

symbolics

5 Reference Guide to
Streams, Files, and liD

Cambridge, Massachusetts

Reference Guide to Streams, Files, and 1/0
996055

March 1985

This document corresponds to Release 6.0 and later releases.

The software, data, and information contained herein are proprietary to, and comprise

valuable trade secrets of, Symbolics, Inc. They are given in confidence by Symbolics
pursuant to a written license agreement, and may be used, copied, transmitted, and

stored only in accordance with the terms of such license.

This document may not be reproduced in whole or in part without the prior written

consent of Symbolics, Inc.

Copyright © 1985, 1984, 1983, 1982, 1981, 1980 Symbolics, Inc. All Rights Reserved.

Font Library Copyright © 1984 Bitstream Inc. All Rights Reserved.

Symbolics, Symbolics 3600, Symbolics 3670, Symbolics 3640, SYMBOLlCS-LlSP,

ZETALlSP, MACSYMA, S-GEOMETRY, S-PAINT, and S-RENDER are trademarks of

Symbolics, Inc.

MS-DOS is a trademark of Microsoft, Inc. UNIX is a trademark of Bell Laboratories,

Inc. VAX, VMS, and TOPS-20 are trademarks of Digital Equipment Corporation TENEX
is a registered trademark of Bolt, Beranek and Newman, Inc.

Restricted Rights Legend

Use, duplication, or disclosure by the government is subject to restrictions as set forth
in subdivision (b)(3)(ii) of the Rights in Technical Data and Computer Software Clause

at FAR 52.227-7013.

Text written and produced on Symbolics 3600-family computers by the Documentation

Group of Symbolics, Inc.

Text typography: Century Schoolbook and Helvetica produced on Symbolics 3600-

family computers from Bitstream, Inc., outlines; text masters printed on Symbolics LGP-1
Laser Graphics Printers.

Cover design: Schafer/laCasse
Cover printer: W.E. Andrews Co., Inc.

Text printer: ZBR Publications, Inc.

Printed in the USA.

Printing year and number: 87 86 85 9 876 5 4 3 2 1

iii

March 1985 Reference Guide to Streams, Files, and /10

Table of Contents

Page

I. Streams 1

L Introduction to the I/O System 3

2. The Character Set 5

2.1 Effect of Character Set Translation on Direct Access File Streams 10

3. I/O Streams 11

3.1 Introduction to Streams 11
3.2 General-purpose Stream Operations 11
3.3 Special-purpose Stream Operations 19
3.4 Standard Streams 21
3.5 Making Your Own Stream 23
3.6 Coroutine Streams 25

4. Formatted Output 29

4.1 The Output Subsystem 44

5. Formatting Lisp Code 51

6. The Input Editor Program Interface 53

6.1 How the Input Editor Works 53
6.2 Invoking the Input Editor 54
6.3 Input Editor Options 59
6.4 Displaying Prompts in the Input Editor 65
6.5 Displaying Help Messages in the Input Editor 66
6.6 Examples of Use of the Input Editor 66
6.7 Input Editor Messages to Interactive Streams 70

7. The :read and :print Stream Operations 73

8. Input Functions 75

9. Output Functions 87

10. Accessing Files 91

10.1 Loading Files 108
10.2 File Attribute Lists . 109

iv

Reference Guide to Streams. Files. and /10 March 1985

10.3 File Stream Operations 113
10.4 Direct Access File Streams 115

10.4.1 Stream ~essages 115

lL Accessing Directories 117

11.1 Functions for Accessing Directories 117

D. Files 125

1.2. Naming of Files 127

12.1 Pathnames 127
12.1.1 Simple Usage of the Pathname System 129
12.1.2 Host Determination in Pathnames 136
12.1.3 Interning of Pathnames 138
12.1.4 Printing Pathnames 139
12.1.5 Values of Pathname Components 140
12.1.6 Directory Pathnames and Directory Pathnames as Files 142
12.1.7 Case in Pathnames 145

12.2 Defaults and ~erging 147
12.3 Generic Pathnames 149
12.4 Relative Pathnames 149
12.5 Canonical Types in Pathnames 151

12.5.1 Correspondence of Canonical Typas and Editor ~odes 153
12.6 Wildcard Pathname ~apping 153

12.6.1 Wildcard Directory Mapping 155
12.7 Pathname Functions 156
12.8 Pathname ~essages 165
12.9 Pathnames on Supported Host File Systems 174

12.9.1 LMFS 174
12.9.2 FEP File System 176
12.9.3 UNIX 176
12.9.4 UNIX 4.2 178
12.9.5 V AXNMS 180
12.9.6 TOPS-20 and TENEX 183
12.9.7 Multics 184
12.9.8 ITS 185
12.9.9 ~s-dos Pathnames 186
12.9.10 Logical Pathnames 186

12.10 Init File Naming Conventions 200
12.11 Maclisp Conversion 201

13. Lisp Machine File System 203

13.1 Introduction to LMFS 203
13.2 Concepts 203

v

March 1985 Reference Guide to Streams, Files, and 110

13.3 Properties 204
13.4 Deletion, Expunging, and Versions 209
13.5 LMFS Links 210
13.6 LMFS Backup 212
13.7 Multiple Partitions 213

13.7.1 Adding a Partition to LMFS 213

14. FEP File System Overview 215

14.1 Microcode Loads 215
14.2 World Loads 215
14.3 Configuration Files 215
14.4 How LMFS Uses the FEP File System 216
14.5 Virtual Memory 216
14.6 FEP File Comment Properties 216
14.7 Installing Microcode 217
14.8 Renaming FEP Files 219
14.9 U sing a Spare World Load for Paging 219
14.10 Adding a Spare World Load as LMFS File Space 219

15. FEP File System 221

15.1 Naming of FEP Files 222
15.2 Accessing FEP Files 222
15.3 Operating on Disk Streams 224
15.4 Input and Output Disk Streams 226
15.5 Block Disk Streams 226
15.6 FEP File Properties 227
15.7 FEP File Locks 228
15.8 FEP File Types 228

16. Fsedit 231

16.1 File System Editor 231
16.1.1 Entering the File System Editor 231
16.1.2 Using the File System Editor 232
16.1.3 Opening and Closing a Directory 232
16.1.4 Using Fsedit Commands 233

16.2 How to Interpret Directory Listings 236

17. Creating More Room on the Local Disk 239

17.1 Allocating Extra Paging Space 240

18. Putting Data in Compiled Code Files 241

vi

Reference Guide to Streams. Rles. and 110 March 1985

m. The Serial I/O Facility 243

19. Introduction to Serial I/O 245

20. Hardware Description for Serial I/O 247

2L The Serial I/O Stream 251

22. Parameters for Serial I/O 253

23. Simple Example: Serial I/O 257

24. TroubleshootinlP Serial I/O 259

25. Notes on Serial I/O 281

28. Hdlc Serial I/O 283

27. Using the Terminal Program with Hosts Connected to the Serial 285
Line

IV. Writing Programs That Use Magnetic Tape 287

28. The tape:make-stream Function 289

29. Messages to Tape Streams 273

30. Tape Error Flavors 277

Index 279

List of Tables

Table L Assignment of RS-232 Signals to Pins 248
Table 2. Assignment of RS-232 Signals to Pins in Asynchronous Null 248

Modems

March 1985 Streams

PART I.

Streams

2

Reference Guide to Streams, Files, and /10 March 1985

3

March 1985 Streams

1. Introduction to the I/O System

Symbolics-Lisp provides a powerful and flexible system for performing input and
output to peripheral devices. To allow device independent I/O (that is, to allow
programs to be written in a general way so that the program's input and output
may be connected with any device), the Symbolics-Lisp I/O system provides the
concept of an "I10 stream". What streams are, the way they work, and the
functions to create and manipulate streams, are described in this document. This
document also describes the Lisp "I/O" operations read and print.

4

Reference Guide to Streams, Files, and 1:0 March 1985

5

March 1985 Streams

2. The Character Set

Zetalisp represents characters as flXDums. The Symbolics computer's mapping
between these numbers and the characters is listed here. The mapping is similar to
ASCII, but somewhat modified to allow the use of the so-called SAIL extended
graphics, while avoiding certain ambiguities present in ITS. For a long time ITS
treated the BACKSPACE, c-H, and A keys on the keyboard identically as character code
10 octal; this problem is avoided from the start in the Symbolics computer's mapping.

It is worth pointing out that although the Zetalisp character set is different from
the PDP-10 character set, when files are transferred between Symbolics computers
and PDP-lOs, the characters are automatically converted. Details of the mapping are
explained below.

Fundamental characters are eight bits wide. Those less than 200 octal (with the
200 bit om, and only those, are "printing graphics"; when output to a device they
are assumed to print a character and move the "cursor" one character position to
the right. (All software provides for variable-width fonts, so the term "character
position" should not be taken too literally.)

Characters in the range of 200 to 236 inclusive are used for special characters.
Character 200 is a "null character", which does not correspond to any key on the
keyboard. The null character is not used for anything much. Characters 201
through 236 correspond to the special function keys on the keyboard such as RETURN.

Some characters are reserved for future expansion.

It should never be necessary for a user or a source program to know these numerical
values. Indeed, they are likely to be changed in the future. There are symbolic
names for all characters; see below.

Most of the special characters do not normally appear in files (although it is not
forbidden for files to contain them). These characters exist mainly to be used as
"commands" from the keyboard.

A few special characters, however, are "format effectors" which are just as legitimate
as printing characters in text files. The following is a list of the names and
meanings of these characters:

RETURN

PAGE

TAB

The "carriage return" character which separates lines of text.
Note that the PDP-10 convention that lines are ended by a pair of
characters, "carriage return" and "line feed", is not used.

The "page separator" character which separates pages of text.

The "tabulation" character which spaces to the right until the
next "tab stop". Tab stops are normally every 8 character
positions.

6

Reference Guide to Streams, Files, and 110 March 1985

The Space character is considered to be a printing character whose printed image
happens to be blank, rather than a format effector.

In some contexts, a flXIlum can hold both a character code and a font number for
that character. The following byte specifiers are defined:

%%ch-char Variable
The value of %%ch-char is a byte specifier for the field of a flXIlum
character which holds the character code.

Since %%ch-char will not exist after the switch to character objects has
occurred, use char-code instead.

%%ch-font Variable
The value of %%ch-font is a byte specifier for the field of a flXIlum character
which holds the font number.

%%ch-font will not exist after the switch to character objects has occurred.
There is no direct equivalent for this variable for you to use instead, since
the concept of fonts will be reorganized.

Characters read in from the keyboard include a character code and modifier bits. A
character cannot contain both a font number and modifier bits, since these data are
both stored in the same bits. The following byte specifiers are provided:

%%kbd-char Variable
The value of %%kbd-char is a byte specifier for the field of a keyboard
character which holds the normal eight-bit character code.

Since %%kbd-char will not exist after the switch to character objects has
occurred, use char-code instead.

%%kbd-control Variable
The value of %%kbd-control is a byte specifier for the field of a keyboard
character which is 1 if either CONTROL key was held down.

Since %%kbd-control will not exist after the switch to character objects has
occurred, use char-bit instead.

%%kbd-meta Variable
The value of %%kbd-meta is a byte specifier for the field of a keyboard
character which is 1 if either META key was held down.

Since %%kbd-meta will not exist after the switch to character objects has
occurred, use char-bit instead.

%%kbd-super Variable
The value of %%kbd-super is a byte specifier for the field of a keyboard
character which is 1 if either SUPER key was held down.

7

March 1985 Streams

Since %%kbd-super will not exist after the switch to character objects has
occurred, use char-bit instead.

%%kbd-hyper Variable
The value of %%kbd-hyper is a byte specifier for the field of a keyboard
character which is 1 if either HYPER key was held down.

Since %%kbd-hyper will not exist after the switch to character objects has
occurred, use char-bit instead.

%%kbd-control-meta Variable
The value of %%kbd-control-meta is a byte specifier for the four-bit field of
a keyboard character which contains the control bits. The least significant
bit is control. The most significant bit is hyper.

Since %%kbd-control-meta will not exist after the switch to character
objects has occurred, use char-bits instead.

The following fields are used by some programs that encode signals from the mouse
in a the format of a character. The generation of such characters is described
elsewhere. See the document Programming the User Interface.

%%kbd-mouse Variable
The value of %%kbd-mouse is a byte specifier for the bit in a keyboard
character which indicates that the character is not really a character, but a
signal from the mouse.

Since %%kbd-mouse will not exist after the switch to character objects has
occurred, use mouse-char-p instead.

%%kbd-mouse-button Variable
The value of %%kbd-mouse-button is a byte specifier for the field in a
mouse signal which says which button was clicked. The value is 0, 1, or 2
for the left, middle, or right button, respectively.

Since %%kbd-mouse-button will not exist after the switch to character
objects has occurred, use char-mouse-button instead.

%%kbd-mouse-n-clicks Variable
The value of %%kbd-mouse-n-clicks is a byte specifier for the field in a
mouse signal which says how many times the button was clicked. The value
is one less than the number of times the button was clicked.

Since %%kbd-mouse-n-clicks will not exist after the switch to character
objects has occurred, use char-mouse-n-clicks instead.

When any of the modifier bits (control, meta, super, or hyper) is set in conjunction
with a letter, the letter is always uppercased.

8

Reference Guide to Streams, Fifes, and 110 March 1985

The Control-Shift- characters are encoded separately. c-sh-A is not a synonym for
h-c-A; they are distinct compound keystrokes.

In addition to the four modifier keys HYPER, SUPER, CTRL, and META, the SHIFT key is
a modifier key for letters when used in combination with one of the other modifiers.
The CAPS LOCK key is not a modifier key and is always ignored in compound
keystrokes. Thus typing CTRL and A at the same time gives c-A; typing CTRL and
SHIFT and A at the same time gives c-sh-A. Typing CTRL and SHIFT and / at the
same time gives c-? (not c-sh-/).

The names for compound key strokes always show a letter as capitalized. This does
not mean that you have to use the SHIFT key; use the SHIFT key as a modifier only
when sh- appears in the key name.

In addition, printing names of characters have case in them.. Case is ignored on
input. Some new synonyms for existing characters are accepted. In particular,
names of the following form have these synonyms:

Name
#\c-sh-B
#\mouse-L

Equivalent to
#\c-shift-B
#\mouse-L-1

The names of the characters are in the table in sys:io;rddefs.lisp.

When characters are written to a file server computer that normally uses the ASCII
character set to store text, Symbolics characters are mapped into an encoding that is
reasonably close to an ASCII transliteration of the text. When a file is written, the
characters are converted into this encoding, and the inverse transformation is done
when a file is read back. No information is lost. Note that the length of a file, in
characters, will not be the same measured in original Symbolics characters as it will
measured in the encoded ASCII characters.

In TOPS-20, Tenex, and ITS, in the currently implemented ASCII file servers, the
following encoding is used. All printing characters and any characters not mentioned
explicitly here are represented as themselves. Codes 010 (lambda), 011 (gamma), 012
(delta), 014 (plus-minus), 015 (circle-plus), 177 (integral), 200 through 207 inclusive,
213 (delete/vt), and 216 and anything higher, are preceded by a 177; that is, 177 is
used as a "quoting character" for these codes. Codes 210 (overstrike), 211 (tab), 212
(line), and 214 (page), are converted to their ASCII cognates, namely 010 (backspace),
011 (horizontal tab), 012 (line feed), and 014 (form feed) respectively. Code 215
(return) is converted into 015 (carriage return) followed by 012 (line feed). Code 377
is ignored completely, and so cannot be stored in files.

March 1985

000 center-dot (0)

001 down arrow (~)
002 alpha (0)

003 beta (fj)

004 and-sign (1\)
005 not-sign (-.)
006 epsilon (e)

007 pi (1r)

010 lambda (~)

011 ganuna ('Y)
012 delta (c5)

013 up-arrow (t)
014 plus-minus (:i:)

015 circle-plus (EB)

01 6 i n fin i ty (to)

017 partial delta (a)

020 left horseshoe (c)
021 right horseshoe (~)
022 up horseshoe (n)

023 down horseshoe (u)

040 space
041 !
042 "
043 #
044 $
045 %
046 &
047 '
050 (
051)
052 *
053 +

054 •
055 -
056 0

057 I
060 0
061 1
062 2
063 3

024 universal quantifier (V) 064 4
025 existential quantifier (3) 065 5
026 circle-X (0) 066 6
027 double-arrow (~) 067 7
030 left arrow (~) 070 8
031 right arrow (~) 071 9
032 not-equals (~) 072 :
033 diamond (altmode) (~) 073 ;
034 less-or-equal (~)

035 greater-or-equal (~)

036 equivalence (=)
037 or (v)

200 null character
201 suspend
202 clear-input
203 reserved
204 function
205 macro
206 help
207 rubout

240 reserved
241 symbol-help
242-377

074 <
075 =
076 >
077 ?

210 back space
211 tab
212 line
213 refresh
214 page
215 return
216 quote
217 hold-output

9

Streams

100 @
101 A
102 B
103 C
104 0
105 E
106 F
107 G
110 H
111 I
112 J
113K
114 L
115M
116 N
117 0
120 P
121 Q
122 R
123 S
124 T
125 U
126 V
127 W
130 X
131 V
132 Z
133 [
134 \
135]
136 A

140 '
141 a
142 b
143 c
144 d
145 e
146 f
147 g

150 h
151 i
152 j
153 k
154 1
155 m
156 n
157 0

160 P
161 q
162 r
163 s
164 t
165 u
166 v
167 w
170 x
171 Y
172 z
173 {
174 I
175 }
176 -

137 177 J
220 stop-output 230 reserved
221 abort 231 reserved
222 resume
223 reserved
224 end
225 square
226 circle
227 triangle

232 reserved
233 reserved
234 reserved
235 select
236 network
237 escape

The Symbolics Character Set

10

Reference Guide to Streams, Files, and /10 March 1985

2.1 Effect of Character Set Translation on Direct Access File
Streams

The Symbolics generic file access protocol was designed to provide access to ASCII
based file systems for Symbolics computers. Symbolics machines support 8-bit
characters and have 256 characters in their character set. This results in difficulties
when communicating with ASCII machines, which have 7-bit characters.

The file server, on machines not using the Symbolics character set, is required to
perform character translations for any character (not binary) opening. Some
Symbolics characters expand to more than one ASCII character. Thus, for character
files, when we speak of a given position in a file or the length of a file, we must
specify whether we are speaking in Symbolics units or server units.

This causes major problems in file position reckoning. It is useless for the Symbolics
machine (or other user side) to carefully monitor file position, counting characters,
during output, when character translation is in effect. This is because the operating
system interface for "position to point x in a file", which the server must use,
operates in server units, but the Symbolics machine (or other user end) has counted
in Symbolics units. The user end cannot try to second-guess the translation
counting process without losing host independence.

Since direct access file streams are designed for organized file position management,
they are particularly susceptible to this problem. As with other file streams, it is
only a problem when character files are used.

You can avoid this problem by always using binary files. If you must use character
files, consider doing one of the following:

• Know the expansions of the Symbolics machine, that is, characters such as
Return that do not expand into single host characters. Note that this
sacrifices host independence.

• Do not use these characters. See the section "Qfile Character Set Translation"
in Networks. This section explains which characters are expanded on the
Symbolics computer.

11

March 1985 Streams

3. 1/0 Streams

3.1 Introduction to Streams

Many programs accept input characters and produce output characters. Methods for
performing input and output vary greatly from one device to another. Programs
should be able to use any device available without each program having to know
about each device.

The concept of streams solves this problem. A stream is a source and/or sink of
characters. A set of operations is available with every stream; operations include
such actions as "output a character" and "input a character". The way to perform
an operation to a stream is the same for all streams, although what happens inside
a stream depends on the kind of stream it is. Thus a program needs to know only
how to deal with streams in general.

A stream is a message-receiving object, which means that you can apply it to
arguments. The first argument is a keyword symbol that is the name of the
operation you wish to perform. The remaining arguments depend on the operation.
Message-passing is explained elsewhere: See the section "Flavors" in Reference Guide
to Symbolics-lisp.

Some streams can do only input, some only output, and some can do both. Some
streams support only some operations; however, unsupported operations might work,
although slowly, because the stream-default-handler can handle them. An
operation called :which-operations returns a list of the names of all operations that
are supported "natively" by a stream. (All streams support :which-operations, so it
might not be in the list itself.)

3.2 General-purpose Stream Operations

:tyo char Message
The stream will output the character char. For example, if s is bound to a
stream, then the following form will output a "B" to the stream:

(funcall 5 ':tyo #\B)

F.or binary output streams, the argument is a nonnegative number rather
than specifically a character.

:tyi &optional eof Message
The stream will input one character and return it. For example, if the next
character to be read in by the stream is a "C", then the following form
returns the value of #\C (that is, 103 octal):

12

Reference Guide to Streams, Files, and /10 March 1985

(funcall 5 ':tyi)

Note that the :tyi operation does not "echo" the character in any fashion; it
only does the input. The tyi function echoes when reading from the
terminal.

The optional eof argument to the :tyi message tells the stream what to do if
it reaches the end of the file. If the argument is not provided or is nil, the
stream returns nil at the end of file. Otherwise it signals an error and
prints out the argument as the error message. Note that this is not the
same as the eof-option argument to read, tyi, and related functions.

The :tyi operation on a binary input stream returns a nonnegative number,
not necessarily to be interpreted as a character.

An EOF can be forced into the currently selected 110 buffer with the
keystrokes FUNCTION END. The next :tyi message sent to a window taking
input from that 110 buffer will return nil.

The EOF indicator is not "sticky," in that the next :tyi will take the next
character from the 110 buffer. The reason for this is that some programs
which read only from the terminal might not be prepared to encounter an
EOF, and might loop trying to read input, since they wouldn't know to send
the :clear-eof message.

This EOF feature makes it possible to fully test programs which use the
:line-in, :string-in, and :string-line-in operations by taking input from a
window instead of from a file. Typing FUNCTION END causes each of these
operations to return. This is especially important when debugging programs
which use the :string-in operation, since :string-in returns only when its
buffer is full or an EOF is encountered.

FUNCTION END activates any input buffered in the input editor, since there is
no representation for the EOF indicator within text strings.

:untyi char Message
The stream will remember the character char, and the next time a character
is input, it will return the saved character. In other words, :untyi means
"put this character back into the input source". For example:

(funcal1 5 ':untyi 120)
(funcall 5 ':tyi) ==> 120

This operation is used by read, and any stream that supports :tyi must
support :untyi as well. Note that you are allowed to :untyi only one
character before doing a :tyi, and you can :untyi only the last character you
read from the stream. Some streams implement :untyi by saving the
character, while others implement it by backing up the pointer to a buffer.
You also cannot :untyi after you have peeked ahead with :tyipeek.

13

March 1985 Streams

:which-operations Message
The object should return a list of the messages it can handle. The
:which-operations method of si:vanilla-flavor generates the list once per
flavor and remembers it, minimizing consing and compute time. If a new
method is added, the list is regenerated the next time someone asks for it.

:operation-handled-p operation Message
operation is a message name. The object should return t if it has a handler
for the specified message, nil if it does not.

:send-if-handles operation &rest arguments Message
operation is a message name and arguments is a list of arguments for that
message. The object should send itself that message with those arguments if
it handles the message. If it does not handle the message it should return
nil.

:characters Message
Returns t if the stream is a character stream, nil if it is a binary stream.

:direction Message
Returns one of the keyword symbols : input , : output , or :bidirectional.

:interactive Message
The :interactive message to a stream returns t if the stream is interactive
and nil if it is not. Interactive streams, built on si:interactive-stream, are
streams designed for interaction with human users. They support input
editing. Use the :interactive message to find out whether a stream
supports the :input-editor message.

Any stream must either support :tyo or support both :tyi and :untyi. Several more
advanced input and output operations work on any stream that can do input or
output (respectively). Some streams support these operations themselves; you can
tell by looking at the list returned by the :which-operations operation. Others are
handled by the "stream default handler" even if the stream does not know about the
operation itself. However, in order for the default handler to do one of the more
advanced output operations, the stream must support :tyo, and for the input
operations the stream must support :tyi (and :untyi).

Here is the list of such operations:

: input-wait &optional whostate function &rest arguments Message
This message to an input stream causes the stream to process-wait with
whostate until one of the following conditions is met:

• Applying function to arguments returns non-nil.

• The stream enters a state in which sending it a :tyi message would
immediately return a value or signal an error.

14

Reference Guide to Streams, Files, and /10 March 1985

When either of these conditions is met, :input-wait returns. If the stream
enters a state in which sending it a :tyi message would signal an error,
:input-wait returns instead of signalling the error. The returned value is
not defined.

whostate is what to display in the status line while process-waiting. It can be
a string or nil. A value of nil means to use the normal who state for this
stream, such as "Tyi", "Net In", or "Serial In". For interactive streams, the
default whostate is "Tyi".

function can be a function or nil. A value of nil means that the stream just
waits until sending it a :tyi message would immediately return a value or
signal an error.

This message is intended for programs that need to wait until either input is
available from some interactive stream or some other condition, such as the
arrival of a notification, occurs. Any stream that can become the value of
terminal-io must support : input-wait.

Following is a simple example of the use of :input-wait to wait for input or
a notification to an interactive stream. The function just displays
notifications and prints representations of characters or blips received as
input.

(defun my-top-level (stream)
(error-restart-loop «error sys:abort) "My top level")

(send stream :input-wait nil
"(lambda (note-cell)

(not (null (location-contents note-cell»»
(send stream :notification-cell»

(let «note (send stream :receive-notification»)
(i f note

(sys:display-notification stream note :stream)
(let «char (send stream :any-tyi-no-hang»)

(cond «null char»
«fixp char)
(format stream "-&Character: -C" char»

«listp char)
(format stream "-&Blip: -S" char»

(t (format stream "-&Unknown object: -S" char»»»»

:listen Message
On an interactive device, returns non-nil if any input characters are
immediately available, or nil if no input is immediately available. On a
noninteractive device, the operation always returns non-nil except at end-of
file, by virtue of the default handler. The main purpose of :listen is to test
whether the user has pressed a key, perhaps trying to stop a program in
progress.

15

March 1985 Streams

:tyipeek &optional eot Message
On an input stream, returns the next character that is about to be read, or
nil if the stream is at end-of-file. The eot argument has the same meaning
as it does for :tyi. :tyipeek is defineci to have the same effect as a :tyi
operation, followed by a :untyi operation if end-of-file is not reached. Note
that this means that you cannot read some character, do a :tyipeek to look
at the next character, and then :untyi the original character.

:fresh-line Message
Tells the stream to position itself at the beginning of a new line. If the
stream is already at the beginning of a fresh line it does nothing; otherwise
it outputs a carriage return. For streams that do not support this, the
default handler always outputs a carriage return.

:clear-rest-of-line Message
Erases from the current position to the end of the current line.

:string-out string &optional start end Message
The characters of string are successively output to the stream. This
operation is provided for two reasons: it saves the writing of a frequently
used loop, and many streams can perform this operation much more
efficiently than the equivalent seque~ce of :tyo operations. If the stream
does not support :string-out itself, the default handler converts it to :tyos.

If start and end are not supplied, the entire string is output. Otherwise a
substring is output; start is the index of the first character to be output
(defaulting to 0), and end is one greater than the index of the last character
to be output (defaulting to the length of the string). Callers need not pass
these arguments, but all streams that handle :string-out must check for
them and interpret them appropriately.

:line-out string &optional start end Message
The characters of string, followed by a carriage return character, are output
to the stream. start and end optionally specify a substring, as with
:string-out. If the stream does not support :line-out itself, the default
handler converts it to :tyos.

:string-in eot-option string &optional (start 0) end Message
Reads characters from an input stream into string, using the substring
delimited with start and end.

As is usual with strings, start defaults to 0 and end defaults to the length of
the string. The difference between end and start constitutes a character
count for this operation.

eot-option specifies stopping actions.

16

Reference Guide to Streams, Files, and 110 March 1985

Value
nil

not nil

Meaning

Reading characters into the string stops either when it has
transferred the specified character count or when it
reaches end-of-file, whichever happens first. For strings
with a fill pointer, it sets the fill pointer to point to the
location following the last one filled by the read.

If the end-of-file is encountered while trying to transfer a
specific number of characters, it signals sys:end-of-file,
with the value of eof as the report string.

:string-in returns two values. The first value is one greater than the last
location of string into which it stored a character. The second value is t if it
reached end-of-file and nil if it did not. Using :string-in at the end of a file
returns 0 and t and sets the fill pointer of string to start (if string has a fill
pointer).

For example, suppose the file my-host:>george>tiny.text contains "Here is
some tiny text.".

(setq string (make-array 100 ':type 'art-string ':fill-pointer 0»
NN

(with-open-file (stream "my-host:>george>tiny.text")
(send stream ':string-in nil string»

23

string => "Here is some tiny text."

If string has an array-leader, the fill pointer is adjusted to start plus the
number of characters stored into string.

string can be any kind of array, not necessarily a string; this is useful when
reading from a binary input stream.

The :string-in message can be sent to windows. It interacts correctly with
the input editor, including correct handling of activation characters.

The interface to this method for windows and the returned value is exactly
the same as the equivalent methods for si:input-stream and
si:unbuffered-line-input-stream.

:line-in &optional leader Message
The stream should input one line from the input source and return it as a
string with the carriage return character stripped off. Despite its name, this
operation is not much like the readline function.

Many streams have a string that is used as a "buffer for lines. If this string
itself were returned, there would be problems if the caller of the stream
attempted to save the string away somewhere, because the contents of the
string would change when the next line was read in. To solve this problem,

17

March 1985 Streams

the string must be copied. On the other hand, some streams do not reuse
the string, and it would be wasteful to copy it on every :line-in operation.
This problem is solved by using the leader argument to :line-in. If leader is
nil (the default), the stream does not copy the string, and the caller should
not rely on the contents of that string after the next operation on the
stream. If leader is t, the stream makes a copy. If leader is an integer then
the stream makes a copy with an array-leader leader elements long. (This is
used by the editor, which represents lines of buffers as strings with additional
information in their array-leaders, to eliminate an extra copy operation.)

If the stream reaches the end-of-file while reading in characters, it returns
the characters it has read in as a string, and returns a second value of t.
The caller of the stream should therefore arrange to receive the second value,
and check it to see whether the string returned was an whole line or only
the trailing characters after the last carriage return in the input source.

The :line-in message can be sent to windows. It interacts correctly with the
input editor, including correct handling of activation characters.

:string-line-in eot string &optional (start 0) end Message
:string-line-in is a combination of :string-in and :line-in. It allows you to
read many lines successively into the same buffer without creating strings.
:string-line-in reads a line from a file into a string (or other array) supplied
by the user.

This message fills up a string as does :string-in, but reads only one line, as
does :line-in. As with :line-in, the carriage return character at the end of
the line is not stored into your buffer. :line-in reads a line from a stream
and creates a string with that line in it. :string-in is given a string; it fills
in the string (or other array) that you give it from the stream.

:string-line-in reads a line from a stream and fills the supplied array with
that line. As with :string-in, if the string (or other array) has a fill pointer,
it is set to the number of characters placed into the buffer.

:string-line-in returns three values:

• How many characters it read into your buffer. (This might be zero.)

• Whether the end of the input stream was encountered while trying to
read in the string. eot is identical to the eot argument in :string-in.

• nil if the entire line fit in the buffer supplied, otherwise t. If t is
returned for this value, as much of the line as could fit was stored in
the buffer and more of the line is waiting to be read.

If the second and third values are both nil, a carriage return was read. If
either is t, no carriage return was read from the stream.

18

Reference Guide to Streams, Files, and /10 March 1985

:clear-input Message
The stream clears any buffered input. If the stream does not handle this,
the default handler ignores it.

:clear-output Message
The stream clears any buffered output. If the stream does not handle this,
the default handler ignores it.

:force-output Message
Causes any buffered output to be sent to a buffered asynchronous device,
such as the Chaosnet. It does not wait for it to complete; use :finish for
that. If a stream supports :force-output, then :tyo, :string-out, and
:line-out might have no visible effect until a :force-output is done. If the
stream does not handle this, the default handler ignores it.

:finish Message
Does a :force-output to a buffered asynchronous device, such as the
Chaosnet, then waits until the currently pending 110 operation has been
completed. If the stream does not handle this, the default handler ignores it.

For file output streams, :finish finalizes file content. It ensures that all data
have actually been written to the file, and sets the byte count. It converts
non-direct output openings into append openings. It allows other users to
access the data that have been written before the :finish message was sent.

:close &optional mode Message
The stream is "closed", and no further operations should be performed on it;
you can, however, :close a closed stream. If the stream does not handle
:close, the default handler ignores it.

The mode argument is normally not supplied. If it is :abort, we are
abnormally exiting from the use of this stream. If the stream is outputting
to a file, and has not been closed already, the stream's newly created file is
deleted, as if it were never opened in the first place. Any previously existing
file with the same name remains, undisturbed.

:eof Message
Indicates the end of data on an output stream. This is different from :close
because some devices allow multiple data files to be transmitted without
closing. :close implies :eof when the stream is an output stream and the
close mode is not :abort.

19

March 1985 Streams

3.3 Special-purpose Stream Operations

See the section "General-purpose Stream Operations", page 11. There are several
other defined operations that the default handler cannot deal with; if the stream
does not support the operation itself, sending that message causes an error. This
section describes the most commonly used, least device-dependent stream operations.
Windows, files, and Chaosnet connections have their own special stream operations,
which are documented separately.

:input-editor {unction &rest arguments Message
This is supported by interactive streams such as windows. It is described in
its own section: See the section "The Input Editor Program Interface", page
53.

Most programs should not send this message directly. See the special form
with-input-editing, page 57.

:beep &optional type Message
This is supported by interactive streams. It attracts the attention of the
user by making an audible beep and/or flashing the screen. type is a
keyword selecting among several different beeping noises. The allowed types
have not yet been defined; type is currently ignored and should always be nil.

:tyi-no-hang &optional eot Message
Identical to :tyi except that if it would be necessary to wait in ord2r to get
the character, returns nil instead. This lets the caller efficiently check for
input being available and get the input if there is any. :tyi-no-hang is
different from :listen because it reads a character and because it is not
simulated by the default handler for streams that do not support it.

:untyo-mark Message
This is used by the grinder if the output stream supports it. See the special
form grindef, page 51. It takes no arguments. The stream should return
some object that indicates where output has reached in the stream.

:untyo mark Message
This is used by the grinder in conjunction with :untyo-mark. See the
special form grindef, page 51. It takes one argument, which is something
returned by the :untyo-mark operation of the stream. The stream should
back up output to the point at which the object was returned.

:read-cursorpos &optional (units ':pixel) Message
This operation is supported by windows. It returns two values, the current x
and y coordinates of the cursor. It takes one optional argument, which is a
symbol indicating in what units x and y should be; the symbols :pixel and
:character are understood. :pixel means that the coordinates are measured

20

Reference Guide to Streams, Files, and flO March 1985

in display pixels (bits), while :character means that the coordinates are
measured in characters horizontally and lines vertically.

This operation and :set-cursorpos are used by the format "-T" request,
which is why "-T' does not work on all streams. Any stream that supports
this operation must support :set-cursorpos as well.

:set-cursorpos x y &optional (units ':pixel) Message
This operation is supported by the same streams that support
:read-cursorpos. It sets the position of the cursor. x and y are similar to
the values of :read-cursorpos and units is the same as the units argument
to :read-cursorpos.

:clear-window Message
Erases the window on which this stream displays. Non-window streams do
not support this operation.

There are many other special-purpose stream operations for graphics. See the
section "Using the Window System" in Programming the User Interface.

The following operations are only implemented by streams to random-access devices,
principally files.

:read-pointer Message
Returns the current position within the file, in characters (bytes in flXIlum
mode). For text files on PDP-IO file servers, this is the number of Symbolics
characters, not PDP-IO characters. The numbers are different because of
character-set translation.

:set-pointer new-pointer Message
Sets the reading position within the file to new-pointer (bytes in flXIlum
mode). For text files on PDP-IO file servers, this does not do anything
reasonable unless new-pointer is 0, because of character-set translation. This
operation is for input streams only.

The following operations are implemented by buffered input streams. They allow
increased efficiency by making the stream's internal buffer available to the user.

:read-input-buffer &optional eof Message
Returns three values: a buffer array, the index in that array of the next
input byte, and the index in that array just past the last available input
byte. These values are similar to the string, start, end arguments taken by
many functions and stream operations. If the end of the file has been
reached and no input bytes are available, the stream returns nil or signals
an error, based on the eof argument, just like the :tyi message. After
reading as many bytes from the array as you care to, you must send the
:advance-input-buffer message.

21

March 1985 Streams

:advance-input-buffer &optional new-pointer Message
If new-pointer is non-nil, it is the index in the buffer array of the next byte
to be read. If new-pointer is nil, the entire buffer has been used up.

The following operations are provided for buffered output streams. They allow you
to hand the stream's output buffer to a function that can fill it up.

:get-output-buffer Message
Returns an array and starting and ending indices.

:advance-output-buffer &optional index Message
Says that the array returned by the last :get-output-buffer operation was
filled up through index. If index is omitted, the array was filled completely.

The following stream operations are obsolete and should no longer be used:

: rewind
:get-input-buffer

/
3.4 Standard Streams

Several variables whose values are streams are used by many functions in the Lisp
system. By convention, variables that are expected to hold a stream capable of input
have names ending with -input, and similarly for output. Those expected to hold a
bidirectional stream have names ending with -io.

The variables standard-input, standard-output, error-output, trace-output, and
query-io are initially bound to synonym streams that pass all operations on to the
stream that is the value of terminal-io. Thus any operation performed on those
streams goes to the terminal.

No user program should ever change the value of terminal-io. For example, a
program to divert output to a file should do so by binding the value of
standard-output; that way, error messages sent to error-output can still get to
the user by going through terminal-io, which is usually what is desired.

standard-input Variable
In the normal Lisp top-level loop, input is read from standard-input (that
is, whatever stream is the value of standard-input). Many input functions,
including tyi and read, take a stream argument that defaults to
standard-input.

standard-output Variable
In the normal Lisp top-level loop, output is sent to standard-output (that
is, whatever stream is the value of standard-output). Many output
functions, including tyo and print, take a stream argument that defaults to
standard-output.

22

Reference Guide to Streams, Files, and /10 March 1985

error-output Variable
The value of error-output is a stream to which error messages should be
sent. Normally this is the same as standard-output, but standard-output
might be bound to a file and error-output left going to the terminal.

query-io Variable
The value of query-io is a stream that should be used when asking
questions of the user. The question should be output to this stream, and
the answer read from it. The reason for this is that when the normal input
to a program might be coming from a file, questions such as "Do you really
want to delete all of the files in your directory??" should be sent directly to
the user, and the answer should come from the user, not from the data file.
query-io is used by fquery and related functions.

terminal-io Variable
The value of terminal-io is the stream that connects to the user's console.
In an "interactive" program, it is the window from which the program is
being run; 110 on this stream reads from the keyboard and displays on the
terminal. However, in a "background" program that does not normally talk
to the user, terminal-io defaults to a stream that does not ever expect to be
used. If it is used, perhaps by an error notification, it turns into a
"background" window and requests the user's attention.

trace-output Variable
The value of trace-output is the stream on which the trace function prints
its output.

debug-io Variable
If not nil, this is the stream that the Debugger should use. The default
value is a synonym stream that is synonymous with terminal-io. If the
value of dbg:*debug-io-override* is not nil, the Debugger uses the value of
that variable as the stream instead of the value of debug-io.

The value of debug-io can also be a string. This causes the debugger to use
the cold-load stream; the string is the reason why the cold-load stream should
be used.

No program other than the Debugger should do stream operations on the
value of debug-io, since the value cannot be a stream. Other programs
should use query-io, error-output, or trace-output.

dbg:*debug-io-override* Variable
This is used during debugging to divert the Debugger to a stream that is
known to work. If the value of this variable is nil (the default), the
Debugger uses the stream that is the value of debug-io. But if the value of
dbg:*debug-io-override* is not nil, the Debugger uses the stream that is
the value of this variable instead. This variable should always be set (using
setq), not bound, so all processes and stack groups can see it.

23

March 1985 Streams

make-syn-stream symbol Function
make-syn-stream creates and returns a "synonym stream" (syn for short).
symbol can be either a symbol or a locative.

If symbol is a symbol, the synonym stream is actually an uninterned symbol
named #:symbol-syn-stream. This generated symbol has a property that
declares it to be a legitimate stream. This symbol is the value of symbol's
si:syn-stream property, and its function definition is forwarded to the value
cell of symbol using a dtp-external-value-cell-pointer. Any operations sent
to this stream are redirected to the stream that is the value of symbol.

If symbol is a locative, the synonym stream is an uninterned symbol named
#:syn-stream. This generated symbol has a property that declares it to be
a legitimate stream. The function definition of this symbol is forwarded to
the cell designated by symbol. Any operations sent to this stream are
redirected to the stream that is the contents of the cell to which symbol
points.

Synonym streams should not be passed between processes, since the streams
to which they redirect operations are specific to a process.

make-broadcast-stream &rest streams Function
Returns a stream that works only in the output direction. Any output sent
to this stream is sent to all of the streams given. The :which-operations is
the intersection of the :which-operations of all of the streams. The
value(s) returned by a stream operation are the values returned by the last
stream in streams.

3.5 Making Your Own Stream

Here is a sample output stream that accepts characters and conses them onto a list.

(defvar the-list nil)
(defun list-output-stream (op &optional argl &rest rest)

(selectq op
(:tyo
(setq the-list (cons argl the-list»)

(:which-operations '(:tyo»
(otherwise

Cstream-default-handler (function list-output-stream)
op argl rest»»

The lambda-list for a stream must always have one required parameter (op), one
optional parameter (argl), and a rest parameter (rest). This allows an arbitrary
number of arguments to be passed to the default handler. This is an output
stream, so it supports the :tyo operation. Note that all streams must support
:which-operations. If the operation is not one that the stream understands (for

24

Reference Guide to Streams, Files, and /10 March 1985

example, : string-out) , it calls the stream-default-handler. The calling of the
default handler is required, since the willingness to accept :tyo indicates to the caller
that :string-out will work.

Here is a typical input stream that generates successive characters of a list.

(defvar the-list) ;Put your input list here
(defvar untyied-char nil)
(defun list-input-stream (op &optional argl &rest rest)

(selectq op
(:tyi
(cond «not (null untyied-char»

(:untyi

(progl untyied-char (setq untyied-char nil»)
«null the-l ist)
(and argl (error argl»)

(t (progl (car the-list)
(setq the-list (cdr the-list»»»

(setq untyied-char argl»
(:which-operations '(:tyi :untyi»
(otherwise

(stream-default-handler (function list-input-stream)
. op argl rest»»

The important things to note are that :untyi must be supported, and that the
stream must check for having reached the end of the information and do the right
thing with the argument to the :tyi operation.

The above stream uses a free variable (the-list) to hold the list of characters, and
another one (untyied-char) to hold the :untyied character (if any). You might
want to have several instances of this type of stream, without their interfering with
one another. This is a typical example of the usefulness of closures in defining
streams. The following function will take a list and return a stream that generates
successive characters of that list.

(defun make-a-list-input-stream (list)
(let-closed «list list) (untyied-char nil»

(function list-input-stream»)

The above streams are very simple. When designing a more complex stream, it is
useful to have some tools to aid in the task. The defselect function aids in
defining message-receiving functions. The Flavor System provides powerful and
elaborate facilities for programming message-receiving objects. See the section
"Flavors" in Reference Guide to Symbolics-lisp.

stream-default-handler stream op argl rest Function
Tries to handle the op operation on stream, given arguments of argl and the
elements of rest. The action taken for each of the defined operations is
explained with the documentation on that operation. The handler sends the
:any-tyi message for :line-in messages to streams that do not handle
:line-in themselves.

25

March 1985 Streams

si:null-stream op &rest args Function
Can be used as a dummy stream object. As an input stream, it immediately
reports end-of-file; as an output stream, it absorbs and discards arbitrary
amounts of output. Note: si:null-stream is not a variable; it is defined as a
function. Use its definition (or the symbol itself) as a stream, not its value.
Examples:

(stream-copy-until-eof a 'si:null-stream)
(stream-copy-until-eof a #'si:null-stream)

Either of the above two forms reads characters out of the stream that is the
value of a and throws them away, until a reaches the end-of-file.

3.6 Coroutine Streams

Functions that produce data as output (output functions) are written in terms of
:tyo and other output operations. Functions that receive data as input (input
functions) are written in terms of :tyi and other input operations. Output functions
operate on output streams, which handle the :tyo message. Input functions operate
on input streams, which handle the :tyi message. Sometimes it is desirable to view
an output function as an input stream, or an input function as an output stream.
You can do this with coroutine streams.

Here is a simplified explanation of how coroutine streams work. A coroutine input
stream can be built from an output function. Whenever that stream receives a :tyi
message, it invokes the output function in a separate stack group so that the
function can produce the data that the :tyi message returns. A coroutine output
stream can be built out of an input function; it works in the opposite fashion.
Whenever the output stream receives a :tyo message, it invokes the input function
in a separate stack group so that the function can receive the data transmitted by
the :tyo message. It is also possible to connect functions that do both input and
output, by using bidirectional coroutine streams. Since you can use coroutine
streams to connect two functions, they are the logical inverse of
stream-copy-until-eof, a function used to connect two streams.

To create a coroutine stream, use one of three functions.
• If you want to make an input stream from an output function, use

si:make-coroutine-input-stream.
• If you want to make an output stream to an input function, use

si:make-coroutine-output-stream.
• If you want to make a bidirectional stream for a function that does both input

and output, use si:make-coroutine-bidirectional-stream.

Following is an example using a coroutine input stream:

26

Reference Guide to Streams, Files, and liD

(setq input-stream
(si:make-coroutine-input-stream

#'(lambda (stream) (print-disk-label 0 stream»»

(send input-stream ':line-in) ~
"1645 free, 2604991/262144 used (99%)"

Following is an example using a coroutine output stream:

(setq output-stream
(si:make-coroutine-output-stream .

#'(lambda (stream) (setq x (read stream»»)

(send output-stream ':string-out "(a be)")

(send output-stream ':force-output)

x ~ (A B C)

March 1985

Coroutine streams are implemented as buffered character streams. Each function
that makes a coroutine stream actually creates two streams and one new stack
group. One stream is associated with the new stack group and the other stream
with the stack group that is current when the stream-making function is called. If
you use si:make-coroutine-input-stream or si:make-coroutine-output-stream,
one stream is an input stream and the other is an output stream; they share a
common buffer. If you use si:make-coroutine-bidirectional-stream, both streams
are bidirectional; the input buffer of each stream is the output buffer of the other.

With si:make-coroutine-input-stream, the output function runs in the new stack
group. With si:make-coroutine-output-stream, the input function runs in the
new stack group. With bidirectional streams, the function that does input or output
runs in the new stack group.

In the case of si:make-coroutine-input-stream, for example, you typically send
:tyi messages to the input stream that si:make-coroutine-input-stream returns.
The input stream is associated with the new stack group. When the input stream
receives a :tyi message, the new stack group is resumed, and the output function
runs in that stack group. The output function typically sends :tyo messages to the
output stream associated with the stack group from which
si:make-coroutine-input-stream was called. When the output stream receives a
:tyo message, the associated stack group is resumed. The data transmitted to the
output stream become input to :tyi via the buffer that the two streams share.
si:make-coroutine-output-stream and si:make-coroutine-bidirectional-stream
work in analogous fashion.

In addition to :tyi and :tyo, coroutine streams support other standard input and
output operations, such as :1ine-in and :string-out. Actually, the
:next-input-buffer method of the input stream and the :send-output-buffer
method of the output stream resume the new stack group, not the receipt of :tyi

27

March 1985 Streams

and :tyo messages. Because the streams are buffered, you must send a
:force-output message to an output stream to cause the new stack group to be
resumed.

The instanti,ble flavors of coroutine streams are si:coroutine-input-stream,
si:coroutine-output-stream, and si:coroutine-bidirectionaI-stream.

!

Do not confuse coroutine streams with pipes. Coroutine streams are used for
intraprocess communication; pipes are used for interprocess communication. 3600-
family machines do not currently support pipes.

si:make-coroutine-input-stream function &rest arguments Function
Creates two coroutine streams, an input stream and an output stream, with
a shared buffer. si:make-coroutine-input-stream returns the input
stream. The input stream is associated with a new stack group and the
output stream with the stack group that is current when
si:make-coroutine-input-stream is called. :tyi messages to the input
stream cause the new stack group to be resumed and function to be called
from that stack group. The first argument to function is the output stream;
any additional arguments come from arguments. function should send :tyo
messages to the output stream. These messages resume the stack group in
which si:make-coroutine-input-stream was called. In this way, output
from function becomes input to the caller of
si:make-coroutine-input-stream through the shared buffer.

si:make-coroutine-output-stream function &rest arguments Function
Creates two coroutine streams, an output stream and an input stream, with
a shared buffer. si:make-coroutine-output-stream returns the ou tpu t
stream. The output stream is associated with a new stack group and the
input stream with the stack group that is current when
si:make-coroutine-output-stream is called. :tyo messages to the output
stream cause the new stack group to be resumed and function to be called
from that stack group. The first argument to function is the input stream;
any additional arguments come from arguments. function should send :tyi
messages to the input stream. These messages resume the stack group in
which si:make-coroutine-output-stream was called. In this way, output
from the caller of si:make-coroutine-output-stream becomes input to
function through the shared buffer.

si:make-coroutine-bidirectionaI-stream function &rest arguments Function
Creates two bidirectional coroutine streams. The input buffer of each stream
is the output buffer of the other. One stream is associated with a new stack
group and the other with the stack group that is current when
si:make-coroutine-bidirectional-stream is called.
si:make-coroutine-bidirectionaI-stream returns the stream associated
with the new stack group.

28

Reference Guide to Streams, Fifes, and /10 March 1985

:tyi and :tyo messages to the stream associated with the new stack group
cause that stack group to be resumed and function to be called from that
stack group. The first argument to function is the stream associated with
the stack group from which si:make-coroutine-bidirectional-stream was
called. Any additional arguments come from arguments. function should
send :tyi or :tyo messages to the stream that is its first argument. These
messages resume the stack group in which
si:make-coroutine-output-stream was called. In this way function and the
caller of si:make-coroutine-bidirectional-stream communicate through the
shared buffers; output from one function becomes input to the other.

si:coroutine-input-stream Flavor
Coroutine input stream. Defines a :next-input-buffer method. Use this to
construct an input stream from a function written in terms of output
operations.

si:coroutine-output-stream Flavor
Coroutine output stream. Defines :new-output-buffer and
:send-output-buffer methods. Use this to construct an output stream to a
function written in terms of input operations.

si:coroutine-bidirectional-stream Flavor
Bidirectional coroutine stream. Defines :next-input-buffer,
:new-output-buffer, and :send-output-buffer methods. Use this to
construct a bidirectional stream to a function written in terms of input and
output operations.

29

March 1985 Streams

4. Formatted Output

There are two ways of doing general formatted output: the format function and
the output subsystem. format uses a control string written in a special format
specifier language to control the output format. output provides Lisp functions to
do output in particular formats.

For simple tasks in which only the most basic format specifiers are needed, format
is easy to use and has the advantage of brevity. For more complicated tasks, the
format specifier language becomes obscure and hard to read. Then output becomes
preferable because it works with ordinary Lisp control constructs.

Additional tools are available for formatting Lisp code (as opposed to text and tables).
See the section "Formatting Lisp Code", page 51.

format destination control-string &rest args Function
Produces formatted output. format outputs the characters of control-string,
except that a tilde (-) introduces a directive. The character after the tilde,
possibly preceded by prefix parameters and modifiers, specifies the kind of
formatting desired. Most directives use one or more elements of args to
create their output; the typical directive puts the next element of args into
the output, formatted in some special way.

The output is sent to destination. If destination is nil, a string is created
that contains the output; this string is returned as the value of the call to
format. In all other cases format returns no interesting value (generally
nil). If destination is a stream, the output is sent to it. If destination is t,
the output is sent to standard-output. If destination is a string with an
array-leader, such as would be acceptable to string-nconc, the output is
added to the end of that string.

A directive consists of a tilde, optional prefix parameters separated by
commas, optional colon (:) and at-sign (@) modifiers, and a single character
indicating the kind of directive. The alphabetic case of the character is
ignored. The prefix parameters are generally decimal numbers. Examples of
control strings:

"-5"
"-3,4:@s"

"-,45 H

This is an S directive with no parameters.
This is an S directive with two parameters, 3 and 4,

and both the colon and at-sign flags.
The first prefix parameter is omitted and takes

on its default value, while the second is 4.

format includes some extremely complicated and specialized features. It is
not necessary to understand all or even most of its features to use format
efficiently. The more sophisticated features are there for the convenience of
programs with complicated formatting requirements.

30

Reference Guide to Streams, Files, and /10 March 1985

Sometimes a prefix parameter is used to specify a character, such as the
padding character in a right- or left-justifying operation. In this case a single
quote (,) followed by the desired character can be used as a prefIx
parameter, so that you do not have to know the decimal numeric values of
characters in the character set. For example, you can use the following to
print a decimal number in five columns with leading zeros.

"""5, 'Od" instead of """5,48d"

In place of a prefix parameter to a directive, you can put the letter V, which
takes an argument from args as a parameter to the directive. Normally this
should be a number but it does not have to be. This feature allows variable
column-widths and the like. Also, you can use the character # in place of a
parameter; it represents the number of arguments remaining to be processed.

Here are some relatively simple examples of how format is used.

(format nil "foo") => "foo"
(setq x 5)
(format nil "The answer is ""D." x) => "The answer is 5."
(format nil "The answer is -3D." x) => "The answer is 5."

(setq y "e1ephant")
(format nil "Look at the -A!" y) => "Look at the elephant!"
(format nil "The character -:@C is strange." #01003)

=> "The character Meta-Beta (Symbo1-shift-B) is strange."

(setq n 3)
(format nil "-D itelll-':P found." n) => "3 items found."
(format nil "-R dog-:[s are""; is-] here." n (= n 1»

=> "three dogs are here."
(format nil "-R dog-:*-[-1; is-:;s are-] here." n)

=> "three dogs are here."
(format nil "Here -[-1;is-:;are-] "":*""R pupp-:@P." n)

=> "Here are three puppies."

-A The next element from the args of the format function, any Lisp
object, is printed without slashifIcation (as by prine). -:A prints () if
the element is nil; this is useful when printing something that is
always supposed to be a list. -nA inserts spaces on the right, if
necessary, to make the column width at least n. The @ modifier
causes the spaces to be inserted on the left rather than the right.
-mincol,colinc,minpad,padcharA is the full form of -A, which allows
elaborate control of the padding. The string is padded on the right
with at least minpad copies of padchar; padding characters are then
inserted colinc characters at a time until the total width is at least
mincol. The defaults are 0 for mineol and min pad, 1 for coline, and
space for padehar.

-8 The next element from the args of the format function, any Lisp

March 1985

31

Streams

object, is printed with slashification (as by prinl). -:8 prints () if
the element is nil; this is useful when printing something that is
always supposed to be a list. -n8 inserts spaces on the right, if
necessary, to make the column width at least n. The @ modifier
causes the spaces to be inserted on the left rather than the right.
-mincol,colinc,minpad,padchar8 is the full form of -8, which allows
elaborate control of the padding. The string is padded on the right
with at least minpad copies of padchar; padding characters are then
inserted colinc characters at a time until the total width is at least
mincol. The defaults are 0 for mincol and minpad, 1 for colinc, and
space for padchar.

-D The next element from the args of the format function, normally a
number, is printed as a decimal integer. Unlike print, -D never puts
a decimal point after the number. -nD uses a column width of n;
spaces are inserted on the left if the number requires fewer than n
columns for its digits and sign. If the number does not fit in n
columns, additional columns are used as needed. -n,mD uses m as
the pad character instead of space. The @ modifier causes the
number's sign to be printed always; the default is to print it if only
the number is negative. The: modifier causes eommas to be printed
between groups of three digits; the third prefix parameter can be used
to change the character used as the comma. Thus the most general
form of -D is -mincol,padchar,commacharD.

If the element is not an integer, it is printed in -A format and
decimal base. Thus this directive can be used to print some list
structure showing all flXllums in decimal.

-0 The next element from the args of the format function, normally a
number, is printed as an octal integer. -nO uses a column width of
n; spaces are inserted on the left if the number requires fewer than n
columns for its digits and sign. If the number does not fit in n
columns, additional columns are used as needed. -n,mO uses m as
the pad character instead of space. The @ modifier causes the
number's sign to be printed always; the default is to print it only if
the number is negative. The: modifier causes commas to be printed
between groups of three digits; the, third prefix parameter can be used
to change the character used as the comma. Thus the most general
form of -0 is -mincol,padchar,commacharO.

If the element is not an integer, it is printed in -A format and octal
base. Thus this directive can be used to print some list structure
showing all flXllums in octal.

32

Reference Guide to Streams, Files, and /10 March 1985

-B Formats a number in binary. For example:

(format t "-B" 10.)
1010
NIL

-x In Common Lisp, formats a number in hexadecimal; in Zetalisp, prints
spaces. For example:

(cl:format t "-X" 50.)
32
NIL

(format t "-X" 50.)

NIL

-F The next element from the args of the format function is printed in
floating-point format. -nF rounds the element to a precision of n
digits. The minimum value of n is 2, since a decimal point is always
printed. If the magnitude of the element is too large or too small, it
is printed in exponential notation. If the element is not a number, it
fs printed in -A format. Note that the prefIx parameter n is not
mincol; it is the number of digits of precision desired.

The Common Lisp version of -F produces a different format.
Examples:

(format nil "-2F" 5) => "5.0"
(format nil "-4F" 5) => "5.0"
(format nil "-4F" 1.5) => "1.5"
(format nil "-4F" 3.14159265) => "3.142"
(format nil "-3F" lel0) => "1.0el0"

(cl:format nil "-2F" 5) ==> #"5."
(cl:format nil "-4F" 3.14159265) ==> #"3.14"

-E The next element from the args of the format function is printed in
exponential format. -nE rounds the element to a precision of n digits.
The minimum value of n is 2, since a decimal point is always printed.
If the element is not a number, it is printed in -A format. Note that
the prefIx parameter n is not mincol; it is the number of digits of
precision desired.

The Common Lisp version of -E is not supported.

-$ The format for using it follows:

-rdig ,ldig ,field,padchar$

It expects a flonum argument. The modifIers for -$ are all optional.

rdig The number of digits after the decimal point. The
default is 2.

March 1985

ldig

field

padchar

@

Examples:

33

Streams

The minimum number of digits before the decimal
point. The default is 1. It pads on the left with
leading zeros.

The full width of the field to print in. The default
is the number of characters in the output. The
field is padded to the left with padchar if necessary.

The character for padding the field if the field is
wider than the number. The default is #\space.

The sign character is to be at the beginning of the
field, before the padding, rather than just to the
left of the number.

The number must always appear signed.

(format t "-&Pi is -$" (atan 0 -1» =>
Pi is 3.14
(format t "-&Pi is -S$" (atan 0 -1» =>
Pi is 3.14159265
(format t "-&Pi is -S,2@:$" (atan 0 -1» =>
Pi is +03.14159265
(format t "-&Pi is -S,2,20$" (atan 0 -1» =>
Pi is 03.14159265
(format t "-&Pi is -S,,20,'x@$" (atan 0 -1» =>
Pi is xxxxxxxxx+3.14159265

It uses free format C@A) for very large values of the argument.

~c <character arg) is put in the output, where arg is the next element
from the args of the format function. arg is treated as a keyboard
character and thus can contain extra modifier bits. See the variable
%%kbd-char, page 6. The modifier bits are printed first, represented
as appropriate prefixes: c- for Control, m- for Meta, c-m- for Control
plus Meta, h- for Hyper, s- for Super.

With the colon flag C:C), the names of the modifier bits are spelled
out (for example, "Contra l-Heta-F"), and nonprinting characters are
represented by their names (for example, "Return") rather than being
output as themselves.

With both colon and at-sign C:@C), the colon-only format is printed,
and then if the character requires the SYMBOL or SHIFT shift key(s) to
type it, this fact is mentioned (for example, "Symbol-l"). This is the
format used for telling the user about a key he or she is expected to
press, for instance, in prompt messages.

For all of these formats, if the character is not a keyboard character

34

Reference Guide to Streams, Fifes, and 110 March 1985

but a mouse "character", it is printed as Mouse-, the name of the
button, -, and the number of clicks.

With only an at-sign (-@C), the character is printed in such a way
that the Lisp reader can understand it, using "#/n or n#\".

-~ Takes a character as its argument and prints the name of the
character inside a lozenge. The -C directive does this with some
characters, but -~ does it with all of them.

-(Format a string in lowercase. The -(directive must be matched by a
corresponding -) directive. For example:

(format t "-(-5-)" 'fs:pathname)
fs:pathname
NIL

(format t "-5" 'fs:pathname)
F5:PATHNAME
NIL

-% A carriage return is written to the output. -n% outputs n carriage
returns. No argument is used. Simply putting a carriage return in
the control string would work, but -% is usually used because it
makes the control string look nicer in the Lisp source program.

-& The :fresh-line operation is performed on the output stream. Unless
the stream knows that it is already at the front of a line, this outputs
a carriage return. -n& does a :fresh-line operation and then outputs
n-l carriage returns.

-I Outputs a page separator character (#\page). -n 1 does this n times.
With a : modifier, if the output stream supports the :clear-screen
operation this directive clears the screen; otherwise it outputs page
separator character(s) as if no : modifier were present.

Outputs a tilde. -n- outputs n tildes.

-1 The next argument in args of the fonnat function must be a string,
and the argument after that must be a list. The string is processed
as a fonnat control string, with the elements of the list as the
corresponding arguments. The processing of the format string
containing -? resumes when the processing of -?'s string is finished.

If the @ modifier is supplied, the next argument in args must be a
string; it is processed as part of the main format string, as if it were
substituted for the -@? directive.

Examples:

(format nil "-? -0" "(-A -0>" '("Myname" 50.) 7) ==> "(Myname 50> 7"

35

March 1985 Streams

(format nil "-@? -D" "(-A -D>" "Myname" 50. 7) ==> "(Hyname 50> 7"

-<eR> Tilde immediately followed by a carriage return ignores the carriage
return and any whitespace at the beginning of the next line. With a
:, the whitespace is left in place. With an @, the carriage return is
left in place. This directive is typically used when a format control
string is too long to fit nicely into one line of the program.

The next element in the args of the fonnat function is ignored.
-n* ignores the next n arguments. -:* "ignores backwards"; that is, it
backs up in the list of arguments so that the argument last processed
will be processed again. -n:* backs up n arguments. When within a
-{ construct, the ignoring (in either direction) is relative to the list of
arguments being processed by the iteration.

-n@* branches to the nth argument (0 is the first). -@* or
-O@* goes back to the first argument in the args of the fonnat
function. Directives after a -n@* take sequential arguments after the
one that is the target of the branch. When within a -{construct,
the branch is relative to the list of arguments being processed by the
iteration. This is an "absolute branch". The directive for a relative
branch is described elsewhere.

In Zetalisp, "goes to" the nth argument. -OG goes back to the first
argument in the args of the fonnat function. Directives after this
one correspond to the sequence of arguments following the argument
that is the target of -G. Inside a -{ construct, the "goto" is relative
to the list of arguments being processed by the iteration.

This is an "absolute" goto; for a relative goto.

The Common Lisp floating-point format specified by -G is not
supported.

-P If the next element in the args of the fonnat function is not 1, a
lowercase s is output. ("P" is for "plural.") -:P does the same thing,
after doing a -:* to back up one argument; that is, it prints a
lowercase s if the last argument were not 1. -@P outputs "y" if the
argument is 1 or "ies" if it is not. -:@P does the same thing but
backs up first.

-T Spaces over to a given column. -n,mT outputs enough spaces to move
the cursor to column n. If the cursor is already past column n,
spaces are output to move it to column n+mk, for the smallest integer
value k possible. n and m default to 1. Without the colon flag, n and
m are in units of characters; with it, they are in units of pixels.

Note: This operation works properly only on streams that support

36

Reference Guide to Streams, Files, and !IO March 1985

the :read-cursorpos and :set-cursorpos stream operations. On
other streams, any "T operation simply outputs two spaces.

When format is creating a string, "T works, assuming that the first
character in the string is at the left margin.

"@T "@T outputs a space. "n@T outputs n spaces.

"R "R prints arg as a cardinal English number, for example, four. ":R
prints arg as an ordinal number, for example, fourth. "@R prints arg
as a Roman numeral, for example, IV. ":@R prints arg as an old _
Roman numeral, for example, IIII.

"nR prints arg in radix n.

The full form is "radix,mincol,padchar,commacharR.

"raciix,nR uses a column width of n; spaces are inserted on the left if
the number requires fewer than n columns for its digits and sign. If
the number does not fit in n columns, additional columns are used as
needed.

"raciix,n,mR uses m instead of the space as the pad character.

The @ modifier causes the number's sign to be printed always; the
default is to print it only if the number is negative.

The: modifier causes commas to be printed between groups of three
digits; the commachar parameter can be used to change the character
used as the comma .

.. [strO .. ;strl .. ; ;stm ..]
This is a set of alternative control strings. The alternatives (called
clauses) are separated by"; and the construct is terminated by"]. ..]
is undefined elsewhere. ..; is also used as a separator in justification
(.. <) constructions but is undefined elsewhere.

For example:

"-[Siamese -;Manx -;Persian -;Tortoise-Shell -
-;Tiger -;Vu-Hsiang -]kitty"

Where arg is the next element from the args of the format function,
the argth alternative is selected; 0 selects the first. If a prefix
parameter is given (that is, "n[), then the parameter is used instead
of an argument (this is useful only if the parameter is "#"). If arg is
out of range, no alternative is selected. After the selected alternative
has been processed, the control string continues after the ..].

-[strO-;strl-; ... -;stm-:;defaulr] has a default case. If the last -; used
to separate clauses is instead .. :;, then the last clause is an "else"
clause, which is performed if no other clause is selected. For example:

March 1985

37

Streams

"-[Siamese -;Hanx -;Persian -;Tiger -
-;Vu-Hsiang -:;Bad -] kitty"

-[-tagOO,tagOl, ... ;strO-taglO,tagll, ... ;strl ... -] allows the clauses to have
explicit tags. The parameters to each -; are numeric tags for the
clause that follows it. That clause is processed that has a tag
matching the argument. If -al,a2,bl,b2,. .. :; (note the colon) is used,
the following clause is tagged not by single values but by ranges of
values al through a2 (inclusive), bl through b2, and so on. -:; with
no parameters can be used at the end to denote a default clause. For
example:

"-[-'+,'-,'*,"';operator -'A,'l,'a,'z:;letter
-'O,'9:;digit -:;other -]"

-:[false-;true-] selects the false control string if arg is nil, and selects
the true control string otherwise.

-@[true-] tests the argument. If it is not nil, then the argument is
not used up, but is the next one to be processed, and the one clause
is processed. If it is nil, then the argument is used up, and the
clause is not processed. For example:

(setq prinlevel nil prinlength 5)
(format nil "-@[PRINLEVEL=-D-]-@[PRINLENGTH=-D-]"

prinlevel prinlength)
=> "" PRINLENGTH=5"

The combination of - [and # is useful, for example, for dealing with
English conventions for printing lists:

(setq faa "Items:-#[none-; -S-; -5 and -
-S-:;-@{-#[-1; and-] -S....,A,-}-].")

(format nil faa)
=> "Items: none."

(format nil faa 'faa)
=> "Items: Foo."

(format nil faa 'faa 'bar)
=> "Items: FOO and BAR."

(format nil faa 'faa 'bar 'baz)
=> "Items: Foo, BAR, and BAl."

(format nil faa 'faa 'bar 'baz 'quux)
=> "Items: FOO, BAR, BAl, and QUUX."

-{str-} This is an iteration construct. The corresponding argument of the
format function should be a list, which is used as a set of arguments
as if for a recursive call to format. (The terminator -} is undefined
elsewhere.)

The string str is used repeatedly as the control string. Each iteration
can absorb as many elements of the list as it likes; if str uses up two
arguments by itself, two elements of the list are used up each time
around the loop.

38

Reference Guide to Streams, Files, and /10 March 1985

If, before any iteration step, the list is empty, the iteration is
terminated. Also, if a prefIx parameter n is given, there will be at
most n repetitions of processing of str. Here are some simple
examples:

(format nil "Here it is:-{ -S-}." '(a be»
=> "Here it is: A B C."

(format nil "Pairs of things:-{ <-S,-S>-}." '(a 1 b 2 e 3»
=> "Pairs of things: <A,1> <B,2> <C,3>."

-:{str-} is similar, but the argument should be a list of sublists. At
each repetition step, one sublist is used as the set of arguments for
processing str; on the next repetition a new sublist is used, whether
or not all of the last sublist had been processed. Example:

(format nil "Pairs of things:-:{ <-S,-S>-}."
'«a 1) (b 2) (e 3»)

=> npairs of things: <A,1> <B,2> <C,3>."

-@{str-} is similar to -{str-}, but instead of using one argument that
is a list, all the remaining format arguments are used as the list of
arguments for the iteration. Example:

(format nil "Pairs of things:-@{ <-S,-S>-}."
'a 1 'b 2 'e 3)

=> "Pairs of things: <A,1> <B,2> <C,3>."

-:@{str-} combines the features of -:{str-} and -@{str-}. All the
remaining arguments are used, and each must be a list. On each
iteration, the next argument is used as a list of arguments to str.
Example:

(format nil "Pairs of things:-:@{ <-S,-S>-}."
'(a 1) '(b 2) '(e 3»

=> "Pairs of things: <A,1> <B,2> <C,3>."

Terminating the repetition construct with -:} instead of -} forces str
to be processed at least once even if the initial list of arguments is
null (however, it will not override an explicit prefIx parameter of zero).

If str is empty, an argument is used as str. It must be a string and
precedes any arguments processed by the iteration. As an example,
the following are equivalent:

(lexpr-funea11 #'format stream string args)
(format stream H_1{_:}H string args)

This will use string as a formatting string. The -I{ says it will be
processed at most once, and the -:} says it will be processed at least
once. Therefore it is processed exactly once, using args as the
arguments.

As another example, the format function itself uses format-error (a
routine internal to the format package) to signal error messages,

March 1985

39

Streams

which in turn uses ferror, which uses format recursively.
format-error takes a string and arguments, like format, but also
prints some additional information: if the control string in ctl-string
actually is a string (it might be a list), it prints the string and a small
arrow showing where in the processing of the control string the error
occurred. The variable ctl-index points one character after the place
of the error.

(defun format-error (string &rest args)
(if (stringp ctl-string)

(ferror nil "-1{-:}-%-VT~-%-3X/"-A/"-%"
string args (+ ctl-index 3) ctl-string)

(ferror nil "-1{-:}" string args»)

This first processes the given string and arguments using -lr:}, then
tabs a variable amount for printing the down-arrow, then prints the
control string between double-quotes. The effect is something like
this:

(format t "The item is a -[Foo-;Bar-;Loser-]." 'quux)
»ERROR: The argument to the FORMAT "_[" command

must be a number
~

"The item is a -[Foo-;Bar-;Loser-]."

-< -mincol,colinc,minpad,padchar<texr> justifies text within a field at
least mincol wide. text can be divided into segments with -;; the
spacing is evenly divided between the text segments. The terminator
-> is undefined elsewhere.

With no modifiers, the leftmost text segment is left justified in the
field, and the rightmost text segment right justified; if there is only
one, as a special case, it is right justified.

The : modifier causes spacing to be introduced before the first text
segment. The @ modifier causes spacing to be added after the last.
Minpad, default 0, is the minimum number of padchar padding
characters (default is the space character) to be output between each
segment. If the total width needed to satisfy these constraints is
greater than mincol, then mincol is acljusted upwards in colinc
increments. coline defaults to 1. mincol defaults to o. For example:

(format nil "-10<foo-;bar->") => "foo bar"
(format nil "-10:<foo-;bar->") => " foo bar"
(format ni 1 "-10:@<foo-;bar->") => " foo bar "
(format nil "-10<foobar->") => " foobar"
(format ni 1 "-10:<foobar->") => " foobar"
(format nil "-1 O@<foobar->") => "foobar "
(format nil "-10:@<foobar->") => " foobar "
(format ni 1 "$-10, ,,'*<-3f->" 2.59023) => "$******2.59"

40

Reference Guide to Streams, Files, and 110 March 1985

Note that text can include format directives. The last example
illustrates how the -<directive can be combined with the -f directive
to provide more advanced control over the formatting of numbers.

Here are some examples of the use of - A within a -<construct. - A

eliminates the segment in which it appears and all following segments
if there are no more arguments.

(format nil "-15<-5-;_A_5-;_A_5->" 'faa)
=> " FDD"

(format nil "-15<-S-;_A_S-;_A_S->" 'faa 'bar)
=> "FOO BAR"

(format nil "-15<-S-;_A_S-;_A_5->" 'faa 'bar 'baz)
=> "FDD BAR BAZ"

If a segment contains a --, and format runs out of arguments, it
stops there instead of getting an error, and it as well as the rest of
the segments are ignored.

If the first clause of a -<is terminated with -:; instead of -;, it is
used in a special way. All the clauses are processed (subject to _A, of
course), but the first one is omitted in performing the spacing and
padding. When the padded result has been determined, if it will fit
on the current line of output, it is output, and the text for the first
clause is discarded. If, however, the padded text will not fit on the
current line, the text segment for the first clause is output before the
padded text. The first clause should contain a carriage return (-%).

The first clause is always processed, and so any arguments to which it
refers are used; the decision is whether to use the resulting segment
of text, not whether to process the first clause. If the _:; has a prefix
parameter n, the padded text must fit on the current line with n
character positions to spare to avoid outputting the first clause's text.
For example, the following control string can be used to print a list of
items separated by commas, without breaking items over line
boundaries, and beginning each line with ";; ".

"-%;; -{-<-%;; -1:; -S->_A,_}.-%"

The prefix parameter 1 in -1:; accounts for the width of the comma
that will follow the justified item if it is not the last element in the
list, or the period if it is. If -:; has a second prefix parameter, it is
used as the width of the line, overriding the natural line width of the
output stream. To make the preceding example use a line width of
50, you would write:

If the second argument is not specified, then format sees whether
the stream handles the :size-in-characters message. If it does, then
format sends that message and uses the first returned value as the
line length in characters, If it does not, format uses 95. as the line
length.

March 1985

41

Streams

Rather than using this complicated syntax, you can often call the
function format:print-list. .

This is an escape construct. If there are no more arguments
remaining to be processed, then the immediately enclosing .. { or .. <
construct is terminated. If there is no such enclosing construct, then
the entire formatting operation is terminated. In the .. < case, the
formatting is performed, but no more segments are processed before
doing the justification. The _... should appear only at the beginning of
a .. < clause, because it aborts the entire clause. can appear
anywhere in a -{construct.

If a prefix parameter is given, then termination occurs if the
parameter is zero. (Hence"- is the same as "#-.) If two parameters
are given, termination occurs if they are equal. If three are given,
termination occurs if the second is between the other two in
ascending order. Of course, this is useless if all the prefix parameters
are constants; at least one of them should be a # or a V parameter.

If .. - is used within a .. :{ construct, it merely terminates the current
iteration step (because in the standard case it tests for remaining
arguments of the current step only); the next iteration step
commences immediately. To terminate the entire iteration process,
use ":-.

.. text'" .. indents text at the cursor position that is current at the time
of the A must be terminated with a -.. , which is undefined
elsewhere. and can be nested like - [-] and -<->; if they are
nested, the indention of an inner pair is relative to the margin set by
the pair containing it. A numeric argument, if supplied, specifies how
far to indent. This directive is especially useful in making error
messages indent properly. For example:

prints

(format t "-&Error: - .. -A-.. " "File not found
for FOO.LISP.1")

Error: File not found
for FOO.LISP.1

"Q An escape to arbitrary user-supplied code. arg is called as a function;
its arguments are the prefix parameters to -Q, if any. args can be
passed to the function by using the V prefix parameter. The function
can output to standard-output and can look at the variables
format:colon-flag and format:atsign-fiag, which are t or nil to
reflect the: and @ modifiers on the -Q. For example,

(format t "-VQ" faa bar)

is a fancy way to say

42

Reference Guide to Streams, Files, and liD March 1985

(funcall bar fool

and discard the value. Note the reversal of order; the V is processed
before the Q.

-\date\
Prints its argument as a date and time, assuming the argument is a
universal time. It uses the function time:print-universal-date.

(format nil "Today is -\date\" (time:get-universal-time»
=> "Today is Tuesday the fourteenth of May, 1985; 3:07:05 pm"

-\time\
Prints its argument as a time, assuming the argument is a universal
time. It uses the function time:print-universal-time.
(format nil "Today is -\time\" (time:get-universal-time»
"Today is 5/1141185 15:08:41"

-\datime\
Prints the current time of day. It does not take an argument. It
uses the function time:print-current-time.
(format nil "Today is -\datime\")
"Today is 5/1141185 15:19:06"

-\ time-interval\
Prints the length of a time interval. It uses the function
time:print-interval-or-never.
(setq a (time:get-universal-time»

(format nil "It is -\time-interval\ since I set this variable"
(- (time:get-universal-time) a»

"It is 1 hour 5 minutes 9 seconds since I set this variable"

You can use the special form format:defformat to define your own
directives.

format:defformat directive (arg-type) arglist body ... Special Form
Defines a new format directive.

directive is a symbol that names the directive. If directive is longer
than one character, it must be enclosed in backslashes in calls to
format:

(format t "-\foo\" ...)

directive is usually in the format package; if it is in another package,
the user must specify the package in calls to format:

(format t "-\foo:bar\" ...)

format:defformat defines a function to be called when format is

March 1985

43

Streams

called using directive. body is the body of the function definition.
arg-type is a keyword that determines the arguments to be passed to
the function as arglist:

:no-arg The directive uses no arguments. The function is
passed one argument, a list of parameters to the
directive. The value returned by the function is
ignored.

:one-arg The directive uses one argument. The function is
passed two arguments: the argument associated
with the directive and a list of parameters to the
directive. The value returned by the function is
ignored.

:multi-arg The directive uses a variable number of arguments.
The function is passed two arguments. The first is
a list of the first argument associated with the
directive and all the remaining arguments to
format. The second is a list of parameters to the
directive. The function should cdr down the list of
arguments, using as many as it wants, and return
the tail of the list so that the remaining arguments
can be given to other directives.

The function can examine the values of format:colon-flag and
format:atsign.-flag. If format:colon-tlag is not nil, the directive
was given a : modifier. If format:atsign.-flag is not nil, the directive
was given a @ modifier.

The function should send its output to the stream that is the value of
format:*format-output* .

Here is an example of a format directive that takes one argument
and prints a number in base '7:

(format:defformat format:base-7 (:one-arg) (argument parameters)
parameters ;ignored ,
(l et « bas e 7»

(prine argument format:*format-output*»)

Now:

(format nil U> -\base-7\ <" 8) => "> 11 <"

Note: format also allows control-string to be a list. If the list is a list of one
element, which is a string, the string is simply printed. This is for the use
of the format:outfmt function. In general, you should use format:output
if you use lists as arguments.

44

Reference Guide to Streams, Files, ,and flO March 1985

format:print-list destination element-format-string list Function
&optional Cseparator-format-string ", '~

Cstart-line-format-string" '~
(tilde-brace-options "'~

Provides a' simpler interface for the specific purpose of printing
comma-separated lists with no list element split across two lines.

The destination argument tells where to send the output; it can be t,
nil, a string suitable for string-ncone, or, as with format, a stream.

element-format-string is a format control string specifying how to
print each element of list. It is used as the body of an iteration
construction (as in -{element-format-string-}).

separator-format-string, which defaults to ", " (comma, space), is a
string that is placed after each element except the last. format
control directives are allowed in this string but should not take
arguments from the list.

start-line, which defaults to three spaces, is a format control string
that is used as a prefix at the beginning of each line of output except
the first.

tilde-brace-options is a string inserted before the opening brace ({) of
the iteration construct. It defaults to the null string but allows you
to insert a colon or at-sign. The line width of the stream is computed
in the same way as with the -{str} format directive. It is not
possible to override the natural line width of the stream.

4.1 The Output Subsystem

The formatting functions associated with the output subsystem allow you to do
formatted output using Lisp-style control structure. Instead of a directive in a
format control string, there is one formatting function for each kind of formatted
output.

The calling conventions of the formatting functions are all similar. The first
argument is usually the datum to be output. The second argument is usually the
minimum number of columns to use. The remaining arguments are options -
alternating keywords and values.

Options that most functions accept include :padcbar, followed by a character to use
for padding; :minpad, followed by the minimum number of padding characters to
output after the data; and : tab-period, followed by the distance between allowable
places to stop padding. For example, if the value of :tab-period is 5, the minimum
size of the field is 10, and the value of :minpad is 2, then a datum that takes 9
characters is padded to 15 characters. The requirement to use at least two

45

March 1985 Streams

characters of padding means it cannot fit into 10 characters, and the :tab-period of
5 means the next allowable stopping place is at 10+5 characters. The default values
for :minpad and :tab-period, if they are not specified, are 0 and 1. The default
value for :padcbar is Space.

The formatting functions always output to standard-output and do not require an
argument to specify the stream. The macro format:output allows you to specify
the stream or a string, just as format does, and also makes it convenient to
concatenate constant and variable output.

format:output stream string-or-form... Macro
Makes it convenient to intersperse arbitrary output operations with printing
of constant strings. standard-output is bound to stream, and each
string-or-form is processed in succession from left to right. If it is a string it
is printed; otherwise it is a form that is evaluated and the value is discarded.
Presumably the forms send output to standard-output.

If stream is written as nil, the output is put into a string that is returned by
format: output. If stream is written as t, then the output goes to the
prevailing value of standard-output. Otherwise stream is a form that must
evaluate to a stream.

Here is an example:

(format:output t "FOO is " (prinl faa) " now." (terpri»

Because format:output is a macro, what matters about stream is not
whether it evaluates to t or nil, but whether it is actually written as t or
nil.

format:outfmt string-or-form... Macro
Some system functions ask for a format control string and arguments, to be
printed later. If you wish to generate the output using the formatted output
functions, you can use format:outfmt, which produces a control argument
that eventually makes format print the desired output. (This is a list whose
one element is a string containing the output.) A call to format:outfmt can
be used as the first argument to ferror. For example:

(ferror (format:outfmt "Foo is " (format:onum faa)
" which is too large"»

format:onum number &optional radix minwidth &rest options Function
Outputs number in base radix, padding to at least minwidth columns and
obeying the other padding options specified.

radix can be a number or :roman, :english, or :ordinaI. The default radix
is 10. (decimal).

Two special keywords are allowed as options: :signed and :commas.
:signed with value t means print a sign even if the number is positive.

46

Reference Guide to Streams, Files, and 110 March 1985

:eommas with value t means print a comma every third digit in the
customary way. These options are meaningful only with numeric radices.

fonnat:ofloat number &optional n-digits force-exponential-notation Function
minwidth &rest options

Outputs number as a floating-point number using n-digits digits. If
force-exponential-notation is non-nil, then an exponent is always used.
minwidth and options are used to control padding as usual.

fonnat:ostring string &optional minwidth &rest options Function
Outputs string, padding to at least minwidth columns if minwidth is not nil,
and obeying the other padding options specified.

Normally the contents of the string are left justified; any padding follows the
data. The special option :right-justify causes the padding to come before
the data. The amount of padding is not affected.

The argument need not be a string. Any Lisp object is allowed, and it is
output by prine.

fonnat:oprint object &optional minwidth &rest options Function
Prints object, any Lisp object, padding to at least minwidth columns if
minwidth is not nil, and obeying the padding options specified.

Normally the data are left justified; any padding follows. The special option
:right-justify causes the padding to come before the data. The amount of
padding is not affected.

The printing of the object is done with print.

fonnat:oehar character &optional style top-explain minwidth Function
&rest options

Outputs character in one of three styles selected by the style argument.
minwidth and options control padding as usual.

If style is :read, nil, or not specified, then the character is printed using #/
or #\ so that it could be read back in.

If style is :editor, then the output is in the style of the string "Meta
Rubout".

If style is :brief, a somewhat more abbreviated style is used in which "c-",
"m-", and the like are used to represent "Control" and "Meta", and shorter
names for characters are also used when possible. See the section "The
Character Set", page 5.

top-explain is useful with the :editor and :brief styles. It says that any
character that has to be typed using the SYMBOL key should be followed by an
explanation of how to type it. For example: "a (Symbol-shift-A)".

47

March 1985 Streams

fonnat:tab mincol &rest options Function
Outputs padding at least until column mincol. It is the only formatting
function that bases its actions on the actual cursor position rather than the
width of what is being output. The padding options :padcbar, :minpad,
and :tab-period are obeyed. Thus, at least the :minpad number of padding
characters are output even if that goes past mincol, and once past mincol,
padding can only stop at a multiple of :tab-period characters past mincol.

In addition, if the :terpri option is t, then if column mincol is passed,
fonnat:tab starts a new line and indents it to mincol.

The :unit option specifies the units of horizontal position. The default is to
count in units of characters. If :unit is specified as :pixel, the computation
(and the argument mincol and the :minpad and :tab-period options) are in
units of pixels.

fonnat:pad (minwidth option ...) body... Macro
Prints several items in a fixed amount of horizontal space, padding between
them to use up any excess space. Each of the body forms prints one item.
The padding goes between items. The entire format:pad always uses at
least minwidth columns; any unneeded columns are distributed as padding
between the items. If that is not enough space, more space is allocated in
units controlled by the :tab-period option until there is enough space. If it
is m{)re than enough, the excess is used as padding.

If the :minpad option is specified, then at least that many pad characters
must go between each pair of items.

Padding goes only between items. If you want to treat several actual pieces
of output as one item, put a progn around them. If you want padding
before the first item or after the last, as well as between the items, include a
dummy item nil at the beginning or the end.

If there is only one item, it is right justified. One item followed by nil is left
justified. One item preceded and followed by nil is centered. Therefore,
fonnat:pad can be used to provide the usual padding options for a function
that does not provide them itself.

fonnat:plural number singular &optional plural Function
Outputs either the singular or the plural form of a word, depending on the
value of number. The singular is used if and only if number is 1. singular
specifies the singular form of the word. string-pluralize is used to compute
the plural, unless plural is explicitly specified.

It is often useful for number to be a value returned by fonnat:onum, which
returns its argument. For example:

(format:plural (format:onum n-frobs) " frob")

prints 1 frob or 2 frobs.

48

Reference Gu;de to Streams, Fifes, and 110 March 1985

fonnat:breakline linel print-if-terpri print-always... Macro
Goes to the next line if there is not enough room for something to be output
on the current line. The print-always forms print the text that is supposed
to fit on the line. linel is the column before which the text must end. If it
does not end before that column, fonnat:breakline moves to the next line
and executes the print-if-terpri form before doing the print-always forms.

Constant strings are allowed as well as forms for print-if-terpri and
print-always. A constant string is just printed.

To go to a new line unconditionally, simply call terpri.

Here is an example that prints the elements of a list, separated by commas,
breaking lines between elements when necessary.

(defun pcl (list linel)
(do «1 list (cdr 1») «null 1»

(format:breakline linel" "
(princ (car 1»
(and (cdr 1) (princ H, H»~»~)

49

March 1985 Streams

sys:with-indentation (stream-var relative-indentation) &body body Macro
Within the body of sys:with-indentation, any output to stream-var is
preceded by a number of spaces. At every recursion, the additional
indentation is specified by relative-indentation. The macro does not work this
way with the :item message used to display mouse-sensitive items; the items
appear, but without indentation. (See the section "Interactive Streams and
Mouse-sensitive Items" in Programming the User Interface.)

(defun traced-factorial (n)
(format t "-%Argument: -0" n)
(sys:with-indentation (standard-output 2)

(let «value (if (~ n 1)
1
(* n (traced-factorial (1- n»»»

(format t "-%Value: -0" value)
value»)

(traced-factorial 5)

Argument: 5
Argument: 4

Argument: 3
Argument: 2

Argument:
Value: 1

Value: 2
Value: 6

Value: 24
Value: 120
120

50

Reference Guide to Streams, Fife::;, and 110 March 1985

51

March 1985 Streams

5. Formatting Lisp Code

grindef function-spec... Special Fonn
Prints the definitions of one or more functions, with indentation to make the
code readable. Certain other "pretty-printing' transformations are performed:

• The quote special form is represented with the' character.
• Displacing macros are printed as the original code rather than the

result of macro expansion.
• The code resulting from the backquote (') reader macro is represented

in terms of '.

The subforms to grindef are the function specs whose definitions are to be
printed; ordinarily, grindef is used with a form such as (grindef foo) to
print the definition of foo. When one of these subforms is a symbol, if the
symbol has a value its value is prettily printed also. Definitions are printed
as defun special forms, and values are printed as setq special forms.

If a function is compiled, grindef says so and tries to find its previous
interpreted definition by looking on an associated property list. See the
function uncompile in Program Development Utilities. This works only if
the function'S interpreted definition was once in force; if the definition of the
function was simply loaded from a BIN file, grindef does not find the
interpreted definition and cannot do anything useful.

With no subforms, grindef assumes the same arguments as when it was last
called.

grind-top-Ievel obj &optional width (stream standard-output) Function
(untyo-p nil) (displaced 'si:displaced)
(terpri-p t) notify-fun loc

Pretty-prints obj on stream, inserting up to width characters per line. This
is the primitive interface to the pretty-printer. Note that it does not support
variable-width fonts. If the width argument is supplied, it is how many
characters wide the output is to be. If width is un supplied or nil,
grind-top-level tries to determine the "natural width" of the stream by
sending a :size-in-characters message to the stream and using the first
returned value. If the stream does not handle that message, a width of 95.
characters is used instead.

The remaining optional arguments activate various features and usually
should not be supplied. These options are for internal use by the system,
and are documented here only for completeness. If untyo-p is t, the :untyo
and :untyo-mark operations are used on stream, speeding up the algorithm
somewhat. displaced controls the checking for displacing macros; it is the

52

Reference Guide to Streams, Files, and liD March 1985

symbol that flags a place that has been displaced, or nil to disable the
feature. If terpri-p is nil, grind-top-Ievel does not advance to a fresh line
before printing.

If notify-fun is non-nil, it is a function of three arguments and is called for
each "token" in the pretty-printed output. Tokens can be atoms, open and
close parentheses, and reader macrq characters such as '. The arguments to
notify-fun are the token, its "location" (see next paragraph), and t if it is an
atom or nil if it is a character.

loe is the "location" (typically a cons) whose car is obj. As the grinder
recursively descends through the structure being printed, it keeps track of
the location where each thing came from, for the benefit of the notify-fun, if
any. This makes it possible for a program to correlate the printed output
with the list structure. The "location" of a close parenthesis is t, because
close parentheses have no associated location.

53

March 1985 Streams

6. The Input Editor Program Interface

6.1 How the Input Editor Works

The input editor is a feature of all interactive streams, that is, streams that connect
to terminals. Its purpose is to let you edit minor mistakes in typein. At the same
time, it is not supposed to get in the way; Lisp is to see the input as soon as you
have typed a syntactically complete form. The definition of "syntactically complete
form" depends on the function that is reading from the stream; for read, it is a
Lisp expression. This section describes the general protocol used for communication
between the input editor and reading functions such as read and readline.

By reading function we mean a function that reads a number of characters from a
stream and translates them into an object. For example, read reads a Lisp
expression and returns an object. readline reads a line of characters and returns a
string as its first value. Reading functions do not include the more primitive :tyi
and :any-tyi stream operations, which take and return one character or blip from
the stream.

The tricky thing about the input editor is the need for it to figure out when you are
all done. The idea of an input editor is that as you type in characters, the input
editor saves them up in an input buffer so that if you change your mind, you can
edit them and replace them with different characters. However, at some point the
input editor has to decide that the time has come to stop putting characters into the
input buffer and let the reading function start processing the characters. This is
called "activating".

The right time to activate depends on the function calling the input editor, and
determining it may be very complicated. If the function is read, figuring out when
one Lisp expression has been typed requires knowledge of all the various printed
representations, what all currently defined reader macros do, and so on. The input
editor should not have to know how to parse the characters in the input buffer to
figure out what the caller is reading and when to activate; only the caller should
have to know this. The input editor interface is organized so that the calling
function can do all the parsing, while the input editor does all the handling of
editing commands, and the two are kept completely separate.

Following is a summary of how the input editor works. The input editor used to be
called the rubout handler, and some operations and variables still have "rubout
handler" in their names.

When a reading function is called to read from a stream that supports the
:input-editor operation, that function "enters" the input editor. It then goes ahead
:tyi'ing characters from the stream. Because control is inside the input editor, the
stream echoes these characters so the user can see the input. (Normally echoing is

54

Reference Guide to Streams, Files, and /10 March 1985

considered to be a higher-level function outside of the province of streams, but when
the higher-level function tells the stream to enter the input editor it is also handing
it the responsibility for echoing). The input editor is also saving all these characters
in the input buffer, for reasons disclosed in the following paragraph. When the
reading function decides it has enough input, it returns and control "leaves" the
input editor. That was the easy case.

If you press RUBOUT or a keystroke that represents another editing command, the
input editor processes the command and lets you insert characters before the last
one in the line. The input editor modifies the input buffer and the screen
accordingly. Then, when you type the next nonediting character at the end of the
line, a throw is done, out of all recursive levels of read, reader macros, and so
forth, back to the point where the input editor was entered. Now the read is tried
over again, rereading all the characters you had typed and not rubbed out, but not
echoing them this time. When the saved characters have been exhausted, additional
input is read from you in the usual fashion.

The input editor has options that can cause the throw to occur at other times as
well. With the :activation option, when you type an activation character a throw
occurs, a rescan is done if necessary, and a final blip is returned to the reading
function. With the :preemptable and :command options, a blip or special
character in the input stream causes control to be returned from the input editor
immediately, without a rescan. These options let you process mouse clicks or special
keystroke commands as soon as they are read.

The effect of all this is a complete separation of the functions of input editing and
parsing, while at the same time mingling the execution of these two functions in
such a way that input is always "activated" at just the right time. It does mean
that the parsing function (in the usual case, read and all macro-character
definitions) must be prepared to be thrown through at any time and should not
have nontrivial side-effects, since it may be called multiple times.

If an error occurs while inside the input editor, the error message is printed and
then additional characters are read. When you press RUBOUT, it rubs out the error
message as well as the last character. You can then proceed to type the corrected
expression; the input is reparsed from the beginning in the usual fashion.

6.2 Invoking the Input Editor

The variable rubout-handler indicates the current state of input editing. This
variable is not nil if the current process is already inside the input editor.

rubout-handler Variable
Indicates the status of input editing within a process.

This variable is used internally by the :input-editor method and the input

55

March 1985 Streams

editor. It should not be necessary for user programs to examine its value
since the with-input-editing special form is provided for this purpose.

The possible values for this variable are:

Value

nil

:read

:tyi

Meaning

The process is outside the input editor.

The process is inside the :input-editor method.

The process is inside the editing portion of the :tyi
method.

The input editor is invoked on a stream when the stream receives an :input-editor
message. The :input-editor and :tyi methods of si:interactive-stream contain
the code of the input editor. The :input-editor method initializes the input editor,
establishes its catch, and then calls back to the reading function with
mbout-handler bound to :read. When the reading function sends the :tyi or
:any-tyi message, input is taken from the input buffer. If no input is available, the
editing or :tyi portion of the input editor is invoked, and mbout-handler is bound
to :tyi.

The first argument to the :input-editor message is the function that the input
editor should call to do the reading, and the rest of the arguments are passed to
that function. If the reading function returns normally, the values returned by the
:input-editor message are just those returned by the reading function. If the input
editor returns by throwing out of the reading function, the return values depend on
which option caused the input editor to throw: See the option :full-rubout, page
59. See the option :preemptable, page 63. See the option :command, page 64.

The input editor can take a series of options. These are specified dynamically by the
special forms with-input-editing-options and with-input-editing-options-if. For
a description of the options: See the section "Input Editor Options", page 59.

with-input-editing-options options &body body Special Form
Specifies input editing options and executes body with those options in effect.
The scope of the option specifications is dynamic.

options is a list of input editor option specifications. Each element is a list
whose car is an option-name specification and whose cdr is a list of forms to
be evaluated to yield "arguments" for the option. The option-name
specification is a keyword symbol or a list whose car is a keyword symbol.
The symbol is the name of the option.

If the option-name specification is a list and if the symbol :override is an
element of the cdr of the list, this option specification overrides any higher
level specifications for this option. Otherwise, the specification for each option
that is dynamically outermost (that is, the specification from the highest-level
caller) is in effect during the execution of body.

56

Reference Guide to Streams, Files, and liD March 1985

with-input-editing-options returns whatever values body returns.

In the following example, the user is prompted for a Lisp expression. Two
input editor options are specified. The first says that the caller is also willing
to receive mouse or menu blips. The second specifies a prompt.

(with-input-editing-options «:preemptable :blip)
(:prompt "Form: H»~

(read»

In the following example, the user is prompted for a line of text. The text
may be activated by any of the characters RETURN, END, or TRIANGLE. This
might be useful if activating with TRIANGLE meant something different from
activating with RETURN. This example also demonstrates the use of :override
to make this :activation specification override any higher-level :activation
specifications.

(with-input-editing-options
«(:activation :override) 'memq '(#\return #\end #\triangle»)

(prompt-and-read :string "Name: H»~

For a list of input editor options: See the section "Input Editor Options",
page 59. See the special form with-input-editing-options-if, page 56.

with-input-editing-options-if cond options &body body Special Form
Executes body, possibly with specified input editing options in effect. The
scope of the option specifications is dynamic.

cond is a form to be evaluated at run-time. If cond returns non-nil, the
specified input editor options are in effect during the execution of body.

options is a list of input editor option specifications. Each element is a list
whose car is an option-name specification and whose cdr is a list of forms to
be evaluated to yield "arguments" for the option. The option-name
specification is a keyword symbol or a list whose car is a keyword symbol.
The symbol is the name of the option.

If the option-name specification is a list and if the symbol :override is an
element of the cdr of the list, this option specification overrides any higher
level specifications for this option. Otherwise, the specification for each option
that is dynamically outermost (that is, the specification from the highest-level
caller) is in effect during the execution of body.

with-input-editing-options-if returns whatever values body returns.

For a list of input editor options: See the section "Input Editor Options",
page 59. See the special form with-input-editing-options, page 55.

This example illustrates the use of the : command, :preemptable, and :prompt
input editor options. It is a simple command loop that reads different kinds of
commands -- typed Lisp expressions, single-keystroke commands, and mouse clicks.

57

March 1985 Streams

The Lisp expressions are read using the read-or-end function. You can provide
four kinds of input:

Input

END

Action

Lisp form

Exit the command loop

Print form on next line

Mouse click

Single-key command

Display type of click and mouse coordinates

Display keystroke

The predicate for detecting a single-keystroke command simply checks for the Super
bit. In a more complex program, it might look up the character in a command
table.

(defun command-char-p (c) (char-bit c :super»

(defun command-loop ()
(loop

do (multiple-value-bind (value flag)
(with-input-editing-options

«:command 'command-char-p)
(:preemptable :blip)
(:prompt "Command loop input: "»

(read-or-end»
(selectq flag

(:end
(format t "Done")
(return t»

(:blip
(selectq (car value)

(:mouse-button
(destructuring-bind (click nil x y) (cdr value)

(format t "-C click at -D, -D" click x y»)
(otherwise (format t "Random blip -- -S" value»»

(:command
(format t "Execute -:C command" (second value»)

(otherwise
(format t "-&Value is -S" value»»»

To write a reading function that invokes the input editor, you should use the
with-input-editing special form instead of sending the :input-editor message
directly. Such functions as read and readline use this special form to provide input
editing.

with-input-editing (&optional stream keyword> &body body Special Form
Provides a convenient way of invoking the input editor for use by a reading
function. It establishes a context in which input editing should be provided.
Use with-input-editing instead of sending an :input-editor message
directly.

58

Reference Guide to Streams. Files. and /10 March 1985

Both "arguments" are optional. stream is the stream from which characters
are read; if stream is not provided or is nil, standard-input is used.

keyword determines the activation characters for the input editor:

Value

nil

Activation characters

None (unless specified at a higher level). This is the
default.

:end-activation #\end

:line-activation #\end, #\return, and #\line

:line #\end, #\return, and #\line. In addition, a Newline is
echoed after the reading function returns.

To supply other input editor options: See the special form
with-input-editing-options, page 55. See the special form
with-input-editing-options-if, page 56.

with-input-editing defines an internal lexical closure with body as its body.
When the with-input-editing form is evaluated from outside the input
editor, the stream is sent an :input-editor message if it handles it. The
argument to the :input-editor message is the lexical closure, except that if
the :line keyword is supplied, with-input-editing also arranges to echo a
Newline after the lexical closure returns. If the with-input-editing form is
evaluated from inside the input editor or if the stream does not handle the
:input-editor message, the lexical closure is called instead.

with-input-editing returns whatever values body returns.

The following example defines a simple sentence parser.

March 1985

59

Streams

(defun read-sentence (&optional (stream standard-input»
(with-input-editing-options «:prompt "Type a sentence: H»~

(with-input-editing (stream)
(loop named sentence

with sentence = nil
for word = (make-array 20. :type art-string :fill-pointer 0)
do (loop for char = (send stream :tyi)

do
(cond «memq char '(#\space #\return #1. #I? #1,»

(if (not (equal word "H»~

(push word sentence»
(selectq char

«#\space #\return #1,)
(return»

(#\.
(push :period sentence)
(return-from sentence (nreverse sentence»)

(#\?
(push :question-mark sentence)
(return-from sentence (nreverse sentence»»)

(t (array-push-extend word char»»»»

6.3 Input Editor Options

The input editor can take a series of options, specified by the special forms
with-input-editing-options and with-input-editing-options-if. Following are
descriptions of the options.

:full-rubout token Option
If the user rubs out all the characters that were typed, control is returned
from the input editor immediately. Two values are returned: nil and token.
If the user does not rub out all the characters, the input editor propagates
multiple values back from the function that it calls, as usual. In the absence
of this option, the input editor simply waits for more characters to be typed
and ignores any additional rubouts.

:pass-through &rest characters Option
The characters in characters are not to be treated as special by the input
editor. This option is used to pass format effectors (such as HELP or CLEAR
INPUT) through to the reading function instead of interpreting them as input
editor commands. :pass-through is allowed only for characters with no
modifier bits set, that is, for character codes 0 through 377 (octal). For
characters that have modifier bits set and must be visible to the reading
function, use :do-not-echo or :activation.

60

Reference Guide to Streams, Files, and flO March 1985

:prompt &rest prompt-option Option
When it is time for the user to be prompted, the input editor displays
prompt-option. prompt-option can have one element, which can be nil, a
string, a function, or a symbol other than nil; or it can have more than one
element: See the section "Displaying Prompts in the Input Editor", page 65.

The difference between :prompt and :reprompt is that the latter does not
display the prompt when the input editor is first entered, but only when the
input is redisplayed (for example, after a screen clear). If both options are
specified, :reprompt overrides :prompt except when the input editor is first
entered.

:reprompt &rest prompt-option Option
When it is time for the user to be reprompted, the input editor displays
prompt-option. prompt-option can have one element, which can be nil, a
string, a function, or a symbol other than nil; or it can have more than one
element: See the section "Displaying Prompts in the Input Editor", page 65.

Unlike :prompt, :reprompt displays the prompt only when input is
redisplayed (for e~ple, after a screen clear), not when the input editor is
first entered. If both :prompt and :reprompt are specified, :reprompt
overrides :prompt except when the input editor is first entered.

:complete-help &rest help-option Option
When the user presses HELP, the input editor types out a message determined
by help-option. None of the standard input editor help is displayed. If a
:brief-help option has been specified, it overrides :complete-help.
:complete-help overrides :merged-help and :partial-help.

help-option can have one element, which can be a string, a function, or a
symbol; or it can have more than one element. For an explanation: See the
section "Displaying Help Messages in the Input Editor", page 66.

This option is intended for programs that supply their own input editor help
messages.

:partial-help &rest help-option Option
When the user presses HELP, the input editor first types out a message
determined by help-option. It then types out a message describing how to
invoke input editor commands and other information about the stream. If a
:brief-help, :complete-help, or :merged-help option has been specified, it
overrides :partial-help.

help-option can have one element, which can be a string, a function, or a
symbol; or it can have more than one element. For an explanation: See the
section "Displaying Help Messages in the Input Editor", page 66.

This option is intended for use when inexperienced users might be typing to

61

March 1985 Streams

the input editor. Often help-option gives some information about the
program to which the user is typing and what the user can do to exit from
it.

:merged-help function &rest arguments Option
When the user presses HELP, the input editor types out a message determined
by the arguments. function is a function that takes at least two arguments.
The input editor calls the function to print the help message. The first
argument is the stream. The second argument is a continuation (a list) to
print a standard message describing how to invoke input editor commands
and other information about the stream. When the function wants to print
this message, it should apply the car of the continuation to the cdr. If any
arguments are supplied, they are the remaining arguments to the function.

If a :brief-help or :complete-help option has been specified, it overrides
:merged-help. :merged-help overrides :partial-help.

This option is intended for programs that want to decide when and where to
display their own help messages and the standard help message.

:brief-help &rest help-option Option
When the user presses HELP, the input editor displays a message determined
by help-option on the same line as the typein. The message is displayed in
the default typeout font, and none of the usual conventions about input
editor typeout apply. :brief-help overrides :complete-help, :merged-help,
and :partial-help.

help-option can have one element, which can be a string, a function, or a
symbol; or it can have more than one element. For an explanation: See the
section "Displaying Help Messages in the Input Editor", page 66.

This option is intended for programs like fquery that need to supply only a
brief help message, usually about expected typein.

:initial-input string &optional begin end cursor-position Option
When the input editor is entered, string is inserted into the input buffer as if
the user had typed it. The user can edit the string before activating. begin
and end are indices into string and mark the portion of the string to be
copied into the input buffer. begin defaults to 0; end defaults to
(array-active-Iength string). cursor-position is an index into the string
where the cursor should initially be placed. The default is to place the cursor
at the end of the portion of the string copied into the input buffer. string
can be nil, which is the same as not specifying the option.

In the following example, the user is prompted for a line of text. The input
buffer initially contains the name of the user, and the cursor is placed at the
beginning of the input buffer.

62

Reference Guide to Streams, Files, and 110 March 1985

(with-input-editing-options
«:initial-input fs:user-persona1-name nil nil 0»

(prompt-and-read :string "Full name: H»~

Placing a string in the input buffer is one style of input defaulting. Another
style leaves the input buffer empty but allows a default to be yanked with
C-M-V. See the option :input-history-default, page 62.

:input-history-default string Option
Specifies string as the default to be yanked by C-M-V. string is temporarily
placed at the head of the input history. If the user types C-M-V M-V, the
true first element of the input history is yanked. c-M-0 C-M-V shows string
at the head of the input history, and the entries in the input history are
shifted down by one.

In the following example, the user is prompted for a line of text. The input
buffer is initially empty, but the C-M-V command yanks a default, which is
the name of the user.

(with-input-editing-options
«:input-history-defau1t fs:user-personal-name»

(prompt-and-read :string "Full name: H»~

This option is used by the :pathname option for prompt-and-read

:blip-handler function Option
Specifies a function to handle blips received while inside the input editor.
function must be a function of two arguments. The first argument is the
blip; the second argument is the stream that received the blip. The handler
is invoked when the input editor receives a blip. If the handler returns
non-nil, no further action is taken. If it returns nil and a :preemptable
option is in effect, the actions specified by that option are taken. Otherwise,
the default blip handler is invoked.

In the following example, the user is prompted for a line of text. While
entering this text, the user may also click the left or middle mouse buttons.
If the left mouse button is clicked, the coordinates of the mouse with respect
to the window are inserted into the input buffer. If the middle button is
clicked, the name of the window is inserted.

(defun examp1e-b1ip-handler (blip ignore)
(destructuring-bind (type click window x y) blip

(and (eq type :mouse-button)
(selectq click

(#\mouse-l-'
(si:ie-insert-string (format nil" -0 -0" x y»
t)

(#\mouse-m-,
(si:ie-insert-string (format nil" -A" window»
t») »

63

March 1985 Streams

(with-input-editing-options «:blip-handler 'example-blip-handler»
(prompt-and-read :string "Blip handler test: H»~

si:ie-insert-string is an internal function for inserting a string into the
input buffer. Since the language for writing input editor commands has not
been formalized, this example might not work in a later release.

:do-not-echo &rest characters Option
The characters in characters are interpreted as activation characters and are
not echoed. The comparison is done with char=, not char-equal, so that
the control and meta bits are not masked off. The characters are not
inserted into the input buffer and are not interpreted as input editor
commands. When one of these characters is typed, the final :tyi value
returned is the character, not a blip.

This option exists only for compatibility with earlier releases. New programs
should use the :activation option.

:activation function &rest arguments Option
For each character typed, the input editor invokes function with the
character as the first argument and arguments as the remaining arguments.
If the function returns nil, the input editor processes the character as it
normally would. Otherwise, the cursor is moved to the end of the input
buffer, a rescan of the input is forced (if one is pending), and the blip
(:activation character numeric-arg) is returned by the final sending of the
:any-tyi message to the stream. Activation characters are not inserted into
the input buffer, nor are they echoed by the input editor. It is the
responsibility of the reading function to do any echoing. For instance,
readline, not the input editor, types a Newline at the end of the input
buffer when RETURN, END, or LINE is pressed.

:preemptable token Option
A blip in the input stream causes control to be returned from the input
editor immediately. Two values are returned: the blip and token, which is
usually a keyword symbol. Any un scanned input typed before the blip
remains in the input buffer, available to the next read operation from the
stream.

:no-input-save Option
The input editor does not save the scanned contents of the input buffer on
the input history when returning from the reading function. This is
intended for use by functions such as fquery that use the input editor to
ask simple questions whose responses are not worth saving. yes-or-no-p
uses :no-input-save by default.

J

64

Reference Guide to Streams, Files, and 110 March 1985

:command function &rest arguments Option
This option is used to implement nonediting single-keystroke commands. For
each character typed, the input editor invokes function with the character as
the first argument and arguments as the remaining arguments. If the
function returns nil, the input editor processes the character as it normally
would. Otherwise, control is returned from the input editor immediately.
Two values are returned: a blip of the form (:command character
numeric-arg) and the keyword :command. Any unscanned input typed
before the command character remains in the input buffer, available to the
next read operation from the stream.

:editor-command &rest command-alist Option
This option lets you specify your own input editor editing commands. Each
element of command-a list is a cons whose car is a character and whose cdr is
a symbol or a list. If the cdr is a symbol, it is a function to be called with
no arguments when the user types the associated character. If the cdr is a
list, the car of the list is a function to be applied to the cdr of the list when
the user types the associated character. The function can examine the
internal special variables that describe the state of the input editor.

If :editor-command specifies a command that is invoked by the same
character as one of the standard input editor editing commands, the
command specified by :editor-command overrides the standard command.

: input-wait &optional whostate function &rest arguments Option
When the input editor waits for input, it sends the stream an :input-wait
message with the arguments to the :input-wait option as arguments. In
addition, unless the :suppress-notifications option has been specified,
:input-wait returns when a notification is received. See the message
: input-wait, page 13.

:input-wait-handler function &rest arguments Option
When the input editor is waiting for input it sends the stream an
:input-wait message. After :input-wait returns, the input editor applies
function to arguments. The input editor does not process the input or
display the notification until function returns.

:suppress-notifications flag Option
If flag is not nil, notifications received while in the input editor are ignored.

:notification-handler" function &rest arguments Option
If a notification is received while in the input editor, function is called to
handle it. function should take at least one argument, the notification (as
returned by the :receive-notification message to the stream). arguments
are the remaining arguments to function. function can do anything it wants
with the notification. To display the notification, function would usually call
sys:display-notification.

65

March 1985 Streams

If this option is not specified, notifications appear one after the other using
:insert-style typeout.

Following are two simple examples of notification handlers. The first handler
assumes that you want each notification to overwrite the previous one. The
second handler assumes that you want them to appear one after another.
window should be bound to a window and *stream* to a stream where
you want the notifications to appear.

(defun my-notification-handler-l (notification)
(send *Window* :clear-window)
(sys:display-notification *Window* notification :window»

(defun my-notification-handler-2 (notification)
(sys~display-notification *stream* notification :stream»

6.4 Displaying Prompts in the Input Editor

The input editor options :prompt and :reprompt and the functions
readline-no-echo and sys:read-character take prompt arguments that let you
specify an input editor prompt. prompt can be nil, a string, a function, a symbol
other than nil, or a list (for the input editor options, the list is an &rest argument):

nil

string

No prompt is displayed.

A fonnat control string to be passed to format with one
argument, the stream on which the prompt is displayed.

function or symbol other than nil

list

A function to display the prompt. The function should take two
arguments: the first is the stream on which the prompt is
displayed, and the second is a keyword that indicates the origin of
the function call.

If the first element is nil, no prompt is displayed. If the first
element is a string, it is a format control string to be passed to
format with the remaining elements of the list as arguments. If
the first element is a function or a symbol other than nil, it is a
function to display the prompt. The first argument to the
function is the stream on which the prompt is displayed. The
second argument is a keyword that indicates the origin of the
function call. The remaining arguments are the remaining
elements of the list.

When a function is called to display the prompt, the second argument to the
function is a keyword that indicates the origin of the function call:

66

Reference Guide to Streams, Files, and 110 March 1985

Keyword Function called from

:prompt :input-editor method of si:interactive-stream, when the input
editor is entered

:restore :restore-input-buffer method of si:interactive-stream

:finish-typeout :finish-typeout method of si:interactive-stream

: refresh Body of the input editor, when the user presses REFRESH

:erase-typeout Body of the input editor, when the user presses PAGE

6.5 Displaying Help Messages in the Input Editor

The input editor options :brief-help, :partial-help, and :complete-help and the
functions readline-no-echo and sys:read-character take help arguments that let
you specify input editor help messages. help can be a string, a function, a symbol,
or a list (for the input editor options, the list is an &rest argument):

string

function or symbol

list

A format control string to be passed to format with one
argument, the stream on which the help message is displayed.

A function to display the help message. The function should take
one argument, the stream on which the help message is displayed.

If the first element is a string, it is a format control string to be
passed to format with the remaining elements of the list as
arguments. If the first element is a function or a symbol, it is a
function to display the help message. The first argument to the
function is the stream on which the help message is displayed,
and the remaining arguments are the remaining elements of the
list.

6.6 Examples of Use of the Input Editor

This series of examples shows several different ways of using the input editor,
gradually increasing in complexity. The examples are also available in the file
sys: examples; interaction.lisp.

We refer to functions whose names begin with "read-" as "reading functions" or
"readers", since they read individual characters and construct a Lisp object as a
returned value. Examples of readers the Lisp system provides are read, readline,
and read-deliMited-string. read returns Lisp objects of many types. readline
and read-deliMited-string return strings.

read-two-lines-l reads two lines of input from the console. You type each line in
its own editing context. After you enter the first line by pressing RETURN, LINE, or

67

March 1985 Streams

END, you can no longer rub out or otherwise edit any of the characters in the first
line. You can type and edit only the second line at that point.

(defun read-two-lines-1 () (list (readline) (readline»)

read-two-lines-2 lets you edit both lines in a single context by using the
with-input-editing special form. Even after entering the first line you can edit it.
For example, the M-< input editor command moves the cursor to the first character
of the first line. read-two-lines-2 also adds a stream parameter so that you can
read from different streams without having to bind standard-input. You can also
use this function for reading from noninteractive streams, such as file streams.

(defun read-two-lines-2 (&optional (stream standard-input»
(with-input-editing (stream) (list (readline stream) (readline stream»»

read-two-lines-3 demonstrates the use of the :prompt input editor option and the
:end-activation option for with-input-editing. When you invoke this function on
an interactive stream you receive a prompt. This prompt is redisplayed if typeout to
the stream occurs. This might happen if you press HELP or the window receives a
notification.

The :end-activation option defines #\end as an activation character. This lets
you activate previous input to read-two-lines-3, after yanking and editing it, by
pressing END. The :prompt and :end-activation options have no effect on the
behavior of the function for noninteractive streams.

(defun read-two-lines-3 (&optional (stream standard-input»
(with-input-editing-options « :prompt "Type two lines: "»

(with-input-editing (stream :end-activation)
(list (readline stream) (readline stream»»)

read-n-lines is like read-two-lines except that you specify the number of lines to
be read using the n-lines argument. It also uses a prompt function instead of a
string to generate the prompt.

(defun read-n-lines-prompt (stream ignore n-lines)
(format stream "Type -R line-:P:-%" n-lines»

(defun read-n-lines (n-lines &optional (stream standard-input»
(with-input-editing-options «:prompt 'read-n-lines-prompt n-lines»

(with-input-editing (stream :end-activation)
(loop repeat n-lines collect (readline stream»»)

Next is an example of a simple sentence parser. It builds a list of strings and
symbols that represent the words and punctuation marks of the sentence. A
sentence may be any number of lines long. It is delimited by a period or a question
mark. Words are delimited by a space, newline, or punctuation mark. This is also
an example of a reading function written entirely in terms of :tyi as the primitive
input operation.

68

Reference Guide to Streams, Files, and 110 March 1985

(defun read-sentence-1 (&aptiona1 (stream standard-input»
(with-input-editing-options «:prompt "Type a sentence: H»~

(with-input-editing (stream)
(loop named sentencE

with sentence = nil
for word = (make-array 20. :type art-string :fi11-pointer 0)
do (loop for char = (send stream :tyi)

do
(cond «memq char '(#\space #\return #1. #I? #1,»

(if (not (equal word "H»~

(push word sentence»
(se1ectq char

«#\space #\return #1,)
(return»

{#\.
(push :period sentence)
(return-from sentence (nreverse sentence»)

{#\?
(push :question-mark sentence)
{return-from sentence (nreverse sentence»»)

{t (array-push-extend word char»»»»

Following is a different sentence parser that calls read-delimited-string to
accumulate characters into a string. It uses the :end-activation option for
with-input-editing so that previous input to read-sentence-2 can be yanked,
edited, and activated using the END key. When it detects incorrect uses of
punctuation, it calls sys:parse-ferror to signal an error caught by the input editor.

69

March 1985 Streams

(defun read-sentence-2 (&optiona1 (stream standard-input»
(with-input-editing-options «:prompt "Type a sentence: "»

(with-input-editing (stream :end-activation)
(loop with sentence = nil

do (mu1tip1e-va1ue-bind (word nil delimiter)
(read-de1imited-string

'(#\space #\return #1. #I? #1, #1: #1;) stream)
(if (not (equal word ""»

(push word sentence»
(cond «memq delimiter '(#\space #\return»)

((nu 11 sentence)
(if (eq delimiter #\end)

(return n i1)
(sys:parse-ferror

"The punctuation mark I"-CI" occurred at the -
beginning of the sentence."
delimiter»)

«symbolp (car sentence»
(sys:parse-ferror

"The punctuation mark I"-CI" was typed after a -@I\."
delimiter (car sentence»)

(t (se1ectq delimiter
(#1,
(push ':comma sentence»

(#1:
(push ':co1on sentence»

(#1;
(push ':semico1on sentence»

(#1.
(push ':period sentence)
(return (nreverse sentence»)

(#I?
(push ':question-mark sentence)
(return (nreverse sentence»»»»»)

Sometimes an error in parsing is detected not by the function that invokes the input
editor, but by some function that it calls. In the next example, read-time invokes
time:parse-universal-time to do its parsing. If we did not use the
condition-case form in read-time, we would enter the Debugger when
time:parse-universal-time encountered incorrect input. The condition-case form
encapsulates the original error in one of flavor sys:parse-ferror so that the input
editor catches it. Alternately, we could define time:parse-error to be a subflavor of
sys:parse-error.

70

Reference Guide to Streams, Files, and /10 March 1985

(defun read-time (&optional (stream standard-input»
(with-input-editing (stream :line)

(let «string (readline-or-nil stream»)
(when string

(condition-case (error)
(time:parse-universal-time string)

(time:parse-error
(sys:parse-ferror "-A" error»»»)

6.7 Input Editor Messages to Interactive Streams

:input-editor read-function &rest read-args of Method
si:interactive-stream

Apply read-function to read-args after invoking the input editor. For more
information: See the section "The Input Editor Program Interface", page 53.

Normally a program does not send this message itself; it· uses the special form
with-input-editing. See the special form with-input-editing, page 57.

:start-typeout type &optional spacing of si:interactive-stream Method
Informs the input editor that typeout to the window will follow. The word
"typeout" is used in the name of this message because this is very similar to
typeout in the editor, even though typeout windows are not actually used.
type can be one of the following keywords:

l(eyword Action

:insert Typeout is inserted before the current input, as is done
with notifications or input editor documentation.

:overwrite Like :insert, but the next time :insert or :overwrite
typeout is performed, this typeout is overwritten.

: append Typeout appears after the current input, which remains
visible before the typeout. This is the style used by
break.

: temporary Typeout appears after the current input and is erased
after the user types a character.

:clear-window The window is cleared, and typeout appears at the top.

spacing can be one of the following keywords:

l(eyword Action

:none No spacing before typeout.

:fresh-Iine Typeout begins at the beginning of a ilne.

71

March 1985 Streams

:blank-line A bl&.nk line precedes typeout.

If spacing is not specified, a default that depends on type is computed.

si:*typeout-default* Variable
Controls the style of typeout performed by the input editor. Permissible
values are the keywords acceptable as, the type argument to the
:start-typeout method of si:interactive-stream. These are :insert,
:overwrite, : append , :temporary, and :clear-window. The default value
is :overwrite.

:finish-typeout &optional spacing erase? of Method
si:interactive-stream

Completes typeout to the window and causes the input buffer to be
refreshed. In the case of :temporary typeout, the erase? parameter is used
to indicate whether or not the typeout overwrote part of the current input
by wrapping around the screen. It is the responsibility of the program doing
the typeout to keep track of how much is output.

spacing can be one of the following keywords:

Keyword

:none

:fresh-line

:blank-line

Action

No spacing before typeout.

Typeout begins at the beginning of a line.

A blank line precedes typeout.

If spacing is not specified, a default that depends on the type argument to
the :start-typeout method is computed.

:rescanning-p of si:interactive-stream Method
This message can be sent by a read function that uses the input editor to
determine whether the next character returned by :tyi will come from the
input buffer or from the keyboard. If t is returned, the input is being
rescanned and the next character will come from the input buffer. If nil is
returned, the next character will come from the keyboard.

:force-rescan of si:interactive-stream Method
This message can be sent by a read function that uses the input editor to
force a rescan of the current input. Before this message is sent, usually
some global state has changed and the contents of the input buffer are
interpreted differently.

:replace-input n-chars string &optional (begin 0) end (rescan-mode Method
:ignore) of si:interactive-stream

This message can be sent by a read function that uses the input editor to
provide completion of the current input.

72

Reference Guide to Streams, Files, and /10 March 1985

n-chars specifies the number of characters to be removed from the end of the
input buffer and erased from the screen. It can be an integer, a string, or
nil:

integer

string

nil

Remove n-chars characters from immediately before the
scan pointer

Remove as many characters as the string contains

Remove characters from the beginning of the input buffer
to the scan pointer

The substring of string determined by begin and end is then displayed on the
screen. end defaults to (string-length string). The scan pointer is left after
the string, and a rescan does not take place. If a rescan takes place at some
later time, the characters in string are seen as input.

rescan-mode specifies what action to take if the :replace-input message is
sent when the scan pointer is not at the end of the input buffer:

:ignore

: enable

:error

Don't perform the :replace-input operation. This is the
default.

Perform the operation.

Signal an error.

:read-bp of si:interactive-stream Method
Returns the value of the scan pointer. This is for the benefit of read
functions that might want to return a pointer into the input buffer when
signalling an error of type sys:parse-error.

:noise-string-out string &optional (rescan-mode :ignore) of Method
si:interactive-stream

This message can be sent by a read function to display a string that is not to
be treated as input. For example, the string might prompt the user for a
particular kind of input. string is displayed on the screen without changing
the scan pointer, and a rescan does not take place. If a rescan takes place at
some later time, the characters in string are ignored.

rescan-mode specifies what action to take if the :noise-string-out message is
sent when the scan pointer is not at the end of the input buffer:

: ignore

: enable

:error

Don't perform the :noise-string-out operation. This is
the default.

Perform the operation.

Signal an error. .

73

March 1985 Streams

7. The :read and :print Stream Operations

A stream can specially handle the reading and printing of objects by handling the
:read and :print stream operations. Note that these operations are optional and
that most streams do not support them.

If the read function is given a stream that has :read in its which-operations, then
instead of reading in the normal way it sends the :read message to the stream with
one argument, read's eot-option if it had one or a magic internal marker if it did
not. Whatever the stream returns is what read returns. If the stream wants to
implement the :read operation by internally calling read, it must use a different
stream that does not have :read in its which-operations.

If a stream has :print in its which-operations, it can intercept all object printing
operations, including those due to the print, print, and prine functions, those due
to format, and those used internally, for instance in printing the elements of a list.
The stream receives the :print message with three arguments: the object being
printed, the prindepth (for comparison against the prinlevel variable), and slashify-p
(t for print, nil for prine). If the stream returns nil, then normal printing takes
place as usual. If the stream returns non-nil, then print does nothing; the stream
is assumed to have output an appropriate printed representation for the object. The
two following functions are useful in this connection; however, they are in the
system-internals package and might be changed without much notice.

si:print-objeet object prindepth slashify-p stream &optional Function
which-operations

Outputs the printed representation of object to stream, as modified by
prindepth and slashify-p. This is the guts of the Lisp printer. When a
stream's :print handler calls this function, it should supply the list
(:string-out) for which-operations, to prevent itself from being called
recursively. It can supply nil if it does not want to receive :string-out
messages.

Advising this function is the way to customize the behavior of all printing of
Lisp objects. See the special form advise in Program Development Utilities.

si:print-list list prindepth slashify-p stream which-operations Function
This is the part of the Lisp printer that prints lists. A stream's :print
handler can call this function, passing along its own arguments and its own
which-operations, to arrange for a list to be printed the normal way and the
stream's :print hook to get a chance at each of the list's elements.

74

Reference Guide to Streams, Files, and /10 March 1985

75

March 1985 Streams

8. Input Functions

Most of these functions take optional arguments called stream and eot-option. stream
is the stream from which the input is to be read; if unsupplied it defaults to the
value of standard-input. The special pseudostreams nil and t are also accepted,
mainly for Maclisp compatibility. nil means the value of standard-input (that is,
the default) and t means the value of terminal-io (that is, the interactive terminal).
This is all more or less compatible with Maclisp, except that instead of the variable
standard-input Maclisp has several variables and complicated rules. See the section
"Introduction to Streams", page 11. Streams are documented in detail in that
section.

eot-option controls what happens if input is from a file (or any other input source
that has a definite end) and the end of the file is reached. If no eot-option
argument is supplied, an error is signalled. If there is an eot-option, it is the value
to be returned. Note that an eot-option of nil means to return nil if the end of the
file is reached; it is not equivalent to supplying no eot-option.

Functions such as read that read an "object" rather than a single character always
signal an error, regardless of eot-option, if the file ends in the middle of an object.
For example, if a file does not contain enough right parentheses to balance the left
parentheses in it, read complains. If a file ends in a symbol or a number
immediately followed by end-of-file, read reads the symbol or number successfully
and when called again, sees the end-of-file and obeys eot-option. If a file contains
ignorable text at the end, such as blank lines and comments, read does not consider
it to end in the middle of an object and obeys eot-option.

These end-of-file conventions are not completely compatible with Maclisp. Maclisp's
deviations from this are generally considered to be bugs rather than features.

The functions below that take stream and eot-option arguments can also be called
with the stream and eof-option in the other order. This functionality is only for
compatibility with old Maclisp programs, and should never be used in new programs.
The functions attempt to figure out which way they were called by seeing whether
each argument is a plausible stream. Unfortunately, there is an ambiguity with
symbols: a symbol might be a stream and it might be an eof-option. If there are
two arguments, one a symbol and the other something that is a valid stream, or
only one argument, which is a symbol, then these functions interpret the symbol as
an eof-option instead of as a stream. To force them to interpret a symbol as a
stream, give the symbol an si:io-stream-p property whose value is t.

Note that all of these functions except readline-no-echo echo their input if used on
an interactive stream (one that supports the :input-editor operation. The
functions that input more than. one character at a time (read, readline) allow the
input to be edited using rubout. tyipeek echoes all of the characters that were

76

Reference Guide to Streams, Files, and liD March 1985

skipped over if tyi would have echoed them; the character not removed from the
stream is not echoed either.

read &optional (stream standard-input) eot-option Function
Reads in the printed representation of a Lisp object from stream, builds a
corresponding Lisp object, and returns the object. For details: See the
section "Input Functions", page 75.

(This function can take its arguments in the other order, for Maclisp
compatibility only.)

read-preserve-delimiters Variable
Certain printed representations given to read, notably those of symbols and
numbers, require a delimiting character after them. (Lists do not, because
the matching close parenthesis serves to mark the end of the list.) Normally
read throws away the delimiting character if it is "whitespace", but preserves
it (with a :untyi stream operation) if the character is syntactically
meaningful, since it might be the start of the next expression.

If read-preserve-delimiters is bound to t around a call to read, no
delimiting characters are thrown away, even if they are whitespace. This
migh t be useful for certain reader macros or special syntaxes.

sys:read-character &optional stream &key (fresh-line t) (any-tyi nil) Function
(eot nil) (notification t) (prompt nil) (help nil)
(refresh t) (suspend t) (abort t) (status nil)

Reads and returns a single character from stream. This function displays
notifications and help messages and reprompts at appropriate times. It is
used by fquery and the :character option for prompt-and-read.

stream must be interactive. It defaults to query-io.

Following are the permissible keywords:

:fresh-line

:any-tyi

:eof

:notification

If not nil, the function sends the stream a :fresh-line
message before displaying the prompt. If nil, it does not
send a :fresh-line message. The default is t.

If not nil, the function returns blips. If nil, blips are
treated as the :tyi message to an interactive stream treats
them. The default is nil.

If not nil and the function encounters end-of-file, it
returns nil. If nil and the function encounters end-of-file,
it beeps and waits for more input. The default is nil.

If not nil and a notification is received, the function
displays the notification and reprompts. . If nil and a
notification is received, the notification is ignored. The
default is t.

March 1"115

:prompt

:help

: refresh

:suspend

:abort

: status

77

Streams

If nil, no prompt is displayed. Otherwise, the value should
be a prompt option to be displayed at appropriate times.
See the section "Displaying Prompts in the Input Editor",
page 65. The default is nil.

If not nil, the value should be a help option. See the
section "Displaying Help Messages in the Input Editor",
page 66. Then, when the user presses HELP, the function
displays the help option and reprompts. If nil and the
user presses HELP, the function just returns #\help. The
default is nil.

If not nil and the user presses REFRESH, the function sends
the stream a :clear-window message and reprompts. If
nil and the user presses REFRESH, the function just returns
#\refresh. The default is t.

If not nil and the user types one of the
sys:kbd-standard-suspend-characters, a break loop is
entered. If nil and the user types a suspend character,
the function just returns the character. The default is t.

If not nil and the user types one of the
sys:kbd-standard-abort-characters, sys:abort is
signalled. If nil and the user types an abort character,
the function just returns the character. The default is t.

This option takes effect only if the stream is a window. If
the value is :selected and the window is no longer
selected, the function returns :status. If the value is
:exposed and the window is no longer exposed or selected,
the function returns :status. If the value is nil, the
function continues to wait for input when the window is
deexposed or deselected. The default is nil.

tyi &optional stream eot-option Function
Inputs one character from stream and returns it. The character is echoed if
stream is interactive, except that Rubout is not echoed. The Control, Meta,
and so on shifts echo as prefIx c-, m-, and so on.

The :tyi stream operation is preferred over the tyi function for some
purposes. Note that it does not echo. See the message :tyi, page II.

(This function can take its arguments in the other order, for Maclisp
compatibility only)

read-for-top-Ievel &optional (stream standard-input) eot-option Function
Differs from read only in that it ignores close parentheses seen at top level,
and it returns the symbol si:eof if the stream reaches end-of-file if you have
not supplied an eot-option (instead of signalling an error as read would).
This version of read is used in the system's "read-eval-print" loops.

78

Reference Guide to Streams, Files, and 110 March 1985

reaci-expression &optional stream &key (completion-alist nil) Function
(completion-delimiters nil)

Like read-for-top-Ievel except that if it encounters a top-level end-of-file, it
just beeps and waits for more input. This function is used by the
:expression option for prompt-and-read.

stream defaults to standard-input. This function is intended to read only
from interactive streams.

If completion-alist is not nil, this function also sets up COMPLETE and c-? as
input editor commands. When the user presses COMPLETE, the input editor
tries to complete the current symbol over the set of possibilities defined by
completion-alist. When the user presses c-?, the input editor displays the
possible completions of the current symbol.

The style of completion is the same as that offered by Zwei. completion-alist
can be nil, an alist, an art-q-Iist array, or a keyword:

nil

alist

array

keyword

No completion is offered.

The car of each alist element is a string representing one
possible completion.

Each element is a list whose car is a string representing
one possible completion. The array must be sorted
alphabetically on the cars of the elements.

If the symbol is :zmacs, completion is offered over the
definitions in Zmacs buffers. If the symbol is :t1avors,
completion is offered over all flavor names.

The default for completion-alist is nil.

.completion-delimiters is nil or a list of characters that delimit "chunks" for
completion. As in Zwei, completion works by matching initial substrings of
"chunks" of text. If completion-delimiters is nil, the entire text of the
current symbol is a single "chunk". The default is nil.

read-fonn &optional stream &key (edit-trivial-errors-p Function
read-fonn-edit-trivial-errors-p)
(completion-alist *read-fonn-completion-alist*)
(completion-delimiters
read-fonn-completion-delimiters)

Like read-expression except that it assumes that the returned value will be
given immediately to evaI. This function is used by the Lisp command loop
and by the :evaI-fonn and :evaI-fonn-or-end options for
prompt-and-read.

stream defaults to standard-input. This function is intended to read only
from interactive streams.

79

March 1985 Streams

If edit-trivial-errors-p is not nil, the function checks for two kinds of errors.
If a symbol is read, it checks whether the symbol is bound. If a list whose
first element is a symbol is read, it checks whether the symbol has a function
definition. If it finds an unbound symbol or undefined function, it offers to
use a lookalike symbol in another package or calls parse-ferror to let the
user correct the input. edit-trivial-errors-p defaults to the value of
read-form-edit-triviaI-errors-p. The default value is t.

If completion-alist is not nil, this function also sets up COMPLETE and c-?~ as
input editor commands~ When the user presses COMPLETE, the input editor
tries to complete the current symbol over the set of possibilities defined by
completion-alist. When the user presses c-?, the input editor displays the
possible completions of the current symbol.

The style of completion is the same as that offered by Zwei. completion-alist
can be nil, an alist, an art-q-list array, or a keyword:

nil

alist

array

keyword

No completion is offered.

The car of each alist element is a string representing one
possible completion.

Each element is a list whose car is a string representing
one possible completion. The array must be sorted
alphabetically on the cars of the elements.

If the symbol is :zmacs, completion is offered over the
definitions in Zmacs buffers. If the symbol is :flavors,
completion is offered over all flavor names.

The default for completion-a list is the value of
read-form-completion-alist. The default value is :zmacs.

completion-delimiters is nil or a list of characters that delimit "chunks" for
completion. As in Zwei, completion works by matching initial substrings of
"chunks" of text. If completion-delimiters is nil, the entire text of the
current symbol is a single "chunk". The default is the value of
read-fonn-completion-delimiters. The default value is
(#/- #/: #\space).

read-fonn-edit-trivial-errors-p Variable
If not nil, read-fonn checks for two kinds of errors. If a symbol is read, it
checks whether the symbol is bound. If a list whose first element is a
symbol is read, it checks whether the symbol has a function definition. If it
finds an unbound symbol or undefined function, it offers to use a lookalike
symbol in another package or calls parse-ferror to let the user correct the
input. The default is t.

80

Reference Guide to Streams, Files, and /10 March 1985

read-form-completion-aIist Variable
If not nil, read-form sets up COMPLETE and c-? as input editor commands.
When the user presses COMPLETE, the input editor tries to complete the
current symbol over the set of possibilities defined by completion-alist. When
the user presses c-?, the input editor displays the possible completions of the
current symbol.

The style of completion is the same as that offered by Zwei.
read-form-completion-aIist can be nil, an alist, an art-q-list array, or a
keyword:

nil

alist

array

keyword

No completion is offered.

The car of each alist element is a string representing one
possible completion.

Each element is a list whose car is a string representing
one possible completion. The array must be sorted
alphabetically on the cars of the elements.

If the symbol is :zmacs, completion is offered over the
definitions in Zmacs buffers. If the symbol is :flavors,
completion is offered over all flavor names.

The default value is :zmacs.

read-form-completion-delimiters Variable
The value is nil or a list of characters that delimit "chunks" for completion in
read-form. As in Zwei, completion works by matching initial substrings of
"chunks" of text. If *read-form-completion-delimiters* is nil, the entire
text of the current symbol is a single "chunk". The default value is
(#/- #/: #\space).

read-or-end &optional (stream standard-input) reader Function
Like read-expression except that if it is reading from an interactive stream
and the user presses END as the first character or the first character after
only whitespace characters, it returns two values, nil and :end. If it
encounters any nonwhitespace characters, it calls the reader function with an
argument of stream to read the input. reader defaults to read-expression.
stream defaults to standard-input.

The :expression-or-end and :evaI-form-or-end options for
prompt-and-read invoke read-or-end.

This function is intended to read only from interactive streams.

read-or-character &optional delimiters stream reader Function
Like read-expression, except that if it is reading from an interactive stream
and the user types one of the delimiters as the first character or the first

81

March 1985 Streams

character after only whitespace characters, it returns four values: nil,
:character, the character code of the delimiter, and any numeric argument
to the delimiter. If it encounters any nonwhitespace characters, it calls the
reader function with an argument of stream to read the input.

delimiters is a character, a list of characters, or nil. The default is nil.
reader defaults to read-expression. stream defaults to standard-input.
This function is intended to read only from interactive streams.

read-and-eval &optional stream (catch-errors t) Function
Calls read-expression to read a form, without completion. It then evaluates
the form and returns the result. If catch-errors is not nil, it calls
parse-ferror if an error occurs during the evaluation (but not the reading)
so that the input editor catches the error.

stream defaults to standard-input. This function is intended to read only
from interactive streams.

readline &optional (stream standard-input) eof-option Function
Reads in a line of text. If called from inside the input editor or if reading
from a stream that does not support the input editor, the line is terminated
by a Newline character. If the stream supports the input editor and
readline is called from outside the input editor, the line is terminated by
RETURN, LINE, or END.

This function is usually used to get a line of input from the user. If stream
supports the input editor, readline calls read-delimited-string, and
input-editor-options is passed as the list of options to the input editor.

readline returns two values:

• The line as a character string, without the Newline character, or if
already at end-of-file, nil.

• An eof flag, if eof-option was nil. This is t if the line was terminated
because end-of-file was encountered, or nil if it was terminated because
of a RETURN, LINE, or END character.

See the function read-delimited-string, page 83.

readline-trim &optional (stream standard-input) eof-option Function
Trims leading and trailing whitespace from string input. "Whitespace" means
spaces, tabs, or newlines. It takes the same arguments as the normal
readline and returns the same values.

82

Reference Guide to Streams, Files, and 110 March 1985

Examples:
(readline-trim) exciting option RETURN =)

"exciting option"
NIL
141
NIL

(readline-trim)RETURN =)
,,,,

NIL
141
NIL

The :string-trim option for prompt-and-read and the :string-trim
tv:choose-variable-values keyword use readline-trim.

readline-or-nil &optional (stream standard-input) eot-option Function
Like readline-trim, except that it returns a first value of nil instead of the
empty string if the input string is empty.

The :string-or-nil option for prompt-and-read and the :string-or-nil
tv:choose-variable-vaIues keyword use readline-or-nil.

See the function readline-trim, page 81.

readline-no-echo &optional stream &key (terminators Function
'(#\return #\line #\end» <full-rubout nil)
(notification t) (prompt nil) (help nil)

Reads a line of input from stream without echoing the input, and returns the
input as a string, without the terminating character. This function is used
to read passwords and encryption keys. It does not use the input editor but
does allow input to be edited using RUBOUT.

stream must be interactive. It defaults to query-io.

Following are the permissible keywords:

:terminators

:full-rubout

:notification

A list of characters that terminate the input. If the user
types #\return, #\line, or #\end as a terminator, the
function echoes a Newline. If the user types any other
character as a terminator, the function echoes that
character. The default is (#\return #\line #\end).

If not nil and the user rubs out all characters on the line,
the function returns nil. If nil and the user rubs out all
characters on the line, the function waits for more input.
The default is nil.

If not nil and a notification is received, the function
displays the notification and reprompts. If nil and a
notification is received, the notification is ignored. The
default is t.

83

March 1985 Streams

:prompt If nil, no prompt is displayed. Otherwise, the value should
be a prompt option to be displayed at appropriate times.
See the section "Displaying Prompts in the Input Editor",
page 65. The default is nil.

:help If not nil, the value should be a help option. See the
section "Displaying Help Messages in the Input Editor",
page 66. Then, when the user presses HELP, the function
displays the help option and reprompts. If nil and the
user presses HELP, the function just returns #\help. The
default is nil.

read-delimited-string &optional (delimiters #\end) (stream Function
standard-input) (eof nil) <input-editor-options
nil) &rest (make-array-args
'(100. :type art-string»

delimiter is either a character or a list of characters. Characters are read
from stream until one of the delimiter characters is encountered. The
characters read up to the delimiter are returned as a string. This function
can be invoked from inside or outside the input editor. If invoked from
outside the input editor, the delimiter characters are set up as activation
characters. The eof argument is treated the same way as the eof argument
to the :tyi message to noninteractive streams. input-editor-options are passed
on as the first argument to the :rubout-handler message, after having an
:activation entry prepended. make-array-args are arguments to be passed
to make-array when constructing the string to return.

read-delimited-string returns four values:

• The string
• An eof flag, if the eof parameter was nil
• The character that delimited the string
• Any numeric argument given the delimiter character

This function is used by readline, qsend, and the :delimited-string option
for prompt-and-read.

Examples:

The following reads characters until END is typed and returns a string at least
200. characters long with a leader-length of 3:

(read-delimited-string #\end standard-input nil nil 200. :leader-length 3)

The following is the same as (readline), except that it does not echo a
Newline after the string is activated:

(read-delimited-string '(#\return #\line #\end»

84

Reference Guide to Streams, Files, and /10 March 1985

A simple word parser:

(read-delimited-string '(#\space II, II. II?»~

For a more complex example of a sentence parser that uses
read-delimited-string: See the section "Examples of Use of the Input
Editor", page 66.

readch &optional stream eot-option Function
Provided only for Maclisp compatibility, since in Zetalisp characters are always
represented as integers. readch is just like tyi, except that instead of
returning an integer character, it returns a symbol whose print name is the
character read in. The symbol is interned in the current package. This is
just like a Maclisp "character object". (This function can take its arguments
in the other order, for Maclisp compatibility only.)

tyipeek &optional peek-type stream eot-option Function
Provided mainly for Maclisp compatibility; the :tyipeek stream operation is
usually clearer.

What tyipeek does depends on the peek-type, which defaults to nil. With a
peek-type of nil, tyipeek returns the next character to be read from stream,
without actually removing it from the input stream. The next time input is
done from stream the character is still there; in general, (= (tyipeek) (tyi»
is t. See the message :tyipeek, page 15.

If peek-type is an integer less than 1000 octal, then tyipeek reads characters
from stream until it gets one equal to peek-type. That character is not
removed from the input stream.

If peek-type is t, then tyipeek skips over input characters until the start of
the printed representation of a Lisp object is reached. As above, the last
character (the one that starts an object) is not removed from the input
stream.

The form of tyipeek supported by Maclisp, in which peek-type is an integer
not less than 1000 octal, is not supported, since the readtable formats of the
Maclisp reader and the Symbolics-Lisp reader are quite different.

Characters passed over by tyipeek are echoed if stream is interactive.

The following functions are related functions that do not operate on streams. Most
of the text at the beginning of this section does not apply to them.

read-from-string string &optional (eot-option 'si:no-eof-option) Function
(start 0) end

The characters of string are given successively to the reader, and the Lisp
object built by the reader is returned. Macro characters and so on all take
effect. If string has a fill-pointer it controls how much can be read.

eot-option is what to return if the end of the string is reached, as with other

85

March 1985 Streams

reading functions. start is the index in the string of the first character to be
read. end, if given, is used instead of <array-active-Iength string) as the
integer that is one greater than the index of the last character to be read.

read-froM-string returns two values: The first is the object read and the
second is the index of the first character in the string not read. If the
entire string was read, this is the length of the string.

Example:

(read-from-string "(a be)") => (a b C) and 7

readlist char-list Function
Provided mainly for Maclisp compatibility. char-list is a list of characters.
The characters can be represented by anything that the function character
accepts: integers, strings, or symbols. The characters are given successively
to the reader, and the Lisp object built by the reader is returned. Macro
characters and so on all take effect.

If there are more characters in char-list beyond those needed to define an
object, the extra characters are ignored. If there are not enough characters,
an "eof in middle of object" error is signalled.

See the special form with-input-from-string in Reference Guide to Symbolics-lisp.

86

Reference Guide to Streams, Files, and 110 March 1985

87

March 1985 Streams

9. Output Functions

These functions all take an optional argument called stream, which is where to send
the output. If un supplied stream defaults to the value of standard-output. If
stream is nil, the value of standard-output (that is, the default) is used. If it is t,
the value of terminal-io is used (that is, the interactive terminal). If stream is a
list of streams, then the output is performed to all of the streams (this is not
implemented yet, and an error is signalled in this case). This is all more or less
compatible with Maclisp, except that instead of the variable standard-output
Maclisp has several variables and complicated rules. See the section "Introduction to
Streams", page 11. Streams are documented in detail in that section.

print x &optional stream Function
Outputs the printed representation of x to stream, with slashification. x is
returned. See the section "What the Printer Produces" in Reference Guide to
Symbolics-lisp.

print-then-spaee x &optional stream Function
Like print except that output is followed by a space.

print x &optional stream Function
Like print except that output is preceded by a carriage return and followed
by a space. x is returned.

prine x &optional stream Function,
Like print except that the output is not slashified. x is returned.

tyo char &optional stream Function
Outputs the character char to stream.

terpri &optional stream Function
Ou tputs a carriage return character to stream.

The format function can do anything any of the above functions can do and is very
useful for producing nicely formatted text. See the function format, page 29.
format can generate a string or output to a stream.

The grindef function is useful for formatting Lisp programs. See the special form
grindef, page 51.

See the special form with-output-to-string in Reference Guide to Symbolics-lisp.

stream-eopy-until-eof from-stream to-stream &optional leader-size Function
Inputs characters from from-stream and outputs them to to-stream, until it
reaches the end-of-file on the from-stream. For example, if x is bound to a

88

Reference Guide to Streams, Fifes, and liD March 1985

stream for a file opened for input, then
(stream-copy-until-eof x terminal-io) prints the file on the console.

If from-stream supports the :line-in operation and to-stream supports the
:line-out operation, then stream-copy-until-eof uses those operations
instead of :tyi and :tyo, for greater efficiency. leader-size is passed as the
argument to the :line-in operation.

beep &optional beep-type (stream terminal-io) Function
Tries to attract the user's attention by causing an audible beep, or flashing
the screen, or something similar. If the stream supports the :beep
operation, then this function sends it a :beep message, passing type along as
an argument. Otherwise it just causes an audible beep on the terminal.
type is a keyword selecting among several different beeping noises. The
allowed types have not yet been defined; type is currently ignored and should
always be nil. See the message :beep, page 19.

cursorpos &rest args Function
Exists primarily for Maclisp compatibility. Usually it is preferable to send the
appropriate messages.

cursorpos normally operates on the standard-output stream; however, if
the last argument is a stream or t (meaning terminal-io), cursorpos uses
that stream and ignores it when doing the operations described below . Note
that cursorpos only works on streams that are capable of these operations,
such as windows. A stream is taken to be any argument that is not a
number and not a symbol, or a symbol other than nil with a name more
than one character long.

(cursorpos) => (line. column), the current cursor position.

(cursorpos line column) moves the cursor to that position. It returns t if it
succeeds and nil if it does not.

(cursorpos op) performs a special operation coded by op, and returns t if it
succeeds and nil if it does not. op is tested by string comparison, is not a
keyword symbol, and can be in any package.

F Moves one space to the right.

B Moves one space to the left.

D Moves one line down.

U Moves one line up.

T Homes up (moves to the top left corner). Note that t as the last
argument to cursorpos is interpreted as a stream, so a stream must
be specified if the T operation is used.

Z Home down (moves to the bottom left corner).

89

March 1985 Streams

A

C

E

L

K

X

Advances to a fresh line. See the :fresh-line stream operation.

Clears the window.

Clear from the cursor to the end of the window.

Clear from the cursor to the end of the line.

Clear the character position at the cursor.

B then K.

exploden x Function
Returns a list of characters (as integers) that are the characters that would
be typed out by (prine x) (that is, the unslashified printed representation of
x). Example:

(exploden '(+ 112 3» => (50 53 40 61 62 40 63 51)

explodee x Function
Returns a list of characters represented by symbols that are the characters
that would be typed out by (prine x) (that is, the unslashified printed
representation of x). Example:

(explodec '(+ 112 3» => (I(+ I 11 12 I 13 I)

(Note that there are slashified spaces in the above list.)

explode x Function
Returns a list of characters represented by symbols that are the characters
that would be typed out by (print x) (that is, the slashified printed
representation of x). Example:

(explode '(+ 112 3» => (I(+ I II 11 12 I 13 I)

(Note that there are slashified spaces in the above list.)

flatsize x Function
Returns the number of characters in the slashified printed representation of
x.

fla~x Fu~tioo

Returns the number of characters in the unslashified printed representation
of x.

90

Reference Guide to Streams, Files, and 110 March 1985

91

March 1985 Streams

10. Accessing Files

Symbolics-Lisp can access files on a variety of remote file servers, which are typically
(but not necessarily) accessed through the Chaosnet, as well as accessing files on the
Symbolics computer itself, if the machine has its own file system. This section tells
you how to get a stream that reads or writes a given file, and what the device
dependent operations on that stream are. Files are named with pathnames. Since
pathnames are quite complex they have their own chapter. See the section "Naming
of Files", page 127.

with-open-file (stream pathname options ...) body... Special Fonn
Evaluates the body forms with the variable stream bound to a stream that
reads or writes the file named by the value of path name . The options forms
evaluate to the file-opening options to be used.

When control leaves the body, either normally or abnormally (via throw), the
file is closed. If a new output file is being written, and control leaves
abnormally, the file is aborted and it is as if it were never written. Because
it always closes the file, even when an error exit is taken, with-open-file is
preferred over open. Opening a large number of files and forgetting to close
them tends to break some remote file servers, ITS's for example.

path name is the name of -the file to be opened; it can be a pathname object,
a string, a symbol, or a Maclisp-compatible "namelist". It can be anything
acceptable to fs:parse-pathname. See the section "Naming of Files", page
127. The complete rules for parsing pathnames are explained there.

If an error occurs, such as file not found, the user is asked to supply an
alternate pathname, unless this is overridden by options. At that point, the
user can quit out or enter the Debugger, if the error was not due to a
misspelled pathname.

If you are opening the file to read it with read, and you want to bind the
package and so forth, see the special functions for handling file attributes.
See the function fs:read-attribute-list, page 111. See the function
fs:file-attribute-bindings, page Ill.

The options used when opening a file are normally alternating keywords and
values, like any other function that takes keyword arguments. In addition,
for compatibility with the Maclisp open function, if only a single option is
specified it is either a keyword or a list of keywords (not alternating with
values).

The file-opening options control whether the stream is for input from a
existing file or output to a new file, whether the file is text or binary, and so
on.

92

Reference Guide to Streams, Files, and 110 March 1985

The following option keywords are recognized. Unless otherwise noted, they
are supported generically. Additional keywords can be implemented by
particular file system hosts.

:direction

: direct

:submit

:characters

The :direction option allows the following values:

: input

: output

:io

:probe

The file is being opened for input. This
is the default.

The file is being opened for ou tpu t.

The file is being opened for intermixed
input and output. Bidirectionality is
supported only if the stream is to be a
direct stream, that is, :direct t is given
as well. See the section "Direct Access
File Streams", page 115.

A "probe" opening; no data are to be
transferred, and the file is being opened
only to gain access to or change its
properties. Returns the truename of
the object at the end of a link or chain
of links. (probef is usually preferable to
an explicit probe opening.)

:probe-Iink The same as :probe except that links
are not chased. Returns the truename
of the object named, even if it is a link.

:probe-directory The pathname is being opened to find
out about the existence of its directory
component. Otherwise, the semantics
are the same as :probe. If the
directory is not found, a file lookup error
is signalled.

:probe-Iink The same as :probe except that links
are not chased. Returns the truename
of the object named, even if it is a link.

The default is nil. t specifies a direct access stream. See
the section "Direct Access File Streams", page 115.

This is an option to open used to get batch jobs.
Currently, this is implemented only for VAXNMS. When
the file you are writing is closed, the file is submitted as a
batch job by using this option.

The possible values are t (the default), nil, which means
that the file is a binary file, and :default, which means

March 1985

:byte-size

:error

:deleted

: temporary

93

Streams

that the file system should decide whether the file contains
characters or binary data and open it in the appropriate
mode.

The possible values are nil (the default), a number in the
range 1 to 16 inclusive, which is the number of bits per
byte, and :defauIt, which means that the file system
should choose the byte size based on attributes of the file.
If the file is being opened as characters, nil selects the
appropriate system-dependent byte size for text files; it is
usually not useful to use a different byte size. If the file is
being opened as binary, nil selects the default byte size of
16 bits.

This option controls what happens when any
fs:file-operation-failure condition is signalled. See the
section "File-system Errors" in Reference Guide to
Symbolics-lisp.

The option has three possible values:

Value

t

nil

:reprompt

Meaning

Signals the error normally. t is both
the default and the recommended value.

Returns the condition object.

Reprompts the user for another file
name and tries open again. When you
use this option, remember that the
:pathname message sent to the stream
finds out what file name was really
opened.

t is the recommended value for this option. The others
have been provided for compatibility with previous systems
to aid in converting programs.

The alternative to :reprompt is to use :error t and set
up a condition handler for fs:file-operation-failure that
explains the condition and prompts the user.

The default is nil. If t is specified, and the file system
has the concept of deleted but not expunged files, it is
possible to open a deleted file. Otherwise deleted files are
invisible.

The default is nil. If t is specified, the file is marked as
temporary, if the file system has that concept.

:preserve-dates The default is nil. If t is specified, the file's reference and
modification dates are not updated.

94

Reference Guide to Streams, Files, and /10 March 1985

:estimated-lengtb

:super-image

: raw

:if-exists

The value of the :estimated-lengtb option can be nil (the
default), which means there is no estimated length, or a
number of bytes indicating the estimated length of a fue to
be written. Some file systems use this to optimize disk
allocation.

The value can be nil (the default), or t which disables the
special treatment of Rubout in ASCII files. Normally
Rubout is an escape that causes the following character to
be interpreted specially, allowing all characters from 0
through 376 to be stored. This applies to PDP-IO file
servers only.

The value can be nil (the default) or t, which disables all
character set translation in ASCII files.

Specifies the action to be taken if the :direction is
:output and a file of the specified name already exists. If
the direction is :input or :probe (or any of the
:probe-like directions), this argument is ignored.

The following values are allowed:

:error

:new-version

:rename

Signals an error. This is the default
when the version component of the
filename is not :newest.

Creates a new file with the same file
name but a larger version number.
This is the default when the version
component of the filename is :newest.
File systems without version numbers
can choose to implement this by
effectively treating it as supersede.

Renames the existing file to some other
name, and then creates a new file with
the specified name. On most file
systems, this renaming happens at the
time of a successful close.

:rename-and-delete
Renames the existing file to some other
name and then deletes it (but does not
expunge it, on those systems that
distinguish deletion from expunging).
Then creates a new file with the
specified name. On most file systems,
this renaming happens at the time of a
successful close.

March 1985

: overwrite

: truncate

: append

:supersede

nil

95

Streams

The existing file is used, and ou tpu t
operations on the stream destructively
modify the file. The file pointer is
initially positioned at the beginning of
the file; however, the file is not
truncated back to length zero when it is
opened.

The existing file is used, and ou tpu t
operations on the stream destructively
modify the file. The file pointer is
initially positioned at the beginning of
the file; at that time, the file is
truncated to length zero, and disk
storage occupied by it is freed.

The existing file is used, and output
operations on the stream destructively
modify the fue. The file pointer is
initially positioned at the current end of
the file.

Supersedes the existing file. If possible,
the file system does not destroy the old
file until the new stream is closed,
against the possibility that the stream
will be closed in "abort" mode. This
differs from :new-version in that
:supersede creates a new file with the
same name as the old one, rather than
a file name with a higher version
number.

Does not create a file or even a stream.
Instead, simply returns nil to indicate
failure.

:if-does-not-exist Specifies the action to be taken if the file does not already
exist. The following values are allowed:

: error

: create

Signals an error. This is the default if
the :direction is : input, :probe, or
any of the :probe-like modes, or if the
:if-exists argument is :overwrite,
:truncate, or :append.

Creates an empty file with the specified
name, and then proceeds as if it had
already existed. This is the default if

96

Reference Guide to Streams, Files, and /10 March 1985

nil

the :direction is :output and the
:if-exists argument is anything but
:overwrite, :truncate, or :append

Does not create a file or even a stream.
Instead, simply returns nil to indicate
failure.

In the Maclisp compatibility mode, there is only one option, and it is either a
symbol or a list of symbols. These symbols are recognized no matter what
package they are in, since Maclisp does not have packages. The following
symbols are recognized:

in, read Select opening for input (the default).

out, write, print Select opening for output; a new file is to be created.

binary, IlXIlUJD Select binary mode, otherwise character mode is used.

character, ascii The opposite of fixnum. This is the default.

single, block

byte-size

Ignored for compatibility with the Maclisp open function.

Must be followed by a number in the options list, and
must be used in combination with 11XIlUJD. The number
is the number of bits per byte, which can be from 1 to 16.
On a PDP-10 file server these bytes are packed into words
in the standard way defined by the ILDB instruction.
The :tyi stream operation returns the bytes one at a time.

probe, error, noerror, raw, super-image, deleted, temporary
These are not available in Maclisp. The corresponding
keywords in the normal form of file-opening options are
preferred over these.

with-open-file-case (variable path name . options) &rest clauses Macro
Opens a file, binding the input stream to variable, using the pathname and
options given in the arguments. In the following example, it executes the
first clause when the file is not found. When the file is found without error,
it executes the second clause, which is the real reason for trying to open the
file in the first place.

(with-open-file-case (x Hf:>dla>foo.lispH ':direction ':input)
(fs:file-not-found (send x ':report error-output»
(:no-error (stream-copy-until-eof x standard-output»)

Any errors other than file-not-found (for example, access violations or an
unresponsive host) cause an error to be signalled normally.

with-open-stream (stream-variable construction-form) &body body Special Form
Like with-open-file except that you specify a form whose value is the
stream, rather than arguments to open. This is used with nonfile streams.
See the special form with-open-file, page 91.

97

March 1985 Streams

with-open-stream-case (variable stream-creation-form) &rest Macro
clauses

Opens a stream and binds it to variable, using stream-creation-from to create
it. It then executes whichever clause is appropriate, given the condition that
resulted from the attempt to create the stream. Refer to the example shown
for with-open-file-case.

sys:with-open-file-search (stream-variable Macro
(operation defaults auto-retry) (type-list-function pathname • type-list-args) •
open-options) body ...

Performs a with-open-file, searching for a file with one of the types in a list
of file types. load uses this macro when not given a specific file type to
search first for a binary file and then for a source file.

The body is evaluated with stream-variable bound to a stream that reads or
writes the file. open-options are alternating keywords and values to be passed
to open.

type-List-function should be a function whose first argument is pathname and
whose remaining arguments are type-list-args. The function should return
two values: a list of file types to be searched, in order of preference, and a
base pathname to be merged with the types and defaults in searching for the
file. defaults can be a pathname or a defaults alist; if omitted, the defaults
come from fs:*default-pathname-defaults*. The macro uses
fs:merge-pathname-defaults for merging.

If no file is found with any of the types in the list of types,
fs:multiple-file-not-found is signalled. operation is the name of the
operation that failed; usually this is the name of the function that contains
the sys:with-open-file-search form. If auto-retry is not nil and the
condition is not handled, the user is prompted for a new pathname.

open pathname &rest options Function
Returns a stream that is connected to the specified file. Unlike Maclisp, the
open function only creates streams for files; streams for other devices are
created by other functions. If an error occurs, such as file not found, the
user is asked to supply an alternate pathname, unless this is overridden by
options.

When the caller is finished with the stream, it should close the file by using
the :close operation or the close function. The with-open-file special form
does this automatically, and so is usually preferred. open should be used
only when the control structure of the program necessitates opening and
closing of a fue in some way more complex than the simple way provided by
with-open-file. Any program that uses open should set up
unwind-protect handlers to close its files in the event of an abnormal exit.
See the special form unwind-protect in Reference Guide to Symbolics-lisp.

98

Reference Guide to Streams, Files, and 110 March 1985

For example:

(defun bliss-compile (file)
(setq file (fs:parse-pathname file»
(wi th-open-fi le (str "comet: usrd$: [mydir]tempfile.comN

':direction ':output
':characters t
':submit t)

(send str ':line-out (format nil "$ BLISS -A" (send file ':string-for-host»»)

The options used when opening a file are normally alternating keywords and
values, like any other function that takes keyword arguments. In addition,
for compatibility with the Maclisp open function, if only a single option is
specified it is either a keyword or a list of keywords (not alternating with
values).

The file-opening options control whether the stream is for input from a
existing file or output to a new file, whether the file is text or binary, and so
on.

The following option keywords are recognized. Unless otherwise noted, they
are supported generically. Additional keywords can be implemented by
particular file system hosts.

:direction The :direction option allows the following values:

: input

:output

:io

:probe

The file is being opened for input. This
is the default.

The file is being opened for output.

The file is being opened for intermixed
input and output. Bidirectionality is
supported only if the stream is to be a
direct stream, that is, :direct t is given
as well. See the section "Direct Access
File Streams", page 115.

A "probe" opening; no data are to be
transferred, and the file is being opened
only to gain access to or change its
properties. Returns the truename of
the object at the end of a link or chain
of links. (probef is usually preferable to
an explicit probe opening.)

:probe-link The same as :probe except that links
are not chased. Returns the truename
of the object named, even if it is a link.

:probe-directory The pathname is being opened to fmd

March 1985

:direct

: submit

:characters

:byte-size

:error

:probe-link

99

Streams

out about the existence of its directory
component. Otherwise, the semantics
are the same as :probe. If the
directory is not found, a file lookup error
is signalled.

The same as :probe except that links
are not chased. Returns the truename
of the object named, even if it is a link.

The default is nil. t specifies a direct access stream. See
the section "Direct Access File Streams", page 115.

This is an option to open used to get batch jobs.
Currently, this is implemented only for VAXNMS. When
the file you are writing is closed, the file is submitted as a
batch job by using this option.

The possible values are t (the default), nil, which means
that the file is a binary file, and :default, which means
that the file system should decide whether the file contains
characters or binary data and open it in the appropriate
mode.

The possible values are nil (the default), a number in the
range 1 to 16 inclusive, which is the number of bits per
byte, and : default, which means that the file system
should choose the byte size based on attributes of the file.
If the file is being opened as characters, nil selects the
appropriate system-dependent byte size for text files; it is
usually not useful to use a different byte size. If the file is
being opened as binary, nil selects the default byte size of
16 bits.

This option controls what happens when any
fs:file-operation-failure condition is signalled. See the
section "File-system Errors" in Reference Guide to
Symbolics-lisp.

The option has three possible values:

Value

t

nil

:reprompt

Meaning

Signals the error normally. t is both
the default and the recommended value.

Returns the condition object.

Reprompts the user for another file
name and tries open again. When you
use this option, remember that the

100

Reference Guide to Streams, Files, and 110 March 1985

: deleted

: temporary

:pathname message sent to the stream
finds out what file name was really
opened.

t is the recommended value for this option. The others
have been provided for compatibility with previous systems
to aid in converting programs.

The alternative to :reprompt is to use :error t and set
up a condition handler for fs:file-operation-failure that
explains the condition and prompts the user.

The default is nil. If t is specified, and the file system
has the concept of deleted but not expunged files, it is
possible to open a deleted file. Otherwise deleted files are
invisible.

The default is nil. If t is specified, the file is marked as
temporary, if the file system has that concept.

:preserve-dates The default is nil. If t is specified, the file's reference and
modification dates are not updated.

:estimated-length

: super-image

: raw

: if-exists

The value of the :estimated-length option can be nil (the
default), which means there is no estimated length, or a
number of bytes indicating the estimated length of a file to
be written. Some file systems use this to optimize disk
allocation.

The value can be nil (the default), or t which disables the
special treatment of Rubout in ASCII files. Normally
Rubout is an escape that causes the following character to
be interpreted specially, allowing all characters from 0
through 376 to be stored. This applies to PDP-IO file
servers only.

The value can be nil (the default) or t, which disables all
character set translation in ASCII files.

Specifies the action to be taken if the :direction is
:output and a file of the specified name already exists. If
the direction is :input or :probe (or any of the
:probe-like directions), this argument is ignored.

The following values are allowed:

: error

:new-version

Signals an error. This is the default
when the version component of the
filename is not :newest.

Creates a new file with the same file

March 1985

: rename

101

Streams

name but a larger version number.
This is the default when the version
component of the filename is :newest.
File systems without version numbers
can choose to implement this by
effectively treating it as supersede.

Renames the existing file to some other
name, and then creates a new file with
the specified name. On most file
systems, this renaming happens at the
time of a successful close.

:rename-and-delete

:overwrite

:truncate

: append

:supersede

Renames the existing file to some other
name and then deletes it (but does not
expunge it, on those systems that
distinguish deletion from expunging).
Then creates a new file with the
specified name. On most file systems,
this renaming happens at the time of a
successful close.

The existing file is used, and output
operations on the stream destructively
modify the file. The file pointer is
initially positioned at the beginning of
the file; however, the file is not
truncated back to length zero when it is
opened.

The existing file is used, and output
operations on the stream destructively
modify the file. The file pointer is
initially positioned at the beginning of
the file; at that time, the file is
truncated to length zero, and disk
storage occupied by it is freed.

The existing file is used, and output
operations on the stream destructively
modify the file. The file pointer is
initially positioned at the current end of
the file.

Supersedes the existing file. If possible,
the file system does not destroy the old
file until the new stream is closed,
against the possibility that the stream

102

Reference Guide to Streams, Files, and /10 March 1985

nil

will be closed in "abort" mode. This
differs from :new-version in that
:supersede creates a new file with the
same name as the old one, rather than
a file name with a higher version
number.

Does not create a file or even a stream.
Instead, simply returns nil to indicate
failure.

:if-does-not-exist Specifies the action to be taken if the file does not already
exist. The following values are allowed:

:error

:create

nil

Signals an error. This is the default if
the :direction is :input, :probe, or
any of the :probe-like modes, or if the
:if-exists argument is : overwrite,
:truncate, or : append.

Creates an empty fIle with the specified
name, and then proceeds as if it had
already existed. This is the default if
the :direction is :output and the
:if-exists argument is anything but
:overwrite, :truncate, or :append

Does not create a file or even a stream.
Instead, simply returns nil to indicate
failure.

In the Maclisp compatibility mode, there is only one option, and it is either a
symbol or a list of symbols. These symbols are recognized no matter what
package they are in, since Maclisp does not have packages. The following
symbols are recognized:

in, read Select opening for input (the default).

out, write, print Select opening for output; a new file is to be created.

binary, ilXllum Select binary mode, otherwise character mode is used.

character, ascii The opposite of flXIlum. This is the default.

single, block

byte-size

Ignored for compatibility with the Maclisp open function.

Must be followed by a number in the options list, and
must be used in combination with ilXllum. The number
is the number of bits per byte, which can be from 1 to 16.
On a PDP-10 file server these bytes are packed into words
in the standard way defined by the ILDD instruction.
The :tyi stream operation returns the bytes one at a time.

103

March 1985 Streams

probe, error, no error, raw, super-image, deleted, temporary
These are not available in Maclisp. The corresponding
keywords in the normal form of file-opening options are
preferred over these.

close stream &optional abortp Function
Sends the :close message to stream.

The abortp argument is normally not supplied. If it is t, we are abnormally
exiting from the use of this stream. If the stream is outputting to a file, and
has not been closed already, the stream's newly created file is deleted, as if it
were never opened in the first place. Any previously existing file with the
same name remains, undisturbed.

renamef file new-name &optional (error-p t) Function
Renames one file. The Rename File (M-X) command in the editor uses this
function.

file can be a path name, a string, or a stream that is open to a file. The
specified file is renamed to new-name (a pathname or string). If error-p is t,
when an error occurs it is signalled as a Lisp error. If error-p is nil and an
error occurs, the error object is returned; otherwise the three values described
below are returned.

file must refer to a unique file; it cannot contain any wild components.
new-name can contain wild components, which are eliminated after merging
the defaults by means of :translate-wild-pathname. renamef first
attempts to open file. When that has happened successfully, it parses
new-name and merges it (using fs:merge-pathnames) against the
link-opaque truename of file and version of :newest. This has the following
result for version numbers.

Source
>foo>a.b.newest
>foo>a. b.newest

Target
>bar>
>bar>x

Result
Retains the version number
Makes a new version of >bar>x.b

The defaults for new-name come from the link-opaque truename of file. For
systems without links, this is indistinguishable from the truename.
Otherwise, the link-opaque truename depends on whether file contains an
:oldest or :newest version. If it does not and if it is fully defaulted, with no
wild components, the pathname is its own link-opaque truename. If a
pathname x contains an :oldest or :newest version, the link-opaque
truename is the pathname of the file or link that corresponds to x, with the
version number filled in. For example, renaming the LMFS file >a>pl. 1 isp to
>b> results in >b>pl. 1 isp, with the version of >a)pl. 1 isp.newest inherited.
This is so whether >a>pl.1 isp.newest is a real file, a link, or a rename
through link.

104

Reference Guide to Streams, Files, and /10 March 1985

renamef returns three values:

1. The pathname produced by merging and defaulting new-name. This is
the attempted result of the renaming.

2. The pathname of the object that was actually renamed. This might
not be the same as file. For example, file might have an :oldest or
:newest version, or LMFS rename-through links might be involved.
This pathname never has an :oldest or :newest version.

3. The actual pathname that resulted from the renaming. This might
not be the same as new-name. For example, new-name might have an
:oldest or :newest version, or LMFS create-through links might be
involved.

The :rename message to streams and pathnames returns the second and
third of these values.

Examples:

This example is as simple as possible. Using LMFS, on host johnny, with no
links involved:

(renamef "johnny:>a>foo.lisp" "bar") =>
#<LMFS-PATHNAME "johnny:>a>bar.lisp">
#<LMFS-PATHNAME "johnny:>a>foo.lisp.17">
#<LMFS-PATHNAME "johnny:>a>bar.lisp.1">

This example is as complex as possible. Using LMFS, on host eddie, with
links

>abel >moe. 1 isp.4 => >baker> larry. 1 isp (rename-through) (latest)
>baker>larry.lisp.4 =>

>charl ie>sam. 1 isp. 19 (not rename- or create-through) (latest)
>dav;d>jerry.lisp.5 => >earl>ted.lisp (create-through) (latest)

(renamef "eddie:>abel>moe.lisp.4" "eddie:>david>jerry") =>
#<LMFS-PATHNAME "eddie:>david>jerry.lisp">
#<LMFS-PATHNAME "eddie:>baker>larry.lisp.4">
#<LMFS-PATHNAME "eddie:>earl>ted.lisp.l">

deletef file &optional (error-p t) Function
Deletes the specified file. file can be a pathname or a stream that is open to
a file. If error-p is t, then if an error occurs it is signalled as a Lisp error.
If error-p is nil and an error occurs, the error object is returned; otherwise t
is returned.

undeletef file &optional (error-p t) Function
Undeletes the specified file. file can be a pathname or a stream that is open
to a file. If error-p is t and an error occurs, it is signalled as a Lisp error. If

105

March 1985 Streams

error-p is nil and an error occurs, the error object is returned; otherwise t is
returned. undeletef is like deletef except that it undeletes the file instead
of deleting it. undeletef is meaningful only for files in file systems that
support undeletion, such as TOPS-20 and the Lisp Machine File System.

fs:file-properties pathname &optional (error-p t) Function
Returns a disembodied property list for a single file (compare this to
fs:directory-list). The car of the returned list is the truename of the file
and the cdr is an alternating list of indicators and values. If error-p is t (the
default) a Lisp error is signalled. If error-p is nil and an error occurs, the
error object is returned.

fs:change-file-properties pathname error-p &rest properties Function
Some of the properties of a file can be changed, such as its creation date or
its author. The properties that can be changed depend on the host file
system; a list of the changeable property names is the :settable-properties
property of the file system as a whole, returned by fs:directory-list. See
the function fs:directory-list, page 1~ 7.

fs:change-file-properties changes one or more properties of a file.
pathname names the file. The properties arguments are alternating keywords
and values. If the error-p argument is t, a Lisp error is signalled. If error-p
is nil and an error occurs, the error object is returned. If no error occurs,
fs:change-file-properties returns t.

viewf pathname &optional (stream standard-output) leader Function
Prints the file named by pathname onto the stream. (The optional third
argument is passed as the leader argument to stream-copy-until-eof.) The
name viewf is analogous with deletef, renamef, and so on. Note: viewf
should not be used for copying files; its output is not the same as the
contents of the file (for example, it does a :fresh-line operation on the
stream before printing the file).

copyf {rom-path to-path &key (characters ':default) (byte-size nil) Function
(copy-creation-date t) (copy-author t)
(report-stream nil) (create-directories ':query)

Copies one file to another. Copy File (M-X) in the editor uses this function.

{rom-path and to-path are the source and destination pathnames, which can
be file specifications. {rom-path must refer to a unique file; it cannot contain
any wild components. to-path can contain wild components, which are
eliminated after merging the defaults by means of
:translate-wild-pathname. copyf first attempts to open {rom-path. When
that has happened successfully, it parses to-path and merges it (using
fs:merge-pathnames) against the link-opaque truename of {rom-path and
version of :newest. The output file specified by to-path is opened with
:if-exists :supersede. The processing of to-path has the following result for
version numbers.

106

Reference Guide to Streams, Files, and flO March 1985

Source
>foo>a.h.newest
>foo>a.b.newest

Target
>bar>
>bar>x

Result
Retains the version number
Makes a new version of >bar>x.b

The defaults for to-path come from the link-opaque truename of from-path.
For systems without links, this is indistinguishable from the truename.
Otherwise, the link-opaque truename depends on. whether from-path contains
an :oldest or :newest version. If it does not and if it is fully defaulted, with
no wild components, the pathname is its own link-opaque truename. If a
pathname x contains an :oldest or :newest version, the link-opaque
truename is the pathname of the file or link that corresponds to x, with the
version number filled in. For example, copying the LMFS file >a>pl. 1 isp to
>b> results in >b>pl. 1 isp, with the version of >a>pl. 1 isp.newest inherited.
This is so whether >a>pl.1isp.newest is a real file, a link, or a rename
through link.

By default, copyf copies the creation date and author of the file.

Following is a description of the other options:

:characters

:byte-size

Possible values:
:default

t

nil

copyf decides whether this is a binary
or character transfer according to the
canonical type of from-path. You do not
need to supply this argument for
standard file types. For types that are
not known canonical types, it opens
from-path in :default mode. In that
case, the server for the file system
containing from-path makes the
character-or-binary decision.

Specifies that the transfer must be in
character mode.

Specifies that the transfer must be
binary mode (in this case, you must
supply byte-size if using a byte size other
than 16).

Specifies the byte size with which both files are opened for
binary transfers. You must supply :byte-size when
:characters is nil and the byte size is other than 16.
Otherwise, copyf determines the byte size from the file
type for from-path. When from-path is a binary file with a
known canonical type, it determines the byte size from the
:binary-file-byte-size property of the type. When the file

March 1985

107

Streams

does not have a known type, it requests the byte size for
from-peith from the file server. When the server for the
file system containing from-path cannot supply the byte
size, it assumes that the byte size is 16.

:report-stream When :report-stream is nil (the default), the copying
takes place with no messages. Otherwise, the value must
be a stream for reporting the start and successful
completion of the copying. The completion message
contains the truename of to-path.

:create-directories
Determines whether directories should be created, if
needed, for the target of the copy. Permissible values are
as follows:
t

nil

: query

Try to create the target directory of the
copy and all superiors. Report directory
creation to standard-output.

Do not try to create directories. If the
directory does not exist, handle this
condition like any other error.

If the directory does not exist, ask
whether or not to create it. This is the
default.

probef pathname Function
Returns nil if there is no file named pathname, or signals an error if
anything else goes wrong (such as sys:host-not-responding). Otherwise,
probef returns a pathname that is the truename of the file, which can be
different from pathname because of file links, version numbers, and so on.

fs:close-all-files Function
Closes all open files. This is useful when a program has run wild opening
files and not closing them. It closes all the files in :abort mode, which
means that files open for output will be deleted. Using this function is
dangerous, because you might close files out from under various programs
such as Zmacs and Zmail; only use it if you have to and if you feel that you
know what you're doing.

fs:*remember-passwords* Variable
If not nil, causes the first password for each file access path to be
remembered. This suppresses prompting for passwords on subsequent
attempts by the same user to use that access path. The default value is nil.

Note that if you set this variable in an init file, your first login password,
typed before the init file is loaded, is not remembered.

108

Reference Guide to Streams. Files. and flO March 1985

Caution: Remembered passwords are accessible. Even after you log out the
remembered password for each access path is accessible. If password security
is important, you probably should not set this variable to a non-nil value.

10.1 Loading Files

To load a file is to read through the file, evaluating each form in it. Programs are
typically stored in files; the expressions in the file are mostly special forms such as
defun and defvar that define the functions and variables of the program.

Loading a compiled (or BIN) file is similar, except that the file does not contain text
but rather predigested expressions created by the compiler that can be loaded more
quickly.

These functions are for loading single files. There is a system for keeping track of
programs that consist of more than one file: See the section "Maintaining Large
Programs" in Program Development Utilities.

load pathname &optional pkg nonexistent-ok-flag dont-set-default-p Function
no-msg-p

Loads the file named by pathname into the Lisp environment. The file can
be either a Lisp source file or a binary file. If the pathname specifies the
type, it is used; otherwise, load looks first for a binary file, then for a Lisp
file. Normally, the file is read into its "home" package, but pkg can be
supplied to specify the package. pkg can be either a package or the name of
a package as a string or a symbol. If pkg is not specified, load prints a
message saying what package the file is being loaded into.

nonexistent-ok controls the action of load if none of the files is found. If it is
nil (the default), you are prompted for a new file unless the corresponding
condition (fs:multiple-file-not-found) is handled. If it is not nil, it is the
returned value if the file is not found. Other reasons for not finding the file,
such as the host being down or the directory not existing, are signalled as
different errors. For example, load fails when the host is down even when
you specified the nonexistent-ok argument.

pathname can be anything acceptable to fs:parse-pathname. See the
section "Naming of Files", page 127. pathname is defaulted from
fs:load-pathname-defaults, which is the set of defaults used by load and
similar functions. See the variable fs:load-pathname-defaults, page 149.
Normally load updates the pathname defaults from pathname, but if
dont-set-default is specified this is suppressed.

If an ITS path name contains an FN1 but no FN2, load first looks for the file
with an FN2 of BIN, then it looks for an FN2 of >. For non-ITS file
systems, this generalizes to: if pathname specifies a type and/or a version,

109

March 1985 Streams

load loads that file. Otherwise it first looks for a binary file, then a Lisp file,
in both cases looking for the newest version.

If the value of no-msg-p is t (it defaults to Dil), then load does not print
out the message that it usually prints (that is, the message that tells you
that a certain file is being loaded into a certain package).

readfile pathname &optional pkg no-msg-p Function
readfile is the version of load for text files. It reads and evaluates each
expression in the file. As with load, pkg can specify what package to read
the file into. Unless no-msg-p is t, a message is printed indicating what file
is being read into what package. The defaulting of pathname is the same as
in load.

10.2 File Attribute Lists

Any text file can contain an attribute list that specifies several attributes of the file.
The functions that load flIes, the compiler, and the editor look at this attribute list.
File attribute lists are especially useful in program source files, that is, a file that is
intended to be loaded (or compiled and then loaded).

If the first nonblank line in the file contains the three characters "-*-", some text,
and "-*-" again, the text is recognized as the file's attribute list. Each attribute
consists of the attribute name, a colon, and the attribute value. If there is more
than one attribute they are separated by semicolons. An example of such an
attribute list is:

; -*- Hode:Lisp; Package:Cellophane; Base:l0 -*-
The semicolon makes this line look like a comment rather than a Lisp expression.
This defines three attributes: mode, package, and base.

The term attribute list applies not only to the -*- line in character files, but also to
an analogous data structure in compiled files. For example, in both cases the
attribute list tells load what package to load the file into.

An attribute name is made up of letters, numbers, and otherwise-undefined
punctuation characters such as hyphens. An attribute value can be such a name, or
a decimal number, or several such items separated by commas. Spaces can be used
freely to separate tokens. Upper and lowercase letters are not distinguished. There
is no quoting convention for special characters such as colons and semicolons. File
attribute lists are different from Lisp property lists; attribute lists correspond to the
text inside a file, while file properties are characteristics of the file itself, such as the
creation date.

The file attribute list format actually has nothing to do with Lisp; it is just a
convention for placing some information into a file that is easy for a program to
interpret.

110

Reference Guide to Streams, Files, and liD March 1985

Symbolics-Lisp has a parser for file attribute lists that creates some Lisp data
structure that corresponds to the file attribute list. When a file attribute list is read
in and given to the parser (the fs:read-attribute-list function), it is converted into
Lisp objects as follows: Attribute names are interpreted as Lisp symbols, and
interned on the keyword package. Numbers are interpreted as Lisp flXIlums, and
are read in decimal. If an attribute value contains any commas, then the commas
separate several expressions that are formed into a list.

When a file is edited, loaded, or compiled, its file attribute list is read in and the
attributes are stored on the attribute list of the generic pathname for that file,
where they can be retrieved with the :get and :plist messages. See the section
"Generic Pathnames", page 149. So, to examine the attributes of a file, you usually
use messages to a pathname object that represents the generic pathname of a file.
Note that there other attributes there, too. The function fs:read-attribute-list
reads the file attribute list of a file and sets up the attributes on the generic
pathname; editing, loading, or compiling a file calls this function, but you can call it
yourself if you want to examine the attributes of an arbitrary file.

If the attribute list text contains no colons, it is an old EMACS format, containing
only the value of the Mode attribute.

The following are some of the attribute names allowed and what they mean.

Mode

Package

Base

Lowercase

Fonts

Backspace

The editor major mode to be used when editing this file. This is
typically the name of the language in which the file is written.
The most common values are Lisp and Text.

The name of the package into which the file is to be loaded. See
the section "The Need for Packages" in Reference Guide to
Symbolics-lisp.

The number base in which the file is written. This affects both
ibase and base, since it is confusing to have different input and
output bases. The most common values are 8 and 10 (the
default).

If the attribute value is not nil, the file is written in lowercase
letters and the editor does not translate to uppercase. (The editor
does not translate to uppercase by default unless the user selects
"Electric Shift Lock" mode.)

The attribute value is a list of font names, separated by commas.
The editor uses this for files that are written in more than one
font.

If the attribute value is not nil, the file can contain backspaces
that cause characters to overprint on each other. The default is
to disallow overprinting and display backspaces the way other
special function keys are displayed. This default is to prevent the
confusion that can be engendered by overstruck text.

111

March 1985 Streams

Patch-File If the attribute value is not nil, the file is a "patch file". When it
is loaded, the system does not complain about function
redefinitions. Furthermore, the remembered source file names for
functions defined in this file are changed to this file, but are left
as whatever file the function came from originally. In a patch
file, the defvar special-form turns into defconst; thus patch files
always reinitialize variables.

You are free to define additional file attributes of your own. However, you should
choose names that are different from all the names above, and from any names
likely to be defined by anybody else's programs, to avoid accidental name conflicts.

The function fs:pathname-attribute-list is generally the most useful function for
obtaining a file's attributes.

fs:pathname-attribute-list pathname Function
Returns the attribute list for a file designated by pathname.

fs:read-attribute-list pathname stream Function
Parses file attribute lists. pathname should be a pathname object (not a
string or namelist, but an actual pathname); usually it is a generic pathname.
See the section "Generic Pathnames", page 149.

stream should be a stream that has been opened and is pointing to the
beginning of the file whose file attribute list is to be parsed. This function
reads from the stream until it gets the file attribute list, parses it, puts
corresponding attributes onto the attribute list of pathname, and finally sets
the stream back to the beginning of the file by using the :set-pointer file
stream operation. See the message :set-pointer, page 20.

The obsolete name of this function is fs:file-read-property-list.

Programs in Symbolics-Lisp generally react to the presence of attributes on a file's
file attribute list by examining the attribute list in the generic pathname's property
list. However, file attributes can also cause special variables to be bound whenever
Lisp expressions are being read from the file-when the file is being loaded, when it
is being compiled, when it is being read from by the editor, and when its QFASL file
is being loaded. This is how the Package and Base attributes work. You can also
deal with attributes this way, by using the following function.

fs:file-attribute-bindings pathname Function
Examines the property list of pathname and finds all those property names
that have file-attribute bindings. Its obsolete name is
fs:file-property-bindings.

Each such pathname-property name specifies a set of variables to bind and a
set of values to which to bind them. This function returns two values: a
list of all the variables, and a list of all the corresponding values. Usually you

112

Reference Guide to Streams, Fifes, and liD March 1985

call this function on a generic pathname whose attribute list has been parsed
with fs:read-attribute-list. Then you use the two returned values as the
first two subforms to a progv special form. Inside the body of the progv
the specified bindings will be in effect.

Usually, pathname is a generic pathname. It can also be a locative, in which
case it is interpreted to be the property list itself.

Of the standard names, the following ones have file-attribute bindings, with
the following effects:

• Package binds the variable package to the package. See the variable
package in Reference Guide to Symbolics-lisp.

• Base binds the variables base and ibase to the value. See the
variable base in Reference Guide to Symbolics-lisp. See the variable
ibase in Reference Guide to Symbolics-lisp.

• Patch-file binds fs:this-is-a-patch-file to the value.

Any properties whose names do not have file-attribute bindings are ignored
completely.

You can also add your own pathname-property names that affect bindings. If
an indicator symbol has a file-attribute binding, the value of that property is
a function that is called when a file with a file attribute of that name is
going to be read from. The function is given three arguments: the file
pathname, the attribute name, and the attribute value. It must return two
values: a list of variables to be bound and a list of values to bind them to.
Both these lists must be freshly con sed (using list or ncons). The function
for the Base keyword could have been defined by:

(defun (:base fi1e-attribute-bindings) (file ignore bse)
(if (not (and (typep bse 'fixnum)

(> bse 1)

« bse 37.»)
(ferror nil "File -A has an illegal -*- Base:-s -*-"

file bse»
(values (list 'base 'ibase) (list bse bse»)

Finally, the function sys:dump-forms-to-file offers, among other things, the option
of manipulating the attribute list of a binary file. See the section "Putting Data in
Compiled Code Files", page 241.

For example, the following form converts a Lisp file to a binary file, without
compiling. The attribute list is obtained from the input stream and cached in the
generic pathname. The function fs:file-attribute-bindings obtains the list of
variables to bind from the generic pathname; these bindings are necessary to ensure
that the file is read in the right base, syntax, and package. The progv actually
accomplishes the binding of the variables.

113

March 1985 Streams

(defun binify-file-internal (input-file output-file)
(with-open-file (input input-file :direction :input :characters t)

(let* «generic-pathname (send input-file :generic-pathname»
(attribute-list (fs:read-attribute-list generic-pathname input»)

(multiple-value-bind (variables-list values-list)
(fs:file-attribute-bindings generic-pathname)

(progv variables-list values-list
(loop with eof-val = (ncons 'eof)

for form = (read input eof-val)
while (neq form eof-val)
collect form into forms
finally

(sys:dump-forms-to-file output-file forms
attribute-list»»»)

10.3 File Stream Operations

The following messages can be sent to file streams, in addition to the normal 110
messages that work on all streams. Note that several of these messages are useful
to send to a file stream which has been closed. Some of these messages use
pathnames. See the section "Naming of Files", page 127.

:pathname Message
Returns the pathname that was opened to get this stream. This might not
be identical to the argument to open, since missing components will have
been filled in from defaults, and the pathname might have been replaced
wholesale if an error occurred iIi the attempt to open the original pathname.

:truename Message
Returns the pathname of the file actually open on this stream. This can be
different from what :pathname returns because of file links, logical devices,
mapping of "newest" version to a particular version number, and so on. For
some systems (such as ITS) the truename of an output stream is not
meaningful until after the stream has been closed, at least on an ITS file
server.

:length Message
Returns the length of the file, in bytes or characters. For text files on
PDP-IO file servers, this is the number of PDP-IO characters, not Symbolics
characters. The numbers are different because of character-set translation.
(See the section "The Character Set", page 5.) For an output stream the
length is not meaningful until after the stream has been closed, at least on
an ITS file server.

114

Reference Guide to Streams, Files, and /10 March 1985

:characters Message
Returns t if the stream is a character stream, nil if it is a binary stream.

:creation-date Message
Returns the creation date of the file, as a number which is a universal time.
See the section "Dates and Times" in Programming the User Interface. See
the function fs:directory-list, page 117.

: info Message
Returns a cons of the true name and creation date of the file. The creation
date is a number that is a universal time. This can be used to tell if the file
has been modified between two opens. For an output stream the info is not
meaningful until after the stream has been closed, at least on an ITS file
server.

:delete Message
Deletes the file open on this stream. The file does not really go away until
the stream is closed. You should not use :delete. Instead, use deletef.

:rename new-name Message
Renames the file open on this stream. You should not use :rename.
Instead, use renamef.

:properties Message
Returns two values:

• A list whose car is the pathname of the file and whose cdr is a list of
the properties of the file; thus the element is a "disembodied" property
list and get can be used to access the file's properties.

• A list of what properties of this file are "changeable".

:change-properties
Changes the file properties of the file open on this stream.
:change-properties signals an error rather than returning one.

Message

:finish Message
Does a :force-output to a buffered asynchronous device, such as the
Chaosnet, then waits until the currently pending 110 operation has been
completed. If the stream does not handle this, the default handler ignores it.

For file output streams, :finish finalizes file content. It ensures that all data
have actually been written to the file, and sets the byte count. It converts
non-direct output openings into append openings. It allows other users to
access the data that have been written before the :finish message was sent.

File output streams implement the :finish and :force-output messages.

115

March 1985 Streams

10.4 Direct Access File Streams

Direct access file streams are supported by LMFS. They are designed to facilitate
reading and writing data from many different points in a file. They are typically
used to construct files organized into discrete extents or records, whose positions
within a file are known by programs that access them in nonsequential order.
Although this could be done with the :set-pointer message to input file streams,
the direct access facility provides the following additional functions:

• Direct access to output files.

• Bidirectional file streams, which allow interspersed reading and writing of data
to and from varied locations in a file.

• No use of network connections or file buffers during the time between data
reading and the next call to position. In contrast, using the :set-pointer
message with ordinary ("sequential") input file streams incurs a significant
network and data transfer overhead if the program repeatedly positions, reads
several bytes, and then computes for a time.

10.4.1 Stream Messages

The following messages are relevant to direct access file streams.

:read-bytes n-bytes file-position Message
Sent to a direct access input or bidirectional file stream, this requests the
transfer of n-bytes bytes from position file-position of the file. The message
itself does not return any data to the caller. It causes the stream to be
positioned to that point in the file, and the transfer of n-bytes bytes to begin.
An EOF is sent following the requested bytes. The bytes can then be read
using :tyi, :string-in, or any of the standard input messages or functions.

The stream enforces the byte limit, and presents an EOF if you attempt to
read bytes beyond that limit. You must actually read all the bytes and read
past (that is, consume from the stream) the EOF.

It is also possible, before all the bytes have been read, to perform stream
operations other than reading bytes. For example, an application might read
several records at a time, to optimize transfer and buffering, and decide, after
reading the first record, to position somewhere else. Direct access file
streams handle this properly. Nevertheless, network and buffering resources
allocated to the stream (both on the local machine and server machine) are
not freed unless all the requested bytes (of the last :read-bytes request) and
the EOF following them are read.

If you request more bytes than remain in the file, you receive the remaining
bytes followed by EOF.

116

Reference Guide to Streams, Files, and 110 March 1985

;;; Opens a file for direct 110
(with-open-file (f "saratoga:>foo.lisp" :direct t :direction :io»

(send f :read-bytes 10. 25.) Requests 10 bytes, starting at byte 25.

(send f : tyi) Gets one byte from the stream.

(defvar record (make-array 10. :type art-string» ; A record buffer.

(send f :string-in eof-option record) ;; Reads la-character record.
(send f :tyi) ;; Consumes the following EOF .

. . .)

10.4.1.1 Direct Access Output File Streams

You create direct access output to output and bidirectional direct access file streams
by sending a :set-pointer message to the stream, and beginning to write bytes
using standard messages, such as :tyo, : string-out, and so forth. The bytes are
written to the file starting at the location requested, at successive file positions.
Although you can extend the file in this manner, you cannot do a :set-pointer to
beyond the current end of the file.

Direct access ou tpu t, therefore, consists of sequences of :set-pointer messages and
data output. Data are not guaranteed to actually appear in the file until either the
stream is closed or a :finish message is sent to the stream. See the message
:finish, page 18.

10.4.1.2 Direct Access Bidirectional File Streams

Bidirectional direct access file streams combine the features of direct access input and
output file streams. Sequences of :read-bytes messages and reading data can be
interspersed with sequences of :set-pointer messages and writing data. The stream
is effectively switched between "input" and "output" states by the :read-bytes and
:set-pointer messages. You cannot read data with :tyi or similar messages if a
:set-pointer message has been sent to the stream since the last :read-bytes
message. Similarly, you cannot write data with :tyo or similar messages unless a
:set-pointer message has been sent to the stream since the last :read-bytes or :tyi
messages, or similar operation.

When the EOF of a byte sequence requested with a :read-bytes message has been
read for a bidirectional stream, the system frees network and buffering resources.

117

March 1985 Streams

11. Accessing Directories

To understand the functions in this section, it is imperative to have read some other
documentation. See the section "Naming of Files", page 127.

11.1 Functions for Accessing Directories

fs:directory-list pathname &rest options Function
Finds all the files that match pathname and returns a freshly con sed list
with one element for each file. Each element is a list whose car is the
pathname of the file and whose cdr is a list of the properties of the file; thus
the element is a "disembodied" property list and get can be used to access
the file's properties. The car of one element is nil; the properties in this
element are properties of the file system as a whole rather than of a specific
file.

The matching is done using both host-independent and host-dependent
conventions. Any component of pathname that is :wild matches anything;
all files that match the remaining components of pathname are listed
regardless of their values for the wild component. In addition, there is host
dependent matching. Typically, this uses the asterisk character (*) as a wild
card character. A pathname component that consists of just a * matches
any value of that component (the same as :wild). *, appearing in a
pathname component that contains other characters, matches any character
(on ITS) or any string of characters (on TOPS-20, LMFS, UNIX, and
Multics) in the starred positions and requires the specified characters
otherwise. Other hosts follow similar but not necessarily identical
conventions.

The options are keywords that modify the operation. The following options
are currently defined:

:noerror

:deleted

If a file-system error (for example, no such directory)
occurs during the operation, an error is normally signalled
and the user is asked to supply a new pathname.
However, if :noerror is specified and an error occurs, an
error object describing the error is returned as the result
of fs:directory-list. This is identical to the :noerror
option to open.

This is for file servers with soft deletion, such as TOPS-20,
LMFS, and FEP. It specifies that deleted (but not yet
expunged) files are to be included in the directory listing.
Normally, they are not included.

118

Reference Guide to Streams, Files, and /10 March 1985

:no-ex1ra-info This results in only enough information for listing the
directory as in Dired.

:sorted This causes the directory to be sorted so that at least
multiple versions of a file are consecutive in increasing
version number.

The properties that might appear in the list of property lists returned by
fs:directory-list are host-dependent to some extent. The following
properties are defined for most file servers.

:length-in-bytes The length of the file expressed in terms of the basic units
in which it is written <characters in the case of a text file
and binary bytes for a binary file).

:byte-size The number of bits in a byte.

:length-in-blocks The length of the file in terms of the file system's unit of
storage allocation.

:block-size The number of bits in a block.

:creation-date The date the file was created, as a universal time. This
does not necessarily mean the time that the file itself was
created, but rather, the time that the data in it were
created. This property corresponds to the concept of
"modification date" on many systems. See the section
"Dates and Times" in Programming the User Interface.

:directory A boolean. If t, the object in question is a directory, as
opposed to a file or a link. This property can only be
returned as t in a hierarchical file system.

:last-expunge-time
For directories, the date that the directory was last
expunged. It is nil if the directory has never been
expunged.

:reference-date The most recent date that the file was used, as a universal
time.

:author

: account

:deleted

:dont-delete

:dont-dump

The name of the person who created the data in the file,
as a string.

A string. Highly system-dependent in format.

A boolean. t for a "deleted" file, in file systems supporting
"soft deletion".

A boolean. If it is t, an error results if an attempt is
made to delete the file.

A boolean. Suppresses backup dumping.

119

March 1985 Streams

:dont-reap

: dumped

A boolean. A flag used by directory maintenance tools.

A boolean. t if and only if the file has been dumped to
backup tape.

:generation-retention-count

:link-to

:offiine

A number that specifies how many versions of a file should
be saved.

A string. This is the target pathname of a link, as a
string.

A boolean. The file has been moved to archival storage.

:pbysical-volume A string.

:protection A string.

: reader

:temporary

A string. The last person to have read the file.

A boolean.

fs:multiple-file-plists filenames &rest options Function
Returns a list of property lists, each property list corresponding to a file in
filenames, which is a list of pathnames. For example:

(fs:multiple-file-plists
(list "sys: doc; xm; xml.sar" "sys: doc; xm; xm2.sar"» ==>

«#<LOGICAL-PATHNAHE "SVS: DOC; XH; XH2.SAR.NEWEST"> :TRUENAHE
#<LHFS-PATHNAHE "X:>current>sys>doc>xm>xm2.sar.19"> :LENGTH 46350
:AUTHOR "BENSON" :BVTE-SIZE NIL :CREATION-DATE 2687555882)
(#<LOGICAL-PATHNAHE "SVS: DOC; XH; XH1.SAR.NEWEST"> :TRUENAME
#<LMFS-PATHNAME "X:>current>sys>doc>xm>xml.sar.17"> :LENGTH 33833
:AUTHOR "BENSON" :BVTE-SIZE NIL :CREATION-DATE 2687544577»

fs:cbange-file-properties pathname error-p &rest properties Function
Some of the properties of a file can be changed, such as its creation date or
its author. The properties that can be changed depend on the host file
system; a list of the changeable property names is the :settable-properties,
property of the file system as a whole, returned by fs:directory-list. See
the function fs:directory-list, page 117.

fs:cbange-file-properties changes one or more properties of a file.
pathname names the file. The properties arguments are alternating keywords
and values. If the error-p argument is t, a Lisp error is signalled. If error-p
is nil and an error occurs, the error object is returned. If no error occurs,
fs:cbange-file-properties returns t.

fs:file-properties pathname &optional (error-p t) Function
Returns a disembodied property list for a single file (compare this to
fs:directory-list). . The car of the returned list is the truename of the file

120

Reference Guide to Streams, Files, and /10 March 1985

and the cdr is an alternating list of indicators and values. If error-p is t (the
default) a Lisp error is signalled. If error-p is nil and an error occurs, the
error object is returned.

fs:complete-pathname defaults string type version &rest options Function
string is a partially specified file nrune. (Presumably it was typed in by a
user and terminated with the COMPLETE or END to request completion.)
fs:complete-pathname looks in the file system on the appropriate host and
returns a new, possibly more specific string. Any unambiguous abbreviations
are expanded in a host-dependent fashion.

string is completed relative to a default pathname constructed from defaults,
the host (if any) specified by string, type, and version, using the function
fs:default-pathname. See the function fs:default-pathname, page 162. If
string does not contain a colon, the host comes from defaults; otherwise the
host name precedes the first colon in string.

options are keywords (without following values) that control how the
completion will be performed. The following option keywords are allowed.
Their meanings are explained more fully below.

:deleted

:read or :in

Look for files that have been deleted but not yet expunged.
The default is to ignore such files.

The file is going to be read. This is the default. The
name :in is obsolete and should not be used in new
programs.

:write or :print or :out
The file is going to be written (that is, a new version is
going to be created). The names :print and :out are
obsolete and should not be used in new programs.

:old Look only for files that already exist. This is the default.
:old is not meaningful when :write is specified.

:new-ok Allow either a file that already exists, or a file that does
not yet exist. :new-ok is not meaningful when :write is
specified. The :new-ok option is no longer used by any
system software, because users found its effects (in the
Zmacs command Find File (c-X c-F)) to be too confusing.
It remains available, but programmers should consider this
experience when deciding whether to use it.

The first value returned is always a string containing a file name; either the
original string, or anew, more specific string. The second value returned
indicates the status of the completion. It is non-nil if it was completely
successful. The following values are possible:

March 1985

:old

:new

nil

121

Streams

The string completed to the name of a file that exists.

The string completed to the name of a file that could be
created.

The operation failed for one of the following reasons:

• The file is on a file system that does not support
completion. The original string is returned
unchanged.

• There is no possible completion. The original string
is returned unchanged.

• There is more than one possible completion. The
string is completed up to the first point of ambiguity.

• A directory name was completed. Completion was
not successful because additional components to the
right of this directory remain to be specified. The
string is completed through the directory name and
the delimiter that follows it.

Although completion is a host-dependent operation, the following guidelines
are generally followed:

When a pathname component is left completely unspecified by string, it is
generally taken from the default pathname. However, the name and type
are defaulted in a special way described below and the version is not
defaulted at all; it remains unspecified.

When a pathname component is specified by string, it can be recognized as
an abbreviation and completed by replacing it with the expansion of the
abbreviation. This usually occurs only in the rightmost specified component
of string. All files that exist in a certain portion of the file system and
match this component are considered. The portion of the file system is
determined by the specified, defaulted, or completed components to the left of
this component. A file's component x matches a specified component y if x
consists of the characters in y followed by zero or more additional characters;
in other words, y is a left substring of x. If no matching files are found,
completion fails. If all matching files have the same component x, it is the
completion. If there is more than one possible completion, that is, more than
one distinct value of x, there is an ambiguity and completion fails unless one
of the possible values of x is equal to y.

If completion of a component succeeds, the system attempts to complete any
additional components to the right. If completion of a component fails,
additional components to the right are not completed.

122

Reference Guide to Streams, Files, and /10 March 1985

A blank component is generally treated the same as a missing component; for
example, if the host is a LMFS, completion of the strings "foo" and "foo."
deals with the type component in the same way. The strings are not
completed identically; completion of "foo" attempts to complete the name
component, but completion of "foo." leaves the name component alone since it
is not the rightmost.

If string does not specify a name, then the name of the default pathname is
preferred but is not necessarily used. The exact meaning of this depends on
options:

• With the default options, if any files with the default name exist in the
specified, defaulted, or completed directory, the default name is used. If
no such files exist, but all files in the directory have the same name,
that name is used instead. Otherwise, completion fails.

• With the :write option, the default name is always used when string
does not specify a name, regardless of what files exist.

• With the :new-ok option, if any files with the default name exist in
the specified, defaulted, or completed directory, the default name is
used. If no such files exist, but all files in the directory have the same
name, that name is used instead. Otherwise, the default name is used.

The special treatment of the case where all files in the directory have the
same name is not very useful and is not implemented by all file systems.

If string does not specify a type, then the type of the default pathname is
preferred but is not necessarily used. The exact meaning of this depends on
options:

• With the default options, if a file with the specified, defaulted, or
completed name and the default type exists, the default type is used.
If no such file exists, but one or more files with that name and some
other type do exist and all such files have the same type, that type is
used instead. Otherwise, completion fails.

• With the :write option, the default type is always used when string
does not specify a type, regardless of what files exist.

• With the :new-ok option, if a file with the specified, defaulted, or
completed name and the default type exists, the default type is used.
If no such file exists, but one or more files with that name and some
other type do exist and all such files have the same type, that type is
used instead. Otherwise, the default type is used.

In file systems such as LMFS and UNIX that require a trailing delimiter (>

123

March 1985 Streams

or /) to distinguish a directory component from a name component, the
system heuristically decides whether the rightmost component was meant to
be a directory or a name, and inserts the directory del.imiter if necessary.

If string contains a relative directory specification for a host with a
hierarchical file system, it is assumed to be relative to the directory in the
default pathname and is expanded into an absolute directory specification.

The host and device components generally are not completed; they must be
fully specified if they are specified at all. This might change in the future.

If string does not specify a version, the returned string does not specify a
version either. This differs from file name completion in TOPS-20; TOPS-20
completes an implied version of "newest" to a specific number. This is
possible in TOPS-20 because completing a file name also attaches a "handle"
to a file. In Symbolics-Lisp, the version number of the newest file might
change between the time the file name is completed and the time the actual
file operation (open, rename, or delete) is performed.

A pathname component must satisfy the following rules in order to appear in
a successful completion:

• The host, device, and directory must actually exist.

• The name must be the name of an existing file in the specified
directory, unless :write or :new-ok is included in options.

• The type must be the type of an existing file with the specified name
in the specified directory, unless :write or :new-ok is included in
options.

• A pathname component always completes successfully if it is :wild.

When the rules are not satisfied by a component taken from the default
pathname, completion fails and that component remains unspecified in the
resulting string. When the rules are not satisfied by a component taken
from string, completion fails and that part of string remains unchanged
(other components of string can still be expanded).

listf path &optional (output-stream standard-output) Function
listf is a function for displaying an abbreviated directory listing. The default
for name, type, and version of path is :wild.

(listf "f:>jwalker>mit-220")

The format of the listing varies with the operating system.

124

Reference Guide to Streams, Files, and liD March 1985

125

March 1985 Files

PART II.

Files

126

Reference Guide to Streams, Files, and 110 March 1985

127

March 1985 Files

12. Naming of Files

A Symbolics computer generally has access to many file systems. While it can have
its own file system on its own disks, a community of Lisp Machine users often has
many shared file systems accessible by any of the Symbolics computers over a
network. These shared file systems can be implemented by any computers that are
capable of providing file system service. A file server computer might be a special
purpose computer that does nothing but service file system requests from computers
on a network, or it might be an existing timesharing system.

Programs, at the behest of users, need to use names to designate files within these
file systems. The main difficulty in dealing with names of files is that different file
systems have different naming conventions and formats for files. For example, in
the UNIX system, a typical name looks like:

lusr2/george/foo.bn

In this example, /usr2/george is the directory name, foo is the file name and bn is
the file type. However, in TOPS-20, a similar file name is expressed as follows:

PS:<GEORGE>FOO.BIN

It would be unreasonable for each program that deals with file names to be expected
to know about each different file name format that exists; in fact, new formats could
be added in the future, and existing programs should retain their abilities to
manipulate files in a system-independent fashion.

The functions, flavors, and messages described in this chapter exist to solve this
problem. They provide an interface through which a program can deal with files
and manipulate them without depending on their syntax. This lets a program deal
with multiple remote file systems simultaneously, using a uniform set of conventions.

12.1 Pathnames

All file systems dealt with by the Symbolics computer are mapped into a common
model, in which files are named by a conceptual object called a pathname. The
Symbolics computer system, in fact, represents pathnames by objects of flavor
fs:pathname, and the flavors built upon it. A pathname always has six conceptual
components, described below. These components provide the common interface that
allows programs to work the same way with different file systems; the mapping of
the pathname components into the concepts peculiar to each file system is taken
care of by the pathname software. This mapping is described elsewhere for each file
system. See the section "The Character Set", page 5.

The following are the conceptual components of a pathname. They will be clarified
by examples below.

128

Reference Guide to Streams, Files, and /10 March 1985

Host

Device

Directory

Name

Type

Version

The computer system, the machine, on which the file resides.

Corresponds to the "device" or "file structure" concept in many
host file systems. Often, it designates a group of disks, or
removable storage media, or one of several different media of
differing storage densities or costs.

An organizational structure in which files are "contained" on
almost all file systems. Files are "stored in", or "reside in"
directories. The directories have names; the files' names are only
valid within the context of a given directory. Some systems
(hierarchical file systems) allow directories to be contained in
other directories; others do not.

The name of a group of files that can be thought of as
conceptually the "same" file. In many systems, this is the "first
name" of the file. For instance, source and object files for the
same program generally have the same name, but differing type.

Corresponds to the "filetype" or "extension" concept in many host
file systems. This usually indicates the kind of data stored in the
file, for example, binary object code, a Lisp source program, a
FORTRAN source program, and so forth.

Corresponds to the "version number" concept in many host file
systems. Some systems implement this concept, others do not. A
version number is a number, part of the conceptual name of the
file, that distinguishes succeeding versions of a file from each
other. When a user of such a file system writes out a file he or
she does not modify the file on the host computer but writes a
new version, that is, one with a higher version number,
automatically.

The Symbolics computer system allows a version component of
"newest" or "oldest", represented by the keyword symbols :newest
and :oldest, respectively, to designate "the newest (oldest) version
of the file, whichever that might be".

As an example, consider a TOPS-20 user named "George", who writes a Lisp
program that he thinks of as being named "conch". If George uses the TOPS-20
host named FISH, the source for his program might be in a file on the host FISH
with the following name:

<GEORGE>CONCH.LISP.17

In this case, the host is FISH, the device would be some appropriate default, and
the directory would be <GEORGE>. This directory would probably contain a
number of files related to the "conch" program. The source code for this program
would live in a file with name CONCH, type LISP, and versions 1, 2, 3, and so on.
The compiled form of the program would live in a file named CONCH with type
BIN.

129

March 1985 Files

Now suppose George is a UNIX user, using the UNIX host BIRD. The source for
his program would probably be in a file on the host BIRD with the following name:

lusr2/george/conch.l

In this case, the host is BIRD, and the directory would be /usr2/george. This
directory would probably contain a number of files related to the "conch" program.
The source code for this program would live in a file with name conch, type 1. The
compiled form of the program would live in a file named conch, with type bn. There
are no version numbers on UNIX.

Note that a pathname is not necessarily the name of a specific file. Rather, it is a
way to get to a file; a pathname need not correspond to any file that actually exists,
and more than one pathname can refer to the same file. For example, the
pathname with a version of "newest" will refer to the same file as a pathname with
the same components except a certain number as the version. In systems with
links, multiple file names, logical devices, and so forth, two pathnames that look
quite different can turn out to designate the same file. To get from a path name to
a file requires doing a file system operation such as open.

12.1.1 Simple Usage of the Path name System

The pathname system can be very easy to use if you know a few simple techniques.
It often seems that there are many different ways to do anything, and that only
one of the is right for any circumstance, but most of these features only exist for
special needs. This section shows you how to easily do some of the simple things.

12.1.1.1 Getting a Filename From the User

The simplest and most common application for using a pathname is simply to read
or write a file. For example, a program to do some very simple processing of a
database (it reads the file and ignores it):

(defun process-example-database (database-pathname)
(with-open-file (database-stream database-pathname)

(format t "-&Ignoring database -A ... " (send database-stream :truename»
(stream-copy-until-eof stream #'si:null-stream)
(format t " ignored.-%"»)

This simple example is adequate for a program interface, but for a user, it is rather
awkward. The user must supply all components of the pathname, plus the
quotation marks around the strings. Also, the user has no completion available. In
this example, the user does not have to parse the pathname; open will do that for
him. (Sometimes we won't be so lucky).

The user's job can be made easier by providing a function to read a pathname and
pass it to process-example-database. To do this, prompt-and-read is used. See
the function prompt-and-read in Programming the User Interface.

In our first version, we will just ask the user for the pathname.

130

Reference Guide to Streams, Files, and 110 March 1985

(defun run-example ()
(let «pathname (prompt-and-read :pathname "Where is your database? H»~)

(process-example-database pathname»)

Where is your database? V:>user>databases>dummy.database
Ignoring V:)user>databases>dummy.database.7 ... ignored.

prompt-and-read does much of what we are looking for. It provides the following:

• Prompting, including reprompting when the user types refresh

• Parsing

• Completion

• Merging with defaults

In this case, we supplied no default, so the "default default",
fs:*default-pathname-defaults* is used. But this default is not very helpful to the
user, because it is not visible; it could even be confusing if the user expected one
default and got another. Good practice dictates telling the user what the default is.
prompt-and-read makes this easy with the :visible-default suboption to
:pathname, :pathname-or-nil, and :pathname-Iist.

(defun run-example ()
(let «pathname (prompt-and-read

'(:pathname :visible-default ,fs:*default-pathname-defaults*)
"Where is your database? H»~)

(process-example-database pathname»)
Where is your database? (Default V:>user>foo.lisp) databases>dummy.database
Ignoring V:)user>databases>dummy.database.7 ... ignored.

Now that the user can see the defaults, he or she can make use of them. Note
that in the above example, the user did not have to type the ''Y:>user>'', because
the default was available.

Tailoring Pathname Defaults

fs:*default-pathname-defaults* is a global default, with nothing particularly
appropriate to any specific application. Often, when an application is writing or
reading a file, it knows more about the file than is implied by
fs:*default-pathname-defaults*. This information can be used to help prompt the
user for a suitable filename and help reduce the amount of typing needed to specify
a suitable filename.

For example, consider our example of reading a database. (See the section "Reading

131

March 1985 Files

a Filename".} In this example, we are just prompting for the filename and ignoring
the actual database.

(defun run-example ()
(let «pathname (prompt-and-read

'(:pathname :visible-default ,fs:*default-pathname-defaults*)
"Where is your database? H»~)

(process-example-database pathname»)
Where is your database? (Default V:>user>foo.lisp) databases>dummy.database
Ignoring V:>user>databases>dummy.database.7 ... ignored.

First, if we are going to seriously use our own special file type, we need to define the
type so that it can be used successfully on different systems. See the function
fs:define-canonical-type, page 163.

(fs:define-canonica1-type :database "DATABASE"
« : vms :vms4) "DBS")
(:unix "DB"»

Now this type can be used as the default type for our example databases.

(defun run-example ()
(let* «default (fs:default-pathname fs:*default-pathname-defau1ts*

nil ;Host
:database» ;Type

(pathname (prompt-and-read '(:pathname :visible-default ,default)
"Where is your database?-%"»)

(process-example-database pathname»)

Where is your database? (Default V:>user>foo.database) databases>dummy
Ignoring V:>user>databases>dummy.database.7 ... ignored.

12.1.1.2 More About Defaults

Most simple programs use fs:*default-pathname-defaults* as the source for their
defaults. However, as a program makes more use of pathname reading and defaults,
there are some things we can do to make things easier for the user.

• Provide a default based on other files in an operation, for example, defaulting
an output file pathname from the input file.

• Provide "sticky" defaults, where the new default is based on the last file the
user gave.

• Provide a default based on the current context, as in "pathname of the current
buffer" in Zmacs.

132

Reference Guide to Streams, Files, and /10 March 1985

Defaulting an Output File Path name From an Input File

Perhaps the most common defaulting situation is that of defaulting an output file
pathname from the input file. Usually, the output file differs from the input file
only in file type and version, and we would like to have the user provide explicit
information only when his or her desires differ from the usual case.

(defun my-compile-file (input-file output-file)
(format t "-&Compil i ng -A into -A .-%"

input-file output-file)
(compiler:compile-file input-file output-file»

(defun comp-it ()
(let* «input-default (fs:default-pathname nil nil :lisp :newest»

(input-file (prompt-and-read
t(:pathname :visible-default ,input-default)
"Input file: "»

(output-default (fs:default-pathname input-file nil :bin :newest»
(output-file (prompt-and-read

t(:pathname :visible-default ,output-default)
"Output file: "»)

(my-compile-file input-file output-file»)

The above example works well for single files, but it does not handle wildcards. To
handle wildcards, we need to introduce the use of :translate-wild-pathname and
fs:directory-link-opaque-dirlist. :translate-wild-pathname does the work of
interpreting how a given input file is to be mapped to its corresponding output file,
and fs:directory-link-opaque-dirlist takes care of finding all the input files.

Note that we use fs:directory-link-opaque-dirlist rather than fs:directory-list.
In general, this is necessary whenever the :translate-wild-pathname message is
used. :translate-wild-pathname expects the input pathname to match the input
pattern. fs:directory-list, in the presence of directory links or V AXNMS logical
devices, can have a different directory or a different device.

If the input pattern has wildcards in its directory component,
fs:directory-link-opaque-dirlist currently does no better than fs:directory-list.
This is a difficult problem still under investigation.

(defun comp-one-file (input-file-pattern output-file-pattern input-file)
(let «output-file (send input-file-pattern :translate-wild-pathname

output-file-pattern input-file»)
(my-compile-file input-file output-file»)

133

March 1985 Files

(defun comp-files ()
(let* «input-default (fs:default-pathname nil nil :lisp :newest»

(input-pattern (prompt-and-read
'(:pathname :visible-default ,input-default)
"Input file: "»

(output-default (fs:default-pathname input-file nil :bin :newest»
(output-pattern (prompt-and-read

'(:pathname :visible-default ,output-default)
"Output file: "»)

(if (not (send input-file :wild-p»
(comp-one-file input-pattern output-pattern input-pattern)

(loop for (file) in (cdr (fs:directory-link-opaque-dirlist
input-pattern :fast»

do (comp-one-file input-pattern output-pattern file»»)

Note that in the above example, we just call comp-one-file directly if the input
pathname is not wild. While it is not strictly necessary to do this
(fs:directory-Iink-opaque-dirlist works on non-wildcard pathnames), it does
eliminate an unneeded operation.

Sticky Pathname Defaults

Often, when a single command or a related set of commands are to be repeated, the
next command should operate on a file related to the one the current command is
operating on. In this case, it would be most convenient for the default to be the
previous pathname. This is called sticky defaulting.

For example, consider a simple user-written tool to either show or delete files.

134

Reference Guide to Streams, Files, and 110

(defun show-or-de1ete ()
(loop with default = (fs:defau1t-pathname)

for ch = (prompt-and-read :character "Cmd)")
do (mu1tip1e-va1ue-bind (prompt function)

(selector char-equal ch
(#\5 (values "Show File" #'viewf»
(#\0 (values "Delete File" #'de1etef»
(H\Q (return nil»
(#\He1p (format t "-&S = Show File-@

(values nil nil»
(otherwise
(tv:beep)

o = Delete Fi1e-@
Q = Quit-%")

(format t "-&-:C is an unknown command.-%" ch»)
(when prompt

(let «file (prompt-and-read
'(:pathname :visib1e-defau1t ,default)
prompt»)

j The following is done for us by prompt-and-read
j(setq default (fs:merge-pathnames file default»
(funca11 function file»»»

March 1985

Each time around the loop, when the user specifies a file, it is remembered to serve
as the default the next time around. Note the commented out
(setq default (fs:merge-pathnames file default». This isn't needed in this
example, since prompt-and-read does this for us, but if we were reading
pathnames via some other mechanism, it is important to keep the default as a fully
specified pathname. Otherwise, the second time around the loop, we could end up
with defaults like "Q:", which is not of much use if the user is then forced to type
all the components of the pathname and may get an error if he or she does not.

If you wish to use a default such as this and not keep it in a local variable, you
should use a defaults alist. This serves as a registered place to remember a
pathname, so that if the world is moved to another site, it can be reset. Defaults
alists can be passed to fs:default-pathname to extract a fully-merged default. See
the function fs:set-default-pathname, page 163. See the function
fs:make-pathname-defaults, page 162.

Pathname Defaulting From the Current Context

Often, an application program involves the user working on a single context for an
extended time. For example, in the editor, the user is working on a single named
buffer. In the font editor, the user is working on a single named font.

Often, the object being worked on was read in from a file. This file can serve as a
default for further file operations, such as listing the directory, or resaving the
object. Consider a picture editor, which lets the user edit multiple pictures, as the
Zmacs editor lets the user edit multiple buffers. This picture editor stores its files in
.BIN files.

135

March 1985 Fifes

(defflavor picture (name
(pathname sys:fdefine-file-pathname)
(array (make-array '(100. lOa.) :type 'art-lb»)

()

:gettable-instance-variab1es
:settable-instance-variables
:initable-instance-variab1es)

(defvar *pictures* nil
"List of pictures being edited")

(defvar *current-picture* nil)

(defvar *picture-defaults* (fs:make-pathname-defaults»

(defun add-picture (picture)
(setq *pictures* (del #'(lambda (pl p2)

(string-equal (send pl :name) (send p2 :name»)
picture
pi ctures»

(push picture *pictures*)
(setq *current-picture* picture»

(defmethod (picture :fasd-form) ()
'(make-instance '.(typep self)

:name '.name
: array '. array))

(defun picture-default-pathname (&key type (version :newest»
(let «bare-default (fs:default-pathname *picture-defaults*

nil type version»
(path (when *current-picture*

(send *current-picture* :pathname»»
(if (not *current-picture*)

bare-default
(i f path

(setq path (fs:merge-pathnames path bare-default version»
;; A new picture. so no pathname. Let's make a guess from the name.
(let «name (send *current-picture* :name»)

(setq path

path»)

(condition-case ()
(fs:merge-pathnames name bare-default version)

;; If name isn't parsab1e. just use the bare default.
(error bare-default»»)

(defun com-create-picture ()
(let «name (prompt-and-read :string "Picture name: H»~)

(add-picture (make-instance 'picture :name name»»

136

Reference Guide to Streams, Files, and 110

(defun com-save-picture ()
(let* «default (picture-default-pathname :type :bin»

(file (prompt-and-read
'(:pathname :visible-default ,default)
"Save to picture file: H»~)

;; Remember the pathname given, so the next time we
;; get a new picture, we can have a better default.
(fs:set-default-pathname file *picture-defaults*)
(sys:dump-forms-to-file

file
'«add-picture ',*current-picture*»»)

March 1985

In this example, picture-default-pathname computes the default. If the current
picture has a file associated with it, that serves as the default. If there is no
pathname with the current picture, we attempt to make a pathname using the
name. If that fails (or if there is no current picture), we just use the bare default.

Finally, the pathname we read is remembered, so the next time a default is needed
for a new picture, we will have a more recent default.

Note that when the picture is loaded, sys:fdefine-file-pathname is used to get the
file being loaded. This works well when the file being loaded is a .bin file, since
load binds this variable. However, in other situations, you need to make other
arrangements to set the pathname.

12.1.2 Host Determination in Pathnames

Two important operations of the pathname system are parsing and merging.
Parsing is the conversion of a string, which might have been typed by the user
when asked to supply the name of a file, into a pathname object. This involves
finding out for which host the pathname is intended, using the file name syntax
conventions of that host to parse the string into the standard pathname
components, and constructing such a pathname. Merging is the operation that
takes a pathname with missing components and supplies values for those
components from a set of defaults.

Since each kind of file system has its own character string representation of names
of its files, there has to be a different parser for each of these representations,
capable of examining such a character string and determining the value of each
component. The parsers, therefore, all work differently. How does the parsing
operation know which parser to use? It determines for which host the pathname is
intended, and uses the appropriate parser. A filename character string can specify a
host explicitly, by having the name of the host, followed by a colon, at the beginning
of the string, or it can assume a default, if there is no host name followed by a
colon at the beginning of the string.

Here is how the pathname system determines for which host a pathname being

137

March 1985 Files

parsed is intended. The first colon in a path name being parsed always delimits the
host name. You can also enter pathname strings that are for a specific host and do
not contain any host name. In that case, a default host is used. Normally, the
identity of the default host is displayed to the user entering a pathname. See the
section "Pathname Defaults and Merging", page 147.

However, pathnames can have colons in them that do not designate hosts, such as
filenames constructed from clock times, and the like. Some systems use the colon
character to delimit devices. This creates a problem in parsing such pathnames.
See the function fs:parse-pathname, page 156. The standard Symbolics computer
user interface does not use such pathnames, but they can be used by other
programs, particularly those that deal with files whose format is defined by a foreign
operating system.

The rule for parsing file names containing colons is, again, that any string used
before a colon is unconditionally interpreted as a file computer. If the string cannot
be interpreted as a host, an error is signalled.

If you must type a pathname that has an embedded colon not meaning a host, you
omit the host and place a colon at the beginning of the string. This "null host" tells
the parser that it should not look further for a colon, but instead assume the host
from the defaults. Examples:

• SS:<FOO>BAR refers to a host named "SS". :SS:<FOO>BAR refers to no
explicit host; if parsed relative to a TOPS-20 default, "SS" probably refers to a
device.

• 09:25:14.data refers to a host named "09". :09:25:14.data refers to no explicit
host.

• AI: COMMON; GEE WHIZ refers to a host named "AI".

• AI: ARC: USERSl; FOO BAR refers to a host named "AI". "ARC" is the
name of a device in the ITS operating system.

• EE:PS:<COMMON>GEE.WHIZ.5 specifies host EE (TOPS-20).

• PS:<COMMON>GEE.WHIZ.5 specifies a host named PS, which is almost
certainly not what is intended! The user probably intended the "PS" device on
some TOPS-20 host.

• :PS:<COMMON>GEE.WHIZ.5, assuming that the default host is some
TOPS-20, specifies a device named "PS" on that host.

There are a few "pseudohost" names, which are recognized as host names even
though they are not actually the names of hosts:

"local" This pseudohost name always refers to the local file system

138

Reference Gu;de to Streams, Fifes, and 110 March 1985

"FEP"

"FEPn"

"host I FEPn"

(LMFS) of the machine that you are using. It does not matter
whether or not a local file system actually exists on that machine;
an attempt will be made to reference it. "Local" is always
equivalent to the name of the local host.

This pseudohost· name always refers to a FEP (front-end
processor) file system on the machine you are using, specifically,
the one on the disk unit from which the system was booted.

This pseudo name always refers to a FEP file system on the
machine you are using. The single digit n specifies the disk unit
number; there is a separate FEP file system on each drive. This
can access the boot unit, or any other disk unit, when multiple
units are present.

host must be a valid host name. This pseudohost name refers to
a FEP file system on a remote 3600-family computer. The syntax
"host I FEP" is not acceptable: you cannot access the "boot unit"
of a remote machine in this fashion. You must know the disk
unit number. The disk unit number of a host having only one
disk unit is o.

If the string to be parsed does not specify a host explicitly, the parser assumes that
some particular host is the one in question, and it uses the parser for that host's file
system. The optional arguments passed to the parsing function
(fs:parse-pathname) tell it which host to assume.

12.1.3 Interning of Pathnames

Pathnames, like symbols, are interned. This means that there is only one pathname
object with a given set of components. If a character string is parsed into
components, and some pathname object with exactly those components already
exists, then the parser returns the existing pathname object rather than creating a
new one. The main reason for this is 'that a pathname has a property list. See the
section "Property Lists" in Reference Guide to Symbolics-lisp. The system stores
properties on pathnames to remember information about the file or family of files to
which that pathname refers. (In fact, some of the properties stored on a generic
pathname come from the file's attribute list when the file is edited or loaded, so they
can be retrieved later without having to perform I/O on the file.) So you can parse
a character string that represents a filename, and then look at its property list to
get various information known about that pathname. The components of a
pathname are never modified once the pathname has been created, just as the print
name of a symbol is never modified. The only thing that can be modified is the
property list.

When using property lists of pathnames, you have to be very careful which
pathname you use to hold properties, in order to avoid a subtle problem: many
different pathnames can refer to the same file, because of the :newest component,

139

March 1985 Files

file system links, multiple naming in the file system, and so on. If you put a
property on one of these path names because you want to associate some information
with the file itself, somebody else might look at another pathname that refers to the
same file, and not find the information there. If you really want to associate
information with the file itself rather than some particular pathname, you can get a
canonical pathname for the file by using the :truename message to a stream
opened to that file. See the message :truename, page 113. You might also want to
store properties on "generic" pathnames. See the section "Generic Pathnames", page
149.

12.1.4 Printing Pathnames

A pathname can be converted back into a string, which is in the file name syntax of
its host's file system. Although such a string (the string for host) can be produced
from a pathname (by sending it the :string-for-host message), we discourage this
practice. The Lisp Machine user interface prefers a string called the string for
printing, which is the same as the string for host, except that it is preceded by the
host name and a colon. This leaves no ambiguity about the host on which the file
resides, when seen by a user. It is also capable of being reparsed, unambiguously,
back into a pathname. print of a pathname (-8 in format) prints it like a Lisp
object (using the usual "#<" syntax), while princ of a pathname (-A in format)
prints the string for printing. The string function, applied to a pathname, also
returns the string for printing.

Not all the components of a pathname need to be specified. If a component
pathname is missing, its value is nil. Before a file server can utilize a pathname to
manipulate or otherwise access a file, all the pathname's missing components must
be filled in from appropriate defaults. Pathnames with missing components are
nevertheless often passed around by programs, since almost all pathnames typed by
users do not specify all the components explicitly. The host is not allowed to be
missing from any pathname; since the behavior of a pathname is host-dependent to
some extent, it has to explicitly designate a host. Every pathname has a host
attribute, even if the string that was parsed to create it did not specify one
explicitly.

All pathname parsers support the cross-system convention that the double-shafted
arrow character (~) can be used to specify a null directory, name, type, or version
component explicitly. Thus, for LMFS or TOPS-20, you can type the following:

~.~.5

This example specifies a version of 5, but no name or type. This is useful when
typing against the default and attempting to change just the version of that default.

The keyword symbol :unspecific can also be a component of a pathname. This
means that the component is not meaningful on the type of file system concerned.
For example, UNIX pathnames do not have a concept of "version", so the version

140

Reference Guide to Streams, Files, and flO March 1985

component of every UNIX pathname is :unspecific. When a pathname is converted
to a string, nil and :unspecific both cause the component not to appear in the
string. The difference occurs in the merging operation, where nil is replaced with
the default for that component, while :unspecific is left alone.

The special symbol :wild can also be a component of a pathname. This is only
useful when the pathname is being used with a directory listing primitive such as
fs:directory-list or fs:aIl-directories, where it means that this pathname
component matches anything. See the function fs:directory-list, page 117. The
printed representation of a pathname usually designates :wild with an asterisk;
however, this is host-dependent.

:wild is one of several possible wildcard components, which are given to directory
listing primitives to filter file names. Many systems support other wildcard
components, such as the string "foo*". This string, when supplied as a file name to
a directory list operation on any of several system types, specifies all files whose
name starts with "foo". In other contexts, it might not represent a wildcard at all.
The component :wild matches all possible values for any component for which it
appears. Other wildcard possibilities for directories exist, but they are more
complicated, and are explained elsewhere. See the section "Values of Pathname
Components", page 140. See the section "Directory Pathnames and Directory
Pathnames as Files", page 142.

12.1.5 Values of Pathname Components

The set of permissible values for components of a pathname depends, in general, on
the pathname's host. However, in order for pathnames to be usable in a system
independent way certain global conventions are adhered to. These conventions are
stronger for the type and version than for the other components, since the type and
version are actually understood by many programs, while the other components are
usually treated as things chosen by the user that need to be preserved and passed
around.

Most programs do not use or specify the components of a pathname explicitly, or
only in a very limited way. In this way, they can remain operating-system
independent, while letting the pathname system take care of most issues of
compatibility. In general, you should avoid where possible using specific values of
pathname components in your programs. The descriptions here are illustrative but
not complete, and programs should be written to expect component values other
than those given here.

It is important to remember that not all pathname flavors accept all the values
indicated here. For example, UNIX pathnames accept a type or version of
:unspecific; few other pathnames do. Some systems do not allow certain characters
or limit certain fields to a certain length.

It is generally not possible to simply copy components from one flavor of pathname to

141

March 1985 Files

another. It is often necessary to perform substitutions in order to produce a legal
pathname. The :new-default-pathname message can be used instead of
:new-pathname to get this substitution where necessary. The
:new-default-pathname message attempts to substitute something as close as
possible in meaning to the original component; however, the substitution can be
arbitrary if necessary. For this reason, it is better to avoid copying components
between pathnames of differing flavor, where possible.

The type is always a string (unless it is one of the special symbols nil, :unspecific,
or :wild). Many programs that deal with files have an idea of what type they want
to use. For example, Lisp source programs are "lisp", compiled Lisp programs (on,
for example, a LMFS host) are "bin", text files are "text", and so on. The set of
characters allowed in the type, and the number of characters, are system-dependent.
In order to process file types in a system-independent way, the canonical type
mechanism has been devised. A canonical type is a system-independent keyword
symbol representing the conceptual type of a file. For instance, a Lisp source file on
VMS has a file type of "LSP", and one on UNIX has a file type of "1". When we
ask pathnames of either of these natures for their canonical type, we receive the
keyword symbol :lisp. See the section "Canonical Types in Pathnames", page 151.

The version is either a number (specifically, a positive flXI1um), or one of the symbols
nil, :unspecific, :wild, :newest, or :oldest. nil, :unspecific, and :wild have been
explained above. :newest refers to the largest version number that exists when
reading a file, or that number plus one when writing a new file. :oldest refers to
the smallest existing version number.

The host component of a pathname is always a host object. See the section
"Namespace System Host Objects" in Networks.

The device component of a pathname can be one of the symbols nil or :unspecific,
or a string designating some device, for those file systems that support such a
notion.

The file name can be nil or a string, or :wild.

The directory component is highly system-specific. While it can be nil for any type
of host, values designating actual directories, or partially wild specifications for
directories, are more complicated. On nonhierarchical file systems, the directory
component is usually a string such as "LMDOC", designating the name of the
directory.

On hierarchical file systems, the directory component, when not nil, is a list of
directory level components. For example:

LMFS pathname

>sys>io>qfile.lisp.2357

Directory component

("sys" "io")

"sys" and "io" are the directory level components. Since the "root directory" of

142

Reference Guide to Streams, Files, and 110 March 1985

hierarchical file systems has no directory level components, it would be represented
as nil, but this is impermissible, since nil already means that the directory
component has not been specified. Thus, :root is used as the directory component
in that case.

Relative pathnames on hierarchical file systems are represented by directory
components having the level component :relative, followed by a number of
occurrences of the symbol :up equal to the number of "upward relativization
symbols", followed by the remaining directory level components. For example:

LMFS relative path name

«x>y>z.lisp

Directory component

(:relative :up :up "x" nyu)

Directory components of pathnames for hierarchical file systems, on some systems,
can also have the symbol :wild or a partially wild string (such as "foo*") as directory
level components, to do level-by-Ievel matching of level components. Also, on some
systems, the level component :wild-inferiors (which is printed as "**" on LMFS
and logical pathnames, and " ... " on VMS, currently the only ones supporting it) to
designate "any number, including zero of directory levels" to a directory list
operation.

Note that some systems (currently VMS) do not allow using zero directory levels to
denote their root directory. In this case, :wild-inferiors cannot stand alone, but
must follow some other directory spec. For example: "[FOO ...]" or "[* ...]".

12.1.6 Directory Pathnames and Directory Pathnames as Files

In almost all systems having hierarchical directories, and certainly all the ones
supported by the Symbolics computer as file server systems, the internal
implementation of directories is as special files, known about by the operating
system. The data in these files is not accessible to the user except through the
defined operating system interfaces for dealing with directories.

Typically, listings of the contents of directories on hierarchical directory systems
display names of both files and directories contained in the listed directory (as well as
of links, on systems that support links).

Directories on hierarchical directory systems and files thus some things have in
common. Appearing in directories is one. Another is that directories can usually be
renamed, as can files, or, when the appropriate restrictions of the operating system
are met (for instance, being empty), deleted. You can ask about the properties of a
directory, or change some of them, with fs:file-properties and
fs:change-file-properties, respectively, just as you do with a file.

Using LMFS as an example, consider the directory named "bar", which is contained
in the directory named "foo", which itself is contained in the ROOT. A file in this
directory named "tables.lisp.6" would have the following pathname:

143

March 1985 Files

>foo>bar>tables.lisp.6

The directory in which it is contained, bar, has the following pathname:

>foo>bar.directory.l

The file type of a directory, on LMFS, is "directory", and the version number of all
directories is 1. The file types of directories, and their versions, if appropriate, vary
among operating systems. If you wanted to rename, delete, or deal with the
properties of the directory bar, you would have to present the above filename for this
directory. A pathname of this type, which names a directory, as though it were a
file, is called a directory pathname as file.

Directory pathnames as files are appropriate only to systems with hierarchical
directories. On other systems, you cannot address directories directly.

The most common use of directories, however, is to reference files in them. The
following pathname mentions the directory "bar" in this way:

>foo>bar>tables.lisp.6

This filename, when parsed into a pathname for the appropriate LMFS host, has a
name component of "tables", a type component of "lisp", a version component of 6,
and a directory component (in fact ("foo" "bar"» that designates the directory bar,
inferior of foo, inferior of the ROOT. Such a pathname, which designates a given
directory via its directory component, is called a pathname as directory for that
directory. Of course, since the file name, type, and version are irrelevant to the
specification of the directory, it is only one of many possible "pathnames as directory"
for the directory bar.

The concept of pathname as directory is more general than the concept of directory
pathname as file, since directories on nonhierarchical systems be described by their
pathnames as directories as well. For instance, the following TENEX pathname,
which describes a file in the "LMDOC" directory, is a pathname as directory for the
LMDOC directory:

<LMDOC>CHFILE.TEXT;7

Note, also, that any pathname whose directory component is not nil is a pathname
as directory for some directory.

Therefore, the Symbolics-Lisp primitives and operations that deal with directories
explicitly (for example, fs:expunge-directory and fs:all-directories) expect
pathnames of directories to be represented in the "pathname as directory" form. It
is the canonical, system-independent way to represent pathnames of directories in
the Symbolics system.

The following two messages convert between directory pathnames as files and
pathnames as directories:

144

Reference Guide to Streams, Files, and /10 March 1985

:directory-pathname-as-file of fs:pathname Method
Every pathname whose directory component is not nil is a pathname as
directory for some directory. This method returns the directory pathname as
file for that directory.

(setq p (fs:parse-pathname "Quabbin:>sys>lmfs>fsstr.lisp.243"»
#<LMFS-PATHNAME "Q:>sys>lmfs>fsstr.lisp.243">
(send p ':directory-pathname-as-file)
#<LMFS-PATHNAME "Q:>sys>lmfs.directory.l">

:pathname-as-directory of fs:pathname Method
This method is intended to be sent to a pathname that is the valid directory
pathname as file for some directory. It produces one of many possible
pathnames as directory for that directory, namely, the one whose name, type,
and version are all nil.

(setq pl (fs:parse-pathname "Quabbin:>sys>io.directory.l"»
#~LMFS-PATHNAME "Q:>sys>io.directory.l">
(setq p2 (send pl ':pathname-as-directory»
#<LMFS-PATHNAME "Q:>sys>io>">
(send p2 ':directory-pathname-as-file)
#<LMFS-PATHNAME "Q:>sys>io.directory.l">

If you are used to other systems' file-naming conventions, you may be confused by
pathnames that have real directory components, but no name, type, or version.
When typed in or printed, they look like the following:

>jones>book>examples>

Users who are familiar with Multics or UNIX immediately see such pathnames as
invalid, even though they are often used on the Symbolics computer to access
Multics and UNIX. When parsed for LMFS or Multics, the above filename string
produces a pathname whose directory component designates the directory "examples",
which is contained in "book", which itself is contained in "jones", an inferior of the
ROOT. The name, type, and version components of this pathname are nil. This
pathname is equivalent to the following:

>jones>book>examples>~.~.~

Either of these is a canonical pathname as directory for the directory "examples".
Typing such pathnames as input is exceedingly common, since the merging process,
given such a pathname as its unmerged input, replaces the directory component of
the default with a directory component specifying the directory named by the
"pathname as directory". See the section "Pathname Defaults and Merging", page
147. For example:

Default:
User Typein:
Merged output:

Q:>abel>baker>cakes.list
>Romanoli>weddings>
>Romanoli>weddings>cakes.list

Compare this with the following:

145

March 1985 Files

Default:
User Typein:
Merged output:

Default:
User Typein:
Merged output:

Q:>abel>baker>cakes.list
>Romanoli>weddings
>Romanoli>weddings.list

Q:>abel>baker>cakes.list
>Romanoli>weddings>~.~.73

>Romanoli>weddings>cakes.list.73

All the Symbolics hierarchical directory parsers recognize a trailing directory delimiter
as an instruction to construct a pathname with nil name, type, and version, for the
directory designated-a "pathname as directory". (The version component, however,
remains :unspecific for systems not supporting file versions.) This is true even of
the parsers for UNIX and Multics, on which systems such syntax is never seen.

This mode of directory naming is usually familiar to users of nonhierarchical systems.
The following TENEX pathname results, when parsed, in a pathname as directory
for the LMDOC directory (on the appropriate TENEX host), with name, type, and
version of nil, that can be used in merging operations in a way similar to that
shown in the above LMFS example.

<LMDOC>

As a side-effect of these conventions, the following kinds of pathnames occasionally
occur on LMFS or Multics:

<lmdoc>

As explained above, thi sis a valid way of entering the following relative pathname:

<lmdoc>~.*.*

12.1.7 Case in Pathnames

The path name system handles alphabetic case in pathnames and transferring of
pathname components between hosts with different preferred alphabetic cases.

The components of a pathname (directory, name, type, and so on) have two possible
representations for case, raw (also called native) and interchange. The raw case
representation keeps the case in whatever form is normal for that system (for
example, lowercase for UNIX, uppercase for TOPS-20). Interchange representation
is a format for manipulating pathname components in a host-independent manner.
All pathname defaulting and cross-host translation functions use the interchange
form of pathname messages.

All the standard messages to pathnames (for example, :directory, :name) return
pathname components in interchange case rather than raw case.

The components are stored internally in raw case, that is, the actual alphabetic case
in which the names of the files are stored, or to be stored, in the host's file system.
It is possible to access the raw case representation via the set of messages
:raw-directory, :raw-name, and so forth. However, programs seeking to be
system-independent should not use these messages, but the standard ones,

146

Reference Guide to Streams, Files, and /10 March 1985

:directory, :name, and so forth. Doing so ensures that pathname components
transferred between system types stay in the preferred case for each of the systems
concerned.

The raw forms of the messages are provided for writing host-specific code or for
manipulating several pathname objects known to be on the same host.

Interchange case form
:device
: directory
:name
: type

Raw case form
: raw-device
:raw-directory
: raw-name
: raw-type

The interchange form of the message specifies the following effect:

Case of component
System default
Mixed case
Opposite to default

Translated case returned
Uppercase
Mixed case
Lowercase

Uppercase was chosen as the interchange case because strings like "LISP",
representing pathname components, appear in many programs. Either choice (upper
or lower) would have been natural for some hosts and not for others.

This facility provides more features for dealing with pathname components
independent of the case-sensitivity of file names of different hosts. The following
table shows some examples for different host types.

Host Message Applied to raw form Returns interchange form
UNIX :name "foo.bar" "FOO"

:name "FOO.BAR" "foo"
:name "Foo.Bar" "Foo"

Lisp Machine :name "foo.bar" "FOO"
File System :name "FOO.BAR" "FOO"

:name "Foo.Bar" "FOO"

TOPS-20 :name "FOO.BAR" "FOO"
:name "foo.bar" "foo"
:name "Foo.Bar" "Foo"

Note that the Lisp Machine File System (LMFS) appears not to follow the
interchange case rules. This is because, for LMFS, case is usually maintained but is
not significant ("foo", "Foo", and "FOO" are all the same). Thus any mixture of
cases in a file name satisfies the "system default" condition and returns all uppercase
for the interchange form.

Functions that manipulate pathnames, such as fs:make-pathname,

March 1985

fs:merge-pathnames, and fs:merge-pathname-and-set-defauIts, manipulate
components in interchange case.

Pathname-constructing functions such as fs:make-pathname and pathname
messages such as :new-pathname and :new-default-pathname accept both
:directory and : raw-directory, to allow specification of components in either
interchange case or raw case.

12.2 Defaults and Merging

147

Files

It is unreasonable to require the user to type a complete pathname, containing all
components. Instead the program is expected to supply a default pathname, from
which values of components not specified by the user can be taken.

Every program that prompts the user for a pathname should maintain some default
pathname, display it to the user when prompting for a pathname, and merge the
parsed input from the user with that default. The function prompt-and-read
provides easy ways to do all of these things. See the function prompt-and-read in
Programming the User Interface. No program should use any pathname obtained
from user input without merging it against some default. Since it is impossible for a
user to type a pathname correctly without knowing against which default it will be
merged, the default must be displayed to the user.

A default default is available for programs that have no better idea of a default
pathname, and a function (fs:default-pathname) for customizing default
pathnames.

Typically, a program might take the default default, customize it, perhaps by
supplying a specific file type (usually via the canonical type mechanism), prompt the
user for the name of a file, displaying that default, and merge the user's parsed
input against that default.

A more complex program, one that requires an input file and an output file, might
proceed as follows: It obtains the pathname of its input file as above, and prepares
a default pathname for its output file by customizing the input file pathname,
usually by supplying a new type, and presents and uses that as a default for the
prompt for the output file pathname.

The merging operation is performed by the function fs:merge-pathnames. It takes
as input an unmerged pathname and a default pathname and returns a merged
pathname, which has no missing components. Basically, the missing components in
the unmerged pathname are filled in from the default pathname. The merging
operation also takes a default version argument, which specifies the version number
of the output pathname, if there is no version mentioned in the unmerged pathname.
That is, the version number is almost never defaulted from the default pathname.
If the default version argument is not supplied, it is assumed to be :newest. The
version number of the default is used as a default version in the following cases:

148

Reference Guide to Streams, Files, and 110 March 1985

• Neither name, type, nor version is specified by the unmerged pathname.

• The unmerged pathname does not have a version, and the value of the default
version argument is :default.

The full details of the merging rules are as follows.

1. If the unmerged pathname does not supply a device, the device is the default
file device for that host.

2. If the unmerged pathname does not specify a host, device, directory, name, or
type, that component comes from the defaults.

3. If the unmerged pathname supplies a version, it is used.

4. If it does not supply a version, the default version as explained above is used.

Thus, if the user supplies just a name, the host, device, directory and type will come
from the default, with the default version argument (or :newest if there was none).
If the user supplies nothing, or just a directory, the name, type, and version comes
over from the default together. If the host's file name syntax provides a way to
input a type or version without a name, the user can let the name default but
supply a different type or version than the ones in the default.

The system also defines an object called a defaults alist. Functions are provided to
create one, get the default pathname out of one, merge a pathname with one, and
store a pathname back into one. A defaults alist is basically an object containing a
replaceable pathname. fs:merge-pathnames accepts a defaults alist as its default
pathname argument as well as a pathname.
fs:merge-pathnames-and-set-defaults is like fs:merge-pathnames but requires a
defaults alist as its default pathname argument. When it has completed its merge,
it stores the result back into the defaults alist before returning it. See the function
fs:merge-pathnames-and-set-defaults, page 158. It is important that you do not
attempt to construct a defaults alist, but instead use the primitives provided. See
the function fs:make-pathname-defaults, page 162. See the function
fs:copy-pathname-defaults, page 162. See the function fs:set-default-pathname,
page 163.

The following special variables are parts of the pathname interface that are relevant
to defaults.

fs:*default-pathname-defaults* Variable
The default defaults alist; if the pathname primitives that need a set of
defaults are not given one, they use this one. Most programs, however,
should have their own defaults rather than using these.

149

March 1985 Files

fs:load-pathname-defaults Variable
The defaults alist for the load and compiler:compile-file functions. Other
functions can share these defaults.

12.3 Generic Pathnames

A generic pathname stands for a whole family of files. The property list of a generic
pathname is used to remember information about the family, some of which (such as
the package) comes from the file attribute list line of a source file in the family. See
the section "File Attribute Lists", page 109. All types of files with· that name, in
that directory, belong together. They are different members of the same family; for
example, they might be source code, compiled code, and documentation for a
program. All versions of files with that name, in that directory, belong together.

The generic pathname of pathname p has the same host, device, directory, and
name as p does. However, it has a version of nil. Furthermore, if the canonical
type of p is one of the elements of fs:*known-types*, then it has a type of nil;
otherwise it has the same type as p. The reason that the type of the generic
pathname works this way is that in some file systems, such as that of ITS, the type
component can actually be part of the file name; ITS files named "DIRECT IONS"
and "DIRECT ORY" do not belong together.

The :generic-pathname message to a pathname returns its corresponding generic
pathname. See the message :generic-pathname.

fs:*known-types* Variable
This is a list of the canonical file types that are "not important"; constructing
a generic pathname will strip off the file type if it is in this list. File types
not in this list are really part of the name in some sense. The following is
the initial list:

(:LISP :QBIN :BIN NIL :UNSPECIFIC)

Some users might need to add to this list. See the section "Canonical Types
in Pathnames", page 151.

12.4 Relative Path names

Many operating systems support a notion called relative pathnames in order to
simplify the typing of filenames by their users. Typically, a user on a system such
as Multics or UNIX tells the system what directory on the system is his or her
working directory. These operating systems assume the working directory as the
default directory for filenames whose directory is not specified. For example, when
the user types a filename, perhaps as an argument to a command (such as "print

150

Reference Guide to Streams, Fifes, and /10 March 1985

foo") the system assumes that the name foo refers to a file named foo in the
working directory, as long as the user did not specify another directory (for instance,
by saying "print >sources>c>foo").

On hierarchical systems, such as UNIX and Multics, the working directory can often
be several levels deep, and have a full name that is therefore cumbersome to type.
The concept of working directory is all the more powerful in these cases. Since the
hierarchical organization of directories exists to facilitate relating files by placing
them in directories in common subtrees, it is common for users working on such
systems to want to reference files in "siblings" of their working directory, or "uncles",
or even "inferiors" or "inferiors of inferiors", that is, directories near in the directory
hierarchy to their working directory.

In order to facilitate the referencing of files in directories "near" the working
directory, without having to type full pathnames of directories, these systems support
relative pathnames, which are interpreted relative to the working directory. Relative
pathnames are always syntactically distinguishable from other pathnames. For
instance, on Multics, if the working directory is >udd>Proj>Usemame, the pathname

<Othername)stuff>x.p11

refers to the file

>udd>Proj>Othername>stuff>x.p11

Although it supports relative pathnames, the Lisp Machine File System does not
support a concept of working directory. One rationale for this is the fact that the
user might be communicating with many systems at once, and might have several
working directories to remember. The merging and defaulting system takes the
place of the working directory concept. See the section "Pathname Defaults and
Merging", page 147. The default pathname, which is displayed when a user is asked
to enter a pathname, determines the default directory for a pathname having no
directory explicitly specified. What is more, it specifies the default values of other
components as well.

Systems supporting relative pathnames usually have some special syntax to indicate a
pathname that is relative to a superior of the working directory, and another to
indicate pathnames relative to superiors of the working directory. We call these
"upward relativization" and "downward relativization". In this context, a pathname
with an explicit directory specified is called an absolute pathname, and one without
an explicit directory, a relative pathname. However, since specification of no
directory at all is a very common case handled by systems that do not otherwise
support relative directories, namely, by simply defaulting an entire directory
component, this is not considered a relative pathname by the Symbolics system.

The Symbolics system supports relative directories for those hierarchical systems that
support it themselves. As might be expected, the "resolution" of relative pathnames
entered by the user is performed relative to the default pathname, as opposed to any
working directory. Resolution of relative pathnames is performed by
fs:merge-pathnames as part of its normal operation.

151

March 1985 Files

The following examples, using LMFS pathnames, show some examples of relative
pathnames and their resolution via merging:

Default: >sys> lmfs>new)xst. 1 isp
llnnterged: test)xst.lisp
Aferged:)sys>lmfs>new)test>xst.lisp

Default:
llnnterged:
Aferged:

Default:
lIn nterged:
Aferged:

Default:
llnnterged:
Aferged:

Default:
llnnterged:
Aferged:

Default:
lIn nterged:
Aferged:

>sys>lmfs>new)xst.lisp
<test>thing.lisp
>sys>lmfs)test>thing.lisp

>sys>lmfs>new)xst.lisp
«test>
>sys>test>xst.lisp

>sys>lmfs>new)xst.lisp
test>best>
>sys>new>test)best>xst.lisp

>sys>lmfs>new)xst.lisp
<xst. 1 isp
>sys>lmfs>xst.lisp

>sys>lmfs>new>xst.lisp
«abel>baker>foo.lisp
>sys>abel>baker>foo.lisp

12.5 Canonical Types in Pathnames

;upward relativization

;upward relativization

;downward relativization

A canonical type for a pathname is a symbol that indicates the nature of a file's
contents. To compare the types of two files, particularly when they could be on
different kinds of hosts, you compare their canonical types.
(fs:*default-canonical-types* and fs:*canonical-types-alist* show the canonical
types and the default surface types for various hosts.)

Some terminology:

canonical type A host-independent name for a certain type of file, for example,
Lisp compiled code files or LGP font files. A canonical type is a
keyword symbol.

file specification What you type when you are prompted to supply a string for the
system to build a pathname object.

surface type The appearance of the type component in a file specification.
This is a string in native case.

152

Reference Guide to Streams, Files, and 110 March 1985

default sUrface type
Each canonical type has as part of its definition a representation
for the type when it has to be used in a string. Default surface
type is the string (in interchange case) that would be used in a
string being generated by the system and shown to the user. See
the function fs:define-canonical-type, page 163.

preferred sUrface type
Some canonical types have several different possible surface
representations. The definition for the type designates one of
these as the preferred surface type. It is a string in interchange
case. ("Default surface type" implies "preferred surface type"
when one has been defined.)

Each canonical type has a default surface representation, which can be different
from the surface file type actually appearing in a file specification. :lisp is a
canonical type for files containing Lisp source code. For example, on UNIX, the
default surface representation of the type for :lisp files is "L". (Remember, the
default surface representation is kept in interchange case.) The surface type in a
file specification containing lisp code is different on different systems, "LISP" for Lisp
Machine file system, "1" for UNIX. You can find out from a pathname object both
the canonical type for the pathname and the surface form of the type for the
pathname by using the :canonical-type message. See the method
(:method fs:pathname :canonical-type), page 166.

The following tables illustrate the terminology.

UNIX
Surface type "1" . "lisp" "foo"
Raw type "1" "lisp" "foo"
Type "L" "LISP" "Faa"
Canonical type :lisp :lisp "Faa"
Original type nil "LISP" "Faa"

Lisp machine
Surface type "1" "lisp" "foo"
Raw type "1" "lisp" "foo"
Type "L" "LISP" "Faa"
Canonical type "L" :lisp "Faa"
Original type "L" nil "Faa"

To translate the type field of a pathname from one host to another, determine the
canonical type, using the surface type on the original host. Then find a surface type
on the new host for that canonical type.

Copying operations can preserve the surface type of the file through translations and
defaulting rather than by converting it to the surface form for the canonical type.
For example:

March 1985

(multiple-value-bind (ctype otype)
(send p ':canonical-type)

(send p ':new-pathname
':canonical-type ctype
':original-type otype
':name "temp-pH»~

153

Files

12.5.1 Correspondence of Canonical Types and Editor Modes

fs:*file-type-mode-alist* is an alist that associates canonical types (in the car) with
editor major modes (in the cdr).

«:LISP. :LISP) (:SVSTEM . :LISP) (:TEXT . :TEXT) ...)

12.6 Wildcard Path name Mapping

In the Symbolics system, as in some other systems, wildcard pathnames are used not
only to specify groups of files, but to specify mappings between pairs of pathnames,
for operations such as renaming and copying files.

For example, you might ask to copy *foo* .lisp to *bar* .lisp. All the files to be copied
match the wildcard name *foo* .lisp. *bar* .lisp is a specification of how to construct
the pathname of the new file. The two wildcard pathnames, as in the above
example, are called the source pattern and target pattern. The original name of any
file to be copied is called the starting instance. Here is an example:

Source pattern:
Target pattern:
Starting instance:
Target instance:

f:>fie>*old*.lisp
vx:/usr2/fum/*older*.1
f:>fie>--oldfoo.lisp
vx:/usr2/fum/--olderfoo.l

A more abstract description of this terminology:

Source pattern A pathname containing wild components.

Target pattern A pathname containing wild components.

Source instance A pathname that matches the source pattern.

Target instance A pathname specified by applying the common sequences between
the source and target patterns to the source instance.

Two Zmacs commands accept pairs of wildcard file specifications:

Copy File (m- X)

Rename File (m- X)

The components of the target instance are determined component-by-component for
all components except the host. (The host component is always determined literally

154

Reference Guide to Streams, Files, and flO March 1985

from the source and target patterns; it cannot be wild.) The mapping of pathnames
is done in the native case of the target host. The source pattern and source
instance are coerced to the target host via the :new-default-pathname message
before the mapping takes place. See the method
(:method fs:pathname :new-default-pathname), page 170.

When the type of the target pattern is :wild, it uses the canonical type for the
target, regardless of the surface form for the type in the source pattern and
instance.

NOTE
In the Lisp Machine File System, * as the directory portion of a file
specification specifies a relative pathname. You must use >** to indicate a
wild directory component that matches any directory at all. See the
section "LMFS Pathnames", page 174.

Here are the rules used in constructing a target instance, given the source and
target patterns and a particular source instance. This set of rules is applied
separately to each component in the pathname. In the mapping rules, a * character
as the only contents of a component of a file spec is considered to be the same as
the keyword symbol :wild. The rule uses the patterns from the example above.

1. If the target pattern does not contain *, copy the target pattern component
literally to the target instance.

2. If the target pattern is :wild, copy the source component to the target literally
with no further analysis. The type component is handled somewhat differently
- when source and target hosts are of different system types, it uses the
canonical-type mechanism to translate the type. This does not apply when the
target pattern is :wild-inferiors, in directory specifications.

3. Find the positions of all * characters in the source and target patterns. Take
the characters intervening between :;: characters as a literal value. Literal
values for the name component:

Source: old
Target: older

4. Find each literal value from the source pattern in the source instance. Take
the characters intervening between literal values as a matching value for the *
from the source pattern. The matching value could be any number of
characters, including zero. Matching values for the name component:

-- and foo

5. Create the component by assembling the literal and matching values in left to
right order, substituting the matching values where * appears in the target
pattern. For the name component:

--olderfoo

155

March 1985 Files

When not enough matching values are available (due to too few * in the
source pattern) use the null string as the matching value. When the source
pattern has too many *, ignore the first extra * and everything following it.

Some examples:

Source pattern Source instance Target pattern Target instance

*report 6a02-report *summary 6802-summary
1mfs-* 1mfs-errors * 1mfs-errors
1* 1 1* 1
1* 1 isp 1* lisp
OLO-OIR OLO-OIR NEW-PLACE NEW-PLACE
* doc *-extract doc-extract
doc doc doc-extract doc-extract

12.6.1 Wildcard Directory Mapping

The rules for mapping directory components between two wildcard pathnames and a
starting instance are parallel to the rules for single names. Directory-level
components play roughly the roles of characters in the name-translating algorithm.
See the section "Wildcard Pathname Mapping", page 153.

Consider a directory component as a sequence of directory level components. The
levels are separated by level delimiters (> in LMFS). Example: In the pathname
>foo>bar>*>mumble*>x>**>y>a.b.3, the directory-level components are foo, bar, *,
mumble*, x, **, and y. The source and target patterns, as well as the starting
instance, are considered as sequences of directory-level components, and are matched
and translated level by level.

For this purpose, each directory-level component can be classified as one of three
types:

Type

constant

wild-inferiors

must-match

Directory representation

String containing no *'s

** in LMFS, ... in VMS

* or string containing at least one * (but not the string
represen ting wild-inferiors)

The matching and mapping of constant and wild-inferiors levels proceeds in a
manner identical to the matching and mapping of constant substrings and *s for
single names. See the section ''Wildcard Pathname Mapping", page 153. Constant
directory level components act as constant substrings in that algorithm, and wild
inferiors levels as *s. That is, wild-inferiors level components match and, on the
target side, carry, zero to any number of constant directory-level components.

156

Reference Guide to Streams, Fifes, and /10 March 1985

Examples:

Source pattern:
Target pattern:
Starting instance:
Target instance:

Source pattern:
Target pattern:
Starting instance:
Target instance:

>sys>**>*.*.newest
>old-systems>release-5>**>*.*.*
>sys>lmfs>patch>lmfs-33.patch-dir.66
>old-systems>release-5>lmfs>patch>lmfs-33.patch-dir.66

>a>b>c>**>d>e>**>x.y.*
>t>u>**>m>**>w>*.*.*
>a>b>c>p>q>d>e>f>g>x.y.l
>t>u>p>q>m>f>g>w>x.y.l

Must-match components are matched with exactly one directory-level component,
which must be present. They are mapped according to the string-mapping rules in
the name-translating algorithm. See the section "Wildcard Pathname Mapping",
page 153.

Example:

Source pattern:
Target pattern:
Starting instance:
Target instance:

>a>b>c>foo*>d>*>*.*.*
>x>*bar>y>*man>*.*.*
>a>b>c>foolish>d>yow>a.lisp.l
>x>lishbar>y>yowman>a.lisp.l

You can intersperse constants, must-matches, and wild-inferiors directory-level
components, as long as the sequence of wildcard types is the same in both patterns.

Example:

Source pattern:
Target pattern:
Starting instance:
Target instance:

>a>*>c>**>*.lisp.*
>bsg>sub>new-*>q>**>*.*.*
>a>bb>c>d>e>pl.1isp.6
>bsg>sub>new-bb>q>d>e>pl.1isp.6

12.7 Pathname Functions

The following functions are what programs use to parse and default file names that
have been typed in or otherwise supplied by the user.

fs:parse-pathname thing &optional with-respect-to (defaults Function
fs: *default-pathname-defaults*)

Turns thing, which can be a pathname, a string, or a Maclisp-style name list,
into a pathname. Most functions that take a pathname argument call
fs:parse-pathname on it so that they accept anything that can be turned
into a pathname. Some, however, do it indirectly, by calling
fs:merge-pathnames.

157

March 1985 Fifes

This function does not do defaulting, even though it has an argument named
defaults; it only does parsing. The with-respect-to and defaults arguments are
there because in order to parse a string into a pathname, it is necessary to
know what host it is for so that it can be parsed with the file name syntax
peculiar to that host.

If with-respect-to is supplied, it should be a host or a string to be parsed as
the name of a host. If thing is a string, it is then parsed as a true string
for that host; host names specified as part of thing are not removed. Thus,
when with-respect-to is not nil, thing should not contain a host name.

If with-respect-to is not supplied or is nil, any host name inside thing is
parsed and used as the host. If with-respect-to is nil and no host is specified
as part of thing, the host is taken from defaults.

Examples, using a LMFS host named Q:

(fs:parse-pathname "a:>b.c" "q") => #<LHFS-PATHNAHE "Q:a:>b.c"> ;(wrong)
(fs:parse-pathname "q:>b.c" "q") =) #<LHFS-PATHNAHE "Q:q:>b.c"> ;(wrong)
(fs:parse-pathname "q:)b.c") =) #<LMFS-PATHNAME "Q:)b.c")
(fs:parse-pathname ">b.c" "q") => #<LMFS-PATHNAME "Q:>b.c">

Note that this causes correct parsing of a TOPS-20 pathname when thing
contains a device but no host and when with-respect-to is not nil. (Warning:
If thing contains a device but no host and if with-respect-to is nil or not
supplied, the device is interpreted as a host.) In the following example, X is
a TOPS-20 host and A is a device:

(fs:parse-pathname "a:c.d" "x") =) #<TOPS20-PATHNAME "X:A:C.D">
(fs:parse-pathname "a:c.d") => Error: "a" is not a known file

server host.

In the same TOPS-20 example, if with-respect-to is nil and the host is to
taken from defaults, the pathname string must be preceded by a colon to be
parsed correctly:

(fs:parse-pathname ":a:<b)c.d" nil "x:") => #<TOPS20-PATHNAME "X:A:C.D">
(fs:parse-pathname "a:c.d" nil "x:") =) Error: "a" is not a known file

server host.

If thing is a list, with-respect-to is specified, and thing contains a host name,
an error is signalled if the hosts from with-respect-to and thing are not the
same.

fs:merge-pathnames pathname &optional (defaults Function
fs:*default-pathname-defaults*)
(default-version ':newest)

Fills in unspecified components of pathname from the defaults, and returns a
new pathname. This is the function that most programs should call to
process a file name supplied by the user. pathname can be a pathname, a
string, a symbol, or a Maclisp name list. The returned value is always a

158

Reference Guide to Streams, Files, and 110 March 1985

pathname. The merging rules are documented elsewhere: See the section
"Pathname Defaults and Merging", page 147.

If pathname is a string or a symbol, it is parsed before merging. The default
pathname is presented to fs:parse-pathname as a default pathname, from
which the latter defaults the host if there is no explicit host named in the
string.

defaults can be a pathname, a defaults alist, or a string. If it is a string, it
is parsed against the default defaults. defaults defaults to the value of
fs:*default-pathname-defaults* if unsupplied.

fs:merge-pathnames-and-set-defaults path name &optional Function
(defaults fs:*default-pathname-defaults*)
(default-version ':newest)

The same as fs:merge-pathnames except that after it is done the result is
stored back into defaults. This is handy for programs that have "sticky"
defaults. (If defaults is a pathname rather than a defaults alist, then no
storing back is done.) The optional arguments default the same way as in
fs:merge-pathnames.

The following function is what programs use to complete a partially typed-in
pathname.

fs:complete-pathname defaults string type version &rest options Function
string is a partially specified file name. (Presumably it was typed in by a
user and terminated with the COMPLETE or END to request completion.)
fs:complete-pathname looks in the file system on the appropriate host and
returns a new, possibly more specific string. Any unambiguous abbreviations
are expanded in a host-dependent fashion.

string is completed relative to a default pathname constructed from defaults,
the host (i(any) specified by string, type, and version, using the function
fs:default-pathname. See the function fs:default-pathname, page 162. If
string does not contain a colon, the host comes from defaults; otherwise the
host name precedes the first colon in string.

options are keywords (without following values) that control how the
completion will be performed. The following option keywords are allowed.
Their meanings are explained more fully below.

:deleted

:read or :in

Look for files that have been deleted but not yet expunged.
The default is to ignore such files.

The file is going to be read. This is the default. The
name :in is obsolete and should not be used in new
programs.

159

March 1985 Files

:write or :print or :out
The file is going to be written (that is, a new version is
going to be created). The names :print and :out are
obsolete and should not be used in new programs.

:old Look only for files that already exist. This is the default.
:old is not meaningful when :write is specified.

:new-ok Allow either a file that already exists, or a file that does
not yet exist. :new-ok is not meaningful when :write is
specified. The :new-ok option is no longer used by any
system software, because users found its effects (in the
Zmacs command Find File (c-X c-F)) to be too confusing.
It remains available, but programmers should consider this
experience when deciding whether to use it.

The first value returned is always a string containing a file name; either the
original string, or a new, more specific string. The second value returned
indicates the status of the completion. It is non-nil if it was completely
successful. The following values are possible:

:old

:new

nil

The string completed to the name of a file that exists.

The string completed to the name of a file that could be
created.

The operation failed for one of the following reasons:

• The file is on a file system that does not support
completion. The original string is returned
unchanged.

• There is no possible completion. The original string
is returned unchanged.

• There is more than one possible completion. The
string is completed up to the first point of ambiguity.

• A directory name was completed. Completion was
not successful because additional components to the
right of this directory remain to be specified. The
string is completed through the directory name and
the delimiter that follows it.

Although completion is a host-dependent operation, the following guidelines
are generally followed:

When a pathname component is left completely unspecified by string, it is
generally taken from the default pathname. However, the name and type
are defaulted in a special way described below and the version is not
defaulted at all; it remains unspecified.

160

Reference Guide to Streams, Fifes, and /10 March 1985

When a pathname component is specified by string, it can be recognized as
an abbreviation and completed by replacing it with the expansion of the
abbreviation. This usually occurs only in the rightmost specified component
of string. All files that exist in a certain portion of the file system and
match this component are considered. The portion of the file system is
determined by the specified, defaulted, or completed components to the left of
this component. A file's component x matches a specified component y if x
consists of the characters in y followed by zero or more additional characters;
in other words, y is a left substring of x. If no matching files are found,
completion fails. If all matching files have the same component x, it is the
completion. If there is more than one possible completion, that is, more than
one distinct value of x, there is an ambiguity and completion fails unless one
of the possible values of x is equal to y.

If completion of a component succeeds, the system attempts to complete any
additional components to the right. If completion of a component fails,
additional components to the right are not completed.

A blank component is generally treated the same as a missing component; £::r
example, if the host is a LMFS, completion of the strings "foo" and "foo."
deals with the type component in the same way. The strings are not
completed identically; completion of "foo" attempts to complete the name
component, but completion of "foo." leaves the name component alone since it
is not the rightmost.

If string does not specify a name, then the name of the default pathname is
preferred but is not necessarily used. The exact meaning of this depends on
options:

• With the default options, if any files with the default name exist in the
specified, defaulted, or completed directory, the default name is used. If
no such files exist, but all files in the directory have the same name,
that name is used instead. Otherwise, completion fails.

• With the :write option, the default name is always used when string
does not specify a name, regardless of what files exist.

• With the :new-ok option, if any files with the default name exist in
the specified, defaulted, or completed directory, the default name is
used. If no such files exist, but all files in the directory have the same
name, that name is used instead. Otherwise, the default name is used.

The special treatment of the case where all files in the directory have the
same name is not very useful and is not implemented by all file systems.

If string does not specify a type, then the type of the default pathname is
preferred but is not necessarily used. The exact meaning of this depends on
options:

March 1985

161

Files

• With the default options, if a file with the specif!ed, defaulted, or
completed name and the default type exists, the default type is used.
If no such file exists, but one or more files with that name and some
other type do exist and all such files have the same type, that type is
used instead. Otherwise, completion fails.

• With the :write option, the default type is always used when string
does not specify a type, regardless of what files exist.

• With the :new-ok option, if a file with the specified, defaulted, or
completed name and the default type exists, the default type is used.
If no such file exists, but one or more files with that name and some
other type do exist and all such files have the same type, that type is
used instead. Otherwise, the default type is used.

In file systems such as LMFS and UNIX that require a trailing delimiter (>

or /) to distinguish a directory component from a name component, the
system heuristically decides whether the rightmost component was meant to
be a directory or a name, and inserts the directory delimiter if necessary.

If string contains a relative directory specification for a host with a
hierarchical file system, it is assumed to be relative to the directory in the
default pathname and is expanded into an absolute directory specification.

The host and device components generally are not completed; they must be
fully specified if they are specified at all. This might change in the future.

If string does not specify a version, the returned string does not specify a
version either. This differs from file name completion in TOPS-20; TOPS-20
completes an implied version of "newest" to a specific number. This is
possible in TOPS-20 because completing a file name also attaches a "handle"
to a file. In Symbolics-Lisp, the version number of the newest file might
change between the time the file name is completed and the time the actual
file operation (open, rename, or delete) is performed.

A pathname component must satisfy the following rules in order to appear in
a successful completion:

• The host, device, and directory must actually exist.

• The name must be the name of an existing file in the specified
directory, unless :write or :new-ok is included in options.

• The type must be the type of an existing file with the specified name
in the specified directory, unless :write or :new-ok is included in
options.

• A pathname component always completes successfully if it is :wild.

162

Reference Guide to Streams, Files, and liD March 1985

When the rules are not satisfied by a component taken from the default
pathname, completion fails and that component remains unspecified in the
resulting string. When the rules are not satisfied by a component taken
from string, completion fails and that part of string remains unchanged
(other components of string can still be expanded).

This function yields a pathname, given its components.

fs:make-pathname &rest options Function
options are alternating keywords and values that specify the components of
the pathname. Missing components default to nil, except the host (all
pathnames must have a host). The :defaults option specifies the defaults to
get the host from if none are specified. The other options allowed are :host,
:device, :directory, :name, : type , :version, : raw-device , :raw-directory,
: raw-name , : raw-type , :canonical-type.

The following functions are used to manipulate defaults alists directly.

fs:make-pathname-defaults Function
Creates a defaults alist initially containing no defaults. Asking this empty set
of defaults for its default pathname before anything has been stored into it
returns the file FOO on the user's home directory on the host to which the
user logged in.

Defaults alists created with fs:make-pathname-defaults are remembered,
and reset whenever the site is changed. This prevents remembered defaults
from pointing to unknown hosts when world load files are moved between
sites.

fs:copy-pathname-defaults defaults Function
Creates a defaults alist, initially a copy of defaults.

fs:default-pathname &optional defaults host default-type Function
default-version sample-p

Obtains a pathname suitable for use as a default pathname and customizes it
by modification of its type and version. It also extracts pathnames out of
default alists.

The pathname returned by fs:default-pathname is always fully specified;
that is, all components have non-nil values. This is needed when defaulting
a pathname with fs:merge-pathnames to pass to open or other file-system
operations, as these operations should always receive fully specified
pathnames.

Specifying the optional arguments host, default-type, and default-version as
not nil forces those fields of the returned pathname to contain those values.
If defaults, which can be a pathname or a defaults alist, is not specified, the
default defaults are used.

163

March 1985 Fifes

If default-type is a symbol representing a canonical type, that canonical type
is used as the canonical type of the pathname returned. That is, the
pathname has a type component that is the correct representation of that
canonical type for the host.

Users should never supply the optional argument sample-po

fs:set-default-pathname path name &optional defaults Function
Updates a defaults alist. It stores pathname into defaults. If defaults is not
specified, the default defaults are used.

The following functions return useful information.

fs:user-homedir &optional (host fs:user-Iogin-machine) Function
Returns the pathname of the logged-in user's home directory on host, which
defaults to the host the user logged in to. For a registered user (one who
logged in without using the :host argument to login), the host is the user's
home-host attribute. Home directory is a somewhat system-dependent
concept, but from the point of view of the Symbolics computer it is usually
the directory where the user keeps personal files such as init files and mail.
This function returns a pathname without any name, type, or version
component (those components are all nil).

fs:init-file-pathname program-name &optional (canonical-type nil) Function
(host fs:user-Iogin-machine)

Returns the pathname of the logged-in user's init file for the program
program-name, on the host, which defaults to the host the user logged in to.
Programs that load init files containing user customizations call this function
to find where to look for the file, so that they need not know the separate
in it file name conventions of each host operating system. The program-name
"LISPM" is used by the login function. canonical-type is the canonical type
of the init file. It should be nil when the returned pathname is being
passed to load so that load can look for a file of the appropriate type.

The following function defines a canonical file type.

fs:define-canonical-type canonical-type default &body specs Special Form
Defines a new canonical type. canonical-type is the symbol for the new type;
default is a string containing the default surface type for any kind of host
not mentioned explicitly. The body contains a list of specs that define the
surface types that indicate the new canonical type for each host. The
following example would define the canonical type :lisp.

(fs:define-canonical-type :lisp "LISP"
«:tops-20 :tenex) "LISP" "LSP")
(:unix "L" "LISP")
(:vrns "LSP"»

164

Reference Guide to Streams, Fifes, and 110 March 1985

For systems with more than one possible default surface form, the form that
appears first becomes the preferred form for the type. Always use the
interchange case.

Define new canonical types carefully so that they are valid for all host types.
For example "com-map" would not be valid on VMS because it is both too
long and contains an invalid character. You must define them so that the
surface types are unique. That is, the same surface type cannot be defined
to mean two different canonical types.

Canonical types that specify binary files must specify the byte size for files of
the type. This helps copyf and other system tools determine the correct
byte size and character mode for files. You specify the byte size by attaching
a :binary-file-byte-size property to the canonical type symbol. For example,
the system defines the byte size of press files as follows.

(defprop :press 8. :binary-fi1e-byte-size)

The following function is useful when dealing with canonical types. Unlike other
functions described here, this function actually accesses and searches a host file
system. This description is provided here for completeness. For functions and
messages that actually access host file systems: See the section "Streams", page 1.

fs:find-file-with-type pathname canonical-type Function
Searches the file system to determine the actual surface form for a pathname
object. Like probef, it returns the truename for pathname. When no file
can be found to correspond to a pathname, it returns nil.

If pathname is a string, it is parsed against the default defaults to obtain an
actual pathname object before processing.

canonical-type applies only when pathname has nil as its type component.
fs:find-file-with-type searches the file system for any matching file with
canonical-type. For example, on a TOPS-20 host, this would look first for
ps:<gcw>toolkit.lisp and then for ps:<gcw>toolkit.lsp:

(fs:find-fi1e-with-type (fs:parse-pathname "sc:<gcw>too1kit") ':lisp)

If it finds more than one file, it returns the one with the preferred surface
type for canonical-type (or chooses arbitrarily if none of the files has the
preferred surface type).

If pathname already had a type supplied explicitly, that overrides
canonical-type. You can ensure that canonical-type applies by first setting
the type explicitly:

(fs:find-fi1e-with-type (send p ':new-type nil) ':lisp)

System programs that supply a default type for input files (for example, load,
make-system, and qc-file) could use this mechanism for finding their input
files.

165

March 1985 Fifes

The following functions are useful for poking around.

fs:describe-pathname pathname Function
If pathname is a pathname object, this describes it, showing you its properties
(if any) and information about files with that name that have been loaded
into the machine. If pathname is a string, this describes all interned
pathnames that match that string, ignoring components not specified in the
string. This is useful for finding the directory of a file whose name you
remember. Giving describe a pathname object does the same thing as this
function.

fs:pathname-plist pathname Function
Parses and defaults pathname then returns the list of properties of that
pathname.

12.8 Pathname Messages

This section documents some of the messages a user can send to a pathname object.
These messages are known as the passive messages to pathnames. They deal with
inspecting and extracting components, constructing new pathnames based on old
pathnames and new components, matching pathnames, and so forth. None of these
messages actually interact with any host file system; they deal only with pathname
objects within the Symbolics computer.

The other common, useful class of messages to pathnames are those that open,
delete, and rename files, list directories, find and change file properties, and so forth.
These are the active messages to pathnames. You usually do not send these
messages directly, but use interface functions, such as open, probef, deletef,
renamef, fs:directory-list, fs:file-properties, and fs:change-file-properties.
Neither these functions and messages, nor additional similar ones, are documented
here. See the section "Streams", page 1.

Pathnames handle some additional messages that are intended to be sent only by
the pathname system itself, and therefore are not documented here. Only someone
who wanted to add a new type of file host to the system would need to understand
those internal messages. This section also does not document messages that are
peculiar to pathnames of a particular type of host.

:host of fs:pathname Method
Returns the host component of the pathname. The returned value is always
a host object. If the pathname is a logical pathname, the logical host is
returned. It is an error to send :host to a logical host.

166

Reference Guide to Streams, Files, and /10 March 1985

:device of fs:pathname Method
Returns the device component of the pathname. The returned value can be
nil, :unspecific, or a string. The string is in interchange case.

:directory of fs:pathname Method
Returns the directory component of the pathname. The returned value can
be nil, :wild, or a list of strings and symbols, each representing a directory
level. These symbols can be :wild or :wild-inferiors. Single names of
directories in nonhierarchical file systems are returned as single element lists.
The strings are in interchange case.

:name of fs:pathname Method
Returns the name component of the pathname. The returned value can be
nil, :wild, or a string. The string is in interchange case.

:type of fs:pathname Method
Returns the type component of the pathname. The returned value is always
be nil, :unspecific, :wild, or a string. The string is in interchange case.

:version of fs:pathname Method
Returns the version component of the pathname. The returned value is
always be nil, :wild, :unspecific, :oldest, :newest, or a number.

:raw-device of fs:pathname Method
Returns the device component of the pathname. The returned value can be
nil, :unspecific, or a string. The string is in its raw case.

:raw-directory of fs:pathname Method
Returns the directory component of the pathname. The returned value can
be nil, :wild, or a list of strings and symbols, each representing a directory
level. These symbols can be :wild or :wild-inferiors. Single names of
directories in nonhierarchical file systems will be returned as single element
lists. The strings are in their raw case.

:raw-name of fs:pathname Method
Returns the name component of the pathname. The returned value can be
nil, :wild, or a string. The string is in its raw case.

:raw-type of fs:pathname Method
Returns the type component of the pathname. The returned value is always
nil, :unspecific, :wild, or a string. The string is in its raw case.

:canonical-type of fs:pathname Method
Determines the canonical type of a pathname and a surface representation
for the type. It returns two values:

March 1985

Value

canonical type

167

Files

Meaning

This is either a keyword symbol from the set of known
canonical types or a string (when the type component of
the pathname is not a known canonical type). The string
contains the type component from the pathname, in
interchange case.

original type This is nil when the type of the pathname is the same as
the preferred surface type for the canonical type. See the
function fs:define-canonical-type, page 163. Otherwise,
when the type differs from the preferred or default surface
type, it is the original type in interchange case.

For example, for a UNIX pathname, sending the message :canonical-type to
the following pathnames has these results:

Pathname
foo.1
foo.1isp
foo.L
foo.LISP

Results from :canonical-type message
:lisp nil Preferred surface type
:lisp "LISP" Alternate surface type
"1" "1" Not recognized
"lisp" "lisp" Not recognized

Keep in mind that the :canonical-type message returns the type string in
the interchange case rather than in the raw case.

:new-device new-device of fs:pathname Method
Returns a new pathname that is the same as the pathname it is sent to
except that the value of the device component has been changed. The valid
set of arguments to the :new-device message is the set of possible outputs
of :device. See the method (:method fs:pathname :device), page 166. A
string value is expected to be in interchange case.

:new-directory new-directory of fs:pathname Method
Returns a new pathname which is the same as the pathname it is sent to
except that the value of the directory component has been changed. The
valid set of arguments to the :new-directory message is the set of possible
outputs of :directory. See the method
(:method fs:pathname : directory), page 166. String values are expected to
be in interchange case.

:new-name new-name of fs:pathname Method
Returns a new pathname which is the same as the pathname it is sent to
except that the value of the name component has been changed. The valid
set of arguments to the :new-name message is the set of possible outputs of
:name. See the method (:method fs:pathname :name), page 166. String
values are expected to be in interchange case.

168

Reference Guide to Streams, Files, and /10 March 1985

:new-type new-type of fs:pathname Method
Returns a new pathnrune that is the same as the pathname it is sent to
except that the value of the type component has been changed. The valid
set of arguments to the :new-type message is the set of possible outputs of
:type. See the method (:method fs:pathname :type) , page 166. String
values are expected to be in interchange case.

:new-version new-version of fs:pathname Method
Returns a new pathname that is the same as the pathname it is sent to
except that the value of the version component has been changed. The valid
set of arguments to the :new-version message is the set of possible outputs
of :version. See the method (:method fs:pathname :version), page 166.

:system-type of fs:pathname Method
Returns the type of host that the pathname is intended for. This value is a
keyword from the following set:

:its, :lispm, :multics, :tenex, :tops-20, :unix, :vms, :logical
This is the same set as returned by. the :system-type message to a host
object. It is not likely that you need to use this message directly.

:new-raw-device dev of fs:pathname Method
Returns a new pathname that is the same as the pathname it is sent to
except that the value of the device component has been changed. The valid
set of arguments to the :new-raw-device message is the set of possible'
outputs of :raw-device. See the method
(:method fs:pathname :raw-device), page 166. A string value is expected
to be in its raw case.

:new-raw-directory new-directory of fs:pathname Method
Returns a new pathname that is the same as the pathname it is sent to
except that the value of the directory component has been changed. The
valid set of arguments to the :new-raw-directory message is the set of
possible outputs of :raw-directory. See the method
(:method fs:pathname :raw-directory), page 166. String values are
expected to be in their raw case.

:new-raw-name new-name of fs:pathname Method
Returns a new pathname which is the same as the pathname it is sent to
except that the value of the name component has been changed. The valid
set of arguments to the :new-raw-name message is the set of possible
outputs of :raw-name. See the method
(:method fs:pathname :raw-name), page 166. String values are expected
to be in their raw case.

169

March 1985 Files

:new-raw-type new-type of fs:pathname Method
Returns a new pathname that is the same as the pathname it is sent to
except that the value of the type component has been changed. The valid
set of arguments to the :new-raw-type message is the set of possible
outputs of : raw-type. See the method (:method fs:pathname :raw-type),
page 166. String values are expected to be in their raw case.

:new-canonical-type canonical-type &optional original-type of Method
fs:pathname

Returns a new pathname based on the old one but with a new canonical
type. canonical-type specifies the canonical type for the new pathname. The
surface type of the new pathname is based on the default surface type of the
canonical type, unless the pathname already had the correct type.

When the pathname object receiving the message already has the correct
canonical type, the surface type in the new pathname depends on the
presence of original-type. When original-type is omitted, the new pathname
type has the same surface type as the old pathname. When original-type is
supplied, the surface type for the new pathname is original-type. This
assumes that original-type is a valid representation for canonical-type; if that
assumption is not met, the canonical-type prevails and its default surface type
is used.

canonical-type is a symbol for a known type, :unspecific, nil, or a string.
Use a string for canonical-type to make pathnames with types that are not
known canonical types.

The following examples assume that a pathname object for the file
specification "vixen:/usr2/jwalker/mild.new' is the value of m.

(send m ':new-canonica1-type ':lisp) =>
#<UNIX-PATHNAME "VIXEN: Ilusr21Ijwa1kerllmi1d.1">
(send m ':new-canonica1-type ':lisp "LISP") =>
#<UNIX-PATHNAME "VIXEN: Ilusr21Ijwa1kerllmi1d.1isp">
(send m ':new-canonica1-type ':lisp "MSS") =>
#<UNIX-PATHNAHE "VIXEN: Ilusr21Ijwalkerllmild.l">
(send m ':new-canonica1-type "BAR" "BAR") =>
#<UNIX-PATHNAME "VIXEN: Ilusr21Ijwa1kerllmi1d.bar">
(send m ':new-canonica1-type ':lisp "lisp") =>
#<UNIX-PATHNAME "VIXEN: Ilusr21Ijwa1kerllmi1d.1">
(send m ':new-canonica1-type ':lisp nil) =>
#<UNIX-PATHNAME "VIXEN: Ilusr21Ijwa1kerllmi1d.1">

:types-for-canonical-type canonical-type of fs:pathname Method
The internal primitive for finding which surface types correspond to
canonical-type . Normally you would not use this directly. To determine
what form of a pathname exists in a file system: See the function
fs:find-file-with-type, page 164.

170

Reference Guide to Streams, Files, and /10 March 1985

:new-pathname &rest options of fs:pathname Method
Returns a new pathname that is the same as the pathname it is sent to
except that the values of some of the components have been changed.
options is a list of alternating keywords and values. The keywords all specify
values of pathname components; they are :host, : device, :directory, :name,
:type, :version, : raw-name, : raw-device , : raw-type , :raw-directory, and
:canonical-type. The :type argument also accepts a symbol as an
argument, implying canonical type. See the section "Canonical Types in
Pathnames", page 151.

:new-default-pathname &rest options of fs:pathname Method
Returns a new valid pathname based on the one receiving the message, using
the pathname components supplied by options. The components do not need
to be known to be valid on a particular host. The method uses the
components "as suggestions" for building the new pathname; it is free to
make substitutions as necessary to create a valid pathname. It is heuristic,
not algorithmic, so it does not necessarily yield valid semantics. The
heuristics used, however, seem to produce pathnames that match what many
people expect from cross-host defaulting.

It always produces a pathname with valid syntax but not necessarily valid
semantics. For example, when it tries to map between a hierarchical file
system and a nonhierarchical file system, it uses the least significant of the
hierarchical components as the directory component. Sometimes this is not
correct, but in all cases it is syntactically valid. The main applications for
:new-default-pathname are in producing defaults to offer to the user and
in copying components from one kind of pathname to another.

Application notes: :new-pathname always does what its arguments specify;
it never uses heuristics. Thus :new-pathname could signal an error in
certain cross-host situations where :new-default-pathname would not have
any problems. Usually, user programs should use fs:default-pathname,
which sends :new-default-pathname as part of its operation. However, if
you are copying a single component from one kind of pathname to another,
:new-defauIt-pathname is the right tool.

For example, the right way to copy the version from an input pathname to
an output pathname is as follows:

(defun copy-version (input-pathname output-pathname)
(send output-pathname :new-default-pathname

:version (send input-pathname :version»)

If the above example used :new-pathname or :new-version, the input
pathname were a UNIX pathname, and the output were a LMFS pathname,
this example would signal an error, since :unspecific is not a valid version in
a LMFS pathname. However, using :new-default-pathname, the closest
equivalent" is substituted, namely :newest.

171

March 1985 Files

:parse-truename string &optional (from-filesystem t) of Method
fs:pathname

Returns the pathname corresponding to the string argument. The string is
parsed, with the pathname supplying the defaults (notably, the host). The
method is useful when, for example, a remote file system produces a string
naming a file, and you want the corresponding pathname.

:generie-pathname of fs:pathname Method
Returns the generic pathname for the family of files of which this pathname
is a member. See the section "Generic Pathnames", page 149.

The following messages get a pathname string out of a pathname object:

:string-for-printing of fs:pathname Method
Returns a string that is the printed representation of the pathname. This is
the same as what you get if use prine or string on the pathname. It is
the native host form of the pathname string, preceded by the name of the
host and colon. This is the preferred user-visible printed representation of
pathnames.

:string-for-wholine of fs:pathname Method
Returns a string that can be compressed in order to fit in the status line.

:string-for-editor of fs:pathname Method
Returns a string that is the pathname with its components rearranged so
that the name is first. The editor uses this form to name its buffers.

:string-for-dired of fs:pathname Method
Returns a string to be used by the directory editor. The string contains only
the name, type, and version.

:string-for-host of fs:pathname Method
Returns a string that is the pathname in the form preferred by the host file
system.

:string-for-direetory of fs:pathname Method
Returns a string suitable for describing the directory portion of the
pathname, in the format that users of the host system are used to seeing it.
The host name is not included.

The following messages manipulate the property list of a pathname:

:get indicator of fs:pathname Method
Manipulates the pathname's property list analogously to the function of the
same name, which does not (currently) work on instances. See the section
"Property Lists" in Reference Guide to Symbolics-lisp. Be careful using
property lists of pathnames. See the section "Pathnames", page 127.

172

Reference Guide to Streams, Files, and 110 March 1985

:getl list-ot-indicators of fs:pathname Method
This manipulates the pathname's property list analogously to the function of
the same name, which does not (currently) work on instances. See the
section "Property Lists" in Reference Guide to Symbolics-lisp. Please take care
in using property lists of pathnames. See the section "Pathnames", page 127.

:putprop value indicator of fs:pathname Method
This manipulates the pathname's property list analogously to the function of
the same name, which does not (currently) work on instances. See the
section "Property Lists" in Reference Guide to Symbolics-lisp. Please take care
in using property lists of pathnames. See the section "Pathnames", page 127.

:remprop indicator of fs:pathname Method
This manipulates the pathname's property list analogously to the function of
the same name, which does not (currently) work on instances. See the
section "Property Lists" in Reference Guide to Symbolics-lisp. Please take care
in using property lists of pathnames. See the section "Pathnames", page 127.

:plist of fs:pathname Method
This manipulates the pathname's property list analogously to the function of
the same name, which does not (currently) work on instances. See the
section "Property Lists" in Reference Guide to Symbolics-lisp.

The following messages can be sent to pathnames having wildcard components or
suspected of having wildcard components:

:pathname-match candidate-pathname &optional (match-host t) Method
of fs:pathname

Determines whether candidate-pathname would satisfy the wildcard pattern
of the pathname receiving the message. (The pathname receiving the
message is assumed to be one that would satisfy :wild-p.) It compares
corresponding components in the pattern pathname and candidate-pathname.
It returns nil when candidate-path name does not satisfy the pattern;
otherwise it returns something other than nil.

match-host determines whether it requires the host component of the pattern
to match as well. When match-host is nil, it ignores the host component.
By default, it does require that the host component match.

A pattern pathname containing no wild components matches only itself.

If the candidate-path name specifies a physical host, and the message is sent
to a logical pathname, the physical host is "back-translated," if possible.

:wild-p of fs:pathname Method
A predicate that determines whether the pathname is syntactically a wildcard
pathname. This means that any component is :wild, or, for most systems,
contains the character *, or that the directory component has any of the

173

March 1985 Files

valid forms of directory wildcard in it. See the method
(:method fs:pathname :directory-wild-p), page 173.

Value

nil

not nil

Meaning

No component of the name is syntactically a wildcard.

One or more components of the name are syntactically
wild. The actual value in this case is the symbol for the
most significant wild component: :device, : directory, and
so on.

:device-wild-p of fs:pathname Method
If the device component of this pathname is a recognized wildcard for the
system type concerned, or :wild, a non-nil is returned.

:directory-wild-p of fs:pathname Method
If the directory component of this pathname is a recognized wildcard for the
system type concerned, or :wild, a non-nil is returned. All forms of wildcard
at each directory level for hierarchical file systems, as well as :wild-inferiors,
are recognized as constituting a wildcard directory component. Otherwise, nil
is returned.

:name-wild-p of fs:pathname Method
If the name component of this pathname is a recognized wildcard for the
system type concerned, or :wild, a non-nil is returned. Otherwise, nil is
returned.

:type-wild-p of fs:pathname Method
If the type component of this pathname is a recognized wildcard for the
system type concerned, or :wild, a non-nil is returned. Otherwise, nil is
returned.

:version-wild-p of fs:pathname Method
If the version component of this pathname is a recognized wildcard for the
system type concerned, or :wild, a non-nil is returned. Otherwise, nil is
returned.

:translate-wild-pathname target-pattem-pathname Method
starting-pathname of fs:pathname

Produces a new pathname based on starting-pathname and the analogies
between the pathname receiving the message and target-pattem-pathname.

:translate-wild-pathname examines the correspondences between
target-pattem-pathname and the pathname receiving the message. It then
does whatever is necessary to starting-pathname to transform it into the
target pathname.

It checks to be sure starting-pathname matches the pathname receiving the

174

Reference Guide to Streams, Files, and /10 March 1985

message and signals ferror if they do not match. A standard way for
generating starting-pathname is to send :directory-list to the source pattern
pathname to generate a set of starting pathnames.

12.9 Pathnames on Supported Host File Systems

This section lists the host file systems supported, gives an example of the pathname
syntax for each system, and discusses any special idiosyncrasies.

12.9.1 LMFS

LMFS is an acronym for Lisp Machine File System, which is the native file system
of the Symbolics computer. It is only one of many possible file systems accessible
from the Symbolics computer.

LMFS is a hierarchical file system. It supports file versions. Every file has a name,
type, and version. Names are virtually unlimited in length (hundreds of characters),
but a performance penalty is imposed for names of over 30 characters. Types are
limited to 14 characters. There is no limit to the depth of directories. There are no
devices (:device to a, LMFS pathname always returns :unspecific).

A LMFS pathname looks as follows:

>dir>ectory>name.type.version

The greater-than (">") character separates directory levels. Absolute path names
always start with greater-than's. Pathnames that specify no directory, relative or
otherwise, contain no greater-than's, for example:

foo.bar.7

The topmost directory of the directory tree (the ROOT directory) is indicated by the
absence of directory names but the continued presence of a greater-than. For
example, the following is a file named foo.bar, version 7, in the ROOT directory:

>foo.bar.7

No file type abbreviations are needed for LMFS.

File and directory names in LMFS can be stored in upper, lower, or mixed case.
Lowercase is the preferred case. Case is ignored on lookup.

Due to problems with interning of pathnames it is sometimes difficult to control the
casing of a LMFS pathname, and it is almost always impossible to change it once
established. See the section "Interning of Pathnames", page 138.

A version component of :newest is represented by the string "newest". A version
component of :oldest is represented by the string "oldest".

Upward relativization in relative directory specifications is designated by a pathname

175

March 1985 Fifes

starting with the character less-than ("<"). All and only all absolute pathnames
start with the character greater-than (">"). Downward relativization is indicated by
a pathname, which although it contains greater-than's, does not start with one. For
example, the following specifies a directory named foo, inferior to the superior
directory of the directory of the default pathname with which it is merged.

< foo>x.y

LMFS directories, when referenced as files, have a file type of "directory" and a
version of 1. See the section "Directory Pathnames and Directory Pathnames as
Files", page 142.

The following example specifies a directory named bar, inferior to the directory of the
default pathname with which it is merged.

bar>x.y

LMFS supports recursive directory level matching (:wild-inferiors). The
representation of :wild-inferiors in LMFS is **. Any number of ** components
can appear in wildcard pathnames as directory levels, and need not be in trailing
positions. (The further it gets from the trailing end of the directory name, however,
the more expensive it gets to compute.) Here are some examples of the use of **:

Pathname What it means

>**>* .lisp.newest All the newest lisp files on the whole file system.

>**>*>secret>*. *. * All files in subdirectories (but not top-level directories) named
"secret".

>lmach>**>*. * .newest
All the newest files in >lmach and all its subdirectories.

A component of :wild, in any component except the directory component, is
represented by *. *, when accompanied by other characters, such as in foo*bar*,
matches zero or more characters, as a wildcard. Although * or names containing *
are valid as directory-level component names, a directory component of :wild cannot
be specified through pathname syntax. This is because "any directory at all" is
represented by (:wild-inferiors). A directory name given as * is a specification for
a relative pathname, any subdirectory of the directory of the pathname which is
merged. That is represented internally as (:wild), not :wild.

The name of the ROOT directory, as a file (its "directory pathname as file") is

>The Root Directory.directory.1

Names of files stored in the Lisp Machine File System can not contain *. This
restriction is necessary because * is used consistently to indicate wildcards in
pathnames.

You can not access files whose names contain * as a character. A special function
allows you to rename any file or directories whose names contain "'.

176

Reference Guide to Streams, Files, and /10 March 1985

Imfs:rename-IocaI-file-tooI {rom-path to-path Function
Renames a file in which * appears in one of the pathname components.
This function works locally only; you must run it on the machine in whose
file system the file is stored. It does not rename a file across the network.

{rom-path and to-path must be pathnames or strings coercible to pathnames.
{rom-path is parsed against a default on the local host. to-path is parsed
against {rom-path as the default. The version number for to-path is inherited
from the file being renamed. Any version number appearing in to-path is
ignored.

(lmfs:rename-local-file-tool ">AUser>*secret-stuff*" "-secret-stuff-")
(lmfs:rename-local-file-tool ">*special*.directory.l" "-special-H)

12.9.2 FEP File System

The syntax of FEP file system pathnames is identical to that of LMFS pathnames,
and the semantics are the same as well. The following differences are to be noted.

• The maximum length of a file name is 32 characters.

• The maximum length of file types is 4 characters.

• The type of directories is "DIR".

• Recursive wildcards (:wild-inferiors) are not supported.

The name of the ROOT directory, as a file (its "directory pathname as file") is:

>ROOT-DIRECTORV.DIRECTORV.l

12.9.3 UNIX

Since UNIX file names can only be 14 characters long, the representations of most
canonical types are stored in abbreviated form, according to the following table.
Other values are represented as they are.

Canonical type UNIX abbreviation(s)
:LISP "1" "lisp"
:TEXT "tx" "text" "txt"
:MIDAS "md"
:QFASL "qr' "qfasl"
:QBIN "qb" "qbin"
:BIN "bn" "bin"
:PRESS "pr" "press"
:LGP "lg" "lgp"
:PATCH-SYSTEM-DIRECTORY

"sd"

March 1985

:PATCH-VERSION-DIRECTORY
"pd"

:BABYL "bb" "babyl"
:XMAIL "xm." "xm.ail"
: MAIL "ma" "mail"
:RMAIL "rm"
:ZMAIL-TEMP "_z" "_zmail"
:GMSGS-TEMP "_g" "_gmsgs"
:UNFASL "ur' "unfasl"
:OUTPUT "ot" "output"
:ULOAD "ul" "uIoad"
:MCR "mc" "mcr"
:SYM "sm" "sym"
:TBL tItbIt "tbl"
:MICROCODE "mic"
:ERROR-TABLE "err"
:FEP-LOAD "flod"
: SYNC-PRO GRAM "sn" "sync"
:CWARNS "cw" "cwarns"
: SYSTEM "sy" "system"
:FONT-WIDTHS "wd" "widths"
:BFD "bfd"
:KST "kt" "kst"
:AST "at" "ast"
:PLT "pI" "pIt"
:DRW "drw"
:WD "wd"
:DIP "dip"
:SAV "sav"
: MAP "map"
: CONSOLIDATED-MAP

"cm"
:TAGS "tg" "tags"
:PALX-BIN "pb" "pbin"
:XGP "xg" "xgp"
:LIL "11" "lil"
:SAR "sar"
:SAB "sab"
:MSS "mss" "ms"
:FORTRAN "r'
:LOGICAL-PATHNAME-TRANSLATIONS

"It" "logtran"
:LOGICAL-PATHNAME-DIRECTORY-TRANSLATIONS

: NULL-TYPE
:FILES

"ld" "logdir"
:unspecific ""
"fl"

177

Fifes

178

Reference Guide to Streams, Files, and 110

: COLD-LOAD
:PXL
: IMAGE
:DUMP

"load"
"px" "pxl"
"im" "image"
"dm" "dump"

March 1985

As is true with the canonical type mechanism in general, files having the canonical
type spelled in full are also recognized as being of that canonical type.

Logical path name translation must get around the restrictions in UNIX pathnames.
When translating logical pathnames an extra translation step is invoked, in some
cases, as for V AXNMS pathnames.

The preferred case on UNIX is lowercase. Pathname components presented to
:new-directory, :new-name, and so forth, are case-inverted in most instances. See
the section "Case in Pathnames", page 145.

12.9.4 UNIX 4.2

UNIX 4.2 uses slightly different representations of some canonical types than do
other versions of UNIX. In most cases, the representations are the same as for
LMFS, but the UNIX versions are also allowed.

Canonical type UNIX 4.2 abbreviation(s)
:LISP "lisp" "I"
:TEXT "text" "tx" "txt"
:MIDAS "midas" "md"
:QF ASL "qfasl" "qf'
:QBIN "qbin" "qb"
:BIN "bin" "bn"
:PRESS "pr" "press"
:LGP "Igp" "Ig"
:PATCH-SYSTEM-DIRECTORY

"system-dir" "sd"
:PATCH-VERSION-DIRECTORY

:BABYL
:XMAIL
: MAIL
:RMAIL
:ZMAIL-TEMP
:GMSGS-TEMP
:UNFASL
: OUTPUT
:ULOAD
:MCR
:SYM
:TBL

"patch-dir" "pd"
"babyl" "bb"
"xmail" "xm"
"mail" "ma"
"rmail" "rm"
"_zmail" "_z"
"_gmsgs" "_g"
"unfasl" "uf'
"output" "ot"
"uload" "ul"
"mcr" "mc"
"sym" "sm"
"tbl" tItbIt

March 1985

:MICROCODE "mic"
:ERROR-TABLE "err"
:FEP-LOAD "flod"
:SYNC-PROGRAM"sync" "sn"
:CWARNS "cwarns" "cw'
: SYSTEM "system" "sy"
:FONT-WIDTHS "widths" "wd"
:BFD "bfd"
:AC "ac"
:AL "al"
:KS "ks"
:KST "kst" "kt"
:AST "ast" "at"
:PLT "pI" "pIt"
:DRW "drw"
:WD "wd"
:DIP "dip"
:SAV "sav"
: MAP "map"
: CONSOLIDATED-MAP

"con-map" "cm"
:T AGS "tags" "tg"
:PALX-BIN "pabLbin" "pbin" "pb"
:XGP "xgp" "xg"
:LIL "lil" "11"
:FORTRAN "f"
:SAR "sar"
:SAB "sab"
:MSS "mss" "ms"
:LOGICAL-PATHNAME-TRANSLATIONS

"logtran" "It"
:LOGICAL-PATHNAME-DIRECTORY-TRANSLATIONS

: NULL-TYPE
: COLD-LOAD
:FILES
:PXL
: IMAGE
:DUMP

"translations" "logdir" "ld"
:unspecific ""
"load"
"files" "fl"
"pxl" "px"
"image" "im"
"dump" "dm"

179

Files

As is true with the canonical type mechanism in general, files having the canonical
type spelled in full are also recognized as being of that canonical type.

Logical pathname translation must get around the restrictions in UNIX pathnames.
When translating logical pathnames, an extra translation step is invoked as for
V AXNMS pathnames.

180

Reference Guide to Streams, Fifes, and 110 March 1985

The preferred case on UNIX is lowercase. Pathname components presented to
:new-directory, :new-name, and so forth, are case-inverted in most instances. See
the section "Case in Pathnames", page 145.

12.9.5 VAXNMS

A V AXNMS pathname looks as follows:

[DIR.ECTORV.COH.PONENTS]NAHE.TVP;VERSION

The semicolon character is the standard delimiter for the version number. Because
of it, a version can be specified even though the name and type are omitted. For
compatibility with other Digital Equipment Corporation systems, however, a period is
also accepted as a version delimiter when name and type are supplied.

Device is specified by a device name followed a colon preceding the pathname. You
must take great caution with pathnames specifying devices so as not to confuse the
pathname parser about host identity. See the section "Host Determination in
Pathnames", page 136.

Uppercase is the only supported alphabetic case. Pathnames typed in lowercase are
converted to uppercase on input.

File types are restricted to three characters, and names cannot contain hyphens.
Here is a list of canonical types, their VMS representations, their default byte-size
used for a binary transfer, and whether records are stored in fixed- or variable
length format:

Canonical type VMS representation Byte-size Format

:LISP "LSP"

: TEXT "TXT"

:MIDAS "MID"

:QFASL "QFS" 16 var

:QBIN "QBN" 16 var

:BIN "BIN" 16 var

:PRESS "PRS" 8 fix

:PATCH-SYSTEM-DIRECTORY "SPD"

: PAT CH-VERSI ON-DIRE CTORY "VPD"

181

March 1985 Files

:BABYL "BAB"

:XMAIL "XML"

:MAIL "MAI"

:RMAIL "RML"

:ZMAIL-TEMP "ZMT"

:GMSGS-TEMP "GMT"

:UNFASL "UNF"

:OUTPUT "OUT"

:ULOAD "ULD"

:MCR "MCR"

:SYM "SYM"

:TBL "TBL"

:MICROCODE "MIC" 8 var

:ERROR-TABLE "ERR"

:FEP-LOAD "FLD"

: SYNC-PROGRAM "SYN"

:CWARNS "CWN"

: SYSTEM "SYD"

:FONT-WIDTHS "WID" 16 flx

:BFD "BFD" 16 var

:KST "KST" 9

:AC "AC" 16

:AL "AL" 16

182

Reference Guide to Streams, Files, and 110 March 1985

:KS "KS" 16

:AST "AST"

:PLT "PLT" 9

:DRW "DRW" 12

:WD "WD" 12

:DIP "DIP" 12

:SAV "SAV" 12

:MAP "MAP"

: CONSOLIDATED-MAP "CON"

:TAGS "TAG"

:PALX-BIN "PXB" 8 var

:XGP "XGP"

:LIL "LIL"

:FOR "FOR"

:SAR "SAR"

:SAB "SAB" 8

:MSS "MSS"

:LOGICAL-PATHNAME-TRANSLATIONS "LTR"

:LOGICAL-PATHNAME-DIRECTORY-TRANSLATIONS "LDT"

: NULL-TYPE ""

: COLD-LOAD "LOD" 16 var

:FILES "FLS"

:PXL "PXL" 8

183

March 1985 Files

: IMAGE "IMG"

:DUMP "IDM" 16

Logical pathname translation must get around the restrictions in VMS pathnames,
including the prohibition against hyphens and restrictions on the lengths of
components. When translating logical pathnames an extra translation step is
performed before trying the usual translations. See the file sys:sys;sys.logtran.

The VMS pathname mechanism supports recursive directory matching
(:wild-inferiors). The representation for a directory level component of
:wild-inferiors is " .. "; however it can appear only at the end of a directory name.
Thus, the following matches any file in [A.B], or any subdirectory thereof:

[A.B ...]*.*.*
Upward relativization in pathnames is specified by one or more minuses ("-") as the
first directroy name. Downward relativization is represented by a null (O-character)
first directory name. For example, the following specifies a directory named FOO,
inferior to the superior directory of the directory of the default pathname with which
it is merged.

[-.FOO]X.V

A pathname version component of :newest is specified by a version of 0 in the
filename string. There is no VMS implementation of :oldest.

The percent sign (%) can be used in VMS wildcards to specify the matching of a
single character.

The pathname system does not recognize logical device names. They are specified as
device names, and are resolved by VMS, not the path name system. There may be
problems defaulting the directory specification of V AXlVMS pathnames when logical
devices are used.

VMS directories, when referenced as files, have a type of "DIR", and a version of 1.
See the section "Directory Pathnames and Directory Pathnames as Files", page 142.

12.9.6 TOPS·20 and TENEX

A TOPS-20 pathname has the form:

HOST:DEVICE:<DIRECTORV>NAHE.TVPE.VERSION

The default device is PS:.

TOPS-20 pathnames are mapped to uppercase. Special characters (including
lowercase letters) are quoted with the circle-x (0) character, which has the same
character code in the Symbolics character set as control-V in the TOPS-20 character
set.

184

Reference Guide to Streams, Files, and 110 March 1985

TOPS-20 pathnames represent versions of :oldest and :newest by the strings " .. -2"
and " .. 0", respectively.

The directory component of a TOPS-20 pathname is a list of directory level
components. The directory <FOO.BAR> is represented as the list ("FOO" "BAR").

The TOPS-20 init file naming convention is "<user>program.INIT".

When there not enough room in the status line to display an entire TOPS-20 file
name, the name is truncated and followed by a center-dot character to indicate that
there is more to the name than can be displayed.

TENEX pathnames are almost the same as TOPS-20 pathnames, except that the
version is preceded by a semicolon instead of a period, the default device is DSK
instead of PS, and the quoting requirements are slightly different.

12.9.7 Multics

Multics possesses a hierarchical file system. Every file has a name, and mayor may
not have a type. Multics does not support file versions. The sum of the lengths of
name and type and the period required to separate them must not exceed 32
characters. A maximum of 16 directory levels is supported. There are no devices
(:device to a Multics pathname always returns :unspecific). A Multics pathname
looks as follows:

>dir>ectory>name.type

The greater-than (">") character separates directory levels. Absolute pathnames
always start with greater-than's. Pathnames that specify no directory, relative or
otherwise, contain no greater-than's, for example:

foo.bar

The topmost directory of the directory tree (the ROOT directory) is indicated by the
absence of directory names but the continued presence of a greater-than. For
example, the following is a file named foo.bar, in the ROOT directory:

>foo.bar

There are no file type abbreviations needed for Multics.

File and directory names can be stored in upper, lower, or mixed case. Lower case is
the preferred case. Case is significant. Foo, FOO, and foo could well be the names
of three different files in the same directory.

Upward relativization in relative directory specifications is designated by a pathname
starting with the character less-than ("<"). All and only all absolute pathnames
start with the character greater-than (">"). Downward relativization is indicated by
a pathname, which although it contains greater-than's, does not start with one. For
example, the following specifies a directory named foo, inferior to the superior
directory of the directory of the default pathname with which it is merged.

March 1985

<foo>x.y

Multics directories, when referenced as files, have no specific type; they need not
have any type at all. See the section "Directory Pathnames and Directory
Pathnames as Files", page 142.

185

Files

The following example specifies a directory named bar, inferior to the directory of the
default pathname with which it is merged.

bar>x.y

Multics does not support :wild-inferiors, that is, recursive directory-level matching.
For that matter, Multics does not support any form of wildcard in the directory
component of a pathname. (Although :pathname-match matches such components,
Multics does not support them in directory lists.) A component of ~wild, in any
component except the directory component, is represented by *. *, when
accompanied by other characters, such as in foo*bar*, matches zero or more
characters, as a wildcard.

12.9.8 ITS

An ITS pathname looks like "HOST: DEVICE: DIR; Faa 69". The default device is
DSK:. but other devices such as ML:, ARC:, DVR:, or PTR: can be used.

ITS does not exactly fit the virtual file system model, in that a file name has two
components (FN1 and FN2) rather than three (name, type, and version).
Consequently to map any virtual pathname into an ITS filename, it is necessary to
choose whether the FN2 will be the type or the version. The rule is that usually
the type goes in the FN2 and the version is ignored; however, certain types (LISP
and TEXT) are ignored and instead the version goes in the FN2. Also if the type is
:unspecific the FN2 is the version.

An ITS filename is converted into a pathname by making the FN2 the version if it
is "<", ">", or a number. Otherwise the FN2 becomes the type. ITS pathnames
allow the special version symbols :oldest and :newest, which correspond to "<" and
">" respectively. If a version is specified, the type is always :unspecific. If a type
is specified, the version is :unspecific so that it does not override the type.

Each component of an ITS pathname is mapped to uppercase and truncated to six
characters.

Special characters (space, colon, and semicolon) in a component of an ITS pathname
can be quoted by prefixing them with right horseshoe (;:) or equivalence sign (=).

Right horseshoe is the same character code in the Symbolics character set as control
Q in the ITS character set.

The ITS init file naming convention is "homedir; user program".

186

Reference Guide to Streams, Files, and /10 March 1985

fs:*its-uninteresting-types* Variable
The ITS file system does not have separate file types and version numbers;
both components are stored in the "FN2". This variable is a list of the file
types that are "not important"; files with these types use the FN2 for a
version number. Files with other types use the FN2 for the type and do not
have a version number.

It is not possible to have two ITS pathnames with the same meaning that differ in
an ignored component. fs:*its-uninteresting-types* controls which types are
ignored in favor of retaining version numbers. The following table summarizes the
interaction of type and version components for ITS pathnames.

Type
supplied
omitted
"in teresting"
"uninteresting"

Version
omitted
supplied
supplied
supplied

Result
type is retained, version is :unspecific
type is :unspecific, version is retained
type is retained, version is :unspecific
type is :unspecific, version is retained

:fnl of fs:its-pathname Method
This message returns a string that is the FNI host-dependent component of
the pathname.

:fn2 of fs:its-pathname Method
This message returns a string that is the FN2 host-dependent component of
the pathname.

12.9.9 Ms-dos Pathnames

An MS-DOS pathname looks like this:

HOST:DEVICE:\DIR\ECTORV\NAHE.TVPE

The default device is C:. Uppercase is the only supported case. Pathnames typed in
lowercase are converted to uppercase on input.

File names and directolY components are restricted to eight characters. File types
are restricted to three characters. The canonical types for MS-DOS are the same as
for V AXJVMS.

Relative pathnames are permitted. Upward-level changes are signalled with " .. ". For
example:

PC:A: .. \ .. \DIR\FILE.LSP

12.9.10 Logical Path names

A logical pathname does not correspond to a particular file server; its host is called a
logical host. EvelY logical pathname can be translated into a corresponding
"physical" pathname; a mapping from logical hosts into physical hosts is used to
effect this translation.

187

March 1985 Files

Logical pathnames make ;t easy to move bodies of software to more than one file
system. An important example is the body of software that constitutes the
Symbolics-Lisp system. Any site may have a copy of all of the sources of the
programs that are loadec into the initial Lisp environment. Some sites store the
sources on a LMFS file system, while others store them on a V AXlVMS system.
However, other software in the system must use pathnames for these files in such a
way that the software will work correctly at all sites. This is accomplished with a
logical host called SYS; all pathnames for system software files are actually logical
.pathnames with host SYS. At each site, SYS is defined as a logical host, but
translation is different at each site. For example, at a site where the sources are
stored on a certain V AXlVMS system, path names of the SYS host are translated
into pathnames for that system.

You usually use logical pathnames when you are defining a system that you wish to
be portable to other sites. All logical pathnames in your system should translate to
a valid pathname on any kind of host to which the system might be distributed.
(Currently, this includes LMFS (Symbolics), V AXlVMS, Unix, and TOPS-20). The
converse is not true; logical pathnames make no attempt to provide a way to
represent all pathnames on a particular host. For this reason, no way is provided to
distinguish between between "foo" and "foo.", or "foo" and "FOO" on UNIX. Your
software will be much more portable if you choose good logical pathnames for your
files rather than trying to make the logical pathnames conform to the limitations of
whatever file system you happen to store your system on. For example, even though
logical pathnames have a quoting character, it is good practice to avoid using it.

Here, roughly, is how translation is done: To translate a logical pathname, the
system finds the mapping for that pathname's host and looks up that pathname's
directory in the mapping. If the directory is found, a new path name is created
whose host is the physical host, and whose device and directory come from the
mapping. The other components of the new pathname are left the same.

This means that when you invent a new logical host for a certain set of files, you
also make up a set of logical directory names, one for each of the directories that the
set of files is stored in. Now when you create the mappings at particular sites, you
can choose any physical host for the files to reside on, and for each of your logical
directory names, you can specify the actual directory name to use on the physical
host. This gives you flexibility in setting up your directory names; if you used a
logical directory name called fred and you want to move your set of files to a new
file server that already has a directory called fred, being used by someone else, you
can translate fred to some other name and so avoid getting in the way of the
existing directory. Furthermore, you can set up your directories on each host to
conform to the local naming conventions of that host.

However, a logical path name host can have the same name as a physical host: See
the section "Specifying a New Logical Host Name".

A logical pathname has the form HOST: DIRECTORY; NAME.TYPE.VERSION.

188

Reference Guide to Streams, Files, and 110 March 1985

On input, spaces can separate the name, type, and version. There is no way to
specify a device; parsing a logical pathname always returns a pathname whose device
component is :unspecific. This is because devices have no meaning in logical
pathnames. Logical pathnames can be hierarchical; directory levels are separated by
semicolons.

Logical pathnames can be relative. That is, a pathname can have a directory
component whose meaning is "when merging against a default, append these
directories onto the end of any default directories." The syntax for this is
HOST: ; DIRECTORY; NAME. TYPE. VERSION, that is, a leading bare; before the
directory component. Thus, the above pathname, merged against a default of
HOST: USER; FOO.LISP.NEWEST gives
HOST: USER; DIRECTORY; NAME.TYPE.VERSION.

The equivalence-sign character (=) can be used for quoting special characters such as
spaces and semicolons. (The use of this character is discouraged, however, as such
files are unlikely to be transportable). The double-arrow character (~) can be used
as a place-holder for unspecified components. Components are not mapped to
uppercase. The :newest, :oldest, and :wild values for versions are specified with
the strings NEWEST, OLDEST, and * respectively. On input, :newest can be
represen ted by > and :oldest by <.

There is no init file naming convention for logical hosts; you cannot log into them.
The :string-for-host, :string-for-wholine, :string-for-dired, and
:string-for-editor messages are all passed on to the translated pathname, but the
:string-for-printing is handled by the fs:logical-pathname flavor itself and shows
the logical name.

12.9.10.1 Logical Pathname Wildcard Syntax

Logical pathnames support a wildcard syntax meaning "Match any directory, and any
subdirectory, to any level." For example:

Show Directory SVS:**;*.BFD.*

Here, the Show Directory command lists all font files anywhere in the SYS
hierarchy, to any level.

This corresponds to the >**> syntax for LMFS pathnames, and the [name ...] syntax
for VAXNMS file specifications. See the section "LMFS Pathnames", page 174. See
the section "VAXNMS Pathnames", page 180.

This makes it easy to specify logical pathname translations on Lisp Machines and
V AXNMS. For example:

(fs:set-logical-pathname-host "SVS"
:translations '«"svs:**;*.*.*" "ACME-LISPM:>Rel-6>**>*.*.*"»)

189

March 1985 Files

(fs:set-logical-pathname-host "SYS"
:translations
'«"SYS:**;*.*.*" "ACHE-VHS:SYHBOLICS:[REL6 ...]*.*;*"»
:no-translate nil)

For more information about the argument :no-translate: See the section
"Translation Rules" in Release 6.0 Release Notes.

It is important to note that wherever a ; .. appears in the logical-host pathname,
there must be a corresponding "wild-inferiors" pathname on the physical-host
pathname.

UNIX and TOPS-20 do not have a syntax with this meaning. For these hosts, it is
necessary to list explicitly each level of directory to be translated. For example:

(fs:set-logical-pathname-host "SYS"
:translations
'«"SYS:*;*.*.*"

"ACHE-UNIX:llusrllsymbolicsllrel-611*11*.*.*")
("SYS:*;*;*.*.*"
"ACHE-UNIX:llusrllsymbolicsllrel-611*11*11*.*.*")

("SYS:*;*;*;*.*.*"
"ACHE-UNIX:llusrllsymbolicsllrel-611*11*11*1/*.*.*")

("SYS:*;*;*;*;*.*;*"
"ACHE-UNIX:llusrl/symbolicsllrel-611*11*11*11*11*.*.*" »

:no-translate nil)

12.9.10.2 Logical Pathname Translation

This section explains the format of the "translations" list of logical pathnames and
the rules for translating a logical path name to a physical pathname.

Each element of the list (one translation) specifies two wildcard pathnames, the first
on the logical host and the second on the physical. In the Lisp form (in the file
sys:site;host.translations) that specifies this form, they are given as strings to be
parsed against these respective hosts. As they are parsed, they are merged with a
pathname of wild name, wild type, and wild version.

Following is an example of a translations list. This is a sample LMFS translation
table for the SYS host, slightly more complex than the default:

'«"SYS:DOC;**;*.*.*" "ACHE-S:>Rel-6>doc>**>*.*.*")
("SYS:**;*.*.*" "ACHE-Q:>Rel-6>**>*.*.*"»

There are two phases to the translation process. In the first phase, a logicalJphysical
pathname pair is found in the translation table. This pair is called the translation
pair.

In the second phase, this pair is presented to a translation rule to be processed.
Normally, this rule uses :translate-wild-pathname to translate the pathname using
the translation pair, but there is a wide variety of translation rules.

190

Reference Guide to Streams. Files. and /10 March 1985

The first phase consists of matching the pathname to' be translated against each
first element of each translation, in succession. (The :pathname-match message is
used.) The order in the list is thus very important. The first match is then taken
to be the translation pair for the second phase.

When the physical host supports a syntax for :wild-inferiors (for example, >**> on
LMFS) , that syntax can be used to have a translation that matches "everything
else", as in the example above. If no equivalent syntax is supported, a separate wild
card directory for each level of directory likely to be encountered serves the same
purpose, as in the example below.

'«"SYs:*;*.*.*H "ACHE-UNIX:llusrllrel-611*11*.*")
("SYS:*;*;*.*.*H "ACHE-UNIX:llusrllrel-611*11*11*.*")
("SYS:*;*;*;*.*.*" "ACHE-UNIX:llusrllrel-611*11*11*11*.*"»

This example handles any SYS pathname with up to three directory levels. In the
presence of such a translation, it is impossible to have an undefined translation.

The second phase is potentially more complex. In its simplest form, it reduces to
producing the translated pathname by sending the
:translate-wild-pathname-reversible message to the logical pathname, with the
first element of the translation as the source pattern and the second element of the
translation as the target pattern. See the section "Wildcard Pathname Mapping",
page 153. See the section "Wildcard Directory Mapping", page 155. See the section
"Reversible Wildcard Pathname Translation", page 191.

However, before deciding to using :translate-wild-pathname-reversible, a search
is done to find a more suitable rule for performing the translation. With each logical
host, there are three sets of translation rules. In addition, there is a global set of
rules, and a default.

Here is the order in which these rules are searched:

Permanent

Site

Supplied

Global

Default

The permanent translation rules are special purpose rules that
cannot be overridden. They provide for such things as the
translation of patch file pathnames. This table is searched first.

The site translation rules are provided to override the supplied
translation rules at a specific site.

The normal, supplied translation rules are normally supplied by
the author of the software using the logical host.

This is a set of rules independent of any partiCUlar host. This
table is not currently used for anything, but it is provided for
future extension.

This is the rule used when no other rule is found. This is the
:translate-wild rule, which uses L[:translate-wild-pathname
reversible] to translate according to the translation pair found in
phase 1 of the translation process.

191

March 1985 Files

Back-translation is performed by searching the second elements of the translations
list, and translating in the other direction. :translate-wild-pathname-reversible
is always used for this, so it is not guaranteed to come up with the same logical
pathname as might be expected.

Reversible Wildcard Path name Translation

A special version of wild pathname translation, called "reversible wild pathname
translation," is used. The difference between regular wild pathname translation and
reversible translation is in the treatment of a target wildcard pattern consisting
solely of *. In regular translation, a target pattern of :wild causes the source
component to be copied verbatim. This is a useful user-interface feature, but it
causes dropping of information and resultant noninvertibility of the transformation.
In reversible mapping, this feature is not present. Logical pathname translation and
back-translation is done in this mode.

Example:

Source Source Target
Type pattern instance pattern Result
Regular foo* foolish * foolish
Reversible foo* foolish * lish
Either * bar foo-* foo-bar

Note that the inverse translation of foo-bar to bar cannot be accomplished under
regular translation.

Defining a Translation Rule

Translation rules are defined using the fs:set-Iogical-pathname-host function,
using the :translation-rule or :site-translation-rule argument. (The other rule
tables are not normally set by the user). These arguments should be an alist of
system type and translation rule specifications.

((: vms VMS rule specifications ...)
(: vms4 VMS4 rule specifications ...)
(: un i x UNIX rule specifications ... »

Each rule specification consists of a pattern, a rule type, and optional arguments, as
in the following example.

("PICTURE:EDITOR;lINE-DRAWING-COMMANDS.*.*" :vms-new-pathname :name "lINECMNDS")

In this example, "PICTURE:EDITOR;LINE-DRA WING-COMMANDS. *. *" is the
pattern, :vms-new-pathname is the rule type, and :name and "LINECMNDS"
form a keyword/value pair of arguments to the :vms-new-pathname rule type.

Normally, translation rules are defined in the system definition file before a
defsystem form, so that the rules are loaded before they are needed. If you wish
to override the translation rules provided either by Symbolics or another vendor, you

192

Reference Guide to Streams, Files, and /10 March 1985

can use the :site-rules argument to the call to fs:set-Iogical-pathname-host,
normally placed in the translation file.

The following sections describe the various rule types that exist and their arguments.

:translate-wild &rest options Translation Rule

The default translation rule's type is :translate-wild. This simply sends the source
pattern a :translate-wild-pathname-reversible with the target pattern as target
and the pathname being translated as the source pathname. For example:

contents of sys. translations file:
(fs:set-logical-pathname-host "SVS"

:translations '«"SVS:DOC;**;*.*.*" "S:>Rel-6>doc>*.*.*")
("svs:**;*.*.*" "Q:>Rel-6>**>*.*.*"»)

path name to translate:
SVS:IO;PATHNH.LISP.23

translation pair found in phase 1:
("svs:**;*.*.*" "ACHE:>Rel-6>**>*.*.*")

result of translation:
ACHE:>Rel-6>io>pathnm.lisp.23

In other words, the default is for the translation to occur according to the wildcard
mapping given in the translations.

:new-pathname &key device directory name type version Translation Rule

The :new-pathname translation rule type is similar to :translate-wild, but replaces
the directory, name, type, or version. Any components not specified in the argument
list will not be replaced, and will be derived via
:translate-wild-pathname-reversible as for the :translate-wild translation rule
type.

:vms-heuristicate &optional substitute Translation Rule

This translation rule tries hard to make understandable VMS pathnames out of
longer, hyphenated filenames. It works for both :VMS and :VMS4 hosts. It
produces usually understandable, hopefully unique, legal names and directories. In
operation, it is similar to the :translate-wild type, but the components translated
by wildcards are subjected to heuristics if needed to fit VMS's pathname syntax.

193

March 1985 Files

The substitute argument is used to perform character substitutions. For example,
for VMS4, it can be used to substitute "_" for "_".

("SYS:**;*.*.*" :vrns-heuristicate «#\- #_»)

:vms-heuristicate-name &optional substitute Translation Rule

:vms-heuristicate-name is like :vms-heuristicate, but only heuristicates the
name.

:vms-heuristicate-directory &optional substitute Translation Rule

:vms-heuristicate-directory is like :vms-heuristicate, but only heuristicates the
directory name.

:vms-new-pathname &key device directory name type version Translation Rule

The :vms-new-pathname translation rule is a cross between :new-pathname and
:vms-heuristicate. Components not explicitly specified in the argument list are
supplied by wildcard mapping plus heuristics as for :vms-heuristicate.

:vms-font &optional renamings Translation Rule

The :vms-font translation rule parses the name component of the logical pathname
as a font spec. For example, in timesroman10b, the font name is timesroman,
the font size is 10, and the face code is b. (The face code is optional). The font
name is subjected to the VMS heuristics to fit in a smaller space (to allow room for
the font size and face code). The result is concatenated with the font size and face
code to construct a new name.

If the renamings argument is supplied, it is an alist of font names and replacement
to be used instead of the one produced by the heuristics. This is useful in cases
where the heuristic produces a confusing name, or where there would otherwise be
name conflicts. For example, the following translation rule is used with the SYS:
host for VMS hosts.

194

Reference Guide to Streams, Files, and liD

("SYS: FONTS; LGP-l; *.BFD.*" :vrns-font
«"DANG-MATH" "DANGM")

("GHELVETICA" "GHLVT")
("HELVETICA" "HELVT")
("TIMESROMAN" "TIMSR")
("XGP-VGV" "XGPW"»)

March 1985

This translation rule serves to encode the relevant information that makes each font
distinct.

In addition, :vms-font performs full VMS heuristics on the directory.

:vms-microcode Translation Rule

This translation rule encodes the microcode names in such a way as to be sure to
retain the information that distinguishes different microcodes.

The name component of the logical pathname is parsed into words. Each word is
looked up in the alist *unix-microcode-translation-aIist*. (The alist is shared
with the equivalent translation for UNIX). If found, it is replaced with the
replacement (a single character, except "MIe" maps to "") found in the second
element of the alist bucket. This sequence of characters is then concatenated to
produce the new filename.

The directory component is subject to full heuristication.

:tops20-heuristicate-directory &optional
(levels fs:*default-tops20-directory-levels*) Translation Rule

The :tops20-heuristicate-directory translation rule compensates for the fact that
TOPS20 directories are limited to a size of 39, including the "." characters as
directory-level separators. Each level of directory is allocated a share of the available
space, and is compressed to fit in that space as needed. In determining how much
space to allocate to each level, the rule assumes that no more than levels directory
levels will be needed. The default is fs:*default-tops20-directory-levels*, or 3
levels.

:unix-microcode Translation Rule

This translation rule encodes the microcode names in such a way as to be sure to
retain the information that distinguishes different microcodes.

The name component of the logical pathname is parsed into words. Each word is

March 1985

looked up in the alist *unix-microcode-translation-alist*. (The alist is shared
with the equivalent translation for VMS). If found, it is replaced with the
replacement (a single character, except "MIe" maps to "") found in the second
element of the alist bucket. This sequence of characters is then concatenated to
produce the new filename.

195

Files

:unix-font &optional renamings Translation Rule

The :unix-font translation rule parses the name component of the logical pathname
as a font spec. For example, in timesromanl0b, the font name is timesroman,
the font size is 10, and the face code is b. (The face code is optional). The font
name is subjected to the UNIX heuristics to fit in a smaller space (to allow room for
the font size and face code). The result is concatenated with the font size and face
code to construct a new name.

If the renamings argument is supplied, it is an alist of font names and replacement
to be used instead of the one produced by the heuristics. This is useful in cases
where the heuristic produces a confusing name, or where there would otherwise be
name conflicts. For example, the following translation rule is used with the SYS:
host for UNIX hosts.

("SYS: FONTS; LGP-l; *.BFD.*" :unix-font
«"DANG-MATH" "DANGMT")

("GHELVETICA" "GHELVT")
("HELVETICA" "HELVET")
("TIMESROMAN" "TIMESR")
("XGP-VGV" "XGPVGV"»)

This translation rule serves to encode the relevant information that makes each font
distinct.

:unix-type-and-version &optional renamings Translation Rule

The :unix-type-and-version translation rule is used for situations where you need
to retain both the type and version. This is usually needed where differing versions
of the file need to coexist.

The name component is matched against the renamings alist. If it is found, the
second element of the alist bucket is used instead. Then, if the last character of the
name (or the replacement) is a digit, a n+n is added to the end. Then, the version
number (or ... , if nil or "*" if :wild) is added to the end. This is then used as the
name component. The type is handled via the normal mechanisms.

The version is added to the name rather than the end of the type, so that the type
field can be recognized by programs that look at the type (or canonical type).

196

Reference Guide to Streams, Fifes, and /10 March 1985

:site-directory &key device directory name type version Translation Rule

The :site-directory translation rule substitutes the :site-directory attribute from
the local site object for the host and directory. The arglist is like for
:new-pathname. This is used to translate SYS:SITE;.

As a special feature, this rule can be overridden by an explicit entry for SYS: SITE;
in the translations. This can be useful when debugging, to get a different site
directory without modifying your site namespace object.

fs:patch-file system-name &optional file-type Translation Rule

fs:patch-file rules, which will often be seen when doing a fs:describe-Iogical-host,
are internal to the patch system. They provide for the translation of patch file
logical names to physical files, in a system-dependent manner. These rules are
added as a result of defining a system to be patchable.

fs:describe-Iogical-host host Function
The fs:describe-Iogical-host function takes a logical host (or the name of a
logical host) and provides various information about the host, including:

• Default physical host.

• Translations.

• Translation rules sorted by search order.

• Translation rules sorted by group.

It is often useful for determining what went wrong with a translation file.

12.9.10.3 Splitting Logical Hosts Across Physical Hosts

It is possible to have a logical host translate to more than one physical host. All
that is needed is an explicit specification of the hosts involved, in the translation list
given to fs:set-Iogical-pathname-host. For example:

(fs:set-logical-pathname-host "SYS"
:translations '«"SYS:DOC;**;*.*.*" "ACME-lISPM:>Rel-6>doc>**>*.*.*")

("SYS:**;*.*.*" "ACMEVAX:SYMBOlICS:[REl6 ...]*.*.*"»
:no-translate nil)

Note that it is not necessary to specify the :physical-host argument to
fs:set-Iogical-pathname-host as long as the host names are specified in the

March 1985

translation list. If the argument is specified, it serves as a default when parsing
those pathnames.

197

Files

fs:make-Iogical-pathname-host name &key Function
no-search-for-shadowed-physical

Defines name, which should be a string or symbol, to be the name of a
logical pathname host. name should not conflict with the name of any
existing host, logical or physical.

(fs:make-Iogical-pathname-host) also loads the file
sys:site;name.translations and arranges for that file to be reloaded in the
future. load-patches checks the translations file for each logical host that is
defined in the current world; if any file has been changed it is reloaded.
load-patches does this if and only if no specific systems are specified in its
arguments.

fs:make-Iogical-pathname-host alters the
logical-pathnames-translation-files system so that it contains the
translations files for all logical hosts defined in the current world.
load-patches loads updated translations files by calling make-system on this
system.

An fs:make-Iogical-pathname-host form often appears in the file
sys: site;system-name. system. make-system looks for this file when given the
name of an unknown system. The fs:make-Iogical-pathname-host form
must be the first form in the file, as the second form, a call to
si:set-system-source-file, depends on the previous definition of the logical
host.

Example: Following are the contents of the file sys: site;cube. system:

;;; -*- Hade: LISP; Package: USER -*-

(fs:make-logical-pathname-host "cube")
(si:set-system-source-file "cube" "cube: cube; cubpkg")

The argument :no-search-for-shadowed-physical (default nil) means to
look only in the existing pathname hosts for a host with the same name as
the logical host. This saves time by not asking the namespace server
whether the name of the newly defined logical host conflicts with the names
of any physical hosts, but it prevents you from seeing the following warnings:

Warning: the host -A must now be referred to as -A: in pathnames,
since -A is now a logical pathname host.
This affects -[no-:;-:*-O-] extant pathnames.

Warning: the nickname -A: for the physical host -A
will now refer instead to the
logical pathname host -A.
Use -A: in pathnames.

198

Reference Guide to Streams, Files, and 110 March 1985

fs:add-Iogical-pathname-host is an obsolete name for this function.

fs:set-Iogical-pathname-host logical-host &key physical-host Function
translations rulessite-rules (no-translate t)
no-search-for-shadowed-physical

Creates a logical host named logical-host if it does not already exist. It then
establishes translations of logical directories on logical-host to physical
directories on various hosts. (physical-host serves as a default.) translations
is a "translations" list of two-element lists of strings representing associated
logical directories (source patterns) and physical directories (target patterns).
For the format of the lists and the translation rules: See the section "Logical
Pathname Translation", page 189.

Source patterns are logical pathnames that are matched against the
pathname being translated. The target patterns are physical pathnames and
can be on any host.

If the physical pathname is on a TOPS-20 or VAXNMS host, you should
include the device name. In the case of VAXNMS, it is important that this
device name be either a physical device name or the name of a "concealed
device." The simplest way to choose a device name is to connect to the
VAXNMS system in question. If you want to use FOO:[BAR ...]*.*.* as the
target, where FOO is a V AXNMS system-wide logical name, connect to
V AXNMS and do the following:

$ DIRECTORY FOO:[BAR ...]*.*.*

Directory USER$DISK:[BAR ...]

In this example, you should use USER$DISK:[BAR ...] instead of
FOO:[BAR ...] in your translations.

If no-translate is nil, the translation of every interned logical pathname is
checked. Properties are copied from the old physical pathname to the the
new one, and logical pathnames that now have no corresponding physical
pathnames are uninterned. If no-translate is not nil or not supplied, this
mapping is suppressed, and some physical pathnames might not get the
properties of the logical pathname. This is not normally of any consequence,
so no-translate defaults to t.

A call to fs:set-Iogical-pathname-host is usually the only form in the file
sys:site;logical-host.translations. This file is loaded by
fs:make-Iogical-pathname-host (always in the file-system package), which
also arranges for it to be reloaded in the future. load-patches checks this
file for all logical hosts in the current world and reloads the file if it has
changed. Similarly, changing the site object will cause each translation file to
be reloaded from the new site directory.

199

March 1985 Files

The argument no-search-for-shadowed-physical (default nil) means to look
only in the existing pathname hosts for a host with the same name as the
logical host. This saves time by not asking the namespace server whether
the name of the newly defined logical host conflicts with the names of any
physical hosts, but it prevents you from seeing the following warnings:

Warning: the host -A must now be referred to as -A: in pathnames,
since -A is now a logical pathname host.
This affects -[no-:;-:*-O-] extant pathnames.

Warning: the nickname -A: for the physical host -A

Example:

will now refer instead to the
logical pathname host -A.
Use -A: in pathnames.

Following is a typical content of the file sys:site;sys.translations:

;;; -*- Mode: LISP; Package: FILE-SVSTEM -*-

(set-logical-pathname-host "sys"
:translations '«"**;*.*.*" ">Rel-6>**>"»)

:translated-pathname of fs:logical-pathname Method
Converts a logical pathname to a physical pathname. It returns the
translated pathname of this instance: a pathname whose :host component is
the physical host that corresponds to this instance's logical host. See the
section "Logical Pathnames", page 186.

If this message is sent to a physical pathname, it simply returns itself.

:back-translated-pathname path name of fs:logical-pathname Method
Converts a physical pathname to a logical pathname. pathname should be a
pathname whose host is the physical host corresponding to this instance's
logical host. This returns a pathname whose host is the logical host and
whose translation is pathname. See the section "Logical Pathnames", page
186.

This message might be used in connection with truenames. Given a stream
that was obtained by opening a logical pathname,

(send stream :pathname)

returns the logical pathname that was opened.

(send stream :truename)

returns the true name of the file that is open, which of course is a
pathname on the physical host. To get this in the form of a logical
pathname, one would do the following:

200

Reference Guide to Streams, Files, and 110 March 1985

(send (send stream :pathname)
:back-translated-pathname
(send stream :truename»

If this message is sent to a physical pathname, it simply returns its
argument. Thus the above example works no matter what kind of pathname
was opened to create the stream. However, it is important to note two
situations in which back translation can fail to do what you expect:

Links If opening the file involved following a link, the truename
will no longer match, and back translation might not be
able to convert it to a physical pathname at all.

File-system restrictions
If the translation involved compressing or modifying a
name to adapt to a file-system's rules, the physical
pathname may be translated to a logical pathname
different from the one originally used.

Back translation is useful only in cases where the logical pathname is wanted
for informational, not operational, purposes. For example, if you remember a
back translation to reopen the file, you may end up with physical instead of
logical pathnames in your program. Physical pathnames are not
transportable between sites.

One way to avoid this problem is to avoid back translation. Often, all that is
needed is the version number, in which case the following code will serve:

(send (send stream :pathname)
:new-default-pathname
:version (send (send stream :truename) :version»

Note that :new-defauIt-pathname is used rather than :new-pathname.
This is necessary because the logical host and the physical host are of
different types. When copying components between host types, you need to
allow for certain substitutions. In this case, if the physical host is a UNIX
system, the version will be :unspecific, and :new-defauIt-pathname will
convert this to the nearest equivalent for logical pathnames: :newest.

12.10 Init File Naming Conventions

Init files are of canonical type :lisp for source files and :bin for compiled files. For
hosts that support long file names, the init file name consists of program-name with
"-INIT" appended. Thus, the standard file name for a 3600-family init file is
LISPM-INIT; for a Zmail init file, it is ZMAIL-INIT. Hosts that do not support long
file names have conventions peculiar to each system.

Following are the names of lispm init source files on some hosts:

201

March 1985 Files

Host system File narne

LMFS/TOPS-20 LISPM-INIT.LISP

UNIX lispm-init.l

VMS LISPMINI.LSP

Multics lispm-init.lisp

ITS If user has own directory: LISPM >. If user does not have own
directory: USER LISPM.

12.11 Maclisp Conversion

This section briefly discusses how to convert from Maclisp I/O and filename functions
to the corresponding but often more general Symbolics-Lisp versions.

The functions load, open, probef, renamef, and deletef are upward compatible.
Most of them take optional additional arguments to do additional things, usually
connected with error handling. Where Maclisp expects a file name in the form of a
symbol or a list, the Symbolics system accepts those or a string or a pathname
object. probef returns a pathname or nil rather than a namelist or nil.

load keeps defaults, which it updates from the file name it is given.

The old-I/O functions uread, crunit, and so on do not exist in the Symbolics
system. fasload exists but is a function rather than a special form.

There is a special form, with-open-file, which should replace most calls to open.
See the function with-open-file, page 91.

The functions for manipulating file names themselves are different. The system
accepts a namelist as a pathname, but nevers create a namelist. mergef is replaced
by fs:merge-pathname-defaults. defaultf is replaced by fs:default-pathname or
fs:set-defauIt-pathname, depending on whether it is given an argument.
namestring is replaced by the :string-for-printing message to a pathname, or the
string function. namelist is approximately replaced by fs:parse-pathname.
(status udir) and (status homedir) are approximately replaced by
fs:user-homedir. The truename function is replaced by the :truename stream
operation, which returns a pathname containing the actual name of the file open on
that stream. The directory and allfiles functions are replaced by
fs:directory-list.

202

Reference Guide to Streams, Fifes, and /10 March 1985

March 1985

13. Lisp Machine File System

13.1 Introduction to LMFS

The Lisp Machine File System (LMFS) provides a file system that runs on a
Symbolics computer and stores information on the computer's disks. The
information can be accessed locally (from that computer itself) or from other
computers.

For information on performing I/O on files: See the section "Streams", page 1.

203

Files

This discussion does not describe the internal program logic or organizational details
of the file system. The methods for performing I/O on files are described elsewhere.
See the section "Streams", page 1.

13.2 Concepts

Files are categorized as character files and binary files. Character files consist of a
certain number (the byte count) of characters in the Symbolics character set. Binary
files consist of a number (their byte count) of binary data bytes, which are unsigned
binary numbers up to sixteen bits in length.

A file has a name, a type, and a version. The name is a character string of any
length. The type is a character string of up to fourteen characters in length, and
the version a positive integer up to 16777215. Names and types can consist of upper
and lower case characters. However, searching for file names is not sensitive to case.
This means that if you create a file whose name is "MyFile", the file has that name
and appears that way in directory listings, but if you ask for "myfile" or "MYFILE"
or "MYfIle", the file is found. The characters ">" and "Return" cannot appear in
names and types.

The name is an arbitrary user-chosen string describing the file. The type is
supposed to indicate what type of data the file contains; a type of "lisp" is the
system convention for files containing Lisp source programs, "bin" for compiled Lisp
programs, and so forth. The version number distinguishes successive generations of
a file; to change a file, you normally read the latest version of the file into the
Symbolics computer, modify it, and write out a new version with the next highest
version number. The general scheme for naming files is covered elsewhere. See the
section "Naming of Files", page 127.

Files reside in directories. The combination of name, type, and version of any file is
unique in the directory in which it is contained. With the exception of a single
directory (the ROOT), directories also reside in other directories. The directory in

204

Reference Guide to Streams, Files, and 110 March 1985

which a file or directory resides is called its parent directory, and these files and
directories are said to be inferior to their parent directory. Directories and files thus
form a strict tree (hierarchy); the ROOT directory is the root of this tree.
Directories have a type of "directorY' and a version of 1. Thus, the name of a
directory alone identifies it in its containing (superior) directory. It is not possible to
"fool" LMFS into thinking a file is a directory by giving it a type of "directorY' and a
version of 1, however.

Links are the third (and last) kind of object that can live in a directory. A link
contains the character-string representation of the pathname of something else in
the same file system, called the target of the link. This pathname specifies a
directory, a name and a type, and it can specify a version. A link is conceptually an
indirect pointer to something else; when certain operations are done on a link, the
operation really gets done to the target instead of the link itself.

It is possible to have "directory links". See the section "LMFS Links", page 210.

The specific syntactic conventions, restrictions, and other information about LMFS
pathnames are described elsewhere .. See the section "LMFS Pathnames", page 174.

LMFS also stores and maintains properties of objects. For exareple, for each file it
stores the creation date, the author, whether the file has been backed up, and so
on. Users can also create their own properties; each file has a property list that lets
you store arbitrary associated information with the file. See the section "LMFS
Properties", page 204.

The File System Editor is an interactive program that lets you manipulate the file
system (the local LMFS system or the system on any host). You can invoke the
program by typing SELECT F. See the section "File System Editor", page 23l.

Before you use the file system on a machine, you must log into that machine. If
you are using the file system locally, it is desirable to log out of the machine before
you cold boot it or otherwise abandon it. This is especially desirable if you have
created files on the file system or expunged directories (see below) while using it. If
you do not follow this recommendation, you will run out free disk records at the rate
of about 30 to 50 records per cold boot (in which files were created), and the free
record salvager will have to be run.

You do not have to take any special action to access the local file system on your
Symbolics computer. If you use the host name of the machine, or the special string
"local" as a host name, it is accessed automatically, as with any host.

13.3 Properties

Files, directories, and links have various properties. There are system properties,
which are defined and maintained by the file system itself, and user properties,
which are defined and maintained by programs and people that use the file system.

205

March 1985 Files

Every property has a name, which is a keyword symbol, and a value, which is a Lisp
object. The names of all of the system properties are listed below. (These
properties should not be confused with the file attribute list, the -*- line in the
beginning of the file.) See the section "File Attribute Lists", page 109.

You can examine the values of properties by using either the [View Properties]
command in the File System Editor, or View File Properties (!"'I-x) in Zmacs. Users
alter the values by using the either the [Edit Properties] command in the File
System Editor, or Change File Properties (!"'I-x) in Zmacs. See the section "File
System Editor", page 231. Programs access the values of properties by using the
fs:directory-list and fs:file-properties functions and alter the values by using the
fs:cbange-file-properties function. See the section "Accessing Directories", page
117.

Some system properties apply to files, directories, and links alike; for example, all
these objects have an author and a creation time. Other system properties are not
defined for all kinds of object; for example, only files have a length in bytes, only
directories have an auto-expunge interval, and only links have a link-to. The table of
system properties tells you which kinds of objects each property applies to. User
properties can always apply to any object.

The values of some system properties are determined by the file system and cannot
be set by the user; for example, you cannot set the length in bytes nor the byte size.
The values of other properties can be changed arbitrarily; for example, you can set
the generation retention count or the don't delete property whenever you want to.
The properties of the latter set are called changeable properties. The reason for the
distinction is that the properties in the first group reflect facts about the file,
whereas those in the second group represent the current state of user-settable
options regarding the file.

When the fs:cbange-file-properties function is called for a changeable system
property, the property is changed. When it is called for a non-changeable system
property, an error is signalled. When it is called for any property name that is not
the name of one of the system properties (listed below), it assumes that it is the
name of a user property, and the property is established or changed.

When the fs:file-properties function is called for a LMFS file, it returns a second
value: a list of the names of all the properties of the file that are changeable. This
function lists all the system properties and all the user properties for the object it is
given.

The names of user properties must be symbols on the keyword package, and must
not be the same as any of the system property names. The value associated with a
user property must be a string. The combined length of the name of the property
and its value must not exceed 512 characters. To remove a user property from a
file, you set the value of the property to nil. fs:file-properties returns all the user
properties of a file, but fs:directory-list does not return any of them. You can
create new user properties with the [New Property] command in the File System

206

Reference Guide to Streams, Files, and 110 March 1985

Editor; after they are created, you can edit them with [Edit Properties]. Programs
create and change user properties by using fs:cbange-file-properties.

User properties involve a subtle trap. If you' misspell or otherwise misconstrue the
name of a system property, LMFS assumes that you have given the name of a user
property, and set it. Thus, LMFS can never admit of, nor diagnose, an
unrecognized, or invalid, property name.

Here is a list of all of the standard properties that LMFS maintains. The standard,
generic interpretation and representations of the system standard properties among
them can be found elsewhere: See the section "Functions for Accessing Directories",
page 117. Refer to the table below for the rest.

:length-in-bytes
:byte-size
: author
:creation-date
:modification-date
: reference-date
:deleted
:not-backed-up
:dont-delete
:dont-reap
:open-for-writing (LHFS-specific)
:length-in-blocks
:generation-retention-count
:directory
:auto-expunge-interval
:date-last-expunged
:default-generation-retention-count
:default-link-transparencies (LHFS-specific)
: 1 ink-to
:link-transparencies (LHFS-specific)

The following among them are changeable, that is, users can set their values by
means of fs:cbange-file-properties:

March 1985

:generation-retention-count
:modification-date
:reference-date
:creation-date
:author
:de1eted
:dont-reap
:dont-de1ete
:auto-expunge-interva1
:defau1t-generation-retention-count
:defau1t-1ink-transparencies
:1 ink-transparencies

The following is a list of all the properties supported by LMFS that are either
specific to LMFS or require other special comment.

:byte-size (Files)

207

Files

For a character file, 8. For a binary file, the byte size of the file (the
number of bits in each byte), a fumum between 1 and 16, inclusive. LMFS
maintains both the byte size and the binary/character quality of a file
natively. It is not permitted to open a binary file with a byte size other than
that with which it was written. This property is not currently a changeable
one.

:length-in-blocks (Files, directories, links)
A LMFS record is 1152 32-bit words. This is the basic allocation unit of the
file system. The name of the generic system property is confusing in the
case of LMFS, for a LMFS record is composed of multiple disk blocks. This
property cannot be meaningful for directories.

:creation-date (Files, directories, links) (Changeable)
LMFS allows setting of creation date by user programs. Creation date, when
not set by a user program, is also updated when a file is appended to.

:modification-date (Files)
The most recent time at which this file was modified, expressed in Universal
Time. This is the same as the creation date unless the file has been opened
for appending. Operations such as renaming and property changing update
this property, but do not update creation date. The dumper, for instance, is
driven off this property.

:author (Files, directories, links) (Changeable)
This property is user-settable in LMFS.

:dont-delete (Files, directories, links) (Changeable)
If t, does not allow this object to be deleted. The purpose of this attribute is
to prevent the accidental deletion of important files. An error results if an
attempt is made to delete this file.

208

Reference Guide to Streams, Files, and /10 March 1985

:dont-reap (Files, directories, links) (Changeable)
This attribute, although maintained internally by LMFS, is not interpreted
by LMFS. Dired directory maintenance tools use this property.

:default-generation-retention-count (Directories) (Changeable)
The default value for the :generation-retention-count property of new
objects created in this directory. See the section "LMFS Deletion, Expunging,
and Versions", page 209. nil or a nonnegative flXIlum.

:default-link-transparencies (Directories) (Changeable)
The initial value for the :link-transparencies attribute of links created in
this directory. See the section "LMFS Links", page 210. To set this
property, use the [Link Transparencies] command in the File System Editor
rather than [Edit Properties].

:link-transparencies (Links) (Changeable)
The transparencies of this link. See the section "LMFS Links", page 210.
To set this property, use either the [Edit Link Transparencies] or [Edit
Properties] commands in the File System Editor, or Change File Properties
(r...-x) in Zmacs.

:complete-dump-date (Files, directories, links)
The most recent time at which this object was dumped on a complete dump
tape, expressed in Universal Time. See the section "LMFS Backup", page
212. A positive bignum. If this object has never been dumped on a complete
dump tape, this property is not present. This property does not appear in
directory listings.

:complete-dump-tape (Files, directories, links)
The tape reel ID of the complete dump tape on which this object was most
recently dumped. A string. If this object has never been dumped on a
complete dump tape, this property is not present. This property does not
appear in directory listings.

:incremental-dump-date (Files, directories, links)
The most recent time at which this object was dumped on an incremental or
consolidated dump tape, expressed in Universal Time. A positive bignum. If
this object has never been dumped on an incremental dump tape, this
property is not present. This property does not appear in directory listings.

:incremental-dump-tape (Files, directories, links)
The tape reel ID of the incremental or consolidated dump tape on which this
object was most recently dumped. A string. If this object has never been
dumped on an incremental dump tape, this property is not present. This
property does not appear in directory listings.

209

March 1985 Files

13.4 Deletion, Expunging, and Versions

When an object (file, directory, or link) in LMFS is deleted, it does not really cease
to exist. Instead, it is marked as "deleted" and continues to reside in the directory.
If you change your mind about whether the file should be deleted, you can undelete
the file, which will bring it back. The deleted objects in a directory actually go away
when the directory is expunged; this can happen by explicit user command or by
means of the auto-expunge feature (see below). When a directory is expunged, the
objects in it really disappear, and cannot be brought back (except from backup
tapes.) See the section "LMFS Backup", page 212.

When a file is deleted, any attempts to open the file will fail as if the file did not
exist. It is possible to open a deleted file by supplying the :deleted keyword to
open, but this is rare.

Users normally delete and undelete objects with the Zmacs commands Delete File
(M-X) and Undelete File (M-X), or [Delete] and [Undelete] commands in the File
System editor, or D and U in Dired. Directories can be expunged with Dired or the
File System Editor, also, and the Expunge Directory (M-X) command in Zmacs. See
the section "File System Editor", page 231.

Programs normally delete files using the deletef function. See the function deletef,
page 104. Whether a file is deleted or not also appears as the :deleted property of
the file, and programs can delete or undelete files by using
fs:cbange-file-properties to set this property to t or nil.

Directories can optionally be automatically expunged. Every directory has an
:auto-expunge-interval property, whose value is a time interval. If any file system
operation is done on a directory and the time since the last expunging of the
directory is greater than this interval, the directory is immediately expunged. The
default value for this property is nil, meaning that the directory should never be
automatically expunged.

The normal way of writing files in the Symbolics-Lisp environment is to create a
new version of the file each time a file is written. When you edit with Zmacs, for
example, every so often the Save File command is issued, and a new version is
written out. After a while, you end up with many versions of the same file, which
clutters your directory and uses up disk space. Zmacs has some convenient
commands that make it easy to identify and automatically delete the old versions.

LMFS also has a feature that deletes the old versions automatically. A file property
called the generation retention count says how many generations (that is, new
versions) of a file should be kept around. Suppose the generation retention count of
a file is three, and versions 12, 13, and 14 exist. If you write out a new version of
the file, then version 12 will be deleted, and now versions 13, 14, and 15 will exist.
Actually, version 12 is only deleted and not expunged, so you can still get it back by
undeleting it. If the generation retention count is zero, that means that no
automatic deletion should take place.

210

Reference Guide to Streams, Files, and /10 March 1985

The above explanation is simplified. You might wonder what would have happened
if versions 2, 3, and 14 existed, and what might have happened if the different
versions of the file had different generation retention counts. To be more exact:
each file has its own generation retention count. When you create a new version of
a file and some other version of the file already exists (that is, another file in the
directory with the same name and type but some other version), then the new file's
generation retention count is set to the generation retention count of the highest
existing version of the file. If there is no other version of the file, it is set from the
default generation retention count of the directory. (When a new directory is created,
its default generation retention count is zero (no automatic deletion).) So if you
want to change the generation retention count of a file, you should change the
count of the highest-numbered version; new versions will inherit the new value.
When the new file is closed, if the generation retention count is not zero, all
versions of the file with a number less than or equal to the version number of the
new file minus the generation retention count will be deleted.

When a file version is being created, it is marked with the property
:open-for-writing. This property is removed when the file is successfully closed.
While the file has this property, it is invisible to normal directory operations and to
attempts to open or list it. Directory list operations that specify :deleted can see
the file. Files in this state have the "open for writing" property when you use View
Properties in the file system editor, or View File Properties (M-X) in Zmacs. Files left
in this state by crashes have to be removed manually by deleting and expunging.
For example, suppose versions 3, 4, and 5 exist, but 5 is open in this state. An
attempt to read :newest would get version 4; an attempt to write :newest would
create version 6.

13.5 LMFS Links

A link is a file system object that points to some other file system object. The idea
is that if there is a file called >George>Sample.lisp and you want it to appear in the
>Fred directory, with the name New.lisp, you can create a link by that name to the
file. Then if you open >Fred>New.lisp, you really get >George>Sample.lisp. The
object to which a link points is called the target of the link, and can be found from
the :link-to property of the link.

The above explanation is simplified. You might wonder what happens if, for
example, you try to rename >Fred>New.lisp: is the link renamed, or the target?
Each link has a property called its :Iink-transparencies. The value of this
property is a list of keyword symbols. Each symbol specifies an operation to which
the link is transparent. If the link is transparent to an operation, then when the
operation is performed, it really happens to the target. If the link is not
transparent to the operation, the operation happens to the link itself. Here is a list
of the keywords, and the operations to which they refer:

211

March 1985 Files

:read

:write

:create

: rename

:delete

Opening the file for :input.

Opening the file for appending, via :if-exists : append.

Opening the file for :output

Renaming the file.

Deleting the file.

You can create new links with the [Create Link] command in the File System
Editor, or Create Link (M-X) in Zmacs. See the section "File System Editor", page
231. Programs can use the :create-link message to pathnames. See the section
"Pathname Messages: Naming of Files", page 165. When a new link is created, its
transparencies are set from the :default-link-transparencies property of its
superior directory. When a new directory is created, its
:default-link-transparencies property is set to (:read :write).

The value of the :link-transparencies property of a link is a list of keywords
describing the transparency attributes of which this link is possessed. The value of
the :default-link-transparencies attribute of a directory is, similarly, a list of all
those transparencies to be possessed by newly created links in this directory. When
changing the value of either of these properties with fs:change-file-properties, the
new value of the property is such a list of transparency keywords, chosen from the
table above. Transparencies not present in the new value are turned off, and they
are not preserved. There is no way to change an individual transparency.

When you create a new link with the [Create Link] command, you have to specify
both the name and the type component of the new link; the version defaults to
being the newest version, as of the time when you create the link. When you
specify the target, you have to give a complete pathname with the name and the
type; the version can be left unspecified. Targets of links can have unspecified
versions; whenever such a link is used, the version is treated as :newest.

There is a subtle point regarding "create-through" links (links transparent to
:create): what happens when you try to create a new version of foo.lisp when the
highest version of foo.lisp is a create-through link? Is a new version of foo created,
or is a new version created in the directory of the target of the existing link? Here
is the rule. If a pathname is opened for :output, which means that it is being
created, and the pathname has version :newest or a version number that is, in fact,
the newest version, and the newest version is actually a create-through link, then
the link is transparent and the operation happens in the target's directory. If the
target pathname has a version, it is as if that exact pathname were opened for
: output; if the target has no version, it is as if the target pathname with a version
of :newest were opened.

A directory link is a link whose type is "directory", whose version is 1, and whose
target is a real directory or another directory link. The maximum permitted length
of such chains of directory links is 10. The system respects a directory link when

212

Reference Guide to Streams, Files, and /10 March 1985

looking for a directory. By means of directory links, "indirect pointers," or mUltiple
names for directories, can be established. Simply naming a link in this fashion is
sufficient; no special action need be taken to declare a link to be a directory link.
Transparencies are not interpreted in directory links.

13.6 LMFS Backup

A file system can be damaged or destroyed in any number of ways. To guard
against such a disaster, it is wise to periodically dump the file system, that is, write
out the contents of the files, their properties, and the directory information onto
magnetic tapes. If the file system is destroyed, it can then be reloaded from the
tapes. Individual files can also be retrieved from tapes, in case a single file is
destroyed, or just accidentally deleted (and expunged). Dump tapes can also be used
to save a copy of all the files on a system for archival storage.

In a complete dump, all of the files, directories, and links in the file system are
written out to tapes. This, obviously, saves all the information needed to reload the
file system. However, a complete can take a long time and use a lot of tape,
especially if the file system is large. In order to make it practical and convenient to
dump the file system at short intervals, a second kind of dump can be done, called
an incremental dump.

In an incremental dump, only those files and links that have been created or
modified since the last dump (of either kind) are dumped; things that have stayed
the same are not dumped. (All directories are always dumped in an incremental
dump.) Now, if the file system is destroyed, you reload it by first reloading from the
most recent complete dump and then reloading each of the incremental dump tapes
made since that complete dump, in same the order they were created. Therefore,
you do not need to retain incremental dump tapes made before the most recent
complete dump was done; you can reuse those tapes for future dumps.

Since all incremental dumps done since a complete dump must be reloaded in order
to restore the file system, doing a complete dump regularly makes recovery time
faster. Doing complete dumps also lets you reuse incremental dump tapes, as
described above. The more incremental dump tapes you must load at recovery time,
the longer it takes to recover, and thus the more chance there is that something
will go wrong. Thus, it is advantageous to take complete dumps regularly.

A consolidated dump is like an incremental dump, in that it only dumps files that
have been created or changed recently. When a consolidated dump is requested, a
consolidation date is specified. A consolidation date is always in the past. The
consolidated dump dumps those and only those files that have been created or
changed since the consolidation date. A consolidated dump is the appropriate kind to
take if some event destroys recent incremental dump tapes, or they are found to be
unreadable.

March 1985

See the section "Dumping, Reloading, and Retrievin~(' in Installation and Site
Operations .

13.7 Multiple Partitions

213

Files

The Lisp Machine File System (LMFS) allows the use of multiple partitions residing
on one or more disk drives. The selection of partitions to be used by LMFS is
determined by a database called the file system partition table (FSPT).

The FSPT is a FEP file named >fspt.fspt on the boot drive. The FSPT is optional:
If not present, LMFS behaves as previously and uses lmfs.file on the FEP boot drive.
The FSPT is a simple character database containing the actual pathnames (in the
FEP file system) of the partitions to be used for file system access.

Each partition in the file system knows how many partitions make up the file
system. Only the FSPT, which is used only at LMFS startup time, indicates the
locations of these partitions. That is, the file system databases in the actual
partitions do not contain drive and partition numbers or FEP pathnames. Thus,
when LMFS is down, partitions can be moved around using Copy File (M-X); as long
as the FSPT is edited to indicate their new locations, LMFS comes up (when
required) using the moved partitions.

The FSPT is edited only to move partitions around or to add a partition. When you
add partitions to the file system, the file system automatically rewrites the FSPT
database to include the locations of new partitions.

Do not delete file partitions from your LMFS. Each LMFS partition contains
pointers to all other file partitions in the LMFS. Deleting a file partition leaves the
other partitions with pointers to a nonexistent file. .

If you want to reduce the size of your LMFS, you must completely backup your
LMFS, delete the entire existing LMFS and create a new one. The user files can
then be restored into this new LMFS from the backup tapes.

Never delete a FEP file that is entered in the FSPT. If you do so, even if you
remove the corresponding FSPT entry, the file system will not be able to initialize
itself properly and will not be able to be brought up. This means that your file
system will be irrevocably inconsistent and inaccessible.

13.7.1 Adding a Partition to LMFS

Partitions can be added to LMFS with [Local FS Maint] on the File System Editor
menu. Select this item to get a menu of file-system maintenance operations. The
[Initialize (R)] command yields a menu of initialization options, which offers [New
File System] and [Auxiliary Partition] as a choice. [New File System] is similar to
[Initialize (L)]; it initializes a partition to be the basis of a file system.

214

Reference Guide to Streams, Files, and /10 March 1985

When you add a new partition or a partition on another disk, the disk should be
free of errors and properly initialized and formatted, and the partition should exist.

To add another partition, use [Auxiliary Partition]. Enter the pathname of the FEP
file to be used as the new partition. The default presented, which is correct for
[New File System], is never correct for adding a partition. Then use [Do It]. The
system then performs much verification and error checking, roughly as much as
when initializing a new partition. It must not be interrupted while performing these
actions. When finished, it adds the partition and edits the FSPT automatically.

215

March 1985 Files

14. FEP File System Overview

The Symbolics computer disk has a file system called the FEP file system. The
entire disk is divided up into FEP files (that is, files of the FEP file system). FEP
files have names syntactically similar to those of files in the Symbolics computer's
own local file system. However, the FEP file system and the Lisp Machine File
System (LMFS) are completely distinct.

FEP files (for example, fepO:>Boot.boot) can be accessed from Lisp. The following
files are part of the FEP file system and should never be disturbed.

>disk-label.fep
>root-directory.dir
>free-pages.fep
>bad-blocks.fep
>sequence-number.fep

14.1 Microcode Loads

By convention, files of type MIC are microcode loads. These files contain images of
the microcode and the contents of other internal high-speed memories that are
initialized when the computer is booted.

14.2 World Loads

By convention, FEP files of type LOAD contain worId loads, or bands (images of
entire Lisp worlds).

14.3 Configuration Files

Configuration files contain FEP commands tailored for a particular Lisp Machine
configuration. The commands are executed if you specify the file as argument to a
Boot command when cold booting the machine. See the section "FEP Commands"
in User's Guide to Symbolics Computers.

The configuration file >Boot.boot usually contains FEP commands to:

• Clear the internal state of the machine
• Load the microcode
• Load a world

216

Reference Guide to Streams. Fifes. and 110 March 1985

• Set the Chaosnet address
• Start the machine

To change the selection of microcode and world loads that are booted by default,
simply use Zmacs to edit the file >Boot.boot. Be careful to avoid typographical
errors; otherwise, you might have to type in the commands manually in order to
boot the machine. Also, be sure that the last command in the file is followed by
RETURN.

14.4 How LMFS Uses the FEP File System

The FEP file fepO:>lmfs.file is where LMFS normally keeps its files. It holds the
machine's local file system. The entire Symbolics computer local file system normally
resides inside one big file of the FEP file system.

The file fepO:>fspt.fspt tells LMFS which FEP files to use for file space, if not
fepO:>lmfs.file.

14.5 Virtual Memory

The FEP file fepO:>page.page holds the virtual memory of the Lisp system while
Lisp is running. To increase the effective size of virtual memory, you can add
additional paging files. See the section "Allocating Extra Paging Space", page 240.

14.6 FEP File Comment Properties

Comment properties supply additional information about the contents of FEP files.
In the Dired mode of Zmacs, they are listed inside square brackets, where the
reference or expunge date appears for other file systems. You can list the contents
of the FEP file system by using the function print-disk-label. The Zmacs
command Dired (M-X) of fep:>·, or the form (dired "fep:)*H) invokes the directory
editor on the FEP file system. An example of the Zmacs Dired command output
follows:

217

March 1985 Rles

48150 free, 322330/370480 used (87%)
FEPO:>BAO-BlOCKS.FEP.1 776 0(8) 9/14/83 11:46:56 [list of bad blocks] rll
FEPO:>boot.boot.15 1 121(8) 1115/84 12:19:15 [] OEG
FEPO:>boot.boot.16 1 121(8) 1/29/84 13:06:43 [] OEG
FEPO:>boot.boot.17 1 121(8) 2/21/84 13:35:28 [] whit
FEPO:>boot.boot.18 124(8) 2/21/84 13:39:20 [] whit
FEPO:>OISK-lABEl.FEP.1 24 0(8) 9/14/83 11:46:55 [The disk label] rll
FEPO:>FREE-PAGES.FEP.1 41 0(8) 9/14/83 11:46:56 [Free pages map] rll
FEPO:>fspt.fspt.1 0(8) 9/14/83 11:46:58 [A filesystem partition table] rll
FEPO:>lMFS.file.1 50000 0(8) 1/05/84 23:20:13 [] ptaylor
FEPO:>Microcode1.HIC.1 103 117020(8) 6/30/83 08:19:16 [TMC5-HIC 219] Feinberg
FEPO:>PAGE.PAGE.1 150000 0(8) 9/14/83 11:46:58 [Main paging area] rll
FEPO:>Release-5-0.load.1 19109 22013568(8) 11/02/83 17:02:31 [Release 5 Beta Test] joseph
FEPO:>ROOT-OIRECTORV.OIR.1 2 0(8) 9/14/83 11:46:55 [His highness] rll
FEPO:>sequence-number.fep.1 1 0(8) 9/14/83 11:49:39 [] rll
FEPO:>System-243-463.load.1 22348 25733376(8) 1/02/84 11:46:14 [Exp 243.463] Zippy
FEPO:>sYstem-243-481.load.1 20544 23666688(8) 1/11/84 22:48:56 [Exp 243.481, Full-GC]
FEPO:>system-243-516.load.1 20754 23908608(8) 1/24/84 23:23:41 [Exp 243.516, Full-GC] Zippy
FEPO:>system-243-559.load.1 19157 22068864(8) 2/19/84 19:32:45 [Exp 243.559, Full-GC] Moon
FEPO:>TMC5-MIC.HIC.247 103 118018(8) 10/03/83 20:25:07 [TMC5-HIC 247, Beta Test] joseph
FEPO:>TMC5-MIC.MIC.262 101 115233(8) 12/27/83 21:15:16 [TMC5-MIC 262] whit
FEPO:>TMC5-MIC.MIC.273 101 115810(8) 2/19/84 15:13:56 [TMC5-MIC 273] whit
FEPO:>World1.1oad.1 19138 20318976(8) 10/07/83 12:09:08 [Rel 4.5] lISPMNIl

14.7 Installing Microcode

Use si:install-microcode to retrieve any new microcode from the file system of the
sys host.

si:install-microcode from-file-or-version &optional to-file-or-version Function
boot-file-to-update

Installs microcode from a system file into a file in the FEP file system.

from-file-or-version is a microcode version number (in decimal). The file
resides in the logical directory sys:l-ucode;.

to-file-or-version rarely needs to be supplied. It defaults to a file on FEP:>
(the root directory of the boot disk) whose name is based on the microcode
name and version. If supplied, to-file-or-version is either a pathname (string)
of a file on FEP:>, or an integer n, which stands for the file TMC5-
MIC.MIC.n on FEP:>.

The logical directory sys: l-ucode; includes multiple types of microcode for each
version number. The correct microcode to install depends upon the particUlar

218

Reference Guide to Streams, Files, and /10 March 1985

hardware configuration of your machine. When your machine is shipped, the
default microcode filename is correct, but if your machine is upgraded (for
example, an FPA board is installed) you might need to override the default
used by si:install-microcode to get the correct type for your configuration.
Below is an example of how you would get the microcode for a 3600 running
6.0, with no console upgrade but an FPA board installed:

(si:install-microcode "tmc5-fpa-mic.mic.319N
)

The correct microcode types for each system and hardware configuration are
shown below. The names in this table omit the suffix mic.n that you must
include to indicate the version of the required microcode. The version
number must be followed by a period. Microcode version 319. is required for
Release 6. O.

3600

NoFPA
FPA

tmc5
tmc5-mic.
tmc5-fpa-mic.

3670/3600 with console upgrade
tmeS

NoFPA
FPA

3640

NoFPA
FPA

tmc5-i04-mic.
tmc5-i04-fpa-mic.

tmc5
tmc5-i04-st506-mic.
tmc5-i04-st506-fpa-mic.

ifu
ifu-mic.
ifu-fpa-mic.

ifu
ifu-i04-mic.
ifu-i04-fpa-mic.

ifu
ifu-i04-st506-mic.
ifu-i04-st506-fpa-mic.

If you use the wrong microcode for your configuration, your machine will not
boot, except in the case where your system has an FP A and you use a non
FPA microcode. In this case, the machine functions normally, but does not
make use of the FPA at all.

boot-file-to-update specifies whether to update the boot file with the new
microcode version number. It accepts one of these values (the default value
is nil):

Value Action

nil Prompts for a boot file to update.

pathname Does not prompt but uses pathname as the
boot fue to update.

:no-boot-file-update Does not prompt or update.

219

March 1985 Files

Initially, the Symbolics personnel who install your system establish these microcode
files for you.

14.8 Renaming FEP Files

FEP files can be renamed. For example, if you save a world containing MACSYMA,
you might want to rename the world file to >macsyma.load or >macsymal.load. Be
sure to update your boot file if you intend this to be the default world.

14.9 Using a Spare World Load for Paging

You can reuse FEP file space by specifying a FEP file, usually a spare world load file,
to be used as an extension of the file >page. page. To do so, use the FEP Add
Paging-file command. Note that this action overwrites the previous contents of the
specified file.

You should rename this file to, say, >extra. page, so that other users do not attempt
to use the file space (to hold customized world loads, for instance).

You can also create new FEP files and use them for extra paging space. See the
section "Allocating Extra Paging Space", page 240.

14.10 Adding a Spare World Load as LMFS File Space

Partitions can be added to LMFS with [Local FS Maint] on the File System Editor
menu. Select this item to get a menu of file-system maintenance operations. The
[Initialize (R)] command yields a menu of initialization options, which offers [New
File System] and [Auxiliary Partition] as a choice. [New File System] is similar to
[Initialize (L)]; it initializes a partition to be the basis of a file system.

When you add a new partition or a partition on another disk, the disk should be
free of errors and properly initialized and formatted, and the partition should exist.

To add another partition, use [Auxiliary Partition]. Enter the pathname of the FEP
file to be used as the new partition. The default presented, which is correct for
[New File System], is never correct for adding a partition. Then use [Do It]. The
system then performs much verification and error checking, roughly as much as
when initializing a new partition. It must not be interrupted while performing these
actions. When finished, it adds the partition and edits the FSPT automatically.

220

Reference Guide to Streams, Files, and 110 March 1985

221

March 1985 Files

15. FEP File System

The FEP file system manages the disk space available on a disk pack, grouping sets
of data into named structures called FEP files. All the available space on a disk
pack is described by the FEP file system. A single FEP file system cannot extend
beyond a single disk pack; each disk pack has its own separate FEP file system.

The FEP file system supports all of the generic file system operations. It also
supports multiple file versions, soft deletion and expunging, and hierarchical
directories.

Although "FEP" is an acronym for front-end processor, the FEP file system is
managed by the main Lisp processor. It is called the FEP file system because the
FEP can read files stored in the FEP file system. For example, the FEP uses the
FEP file system for booting the machine and running diagnostics.

Disk streams access FEP files. A disk stream is an 110 stream that performs input
and output operations on the disk. (For information about streams: See the section
"110 Streams", page 11.). When disk streams are opened with a :direction keyword
of :input or :output, the disk stream reads or writes bytes (respectively), buffering
the data internally as required. When the :direction is :block, the disk stream
can both read and write the specified disk blocks. Block mode disk streams address
blocks with a block number relative to the beginning of the file, starting at file block
number zero. This file block number is internally translated into the corresponding
disk address.

The FEP file system is also used by the system for allocating system overhead files,
such as the paging file. See the section "FEP File Types", page 228. This section
lists some of these files and what they are used for.

The ability of the FEP to access FEP files and the use of FEP files by the system
imposes some constraints on the design of the FEP file system. The internal data
structures of the file system must be simple enough to permit the FEP to be able to
read them, and a small amount of concurrent access by both the FEP and Lisp
must be tolerated. A FEP file's data blocks should have a high degree of locality on
the disk to minimize access times. And the FEP file system must be very reliable,
since the FEP needs to use the file system for running diagnostics and for booting
the machine.

Note: Because of these constraints, the FEP file system is not intended to be a
replacement for LMFS. (See the section "Lisp Machine File System", page 203.)
Allocating new blocks for FEP files is slow, so that creating many files, especially
many small files, might impair the performance of the FEP file system, and
ultimately the virtual memory system if paging files or world load files become highly
fragmented.

222

Reference Guide to Streams, Files, and 110 March 1985

15.1 Naming of FEP Files

See the section "Lisp Machine File System", page 203. The FEP filename format is
similar to the LMFS filename format, with the following exceptions:

host

directory

name

type

version

The name of the FEP file system host. The format for a FEP
host is host I FEPdisk-unit, where the ·host field specifies which
machine's FEP file system is being referred to, and disk-unit
specifies the disk unit number on the machine. The host field
defaults to the local machine if it and the terminating vertical bar
(I) are omitted. If both the host and disk-unit fields are omitted,
the FEP host defaults to the disk unit the world was booted from
on the local machine. For example:

HerrimacklFEPO

FEP2

FEP

The FEP file system on Merrimack's unit o.
The FEP fIle system on the local machine's
unit 2.

The FEP file system the booted world load fIle
resides on.

The name of the directory. The FEP fIle system supports
hierarchical directories in the same format as in LMFS. Each
directory name is limited to a maximum of 32 characters; there is
no limit on the total length of a hierarchical directory specification.

The name of the FEP file, which cannot exceed 32 characters.

The type of the FEP file, which cannot exceed 4 characters.

The version number of the FEP file, which must be a positive
integer or the characters "newest".

15.2 Accessing FEP Files

FEP files are accessed by open disk streams. A disk stream is opened by the open
function. (See the section "Accessing Files", page 91. That section contains more
details on accessing files.) If a FEP file system residing on a remote host is referred
to, a remote stream is returned with limited operations as specified by the remote file
protocol.

In addition to the normal open options, the following keywords are recognized:

:direction Specifies the type of disk stream to open.

:input Open a buffered input disk stream. A buffered
input disk stream can only read bytes of data;

March 1985

:if-exists

:output

:blook

:probe

223

Files

write operations are not permitted. The
number of disk blocks to buffer can be specified
by the :number-of-disk-blocks keyword.

Open a buffered output disk stream. A
buffered output disk stream can only write
bytes of data; read operations are not
pennitted. The number of disk blocks to buffer
can be specified by the
:number-of-disk-blocks keyword.

Open a bidirectional block disk stream. Block
disk streams are used to read and write random
disk blocks of data as requested. Block disk
streams do not internally buffer disk blocks.

Block disk streams are not supported by the
remote file protocol.

Open a probe disk stream. A probe stream can
read and modify a FEP fIle's properties, but
cannot read or modify the file's data.

This keyword specifies the action to be taken if the specified fIle
already exists and the :direction is :output or :block. This
keyword is ignored when the :direction keyword is :input or
:probe. Only the following values are supported:

:error

:new-version

:overwrite

:supersede

nil

Signal an error. This is the default when the
version component of the file name is not
:newest.

Create a new version of the file. This is the
default when the version component of the file
name is :newest.

Use the existing file.

Supersede the existing file by deleting and
expunging it.

Return nil if the file already exists without
creating a file or a stream.

:if-does-not-exist This keyword specifies the action to be taken if the specified file
does not exist.

:error

: create

Signal an error. This is the default if the
:direction is :input or :probe, or if the
:if-exists argument is : overwrite.

Create a new file with the specified file name.

224

Reference Guide to Streams. Files, and 110 March 1985

: if-locked

nil

This is the default if the :direction is :output
or :block, and the :if-exists argument is not
: overwrite.

Return nil if the file does not already exist
without creating a file or a stream.

This keyword specifies the action to be taken if the specified file is
locked. This keyword is not supported by the remote file protocol.

:error

:share

Signal an error. This is the default.

Open the specified file even if it is already
locked, incrementing the fue's lock count. This
mode permits mUltiple processes to
simultaneously write to the same file. (See the
section "FEP File Locks", page 228. That
section contains more information on file locks.)

:estimated-length
The value of this keyword is the minimum number of bytes to
preallocate for the file. If the file's block length is not large
enough to accommodate :estimated-length bytes of data, disk
blocks are allocated and appended to the file. If the file's block
length is greater than is required to satisfy :estimated-length, its
size is not adjusted. This keyword is ignored if the :direction
keyword is :input or :probe.

:number-of-disk-blocks
The value of this keyword is the number of disk blocks to buffer
internally if the :direction keyword is :input or :output. This
keyword is ignored for other values of :direction or for files on
remote hosts. The default :number-of-disk-blocks is two.

15.3 Operating on Disk Streams

All disk streams to a local FEP file system handle the following messages:

:grow &optional n-blocks &key :map-area :zero-p Message
This message allocates n-blocks of free disk blocks and appends them to the
FEP file. The value of n-blocks defaults to one. If :zero-p is true the new
blocks are filled with zeros; otherwise, they are not modified. The return
value of :grow is the file's data map (the format of the data map is described
in :create-data-map's description below). The value of :map-area is the
area to allocate the data map in, which defaults to default-cons-area

225

March 1985 Files

:a11ocate n-blocks &key :map-area :zero-p Message
This message ensures that the FEP file is at least n-blocks long, allocating
additional free blocks as required. Returns the file's data map (the format of
the data map is described in :create-data-map's description below).
:map-area specifies the area to create the data map in, and defaults to
default-cons-area. The newly allocated blocks are filled with zeros if
:zero-p is true. :zero-p defaults to nil.

:file-access-path Message
This message returns the disk stream's file access path.

For example, you can find out what unit number a FEP fue resides on as
follows:

(send (send stream :file-access-path) :unit)

:map-block-no block-number grow-p Message
This message translates the relative file block-number into a disk address, and
returns two values: the first value is the disk address, and the second is the
total number of disk blocks starting with block-number that are in
consecutive disk addresses. grow-p specifies if the file should be extended if
block-number addresses a block that does not exist. When grow-p is true,
free disk blocks are allocated and appended to the FEP file to extend it to
include block-number. Otherwise, if grow-p is false, nil is returned if
block-number addresses a block that does not exist.

:create-data-map &optional area Message
This message returns a copy of the FEP file's data map allocated in area
area, which defaults to default-cons-area. A FEP file data map is a one
dimensional art-q array. Each entry in the file data map describes a number
of contiguous disk blocks, and requires two array elements: the first element
is the number of disk blocks described by the entry, and the second element
is the disk address for the first block described by the entry. The array's fill
pointer contains the number of active elements in the data map times two.

:write-data-map new-data-map disk-event Message
This message replaces the file's data map with new-data-map. disk-event is
the disk event to associate with the disk writes when the disk copy of the
file's data map is updated. This message overwrites the file's contents and
should be used with caution.

226

Reference Guide to Streams, Files, and 110 March 1985

15.4 Input and Output Disk Streams

Input and output disk streams are buffered streams. In addition to the standard
buffered stream messages, local input and output disk streams also support the
messages described elsewhere: See the section "Operating on Disk Streams", page
224.

Input disk streams read bytes of data starting at the current byte position in the
FEP file, updating the byte position as the data is read. Output disk streams write
bytes of data in the same way.

The bytes of data are stored in buffers internal to the stream. The
:number-of-disk-blocks open keyword controls how many disk blocks the internal
buffers can hold. When the current pointer moves beyond a disk block boundary,
the buffered disk block is written to the fue for an output stream, or the next
unbuffered block is read in from the fue for an input stream. Output streams also
write out all the buffered disk blocks when the stream is sent a :close message
without an :abort option.

15.5 Block Disk Streams

Block disk streams can both read and write disk blocks at specified file block
numbers. A file block number is the relative block offset into the fue. The fIrSt
block in the file is at fue block number zero, the second is at file block number one,
and so on.

Block disk streams do not buffer any blocks internally. They are not supported by
the remote file protocol.

See the section "Operating on Disk Streams", page 224. In addition to the messages
deseribed in that section, block disk streams support the following messages:

:block-length Message
The :block-Iength message returns the length of the FEP file in disk blocks.

:block-in block-number n-blocks disk-arrays &key :hang-p Message
:disk-event

The :block-in message causes the disk to start reading data from the disk
into the disk arrays in disk-arrays starting with the fue block number
block-number for n-blocks. disk-arrays can be a disk array or a list of disk
arrays. The value of n-blocks is the number of disk blocks to read. When
n-blocks is greater than one, each disk array is completely filled before using
the next disk array in disk-arrays. Unused disk arrays or portions of disk
arrays remain unmodified.

When the value of :hang-p is true, which it is by default, the :block-in

227

March 1985 Files

message waits for all the reads to complete before returning. If the value of
:hang-p is false, :block-in returns immediately upon enqueuing the disk
reads without waiting for completion. In this case, all disk-arrays and the
disk-event must be wired before sending the :block-in message, and must
remain wired until the disk reads complete.

If the :disk-event keyword is supplied, its value is the disk event to associate
with the disk reads. Otherwise the :block-in message allocates a disk event
for its duration. A :disk-event must be supplied when :hang-p is false.

:block-out block-number n-blocks disk-arrays &key :hang-p Message
:disk-event

The :block-out message causes the disk to start writing the data in the disk
arrays in disk-arrays onto the disk starting with the fue block number
block-number for n-blocks. The arguments to the :block-out message are
identical to those of the :block-in message.

15.6 FEP File Properties

In addition to having a name and containing data, FEP fues also have properties.
These properties store information about the fue itself, such as when it was last
written and whether it can be deleted or not. File properties are read by the
Is:file-properties function, and modified by the fs:change-flle-properties
function. The fs:d.irectory-list function also returns the file properties of several
files at once. (See the section "Accessing Directories", page 117.)

The following file properties can be both read and modified:

:creation-date The universal time the file was last written to. Universal times
are integers. (See the section "Dates and Times" in Programming
the User Interface.)

: author The user-id of the last writer. The user-id must be a string.

:Iength-in-bytes The length of the file expressed as an integer.

:deleted When t the file is marked as being deleted. A deleted fue can
then be marked. as being undeleted by changing this property to
be nil. The disk space used by a deleted file is not actually
reclaimed for reuse until the file is expunged.

:dont-delete When t, attempting to delete or overwrite the file signals an error,
otherwise nil indicating the fue can be deleted or written to.

:comment A comment to be displayed in brackets in the directory listing.
The comment must be a string.

The following file properties are returned by the :properties message, but cannot
be modified by : change-properties:

228

Reference Guide to Streams. Fifes. and 110 March 1985

:byte-size The number of bits in a byte. The value of this property is
always 8.

:Iength-in-blocks The block length of the file expressed an an integer.

: directory If t, the file is a directory, otherwise nil if the file is not a
directory.

15.7 FEP File Locks

A FEP file is locked for the interval from when it is opened for reading or writing
until it is closed. If the :direction keyword is : input, the file is read-locked; if the
:direction keyword is :output or :block, the file is write-locked.

When the :if-Iocked keyword is : error, which is its default, a file that is read
locked can still be opened for reading but signals an error if opened for writing; a file
that is write-locked cannot be opened for reading or writing. This permits multiple
readers to access a file concurrently, while prohibiting writing to the file being read.

When the :if-Iocked keyword is :share in an open call for write, it succeeds in
opening the file even if it is already read- or write-locked.

An expunge operation on a file that is either read- or write-locked does not expunge
the file. If expunging a directory fails to expunge a file, the file must be closed and
the directory expunged again.

15.8 FEP File Types

By convention, the following file types are used by the FEP file system for files used
by the system.

BOOT

LOAD

MIC

FSPT

The file contains FEP commands that can be read be FEP's Boot
command. BOOT files are text files, and can be manipUlated by
the editor.

The file contains a world load image that is used to boot the
system. For example, >Release-6.load.NEWEST contains the
release 6 world load image.

The file contains a microcode image. For example, >TMC5-
MIC.MIC.234 contains version 234 of the microcode for version 5
of the TMC.

The file contains a LMFS partition table. For example,
>FSPT .FSPT .NEWEST is the default partition table used by
LMFS.

March 1985

FILE

PAGE

FLOD

FEP

DIR

The file contains a LMFS partition. For example,
>LMFS.FILE.NEWEST is the default LMFS file partition.

The file contains disk space that can be used by the virtual
memory system. For example, >PAGE.PAGE.NEWEST is the
default file used by the virtual memory system as storage for
swapping pages in and out of main memory.

229

Rles

The file contains a FEP Load file. FEP Load files contain binary
code the FEP can load and execute.

The file contains binary information used by the FEP file system.
These files should not be written to by user programs. Some
examples of these files are:

>FREE-PAGES.FEP
Describes which blocks on the disk are allocated
to existing files.

>BAD-BLOCKS.FEP
Owns all the blocks that contain a media defect
and should not be used.

>SEQUENCE-NUMBER.FEP
Contains the highest sequence number in use.
The FEP file system uses sequence numbers
internally to uniquely identify files to assist in
rebuilding the file system in case of a
catastrophic disk failure.

>DISK-LABEL.FEP
Contains the disk pack's physical disk label.
The label is used to identify the pack and
describe its characteristics.

The file contains a FEP directory. For example, FEPO:>ROOT
DIRECTORY.DIR.NEWEST contains the top-level root directory.
The directory file for FEPO:>DanG>Examples> would reside in
FEPO:>DanG>Examples.DIR.l.

230

Reference Guide to Streams. Files, and /10 March 1985

231

March 1985 Rles

16. Fsedit

16.1 File System Editor

The File System Editor (FSEdit) is an interactive program that lets you examine and
modify the contents of a file system. You can create directories and links, view and
edit the properties of fIle system objects, delete objects, and expunge directories.
The File System Editor is part of the File System Maintenance program, and it is
the only part that most users ever use.

16.1.1 Entering the File System Editor

To get the File System Maintenance program, press SELECT F. At the top of the
frame is a menu of commands. Three commands in this menu invoke the File
System Editor:

• [Tree edit root]

• [Tree edit any]

• [Tree edit Homedir]

When click on one of these three commands, the big window in the frame displays a
particular tree of a particular file system; that is, it displays a certain directory (the
base directory) and some of the objects under that directory. If you use:

[Tree edit root] The base directory is the root directory of the local file system;
this lets you get at any file in the entire file system.

[Tree edit any] You can specify the base directory by typing in its wildcard
pathname; after you click on this command you are prompted for
a wildcard pathname.

[Tree edit Homedir]
The base directory is your home directory. [Tree edit Homedir]
prompts for a host instead of using only the "logged-in" host (the
one designated during login). If you just want to try out the File
System Editor, use [Tree edit Homedir].

These commands put you in the File System Editor. You never have to get "out" of
it; if you want to do something unrelated to the file system, just select the window
you want to use, and if you want to do something else with the File System
Maintenance program, you just click on the appropriate command in the command
menu.

232

Reference Guide to Streams, Files, and flO March 1985

16.1.2 Using the File System Editor

When you use [Tree edit root], at the top of the main window is a line reading
>*.*.*. This line represents the root directory, which usually contains only
directories. Below the root directory line is a set of indented lines, one representing
each object in the root directory.

Move the mouse over anyone of these directory lines and notice that the mouse
documentation line reflects three actions that you can take:

(L)

(M)

(R)

Open object: See the section "Opening and Closing a Directory",
page 232.

Close containing object: See the section "Opening and Closing a
Directory", page 232.

Menu of operations: See the section "Using Fsedit Commands",
page 233.

16.1.3 Opening and Closing a Directory

Now, suppose you move the mouse over the line that represents a directory, for
instance >sys, and click left. That line changes to read >sys>*.*.*, and several lines
are inserted just underneath it, one for each object in the >sys directory. You have
just opened the >sys directory.

When you open a directory, a line is inserted in the display for each object in the
directory. For every directory, there is a line with the pathname of the directory
and nothing else; these directories are all closed. For every file, there is a line with
the name, type, and version of the file, and other information about the file. For
every link, there is a line with the name, type, and version of the link, followed by
= > and the pathname of the target of the link, and other information. See the
section "How to Interpret Directory Listings", page 236.

Whenever you click left on a closed directory, FSEdit opens it and displays its
contents. By clicking on successive directories inside other directories, you can move
around in the file system and see what is there. The base directory is automatically
opened as soon as you start using the File System Editor.

When you are finished with a directory, you can close the directory by clicking
middle on any of the objects inside that directory. So, if you click middle on a file,
that file and everything at its level disappears from the display.

U sing these commands, you can get at any part of the file system underneath the
base directory, and see everything that is there.

It is easy for the display to become longer than the size of the window when you
move around in large directories; you can use the usual mouse scrolling commands to
move the display up and down in the window. See the section "Scrolling with the
Mouse" in User's Guide to Symbolics Computers.

233

March 1985 Rles

16.1.4 Using Fsedit Commands

To do something to an object, click right on the object. This pops up a menu of
commands, each of which specifies an action to take regarding the object. Some
commands make sense for all three kinds of objects (directories, files and links);
others are specific to certain kinds of objects. The menu that appears when you
click right on an object offers only the options that you can apply to that type of
object on your host type. For example, the menu does not display [Expunge] as an
option for files or links, only for directories, and it does not display [Expunge] as
option if the directory in question resides on a host that does not support soft
deletion.

The following is a list of all these commands with the kind of object(s) to which
each command applies:

[Delete] (Files, directories, links)
Marks this object for deletion. This command pertains to systems that support soft
deletion, for example, Symbolics computers. This command is only displayed for
objects that are not already deleted. You should not delete directories that have
anything in them.

[Delete (immediate)] (Files, directories, links)
Deletes this object. This command pertains to systems that do not support soft
deletion, for example, UNIX. This command asks for confrrmation and then
immediately removes the deleted object from the display. You should not delete
directories that have anything in them.

[Wildcard Delete] (Directories)
Does wildcard deletion. This command prompts you with a default for deleting
everything for the line to which the menu applies. It merges what you enter with *
defaults. It lists the files it intends to delete, asks for confrrmation, deletes them,
reporting any errors, and updates the display.

[Undelete] (Files, directories, links)
Undeletes this object. This command pertains to systems that support soft deletion,
for example, Symbolics computers, and is displayed only for objects that are deleted
(are marked with a D).

[Rename] (Files, directories, links)
Renames this object; prompts for a new name. If the object is not a directory, you
can optionally type in a whole pathname specifying a new directory, and the file or
link will be moved to the new directory as well as being given the new name.

[View Properties] (Files, directories, links)
Types out one line for each property of the object, giving the name and the value of
the property. Properties are the qualities of the file that are maintained by the file
system on which it resides, such as creation date and time, author, time of last
access, and length. For files on a Lisp Machine file system, this means user-defined
properties as well. It prompts for the name of a file and pops up a choose-variable-

234

Reference Guide to Streams, Files, and 110 March 1985

values window, allowing you to alter various properties of the flle. The exact
properties that can be altered depend on the flle system, but they might include:

• Generation (version) retention count

• Author

• Creation, modification, and reference dates

• Protection flags

• Other file-associated information

This information types out on top of the display, and prompts you to type any
character when you are ready to proceed. After you type this character, the
properties vanish and the FSEdit window is redisplayed. You can also use
[Flush Typeout] in the command menu to make the typeout vanish; this is
convenient since you do not have to move from the mouse to the keyboard.

[Edit Properties] (Files, directories, links)
Pops up a Choose Variable Values window that lets you change the value of any
changeable system property or user property of the object.

[New Property] (Files, directories, links)
Creates a new user property for the object. You are fIrSt prompted for the name of
the property, and then the value. The name is uppercased. To remove a property,
give an empty string as the value.

[View] (Files, links)
Displays the file. The flle is typed out on top of the display, and you are prompted
to type any character when you are ready to proceed. The :reference-date of the
file of the file is not changed. See the section ''LMFS Properties", page 204. If the
object is a link, it must be transparent to :read and its target must be a file; the
target is printed.

[Create Inferior Directory] (Directories)
Creates a new directory inside this directory. You are prompted for the name (just
type in the name, not the whole pathname).

[Create Link] (Directories)
Creates a new link inside this directory. You· are flrst prompted for the name of the
link, and then for the full pathname of the target of the link. See the section
"LMFS Links", page 210.

[Expunge] (Directories)
Expunges the directory. ~ the section "LMFS Deletion, Expunging, and Versions",
page 209.

235

March 1985 Fifes

[Open] (Directories)
Opens the directory. This is the same as clicking left on the directory name. This
command is only displayed for closed directories.

[Selective open] (Directories)
Prompts for a wildcard name, for example, a flle name containing "*" characters to
indicate a wild-card component. The directory is opened and displays only those
objects in the directory that match this pattern. Unspecified components default to
n*n. The normal [Open] command is like a [Selective open] of *.*.*, displaying all
files. For example, if you do a [Selective open] of n*. 1 i sp", only flies whose type is
nl isp" are displayed. (In this example, the version was unspecified and defaulted to
n*".) The line in the display that corresponds to the directory shows this wildcard
name.

[Close] (Directories)
Closes the directory. This is the same as clicking middle on one of the directory's
inferiors. This command is only displayed for open directories.

[Link transparencies] (Links, directories)
Lets you change the :link-transparencies of a link, or the
:default-link-transparencies of a directory.

Each link has a property called its :link-transparencies. The value of this
property is a list of keyword symbols. Each symbol specifies an operation to which
the link is transparent. If the link is transparent to an operation, that means that
if the operation is performed, it will really happen to the target. If the link is not
transparent to the operation, then the operation will happen to the link itself. See
the section "LMFS Links", page 210.

This command displays a menu showing all of the operations to which a link can or
can not be transparent. Each operation to which the link actually is transparent is
highlighted with reverse video. By clicking on the name of any operation, you can
turn the highlighting on or ofT. When you are done changing the transparencies,
use [Do It], and the transparencies (or default transparencies, if this is a directory)
are set. You use [Abort] to abort the operation.

[Decache] (Directories)
When a directory is opened, the File System Editor examines the directory, sees
what is there, and remembers it. If another user changes the contents of the
directory while you are in the middle of editing that directory, the File System
Editor does not know that anything has changed, and so what it shows you does
not really correspond to the state of the file system. Using [Decache] tells the File
System Editor to forget what it thinks it knows about the contents of the directory,
and makes it go back to the flle system to see what is really in the directory now.

[Hardcopy] (Files)
Hardcopies the file. Clicking on this command causes the system hardcopy menu to
pop up.

[Edit] (Files)
Invokes the Zmacs editor on the file.

236

Reference Guide to Streams, Files, and /10 March 1985

[Load] (Files)
Loads the file into the Lisp world.

16.2 How to Interpret Directory List~ngs

The system displays the contents of directories of file systems in three contexts:

• The File System Editor
• The View Directory (M-X) and Dired (M-X) Zmacs commands
• The Show Directory command

Contents of directories are displayed in a standard format, regardless of the context
and regardless of what kind of file system (Lisp Machine, TOPS-20, UNIX) the
directory came from. Since this format is designed to express a great deal of
information in a single line, it is rather abbreviated. Some of the ways it expresses
things might not be clear without an explanation.

The basic format usually looks something like the following:

pal.lisp.65 7 25548(8) 03/12/85 12:42:41 (05/13/85) dlw

The following is an explanation of the items in . this listing:

item
pal
1 ;sp
65
7
25548
8
03/12185
12:42:41
5/13/85
dlw

explanation
file name
file type
file version number
length of the file in blocks
length of the file in bytes
byte-size of the file
date file created
time file created
date file last referred to
author

Many other things can appear in such a line; some of these things are seen only on
certain types of file systems. If the fIrst character in the line is a 0, the file has
been deleted (this makes sense only on file systems that support undeletion, such as
the Lisp Machine and TOPS-20 file systems). After the 0, if any, and before the
name of the file, is the name of the physical volume that the file is stored on (on
ITS, this is the disk-pack number).

On a line that describes a link rather than a file, the length numbers are replaced
by an arrow (=», followed by the name o,f the target of the link.

On a line that describes a subdirectory rather than a file, the length-in-blocks
number is shown (if provided by the file system), but the length-in-bytes is replaced
by the string DIRECTORY.

237

March 1985 Rles

Next, before the dates, the line might contain any of several punctuation characters
indicating things about the fue. Only some of the file systems understand these
flags. Following is a list of the various characters and the flags they indicate:

character
I
@

$

flag
not backed up
do not delete
do not reap

For lines indicating subdirectories, the reference date can be replaced with a date
preceded by x=, the date this directory was last expunged. The dates are followed by
the file author's name, which is followed by the name of the last user to read the
file.

Only certain file systems support certain features. Many file systems do not keep
track of the last reader's name and do not have something comparable to a "do not
delete" flag. Therefore, any of the above fields might be omitted on certain file
systems. However, the same general format is followed for all file systems and so
you can interpret the meaning of a line in a directory listing, even for a file system
that you are not familiar with.

238

Reference Guide to Streams, Files, and 110 March 1985

239

March 1985 Files

17. Creating More Room on the Local Disk

There are two file systems available on the Symbolics computer: the Lisp Machine
File System (LMFS) and the FEP File System (FEP FS). LMFS is a general
purpose, highly flexible file system, suitable for everyday use. Currently, only the
Symbolics processor understands how to operate on LMFS files. The FEP FS is a
simple, basic file system that both the Symbolics computer and front-end processors
understand how to access. The FEP FS is used mainly to store world loads,
microcode loads, paging files, boot files, and file system partitions that LMFS uses to
store its structure and data. The FEP FS is not a good place for users to store
their files; that is what LMFS is for.

Sometimes the Save World command or the disk-save or si:receive-band function
might inform you that you have run out of FEP file system space. For systems
with 167-Mbyte or more of storage, you should delete and expunge old, unneeded
world loads, and then resume from the Save World/disk-save "out of room" error or
retry the si:receive-band operation. You should not delete any world loads from a
140-Mbyte system. See the section ''Instructions for Managing Disk Space on the
3640" in Installation and Site Operations.

It is wise to keep a large (25K-30K), noncritical world load on the Symbolics
computer's disk, where it is available for the FEP Disk Restore command to use in
case all world loads become nonfunctional.

Sometimes, writing a file out to a Lisp Machine File System (LMFS) produces an
"out of room" error. This means that the present allocation of that particular LMFS
is not large enough to accommodate your request for space. It might help to
expunge directories with deleted files in them to remove unneeded versions of files,
using the Zmacs command Dired (M-X).

If you still do not have enough space after you have deleted and expunged the
unnecessary files, you might consider creating an auxiliary file partition. You should
only consider doing so on systems that have at least 280 Mbytes of storage. There
is no room in the FEP file system to allocate an auxiliary file partition for 140-Mbyte
systems, and allocating an auxiliary file partition on a 167-Mbyte system might
inhibit the creation of large world loads.

Even for 280-Mbyte systems, you are trading off world load space for fue space when
you create auxiliary partitions. Be sure to reserve enough FEP fue system space for
two large world loads (about 60K blocks total): the world you are currently running
from and a spare world load for the FEP Disk Restore command to use.

For details on how to create auxiliary fue partitions: See the section "LMFS
Multiple Partitions", page 213. Once you have created an auxiliary fue partition, you
should never delete it. Deleting it would lose all the data contained in that partition
and make the entire Lisp Machine File System unusable.

240

Reference Guide to Streams, Files, and /10 March 1985

If you run out of room while writing a LMFS flle and then create a new partition to
increase the LMFS space, you cannot resume the file operation that failed. Instead,
you must ABORT that operation and then retry the operation.

17.1 Allocating Extra Paging Space

Programs that use large amounts of virtual memory might require you to allocate
additional paging space, to perform better or to perform at all. Only systems with at
least 280 Mbytes of disk storage have enough room to permit additional paging files
to be allocated without adversely affecting the maintenance of worlds on the
machine. In order to add a paging flle to your virtual memory set, you must first
create a FEP file. Below is a function that creates a FEP file of a given length.

(defun create-fep-file (name length)
(with-open-file (stream name :direction :block :if-exists :error)

(send stream :allocate length»)

The code below creates an additional 20K-block paging file on unit 0, using the above
function:

(create-fep-file HfepO:>page1.pageH 20000.)

After creating the extra paging file, any boot files should be modified to use this new
paging file. A typical boot file might look something like this:

clear machine
load microcode >tmc5-mic.mic.319
load world >Dist-6-0.load
set chaos 401
start

After creating the new paging file, edit your boot file to look something like this:

clear machine
load microcode >tmc5-mic.mic.319
load world >Dist-6-0.load
clear paging
add paging >Page.page
add paging >Page1.page
set chaos 401
start

It is safe to delete extra paging flies, but only if they are not in active use. You
cannot change a paging flle that is being use without booting. Anytime you change
the paging area you have set up, first boot without adding the paging file to be
deleted. Be sure to cold boot by hand, and do not type the Add Paging command
for the extra paging partition you intend to delete.

241

March 1985 HIes

18. Putting Data in Compiled Code Files

A compiled code file can contain data rather than a compiled program. This can be
useful to speed up loading of a data structure into the machine, as compared with
reading in printed representations. Also, certain data structures, such as arrays, do
not have a convenient printed representation as text, but can be saved in compiled
code files.

In compiled programs, the constants are saved in the compiled code fue in this way.
The compiler optimizes by making constants that are equal beco~e eq when the
file is loaded. This does not happen when you make a data file yourself; identity of
objects is preserved. Note that when a compiled code fue is loaded, objects that were
eq when the file was written are still eq; this does not normally happen with text
files.

The following types of objects can be represented in compiled code fues:

Symbols
Numbers of all kinds
Lists
Strings
Arrays of all kinds
Instances (for example, hash tables)
Compiled function objects

When an instance is put (dumped) into a compiled code file, it is sent a :fasd-form
message, which must return a Lisp form that, when evaluated, will recreate the
equivalent of that instance. This is because instances are often part of a large data
structure, and simply dumping all of the instance variables and making a new
instance with those same values is unlikely to work. Instances remain eq; the
:tasd-form message is sent only the first time a particular instance is encountered
during writing of a compiled code file. If the instance does not accept the
:tasd-form message, it cannot be dumped.

sys:dump-forms-to-tile filename fonns &optional file-attribute-list Function
sys:dump-forms-to-tile writes data to a file in binary form. fonns-list is a
list of Lisp forms, each of which is dumped in sequence. It dumps the forms,
not their results. The forms are evaluated when you load the file.

For example, suppose a is a variable bound to any Lisp object, such as a list
or array. The following example creates a compiled code file that recreates
the variable a with the same value:

(sys:dump-forms-to-file "f:>foo>aval"
(l ist '(setq a ',a»)

242

Reference Guide to Streams, Rles, and /10 March 1985

For the purposes of understanding what this function does, you can consider
that it is the same as the following:

(defun sys:dump-forms-to-file (file forms)
(with-open-file (s file ':direction ':output)

(dolist (f forms)
(print f s»»

The real defmition writes a binary flle so it will load faster. It can also dump
arrays, which you cannot write to a Lisp source flle.

attribute-list supplies an optional attribute list for the resulting compiled code
file. It has basically the same result when loading the binary flle as the flle
attribute list does for compiler:compile-fUe. Its most important application
is for controlling the package that the flle is loaded into.

(sys:dump-forms-to-file "foo" forms-list '(:package "user"»

&ys:dump-forms-to-file always puts a package attribute into the binary file
it writes. If you do not specify the attribute-list argument, or if attribute-list
does not contain a :package attribute, the function uses the user package.
This is to ensure that package prefIXes on symbols are always interpreted
when they are loaded as they were intended when the file was dumped.

The file-attribute-list argument can be used to store useful information (such
as "headers" for special data structures) in the file's attribute list. The
information can then be retrieved from the attribute list with
fs:pathname-attribute-list, without reading the rest of the flle.

243

March 1985 The Serial /10 Facility

PART III.

The Serial 1/0 Facility

244

Reference Guide to Streams, Files, and 110 March 1985

245

March 1985 The Serial 110 Facility

19. Introduction to Serial 1/0

3600-family computers have a serial input/output facility, which uses the EIA RS-232
protocol to receive and transmit serial data. Many computer peripherals can
communicate using the RS-232 protocol, and so can be connected to the 3600-family
computer through this facility. This chapter explains the capabilities of the facility,
gives a brief description of the hardware performing the serial 110 and how to
interface to it, and describes the 3600-family software driving that hardware.

Before reading this chapter, you should be familiar with the basic concepts of serial
data communication, including the RS-232 standard. You should also be familiar
with Symbolics-Lisp, which is the systems programming language for the 3600-family
computer. In particular, you should understand what streams are. See the section
"Streams", page 1.

246

Reference Guide to Streams, Rles, and 110 March 1985

247

March 1985 The Serial 110 Facility

20. Hardware Description for Serial 1/0

This section gives a brief description of the hardware that performs serial 110 on
3600-family computers. You do not have to understand everything in this section to
use the serial 110 facility.

3600-family computers support three serial 110 ports. The external data
communication signals appear on three RS-232 25-pin D-type connectors on the rear
bulkhead (in the back of the processor).

The gender and labeling of these connectors varies with the processor model:

• The 3600 110 bulkhead presents 3 female connectors labelled "EIA 1", "EIA 2",
and "EIA 3". (The male connector labelled "EIA 4" is not a serial port at all,
but the connection to an inboard Vadic VA3450 modem, if present. See the
section "Physical Connection to the Dial Network" in Networks.)

• The 3670 110 bulkhead presents 3 male connectors labelled "EIA 1", "EIA 2",
and "EIA 3".

• The 3640 110 bulkhead presents 3 male connectors labelled "SERIAL 1",
"SERIAL 2", and "SERIAL 3".

These connectors are internally connected to multiprotocol USART-like LSI chips
controlled by the 3600-family computer's Front End Processor (FEP). Using the
USARTs, the FEP does all of the direct 110 to the connectors, and, using direct
memory access, communicates with the 3600-family computer to transmit data from
and receive data into the Symbolics-Lisp system.

The RS-232 protocol provides for communication between Data Circuit Terminating
Equipment (DCEs, also known as "data sets"; for example, modems), and Data
Terminal Equipment (DTEs, also known as "data terminals"; for example, computer
terminals, computers, or most devices that use serial lines). The 3600-family
computer plays the part of a DTE. This means that if you want to connect the
serial line to a DeE, a simple cable can be used, but if you want to connect the
serial line to a DTE, you must supply a null modem.

The correspondence between connector pins on the rear bulkhead and RS-232
signals is given in Table 1.

248

Reference Guide to Streams. Files. and /10 March 1985

Rear bulkhead
connector pin RS-232 signal

2 Transmitted Data [Output]
3 Received Data [Input]
4 RTS (Request To Send) [Output]
5 CTS (Clear To Send) [Input]
6 DSR (Data Set Ready) [Input]
8 DCD (Data Carrier Detect) [Input]

20 DTR (Data Terminal Ready) [Output]
1 Chassis Ground
7 Signal Ground

Table 1. Assignment of RS-232 Signals to Pins

To build a cable that includes a null modem for asynchronous communications, follow
the wiring instructions in Table 2.

One Other
side side RS-232 signal

3 2 Data Out (from data set to terminal)
2 3 Data In (from terminal to data set)
5 4 RTS (Request To Send)
4 5 CTS (Clear To Send)

20 6 DSR (Data Set Ready)
20 8 DCD (Data Carrier Detect)

6 20 DTR (Data Terminal Ready)
8 20 DTR (Data Terminal Ready)
1 1 Chassis Ground
7 7 Signal Ground

Table 2. Assignment of RS-232 Signals to Pins in Asynchronous Null Modems

Note that this null modem is suitable only for asynchronous communications; a
synchronous null modem is considerably more complex.

When using the 3600-family computer with a device that does not supply RS-232
modem control signals, it is necessary to supply Clear To Send and Data Carrier
Detect inputs to the 3600-family computer, for example by jumpering pin 4 to pin 5,

249

March 1985 The Serial /10 Facility

and pins 6, 8, and 20 together. This should be done in the cable or in the device
connector, not in the 3600-family computer's connector or inside the 3600-family
computer.

250

Reference Guide to Streams. Rles. and 110 March 1985

251

March 1985 The Serial 110 Facility

21. The Serial 1/0 Stream

The function of the serial 110 facility is to receive and transmit data over a serial
communications channel. The unit of communication is the character; each
character is represented as a binary number. The facility has two independent
parts: a receiver, which receives a sequence of characters from the external device,
and a transmitter, which transmits a sequence of characters to the external device.

A Symbolics-Lisp program uses the facility through an 110 stream. The output
operations, such as :tyo, send characters to the transmitter and from there to the
external device; the input operations, such as :tyi, read characters from the receiver,
which gets them from the external device. In addition to regular 110 operations, the
serial 110 stream also supports special operations that examine and alter parameters
of the serial 110 facility. To perform serial 110, a program should first get the serial
110 stream by calling the function si:make-seriaI-stream, setting up the
parameters of the serial 110 facility as it needs them; then it can use normal stream
operations to read and write characters. When the program is done with the serial
110 stream, it should close it; programs that use the serial 110 stream should include
an unwind-protect form whose cleanup handler closes the stream. The
with-open-stream special form is a good way to do this when the entire lifetime of
the stream is to be enclosed in the body of one Symbolics-Lisp form. Closing the
stream frees up a buffer in main memory and disables interrupts.

The serial 110 stream is different from most streams in that the characters you send
to it and get from it are probably not interpreted as being in the Symbolics 8-bit
character set. Of course, the interpretation of the characters depends completely on
the external device, but most devices that are likely to use serial communications use
the standard ASCII character set. You can tell the stream whether or not to
convert between ASCII characters and Symbolics characters.

The serial 110 stream is also different from some streams in being buffered on the
output side. If you send characters to the serial stream using, for example, :tyo or
:string-out, the characters are placed into a buffer for eventual transmission over
the serial line. They are not actually transmitted until the buffer fills up, the serial
stream is closed, or a :force-output operation is done on the stream. The
:torce-output option to si:make-seriaI-stream causes characters to be transmitted
immediately; this makes the serial stream easier to use but degrades its performance.

The serial 110 stream has several parameters. Each parameter is denoted by a
keyword symbol. These keywords are passed to the si:make-serial-stream function
and to the :get and :put operations to specify which parameter the caller is
interested in. (Some parameters make sense only when creating a stream, or affect
the flavor of the stream; these parameters are not valid for :get and :put.) For
descriptions of the parameters: See the section "Parameters for Serial 110", page
253.

252

Reference Guide to Streams, Files, and 110 March 1985

si:make-serial-stream &rest options Function
Initializes the serial 110 facility and returns the serial 110 stream.

options are alternating keyword symbols, naming parameters, and initial
values for those parameters. They let you initialize parameters when you
start using the serial 110 stream. You can change most of them later with
the :put operation.

si:make-serial-stream, which accesses a serial line, causes the accessing
process to wait if all ports are in use. The command C-"-SUSPEND allows you
to invoke a restart handler to close a line that you believe has been left open
by mistake.

For documentation of parameters for serial 110: See the section "Parameters
for Serial 110", page 253.

The serial 110 stream supports all standard stream operations. Of the optional input
operations, it supports :listen and :clear-input; the latter is relevant because input
from the serial port is buffered. There is also a :reset operation, which resets the
state of the hardware and the FEP. The :tyi-no-hang special-purpose operation is
supported as well. The :force-output and :flnish optional output operations are
supported, since output is buffered.

The serial 110 stream also supports two nonstandard operations: :get and :put.
These two operations respectively allow you to examine and alter various properties
of the serial 110 facility. The names of these operations are intended to suggest the
get and putprop functions in Symbolics-Lisp.

:get parameter of si:serial-stream Method
parameter should be one of the symbols that name parameters of the serial
110 facility. This message returns the value of that parameter. See the
section "Parameters for Serial 110", page 253.

:put parameter value of si:serial-stream Method
parameter should be one of the symbols that name parameters of the serial
110 facility. The value of that parameter is set to value. See the section
"Parameters for Serial 110", page 253.

253

March 1985 The Serial 110 Facility

22. Parameters for Serial 1/0

This section lists all parameters of the serial I/O facility. For each parameter, it lists
the keyword symbol, the meaning of the parameter, and the default value. A few
parameters can be examined but not altered; they are so marked in their
descriptions. Parameters whose functions are similar are grouped together.

Parameters from the following group are used only when the stream. is being
created, as arguments to si:make-serial-stream. You cannot use the :put
operation with them, and you can use the :get operation only with :unit.

:unit This parameter says which of the serial ports to create a stream
to. Its value should be 1, 2, or 3. The default is 2.

:ascii-characters If the value of this parameter is t, characters are translated from

:llavor

:force-output

ASCII to the Symbolics internal character set on input, and to
AScn on output. The default is nil.

The value of this parameter is the flavor of stream to create.
Normally, the value is computed automatically, based on the
values of the ascii-characters and force-output parameters;
this parameter is needed only if you want to use some special
flavor that includes the serial stream flavors and other mixins.

If the value of this is t, a :force-output stream operation is done
after every :tyo and every :string-out. If it is nil (the default),
output is not transmitted until the output buffer fills up, a
:force-output is done explicitly, or the stream. is closed (and the
close mode is not :abort). The nonforcing mode is usually more
efficient, although efficiency depends on the application.

The following group of parameters controls the format of the transmitted characters.
It is important to set the parameters to be compatible with the external device, or
else proper communication is impossible. These parameters apply to both the
transmitter and the receiver.

:mode

:baud

The kind of communications protocol used over the port. The two
possible values are :asynchronous, for asynchronous operation,
and :hdlc, for the HDLC-like bit-stutrmg protocol. See the section
"Hdlc Serial I/O", page 263. The default is :asynchronous.

The data transmission rate, in bits per second. This should be
one of the following integers (in decimal): 300, 600, 1200, 1800,
2000, 2400, 3600, 4800, 7200, 9600, 19200. The default is 1200.

:number-of-data-bits
The number of bits in each character. This should be one of the
following flXIlums: 5, 6, 7, or 8. The default is 7.

254

Reference Guide to Streams, Files, and /10 March 1985

:parity The kind of parity bit that should be sent. If the value of this
parameter is nil, no parity bit is sent. If it is :even, even parity
is transmitted. If it is :odd, odd parity is transmitted. The
default is :even. This parameter also controls what kind of parity
checking is done on received characters.

:number-of-stop-bits
The number of "stop" bits transmitted after each character. It
should be one of the following numbers: 1, L5, or 2. The default
is 1.

The following parameters control error checking in the receiver. Mter a character is
read by an input stream operation, the stream checks for error conditions detected
by the receiver when the character arrived. If any of the enabled error conditions
occurred, the stream signals an error.

:check-parity-errors
If the value of this parameter is nil, parity errors are ignored; if it
is t, a parity error causes an error to be signaled when the
character is read. The default is nil. A parity error occurs when
the parity of the data bits disagrees with the value of the received
parity bit. This never happens if parity checking is not being
used, that is, if the :parity option is nil.

:input-error-character
The value is a character to be substituted for any input character
in which a parity error is detected. This is independent of the
:check-parity-errors flag. If the value is nil (the default), the
character is left alone.

:check-over-run-errors
If the value of this parameter is nil, over-run errors are ignored;
if it is t, then an over-run error causes an error to be signaled
when the character is read. The default is nil. An over-run
error occurs if input arrives faster than it can be read.

:check-framing-errors
If the value of this parameter is nil, framing errors are ignored; if
it is t, then a framing error causes an error to be signaled when
the character is read. The default is nil. A framing error occurs
when the "stop" bit (the bit after all the data bits, and after the
parity bit if parity is being checked) is not 1. This indicates a line
error, a baud rate mismatch between the external device and the
receiver, or the sending of a "break".

The following parameters deal with the "modem control" signals (signals other than
Data In and Data Out) defined by the RS-232 protocol.

:carrier-detect If the value of this parameter is t, the external device is asserting

March 1985

255

The Serial 110 Facility

the DCD ("data carrier detect") signal; otherwise it is not. This
parameter can be examined but not altered.

:clear-to-send If the value of this parameter is t, the external device is asserting
the CTS ("clear to send") signal; otherwise it is not. This
parameter can be examined but not altered.

:request-to-send If the value of this parameter is t, assert the RTS ("request to
send") signal; otherwise do not. The default is nil.

:data-terminaI-ready
If the value of this parameter is t, assert the DTR ("data terminal
ready") signal; otherwise do not. The default is nil.

The following parameters control the use of the XONIXOFF protocol.

:xon-xoff-protocol
If this is t, output to the serial stream is flow-controlled using the
ASCll XONIXOFF (Control-S/Control-Q) protocol. While the
stream is transmitting characters, it checks the receiver to see if
any characters have arrived. If an ASCll XOFF or Control-S
character (octal 23, decimal 19) has arrived, transmission is
stopped. Then the stream reads characters from the receiver
until an ASCll XON or Control-Q character (octal 21, decimal 17)
arrives, and then proceeds with the transmission.

This feature allows the external device to limit the rate at which
characters are transmitted to it by the serial 110 facility. The
default is nil (XONIXOFF feature not enabled).

Interpretation of incoming XONIXOFF signals is done at interrupt
level in the FEP, and is therefore quite fast. After an XOFF is
received, the 3600-family computer ceases transmission after two
or three characters (buffered in the multiprotocol chip).

:output-xoff-character
The value is a character that is used to control flow of data from
the Symbolics Lisp Machine to the external device. It is used to
suspend the flow of data when the :xon-xoff-protocol parameter
is set. The default is #0023.

:output-xon-character
The value is a character that is used to control flow of data from
the Symbolics Lisp Machine to the external device. It is used to
resume the flow of data when the :xon-xoff-protocol parameter
is set. The default is #0021.

:generate-xon-xoff
If the value of this parameter is t, then the serial port generates
XON and XOFF controls itself. This can be used to accept input
at high speed from devices that understand the XONIXOFF
protocol. The default is nil.

256

Reference Guide to Streams, Files, and /10 March 1985

The XON and XOFF characters are transmitted directly by the
FEP, so the response time is excellent. After the FEP transmits
an XOFF, the device is required to cease transmission after no
more than about 100 characters, so the device is not required to
act very quickly.

:input-xoff-character
The value is a character that is used to control flow of data from
the external device to the Symbolics Lisp Machine. It is sent by
the Symbolics Lisp Machine to suspend the flow of data when the
:generate-xon-xotf flag is set. The default is #0023.

:input-xon-character
The value is a character that is used to control flow of data from
the external device to the Symbolics Lisp Machine. It is sent by
the Symbolics Lisp Machine to resume the flow of data when the
:generate-xon-xoff flag is set. The default is #0021.

257

March 1985 The Serial /10 Facility

23. Simple Example: Serial 1/0

The following function assumes that the serial 110 facility is hooked to a computer
terminal operating on a normal RS-232 asynchronous connection at 300 baud, with
one stop bit and odd parity .. It types the characters "Hello there." on the terminal.
A null modem is used between the serial port and the terminal, because both ends
are acting as DTEs.

(defun type-greeting-message ()
(with-open-stream (stream (si:make-serial-stream

:baud 300.
:number-of-stop-bits 1
:parity :odd»

(send stream :string-out "Hello there. H»)

258

Reference Guide to Streams. Files, and 110 March 1985

259

March 1985 The Serial /10 Facility

24. Troubleshooting: Serial 1/0

If you have trouble making your device communicate with the 3600-family computer
through the serial port, there are several things to try.

• Make sure that the baud rate, the number of data bits, the parity checking,
and the number of stop bits are set the same way on the device as they are in
your serial stream parameters.

• Make sure that there is a null modem between your device and the serial
connectors, if the device is a DTE. Since most devices are DTEs, the null
modem is probably necessary.

• Make sure that the device is connected to the proper serial port. The serial
ports are labelled "EIAl" (or on 3640s, "SERIAL 1"), "EIA2" ("SERIAL 2"), and
"EIA3" ("SERIAL 3"). You must use the port corresponding to the value of
the :unit keyword to si:make-serial-stream. The default value is 2, so if
you do not specify anything, the ''EIA2'' ("SERIAL 2") connector is the
appropriate one.

• Try using a different port. Remember both to plug your device into a different
connector, and to change the program to specify a different value for the :unit
keyword.

260

Reference Guide to Streams, Fifes, and 110 March 1985

261

March 1985 The Serial /10 Facility

25. Notes on Serial 1/0

The receiver is implemented using the 3600-family computer's general front end
processor (FEP) "channel" facility. When a character arrives at the serial port, the
FEP buffers it and transfers it to the 3600-family computer over a "channel".
Therefore, it is not necessary for the program doing input from the stream to read
in characters as quickly as they arrive from the external device. The :clear-input
operation to the serial stream resets this buffer (including the buffers in Symbolics
Lisp, and the buffers in the FEP). The buffering capacity is about 500 characters.
If the buffer is full and another character arrives, an over-run error occurs; if the
:check-over-run-errors parameter is used, this is reflected by the signalling of an
error.

A useful debugging technique is to create a serial stream with the desired
parameters and set a variable (say, s) to it, and do:

(stream-copy-until-eof s standard-output)

This prints receiyoo characters on the screen until you type c-ABORT. This
technique works only with the :number-of-data-bits parameter set to 7, so that
the Symbolics computer does not see the ASCIT parity bit. Unless character set
translation is enabled (via the :ascii-characters parameter), ASCIT control
characters, including carriage return and line feed, are displayed as special symbols,
such as circle-cross or delta, because of the differences between the Symbolics
character set and ASCIT. See the section "The Character Set", page 5.

262

Reference Guide to Streams, Files, and 110 March 1985

263

March 1985 The Serial 110 Facility

26. HOLe Serial 1/0

The 3600 family supports synchronous serial I/O using HDLC-like bit-stuffmg
protocols. The CCITT-16 CRC polynomial is used.

This facility requires that the computer be running with FEP version 14 or later.
Also, some older 3600s might require that a special adapter cable be connected to
serial port 1. Baud rates of 9600 or lower are recommended.

An HDLC stream is a stream of flavor si:serial-hdlc-stream. Use the function
si:make-serial-stream to make one of these streams. HDLC can be used only on
serial port 1, so you must supply a :unit argument to si:make-serial-stream with a
value of 1 (it defaults to 2). HDLC streams accept :read-frame and :write-frame
messages.

si:serial-hdlc-stream Flavor
An HDLC serial I/O stream. This flavor is built on si:serial-binary-stream
and si:serial-hdlc-mixin.

:read-frame string &optional (start 0) end of si:serial-hdlc-mixin Method
Reads an HDLC frame into string. Returns the length actually read.

:write-frame string &optional (start 0) end of si:serial-hdlc-mixin Method
Writes string as an HDLC frame. This method never calls process-wait
and can be used in a simple process. If insufficient buffers are available, it
returns a form that evaluates to t when buffers become available.

264

Reference Guide to Streams, Files, and 110 March 1985

265

March 1985 The Serial 110 Facifity

27. Using the Terminal Program with Hosts Connected
to the Serial Line

You can connect a 3600-family machine to another host via the serial line.
Specifically, you can use the terminal program to communicate with another host
when the 3600-family computer's serial line is connected to a terminal port on the
other host.

The network system treats the set of hosts connected to the serial lines of a 3600-
family computer as a special network, a pseudonet. Before you can use the terminal
program to talk to another host over the serial line, you must use the
tv:edit-namespace-object or the Edit Namespace Object command to create this
network and assign an address on that network to the 3600-family computer. You
might want to create or modify the remote host as well.

1. Create the network. Give it a name attribute associated with the 3600-family
computer and a type attribute of serial-pseudonet.

In the following example, Merrimack is the name of the 3600-family computer:

NETWORK MERRIMACK-SERIAL
TYPE SERIAL-PSEUDONET

2. Add an entry to the address attribute of the 3600-family computer to specify
that the 3600-family computer is connected to the new network. Each
address entry is usually a pair of the form (network address). By convention,
the 3600-family computer is assigned address 0 on a serial pseudonet.
Following is an example of a new address entry for the 3600-family computer
Merrimack:

ADDRESS MERRIMACK-SERIAL 0

3. If the line rate of the serial line is other than 9600 baud, supply a peripheral
entry for the 3600-family computer giving the correct baud rate. The
peripheral type is serial-pseudonet, and the unit attribute is the unit
number of the serial line. Following is an example of a peripheral entry for
the 3600-family computer:

PERIPHERAL SERIAL-PSEUDONET UNIT 2 BAUD 4800

4. If you want the terminal program to start out simulating one of the supported
terminal types, add a tenninal-type attribute to the peripheral. Currently
supported terminal types are the VT100 and Ann Arbor Ambassador. For
example, to make the terminal program simulate an Ambassador, add to the
3600-family computer a peripheral entry of this form (note that the entry
must actually be on one line):

266

Reference Guide to Streams, Files, and 110

PERIPHERAL SERIAL-PSEUDONET UNIT 2 BAUD 9600
TERHINAL-TYPE Ambassador

March 1985

You can now use the terminal program to connect to the remote host. At the
"Connect to host:" prompt, you must supply an address of the form
HERRIHACK-SERIAL 12. If you want to type a name or nickname of the remote host
instead, add address and service entries for the remote host's namespace object.
If the remote host does not exist in the network·database, use the Edit Namespace
Object command or the function tv:edit-namespace-object to create it.

For the address entry, specify the serial pseudonet and an address that corresponds
to the unit number of the serial line to which the host is connected. The service
entry is a triple of the form (seroice medium protocol). For the regular host login
server, seroice is login, medium is serial-pseudonet, and protocol is tty-login.
Following is an example of address and service entries for the remote host Blue
connected to the 3600-family computer Merrimack:

HOST BLUE
SYSTEH-TYPE TENEX
ADDRESS HERRIHACK-SERIAL 2
SERVICE LOGIN SERIAL-PSEUDONET TTY-LOGIN

You can also use the serial line to connect to servers other than normal login on a
remote host. You must add a service entry for the remote host to specify the kind
of service, the seriaI-pseudonet medium, and the protocol that the remote host
uses. You must also add an address entry on the serial pseudonet for the remote
host. In the address entry, specify the address in the form protocol=unit instead of
just unit. Following are examples of address and service entries for a fIle server
using protocol myftp on remote host Blue:

HOST BLUE
SYSTEH-TYPE TENEX
ADDRESS HERRIHACK-SERIAL HYFTP=2
SERVICE FILE SERIAL-PSEUDONET HYFTP

For information on the Terminal program: See the section "Using the Network" in
User's Guide to Symbolics Computers.

For information on network and host attributes: See the section "Namespace
System Object Definitions" in Networks.

For information on services, media, and protocols: See the section "The Lisp
Machine Generic Network System" in Networks.

267

March 1985 Writing Programs That Use Magnetic Tape

PART IV.

Writing Programs That Use Magnetic Tape

268

Reference Guide to Streams, Files, and /10 March 1985

269

March 1985 Writfng Programs That Use Magnetic Tape

28. The tape:make-stream Function

tape:make-stream Function
tape:make-stream is used to create streams that read or write magnetic
tape. It handles both cartridge and industry-compatible tape. With
tape:make-stream, you can access tape on the local machine, or on any
machine with a tape server.

tape:make-stream creates a stream. with-open-stream and other
standard tools for managing streams should be used to ensure proper closin~
of a stream made with tape:make-stream.

Tape streams accept (for output) and retum (as input) 8-bit characters.
Normal stream messages can be used to tape streams. See the section
"Streams", page 1. There are a few other messages: See the section
"Messages to Tape Streams", page 273.

tape:make-stream takes a large number of optional keyword arguments:

:host

:unit

: reel

:direction

The host on which the tape drive to be used is located.
This can be a string or a host object. The keyword :local
is also accepted for the local host. If this argument is not
provided, tape:make-stream prompts for the name of the
host.

The host must already be registered in the network
database for supporting TAPE service.

The identifier of the tape drive on the selected host that is
to be used. Hosts having only one tape drive generally do
not require this information. The value of this argument
is generally a character string. or nil specifies "don't
care", which is the usual value.

The name of the tape reel to be mounted. This
information is needed by tape servers that have operators,
who need to know the name of a tape in order to mount
it. It is also needed by servers who have tape access
control systems. Currently (Release 5.0) no such servers
are supported or nil, the usual default, means "don't
care".

Specifies whether reading, writing, or intermixed reading
and writing are to be performed. The valid values of this
argument are thus : input , : output , and :bidirectional,
respectively.

270

Reference Guide to Streams, Files, and 110 March 1985

:input-stream-mode
This argument, which is only valid if the :direction
argument is :input or :bidirectionaI, controls whether
record boundaries, on input, are reflected to you. The
default is t, meaning that they are not. It is not
meaningful for cartridge tapes: record boundaries are never
visible to the user. of cartridge tape.

In input stream mode (a value of t), input bytes are
transferred from the tape records to you until a file mark
(tape mark, EOF) is encountered, at which time you see
an end-of-flle in your stream.

In input record mode (a value of nil), input bytes are
transferred from the tape records to you until a record
boundary, at which time you see an end-of-flle in your
stream. To progress beyond the record boundary, the
message :discard-current-record must be sent to the
stream.

:record-Iengtb Controls the maximum length, in bytes, of tape records.
This is ignored for cartridge tape. For reading, it must
provide for the largest record to be read. Not all input
records need be this long, although in some cases the
server decides whether to allow records of other than this
size. See also the keywords :minimum-record-lengtb
and :minimum-record-Iengtb-granularity. The default
is 4096.

:density Density of the tape in bits per inch. This is ignored for
cartridge tape. The default is 1600 for servers that have
the capability of multiple densities.

:pad-cbar A number that is the single character with which to pad
records when short records are padded. (This is ignored
for cartridge tape.) The default pad character is o. For
compatibility with previous releases, supplying this
argument and not supplying a value for either
:minimum-record-Iengtb or
minimum-record-Iengtb-granularity implies a value of
:full for :minimum-record-lengtb.

:minimum-record-lengtb
A number that is the minimum record length, in bytes, to
which all output records will be padded. (This is ignored
for cartridge tape.) This ability is present because many
tape controllers cannot read records shorter than some
minimum. Arguments to this keyword can be:

not supplied If this argument is not supplied, a value
of 64 is assumed.

March 1985

integer

:tulI

nil

271

Writing Programs That Use Magnetic Tape

Some number smaller than the value of
the :record-Iengtb argument. Short
records are padded with 0, or the value
of the :pad-cbar argullent, if that is
supplied.

All records are padded to their maximum
length, namely, the value of the
:record-Iengtb argument. Short
records are padded with 0, or the value
of the :pad-cbar argument, if that is
supplied.

The Lisp Machine does not enforce any
minimum record length. The tape
server and/or the tape hardware on that
server might enforce some minimum of
its own.

:minimum-record-Iength-granularity

:prompt

An integer, or nil, establishing a granularity, or enforced
integral divisor, for the length of all tape records written.
If non-nil, all records written are padded (with 0, or the
value of the :pad-cbar argument, if that is supplied) to be
multiples of this number in length. This value is ignored
for cartridge tape. It is also ignored if short records are
not to be written, that is, :rninirnum-record-Iength is
given as :tuII or the same as :record-Iength.

All Lisp Machine tape applications (LMFS and distribution
dumpers and carry tape) enforce a granUlarity of 4.

This is an optional string that is formatted into
tape:make-stream's prompt for a host name, if one is
issued. It should describe the tape to be mounted in
terms of the application program running. For instance, if
this string is supplied as "billing master",
tape:make-stream might prompt

Type name of tape host for billing master:

:no-bot-prompt Normally, tape:make-stream notices if the tape is offiine,
or not at BOT (beginning-of-tape) when it is called. If the
tape is ofiline, tape:make-stream queries you to wait for
it to become ready. If the tape is not at BOT,
tape:make-stream queries you about rewinding it.
Supplying a non-nil value for :no-bot-prompt suppresses
these checks, allowing you to handle these exigencies in
any way you choose. The message :bot-p can be sent to a
tape stream to determine if it is at BOT, and
:check-ready to wait for a tape to become ready.

272

Reference Guide to Streams, Rles, and 110 March 1985

:norewind

:Iock-reason

Normally, tape:make-stream rewinds the tape at the
time the stream is closed. Supplying a non-nil value for
:norewind suppresses this behavior.

Another optional string describing the application. This
string is used in error messages sent to other users who
try to access the tape drive you are using. For instance, if
it is supplied as "daily billing run", another user might
see a message like:

Cannot mount tape:
Drive 0 in use by daily billing run.

273

March 1985 Writing Programs That Use Magnetic Tape

29. Messages to Tape Streams

The following messages to tape streams are important. Tape streams, of course, also
support standard stream messages appropriate to input or output streams. See the
section "Streams", page 1.

These are the messages relevant to any kind of tape stream:

:close (&optional (abort-p nil»
Closes the stream. Normally, causes a rewind, and all the
operations associated with :rewind (see the description of
:rewind) to take place. The :norewind argument suppresses
this rewind, although, for an output stream, buffered output is
written, along with two EOFs. The tape is left positioned
between the two EOFs, for industry-compatible tape, or after
them, for cartridge tape.

: rewind Rewinds the tape. For input streams, buffered input is discarded
before the rewind. For output streams, buffered output is written
out, possibly padded, according to the current padding parameters,
and then two EOFs written, before the rewind. No read-ahead is
performed. This message does not wait for the rewind to
complete.

: await-rewind Waits for a previously started rewind to complete.

:set-offline A :rewind is done, and the tape is set oftline, or unloaded, as
befits the controller and drive. The setting of the tape omine
does not wait for the rewind to complete.

:clear-error If a tape error occurs, and is handled by you, you must send this
message before attempting to continue using the stream.
Otherwise, it remains in the error state, where it can only be
closed.

:skip-file (&optional (n 1»

:host-name

:bot-p

Skips to, and past, a file mark (EOF). n is how many to skip,
and can be negative, indicating backward motion. For input
streams, all buffered input is discarded before the motion. For
output streams, this operation is not valid unless the last thing
written was an EOF, not a data record. Cartridge tape cannot
skip backward. Forward motion is not allowed immediately after
output.

The name of the host on which the tape is mounted.

Returns t if the tape is at BOT (beginning of tape), and nil if
not.

274

Reference Guide to Streams. Rles, and 110 March 1985

:check-ready Checks to make sure the tape drive is ready, and informs you,
waiting interactively,. if not.

These are the messages specifically relevant to tape input streams. Most of them
are relevant only to input record mode, which is the mode requested by a value of
nil for :input-stream-mode. See the description of the :input-stream-mode
argument to the function tape:make-stream.

:clear-eot This clears the EOF state that results from reading an EOF
mark. When an EOF is encountered, all character-reading
operations encounter an end-of-file indication until :clear-eot is
sent. This is needed in input stream mode as well as input
record mode.

:discard-current-record
This discards the remainder of the current record, when in input
record mode, and allows reading the next record. This message
must be issued to progress past a record boundary in input record
mode, even if all of the bytes in the record have been read. This
is meaningless for cartridge tape.

:record-status (&optional (en-or-p t»
This is only valid in input record mode, and meaningless for
cartridge tape. This call is only valid at the beginning of a record,
that is, if no bytes have been read from the current record. It
describes, via its return value, the record that is about to be read
by the user. Here are the possible values:

an error object

integer

:eof

The next record cannot be read, due to error.
An error object is returned. If error-p is t,
which is the default, an error is signalled in
this case, instead of an error object being
returned.

The length of a good record, in bytes.

The next record is not a record at all, but an
EOF (a file mark).

These are the messages relevant to tape output streams:

:write-eof Writes an EOF (a fIle mark). If a record is being built, it is
written out. Whether or not it is padded depends upon the
values of the arguments :rninirnum-record-Iength and
:rninirnum-record-Iength-granularity.

:force-output Writes out any record being buffered. Whether or not it is
padded depends upon the values of the arguments
:rninirnum-record-Iength and
:rninirnum-record-Iength-granularity. This is the normal way

March 1985

275

Writina Proarams That Use Maanetic Tape

to end a record when record boundaries are significant, or short
records are written. Otherwise, records are written when they
are full.

:write-error-status (&optional error-p)
Verifies that all records have been written correctly. Tape
streams often buffer many records ahead. :write-error-status
waits for all buffered 110 to complete. If there was no error, nil
is returned. If there was an error, an error object is returned
describing the error. If error-p is non-nil, an error is signalled
instead. If the error is end of tape, however, and error-p is nil,
:end-of-tape is returned.

276

Reference Guide to Streams, Files, and 110 March 1985

March 1985 Writing Programs That Use Magnetic Tape

30. Tape Error Flavors

tape:tape-error Flavor
This set includes all tape errors. This flavor is built on error.

tape:mount-error Flavor
A set of errors signalled because a tape could not be mounted. This includes
problems such as no ring and drive not ready. Normally, tape:make-stream
handles these errors and manages mount retry. This flavor is built on
tape:tape-error.

tape:tape-device-error Flavor
A hardware data error, such as a parity error, controller error, or interface
error, occurred. This flavor has tape:tape-error as a :required-flavor.

tape:end-of-tape Flavor
The end of the tape was encountered. When this happens on writing, the
tape usually has a few more feet left, in which the program is expected to
fInish up and write two end-of-file marks. Normally, closing the stream does
this automatically. Whether or not this error is ever seen on input depends
on the tape controller. Most systems do not see the end of tape on reading,
and rely on the software that wrote the tape to have cleanly terminated its
data, with EOFs.

This flavor is built on tape:tape-device-error and tape:tape-error.

278

Reference Guide to Streams, Files, and 110 March 1985

279

March 1985 Index

Index

A A A
UNIX pathname abbreviations 180

VAX/VMS pathname abbreviations 180
Absolute branch format directive 35

Direct Access Bidirectional File Streams 116
Direct access bidirectional streams 116
Direct Access File Streams 115

Effect of Character Set Translation on Direct Access File Streams 10
Accessing Directories 117

Functions for AcceSSing Directories 117
AcceSSing FEP Files 222
Accessing Files 91

Direct Access Output File Streams 116
:actlvatlon option 63
Adding a LM FS PartHlon 219
Adding a Partition to LMFS 213
Adding a Spare World Load as LMFS File

Space 219
fs: add-loglcaJ-pathname-host 197

Translate relative file block number Into disk address 225
Advanced General-purpose Stream Operations 13
:advance-Input-buffer message 21
:advance-output-buffer message 21

Defaults allst 133. 147. 148
Maclisp allfiles function 201

:allocate message 225
Allocating Extra Paging Space 240

[free edit any] File System Maintenance menu Item 231
:any-tyl message 24
Arrays In compiled code files 241
ASCII characters 5
ASCII character set 251. 253
:ascll-characters serial 110 parameter 253

Disable all character set translation in ASCII files 91
Disable special treatment of Rubout in ASCII files 91

:ascll option for wHh-open-file 91
Output streams to buffered asynchronous devices 18. 114

Assignment of RS-232 Signals to Pins In Asynchronous Null Modems 247
File attribute list 109

Reading file attributes 111
File attributes as path name properties 138

Audible beep 19
:author FEP file property 227
:author file property 117
:awaH-rewlnd message to tape streams 273

B B B
BABYL pathname type abbreviation 180

! character file not backed up flag 236
Backskpace file attribute 109
:back-translated-pathname method of

fs:loglcal-pathname 199
Back-translation 189

LMFS Backup 212
Bands 215
Base file attribute 109
:baud serial 110 parameter 253

Audible beep 19
beep function 88
:beep message 19

280

Reference Guide to Streams, Files, and 110

c

Direct Access
Direct access

Control
Hyper
Meta

Super
Modifier

Number of

File
Translate relative file

Absolute
Relative
format:

Output streams to
Clear

Special-purpose Stream Operations for
Clear

Special-purpose Stream Operations for

Number of bits per

Character-related

:bln
:lIsp

:qbln

Correspondence of

Buffering

Native path name component
Raw path name component

Lower

c

March 1985

Bidirectional disk streams 222. 226
Bidirectional file streams 115
Bidirectional File Streams 116
bidirectional streams 116
:blnary-file-byte-slze 163
Binary format directive 31
Binary mode 91
:bin canonical type 200
bit 5
bit 5
bit 5
bit 5
bits 5
bits per byte 91
:blip-handler option 62
:block disk stream 222
Block disk stream messages 226
Block Disk Streams 226
:block-In message 226
:block-Iength message 226
Block mode disk streams 221
block number 221. 226
block number into disk address 225
:block option for wlth-open-flle 91
:block-out message 227
:block-slze file property 117
:bot-p message to tape streams 273
branch format directive 35
branch format directive 35
breakllne macro 48
:brlef-help option 61
buffered asynchronous devices 18. 114
buffered input 18
Buffered Input Streams 20
buffered output 18
Buffered output stream 21
Buffered Output Streams 21
Buffered serial I/O 251
Buffering capacity 261
byte 91
:byte-slze file-openlng option 91
:byte-slze file property 117
:byte-slze option for copyf 105
:byte-slze option for wHh-open-file 91
byte specifiers 5

canonical type 200
canonical type 200
canonical type 200
:canonlcal-type message 151
:canonlcal-type method of fs:pathname 166
Canonical Types and Editor Modes 153
Canonical types example 130
Canonical Types In Path names 151
Canonical types In Unix 4.2 Path names 178
Canonical types In Unix Path names 176
canonical types in VMS Pathnames 180
capacity 261
Cardinal format directive 36
Carriage return character 5
Carriage return format directive 34
:carrler-detect serial 1/0 parameter 253
case 145
case 145
case format directive 34

c

March 1985

fs:

FEP

Double-arrow (~)
Double-arrow

Equivalence sign
S

Keyboard
ITS

Equivalence sign (=)
Right horseshoe (~)

Enclose
Echo

Center-dot
Clrcle-x (0)

Special function keys
ASCII

Graphics
Octal representation of

ASCII
Lisp Machine

Symbolics

Disable all
Effect of

Reading

USART

Data

fs:
Fsedlt

Opening and

Using Fsedlt

281

Index

Case in Pathnames 145
Center-dot character in TOPS-20 pathname

display 183
change-file-properties function 105. 119
:change-propertles message 114
:change-property message 227
channel facility 261
character 153
character 185
character (~) in logical pathnames for nil 186
character (=) in logical pathnames for quoting 186
character do not reap file flag 236
character file not backed up flag 236
:character file-opening option 91
character format directive 33
character handling 5
character In ITS path names 185
character in ITS pathnames 185
character in lozenge 34
character Input 75
character In TOPS-20 pathname display 183
character In TOPS-20 pathnames 183
Character mode 91
Character object 84
Character output 46
Character-related byte specifiers 5
character representation 5
characters 5
characters 5
characters 5
character set 251. 253
Character Set 5
Character Set 5
Character set translation 10
character set translation in ASCII files 91
Character Set Translation on Direct Access File

Streams 10
characters from an input stream 15
:characters message 13. 114
:characters option for copyf 105
% %ch-char variable 6
:check-framlng-errors serial I/O parameter 253
:check-over-run-errors serial I/O parameter 253
:check-parlty-errors serial 1/0 parameter 253
:check-ready message to tape streams 273
% %ch-font variable 6
chip 247
Clrcle-x (0) character In TOPS-20 path names 183
Circuit Terminating Equipment 247
Clear buffered input 18
Clear buffered output 18
:clear-eof message to Input tape streams 273
:clear-error message to tape streams 273
:clear-Input message 18. 251. 261
:clear-output message 18
:clear-rest-of-line message 15
:clear-to-send serial I/O parameter 253
:clear-wlndow message 20
close-all-flles function 107
[Close] Command 235
[Close] File System Editor menu Item 233
close function 103
:close message 18
:close message to tape streams 273
:close operation 97
Closing a Directory 232
:command option 64
Commands 233

282

Reference Guide to Streams, Files, and /10

FEP File
Disk label

Is:

Detalls of
Directory
Filename

Rules for Successful
File server

LMFS

FEP
Using the Terminal Program with Hosts

Concatenating
Pathname Defaulting From the Current

Modem
File name

Init File Naming
Maclisp

:byte-slze option for
:characters option for

:create-dlrectorles option for
:report-stream option for

fs:
sl:
sl:
si:

Functions for Creating

Fsedit

Fsedit

Functions for

Maclisp
Path name Defaulting From the

:commas option for fonnat:onum 45
Comment Properties 216
comments 216

March 1985

Complied code objects In compiled code files 241
:complete-help option 60
complete-pathname function 120, 158
Completion 120. 158
Completion 121. 159
Completion 122. 161
completion 117
Completion 123. 161
computer 127
Concatenating constant and variable output 44
Concepts 203
Conditional format directive 36
Configuration Files 215
configuration files 215
Connected to the Serial Une 265
constant and variable output 44
Context 134
Continuation format directive 35
Control bit 5
control parameters 253
conventions 127
Conventions 200
Conversion 201
Converting logical path name to physical

path name 186, 199
Converting physical path name to logical

path name 199
copyf 105
copyf 105
copyf 105
copyf 105
copyf function 105
Copy File (m-X) Zmacs command 105, 153
Copying files 105
copy-pathname-defaults function 162
coroutine-bidirectional-stream flavor 28
coroutlne-Input-stream flavor 28
coroutine-output-stream flavor 28
Coroutine Streams 25
Coroutine Streams 27
Correspondence of Canonical Types and Editor

Modes 153
:create-data-map message 225
:ereate-dlrectorles option for eopyf 105
[Create Inferior Directory] Command 234
[Create Inferior Directory] File System Editor menu

item 233
[Create Unk] Command 234
[Create Unk] File System Editor menu item 233
Create new logical host 197
:ereate symbol in :if-does-not-exlst option for

open 222
Creating a serial 110 stream 251
Creating Coroutine Streams 27
Creating More Room on the Local Disk 239
:creatlon-date FEP file property 227
:ereatlon-date file property 117
:creation-date message 114
Cross-host translation functions 145
erunH function 201
Current Context 134
eursorpos function 88
CWARNS path name type abbreviation 180

March 1985

D
Putting

FEP file

x-

dbg:

Fsedit

Maclisp
Stream

Run-example with Simple

Path name
Special
Special

fs:
fs:
fs:
fs:

Manipulating
More About

Pathname
Sticky pathname

Tailoring Path name
Using pathname

Path name
Sticky pathname

formal:
fs:

Formatted print of function

Fsedit
Fsedit [Wildcard

[Wildcard
Fsedit

LMFS

fs:
fs:

Hardware

D
Data Circuit Terminating Equipment 247
Data In Complied Code Files 241
data map 225
Data sets 247
Data Terminal Equipment 247
:data-termlnal-ready serial I/O parameter 253
Data terminals 247
Date and time format directive 42
date directory last expunged Indicator 236
dbg:*debug-Io-overrlde* variable 22
DCE 247
debug-Io-overrlde variable 22
debug-Io variable 22
[Decache] Command 235
[Decache] File System Editor menu item 233
Decimal format directive 31
defauH function 201
default handler 11
Defaulting 130. 131

283

Index

D

Defaulting an Output File Path name From an Input
File 132

Defaulting From the Current Context 134
Defaulting of the Name 122. 160
Defaulting of the Type 122. 160
defauH-palhname-defauHs example 130
default-palhname-defaults variable 148
defauH-palhname example 130. 132. 134
defauH-palhname function 162
defaults 156
Defaults 131
defaults 147. 158
defaults 131. 133
Defaults 130
defaults 129
Defaults alist 133. 147. 148
Defaults and Merging 147
defaults example 133
Default surface type 151
Default translation rule 189
Default type 147
Default version 147
defformal special form 42
deflne-canonlcal-Iype special form 163
Defining a Translation Rule 191
definitions 51
defsystem 196
[Delete] Command 233
Delete] Command 233
:deleted option for fs:complete-pathname 120. 158
:deleted option for fs:dlrectory-list 117
:deleted option for wlth-open-flle 91
:deleted option to open 97
deletef function 104
Delete file 104
[Delete] File System Editor menu item 233
Delete] File System Editor menu Item 233
[Delete (Immediate)] Command 233
[Delete (immediate)] File System Editor menu

item 233
:delete message 114
Deletion. Expunging. and Versions 209
:denstty option to tape:make-stream 269
describe-logical-host function 196
descrlbe-pathname function 165
DeSCription for Serial I/O 247
Details of Completion 121. 159

284

Reference Guide to Streams, Files, and liD

Host

Ou1pu1 streams to buffered asynchronous

Effect of Character Set Translation on

Absolu1e branch format
Binary format

Cardinal format
Carriage return format

Conditional format
Continuation format

Date and time format
Decimal format
Escape format

Exponential format
Fixed-point format

Floating-point format
Free format

Fresh line format
Hexadecimal format

Indention format
Indirection format

Iteration format
Justification format

Keyboard character format
Lower case format
Lowercase format

Lozenge format
Octal format

Ordinal format
Page separator format

Plural format
Radix

Relative branch format
Roman numeral format

Slashification format
Space format

Tabulation format
Tilde format
Time format

Time interval format
Time-of-day format

User-function format
- -+ format
-~ format
-$ format

-(Cr) format
-(format
-1 format
-8 format
-B format
-c format
-d format
-e format
-f format
-. format

-% Format

March 1985

Determination In Path names 136
Device generic path name component 149
:devlce message 145
:devlce method of fs:pathname 166
devices 18, 114
:devlce-wlld-p method of fs:pathname 173
Direct Access Bidirectional File Streams 116
Direct access bidirectional streams 116
Direct Access File Streams 115
Direct Access File Streams 10
Direct Access Outpu1 File Streams 116
:dlrectlon file-openlng option 91
:dlrectlon message 13
:dlrectlon option for open 222, 228
:dlrectlon option for wHh-open-flle 91
:dlrectlon option to tape:make-stream 269
directive 35
directive 31
directive 36
directive 34
directive 36
directive 35
directive 42
directive 31
directive 41
directive 32
directive 32
directive 32
directive 30
directive 34
directive 32
directive 41
directive 34
directive 37
directive 39
directive 33
directive 34
directive 34
directive 34
directive 31
directive 36
directive 34
directive 35
directive 36
directive 35
directive 36
directive 30
directive 36
directive 35
directive 34
directive 42
directive 42
directive 42
directive 41
Directive 41
Directive 34
Directive 32
Directive 35
Directive 39
Directive 34
Directive 30
Directive 31
Directive 33
Directive 31
Directive 32
Directive 32
Directive 35
Directive 34

March 1985

-& format
-@* format

-G format
-0 format
-P format
-0 format
-R format
-8 format

-[St(O-;Str1*; ... -;Strn-] format
-T format

-@T format
-X format

-,Date, format
-,Dati me, format

-,Time-Interval, format
-,Time, format

-- format
-(Str-. format

-I format
-- format

-(and -) format
Accessing

Functions for Accessing
File

Home
Opening and Closing a

Root
Sys: I-ucode; logical

Fsedlt [Create Inferior

File system editor

[Create Inferior
Maclisp

x- date
fs:

fs:dlrectory-link-opaque-dlrlist Instead of fs:
fs:

=> link indicator in
How to Interpret

Wildcard

FEP

Directory Path names and
:relative relative

Site

Creating More Room on the Local
Translate relative file block number into

:block
:Input

:output
:probe

Block

Directive 34
Directive 35
Directive 35
Directive 31
Directive 35
Directive 41
Directive 36
Directive 30
Directive 36
Directive 35
Directive 36
Directive 32
Directive 42
Directive 42
Directive 42
Directive 42
Directive 41
Directive 37
Directive 34
Directive 34
Directives 34
Directories 117
Directories 117
directory 117
directory 163
Directory 232
directory 215
directory 217
Directory] Command 234
Directory Completion 122. 161
directory display 236
:dlrectory FEP file property 227
Directory] File System Editor menu item 233
directory function 201

285

Index

Directory generic pathname component 149
directory last expunged indicator 236
directory-link-opaque-dlrllst instead of fs:directory-

list example 132
directory-list example 132
directory-list function 117
directory listings 236
Directory Ustings 236
Directory Mapping 155
:dlrectory message 145
:directory method of fs:pathname 166
directory name 222
:dlrec1ory-pathname-as-file method of

fs:pathname 144
Directory Pathnames and Directory Path names as

Files 142
Directory Pathnames as Files 142
directory specifier syntax in logical pathnames 186
Directory TOPS-20 pathname component 183
directory translation 195
:dlrectory-wild-p method of fs:pathname 173
Disable all character set translation in ASCII files 91
Disable special treatment of Rubout in ASCII files 91
:dlscard-current-record message to Input tape

streams 273
Disk 239
disk address 225
Disk label comments 216
disk stream 222
disk stream 222
disk stream 222
disk stream 222
Disk stream messages 224
disk stream messages 226

286

Reference Guide to Streams, Rles, and 110

E

Bidirectional
Block

Block mode
Input and Output

Operating on
FEP File Properties: 3600

Center-dot character In TOPS-20 path name
File system editor directory

I character

SYI:

[Tree
Fsedlt

[Tree

Fsedlt

[Tree
Format

tape:

Data Circuit Terminating
Data Terminal

Tape

Path name
Simple

E

March 1985

Disk streams 221
disk streams 222. 226
Disk Streams 226
disk streams 221
Disk Streams 226
Disk Streams 224
Disk System User Interface 227
display 183
display 236
Displaying Help Messages In the Input Editor 66
Displaying Prompts In the Input Editor 65
:do-not-echo option 63
do not reap file flag 236
:dont-delete FEP file property 227
Double-arrow <t) character 185
Double-arrow character <t) In loglcaJ path names for

nil 186
DTE 247
dump-forrns-to-f1le function 241

Echo character Input 75
edit any] File System Maintenance menu item 231
[Edit] Command 235
[Edit] File System Editor menu Item 233
edit Homedir] File System Maintenance menu

Item 231
Editing terminal input 53
:edltor-command option 64
:editor output format style 46
[Edit Properties] Command 234

E

[Edit Properties] File System Editor menu item 233
edit root] File System Maintenance menu item 231
effectors 5
EIA RS-232 protocol 243
Enclose character in lozenge 34
Encoding keyboard input 5
End-of-file marker 12
End-of-file on input streams 75
end-of-tape flavor 2n
Entering the File System Editor 231
:eof message 18
Equipment 247
Equipment 247
Equivalence sign () character In ITS

path names 185
Equivalence sign character (5) In loglcaJ path names

for quoting 186
:error file-openlng option 91
Error Flavors 2n
Error message stream 22
:error Option to open 93, 99
error-output variable 22
:error symbol in :If-does-not-exlst option for

open 222
:error symbol in :If-exlsts option for open 222
:error symbol In :If-Iocked option for open 222
Escape format directive 41
:estlmated-Iength option for open 222
examples 129
Example: Serial I/O 257
Examples of Use of the Input Editor 66
explodec function 89 .
explode function 89
exploden function 89
Exponential format directive 32

March 1985

F

Fsedit
x- date directory last

LMFS Deletion,

Allocating

FEP channel
The Serial 1/0

SELECT
LOAD file type

MIC file type

Increase size of

Accessing
Naming of
Renaming

How LM FS Uses the

Translating pathname type
%%kbd

fs:

FEP
Getting a

:byte-slze
:eharacter
:dlrectlon

:error
:preselVe-dates

fs:
Fs:
Fs:
fs:
fs:

! character file not backed up
S character do not reap file

fs:pathname

F

[Expunge] Command 234
expunged Indicator 236
[Expunge] File System Editor menu item
Expunging, and Versions 209
Extra paging space 219
Extra Paging Space 240

facility 261
Facility 243
:fasd-form message 241
Fasdump 241
F command 213
(FEP) 215
(FEP) 215
FepO:)lmfs.file file 216
FEP channel facility 261
FEP configuration files 215
FEP directory name 222
FEP FEP file type 228
FEP file 224
FEP File Comment Properties 216
FEP file data map 225
FEP File Locks 228
FEP filename format 222
FEP file properties 216

233

FEP File Properties: 3600 Disk System User
Interface 227

FEP Files 222
FEP Files 222
FEP Files 219
FEP File System 221
FEP File System 216
FEP File System OVerview 215
FEP File System Path names 176
FEP File Types 228
FEP host 222
field 151
fields 5
:fI1e-aceess-path message 225
file-attrlbute-bindings function 111
Filename 127
Filename completion 117
filename format 222
Filename From the User 129
file-openlng option 91
file-opening option 91
file-opening option 91
file-opening option 91
file-opening option 91
file-properties function 105, 119
file-property-bindings 111
file-read-property-list 111
file-type-mode-allst variable 153
flnd-file-wHh-1ype function 164
:finish 113
:finish message 18; 114

287

Index

F

:finish-typeout method of sl:lnteractlv8-stream 71
Fixed-point format directive 32
:fixnum option for with-open-flle 91
flag 236
flag 236
Flashing the screen 19
flate function 89
flatslze function 89
flavor 153

288

Reference Guide to Streams, flIes, and /10

Us1 valid Init-optlons for
sl:coroutlne-bldlrectlonal-stream

sl :coroutlne-Input-stream
sl:coroutlne-output-stream

sl :serlal-hdlc-stream
tape:end-of-tape

tape:mount-error
tape:tape-devlce-error

tape:tape-error
Tape Error

Print number In

format:defformat special
fs:deflne-canonlcal-Iype special

grlndef special
wlth-Input-editlng-optlons-If special

wlth-Input-editlng-optlons special
wlth-Input-edltlng special

wHh-open-file special
wHh-open-stream special

FEP filename

Absolute branch
Binary

Cardinal
Carriage return

Conditional
Continuation

Date and time
Decimal
Escape

Exponential
Fixed-point

Floating-point
Free

Fresh line
Hexadecimal

Indention
Indirection

iteration
Justification

Keyboard character
Lower case
Lowercase

Lozenge
Octal

Ordinal
Page separator

Plural
Relative branch
Roman numeral

Slashification
Space

Tabulation
Tilde
Time

flavor 104
flavor 28
flavor 28
flavor 28
flavor 263
flavor 2n
flavor 2n
flavor 2n
flavor 2n
Flavors 2n
:flavor serial 110 parameter 253
floating point 46
Floating-point format directive 32
FLOD FEP file type 228
:fnl method of fs:lts-pathname 186
:fn2 method of fs:Hs-pathname 186
Font number 5
Fonts file attribute 109
:force-output message 18
:force-output messages 113

March 1985

:force-output message to output tape streams 273
:force-output serial 110 parameter 251, 253
:force-rescan method of sl:lnteractlve-stream 71
form 42
form 163
form 51
form 56
form 55
form 57
form 91
form 96, 251
format 222
format:breakllne macro 48
format:defformat special form 42
format directive 35
format directive 31
format directive 36
format directive 34
format directive 36
format directive 35
format directive 42
format directive 31
format directive 41
format directive 32
format directive 32
format directive 32
format directive 30
format directive 34
format directive 32
format directive 41
format directive 34
format directive 37
format directive 39
format directive 33
format directive 34
format directive 34
format directive 34
format directive 31
format directive 36
format directive 34
format directive 35
format directive 35
format directive 36
format directive 30
format directive 36
format directive 35
format directive 34
format directive 42

March 1985

Time Interval
Time-of-day

User-function
-@*

-&

-.
-+
-~

-$
-(

-(Cr)
-1
-a
-8
-c
-d
-e
-f

-G
-0
-p
-a
-R
-8

-[StrO-;Strr; ... -;Strn-]
-T

-@T
-x

-,Date,
-,Datlme,

-, Time-Interval\
-,Time,

:commas option for
:slgned option for

:edHor output
:read output
:sall output

:terprl option for
:unit option for

:mlnpad option for
:padchar option for

:tab-period option for

format directive 42
format directive 42
format directive 41
format Directive 35
format Directive 34
Format Directive 34
format Directive 35
format Directive 41
format Directive 34
format Directive 32
format Directive 39
format Directive 35
format Directive 34
format Directive 30
format Directive 31
format Directive 33
format Directive 31
format Directive 32
format Directive 32
format Directive 35
format Directive 31
format Directive 35
format Directive 41
format Directive 36
format Directive 30
format Directive 36
format Directive 35
format Directive 36
format Directive 32
format Directive 42
format Directive 42
format Directive 42
format Directive 42
format Directive 41
format Directive 37
format Directive 34
format Directive 34
format Directives 34
Format effectors 5
format function 29, 87
format:ochar function 46
format:ofloat function 46
format:onum 45
format:onum 45
format:onum function 45
format:oprlnt function 46
format:ostrlng function 46
format:outfmt macro 45
fonnat:output macro 45
format:pad macro 47
format:plural function 47
format:prlnt-list function 44
format style 46
format style 46
format style 46
format:tab 47
format:tab 47
format:tab function 47
Formatted Output 29
Formatted print of function definitions 51
Formatting functions 44
formatting functions 44
formatting functions 44
formatting functions 44
Formatting Lisp Code 51
Free format directive 30
Fresh line format directive 34
:fresh-line message 15

289

Index

290

Reference Guide to Streams, Rles, end 110

Defaulting an Output File Pathname
Path name Defaulting
Getting a Filename

fs:dlrectory-link-opaque-dlrlist Instead of

Using

:fn1 method of
:fn2 method of

:back-translated-pathname method of
:translated-pathname method of

:canonlcal-!ype method of
:devlce method of

March 1985

From an Input File 132
From the Current Context 134
From the User 129
Front-end Processor 221
fs:add-Ioglcal-pathname-host 197
fs:change-flle-propertles function 105. 119
fs:close-all-flles function 107
fs:complete-pathname function 120, 158
fs:copy-pathname-defauHa function 162
fs:*defauH-pathname-defauHs* example 130
fs:*default-pathname-defauHs* variable 148
fs:default-pathname example 130, 132. 134
fs:default-pathname function 162
fs:deflne-canonlcal-type special form 163
fs:descrlbe-Ioglcal-host function 196
fs:descrlbe-pathname function 165
fs:dlrectory-link-opaque-dlrlist Instead of

fs:dlrectory-list example 132
fs:dlrectory-list example 132
fs:dlrectory-list function 117
Fsedlt 231
Fsedlt [Close] Command 235
Fsedlt Commands 233
Fsedlt [Create Inferior Directory] Command 234
Fsedlt [Create Unk] Command 234
Fsedlt [Decache] Command 235
Fsedlt [Delete] Command 233
Fsedlt [Delete (Immediate)] Command 233
Fsedlt [Edit] Command 235
Fsedlt [Edit Properties] Command 234
Fsedit [Expunge] Command 234
Fsedlt [Hardcopy] Command 235
Fsedlt [Unk Transparencies] Command 235
Fsedlt [Load] Command 236
Fsedlt [New Property] Command 234
Fsedlt [Open] Command 234
Fsedlt [Rename] Command 233
Fsedlt [Selective Open] Command 235
Fsedit [Undelete] Command 233
Fsedlt [VIew] Command 234
Fsedit [View Properties] Command 233
Fsedlt [Wildcard Delete] Command 233
fs:file-aHribute-blndlngl function 111
fs:file-propertles function 105. 119
Fs:file-property-bindlngs 111
FS:fiIe-read-property-list 111
fs:*fIIe-type-mode-allst* variable 153
fs:flnd-file-wHh-type function 164
fs:lnlt-flle-pathname function 163
fs:Hs-pathname 186
fs:Hs-pathname 186
fs:*Hs-unlnterestlng-types* variable 186
fs:*known-types* variable 149
fs:load-pathname-defaults variable 149
fs:loglcal-pathname 199
fs:loglcal-pathname 199
fs:make-Ioglcal-pathname-host function 197
fs:make-pathname-defaults 131. 133
fs:make-pathname-defaults function 162
fs:make-pathname function 145. 162
fs:merge-pathnames-and-set-defaults function 158
fs:merge-pathnames example 133. 134
fs:merge-pathnames function 157
fs:multlple-flle-pllsts function 119
fs:parse-pathname function 156
fs:patch-file Translation Rule 196
fs:pathname 166
fs:pathname 166

March 1985

:devlce-wlld-p method of
:dlrectory method of

:dlrectory-pathname-as-fJle method of
:dlrectory-wlld-p method of

:generlc-pathname method of
:getl method of
:get method of

:host method of
:name method of

:name-wlld-p method of
:new-canonlcal-type method of

:new-default-pathname method of
:new-devlce method of

:new-dlrectory method of
:new-name method of

:new-pathname method of
:new-raw-devlce method of

:new-raw-dlrectory method of
:new-raw-name method of

:new-raw-type method of
:new-type method of

:new-verslon method of
:parse-truename method of

:pathname-as-dlrectory method of
:pathname-match method of

:pllst method of
:putprop method of

:raw-devlce method of
:raw-dlrectory method of

:raw-name method of
:raw-type method of
:remprop method of

:strlng-for-dlrectory method of
:strlng-for-dlred method of

:strlng-for-edltor method of
:strlng-for-host method of

:strlng-for-prlntlng method of
:strlng-for-whollne method of

:system-type method of
:translate-wild-pathname message to

:translate-wild-pathname method of
:translate-wild-pathname-reverslble message to

:type method of
:types-for-canonlcal-type method of

:type-wild-p method of
:verslon method of

:verslon-wlld-p method of
:wild-p method of

:translate-wlld-pathname message to

Cross-host translation
Formatting

Input
:mlnpad option for formatting

Output
:padchar option for formatting

fs:pathname 173
fs:pathname 166
fs:pathname 144
fs:pathname 173
fs:pathname 171
fs:pathname 172
fs:pathname 171
fs:pathname 165
fs:pathname 166
fs:pathname 173
fs:pathname 169
fs:pathname 170
fs:pathname 167
fs:pathname 167
fs:pathname 167
fs:pathname 170
fs:pathname 168
fs:pathname 168
fs:pathname 168
fs:pathname 169
fs:pathname 168
fs:pathname 168
fs:pathname 171
fs:pathname 144
fs:pathname 172
fs:pathname 172
fs:pathname 172
fs:pathname 166
fs:pathname 166
fs:pathname 166
fs:pathname 166
fs:pathname 172
fs:pathname 171
fs:pathname 171
fs:pathname 171
fs:pathname 171
fs:pathname 171
fs:pathname 171
fs:pathname 168
fs:pathname 192
fs:pathname 173
fs:pathname 192
fs:pathname 166
fs:pathname 169
fs:pathname 173
fs:pathname 166
fs:pathname 173
fs:pathname 172
fs:pathname-attribute-list function 111
fs:pathname example 132
fs:pathname flavor 153
fs:pathname-pllst function 165
FSPT 213
FSPT FEP file type 228
fs:read-attribute-list function 109. 111
fs:*remember-passwords* variable 107
fs:set-default-pathname 133
fs:set-default-pathname function 163
fs:set-Ioglcal-pathname-host 188. 196
fs:set-Ioglcal-pathname-host function 198
fs:user-homedlr function 163
:full-rubout option 59
functions 145
functions 44
Functions 75
functions 44
Functions 87
functions 44

291

Index

292

Reference Guide to Streams, Files, and 110

G

H

Path nam e
Slashification-related output

:tab-perfod option for formatting

Advanced
Basic

Device
Directory

Host
Type

Version

Stream default
ITS character

Fsedit

Displaying

[Tree edit
Maclisp status

Right
Create new logical

FEP
SYS logical

Path names on Supported

Logical
Multiple physical

Splitting Logical Hosts Across Physical
Translating logical hosts to physical

Splitting Logical
Using the Terminal Program with

Translating logical

G

H

March 1985

Functions 156
functions 89
functions 44
Functions for Accessing Directories 117
Functions for Creating Coroutine Streams 27

General-purpose Stream Operations 11 .
General-purpose Stream Operations 13
General-purpose Stream Operations 11
:generate-xon-xoff serial I/O parameter 253
generic pathname component 149
generic path name component 149
generic path name component 149
generic path name component 149
generic path name component 149
:generfc-pathname message to path names 149
:generfc-pathname method of fs:pathname 171
Generic Path names 149
:getl method of fs:pathname 172
:get message 227
:get method of fs:pathname 171
:get method of sl:serlal-stream 252
:get-output-buffer message 21
Getting a Filename From the User 129
Global translation rules 189
Granularity 269
Graphics characters 5
grlndef special form 51
grlnd-top-Ievel function 51
:grow message 224

handler 11
handling 5
[Hardcopy] Command 235
[Hardcopy] File System Editor menu item 233
Hardware Description for Serial 1/0 247
Hdlc Serial 1/0 263
Help Messages in the Input Editor 66
Hexadecimal format directive 32
Home directory 163
Homedir] File System Maintenance menu item 231
homedlr function 201
horseshoe C::» character in ITS pathnarnes 185
host 197·
host 222
host 186
Host Determination in Pathnames 136
Host File Systems 174
Host generic path name component 149
Host-independent file name 151
:host method of fs:pathname 165
:host-name message to tape streams 273
:host option to tape:make-stream 269
hosts 188
hosts 196
Hosts 196
hosts 186
Hosts Across Physical Hosts 196
Hosts Connected to the Serial Une 265
hosts to physical hosts 186
How LMFS Uses the FEP File System 216
How the Input Editor Works 53
How to Interpret Directory Ustings 236

G

H

293

March 1985 Index

Hyper bit 5

Buffered serial 110 251
Hardware Description for Serial lID 247

Hdlc Serial 110 263
Introduction to Serial lID 245

Notes on Serial lID 261
Parameters for Serial lID 253

Simple Example: Serial lID 257
Troubleshooting: Serial lID 259

The Serial 110 Facility 243
:ascll-characters serial lID parameter 253

:baud serial lID parameter 253
:carrier-detect serial lID parameter 253

:check-framlng-errors serial lID parameter 253
:check-over-run-errors serial 110 parameter 253

:check-parlty-errors serial 110 parameter 253
:clear-to-send serial lID parameter 253

:data-termlnal-ready serial lID parameter 253
:flavor serial lID parameter 253

:force-output serial 110 parameter 251.253
:generate-xon-xoff serial lID parameter 253

:Input-error-character serial lID parameter 253
:lnput-xoff-char8Cter serial lID parameter 253
:Input-xon-character serial lID parameter 253

:mode serial 110 parameter 253
:number-of-data-bHs serial 110 parameter 253
:number-of-stop-blts serial 110 parameter 253

:output-xoff-character serial 110 parameter 253
:output-xon-character serial 110 parameter 253

:parlty serial 110 parameter 253
:request-to-send serial 110 parameter 253

:unH serial 110 parameter 253
:xon-xoff-protocol serial 110 parameter 253

Reading serial 110 parameters 251
Setting serial 110 parameters 251

Creating a serial 110 stream 251
The Serial 110 Stream 251

110 Streams 11
Introduction to the 110 System 3

:If-does-not-exlst option for open 222
:create symbol In :If-does-not-exlst option for open 222
:error symbol In :If-does-not-exlst option for open 222

nil symbol In :If-does-not-exlst option for open 222
:If-exlsts option for open 222

:new-verslon symbol In :If-exlsts option for open 222
nil symbol in :If-exlsts option for open 222

:error symbol In :If-exlsts option for open 222
:supersede symbol in :If-exlsts option for open 222
:overwrite symbol In :If-exlsts option for open 222

:If-Iocked option for open 222. 228
:share symbol In :If-Iocked option for open 222
:error symbol in :If-Iocked option for open 222

Fsedit [Delete (Immediate)] Command 233
[Delete (immediate)] File System Editor menu item 233

Increase size of FEP file 224
Indention format directive 41

x- date directory last expunged Indicator 236
-> link Indicator In directory listings 236

Indirection format directive 34
Fsedit [Create Inferior Directory] Command 234

[Create Inferior Directory] File System Editor menu item 233
:Info message 114
Init file 163

ITS init file 185

294

Reference Guide to Streams, Files, and 110

TOPS-20

fs:

Ust valid

Clear buffered
Echo character
Editing terminal

Encoding keyboard
Stream

Displaying Help Messages In the
Displaying Prompts In the

Examples of Use of the
Invoking the

Reading function to use
Command Loop

The
How the

Defaulting an Output File Path name From an

Reading characters from an

End-of-file on
Special-purpose Stream Operations for Buffered

:clear-eof message to
:dlscard-current-record message to

:record-statua message to

sl:

fs:dlrectory-Ilnk-opaque-dlrllst

:finish-typeout method of al:
:force-rescan method of sl:
:lnput-edHor method of sl:

:nolse-strlng-out method of sl:
:read-bp method of sl:

:replace-Input method of sl:
:rescannlng-p method of sl:
:start-typeout method of sl:

Input Editor Messages to

FEP File Properties: 3600 Disk System User
The Input Editor Program

How to

inlt file 183
Inlt File Naming Conventions 200
Inlt-flle-pathname function 163
:lnHlal-lnput option 61
init-optlons for flavor 104
INIT path name type abbreviation 180

March 1985

:In option for fs:complete-pathname 120. 158
:In option for wHh-open-file 91
Input 18
Input 75
Inpu"1 53
Input 5
input 15
Input and Output Disk Streams 226
:Input disk stream 222
Input editor 53. 59. 60. 61. 62. 63. 64
Input Editor 66
Input Editor 65
Input Editor 66
Input Editor 54
Input editor 57
Input Editor Example 56
:Input-edltor message 19. 54
Input Edi10r Messages to Interactive Streams 70
:Input-edltor method of sl:lnteractlve-stream 70
Input Editor Options 59
Input Editor Program Interface 53
Input Edi10r Works 53
:Input-error-character serial I/O parameter 253
Input File 132
Input Functions 75
:Input-hlstory-defauh option 62
Input operations on serial streams 251
Input stream 15
:Input-stream-mode option to tape:make-stream

269
Input streams 75
Input Streams 20
Input stream specification 75
Input tape streams 273
Input tape streams 273
Input tape streams 273
:Input-walt-handler option 64
:lnput-waH message 13
:lnput-waH option 64
:Input-xoff-character serial I/O parameter 253
:Input-xon-character serial I/O parameter 253
Installing Microcode 217
Install-microcode function 217
Instances In complied code files 241
Instead of fs:dlrectory-list example 132
:Interactlve message 13
Interactive-stream 71
Interactive-stream 71
Interactive-stream 70
Interactive-stream 72
Interactive-stream 72
Interactive-stream 71
Interactive-stream 71
Interactive-stream 70
Interactive streams 53. 75
Interactive Streams 70
Interchange case In pathnames 145
Interchange case representation 145
Interface 227
Interface 53
Interning of Path names 138
Interpret Directory Ustlngs 236

March 1985

J

K

L

TIme

:fn1 method of fs:
:fn2 method of fs:

Type
Version

Equivalence sign (=) character In
Right horseshoe (~ character In

fa:

J

Interval format directive 42
Introduction to LM FS 203
Introduction to Serial I/O 245
Introduction to Streams 11
Introduction to the I/O System 3
Invoking the Input Editor 54
iteration format directive 37
ITS 200
ITS character handling 5
ITS Inlt file 185
Hs-pathname 186
Hs-pathname 186
ITS path name component 185
ITS path name component 185
ITS Pathnames 185
ITS pathnames 185
ITS pathnames 185
Hs-unlnterestlng-types vaJiable

Justification format directive 39
Left justify 46

Right justify 46

K
%%kbd-char variable 6
%%kbd-control-meta vaJiable 7
%%kbd-control variable 6
%%kbd fields 5
%%kbd-hyper variable 7
% %kbd-meta variable 6
%%kbd-mouse-button variable 7
%%kbd-mouse-n-clicks variable 7
%%kbd-mouse variable 7
%%kbd-super variable 6
Keyboard character 5

186

Encoding
Special function

:wlld
fs:

Keyboard character format directive 33
keyboard Input 5

L

keys character representation 5
keyword 153
known-types vaJiable 149

Disk label comments 216
x. date directory last expunged Indicator 236

Left justify 46
:Iength FEP file property 227
:Iength-In-blocks file property 117
:Iength-In-bytes file property 117
:Iength message 113

295

Index

J

K

L

Using the Terminal Program with Hosts Connected to the Serial
Une 265

Fresh line format directive 34
:lIne-ln message 16. 24

Testing :lIne-ln operation 12
:lIne-out message 15

Fsedlt [Create Unk] Command 234
[Create Unk] File System Editor menu Item 233

-> link Indicator In directory listings 236
LMFS Unks 210
Fsedlt [Unk Transparencies] Command 235

[Unk Transparencies] File System Editor menu
Item 233

296

Reference Guide to Streams, Files, and /10

Formatting

File attribute
Parser for file attribute

-> link Indicator In directory
How to Interpret Directory

File Attribute
Manipulating path name property

Parsing file attribute
Printing

Adding a Partition to
Introduction to

Local

Renaming
Adding a Spare World Load as

Adding a

How
Adding a Spare World

Fsedit

Using a Spare World

fs:
Microcode

World
Creating More Room on the

FEP File
Sys: I-ucode;

Create new
SYS

Splitting
. Translating

Converting physical path name to
:back-translated-pathname method of fs:

:translated-path name method of fs:

:relative relative directory specifier syntax in
:wlld-Inferiors in

Double-arrow character (t) in
Equivalence sign character (=) in

Converting

Patch file

:lIsp canonical type 200
Usp Code 51
Usp Machine Character Set 5
Usp Machine File System 203
USP pathname type abbreviation 180
list 109
list 109
:lIsten message 14, 251
IIstf function 123
listings 236
Ustings 236
Usts 109
lists 165
lists 109
lists 44
Usts in complied code files 241
Ust valid init-options for flavor 104
LMFS 200, 215
LMFS 213
LMFS 203
LMFS 216
Lmfs.file file 213
LMFS Backup 212
LM FS Concepts 203

March 1985

LMFS Deletion, Expunging, and Versions 209
LMFS files 176
LMFS File Space 219
LMFS Unks 210
LMFS Multiple Partitions 213
LMFS Partition 219
LMFS Path names 174
LM FS Properties 204
Imfs:rename-Iocal-flle-tool function 176
LMFS Uses the FEP File System 216
Load as LMFS File Space 219
[Load] Command 236
LOAD FEP file type 228
[Load] File System Editor menu item 233
LOAD file type (FEP) 215
Load for Paging 219
load function 108
Loading 108
Loading Files 108
Loading text files 109
load-pathname-defauHs variable 149
Loads 215
Loads 215
Local Disk 239
Local LMFS 216
:Iock-reason option to tape:make-stream 269
Locks 228
logical directory 217
logical host 197
logical host 186
Logical hosts 188
Logical Hosts Across Physical Hosts 196
logical hosts to physical hosts 186
logical pathname 199
logical-path name 199
loglcal-pathname 199
Logical Path names 186
logical path names 186
logical pathnames 188
logical pathnames for nil 186
logical path names for quoting 186
logical pathname to physical pathname 186, 199
Logical Pathname Translation 188, 189
logical pathname translation 196

297

March 1985 Index

M

VMS logical pathname translation rules 192
Logical Pathname Wildcard Syntax 188

Command Loop Input Editor Example 56
Lowercase file attribute 109
Lower case format directive 34
Lowercase format directive 34
Lowercase in pathname components 145

Enclose character In lozenge 34
Lozenge format directive 34

Sys: I-ucode; logical directory 217

M
Usp Machine Character Set 5
Usp Machine File System 203

Macllsp alltlles function 201
Macllsp Conversion 201

format:breakllne
format:outfmt
format:output

format:pad
oys:wHh-lndentatlon

sys:wlth-open-flle-search
wit h-open-fl le-case

wlth-open-stream-case
Streams that read or write
Writing Programs That Use

[Tree edit any] File System
[Tree edit Homedir] File System

[Tree edit root] File System
Editor

Macllsp crunlt function 201
Maclisp detauH function 201
Maclisp directory function 201
Maclisp file manipulation 201
Macllsp mergef function 201
Maclisp namellst function 201
Maclisp namestring function 201
Macllsp open function 91
Macllsp status homedlr function 201
Macllsp status udlr function 201
Maclisp truename function 201
Maclisp uread function 201
macro 48
macro 45
macro 45
macro 47
macro 49
macro 97
macro 96
macro 97
magnetic tape 269
Magnetic Tape 267
MAIL pathname type abbreviation 180
Maintenance menu item 231
Maintenance menu item 231
Maintenance menu item 231
major mode for file 109
Major modes 153

Editor major modes 153
make-broadcast-stream function 23

M

81: make-coroutlne-bldlrectlonal-stream function 27
sl: make-coroutlne-Input-stream function 27
sl: make-coroutlne-output-stream function 27
fa: make-Ioglcal-pathname-host function 197
fa: make-pathname-defauHs 131, 133
fa: make-pathname-defauHs function 162
fa: make-pathname function 145, 162
sl: make-serial-stream function 252

:denstty option to tape: make-stream 269
:dlrectlon option 10 tape: make-stream 269

:host option 10 tape: make-stream 269
:Input-stream-mode option 10 tape: make-stream 269

:Iock-reason option 10 tape: make-stream 269
:mlnlmum-record-Iength-granularity option to tape:

:mlnlmum-record-Iength option 10 tape:
:no-bot-prompt option 10 tape:

:norewlnd option 10 tape:
:pad-char option 10 tape:

:prompt option 10 tape:

make-stream 269
make-stream 269
make-stream 269
make-stream 269
make-stream 269
make-stream 269

298

Reference Guide to Streams, Files, and /10

:record-Iength option to tape:
:reel option to tape:
:unlt option to tape:

tape:
The tape:

Macllsp file
FEP file data

Wildcard Directory
Wildcard Pathname

End-of-file
Virtual

Macllsp
fa:
fa:
fa:

Pathname
Path name DefauHs and

:advance-Input-butrer
:advance-output-butrer

:allocate
:any-tyl

:beep
:block-In

:block-length
:block-out

:canonlcal-type
:change-propertles

:change-property
:characters
:clear-Input

:clear-output
:clear-rest-of-line

:clear-wlndow
:close

:create-data-map
:creatlon-date

:delete
:devlce

:dlrectlon
:dlrectory

:eof
:fasd-form

:fI1e-access-path
:finish

:force-output
:fresh-line

:get
:get-output-butrer

:grow
:Inlo

:lnput-edHor
:Input-walt
:Interactlve

:Iength
:lIne-ln

:lIne-out
:lIsten

:map-block-no
:name

: new-default-path name
:new-pathname

make-stream 269
make-stream 269
make-stream 269
make-stream function 269
make-stream Function 269
make-syn-stream function 23
Making Your OWn Stream 23
Manipulating defauHs 156

March 1985

Manipulating pathname property lists 165
manipulation 201
map 225
:map-block-no message 225
Mapping 155
Mapping 153
marker 12
Memory 216
:merged-help option 61
mergef function 201
merge-pathnames-and-set-defaults function 158
merge-pathnames example 133,134
merge-pathnames function 157
merging 129
Merging 147
Merging path name components 147, 157
message 21
message 21
message 225
message 24
message 19
message 226
message 226
message 227
message 151
message 114
message 227·
message 13. 114
message 18. 251. 261
message 18
message 15
message 20
message 18
message 225
message 114
message 114
message 145
message 13
message 145
message 18
message 241
message 225
message 18, 114
message 18
message 15
message 227
message 21
message 224
message 114
message 19. 54
message 13
message 13
message 113
message 16. 24
message 15
message 14, 251
message 225
message 145
message 140, 145
message 140, 145

299

March 1985 Index

:new-raw-devlce message 145
: new-raw-dl reclory message 145

:new-raw-name message 145
:new-raw-type message 145

:operatlon-handled-p message 13
:pathname message 113

:prlnt message 73
:properties message 114
:raw-devlce message 145

: raw-dl rectory message 145
: raw-name message 145

:raw-type message 145
: read message 73

:read-bytes message 115
:read-cursorpos message 19

:read-Input-buffer message 20
:read-polnter message 20

:rename message 114
: reset message 251

:send-If-handles message 13
:set-cursorpos message 20

:set-polnter message 20
:strlng-In message 15

:string-line-in message 17
:strlng-out message 15
:truename message 113

:tyI message 11
:tyl-no-hang message 19. 251

:tylpeek message 15
:tyo message 11

:type message 145
:untyl message 12

:untyo message 19
:untyo-mark message 19

:whlch-operatlons message 13
:wrHe-data-map message 225

Block disk stream messages 226
Disk stream messages 224

:force-output messages 113
Stream Messages 115

Displaying Help Messages In the Input Editor 66
Path name Messages: Naming of Flies 165

Messages to file streams 113
Input Editor Messages to Interactive Streams 70

Messages to Tape Streams 273
Error message stream 22

:translate-wlld-pathname message to fs:pathname 192
:translate-wi Id-path name-reversible message to fs:pathname 192

:translate-wlld-pathname message to fs:pathname example 132
:clear-eof message to Input tape streams 273

:dlscard-current-record message to Input tape streams 273
: record-status message to Input tape streams 273
:force-output message to output tape streams 273

:write-eof message to output tape streams 273
:wrHe-error-status message to output tape streams 273

:generlc-pathname message to pathnames 149
:rename message to pathnames 103
:rename message to streams 103

:awaH-rewlnd message to tape streams 273
:bot.p message to tape streams 273

:check-ready message to tape streams 273
:clear -error message to tape streams 273

:close message to tape streams 273
:host-name message to tape streams 273

:rewlnd message to tape streams 273
:set-offllne message to tape streams 273

:sklp-flle message to tape streams 273
Meta bit 5

300

Reference Guide to Streams, Rles, and 110

:fn1
:fn2

:back-translated-pathname
:trans lated-path name

:canonleal-type
:d8vlce

:devlce-wlld-p
:dlrectory

:dlrectory.pathname-as-flIe
:dlrectory-wfld-p

:generle.pathname
:get

:getl
: host

:name
:name-wlld-p

:new-canonlcal-type
:new-default-pathname

:new-devlce
:new-dlrectory

: new-name
:new-pathname

:new-raw-devlce
:new-raw-dlrectory

:new-raw-name
:new-raw-type

: new-type
:new-verslon

:parse-truename
:path name-as-dl rectory

:pathname-match
:pllst

:putprop
:raw-d9vlce

: raw-dl rectory
:raw-name

: raw-type
:remprop

:strl ng-for-dl rectory
:strlng-for-dlred

:strlng-for -editor
:strlng-for-host

:strl ng-for-prlntlng
:strlng-for-whollne

:system-type
:translate-wlld-pathname

:type
:types-for-cano n leal-type

:type-wlld-p
:verslon

:verslon-wlld-p
:wlld-p

:finish-typeout
:force-resean
:lnput-edHor

:nolse-strlng-out
:read-bp

:replace-Input
:rescannlng.p
:start-typeout

: read-frame
:wrlte-frame

:get
:put

Installing

method of fs:lts-pathname 186
method of fs:lts-pathname 186
method of fs:loglcal.pathname 199
method of fs:loglcal-pathname 199
method of fs:pathname 166
method of fs:pathname 166
method of fs:pathname 173
method of fs:pathname 166
method of fs:pathname 144
method of fs:pathname 173
method of fs:pathname 171
method of fs:pathname 171
method of fs:pathname 172
method of fs:pathname 165
method of fs:pathname 166
method of fs:pathname 173
method of fs:pathname 169
method of fs:pathname 170
method of fs:pathname 167
method of fs:pathname 167
method of fs:pathname 167
method of fs:pathname 170
method of fs:pathname 168
method of fs:pathname 168
method of fs:pathname 168
method of fs:pathname 169
method of fs:pathname 168
method of fs:pathname 168
method of fs:pathname 171
method of fs:pathname 144
method of fs:pathname 172
method of fs:pathname 172
method of fs:pathname 172
method of fs:pathname 166
method of fs:pathname 166
method of fs:pathname 166
method of fs:pathname 166
method of fs:pathname 172
method of fs:pathname 171
method of fs:pathname 171
method of fs:pathname 171
method of fs:pathname 171
method of fs:pathname 171
method of fs:pathname 171
method of fs:pathname 168
method of fs:pathname 173
method of fs:pathname 166
method of fs:pathname 169
method of fs:pathname 173
methOd of fs:pathname 166
method of fs:pathname 173
method of fs:pathname 172
method of sl:lnteractlve-stream 71
methOd of sl:lnteractlve-stream 71
method of sl:lnteractlve-stream 70
method of sl:lnteractlve-stream 72
method of sl:lnteractlve-stream 72
methOd of sl:lnteractlve-stream 71
method of sl:lnteractlve-stream 71
method of sl:lnteractlve-stream 70
method of sl:serlal-hdlc-mlxln 263
method of sl:serlal-hdlc-mlxln 263
method of sl:serlal-stream 252
method of sl:serlal-stream 252
MIC FEP file type 228
MIC file type (FEP) 215
Microcode 217
Microcode Loads 215

March 1985

March 1985

301

Index

MIDAS pathname type abbreviation 180
:mlnlmum-record-Iength-granularity option to

tape:make-stream 269
:mlnlmum-record-Iength option to tape:make

stream 269
:mlnpad option for formatting functions 44

Binary mode 91
Character mode 91

Block mode disk streams 221
Mode File Attribute 109

Editor major mode for file 109
Modem 247

Null modem 247
Modem control parameters 253

Assignment of RS-232 Signals to Pins in Asynchronous Null
Modems 247

Correspondence of Canonical Types and Editor Modes 153

N

Editor major modes 153
Major modes 153

:mode serial I/O parameter 253
Modifier bits 5

tape: mount-error flavor 2n
Mouse signals 5
Ms-dos Path names 186
Multics Pathnames 184

fa: multlple-file-pllnta function 119
LMFS Multiple Partitions 213

Multiple physical hosts 196
Copy File (m-X) Zmacs command 105, 153

Rename File (m-X) Zmacs command 153

FEP directory
Host-Independent file

Special Defaulting of the
File

Maclisp

True
Maclisp

Inlt File

Path name Messages:

>
Create

N
name 222
name 151
Name 122, 160
name conventions 127
namells! function 201
:name message 145
:namo method of fs:pathnamo 166
name of file 107
namestrtng function 201
:name-wlld-p method of fs:pathname 173
Naming Conventions 200
Naming of FEP Flies 222
Naming of Files 127
Naming of Files 165
Native case representation 145
Native pathname component case 145
:new-canonlcal-lype method of fs:pathname 169
:new-default-pathname message 140, 145
:new-dafault-palhname method of

fs:pathname 170
:new-davlce method of fa:pathname 167
:new-dlrectory method of fs:pathname 167
:newest pathname component 140, 170
:newest version specifier 186
new logical host 197
:new-namo method of fs:pathname 167

N

:new-ok option for fs:complete-pathname 120, 158
:new-pathname message 140, 145

Fsedlt

:new-palhname method of fs:pathname 170
:new-pathname Translation Rule 192
[New Properties] File System Editor menu Item 233
[New Property] Command 234
:new-raw-devlce message 145
:new-raw-devlce method of fs:pathname 168

302

Reference Guide to Streams, Files, and 110 March 1985

:new-raw-dlrectory message 145
:new-raw-dlreclory method of fs:pathname 168
:new-raw-name message 145
:new-raw-name method of fs:pathname 168
:new-raw-type message 145
:new-raw-type method of fs:pathname 169
:new-type method of fs:pathname 168
:new-verslon method of fs:pathname 168
:new-verslon symbol in :if-exlsts option for

open 222
Double-arrow character <t> In logical path names for nil 186

o

nil path name component 140
nil symbol In :if-does-not-exlst option for open

222
nil symbol In :if-exlsts option for open 222
:no-bot-prompt option to tape:make-stream 269
:noerror option for fs:dlrectory-list 117
:noerror option for wlth-open-file 91
:no-extra-Info option for fs:dlreclory-list 117
:no-Input-save option 63
:nolse-strlng-out method of

sl:lnteractlve-stream 72
:norewlnd option to tape:make-stream 269
:not-backed-up file property 117

! character file not backed up flag 236
Notes on Serial 1/0 261
:notlflcatlon-handler option 64

I character do not reap file flag 236
Null modem 247

Assignment of RS-232 Signals to Pins In Asynchronous

sl:
File block

Font
Print

Translate relative file block

Null Modems 247
null-stream function 25
number 221, 226
number 5
number In floating point 46
number Into disk address 225
Number of bits per byte 91
:number-of-data-blts serial 110 parameter 253
:number-of-dlsk-blocks option for open 222, 226
:number-of-stop-blts serial 1/0 parameter 253
Numbers In complied code files 241

Roman numeral format directive 36

Character
Complied code

format:

format:

<

:commas option for format:
:slgned option for format:

format:
:create symbol In :if-does-not-exlst option for

:deleted option to
:dlrectlon option for

:error Option to
:error symbol In :if-does-not-exlst option for

:estlmated-Iength option for
:if-does-not-exlst option for

:if-exlsts option for
:if-Iocked option for

:new-verslon symbol In :if-exlsts option for

o
object 84
objects In complied code files 241
ochar function 46
Octal format directive 31
Octal representation of characters 5
ofloat function 46
:oldest path name component 140
:oldest version specifier 186
:old option for fs:complete-pathname
onum 45
onum 45
onum function 45
open 222
open 97
open 222, 228
open 93,99
open 222
open 222
open 222
open 222
open 222, 228
open 222

o

120, 158

March 1985

nil symbol In :if-exlsts option for
:number-of-dlsk-blocks option for

:share symbol in :If-Iocked option for
:submlt option to

:error symbol In :If-exlsts option for
:error symbol In :If-Iocked option for

nil symbol In :if-does-not-exlst option for
:overwrlte symbol In :If-exlsts option for

:supersede symbol In :If-exlsts option for
Fsedit

Fsedit [Selective

[Selective

Maclisp

:close
: read

Testing :lIne-ln
Testing :string-In

Testing :string-line-in
:tyl stream

Advanced General-purpose Stream
Basic General-purpose Stream
Basic Special-purpose Stream

File Stream
General-purpose Stream
Special-purpose Stream

The :read and :prlnt Stream
Special-purpose Stream
Special-purpose Stream
Special-purpose Stream

Input
Output

format:

format:

format:

Character
Clear buffered

Concatenating constant and variable
Formatted

Input and
Defaulting an

Direct Access
:edltor

: read
:saJl

Slashlfication-related
format:

Buffered
Special-purpose Stream Operations for Buffered

The
:force-output message to

:wrIte-eof message to
:wrJte-error-status message to

303

Index

open 222
open 222, 226
open 222
open 97
open 222
open 222
open 222
open 222
open 222
[Open] Command 234
Open] Command 235
[Open] File System Editor menu item 233
Open] File System Editor menu item 233
open function 97, 222
open function 91
Opening and Closing a Directory 232
Operating on Disk Streams 224
operation 97
operation 73
operation 12
operation 12
operation 12
operation 91
:operatlon-handled-p message 13
Operations 13
Operations 11
Operations 19
Operations 113
Operations 11
Operations 19
Operations 73
Operations for Buffered Input Streams 20
Operations for Buffered Output Streams 21
Operations for Files 20
operations on serial streams 251
operations on serial streams 251
oprlnt function 46
Ordinal format directive 36
ostrlng function 46
Other Components 123, 161
outfmt macro 45
:out option for fs:complete-pathname 120, 158
:out option for wlth-open-file 91
output 46
output 18
output 44
Output 29
:output disk stream 222
Output Disk Streams 226
Output File Path name From an Input File 132
Output File Streams 116
output format style 46
output format. style 46
output format style 46
Output Functions 87
output functions 89
output macro 45
Output operations on serial streams 251
Output padding 47
OUTPUT path name type abbreviation 180
output stream 21
Output Streams 21
Output streams to buffered asynchronous devices 18,

114
Output Subsystem 44
output tape streams 273
output tape streams 273
output tape streams 273

304

Reference Guide to Streams, Files, and 110 March 1985

:output-xoff-character serial I/O parameter 253
:output-xon-character serial I/O parameter 253

FEP File System Overview 215
:overwrHe symbol In :If-exlsts option for open 222

Making Your OWn Stream 23

p P P
Package file attribute 109
:padchar option for formatting functions 44
:pad-char option to tape:make-strearn 269

Output padding 47
format: pad macro 47

Page character 5
PAGE FEP file type 228
Page separator character 5
Page separator format directive 34

Using a Spare World Load for Paging 219
Paging file 216

Allocating Extra Paging Space 240
Extra paging space 219

:ascll-characters serial 1/0 parameter 253
:baud serial 1/0 parameter 253

:carrier-detect serial 110 parameter 253
:check-framlng-errors serial 110 parameter 253

:check-over-run-errors serial 110 parameter 253
:check-parlty-errors serial 110 parameter 253

:clear-to-send serial 1/0 parameter 253
:data-termlnal-ready serial 1/0 parameter 253

:flavor serial 1/0 parameter 253
:force-output serial 1/0 parameter 251, 253

:generate-xon-xoff serial 1/0 parameter 253
:Input-error-character serial 1/0 parameter 253

:Input-xoff-character serial 1/0 parameter 253
:Input-xon-character serial 110 parameter 253

:mode serial I/O parameter 253
:number-of-data-blts serial 110 parameter 253
:number-of-stop-bits serial I/O parameter 253

:output-xoff-character serial I/O parameter 253
:output-xon-character serial I/O parameter 253

:parlty serial 110 parameter 253
:request-to-send serial 110 parameter 253

:unit serial 110 parameter 253
:xon-xoff-protocol serial I/O parameter 253

Modem control parameters 253
Reading serial 110 parameters 251
Setting serial I/O parameters 251

XON/XOFF protocol parameters 253
Parameters for Serial I/O 253
:parlty serial 1/0 parameter 253

fs: parse-path name function 156
Parser for file attribute list 109
:parse-truename method of fs:pathname 171
Parsing file attribute lists 109
Parsing path names 156
:partlal-help option 60

Adding a LM FS Partition 219
LMFS Multiple Partitions 213

File system partition table 213
Adding a Partition to LM FS 213

:pass-through option 59
Suppress prompting for passwords 107

PATCH-DIRECTORY pathname type abbreviation 180
Patch-File file attribute 109
Patch file logical path name translation 196

fs: patch-file Translation Rule 196
:canonlcal-type method of fs: pathname 166

March 1985

Converting logical path name to physical
Converting physical pathname to logical

:devlce method of fs:
:devlce-wlld-p method of Is:

:dlrectory method of fs:
:dlrectory-palhname-as-flle method of fs:

:dlrectory-wlld-p method of fs:
:generlc-pathname method of fs:

:getl method of fs:
:get method of fs:

:host method of fs:
:name method of fs:

:name-wlld-p method of fs:
:new-canonlcal-type method of fs:

:new-default-pathname method of fs:
:new-devlce method of fs:

:new-dlrectory method of fs:
:new-name method of fa:

:new-pathname method of fs:
:new-raw-devlce method of fs:

:new-raw-dlrectory method of fs:
:new-raw-name method of fs:

:new-raw-type method of fs:
:new-type method of fs:

:new-verslon method of fs:
:parse-truename method of fs:

:pathname-as-dlrectory method of fs:
:pathname-match method of fs:

:pllst method of fs:
:putprop method of fs:

:raw-devlce method of fs:
:raw-dlrectory method of fs:

:raw-name method of fs:
:raw-type method of fs:
:remprop method of fs:

:strlng-for-dlrectory method of fs:
:strlng-for-(Jlred method of fs:

:strlng-for-edltor method of fs:
:strlng-for-host method of fs:

:strlng-for-prlntlng method of fs:
:strlng-for-whollne method of fs:

:system-type method of fs:
:translate-wild-path name message to fs:

:translate-wlld-pathname method of fs:
:translate-wlld-pathname-reverslble message to fs:

:type method of fs:
:types-for-canonlcal-type method of fs:

:type-wild-p method of fs:
:verslon method of fs:

:verslon-wlld-p method of fs:
:wlld-p method of fs:

UNIX
VAX/VMS

fs:
Device generic

Directory generic
Directory TOPS-20

Host generic
: newest

nil
:oldest

:relatlve
Type generic

Type ITS
:unspeclflc

:up

pathname 186. 199
pathname 199
pathname 166
path name 173
path name 166
pathname 144
pathname 173
path name 171
pathname 172
path name 171
pathname 165
pathname 166
pathname 173
path name 169
pathname 170
path name 167
path name 167
pathname 167
pathname 170
pathname 168
path name 168
pathname 168
path name 169
pathname 168
pathname 168
pathname 171
path name 144
path name 172
path name 172
path name 172
pathname 166
path name 166
path name 166
pathname 166
path name 172
pathname 171
path name 171
path name 171
path name 171
pathname 171
path name 171
pathname 168
pathname 192
path name 173
pathname 192
pathname 166
path name 169
path name 173
path name 166
path name 173
path name 172
pathname abbreviations 180
path name abbreviations 180
:pathname-as-dlrectory method of

fs:pathname 144
pathname-attribute-list function 111
pathname component 149
pathname component 149
pathname component 183
pathname component 149
pathname component 140. 170
pathname component 140
pathname component 140
pathname component 140
pathname component 149
pathname component 185
pathname component 140. 170
pathname component 140

305

Index

306

Reference Guide to Streams. Rles. and 110

Version generic
Version ITS

Version TENEX
Version TOPS-20

:wild
:wild-Inferiors

Native
Raw

Lowercase In
Merging

Uppercase In
Values of

* :wild

Sticky
Tailoring

Using

Sticky
Center-dot character In TOPS-20

:translate-wild-path name message to fa:

fs:
Defaulting an Output File

Wildcard

fa:
File attributes as

Manipulating

Canonical Types In
Canonical types in Unix

Canonical types in Unix 4.2
Canonical types In VMS

Case in
Circle-x (@) character in TOPS-20

Equivalence sign (=) character in ITS
FEP File System

Generic
:generic-pathname message to

Host Determination in
Interchange case In

Interning of
ITS

LMFS
Logical
Ms-dos
Multies
Parsing
Printing

Raw case in
Relative

:relative relative directory specifier syntax In logical
:rename message to

Right horseshoe t::l) character in ITS
Surface type in

TEN EX
TOPS-20

TOPS-20 and TENEX
UNIX

UNIX 4.2
Using

Using prompt-and-read with

pathname component 149
path name component 185
path name component 183
path name component 183
path name component 140
path name component 140
path name component case 145
path name component case 145
path name components 145
path name components 147. 157
path name components 145
Pathname Components 140
pathname component specifier 186

March 1985

Pathname Defaulting From the Current Context 134
Pathname defaults 147. 158
pathname defaults 131. 133
Pathname Defaults 130
path name defaults 129
Path name Defaults and Merging 147
pathname defaults example 133
pathname display 183
path name example 132
Path name examples 129
path name flavor 153
Path name From an Input File 132
Path name Functions 156
Path name Mapping 153
:pathname-match method of fs:pathname 172
Pathname merging 129
:pathname message 113
Path name Messages: Naming of Files 165
pathname-pllst function 165
path name properties 138
path name property lists 165
Path names 91. 127
Path names 151
Pathnames 176
Path names 178
Path names 180
Path names 145
path names 183
pathnames 185
Path names 176
Path names 149
path names 149
Path names 136
pathnames 145
Path names 138
Path names 185
Path names 174
Path names 186
Path names 186
Path names 184
pathnames 156
Pathnames 139
path names 145
path names 140
path names 186
path names 103
path names 185
path names 151
path names 183
path names 183
Path names 183
Path names 176
Path names 178
path names 129
path names 129

March 1985

VAX/VMS
Wildcard

:wild-Inferfors in logical
Directory

DIrectory Pathnames and Directory
Relative

Double-arrow character (t) in logical
Equivalence sign character (=) in logical

Simple Usage of the
Converting physical

Converting logical
Logical

Patch file logical
Reversible wild

Reversible Wildcard
Wild

VMS logical
BABYL

CWARNS
INIT

USP
MAIL

MIDAS
OUTPUT

PATCH-DIRECTORY
(PDIR)

PRESS
QFASL

QWABL
TEXT

ULOAD
UNFASL

XMAIL
Translating

Standard
Simple

prompt-and-read (

Logical

Number of bits

Multiple
Splitting Logical Hosts Across

Translating logical hosts to
Converting logical path name to

Converting
Assignment of RS-232 Signals to
Assignment of RS-232 Signals to

format:

.Print number in floating

ex

fJ
E

Path names 180
path names 153
path names 188

307

Index

Pathnames and Directory Pathnames as Files 142
Pathnames as Flies 142
Pathnames: Flies 149
path names for nil 186
pathnames for quoting 186
Path names on Supported Host File Systems 174
Pathname special variables 147
Pathname System 129
pathname to logical pathname 199
path name to physical path name 186. 199
Path name Translation 188. 189
pathname translation 196
pathname translation 189
Path name Translation 191
pathname translation 189
pathname translation rules 192
path name type abbreviation 180
path name type abbreviation 180
path name type abbreviation 180
pathname type abbreviation 180
pathname type abbreviation 180
path name type abbreviation 180
pathname type abbreviation 180
pathname type abbreviation 180
path name type abbreviation 180
path name type abbreviation 180
pathname type abbreviation 180
pathname type abbreviation 180
path name type abbreviation 180
path name type abbreviation 180
pathname type abbreviation 180
path name type abbreviation 180
path name type field 151
pathname types 180
pathname usage 129
:pathname :visible-defauH) example 130. 132. 133.

134
Path name wildcard example 132
Pathname Wildcard Syntax 188
(PDIR) path name type abbreviation 180
PDP-10 file server 91
per byte 91
Permanent translation rules 189
physical hosts 196
Physical Hosts 196
physical hosts 186
physical pathname 186. 199
physical pathname to logical path name 199
Pins 247
Pins in Asynchronous Null Modems 247
:pllst method of fs:pathname 172
Plural format directive 35
plural function 47
Pluralize 47
point 46
:preemptable option 63
Preferred surface type 151
prefix 5
prefix 5
prefix 5
prefix 5
prefix 5
:preserve-dates file-opening op1ion 91
PRESS path name type abbreviation 180
Pretty-printing 51

308

Reference Guide to Streams, Rles, and /10

format:
sl:

81:
Formatted

The :read and

Front-end
The Input Edi10r

Writing
Using the Terminal

Using
Suppress

Displaying
FEP file

FEP File Comment
File

File attributes as path name
LMFS

FEP File
Fsedi1 [Edi1

Fsedlt [VIew
[Edi1
[New
[View

:author FEP file
:author file

:block-size file
:byte-size file

:ereatlon-date FEP file
:ereatlon-date file

:dlrectory FEP file
:dont-delete FEP file

File
:Iength FEP file

:Iength-In-blocks file
:Iength-In-bytea file
:not-backed-up file
:reference-date file
:truename FEP file

Fsedlt [New
Manipulating path name

EIA RS-232
XON/XOFF

prln1 function 87
prln1-then-space function 87
prine function 87
prlnt-dlsk-Iabel function 216
Print file 105
print function 87
Printing lists 44
Printing Path names 139
print-list function 44
print-list function 73
:print message 73
Print number In floating point 46
prlnt-object function 73
print of function definitions 51

March 1985

:print option for fs:complete-pathname 120, 158
:prlnt option for wHh-open-file 91
:print Stream Operations 73
:probe disk stream 222
probef function 107
:probe option for wHh-open-file 91
Processor 221
Program Interface 53
Program source file 108
Programs That Use MagnetiC Tape 267
Program wi1h Hosts Connected to the Serial

Une 265
prompt-and-read (:pathname :vlslble-defauH)

example 130. 132. 133. 134
prompt-and-read wi1h path names 129
prompting for passwords 107
:prompt option 60
:prompt option to tape:make-stream 269
Prompts In the Input Edi10r 65
properties 216
Properties 216
properties 117. 204. 233
properties 138
Properties 204
Properties: 3600 Disk System User Interface 227
Properties] Command 234
Properties] Command 233
Properties] File System Edi10r menu Item 233
Properties] File System Edi10r menu Item 233
Properties] File System Edi10r menu Item 233
:propertles message 114
property 227
property 117
property 117
property 117
property 227
property 117
property 227
property 227
property 204
property 227
property 117
property 117
property 117
property 117
property 227
Property] Command 234
property lists 165
protocol 243
protocol parameters 253
:put method of sl:serlal-stream 252
:putprop method of fs:pathname 172
Putting Data In Compiled Code Files 241

March 1985

Q

R

309

Index

Q
:qbin canonical type 200
QFASL pathname type abbreviation 180
query-Io variable 22

Equivalence sign character (=) In logical path names for
quoting 186

QWABL pathname type abbreviation 180

R
Specifying radix 45

Radix directive 36
Raw case In pathnames 145
Raw case representation 145
:raw-devlce message 145
:raw-devlce method of fs:pathname 166
:raw-dlrectory message 145
:raw-dlrectory method of fs:pathname 166
:raw-name message 145
:raw-name method of fs:pathname 166
:raw option for wHh-open-file 91
Raw path name component case 145
:raw-type message 145
:raw-type method of fs:pathname 166
read-and-eval function 81

The :read and :prlnl Stream Operations 73
fs: read-attribute-list function 109. 111

:read-bp method of sl:lnleractlve-stream 72
:read-bytes message 115

sys: read-character function 76
readch function 84
:read-cursorpos message 19
read-dellmHed-string function 83
read-expresslon function 78
readflle function 109
read-form-complellon-allsf variable 80
read-form-complellon-dellmHers variable 80
read-form-edII-lrlvlaJ-errors-p variable 79
read-form function 78
read-for-Iop-Ievel function 77
:read-frame method of sl:serlal-hdlc-mlxln 263
read-from-slrlng function 84
read function 73. 76
Reading characters from an InpU1 stream 15
Reading file a11r1bU1es 111
Reading function to use inpU1 editor 57
Reading serial I/O parameters 251
:read-Input-buffer message 20
readllne function 81
readllne-no-echo function 82
readllne-or-nll function 82
readllne-Irlm function 81
readllst function 85
Read-locked 228
:read message 73
:read operation 73
:read option for fs:complele-pathname 120. 158
:read option for wHh-open-file 91
read-or-character function 80
read-or-end function 80

Streams that read or write magnetic tape 269
:read outpU1 format style 46
:read-polnler message 20
read-preserve-dellmllers variable 76

-I character do not reap file flag 236

Q

R

:record-Iength option to tape:make-stream 269
: record-slat us message to InpU1tape streams 273

310

Reference Guide to Streams. Rles. and 110

s

:relative

Translate

fa:

Fsedl1

Imfs:

Interchange case
Native case

Raw case
Special function keys character

Octal

Carriage
Values

Carriage

Creating More

[Tree edit
EIA

Assignment of
Assignment of

Disable special treatment of

Flashing the

Fsedit

Page
Page

:read-frame method of sl:
:wrlte-frame method of sl:

s

March 1985

:reel option to tape:make-stream 269
:reference-date file property 117
Relative branch format directive 35
relative directory specifier syntax In logical

path names 186
relative file block number Into disk address 225
:relatlve path name component 140
Relative pathnames 140
Relative Path names: Flies 149
remember-passwords variable 107
Remote file servers 91
:remprop method of fs:pathname 172
[Rename] Command 233
renamef function 103
Rename file 103
Rename File (m-X) Zmacs command 153
[Rename] File System Editor menu item 233
rename-Iocal-file-tool function 176
:rename message 114
:rename message to pathnames 103
:rename message to streams 103
Renaming FEP Files 219
Renaming LMFS files 176
:replace-Input method of sl:lnteractive-stream
:report-stream option for copyf 105
representation 145
representation 145
representation 145
representation 5
representation of characters 5
:reprompt option 60
:request-to-send serial 110 parameter 253
:rescannlng-p method of sl:lnteractive-stream
:reset message 251
Return character 5
return character 5
Returned 120, 159
return format directive 34
Reversible Wildcard Path name Translation 191
Reversible wild pathname translation 189
:rewlnd message .to tape streams 273
Right horseshoe (~ character in ITS path names
Right justify 46
Roman numeral format directive 36
Room on the Local Disk 239
Root directory 215
root] File System Maintenance menu item 231
RS-232 protocol 243
RS-232 Signals to Pins 247
RS-232 Signals to Pins in Asynchronous Null

Modems 247
rubout-handler variable 54
Rubout in ASCII files 91
Run-example with Simple Defaulting

:sall output format style 46
screen 19
SELECT F command 213
[Selective Open] Command 235

130, 131

[Selective Open] File System Editor menu item
:send-If-handles message 13
separator character 5
separator format directive 34
serial-hdlc-mlxln 263
serlal-hdlc-mlxln 263

71

71

185

s

233

March 1985

311

Index

sl: serial-hdlc-stream flavor 263
Buffered serial 110 251

Hardware Description for Serial 110 247
Hdlc Serial 110 263

Introduction to Serial 110 245
Notes on Serial 110 261

Parameters for Serial 110 253
Simple Example: Serial 110 257
Troubleshooting: Serial 110 259

The Serial 110 Facility 243
:ascll-characters serial 110 parameter 253

:baud serial 110 parameter 253
:carrier-detect serial 110 parameter 253

:check-framlng-errors serial 110 parameter 253
:check-over-run-errors serial 110 parameter 253

:check-parity-errors serial 110 parameter 253
:clear-Io-send serial 110 parameter 253

:data-termlnal-ready serial 110 parameter 253
:flavor serial 110 parameter 253

:force-output serial 110 parameter 251, 253
:generate-xon-xotr serial 110 parameter 253

:input-error-character serial 110 parameter 253
:Input-xoff-character serial 110 parameter 253
:Input-xon-character serial 110 parameter 253

:mode serial 110 parameter 253
:number-of-data-blta serial 110 parameter 253
:number-of-stop-blta serial 110 parameter 253

:0 utput-xoff-character serial 110 parameter 253
:output-xon-character serial 110 parameter 253

:parlty serial 110 parameter 253
:requesl-Io-send serial 110 parameter 253

:unlt serial 110 parameter 253
:xon-xoff-prolocol serial 110 parameter 253

Reading serial 110 parameters 251
Setting serial 110 parameters 251

Creating a serial 110 stream 251
The Serial 110 Stream 251
Using the Terminal Program with Hosts COnnected to the

:gel method of sl:
:put method of sl:

Inpu1 operations on
Ou1pu1 operations on

PDP-10 file
File

Remote file
TOPS-2O file

ASCII character
Usp Machine Character

Symbolics Character
The Character

fa:
fa:
fa:
fa:

Data

Character
Disable all character

Effect of Character

Serial Une 265
serial-stream 252
serial-stream 252
serial streams 251
serial streams 251
server 91
server compu1er
servers 91
servers 91
set 251,253
Set 5
Set 5
Set 5

127

:set-cursorpos message 20
set-defauH-pathname 133
set-defauH-pathname function 163
seI-loglcal-palhname-host 188, 196
set-Ioglcal-pathname-host function 198
:set-offllne message to tape streams 273
:set-polnter 115
:set-polnter message 20
sets 247
Setting serial I/O parameters 251
set translation 10
set translation in ASCII files 91
Set Translation on Direct Access File Streams 10
Shared file system 127
:share symbol in :If-Iocked option for open 222
sl:coroutlne-bldlredlonal-stream flavor 28
sl:coroutlne-Input-stream flavor 28

312

Reference Guide to Streams, Fifes, and 110

Equivalence
Mouse

Assignment of RS-232
Assignment of RS-232

Equivalence

:finish-typeout method of
:foree-resean method of
:Input-edltor method of

:nolse-strlng-out method of
:read-bp method of

:replace-Input method of
:reseannlng-p method of
:start-typeout method of

Run-example with

:read-frame method of
:write-frame method of

:get method of
:put method of

Increase

Program
Adding a Spare World Load as LMFS File

Allocating Extra Paging
Extra paging

Swap
Swap

Adding a
Using a

fonnat:deffonnat
fs:define-canonleal-type

grlndef
wHh-lnput-edltlng

wHh-lnput-edltlng-optlons
wlth-Input-editing-optlons-If

wlth-open-file
wHh-open-stream

Basic

March 1985

sl:coroutlne-output-stream flavor 28
sign (=) character In ITS path names 185
signals 5
Signals to Pins 247
Signals to Pins In Asynchronous Null Modems 247
sign character (=) in logical path names for

quoting 186
:signed option for fonnat:onum 45
sl:lnstall-mleroeode function 217
sl:lnteractive-stream 71
sl:lnteractive-stream 71
sl:lnteractlve-stream 70
sl :Interactlve-stream 72
sl :Interactlve-stream 72
sl:1 nteractive-stream 71
sl:1 nteractlve-stream 71
si:interactive-stream 70
sl:make-coroutlne-bldlrectional-stream function 27
sl:make-coroutlne-Input-stream function 27
sl:make-coroutlne-output-stream function 27
sl:make-serlal-stream function 252
Simple Defaulting 130, 131
Simple Example: Serial I/O 257
Simple path name usage 129
Simple Usage of the Path name System 129
:slngle option for wlth-open-file 91
sl:null-stream function 25
sl:print-list function 73
sl:prlnt-object function 73
si:serlal-hdle-mlxln 263
sl:serlal-hdle-mlxln 263
sl :serlal-hdle-stream flavor 263
51 :serlal-stream 252
sl :serlal-stream 252
Site directory translation 195
:slte-dlrectory Translation Rule 195
SHe translation rules 189
sl:*typeout-defauH* variable 71
size of FEP file 224
:sklp-file message to tape streams 273
Slashification format directive 30
Slashification-related output functions 89
:sorted option for fs:dlrectory-list 117
source file 108
Space 219
Space 240
space 219
space 216
space 219
Space format directive 36
Spare World Load as LMFS File Space 219
Spare World Load for Paging 219
Special Defaulting of the Name 122, 160
Special Defaulting of the Type 122, 160
special form 42
special form 163
special form 51
special form 57
special form 55
special form 56
special form 91
special form 96, 251
Special function keys character representation 5
Special-purpose Stream Operations 19
Special-purpose Stream Operations 19
Special-purpose Stream Operations for Buffered Input

Streams 20
Special-purpose Stream Operations for Buffered

March 1985

313

Index

Disable
Pathname

File
Input stream

Undelete
< :oldest version
< :oldest version

) :newest version
) :newest version

* :wlld path name component
Character-related byte

:relative relative directory

Output Streams 21
Special-purpose Stream Operations for Files 20
special treatment of Rubout In ASCII files 91
special variables 147
specification 151
specification 75
specified file 104
specifier 185
specifier 186
specifier 186
specifier 185
specifier 186
specifiers 5
specifier syntax In logical path names 186
Specifying radix 45
Splitting Logical Hosts Across Physical Hosts 196
standard-Input variable 21
standard-output variable 21
Standard pathname types 180
Standard Streams 21
:start-typeout method of sl:lnteractlve-stream 70

Maclisp status homedlr function 201
Maclisp status udlr function 201

:block disk
Buffered output

Creating a serial 110
Error message

:Input disk
Making Your Own

:output disk
:probe disk

Reading characters from an input
Synonym

The Serial 110

Block disk
Disk
:tyi

Advanced General-purpose
Basic General-purpose
Basic Special-purpose

File
General-purpose
Special-purpose

The :read and :print
Special-purpose
Special-purpose
Special-purpose

Sticky pathname defaults 131. 133
Sticky pathname defaults example 133
Stream 21. 22
stream 222
stream 21
stream 251
stream 22
stream 222
Stream 23
stream 222
stream 222
stream 15
stream 23
Stream 251
stream-copy-untll-eof function 87
Stream default handler 11
stream-default-handler function 24
Stream input 15
Stream Messages 115
stream messages 226
stream messages 224
stream operation 91
Stream Operations 13
Stream Operations 11
Stream Operations 19
Stream Operations 113
Stream Operations 11
Stream Operations 19
Stream Operations 73
Stream Operations for Buffered Input Streams 20
Stream Operations for Buffered Output Streams 21
Stream Operations for Files 20
Streams 1. 243

Bidirectional disk streams 222. 226
Bidirectional file streams 115

Block Disk Streams 226
Block mode disk streams 221

Coroutine Streams 25
Direct access bidirectional streams 116

Direct Access Bidirectional File Streams 116
Direct Access File Streams 115

Direct Access Output File Streams 116
Disk streams 221

Effect of Character Set Translation on Direct Access File
Streams 10

314

Reference Guide to Streams. Rles. and 110 March 1985

End-of-file on Input streams 75
Functions for Creating Coroutine Streams 27

1/0 Streams 11
Input and Output Disk Streams 226

Input Editor Messages to Interactive Streams 70
Input operations on serial streams 251

Interactive streams 53. 75
Introduction to Streams 11

Messages to file streams 113
Messages to Tape Streams 273
Operating on Disk Streams 224

Output operations on serial streams 251
:renarne message to streams 103

Special-purpose Stream Operations for Buffered Input Streams 20
Special-purpose Stream Operations for Buffered Output

Standard
Synonym

Tape
:awalt-rewtnd message to tape

:bot-p message to tape
:check-ready message to tape

:clear-eof message to input tape
:clear-error message to tape

:close message to tape
:dISC8llkurrent-record message to input tape

:force-output message to output tape
:host-name message to tape

:record-status message to Input tape
:rewlnd message to tape

:set-offllne message to tape
:sklp-file message to tape

:wrlte-eof message to output tape
:wrIte-error-status message to output tape

Input

Streams 21
Streams 21
streams 21
streams 269
streams 273
streams 273
streams 273
streams 273
streams 273
streams 273
streams 273
streams 273
streams 273
streams 273
streams 273
streams 273
streams 273
streams 273
streams 273
stream specification 75
Streams that read or write magnetiC tape 269

Output streams to buffered asynchronous devices 18. 114
:strlng-for-dlrectory method of fs:pathname 171
:strlng-for-dired method of fs:pathname 171
:strlng-for-edltor method of fs:pathname 171
:strlng-for-host method of fs:pathname 171
:strlng-for-prlntlng method of fs:pathname 171
:strlng-for-whollne method of fs:pathname 171

Testing

Testing

:strlng-In message 15
:strlng-In operation 12
:string-line-in message 17
:string-line-in operation 12
:strlng-out message 15

:edltor output format style 46
:read output format style 46
:sall output format style 46

:submlt option to open 97
The Output Subsystem 44

Rules for Successful Completion 123. 161
Super bit 5
:super-Image option for wlth-open-ftle 91
:supersede symbol in :If-exlsts option for open

222
Supplied translation rules 189

Path names on Supported Host File Systems 174
:suppress-notlflcatlons option 64
Suppress prompting for passwords 107

Default surface type 151
Preferred surface type 151

Surface type In path names 151
Swap space 216
Swap space 219
Symbolics Character Set 5

March 1985

T

:create
:error

nil
: new-vers Ion

nil
:error

:overwrlte
:supersede

:share
:error

#:

#:
Logical Path name Wildcard

:relatlve relative directory specifier

Path names on Supported Host File

:terprl option for format:
:unlt option for format:

format:
File system partition

Streams that read or write magnetic
Writing Programs That Use MagnetiC

tape:

tape:

:density option to
:dlrectlon option to

:host option to
:Input-stream-mode option to

:Iock-reason option to
:mlnlmum-record-Iength-granularlty option to

:mlnlmum-record-Iength option to
:no-bot-prompt option to

:norewlnd option to
:pad-char option to

:prompt option to
:record-Iength option to

:reel option to
:unlt option to

The

Messages to
:awalt-rewlnd message to

:bot-p message to
:check-ready message to

:clear-eof message to input
:clear-error message to

:close message to

T

symbol In :If-does-not-exlst option for open
symbol in :If-does-not-exlst option for open
symbol in :If-does-not-exlst option for open
symbol In :If-exlsta option for open 222
symbol In :If-exlsls option for open 222
symbol In :If-exlsls option for open 222
symbol in :If-exlsts option for open 222
symbol In :If-exlsts option for open 222
symbol In :If-Iocked option for open 222
symbol in :If-Iocked option for open 222
Symbols in complied code files 241
symbol-syn-stream 23
Synonym stream 23
Synonym streams 21
.yn-stream 23
Syntax 188
syntax In logical pathnames 186
sys:dump-forms-to-flle function 241
SYS logical host 186
Sys: I-ucode; logical directory 217
sys:read-characler function 76
Systems 174
:system-Iype method of fs:pathname 168
sys:wlth-Indentatlon macro 49
sys:with-open-file-search macro 97

tab 47
tab 47
Tab character 5
tab function 47
table 213
:tab-perlod option for formatting functions 44
Tabulation format directive 35
Tailoring Pathnarne Defaults 130
tape 269
Tape 267
tape-devlce-error ffavor 2n
tape:end-of-tape flavor 2n
tape-error flavor 2n
Tape Error Flavors 2n
tape:make-stream 269
tape:make-stream 269
tape:make-stream 269
tape:make-stream 269
tape:make-stream 269
tape:make-stream 269
tape:make-stream 269
tape:make-stream 269
tape:make-stream 269
tape:make-stream 269
tape:make-stream 269
tape:make-stream 269
tape:make-stream 269
tape:make-stream 269
tape:make-stream function 269
tape:make-stream Function 269
tape:mount-error flavor 2n
Tape streams 269
Tape Streams 273
tape streams 273
tape streams 273
tape streams 273
tape streams 273
tape streams 273
tape streams 273

315

Index

222
222
222

T

316

Reference Guide to Streams, Rles, and 110

:dlscarckurrent-record message to Input
:force-output message to output

:host-name message to
:record-status message to Input

:rewlnd message to
:set-offllne message to

:8klp-file message to
:wrIte-eof message to output

:write-error-status message to output

Version

TOPS-20 and
Data

Editing

Using the

Data
Data Circuit

Loading

Streams
Writing Programs

Date and

Directory
Version

Center-dot character in

Clrcle-x (~) character In

Character set
Logical Path name

Patch file logical path name
Reversible Wildcard Path name

Reversible wild path name
Site directory

tape streams 273
tape streams 273
tape streams 273
tape streams 273
tape streams 273
tape streams 273
tape streams 273
tape streams 273
tape streams 273
tape:tape..devlce-error flavor 2n
tape:tape..error flavor 2n
:temporary option for wHh-open-file 91
TENEX pathname component 183
TENEX path names 183
TENEX Pathnames 183
Terminal Equipment 247
terminal Input 53
termlnal-Io variable 22

March 1985

Terminal Program with Hosts Connected to the Serial
Une 265

terminals 247
Terminating Equipment 247
terprl function 87
:terprl option for format:tab 47
Testing :lIne-ln operation 12
Testing :Btrlng-In operation 12
Testing :Btring-line-in operation 12
text files 109
TEXT path name type abbreviation 180
that read or write magnetic tape 269
That Use Magnetic Tape 267
Tilde format directive 34
Time format directive 42
time format directive 42
Time interval format directive 42
Time-of-day format directive 42
TOPS-20 200
TOPS-20 and TENEX Path names 183
TOPS-20 file servers 91
:tops20-heurlstlcate-dlrectory Translation Rule 194
TOPS-20 Inlt file 183
TOPS-20 path name component 183
TOPS-20 path name component 183
TOPS-20 path name display 183
TOPS-20 path names 183
TOPS-20 path names 183
trace-output variable 22
:translated-pathname method of

fs:loglcal-pathname 199
Translate relative file block number Into disk

address 225
:translate-wild-path name message to

fs:pathname 192
:translate-wlld-pathname message to fs:pathname

example 132
:translate-wlld-pathname method of

fs:pathname 173
:translate-wlld-pathname-reverslble message to

fs:pathname 192
:translate-wild Translation Rule 192
Translating logical hosts to physical hosts 186
Translating pathname type field 151
translation 10
Translation 188, 189
translation 196
Translation 191
translation 189
translation 195

March 1985

Wild pathname
Cross-host

Disable all character set
Effect of Character Set

Default
Defining a

fs:patch-file
:new-pathname

:sHe-dlrectory
:tops20-heuristlcate-dlrectory

:translate-wild
:unlx-font

:unlx-mlcrocode
:unlx-type-and-verslon

:vms-font
:vms-heurtstlcate

:vms-heu rtstlcate-dl rectory
:vms-heurtstlcate-name

:vms-mlcrocode
:vms-new-pathname

Global
Permanent

Site
Supplied

VMS logical pathname
Fsedit [Unk

[Unk
Disable speclaJ

Macllsp

)DIR FEP file
:bln canonical

Default
Default surface

FEP FEP file
FILE FEP file

FLOD FEP file
FSPT FEP file
:lIsp canonical
LOAD FEP file

MIC FEP file
PAGE FEP file

Preferred surface
:qbln canonical

SpeciaJ Defaulting of the
BABYL pathname

CWARNS pathname
INIT pathname

USP pathname
MAIL path name

MIDAS pathname

translation 189
translation functions 145
translation In ASCII files 91
Translation on Direct Access File Streams 10
translation rule 189
Translation Rule 191
Translation Rule 196
Translation Rule 192
Translation Rule 195
Translation Rule 194
Translation Rule 192
Translation Rule 195
Translation Rule 194
Translation Rule 195
Translation Rule 193
Translation Rule 192
Translation Rule 193
Translation Rule 193
Translation Rule 194
Translation Rule 193
translation rules 189
translation rules 189
translation rules 189
translation rules 189
translation rules 192
Transparencies] Command 235

317

Index

Transparencies] File System Editor menu Item 233
treatment of Rubout In ASCII files 91
[free edit any] File System Maintenance menu

Item 231
[free edit Homedlr] File System Maintenance menu

Item 231
[free edit root] File System Maintenance menu

Item 231
Troubleshooting: Serial I/O 259
:truename FEP file property 227
truename function 201
:truename message 113
True name of file 107
tyl function 77
:tyl message 11
:tyl-no-hang message 19. 251
tylpeek function 84
:tylpeek message 15
:tyl stream operation 91
tyo function 87
:tyo message 11
type 228
type 200
type 147
type 151
type 228
type 228
type 228
type 228
type 200
type 228
type 228
type 228
type 151
type 200
Type 122. 160
type abbreviation 180
type abbreviation 180
type abbreviation 180
type abbreviation 180
type abbreviation 180
type abbreviation 180

318

Reference Guide to Streams, Files, and 110

u

OUTPUT path name
PATCH-DIRECTORY path name

(PDIR) pathname
PRESS path name
QFASL pathname

QWABL path name
TEXT path name

ULOAD path name
UNFASL pathname

XMAIL path name
LOAD file

MICfile
Translating pathname

Surface

al:
FEP File

Standard path name
Correspondence of canonical

canonical

canonical
canonical
canonical
canonical

Macllsp s,tatUI

Fsedit

canonical types In

canonical types In

! character file not backed

Macllsp
Simple path name

Simple

Getting a Filename From the

u

March 1985

type abbreviation 180
type abbreviation 180
type abbreviation 180
type abbreviation 180
type abbreviation 180
type abbreviation 180
type abbreviation 180
type abbreviation 180
type abbreviation 180
type abbreviation 180
type (FEP) 215
type (FEP) 215
type fleld 151
Type generic path name component 149
type In path names 151
Type ITS path name component 185
:type message 145
:type method of fs:palhname 166
typeout-default variable 71
Types 228
types 180
Types and Editor Modes 153
types example 130
:typea-for-canonlcal-type method of

fs:pathname 169
Types In Pathnames 151
types In Unix 4.2 Pathnames 178
types In Unix Pathnames 176
types In VMS Pathnames 180
:lype-wllcl-=» method of fs:pathname 173

udlr function 201
ULOAD path name type abbreviation 180
[Undelete] Command 233
undeletef function 104
[Undelete] File System Editor menu item 233
Undelete specmed file 104
UNFASL path name type abbreviation 180
:unlt option for fonnat:tab 47
:unlt option to tape:make-stream 269
:unlt serial I/O parameter 253
UNIX 200
UNIX 4.2 Pathnames 178
Unix 4.2 Path names 178
:unlx-font Translation Rule 195
unlx-mlcrocode-translatlon-allst 194
:unlx-mlcrocode Translation Rule 194
UNIX path name abbreviations 180
UNIX Path names 176
Unix Pathnames 176
:unlx-type-and-verslon Translation Rule 195
:unspeclflc path name component 140. 170
:untyl message 12
:untyo-mark message 19
:untyo message 19
up flag 236
:up path name component 140
Uppercase In path name components 145
uread function 201
usage 129
Usage of the Pathname System 129
USART chip 247
User 129
User-deflned file attributes 109
User-function format directive 41

u

March 1985

v

fs:
FEP File Properties: 3600 Disk System

How LMFS

Ust

%%ch-char
%%ch-font

dbg:*debug-Io-overrlde*
debug-Io

error-output
fs:*default-pathname-defaulta*

fs:*file-type-mode-allst*
fa:*Ha-unlnterestlng-types*

fs:*known-types*
fa:load-pathname-ciefaultl
fs:*remember-passwords*

%%kbd-char
% %kbd-control

%%kbd-control-meta
%%kbd-hyper
%%kbd-meta

%%lcbd-mouse
%%kbd-mouse-button

%%kbd-mouae-n-cllckl
%%kbd-Iuper

query-Io
read-form-completlon-allst

read-form-completlon-dellmlters
read-form-edit-trlvlal-errors-p

read-preaerve-dellmHers
rubout-handler

":*typeout-default*
standard-Input

ltandard-output
termlnal-Io

trace-output
Concatenating constant and

Pathname special

Default

LMFS Deletion. Expunging. and
< :oldest
< :oldest

) :newest
) :newest

Fsedlt

Fsedit

prompt-and-read (:path name

v

319

Index

user-homedlr function 163
User Interlace 227
Uses the FEP File System 216

valid Inlt-optlons for flavor 104
Values of Pathname Components 140
Values Returned 120. 159
variable 6
variable 6
variable 22
variable 22
variable 22
variable 148
variable 153
variable 186
variable 149
variable 149
variable 107
variable 6
variable 6
variable 7
variable 7
variable 6
variable 7
variable 7
variable 7
variable 6
variable 22
variable 80
variable 80
variable 79
variable 76
variable 54
variable 71
variable 21
variable 21
variable 22
variable 22
variable output 44
variables 147
VAXNMS path name abbreviations 180
VAXNMS Path names 180
version 147
Version generic pathname component 149
Version ITS path name component 185
:version method of fs:pathname 166
Versions 209
version specifier 185
version specifier 186
version specifier 186
version specifier 185
Version TENEX path name component 183
Version TOPS-2O pathname component 183
:verslon-wlld-p method of fs:palhname 173
[VIew] Command 234
view! function 105
[VIew] File System Editor menu item 233
[View Properties] Command 233

v

[VIew Properties] File System Editor menu Item 233
Virtual Memory 216
:vIslble-default) example 130, 132, 133. 134
VMS 200
:vms-font Translation Rule 193
:vma-heurlstlcate-dlrectory Translation Rule 193
:vms-heurlstlcate-name Translation Rule 193

320

Reference Guide to Streams, Files, and 110 March 1985

w

x

y

:vms-heurlstlcate Translation Rule 192
VMS logical pathname translation rules 192
:vms-mlcrocode Translation Rule 194
:vms-new-pathname Translation Rule 193

Canonical types In VMS Path names 180

Fsedlt

Path name

Reversible

Logical Path name

*

Reversible

sys:

aya:

How the Input Editor
Adding a Spare
Using a Spare

Streams that read or

Making

w w

x

y

:whlch-operatlona message 13
[Wildcard Delete] Command 233
[Wildcard Delete] File System Editor menu Item 233
Wildcard Directory Mapping 155
wildcard example 132
Wildcard Pathname Mapping 153
Wildcard path names 153
Wildcard Path name Translation 191
Wildcards 188
Wildcard Syntax 188
:wlld-Inferlora In logical path names 188
:wild-Inferiors pathname component 140
:wild keyword 153
:wild pathname component 140
:wild path name component specifier 186
Wild path name translation 189
wild path name translation 189
:wlld-p example 132
:wlld-p method of fs:pathname 172
wHh-lndentatlon macro 49
wHh-lnput-editlng-optlons-lf special form 56
wHh-lnput-edltlng-optlona special form 55
wlth-Input-edltlng special form 57
wHh-open-file-case macro 96
wHh-open-file-search macro 97
wHh-open-flle special form 91
wlth-open-stream-case macro 97
wHh-open-stream special form 96. 251
Works 53
World Load as LMFS File Space 219
World Load for Paging 219
World Loads 215
:wrIte-data-map message 225
:wrHe-eof message to output tape streams 273
:wrIte-error-atatua message to output tape streams

273
:write-frame method of al:aerlal-hdlc-mlxln 263
Write-locked 228
write magnetic tape 269
:write option for fa:complete-pathname 120. 158
:wrHo option for wHh-open-file 91
Writing Programs That Use MagnetiC Tape 267

x- date directory last expunged Indicator 236
XMAIL path name type abbreviation 180
XON/XOFF protocol parameters 253
:xon-xoff-protocol serial 110 parameter 253

Your Own Stream 23

X

Y

321

March 1985 Index

z z z
Copy File (m-X) Zmacs command 105. 153

