FEPO:>DanG>Examples.DIR.l.

3.7 Disk Performance

You can improve the disk performance of a program by overlapping the disk
transfers with computation and by reducing the disk latency by grouping contiguous
transfers together.

The disk latency is the amount of time required by the disk unit to transfer a
number of disk blocks. The minimum disk latency is the absolute lower bound on
the time required to transfer a number of blocks; if shorter transfer times are
required, a higher blocking factor or a faster disk unit is required. The software
overhead can be determined by subtracting the minimum disk latency from the total
time to transfer a number of blocks.

You overlap transfers with computation by specifying that a transfer request should
not wait for the transfers to actually complete before returning. Computations can
then continue while the disk is concurrently transferring the data. When your
program actually requires data, the process can wait for the disk transfer to
complete.

For example, if data is to be read from one block on the disk and then written to
another block, the read request can be immediately followed by the write request
without waiting for the read to actually finish, since disk transfers are always
performed in the order they were enqueued. The time required to read and write
the data is reduced since the write transfer can be enqueued while the disk is
performing the read, so by the time the read completes the disk can immediately
start writing the block.

51

March 1985 Internals

Disk latency can be reduced by enqueuing multiple disk transfers to consecutive disk
addresses without waiting for completion between transfers. This permits the disk
to perform multiple transfers on the same disk revolution, or at least with a
minimum of seeking.

The equation below yields the approximate minimum disk latency for transferring N
contiguous disk blocks.

Tn = Ta + Tr/2 + NTr/S + TsL«A mod HS)+N-l}/HSJ (1)

Where:

A The disk block number. The sys:%%dpn-page-num field of the
disk address.

Number of data heads, excluding any servo heads.

Number of blocks to transfer.

Number of blocks per track.

Average seek time.

Minimum time to transfer N blocks.

Rotation time.

Average single cylinder seek time.

Floor of x. The truncated integer value of x.

The terms in Eq. 1 account for the various phases of a disk transfer, where:

• The first term accounts for the average seek time to position the heads to the
cylinder the first block resides on.

• The second term accounts for an average initial delay of half a rotation for the
first block to be positioned under the disk heads.

• The third term yields the time to actually transfer N blocks of data.

• The last term yields the time spent seeking to adjacent cylinders.

The time required to switch heads is insignificant, since head switching time is small
enough not to affect the disk latency. Enough space is provided on the disk
between the last and first blocks on a track for the head switch to complete after
the last block has been transferred but before the first block of the next L·ack
passes under the heads. No extra rotation delays are incurred.

The values of the constants used in Eq. 1 can be found in table 1 for some of the
available disk drives. To find the values for drives that are not listed, check the disk
specifications supplied in the manual shipped along with the disk drive.

52

Internals, Processes, and Storage Management March 1985

Table 1. Selected Disk Specifications

M2284 M2351 T-306 D2257

H 10 20 19 8
S 16 22 16 16
Ta 27ms 18ms 30ms 20ms

~ 20.24ms 15.15ms 17.5ms 17.09ms
6ms 5ms 7.5ms 5ms s

If N single block transfers are requested to consecutive disk blocks, Eq. 1 becomes:

Tn = Ta + NTr/2 + NTr/S + T J«A mod HS)+N-1}/HSJ (2)

Eq. 2 shows that in addition to the cost of not performing computations in parallel
with disk transfers, the minimum disk latency is increased by an average of a half
rotation per disk transfer when single block disk transfers are made to consecutive
blocks, waiting for each transfer to complete. However, Eq. 2 is only true if the
position of the disk is random with respect to the disk block being accessed. For
example, if single transfer requests are made to consecutive disk blocks without a
delay between transfer requests, the minimum disk latency would be increased by a
full rotation per transfer.

3.8 Examples of High Disk Performance

3.8.1 Initializing a FEP File

The following function is an example of how you can achieve high disk performance.
It writes zeroes over an entire FEP file.

53

March 1985 Internals

(defun zero-fep-file (file)
;; FILE should be an open block disk stream.
;; Allocate a disk array and disk event
(using-resource (disk-array si:disk-array)

(using-resource (disk-event si:disk-event)
" Wire both the disk array and disk event into memory for the
;; duration of all the transfers. This is required when
;; HANG-P is NIL.
(si:with-wired-structure disk-array

(si:with-wired-structure disk-event
;; Iterate over all blocks in the file enqueuing a
;; write without waiting for the write to complete.
(loop for block-number below (send file :block-length)

doing (send file :block-out block-number 1 disk-array
:disk-event disk-event
:hang-p nil»

;; Finally, wait for all the writes to complete before
;; unwiring and returning the disk array and disk event.
(si:wait-for-disk-event disk-event»»»

The zero-fep-file function writes the same disk array over all the blocks in the file
without waiting for each write to finish before enqueuing the next write. This
minimizes the time required to zero the FEP file since the write transfers are
enqueued concurrent with the disk actually writing the data, and the transfers are
enqueued in ascending file block number order. The FEP file system attempts to
make FEP files as contiguous as possible with the disk addresses ascending in file
block number order, so zero-fep-file writes as many blocks as can fit on a sector in
one disk rotation.

3.8.2 Copying FEP Files

The next examples show alternative algorithms for copying a FEP file, starting out
with a slow but simple example and developing it into a much faster version.

The following function shows a simple way to copy a FEP fIle. To simplify the
example, the source-file and dest-file must be complete file specifications, and file
properties, including the byte length, are not copied.

(Note that none of these functions copy any of the fIle's properties, not even the
length-in-bytes. In a real file-copying application, you might want to copy some of
the properties.)

54

Internals, Processes, and Storage Management March 1985

(defun slow-copy (source-file dest-file)
(with-open-file (source source-file

:direction :block
:if-exists :overwrite)

(with-open-file (dest dest-file
:direction :block
:if-exists :overwrite
:if-does-not-exist :create)

;; First preallocate the same number of disk blocks for the
;; destination file as is required by the source file.
;; Allocating many blocks at once is much faster than implicitly
" allocating a block at a time, and results in better locality
" on the disk.
(send dest :allocate (send source :block-length»
;; Allocate a disk array to buffer the data and a disk event
(using-resource (disk-array si:disk-array)

(using-resource (disk-event si:disk-event)
;; Now iterate over all blocks in the source file, copying
;; the block to the destination file.
(loop for block-number below (send source :block-length)

do
(send source :block-in block-number 1 disk-array

:disk-event disk-event)
(send dest :block-out block-number 1 disk-array

:disk-event disk-event»»»)

While the slow-copy function is simple, it is also very slow. The problem is that
the :block-in message waits for the disk read to complete before the :block-out
message can be enqueued. This function can be sped up by over a factor of two and
a half by making the :block-in and :block-out messages not wait for completion by
supplying a :hang-p keyword with a value of nil. For example:

55

March 1985 Internals

(defun quick-copy (source-file dest-fi1e)
(with-open-file (source source-file

:direction :block
:if-exists :overwrite)

(with-open-file (dest dest-file
:direction :b1ock
:if-exists :overwrite
:if-does-not-exist :create)

•• First preallocate the same number of disk blocks for the
;; destination file as is required by the source file.
(send dest :al1ocate (send source :block-length»
;; Allocate a disk array to buffer the data and a disk event
(using-resource (disk-array si:disk-array)

(using-resource (disk-event si:disk-event)
;; The disk array and disk event must be wired for the
•• duration of all the transfers. When HANG-P is true. the
:: transfer functions automatically wire and unwire the disk
;; event and disk arrays. But since this function specifies a
;; HANG-P of NIL for speed. it must do the wiring itself.
(si:with-wired-structure disk-array

(si:with-wired-structure disk-event
;; Iterate over all the blocks in the source file.
;; enqueuing reads and then enqueuing writes
;; to the destination file.
(loop for block-number below (send source :b1ock-1ength)

do
;; Enqueue the source read without waiting for the
;; transfer to actually complete.
(send source :block-in bloCk-number 1 disk-array

:disk-event disk-event :hang-p nil)
;; Enqueue the destination write while the
;; source read is still in progress. This does not
;; have to wait for the read to complete since
•• disk transfers are always performed in the
;; order they were enqueued.
(send dest :block-out bloCk-number 1 disk-array

:disk-event disk-event :hang-p nil»
;: Wait for all pending transfers to complete.
(si:wait-for-disk-event disk-event»»»»

quick-copy has increased speed by overlapping disk requests with computation.
This keeps the disk queue full so that the disk is continually copying the file without
having to stop and wait for the next disk transfer to be enqueued. But the disk is
still reading a block, then seeking to the destination block, then writing a block, and
seeking back to the next source block. Performance can still be enhanced by
reducing the disk latency if both the source and destination files reside on the same
disk unit.

The disk latency can be reduced hy eliminating disk seeks by reading multiple source

56

Internals. Processes. and Storage Management March 1985

blocks, then seeking to the destination file and writing multiple destination blocks.
The following function combines minimized disk latency (achieved by using a large
blocking factor between seeks) with overlapped computations and disk transfers.
The resulting speed is about three times faster than quick-copy, and seven times
faster than slow-copy.

57

March 1985 Internals

(defun fast-copy (source-file dest-file &optional (blocking-factor 20.»
(with-open-file (source source-file

:direction :block
:if-exists :overwrite)

(with-open-file (dest dest-file
:direction :block
:if-exists :overwrite
:if-does-not-exist :create)

;; First preallocate the same number of disk blocks for the
" destination file as is required by the source file.
(send dest :allocate (send source :block-length»
(let «disk-arrays (make-array blocking-factor»)

;; Allocate a disk event.
(using-resource (disk-event si:disk-event)

;; The disk event must be wired for the duration of all the
;; transfers.
(si:with-wired-structure disk-event

(unwind-protect
(progn

;; Allocate and wire the disk arrays. The disk arrays
;; must be wired for the duration of the disk transfer.
(dotimes (i blocking-factor)

(let «disk-array (allocate-resource 'si:disk-array»)
(si:wire-structure disk-array)
(aset disk-array disk-arrays i»)

(loop
with blk-length = (send source :block-length)
for start-blkn from 0 by blocking-factor below blk-length
do
;; Enqueue the source reads without waiting for the
;; transfers to actually complete.
(loop for blkn from start-blkn below blk-length

for array being the array-elements of disk-arrays
do
(send source :block-in blkn 1 array

:disk-event disk-event :hang-p nil»
" Enqueue the destination writes while the
;; source reads are still in progress. This does not
;; have to wait for the reads to complete since
;; disk transfers are always performed in the
;; order they were enqueued.
(loop for blkn from start-blkn below blk-length

for array being the array-elements of disk-arrays
do
(send dest :block-out blkn 1 array

:disk-event disk-event :hang-p nil»»
;; Wait for all pending transfers to complete.
(si:wait-for-disk-event disk-event)
;; Finally, return the disk arrays.

58

Internals, Processes, and Storage Management March 1985

(loop
for disk-array being the array-elements of disk-arrays
when disk-array
do
(when (si:structure-wired-p disk-array)

(si:unwire-structure disk-array»
(deallocate-resource 'si:disk-array disk-array»»»»)

3.9 Disk and FEP File System Utilities

3.9.1 Initializing a Disk Unit

Before a disk unit can be used, it must be formatted and have a valid disk label.
Disks are formatted by the FEP, which can also write the label and initialize the
FEP file system from cartridge tape. (See the section "Front-end Processor" in
User's Guide to Symbolics Computers.) In addition, the following functions are
available:

si:write-fep-Iabel unit Function
Writes the disk label for unit number unit, interactively asking for any
necessary information. After the label is written the disk unit is left
mounted.

si:edit-fep-Iabel &optional unit Function
Permits the disk label of the disk unit unit to be edited by exposing a chose
variable values window. unit defaults to disk unit o.

si:read-fep-Iabel unit label-array disk-event Function
Reads the disk label for unit unit into the disk array in label-array,
associating the read transfers with disk-event in case of an error.

3.9.2 Mounting a Disk Unit

Disk units can be mounted either by the FEP or by Lisp. (See the section "Front
end Processor" in User's Guide to Symbolics C:omputers.) When a disk unit is
mounted, its disk label is read and the system's disk unit tables are updated. A disk
unit must be mounted before it is available for disk transfers.

si:mount-disk-unit unit Function
Make the disk unit available to the Lisp system by reading its label and
updating the system's disk unit tables. unit is the unit number to mount,
and must address an online disk unit.

59

March 1985 Internals

3.9.3 Verifying a FEP File System

The following function checks for and fIxes inconsistencies in the FEP fIle system.

si:verify-fep-filesystem &optional (unit 0) &key (correct-bittable Function
: ask)

Checks the FEP file system on disk unit unit, which defaults to zero,
reporting any detected inconsistencies and offering to correct certain types of
failures.

si:print-fep-filesystem &optional (unit 0) Function
Outputs a textual description of the FEP fIle system on disk unit unit. The
default value of unit is O.

si:resequence-fep-filesystem &optional (unit 0) Function
Resequences all the FEP files in the FEP fIle system on unit unit. The
value of unit defaults to zero. The files are resequenced by iterating over all
fIles in the FEP file system and assigning each a unique sequence number
starting with zero. Sequence numbers are used by the FEP fIle system to
check for consistency and identify pages in the file system. They can be
used to rebuild the FEP fIle system or fInd missing fIles in case of a
catastrophic failure.

3.9.4 Writing FEP Files to Tape

You can write files to tape using a local tape drive with the
tape:write-fep-files-to-tape function. This can be used for large (requiring more
than one cartridge tape) FEP files and is very useful with large world loads. To do
this, you first get access to the necessary software by making a fep-tape system.
You can use the :silent and :noconfinn options, as shown in the following example:

(make-system 'fep-tape :silent :noconfirm)

The next step is to use the function tape:write-fep-files-to-tape to write the FEP
files to tape. This can be used to write both microcode and world load fIles.

To restore these files from tape, use the FEP command Disk Restore. See the
section "Software Installation Guide" in Installation and Site Operations.

When the end of tape is encountered, the machine will return to the FEP. You
then put the second tape into the tape drive, and use another Disk Restore
command using the same destination filename. This appends the data from the
second tape onto the designated file.

tape:write-fep-files-to-tape &optional mic-name Function
Writes FEP files to tape. mic-name is the name of file-format microcode that
precedes the microcode and world load files on distribution tapes.

When an argument is supplied within the form, the function assumes that

60

Internals, Processes, and Storage Management March 1985

the argument is the file-format microcode and uses stream format. When an
argument is not supplied, you are prompted for a file name, which is
assumed to be a microcode or world load file and which is then written out in
distribution format. Thus, supplying a file-format microcode name should be
used only when writing an initial microcode file to tape.

You will be prompted as to whether the first tape is in place. Put the tape
in the local tape drive and then answer ''Y''. You will then be prompted as
to whether you wish to write a file to tape; you should answer ''Y''. Next,
enter the filename of the world load. You will also be prompted for file and
restoration comments. As the file is written out, the number of blocks will be
printed on the screen. When the end of the tape is reached, the following
message is printed:

"starting a new tape"

and you will be prompted as to whether a new tape is in place. Put a fresh
tape in the drive and type ''Y'' to continue. This will continue writing the
file on the second tape.

61

March 1985 Internals

4. PC Metering on the 3600 Family

Program counter (PC) metering is a tool to allow the user to determine where time
is being spent in a given program.

PC metering essentially produces a histogram. At regular intervals, the front-end
processor (FEP) causes the main processor to task switch to special microcode. This
microcode looks up the macro PC that contains the virtual address of the
macroinstruction that the processor is currently executing. If this virtual address
falls outside the monitored range, the microcode increments a count of the number
of PCs that missed the monitored range. If the address is within the monitored
range, the microcode subtracts the bottom of the monitored range from the PC,
leaving a word offset. It then divides the word offset by the number of words per
bucket and uses that as an index into the monitor array. Next, it increments that
indexed element of the monitor array. This can only measure statistically where the
macro PC is pointing; for the results to be valid, a relatively large number of samples
per bucket must be available. FEP version 13 samples at about 170 samples per
second, so the PC monitoring with that version is probably valid only for sessions
that take longer than five to ten seconds.

You specify some range of the program to be monitored. The range is specified by
lower and upper bounding addresses, and compiled functions that lie between those
addresses are monitored. The range is divided into some number of buckets. The
relative amount of time that the program spends executing in each bucket is
measured.

The parameters you specify are the range of addresses to be monitored, the number
of buckets, and an array with one word for each bucket.

Some of the metering functions deal with compiled {unctions. In this context a
compiled function is either a compiled code object or an art-16b array, into which
escape functions (small, internal operations used by the microcode) compile.

meter:make-pc-array size Function
Makes a PC array with size number of buckets. This storage is wired, so
you probably do not want this to be more than about 64. pages, or
(* 64. sys:page-size) words.

meter:monitor-all-functions Function
Changes the microcode parameters so that the monitor array refers to every
possible function in the Lisp world at the time of the execution of
meter:monitor-all-functions. This usually causes many functions to map
into a single bucket, and is therefore useful in obtaining a first estimate of
which functions are using a significant portion of the execution time.

62

Internals, Processes, and Storage Management March 1985

meter:setup-monitor &optional (range-start 0) (range-end
268435456)

Monitors the region between range-start and range-end.

Function

meter:monitor-between-functions lower-function upper-function Function
Monitors all functions between lower-function and upper-function. This does
not work in some situations, such as:

• You compile a function from a buffer, which puts its definition outside
the range

• A previous region is extended, and new functions go there instead of in
monotonically increasing virtual addresses.

Example:

(defun start-of-library ()(»

... code ...
(defun end-of-library ()(»

(meter:monitor-between-functions #'start-of-library #'end-of-library)

meter:expand-range start-bucket &optional <end-bucket start-bucket) Function
Changes the microcode parameters so that the entire monitor array refers
only to the functions previously contained within the range specified by
start-bucket and end-bucket. start-bucket and end-bucket are inclusive bounds.

meter:report &optional function-list Function
Prints a summary of the data collected into the monitor array. You should
not have to supply the function-list argument.

meter:start-monitor &optional <clear t) Function
Enables collection of PC data. If clear is not nil, the contents of the monitor
array are cleared. If clear is nil, the array is not modified, so that the new
samples are simply added to the old.

meter:stop-monitor Function
Disables further collection of PC data.

meter:print-functions-in-bucket bucket Function
Prints all the compiled functions that map into the specified bucket.

meter:list-functions-in-bucket bucket Function
Returns a list of all the compiled functions that map into the specified bucket.

meter:range-of-bucket bucket Function
Returns the virtual address range that maps into the specified bucket.

63

March 1985 Internals

meter:with-monitoring clear body... Macro
Enables monitoring around the execution of body. If clear is not nil, clears
the monitor array first. See the function meter:start-monitor, page 62.

meter:map-over-functions-in-bucket bucket {unction &rest args Function
Calls {unction for every compiled function in the specified bucket. The first
argument to function should be the compiled function, and any remaining
arguments are args.

meter:function-range {unction Function
Returns two values, the buckets that contain the first and last instructions of
{unction.

meter:function-name-with-escapes object Function
If object is a compiled function, returns the function spec of the compiled
function. Otherwise, returns nil.

64

Internals, Processes, and Storage Management March 1985

65

March 1985 Initializations

PART II.

Initializations

66

Interna/s. Processes. and Storage Management March 1985

67

March 1985 Initiai;zations

5. Introduction to Initializations

A number of programs and facilities in the Symbolics computer require that
"initialization routines" be run either when the facility is first loaded, or when the
system is booted, or both. These initialization routines can set up data structures,
start processes running, open network connections, and so on.

An initialization that needs to be done once, when a file is loaded, can be done
simply by putting the Lisp forms to do it in that file; when the file is loaded the
forms are evaluated. However, some initializations need to be done each time the
system is booted, and some initializations depend on several files having been loaded
before they can work. Also, some initializations should be done once and only once,
regardless of any particular file being reloaded.

The system provides a consistent scheme for managing these initializations. Rather
than having a magic function that runs when the system is started and knows
everything that needs to be initialized, each thing that needs initialization contains
its own initialization routine. The system keeps track of all the initializations
through a set of functions and conventions, and executes all the initialization
routines when necessary. The system also avoids reexecuting initializations if a
program file is loaded again after it has already been loaded and initialized.

There is something called an initialization list, which is a symbol whose value is an
ordered list of initializations. Each initialization has a name, a form to be evaluated,
a flag saying whether the form has yet been evaluated, and the source file of the
initialization, if any. When the time comes, initializations are evaluated in the order
that they were added to the list. The name is a string and lies in the car of an
initialization; thus assoc can be used on initialization lists. All initialization lists also
have a si:initialization-Iist property of t. This is mainly for internal use.

add-initialization name form &optional keywords <list-name Function
'si:warm-initialization-list
list-name-supplied-p)

Adds an initialization called name (a string) with the form form to the
initialization list specified either by list-name or by keyword. If the
initialization list already contains an initialization called name, its form is
changed to form.

list-name, if specified, is a symbol that has as its value the initialization list.
If it is unbound, it is initialized (!) to nil, and is given an
si:initialization-list property of t. If a keyword specifies an initialization
list, list-name is ignored and should not be specified.

The keywords allowed are of two kinds. These specify what initialization list
to use:

68

Internals, Processes, and Storage Management March 1985

:cold

:wann

:before-cold

:once

:system

:login

:logout

:site

Use the standard cold-boot list.

Use the standard warm-boot list. This is the default.

Use the standard before-disk-save list.

Use the once-only list.

Use the system list.

Use the login list.

Use the logout list.

Use the site list. (The form is evaluated immediately by
default, as well as each time a site initialization is
performed.)

:enable-services Use the enable-services list.

:disable-services

:full-gc

:after-full-gc

Use the disable-services list.

Use the full-gc list.

Use the after-fuIl-gc list.

For more information on these lists: See the section "System Initialization
Lists", page 71.

These specify when to evaluate form:

:normal Only place the form on the list. Do not evaluate it until the time
comes to do this kind of initialization. This is the default unless
:system or :once is specified.

:now Evaluate the form now as well as adding it to the list. (This is
the default for :site.)

:first Evaluate the form now if it is not flagged as having been evaluated
before. This is the default if :system or :once is specified.

: redo Do not evaluate the form now, but set the flag to nil even if the
initialization is already in the list and flagged t.

Actually, the keywords are compared with string-equal and can be in any
package. If both kinds of keywords are used, the list keyword should come
before the when keyword in keywords; otherwise the list keyword can
override the when keyword.

The add-initialization function keeps each list ordered so that initializations
added first are at the front of the list. Therefore, by controlling the order of
execution of the additions, explicit dependencies on order of initialization can
be controlled. Typically, the order of additions is controlled by the loading
order of files. The :system list is the most critically ordered of the
predefined lists. See the section "System Initialization Lists", page 71.

69

March 1985 Initializations

delete-initialization name &optional keywords <list-name Function
'si:warm-initialization-list)

Remove the specified initialization from the specified initialization list.
Keywords can be any of the list options allowed by add-initialization

initializations list-name &optional <redo-flag nil) <flag t) Function
Perform the initializations in the specified list. redo-flag controls whether
initializations that have already been performed are re-performed; nil means
no, non-nil is yes, and the default is nil. flag-value is the value to be stored
into the flag slot of an entry when the initialization form is run. If it is
unspecified, it defaults to t, meaning that the system should remember that
the initialization has been done. There is no convenient way for you to
specify one of the specially-known-about lists because you should not be
calling initializations on them.

reset-initializations list-name Function
Bashes the flag of all entries in the specified list to nil, thereby causing them
to get rerun the next time the function initializations is called on the
initialization list.

If you want to add new keywords that can be understood by add-initialization and
the other initialization functions, you can do so by pushing a new element onto the
following variable:

si:initialization-keywords Variable
Each element on this list defines the name of one initialization list. Each
element is a list of two or three elements. The first is the keyword symbol
that names the initialization list. The second is a special variable, whose
value is the initialization list itself. The third, if present, is a symbol defining
the default time at which initializations added to this list should be evaluated;
it should be si:nonnal, si:now, si:first, or si:redo. The third element is
the default; if the list of keywords passed to add-initialization contains one
of the keywords nonnal, now, first, or redo, it overrides this default. If
the third element is not present, si:nonnal is assumed.

Note that the keywords used in add-initialization need not be keyword-package
symbols (you are allowed to use first as well as :first), because string-equal is used
to recognize the symbols.

70

Internals, Processes, and Storage Management March 1985

71

March 1985 initiai;zations

6. System Initialization Lists

The special initialization lists that are known about by the initialization functions
allow you to have your subsystems initialized at various critical times without
modifying any system code to know about your particular subsystems. This also
allows only a subset of all possible subsystems to be loaded without necessitating
either modifying system code (such as lisp-reinitialize) or such awkward methods
as using fboundp to check whether or not something is loaded.

The :once initialization list is used for initializations that need to be done only once
when the subsystem is loaded and must never be done again. For example, some
databases need to be initialized the first time the subsystem is loaded, but they
should not be reinitialized every time a new version of the software is loaded into a
currently running system. This list is for that purpose. The initializations
function is never run over it; its "when" keyword defaults to :first and so the form
is normally only evaluated at load-time, and only if it has not been evaluated before.
The :once initialization list serves a similar purpose to the defvar special form,
which sets a variable only if it is unbound.

The :system initialization list is for things that need to be done before other
initializations stand any chance of working. Initializing the process and window
systems, the file system, and the Chaosnet NCP falls in this category. The
initializations on this list are run every time the machine is cold- or warm-booted, as
well as when the subsystem is loaded unless explicitly overridden by a :nonnal
option in the keywords list. In general, the system list should not be touched by
user subsystems, though there can be cases when it is necessary to do so.

The :cold initialization list is used for things that must be run once at cold-boot
time. The initializations on this list are run after the ones on :system but before
the ones on the :warm list. They are run only once, but are reset by disk-save,
thus giving the appearance of being run only at cold-boot time.

The :warm initialization list is used for things that must be run every time the
machine is booted, including warm boots. The function that prints the greeting, for
example, is on this list. Unlike the :cold list, the :warm list initializations are run
regardless of their flags.

The :before-cold initialization list is a variant of the :cold list. These initializations
are run before the world is saved out by disk-save. Thus they happen essentially
at cold-boot time, but only once when the world is saved, not each time it is started
up.

The :login and :logout lists are run by the login and logout functions,
respectively. Note that disk-save calls logout. Also note that often people do not
call logout; they just cold boot the machine.

72

Internals. Processes. and Storage Management March 1985

The forms on :enable-services are run by si:enable-services. In addition, they
are run automatically by lisp-reinitialize when a non server Symbolics computer is
warm- or cold-booted.

The forms on :disable-services are run by si:disable-services. In addition, they
are run automatically by :before-cold when you use disk-save.

The forms on :full-gc are run by si:full-gc before running the garbage collector.

The forms on :after-full-gc are run by si:full-gc after it collects all the garbage.

User programs are free to create their own initialization lists to be run at their own
times. Some system programs, such as the editor, have their own initialization list
for their own purposes.

73

March 1985 Processes

PART III.

Processes

74

Interna/s, Processes, and Storage Management March 1985

75

March 1985 Processes

7. Introduction

The Symbolics computer supports multiprocessing; several computations can be
executed "concurrently" by placing each in a separate process. A process is like a
processor, simulated by software. Each process has its own "program counter", its
own stack of function calls and its own special-variable binding environment in which
to execute its computation. (This is implemented with stack groups: See the section
"Stack Groups", page 3.)

If all the processes are simply trying to compute, the machine time-slices among
them. This is not a particularly efficient mode of operation, since dividing the finite
memory and processor power of the machine among several processes certainly
cannot increase the available power and in fact wastes some of it in overhead. The
way processes are normally used is different: there can be several ongoing
computations, but at a given moment only one or two processes are trying to run.
The rest are either waiting for some event to occur, or stopped, that is, not allowed
to compete for resources.

A process waits for an event by means of the process-wait primitive, which is given
a predicate function that defines the event being waited for. A module of the
system called the process scheduler periodically calls that function. If it returns nil
the process continues to wait; if it returns t the process is made runnable and its
call to process-wait returns, allowing the computation to proceed.

A process can be active or stopped. Stopped processes are never allowed to run; they
are not considered by the scheduler, and so never become the current process until
they are made active again. The scheduler continually tests the waiting functions of
all the active processes, and those that return non-nil values are allowed to run.
When you first create a process with make-process, it is inactive.

A process has two sets of Lisp objects associated with it, called its run reasons and
its arrest reasons. These sets are implemented as lists. Any kind of object can be
in these sets; typically, keyword symbols and active objects such as windows and
other processes are found. A process is considered active when it has at least one
run reason and no arrest reasons. A process that is not active is stopped, is not
referenced by the processor scheduler, and does not compete for machine resources.

To get a computation to happen in another process, you must frrst create a process,
and then say what computation you want to happen in that process. The
computation to be executed by a process is specified as an initial (unction for the
process and a list of arguments to that function. When the process starts up it
applies the function to the arguments. In some cases the initial function is written
so that it never returns, while in other cases it performs a certain computation and
then returns, which stops the process.

To reset a process means to throw out of its entire computation, then force it to call

76

Internals, Processes, and Storage Management March 1985

its initial function again. (See the function throw in Reference Guide to
Symbolics-Lisp.) Resetting a process clears its waiting condition, and so if it is active
it becomes runnable. To preset a process is to set up its initial function (and
arguments), and then reset it. This is how you start up a computation in a process.

All processes in a Symbolics computer run in the same virtual address space, sharing
the same set of Lisp objects. Unlike other systems, which have special restricted
mechanisms for interprocess communication, the Symbolics computer allows processes
to communicate in arbitrary ways through shared Lisp objects. One process can
inform another of an event simply by changing the value of a global variable.
Buffers containing messages from one process to another can be implemented as lists
or arrays. The usual mechanisms of atomic operations, critical sections, and
interlocks are provided. For more information:

See the function store-conditional, page 17.
See the special form without-interrupts, page 78.
See the function process-lock, page 83.

A process is a Lisp object, an instance of one of several flavors of process.

77

March 1985 Processes

8. The Scheduler

At any time there is a set of active processes; these are all the processes that are
not stopped. Each active process is either currently running, trying to run, or
waiting for some condition to become true. The active processes are managed by a
special stack group called the scheduler, which repeatedly cycles through the active
processes, determining for each process whether it is ready to be run or whether it
is waiting. The scheduler determines whether a process is ready to run by applying
the process's wait-function to its wait-argument-list. If the wait-function returns a
non-nil value, then the process is ready to run; otherwise, it is waiting. If the
process is ready to run, the scheduler resumes the current stack group of the
process.

When a process's wait-function returns non-nil, the scheduler resumes its stack
group and lets it proceed. The process is now the current process, that is, the one
process that is running on the machine. The scheduler sets the variable
current-process to it. It remains the current process and continues to run until
either it decides to wait, or a sequence break occurs and causes the process to remove
itself from scheduling. In either case, the scheduler stack group is resumed and it
continues to cycle through the active processes. This way, each process that is ready
to run gets its share of time in which to execute.

A process can wait for some condition to become true by calling process-wait,
which sets up its wait-function and wait-argument-list accordingly, and resumes the
scheduler stack group. A process can also wait for just a moment by calling
process-allow-schedule, which resumes the scheduler stack group but leaves the
process runnable; it will run again as soon as all other runnable processes of the
same or higher priority have had a chance.

A sequence break is a kind of interrupt that is generated by the Lisp system for any
of a variety of reasons; when it occurs, the scheduler is resumed. The function
si:sb-on can be used to control when sequence breaks occur. The default clock
interval used by si:sb-on is controlled by the variable
si:·default-sequence-break-interval·. Thus, if a process runs continuously
without waiting, it is forced to return control to the scheduler once per this interval
so that any other runnable processes get their tum.

The system does not generate a sequence break when a page fault occurs; thus time
spent waiting for a page to come in from the disk is "charged" to a process the same
as time spent computing, and cannot be used by other processes. It is done this
way for the sake of simplicity; this allows the whole implementation of the process
system to reside in ordinary virtual memory, and not to have to worry specially
about paging. The performance penalty is small since Symbolics computers are
personal computers, not multiplexed among a large number of processes. Usually
only one process at a time is runnable.

78

Internals, Processes, and Storage Management March 1985

A process's wait-function is free to touch any data structure it likes and to perform
any computation it likes. Of course, wait-functions should be kept simple, using only
a small amount of time and touching only a small number of pages, or system
performance will be affected, since the wait-function consumes resources even when
its process is not running. If a wait-function gets an error, the error occurs inside
the scheduler. All scheduling comes to a halt and the user is thrown into the
Debugger. Wait-functions should be written in such a way that they cannot get
errors. Note that process-wait calls the wait function once before giving it to the
scheduler, so an error due simply to bad arguments will not occur inside the
scheduler.

Note well that a process's wait-function is executed inside the scheduler stack group,
not inside the process. This means that a wait-function cannot access special
variables bound in the process. It is allowed to access global variables. It could
access variables bound by a process through the closure mechanism, but more
commonly any values needed by the wait-function are passed to it as arguments.
See the section "Closures" in Reference Guide to Symbolics-Lisp.

current-process Variable
The value of current-process is the process that is currently executing, or
nil while the scheduler is running. When the scheduler calls a process's
wait-function, it binds current-process to the process so that the wait
function can access its process.

without-interrupts body... Special Form
The body forms are evaluated with inhibit-scheduling-flag bound to t.
This is the recommended way to lock out multiprocessing over a small critical
section of code to prevent timing errors. In other words the body is an
atomic operation. The value(s) of a without-interrupts is/are the value(s) of
the last form in the body.

Examples:
(without-interrupts

(push item list»

(without-interrupts
(cond «memq item list)

jsetq list (delq item list»
t)

(tnil»)

inhibit-scheduling-flag Variable
The value of inhibit-scheduling-flag is normally nil. If it is t, preempts
are deferred until inhibit-scheduling-flag becomes nil again. This means
that no process other than the current process can run.

79

March 1985 Processes

process-wait whostate function &rest arguments Function
This is the primitive for waiting. The current process waits until the
application of function to arguments returns non-nil (at which time
process-wait returns). Note that {unction is applied in the environment of
the scheduler, not the environment of the process-wait, so bindings in
effect when process-wait was called are not in effect when {unction is
applied. Be careful when using any free references to special variables in
function. whostate is a string containing a brief description of the reason for
waiting. If the status line at the bottom of the screen is looking at this
process, it shows whostate.

Examples:
(process-wait "sleep"

#'(lambda (now)
(> (time-difference (time) now) 100.»

(time»

(process-wait "Buffer"
#'(lambda (b) (not (zerop (buffer-n-things b»»
the-buffer)

process-sleep interoal &optional (whostate "Sleep") Function
This simply waits for interoal sixtieths of a second, and then returns. It
uses process-wait.

process-wait-with-timeout whostate time function &rest args Function
This is a primitive for waiting. It applies function to args until the function
returns something other than nil or until the interval times out. time is a
time in 60ths of a second. When the process times out,
process-wait-with-timeout returns nil. When the function returns
something other than nil within the interval, process-wait-with-timeout
returns t.

If time is nil, proces8-wait-with-timeout waits indefinitely for the
application of function to arguments to return something other than nil.
This behavior is the same as that of process-wait.

process-wait-forever &optional (whostate 'Wait Forever I, Function
This function causes the current process to wait forever. The process is still
active, though, and will begin running again if reset or preset.

process-allow-schedule Function
This function simply waits momentarily; all other processes get a chance to
run before the current process runs again.

sys:scheduler-stack-group Variable
This is the stack group in which the scheduler executes.

80

Interna/s, Processes, and Storage Management March 1985

sys:clock-function-list Variable
This is a list of functions to be called by the scheduler 60 times a second.
Each function is passed one argument: the number of 60ths of a second since
the last time that the functions on this list were called. These functions
implement various system overhead operations, such as blinking the blinking
cursor on the screen.

Note that these functions are called inside the scheduler, just as are the
functions of simple processes. (See the flavor si:simple-process, page 95.)
The scheduler calls these functions as often as possible, but never more often
than 60 times a second. That is, if there are no processes ready to run, the
scheduler calls the functions 60 times a second, assuming that, all together,
they take less than lJ60 second to run. If there are processes continually
ready to run, then the scheduler calls these functions as often as it can;
usually this is ten times a second, since usually the scheduler only gets
control that often.

sys:active-processes Variable
This is the scheduler's data structure. It is a list of lists, where the car of
each element is an active process or nil and the cdr is information about that
process.

sys:all-processes Variable
This is a list of all the processes in existence. It is mainly for debugging.

si:initial-process Variable
This is the process in which the system starts up when it is booted.

si:sb-on &optional when Function
si:sh-on controls what events cause a sequence break, that is, when
rescheduling occurs. The following keywords are names of events that can
cause a sequence break.

:clock

: disk

:mouse

This event happens periodically based on a clock and is
enabled by default. The period is the value of the variable
si:sequence-break-interval, initially having the value of
the variable si:*default-sequence-break-interval*.

A sequence break happens whenever the disk
hardware/firmware decides to wake up the wired disk
system. This might occur with every disk 110 operation or
after several have been completed. This event is always
enabled; you cannot turn it off. However, these sequence
breaks do not cause rescheduling.

Happens when the mouse moves. Sixty times per second
it tests the variable tv:mouse-wakeup, which is set by
the FEP. Causes a sequence break if the value is not nil.
This event is enabled by default.

81

March 1985 Processes

:keyboard Happens whenever a key is typed.

With no argument, si:sb-on returns a list of keywords for the currently
enabled events.

With an argument, the set of enabled events is changed. The argument can
be a keyword, a list of keywords, or nil (which disables sequence breaks
entirely, since it is the empty list).

si:*default-sequence-break-interval* Variable
This variable controls the interval used by si:sb-on. Its default value is
100000 microseconds (0.1 seconds).

82

Internals, Processes, and Storage Management March 1985

83

March 1985 Processes

9. Locks

A lock is a software construct used for synchronization of two processes. A lock is
either held by some process, or is free. When a process tries to seize a lock, it waits
until the lock is free, and then it becomes the process holding the lock. When it is
finished, it unlocks the lock, allowing some other process to seize it. A lock protects
some resource or data structure so that only one process at a time can use it.

In the Symbolics computer, a lock is a locative pointer to a cell. If the lock is free,
the cell contains nil; otherwise it contains the process that holds the lock. The
process-lock and process-unlock functions are written in such a way as to
guarantee that two processes can never both think that they hold a certain lock;
only one process can ever hold a lock at a time.

process-lock locative-pointer &optionallock-value (whostate "Lock") Function
This is used to seize the lock to which locative-pointer points. If necessary,
process-lock waits until the lock becomes free. When process-lock
returns, the lock has been seized. lock-value is the object to store into the
cell specified by locative-pointer, and whostate is passed on to process-wait.
If lock-value is nil or unsupplied, the value of current-process is used.

process-unlock locative-pointer &optional lock-value error-p Function
This is used to unlock the lock to which locative-pointer points. If the lock is
free or was locked by some other process, an error is signalled if error-p is t.
Otherwise the lock is unlocked. If error-p is t (the default), an error is
signalled if lock-value does not have the same value as the contents of the
cell. If lock-value is nil or unsupplied, the value of current-process is used.

It is a good idea to use unwind-protect to make sure that you unlock any lock
that you seize. For example, if you write:

(unwind-protect
(progn (process-lock lock-3)

(function-l)
(function-2»

(process-unlock lock-3»

then even if function-! or function-2 does a throw, lock-3 is unlocked correctly.
Particular programs that use locks often derme special forms that package up this
unwind-protect into a convenient stylistic device.

process-lock and process-unlock are written in terms of a subprimitive function
called store-conditional, which is sometimes useful in its own right.

You can also use si:make-process-queue and related functions to set up a queue
for processes waiting to seize a lock. Each process on the queue is given a chance to
seize the lock in the order in which it requests the lock.

84

Internals, Processes, and Storage Management March 1985

si:make-prooess-queue name size Function
Makes and returns a queue for processes requesting a lock. name is an
~xternal name for the queue and is used only in printing the queue. size is
the size of the queue. This is the maximum number of processes that will
be guaranteed to lock the queue in exact requesting order.

si:process-enqueue queue &optional queue-value (whostate "Lock") Function
Locks queue. queue-value is an object to enter on the queue; if queue-value
is nil or unsupplied, the object is the current process. If queue is empty,
seizes the lock immediately by inserting queue-value on the queue and
returning. If queue is not full but other processes are on the queue waiting
for the lock to be free, inserts queue-value at the end of the queue, waits for
the lock to be free, and then seizes the lock by returning. If queue is full,
waits until queue is not full and tries again to seize the lock. whostate is
displayed in the status line while waiting to seize the lock. Signals an error
if queue-value has already seized the lock.

si:process-dequeue queue &optional queue-value (error-p t) Function
Unlocks queue. queue-value is an object on the queue. If queue-value is nil
or unsupplied, it is the current process; if not nil, it should be the same as
the queue-value given to the matching call to si:process-enqueue. If
queue-value has the lock, unlocks the lock by removing queue-value from
queue and giving the next process on the queue a chance to seize the lock.
If queue-value does not have the lock and error-p is not nil, signals an error.

si:process-queue-Iocker queue Function
Returns the queue-value for the process that holds the lock on queue, or nil
if the lock is free.

si:reset-process-queue queue Function
Unlocks queue and removes all processes on the queue.

85

March 1985 Processes

10. Creating a Process

There are two ways of creating a process. One is to create a "permanent" process
that you will hold on to and manipulate as desired. The other way is to say simply,
"call this function on these arguments in another process, and don't bother waiting
for the result." In the latter case you never actually use the process itself as an
object.

make-process name &rest init-args Function
Creates and returns a process named name. The process will not be capable
of running until it has been reset or preset in order to initialize the state of
its computation.

The init-args are alternating keywords and values that allow you to specify
things about the process; however, no options are necessary if you are not
doing anything unusual. The following init-args are allowed:

:simple-p

:flavor

:stack-group

Specifying t here gives you a simple process. See the
section "Process Flavors", page 95.

Specifies the flavor of process to be created. For a list of
all the flavors of process supplied by the system: See the
section "Process Flavors", page 95.

The stack group the process is to use. If this option is not
specified a stack group will be created according to the
relevant options below.

:wann-boot-action
What to do with the process when the machine is booted.
See the method
(:method si:process :warm-boot-action), page 91. See
the method
(:method si:process :set-wann-boot-action), page 91.

:quantum See the method (:method si:process :quantum), page
90. See the method (:method si:process :set-quantum),
page 90.

:priority

:run-reasons

See the method (:method si:process :priority), page 90.
See the method (:method si:process :set-priority), page
90.

Lets you supply an initial run reason. The default is nil.

:arrest-reasons Lets you supply an initial arrest reason. The default is
nil.

86

Internals, Processes, and Storage Management March 1985

In addition, the options of make-stack-group are accepted. See the
function make-stack-group, page 5.

If you specify :i1avor, there can be additional options provided by that flavor.

The following three functions allow you to call a function and have its execution
happen asynchronously in another process. This can be used either as a simple way
to start up a process that will run "forever", or as a way to make something happen
without having to wait for it complete. When the function returns, the process is
returned to a pool of free processes, making these operations quite efficient. The
only difference among these three functions is in what happens if the machine is
booted while the process is still active.

Normally the function to be run should not do any 110 to the terminal. For a
discussion of the issues: See the section "InpuUOutput in Stack Groups", page 7.

process-run-function name-or-kwds function &rest args Function
Creates a process, presets it so it will apply function to args, and starts it
running. name-or-kwds can be a symbol or string that becomes the process's
name, or it can be a list of alternating keywords and values to which the
corresponding process attributes are set.

The keywords are:

:name The name of the process. It must be a string. The
default is "Anonymous".

:restart-after-reset
If this is nil, the :reset message to the process flushes the
process. If this is t, the :reset message to the process
restarts the process. The default is nil.

:restart-after-boot
If this is nil, warm booting the machine flushes the
process. If this is t, warm booting the machine restarts
the process. The default is nil.

:warm-boot-action

:priority

:quantum

If this option is provided, its value controls what happens
when the machine is warm booted. If it is nil or not
provided, the value of the :restart-after-boot option takes
effect. For a description of the value of the warm-boot
action: See the method
(:method si:process :warm-boot-action), page 91.

The priority of the process. The default is o.
The scheduler quantum of the process. The value should
be a fIXnum in units of 60ths of a second. The default is
60 (one second). For information on the meaning of these

87

March 1985 Processes

numbers: See the section "How to Choose Process Priority
Levels", page 87.

process-ron-temporary-function name-or-kwds {unction &rest args Function
Creates a process named name, presets it so it will apply {unction to args,
and starts it running. If the machine is warm booted, the process is killed.

process-ron-temporary-function is obsolete; use process-ron-function
instead.

process-ron-restartable-function name {unction &rest args Function
Creates a process, presets it so it will apply {unction to args, and starts it
running. name can be a symbol or string that becomes the process's name,
or it can be a list of alternating keywords and values to which the
corresponding process attributes are set. The keywords are:

:name (Becomes the process's name; default is "Anonymous")
:priority
: quantum
:restart-after-reset
:restart-after-boot
:warm-boot-action

The default values are the same as for process-ron-function, except that
the default values of the :restart-after-boot and :restart-after-reset
options are t rather than nil.

10.1 How to Choose Process Priority Levels

The following are some guidelines about what values to use when you modify a
process's priority.

Processes run with a default priority of o. If the priority number is higher, the
process receives higher priority. You should avoid using priority values higher than
20, since some critical system processes use priorities of 25 and 30; setting up
competing processes could lead to degraded performance or system failure. You can
also use negative values to get processes to run in the background. Values of -5 or
-10 for background processes and 5 or 10 for urgent processes are reasonable.

Only the relative values of these numbers are important. <You can use floating-point
numbers to squeeze in more intermediate levels, though there should never be any
need to do so.)

Be advised that process priorities are absolute. If a priority 1 process runs forever
without calling process-wait, no lower-priority process will ever run.

88

Internals. Processes. and Storage Management March 1985

89

March 1985 Processes

11. Process Messages

These are the messages that can be sent to any flavor of process. Certain process
flavors can define additional messages. Not all possible messages are listed here, only
those "of interest to the user".

11.1 Process Attributes

:name of si:process Method
Returns the name of the process, which was the first argument to
make-process or process-run-function when the process was created.
The name is a string that appears in the printed representation of the
process, stands for the process in the status line and the peek display, and
so on.

:stack-group of si:process Method
Returns the stack group currently executing on behalf of this process. This
can be different from the initial-stack-group if the process contains several
stack groups that coroutine among themselves.

Note that the stack group of a simple process is not a stack group at all, but
a function. See the flavor si:simple-process, page 95.

:initial-stack-group of si:process Method
Returns the stack group the initial-function is called in when the process
starts up or is reset.

:initial-fonn of si:process Method
Returns the initial "form" of the process. This is not really a Lisp form; it is
a cons whose car is the initial-function and whose cdr is the list of arguments
to which that function is applied when the process starts up or is reset.

In a simple process, the initial form is a list of one element, the process's
function. See the flavor si:simple-process, page 95.

To change the initial form, send the :preset message.

:wait-function of si:process Method
Returns the process's current wait-function, which is the predicate used by
the scheduler to determine if the process is runnable. This is #'true if the
process is running, and #'false if the process has no current computation
(just created, initial function has returned, or "flushed").

90

Internals, Processes, and Storage Management March 1985

:wait-argmnent-list of si:process Method
Returns the arguments to the process's current wait-function. This is
frequently the &rest argument to process-wait in the process's stack,
rather than a true list. The system always uses it in a safe manner, that is,
it forgets about it before process-wait returns.

:Wh08tate of si:process Method
Returns a string that is the state of the process to go in the status line at
the bottom of the screen. This is "run" if the process is running or trying
to run, otherwise the reason why the process is waiting. If the process is
stopped, then this who-state string is ignored and the status line displays
arrest if the process is arrested or stop if the process has no run reasons.

:quantum of si:process Method
Returns the number of 60ths of a second this process is allowed to run
without waiting before the scheduler runs someone else. The quantum
default is governed by the variable si:default-quantum.

:set-quantum 60ths of si:process Method
Changes the number of 60ths of a second this process is allowed to run
without waiting before the scheduler runs someone else. The quantum
default is governed by the variable si:default-quantum.

si:default-quantum Variable
This variable governs the default amount of time a process is allowed to run
before rescheduling, in 60ths of a second. The default is 6 (0.1 second).

:quantum-remaining of si:process Method
Returns the amount of time remaining for this process to run before
rescheduling, in 60ths of a second.

:priority of si:process Method
Returns the priority of this process. The larger the number, the more this
process gets to run. Within a priority level the scheduler runs all runnable
processes in a round-robin fashion. Regardless of priority a process will not
run for more than its quantum. The default priority is 0, and no normal
process uses other than 0, except for some internal system processes that run
at high priority.

:set-priority priority-number of si:process Method
Changes the priority of this process. The larger the number, the more this
process gets to run. Within a priority level the scheduler runs all mnnable
processes in a round-robin fashion. Regardless of priority a process will not
run for more than its quantum. The default priority is 0, and no normal
process uses other than 0, except for some internal system processes that run
at high priority.

91

March 1985 Processes

:warm-boot-action of si:process Method
Returns the process's warm-boot-action, which controls what happens if the
machine is booted while this process is active. (Contrary to the name, this
applies to both cold and warm booting.) This can be nil, which means to
"flush" the process, or a function to call. The default is
si:process-warm-boot-delayed-restart, which resets the process after
initializations have been completed, causing it to start over at its initial
function. You can also use si:process-warm-boot-reset, which throws out
of the process's computation and kills the process.

:set-warm-boot-action action of si:process Method
Changes the process's warm-boot-action, which controls what happens if the
machine is booted while this process is active. (Contrary to the name, this
applies to both cold and warm booting.) This can be nil, which means to
"flush" the process, or a function to call. The default is
si:process-warm-boot-delayed-restart, which resets the process after
initializations have been completed, causing it to start over at its initial
function. You can also use si:process-warm-boot-reset, which throws out
of the process's computation and kills the process.

:simple-p of si:process Method
Returns nil for a normal process, t for a simple process. See the flavor
si:simple-process, page 95.

11.2 Run and Arrest Reasons

:nm-reasons of si:process Method
Returns the list of run reasons, which are the reasons why this process
should be active (allowed to run).

:nm-reason object of si:process Method
Adds object to the process's run reasons. This can activate the process.

:revoke-nm-reason object of si:process Method
Removes object from the process's run reasons. This can stop the process.

:arrest-reasons of si:process Method
Returns the list of arrest reasons, which are the reasons why this process
should be inactive (forbidden to run).

:arrest-reason object of si:process Method
Adds object to the process's arrest reasons. This can stop the process.

92

Internals, Processes, and Storage Management March 1985

:revoke-arrest-reason object of si:process Method
Removes object from the process's arrest reasons. This can activate the
process.

:active-p of si:process Method
This message is the same as :runnable-p of si:process. t is returned if the
process is active, that is, it can run if its wait-function allows. nil is
returned if the process is stopped.

:nmnable-p of si:process Method
This message is the same as :active-p of si:process. t is returned if the
process is active, that is, it can run if its wait-function allows. nil is
returned if the process is stopped.

11.3 Bashing the Process

:preset function &rest args of si:process Method
Sets the process's initial function to function and initial arguments to args.
The process is then reset so that it throws out of any current computation
and start itself up by applying {unction to args. A :preset message to a
stopped process returns immediately, but does not activate the process, hence
the process does not really apply function to args until it is activated later.

:reset &optional unwind-option kill of si:process Method
Forces the process to throw out of its present computation and apply its
initial function to its initial arguments, when it next runs. The throwing out
is skipped if the process has no present computation (for example, it was just
created), or if unwind-option option so specifies. The possible values for
unwind-option are:

:unless-CWTent or nil

: always

t

Unwind unless the stack group to be unwound is the one
we are currently executing in, or belongs to the current
process.

Unwind in all cases. This can· cause the message to throw
through its caller instead of returning.

Never unwind.

If kill is t, the process is to be killed after unwinding it. This is for internal
use by the :kill message only.

A :reset message to a stopped process returns immediately, but does not
activate the process, hence the process does not really get reset until it is
activated later.

93

March 1985 Processes

:f1ush of si:process Method
Forces the process to wait forever. A process cannot :f1ush itself. Flushing
a process is different from stopping it, in that it is still active; thus, if it is
reset or preset, it starts running again.

:kill of si:process
Gets rid of the process. It is reset, stopped, and removed from
sys:all-processes.

Method

:interrupt function &rest args of si:process Method
Forces the process to apply function to args. When function returns, the
process continues the interrupted computation. If the process is waiting, it
wakes up, calls function, then waits again when function returns.

If the process is stopped it does not apply function to args immediately, but
later when it is activated. Normally the :interrupt message returns
immediately, but if the process's stack group is in an unusual internal state it
might have to wait for it to get out of that state.

94

Interna/s, Processes, and Storage Management March 1985

95

March 1985 Processes

12. Process Flavors

These are the flavors of process provided by the system. It is possible for users to
define additional flavors of their own.

si:process Flavor
This is the standard default kind of process.

si:simple-process Flavor
A simple process is not a process in the conventional sense. It has no stack
group of its own; instead of having a stack group that gets resumed when it
is time for the process to run, it has a function that gets called when it is
time for the process to run. When the wait-function of a simple process
becomes true, and the scheduler notices it, the simple process's function is
called, in the scheduler's own stack group. Since a simple process does not
have any stack group of its own, it cannot save "control" state in between
calls; any state that it saves must be saved in data structure.

The only advantage of simple processes over normal processes is that they
use up less system overhead, since they can be scheduled without the cost of
resuming stack groups. They are intended as a special, efficient mechanism
for certain purposes. For example, packets received from the Chaosnet are
examined and distributed to the proper receiver by a simple process that
wakes up whenever there are any packets in the input buffer. However,
they are harder to use, because you cannot save state information across
scheduling. That is, when the simple process is ready to wait again, it must
return; it cannot call process-wait and continue to do something else later.
In fact, it is an error to call process-wait from inside a simple process.
Another drawback to simple processes is that if the function signals an error,
the scheduler itself will be broken, and multiprocessing will stop; this
situation can be hard to repair. Also, while a simple process is running, no
other process is scheduled; simple processes should never run for a long time
without returning, so that other processes can run.

Asking for the stack group of a simple process does not signal an error, but
returns the process's function instead.

Since a simple process cannot call process-wait, it needs some other way to
specify its wait-function. To set the wait-function of a simple process, use
si:set-process-wait. So, when a simple process wants to wait for a
condition, it should call si:set-process-wait to specify the condition, and
then return.

96

Internals, Processes, and Storage Management March 1985

si:set-process-wait simple-process wait-function wait-argument-list Function
Set the wait-function and wait-argument-list of simple-process. For more
information: See the flavor si:simple-process, page 95.

97

March 1985 Processes

13. Other Process Functions

process-enable process Function
Activates process by revoking all its run and arrest reasons, then giving it a
run reason of :enable.

process-reset-and-enable process
Resets process then enables it.

Function

process-disable process Function
Stops process by revoking all its run reasons. Also revokes all its arrest
reasons.

The remaining functions in this section are obsolete, since they simply duplicate
what can be done by sending a message. They are documented here because their
names are in the global package.

process-preset process function &rest args
Just sends a :preset message.

process-reset process
Just sends a :reset message.

process-name process
Gets the name of a process, like the :name message.

Function

Function

Function

process-stack-group process Function
Gets the current stack group of a process, like the :stack-group message.

process-initial-stack-group process Function
Gets the initial stack group of a process, like the :initial-stack-group
message.

process-initial-form process Function
Gets the initial "form" of a process, like the :initial-form message.

process-wait-function process Function
Gets the current wait-function of a process, like the :wait-function message.

process-wait-argument-list process Function
Gets the arguments to the current wait-function of a process, like the
:wait-argument-list message.

98

Internals, Processes, and Storage Management March 1985

process-wbostate process Function
Gets the current status line state string of a process, like the :wbostate
message.

99

March 1985 Storage Management

PART IV.

Storage Management

100

Internals, Processes, and Storage Management March 1985

101

March 1985 Storage Management

14. Overview of Storage Management

The Symbolics-Lisp virtual memory system offers users and programmers the ability
to run extremely large programs, in a virtual memory which, depending on available
disk space, can be on the order 1 billion bytes.

Symbolics-Lisp also has facilities for both automatic and manual (program-controlled)
management of virtual storage. Simply stated, storage management is a strategy for
allocating pieces of memory as they are needed by a program ("dynamically") and
then discarding or freeing the memory for reuse when it is no longer needed for the
same purpose.

14.1 Automatic Storage Management

Some virtual memory systems concentrate exclusively (in the automatic case) on
managing the stack, because they are optimized for programming languages that
allocate most temporary storage on the stack.

In Lisp, however, management of the stack would in no way be sufficient, since
programs nearly always allocate large structures and lists in "ordinary" virtual
memory. Automatic storage management is nevertheless an extremely important
aspect of Lisp programming, because deciding in an application program whether
storage can be freed safely is such a difficult problem, difficult enough that
programmers should not be faced with it routinely. Automatic storage management
in Symbolics-Lisp is performed by a suite of programs collectively called the garbage
collector. See the section "The Garbage Collector", page 113.

Also provided are areas, which help you improve the locality of reference in programs
without giving up the ease of automatic storage management. See the section
"Areas", page 103. See the section "Locality of Reference", page 121.

14.2 Manual Storage Management

"Manual" storage management means that the allocation and freeing of virtual
memory is controlled by the application program. It should be regarded as a special
purpose technique, but it is nevertheless a real necessity in some cases.

The primary facility for manual storage management is the resource. See the
section "Resources", page 131.

102

Internals, Processes, and Storage Management March 1985

103

March 1985 Storage Management

15. Areas

Storage in the Symbolics system is divided into areas. Each area contains related
objects, of any type. Areas are intended to give you control over the paging behavior
of your program, among other things. By putting related data together, locality can
be greatly increased. Whenever a new object is created the area to be used can
optionally be specified. For example, instead of using cons you can use
cons-in-area. Object-creating functions that take keyword arguments generally
accept a :area argument. You can also control which area is used by binding
default-cons-area; most functions that allocate storage use the value of this
variable, by default, to specify the area to use.

There is a default area (working-storage-area) that collects objects you have not
chosen to control explicitly.

Areas also give you a handle to control the garbage collector. Some areas can be
declared to be static, which means that they change slowly and the garbage collector
should not attempt to reclaim any space in them. This can eliminate a lot of useless
copying.

Each area can potentially have a different storage discipline, a different paging
algorithm, and even a different data representation. (The data-representation
feature is not currently used by the system, except for the list/structure distinction
described here.)

Each area has a name and a number. The name is a symbol whose value is the
number. The number is an index into various internal tables. Normally the name
is treated as a special variable, so the number is what is given as an argument to a
function that takes an area as an argument. Thus, areas are not Lisp objects; you
cannot pass an area itself as an argument to a function, you just pass its number.
There is a maximum number of areas (set at cold-load generation time); you can
only have that many areas before the various internal tables overflow. Currently the
limit is 128 areas, of which about 30 already exist when you start.

The storage of an area consists of one or more regions. Each region is a contiguous
section of address space with certain homogeneous properties. One of these is the
data representation type. A given region can only store one type. The two types
that exist now are list and structure. A list is anything made out of conses (a
closure, for instance). A structure is anything made out of a block of memory with
a header at the front: symbols, strings, arrays, instances, bignums, compiled
functions, and so on. Since lists and structures cannot be stored in the same region,
they cannot be on the same page. It is necessary to know about this when using
areas to increase locality of reference.

When you create an area, no regions are created initially. When you create an
object in some area, the system tries to fmd a region that has the right data

104

Internals. Processes. and Storage Management March 1985

representation type to hold it, and that has enough room for it to fit. If no such
region exists, it makes a new one or, if possible, extends an existing one (or signals
an error; see the :size option to make-area). The size of the new region is an
attribute of the area (controllable by the :region-size option to make-area). If
regions are too large, memory can get taken up by a region and never used. If
regions are too small, the system can run out of regions because regions, like areas,
are defined by internal tables that have a fixed size (set at cold-load generation
time). The limit is sys:number-of-regions regions, of which about 90 already exist
when you start.

15.1 Area Functions and Variables

default-cons-area Variable
The value of this variable is the number of the area in which objects are
created by default. It is initially the number of working-storage-area.
Giving nil where an area is required uses the value of default-cons-area.
Note that to put objects into an area other than working-storage-area you
can either bind this variable or use functions such as cons-in-area that take
the area as an explicit argument.

make-area &key name size region-size representation gc read-only Function
swap-recommendations n-levels capacity
capacity-ratio room %%region-space-type
%%region-scavenge-enable

This function creates a new area, whose name and attributes are specified by
the keywords; it can also be used to change the characteristics of an existing
area. You must specify a symbol as a name; the symbol is setqed to the
area-number of the new area, and that number is also returned, so that you
can use make-area as the initialization of a defvar. The keywords
beginning with % are similar to subprimitives; their meanings are system
dependent, and they should not be used in user programs.

The following keywords exist:

:name A symbol that will be the name of the area. This item is required.
If it names an existing area, the effect is to change the characteristics
of that area.

:size The maximum allowed size of the area, in words. Defaults to infinite.
If the number of words allocated to the area reaches this size,
attempting to cons an object in the area signals an error.

:region-size
The approximate size, in words, for regions within this area. The
default is the area size if a :size argument was given, otherwise a
suitable medium size. Note that if you specify :size and not

March 1985

105

Storage Management

:region-size, the area will have exactly one region. When making an
area that will be very big, it is desirable to make the region size larger
than the default region size to avoid creating very many regions and
possibly overflowing the system's fIxed-size region tables.

:representation
The type of object to be contained in the area's initial region. The
argument to this keyword can be :list, :structure, or a numeric code.
If this option is specifIed, an initial region is created. Otherwise, no
region is created until you cons something.

:gc The type of garbage collection to be employed. The choices are
:dynamic (which is the default), :temporary, : ephemeral , and
:static. :static means that the area will not be copied by the
garbage collector, and nothing in the area or pointed to by the area
will ever be reclaimed unless a garbage collection of this area is
manually requested. :dynamic means that the area is subject to
ordinary incremental garbage collection. :ephemeral means that
objects created in this area (while the ephemeral-object garbage
collector is operating) are likely to become garbage soon after their
creation; the ephemeral-object garbage collector will concentrate on
this area. : temporary, a rarely used and risky option, is for manual
storage management, wherein you clear the area by an explicit,
programmed action instead of having the area garbage-collected
automatically. See the section "The sys:reset-temporary-area
Feature", page 107.

: read-only
With an argument of t, causes the area to be made read-only.
Defaults to nil. If an area is read-only, any attempt to change
anything in it (altering a data object in the area or creating a new
object in the area) signals an error.

:swap-recommendations
Sets the number of extra pages to be read in from disk after a page
from this area is brought in due to demand paging.

:n-Ievels
A flXIlum (default 2) specifying the number of levels for ephemeral
objects; this keyword is valid only for ephemeral areas. That is, the
area must either be ephemeral already, or the call including this
option must also include :gc :ephemeraI.

:capacity
A flXIlum specifying the capacity of a level in words (default 200000
octal); this keyword is valid only for ephemeral areas. That is, the
area must either be ephemeral already, or the call including this
option must also include :gc :ephemeraI.

:capacity-ratio

106

Internals. Processes. and Storage Management March 1985

A number (default 0.5) specifying the ratio of capacities in adjacent
ephemeral levels. That is, :capacity gives the capacity of the first
ephemeral level, which is multiplied by the ratio to give the second
level's capacity, and so on. This keyword is valid only for ephemeral
areas; that is, the area must either be ephemeral already, or the call
including this option must also include :gc :ephemeral.

:room With an argument of t, adds this area to the list of areas that are
displayed by default by the room function. The default is nil.

sys:% %region-space-type
Lets you specify the space type explicitly, overriding the specification
from the other keywords. It is rarely useful in user programs. The
default is nil.

sys:% %region-scavenge-enable
Lets you override the scavenge-enable bit explicitly. This is an
internal flag related to the garbage collector. Do not try to use it!
The default is nil.

Example:

(make-area :name faa-area
:gc :dynamic
:representation :list)

describe-area area Function
area can be the name or the number of an area. Various attributes of the
area are printed.

area-list Variable
The value of area-list is a list of the names of all existing areas. This list
shares storage with the internal area name table, so you should not change
it.

%area-number address Function
Returns the number of the area of address, or nil if it is not within any
known area. address is either an object whose memory address is used, or
an integer used directly.

%region-number address Function
Returns the number of the area of address, or nil if it is not within any
known area. address is either an object whose memory address is used, or
an integer used directly. (This information is generally not very interesting
to users; it is important only inside the system.)

area-name area Function
Given an area number, returns the name. This "function" is actually an
array.

107

March 1985 Storage Management

See the function cons-in-area in Reference Guide to Symbolics-Lisp. See the
function list-in-area in Reference Guide to Symbolics-Lisp. See the function room,
page 129.

15.2 Interesting Areas

This section lists the names of some of the areas and tells what they are for. Only
the ones of the most interest to a user are listed; there are many others.

working-storage-area Variable
This is the normal value of default-cons-area. Most working data are
consed in this area.

permanent-storage-area Variable
This area is to be used for "permanent" data, that (almost) never become
garbage. Unlike working-storage-area, the contents of this area are not
continually copied by the garbage collector; it is a static area.

pname-area Variable
Print-names of symbols are stored in this area.

symbol-area Variable
This area contains most of the interned symbols in the Lisp world.

si:pkg-area Variable
This area contains packages, principally the hash tables with which intern
keeps track of symbols.

compiled-function-area Variable
Compiled functions are put here by the compiler.

property-list-area Variable
This area holds the property lists of symbols.

constants-area Variable
This area contains constants used by compiled programs.

15.3 The sys:reset-temporary-area Feature

Some programs use the dangerous sys:reset-temporary-area feature to deallocate
all Lisp objects stored in a given area. Use of this technique is not recommended,
since gross system failure can result if any outstanding references to objects in the
area exist.

108

Internals. Processes. and Storage Management March 1985

Those programs that use the feature must declare any areas that are to be
mistreated 'this way. When you create a temporary area with make-area, you must
give the :gc keyword and supply the value :temporary. (This also marks the area
as :static; all temporary areas are considered static by the garbage collector.)
sys:reset-temporary-area signals an error if its argument has not been declared
temporary.

15.4 Memory Mapping Tools

Several functions are provided to allow you to apply an operation to entire regions or
areas, to objects within these, and so on.

The general philosophy is that a mapping routine is called, possibly with one or more
predicates, a function to apply, and additional arguments to that function. The
function (not the mapping routine) is called with some arguments based on the
mapping routine's contract, followed by any additional arguments supplied for it.
This is similar to the :map-basb and :modify-basb philosophy of hash tables.

Predicates control what areas and/or regions the mapping routine considers. The
defined names start with si:area-predicate- and si:region-predicate-. If nil is
supplied in lieu of the predicate, then the default predicate is used. You are free to
define your own routines that select specific qualities of areas or regions.

15.4.1 Area and Region Predicates

These predicates identify qUalities of specific areas or regions within areas.

si:area-predicate-all-areas area Function
This predicate returns non-nil for all areas. This is not the default predicate.

si:area-predicate-areas-with-objects area Function
This function returns non-nil for areas that contain objects. It is the default
area predicate. There is at least one area (si:page-table-area) that does not
contain objects and is therefore not of interest to users.

si:region-predicate-all-regions region Function
This predicate returns non-nil for all regions. It is the default region
predicate.

si:region-predicate-structure region Function
This predicate returns non-nil for regions that contain structures (as opposed
to lists).

si:region-predicate-list region Function
This predicate returns non-nil for regions that contain lists (as opposed to
structures) .

109

March 1985 Storage Management

si:region-predicate-not-stack-list region Function
This predicate returns non-nil for all regions (list and structure) except those
of type "stack list" (for example, control stacks).

si:region-predicate-copyspace region Function
This predicate returns non-nil only for regions in copyspace. It might be
useful for determining what is (or was) transported to copyspace.

15.4.2 Mapping Routines

These are the routines that apply a designated function to designated areas or
regions. In these routines, if other-function-args are supplied, they are passed along
to the supplied function as additional arguments.

si:map-over-areas area-predicate function &rest other-function-args Function
For each area that satisfies area-predicate, function is called with the area
number followed by other-function-args.

For example, the following form invokes describe-area on all areas:

(si:map-over-areas I'si:area-predicate-all-areas *'describe-area)

si:map-over-regions-of-area area region-predicate function &rest Function
other-function-args

For each region in area (an area number) that satisfies region-predicate,
function is called with the region number followed by other-function-args.

For example, the following form prints the names of all compiled functions in
compiled-function-area:

(defun print-compiled-function-names ()
(si:map-over-regions-of-area

compiled-function-area *'si:region-predicate-structure
*'(lambda (region-number)
(let* «origin (sys:region-origin region-number»

(free (+ origin (sys:region-free-pointer region-number»»
(si:scanning-through-memory scan1 (origin free)

(loop for address = origin then (+ address object-size)
while « address free)
do (si:check-memory-scan scan1 address)
as object = (Xfind-structure-header address)
as object-size = (Xstructure-total-size object)
when (typep object ':compiled-function)

do (print (si:compiled-function-name object»»»»

A better way to do it, since si:map-over-objects-in-area takes care of the
memory scanning, is as follows:

110

Internals, Processes, and Storage Management March 1985

(defun print-compiled-function-names-2 ()
(si:map-over-objects-in-area

compiled-function-area *'si:region-predicate-structure
*'(lambda (ignore ignore header ignore ignore)

(when (typep header :compiled-function)
(print (si:compiled-function-name header»»»

si:map-over-regioDS area-predicate region-predicate function &rest Function
other-function-args

For each region that satisfies region-predicate and is in each area that
satisfies area-predicate, function is called with the area number and region
number followed by other-function-args.

For example. the following form prints all region numbers, with the name of
the area:

(si:map-over-regions
ni 1 nil
*'(lambda (area-number region-number)

(print (list (area-name area-number) region-number»»

There is a similar set of mapping functions that map over objects (structures and
lists). In addition to possible area and region arguments, the supplied functions are
passed four other arguments:

address

header

leader

size

A flXIlum giving the virtual memory address where the system
started scanning to find the extent of the object.

The object itself, for example, an array, compiled function, list, or
closure.

A locative to the base of the structure. Under most
circumstances. the address portion of the leader is the same as
the address. The header and leader do not necessarily point to
the same location; the header sometimes points to the middle of
an object, as with compiled functions.

The size of the object in words.

Most applications are only interested in the header (object) and, possibly. the size.
The address and leader are usually ignored. Area number and region number, for
those mapping routines that supply them, are usually ignored as well.

si:map-over-objects-in-region region-number function &rest Function
other-function-args

For each object in region-number, function is called with the address, the
header, the leader, and the size, followed by other-function-args.

111

March 1985 Storage Management

si:map-over-objects-in-area area-number region-predicate function Function
&rest other-function-args

For each object in each region in area-number, where the region satisfies
region-predicate, function is called with the region number, the address, the
header, the leader, and the size, followed by other-function-args. For an
example: See the function si:map-over-regions-of-area, page 109.

si:map-over-objects area-predicate region-predicate function &rest Function
other-function-args

For each object in each region that satisfies region-predicate, in an area that
satisfies area-predicate, function is called with the area number, the region
number, the address, the header, the leader, and the size, followed by
other-function-args.

Additionally, there is a technique for interacting with the paging system, to avoid
excessive page faults while scanning forward through a known section of virtual
memory. The object-scanning routines use this technique, which nearly eliminates
page faults on the objects (but not necessarily on data pointed to by the objects).

si:scanning-through-memory identifier-symbol (starting-address Macro
limit-address &optional (pages-per-whack 16»
&body body

The body is executed normally. The starting-address is the address where
scanning begins. The limit-address is the (exclusive) address where scanning
ends.

The argument pages-per-whack, default 16, is the number of pages to page
out and in when user prefetching needs to be done. The slower the rate at
which memory is scanned (for example, when looking at many words or
spending a lot of time working on each section), the smaller pages-per-whack
can be, because the disk will be able to keep up. The faster the scanning
rate (for example, when counting the number of objects), the larger
pages-per-whack can be, to avoid taking page faults on pages not quite paged
in. pages-per-whack should not be greater than about 32, or else the
program will spend time waiting for the disk queue to empty before it can
queue all the page transfers.

identifier-symbol identifies this set of parameters. This allows correct nesting
of si:scanning-through-memory macros. identifier-symbol is not evaluated,
so it must not be quoted.

si:check-memory-scan identifier-symbol current-address Macro
The identifier-symbol, an unevaluated symbol, matches the identifier symbol
of a lexically visible si:scanning-through-memory. The current-address is
the next address the code is about to use. Each time the address advances
by pages-per-whack, the paging system pages out previous addresses and
pages in future addresses. (See the function si:scanning-through-memory,
page 111.)

112

Internals, Processes, and Storage Management March 1985

113

March 1985 Storage Management

16. The Garbage Collector

16.1 Principles of Garbage Collection

It is fundamental to the nature of Lisp that programs and systems allocate memory
dynamically and in large amounts. (The allocation of memory for a basic list
element, or cons, or for any other purpose, is called consing for the purpose of this
discussion and in most other Lisp writing.) It is possible, even considering the large
amount of virtual memory on a Symbolics computer, for a program to use up all the
virtual memory available, at which point the machine halts and must be rebooted.
This event can always be delayed, perhaps almost indefinitely, if the underlying
system can reclaim memory originally allocated for objects that are now unused.

Such objects, those with no references from other objects, are termed garbage, since
they no longer serve any purpose in the current Lisp world and merely take up
otherwise useful space. For example, if the car of a cons is changed from object A
to object B, and there are no other references to A, then A, although it persists in
the Lisp world, is garbage. The garbage metaphor is extended in several ways in
Lisp literature. For example, a scavenger process periodically sifts through areas of
memory, separating good objects from the garbage. The large-scale operation, which
involves scavenging virtual memory, moving good objects to a safe place, and
reclaiming the memory occupied by garbage, is called garbage collection.

There are several strategies for using garbage collection, some that allow you to
continue doing other work and some that do a more complete job but require
additional machine resources for some period of time. It is worth noting, too, that
garbage collection need not be used at all. Garbage collection should be used when
you either are running a program that allocates large amounts of virtual memory
(where the total allocated might exceed the amount of free memory in a cold-booted
system) or when the total allocations of many programs might, over a relatively long
period of time, exceed the capacity. In either case, garbage collection is a strategy
aimed primarily preserving the state of an operating Lisp world as long as possible
and avoiding a cold boot.

If you would like to preserve the state of your machine as long as possible, with the
least effect on performance, you should at least run with the ephemeral-object
garbage collector turned on. (See the section "Ephemeral-object Garbage Collection",
page 119.) You can tum it on with the gc-on or choose-gc-parameters functions
or with the Start GC command. However, absolutely maximum performance is
usually achieved by running with no garbage collection at all, although the machine
will probably run out of virtual memory much faster.

There are two basic modes of garbage collection, each with some variations possible:

114

Internals, Processes, and Storage Management March 1985

• Incremental garbage collection works in parallel with other processes in the
system, allowing you to continue working in any process while it is in progress.
This mode is based on incremental copying, so called because objects are copied
one at a time and there is relatively little effect on the user's interaction with
the system. Dynamic-object garbage collection incrementally collects garbage in
all non static areas of memory. Ephemeral-object garbage collection
incrementally collects garbage, concentrating on specific parts of memory that
are known to contain short-lived objects. Both kinds of incremental operation
ignore areas of memory (static areas) that change slowly and so are unlikely to
contain garbage.

• Nonincremental, or immediate, garbage collection takes less free memory and
less total processor time to work successfully than does the incremental mode.
Nonincremental garbage collection is normally done with the gc-immediately
function, although that variation still ignores static areas; this function allows
no other work to be done by the process running it, although other processes
are still scheduled. In most cases, though, immediate garbage collection places
a heavy enough burden on the machine that other processes are not useful
while it is operating.

16.2 Using the Garbage Collector

If you want to take the easiest advantage of automatic storage management, to
preserve the virtual memory of your machine as long as possible, you should run
with both the ephemeral- and dynamic-object garbage collectors turned on. Both are
turned off by default, but both can be turned on by evaluating gc-on with no
arguments or entering the command Start Ge.
The garbage collector is a program in the Symbolics-Lisp system that automatically
finds, tracks, and recovers memory occupied by unused objects (garbage) in the
current Lisp world. It is a particular implementation of automatic storage
management, meaning that programmers (and also nonprogrammer users of the
system) can do things that allocate, use, and discard large amounts of virtual
memory, without having to pay any attention to the management of the memory.
In systems without this feature, most large-scale uses of virtual memory have to be
managed "manually" (under control of a user program); manual storage management
is difficult and error-prone because it is quite difficult for a program to "prove" that
an object really is of no use to any other system component.

Automatic storage management also has the desirable effect of lengthening the
"session" you spend with a particular world between cold boots. Without it, most
normal uses of a Lisp system will exhaust virtual memory rather quickly. With it,
normal use (whether or not for programming) is longer and more convenient.

When the usual, incremental garbage collector is operating, the Scavenger periodically

115

March 1985 Storage Management

goes through virtual memory, looking for objects that can be proven not to be
garbage. These "good" objects are transported to a safe place, and the memory
occupied by the garbage is reclaimed automatically. In the meantime, new objects
can still be created. (More extensive information on automatic storage management
is available elsewhere; See the section "Operation of the Garbage Collector", page
117.)

There are different kinds of garbage collection available in Symbolics-Lisp. All
require some additional virtual memory for their own use. Until the scavenging
process is complete, running with the garbage collector can require up to twice as
much space as running without the garbage collector (depending on how much of old
space was garbage, compared to how much had to be copied). If you have been
running without the garbage collector for a long time, you might not have enough
room to successfully run the garbage collector and collect all the garbage. If the
garbage collector is not operating, the system sends notifications as you approach a
certain percentage full. See the section "Storage Requirements for Garbage
Collection", page 122.

One solution is to turn on the garbage collector sooner, so it is left with enough
space to operate. Another is to use gc-immediately. Another is to increase the
size of the paging space on your local disk. See the section "Allocating Extra Paging
Space" in Reference Guide to Streams, Files, and 110.

Garbage collection can be optimized for particular applications by manipulating areas
and their attributes. See the section "Areas", page 103.

The [Areas] option of the Peek utility can be used to examine the garbage-collection
attributes of particular areas; try it, and then click left on working-storage-area,
for example.

choose-gc-parameters Function
The function choose-gc-parameters activates a menu that you can use to
control the operation of the garbage collector. Most of its features, including
the ability to turn garbage collection on or off, are available elsewhere, but
this is a single and more convenient interface. The variable
si:*gc-parameters* is a list that defines the variables controlled by this
function.

gc-on &key ephemeral dynamic Function
Turns garbage collection on. It is off by default. The keywords :ephemeral
and :dynamic select the type(s) of garbage collection employed; the defaults
are :ephemeraI t and :dynamic t if no options are specified. If
:ephemeraI or :dynamic is specified without a value, the default is nil; this
allows you to tum off one form of garbage collection and leave the other one
on.

116

Internals. Processes. and Storage Management March 1985

ge-otf Function
Turns garbage collection ofT.

ge-on Variable
The value of this variable is non-nil when the garbage collector is turned on
and nil when it is turned ofT. ge-on is useful in rmding out whether the
garbage collector has turned itself off (as it does when not enough free space
remains to be able to complete a copying garbage collection).

ge-immediately &optional no-query Function
ge-immediately does nonincremental garbage collection, taking less space
and less total time than an incremental gc, but running continuously in the
process calling it, until the garbage collection is complete. The main
advantage of this compared to incremental gc is that it requires less free
space and hence can succeed where an incremental gc would fail because
virtual memory was too full.

If no-query is not nil, ge-immediately commences garbage collection without
asking any questions, regardless of how much space is available. If it is nil,
and if an immediate garbage collection might require more space than the
amount of free space, you are asked whether you want to proceed.

You should usually call this rather than si:full-ge. The difference is that
ge-immediately does not lock out other processes, does not run various
full-ge initializations, and does not affect the static areas.

Suppose garbage collection has already started, that the flip has occurred but
not all good data have been copied out of old space. ge-immediately then
copies the rest of the good data but does not flip again.

si:fuIl-ge &key system-release gc-compiled-functions Function
The function si:fuIl-ge garbage-collects the entire Lisp environment, including
some static areas (those on the list bound to si:full-ge-statie-areas).
However, because static areas change slowly and are not likely to contain
much garbage, you should not normally need this function to perform
nonincremental garbage collection; use ge-immediately instead. Call
si:fuIl-ge with no arguments if you must use it.

The options :ge-compiled-funetions and :system-release are reserved for
use by Symbolics.

si:full-ge does an immediate, complete, nonincremental garbage collection.
Two initialization lists, accessed through the full-ge and after-full-ge
keywords to add-initialization, are run by si:full-ge. It runs the forms on
the full-ge initialization list and then does garbage collection without
multiprocessing (inside a without-interrupts form), so the machine
essentially "freezes" and does nothing but garbage collection for the duration.
This operation takes 20 minutes or more, depending on the size of the world.

117

March 1985 Storage Management

After the garbage collection is completed, and before it reenables scheduling
and returns, si:full-gc runs the forms on the after-full-gc initialization list.

full-gc is a system initialization list. You can add forms to it by passing the
:full-gc keyword in the list of keywords that is the third argument of
add-initialization. The full-gc initialization list is run just before a full
garbage collection is performed by si:full-gc. All forms are executed without
multiprocessing, so the evaluation of these forms must not require any use of
multiprocessing: they should not go to sleep or do input/output operations
that might wait for something. Typical forms on this initialization list reset
the temporary area of subsystems and make sure that what is logically
garbage has no more pointers to it and, thus, is really garbage and will be
collected.

16.3 Operation of the Garbage Collector

There are three agents involved in automatic storage management, or garbage
collection:

• A user program that creates new objects and so changes the contents of
memory. This program is called the mutator for the purpose of this discussion.

• A program that reads through memory looking for references to objects that
are in old space. It finds all accessible objects by starting at a "root set" of
static objects, such as the hash table of all interned symbols, and recursively
tracing through· the objects in the root set and the objects they reference.
This program is called the scavenger. It runs during con sing, during idle time,
and (in the case of nonincremental garbage collection> in the user or garbage
collector process.

• A program invoked when either the mutator or the scavenger refers to an
object in old space. If the object actually is still in old space, it evacuates the
object (moves it to copy space). If the object has already been moved, the
program locates its incarnation in copy space by following a forwarding pointer
from old space. (Note that objects are copied only once.) This program, the
transporter, redirects its client to copy space in either case.

The garbage collector treats the machine's virtual memory as if it were divided into
two spaces: dynamic space and static space. Note that these spaces do not
correspond directly to areas. All spaces can exist within a given area, but the area
specifies the space in which its newly created objects reside. See the section "Areas",
page 103.

Static space The parts of memory in which relatively permanent objects are
allOcated are collectively called static space. Objects allocated in

118

Interna/s. Processes. and Storage Management March 1985

these static space are not likely to become garbage; examples are
the "standard" system functions and other objects that are likely
to be referenced throughout the lifetime of a particular program
or application. Static areas are ignored by all forms of garbage
collection except si:full-gc.

Dynamic space The parts of memory in which user programs and other programs
allocate most of their objects are collectively called dynamic space.
Objects allocated in dynamic space are likely to become garbage at
some point, and all versions of garbage collection except si:full-gc
pay exclusive attention to dynamic space. Dynamic space is
further subdivided by the garbage collector into new, old, and copy
spaces. (In addition, ephemeral levels are part of dynamic space;
See the section "Ephemeral-object Garbage Collection", page 119.)

New space

Old space

Copy space

New space is the portion of dynamic space in
which new objects are allocated. In a pristine
system, all objects are allocated here; neither of
the other two spaces exists un til the first
garbage collection operation (scavenging) begins.

Old space is the portion of dynamic space that
is created from the previous new and copy
spaces and may still contain valid objects.
(That is, the scavenger is actually looking for
good objects here by perusing references in the
current static and copy spaces.) When the
scavenger is finished, everything in old space is
garbage.

Copy space is the portion of dynamic space to
which the transporter moves good objects found
in old space.

When it is time to collect garbage, the spaces are flipped:

1. New space and copy space are lumped together to form a new version of old
space. (This old space is then scavenged.)

2. A fresh new space is created; new objects will be allocated here while garbage
collection of old space is in progress.

3. A fresh copy space is created; this space will receive copies of objects evacuated
from old space. When an object is evacuated from old space, its incarnation
there is replaced by a forwarding pointer that addresses the object's
incarnation in copy space.

Once all good objects have been evacuated from old space to copy space, old space

119

March 1985 Storage Management

contains only garbage. Old space's memory is then reclaimed by the garbage
collector and becomes available for assignment to new space. Another flip can occur
any time after old space has been reclaimed.

The incremental garbage collector decides to flip when it estimates that it will
require a large portion of the remaining free virtual memory for its own use. A
nonincremental garbage collection requires less virtual memory than an incremental
one because the mutator is prevented from allocating new storage (consing) while
the garbage collector is operating. See the section "Storage Requirements for
Garbage Collection", page 122.

16.3.1 Ephemeral-object Garbage Collection

Ephemeral-object garbage collection is a method by which the scavenger agents can
pay special attention to short-lived, or ephemeral, objects. It is effective on any area
having the :gc :ephemeral characteristic as specified by make-area. The
working-storage-area has the ephemeral characteristic by default; since it is the
initial value of default-cons-area, objects created with no area specification are
subject to ephemeral-object garbage collection while it is turned on.

The overall effects are as follows:

• All objects created in ephemeral areas while the ephemeral collector is
operating are considered ephemeral objects.

• The ephemeral-object garbage collector has means of tracking ephemeral
objects, to avoid having to scan all of virtual memory for possible references to
them.

• Garbage collection tends to increase the locality of objects and their references,
so that ephemeral objects and their references are likely to be concentrated on
relatively few pages.

• The above factors combine to dramatically reduce the amount of paging the
garbage collector must do to find and process garbage, compared with the
"dynamic" method, which operates on all of dynamic space rather than just the
ephemeral portion of it. They also mean that when the dynamic
(nonephemeral) objects are eventually garbage-collected, dynamic space contains
less garbage than would otherwise be the case.

The ephemeral-object feature introduces the concept of ephemeral levels, subdivisions
of a particular area. Consider, for example, the following, abbreviated output of
(describe-area working-storage-area):

120

Internals, Processes, and Storage Management March 1985

Area 14: WORKING-STORAGE-AREA has 15 regions,
max size 2000000000, region size 340000 (octal):

First ephemeral level (12): 2 regions, capacity 196K, 416K allocated. 122K used.
Second ephemeral level ('1): 3 regions, capacity 98K, 336K allocated, 148K used.
Last (dynamic) level (10): 10 regions, 2448K allocated, 2216K used.

The "first" ephemeral level is the one in which all new objects in this area are
created. It, like other ephemeral levels, has a capacity in words. When the capacity
is reached, the ephemeral level is flipped, and any objects that are not proven to be
garbage are evacuated to the next level by the usual incremental garbage collection
methods. (Note: Do not be confused by the parenthesized numbers attached to
ephemeral levels; they are used internally by the software. "First" means first, even
if its so-called level number is 2.)

The levels after the first are flipped only when the first level is flipped. (You can
see, in this example, that the second level has exceeded its capacity, because it is
waiting for the first level to flip.)

When the last (dynamic) level has received enough objects from the ephemeral levels,
it is flipped and garbage collected as usual for dynamic areas. It has no capacity in
the sense of an ephemeral level because the decision to flip is based on different
principles. See the section "Storage Requirements for Garbage Collection", page 122.

The advantage is that the garbage collector spends most of its time dealing with only
a small fraction of the total number of objects and total storage in the system,
namely, with the ephemeral levels. This greatly decreases paging, total time to
complete a garbage collection, and the amount of virtual memory that has to be
committed to the garbage collector's use.

The output of the function gc-status or the command Show GC Status includes one
line for each ephemeral level that exists.

By default, gc-on or the Start GC command enables the ephemeral collector along
with dynamic-object garbage collection. The area working-storage-area has the
ephemeral characteristic and two ephemeral levels by default, so "(he ephemeral
feature is effective even if you do not explicitly manipulate areas.

You can get additional insight into the concept by experimenting with the following
features:

• Using the function choose-gc-parameters, select the options for reporting the
activity of the ephemeral GC.

• Using the [Areas] option of the Peek utility, examine the GC characteristics of
particular areas, such as, for a start, working-storage-area. (Point at this
area and click left to see the details.) The describe-area function can be
used for the same purpose.

121

March 1985 Storage Management

• Using the :capacity, capacity-ratio, and n-IeveIs options of the make-area
function, you can define the number of ephemeral levels for specific areas.
With programs that create mostly ephemeral objects, it may be possible to
extend the length of a session considerably, by adding additional ephemeral
levels.

16.3.2 Locality of Reference

Locality of reference is a desirable property of programs that run on virtual memory
systems like Symbolics-Lisp. It means, essentially, that objects and their references
(or more generally, any pieces of related information), are located near each other,
that is, located at nearby addresses in virtual memory. When this is true, the
paging system can avoid thrashing: swapping many pages in and out of main
memory in order to access relatively few data.

The use of areas is a programming technique available in Symbolics-Lisp that
improves locality of reference in programs that allocate virtual memory in large
amounts and for specific purposes. Areas are especially useful when the objects
allocated are static, since the objects will then be left completely alone by most kinds
of garbage collection.

The operation of garbage collection in this system improves locality of reference by
itself, including in the working-storage-area.

First, the operation of copying good objects to a separate space (copy space) compacts
objects on virtual memory pages. Good objects are not interleaved with garbage.

Second, the use of separate new and copy spaces improves locality further, because
new objects are likely to be "less related" to older ones, and the two are not
interleaved.

Finally, the garbage collector uses a technique called "approximately depth-first
copying," which improves locality in typical programs. It works as follows:

1. The scavenger concentrates on the most recent, partially filled page in copy
space, looking for references to old space (that is, looking for objects that might
have to be evacuated from old space).

2. If no such objects are found, or if the last page in copy space is full already,
the scavenger looks at the first <lowest-addressed) page in copy space that has
not yet been scavenged. It proceeds from this page forward, page by page,
looking for old-space references.

3. As soon as an object is transported from old space to copy space, the scavenger
returns its attention to the last page in copy space and considers the objects
referenced by the newly transported object.

4. By the time the scavenger has finished scanning the last page of copy space, it

122

Internals, Processes, and Storage Management March 1985

has either found no old-space references (in which case all of old space is
garbage and can be immediately reclaimed) or it has found them and has
evacuated the corresponding object into copy space.

The effect is that object references and the corresponding objects tend to fall on the
same page in virtual memory.

16.4 Storage Requirements for Garbage Collection

The output of the Show GC Status command (or gc-status function) shows the
storage requirement for incremental, dynamic garbage collection, in the form of a
"committed guess." (This section is not related to the storage requirements for
ephemeral-object garbage collection.) For example, suppose the command reports the
following information:

Dynamic (new+copy) space 184,000. Old space o. Static space 7,500,000.
Free space 17,000,000. Committed guess 11,939,644, leaving 4,798,212 to

use before flipping.

The "free space" is the total amount of unused space allocated to paging on the local
disk(s) and is, in fact, the amount available for new objects if the garbage collector is
turned off. The free space minus the committed guess, minus a relatively small
amount, should equal the amount left before flipping.

The committed guess is the garbage collector's estimate of the amount of free
storage it will need for copying and for new consing while the garbage collection is
going on. It is quite accurate for compute-bound programs, on which most of the
underlying assumptions are based. For interactive programs, it is somewhat
conservative because the garbage collector runs during idle time and so finishes more
quickly.

The computation goes as follows, assuming that gc-flip-ratio = 1:

Dynamic (new+copy) space 184,000. Old space o. Static space 7,500,000.
Free space 17,000,000. Committed guess 11,677,500, leaving 5,322,500 to

use before flipping.

If you cons 5.32 megawords of dynamic space, in addition to the space you already
have, and then the flip occurs, then at the instant the garbage collector completes
(after it has copied all of old space but before old space is reclaimed), oldspace and
copy space will each be 5.5 megawords. That accounts for 11 megawords; all but
.184 megawords of that has to come out of your 17 megawords of free space.

To complete the garbage collection, the scavenger has to do 5.5 MWU (million "work
units") to copy 5.5 megawords from old space to copy space, plus 5.5 MWU to scan
through that copy space looking for references to old space, plus 7.5 MWU to scan
through static space looking for references to copy space, plus x MWU to scan
through the x words of additional objects you might cons in static space during the

123

March 1985 Storage Management

garbage collection. (It has no way to distinguish these from objects that existed in
static space before the garbage collection, so it can't take advantage of knowledge
that objects created after the flip cannot contain references to old space; it does take
advantage of this invariant for dynamic space, but not for static space). The total
scavenger work to be done is therefore 18.5+x MWU. The rate at which the
scavenger works is pegged to the rate of consing; the scavenger does 4 "work units"
for each word consed. Thus the total con sing during the garbage collection is
(18.5+x)/4 megawords. In the worst case, all this con sing will be in static space,
hence 4x = 18.5+x or x = 6.17.

The primary reason that a nonincremental garbage collection (as by
ge-immediately) requires less memory is that consing is prohibited in the invoking
process (the mutator cannot run).

To check the computation: at the instant the garbage collection completes, the total
space occupied will be 5.5 megawords of old space, 5.5 megawords of copy space, 7.5
megawords of old static space and 6.17 megawords of new static space; total = 24.67.
The total you have right now is .184 megawords of dynamic space, 7.5 megawords of
static space, and 17 megawords of free space; total = 24.68. So, you can see that
you have just enough free space to be able to cons 5.322 megawords, flip, cons 6.17
megawords more during the garbage collection, and reclaim old space, creating more
free space, just as you exhaust the last bit of free space. This is what the
"committed guess" computation is all about.

Of course, this is all based on worst-case assumptions. If some of dynamic space is
garbage, so copy space is smaller than 5.5 megawords, or some of your con sing before
the flip is in static space (making old space smaller than 5.5 megawords), or some of
your consing after the flip is in dynamic space (making the scavenger not have to
work as hard), the garbage collection will complete with some free space left over.
Also, scavenging during idle time makes the garbage collection complete sooner.

Now consider the additional factors. The committed guess is increased by the
constant 256 Kwords and the amount you can cons before the flip is decreased by
an additional 256 Kwords (value of si:ge-delta). So, you lose about .5 megawords of
con sing.

Dynamic (new+copy) space 184,000. Old space o. Static space 7,500,000.
Free space 17,000,000. Committed guess 11,939,644, leaving 4,798,212 to

use before flipping.

If you cons 4.8 megawords of dynamic space, in addition to the space you already
have, and then the flip occurs, old space and copy space will each be 4.98 megawords
at the instant the garbage collection completes. That accounts for 10 megawords; all
but .184 megawords comes out of your 17 megawords of free space.

The scavenger has to do 4.98 MWU to copy 4.98 megawords from old space to copy
space, plus 4.98 MWU to scan through that copy space looking for references to old
space, plus 7.5 MWU to scan through static space looking for references to copy
space, plus x MWU to scan through the x words of additional objects you might cons

124

Internals. Processes. and Storage Management March 1985

in static space during the garbage collection. The total scavenger work to be done is
therefore 17.46+x MWU. Thus the total consing during the garbage collection is
(17.46+x)/4 megawords. In the worst case, all this con sing will be in static space,
hence 4x = 17.46+x or x = 5.82. At the time the garba~ collection completes, the
total space occupied will be 4.98 megawords of old space, 4.98 megawords of copy
space, 7.5 megawords of old static space and 5.82 megawords of new static space;
total = 23.23. You will have 1.4 megawords of free space left over. This provides a
cushion against the effects of storage fragmentation caused by the use of multiple
areas.

16.5 Controlling Garbage Collection

ge-status Function
ge-status prints statistics about the garbage collector. It prints different
information depending on whether the scavenger is running or flnished and
how full virtual memory is.

(gc-status)

Status of the ephemeral garbage collector: On
First level of WORKING-STORAGE-AREA: capacity 196K, 416K allocated, 10K
used.
Second level of WORKING-STORAGE-AREA: capacity 98K, 256K allocated, 137K
used.

Status of the dynamic garbage collector: On
Dynamic (new+copy) space 1,746,767. Old space o. Static space 6,856,801.
Free space 6,957,056. Committed guess 6,559,133, leaving 135,779 to use

before flipping.
There are 2,343,001 words available before (GC-IHHEDIATElV) might run out
of space.
Doing (GC-IHHEDIATElV) now would take roughly 14 minutes.
There are 6,957,056 words available if you elect not to garbage collect.

Garbage collector process state: Await ephemeral or dynamic full
Scavenging during cons: On, Scavenging when machine idle: On
The GC generation count is 2 (1 full GC, 0 dynamic GC's, and 1 ephemeral
GC) .
Evaluate (CHOOSE-GC-PARAHETERS) to examine or modify the GC parameters.

In the ge-status report, the "free space" flgure minus the "committed guess"
flgure is approximately equal to the amount of memory available before
flipping. (If the garbage collector were currently off, this field would show
the amount of memory available before incremental garbage collection must
be turned on, to avoid the risk of running out of space.)

125

March 1985 Storage Management

Notice that a nonincremental garbage collection (gc-immediately) requires
less memory, although it will run exclusively, in the invoking process, for a
long time. An estimate of the time, which depends on the size of the world,
is printed.

As shown here, when the garbage collector is on, the scavenger operates
during con sing and when the processor is idle (when no process wants to
run). The operation of the scavenger is also signalled by the garbage
collector's run bar; the left half of this bar, which appears under the package
name on the machine's status line, blinks to indicate scavenging. The right
half of the bar blinks when the transporter moves objects out of old space.

You could also tum off garbage collection at this point (with the Halt GC
command or gc-off function) and still have almost 7 million words available
before you ran out of virtual memory.

The "garbage collector process state" is the state of the process that starts a
garbage collection when it is time (by flipping) and generally supervises the
garbage collector.

si:inhibit-gc-flips body... Macro
si:inhibit-gc-flips prevents the garbage collector from flipping within the
body of the macro.

The following variables' values control various aspects of the garbage collector's
operation; all are accessible via the cboose-gc-parameters function.

si:gc-report-stream Variable
si:gc-report-stream specifies where to put output messages from the
garbage collector.

Value

t

nil

stream

Meaning

Notifies you (default)

Discards the output

Sends output to the stream

si:gc-area-reclaim-report Variable
si:gc-area-reclaim-report controls reporting of reclaimed areas. If it is any
of the values other than nil, each reclaimed area is reported individually.

Value

nil

:dynamic

Meaning

Does not report anything (default).

Reports only after dynamic garbage collection.

:epbemeral Reports only after ephemeral-object garbage collection.

t Reports after any kind of garbage collection.

126

Internals, Processes, and Storage Management March 1985

si:ge-warning-threshold Variable
si:ge-waming-threshold controls the warnings to tum on the garbage
collector. When the storage manager notices that the amount of free space
remaining before it would be too late to garbage collect has reached the
threshold, it notifies you that you need to tum on the garbage collector. The
default value is 1000000.

si:ge-warning-ratio Variable
si:ge-warning-ratio controls how often (after the si:ge-waming-threshold)
has been. passed) you see warnings that you need to tum on the garbage
collector. Basically, this ratio is multiplied by the previous warning threshold
to give a new warning threshold. For example, the default
si:gc-warning-ratio is 0.75. With the default values for
si:gc-warning-thresholdand si:gc-warmng-ratio, you would see warnings
with 1000000, 750000, 562500, and 421875 words remaining, and so on.

si:gc-warning-interval Variable
This variable contains the interval in 60ths of a second between repetitions of
the same garbage collector warning; it applies only to reports that use the
notification system. The default value is 18000.

si:gc-tlip-ratio Variable
si:ge-flip-ratio specifies when a flip takes place. When this number times
the amount of committed free space (the "committed guess" reported by
ge-status) is greater than the amount of free space, a flip occurs. The
default value is 1.

The number can be less than 1. This would cause the garbage collector to
wait longer before flipping at the risk of exhausting virtual memory if a
larger fraction of dynamic space contains good objects than you expected.
Rather than setting the ratio to a number less than 1, we recommend
turning on the ephemeral-object garbage collector.

For a discussion of finer control over the onset of garbage collection: See the
variable si:gc-flip-minimum-ratio, page 126.

si:gc-tlip-minimum-ratio Variable
si:gc-flip-minimum-ratio contains a number that specifies when to tum
the garbage collector off because memory is too full to allow copying anything.
The default value is nil, which specifies that this ratio has the same value as
si:ge-flip-ratio. Otherwise it should be a number less than si:ge-flip-ratio.

Putting 0.25 in si:ge-flip-minimum-ratio and 0.5 in si:ge-flip-ratio means
that you believe that fewer than 25 per cent of the dynamic-space objects
consed are good data and will need to be copied by the garbage collection. In
spite of this, you want to flip when there is enough space to copy 50 per
cent (half) of the objects. Thus, the flip ratio controls how often the garbage
collector flips; the minimum ratio controls when it should get desperate . .

127

March 1985 Storage Management

The minimum ratio is most useful if you tum on
si:ge-reclaim-immediately-if-neeessary, to make the garbage collector do
something useful when it is desperate. Even without that, it is useful if you
would rather risk doing a garbage collection when there might not be enough
memory left in preference to turning the garbage collector off, for example,
when the machine is operating unattended and turning off the garbage
collector would be guaranteed to make it exhaust memory.

Choosing good values for this variable is a matter of guesswork and
experience with the particular application.

si:ge-reclaim-immediately Variable
When the value is nil, (the default), the incremental (dynamic) garbage
collector is not affected. When the value is not nil, then, in effect, an
immediate garbage collection is performed as soon as the flip occurs.

si:ge-reclaim-ephemeral-immediately Variable
When the value is nil, (the default), the ephemeral-object garbage collector is
not affected. When the value is not nil, then, in effect, an immediate
garbage collection is performed as soon as the capacity of the fIrSt ephemeral
level is exceeded.

si:ge-reclaim-immediately-if-necessary Variable
si:ge-reclaim-immediately-if-necessary controls whether the garbage
collector starts nonincremental garbage collection or shuts down when space
is running too low for incremental garbage collection. This variable is
irrelevant when si:ge-reclaim-immediately is set because then the garbage
collector always reclaims immediately, even if it does not need to.

The variable controls what happens when not enough free space remains to
copy everything. When the value is nil (the default), it notifies you and
turns itself off. For other values, it tlies nonincremental garbage collection
and shuts itself off only when it determines that nonincremental garbage
collection is not guaranteed to work.

It is possible for so little space to remain that even a nonincremental garbage
collection would exhaust virtual memory. The decisions about what would
exhaust virtual memory depend on your prediction of the fraction of dynamic
space that contains real (nongarbage) objects. (This is the value of
si:ge-flip-minirnum-ratio.)

si:ge-process-immediate-reclaim-priority Variable
This variable supplies the process priority at which nonincremental
(immediate) garbage collection operates. Its default value is 5, which locks
out other, computational processes. It is also accessible via the function
choose-ge-parameters. Note: This variable is not related to the
ge-immediately function nor to the :Immediate option of the Start GC
command.

128

Interna/s, Processes, and Storage Management March 1985

si:gc-process-foreground-priority Variable
This variable provides the process priority for the garbage collector while it is
waiting to flip. Its default value is 5.

si:gc-process-background-priority Variable
This variable provides the priority (default 0) of the garbage collector process
while it is reclaiming old space.

ai:gc-f1ip-inhibit-time-until-warning Variable
si:gc-flip-inhibit-time-until-warning sets the reasonable time window for
flipping. If flipping does not occur successfully during this time, the garbage
collector notifies you about the problem. The time is expressed in 60ths of a
second. The default is 10 seconds. Flipping cannot occur when some
program (such as maphash) is running in an si:inhibit-gc-f1ips special
form.

16.6 Strategy for Unattended Operation with the Garbage Collector

It is chancy to leave very large compilations that do a lot of con sing running
unattended. You can set the following variables in order to control the assumptions
that it makes about the amount of space needed or available. See the section
"Controlling Garbage Collection", page 124.

si:gc-flip-minimum-ratio
si:gc-flip-ratio
si:gc-reclaim-immediately-if-necessary

More background information is available, to help you use these variables
appropriately. See the section "Operation of the Garbage Collector", page 117. See
the section "Principles of Garbage Collection", page 113.

Some people find it necessary to have garbage collection working in order to load
large systems. The following strategies are recommended:

• Before loading the system, tum on ephemeral-object garbage collection with the
form (gc-on :ephemeral t) or with the command Start GC :Ephemeral.

• After loading the system, do an immediate garbage collection with the function
gc-immediately or with the command Start GC : Immediately.

• Do both the above.

• After loading the system, do a full garbage collection by calling si:full-gc with
no arguments. Note, though, that si:full-gc does a lot of unnecessary work
and disables multiprocessing, thus causing network connections to be lost.

129

March 1985 Storage Management

17. Reporting the Use of Memory

The room function and variable allow you to examine the current use of physical
and virtual memory in the machine. The current use of memory areas can also be
examined with the Areas option of the Peek utility.

room &rest args Function

room

Tells you the amount of physical memory on the machine, the amount of
available virtual memory not yet filled with data (that is, the portion of the
available virtual memory that has not yet been allocated to any region of any
area), and the amount of "wired" physical memory (that is, memory not
available for paging). Then it tells you how much room is left in some areas.
For each area it tells you about, it prints out the name of the area, the
number of regions that currently make up the area, the current size of the
area in kilowords, and the amount of the area that has been allocated, also
in kilowords. If the area cannot grow, the percentage that is free is
displayed.

(room) tells you about those areas that are in the list that is the value of
the variable room. These are the most interesting ones.

(room areal area2 •••) tells you about those areas, which can be either the
names or the numbers.

(room t) tells you about all the areas.

(room nil) does not tell you about any areas; it only prints the header.
This is useful if you just want to know how much memory is on the
machine or how much virtual memory is available.

Variable
The value of room is a list of area names and/or area numbers, denoting the
areas that the function room will describe if given no arguments. Its initial
value is:

(working-storage-area compiled-function-area)

130

Internals, Processes. and Storage Management March 1985

131

March 1985 Storage Management

18. Resources

Storage allocation is handled differently by different computer systems. In many
languages, you must spend a lot of time thinking about when variables and storage
units are allocated and deallocated. In Lisp, freeing of allocated storage is normally
done automatically by the Lisp system; when an object is no longer accessible to the
Lisp environment, it is garbage collected. This relieves you of a great burden, and
makes writing programs much easier.

However, automatic freeing of storage incurs an expense: more computer resources
must be devoted to the garbage collector. If a program is designed to allocate
temporary storage, which is then left as garbage, more of the computer must be
devoted to the collection of garbage; this expense can be high. In some cases, you
might decide that it is worth putting up with the inconvenience of having to free
storage under program control, rather than letting the system do it automatically, in
order to prevent a great deal of overhead from the garbage collector.

It is usually not worth worrying about freeing of storage when the units of storage
are very small things such as conses or small arrays. Numbers are not a problem,
either; fIXnums and single-precision floating point numbers do not occupy storage.
But when a program allocates and then gives up very large objects at a high rate (or
large objects at a very high rate), it can be very worthwhile to keep track of that
one kind of object manUally. Several programs within the Symbolics computer
system are in this position. The Chaosnet software allocates and frees "packets",
which are moderately large, at a very high rate. The window system allocates and
frees certain kinds of windows, which are very large, moderately often. Both of
these programs manage their objects manually, keeping track of when they are no
longer used.

When we say that a program "manually frees" storage, it does not really mean that
the storage is freed in the same sense that the garbage collector frees storage.
Instead, a list of unused objects is kept. When a new object is desired, the program
first looks on the list to see if one already exists, and if so, uses it. Only if the list
is empty does it actually allocate a new one. When the program is finished with the
object, it returns it to this list.

The functions and special forms in this section perform the above function. The set
of objects forming each such list is called a "resource"; for example, there might be a
Chaosnet packet resource. defresource defines a new resource; allocate-resource
allocates one of the objects; deallocate-resource frees one of the objects (putting it
back on the list); and using-resource temporarily allocates an object and then frees
it.

Resources are not the only facility for manual storage management. See the section
"Consing Lists on the Control Stack", page 26. See the section "The Data Stack",
page 28.

132

Interna/s, Processes, and Storage Management March 1985

defresource name parameters &rest options Special Form
The defresource special form is used to defme a new resource.

name should be a symbol; it is the name of the resource and gets a
defresource property of the internal data structure representing the
resource.

parameters is a lambda-list giving names and default values (if &optional is
used) of parameters to an object· of this type. For example, if you had a
resource of two-dimensional arrays to be used as temporary storage in a
calculation, the resource would typically have two parameters, the number of
rows and the number of columns. In the simplest case parameters is O.

The keyword options control how the objects of the resource are made and
kept track of; the "values" of options are numbers, names, or (often) forms
that follow the option keyword in a call. The following keywords are allowed:

:constructor
The value is either a form or the name of a function. It is
responsible for making an object, and is used when someone tries to
allocate an object from the resource and no suitable free objects exist.
If the value is a form, it can access the parameters as variables. If it
is a function, it is given the internal data structure for the resource
and any supplied parameters as its arguments; it needs to default any
unsupplied optional parameters. This keyword is required.

:initial-copies
The value is a number (or nil, which means 0). This many objects
are made as part of the evaluation of the defresource; this is useful
to set up a pool of free objects during loading of a program. The
default is to make no initial copies.

If initial copies are made and there are parameters, all the parameters
must be &optional and the initial copies have the default values of
the parameters.

:finder
The value is a form or a function as with :constructor and sees the
same arguments. If this option is specified, the resource system does
not keep track of the objects. Instead, the finder must do so. It is
called inside a without-interrupts and must find a usable object
somehow and return it.

:matcher
The value is a form or a function as with :constructor. In addition
to the parameters, a form here can access the variable object (in the
current package). A function gets the object as its second argument,
after the data structure and before the parameters. The job of the
matcher is to make sure that the object matches the specified
parameters. If no matcher is supplied, the system remembers the

March 1985

133

Storage Management

values of the parameters (including optional ones that defaulted) that
were used to construct the object, and assumes that it matches those
particular values for all time. The comparison is done with equal
(not eq). The matcher is called inside a without-interrupts. The
matcher returns t if there is a match, nil if not.

:checker
The value is a form or a function, as above. In addition to the
parameters, a form here can access the variables object and in-use-p
(in the current package). A function receives these as its second and
third arguments, after the data structure and before the parameters.
The job of the checker is to determine whether the object is safe to
allocate. The checker returns (not in-use-p). If no checker is
supplied, the default checker looks only at in-use-p; if the object has
been allocated and not freed it is not safe to allocate, otherwise it is.
The checker is called inside a without-interrupts.

:initializer
The value is either a form or the name of a function. If the value is
a form, it can access the parameters as variables. If it is a function,
it is given the internal data structure for the resource, the object, and
any supplied parameters as its arguments; it needs to default any
unsupplied optional parameters. In addition to the parameters, a
form here can access the variable object (in the current package). If
the initializer is supplied, it is called by the resource allocator after an
object has been allocated.

It sees object and its parameters as arguments when object is about to
be allocated, whether it is being reused or was just created; it can
initialize the object.

:deinitializer
The value is either a form or the name of a function. If it is a form,
it can access the variable object (in the current package). If it is the
name of a function, the function will be called with two arguments:
the internal data structure for the resource, and the object.

If the deinitializer is supplied, it is called when the object is
deallocated. If both :finder and :deinitializer are specified, the
deinitializer is called when the object is deallocated even though the
resource mechanism is not keeping track of the objects.
deallocate-whole-resource calls the deinitializer for objects marked
as in use. clear-resource does not.

:deinitializer should be used when an object being controlled via
resources contains objects that have a chance to be reclaimed by the
garbage collector. The deinitializer should clear references to such
objects.

:free-list-size

134

Internals. Processes. and Storage Management March 1985

The value is a number, with nil meaning the default value of 20
(decimal). :free-Iist-size is the size of the array that the resource
uses to remember the objects it allocates and deallocates.

If these options are used with forms (rather than functions), the forms get
compiled into functions as part of the expansion of defresource. These
functions are given names like
(:property resource-name si:resource-constructor); these names may
change in the future.

Most of the options are not used in typical cases. Here is an example:

(defresource two-dimensional-array (rows columns)
:constructor (make-array (list rows columns»)

Suppose the array were usually going to be 100 by 100, and you wanted to
preallocate one during loading of the program so that the flrst time you
needed an array you would not have to spend the time to create one. You
might simply put:

(using-resource (foo two-dimensiona1-array 100 100)
)

after your defresource, which would allocate a 100 by 100 array and then
immediately free it. Alternatively, you could do this:

(defresource two-dimensional-array
(&optiona1 (rows 100) (columns 100»

:constructor (make-array (list rows columns»
:initial-copies 1)

Here is an example of how you might use the :matcher option. Suppose
you wanted to have a resource of two-dimensional arrays, as above, except
that when you allocate one you do not care about the exact size, as long as it
is big enough. Furthermore, you realize that you are going to have a lot of
different sizes and if you always allocated one of exactly the right size, you
would allocate a lot of different arrays and would not reuse a preexisting
array very often. So you might do the following:

(defresource sloppy-two-dimensiona1-array (rows columns)
:constructor (make-array (list rows columns»
:matcher (and (~ (array-dimension-n 1 object) rows)

(~ (array-dimension-n 2 object) columns»)

Here, an array is fllled with nil when it is initially allocated and when it is
deallocated:

(defresource array-of-temporaries ()
:constructor (make-array 100.)
:initia1izer (si:fi11-array object nil nil)
:deinitia1izer (si:fi11-array object nil nil»

135

March 1985 Storage Management

allocate-resource resource-name &rest parameters Function
Allocates an object from the resource specified by resource-name. The various
forms and/or functions given as options to defresource, together with any
parameters given to allocate-resource, control how a suitable object is found
and whether a new one has to be constructed or an old one can be reused.

Note that the using-resource special form is usually what you want to use,
rather than allocate-resource itself.

deallocate-resource resource-name object Function
Frees the object resource-name, returning it to the free-object list of the
resource specified by object.

deallocate-whole-resource resource-name Function
Deallocates all allocated objects of the resource specified by resource-name,
returning them to the free-object list of the resource. You should use this
function with caution. It marks all allocated objects as free, even if they are
still in use. If you call deallocate-whole-resource when objects are still in
use, future calls to alloeate-resource might allocate those same objects for
another purpose.

clear-resource resource-name Function
Forgets all the objects being remembered by the resource specified by
resource-name. Future calls to allocate-resource create new objects. This
function is useful if something about the resource has been changed
incompatibly, such that the old objects are no longer usable. If an object of
the resource is in use when clear-resource is called, an error is signalled
when that object is deallocated.

map-resource resource-name function &rest args Function
Calls function once for every object in the resource specified by resource-name.
function is called with the following arguments:

• The object
• t if the object is in use, or nil if it is free

• resource-name

• Any additional arguments specified by args

using-resource (variable resource parameters ...) body... Special Fonn
The body forms are evaluated sequentially with variable bound to an object
allocated from the resource named resource, using the given parameters. The
parameters (if any) are evaluated, but resource is not.

using-resource is often more convenient than calling allocate-resource and
deallocate-resource. Furthermore it is careful to free the object when the
body is exited, whether it returns normally or via throw. This is done by
using unwind-protect.

136

Internals, Processes, and Storage Management March 1985

si:describe-resource resource-name Function
Describes the internal data structure for managing the resource named
resource-name. It also tells how many objects have been created in the
resource and, for each object, prints the object, the parameters, and whether
or not the object is in use.

Here is an example of the use of resources:

(defresource huge-16b-array (&optional (size 1000»
:constructor (make-array size :type 'art-16b»

(defun do-complex-computation (x y)
(using-resource (temp-array huge-16b-array)

;Within the body. the array can be used
(aset 5 temp-array i)
... » ;The array is returned at the end

137

March 1985 Index

,

3

)

A

Index

,
make-system 'fep-tape 59

FEP File Properties:
PC Metering on the

Disk Event

sys:

:before-cold option for
:cold option for

:dlsable-servlces option for
:enable-servlces option for

:first option for
:full-gc option for

:Iogln option for
:Iogout option for

:normal option for
:now option for

:once option for
:redo option for
:sHe option for

:system option for
:warm option for

Block number field In disk
Disk

Translate relative file block number Into disk
Unit number field in disk

Disk event tasks currently

3

)

A

32-bit mode data 29
3600 Disk System User Interface 48
3600 Family 61
3600-family Disk System Definitions and

Constants 29
3600-family Disk System User Interface 29
36-bit mode data 29

)BAD-BLOCKS. FEP file 49
)DIR FEP file type 49
)DISK-LABEL.FEP file 49
)FREE-PAGES.FEP file 49
)SEQUENCE-NUMBER.FEP file 49

Accessing Arrays Specially 18
Accessing FEP Files 43
Accessor Functions 33
:actlve-p method of sl:process 92
Active processes 75, 77
actlve-processes variable 80
Adding new keywords to initialization functions 67
add-lnHlallzatlon 67
add-Inltlallzatlon 67
add-lnHlallzatlon 67
add-lnHlalizatlon 67
add-Initialization 67
add-Inltlallzatlon 116
add-lnHlallzatlon 67
add-lnHlallzatlon 67
add-lnHlallzatlon 67
add-Initialization 67
add-inHlallzatlon 67
add-lnHlallzatlon 67
add-lnHiallzatlon 67
add-Inltlallzatlon 67
add-lnHlallzatlon 67
add-lnHiallzatlon function 67
address 29
address 29
address 46
address 29
allocated 33

,

3

)

A

138

Interna/s. Processes. and Storage Management

Disk event tasks thal can be concurrently
Defauh area to

Dea/locatlng

Storage

sys:

Compiled function storage
Packages storage

Property list storage
Symbol print names storage

Symbols storage

sl:
sl:

Constants storage
Interesting

Introduction to
Mapping functions over

Memory management of storage
Storage management of

Defauh
Variable

Number of disk blocks disk
sys:

Defauh area to allocate disk
Disk

Conslng
Accessing

Run and

Process

sl:

allocated 33
allocate disk arrays 31
allocated objects of a resource 135
:allocate message 45
allocate-resource function 135
Allocating and freeing Chaosnet storage

resources 131

March 1985

Allocating and freeing window system storage
resources 131

allocation 131
:allow-unknown-keywords option for

make-stack-group 5
all-processes variable 80
always option for :reset 92
Analyzing Structures 16
area 107
area 107
area 107
area 107
area 107
Area and Region Predicates 108
Area Functions and Variables 104
area-list variable 106
Area name 103
area-name function 106
Area number 103
%area-number function 106
:area option for make-array 31
area-predlcate-all-areas function 108
area-predlcate-areas-wlth-obJects function 108
Areas 103, 121
areas 107
Areas 107
Areas 103
areas 108
areas 103
areas 103
area to allocate disk arrays 31
argument number without consing list 23
array can contain 31
array-column-span function 18
arrays 31
Arrays 31, 35
Arrays on the control stack 26
arrays on the data stack 28
Arrays Specially 18
:arrest-reason method of sl:process 91
Arrest reasons 75
Arrest Reasons 91
:arrest-reasons method of sl:process 91
:arrest-reasons option for make-process 85
assoc function 67
Asynchronous execution of functions 85
Attributes 89
:author FEP file property 48
automatlcally-recover-from-hung-dlsks

variable 38
Automatic error recovery 34

139

March 1985 Index

B

c

Automatic Storage Management 101
Bytes available In a disk block 29

Data cells available In a disk block 29
Available virtual memory 129

Debugger's
Garbage collector run

Dynamic variable
Stack group

Bytes available in a disk
Data cells available in a disk

:hano.p keyword for

Disk
File

Translate relative file

Disk
Number of disk

sys:
sys:

Warm
Clock sequence
Disk sequence

Mouse sequence
Sequence

Referencing

Function
Disk event tasks that

Number of disk blocks disk array

Extracting
Destroying

B

c

backtrace 3
bar 124
Bashing the Process 92
Basic Locking Subprimitlve 17
:before-cold Initialization list 71
:before-cold option for add-Inltlallzatlon 67
Bidirectional disk streams 43, 47
bind function 23
binding 3
bindings 3
Binding stack 3, 5
block 29
block 29
:block disk stream 43
Block disk stream messages 47
block disk stream messages 53
Block Disk Streams 47
:block-In message 47
:block-Iength message 47
Block mode disk streams 42
block not found 40
block number 42, 47
Block number field in disk address 29
block number into disk address 46
:block-out message 47
blocks 29
blocks disk array can contain 31
%block-store-cdr-and-contents function 22
%block-store-tag-and-polnter function 22
boot Initialization 67
break 80
break 80
break 80
break 4, 77
Buffering disk transfers 31
byte fields 21
Bytes available in a disk block 29
Byte specifiers 18

calling 3
can be concurrently allocated 33
can contain 31
Canonical coroutine example 7
:capaclty option for make-area 104
:capaclty-ratlo option for make-area
cdr-code 22
cdr-code field 22
cdr-next variable 19

104

B

c

140

Internals, Processes, and Storage Management

Data
sys:

Allocating and freeing

sl:

How to

sys:

Disk error
Disk Error

Controlling Garbage
Ephemeral-object Garbage

Incremental garbage
Nonincremental garbage

Overview of Garbage
Principles of Garbage

Storage Requirements for Garbage
Controlling the garbage

Garbage
Operation of the Garbage

Output messages from the garbage
Status of garbage

Strategy for Unattended Operation with the Garbage
The Garbage

Using the Garbage
Garbage
Garbage

Printing garbage
Garbage

make-area

Overlapping disk transfers with
Disk event tasks that can be

Disk Error
Error

Variable argument number without

sys:*dlsk-error-codes*
sys:%dlsk-error-devlce-check

sys:%dlsk-error-ecc
sys:%dlsk-error-mlsc

sys:%dlsk-error-not-ready

cdr-nil variable 19
cdr-normal variable 19
cells available In a disk block 29
%change-list-to-cons function 13
:change-property message 48
Chaosnet storage resources 131
:checker option for defresource 132
check-memory-scan macro 111
Check words 29
choose-gc-parameters function 115
Choose Process Priority Levels 87
clear-resource function 135
ciock-function-list variable 80
:clock option for 81 :sb-on 80
Clock sequence break 80
code 33
Codes 39
:cold Initialization IIs1 71
:cold option for add-lnHlallzatlon 67
Collection 124
Collection 119
collection 113
collection 113
Collection 114
Collection 113
Collection 122
collector 115
collector 131
Collector 117
collector 124
collector 124
Collector 128
Collector 113
Collector 114
collector process state 124
collector run bar 124
collector statistics 124
collector warnings 124
command 107
Committed guess 122
complled-functlon-area variable 107
Compiled function storage area 107
computation 50
concurrently allocated 33
Conditions 38
conditions 4
Condition signalling 3
Cons 113
cons-in-area function 103
Conslng 113
Consing arrays on the data stack 28
consing list 23
Consing Usts on the Control Stack 26
constant 39
constant 39
constant 40
constant 40
constant 39

March 1985

March 1985

D

sys:%dlsk-error-overrun
sys:%dlsk-error-search

sys:%dlsk-error-seek
sys:%dlsk-error-select

sys:%dlsk-error-state-machlne
sys:%%dpn-page-num

sys:%%dpn-unlt
3600-famlly Disk System Definitions and

Number of disk blocks disk array can

Arrays on the
Conslng Usts on the

Usts on the

Canonical
Generator

sl:
sl:
sl:
sl:
sl:
sl:
sl:
sl:
sl:
sl:
sl:
sl:
sl:

Disk event tasks

32-bit mode
36-bit mode

FEP file

Consing arrays on the
The

dtp-array
dtp-closure

dtp-complled-functlon

D

141

Index

constant 40
constant 40
constant 40
constant 39
constant 40
constant 30
constant 30
Constants 29
constants-area variable 107
Constants storage areas 107
:constructor option for defresource 132
contain 31
Controlling Garbage Collection 124
Controlling the garbage collector 115
Control stack 3. 5
control stack 26
Control Stack 26
control stack 26
Copying FEP Files 53
Copy space 117
Corou1ine 3
corou1ine example 7
corou1ines 7
count-dlsk-devlce-checks variable 41
count-dlsk-ecc-errors variable 41
count-dlsk-errors-Iost variable 41
count-dlsk-hung-restarts variable 41
count-dlsk-not-ready variable 41
count-dlsk-other-errors variable 41
count-dlsk-overruns variable 41
count-dlsk-search-errors variable 41
count-dlsk-seek-errors variable 41
count-dlsk-select-errors variable 41
count-dlsk-state-machlne-errors variable 41
count-dlsk-stops-Iost variable 41
count-total-dlsk-errors variable 41
:create-data-map message 46
:create symbol in :H-does-not-exlst option for

open 43
Creating a Process 85
:creatlon-date FEP file property 48
currently allocated 33
Current process 77
current-process variable 77. 78
Current stack group 3

data 29
data 29
Data cells available In a disk block 29
data map 46
Data representation type 103
data stack 28
Data Stack 28
data type 12
data type 12
data type 12

D

142

Internals, Processes, and Storage Management

dtp-element-forward
dtp-even-pc

dtp-extended-number
dtp-extemal-value-cell-polnter

dtp-fix
dtp-gc-forward

dtp-header-forward
dtp-header-i

dtp-header-p
dtp-Instance

dtp-Iexlcal-closure
dtp-list

dtp-Iocatlve
dtp-nll

dtp-null
dtp-odd-pc

dtp-one-q-forward
dtp-symbol

Destroying
Extracting

81:

8yS:

81:
81:

Storage Layout
3600-famlly Disk System

:checker option for
:constructor option for

:finder option for
:free-list-size option for
:lnHlal-coplea option for

:Inltlalizer option for
:matcher option for

81:

FEP

Block number field In
Translate relative file block number into

Unit number field in

data type 12
data type 12
data type 12
data type 12
data type 12
data type 12
data type 12
data type 12
data type 12
data type 12
data type 12
data type 12
data type 12
data type 12
data type 12
data type 12
data type 12
data type 12
data type field 22
data type field 22
data-type function 12
%data-type function 16
data-types function 13
Data Type Subprlmi1ives 12
data-types variable 13

March 1985

deallocate-resource function 135
deallocate-whole-resource function 135
Deallocating allocated objects of a resource 135
Debugger's backtrace 3
Default area to allocate disk arrays 31
defauH-cons-area variable 103. 104. 107
defauH-quantum variable 90
default-sequence-break-Interval variable 81
Definitions 18
Definitions and Constants 29
defresource 132
defresource 132
defresource 132
defresource 132
defresource 132
defresource 132
defresource 132
defresource special form 132
delete-Initialization function 69
describe-area function 106
describe-resource function 136
Destroying cdr-code field 22
Destroying data type field 22
Destroying pointer field 22
:direction option for open 43. 48
:dlrectory FEP file property 48
directory name 43
:dlsable-servlces Initialization list 71
:dlsable-servlces option for add-lnHlallzatlon 67
Disk address 29
disk address 29
disk address 46
disk address 29

March 1985

sl:
sl:

Number of disk blocks
sl:
sl:

Defaul1 area to allocate
Bytes available in a

Data cells available in a
sl:

Number of

sys:

sys:
sys:

:dlsk-event method of sl:
:error-type method of sl:

:fIushed-transfer-count method of sl:
sl:

Storing

Peek utility for
sys:
sys:
sys:
sys:
sys:
sys:
sys:

sl:
sl:
sl:
sl:
sl:
sl:
sl:
sl:
sl:
sl:

sl:

sl:
sl:
sl:

Disk and FEP File System Utilities 58
dlsk-array-area variable 31
dlsk-array-block-count function 31
disk array can contain 31
dlsk-array-checkwords function 31
disk-array resource 31
Disk Arrays 31, 35
disk arrays 31
disk block 29
disk block 29
dlsk-block-Iength-In-bytes variable 30
Disk block not found 40
Disk blocks 29
disk blocks disk array can contain 31
Disk drives 29
Disk error code 33
Disk Error Codes 39
dlsk-error-codes constant 39
Disk Error Conditions 38
%dlsk-error-devlce-check constant 39
%dlsk-error-ecc constant 40
dlsk-error -event 38
dlsk-error -event 39
dlsk-error -event 39
dlsk-error-event flavor 38
Disk Error Handling 36
disk error Information 32
Disk Error Meters 41
disk error meters 41
%dlsk-error-mlsc constant 40
%dlsk-error-not-ready constant 39
%dlsk-error-overrun constant 40
%dlsk-error-search constant 40
%dlsk-error-seek constant 40
%dlsk-error-select constant 39
%dlsk-error-state-machlne constant 40
Disk Error Variables 38
Disk Event Accessor Functions 33
dlsk-event-count function 33

143

Index

dlsk-event-enq-task function 33
dlsk-event-error-cyllnder function 34
dlsk-event-error-dcw function 35
dlsk-event-error-flushed-transfer-count function 34
dlsk-event-error-head function 34
dlsk-event-error-sedor function 34
dlsk-event-error-strlng function 34
disk-event-error-type function 33, 36
dlsk-event-error-unlt function 34
:dlsk-event method of sl:dlsk-error-event 38
dlsk-event resource 32
Disk Events 32
dlsk-event-sl2e function 33
dlsk-event-suppress-error-recovery function 34, 36
dlsk-event-task-done-p function 33
Disk event tasks 32
Disk event tasks currently allocated 33
Disk event tasks that can be concurrently

allocated 33

144

Internals, Processes, and Storage Management

Reducing
Minimum

Examples of High

sys:
sl:

:block
:Input

:output
:probe

Block
:hang-p keyword for block

Bidirectional
Block

Block mode
Input and Output

Operating on
3600-family
3600-family

FEP File Properties: 3600

Buffering
Grouping related

Synchronizing
Overlapping

Initializing a
Mounting a

sys:

Disk page number
sys:
IYs:
Disk

Disk latency 50
disk latency 53
disk latency for transfers 50
:dlsk option for sl:sb-on 80
Disk pack 29
Disk page number (DPN) 29
Disk pages 29
Disk Performance 50
Disk Performance 52
Disk read 35
disk-read function 36
dlsk-sector-data-slze32 variable 30
Disk sequence break 80
disk stream 43
disk stream 43
disk stream 43
disk stream 43
Disk stream messages 45
disk stream messages 47
disk stream messages 53
Disk streams 42
disk streams 43, 47
Disk Streams 47
disk streams 42
Disk Streams 46
Disk Streams 45

March 1985

Disk System Defini1ions and Constants 29
Disk System User Interface 29
Disk System User Interface 48
Disk Transfers 35
disk transfers 31
disk transfers 36
disk transfers 32
disk transfers wi1h computation 50
Disk unit 29
Disk Uni1 58
Disk Unit 58
Disk write 35
disk-write function 36
:dont-delete FEP file property 48
(DPN) 29
%%dpn-page-num constant 30
%%dpn-unit constant 30
drives 29
dtp-array data type 12
dtp-closure data type 12
dtp-complled-functlon data type 12
dtp-element-forward data type 12
dtp-even-pc data type 12
dtp-extended-number data type 12
dtp-extemal-value-cell-polnter data type 12
dtp-flx data type 12
dtp-gc-forward data type 12
dtp-header-forward data type 12
dtp-header-I data type 12
dtp-header-p data type 12
dtp-Instance data type 12
dtp-Iexlcal-closure data type 12

145

March 1985 Index

dtp-list data type 12
dtp-Iocatlve data type 12
dtp-nll data type 12
dtp-null data type 12
dtp-odd-pc data type 12
dtp-one-q-forward data type 12
dtp-symbol data type 12
Dynamic space 117
Dynamic variable binding 3

E E E
sl: edH-fep-label function 58

Enabled events 80
:enable-servlces Initialization list 71
:enable-servlces option for add-Initialization 67
Environment stack 3. 5
Ephemeral gc 119
Ephemeral-object Garbage Collection 119

Disk error code 33
Disk Error Codes 39

Error conditions 4
Disk Error Conditions 38
Disk Error Handling 36

Storing disk error information 32
Disk Error Meters 41

Peek utility for disk error meters 41
Automatic error recovery 34

:error symbol in :ff-does-not-exlst option for
open 43

:error symbol in :ff-exlsts option for open 43
:error symbol in :ff-Iocked option for open 43
:error-type method of sl:dlsk-error-event 39

Disk Error Variables 38
:estlmated-Iength option for open 43

Disk Event Accessor Functions 33
Disk Events 32

Enabled events 80
Disk event tasks 32
Disk event tasks currently allocated 33
Disk event tasks that can be concurrently allocated 33

Canonical coroutine example 7
An Example of Stack Groups 7

Examples of High Disk Performance 52
Asynchronous execution of functions 85

meter: expand-range function 62
Extracting cdr -code 22
Extracting data type field 22
Extracting pointer field 21

F F F
PC Metering on the 3600 Family 61

Page fault n
The sys:reset-temporary-area Feature 107

FEP directory name 43
FEP FEP file type 49

146

Internals, Processes, and Storage Management

Increase size of
Inl1la1lzlng a

:author
:creatlon-date

:dlrectory
:dont-delete

:Iength
:truename
Accessing

Copying
Naming of

Writing

Verifying a
Disk and

)DIR
FEP
FILE

FLOD
FSPT
LOAD

MIC
PAGE

Destroying cdr -code
Destroying data type

Destroying pointer
Extracting data type

Extracting pointer
Block number

Unl1 number
Referencing byte

Memory word
)BAD-BLOCKS.FEP

)DISK-LABEL. FEP
)FREE-PAGES.FEP

)SEQUENCE-NUMBER. FEP
Increase size of FEP

Initializing a FEP

Translate relative
FEP

FEP
FEP
FEP

:author FEP
:creatlon-date FEP

:directory FEP
:dont-delete FEP

:Iength FEP

FEP file 45
FEP File 52
FEP file data map 46
FEP File Locks 48
FEP filename format 43

March 1985

FEP File Properties: 3600 Disk System User
Interface 48

FEP file property 48
FEP file property 48
FEP file property 48
FEP file property 48
FEP file property 48
FEP file property 48
FEP Files 43
FEP Files 53
FEP Files 43
FEP Files to Tape 59
FEP File System 42
FEP File System 59
FEP File System Utilities 58
FEP file type 49
FEP file type 49
FEP file type 49
FEP file type 49
FEP file type 49
FEP file type 49
FEP file type 49
FEP file type 49
FEP File Types 49
FEP host 43
field 22
field 22
field 22
field 22
field 21
field in disk address 29
field in disk address 29
fields 21
field variables 18
file 49
file 49
file 49
file 49
file 45
File 52
:file-access-path message 46
File block number 42, 47
file block number into disk address 46
file data map 46
FILE FEP file type 49
File Locks 48
filename format 43
File Properties: 3600 Disk System User Interface 48
file property 48
file property 48
file property 48
file property 48
file property 48

March 1985

:truename FEP
Accessing FEP

Copying FEP
Naming of FEP

Writing FEP
FEP

Verifying a FEP
Disk and FEP

)DIR FEP
FEP FEP
FILE FEP

FLOD FEP
FSPT FEP
LOAD FEP

MIC FEP
PAGE FEP

FEP

sys:
sl :dlsk-error -event

sl:process
sl:slmple-process

Process

sya:

defresource special
%finlsh-functlon-call special

let-If special
let special

progv special
sl:wlth-dlsk-event-task special

%start-functlon-call special
sys:wlth-data-stack special

sys:wlth-stack-array special
using-resource special

without-Interrupts special
wlth-stack-lIst· special
with-stack-list special

FEP filename

Disk block not
Allocating and
Allocating and

file property 48
Files 43
Files 53
Files 43
Files to Tape 59
File System 42
File System 59
File System Utilities 58
file type 49
file type 49
file type 49
file type 49
file type 49
file type 49
file type 49
file type 49
File Types 49
:finder option for defresource 132
%find-structure-extent function 17
%find-structure-header function 16
%find-structure-Ieader function 17
%finlsh-functlon-call special form 23
:first option for add-Inltlallzatlon 67
%fixnum function 14
flavor 38
flavor 95
flavor 95
:flavor option for make-process 85
Flavors 95
Flip 117
FLOD FEP file type 49
%flonum function 13
:fIushed-transfer-count method of

sl:dlsk-error-event 39

147

Index

:flush method of si:process 93
follow-cell-forwarding function 15
follow-structure-forwarding function 15
Forgetting objects remembered by a resource 135
form 132
form 23
form 23
form 23
form 23
form 32
form 23
form 28
form 28
form 135
form 78
form 27
form 27
format 43
Forwarding pointer 20
Forwarding Words in Memory 14
forward-value-cell function 15
found 40
freeing Chaosnet storage resources 131
freeing window system storage resources 131

148

Internals. Processes. and Storage Management

sl:

add-Initlallzatlon
allocate-resource

area-name
%area-number

assoc
bind

choose-gc-parameters
clear-resource

cons-In-area
data-type

%data-type
deallocate-resource

deallocate-whole-resource
delete-Initialization

describe-area
%find-structure-extent

%find-struclure-header
%find-struclure-Ieader
follow-ceil-forwarding

follow-struclure-forwardlng
forward-value-cell

gc-Immedlately
gc-off
gc-on

gc-status
Inltlallzatlons

login
logout

make-area
make-array

%make-polhter
%make-polnter-offset

make-process
make-stack-group

map-resource
meter:expand-range

mBter:funcilon-name-wlth-escapes
meter:funcllon-range

meter:llst-funcilons-ln-bucket
meter:make-pc-array

meter:map-over-funcllons-In-bucket
meter:monltor-all-funcllons

meter:monitor-between-funcllons
meter:prlnt-funcllons-In-bucket

meter:range-of-bucket
meter:report

meter:setup-monitor
meter:start-monltor
meter:stop-monitor

:name option for process-run-restartable-funcllon
open

%p-cdr-code
%p-contents-as-Iocatlve

March 1985

:free-list-size option for defresource 132
Front-end Processor 42
FSPT FEP file type 49
full-gc function 116. 128
:full-gc option for add-Inltiallzatlon 116
function 67
function 135
function 106
function 106
function 67
function 23
function 115
function 135
function 103
function 12
function 16
function 135
function 135
function 69
function 106
function 17
function 16
function 17
function 15
function 15
function 15
function 116
function 116
function 115
function 124
function 69
function 71
function 71
function 104
function 31
function 16
function 16
function 85
function 5
function 135
function 62
function 63
function 63
function 62
function 61
function 63
function 61
function 62
function 62
function 62
function 62
function 62
function 62
function 62
function 87
function 43
function 22
function 20

March 1985

149

Index

%p-contents-as-Iocative-offset function 20
%p-contents-offset function 20

%p-data-type function 22
%p-dpb function 21

%p-dpb-offset function 21
%p-Idb function 21

%p-Idb-offset function 21
%polnter function 16

%polnter-dlfference function 16
%pop function 24

%p-polnter function 21
Presetting a function 75

:prlorlty option for process-run-restar1able-functlon
function 87

process-allow-schedule function n, 79
process-disable function 97
process-enable function 97

process-Inltlal-form function 97
process-Inltlal-stack-group function 97

process-lock function 83
process-name function 97
process-preset function 97

process-reset function 97
proces5-re5et-and-enable function 97

process-run-functlon function 86
process-run-restar1able-function function 87
process-run-temporary-functlon function 87

process-sleep function 79
process-stack-group function 97

process-unlock function 83
process-walt function 77, 79

process-walt-argument-list function 97
process-walt-forever function 79

process-walt-function function 97
process-walt-wlth-tlmeout function 79

process-whostate function 98
%p-store-cdr-code function 22
%p-store-contents function 20

%p-store-contents-offset function 20
%p-store-data-type function 22

%p-store-polnter function 22
%p-store-tag-and-polnter function 20

%push function 24
:quantum option for process-run-restartable-function

function 87
%reglon-number function 106

reset-Inltlallzatlons function 69
:restar1-after-boot option for process-run-restar1able-functlon

function 87
:restar1-after-reset option for process-run-restartable-functlon

room
sl:area-predlcate-all-areas

51 :area-predicate-areas-wlth-objects
sl :data-types

sl:descrlbe-resource
sl :dI5k-array-block-count
51 :dI5k-array-checkwords

function 87
function 129
function 108
function 108
function 13
function 136
function 31
function 31

150

Internals, Processes, and Storage Management

II:dlsk-event-count
II:dllk-event-enq-task

sl:dllk-event-error-cyllnder
II:dlsk-event-error-dcw

sl:dllk-event-error-flulhed-tranlfer-count
II :dllk-event-error -heBd

II:dllk-event-error-sector
II:dllk-event-error-ltring
II :dlsk-event-error-type
sl:dlsk-event-error-unH

sl:dlsk-event-slze
II :dllk-event-Iupprels-error -recovery

sl :dlsk-event-talk-done-p
sl :edlt-fep-Iabel

II:full-gc
II :make-procels-queue

II:map-over-areas
sl:map-over-objecll

II:map-over -objects-In-area
II:map-over-obJectl-ln-reglon

II:map-over-reglons
sl:map-over-reglons-of-area

sl:mount-dlsk-unH
sl :prlnt-fep-fllesystem

sl :procels-dequeue
II :procesl-enqueue

II:process-queue-locker
II :read-fep-Iabel

sl:reglon-predlcate-all-reglons
sl:region-predicate-copyspace

II :region-predicate-list
II:reglon-predlcate-not-ltack-llst

sl:reglon-predlcate-structure
sl:resequence-fep-fllelystem

II:reset-process-queue
sl:retum-dllk-event-task

sl:sb-on
II :set-process-waH

sl:verlfy-fep-fllesystem
II:waH-for-dlsk-done
sl :walt-for-dlsk-event

sl:waH-for-dlsk-event-task
sl:wrlte-fep-Iabel

%stack-frame-polnter
Itack-group-preset

stack-group-resume
stack-group-retum

store-conditional
structure-forward

%structure-total-slze
symeval-In-stack-group
sys:array-column-span

sys:%block-store-cdr-and-contents
sys:%block-store-tag-and-polnter

sys:%change-list-to-cons
sys:dlsk-read

sys:dlsk-write
sys:%fixnum

function 33
function 33
function 34
function 35
function 34
function 34
function 34
function 34
function 33, 36
function 34
function 33
function 34, 36
function 33
function 58
function 116, 128
function 84
function 109
function 111
function 111
function 110
function 110
function 109
function 58
function 59
function 84
function 84
function 84
function 58
function 108
function 109
function 108
function 109
function 108
function 59
function 84
function 33
function n, 80
function 96
function 59
function 33
function 33
function 33
function 58
function 22
function 6
function 4, 6
function 4, 6
function 17
function 14
function 17
function 6
function 18
function 22
function 22
function 13
function 36
function 36
function 14

March 1985

151

March 1985 Index

sys:%flonum function 13
sys:%lnstance-fiavor function 13
sys:make-stack-array function 28

sys:page-In-area function 25
sys:page-In-array function 25

sys:page-In-reglon function 25
sys:page-In-structure function 24

sys:page-In-words function 25
sys:page-out-area function 26

sys:page-out-array function 25
sys:page-out-reglon function 26

sys:page-out-structure function 25
sys:page-out-words function 25
sys:%polnter-Iessp function 15

sys:%polnterp function 15
sys:%polnter-!ype-p function 15

sys:%p-store-cdr-and-contents function 21
sys:%p-store-cdr-type-and-polnter function 21

sys:%p-structure-offset function 20
sys:reset-temporary-area function 107

sys:sg-prevlous-stack-group function 5
sys:%unsynchronlzed-devlce-read function 23

tape:wrlte-fep-files-to-tape function 59
:warm-boot-Cictlon option for process-run-restartCible-functlon

G

meter:
meter:

Adding new keywords to Ini1ialization
Asynchronous execution of

Disk Event Accessor
Other Process

Stack Group
Synchron ization

Area
Mapping
Mapping
Mapping

Complied

Controlling
Ephemeral-object

Incremental
Nonlncremental

OVerview of
Principles of

Storage Requirements for

Controlling the
Operation of the

Output messages from the
Status of

Strategy for Unattended Operation with the
The

Using the

G

function 87
Function calling 3
Function-calllng Subprlmi1ives 23
functlon-name-wHh-escapes function 63
function-range function 63
functions 57
functions 85
Functions 33
Functions 97
Functions 5
Functions 32
Functions and Variables 104
functions over areas 108
functions over objects 108
functions over regions 108
function storage area 107

Garbage Collection 124
Garbage Collection 119
garbage collection 113
garbage collection 113
Garbage Collection 114
Garbage Collection 113
Garbage Collection 122
Garbage collector 131
garbage collector 115
Garbage Collec10r 117
garbage collector 124
garbage collector 124
Garbage Collector 128
Garbage Collector 113
Garbage Collector 114

G

152

Internals, Processes, and Storage Management March 1985

H

Printing

Ephemeral
al:
al:
sl:
al:

al:
al:
al:
al:
al:
al:
sl:
al:

sl:
al:
sl:

Current stack
Presetting the stack

Running stack
Stack
Stack

An Example of Stack
Input/Output In Stack

Resuming of Stack
Stack

Switching stack
Stack

Committed

H

Garbage collector process state 124
Garbage collector run bar 124
garbage collector statistics 124
Garbage collector warnings 124
gc 119
gc-area-reclalm-report variable 125
gc-fllp-Inhlblt-tlme-untll-wamlng variable 128
gc-fllp-mlnlmum-ratlo variable 126
gc-fllp-ratlo variable 126
gc-Immedlately function 116
gc-off function 116
gc-on function 115
gc-on variable 116
:gc option for make-area 104, 107
gc-parameters variable 115
gc-procesa-background-prlorlty variable 128
gc-process-foreground-prlorlty variable 128
gc-process-Immedlate-reclalm-prlorlty variable 127
gc-reclalm-ephemeral-Immedlately variable 127
gc-reclalm-Immedlately-If-necessary variable 127
gc-reclalm-immediately variable 127
gc-report-stream variable 125
gc-status function 124
Gc-status Output 124
gc-wamlng-Interval variable 126
gc-wamlng-ratlo variable 126
gc-wamlng-threshold variable 126
Generator coroutlnes 7
:get message 48
Global variables 3
group 3
group 3
group 3
group bindings 3
Group Functions 5
Grouping related disk transfers 36
Groups 7
Groups 7
Groups 4
Groups 3
groups 4
group switch 3
:grow message 45
guess 122

H
Disk Error Handling 36

:hang-p keyword for block disk stream messages 53
Examples of High Disk Performance 52

FEP host 43
How to Choose Process Priority Levels 87

March 1985

:create symbol in
:error symbol in

nil symbol in

:new-verslon symbol in
nil symbol in

:error symbol In
:overwrlte symbol In

:supersede symbol in

:share symbol in
:error symbol In

Storing disk error
sl:

Warm boot
Adding new keywords to

al:

:before-cold
:cold

:dlsable-servlces
:enable-servlces

:Iogln
:Iogout

:once
:ayBtem

:warm
System

User-created

Introduction to
Order of

151:

sys:

3600-famlly Disk System User
FEP File Properties: 3600 Disk System User

:If-does-not-exlst option for open 43
:If-does-not-exlst option for open 43
:If-does-not-exlst option for open 43
:If-does-not-exlst option for open 43
:If-exlsts option for open 43
:If-exlsts option for open 43
:If-exlsts option for open 43
:If-exlsts option for open 43
:If-exlsts option for open 43
:If-exlsts option for open 43
:If-Iocked option for open 43, 48
:If-Iocked option for open 43
:If-Iocked option for open 43
Increase size of FEP file 45
Incremental garbage collection 113
Information 32
Inhlblt-gc-fllps macro 125
Inhibit-scheduling-flag variable 78
:Inltlal-coples option for defresource 132
:Inltlal-form method of sl:process 89
Initialization 67
Initialization functions 67
Initialization-keywords variable 69
Initialization list 67
Initialization list 71
Initialization list 71
Initialization list 71
Initialization list 71
Initialization list 71
initialization list 71
Initialization list 71
Initialization list 71
Initialization list 71
Initialization Usts 71
Initialization lists 71
Initlaliza1ions 65
Initlallza110ns 67
Initiallzatlons 67
Inltlallzatlons function 69
:Inltlallzer option for defresource 132
Initializing a Disk Unit 58
Initializing a FEP File 52
Inltlal-process variable 80
:Inltlal-stack-group method of sl:process 89
:Inltlal-value option for make-array 31
Inpul/Oulpul in Stack Groups 7
Inpul and Oulpul Disk Streams 46
:Input disk stream 43
%Instance-flavor function 13
Interesting Areas 107
Interface 29
Interface 48
Internals 1
:Interrupt method of al:process 93
Introduction: Processes 75
Introduction to Areas 103
Introduction to Initializations 67

153

Index

I

154

Internals. Processes. and Storage Management

K

L

:hang-p
Adding new

Disk
Reducing disk
Minimum disk

Storage

How to Choose Process Priority

:before-cold initialization
:cold Initialization

:dlsable-servlces initialization
:enable-servlces initialization

Initialization
:Iogln initialization

:Iogout initialization
:once Initialization

:system initialization
Variable argument number without consing

:warm initialization
meter:

System Initialization
User-created initialization

Consing
Property

Returning a
Basic

FEP File

K

L

March 1985

Invisible pointer 14
Invisible pointers 12

keyword for block disk stream messages 53
keywords to initialization functions 67
:klll method of sl:process 93

Lambda-binding Subprimi1ive 23
latency 50
latency 53
latency for transfers 50
Layout Definitions 18
:Iength FEP file property 48
let-If special form 23
let special form 23
Levels 87
Ust 103
list 71
list 71
list 71
list 71
list 67
list 71
list 71
list 71
list 71
list 23
list 71
IIst-functlons-ln-bucket function 62
Usts 71
lists 71
Usts on the control stack 26
Usts on the Control Stack 26
list storage area 107
LOAD FEP file type 49
Locality of Reference 121
Local variables 23
locative pointer 22
Locking Subprimitive 17
Lock queue 84
Locks 83
Locks 48
login function 71
:Iogln Initialization list 71
:Iogln option for add-lnHlallzatlon 67
logout function 71
:Iogout initialization list 71
:Iogout option for add-lnHlallzatlon 67

K

L

March 1985

M
meter:wlth-monHoring
sl :check-memory-scan

sl:lnhlbH-gc-fllps
sl:scannlng-through-memory

stack-let
stack-let·

:capaclty option for
:capaclty-ratlo option for

:gc option for
:name option for

:n-Ievels option for
:read-only option for

:reglon-slze option for
:representatlon option for

:room option for
:slze option for

:swap-recommendatlons option for
sys:%%reglon-scavenge-enable option for

sys:%%reglon-space-lype option for

:area option for
:lnHlal-value option for

:type option for

meter:

:arrest-reasons option for
:flavor option for

:prlorlty option for
:quantum option for

:regular-pdl-area option for
:regular-pdl-slze option for

:run-reasons option for
:sg-area option for

:slmple-p option for
:speclal-pdl-area option for
:speclal-pdl-slze option for

:stack-group option for
:warm-boot-actlon option for

sl:
sys:

:allow-unknown-keywords option for
:regular-pdl-area option for
:regular-pdl-slze option for

:safe option for
:sg-area option for

:speclal-pdl-area option for
:speclal-pdl-slze option for

Automatic Storage
Manual Storage

Overview of Storage
Storage

M
macro 63
macro 111
macro 125
macro 111
macro 27
macro 28
make-area 104
make-area 104
make-area 104, 107
make-area 104
make-area 104
make-area 104
make-area 104
make-area 104
make-area 104
make-area 104
make-area 104
make-area 104
make-area 104
make-area command 107
make-area function 104
make-array 31
make-array 31
make-array 31
make-array function 31
make-pc-array function 61
%make-polnter function 16
%make-polnter-offset function 16
make-process 85
make-process 85
make-process 85
make-process 85
make-process 85
make-process 85
make-process 85
make-process 85
make-process 85
make-process 85
make-process 85
make-process 85
make-process 85
make-process function 85
make-process-queue function 84
make-stack-array function 28
make-stack-group 5
make-stack-group 5
make-stack-group 5
make-stack-group 5
make-stack-group 5
make-stack-group 5
make-stack-group 5
make-stack-group function 5
make-system 'fep-tape 59
Management 101
Management 101
Management 101
management 99

155

Index

M

156

Internals, Processes, and Storage Management

Storage
Memory
Pointer

FEP file data

al:
meter:

al:
al:
al:
al:
al:

Memory

Available virtual
Forwarding Words in

Physical
Reporting the Use of

Virtual

Special

:allocate
:block-In

:block-Iength
:block-out

:change-property
:create-data-map
:flle-accesa-path

:get
:grow

:map-block-no
:wrlte-data-map

Block disk stream
Disk stream

:hang-p keyword for block disk stream
Process
Output

PC

Disk Error

management of areas 103
management of storage areas 103
Manipulation 15
Manual Storage Managemen1 101
map 46

March 1985

:map-block-no message 46
map-over-areas function 109
map-over-functlons-In-bucket function 63
map-over-obJects function 111
map-over-objects-In-area function 111
map-over-obJects-ln-reglon function 110
map-over-reglona function 110
map-over-reglons-of-area function 109
Mapping functions over areas 108
Mapping functions over objects 108
Mapping functions over regions 108
Mapping Routines 109
Mapping Tools 108
map-resource function 135
:matcher option for defresource 132
memory 129
Memory 14
memory 129
Memory 129
memory 114
Memory management of storage areas 103
Memory Mapping Tools 108
Memory Referencing 20
Memory word field variables 18
message 45
message 47
message 47
message 47
message 48
message 46
message 46
message 48
message 45
message 46
message 46
messages 47
messages 45
messages 53
Messages 89
messages from the garbage collector 124
meter:expand-range function 62
meter:functlon-name-wllh-escapes function 63
meler:functlon-range function 63
Metering on the 3600 Family 61
meter:lIst-functlons-ln-bucket function 62
meter:make-pc-array function 61
meter:map-over-functlons-In-bucket function 63
meter:monltor-all-functlons function 61
meter:monHor -between-functions function 62
meter:prlnt-functlons-In-bucket function 62
meter:range-of-bucket function 62
meter:report function 62
Meters 41

March 1985

Peek u1i111y for disk error

:dlsk-event
:error-type

:fIushed-transfer-count
:actlve-p

:arrest-reason
:arrest-reasons

:flush
:Inltlal-form

:Inltlal-stack-group
:Interrupt

: kill
:name
:preset

:prtority
:quantum

:quantum-remaining
: reset

:revoke-arrest-reason
:revoke-run-reason

:runnable-p
:run-reason

:run-reasons
:set-prtority

:set-quantum
:set-warm-boot-actlon

:slmple-p
:stack-group

:wait-argument-ilst
:walt-functlon

:warm-boot-actlon
:whostate

System
User

32-bit
36-bit
Block

meter:
meter:

sl:

meters 41
meter:setup-monltor function 62
meter:start-monltor function 62
meter:stop-monltor function 62
meter:wlth-monltortng macro 63
method of sl:dlsk-error-event 38
method of sl:dlsk-error-event 39
method of sl:dlsk-error-event 39
method of sl:process 92
method of sl:process 91
method of sl:process 91
method of sl:process 93
method of sl:process 89
method of sl:process 89
method of sl:process 93
method of sl:process 93
method of sl:process 89
method of sl:process 92
method of sl:process 90
method of sl:process 90
method of sl:procesa 90
method of sl:process 92
method of sl:process 92
method of sl:process 91
method of sl:process 92
method of si:process 91
method of sl:process 91
method of sl:process 90
method of sl:process 90
method of sl:process 91
method of sl:process 91
method of sl:process 89
method of sl:process 90
method of sl:process 89
method of sl:process 91
method of sl:process 90
MIC FEP file type 49
Minimum disk latency for transfers 50
mode 29
mode 29
mode data 29
mode data 29
mode disk streams 42
monitor-ail-functions function 61
monltor-between-functlons function 62
mount-dlsk-unlt function 58
Mounting a Disk Unit 58
:mouse option for sl:sb-on 80
Mouse sequence break 80
Multiprocessing 75

157

Index

158

Internals, Processes, and Storage Management

N

o

FEP directory
Area

Symbol prim

II:
Adding

Disk block

Area
File block

Unit
Disk page

Block
Unit

Translate relative file block

Variable argument

Mapping functions over
Deallocating allocated

Forgetting

:create symbol in :ff-does-not-exlst option for
:dlrectlon option for

:error symbol in :If-does-not-exlst option for
:estlmated-Iength option for
:if-does-not-exlst option for

:If-exlsts option for
:If-Iocked option for

:new-verslon symbol in :If-exlstl option for
nil symbol In :If-exlsts option for

:number-of-dlsk-blocks option for
:share symbol in :If-Iocked option for

:error symbol in :If-exlsts option for
:error symbol in :If-Iocked option for

nil symbol in :If-does-not-exlst option for

N

o

March 1985

name 43
name 103
:name method of 1I:process 89
:name option for make-area 104
:name option for process-run-functlon 86

N

:name option for process-run-restartable-functlon
function 87

Names of processes 87
names storage area 107
Naming of FEP Files 43
n-disk-retrles variable 36, 38
new keywords to initialization functions 67
New space 117
:new-verslon symbol in :If-exlsts option for

open 43
nil symbol in :If-does-not-exlst option for open 43
nil symbol in :If-exlsts option for open 43
:n-Ievels option for make-area 104
Nonincremental garbage collection 113
:normal option for add-lnHlalizatlon 6i
not found 40
No-unwind options for:reset 92
:now option for add-lnHlallzatlon 67
number 103
number 42, 47
number 29
number (DPN) 29
number field in disk address 29
number field in disk address 29
number into disk address 46
Number of disk blocks disk array can contain 31
:number-of-dlsk-blocks option for open 43, 46
number without consing list 23

objects 108
objects of a resource 135
objects remembered by a resource 135
Old space 117
:once initialization list 71
:once option for add-lnHlallzatlon 67
open 43
open 43,48
open 43
open 43
open 43
open 43
open 43,48
open 43
open 43
open 43,46
open 43
open 43
open 43
open 43

o

March 1985

:overwrHe symbol In :If-exlsts option for
:supersede symbol In :If-exlsts option for

Strategy for Unattended
:before-cold

:cold
:dlsable-servlces
:enable-servlces

:first
:full-gc

:Iogln
:Iogout

: normal
:now

:once
: redo
:stte

:system
:warm

:checker
:constructor

:finder
:free-list-size
:Inttlal-coples

:Inttializer
:matcher
:capactty

:capactty-ratlo
:gc

:name
:n-Ievels

:read-only
:reglon-slze

:representatlon
: room

:slze
:swap-recommendatlons

sys:%%reglon-scavenge-enable
sys:%%reglon-space-type

:area
:Inttlal-value

:type
:arrest-reasons

:flavor
:prlortty

:quantum
:regular-pdl-area
:regular -pdl-slze

:run-reasons
:sg-area

:slmple-p
:speclal-pdl-area
:speclal-pdl-slze

:stack-group
:warm-boot-actlon

:aI low-un known-keywords

open 43
open 43
open function 43
Operating on Disk S1reams 45
Operation of the Garbage Collector 117
Operation with the Garbage Collector 128
option for add-Inttlallzatlon 67
option for add-Inttlallzatlon 67
option for add-Inttlallzatlon 67
option for add-Inttlallzatlon 67
option for add-Inttlallzatlon 67
option for add-Inttlallzatlon 116
option for add-Inltlallzatlon 67
option for add-Inttlallzatlon 67
option for add-Inttlallzatlon 67
option for add-Inttlallzatlon 67
option for add-Inttlallzatlon 67
option for add-Inttlallzatlon 67
option for add-Inttlallzatlon 67
option for add-Inttlallzatlon 67
option for add-Inttlallzatlon 67
option for defresource 132
option for defresource 132
option for defresource 132
option for defresource 132
option for defresource 132
option for defresource 132
option for defresource 132
option for make-area 104
option for make-area 104
option for make-area 104. 107
option for make-area 104
option for make-area 104
option for make-area 104
option for make-area 104
option for make-area 104
option for make-area 104
option for make-area 104
option for make-area 104
option for make-area 104
option for make-area 104
option for make-array 31
option for make-array 31
option for make-array 31
option for make-process 85
option for make-process 85
option for make-process 85
option for make-process 85
option for make-process 85
option for make-process 85
option for make-process 85
option for make-process 85
option for make-process 85
option for make-process 85
option for make-process 85
option for make-process 85
option for make-process 85
option for make-stack-group 5

159

Index

160

Internals, Processes, and Storage Management

:regular-pdl-area
:reguiar-pdl-lize

:safe
:ag-area

:speclal-pdl-area
:apeclal-pdl-Ilze

:create symbol In :If-does-not-exllt
:dlrectlon

:error symbol in :If-does-not-exllt
:estlmated-Iength
:If-does-not-exlst

: If-exIstl
: If-locked

:new-verslon symbol In :If-exlstl
nil symbol in :If-exlsts

:number-of-dllk-blocks
:share symbol In :If-Iocked

:error symbol in :If-exlsts
:error symbol In :If-Iocked

nil symbol in :If-does-not-exlst
:overwrHe symbol in :If-exlsts

:supersede symbol In :If-exlsts
:name

:prlorlty
:quantum

:restart-after -boot
:restart-after-reset
:warm-boot-actlon

:name

:priority

:quantum

: restart-after -boot

:restart-after -reset

:warm-boot-actlon

always
:clock
:disk

:mouse
No-unwind

Gc-status

Input and

option for make-stack-group 5
option for make-stack-group 5
option for make-stack-group 5
option for make-stack-group 5
option for make-stack-group 5
option for make-stack-group 5
option for open 43
option for open 43, 48
option for open 43
option for open 43
option for open 43
option for open 43
option for open 43, 48
option for open 43
option for open 43
option for open 43, 46
option for open 43
option for open 43
option for open 43
option for open 43
option for open 43
option for open 43
option for process-run-functlon 86
option for process-run-functlon 86
option for process-run-function 86
option for process-run-functlon 86
option for process-run-functlon 86
option for process-run-functlon 86

March 1985

option for process-run-restartable-functlon
function 87

option for process-run-restartable-functlon
function 87

option for process-run-restartable-functlon
function 87

option for process-run-restartable-functlon
function 87

option for process-run-restartable-functlon
function 87

option for process-run-restartable-functlon
function 87

option for :reset 92
option for sl:sb-on 80
option for si :sb-on 80
option for 51 :sb-on 80
options for:reset 92
Order of initializations 67
Other Process Functions 97
Output 124
:output disk stream 43
Output Disk Streams 46
Output messages from the garbage collector 124
Overlapping disk transfers with computation 50
Overview of Garbage Collection 114
Overview of Storage Management 101
:overwrlte symbol in :1f-exlst5 option for open 43

March 1985

p
Disk

sya:
sys:
sys:
sya:
sya:
Disk
sya:
sys:
sys:
sys:
sys:
Disk

The

Disk
Examples of High Disk

sl:

Forwarding
Invisible

Returning a locative

Destroying
Extracting

sys:

sya:

Invisible
sys:

Area and Region

p
pack 29
Packages storage area 107
Page fault n
PAGE FEP file type 49
page-In-area function 25
page-In-array function 25
page-In-reglon function 25
page-in-structure function 24
page-In-words function 25
page number (DPN) 29
page-out-area function 26
page-out-array function 25
page-out-reglon function 26
page-out-structure function 25
page-out-words function 26
pages 29
Paging 121
Paging space 114
Paging System 24
%p-cdr-code function 22
PC Metering on the 3600 Family 61
%p-contents-as-Iocatlve function 20
%p-contents-as-Iocatlve-offset function 20
%p-contents-offset function 20
%p-data-type function 22
%p-dpb function 21
%p-dpb-offset function 21
Peek utility for disk error meters 41
Performance 50
Performance 52
Permanent process 85
permanent-storage-area variable 107
Physical memory 129
pkg-area variable 107
%p-Idb function 21
%p-Idb-offset function 21
pname-area variable 107
pointer 20
pointer 14
pointer 22
%polnter-dlfference function 16
pOinter field 22
pointer field 21
%polnter function 16
%polnter-Iessp function 16
Pointer Manipulation 15
%polnterp function 15
Pointers 20
pointers 12
%polnter-type-p function 15
%pop function 24
%p-polnter function 21
Predicates 108
:preset method of sl:process 92
Presetting a function 75
Presetting the stack group 3
Principles of Garbage Collection 113

161

Index

p

162

Internals, Processes, and Storage Management

81:
meter:

Symbol
How to Choose Process

Samefrlnge
:acllve-p method of 81:

:arrest-rea80n method of 81:
:arrest-reason8 method of 81:

Bashing the
Creating a

Current
:flush method of 81:

:lnHlal-form method of 81:
:lnHlal-slack-group method of 81:

:Interrupt method of 81:
:klll method of 81:

:name method of 81:
Permanent

:preset method of 81:
:prlorlty method of 81:

:quantum method of 81:
:quantum-remalnlng method of 81:

:reset method of 81:
Resetting a

:revoke-arrest-re880n method of 81:
:revoke-run-reason method of sl:

:runnable-p method of II:
:run-reason method of II:

:run-rea80n8 method of 81:
:set-prlorlty method of II:

:8et-quantum method of II:
:set-warm-boot-actlon method of 81:

Simple
:8Imple-p method of sl:

:Itack-group method of sl:
:waH-argument-list method of 81:

:walt-functlon method of II:
:warm-boot-actlon method of II:

:wholtate method of 81:

II:

sl:

Active
Introduction:

Names of
Restarting

Stopped

prlnt-fep-fllesyltem function 59
prlnt-functlons-In-bucket function 62
Printing garbage collector statistics 124
print names storage area 107
Priority Levels 87
:prlorlty method of sl:process 90
:prlorlty option for make-process 85

March 1985

:prlorlty option for process-run-functlon 86
:priority option for process-run-restartable-functlon

function 87
:probe disk stream 43
problem 7
process 92
process 91
process 91
Process 92
Process 85
process n
process 93
process 89
process 89
process 93
process 93
process 89
process 85
process 92
procesl 90
process 90
process 90
process 92
process 75
process 92
process 91
process 92
procell 91
process 91
process 90
process 90
procesl 91
process 95
process 91
process 89
process 90
procesl 89
process 91
process 90
process-allow-schedule function n, 79
Process Attributes 89
process-dequeue function 84
process-dlsable function 97
process-enable function 97
process-enqueue function 84
Processes 73
processes 75, n
Processes 75
processes 87
processes 92
processes 75

March 1985

Stopping
sl:

Other

Front-end

How to Choose
sl:

:name option for
:prtority option for

:quantum option for
:restart-after-boot option for
:restart-after-reset option for
:warm-boot-actlon option for

:name option for
:prtority option for

:quantum option for
:restart-aner-boot option for

:restart-after-reset option for
:warm-boot-actlon option for

Garbage collector

FEP File
:author FEP file

:creatlon-date FEP file
:dlrectory FEP file

:dont-delete FEP file
:Iength FEP file

:truename FEP file

sys:

sys:

163

Index

processes 92
process flavor 95
Process Flavors 95
Process Functions 97
process-lnHlal-form function 97
process-Inltlal-stack-group function 97
process-lock function 83
Process Messages 89
process-name function 97
Processor 42
process-preset function 97
Process Priority Levels 87
process-queue-Iocker function 84
process-reset-and-enable function 97
process-reset function 97
process-run-functlon 86
process-run-functlon 86
process-run-functlon 86
process-run-functlon 86
process-run-functlon 86
process-run-functlon 86
process-run-functlon function 86
proce!m-run-restartable-functlon function 87
process-run-restartable-functlon function 87
process-run-restartable-functlon function 87
process-run-restartable-functlon function 87
process-run-restartable-functlon function 87
process-run-restartable-functlon function 87
process-run-restartable-functlon function 87
process-run-temporary-functlon function 87
process-sleep function 79
process-stack-group function 97
process state 124
process-unlock function 83
process-waH-argument-list function 97
process-waH-forever function 79
Process waft-function 75
process-waH function n. 79
process-waH-functlon function 97
process-waH-wHh-tlmeout function 79
process-whostate function 98
progv special form 23
Properties: 3600 Disk System User Interface 48
property 48
property 48
property 48
property 48
property 48
property 48
property-list-area variable 107
Property list storage area 107
%p-store-cdr-and-contents function 21
%p-store-cdr-code function 22
%p-store-cdr-type-and-polnter function 21
%p-store-contents function 20
%p-store-contents-offset function 20
%p-store-data-type function 22
%p-store-polnter function 22

164

Internals, Processes, and Storage Management March 1985

%p-store-tag-and-polnter function 20
eys: %p-structure-otrset function 20

%push function 24

Q Q Q
%%q-all-but-cdr-code variable 19
%%q-all-but-polnter variable 19
%%q-all-but-typed-polnter variable 19
%%q-cdr-code variable 19
%%q-data-type variable 19
%%q-polnter variable 19
%%q-polnter-wlthln-page variable 19
%%q-typed-polnter variable 19
:quantum method of sl:process 90
:quantum option for make-process 85
:quantum option for process-run-functlon 86
:quantum option for process-run-restartable-

function function 87
:quantum-remalnlng method of sl:process 90

Lock queue 84
Unlock queue 84

R R R
meter: range-of-bucket function 62

Disk read 35
sl: read-fep-Iabel function 58

Read-locked 48
:read-only option for make-area 104

Arrest reasons 75
Run reasons 75

Run and Arrest Reasons 91
Automatic error recovery 34

:redo option for add-lnHlallzatlon 67
Reducing disk latency 53

Locality of Reference 121
Special Memory Referencing 20

Referencing byte fields 21
%reglon-number function 106

sl: reglon-predlcate-all-reglons function 108
sl: reglon-predicate-copyspace function 109
sl: region-predicate-list function 108
sl: region-predicate-not-stack-list function 109

Area and Region Predicates 108
sl: reglon-predlcate-structure function 108

Regions 103
Mapping functions over regions 108

eys: %%reglon-scavenge-enable option for
make-area 104

:reglon-slze option for make-area 104
sys: %%reglon-space-type option for make-area 104

:regular-pdl-area option for make-process 85
:regular-pdl-area option for make-stack-group 5
:regular-pdl-slze option for make-process 85
:regular-pdl-slze option for make-stack-group 5

Grouping related disk transfers 36

March 1985

Translate
Forgetting objects

meter:

Data
Storage

si:
always option for

No-unwind options for

sl:
The sys:

sys:

Deallocating allocated objects of a
Forgetting objects remembered by a

ai :disk-array
sl:disk-event

Allocating and freeing Chaosnet storage
Allocating and freeing window system storage

sl:

Mapping

Garbage collector

165

Index

relative file block number into disk address 46
remembered by a resource 135
report function 62
Reporting the Use of Memory 129
:representation option for make-area 104
representation type 103
Requirements for Garbage Collection 122
resequence-fep-filesystem function 59
:reset 92
:reset 92
reset-initiallzatlons function 69
:reset method of sl:process 92
reset-process-queue function 84
reset-temporary-area Feature 107
reset-temporary~area function 107
Resetting a process 75
resource 135
resource 135
resource 31
resource 32
Resources 131
resources 131
resources 131
:restart-after-boot option for

process-run-functlon 86
:restart-after-boot option for process-run-restartable

function function 87
:restart-after-reset option for

process-run-function 86
:restart-after-reset option for process-run-restartable-

function function 87
Restarting processes 92
Resumer 4
Resuming of Stack Groups 4
Resumption 3
retum-dlsk-event-lask function 33
Returning a locative pointer 22
:revoke-arrest-reason method of sl:process 92
:revoke-run-reason method of sl:process 91
room function 129
:room option for make-area 104
room variable 129
Routines 109·
Run and Arrest Reasons 91
run bar 124
:runnable-p method of sl:process 92
Running stack group 3
:run-reason method of sl:process 91
Run reasons 75
:run-reasons method of sl:process 91
:run-reasons option for make-process 85

166

Internals, Processes, and Storage Management

s
:clock option for sl:
:dlsk option for sl:

:mouse option for sl:
sl:
sl:

The
sys:

Clock
Disk

Mouse

81:

meter:

sys:

:dlsk-event method of
:error-type method of

:fIushed-transfer-count method of

s

March 1985

:safe option for make-Btack.group 5
Samefringe problem 7
sb-on 80
sb-on 80
sb-on 80
sb-on function n, 80
scannlng-through-memory macro 111
Scheduler 4
Scheduler n
scheduler-&tack.group variable 79
Sequence break 4, n
sequence break 80
sequence break 80
sequence break 80
:set-prlorlty method of sl:process 90
set-process-walt function 96
:set-quantum method of sl:process 90
setup-monitor function 62
:set-warm-boot-actlon method of sl:process 91
SG 3
:sg-area option for make-process 85
:sg-area option for make-stack.group 5
sg-prevlous-Btack.group function 5
:share symbol in :If-Iocked option for open 43
sl:area-predlcate-all-areas function 108
sl:area-predlcate-areas-wlth-obJects function 108
sl:*automatlcally-recover-from-hung-dlsks*

variable 38
sl:check-memory-scan macro 111
sl:*count-disk-devlce-checks* variable 41
sl:*count-dlsk-ecc-errors* variable 41
sl :*c,::,-unt-disk-errors-Iost* variable 41
sl:*count-disk-hung-restarts* variable 41
sl:*count-dlsk-not-ready* variable 41
sl:*count-disk-other-errors* variable 41
sl:*count-dlsk-overruns* variable 41
sl :*count-disk-search-errors* variable 41
sl :*count-disk-seek-errors* variable 41
sl :*count-dlsk-select-errors* variable 41
sl:*count-disk-state-machlne-errors* variable 41
sl :*count-disk-stops-Iost* variable 41
sl :*count-totQ~-disk-errors* variable 41
sl:data-types function 13
sl:default-quantum variable 90
sl:*default-sequence-break-Interval* variable 81
sl:describe-resource function 136
sl:disk-array-area variable 31
sl:disk-array-block-count function 31
sl:disk-array-checkwords function 31
si:disk-array resource 31
sl:dlsk-block-Iength-In-bytes variable 30
sl:disk-error-event 38
sl:dlsk-error-event 39
sl:dlsk-error-event 39
sl:disk-error-event flavor 38
sl:disk-event-count function 33
sl:disk-event-enq-task function 33

s

March 1985

sl:
Condition

sl:

:actlve-p method of
:arrest-reason method of

:arrest-reasons method of
:flush method of

167

Index

sl:dlsk-event-error-cytlnder function 34
sl:dlsk-event-error-dcw function 35
sl :dlsk-event-error -flushed-transfer -count

function 34
sl:dlsk-event-error-head function 34
sl:dlsk-event-error-sector function 34
sl:dlsk-event-error-strlng function 34
sl:dlsk-event-error-type function 33. 36
sl:dlsk-event-error-unlt function 34
sl:dlsk-event resource 32
sl:dlsk-event-slze function 33
sl:dlsk-event-suppress-error-recovery function 34.

36
sl:dlsk-event-task-done-p function 33
sl:dlsk-sector-dala-slze32 variable 30
sl:edlt-fep-Iabel function 58
sl:full-gc function 116. 128
sl:gc-area-reclalm-report variable 125
sl:gc-fllp-Inhiblt-tlme-untll-wamlng variable 128
sl:gc-fllp-mlnlmum-ratlo variable 126
sl:gc-flip-ratio variable 126
sl:*gc-parameters* variable 115
sl:gc-process-background-prlorlty variable 128
sl:gc-process-foreground-prlorlty variable 128
si:gc-process-Immedlate-reclalm-prlorlty

variable 127
sl:gc-reclalm-ephemeral-Immedlalely variable 127
sl:gc-reclalm-Immediately-if-necessary

variable 127
sl:gc-reclalm-Immedlately variable 127
sl:gc-report-stream variable 125
sl:gc-wamlng-Interval variable 126
sl:gc-waming-ratlo variable 126
sl:gc-wamlng-threshold variable 126
signal-disk-errors-from-enqueue-p variable 38
signalling 3
si:inhibit-gc-fllps macro 125
sl:inltlallzatlon-keywords variable 69
sl:lnltial-process variable 80
sl:make-process-queue function 84
sl:map-over-areas function 109
sl:map-over-objects function 111
si:map-over-objects-In-area function 111
sl:map-over-objects-In-reglon function 110
sl:map-over-reglons function 110
si:map-over-reglons-of-area function 109
si:mount-disk-unlt function 58
:slmple-p method of sl:process 91
:slmple-p option for make-process 85
Simple process 95
slmple-process flavor 95
sl:*n-dlsk-retrles* variable 36. 38
sl:pkg-area variable 107
si:prlnt-fep-filesyslem function 59
sl:process 92
sl:process 91
sl:process 91
sl:process 93

168

Internals, Processes, and Storage Management

:lnHlal-fonn method of
:lnHlal-stack-group method of

:Interrupt method of
:klll method of

:name method-of
:preset method of

:priorlty method of
:quantum method of

:quantum-remalnlng method of
:reset method of

:revoke-arrest-reason method of
:revoke-run-reason method of

:runnable-p method of
:run-reason method of

:run-reasons method of
:set-prlorlty method of

:set-quantum method of
:set-wann-boot-actlon method of

:llmple-p method of
:Itack-group method of

:waH-argument-liat method of
:walt-functlon method of

:wann-boot-actlon method of
:whostatc:l method of

:clock option for
:dlsk option for

:mouse option for

Increase

Copy
Dynamic

New
Old

al:process 89
al:process 89
II:process 93
sl:process 93
al:process 89
II:process 92
al:process 90
sl:process 90
sl:process 90
al:process 92
al:process 92
al:process 91
al:process 92
al:process 91
al:process 91
sl:process 90
al:procesl 90
al:process 91
al:process 91
al:process 89
al:procesl 90
sl:procesl 89
al:process 91
al:process 90
sl:process-dequeue function 84
al:process-enqueue function 84
II:process flavor 95

M8Ich 1985

al:process-queue-Iocker function 84
sl:read-fep-Iabel function 58
sl:reglon-predlcate-all-reglons function 108
sl:reglon-predlcate-copyspace function 109
sl:region-predicate-list function 108
sl:region-predicate-not-stack-list function 109
sl:reglon-predlcate-structure function 108
sl:resequence-fep-fllesystem function 59
sl:reset-process-queue function 84
sl:retum-dlsk-event-task function 33
sl:sb-on 80
11:sb-on 80
sl:sb-on 80
sl:sb-on function 77, 80
sl:scannlng-through-memory macro 111
sl:set-process-walt function 96
sl:*slgnal-disk-errors-from-enqueue-p* variable 38
sl:simple-process flavor 95
:site option for add-Inltlallzatlon 67
II:verlfy-fep-filesystem function 59
II:walt-for-dlsk-done function 33
sl:walt-for-dlsk-event function 33
II :walt-for -dlsk-event-task function 33
sl:wlth-dlsk-event-task special form 32
sl:wrlte-fep-Iabel function 58
size of FEP file 45
:slze option for make-area 104
space 117
space 117
space 117
space 117

March 1985

Paging
Static
Swap

defresource
%flnlsh-functlon-call

let
let-If

progv
sl :wnh-dlsk-event-task

%start-functlon-call
sys:wnh-data-stack

sys:wlth-stack-array
using-resource

wHhout-lnterrupts
wHh-stack-list

wlth-stack-lIst·
Accessing Arrays

Byte
Arrays on the control

Binding
Conslng arrays on the data

Conslng Usts on the Control
Control

Environment
Usts on the control

The Data

Current
Presetting the

Running

An Example of
Input/Output in

Resuming of
SWitching

meter:
Garbage collector process

Printing garbage collector

meter:

space 114
space 117
space 114
special form 132
special form 23
special form 23
special form 23
special form 23
special form 32
special form 23
special form 28
special form 28
special form 135
special form 78
special form 27
special form 27
Specially 18
Special Memory Referencing 20

169

Index

:speclal-pdl-area option for make-process 85
:speclal-pdl-area option for make-stack-group 5
:speclal-pdl-slze option for make-process 85
:speclal-pdl-slze option for make-stack-group 5
specifiers 18
stack 26
stack 3, 5
stack 28
Stack 26
stack 3, 5
stack 3, 5
stack 26
Stack 28
%stack-frame-polnter function 22
stack group 3
stack group 3
stack group 3
Stack group bindings 3
Stack Group Functions 5
:stack-group method of sl:process 89
:stack-group option for make-process 85
stack-Group-preset function 6
stack-group-resume function 4, 6
stack-group-return function 4, 6
Stack Groups 3
Stack Groups 7
Stack Groups 7
Stack Groups 4
stack groups 4
Stack group switch 3
stack-let macro 27
stack-let· macro 28
%start-functlon-call special form 23
start-monnor function 62
state 124
Static space 117
statistics 124
Status of garbage collector 124
stop-monnor function 62
Stopped processes 75

170

Internals, Processes, and Storage Management

Complied function
Packag~s

Property list
Symbol print names

Symbols
Constants

Memory management of

Automatic
Manual

OVerview of

Allocating and freeing Chaosnet
Allocating and freeing window system

:block disk
:Input disk

:output disk
:probe disk

Block disk
Disk

:hang-p keyword for block disk
Bidirectional disk

Block Disk
Block mode disk

Disk
Input and Output Disk

Operating on Disk

Wiring a

Analyzing

Basic Locking
lambda-binding

Data Type
Function-caJling

Stack group

:create
:error

nil
:new-verslon

nil
:error

:overwrHe

Stopping processes 92
Storage allocation 131
storage area 107
storage area 107
storage area 107
storage area 107
storage area 107
storage areas 107
storage areas 103
Storage Layout Definitions 18
Storage management 99
Storage Management 101
Storage Management 101
Storage Management 101
Storage management of areas 103

March 1985

Storage Requirements for Garbage Collection 122
storage resources 131
storage resources 131
store-condHlonai function 17
Storing disk error Information 32
Strategy for Unattended Operation with the Garbage

Collector 128
stream 43
stream 43
stream 43
stream 43
stream messages 47
strP2lm messages 45
stream messages 53
streams 43. 47
Streams 47
streams 42
streams 42
Streams 46
Streams 45
Structure 103
structure 35
structure-forward function 14
Structures 16
%structure-total-slze function 17
Subprimltive 17
Subprimltive 23
Subprimitives 11
Subprimitlves 12
Subprimitives 23
:supersede symbol In :If-exlsts option for open 43
:swap-recommendatlons option for make-area 104
Swap space 114
switch 3
Switching stack groups 4
symbol-area variable 107
symbol In :If-does-not-exlst option for open 43
symbol In :If-does-not-exlst option for open 43
symbol In :If-does-not-exlst option for open 43
symbol In :If-exlsts option for open 43
symbol In :If-exlsts option for open 43
symbol In :If-exlsts option for open 43
symbol In :If-exlsts option for open 43

171

March 1985 Index

:supersedo symbol In :If-exlsta option for open 43
:share symbol In :If-Iocked option for open 43
:error symbol In :If-Iocked option for open 43

Symbol print names storage area 107
Symbols storage area 107
Iymeval-In-stack-group function 6
Synchronization Functions 32
Synchronizing disk transfers 32
ays:acllve-processea variable 80
ays:all-processes variable 80
sys:array-column-span function 18
sys:%block-store-cdr-and-contents function 22
sys:%block-store-tag-and-polnter function 22
sys:%change-list-to-cons function 13
ays:clock-function-list variable 80
sys:*data-types* variable 13
sys:*dlsk-error-codes* constant 39
sys:%dlsk-error-devlce-check constant 39
sys:%dlsk-error-ecc constant 40
sys:%dlsk-error-mlsc constant 40
sys:%dlsk-error-nol-ready constant 39
oys:%dlsk-error-overrun constant 40
sys:%dlsk-error-search constant 40
0ys:%dlsk-error-seek constant 40
sys:%dlsk-error-selecl constant 39
sys:%dlsk-error-8tate-machlne constant 40
oys:dlsk-read function 36
oys:dlsk-wrHe function 36
ays:%%dpn-page-num constant 30
sys:%%dpn-unlt constant 30
ays:%flxnum function 14
sys:%flonum function 13
sys:%lnstance-fiavor function 13
sys:make-stack-array function 28
sys:page-In-area function 25
sys:page-In-array function 25
ays:page-In-reglon function 25
sys:page-In-structure function 24
sys:page-In-words function 25
sys:page-out-area function 26
sys:page-out-array function 25
sys:page-out-reglon function 26
sys:page-out-structure function 25
sys:page-out-words function 26
sys:%polnter-Iessp function 16
sys:%polnterp function 15
ays:%polnter-type-p function 15
sys:%p-store-cdr-and-contents function 21
ays:%p-store-cdr-type-and-polnter function 21
sys:%p-structure-offset function 20
sys:%%reglon-scavenge-enable option for

make-area 104
sys:%%reglon-space-type option for

make-area 104
The ays:reset-temporary-area Featur9 107

Iys:reset-temporary-area function 107
ays:scheduler-stack-group variable 79
oys:sg-prevlous-stack-group function 5

172

Internals. Processes. and Storage Management

T

FEP File
The Paging

Verifying a FEP File
3600-famlly Disk

Allocating and freeing window
3600-famlly Disk

FEP File Properties: 3600 Disk
Disk and FEP File

Writing FEP Files to

Disk event
Disk event
Disk event

Disk event tasks

Memory Mapping
Buffering disk

Disk
Grouping related disk

Minimum disk latency for
Synchronizing disk

Overlapping disk

)DIR FEP file
Data representation

dtp-array data
dtp-closure data

dtp-complled-functlon data
dtp-element-forward data

dtp-even.pc data
dtp-extended-number data

dtp-extemal-value-cell-polnter data
dtp-flx data

dtp-gc-forward data
dtp-header-forward data

dtp-header-I data
dtp-header-p data
dtp-Instance data

dtp-Iexlcal-closure data
dtp-list data

dtp-Iocative data
dtp-nll data

dtp-null data
dtp-odd-pc data

T

March 1985

System 42
System 24
System 59
System Definitions and Constants 29
:aystem Initialization Jist 71
System Inltlallza1lon Usts 71
System mode 29
:aystem option for add-lnHlallzatlon 67
system storage resources 131
System User Interface 29
System User Interface 48
System Utilities 58
ays:%unsynchronlzed-devlce-read function 23
aya:wHh-data-stack special form 28
sys:wHh-stack-array special form 28

Tape 59
tape:wrlte-fep-flles-to-tape function 59
tasks 32
tasks currently allocated 33
tasks that can be concurrently allocated 33
termlnal-Io variable 7
that can be concurrently allocated 33
Thrashing 121
Throwing 3
Tools 108
transfers 31
Transfers 35
transfers 36
transfers 50
transfers 32
transfers with computation 50
Translate relative file block number Into disk

address 46
:truename FEP file property 48
type 49
type 103
type 12
type 12
type 12
type 12
type 12
type 12
type 12
type 12
type 12
type 12
type 12
type 12
type 12
type 12
type 12
type 12
type 12
type 12
type 12

T

173

March 1985 Index

dtp-one-q-forward data type 12
dlp-symbol data type 12

FEP FEP file type 49
FILE FEP file type 49

FLOD FEP file type 49
FSPT FEP file type 49
LOAD FEP file type 49

MIC FEP file type 49
PAGE FEP file type 49

Destroying data type field 22
Extracting data type field 22

:type option for make-array 31
FEP File Types 49

Data Type Subprimitives 12

U U U
Strategy for Unattended Operation with the Garbage

Collector 128
Disk unit 29

Initializing a Disk Unit 58
Mounting a Disk Unit 58

Unit number 29
Unit number field In disk address 29
Unlock queue 84

sys: %unsynchronlzed-devfce-read function 23
User -created Initialization lists 71

3600-family Disk System User Interface 29
FEP File Properties: 3600 Disk System User Interface 48

User mode 29
using-resource special form 135

Disk and FEP File System Utilities 58
Peek utility for disk error meters 41

V V V
area-list variable 106
cdr-next variable 19

cdr-nil variable 19
cdr-normal variable 19

complled-functlon-area variable 107
constants-area variable 107

current-process variable n,78
default-cons-area variable 103, 104, 107

gc-on variable 116
Inhlblt-schedullng-flag variable 78

permanent-storage-area variable 107
pname-area variable 107

property-list-area variable 107
%%q-all-but-cdr-code variable 19

%%q-all-but-polnter variable 19
%%q-all-but-typed-pointer variable 19

%%q-cdr-code variable 19
%%q-data-type variable 19

%%q-polnter variable 19
%%q-polnter-wHhln-page variable 19

%%q-typed-polnter variable 19

174

Internals. Processes. and Storage Management

room
11:*automatlcally-recover-from-hung-dlsks*

sl:*count-dlsk-devlce-checks*
sl:*count-dlsk-ecc-errors*
sl :*count-dlsk-errors-Iost*

sl:*count-disk-hung-restarts*
sl :*count-dlsk-not-ready*

II :*count-dlsk-other -errors*
11:*count-dlsk-overruns*

11:*count-dlsk-search-errors*
sl :*count-dlsk-seek-errors*

11:*count-dlsk-select-errors*
sl:*count-dlsk-state-machlne-errors*

sl :*count-dlsk-stops-Iost*
sl :*cou nt-total-disk-errors*

sl:default-quantum
sl:*default-sequence-break-Interval*

sl :dlsk-array-area
sl :dlsk-block-Iength-I n-bytes

II :dlsk-sector -data-slze32
sl :gc-area-reclal m-report

sl:gc-fllp-Inhlblt-tlme-untll-warnlng
sl:gc-fllp-mlnlmum-ratlo

sl :gc-fllp-ratlo
sl:*gc-parameters*

sl:gc-process-background-prlorlty
II :gc-process-foreg round-priority

sl :gc-process-Immedlate-reclalm-prlorlty
sl :gc-reclalm-ephemeral-Immedlately

II :gc-reclalm-Immedlately
II:gc-reclalm-lmmedlately-lf-necessary

sl :gc-report-stream
sl :gc-warnlng-Interval

II :gc-warnlng-ratlo
II :gc-warnlng-threshold

11:1 nltlallzatlon-keywords
sl :Inltlal-procesl

sl :*n-dlsk-retrles*
sl:pkg-area

sl:*slgnal-dlsk-errors-from-enqueue-p*
Iymbol-area

sys:actlve-processes
sys :all-processes

sys:clock-function-ilst
sys:*data-types*

Iys:scheduler-stack-group
termlnal-Io

worldng-storage-area

Dynamic
Area Functions and

Disk Error
Global
Local

Memory word field
sl:

variable 129
variable 38
variable 41
variable 41
variable 41
variable 41
variable 41
variable 41
variable 41
variable 41
variable 41
variable 41
variable 41
variable 41
variable 41
variable 90
variable 81
variable 31
variable 30
variable 30
variable 125
variable 128
variable 126
variable 126
variable 115
variable 128
variable 128
variable 127
variable 127
variable 127
variable 127
variable 125
variable 126
variable 126
variable 126
variable 69
variable 80
variable 36, 38
variable 107
variable 38
variable 107
variable 80
variable 80
variable 80
variable 13
variable 79
variable 7
variable 107

March 1985

Variable argument number wHhout conslng list 23
variable binding 3
Variables 104
Variables 38
variables 3
variables 23
variables 18
verlfy-fep-fllesystem function 59
Verifying a FEP File System 59
Virtual memory 114

175

March 1985 Index

w

Available virtual memory 129

II:
81:
II:

Process

Garbage collector

Allocating and freeing

IYI:
sl:

meter:
Variable argument number

IYI:

Memory
Check

Forwarding

Disk

tape:
81:

W
Walt 75
Wait-argument-list n
:wait-argument-list method of II:process 90
waH-for-dlsk-done function 33
walt-for-dlsk-event function 33
walt-for-dlsk-event-task function 33
Walt-function n
walt-function 75
:waH-functlon method of sl:procesl 89
:warm-boot-actlon method of sl:process 91
:warm-boot-actlon option for make-process 85
:wann-boot-actlon option for

process-run-functlon 86

w

:warm-boot-actlon option for process-run-restartable-
function function 87

Warm boot Initialization 67
:warm Initialization list 71
:warm option for add-lnHlallzatlon 67
warnings 124
:whostate method of II :process 90
window system storage resources 131
Wiring a structure 35
wlth-data-stack special form 28
wlth-dlsk-event-task special form 32
with-monitoring macro 63
wlthoU1 consing list 23
wHhout-lnterrupts special form 78
wlth-stack-array special form 28
wlth-ltack-lIst* special form 27
wlth-stack-list special form 27
word field variables 18
words 29
Words in Memory 14
working-storage-area 103
working-storage-area variable 107
write 35
:wrfte-data-map message 46
wrHe-fep-flles-to-tape function 59
wrlte-fep-Iabel function 58
Write-locked 48
Writing FEP Files to Tape 59

