
symbolics™

Volume4
Program Development Tools

Volume 4. Program Development Tools

#996040

Copyright <C> 1984, Symbolics, Inc. of Cambridge, Massachusetts. All rights reserved.
Printed in USA. This document may not be reproduced in whole or in part without the

prior written consent of Symbolics, Inc.

Design: Schafer/LaCasse
Cover and title page typography: Litho Composition Co.

Text typography: Century Schoolbook and Helvetica produced on a Symbolics 3600
Lisp Machine from Bitstream, Inc., outlines; text master printed on Symbolics
LGP-1 Laser Graphics Printer.

The first Lisp Machine System was a product of the efforts of many

people at the M.l.T. Artificial Intelligence Laboratory, and of the unique
environment there. Portions of earliest versions of many of the ·documents
in this documentation set were written at the Al Lab.

symbolics™

Contents

Program
Development
Tools

TOOLS
Program Development
Tools and
Techniques

HELP
Program Development
Help Facilities

ZMACS
Zmacs Manual

DEBUG
Debugger

MAINT
Maintaining
LarQe Systems

COMP
The Compiler

MISCT
Other Tools

symbolics TM

Volume4A
Program Development Tools

Volume 4A. Program Development Tools

Copyright C 1984, Symbolics, Inc. of Cambridge, Massachusetts. All rights reserved.
Printed in USA. This document may not be reproduced in whole or In part without the
prior written consent of Symbolics, Inc.

Design: Schafer/LaCasse
Cover and title page typography: Litho Composition Co.
Text typography: Century Schoolbook and Helvetica produced on a Symbolics 3600
Lisp Machine from Bitstream, Inc., outlines; text master printed on Symbolics
LGP-1 Laser Graphics Printer.

The first Lisp Machine system was a product of the efforts of many
people at the M.l.T. Artificial Intelligence Laboratory, and of the unique
environment there. Portions of earliest versions of many of the documents
In this documentation set were written at the Al lab.

symbolics™

Contents

Program
Development
Tools
TOOLS
Program Development
Tools and
Techniques

HELP
Program Development
Help Facilities

symbolic~--~~~

Documentation Map

1 2 3 4 5
System System Lisp Program User
Index Fundamentals Language Development Interface

Tools. Support
TOC NOTA PRIM TOOLS WIN DOC
Table of Notation Primitive Program Development Using the
Contents Conventions Object Types Tools and Window System

INDEX LMS EYAL
Techniques

WIN DEX
Index Lisp Machine Evaluation HELP Window System

RN
Summary

FLOW
Program Development Program Examples

3600Edition Help Facilities
Release Notes/ Flow of Control MENUS
Patch Notes 3600

ARR
ZMACS Window System

Notes on the 3600 Zmacs Manual Choice Facilities NEWS for LM-2 Users Arrays and Strings
Newsletters/

FUNC
DEBUG SCROLL

Bug Reports INED Debugger Scroll Windows
Using the Functions

. Input Editor MAC
MAINT MISCUI
Maintaining Miscellaneous

MISCF Macros Large Systems Functions
Miscellaneous DEFS COMP Useful Functions

Defstruct The Compiler

FLAY MISCT
Objects, Other Tools
Message Passing,
and Flavors

COND
Conditions

PKG
Packages

6 7 8
UtiHties Networks System
and and 1/0 Installation,
Applications Maintenance,

Programming

ZMAILT StR SIG
Zmail Tutorial Streams Software
and Reference

FILE
Installation Guide

Manual
Files SITE

ZMAILC
NETIO

Site Operations
Zmail Concepts
and Techniques Networks and TAPE

FED
Peripherals Tape

Font Editor PROT STOR
Networks and Storage Management

HARD Protocols
PROC Hardcopy System
Processes

CONY
INIT Converse
Initializations

FSED
INT FSEdit

MISCU
Internals

Other Utilities
and Applications

2 MAP Documentation Map

Symbolics. Inc. February 1984

Map to the New Documentation System

The documentation in this eight-volume set includes all previously published Lisp
Machine documentation, reorganized by topics and intended use of the information.
(In addition, some documents contain information that is new as of Release 5.0.)
The most obvious aspects of the reorganization are:

•The Lisp Machine Manual has been taken apart, and its various chapters are
now scattered throughout the new system.

•Release Notes and Patch Notes through Release 5.0, which had previously been
bound separately, have been merged into their relevant sources.

Following is a mapping of old to new documents, listed in alphabetic order by old
document title:

Old title New title Mnemonic

Chaosnet Networks and Peripherals NETIO

Chaosnet File Protocol Networks and Protocols PROT

Font Editor Font Editor FED

Front-End Processor Networks and Peripherals NETIO

Introduction to Using the Window System Using the Window System WINDOC

Lisp Machine Choice Facilities Window System Choice Facilities MENUS

Lisp Machine Manual [See page LMM.]

Lisp Machine Summary 3600 Edition Lisp Machine Summary LMS
3600 Edition

LM-2 Serial 110 Networks and Peripherals NETIO

LM-2 UNIBUS 110 Networks and Peripherals NETIO

Notes on the 3600 for LM-2 Users Notes on the 3600 for LM-2 Users 3600

Operating the Lisp Machine [Discontinued.]

Program Development Help Facilities Program Development Help HELP
Facilities

Volume

7

7

6

7

5

5

2

7

7

2

4

MAP Documentation Map 3

Symbolics, Inc. February 1984

Old title New titl& Mnemonic Volume

Program Development Tools and Program Development Tools and TOOLS 4
Techniques Techniques

Release Notes for System 78 [Merged into related documents.]

Release 4.0 Release Notes [Merged into related documents.]

Release 4.1 Patch Notes [Merged into related documents.]

Release 4.2 Patch Notes [Merged into related documents.]

Release 4.3 Patch Notes [Merged into related documents.]

Release 4.4 Patch Notes [Merged into related documents.]

Release 4.5 Patch Notes [Merged into related documents.]

Scroll Windows Scroll Windows SCROLL 5

Signalling and Handling Conditions Conditions COND 3

Software Installation Guide Software Installation Guide SIG 8

Symbolics File System Fi,les . FILE 7

System 210 Release Notes [Merged into related documents.]

Window System Program Examples Window System Program WIND EX 5
Examples

Zmail Concepts and Techniques Zmail Concepts and Techniques ZMAILC 5

Zmail Tutorial and Reference Manual Zmail Tutorial and Reference ZMAILT 5
Manual

Zmacs Manual Zmacs Manual ZMACS 4

4 MAP Documentation Map

Symbolics, Inc. February 1984

Lisp Machine Manual

[Has been separated, by chapter, into the following documents:]

Old chapter title Pages New document title Mnemonic Volume

1. Introduction 1-6 Notation Conventions NOTA 2

2. Primitive Object Types 7-12 Primitive Object Types PRIM 3

3. Evaluation 13-32 Evaluation EVAL 3

4. Flow of Control 33-51 Flow of Control FLOW 3

5. Manipulating List Structure 52-85 Primitive Object Types PRIM 3

6. Symbols 86-91 Primitive Object Types PRIM 3

7. Numbers 92-106 Primitive Object Types PRIM 3

8. Arrays 107-125 Arrays and Strings ARR 3

9. Strings 126-135 Arrays and Strings ARR 3

10. Functions 136-157 Functions FUNC 3

· 11. Closures 158-162 Functions FUNC 3

12. Stack Groups 163-169 Internals INT 8

13. Locatives 170-171 Primitive Object Types PRIM 3

14. Subprimitives 172-191 Internals INT 8

15. Areas 192-196 Storage Management STOR 8

16. The Compiler 197-207 The Compiler COMP 4

17. Macros 208-232 Macros MAC 3

18. The LOOP Iteration Macro 233-256 Flow of Control FLOW 3

MAP Documentation Map 5

Symbolics, Inc. February 1984

Old chapter title Pages New document title Mnemonic Volume

19. Defstruct 257-278 Defstruct DEFS 3

20. Objects, Message Passing, Objects, Message Passing, FLAV 3
and Flavors 279-313 and Flavors

21. The 110 System
21.1 314-318 Streams STR 7
21.2 319-331 Primitive Object Types PRIM 3
21.3-21.10 331-375 Streams STR 7

22. Naming of Files 376-391 FUes FILE 7

23. Packages 392-405 Packages PKG 3

24. Maintaining Large Systems
24.1-24.7 406-421 Maintaining Large Systems MAINT 4
24.8 422-427 Site Operations SITE 8

25. Processes 428-439 Processes PROC 8

26. Errors and Debugging
26.1 440-450 Conditions COND 3
26.2-26.8 450-468 Debugger DEBUG 4

27. How to Read Assembly Language
469-486 Internals INT 8

28. Querying the User 487-489 Miscellaneous Functions MIS CUI 5

29. Initializations 490-492 Initializations INIT 8

30. Dates and, Times 493-498 Miscellaneous Functions MISCUI 5

31. Miscellaneous Useful Functions
31.1-31.3 499-504 Miscellaneous Useful Functions MISCF 2
31.4 505 Storage Management STOR 8
31.5-31.7 506-508 Miscellaneous Useful Functions MIS CF 2

symbolics rM

Program Development
Tools and Techniques
August1983

Cambridge, Massachusetts

Program Development Tools and
Techniques

990001

August 1983

This document corresponds to Release 4.5.

This document was prepared by the Documentation and Education Services Department
of Symbolics, Inc. Principal writer(s): Robert Mathews and Sherry Finkel.

No representation or affirmation of fact contained in this document should be construed
as a warranty by Symbolics, and its contents are subject to change without notice.
Symbolics, Inc. assumes no responsibility for any errors that might appear in this
document.

Symbolics software described in this document is furnished only under license, and may
be used only in accordance with the terms of such license. Title to, and ownership of,
such software shall at all times remain in Symbolics, Inc. Nothing contained herein
implies the granting of a license to make, use, or sell any Symbolics' equipment or
software.

Symbolics is a trademark of Symbolics, Inc., Cambridge, Massachusetts.
UNIX is a trademark of Bell Laboratories, Inc.

Copyright«':> 1983, Symbolics, Inc. of Cambridge, Massachusetts.
All rights reserved. Printed in USA.
This document may not be reproduced in whole or in part without the prior written
consent of Symbolics, Inc.

Program Development Tools and Techniques

Symbolics. Inc.

1. Introduction

1.1 Purpose
1.2 Prerequisites
1.3 Scope
1.4 Method
1 .5 Features
1.6 Organization

Table of Contents

1 • 7 Notation Conventions

2. Writing and Editing Code

2.1 Before You Begin
2.1.1 HELP

2.1.2 Completion
2.2 Getting Started

2.2.1 Entering Zmacs
2.2.2 Creating a File
2.2.3 File Attribute Lists
2.2.4 Major and Minor Modes

2.3 Program Development: Design and Figure Outline
2.3.l Program Strategy
2.3.2 Simple Screen Output
2.3.3 Outlining the Figure

2.4 Keeping Track of Lisp Syntax
2.4.1 Comments
2.4.2 Aligning Code
2.4.3 Balancing Parentheses

2.5 Program Development: Drawing Stripes
2.6 Finding Out About Existing Code

2.6.1 Objects
2.6.2 Symbols
2.6.3 Variables
2.6.4 Functions
2.6.5 Pathnames

2.7 Program Development: Refining Stripe Density and Spacing
2.8 Editing Code

2.8. l Identifying Changed Code

i

Page

1

1
1
1
1
2
2
3

5

5
s
6
7
7
7
7
9

10
10
11
12

19
19
21
21
22
28
28
30
32
33
37

38
49
49

ii Program Development Tools and Techniques

2.8.2 Searching and Replacing
2.8.3 Moving Text
2.8.4 Keyboard Macros
2.8.S Using Multiple Windows

3. Compiling and Evaluating Lisp

3.1 Compiling Lisp Code
3.1.l Compiling Code in a Zmacs Buffer
3.1.2 Compiling and Loading a File

3.2 Evaluating Lisp Code
3.2.l Evaluation and the Editor
3.2.2 Lisp Input Editing

4. Debugging Lisp Programs

4.1 The Compiler Warnings Database
4.2 The Debugger ,
4.3 Commenting Out Code
4.4 Tracing and Stepping

4.4.l Tracing
4.4.2 Stepping

4.5 Breakpoints
4.6 Expanding Macros
4.7 The Inspector

5. Using Flavors and Windows

5.1 Program Development: Modifying the Output Module
5.1.1 A Mixin to Position the Figure
5.1.2. The Basic Arrow Window
5.1.3 Converting LOP to Screen Coordinates
5.1.4 Flavors for LOP Output
5.1.5 The Top-Level Function
5.1.6 The Arrow Window: Interaction, Processes, and the Mouse
5 .1. 7 Signalling Conditions

5.2 Programming Aids for Flavors and Windows
5.2.l General Information
5.2.2 Methods
5.2.3 lnit Keywords

APPENDIX A. Calculation Module for the Sample Program

Symbolics, Inc.

so
51
56
57

61

62
62
65

66
66
68

71

71
73
75
84
84
86

89
91
94

101

101
103
105
110
112
114
117
121

128
128
129
131

133

Program Development Tools and Techniques
Symbolics, Inc.

APPENDIX B. Output Module for the Sample Program

APPENDIX C. Graphic Output of the Sample Program

Index

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Figure 6.

Figure 7.
Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.
Figure 13.

List of Figures

Program output with only the outlines of the arrows in the figure.
Program output with stripes of even spacing and density.
Program output with stripes of varying spacing and density.
Using multiple windows to test the program while viewing the source code.
Edit Compiler Warnings (m-X) splits the screen. The upper window contains
compiler warnings. The lower window contains the source code.
The Display Debugger: inspecting the stack frame containing a call to
compute-dens.
The Display Debugger: inspecting the variable •x2•.
Output resulting from a faulty attempt to outline the small arrows
recursively.
Output resulting from a faulty attempt to outline the small arrows
recursively, with the second function call commented out.
Output resulting from a corrected attempt to outline the small arrows
recursively, with the second function call commented out.
Output from the program with a bug in the function
draw-arrow-shaft-stripes.
The Inspector window: inspecting an instance of a structure.
The Inspector window: inspecting an instance of a flavor.

List of Tables

Table 1. Trace Menu Items and trace Options

iii

147

165

167

18
29
48
59
72

76

77
81

82

83

93

96
98

87

Program Development Tools and Techniques
Symbolics, Inc.

1. Introduction

1.1 Purpose

In this document we introduce the Lisp programming environment of the Symbolics Lisp
Machine. Using a single example program, we present one style of interacting with that
environment in developing Lisp programs. We do not prescribe a "best" style of programming
on the Lisp Machine. Rather, we suggest some techniques and combinations of features that
expert Lisp Machine programmers advocate. You might find these techniques useful in
developing a comfortable and efficient Lisp Machine programming style of your own.

1.2 Prerequisites

1

This document is for you if you will be writing or maintaining Lisp programs and have recently
begun to use a Lisp Machine. The document will be most useful if you have some experience
writing Lisp programs and are familiar with basic feat~res of the Lisp Machine. The document
is not a survey of Lisp Machine facilities, a reference manual, or a Lisp primer. You might
find the following Symbolics publications helpful when reading this document:

• Lisp Machine Summary

• Program Development Help Facilities

• Lisp~Machine Manual
• An up-to-date set of release notes

1.3 Scope

We focus in this document on interaction between programmers and the Lisp Machine. We
present some ways of using Lisp Machine features that you might find helpful at each stage of
program development. We mention some broad issues of style in designing programs, including
modularity and efficiency, but we do not explore program structure in any depth. We do not
discuss matters of style in using Lisp, such as appropriate uses for structures and flavors.

This document corresponds to the Symbolics 3600. Some key bindings and symbol names are
different on the Symbolics LM-2.

1.4 Method

We derived the methods we describe here by working with Lisp Machine programmers at
Symbolics. Some of these programmers were early developers of the machine itself. Their
styles vary. Like most programmers, they generally do not follow a simple textbook sequence
of designing, coding, compiling, debugging, recompiling, testing, and debugging again. Instead,
they develop programs in repeated cycles, each a sequence of editing, compiling, testing, and
debugging. These cycles are often nested. For example, an error in testing a program invokes
the Debugger; from the Debugger the programmer types Lisp forms or calls the editor to
change and recompile code; an error in retesting code from the Debugger invokes the Debugger
again.

2 Program Development Tools and Techniques

Symbolics, Inc.

1.5 Features

Symbolics developers have designed the Lisp Machine to accommodate a relatively spontaneous
and incremental programming style. Five Lisp Machine features make up an integrated
programming environment.

• The Zetalisp environment. The Lisp system code allows you to write
programs that are extensions of the environment itself. You can of ten
produce complex programs with comparatively little new code. Zetalisp
flavors let you build data structures with complex modular combinations of
associated procedures and state information.

• The window system. Windows permit you to shift rapidly among such
activities as editing, evaluating Lisp, and debugging. You can suspend an
activity in one window, switch to another, and return to the first without
losing its state. You can display several activities on the same screen.
Because the window system is itself implemented with Zetalisp flavors, you
can modify or create windows for special displays.

• The Zmacs text editor. Zmacs has sophisticated means of keeping track of
Lisp syntax. It interacts with the Zetalisp environment, letting you find out
about existing code and incorporate it into your programs. Unlike some
structure editors, Zmacs allows you to leave definitions incomplete until you
are ready to evaluate or compile them.

• Dynamic compiling, linking, and loading. The compiler is always loaded.
You can use single-keystroke commands to compile and load source code
from a Zmacs buffer. You can write, compile, test, edit, and recompile code
in sections. When you recompile a function definition, the function's callers
use the new definition.

• Interactive debugging. Errors invoke the Debugger in their dynamic
environments. From the Debugger you can examine the stack, change
values of variables and arguments, call the editor to change and recompile
source code, and reinvoke functions.

1.6 Organization

The sequence of steps in developing a program on the Lisp Machine is too complex to mirror
in the linear organization of a document. We emphasize the cyclical course of program
development, but we have organized he document in a simple way. We present the main
programming sequence in the next three chapters. These deal simply with writing and editing,
evaluating and compiling, and debugging code. We discuss particular Zetalisp functions, Zmacs
commands, and other features where they appear most useful or where they present alternatives
to common techniques.

The next three chapters require virtually no knowledge of flavors or the window system. But
knowing about flavors and windows is essential to advanced use of the Symbolics Lisp Machine.
Chapter S presents some simple uses of flavors and windows and some programming aids for
working with them.

Throughout, we use as an example the development of a single program that draws the

Program Development Tools and Techniques 3

Symbolics, Inc.

recursive arrows in the cover design for this document. Sandy Schafer and Bernard Lacasse of
Schaf er /LaCasse created the original design. Richard Bryan of Symbolics wrote and we revised
a Lisp program that simulates it. The complete code appears in appendixes A (page 133)
and B (page 147) and in the files SYS: EXAMPLES; ARROW-CALC LISP and
SYS: EXAMPLES; ARROW-OUT LISP. (To run the program, load
SYS: EXAMPLES; ARROW.) A reproduction of the design produced on a Symbolics LGP-1
Laser Graphics Printer appears in appendix C (page 165).

Many of the techniques and facilities we mention are helpful at more than one stage of
program development. Conversely, the Lisp Machine provides many paths for accomplishing
tasks at each stage. As programmers at Symbolics gladly acknowledge, there is more than one
way to do almost anything on the Lisp Machine.

1 . 7 Notation Conventions

Modifier keys are designed to be held down while pressing other keys. They do not themselves
transmit characters. A combined keystroke like META-X is pronounced "meta x" and written as
m-X. This notation means press the META key and, while holding it down, press the X key.

Modifier keys are abbreviated as follows:
Key Abbreviation
CTRL c-
META
SUPER
HYPER
SHIFT

m
s
h
sh-

The keys with white lettering (like X or SELECT) all transmit characters. Combinations of
these keys are meant to be pressed in sequence. This sequence is written as, for example,
SELECT L. This notation means press the SELECT key, release it, and then press the L key.

This document uses the following notation conventions:

Appearance in document Representing
send, chaos:host-up Printed representation of Lisp objects in running text.
RETURN, ABORT, c-F Keyboard keys.
SPACE Space bar.
1 og in Literal type-in.
(make-symbo 1 • f oo •) Lisp code examples.
(function-name arg 1 arg2) Syntax description of the invocation of function-name.
arg 1 Argument to the function function-name, usually expressed as a

~
Undo, Tree Edit Any

Insert File (m-X)

[Map Over]
(L), (R2)

word that reflects the type of argument (e.g., string).
Optional argument; you can leave it out.
Command names in Zmacs and Zmail appear with initial letter of
each word capitalized.
Extended command names in Zmacs and Zmail. Use m-X to
invoke one.
Menu items.
Mouse clicks: L=left, L2=double click left, M=middle,
M2=double click middle, R=right, R2=double click right.

4 Program Development Tools and Techniques

Symbolics. Inc.

Mouse commands use notations for menu items and mouse clicks in the following ways:

1. Square brackets delimit a mouse command.

2. Slashes(/) separate the members of a compound mouse command.

3. The standard clicking pattern is as follows:

•For a single menu item, always click left. For example, the following two
commands are exactly the same:

[Previous]
[Previous (L)]

• For a compound command, always click right on each menu item except the
last, where you click left. For example, the following two compound
commands are exactly the same:

[Map Over/ Move / Hardcopy]
[Map Over (R) /Move (R) / Hardcopy (L)]

4. When the notation does not follow the standard, it shows explicitly which
button to click. For example:

[Map Over / Move (M)]
[Previous (R)]

In the sections of this document that develop the Lisp code for the example program, we use
change bars to distinguish new or changed code from code that we have already presented.
Whenever we display a line of code that has not appeared before, and whenever we change a
line of code that has already appeared, we place a vertical bar (I) next to that line in the left
margin. This bar is not part of the code itself. In the following example, we change two lines
of the definition of draw-big-arrow:

(defun draw-big-arrow()
;; Determine coordinates of arrowhead vertexes
(multiple-value-bind

(•pix• •ply• •p2x• •p2y• •p5x• •p5y• •p6x• •p6y•)
(compute-arrowhead-points)

;; Determine coordinates of shaft vertexes
(multiple-value-bind (•p3x• •p3y• •p4x• •p4y•)

(compute-arrow-shaft-points)
(draw-big-outline) ;Outline arrow
(when •do•the-stripes•

(stripe-arrowhead)))))
/

;Stripe head

Program Development Tools and Techniques 5

Symbolics, Inc.

2. Writing and Editing Code
Symbolics Lisp Machine programmers seldom write programs in sequence, from beginning to
end, before testing them. They often leave definitions incomplete, skip to other definitions, and
then return to finish the incomplete forms. They search for existing code to incorporate into
new programs. They edit their work frequently, changing code while writing, testing, and
maintaining programs.

In this chapter we discuss Lisp Machine features, particularly Zmacs commands and Zetalisp
functions, that make this style natural. Many of these features are useful at other stages of
programming as well: Editing techniques are important in program maintenance, and methods
of learning about existing code are helpful in debugging.

To illustrate programming methods, we develop a program that draws the recursive arrow
design that appears on the cover of this document. (The program does not draw the horizontal
stripes outside the large arrow.) We produce the figure on a Symbolics LGP-1 Laser Graphics
Printer, a Lisp Machine screen, or a file. We develop·the program in four stages, beginning
with simple procedures to outline the arrows and progressively modifying the code to refine the
figure:

1. Drawing the borders of the large arrow and of the smaller recursively
drawn arrows that it encloses

2. Drawing the diagonal stripes within the figure, but with uniform thickness
and spacing

3. Changing the stripes to vary in _thickness and spacing

4. Writing the routines that control the output destination

Appendixes A (page 133), B (page 147), and C (page 165) contain the code for the sample
program and a reproduction of the LGP image the program produces.

2.1 Before You Begin

Use the Zmacs text editor to write and edit programs. Zmacs has many features that provide
information about Zmacs commands, existing code, buffers, and files. Two features are
generally useful: the HELP key and completion. (See Program Development Help Facilities for
details.)

2.1.1 HELP
Pressing the HELP key in a Zmacs editing window gives information about
Zmacs commands and variables. The kind of information it displays
depends on the key you press after HELP.

Reference
HELP '?

HELP A

Displays a summary of HELP options.

Displays names, key bindings, and brief descriptions of
commands whose names contain a string you specify.
(A refers to "apropos".)

6

HELP C

HELP D

HELP L

HELP U

HELP V

HELP kl

HELP SPACE

Program Development Tools and Techniques

Symbolics. Inc.

Displays the name and brief description of a command
bound to a key you specify.

Displays long documentation for a command you specify.

Displays a listing of the last 60 keys you pressed.

Offers to "undo" the last major Zmacs operation, such as
sorting or filling, when possible.

Displays the names and values of Zmacs variables whose
names contain a string you specify.

Displays the key binding for a command you specify.
(W refers to "where".)

Repeats the last HELP command.

2.1.2 Completion
Some Zmacs operations require you to provide names - for example, names
of extended commands, Lisp objects, buffers, or files. You usually supply
names by typing characters into a minibuffer that appears near the bottom
of the screen. Often you do not have to type all the characters of a name;
Zmacs offers completion over some name spaces. When completion is
available, the word "Completion" appears in parentheses above the right side
of the minibuff er.

You can request completion when you have typed enough characters to
specify a unique word or name. For extended commands and most other
names, completion works on initial substrings of each word. For example,
m-X c b is sufficient to specify the extended command Compile Buffer.
SPACE, COMPLETE, RETURN, and END complete names in different ways.
HELP and [Zmacs Window (R)] list possible completions for the characters
you have typed.

Reference
SPACE

HELP or c-?

[Zmacs Window (R)]

COMPLETE

RETURN or END

Completes words up to the current
word.

Displays possible completions in the
typeout area.

Pops up a menu of possible
completions.

Displays the full name if possible.

Confirms the name if possible,
whether or not you have seen the full
name.

Program Development Tools and Techniques 7

Symbolics, Inc.

2.2 Getting Started

When Symbolics programmers begin to write new Lisp programs, they often follow these steps:

1. Enter the Zmacs editor.

2. Create a buff er for a new file for the program.

3. Set the attributes of the buffer and file, including major and minor modes.

2.2.1 Entering Zmacs
Use SELECT E or [Edit] from a system menu to enter Zmacs.

Reference
SELECT E

[Edit] (from a system menu)

2.2.2 Creating a File

Selects a Zmacs frame.

Selects a Zmacs frame.

To store program code in a new file, use Find File (c:-X c-F) to create a
buff er for the file at the beginning of the editing session. You can then
edit the file's attributes or create an attribute list that appears in the text
(see section 2.2.3, page 7). You will not have to interrupt later work to
name the file or check its attributes before you save it.

Reference
Find File (c-X c-F)

2.2.3 File Attribute Lists

Creates and names a buffer for the
file, reading in the file if it already
exists.

Each buffer and generic pathname has attributes, such as Package and Base,
which can also be displayed in the text of the buffer or file as an attribute
list. An attribute list must be the first nonblank line of a file, and it must
set off the listing of attributes on each side with the characters "-*-". If
this line appears in a file, the attributes it specifies are bound to the values
in the attribute list when you read or load the file.

Suppose you want the new program to be part of a package named
graphics that contains graphics programs. In this case, you want to set the
Package attribute to graphics in three places: the generic pathname's
property list; the buffer data structure; and the buffer text. You can make
the change in two ways:

• If the package already exists in your Lisp environment, use Set Package

8 Program Development Tools and Techniques
Symbolics, Inc.

(m-X) to set the package for the buffer. The command asks you whether or
not to set the package for the file and attribute list as well. You cannot
use this command to create a new package.

• Use Update Attribute List (m-X) to transfer the current buffer attributes to
the file and create a text attribute list. Edit the attribute list, changing the
package. Use Reparse Attribute List (m-X) to transfer the attributes in the
attribute list to the file and the buff er data structure. If the package you
specify by editing the attribute list does not exist in your Lisp environment,
Reparse Attrib11te List asks you whether or not to create it under global.

When you specify a package by editing the attribute list, you can explicitly
name the package's superpackage and, if you want, give an initial estimate
of the number of symbols in the package. (If the number of symbols
exceeds this estimate, the name space expands automatically.) Instead of
typing the name of the package, type a representation of a list of the form
(package superpackage svmbol-count). To indicate that the graphics
package is inferior to global and might contain 1,000 symbols, type into the
attribute list:

Package: (GRAPHICS GLOBAL 1000)

See the Lisp Machine Manual, section 21.9.2, page 369, and Release 4.0
Release Notes, sections 5.3.5 and 5.3.6, page 90, for more on file and buffer
attributes.

Example
Suppose the package for the current buffer is user and the base is 8. We
want to create a package called graphics for the buff er and associated file.
We also want to set the base to 10. If no attribute list exists, we use
Update Attribute List (m-X) to create one using the attributes of the
current buffer. An attribute list appears as the first line of the buffer:

;;; -*-Mode: LISP; Package: USER; Base: 8 -*-

Now we edit the buffer attribute list to change the package specification
from USER to (GRAPHICS GLOBAL 1000) and to change the base specification
from 8 to 10. The text attribute list now appears as follows:

;;; -*-Mode: LISP; Package: (GRAPHICS GLOBAL 1000); Base: 10 -*-

Finally, we use Reparse Attribute List (m-X). The package becomes
graphics and the base 10 for the buff er and the file.

Program Df!l•elopment Tools and Techniques 9

Symbolics, Inc.

Reference
Set attribute (m-X)

Update Attribute List (m-X)

Reparse Attribute List (m-X)

Sets attribute for the current buffer.
Queries whether or not to set
attribute for the file and in the text
attribute list. attribute is one of the
following: Backspace, Base, Fonts,
Lowercase, Nofill, Package, Patch
File, Tab Width, or Vsp.

Assigns attributes of the current
buffer to the associated file and the
text attribute list.

Transfers attributes from the text
attribute list to the buff er data
structure and the associated file.

2.2.4 Major and Minor Modes
Each Zmacs buffer has a major mode that determines how Zmacs parses the
buff er and how some commands operate. Lisp Mode is best suited to
writing and editing Lisp code. In this major mode, Zmacs parses buffers so
that commands to find, compile, and evaluate Lisp code can operate on
definitions and other Lisp expressions. Other Zmacs commands, including
LI NE, TAB, and comment handlers, treat text according to Lisp syntax rules
(see section 2.4, page 19).

If you name a file with one of the types associated with the canonical type
:lisp, its buffer automatically enters Lisp Mode. Following are some
examples of names of files of canonical type :lisp:

Host system
Lisp Machine
TOPS-20
UNIX

File name
acme-blue:>symbolics>examples>arrow.lisp
acme-20:<symbolics.examples>arrow.lisp
acme-vax:/symbolics/examples/arrow.l

You can also specify minor modes, including Electric Shift Lock Mode and
Atom Word Mode, that affect alphabetic case and cursor movement.
Whether or not you use these modes is a matter of personal preference. If
you want Lisp Mode to include these minor modes by default, you can set a
special variable in an init file. If you want to exit one of these modes,
simply repeat the extencjed command. The command acts as a toggle switch
for the mode.

JO Program Development Tools and Techniques

Symbolics. Inc.

Example
The following code in an init file makes Lisp Mode include Electric Shift
Lock Mode if the buffer's Lowercase attribute is nil, as it is by default:

(login-forms
(setq zwe1:11sp-mode-hook

'zwei:electric-shift-lock-if-appropriate))

Reference
Lisp Mode (m-X)

Electric Shift Lock Mode (m-X)

Atom Word Mode (m-X)

Auto Fill Mode (m-X)

Set Fill Column (c-X F)

Treats text as Lisp code in parsing
buffers and executing some Zmacs
commands.

Places all text except comments and
strings in upper case.

Makes Zmacs word-manipulation
commands (such as m-F) operate on
Lisp symbol names.

Automatically breaks lines that
extend beyond a preset fill column.

Sets the fill column to be the column
that represents the current cursor
position. With a numeric argument
less than 200, sets the fill column to
that many characters. With a larger
numeric argument, sets the fill
column to that many pixels.

2.3 Program Development: Design and Figure Outline

2 .3 .1 Program Strategy
Our goal in developing the sample program is to reproduce the pattern of
striped arrows on the cover of this document. The pattern consists of one
large arrow enclosing many small arrows that are similar to each other.
Each arrow is a series of line segments that form either its outline or its
stripes.

We have two general problems in writing the program. We must calculate
the position of each line segment we want to draw. We must also convert
these positions into a form that will produce line segments on the output
device we choose.

In solving these problems, we want to adhere to two principles:

Program Development Tools and Techniques 11

Symbolics, Inc.

• We want the program to be as modular as possible. The routines that
calculate line positions should not depend on the output device we choose.
The routines that translate positions for the output device should not
depend on any particular method of calculating those positions. If we want
to change the internal operation of either set of routines, we should not
have to change the other.

•We want to write the program in an incremental style. We write the
program in stages, producing a working version at each stage. We start
with simple tasks and gradually add refinements until we are satisfied with
what the program accomplishes.

We write the program in two modules, one to calculate line positions and
the other to translate positions for the output streams. We put these
modules in separate files: The first appears in appendix A (page 133), the
second in appendix B (page 147).

How do we send line positions from the module that calculates them to the
module that transmits them to output? The output module, which we
discuss in detail in chapter 5 (page 101), consists of definitions of flavors
and methods to transfer information to the appropriate output stream.
Streams for LGP and screen output can both produce lines using the
coordinates of the endpoints. Our module that calculates line positions
needs to compute the coordinates of the endpoints of the lines to be drawn.
In the output module, we define a generic operation called :show-lines to

, receive the coordinates from the calculation module and translate them for
the appropriate output stream. The calculation module sends :show-lines
messages to the output module. We can decide at run time which output
stream to use.

Now that we have defined the interface between the two modules, we could
in principle write either module first. Although we want the position
calculating routines to be independent of the output device, we have to
choose a coordinate system for the calculations. For ease of interpretation,
we place the origin at bottom left. This is the convention that the system
LGP routines use, but the origin for screen coordinates is at top left. For
the sake of convenience, we calculate positions in units of LGP pixels.

2.3.2 Simple Screen Output
We discuss the output routines in chapter 5 (page 101). Eventually, we
want to produce output on the screen, an LGP, or a file. To develop the
program, we need a routine for simple screen display so that we can check
the results of our calculation routines. We can use the stream that is the
value of terminal-lo. This stream handles :draw-line messages whose
arguments include the coordinates of the endpoints of the lines to be drawn.
(See Introduction to {Jsing the Window System, section 2.4, page 30, for more
on :draw-line.)

12 Program Development Tools and Techniques

Symbolics. Inc.

We first create a source file for the output routine. We define a flavor,
screen-arrow-output, and a method to handle :show-lines messages from
the calculation routines. The arguments to :show-lines are the coordinates
of the endpoints of one or more lines to be drawn. If the message has more
than four arguments - the coordinates of two endpoints - we assume that
we are to draw more than one line, each starting at the endpoint of the last.
The :show-lines method must iterate over the arguments of the message
and send terminal-lo a :draw-line message for each line to be drawn.

We must remember to transform the y-coordinate to take account of the
screen's origin at the top. We must also scale both coordinates to take
account of the LGP's higher resolution: Screen pixels are about 2.5 times as
large as LGP pixels.

The following code provides this simple output module:

(defflavor screen-arrow-output
((scale-factor 2.5))
())

(defmethod (screen-arrow-output :show-lines)
(x y &rest x-y-pairs)

(loop for xO = (send self ':compute-xx) then xl
for yO = (send self ':compute-y y) then yl
for (xl yl) on x-y-pairs by #'cddr
do (setq xl (send self ':compute-x xl)

yl (send self ':compute-y yl))
(send terminal-io ':draw-line

xO yO xl yl tv:alu-1or t)))

(defmethod (screen-arrow-output :compute-x) (x)
(fixr (// x scale-factor)))

(defmethod (screen-arrow-output :compute-y) (y)
(fixr (- 800 (// y scale-factor))))

2.3.3 Outlining the Figure
We now begin to write the module that calculates the coordinates of the
lines that make up the figure. First we must decide how to represent the
large arrow that encloses the figure and the smaller arrows inside it. As the
diagram in appendix A (page 133) shows, seven points define each arrow.
Each arrow has a head, bounded by points 0, 1, and 6, and a shaft, bounded
by points 2, 3, 4, and 5. The large outer arrow and the smaller inner
arrows differ in their shafts. Each inner arrow has two yet smaller arrows
beneath it. The inferior arrows overlap the shafts of the superior arrows
and turn each shaft into a series of descending triangles.

We have two kinds of arrow, represented by the large outer arrow and the
small inner ones. We can treat these differences in several ways:

Program Development Tools and Techniques 13

Symbolics, Inc.

• We can define two structures, make each arrow an instance of one of the
structures, and store information about each arrow in the structure's slots
(see the Lisp Machine Manual, chapter 19, page 257).

• We can define two flavors, make each arrow an instance of one of the
flavors, and store information about each arrow in the flavor's instance
variables (see the Lisp Machine Manual, chapter 20, page 279).

• We can simply define global variables to represent the state of the current
arrow.

Whichever method we choose, some operations, such as striping the
arrowheads, will be the same for both kinds of arrows. Other operations,
such as striping the shafts, will depend on the kind of arrow we are
drawing.

For simplicity, we use global variables to hold information about the arrows,
and we use functions to define procedures for calculating coordinates. Note
that we bind the global variables rather than set them. We do this because
we might eventually have two or more arrow programs running at the same
time in separate processes. If we set global variables, one program might
incorrectly use a value set by another (see section 5.1.6, page 117).

Our first task in writing the calculation module is to outline the arrows.
After creating a file for the module, we write the code for this task in six
steps:

1. Define variables to hold information about the arrow we are drawing. For
the :show-lines message we need the x- and y-coordinates of the seven
points that define the arrow. We also need the length of the top edge of
the arrow, which we use as a base length. In calculating coordinates, we
also need the values of one-half and one-fourth the length of the top edge.

We use defvar to declare global variables near the beginning of the file (see
the Lisp Machine Manual, section 3.1, page 14). This macro declares
variables special for the compiler and lets us supply default initial values and
documentation strings. By convention, we surround the names of global
variables with asterisks to distinguish them from names of local variables.

(defvar •top-edge• nil
•Length of the top edge of the arrow•)

(defvar •top-edge-2• nil
"Half the length of the top edge•)

(defvar •top-edge-4• nil
•one-fourth the length of the top edge•)

(defvar •pox• nil
·x-coordinate of point o•)

14 Program Development Tools and Techniques

(defvar •pOy• nil
"Y-coordinate of point 0")

(defvar *plx* nil
•x-coordinate of point i ·)

(defvar •ply• nil
•v-coordinate of point i•)

(defvar *p2x• nil
•x-coordinate of point 2•)

(defvar •p2y• nil
•v-coordinate of point 2•)

(defvar •p3x• nil
ax-coordinate of point 3•)

(defvar •p3y• nil
"Y-coordinate of point 3")

(defvar *p4x* nil
•x-coordinate of point 4•)

(defvar *p4y• nil
•v-coordinate of point 4•)

(defvar *p5x• nil
•x-coordinate of point s•)

(defvar •p5y• nil
"Y-coordinate of point 5")

(defvar •p6x• nil
•x-coordinate of point 6•)

(defvar •p6y• nil
•v-coordinate of point 6")

Symbolics. Inc.

2. Define an initial function, draw-arrow-graphic, for the calculation module.
We will call this function from the one we invoke to start the program. We
pass draw-arrow-graphic the length of the top edge of the large arrow and
the coordinates of its top right point (point 0). These arguments determine
the position and size of the arrow. The function also calculates the half
and quarter lengths of the top edge.

(defun draw-arrow-graphic (*top-edge• •pOx• •pOy•)
(let ((•top-edge-2• (// •top-edge• 2))

(•top-edge-4• (// •top-edge• 4)))))

Program Development Tools and Techniques 15
Symbolics, Inc.

3. Outline the large arrow. We compute the coordinates of the other six
points of the arrow, then send a :show-lines message to draw the lines. We
can calculate the coordinates of points 1, 2, 5, and 6 the same way for both
the large and small arrows. We put these calculations in a separate function
so that we can use the same code for both kinds of arrow. We need a
constant to hold the destination of the :show-lines messages. We must add
to draw-arrow-graphic a call to draw-big-arrow.

(defconst *dest• nil
•oestination of :SHOW-LINES messages to output•)

(defun draw-arrow-graphic (•top-edge* •pOx• •pOy•)
(let ((•top-edge-2* (// •top-edge• 2))

(*top-edge-4* (// •top-edge• 4)))
(draw-big-arrow)))

(defun draw-big-arrow()
(multiple-value-bind

(*plx* •ply• •p2x• •p2y• •p5x* •p5y• •p6x• •p6y*)
(compute-arrowhead-points)

(multiple-value-bind (*p3x• •p3y* •p4x• •p4y*)
(compute-arrow-shaft-points)

(draw-big-outline))))

(defun compute-arrowhead-points ()
(let• ((plx (- •pox• •top-edge•))

(ply •pOy•)
(p2x (+ plx •top-edge-4*))
(p2y (- •pOy• •top-edge-4•))
(p6x •pOx•)
(p6y (- •pOy• •top-edge*))
(p5x (- •pOx• •top-edge-4•))
(p5y (+ p6y •top-edge-4*)))

(values plx ply p2x p2y p5x p5y p6x p6y)))

(defun compute-arrow-shaft-points ()
(values (- •plx• •top-edge-4•)

(- *P2Y* •top-edge-2•)
•p2x*
(- •p2y* •top-edge•)))

(defun draw-big-outline ()
(send •dest• ':show-lines

•pOx• •pOy• •plx* •ply• •p2x* •p2y• •p3x• •p3y•
•p4x• •p4y• •p5x* •p5y• •p6x• •p6y• •pox• •pOy•))

4. Outline the largest of the small arrowheads. We can generate all the
interior outlines in the figure by outlining only the heads of the small
arrows. We first draw the largest of these arrowheads by analogy with our
drawing the large arrow. We can use our function
compute-arrowhead-points to calculate the coordinates of the vertexes.

16 Program Development Tools and Techniques

Symbolics, Inc.

First we need to halve the value of *top-edge* and bind new values for the
coordinates of the top right point of the arrow.

(defun draw-arrow-graphic (*top-edge• •pOx• •pOy•)
(let ((*top-edge-2* (// •top-edge• 2))

(•top-edge-4• (// •top-edge• 4)))
(dr~w-big-arrow)

(let ((•top-edge• •top-edge-2~)
(•pox• (- •pox• •top-edge-2•))
(•pOy• (- •pOy• •top-edge-2•)))

(do-arrows))))

(defun do-arrows ()
(let ((•top-edge-2* (// •top-edge• 2))

(•top-edge-4• (// •top-edge• 4)))
(draw-arrow)))

(defun draw-arrow()
(multiple-value-bind

(*plx• *ply* •p2x• *p2y• •p5x• •p5y• •p6x* •p6y•)
(compute-arrowhead-points)

(draw-out 1 ine)))

(defun draw-outline ()
(send *dest• ':show-lines •p2x• *p2y• *plx• •ply*

•pOx• •pOy• •p6x• •p6y• •p5x• •p5y•))

5. Outline the rest of the small arrows. Each small arrow has two inferior
arrows beneath it. We modify our function do-arrows by adding two
recursive function calls: one to draw the left-hand inferior of each superior
arrow, and one to draw the right-hand inferior. We limit the levels of
recursion by defining a constant, •max-depth•, and incrementing the
variable •depth* on each call to do-arrows until •depth* equals
•max-depth•.

(defvar *depth• O
•Level of recursion for the current arrow•)

(defconst •max-depth• 7
•Number of levels of recursion•)

(defun draw-arrow-graphic (*top-edge• •pOx• •pOy•)
(let ((•top-edge-2• (// •top-edge• 2))

C•top-edge-4* (// •top-edge• 4)))
(draw-big-arrow)
(let ((•top-edge• •top-edge-2*)

(•pox• (- •pox• •top-edge-2*))
(*pOy• (- •pOy• •top-edge-2•))
(*depth* 0))

(do-arrows))))

Program Development Tools and Techniques 17
Symbolics. Inc.

(defun do-arrows ()
(when (< *depth* •max-depth*)

(let ((*top-edge-2• (// •top-edge• 2))
(•top-edge-4• (// •top-edge• 4)))

(draw-arrow)
(let ((•depth* (l+ •depth•))

(•top-edge• •top-edge-2•)
(•pOx• (+ •top-edge-4• (- •pOx• •top-edge•)))
(*pOy* (- •pOy• •top-edge-4•)))

(do-arrows))
(let ((•depth* (l+ •depth•))

(•top-edge• •top-edgc-2•)
(•pox• (- •pOx• •top-edge-4•))
(•pOy• (+ •top-edge-4• (- •pOy• •top-edge•))))

(do-arrows)))))

6. Define a function we can call to produce the graphic. This function has to
make an instance of screen-arrow-output, clear the screen, and call
draw-arrow-graphic. The arguments to draw-arrow-graphic determine
the size and placement of the figure. For now, we use. estimates based on
the dimensions, in pixels, of an LOP page.

(defun do-arrow()
(let ((*dest• (make-instance 'screen-arrow-output)))

(send terminal-io ':clear-screen)
(draw-arrow-graphic 1280 1800 1800)))

We now have a simple working version of our program. We first compile
our code (see section 3.1, page 62). We then use SELECT L to select a Lisp
Listener. There we can evaluate (graphics:do-arrow) to run the program.
We can avoid typing the package prefix by first using pkg-goto to make the
current package graphics:

(pkg-goto 'graphics)

When we run the program, we generate a screen image of the arrow
outlines. Figure 1 (page 18) shows the output of the program at this stage.

These six steps illustrate a pattern of incremental program development:

• We make each function initially simple. We add new functions and edit old
ones as tasks become more complex or refined. Facilities for keeping track
of Lisp syntax (section 2.4, page 19) and for editing code (section 2.8,
page 49) encourage this incremental style.

• We compile, test, and debug code in sections as we write it. Many
Symbolics programmers, for example, would test draw-arrow both before
and after adding the recursive function calls.

18 Program Development Tools and Techniques

NIL

: y -

Figure 1. Program output with only the outlines of the arrows in the
figure.

Symbolics, Inc.

Program Development Tools and Techniques 19
Symbolics, Inc.

To support this incremental style, we must be able to check the syntax of
our code, edit it, and compile it in sections. We discuss facilities for
keeping track of Lisp syntax in the next section; techniques for editing code
in section 2.8 (page 49); and methods of compiling and evaluating in
chapter 3 (page 61).

2.4 Keeping Track of Lisp Syntax

Zmacs allows you to move easily through Lisp code and format it in a readable style.
Commands for aligning code and features for checking for unbalanced parentheses can help you
detect simple syntax errors before compiling.

Zmacs facilities for moving through Lisp code are typically single-keystroke commands with
c-m- modifiers. For example, Forward Sexp (c-m-F) moves forward to the end of a Lisp
expression; End Of Definition (c-m-E) moves forward to the end of a top-level definition.
Most of these commands take arguments specifying the number of Lisp expressions to be
manipulated. In Atom Word Mode word-manipulating commands operate on Lisp symbol
names; when executed before a name with hyphens, for example, Forward Word (m-F) places
the cursor at the end of the name rather than before the first hyphen (see section 2.2.4,
page 9).

See the Lisp Machine Summary for a list of common Zmacs commands for operating on Lisp
expressions.

2.4.1 Comments
You can document code in two ways: You can supply documentation
strings for functions, variables, and constants (see section 2.6, page 28); and
you can insert comments in the source code. You can retrieve
documentation strings with Zmacs commands and Lisp functions
(section 2.6, ·page 28). The Lisp reader ignores source-code comments.
Although you cannot retrieve them in the same ways as documentation
strings, they are essential to maintaining programs and useful in testing and
debugging (see chapter 3, page 61, and chapter 4, page 71).

Most source-code comments begin with one or more semicolons. Symbolics
programmers follow conventions for aligning comments and determining the
number of semicolons that begin them:

• Top-level comments, starting at the left margin, begin with three semicolons.

•Long comments about code within Lisp expressions begin with two
semicolons and have the same indentation as the code to which they refer.

• Comments at the ends of lines of code start in a preset column and begin
with one semicolon.

You can also use I I to begin a comment and I# to end one. The comment
can extend for more than one line. You can nest I I and I I within longer
comments.

20 Program Development Tools and Techniques

Symbolics, Inc.

Example
Let's add some comments to draw-arrow-graphic. We can write a top
level comment without regard for line breaks and then use Fill Long
Comment (m-X) to fill it. We use c-,; to insert a comment on the current
line. We use m-LIHE to continue a long comment on the next line.

; ; ;

; ; ;

; ; ;
; ; ;

Th1s funct1on controls the calculat1on of the coordinates of the
endpoints of the lines that make up the figure. The three arguments
are the length of the top edge and the coordinates of the top right
point of the large arrow. DRAW-ARROW-GRAPHIC calls DRAW-BIG-ARROW
to draw the large arrow and then calls DO-ARROWS to draw the smaller

;;; ones.
(defun draw-arrow-graph1c (•top-edge• •pox• •pOy•)

(let ((*top-edge-2• (// •top-edge• 2))
(*top-edge-4* (// •top-edge• 4)))

(draw-big-arrow) ;Draw large arrow
,, Length of the top-edge for the first small arrow is half the
;; length for the large arrow. Bind new coordinates for the top
;; right point of the small arrow.
(let ((•top-edge• •top-edge-2•)

(*pOx* (- •pOx• •top-edge-2•))
(•pOy• (- •pOy• •top-edge-2•))
(•depth• 0))

(do-arrows)))) ;Draw small arrows

Reference
Indent For Comment (c-,; or m-,;)

Kill Comment (c-m-,;)

Down Comment Line (m-H)

Up Comment Line (m-P)

Inserts or aligns a comment on the
current line, beginning in the preset
comment column.

Removes a comment from the current
line.

Moves to the comment column on the
next line. Starts a comment if none
is there.

Moves to the comment column on the
previous line. Starts a comment if
none is there.

Indent New Comment Line (m-LIHE) When executed within a comment,
inserts a newline and starts a
comment on the next line with the
same indentation as the previous line.

Fill Long Comment (m-X) When executed within a comment
that begins at the left margin, fills the
comment.

Program Development Tools and Techniques 21
Symbolics. Inc.

Set Comment Column (c-X ;) Sets the column in which comments
begin to be the column that
represents the current cursor position.
With an argument, sets the comment
column to the position of the previous
comment and then creates or aligns a
comment on the current line.

2.4.2 Aligning Code
Code that you write sequentially will remain properly aligned if you
consistently press LI ~~E (instead of RETURN) to add new lines. When you
edit code, you might need to realign it. c-m-Q and c-m-' are useful for
aligning definitions and other Lisp expressions.

Reference
Indent New Line (LINE)

Indent For Lisp (TAB or c-m-TAB)

Indent Sexp (c-m-Q)

Indent Region (c-m-')

2.4.3 Balancing Parentheses

Adds a newline and indents as
appropriate for the current level of
Lisp structure.

Aligns the current line. If the line is
blank, indents as appropriate for the
current level of Lisp structure.

Aligns the Lisp expression following
the cursor.

Aligns the current region.

When the cursor is to the right of a close parenthesis, Zmacs flashes the
corresponding open parenthesis. The flashing open parentheses, along with
proper indentation, can indicate whether or not parentheses are balanced.
Improperly aligned code (after you use a c-m-Q command, for instance) is
often a sign of unbalanced parentheses.

To check for unbalanced parentheses in an entire buffer, use Find
Unbalanced Parentheses (m-X). Zmacs can check source files for
unbalanced parentheses when you save the files. If a file contains
unbalanced parentheses, Zmacs can notify you and ask whether or not to
save the file anyway. To put this feature into effect, place the following
code in an ini t file:

(login-forms
(setq zwei:*check-unbalanced-parentheses-when-saving• t))

22 Program De.ielopment Tools and Techniques

Symbolics, Inc.

Reference
Find Unbalanced Parentheses (m-X) Searches the buff er for unbalanced

parentheses. Ignores parentheses in
comments and strings.

2.5 Program Development: Drawing Stripes

So far the sample program outlines all the arrows in the figure. The next task is to draw the
diagonal stripes. To keep this stage as simple as possible, we ignore the differences in spacing
and thickness of lines in the figure. We draw each stripe from upper left to lower right. We
draw the stripes in five steps:

1. Determine the distance between stripes. We first define a constant,
•do-the-stripes•, that we bind to t when we want to draw stripes and nil
when we want only outlines. We define another constant,
•stripe-distance•, to contain the horizontal distance between stripes. Let's
assume we want 64 stripes in the large arrowhead. We divide the initial
•top-edge• by 64 to obtain •stripe-distance•.

(defconst *do-the-stripes* t
•when t, permits striping of the figure•)

(defconst •stripe-distance* nil
"Horizontal distance between stripes in the large arrow•)

{defun draw-arrow-graphic (*top-edge* •pOx* •pOy•)
(let ((*top-edge-2* (// •top-edge* 2))

(*top-edge-4* {// •top-edge* 4))
;; Compute horizontal distance between stripes in the
;; large arrow, assuming 64 stripes 1n the large
;; arrowhead.
(•stripe-distance* {// •top-edge• 64)))

(draw-big-arrow) ;Draw large arrow
;; Length of the top-edge for the first small arrow is half the
;; length for the large arrow. Bind new coordinates for the top
;; right point of the small arrow.
(let ((*top-edge• •top-edge-2*)

(*pOx* (- •pOx* •top-edge-2*))
(*pOy* (- •pOy* *top-edge-2•))
(*depth* 0))

(do-arrows)))) ;Draw small arrows

2. Stripe the head of the large arrow. We define a function,
stripe-arrowhead, and call it from draw-big-arrow. The function loops to
calculate the coordinates of the endpoints of the stripes, starting in the
upper right corner and decrementing x and y by •stripe-distance*.

Program Development Tools and Techniques 23
Symbolics, Inc.

(defun draw-big-arrow()
;; Determine coordinates of arrowhead vertexes
(multiple-value-bind

(•pix• •ply• •p2x• •p2y• •p5x• •p5y* •p6x• *p6y•)
(compute-arrowhead-points)

;; Determine coordinates of shaft vertexes
(multiple-value-bind (*p3x• •p3y• •p4x• •p4y•)

(compute-arrow-shaft-points}
(draw-big-outline) ;Outline arrow
(when •do-the-stripes•

(stripe-arrowhead))))) ;Stripe head

;;; Function to control striping the head of each arrow.
;;; Determines coordinates of starting and ending points for each
;;; stripe. Calls DRAW-ARROWHEAD-LINES to draw each stripe.
(defun stripe-arrowhead ()

;; Find x-coord of top of last stripe to be drawn
(loop with last-x = (- •pox• •top-edge•)

; ; ;
; ; ;

;; Find starting x-coord for each stripe, decrementing
;; by distance between stripes. Stop at last x-coord.
for start-x from •pOx• by •stripe-distance• above last-x
;; Find ending y-coord for each stripe, decrementing by
;; distance between stripes.
for end-y downfrom •pOy• by •stripe-distance•
,, Draw a stripe
do (draw-arrowhead-lines start-x end-y)))

Draws a stripe in an arrowhead. Arguments are the x-coord
of the starting point and the y-coord of the ending point
of a stripe.

(defun draw-arrowhead-lines (start-x end-y)
(send •dest• ':show-lines start-x •pOy• •pOx• end-y))

3. Stripe the exposed portions of the shaft of the large arrow. The shaft
consists of a series of descending triangles along the left and right sides.
We define a function, stripe-big-arrow-shaft, to control the striping. We
then define six functions, three to stripe the left side and three to stripe the
right. The first function for each side iterates through the triangles that
make up the shaft. The second function stripes one triangle. The third
function draws one stripe.

24 Program Development Tools and Techniques

(defun draw-big-arrow()
;; Determine coordinates of arrowhead vertexes
(multiple-value-bind

(*plx• •ply• •p2x* •p2y• •p5x* *p5y* •p6x* *p6y*)
(compute-arrowhead-points)

vertexes
•p4x• •p4y*)

Symbolics, Inc.

;; Determine coordinates of shaft
(multiple-value-bind (*p3x• •p3y•

(compute-arrow-shaft-points)
(draw-big-outline) ;Outline arrow

; ; ;
; ; ;

(when •do-the-stripes•
(stripe-arrowhead)
(stripe-big-arrow-shaft)))))

;Stripe head
;Stripe shaft

Function to control striping the shaft of the large arrow.
Just calls STRIPE-BIG-ARROW-SHAFT-LEFT to stripe the left side
and STRIPE-BIG-ARROW-SHAFT-RIGHT to stripe the right side.

(defun stripe-big-arrow-shaft()
(stripe-big-arrow-shaft-left)
(stripe-big-arrow-shaft-right))

;;; Function to control striping left side of big arrow's shaft.
;;; Iterates over the triangles that make up the shaft. Determines
;;; coordinates of the apex and bottom right point of each triangle.
;;; Calls DRAW-BIG-ARROW-SHAFT-STRIPES-LEFT to stripe each triangle.
(defun stripe-big-arrow-shaft-left ()

;; Set up a counter for depth. Don't exceed maximum recursion
; ; level.
(loop for shaft-depth from 0 below •max-depth•

;; Find current top edge and its fractions
for top-edge = •top-edge• then (// top-edge 2)
for top-edge-2 = (// top-edge 2)
for top-edge-4 = (// top-edge 4)
;; Find coordinates of apex of triangle
for apex-x = •p2x• then (- apex-x top-edge-2)
for apex-y = •p2y• then (- apex-y top-edge-2)
;; Find x-coord of bottom right vertex
for right-x = (+ apex-x top-edge-4)
;; Find y-coord of bottom edge of triangle
for bottom-y = (- apex-y top-edge-4)
;; Stripe each triangle
do (draw-big-arrow-shaft-stripes-left

top-edge-4 apex-x apex-y right-x bottom-y)))

Program Development Tools and Techniques

Symbolics, Inc.

;;; Stripes each triangle in left side of big arrow's shaft.
;;; Arguments are one-fourth current top edge, x- and y-coords
;;; of apex of triangle, x- and y-coords of bottom right vertex.
;;; Determines coordinates of starting and ending points for
;;; each stripe. Calls DRAW-BIG-ARROW-SHAFT-LINES-LEFT to
;;; draw the lines that make up each stripe.
(defun draw-big-arrow-shaft-stripes-left

(top-edge-4 apex-x apex-y right-x bottom-y)
(loop with half-distance = (II •stripe-distance• 2)

;; Find x-coord of last stripe in triangle
with last-x = (- apex-x top-edge-4)
;; Find x-coord of top of each stripe, decrementing
;; from the apex by HALF the horizontal distance
;; between stripes. Stop at last stripe.
for start-x from apex-x ny half-distance above last-x
;; Find y-coord of top of stripe
for start-y downfrom apex-y by half-distance
;; Find x-coord of endpoint of stripe
for end-x downf~om right-x by •stripe-distance•
,, Draw a stripe
do (draw-big-arrow-shaft-lines-left

start-x start-y end-x bottom-y)))

;;; Draws a stripe on the left side of the big arrow's shaft.
;;; Arguments are the coordinates of the starting and ending
,,, points of each stripe.
(defun draw-big-arrow-shaft-lines-left

(start-x start-y end-x end-y)
(send *dest• ':show-lines

start-x start-y end-x end-y))

;;; Function to control striping right side of big arrow's shaft.
;;; Iterates over the triangles that make up the shaft. Determines
,,, coordinates of the top point of each triangle. Calls
;;; DRAW-BIG-ARROW-SHAFT-STRIPES-RIGHT to stripe each triangle.
(defun stripe-big-arrow-shaft-right()

;; Set up a counter for depth. Don't exceed maximum recursion
; ; level.
(loop for shaft-depth from 0 below •max-depth•

;; Find new top edge and its fractions
for top-edge = •top-edge• then (II top-edge 2)
for top-edge-2 = (II top-edge 2)
for top-edge-4 = (II top-edge 4)
;; Find coords of top point of triangle
for start-x = (+ •p2x• top-edge-4)
for top-y = (- •p2y• •top-edge-4*)
then (- top-y top-edge-2 top-edge-4)
,, Stripe the triangle
do (draw-big-arrow-shaft-stripes-right

top-edge-2 top-edge-4 start-x top-y)))

25

26 Program Development Tools and Techniques

Symbolics, Inc.

;;; Stripes each triangle in right side of big arrow's shaft.
;;; Arguments are one-half and one-fourth of current top edge, and
;;; coords of top point of the triangle. Determines coordinates of
;;; starting and ending points for each stripe. Calls
;;; DRAW-BIG-ARROW-SHAFT-LINES-RIGHT to draw a stripe.
(defun draw-big-arrow-shaft-stripes-right

(top-edge-2 top-edge-4 start-x top-y)
(loop with half-distance = {// •stripe-distance• 2)

;; Find y-coord of last stripe in triangle
with last-y = (- top-y top-edge-2)

, , ,
; ; ;
; ; ;

;; Find y-coord of starting point of stripe. Don't go
;; past the end of the triangle.
for start-y from top-y by •stripe-distance• above last-y
;; Find coords of ending point of the stripe, decrementing
;; by HALF the horizontal distance between stripes
for end-x downfrom (+ start-x top-edge-4) by half-distance
for end-y downfrom (- top-y top-edge-4) by half-distance
;; Draw a stripe
do (draw-big-arrow-shaft-lines-right

start-x start-y end-x end-y)))

Draws a stripe on the right side of the big arrow's shaft.
Arguments are the coordinates of the starting and ending points
of the stripe.

(defun draw-big-arrow-shaft-lines-right
(start-x start-y end-x end-y)

(send •dest• ':show-lines
start-x start-y end-x end-y))

4. Stripe the heads of the small arrows. We call stripe-arrowhead from
draw-arrow.

(defun draw-arrow()
;; Calculate coordinates of arrowhead vertexes
(multiple-value-bind

(*plx• •ply* •p2x• •p2y• •p5x* •p5y• •p6x• ~p6y•)
(compute-arrowhead-points)

(draw-outline) ;Outline arrowhead
(when •do-the-stripes•

(stripe-arrowhead)))) ;Stripe head

5. Stripe the exposed shafts of the·small arrows. Like the shaft of the large
arrow, these shafts are composed of a series of descending triangles. We
define three functions: stripe-arrow-shaft iterates through the triangles
that make up a shaft; draw-arrow-shaft-stripes stripes one triangle; and
draw-arrow-shaft-lines draws one stripe. We call stripe-arrow-shaft from
draw-arrow.

Program Development Tools and Techniques

Symbolics. Inc.

(defun draw-arrow()
;; Calculate coordinates of arrowhead vertexes
(multiple-value-bind

(*plx• •ply• •p2x• •p2y* •p5x• •p5y• •p6x• •p6y•)
(compute-arrowhead-points)

(draw-outline)
(when •do-the-stripes•

(stripe-arrowhead)
(stripe-arrow-shaft))))

;Outline arrowhead

;Stripe head
;Stripe shaft

,,, Function to control striping the shaft of a small arrow.
;;; Iterates over the descending triangles that make up the shaft.
;;; Calculates the coordinates of the top left and bottom right
;;; vertexes of each triangle. Calls DRAW-ARROW-SHAFT-STRIPES to
;;; stripe each triangle.
(defun stripe-arrow-shaft ()

;; Set up a counter for depth. Don't exceed maximum
;; recursion level.
(loop for shaft-depth from •depth• below •max-depth•

;; Calculate fractions of new top edge

;; ;
; ; ;
; ;;
; ; ;

for top-edge-2 = •top-edge-2• then (// top-edge-2 2)
for top-edge-4 = (II top-edge-2 2)
;; Find coords of top left point of triangle
for left-x = •p2x• then (- left-x top-edge-4)
for top-y = •p2y• then (- top-y top-edge-2 top-edge-4)
;; Find coords of bottom right point of triangle
for right-x = (+ left-x top-edge-2)
for bottom-y = (- top-y top-edge-2)
;; Stripe the triangle
do (draw-arrow-shaft-stripes

left-x top-y r1ght-x bottom-y)))

Stripes each triangle in the shaft of a small arrow.
Arguments are coordinates of the top left and bottom
right points .of the triangle. Calculates the y-coord
of the starting point and the x-coord of the ending point
of each stripe. Calls DRAW-ARROW-SHAFT-LINES to draw the
stripe.

(defun draw-arrow-shaft-stripes
(left-x top-y right-x bottom-y)

;; Find y-coord of starting point of stripa. Don't go
;; below the bottom of the triangle.
(loop for start-y from top-y by •stripe-distance• above bottom-y

;; Find x-coord of ending point of the stripe
for end-x downfroin right-x by •stripe-distance•
;; Draw a stripe
do (draw-arrow-shaft-lines

left-x start-y end-x bottom-y)))

27

28 Program Development Tools and Techniques

Symbolics, Inc.

;;;.Draws a stripe in the shaft of a small arrow. Arguments are
;;; the coordinates of the starting and ending points of the
;;; stripe.
(defun draw-arrow-shaft-lines

(left-x start-y end-x bottom-y)
(send •dest• ':show-lines

left-x start-y end-x bottom-y))

Figure 2 (page 29) shows the output of the program, with stripes of even spacing and thickness.

This stage in program development differs from the beginning of the program in two ways:

• As we add new functions, we need to ref er to existing code for such
information as the order of arguments in argument lists and the values of
variables and constants (section 2.6, page 28).

• We must start to change existing code, adding function calls and new
arguments. These changes require increasing use of facilities for editing
code (section 2.8, page 49).

2.6 Finding Out About Existing Code

When you write or edit programs, you often need to find characteristics of existing code. If
you write programs incrementally, you need to find existing definitions, argument lists, and
values. To maintain modularity, you must know how new code should interact with previously
written modules. If you want to incorporate parts of the Lisp Machine system in your
programs, you of ten have to refer to system source code.

Zmacs and Zetalisp have many facilities for retrieving information about Lisp objects and for
displaying and editing source code. This section describes features especially useful for writing
and editing code. We discuss facilities for learning about Lisp objects, symbols, variables,
functions, and pathnames.

2.6.1 Objects
describe displays information about a Lisp object in a form that depends
on the object's type. For example, for a special variable, describe displays
the value, package, and properties, including documentation, pathname of
the source file, and Zmacs buffer sectioning node.

An interactive, window-oriented version of describe is the Inspector (see
section 4.7, page 94).

describe does not display array elements. For that you can use the
Inspector or listarray.

Example

(describe '*top-edge•)

Program Development Tools and Techniques

Symbolics, Inc.

NIL
I

Lisp Listener 1

ron : y -

Figure 2. Program output with stripes of even spacing and density.

29

30

2.6.2 Symbols

Program Developmem Tools and Techniques

The value of *TOP-EDGE* 1s NIL
*TOP-EDGE• 1s in the GRAPHICS package.
TOP-EDGE has property DOCUMENTATION:

"Length of the top edge of the arrow•
•TOP-EDGE* has property SPECIAL:

Symbolics, Inc.

#<UNIX-PATHNAME "VIXEN: //dess//doc//workstyles//pcodex.e•)
#<UNIX-PATHNAME "VIXEN: //dess//doc//workstyles//pcodex.e•),

an object of flavor FS:UNIX-PATHNAME,
has instance variable values:
FS:HOST: #<UNIX-CHAOS-HOST SCRC-VIXEN>
FS:DEVICE:
FS:DIRECTORY:
FS:NAME:
FS:TYPE:

:UNSPECIFIC
(•dess• •doc• •workstyles•)
•pcodex•
NIL

FS:VERSION: :UNSPECIFIC
SI:PROPERTY-LIST: (BASE 10 :MODE •..)
FS:STRING-FOR-PRINTING: •VIXEN: //dess//doc//workstyles//pcodex.*"
FS:STRING-FOR-HOST: •//dess//doc//workstyles//pcodex.*•
FS:STRING-FOR-EDITOR: NIL
FS:STRING-FOR-DIRED: NIL
FS:STRING-FOR-DIRECTORY: NIL

•TOP-EDGE• has property SOURCE-FILE-NAME:
((DEFVAR #<UNIX-PATHNAME

•vIXEN: //dess//doc//workstyles//pcodex.*•>))
((DEFVAR #<UNIX-PATHNAME

•vIXEN: //dess//doc//workstyles//pcodex.e•>)) is a list

•TOP-EDGE* has property ZWEI:ZMACS-BUFFERS:
((DEFVAR #<SECTION-NODE Variable •TOP-EDGE• 27316607>))
((DEFVAR #<SECTION-NODE Variable •TOP-EDGE* 27316607>)) 1s a list

•TOP-EDGE*

Reference .
(describe object)

(llstarray array)

Displays information about object in a
form that depends on the object's
type. For named structures, displays
the symbolic names and contents of
the entries in the structure.

Returns a list whose elements are the
elements of array.

Several Zmacs commands and Lisp functions find the name of a symbol or
retrieve information about it. Unless you specify a package, most of these
commands search the global package and its inferiors. It now takes several

Program Development Tools and Techniques 31

Symbolics, Inc.

minutes to search all these packages; if you don't know which one the
symbol is in, you might want to use functions like apropos and who-calls
only as a last resort. (See Program Development Help Facilities for more on
the meanings and default values of arguments to these functions.)

Example
In defining the function stripe-blg-arrow-shafMeft, we need to use the
constant •max-depth*, but we remember only that its name contains
"depth". We use either m-ESCAPE (to evaluate a form in the editor
minibuffer) or SELECT L (to select a Lisp Listener) and then evaluate:

(apropos •depth• 'graphics)

GRAPHICS:DEPTH
GRAPHICS:*MAX-DEPTH* - Bound
GRAPHICS:SHAFT-DEPTH
GRAPHICS:•DEPTH* - Bound
(*DEPTH* SHAFT-DEPTH *MAX-DEPTH* DEPTH)

Example
After compiling stripe-arrowhead we want to test the program as written
so far, but we forget which function calls draw-arrow-graphic:

(who-calls 'draw-arrow-graphic 'graphics)

DO-ARROW calls DRAW-ARROW-GRAPHIC as a function.
(DO-ARROW)

You can also find the callers of a function with List Callers (m-X) (see
section 2.6.4, page 33).

Reference
(apropos string package inferiors superiors)

Displays the· names of all symbols
whose names contain string. Indicates
whether or not the symbol is bound.
Displays argument lists of functions.

Where Is Symbol (m-X) Displays the names of packages ,that
contain the specified symbol.

(where-is string package) Displays the names of packages that
contain a symbol whose print name is
string.

(who-calls symbol package infrriors superiors)
Displays information about uses of

32

2.6.3 Variables

(what-files-call symbol vackau)

(plist symbol)

List Matching Symbols (m-X)

Program Development Tools and Techniques

Symbolics. Inc.

symbol as function, variable, or
constant. Returns a list of the names
of callers of symbol.

Displays names of files that contain
uses of symbol as function, variable,
or constant.

Returns the list representing the
property list of symbol.

Displays the names of symbols for
which a predicate lambda-expression
returns something other than nil.
Prompts for a predicate for the
expression (lambda (symbol)
predicate). By default, searches the
current package; with an argument of
c-U, searches all packages; with an
argument of c-U c-U, prompts for
the name of a package. Press c-. to
edit definitions of symbols that satisfy
the predicate.

Describe· Variable At Point (c-sh-V) is a useful command to display
information about a variable. It tells you whether or not the variable is
bound, whether it has been declared special, and the file, if any, that
contains the declaration. You can find the value of a variable by evaluating
it in a Lisp Listener. If you have added a documentation string to the
variable declaration, you can retrieve the string with c-sh-V or with
c-sh-D, m-sh-D, or documentation (see section 2.6.4, page 33).

Example
In writing stripe-arrow-shaft we want to find out whether or not
•max-depth• is bound. c-sh-V displays the following information:

•MAX-DEPTH* has a value and is declared special by file
VIXEN: /dess/doc/workstyles/pcodex.1
Number of levels of recursion

·Reference
Describe Variable At Point (c-sh-V) Indicates whether or not the variable

is declared special, is bound, or is
documented by defvar or def con st.

Program Development Tools and Techniques 33
Symbolics, Inc.

2.6.4 Functions
Many Zmacs and Zetalisp facilities for finding out about functions apply
both to functions defined by defun and to objects defined by other special
forms and macros that begin with "def''.

2.6.4.1 Definitions

Edit Definition (m-.) is a powerful command to find and edit definitions of
functions and other objects. It is particularly valuable for finding source
code, including system code, that is stored in a file other than that
associated with the current buffer. It finds multiple definitions when, for
example, a symbol is defined as a function, a variable, and a flavor. It
maintains a list of these definitions in a support buffer, where you can use
m-. to return to the definitions even when you are finished editing.

Section 5.2.2 (page 129) describes how to use Edit Definition (m-.) to edit
definitions of flavor methods.

Example
We have written stripe-arrowhead and want to call it from
draw-big-arrow. We use m-. to position the cursor at the definition of
draw-big-arrow.

Reference
Edit Definition (m-.)

2.6.4.2 Names

Selects a buffer containing a function
definition, reading in the source file if
necessary. You can specify a
definition by typing the name into the
minibuff er or clicking on a name
already in the buffer. Offers name
completion for definitions already in
buffers. With a numeric argument,
selects the next definition satisfying
the most recently specified name.

Often you know only part of a function name and need to find the
complete name. Use Function Apropos (m-X).

Example
We want to call stripe-arrowhead from draw-arrow, but we remember
only that draw-arrow contains the string "arrow". We use Function
Apropos (m->0 to display the names of functions that contain "arrow". We
click left on the name draw-arrow to edit its definition.

34 Program DePelopment Tools and Techniques

m-X Function Apropos arrow

Functions matching arrow:
DO-ARROW
DO-ARROWS
DRAW-ARROW
DRAW-ARROW-GRAPHIC
DRAW-ARROWHEAD-LINES
DRAW-BIG-ARROW
DRAW-BIG-ARROW-SHAFT-LINES-LEFT
DRAW-BIG-ARROW-SHAFT-LINES-RIGHT
DRAW-BIG-ARROW-SHAFT-STRIPES-LEFT
DRAW-BIG-ARROW-SHAFT-STRIPES-RIGHT
STRIPE-ARROWHEAD
STRIPE-BIG-ARROW-SHAFT
STRIPE-BIG-ARROW-SHAFT-LEFT
STRIPE-BIG-ARROW-SHAFT-RIGHT

Reference
Function Apropos (m-X)

2.6.4.3 Documentation

Symbolics. Inc.

Displays the names of functions that
contain a string. Press c-. or click
left on names in the display to edit
the definitions of the functions listed.

Function definitions can include documentation strings. When you need to
know the purpose of the function, you can retrieve the documentation with
c-sh-D, rr1-sh-D, or documentation.

Example
We wrote a long source-code comment at the beginning of the definition of
draw-arrow-graphic. We could have made this comment a documentation
string:

Program Development Tools and Techniques 35
Symbolics, Inc.

(defun draw-arrow-graphic (•top-edge• •pOx• •pOy•)
•Function controlling the calculation module.

Controls calculation of the coordinates of the endpoints of the lines
that make up the figure. The three arguments are the length of the top
edge and the coordinates of the top right point of the large arrow.
DRAW-ARROW-GRAPHIC calls DRAW-BIG-ARROW to draw the large arrow and then
calls DO-ARROWS to draw the smaller ones.•

(let ((•top-edge-2* (// •top-edge• 2))
(•top-edge-4• (// •top-edge• 4))
;; Compute horizontal distance between stripes in the
;; large arrow, assuming 64 stripes in the large
;; arrowhead.
(*stripe-distance• (// •top-edge• 64)))

(draw-big-arrow) ;Draw large arrow
;; length of the top-edge for the first small arrow is half the
;; length for the large arrow. Bind new coordinates for the top
;: right point of the small arrow.
(let ((•top-edge• •top-edge-2*)

(*pOx• (- •pOx* •top-edge-2•))
(*pOy• (- •pOy* •top-edge-2•))
(*depth* O))

(do-arrows)))) ;Draw small arrows

Later, when defining do-arrow, we add a call to draw-arrow-graphic. We
want to be sure that this is the control function for the calculation module.
We position the cursor at the name draw-arrow-graphic inside the
definition of do-arrow and use m-sh-D to display the documentation string
for draw-arrow-graphic:

DRAW-ARROW-GRAPHIC: (*TOP-EDGE* *POX* •POV*)
Function controlling the calculat1on module.
Controls calculation of the coordinates of the endpoints of the lines
that make up the figure. The three arguments are the length of the top
edge and the coordinates of the top right point of the large arrow.
DRAW-ARROW-GRAPHIC calls DRAW-BIG-ARROW to draw the large arrow and then
calls DO-ARROWS to draw the smaller ones.

c-sh-D displays the first line of the documentation string:

DRAW-ARROW-GRAPHIC: Function controlling the calculation module.

To ensure that c-sh-D displays meaningful information, make the first line
of each documentation string a complete sentence that summarizes the
function.

Reference
Brief Documentation (c-sh-D) Displays the first line of the

function's documentation string.

36 Program Development Tools and Techniques

Symbolics. Inc.

Long Documentation (m-sh-D) Displays the function's documentation
string.

(documentation function) Displays the function's documentation
string.

2.6.4.4 Argument Lists

Quick Arglist (c-sh-A) and argllst retrieve the argument list for a
function. What these facilities display depends on the nature of the
function, whether or not it has been compiled, and what options the
function includes; see the Lisp Machine Manual, section 10.9, page 150, and
Program Development Help Facilities for details.

Example
We are editing the definition of do-arrow to add a call to
draw-arrow-graphic. We want to see the argument list for
draw-arrow-graphic. We position the cursor at the name
draw-arrow-graphic in the definition of do-arrow and use c-sh-A:

DRAW-ARROW-GRAPKIC: (*TOP-EDGE• •POX• *POV*)

Reference
Quick Arglist (c-sh-A)

(arglist function)

2.6.4.5 Callers

Displays a representation of the
argument list of the current function.
With a numeric argument, you can
type the name of the function into
the minibuffer or click on a function
name in the buff er.

Displays a representation of the
function's argument list.

When you change a function definition, you sometimes need to make
complementary changes in the function's callers. Four Zmacs commands
find the callers of a function. These commands, like who-calls, now take
several minutes to search all packages for callers. (For the example
program, we need to search only the graphics package.) By default, these
commands search the current package. With an argument of c-U, they
search all packages. You can specify the packages to be searched by giving
the commands at1 argument of c-U c-U.

Example
We decide to change the order of the arguments to draw-arrow-graphic.
We want to be sure to change all the callers of draw-arrow-graphic to call

Program Development Tools and Techniques 37

Symbolics, Inc.

the function with arguments in the correct order. We use Edit Callers
(m-X).

Reference
List Callers (m-X)

Multiple List Callers (rn-X)

Edit Callers (m-X)

Multiple Edit Callers (m-X)

Lists functions that call the specified
function. Press c-. to edit the
definitions of the functions listed.

Lists functions that call the specified
functions. Continues prompting for
function names until you press only
RETURN. Press c-. to edit the
definitions of the functions listed.

Prepares for editing the definitions of
functions that call the specified
function. Press c-. to edit
subsequent definitions.

Prepares for editing the definitions of
functions that call the specified
functions. Continues prompting for
function names until you press only
RETURN. Press c-. to edit subsequent
definitions.

2.6.5 Pathnames
Zmacs provides several ways of finding the name of a file. If you just need
the name of a file and have some idea what directory it is in, you can use
c-X c-D with an argument of c:-U or View Directory (m-X) to display a
directory. If you want to operate on files in a directory, you can use c-X D
with an argument of c:-U or Dired (m-X) to edit a directory. If you want
to find a source file but don't know what directory it is in, you might
remember the name of a function defined in the file. In that case, you
might be able to use m-. to find the file.

Example
After editing the definitions in the calculation module, we want to find the
output module to edit the definition of do-arrow. We forget the name-of
the file, but we remember the name of the directory. We can use c-U c-X

c-D to display the directory. If we have interned do-arrow or read its file
into a buffer, we can use m-. to find do-arrow directly.

Reference
Display Directory (c-X c:-D) Displays the current buffer's file's

directory. With an argument of c-U,
prompts for a directory to display.

38

View Directory (m-X)

tr Dired (c-X D)

Dired (m-X)

Program Development Tools and Techniques

Symbolics, Inc.

Lists a directory.

Edits the current buffer's file's
directory. With an argument of c-U,
prompts for a directory to edit.
Displays the files in the directory.
You can use single-character
commands to operate on the files.

Edits a directory. Displays the files
in the directory. You can use single
character commands to operate on the
files.

2. 7 Program Development: Refining Stripe Density and Spacing

At this stage of development, the program outlines the arrows in the figure and fills them with
stripes of uniform thickness and spacing. In the finished figure, stripe thickness or density
increases from upper right to lower left within each arrow, and stripe spacing varies among the
levels of the figure. We adjust the stripe spacing by replacing the constant distance between
stripes by a variable. We correct the stripe density by drawing multiple adjacent lines for each
stripe.

We adjust the stripe spacing in three steps:

1. Define a variable, •stripe-d•, to represent the distance between stripes for
each arrow.

(defvar •stripe-d• nil
•Horizontal distance between stripes for each arrow•)

2. Calculate the value of •strlpe-d• for each arrow. For the large arrow, this
is just •stripe-distance•. For the small arrows, we need to call a new
function, compute-stripe-d, from draw-arrow. compute-strlpe-d calculates
•stripe-d• as a fraction of •stripe-distance* that depends on the level of
recursion. It ensures that •strlpe-d* divides •top-edge• evenly and that
•stripe-d* is never less than 3.

Program Development Tools and Techniques

Symbolics, Inc.

(defun draw-big-arrow()
;; Determine coordinates of arrowhead vertexes
(multiple-value-bind

(•plx• •ply• •p2x• •p2y• •p5x• •p5y• •p6x• up6y•)
(compute-arrowhead-points)

;; Determine coordinates of shaft vertexes
(multiple-value-bind (*p3x• •p3y• •p4x• •p4y•)

(compute-arrow-shaft-points)
(draw-big-outline) ;Outline arrow
(when •do-the-stripes•

;; Bind distance between stripes
(let ((•stripe-d• •stripe-distance•))

(stripe-arrowhead)
(stripe-big-arrow-shaft))))))

(defun draw-arrow()

;Stripe head
;Stripe shaft

;; Calculate coordinates of arrowhead vertexes
(multiple-value-bind

(*plx• •ply• •p2x• •p2y• •p5x• •p5y• •p6x• •p6y•)
(compute-arrowhead-points)

(draw-outline) ;Outline arrowhead
(when •do-the-stripes•

;; Calculate distance between stripes
(let ((•stripe-d• (compute-stripe-d)))

(stripe-arrowhead)
(stripe-arrow-shaft)))))

;Stripe head
;Stripe shaft

39

40 Program Development Tools and Techniques
Symbolics, Inc.

,,, Calculates horizontal distance between stripes.
, , , Distance is a .fraction of the distance between stripes for the
;;; large arrow. The divisor depends on the level of recursion.
;;; Distance divides length of top edge evenly when possible to
,,, maintain continuity between head and shaft of arrow.
(defun compute-stripe-d ()

;; Distance should be at least 3 pixels so that there is some
;; white space between lines.
(if (~ •stripe-distance* 3)

3
,, First find a fraction of *STRIPE-DISTANCE* that depends
,, on recursion level
(loop for dist = (fixr (// •stripe-distance*

(selectq •depth*
(O 2)
(1 4)
(2 2)
(3 1.5)
(4 1.5)
(otherwise 2))))

;; Increment if it doesn't divide *TOP-EDGE* evenly
then (1+ di st)
when (= 0 (\ •top-edge• dist))
;; Stop when no remainder. Don't return a value
, , less than 3.
do (return (1f (~dist 3) 3 dist)))))

3. Replace •stripe-distance• with •stripe-d• in the functions
stripe-arrowhead and draw-arrow-shaft-stripes.

(defun stripe-arrowhead ()
;; Find x-coord of top of last stripe to be drawn
(loop with last-x = (- •pOx* •top-edge*)

;; Find starting x-coord for each stripe, decrementing
;; by distance between stripes. Stop at last x-coord.
for start-x from •pOx* by •stripe-d* above last-x
;; Find ending y-coord for each stripe, decrementing by
;; distance between stripes.
for end-y downfrom •pOy• by •stripe-d*
;; Draw a stripe
do (draw-arrowhead-lines start-x end-y)))

Program Development Tools and Techniques 41

Symbolics, Inc.

(defun draw-arrow-shaft-str;pes
(left-x top-y r;ght-x bottom-y)

;; Find y-coord of starting point of stripe. Don't go
;; below the bottom of the triangle.
(loop for start-y from top-y by ,•stripe-d• above bottom-y

;; Find x-coord of ending point of the stripe
for end-x downfrom r1ght-x by •str1pe-d•
;; Draw a stripe
do (draw-arrow-shaft-lines

left-x start-y end-x bottom-y)))

We adjust the stripe density in three steps:

1. Define two new constants for each.arrow, *dl* and *d2*. *dl* represents
the stripe density, or the proportion of the distance between stripes that is
black, at the upper right of each arrow. •d2• represents the density at
lower left for each arrow. We estimate *dl* to be 0.15 and •d2* to be
0.75.

(defconst •dl• 0.15
"Proportion of distance between upper right stripes that is bl; k")

(defconst *d2* 0.75
"Proportion of distance between lower left stripes that 1s black")

2. Define a function, computc-nlines, that returns the number of adjacent
lines that make up a stripe to be drawn. This function calls another,
compute-dens, to calculate the proportion of the distance between stripes
that is black. This proportion is a function of the position of the stripe
between the upper right and lower left of the arrow. compute-nlines
multiplies this proportion by •stripe-d• to determine the number of lines
that make up the stripe. This number must be at least one and less than
•stripe-d• minus one.

The argument to compute-nlines represents the horizontal position of the
stripe to be drawn between the upper right and lower left of the arrow.
Imagine the top edge of each arrow projected to the left beyond the
arrowhead. Imagine each stripe projected to the upper left until it
intersects with the extended top edge. The argument to compute-nlines is
the x-coordinate of this intersection. •pOx* is the x-coordinate of this
intersection for the top right corner of each arrow, where the stripe density
is *di*· •x2• is the x-coordinate of this intersection for the lower left
stripe in each arrow, where the density is •d2•. The x-coordinate for each
stripe must be between •pOx• and •x2•, and the density must be between
•d 1 * and •d2•.

(defvar •x2• nil
•x-coordinate of projection of lower left stripe on top edge•)

42 Program Development Tools and Techniques
Symbolics, Inc.

(defun draw-big-arrow()
;; Determine coordinates of arrowhead vertexes
(multiple-value-bind

(•plx• •ply• •p2x• •p2y• •p5x• •p5y• •p6x* •p6y•)
(compute-arrowhead-points)

;; Determine coordinates of shaft vertexes
(multiple-value-bind (*p3x• •p3y* •p4x• •p4y•)

(compute-arrow-shaft-points)
(draw-big-outline) ;Outline arrow
(when •do-the-stripes•

;; Bind distance between stripes and x-coord of
;; projection of last stripe onto top edge
(let ((*stripe-d* •stripe-distance•)

(*x2* (- •pox• •top-edge• •top-edge•)))
(stripe-arrowhead) ;Stripe head
(stripe-big-arrow-shaft)))))) ;Stripe shaft

(defun draw-arrow()
;; Calculate coordinates of arrowhead vertexes
(multiple-value-bind

; ; ;

; ; ;
; ; ;

; ; ;

(*plx• •ply* •p2x* •p2y* •p5x• •p5y• •p6x• •p6y•)
(compute-arrowhead-points)

(draw-outline) ;Outline arrowhead
(when •do-the-stripes•

;; Calculate distance between stripes and x-coord of
;; projection of last stripe onto top edge
(let ((*stripe-d• (compute-stripe-d))

(•x2• (- •pox• •top-edge• •top-edge$)))
(stripe-arrowhead) ;Stripe head
(stripe-arrow-shaft))))) ;Stripe sh~ft

Calculates the number of lines that compose each stripe.
Calls COMPUTE-DENS to calculate the proportion of distance
between stripes to be filled, then multiplies by the actual
distance between stripes. Makes sure that there is at least
one line and that there aren't too many lines to leave some

;;; white space.
(defun compute-nlines (x)

;; Call COMPUTE-DENS and multiply result by •stripe-d•
(let ((nl (fix (* •stripe-d* (compute-dens x)))))

;; Supply at least one line
(cond ((S nl 1) 1)

;; But leave some white space between lines
((~ nl (- •stripe-d• 1)) (- •stripe-d• 2))
(t nl))))

Program Development Tools and Techniques 43

Symbolics, Inc.

;;; Calculates proportion of distance filled 1n between each stripe.
;;; The argument is the x-coordinate of the projection of the current
;;; stripe onto the line formed by the top edge. Determines where the
;;; projection of the current stripe is on this line in relation to the
;;; distance from first to last stripes in the arrow. Multiplies this
;;; fraction by the difference between densities of first and last
;;; stripes. Finally, adds the density of the first stripe.
(defun compute-dens (x)

(+ *dl• (* (- •d2• •dl•)
(// (- x •pox•) (float (- •xz• •pox•))))))

3. For each function that draws a stripe, replace the sending of one
:show-lines message by a loop that might send several. Determine the
number of messages each function should send by calling compute-nlines.

(defun stripe-arrowhead ()
;; Find x-coord of top of last stripe to be drawn
(loop with last-x = (- •pox• •top-edge•)

;; Find starting x-coord for each stripe, decrementing
;; by distance between stripes. Stop at last x-coord.
for start-x from •pOx• by •stripe-d* above last-x
;; Find ending y-coord for each stripe, decrementing by
;; distance between stripes.
for end-y downfrom •pOy• by •stripe-d*
;; Find number of lines in the stripe
for nlines = (compute-nlines start-x)
,, Draw the lines that make up the stripe
do (draw-arrowhead-lines nlines start-x end-y last-x)))

(defun draw-arrowhead-lines (nlines start-x end-y last-x)
;; Set up a counter
(loop for i from 0 below nlines

;; Find starting x-coord, subtracting counter from first
;; x-coord
for first-x = (- start-x i)
;; Make sure we don't go past the end of the arrowhead
while (< last-x first-x)
;; Draw a line
do (send •dest• ':show-lines

first-x •pOy• •pOx• (- end-y i))))

44 Program Development Tools and Techniques

Symbolics, Inc.

(defun stripe-big-arrow-shaft-left()
;; Set up a counter for depth. Don't exceed maximum recursion
; ; level.
(loop for shaft-depth from 0 below •max-depth•

;; Find current top edge and its fractions
for top-edge = •top-edge• then (// top-edge 2)
for top-edge-2 = (// top-edge 2)
for top-edge-4 = (// top-edge 4)
;; Find coordinates of apex of triangle
for apex-x = •p2x• then (- apex-x top-edge-2)
for apex-y = •p2y• then (- apex-y top-edge-2)
;; Find x-coord of bottom right vertex
for right-x = (+ apex-x top-edge-4)
;; Find y-coord of bottom edge of triangle
for bottom-y = (- apex-y top-edge-~)
;; Find the x-coord of the projection of the first
;; stripe onto top edge
for xoff = (- •pOx• •top-edge•) then (- xoff top-edge)
;; Stripe each triangle
do (draw-big-arrow-shaft-stripes-left

top-edge-4 apex-x apex-y right-x bottcm-y xoff)))

(defun draw-big-arrow-shaft-stripes-left
(top-edge-4 apex-x apex-y right-x bottom-y xoff)

(loop with half-distance = (// •stripe-distance• 2)
;; Find x-coord of last stripe in triangle
with last-x = (- apex-x top-edge-4)
,, Find x-coord of top of each stripe, decrementing
;; from the apex by HALF the horizontal distance
;; between stripes. Stop at last stripe.
for start-x from apex-x by half-distance above last-x
;; Find y-coord of top of stripe
for start-y downfrom apex-y by half-distance
;; Find x-coord of endpoint of stripe
for end-x downfrom right-x by •stripe-distance*
;; Find number of lines in the stripe
for nlines = (compute-nlines (- xoff (- right-x end-x)))
;; Draw a stripe
do (draw-big-arrow-shaft-lines-left

nlines start-x start-y end-x bottom-y last-x)))

Program Development Tools and Techniques

Symbolics, Inc.

(defun draw-big-arrow-shaft-lines-left
(nlines start-x start-y end-x end-y last-x)

;; Set up two counters -- we need to draw two lines at once
(loop for i from 0

for 12 from O by 2
;; Find x-coord of top of first line in stripe
for first-x = (- start-x i)
;; Don't exceed number of lines in stripe
while (< 12 nlines)
;; Don't go past the end of the triangle
while (< last-x firs~-x)
,, Draw a line
do (send •dest• ':show-lines first-x (- start-y i)

(- end-x i2) end-y)
;; Draw a second line. The two lines are a refinement
;; to stagger the endpoints of the lines so the diagonal
;; edge looks neat.
(send •dest• ':show-lines f1rst-x (- start-y i 1)

(- end-x i2 1) end-y)))

(defun stripe-big-arrow-shaft-right ()
;; Set up a counter for depth. Don't exceed maximum recursion
; ; level.
(loop for shaft-depth from 0 below •max-depth•

;; Find new top edge and its fractions
for top-edge = •top-edge• then (// top-edge 2)
for top-edge-2 = (// top-edge 2)
for top-edge-4 = (// top-edge 4)
;; Find coords of top point of triangle
for start-x = (+ •p2x• top-edge-4)
for top-y = (- •p2y• •top-edge-4•)
then (- top-y top-edge-2 top-edge-4)
;; Find x-coord of projection of first stripe onto
;; top-edge
for xoff = (- •pox• •top-edge•) then (- xoff top-edge)
;; Stripe the triangle
do (draw-big-arrow-shaft-stripes-right

top-edge-2 top-edge-4 start-x top-y xoff)))

45

Program Development Tools and Techniques

(defun draw-big-arrow-shaft-stripes-right
(top-edge-2 top-edge-4 start-x top-y xoff)

(loop with half-distance = (// •stripe-distance* 2)
;; Find y-coord of last stripe in triangle
with last-y = (- top-y top-edge-2)

Symbolics, Inc.

;; Find y-coord of starting point of stripe. Don~t go
;; past the end of the triangle.
for start-y from top-y by •stripe-distance* above last-y
;; Find coords of ending point of the stripe, decrementing
;; by HALF the horizontal distance between stripes
for end-x downfrom (+ start-x top-edge-4) by half-distance
for end-y downfrom (- top-y top-edge-4) by half-distance
;; Find number of lines that make up the stripe
for nlines = (compute-nlines (- xoff (- top-y start-y)))
;; Draw a stripe
do (draw-big-arrow-shaft-lines-right

nlines start-x start-y end-x end-y last-y)))

(defun draw-big-arrow-shaft-lines-right
(nlines start-x start-y end-x end-y last-y)

;; Set up two counters -- we need to draw two lines at once
(loop for i from 0

for 12 from 0 by 2
;; Find y-coord of ending point of line
for stop-y = (- end-y i)
;; Don't exceed number of lines in the stripe
while (< i2 nlines)
;; Don't go past the bottom of the triangle
while (< last-y stop-y)
,, Draw a line
do (send *dest• ':show-lines start-x (- start-y 12)

(- end-x i) stop-y)
,, Draw a second line. The two lines are a refinement
,, to stagger the endpoints of the lines so the diagonal
;; edge looks neat.
(send •dest• ':show-lines start-x (- start-y 12 1)

(- end-x i 1) stop-y)))

Program Development Tools and Techniques

Symbolics. Inc.

(defun stripe-arrow-shaft ()
;; Set up a counter for depth. Don't exceed maximum
;; recursion level.
(loop for shaft-depth from •depth* below •max-depth*

;; Calculate fractions of new top edge
for top-edge-2 = •top-edge-2* then (// top-edge-2 2)
for top-edge-4 = {// top-edge-2 2)
;; Find coords of top left point of triangle
for left-x = •p2x• then (- left-x top-edge-4)
for top-y = •p2y• then (- top-y top-edge-2 top-edge-4)
;; Find coords of bottom right point of triangle
for right-x = (+ left-x top-edge-2)
for bottom-y = (- top-y top-edge-2)
;; Find x-coord of projection of first stripe onto top edge
for xoff = (- •pOx• •top-edge•)
then (- xoff top-edge-2 top-edge-2)
;; Stripe the triangle
do (draw-arrow-shaft-stripes

left-x top-y right-x bottom-y xoff)))

(defun draw-arrow-shaft-stripes
(left-x top-y right-x bottom-y xoff)

;; Find y-coord of starting point of stripe. Don't go
;; below the bottom of the triangle.
(loop for start-y from top-y by •stripe-distance* above bottom-y

;; Find x-coord of ending point of the stripe
for end-x downfrom right-x by •stripe-d•
;; Find number of lines in the stripe
for nlines = (compute-nlines (- xoff (- right-x end-x)))
,, Draw a stripe
do (draw-arrow-shaft-lines

nlines left-x start-y end-x bottom-y)))

(defun draw-arrow-shaft-lines
(nlines left-x start-y end-x bottom-y)

;; Set up a counter. Don't exceed number of lines in the stripe.
(loop for i from 0 below nlines

;; Find x-coord of ending point of the line
for last-x = (-end-xi)
;; Don't go past the left edge of the triangle
while (< left-x last-x)
;; Draw a line
do (send *dest• ':show-lines left-x (- start-y i)

last-x bottom-y)))

Figure 3 (page 48) shows the output of the program with stripes of varying spacing and
thickness.

47

At this stage in developing the program we define new functions, constants, and variables. But
most of the work consists of changing existing code. Often you need to make similar changes

48 Program Development Tools and Techniques

Symbolics, Inc.

NIL

L1 !SP Listener 1

y1_

Figure 3. Program output with stripes of varying spacing and density.

Program Del'elopment Tools and Techniques 49

Symbolics, Inc.

to several functions: you add an argument or replace sending one message by a loop that sends
several. In this case we are refining a new program, but when maintaining existing code you
must also make selective or global changes. The most helpful Lisp Machine facilities are those
for finding out about existing code (section 2.6, page 28) and for editing code (section 2.8,
page 49).

2.8 Editing Code

The features we discussed in sections 2.2 (page 7) and 2.4 (page 19) are useful mainly in
composing new code. The features we described in section 2.6 (page 28) are helpful in both
writing and editing code. In this section we discuss features that are likely to be most useful in
editing existing code.

2 .8.1 Identifying Changed Code
Two pairs of List and Edit commands find or edit changed definitions in
buffers or files. By default, the commands find changes made since the file
was read; use numeric arguments to find definitions that have changed since
they were last compiled or saved.

Example
After defining the routine that calculates the number of lines that compose
each stripe, we changed many functions to call that routine and draw the
appropriate number of lines. We want to look over the changes before
recompiling the edited definitions. We use Edit Changed Definitions Of
Buffer (m-X).

Reference
List Changed Definitions Of Buffer (m-X)

Lists definitions in the buffer that
have changed since the file was read.
Press c-. to edit the definitions
listed.

Edit Changed Definitions Of Buffer (m-X)

List Changed Definitions (m-X)

Edit Changed Definitions (m-X)

Print Modifications (m-X)

Prepares for editing definitions in the
buffer that have changed. Press c-.
to edit subsequent definitions.

Lists definitions in any buffer that
have changed since the files were
read. Press c-. to edit the
definitions listed.

Prepares for editing definitions in any
buffer that have changed. Press c-.
to edit subsequent definitions.

Displays lines in the current buff er

50

Source Compare (m-X)

Source Compare Merge (m-X)

Program Development Tools and Techniques
Symbolics, Inc.

that have changed since the file was
read.

Compares two buffers or files, listing
differences.

Compares two buffers or files and
merges differences into a buffer.

2.8.2 Searching and Replacing
Many of the facilities discussed in section 2.6 (page 28), particularly the
series of List and Edit commands, are useful for displaying and moving to
code you wish to edit. The commands we discuss here find and replace
strings. Tags tables offer a convenient means of making global changes to
programs stored in more than one file. Use Select All Buffers As Tag
Table (m-X) to create a tags table for all buffers read in. Use Select System
As Tag Table (m-X) to create a tags table for all files in a system. (For
information on systems, see the Lisp Machine Manual, chapter 24, page 406.)

Example
We have defined •stripe-d•, and we want to replace some occurrences of
the constant •stripe-distance• by the variable •stripe-d•. We use Query
Replace (m-7.) to find each occurrence of •stripe-distance•. By pressing
SPACE, we replace •stripe-distance• by •stripe-d• in functions like
stripe-arrowhead. By pressing RUBOUT, we leave •stripe-distance• in place
in functions like draw-big-arrow-shaft-stripes-left.

Reference
List Matching Lines (m-X)

Incremental Search (c-S)

Reverse Search (c-R)

Displays the lines (following point) in
the current buffer that contain a
string.

Prompts for a string and moves
forward to its first occurrence in the
buffer. Press c-S to repeat the
search with the same string. Press
c-R to search backward with the
same string. After you invoke the
command, if c-S is the first character
you type (instead of a string), uses
the string specified in the previous
search.

Prompts for a string and moves
backward to its last occurrence in the
buffer. Press c-R to repeat the

Program Development Tools and Techniques 51
Symbolics, Inc.

Tags Search (m-X)

Replace (c-?.)

Query Replace (m-?.)

Tags Query Replace (m-X)

search with the same string. Press
c-S to search forward with the same
string. After you invoke the
command, if c-R is the first character
you type (instead of a string), uses
the string specified in the previous
search.

Searches for a string in all files listed
in a tags table.

In the buff er, replaces all occurrences
(following point) of one string by
another.

In the buff er, replaces occurrences
(following point) of one string by
another, querying before each
replacement. Press HELP for possible
responses.

In files listed in a tags table, replaces
occurrences of one string by another,
querying before each replacement.

Select All Buffers As Tag Table (m-X)

Select System As Tag Table (m-X)

Creates a tags table for all buffers in
Zmacs.

Creates a tags table for files in a
system defined by def system.

2.8.3 Moving Text

2.8.3.1 Moving through Text

To move short distances through text, you can use the Zmacs commands for
moving by lines, sentences, paragraphs, Lisp forms, and screens, or you can
click left to move point to the mouse cursor. To move longer distances, you
can move to the beginning or end of the buffer or use the scroll bar. To go
to another buffer, use Select Buffer (c-X B). To switch back and forth
between two buffers, use Select Previous Buffer (c-m-L).

Suppose you want to record a location of point so that you can return to
that location later. Two techniques are particularly useful:

• Store the location of point in a register. Use Save Position (c-X S) to store
point in a register. Use Jump to Saved Position (c-X J) to return to that
location.

•Use m-SPACE to push the location of point onto the mark stack. Later, you
can use c-m-SPACE to exchange point and the top of the mark stack. c-U

52 Program Development Tools and Techniques

Symbolics, Inc.

c-SPACE pops the mark stack; repeated execution moves to previous marks.
Note: Some Zmacs commands other than c-SPACE push point onto the
mark stack. When point is pushed onto the mark stack, the notification
"Point pushed" appears below the mode line.

Reference
Select Buffer (c-X B) Moves to another buff er, reading the

buffer name from the minibuffer.
With a numeric argument, creates a
new buffer.

Select Previous Buffer (c-m-L) Moves to the previously selected
buffer.

Save Position (c-X S) Stores the position of point in a
register. Prompts for a register name.

Jump To Saved Position (c-X J) Moves point to a position stored in a
register. Prompts for a register name.

Set Pop Mark (c-SPACE) With no argument, sets the mark at
point and pushes point onto the mark
stack. With an argument of c-U,
pops the mark stack.

Push Pop Point Explicit (m-SPACE) With no argument, pushes point onto
the mark stack without setting the
mark. With an argument n,
exchanges point with the nth position
on the mark stack.

Move To Previous Point (c-m-SPACE)Exchanges point and the top of the
mark stack.

Swap Point And Mark (c-X c-X)

2.8.3.2 Killing and Yanking

Exchanges point and mark. Activates
the region between point and mark.
Use Beep (c-G) to turn off the
region.

When you need to repeat text, you usually want to copy it rather than type
it anew. The most common facilities for copying text are the commands for
killing and yanking. Commands that kill more than one character of text
push the text onto the kill ring. c-Y yanks the last kill into the buffer.
After a c-Y command, m-Y deletes the text just inserted, yanks the previous
kill, and rotates the kill ring.

Program Development Tools and Techniques 53
Symbolics, Inc.

Example
In the function draw-big-arrow-shaft-lines-left, we send two :show-lines
messages on each iteration. The purpose is to arrange the starting points of
the lines along the diagonal edge so that they lie as closely as possible on a
45-degree line. The second send expression is nearly identical to the first.
Instead of typing a new expression, we copy and edit the first one. We
follow these steps:

1. Position the cursor after the close parenthesis that ends the first send
expression.

(defun draw-b1g-arrow-shaft-11nes-left
(nlines start-x start-y end-x end-y last-x)

do (send •dest• ':show-lines f1rst-x (- start-y 1)
(- end-x i2) end-y)

2. Use c:-m-RUBOUT to kill the send expression and push it onto the kill ring.

(defun draw-b1g-arrow-shaft-lines-left
(nlines start-x start-y end-x end-y last-x)

do

3. Use c:-Y to restore the expression.

(defun draw-big-arrow-shaft-lines-left
(nlines start-x start-y end-x end-y last-x)

do (send •dest• ':show-lines first-x (- start-y i)
(- end-x 12) end-y)

4. Use LINE to move to the next line and indent.

5. Use c:-Y to insert a copy of the send expression.

(defun draw-big-arrow-shaft-lines-left
(nlines start-x start-y end-x end-y last-x)

do (send •dest• ':show-lines first-x (- start-y i)
(- end-x 12) end-y)

(send *dest* ':show-lines first-x (- start-y i)
(- end-x 12) end-y)

54 Program Development Tools and Techniques

Symbolics. Inc.

6. Edit the second send expression.

(defun draw-b1g-arrow-shaft-11nes-left
(n11nes start-x start-y end-x end-y last-~)

do (send •dest• ':show-11nes first-x (- start-y 1)
(- end-x 12) end-·y)

(send *dest• ':show-11nes first-x (- start-y 1 1)
(- end-x i2 1) end-y)))

Example
Suppose we have an existing program in which we have already defined the
function compute-nlines. We can copy the function in three ways:

•Use c-m-K or c-m-RUBOUT to kill the definition. Use c-Y to restore it. Go
to the new buffer. Use c-Y to insert a copy of the definition.

• Use c-m-H to mark the definition. Use m-W to push it onto the kill ring.
Go to the new buffer. Use c-Y to insert a copy of the definition.

• Click middle on the first or last parenthesis of the definition to mark the
definition. Click double-middle to push it onto the kill ring. Move to the
new buffer. Click double-middle to insert a copy of the definition.

Reference
Kill Sexp (c-m-K) Kills forward one or more Lisp

expressions.

Backward Kill Sexp (c-m-RUBOUT) Kills backward one or more Lisp

Mark Definition (c-m-H)

Save Region (m-W)

Yank (c-Y)

Yank Pop (m-Y)

expressions.

Puts point and mark around the
current definition.

Pushes the text of the region onto the
kill ring without killing the text.

Pops the last killed text from the kill
ring, inserting the text into the buffer
at point. With an argument n, yanks
the nth entry in the kill ring. Does
not rotate the kill ring.

After a c-Y command, deletes the
text just inserted, yanks previously
killed text from the kill ring, and
rotates the kill ring. Repeated
execution yanks previous kills and
rotates the kill ring.

Program .Del•elopment Tools and Techniques 55
Symbolics. Inc.

/

[Region (M2)]

2.8.3.3 Using Registers

When region is defined, pushes the
text of region onto the kill ring
without killing the text (like m-l-J).
Repeated execution has the following
effects:

• First repetition: kills the text of
region, pushing the text onto the kill
ring (like c-l-J)

• Second repetition: pops the text of
region from the kill ring, inserting the
text into the buffer at point (like
c-Y)

• Third and subsequent repetitions:
delete the text just inserted, yank
previously killed text from the kill
ring, and rotate the kill ring (like
m-Y)

If no region is defined, pops the last
killed text from the kill ring, inserting
the text into the buffer at point (like
c-Y). Repeated execution deletes the
text just inserted, yanks previously
killed text from the kill ring, and
rotates the kill ring (like m-Y).

Using c-Y and m-Y to copy text can become tedious when you have to
rotate through a long kill ring to find the text you need. Another method,
especially useful when you want to copy a piece of text more than once, is
to save and restore the text using registers.

Reference
Put Register (c-X X)

Open Get Register (c-X G)

Copies contents of the region to a
register. Prompts for a register name.

Inserts contents of a register into the
current buff er at point. Prompts for
a register name.

2.8.3.4 Copying Buffers and Flies

Use Insert File (m-X) to place the contents of an entire file in your buffer.

You can copy the contents of a buff er in two ways:

56 Program Development Tools and Techniques

Symbolics. Inc.

•Use Insert Buffer (m-X), naming the buffer you want to copy.

•Use c-X H to mark the buffer you want to copy. Use m-W to push its text
onto the kill ring. Move to the new buffer. Use c-V to insert a copy of
the text.

Reference
Mark Whole (c-X H)

Insert Buff er (m-X)

Insert File (m-X)

Marks an entire buffer.

Inserts contents of the specified
buffer into the current buffer at
point.

Inserts contents of the specified file
into the current buffer at point.

2.8.4 Keyboard Macros
Sometimes you need to perform a uniform sequence of commands on several
pieces of text. You can save keystrokes by converting the sequence to a
keyboard macro and installing it on a single key. If you anticipate using a
macro often, you can write Lisp code to define it in an init file. If you
frequently use particular extended commands, install them on single keys
with Set Key (m-X).

Reference
Start Kbd Macro (c-X <)

End Kbd Macro (c-X))

Call Last Kbd Macro (c-X E)

Name Last Kbd Macro (m-X)

Install Macro (m-X)

Install Mouse Macro (rn-X)

Deinstall Macro (m-X)

Set Key (m-X)

Begins recording keystrokes as a
keyboard macro.

Stops recording keystrokes as a
keyboard macro.

Executes the last keyboard macro.

Gives the last keyboard macro a
name.

Installs on a key the last keyboard
macro or a named macro.

Installs a keyboard macro on a mouse
click (such as L2). When you click
to call the macro, point moves to the
position of the mouse cursor before
the macro is executed.

Deinstalls a keyboard macro from a
key or a mouse click.

Installs an extended command on a
single key. Use HELP C to look for
unassigned keys.

Program Development Tools and Techniques 57

Symbolics, Inc.

2.8.5 Using Multiple Windows

2.8.5.5 Multiple Buffers

Sometimes when editing you move often between two buffers. You might
want to see the two buffers at the same time rather than switch between
them. A common use of multiple-window display is to edit source code
while viewing compiler warnings (see section 4.1, page 71).

Example
We add a new :show-lines message to the program but forget what
arguments the message takes. We want to display the source code for the
message handler on the same screen as our program code. We use c-X 2 to
create another window and move to it. We use Edit Methods (m-X) to find
the source code for the method that handles :sl1ow-llnes (see section 5.2.2,
page 129).

Example
After finishing the program, we collect a file of bug reports from users. We
want to use these reports in correcting our program code. We create two
windows, one displaying the program code and the other the bug-report file.
We edit the program code, using c-m-V to scroll the bug-report window as
we correct each bug.

Reference
Split Screen (m-X)

Two Windows (c-X 2)

View Two Windows (c-X 3)

Modified Two Windows (c-X 4)

Other Window (c-X 0)

Scroll Other Window (c-m-V)

One Window (c-X 1)

Pops up a menu of buffers and splits
the screen to display the buffers you
select.

Creates a second window, with the
current buff er on top and the
previous buffer on the bottom. Puts
the cursor in the bottom window.

Creates a second window, with the
current buffer on top and the
previous buffer on the bottom. Puts
the cursor in the top window.

Creates a second window and visits a
buffer, file, or tag there. Displays the
current buffer in the top window.

Moves to the other of two windows.

Scrolls the other of two windows.

Returns to one-window display,
selecting the buffer the cursor is in.

58 Program Development Tools and Techniques

Symbolics, Inc.

2.8.5.6 Zmacs and Other Windows

Use [Split Screen] or [Edit Screen] from a system menu to display an editor
window on the screen with other kinds of windows.

Example
In testing new program functions, we want to have the current version of
the figure on the same screen as the program code. We use [Split Screen]
from a system menu to add a Lisp Listener to the screen. We move
between windows by clicking left on the window to which we want to
move.

We evaluate (pkg-goto 7 graph1cs) and then (do-arrow) in the Lisp
Listener. We adjust the arguments to draw-arrow-graphic so that the
arrow fits neatly into the Lisp Listener window.

(defun do-arrow()
(let ((*dest• (make-instance •screen-arrow-output)))

(send term1nal-io 7 :clear-screen)
(draw-arrow-graphic 640 1300 1850)))

Figure 4 (page 59) shows the appearance of the screen with graphic output
in a Lisp Listener and source code in a Zmacs buffer.

To return to displaying only the Zmacs window, we use [Split Screen] with
the existing Zmacs buffer as the only element.

Reference
[Split Screen / Lisp I Existing Window / Existing Zmacs Buffer / Do It]

(from a system menu)
Adds a Lisp Listener to a screen
displaying an existing Zmacs buffer.

[Split Screen / Existing Window / Existing Zmacs Buffer / Do It) (from a
system menu)

2.8.5.7 Other Displays

Resumes one-window display of an
existing Zmacs buffer.

The window system allows you to use menus, choose-variable-values
windows, and other multiple-window displays in executing programs. See
Introduction to Using the Window System and Lisp Machine Choice Facilities
for details. See chapter 5 (page 101) for examples of simple uses of
windows, including choose-variable-values windows.

Program Development Tools and Techniques

Symbolics, Inc.

NIL
I

Lhp Listener 2
,,, Calculates the nuMber of lines that coMpose each stripe.
,,, Calls COMPUTE-DENS to calculate the proportion of distance
,,, between stripes to be filled. then Multiplies by the actual
;;; distance between stripes. Makes sure that there is at least
,,, one line and that there aren't too Many lines to leave soMe
,,, white space.
(defun coMpute-nlines (x)

;; Call COMPUTE-DENS and Multiply result by •STRIPE-D*
(let ((nl {fix (* •stripe-di (coMpute-dens x)))))

;; Supply et least one line
(cond ((~ nl 1) 1)

;; But leave soMe white space between lines
((~ nl (- •stripe-d* 1)) (- •stripe-d* 2))
(t nl))))

,,, Calculates proportion of distance filled in between each stripe.
,,, The ar9uMent is the x-coordinate of the projection of the current
,,, stripe onto the line forMed by the top edge. DeterMines where the
;;; projection of the current stripe is on this line in relation to the
,,, distance fron first to last stripes in the arrow. Multiplies this
;;; fraction by the difference between densities of first and last
,,, stripes. Finally. adds the density of the first stripe.
(defun conpute-dens (x)

(+ •dl* (• (- •d2• •dl•)
(// (- x •p0x•) (float (- •x2* •p0x•))))))

ZMACS LISP pcodex.l /dess/doc/workstyles/ VIXEN:* More above end below

59

: ove point : ove to po
98/17/83 18:06:25 roM

ny;--H2 :seve/K i 11 ~Vank. R: Menu. R2: Syste" rienu.
Ty_

Figure 4. Using multiple windows to test the program while viewing the source code.

60 Program Development Tools and Techniques
Symbolics, Inc.

Program Development Tools and Techniques 61
Symbolics, Inc.

3. Complllng and Evaluatlng Lisp
When should you compile code, and when evaluate it?

The main job of the compiler is to convert interpreted functions into compiled functions. An
interpreted function is a list whose first element is lambda, named-lambda, subst, or
named-subst. These functions are executed by the Lisp evaluator. The ~ost common
interpreted functions you define are named-lambdas. When you load a source file that
contains defun forms or when you otherwise evaluate these forms, you create named-lambda
functions and define the function specs named in the forms to be those functions.

Compiled functions are Lisp objects that contain programs in the Lisp Machine instruction set
(the machine language). They are executed directly by the microcode. Compiling an
interpreted function (by calling the compiler on a function spec) converts it into a compiled
function and changes the definition of the function spec to be that compiled function.

You seldom compile functions directly. Instead, you coµipile either regions of Zmacs buffers or
source files.

• Compiling a region of a Zmacs buff er (or· the whole buff er) causes the
compiler to process the forms in the region, one by one. This processing has
side effects on the Lisp environment. We summarize the compiler's actions
in section 3.1.l (page 62).

• Compiling a source file translates it into a binary file. With some
exceptions, this processing does not have side effects on the Lisp
environment at compile time. When you load a compiled file that defines
functions, you create compiled rather than interpreted functions and define
function specs to be those compiled functions. In other respects, loading a
compiled file has essentially the same effects as loading a source file
(evaluating the forms in the file). We discuss compiling files in section 3.1.2
(page 65).

Most Symbolics programmers compile all their program code. The compiler checks extensively
for errors and issues warnings that help detect bugs like typographical errors, unbound symbols,
and faulty Lisp syntax. Compiled code runs faster and takes up less storage than interpreted
code. You can compile code in portions and decide at compile time whether or not to save the
compiler output in a binary file.

The most common use for interpreted functions is stepping through their execution. You
cannot step through the execution of a compiled function. If a function is compiled, you can
read its definition into a Zmacs buffer, evaluate the definition, and then step through a ·
function call.

In addition to evaluating definitions to create interpreted functions, you might need to evaluate
forms to test a program or find information about a Lisp object. (Unless you are using the
Stepper, functions that you call during these evaluations are usually compiled.) You can
evaluate a form in a Lisp Listener, a breakpoint loop, or the minibuffer.

See the Lisp Machine Manual, chapter 10, page 136, for more information on functions.

62 Program Development Too/$ and Techniques

Symbolics. Inc.

3.1 Complllng Lisp Code

You can use Zmacs commands to compile code in a file or Zmacs buffer. Most Symbolics
programmers compile code as soon as they have written enough to test. This practice lets them
correct errors quickly and produce simple working versions of programs before adding more
complex operations. A common command for incremental compiling from a Zmacs buffer is
Compile Region (c-sh-C). If no region is defined, this command compiles the current
definition.

In addition to compiling definitions as they write them, Symbolics programmers consider it
good practice to recompile a function soon after effecting a change. Because recompiling a
series of functions or an entire program can be time-consuming, it is easier and faster to make
changes and then use a single command to recompile only the changed functions. Using
Compile Changed Definitions Of Buffer (m-sh-C) or Compile Changed Definitions (m-X) is
easier in this case than recompiling each function separately or recompiling the entire buffer.

The order in which you compile definitions can be important. For example, suppose you have
a function that binds a variable you want to be treated as special. If you compile the function
definition before compiling the variable declaration, the compiler treats the variable as local
and generates incorrect output. For this reason you should usually put dehar and defconst
forms at the beginning of a file or into a separate file to be compiled and loaded before
function definitions.

When editing a program, it is a good idea to load the entire program before you start work on
it. When you compile new definitions or recompile edited ones, the compiler will have access
to variable declarations, macros, functions, and other information. You will also be able to use
Zmacs commands and Lisp functions for finding information about other parts of the program
(see section 2.6, page 28).

Sometimes when you compile a file, write large sections of code at once, or make many changes
to a large program, compiling the code produces many warning messages. Chapter 4 (page 71)
describes how Edit Compiler Warnings (m-X) lets you use the compiler warnings as a reference
source for debugging.

See the Lisp Machine Manual, chapter 16, page 197, for more information on the compiler.

3.1.1 Compiling Code In a Zmacs Buffer
Compiling a top-level form in a Zmacs buffer - using a command like
Compile Region (c-sh-C) or Compile Buffer (m-X) - has side effects on
the Lisp environment. Following is a summary of the compiler's actions;

Form

Macro form

Function definition

Action

If the form is a list whose first element is a
macro, the compiler expands the form and
processes this expanded form instead of the
original.

If the form is a list whose first element is def un,

Program Development Tools and Techniques 63

Symbolics, Inc.

Macro definition

Special case

Atom, comment form

Other

Example

the compiler constructs a lambda-expression from
the definition, converts the lambda-expression into
a compiled function, and defines the function spec
named in the definition to be that compiled
function.

If the form is a list whose first element is macro,
the compiler constructs a lambda-expression as the
macro's expander function, converts the lambda
expression into a compiled function, and defines
the function spec named in the definition to be
the macro. A defmacro form expands into this
kind of form.

Some forms, like eval-when, declare, and
progn 'compile forms, have special meaning for
the compiler. It handles each of these in a
different way. (See the Lisp Machine Manual,
chapter 16, page 197, for details.)

The form is ignored.

The form is evaluated.

We have written some initial code for the controlling function of the
calculation module:

(defvar •top-edge• nil
•Length of the top edge of the arrow•)

(defvar •pOx• nil
•x-coord1nate of point o•)

(defvar •pOy• nil
"Y-coordinate of point o•)

(defun draw-arrow-graphic (•top-edge• •pOx •pOy•)
(let ((•top-edge-2• (// •top-edge• 2))

(•top-edge-4• (// •top-edge• 4)))
(draw-big-arrow)))

Because we have no other code in the buffer, we can compile these
definitions using Compile Buffer (m-X). If we had more code in the buffer,
we could compile these definitions by setting the mark at one end and point
at the other and using Compile Region (c-sh-C).

The compiler displays the following warnings:

64 Program Development Tools and Techniques

Symbolics. Inc.

For Function DRAW-ARROW-GRAPHIC
The variable •TOP-EDGE-4• was never used.
The variable •TOP-EDGE-2• was never used.
The variable •POX was never used.

The following functions were referenced but don't seem defined:
DRAW-BIG-ARROW referenced by DRAW-ARROW-GRAPHIC

The first set of warnings indicates that the compiler is treating
•top-edge-2•, •top-edge-4•, and •pOx as local variables. We neglected to
declare •top-edge-2• and •top-edge-4• special with defvar; •pOx is of
_course a misspelling. The lack of a definition for draw-big-arrow is not
surprising; we have yet to write that definition.

We add the two defvars and correct the spelling of •pox•. We compile the
changes using Compile Changed Definitions Of Buffer (m-sh-C). The
compiler now displays only one warning:

The following functions were referenced but don't seem defined:
DRAW-BIG-ARROW referenced by DRAW-ARROW-GRAPHIC

We continue writing the program by defining draw-big-arrow.

Reference
Compile Region (c-s:h-C)

[Zmacs Window/ Compile Region]

Compiles the region. If no region is
marked, compiles the current
definition.

Compiles the region. If no region is
marked, compiles the current
definition.

Compile Changed Definitions Of Buffer (m-sh-C)
Compiles all the definitions in the
current Zmacs buffer that have
changed since the definitions were last
compiled.

Compile Changed Definitions (m-X) -Compiles all the definitions in any
Zmacs buffer that have changed since
the definitions were last compiled.

Compile Buffer (m-X) Compiles the current Zmacs buffer.

Compile (m-X)-[Zmacs Window (R)] Pops up a menu of options for
compiling code in the current context.

Program Development Tools and Techniques 65

Symbolics, Inc.

3.1.2 Complllng and Loading a File
Compiling a file, using Compile File (m-X) or compller:complle-file, saves
the compiler output in a binary file of canonical type :bin. For the most
part, compiling a file does not have side effects on the Lisp environment.
The basic difference between compiling a source file and compiling the same
forms in a buff er is this: When you compile a file, most function specs are
not defined and most forms (except those within eval-when (compile)
forms) are not evaluated at compile time. Instead, the compiler puts
instructions into the binary file that cause these things to happen at load
time. You can load a source or binary file into the Lisp environment by
using Load File (m-X) or load. You can compile a file and then load the
resulting binary file by using compiler:compile-file-load.

Example
In a previous session, we wrote the output routines for the program, saved
them in a file, and compiled that file. Now we are writing the first
calculation routines, and we want to test them. We need to load the file
that contains the compiled code for the output routines. We use Load File
(m-X).

Suppose our two files are in the directory >Symbol,ics>examples> on Lisp
Machine acme-blue. The file containing the output routines is arrow-out.
The current Zmacs buffer, and the file containing the calculation module, is
arrow-ca le. When we type m-X load file (or m-X lo f, using completion),
Zmacs prompts for a file name:

Load File: (Default is ACME-BLUE:>Symbolics>examples>arrow-calc),

We type arrow-out, without a file type. The latest version of
arrow-out.bin is loaded. If no compiled version exists or if the latest
compiled file is older than the latest source file, Zmacs offers to compile the
source file and then load the compiled versfon.

Reference
Compile File (m-X)

(compller:complle-file file-name)

Load File (m-X)

Prompts for the name of a file and
compiles that file, placing the
compiled code in a file of canonical
type :bin.

Compiles a file, placing the compiled
code in a file of canonical type :bin.

Prompts for a file name, taking the
default from the current buffer.
Offers to save the buffer if it has

66

(load file-name)

Program Development Tools and Techniques

Symbolics. Inc.

changed since the file was last read or
saved. Offers to compile the source
file if no compiled version exists or if
the source file was created after the
latest compiled version. If you specify
a file type, loads the latest version of
the file of that type. If you don't
specify a file type, loads the latest
version of the binary file (even if
older than the latest source file); if no
binary file exists, loads the latest
source file.

Loads a file into the Lisp
environment. If you specify a file
type, loads the latest version of the
file of that type. If you don't specify
a file type, loads the la test version of
the binary file (even if older than the
latest source file); if no binary file
exists, loads the latest source file.

(compller:complle-flle-load file-name)
Compiles a file, placing the compiled
code in a file of canonical type :bin.
Loads the resulting binary file.

3.2 Evaluating Lisp Code

3.2.1 Evaluation and the Editor
The most common reason for evaluating definitions in a Zmacs buffer is to
step through the execution of the functions they define. Sometimes in
debugging you want to proceed step by step through a function call, using
step or the :step option to trace (see section 4.4.2, page 86). You can do
this only with interpreted functions. If a function is . compiled, you can use
Edit Definition (m-.) to read its definition into a Zmacs buffer. You can
then evaluate the definition using Evaluate Region (c-sh-E). When you
have finished stepping, you can recompile the definition.

The evaluation of Lisp forms in the editing buffer or the minibuffer
normally displays the returned values in the echo area (beneath the mode
line near the bottom of the screen). Any output to standard-output during
the evaluation appears in the editor typeout window. Two commands,
Evaluate Into Buffer (m-X) and Evaluate And Replace Into Buffer (m-X),
print the returned values in the Zmacs buffer at point. With a numeric
argument, these commands also insert any typeout from the evaluation into
the Zmacs buffer.

Program Development Tools and Techniques 67
Symbolics, Inc.

Often while editing you need to evaluate forms other than definitions in a
buffer. You need to call a function to test your program, or you need to
call a function like describe to find information about a Lisp object. (Of
course, these functions need not be interpreted.) You can type forms to be
evaluated in three ways:

•Use m-ESCAPE to evaluate a form in the minibuffer.

•Use SUSPEND to enter a Lisp breakpoint loop. You type forms that are
read in the buffer's package and evaluated. Use RESUME to return to the
editor.

•Use SELECT L or [Lisp] from a system menu to select a Lisp Listener and
evaluate forms there. Use SELECT E or [Edit] from a system menu to
return to the editor.

Example
We have found a bug in the program and suspect that it lies in the function
do-arrows. We want to step through a call to that function, but it is
compiled. We use Edit Definition (m-.) to find the definition of do-arrows
and Evaluate Region (c-sh-E) to evaluate the definition. We then step
through a function call (see section 4.4.2, page 86).

Example
We have written and compiled the output routines and the initial code for
the calculation module. We want to test the program as written so far.
The top-level function to call is do-arrow. We can test the program in
three ways:

• Press m-ESCAPE and evaluate (do-arrow). The graphic output appears in a
typeout window. We press SPACE to restore the editing buffer to the
screen.

• Press SUSPEND to enter a Lisp breakpoint loop and evaluate (do-arrow)
there. We press RESUME to return to the editor.

• Press SELECT L to select a Lisp Listener. If the current package is not
graphics, we first evaluate (pkg-goto 'graphics) and then (do-arrow). We
press SELECT E to return to the editor.

Example
We want to be sure that new function names do not conflict with other
symbol names in the graphics package. Most of our function names
contain the string "arrow". We want to find the symbol names that contain
that string. We use m-ESCAPE, SUSPEND, or SELECT L and evaluate:

(apropos •arrow• 'graphics)

68

Reference
Evaluate Region (c-sh-E)

Program Development Tools and Techniques

Symbolics, Inc.

Evaluates the region. If no region is
marked, evaluates the current
definition.

Evaluate Changed Definitions Of Buffer (m-sh-E)
Evaluates all the definitions in the
current Zmacs buffer that have
changed since the definitions were last
evaluated.

Evaluate Changed Definitions (m-X) Evaluates all the definitions in any
Zmacs buffer that have changed since
the definitions were last evaluated.

Evaluate Buffer (m-X) Evaluates the current Zmacs buffer.

Evaluate Into Buffer (m-X) Prompts for a Lisp form to evaluate
and prints the returned values in the
Zmacs buffer at point.

Evaluate And Replace Into Buffer (m-X)

Evaluate Minibuffer (m-ESCAPE)

Evaluates the Lisp form following
point and replaces it with the printed
representation of the values it returns.

Prompts for a Lisp form to evaluate
in the minibuffer and displays the
returned values in the echo area.

Evaluate (m-X) [Zmacs Window (R)] Pops up a menu of options for
evaluating code in the current
context.

SUSPEHD Enters a Lisp breakpoint loop, where
you can evaluate forms. The current
package in the breakpoint loop is the
same as in the previous context. Use
RESUME to return to the previous
context.

3.2.2 Lisp Input Editing
When typing to a Lisp Listener you can use many editing commands to
modify a form before you evaluate it. You often repeat the same function
calls or variations of similar function calls when testing code. Instead of
retyping these forms, you can use the Lisp input editor's ring of input
entries to retrieve them within the same Lisp Listener. When you yank a
previous form, the Lisp input editor places the cursor at the end of the form
but omits the final close parenthesis or carriage return. You can then edit
the form before typing the final delimiter to evaluate it.

Program Development Tools and Techniques 69
Symbolics, Inc.

Example
We execute our program by calling the function domarrow. We evaluate
(do-arrow) once and would like to evaluate it again within the same Lisp
Listener. We press c-C to yank the last form we typed. If that is not
(do-arrow), we press m-C until (do-arrow appears, without the close
parenthesis. We type a close parenthesis to begin the evaluation.

Reference
c-C

m-C

Yanks the last form typed to the Lisp
Listener. Excludes the final delimiter,
allowing you to edit the form before
evaluating it. With an argument n,
yanks the nth form in the input ring.
(This command is not available in
Zmacs.)

After a c-C command, deletes the
form just inserted, yanks the previous
form from the input ring, and rotates
the input ring. Repeated execution
yanks previous forms and rotates the
input ring. (This command is not
available in Zmacs.)

70 Program Development Tools and Techniques

Symbolics. Inc.

Program Developmeitt Tools and Techniques 71

Symbolics, Inc.

4. Debugging Lisp Programs
The Lisp Machine offers a variety of tools for debugging Lisp programs. The kind of
debugging aid you use depends on the application of the program. Bugs might be more obvious
in a graphics program than in a minor modification of some internal system function.
Problems with a graphics programs are sometimes evident from the program's output. On the
other hand, programs with a complex window system application might have bugs that are
difficult to identify.

Debugging aids are more appropriate for some kinds of bugs than for others. You commonly
encounter three sorts of problems with a program:

• The program does not compile correctly. You can use the compiler
warnings database to edit code before recompiling.

• The program compiles, but running it signals an error. Usually errors
invoke the Debugger, where you can examine stack frames, return values,
disassemble code, call the editor, and perform other tasks.

• The program runs but does not behave as it should. You can use many
techniques for finding the problem, including commenting out sections of
code, tracing, stepping, setting breakpoints, disassembling, and inspecting.
Often the most effective method is simply studying the source code.

4. 1 The Compiler Warnings Database

The compiler sometimes produces many warning messages. The compiler maintains a database
of these messages, organized by file. Each time you compile or recompile code, the compiler
adds or removes warnings from the database, so that the database reflects the state of your
program as of the last time you compiled it.

If you want to save warnings in a file, you can use Compiler Warnings (m-X) to put them in a
buffer and then write them to a file. When you make a system using make-system, you can
use the :batch option to save compiler warnings in a file (see the Lisp Machine Manual,
section 24.3, page 411). Use Load Compiler Warnings (m-X) to load compiler warnings into
the database from a file.

If compiler warnings exist in the database, Edit Compiler Warnings (m-X) lets you edit source
code while consulting the corresponding warnings. The command splits the screen, with
compiler warnings in one window and the source code to which the warnings apply in the
other. As you finish editing each section of code, you press c:-.. This displays the next
warning in one window and the source code to which the next warning applies in the other
window. When you reach the last compiler warning, pressing c:-. returns the screen to its
previous configuration.

Example
In section 3.1.1 (page 62), we discussed compiling the initial code for the
calculation module of the sample program. Figure 5 (page 72) shows the
result of using Edit Compiler Warnings (ro-X) after compiling the buff er
with the initial code. The compiler warnings are in the upper window and
the source code in the lower window.

72 Program Development Too/$ and Technique1

Marnlngs for fl 1.e VI><EN: "dess,.doc,.workstyles,.pcodex.t

I For Function DRAM-ARROM-GRAPHIC
The variable •TOP-EDGE-4• was never used.
The variable •TOP-EDGE-2• wes never used.
The verleble •P0H was never used.
DRAM-BIG-ARROM was referenced but not defined.

\defun draw-arrow-graphic (stop-edge• •p0x •p0y•T
(let ((•top-edge-2• (,.,.•top-edge* 2))

(•top-edge-4• (,.,. •top-edge* 4)))
(draw-big-arrow)))

ZNACS (LISP) pcodex.I ,.dess,.doc"work5tyle5" VIHEN: *
Control-. 15 now Edit warnings (or next function.
1 "ore definition a5 well
Point pu5hed

Symbolics, Inc.

... :Move point. L~:Move to point. M:Mar thGIRn9,_HMii2'"CS:~:aveil<1TTTy"l'Vank. ~:Menu. R2:b°y5te" "enu.
08,.20,.83 16:49:52 ro" A~

Figure 5. Edit Compiler Warnings (m-X) splits the screen. The upper window contains
compiler warnings. The lower window contains the source code.

Program Development Tools and Techniques 73
Symbolics. Inc.

Reference
Edit Compiler Warnings (m-X)

Compiler Warnings (m-X)

Load Compiler Warnings (m-X)

Prepares to edit all source code that
has produced compiler warnings.
Lists each file whose code produced
warnings and asks whether you want
to edit that file. Splits the screen,
with compiler warnings in the upper
window and source code that
produced those warnings in the lower
window. Use c-. to display
subsequent warnings and edit the
applicable code.

Puts compiler warning messages into a
buff er and selects that buff er.

Loads a file containing compiler
warning messages into the compiler
warnings database.

4.2 The Debugger

Some errors during execution automatically invoke the Lisp Machine's Debugger. You can
enter the Debugger at other times by pressing c-m-SUSPEHD. You can also enter the Debugger
from within a program by inserting a call to dbg (with no arguments) into the code and
recompiling. You can force a process into the Debugger by calling dbg with an argument of
process. (See section 4.5, page 89.)

The Debugger is useful for examining stack frames. With Debugger commands, you can see
the arguments for the current stack frame, disassemble its code, return a value from it, go up
and down the stack, and invoke the editor to edit function definitions. A common Debugger
sequence is· to disassemble code for the current frame, call the editor to edit and recompile the
function, and test the changed function.

A window-oriented version of the Debugger is the Display Debugger. Invoke it from within
the Debugger by pressing c-rn-W.

Example
We use the variable •x2• in computing the thickness of each stripe. •x2* is
the x-coordinate of the projection of the last stripe in each arrow onto the
top edge. We must bind it for each arrow to the difference between the
value of •pox• and twice the value of •top-edge•.

Suppose that we forget to bind •x2• for the big arrow in the function
draw-big-arrow. The initial value of •x2• is nil. In the function
compute-dens, we subtract •pox• from •x2•. Because the value of •x2• is
not a number, we generate an error when we first call the function. The
error invokes the Debugger with the name of the function in which the

74 Program Development Tools and Technique$

Symbolics, Inc.

error occurred, the value of the function's arguments, and the following
error message:

>>Trap: The first argument given to SYS:--INTERNAL, Nil, was not a number.

The Debugger a.lso displays a listing of proceed types, special commands, and
restart handlers, along with their key bindings (see Signalling and Handling
Conditions, section 10.5, page 41). We can use one of these options, or we
can use other Debugger commands to examine or manipulate the stack .

• Let's use c-m-1.J to invoke the Display Debugger.

Figure 6 (page 76) shows the Display Debugger frame as it looks when we
invoke it. The top window, an inspect pane, shows disassembled code for
compute-dens ·with an arrow at the instruction that produced the error.
The next window is an inspect history pane. The two windows side by side
show the function's arguments and local variables and their values. The
next window is a backtrace of the stack with an arrow at the frame that
produced the error. The next window is a mouse-sensitive listing of options
for proceeding or restarting. Next is a command menu. The bottom
window is a Lisp Listener with the error message displayed.

The disassembled code for compute-dens shows that the first argument to
the subtraction that caused the error was the value of •x2•. We can
inspect •x2• simply by clicking on its printed representation in the
disassembled code. Figure 1 (page 77) shows the Display Debugger after we
inspect •x2•. The value of •x2• is nil. We could have confirmed this by
evaluating •x2 • in the Lisp Listener pane.

Now, if we remember what the value of •x2• is supposed to be, we can set
•x2• to that value by typing to the Lisp Listener pane:

(setq •x2• (- •pOx• •top-edge• •top-edge*))

We can then click on [Retry] to reinvoke the stack frame and continue the
program.

If we forget the value of •x2•, we might want to look at the source code.
We can invoke the editor by clicking on [Edit] and then on the name of the
function we want to edit. Inside the editor, we can change and recompile
code. We can edit draw-big-arrow to bind •x2• and then recompile that
function. If we entered the Debugger from the editor, we cannot return to
the Debugger, but we can run the program again. Otherwise, we can return
to the Display Debugger by pressing c-i!. We can then set the value of
•x2• and reinvoke the frame.

In the Debugger, c-HELP displays information on Debugger commands. Following are some of
the most useful commands:

Program Development Tools and Techniques 75
· Symbolics, Inc.

Reference
c-A

c-E

c-L

c-N

c-P

c::-R

m-B

m-L

c::-m-R

c-m-&..I

Shows arguments for the current stack frame.

Calls the editor to edit the function from the current
frame.

Clears the screen and redisplays the original error
message.

Goes down the stack by one frame.

Goes up the stack by one frame.

Returns a value from the current frame.

Shows a backtrace of function names with arguments.

Shows local variables and disassembled code for the
current frame.

Reinvokes the current frame.

Invokes the Display Debugger.

4.3 Commenting Out Code

Sometimes a program runs but behaves in an unexpected way. In looking for the source of the
problem, you might want to execute some portions of the program and disable others. An easy
way to disable code without destroying it is to make a comment of it. You can comment out
code by preceding it with a semicolon or surrounding it with I I and 11.

Example
We have outlined the large arrow and the largest of the small arrows. We
try to outline the rest of the small arrows by adding two recursive function
calls to do-arrows:

76 Program Development Tools and Techniques

COMPUTE-DENS
3 PUSH-INDIRECT •Dl•
4 BUILTIN --INTERNAL STACK
S PUSH-LOCAL FPf 0 :X
6 PUSH-INDIRECT •P0X*
7 BUILTIN --INTERNAL STACK

10 PUSH-INDIRECT [82!~
11 PUSH-INDIRECT •P0Xl

=> 12 BUILTIN --INTERNAL STACK
13 BUILTIN FLOAT STACK
14 BUILTIN '-INTERNAL STACK

l<Stack-Frafte COMPUTE-DENS PC=12>

Args:
Arg 0 (X): 1809

(DO-ARROL-1)
(DRAW-ARROU-GRAPHIC 1280 1800 1800)
(DRAW-BIG-ARROU)
(STRIPE-ARROWHEAD)
(C0t1PUTE-NLINES 1800)

•(COMPUTE-DENS 1800)

Mon klow

Locals:

More below
Return to nor"al debugger. staying In error context.
Supply replace"ent argu"ent
Return a value fro" the --INTERNAL Instruction
Retry the --INTERNAL Instruction
Lisp Top Level In Ll~p Listener 1

llflat trror
Arslist

Tnspect
Edit

Return
Throw

-Set ars
Search

Retry

>>Trap: The first arguftent given to SVS:--INTERNAL. NIL. was not a nuftber.

Symbolics. Inc.

Choose a va I ue by poi nt i ng at the va Tue. G~RAi 9Hh
1
t·Cge: ts oojeTcytl I tit o error han I er.

08~20~83 17:01:23 roft P S

Figure 6. The Display Debugger: inspecting the stack frame containing a call to
compute-dens.

Program Development Tools and Techniques 77

Symbolics, Inc.

Top orob/"1
•X2*
Value Is NIL
Function Is unbound
Property llst: (DOCUMENTATION• ••• • SPECIAL #<UNIX-PATHNAME •vtXEN: ~~dess~~workstyles¢
Package: l<Package GRAPHICS 36635277>

l<Stack-Frafte COMPUTE-DENS PC=12>
•><2•

Args:
Arg 9 (X): 1809

(DO-ARROW)
(DRAW-ARROW-GRAPHIC 1280 1800 1800)
(DRAM-BIG-ARROM)
(STRIPE-ARRO~HEAD)
(COMPUTE-NLINES 1800)

•(COMPUTE-DENS 1800)

Locals:

More above

More below

Return to nor"al debugger. staying In error context.
Supply replace"ent argu"ent
Return a value fro" the --INTERNAL Instruction
Retry the --INTERNAL Instruction
Lisp Top Level in Lisp Listener l

What trror
Arslist

Tnspect
Edit

Return
Throw

-Set ar9
Search

Retry

>>Trap: The first argu"ent given to SVS:--INTERNAL. NIL. was not a nu"ber.

Choose a value b~ pointing at the value. GRRAl9HhitC9~.ts object into error han<fler.
98~20~83 17:02:05 re" P S Tyl

Figure 7. The Display Debugger: inspecting the variable •x2*.

78 Program Development Tools and Techniques

(defun do-arrows ()
;; Don't exceed maximum recursion level
(when (< •depth• •max-depth•)

;; Bind values for half and one-fourth of top edge
(let ((•top-edge-2• {// •top-edge• 2))

(•top-edge-4• (// •top-edge• 4)))

Symbolics, Inc.

(draw-arrow) ;Draw a small arrow
;; Increment depth. Div1de top edge in half. B1nd new
;; coordinates for top right point of next arrow.
(let ((*depth• (l+ •depth•))

(•top-edge• •top-edge-2•)
(•pOx• (+ •top-edge-4• (- •pOx• •top-edge•)))
(•pOy• (- •pOy• •top-edge-2•)))

,, Draw a left-hand ch1ld arrow
(do-arrows))

;; Increment depth. Divide top edge 1n half. Bind new
;; coordinates for top right point of next arrow.
(let ((•depth• (l+ •depth•))

(•top-edge• •top-edge-2•)
(•pox• (- •pox• •top-edge-2•))
(•pOy• (+ •top-edge-4• (- •pOy• •top-edge•))))

;; Draw a right-hand child arrow
(do-arrows)))))

This code produces the result shown in figure 8 (page 81). Something is
clearly wrong with at least one of the function calls, but the complexity of
the figure makes it difficult to see the source of the error. We simplify the
figure by making a comment of the second recursive function call:

Program Development Tools and Techniques 79

Symbolics, Inc.

(defun do-arrows ()
;; Don't exceed maximum recursion level
(when (< •depth• •max-depth*)

II

II
)))

;; Bind values for half and one-fourth of top edge
(let ((•top-edge-2• (// •top-edge• 2))

(•top-edge-4• (// •top-edge• 4)))
(draw-arrow) ;Draw a small arrow
;; Increment depth. Divide top edge in half. Bind new
;; coordinates for top right point of next arrow.
(let ((•depth• (l+ •depth•))

(•top-edge• •top-edge-2•)
(•pOx• (+ •top-edge-4• (- •pOx• •top-edge•)))
(•pOy• (- •pOy• •top-edge-Z•)))

;; Draw a left-hand child arrow
(do-arrows))

,, Increment depth. Divide top edge in half. Bind new
;; coordinates for top right point of next arrow.

(let ((•depth• (l+ •depth•))
(•top-edge• •top-edge-2•)
(•pox• (- •pOx• •top-edge-2•))
(•pOy• (+ •top-edge-4• (- •pOy• •top-edge•))))

;; Draw a right-hand child arrow
(do-arrows)))))

We recompile do-arrows (using c-sh-C), run the program again, and obtain
the results shown in figure 9 (page 82). The small arrows now appear to be
the right size, and the number of recursion levels is correct. The problem
seems to lie in the positioning of the arrows, or the calculation of the new
values for •pox• and •pOy•. On close inspection, we see that the x
coordinates look correct, but the y-coordinates are wrong. Instead of
obtaining the new value of •pOy• by subtracting •top-edge-2• from the old
•pOy•, we should subtract •top-edge-4* from •pOy•. We change the
definition of do-arrows:

80 Program Development Tools and Techniques

(defun do-arrows ()

(let ((*depth* (1+ *depth•))
(•top-edge• •top-edge-2•)
(•pOx• (+ •top-edge-4• (- •pox• •top-edge•)))
(•pOy• (- •pOy• •top-edge-4•)))

;; Draw a left-hand child arrow
(do-arrows))

Symbolics, Inc.

,, Increment depth. Divide top edge in half. Bind new
;; coordinates for top right point of next arrow.

#I
(let ((*depth• (1+ •depth•))

(•top-edge• •top-edge-2•)
(•pOx• (- •pOx• •top-edge-2•))
(*pOy• (+ •top-edge-4• (- •pOy• •top-edge•))))

;; Draw a right-hand child arrow
(do-arrows)))))

I#
)))

When we recompile do-arrows and run the program again, we obtain the
results shown in figure lO (page 83). The first recursive function call is
now correct. Looking at the arguments in the second function call, we see
that the same error exists in the calculation of the new •pOx•: We should
subtract •top-edge-4•, not •top-edge-2•, from the old •pOx•. We make
the change, remove the I I and I #, and ·recompile do-arrows. We obtain
the results shown in figure 1 (page 18).

Example
Figure 4 (page 59) shows a split screen, with graphic output in the upper
window and source code in the lower. To adjust the size of the graphic for
the smaller window, we have to change the arguments to
draw-arrow-graphic when we call that function from do-arrow. We want
to keep a record of the arguments we use to produce a full-screen figure.
We can make a comment of the call to draw-arrow-graphic that uses full
screen arguments:

(defun do-arrow ()
(setq *dest• (make-instance 'screen-arrow-output))
(send terminal-io ':clear-screen)
(draw-arrow-graphic 1280 1800 1800))
(draw-arrow-graphic 640 1300 1800))

Program Development Tools and Techniques

Symbolics, Inc.

NIL
I

L1 sp L1 stener 1

ron : y_

Figure 8. Output resulting from a faulty attempt to outline the small arrows recursively.

81

82

NIL
I

Lisp Listener 1

Program Development Tools and Techniques
Symbolics, Inc.

y_

Figure 9. Output resulting from a faulty attempt to outline the small arrows recursively, with
the second function call commented out.

Program Development Tools and Techniques

Symbolics. Inc.

NIL
I

Lisp Listener 1

83

y_

Figure 10. Output resulting from a corrected attempt to outline the small arrows recursively,
with the second function call commented out.

84 Program DePelopment Tools and Techniques

Symbolics. Inc.

4.4 Tracing and Stepping

4.4.1 Tracing
When a program runs but behaves unexpectedly, you might be calling
functions in the wrong sequence or passing incorrect arguments. Tracing
function calls can help detect this sort of problem. By default, tracing
prints a message, indented according to the level of recursion, on entering
and leaving a function. It also prints the arguments passed and the values
returned.

You can invoke tracing in three ways:

• Click on [Trace] in the system menu

• Use Trace (m-X) in Zmacs

• Use the trace special form

[Trace] and Trace (m-X) pop up a menu of options, including stepping and
inserting breakpoints. You can use these options with trace, too, but the
syntax is complex. Table 1 (page 87) summarizes the correspondence
between trace menu items and trace options. See the Lisp Machine Manual,
section 26.3, page 457, for a description of the options.

Example
Suppose that we had begun writing the recursive function calls in do-arrows
with the following code, passing arguments to do-arrows instead of binding
the special variables:

(defun draw-arrow-graphic (•top-edge• •pOx• •pOy•)

(draw-big-arrow)
(do-arrows 0 •top-edge-2• (- •pOx• •top-edge-2•) (- •pOy• •top-edge-2•)))

Program Development Tools and Techniques 85

Symbolics, Inc.

(defun do-arrows (*depth* •top-edge• •pOx• •pOy•)
;; Don't exceed maximum recursion level
(when (< •depth* •max-depth•)

;; Bind new values for half and one-fourth of top edge
(let ((*top-edge-2• (// •top-edge• 2))

(•top-edge-4• (// •top-edge• 4)))
;; Draw a small arrow
(draw-arrow)
;; Draw a left-hand child arrow, dividing top edge in half,
;; incrementing depth, and passing new coordinates for top
;; right point
(do-arrows •top-edge-2• (l+ •depth•)

(+ •top-edge-4• (- •pox• •top-edge•))
(- •pOy• •top-edge-4•))

;; Draw a right-hand child· arrow, dividing top edge in half,
;; incrementing depth, and passing new coordinates for top
;; right point
(do-arrows •top-edge-2• (l+ •depth*) (- •pOx• •top-edge-4•)

(+ •top-edge-4• (- •pOy• •top-edge•))))))

This code produces only the first of the small arrows. Again, something
appears to be wrong with the recursive function calls. Using Trace (m-X),

we trace calls to do-arrows. We run the program again, and the following
trace output appears:

(1 ENTER DO-ARROWS (O 640 1160 1160))
(2 ENTER DO-ARROWS (320 1 680 1000))
(2 EXIT DO-ARROWS NIL)
(2 ENTER DO-ARROWS (320 1 1000 680))
(2 EXIT DO-ARROWS NIL)

(1 EXIT DO-ARROWS NIL)
NIL

The problem here is immediately apparent: The order of the first two
arguments in the recursive function calls is reversed. We are passing the
new value of •top-edge* as the new value of •depth'~. Because this value
exceeds that of •max-depth•, the function returns after the first recursive
call.

Reference
Trace (m-X)

[Trace] (from a system menu)

Traces or untraces a specified
function. Prompts for the name of a
function to trace and pops up a menu
of trace options.

Traces or untraces a specified
function. Prompts for the name of a
function to trace and pops up a menu
of trace options.

86

4.4.2 Stepping

Program Development Tools and Techniques

Symbolics. Inc.

(trace (:function [Jmction-spec-1 option-I option-2 d ~
Enables tracing of one or more
functions. If function-spec is a
symbol, the keyword :function is
unnecessary. An argument can also
be a list whose car is a list of
function names and whose cdr is one
or more options. In this case, all
functions in the list are traced with
the same options. With no
arguments, returns a list of functions
being traced.

(untrace (:function function-spec-D ~
Disables tracing of one or more
functions. If function-spec is a
symbol, the keyword :function is
unnecessary. With no arguments,
untraces all functions being traced.

When a program behaves unexpectedly and tracing doesn't reveal the
problem, you might step through the evaluation of a function call. You can
step through function execution by using step, [Step] from a trace menu, or
the :step option to trace.

You can step through the execution of a function only if it is interpreted,
not compiled. If you want to step through execution of a compiled
function, read the definition into a Zmacs buffer and use a Zmacs command
(such as c-sh-E) to evaluate it (see section 3.2.1, page 66).

The Stepper prints a partial representation of each form evaluated and the
values returned. A back arrow (~) precedes the representation of each form
being evaluated. A double arrow (..) precedes macro forms. A forward
arrow (..) precedes returned values.

After printing, the Stepper waits for a command before proceeding to the
next step. Stepper commands allow you to specify the level of evaluation to
be stepped, escape to the editor, or enter a Lisp breakpoint loop. Press
HELP inside the Stepper or see the Lisp Machine Manual, section 26.5,
page 464, for a list of commands. Following are some basic Stepper
commands:

Command

c-N

SPACE

Action

Evaluate until next thing to print

Evaluate until next thing to print at this level (don't step
at lower levels)

Program Development Tools and Techniques

Symbolics, Inc.

Table 1. Trace Menu Items and trace Options

Trace menu item trace option

[Cond break before] :break predicate

[Break before] :break t

[Cond break after] :exltbreak predicate

[Break after] :exltbreak t

[Error] :error

[Step] :step

[Cond before] :entrycond predicate

[Cond after] :exltcond predicate

[Conditional] :cond predicate

[Print before] :entry print form

[Print after] :exltprlnt form

[Print] :print form

[ARGPDL] :argpdl pd/

[Wherein]
•

:wherein function

[Untrace]

:entry list

:exit list

:arg :value :both :nil

87

Description

Enters breakpoint on function entry
if predicate not nil

Enters breakpoint on function entry

Enters breakpoint on function exit
if predicate not nil

Enters breakpoint on function exit

Enters Debugger on function entry

Steps through (interpreted) function
execution (see section 4.4.2, page 86)

Prints trace output on function
entry if predicate not nii

Prints trace output on function
exit if predicate not nil

Prints trace output on function
entry and exit if predicate not nil

Prints value of form
in trace entry output

Prints value of form
in trace exit output

Prints value of form in
trace entry and exit output

On function entry, pushes list
of function name and args onto
pd/; pops list on function exit

Traces function only when
called within function

Calls untrace on function

Prints values of forms in
list on function entry

Prints values of forms in
list on function exit

Controls printing of args
on function entry and values
on function exit

88 Program Development Tools and ·Techniques

Symbolics. Inc.

c-U Evaluate until next thing to print at next level up (don't
step at current and lower levels)

c-B

c-E

c-X

Enter breakpoint loop

Enter Zmacs

Evaluate until finished (exit from stepping)

Example
We have the same problem with the function do-arrows as we described in
section 4.4.1 (page 84). The program outlines only the largest of the small
arrows, indicating a problem with the recursive function calls. Instead of
just tracing do-arrows, we step through its evaluation. We first use c-sh-E
to evaluate the definition of do-arrows. We then use [Step] in the menu
that Trace (m-X) pops up to trace and step through do-arrows. We run
the program. The Stepper waits for a command before evaluating each
form in do-arrows. We press SPACE to skip to the next form at the same
level. When we come to the comparison of *depth• and •max-depth* in
the recursive calls, we want to see each level of evaluation. We press c-H
at each of these steps. The tracing and stepping output looks as follows:

(1 ENTER DO-ARROWS (O 640 1160 1160))
* (WHEN (< *DEPTH* *MAX-DEPTH*) (LET ((*TOP-EDGE-2* (// •TOP-EDGE*
~ (COND ((< •DEPTH* •MAX-DEPTH*) (PROGN (LET ((*TOP-EDGE-2* (// *T

(2 ENTER DO-ARROWS (320 1 680 1000))
* (WHEN (< *DEPTH* •MAX-DEPTH*) (LET ((*TOP-EDGE-2* (// •TOP-EDGE*
~ (COND ((< *DEPTH* *MAX-DEPTH*) (PROGN (LET ((*TOP-EDGE-2* {// *T

~ (< *DEPTH* *MAX-DEPTH*)
. ~ •DEPTH* -+ 320
~ *MAX-DEPTH* -+ 7

~ (< *DEPTH* *MAX-DEPTH*) -+ NIL
~ (COND ((< •DEPTH* *MAX-DEPTH*) (PROGN (LET ((*TOP-EDGE-2* (// *T-+ NIL

(2 EXIT DO-ARROWS NIL)
(2 ENTER DO-ARROWS (320 1 1000 680))

* (WHEN (< •DEPTH• •MAX-DEPTH*) (LET ((•TOP-EDGE-2* (/I •TOP-EDGE•
~ (COND ((< •DEPTH* *MAX-DEPTH*) (PROGN (LET ((*TOP-EDGE-2* {// •T

• (< •DEPTH* *MAX-DEPTH*)
~ *DEPTH* -+ 320
~ •MAX-DEPTH• -+ 7

• (< •DEPTH* *MAX-DEPTH*) -+ NIL
~ (COND ((< •DEPTH* *MAX-DEPTH*) (PROGN (LET ((*TOP-EDGE-2* (// •T ~NIL

(2 EXIT DO-ARROWS NIL)
(1 EXIT DO-ARROWS NIL)
NIL

In this example, stepping shows even more clearly than tracing that the
value of •depth* is wrong in the recursive function calls.

Program Development Tools and Techniques 89

Symbolics, Inc.

Reference
(step form)

Trace (m-X) [Step]

[Trace / Step] (from a system menu)

Steps through the evaluation of form

Steps through the execution of a
function being traced.

Steps through the execution of a
function being traced.

(trace (:function function-spec :step))
Steps through the execution of a
function being traced. If
function-spec is a symbol, the keyword
:function is unnecessary.

4. 5 Breakpoints

In debugging a program, you might want to interrupt function execution to enter a Lisp
breakpoint loop or the Debugger. Entering the Debugger is usually more useful, for there you
can examine the stack, return values, and take other steps in addition to evaluating forms.

You can use two general kinds of breakpoints:

• You can edit into a definition a call to dbg (with no arguments) or to
break. The advantage of this kind of breakpoint is that, as with stepping,
you can interrupt execution within the function. The disadvantage is that
you have to edit and recompile the definition to insert and remove the
breakpoint. If you redefine the function after inserting the breakpoint, the
breakpoint might be lost.

• You can use breakon or one of the error or break options to trace. These
features create encapsulations, functions that contain the basic definitions of
the functions to which you want to add breakpoints (see the Lisp Machine
Manual, section 10.10, page 153, for more on encapsulations). The
advantage of this kind of breakpoint is that when you recompile or
otherwise redefine the function, only the basic definition is replaced, and the
breakpoints remain. The disadvantage is that you can interrupt function
execution only on entry or exit, not within the function.

You insert these breakpoints by calling breakon or trace from a Lisp
Listener or by using the trace menu; you remove them by calling
unbreakon or untrace. When you break on entering function execution,
just before applying the function to its arguments, the variable argllst is
bound to a list of the arguments. When you break on exiting from function
execution, just before the function returns, the variable values is bound to a
list of the returned values.

From either a breakpoint loop or the Debugger, RESUME allows the program to continue, and
ABORT returns control to the previous break or, if none exists, to top level.

90 Program Development Tools and Techniques

Symbolics, Inc.

Example
We decide to break on entry to do-arrows and enter the Debugger while
tracing the function. We use Trace (m-X) and then [Error] from the trace
menu. We select a Lisp Listener and run the program. On the first entry
to do-arrows we enter the Debugger, with the following message:

>> TRACE Break: DO-ARROWS entered.

DO-ARROWS: (encapsulated for TRACE)
Rest arg (ARGLIST): (0 640 1160 1160)

s-A, RESUME: Proceed without any special action
s-B, ABORT: Lisp Top Level in Lisp Listener 1 ..

Reference
(dbg process)

(break 1!J.i conditional- form)

Enters the Debugger in process. With
an argument oft, finds a process that
has sent an error notification. With
no argument, enters the Debugger as
if an error had occurred in the
current process.

Enters a Lisp breakpoint loop
(identified as "breakpoint tag") if
conditional-form is not nil or is not
supplied.

(breakon (unction-spec conditional-form)
Passes control to the Debugger on
entering function-spec if
conditional-form is not nil or is not
supplied. With no arguments, returns
a list of functions with breakpoints
specified by breakon.

(unbreakon function-spec conditional-form)

[Error] (from a trace menu)

Turns off the breakpoint condition
specified by conditional-form for
function-spec. If conditional-form is
not supplied, turns off all breakpoints
specified by breakon for
function-spec. With no arguments,
turns off all breakpoints specified by
breakon for all functions.

Passes control to the Debugger on
entering a function being traced.

Program Development Tools and Techniques 91

Symbolics. Inc.

[Cond break before] (from a trace menu)
Prompts for a predicate. Displays
trace entry information and enters a
Lisp breakpoint loop on entering a
function being traced if the predicate
is not nil.

[Cond break after] (from a trace menu)
Prompts for a predicate. Displays
trace exit information and enters a
Lisp breakpoint loop on exiting from
a function being traced if the
predicate is not nil.

(trace (:function function-spec :error))
Passes control to the Debugger on
entering a function being traced. If
function-spec is a symbol, the keyword
:function is unnecessary.

(trace (:function function-spec :break predicate))
Prints trace entry information and, if
the value of predicate is not nil,
enters a Lisp break loop on entering
the function. If function-spec is a
symbol, the keyword :function is
unnecessary.

(trace (:function function-spec :exltbreak predicate))
Prints trace exit information and, if
the value of predicate is not nil,
enters a Lisp break loop on exiting
from the function. If function-spec is
a symbol, the keyword :function is
unnecessary.

4.6 Expanding Macros

Sometimes a program bug appears to stem from unexpected behavior by a macro. Seeing how
a macro form expands can help find the bug. To be sure that a macro does what you want it
to, you might also want to create and expand a macro form soon after defining the macro and
compiling the definition.

You can expand a macro form in a Zmacs buffer using Macro Expand Expression (c-sh-M).
This command expands the form following point, but not any macro forms within it. To
expand all subforms, use Macro Expand Expression All (m-X). You can also expand macro
forms with mexp, which enters a loop to read and expand one form after another.

Example
We have just written code to stripe the shafts of the small arrows, drawing

92 Program Development Tools and Techniques
Symbolics, Inc.

stripes with uniform spacing and density. We produce the results shown in
figure 11 (page 93). We evidently have a problem with the function
draw-arrow-shaft-stripes. The code for this function is as follows:

(defun draw-arrow-shaft-str1pes
(left-x top-y r1ght-x bottom-y)

;; F1nd y-coord of starting po1nt of stripe. Don't go
;; below the bottom of the triangle.
(loop for start-y from top-y by •stripe-distance• above bottom-y

;; Find x-coord of ending point of the stripe
for end-x from right-x by •stripe-distance•
;; Draw a stripe
do (draw-arrow-shaft-lines

left-x start-y end-x bottom-y)))

The bug stems from incorrect coordinates for ·the endpoints of the shaft
stripes. The beginning coordinates (left-x and start-y) are correct. The
ending y-coordinate (bottom-y) looks right, but the ending x-coordinate
(end-x) is wrong. The problem might not be evident from looking at the
code, which consists entirely of a loop form. We move to the beginning of
the loop form and expand it, using c-sh-M:

((LAMBDA (START-Y 61049 61050)
((LAMBDA (END-X 61051)

(PROG NIL
(AND (NOT (GREATERP START-Y 61050)) (GO SI:END-L.OOP))

SI:NEXT-LOOP
(DRAW-ARROW-SHAFT-LINES LEFT-X START-Y ENO-X BOTTOM-Y)
(SETQ START-Y (DIFFERENCE START-Y 61049))
(AND (NOT (GREATERP START-Y 61050)) (GO SI:END-LOOP))
(SETQ END-X (PLUS END-X 61051))
(GO SI:NEXT-LOOP)

SI:END-LOOP
))

RIGHT-X
•STRIPE-DISTANCE*))

TOP-Y
•STRIPE-DISTANCE•
BOTTOM-Y)

The expansion shows the lambda-bindings and prog form that the loop
macro creates. We can see that the error is in the setting of end-x within
the prog form: We are incrementing end-x by •stripe-distance•, when we
should be decrementing it. The problem is in our use of a loop keyword.
Instead of writing

for end-x from right-x by •stripe-distance•

Program Development Tools and Techniques

Symbolics, Inc.

NIL
I

Lisp Li stener 1

y_

Figure 11. Output from the program with a bug in the function
draw-arrow-shaft-stripes.

93

94 Program Development Tools and Techniques

Symbolics, Inc.

we should have written

for end-x downfrom right-x by •stripe-distance•

We make the change and recompile draw-arrow-shaft-stripes. Now if we
expand the loop form, we see that we are decrementing end-x:

((LAMBDA (START-Y 61062 61063)
((LAMBDA (END-X 61064)

(PROG NIL
(AND (NOT (GREATERP START-Y 61063)) (GO SI:END-LOOP))

SI:NEXT-LOOP
(DRAW-ARROW-SHAFT-LINES LEFT-X START-Y ENO-X BOTTOM-Y)
(SETQ START-Y (DIFFERENCE START-Y 61062))
(AND (NOT (6REATERP START-Y 61063)) (60 SI:END-LOOP))
(SETQ END-X (DIFFERENCE END-X 61064))
(60 SI:NEXT-LOOP)

SI:END-LOOP
))

RIGHT-X
•STRIPE-DISTANCE•))

TOP-Y
•STRIPE-DISTANCE•
BOTTOM-Y)

Reference
Macro Expand Expression (c-sh-M) Expands the macro form following

point. Does not expand subforms
within the form.

Macro Expand Expression All (m-X) Expands the macro form following
point and all subforms within the
form.

(mexp) Enters a loop: prompts for a macro
form to expand, expands it, and
prompts for another macro form.
Exits from the loop on nil.

4.7 The_lnspector

The Inspector is a window-based tool that combines the describe and disassemble functions.
Invoke it with lnspe_ct, SELECT I, or [Inspect] from a system menu. If you use Inspect, the
Inspector is not a separate activity from the Lisp Listener in which you invoke it. In that case
you cannot use SELECT L to return to the Lisp Listener; you must click on [Exit] or [Return]
in the Inspector menu.

The Inspector displays information about an object and lets you modify the object. It displays

Program Development Tools and Techniques 95

Symbolics. Inc.

information for the last object inspected in the bottom window. It displays information for the
two previous objects in the windows above the bottom one. It maintains a mouse-sensitive
listing of all inspected objects in the history window. These are some of its useful features:

•The information the Inspector displays depends on the object's type. For a
symbol, it displays a representation of the value, function, property list, and
package. For a symbol's flavor property, it displays information about
instance variables, component and dependent flavors, the message handler,
init keywords, and the flavor property list. For a compiled function, it
displays the disassembled assembly-language code that represents the
compiler output.

• The' Inspector is especially useful for examining data structures. It displays
the names and values of the slots of structures and, unlike describe, the
elements of (one-dimensional) arrays. For instances of flavors, the Inspector
displays the names and values of instance variables.

• Within each display, most representations of objects are mouse sensitive. If
you click on an object representation, you inspect that object. For example,
you can inspect elements of lists. If an element of an array is itself an
array, you can inspect the second array. In this way you can follow long
paths in data structures.

• You can change a value by using the [Modify] option in the Inspector's
menu. You can return a value when you exit the Inspector by clicking on
[Return].

See Operating the Lisp Machin"7 chapter 5, page 28, for more on the Inspector.

Example
Suppose we had represented each arrow as an instance of a structure
(defined with defstruct) instead of a collection of special-variable values.
We could have called the structure representing the small arrows arrow and
set the value of a special variable, •arr•, to each instance of the structure as
we created it.

Figure 12 (page 96) shows an Inspector window for the last arrow in the
figure. We first run the program in a Lisp Listener, then invoke the
Inspector using SELECT I. Because we typed (pkg-goto 'graphics) in the
Lisp Listener, the Inspector's package is graphics. We type •arr• to the
interaction pane at the top of the frame. The window at the bottom of the
frame displays the names and values of the structure slots. We can change
these values by using the [Modify] menu option.

Example
Suppose we had represented each arrow as an instance of a flavor and
defined most of our computation functions as flavor methods instead of
simple functions. We could have called the flavor representing the small
arrows arrow and set the value of •arr• to each instance of the flavor as
we created it.

96 Program Development Tools and Techniques

Symbolics, Inc.

•arr*
II

Top o,f History Exit
l<ARROM -33247021> Return

Modify
DeCache
Clear
Set '

8ottolft o,f History

Top o,f obj"t
Empty

•o#olft of object
Top o,f object

Empty

8ottmtt of ob Ject
Top of object

#<ARROW -33247021>
NaMed structure of type ARROM

DEPTH: 6
TOP-EDGE: 10
TOP-EDGE-2: 5
TOP-EDGE-4: 2
82: 825
STRIPE-D: 10
P0X: 845
P0V: 215
PlX: 835
PlV: 215
P2X: 837
P2V: 213
PSX: 843
PSV: 207
P6X: 845
P6V: 205

I\

8ottmtt of obj"t
Cnoose a value by pointing at the value.
08~17~83 18:23:32 roM

Right finds Tunct 1 on CfeTI nl" t1 on.
GRAPHICS: Tyi_

Figure 12. The Inspector window: inspecting an instance of a structure.

Program Development Tools and Techniques 97

Symbolics. Inc.

Figure 13 (page 98) shows an Inspector window for the last arrow in the
figure. As with our structure example, we first run the program and then
invoke the Inspector to evaluate •arr• and inspect the flavor instance that is
its. value. The Inspector displays the names and values of instance variables
and a representation of the flavor's message handler.

We next click on the mouse-sensitive representation of the message handler.
The Inspector displays a representation of the function spec for the method
that handles each message. If we click on the function spec for the
:compute-dens method for flavor basic-arrow, the Inspector displays the
method's disassembled code.

Reference
(inspect object)

SELECT I

[Inspect] (from a system menu)

(disassemble function)

Disassemble (m-X)

Selects an Inspector window in which
to inspect object.

Selects an Inspector window.

Selects an Inspector window.

Prints a representation of the
assembly-language instructions for a
compiled function.

Prompts for the name of a compiled
function and displays a representation
of the function's assembly-language
instructions.

98 Program Development Tools and Techniques

Symbolics. Inc.

•arr• •
Top or Binory Exit

l<ARROM 10020042> Return
t1odlfy

DeCache
Clear
Set '

6otliom or History
Top ort>bJ.ct

~

6otliom or obj.ct

~ty
Top or obj.ct

Bottom or object
Top of object

#<AfflOW 10020042>
An Instance of ARROW. IB<Bc~:u1qc b~calcc rgc eee~~
DEPTH: 6
TOP-EDGE: 10
TOP-EDGE-2: 5
TOP-EDGE-4: 2
82: 825
STRIPE-D: 10
P08: 845
P0'1': 215
PIX: 835
Pl '1': 215
P2><: 837
P2'1': 213
PS><: 843
PSV: 207
PG><: 845
P6'1': 205

Bottom of object
~hoose a value by pointing at the value. Ri ht finds function definition.
08~20~83 17:09:18 ro~ GRA~HICS: Tyl

Figure 13. The Inspector window: inspecting an instance of a flavor.

Program Development Tools and Techniques

Symbolics. Inc.

arr •
Top of History

#<ARROW 10020042>
#<Message handler for ARROW>

Bottom of History
Top of object

Bottom of object
Top of object.

#(AAAO'W 10020042>
An instance of ARROW. #<Message handler for ARROW>

DEPTH: 6
TOP-EDGE: 1 0
TOP-EDGE-2: 5

More below

99

Exit
Return
Modify
DeCache
Clear
Set '

1-----------····-------~-~--~----------------...... Top of obiect
#{Message hanc:Der for ARROW>
:COMPUTE-DENS: 1=#~•-(.~.M=E~T~H=on=-=B=A=s=1=c-~A=R=R=o~w--,:c~o~H~P~U-TE---n~E~N S)~

:COMPUTE-NLINES: #•(:METHOD BASIC-ARROW :COMPUTE-NLINES)
:COMPUTE-POINTS: #'(:METHOD BASIC-ARROW :COMPUTE-POINTS)
:COMPUTE-STRIPE-D: #•(:METHOD BASIC-ARROW :COMPUTE-STRIPE-D)
:COMPUTE-TOP-EDGES: #•(:METHOD BASIC-ARROW :COMPUTE-TOP-EDGES)
DESCRIBE: #•(:METHOD SI:VANILLA-FLAVOR DESCRIBE)
:DRAW-ARROW: #'(:METHOD BASIC-ARROW :DRAW-ARROW)
:DRAW-ARROW-SHAFT-LINES: #•(:METHOD ARROW-MIXIN :DRAW-ARROW-SHAFT-LINES)
:DRAW-ARROW-SHAFT-STRIPES: #'(:METHOD ARROW-MIXIN :DRAW-ARROW-SHAFT-STRIPES)
:DRAW-ARROWHEAD-LINES: #•(:METHOD BASIC-ARROW :DRAW-ARROWHEAD-LINES)
:DRAW-OUTLINE: 1•(:METHOD ARROW-MIXIN :DRAW-OUTLINE)
:EVAL-INSIDE-YOURSELF: #'(:METHOD SI:VANILLA-FLAVOR :EVAL-INSIDE-YOURSELF)
:FUNCALL-INSIDE-VOURSELF: #'(:METHOD SI:VANILLA-FLAVOR :FUNCALL-INSIDE-YOURSELF)
GET-HANDLER-FOR: #•(:METHOD SI:VANILLA-FLAVOR GET-HANDLER-FOR)
:OPERATION-HANDLED-P: #'(:METHOD SI:VANILLA-FLAVOR :OPERATION-HANDLED-P)
:P0X: #•(:METHOD BASIC-ARROW :P0X)
:P0Y: #•(:METHOD BASIC-ARROW :P0Y)
:PRINT-SELF: #'(:METHOD SI:VANILLA-FLAVOR :PRINT-SELF)
:SEND-IF-HANDLES: #•(:METHOD SI:VANILLA-FLAVOR :SEND-IF-HANDLES)
:SET-STRIPE-D: #'(:METHOD BASIC-ARROW :SET-STRIPE-D)
:STRIPE-ARROW-SHAFT: #'(:METHOD ARROW-MIXIN :STRIPE-ARROW-SHAFT)
:STRIPE-ARROWHEAD: #'(:METHOD BASIC-ARROW :STRIPE-ARROWHEAD)

More below
Choose a value by pointing at the value. Right rinds Tunction definition.
08/20/83 17:09:42 ro~ GRAPHICS: Tyi

Figure 13, continued.

100 Program Development Tools and Techniques

Top of History
#<ARROW 10020042>
l<Message handler for ARROW>
1•(:METHOD BASIC-ARROW :COMPUTE-DENS)

Bottom of History
Top of object

#(AflROW 10020042>
An Instance of ARROW. #<Message handler for ARROW>

DEPTH: 6
TOP-EDGE: 10
TOP-EDGE-2: 5

More below
Top of object

#<Message handler for ARROW>
:COMPUTE-DENS: #'(:METHOD BASIC-ARROW COMPUTE-DENS)
:COMPUTE-NLINES: l'(:METHOD BASIC-ARROW COMPUTE-NLINES)
:COMPUTE-POINTS: l'(:METHOD BASIC-ARROW COMPUTE-POINTS)
:COMPUTE-STRIPE-D: l'(:METHOD BASIC-ARROW COMPUTE-STRIPE-D)
:COMPUTE-TOP-EDGES: l'(:METHOD BASIC-ARROW COMPUTE-TOP-EDGES)

Afore below
Top of object

#<DTP-COMPILED-FUNCTION (:METHOD 8ASIG-AmOW :COMPUTE-DENS) 46660073>
0 ENTRY: 4 REQUIRED, 0 OPTIONAL
1 PUSH-INDIRECT *Dl*
2 PUSH-INDIRECT *D2*
3 PUSH-INDIRECT *Dl*
4 BUILTIN --INTERNAL STACK
5 PUSH-LOCAL FPl3 ;X
6 PUSH-INSTANCE-VARIABLE 2 ;P0X
7 8UILTIN --INTERNAL STACK

10 PUSH-INSTANCE-VARIABLE 15 ;82
11 PUSH-INSTANCE-VARIABLE 2 ;P0X
12 8UILTIN --INTERNAL STACK
13 8UILTIN FLOAT STACK
14 BUILTIN ~-INTERNAL STACK
15 8UILTIN *-INTERNAL STACK
16 BUILTIN +-INTERNAL STACK
17 RETURN-STACK

Bottom of object
Choose a value by pointing at the value. Right finds function definition.
08n0~83 1.,: 10: 06 ro"' GRAPH I cs: Ty I

Figure 13, concluded.

Symbolics, Inc.

Exit
Return
Modify
DeCache
Clear
Set '

Program Development Tools and Techniques 101

Symbolics, Inc.

5. Using Flavors and Windows
All Lisp Machine Lisp programmers must know how to use flavors and the window system in
at least an elementary way. Flavors are the basis of a powerful, nonhierarchical kind of object
oriented programming. Even if you don't use them extensively, the system code does.
Applications that include screen display or user interaction must deal with the window system,
which is itself built on flavors.

In this chapter we present a brief introduction to using flavors and windows. We do not
discuss the concepts and organization of flavors and the window system in any detail. Instead,
we modify the output module of our example program to show some simple uses of flavors,
windows, and menus. We show basic examples of the following features:

• Using base, mixin, and instantiable flavors and :daemon method
combination

• Creating a simple window and associating it with a process

• Producing LOP output

• Altering values using a choose-variable-values window

• Signalling a condition and proceeding

We also present some editor commands and Lisp functions for finding information about
flavors and windows. Among the issues we do not discuss in any detail are the following:

•Using types of method combination other than :daemon

• Interacting with the mouse process

•Creating frames

• Specifying fonts

• Using menus

For more information on flavors and windows, read the following documents:

•On flavors: Lisp Machine Manual, chapter 20, page 279

• On windows: Introduction to Using the Window System

• On menus: Lisp Machine Choice Facilities

•On conditions and errors: Signalling and Handling Conditions

5.1 Program Development: Modifying the Output Module

As now written, the output routines of our example program consist of a flavor and methods
that produce lines on the stream to which terminal-lo is bound:

(defflavor screen-arrow-output
((scale-factor 2.5))
())

102 Program Development Tools and Techniques

Symbolics, Inc.

(defmethod (screen-arrow-output :show-lines)
(x y &rest x-y-pa1rs)

(loop for xO = (send self ':compute-xx) then xl
for yO = (send self ':compute-y y) then yl
for (xl yl) on x-y-pa1rs by #'cddr
do (setq xl (send self ':compute-x xl)

yl (send self ':compute-y yl))
(send terminal-1o ':draw-line

xO yO xl yl tv:alu-1or t)))

(defmethod (screen-arrow-output :compute-x) (x)
(f1xr (// x scale-factor)))

(defmethod (screen-arrow-output :compute-y) (y)
(f1xr (- 800 (// y scale-factor))))

We want to be able to produce output on the screen, an LGP, or a file. For this we need a
simple device-independent graphics system that uses generic operations. The central operation is
:show-lines, which receives endpoint coordinates from the calculation module and produces
lines on the appropriate output stream. Our general strategy for creating the output options is
as follows:

1. Define a flavor and methods to calculate the position of the arrow figure on
the screen or page. We can use this mixin with flavors that produce any
kind of output.

2. Define flavors and methods to produce screen output. We build the
instantiable flavors on tv:wlndow and instantiate them with
tv:make-window. We define two kinds of arrow window flavors:

• A basic flavor that performs output and redisplays the window after
changes.

• A flavor, which we instantiate, that is built on the basic window and
includes a mixin to convert LGP coordinates to screen coordinates.

3. Define a flavor and methods to produce LGP or file output.

4. Define a top-level function that uses a choose-variable-values window to
select the type of output and alter some variables. The function calls
tv:make-window or makes an instance of the LGP flavor, depending on the
output type.

5. Change the arrow-window flavors to allow multiple windows, associate each
window with its own process, and allow the user to modify the
characteristics of the figure in each window.

6. Define a function to check for mistakes when the user changes the values
of variables. We define condition flavors for the incorrect choices. We
define handlers for the conditions and use signal to signal them. We allow
the user to proceed by supplying new values for the variables.

Program Development Tools and Techniques 103

Symbolics, Inc.

We want to preserve modularity in writing these new routines. We define the flavor that
positions the arrow figure so that we can use it with any sort of output. We keep the
operations that transform LOP to screen coordinates separate from the basic window
operations. We define the routines that handle bad variable values as separate flavors and
functions. These precautions make it easy to define new kinds of windows or to check for
errors in other variable values in the future.

5.1.1 A Mlxln to Position the Figure
No matter what the output device, we want to be sure that the figure fits
within the bounds of the page or window and is centered within the page or
window. We define a mixin flavor, arrow-parameter-mixin, with methods
to perform these calculations. We include this flavor in all flavors that
produce output for the figure.

We define five instance variables to hold the parameters. Three of these,
top-edge, right-x, and top-y, are the arguments we must pass to the
calculation module. We make these three instance variables gettable so that
we can retrieve them by sending messages to an instance of the dependent
flavor. The other two instance variables are the width and height of the
page or window in the appropriate units, either LOP or screen pixels.

(defflavor arrow-parameter-mixin
(width height top-edge right-x top-y)
()

(:gettable-instance-variables top-edge right-x top-y)
(:documentation :mixin
•Provides parameters for size and position of figure.

Instance variables hold width and height of page or window;
length of top edge of fi~ure; coordinates of top right point
of figure.•))

The task of this flavor is to perform a generic operation, which we call
:compute-parameters. This operation consists of separate computations for
top-edge, right-x, and top-y. We define primary methods for these
operations here, using coordinates with the origin at bottom left. Flavors
that mix in this one can add daemons, whoppers, or their own primary
methods to accommodate other coordinate systems and scale factors.

We perform these operations as follows:

1. Determine the width and height of the page or window. The details of this
operation are the business of other flavors. We specify a required method,
:compute-width-and-height, for any flavor that mixes in this one. We send
self a :compute-width-and-height message to set the instance variables.

2. Calculate a provisional value for top-edge so· that the figure fits within the
smaller dimension of the page or window. We allow the user to specify, by
setting the global variable *fill-proportion•, what fraction of this dimension
the figure should fill.

104 Program Development Tools and Techniques

Symbolics, Inc.

3. Adjust the top edge so that its value is at least 128 and is a multiple of 128
if larger. This adjustment ensures that stripe spacing is continuous
throughout the levels of the figure.

4. Calculate rlght-x and top-y so that we center the figure within the page or
window.

The complete code for this flavor and its methods is as follows:

(defvar •fill-proportion• 0.9
•Proportion of smaller dimension to be filled by figure•)

(defflavor arrow-parameter-m1xin
(width height top-edge right-x top-y)
()

(:gettable-instance-variables top-edge right-x top-y)
(:required-methods :compute-width-and-height)
(:documentation :mixin
•Provides parameters for size and position of figure.

Instance variables hold width and height of page or window;
length of top edge of figure; coordinates of top right point
of figure. Methods calculate size and position of figure by
centering it within the page or window and making it fill no
more than the specified proportion of the smaller dimension.
The methods use a coordinate system with origin at bottom left;
other mixins must correct for this if output is going to a
window. Other flavors must also provide a method for calculating
width and height of the page or window. This flavor should be
mixed into any instantiable flavor that produces output for the
arrow graphic.•))

; ; ;
; ; ;

; ; ;
;; ;
, , ,

Method controlling calculation of size and position of figure.
Sends messages to self to calculate width and height of page
or window, length of top edge of figure, and coordinates of
figure's top right point. These are separate methods so that
other flavors can shadow them or add daemons. Another flavor

,,, must provide a method to compute width and height, because
,,, this is specific to the output device.
(defmethod (arrow-parameter-mixin :compute-parameters) ()

;; Another flavor must supply method for width and height
(send self ':compute-width-and-height)
;; Make a preliminary estimate of length of top edge
(send self ':compute-top-edge)
;; Adjust top edge to make it a multiple of 128
(send self ':adjust-top-edge)
;; Calculate coordinates of top right point of figure.
;; We can't do this until we know how long top edge is.
(send self ':compute-right-x)
(send self ':compute-top-y))

Program Development Tools and Techniques 105

Symbolics, Inc.

;;; Makes a preliminary estimate of length of top edge.
;;; The top edge of the arrow is 80 percent of the horizontal
;;; or vertical length of the whole figure. First finds the
;;; smaller of the length or width of the page or window.
;;; Multiplies this by the proportion of this dimension that
;;; is to be filled by the figure. The result is the
;;; horizontal or vertical length of the figure. Multiplies
;;; this by 0.8 to get the length of the top edge.
(defmethod (arrow-parameter-mixin :compute-top-edge) ()

(setq top-edge

; ; ;
; ; ;

; ; ;

(fixr (* 0.8 •fill-proportion• (min width height)))))

Adjusts length of top edge so it is a multiple of 128.
There are 64 stripes in the head of the large arrow. The
·calculation module divides ~he length of top edge by two
each time it goes down another recursion level. By making

;;; the original top edge a multiple of 128, we maximize
;;; continuity in striping between arrowheads and shafts and
;;; among the first several levels of recursion.
(defmethod (arrow-parameter-mixin :adjust-top-edge) ()

(setq top-edge

; ; ;

;; Minimum length of top edge is 128
(if (< top-edge 256) 128

;; Otherwise set to next lower multiple of 128
(* 128 (fix (// top-edge 128))))))

Calculates x-coordinate of top right point of figure.
Finds horizontal length of figure by dividing length of
top edge by 0.8. Centers the figure horizontally within

;;; the page or window.
(defmethod (arrow-parameter-mixin :compute-right-x) ()

(setq right-x
(fixr (* 0.5 (+width (// top-edge 0.8))))))

;;; Calculates y-coordinate of top right point of figure.
,,, Assumes that the origin is at bottom. Finds vertical
;;; length of figure by dividing length of top edge by 0.8.
;;; Centers the figure vertically within the page or window.
(defmethod (arrow-parameter-mixin :compute-top-y) ()

(setq top-y
(fixr (* 0.5 (+ height (// top-edge 0.8))))))

5.1.2 The Basic Arrow Window
We want to build our window on tv:window, a flavor that produces a
simple window with borders, a label, and graphics. Any arrow window we
use must provide for initialization and redisplay, determine its width and
height, and supply a :show-lines method to draw our figure.

We define a mixin flavor, baslc-arrow-wlndow-mixin, with methods to do

106 Program Development Tools and Techniques

Symbolics, Inc.

these things. We require that this flavor be used with
arrow-parameter-mixin and tv:wlndow. For the basic window, we assume
that the coordinates supplied to :show-lines are screen coordinates, with
origin at top left.

We write baslc-arrow-wlndow-mlxln as follows:

1. Define the flavor. The :required-flavors option ensures that we have
access to the flavors' instance variables and that an error will be signalled if
someone makes an instance of a flavor that includes
basic-arrow-wlndow-mlxln but not the required flavors. The
:default-lnit-plist option provides values for some elements of the
initialization property list in case no one else specifies them. The
:edges-from option with an argument of ':mouse allows the user to specify
the initial size and position of the window by using mouse corners. We give
an initial minimum width and height for the window because the length of
top-edge must be at least 128, and we want the entire figure to fit inside
the window.

(defflavor basic-arrow-window-m1xin () ()
(:required-flavors arrow-parameter-m1x1n tv:window)
(:default-init-plist

:edges-from ':mouse :minimum-width 200 :minimum-height 200
:blinker-p nil :expose-p t)

(:documentation :mixin
"Provides for a basic window to display the arrow graphic.

ARROW-PARAMETER-MIXIN is needed to position the figure within
the window. This flavor assumes w·lndow coordinates, with origin
at top left. n))

2. Provide a :show-lines method to draw lines on the screen. We use
essentially the same methods as in our original output module, but now we
assume that the arguments are screen coordinates. We define separate
:compute-x and :compute-y methods to transform the coordinates so that
we can shadow these methods when we define another flavor to handle LOP
coordinates. To produce the lines we use the :draw-line method defined
for tv:graphics-mixin, a component of tv:wlndow. (In :daemon method
combination, when two component flavors have primary methods for the
same message, the method of the flavor listed earlier in the component
ordering shadows, or replaces, the method of the flavor listed later. For
more on method combination, see the Lisp Machine Manual, section 20.12,
page 306.)

Program Development Tools and Techniques 107

Symbolics, Inc.

; ; ;

' ' '

; ; ;
; ; ;

Receives. endpoint coordinates and draws lines on a window.
Arguments are alternating x- and y-coordinates of the end
points of lines to be drawn. If there are more than two pairs
of coordinates, assumes that the endpoint of one line is the
starting point of the next. Sends messages for separate methods
to determine the actual coordinates. This is so that other

;;; flavors can modify the coordinates. Draws a line by sending self
;;; a :DRAW-LINE message, and so assumes that TV:GRAPHICS-MIXIN is
,,, included somewhere to provide this method.
(defmethod (basic-arrow-window-mixin :show-lines)

(x y &rest x-y-pairs)
;; First determine the starting point of the line. On
,, subsequent trips through the loop, the last endpoint
;; becomes the next starting point.
(loop for xO = (send self ':compute-xx) then xl

for'y0 = (send self ':compute-y y) then yl
;; •cddr• down the list created by making all but the
;; first pair of coordinates an &rest argument
for (xl yl) on x-y-pairs by #'cddr
;; Determine the endpoint of the line
do (setq xl (send self ':compute-x xl)

yl (send self ':compute-y yl))
;; Draw the line
(send self ':draw-line

xO yO xl yl tv:alu-1or t)))

;;; Determines the x-coordinate of an endpoint of a line.
;;; This is a separate method so that other flavors can shadow
;;; it or add daemons to manipulate the coordinate.
(defmethod (basic-arrow-window-mixin :compute-x) (x)

(fixr x))

;;; Determines they-coordinate of an endpoint of a line.
;;; Assumes that the argument already uses window coordinates,
;;; with origin at top left. This is a separate method so that
;;; other flavors can shadow it or add daemons to manipulate
;;; the coordinate.
(defmethod (basic-arrow-window-mixin :compute-y) (y)

(fixr y))

3. Supply the :compute-width-and-height method required by
arrow-parameter-mlxin. We use the :inside-size message to
tv:mlnlmum-wlndow, a component of tv:window. We use multiple-value
to set the instance variables width and height.

108 Program Development Tools and Techniques
Symbolics, Inc.

; ; ; Finds the inside width and height of the window.
; ; ;

, ' '
; ; ;

Sends self an :INSIDE-SIZE message, and so assumes that
TV:MINIMUM-WINDOW is included somewhere to provide this
method.

(defmethod (basic-arrow-window-mixin
:compute-width-and-height) ()

(multiple-value (width height)
(send self ':inside-size)))

4. Alter the computation of top-y to take account of the screen's origin at top
left. We can do this in three ways:

•Define a new primary method for :compute-top-y to shadow the method we
defined for arrow-parameter-mlxln. We would have to be careful to place
baslc-arrow-wlndow-mlxln before arrow-parameter-mlxln in the list of
component flavors for any flavor we wanted to instantiate.

• Define :before and :after daemons for :compute-top-y. The :before
daemon would make top-edge negative and the :after daemon would make
it positive again. (In :daemon method combination, :before methods for a
message run before the primary method, and :after methods run after the
primary method. If two component flavors have daemons for the same
message, the :before method of the flavor listed earlier in the component
ordering runs before the :before method of the flavor listed later, and the
:after method of the flavor listed earlier runs after the :after method of
the flavor listed later. For more on method combination, see the Lisp
Machine Manual, section 20.12, page 306.)

•Define a whopper for :compute-top-y. This would do the same thing as the
two daemons, except that when all the :compute-top-y methods were
combined it would run outside any daemons. (A whopper wraps the
execution of some code around the execution of a method, running before
all :before daemons and after all :after daemons. For more on whoppers,
see the System 210 Release Notes, section 7. 3, page 41.)

We define a new primary method in this case because it repeats relatively
little code and makes the operation of the method clearer. If we used a
whopper here, someone might mix in another flavor with daemons that
would unexpectedly run inside our whopper.

Calculates y-coordinate of top right point of figure.
, •• Finds vertical length of the figure by dividing the length

of top edge by 0.8. Centers the figure vertically within
the window. Gives the result in window coordinates, with
origin at top left. This method shadows that in

; ; ;
; ; ;

;;; ARROW-PARAMETER-MIXIN.
(defmethod (basic-arrow-window-mixin :compute-top-y) ()

(setq top-y
(fixr c• 0.5 (- height (// top-edge 0.8))))))

Program Development Tools and Techniques 109
Symbolics, Inc.

5. Calculate the figure's size and position and redisplay the window at
appropriate times. We have to recompute the figure's size and position after
the window is initialized and after its size or margins change. We have to
redisplay the figure when the window is refreshed, but only if the window
has no bit-save array or its size has changed. Before redisplaying, we have
to clear the screen if the window has a bit-save array.

We perform these tasks by defining :after daemons for three messages that
the system can send to a window: :inlt, :change-of-size-or-margins, and
:refresh. You need daemons like these for most window-system
applications.

;;; Calculates size and position of figure after initialization.
(defmethod (basic-arrow-window-mixin :after :1nit) (ignore)

(send self ':compute-parameters))

;;; Calculates size and position of figure after window change.
(defmethod (basic-arrow-window-m1xin

:after :change-of-size-or-margins) (&rest ignore)
(send self ':compute-parameters))

;;; Draws the figure when necessary after window is refreshed.
(defmethod (basic-arrow-window-mixin :after :refresh)

(&optional type)
;; Draw figure if not restored from a bit-save array
(when (or (not tv:restored-bits-p)

;; •.• or size has changed.
(eq type ':size-changed))

;; If restored from a bit-save array, clear screen first
(when tv:restored-bits-p

(send self ':clear-screen))
;; Bind *DEST* to self
(let ((*dest• self))

;; Draw the figure
(draw-arrow-graphic top-edge right-x top-y))))

We can now define a flavor of window, basic-arrow-window, built on our
two mixin flavors and on tv:window. The order of combination of flavors
is important. We need to include basic-arrow-window-mixin before
arrow-parameter-mlxin so that the :compute-top-y method for
basic-arrow-window-mixin shadows that for arrow-parameter-mixin. We
must also put basic-arrow-window-mixin before tv:wlndow so that our
:after daemons will run after any that tv:window or its components might
provide.

110 Program Development Tools and Techniques

(defflavor basic-arrow-window()
(bas1c-arrow-w1ndow-m1xin
arrow-parameter-mix in
tv:window)

(:documentation :combination

Symbolics. Inc.

•1nstantiable flavor providing a basic window for output.
Though this flavor is instantiable, its methods assume that
point coordinates use the window coordinate system, with
origin at top left. To work with the current calculation
module it needs another mixin to convert LGP to screen
coordinates. In the component flavors. BASIC-ARROW-WINDOW-HIXIN
must come before ARROW-PARAMETER-HIXIN and TV:WINDOW for
shadowing and daemons to work correctly.•))

We can actually make an instance of this flavor. We define no new
methods for it, leaving all methods to component flavors. If we had a
calculation module that used screen coordinates, bask-arrow-window would
be the right flavor to use for screen output.

5.1.3 Converting LGP to Screen Coordinates
Because our calculation module uses LGP coordinates, we need another
flavor of window to produce output. We define a flavor,
lgp-window-mixin, to be mixed in with basic-arrow-window. We need a
new instance variable, scale-factor, whose value is the ratio of LGP to
screen pixel densities.

(defflavor lgp-window-mixin
((scale-factor 2.5))
()

(:required-flavors basic-arrow-window)
(:documentation :mixin
•converts LGP to screen coordinates and vice versa.

When mixed in with BASIC-ARROW-WINDOW, this flavor allows
window output with a calculation module that uses LGP
coordinates. The instance variable SCALE-FACTOR is the
ratio of LGP to screen pixel density. The methods take
the height and width of the window in screen pixels and
calculate the length of the top edge and the coordinates
of the top right point of the figure in LGP pixels. In
drawing lines on the window, the methods convert LGP to
window coordinates. These methods shadow those in
ARROW-PARAMETER-MIXIN and BASIC-ARROW-WINOOW-MIXIN.•))

We next define new primary methods to incorporate the scale factor into
the calculation of top-edge, rlght-x, and top-y. These methods shadow
those defined for arrow-parameter-mlxln and baslc-arrow-wlndow-mixin.

Program Development Tools and Techniques 111

Symbolics, Inc.

I

; ; ;

; ;;

; ; ;

; ; ;

Calculates top edge in LGP pixels from screen proportions.
Multiplies length of smaller dimension, in screen pixels, by
proportion of this dimension to be filled by the figure.
Multiplies this by 0.8 to find top edge in screen pixels.
Corrects for higher density of LGP pixels. This method
shadows that of ARROW-PARAMETER-MIXIN.

(defmethod (lgp-window-mixin :compute-top-edge) ()
(setq top-edge

(fixr c• scale-factor 0.8 •fill-proportion•
(min width height)))))

;;; Calculates x-coord of top right point in LGP pixels.
;;; Finds horizontal length of figure in screen pixels by
;;; dividing top edge by 0.8. Centers figure horizontally
;;; in window, correcting for higher density of LGP pixels.
;;; This method shadows that of ARROW-PARAMETER-MIXIN.
(defmethod (lgp-window-mixin :compute-right-x) ()

(setq right-x

; ; ;
; ; ;

; ; ;

(fixr (* 0.5 (+ (*width scale-factor)
(// top-edge 0.8))))))

Calculates y-coord of top right point in LGP pixels.
Finds vertical length of figure in screen pixels by
dividing top edge by 0.8. Centers figure vertically
in window, correcting for higher density of LGP pixels.
This method shadows those of ARROW-PARAMETER-HIXIN and
BASIC-ARROW-WINDOW-MIXIN.

(defmethod (lgp-window-mixin :compute-top-y) ()
(setq top-y

(fixr (* 0.5 (+ (* height scale-factor)
(//top-edge 0.8))))))

Finally, we need to modify the coordinates used in the :show-lines method
to take account of the scale factor and the difference in origins for LOP
and screen coordinates. We define new methods for :compute-x and
:compute-y to shadow the methods we defined for
baslc-arrow-wlndow-mixln.

; ; ;
; ; ;

Converts x-coord of line endpoint from LGP to screen pixels.
Corrects for higher density of LGP pixels. This method shadows
that of BASIC-ARROW-WINDOW-HIXIN.

(defmethod (lgp-window-mixin :compute-x) (x)
(fixr (// x scale-factor)))

,,, Converts y-coord of line endpoint from LGP to screen pixels.
;;; Corrects for higher density of LGP pixels and for screen origin
;;; at top left. This method shadows that of BASIC-ARROW-WINDOW-MIXIN.
(defmethod (lgp-window-mixin :compute-y) (y)

(fixr (- height (// y scale-factor))))

112 Program Development Tools and Techniques

Symbolics. Inc.

We can now define the flavor we will actually instantiate with
tv:make-window. This flavor, arrow-window, is just a combination of
lgp-window-mixln and basic-arrow-window.

(defflavor arrow-window()
(lgp-window-mixin basic-arrow-window)

(:documentation :combination
•Jnstantiable flavor for window output from LGP coordinates.

This flavor has all the features of BASIC-ARROW-WINDOW but
assumes that the calculation module uses LGP coordinates. This
is the flavor to instantiate for window output using the
current calculation module.•))

5.1.4 Flavors for LGP Output
We want to be able to direct output to an LGP or an LGP record file as
well as to a window. We define another flavor, lgp-pixel-mixln, to be
mixed in with arrow-parameter-mixin. We can set an instance variable to
the output stream and make it initable so that we can specify the output
stream when we make an instance of the flavor we build on
lgp-plxel-mlxln. The output stream will itself be an instance of a flavor.

(defflavor lgp-pixel-rnixin
(output-stream)
()

:initable-instance-variables
(:required-flavors arrow-parameter-mixin)
(:documentation :mixin
·•Provides methods for arrow graphic output on an LGP stream.

ARROW-PARAMETER-HIXIN is required to calculate the size of the
figure and position it in the center of the page. The method
assumes that coordinates are in LGP pixels. This flavor
should be mixed, along with ARROW-PARAMETER-MIXIN, into an
instantiable flavor for LGP output. When that flavor is
instantiated, the instance variable output-stream should be
initialized.•))

The methods for this flavor need to do two things: determine the width
and height of a page and handle :show-lines messages. We get the width
and height from the values of instance variables for the flavor
lgp:basic-lgp-stream. This flavor will be a component of the flavor we
instantiate as the output stream.

Program Development Tools and Techniques 113

Symbolics, Inc.

; ; ;

; ;;
; ;;
; ;;

Finds width and height of a page f9r LGP output.
This flavor is required by ARROW-PARAMETER-MIXIN. Finds the
values of two instance variables of LGP:BASIC-LGP-STREAM:
SI:PAGE-WIOTH and SI:PAGE-HEIGHT~ Assumes that
LGP:BASIC-LGP-STREAH is included in output stream to provide

,,, these instance variables.
(defmethod (lgp-pixel:-mix1n :compute-width-and-height) ()

(setq width (symeval-in-instance output-stream 'si:page-width)
height (symeva1-1n-1nstance output-stream 'si:page-height)))

The :show-lines method is similar to that for windows. Instead of using
the :draw-line message to produce lines,. we use two messages to
lgp:basic-lgp-stream: :send-command and :send-coordinates.

; ; ;
; ;;
; ;;
; ;;

; ;;
; ;;

Receives endpoint coordinates and draws lines on LGP stream.
Arguments are alternating x- and y-coordinates of endpoints of
lines to be drawn. If there are more than two pairs of
coordinates, assumes that the endpoint of one line is the
starting point of the next. Draws a line by sending output
stream :SEND-COMMAND messages for LGP commands and
:SEND-COORDINATE messages for LGP coordinates. Assumes that
flavor LGP:BASIC-LGP-STREAM is included in output stream to

;;; provide these methods.
(defmethod (lgp-p1xel-mixin :show-lines)

(xO yO &rest x-y-pairs)
;; Send command and coordinates to start drawing lines
(send self ':send-command-and-coordinates #/m xO yO)
;; "Cddr 0 down the list created by making all but the first
;; pair of coordinates an &rest argument
(loop for (x y) on x-y-pairs by #'cddr

;; Send command and coordinates to draw a line
do (send self ':send-command-and-coordinates #/v x y)))

;;; Sends line-drawing commands to LGP output stream.
;;; :SEND-COMMAND transmits an LGP command. :SEND-COORDINATES
;;; transmits coordinates of an endpoint of a line to be drawn.
;;; Assumes that LGP:BASIC-LGP-STREAM is included in output stream
,,, to provide these methods.
(defmethod (lgp-pixel-mixin :send-command-and-coordinates) (cmd x y)

(send output-stream ':send-command cmd)
(send output-stream ':send-coordinates (fixr x) (f1xr y)))

We can now define an instantiable flavor for the LGP stream that combines
lgp-pixel-mlxln and arrow-parameter-mixin.

114 Program Development Tools and Techniques

(defflavor lgp-pixel-stream ()
(lgp-pixel-mixin arrow-parameter-mixin)

(:documentation :combination
•1nstantiable flavor for arrow output on LGP stream.

Assumes that the calculation module uses LGP coordinates.
When this flavor is instantiated, the LGP-PIXEL-MIXIN
instance variable OUTPUT-STREAM should be initialized.
The output stream can be directed to an LGP or a file,
but it must include flavor LGP:BASIC-LGP-STREAM for
output to work correctly."))

Symbolics, Inc.

5.1.5 The Top-Level Function
We are ready to define a top-level function we can call to produce the
graphic. We start by popping up a choose-variable-values window. We
allow the user to specify screen, LOP, or file output. We also allow the
user to choose values for the number of recursion levels and the proportion
of the page or window to be filled. We let the user decide whether or not
to stripe the arrows.

(defvar •dest-string• •screen•
•oestination of program output [Screen, LGP, or File]•)

(defvar •output-file• nil
•Pathname for LGP-record-file output•)

;;; Top-level function to call to produce arrow graphic.
;;; Pops up a choose-variable-values window to let user specify
;;;·output destination, number of recursion levels, proportion
;;; of smaller dimension of page or window to be filled, and
;;; whether or not to stripe figure.
(defun do-arrow()

;; Pop up a choose-variable-values window
(tv:choose-variable-values

'((*do-the-stripes• "Stripe the arrows?• :boolean)
(•max-depth• nNumber of recursion levels• :number)
(*fill-proportion•

•fraction of page or window to be filled• :number)
(*dest-string• •output destination•

:choose (•Screen• •LGP• •File"))
(•output-file• •Pathname for file output• :PATHNAME))

;; Make window wide enough to accommodate long pathnames
;; and error messages
':extra-width 20.
;; Give user a chance to abort
':margin-choices '(•Do It• ("Abort• (signal 'sys:abort)))
':label •choose Options for Graphic•))

Next we need to take action depending on the output destination the user

Program Development Tools and Techniques JJJ

Symbolics. Inc.

has chosen. If the variable *fill-proportion• is zero, we just return nil no
matter what the output destination. If the destination is "Screen", we make
an instance of arrow-window. We use tv:make·wlndow, which creates a
new window each time we call do-arrow. We could also have defined a
resource of arrow windows (using defwindow-resource), but we might want
more than one selectable arrow window at a time.

If we have more than one arrow window, we want each to retain its own
values for number of recursion levels, proportion of the window to be filled,
and presence or absence of striping. We define three instance variables for
basic-arrow-window-mixin and make them initable. We initialize them
when we call tv:make-window from do-arrow. We change the :after
daemons for basic-arrow-window-mlxln to bind the special variables to the
instance-variable values.

(defflavor basic-arrow-window-mixin
(do-stripes max-dep fill-prop)
()

:initable-instance•variables
(:required-flavors arrow-parameter-m1xin tv:window)
(:default-in1t-pl1st

:edges-from ':mouse :minimum-width ZOO :m1n1mum-he1ght ZOO
:blinker-p n11 :expose-pt)

(:documentation :mixin ...))

(defmethod (basic-arrow-window-mixin :after :1nit) (ignore)
(let ((*fill-proportion• fill-prop))

(send self ':compute-parameters)))

(defmethod (basic-arrow-window-mixin
:after :change-of-size-or-margins) (&rest ignore)

(let ((*fill-proporti6n• fill-prop))
(send self ':compute-parameters)))

(defmethod (basic-arrow-window-mixin :after :refresh)
(&optional type)

;; Draw figure if not restored from a bit-save array
(when (or (not tv:restored-bits-p)

;; ..• or size has changed.
(eq type ':size-changed))

,, If restored from a bit-save array, clear screen first
(when tv:restored-bits-p

(send self ':clear-screan))
;; Bind global variables to self and instance variabl~s
(let ((•dest• self)

(*do-the-str1pe"s• do-stripes)
(*max-depth• max-dep))

; ; Draw the figure
(draw-arrow-graphic top•e(lge right-x top-y))))

116 Program Development Tools and Techniques

(defun do-arrow()
(tv:choose~variable-values

;; If tigure is infinitely small, just return nil
(cond ((= •fill-proportion* O) nil)

;; If screen output, make a window
((equal •dest-string• •screen•)
(tv:rnake-window 'arrow-window

Symbolics, Inc.

;; Initialize instance variables to
;; values set by the user
':do-stripes *do-the-stripes*
':max-dep •max-depth•
':fill-prop *fill-proportion•))))

If the output destination is "LGP" or "File", we want to make an instance
of lgp-plxel-stream with the instance variable stream initialized to an
appropriate stream. We construct this stream by calling
si:make-hardcopy-stream with an argument that depends on the output
destination. We use with-open-stream to produce the output on the stream
and close it when we finish.

Program Development Tools and Techniques 117

Symbolics, Inc.

(defun do-arrow()
(tv:choose-variable-values

(cond ((= *fill-proportion* 0) nil)
;; If screen output, make a window
((equal •dest-string* •screen•)

(tv:make-window 'arrow-window
;; Initialize instance variables to
;; values set by the user
':do-stripes •do-the-stripes•
':max-dep •max-depth*
':fill-prop *fill-proportion*))

;; If LGP or file output, use an appropriate stream
(t (with-open-stream

(stream
;; This function returns a stream suitable for
;; LGP output
(si:make-hardcopy-stream

;; Argument is the output device. For LGP,
;; use the default hardcopy device.
(if (equal •dest-string* 8 lgp")

si:•default-hardcopy-device•
;; For file output, use the correct format
;; for the hardcopy device and direct
;; output to the file specified by the user
(lgp:get-lgp-record-file-hardcopy-device

•output-file*))))
;; Make an instance of our LGP output flavor
(let ((*dest•

(make-instance 'lgp-pixel-stream
;; Initialize instance
;; variable to output stream
':output-stream stream)))

;; Position the figure on the page
(send •dest• ':compute-parameters)
;; Draw the figure, using instance-variable values
;; as arguments
(draw-arrow-graphic (send •dest• ':top-edge)

(send •dest• ':right-x)
(send •dest* ':top-y)))))))

5.1.6 The Arrow Window: Interaction, Processes, and the Mouse
Suppose we want to let the user modify the characteristics of the graphic
for each window. The user might want to change the presence or absence
of striping, the number of recursion levels, or the proportion of the window
to be filled.

One way to install this option is to associate each window with its own

118 Program Development Tools and Techniques

Symbolics, Inc.

process and let the process run in a loop. If the user clicks right on the
window, we pop up a choose-variable-values window. When the user is
finished, we refresh the window and wait for the next mouse click.

We can associate a window with a process by including the flavor
tv:process-mixin in basic-arrow-window. When we make the window
(using tv:make-window), we specify a :process init option whose argument
is the name of the top-level function for the process. When the window is
created, a new process is created as well. When the window is exposed, the
process's top-level function is called with one argument, the window.

(defflavor basic-arrow-window()
(basic-arrow-window-mixin
arrow-parameter-mix in
tv:process-mixin
tv:window)

(:documentation :combination •••))

(defun do-arrow()
(tv:choose-variable-values

(cond ((= •fill-proportion• O) nil)
;; If screen output, make a window
((equal •dest-string• •screen•)

(tv:make-window 'arrow-window
· ;; Initialize instance variables to

;; values set by the user
':do-stripes •do-the-stripes•
':max-dep •max-depth*
':fill-prop ~fill-proportion•
;; Specify top-level function for the
;; process associated with the window
':process '(window-loop)))

We next want to be able to handle mouse clicks. We include the flavors
tv:any-tyi-mixin and tv:list-mouse-buttons-mlxln in basic-arrow-window.
When a window is waiting for input and the mouse is clicked while over the
window, a blip enters the window's input buffer. A blip is a list whose
form, with tv:Ust-mouse-buttons-mixin, is as follows:

(:mouse-button encoded-click window x y)

Encoded-click is a fixnum that represents the button clicked.

Program Development Tools and Techniques 119

Symbolics, Inc.

(defflavor basic-arrow-window()
(bas1c-arrow-w1ndow-mix1n
arrow-parameter-m1xin
tv:any-ty1-mixin
tv:list-mouse-buttons-mixin
tv:process-m1xin
tv:w1ndow)

(:documentation :combination •.•))

We also want a mouse documentation string to appear when the mouse is
over the window:

(defmethod (basic-arrow-window-mixin
:who-line-documentation-string) ()

"Provides a mouse documentation line for the window.
The only option is to click right and pop up a
choose-variable-values window of options for changing
the graphic on this window."

•R: Choose-variable-values options for changing figure on this window•)

We can now write the process function window-loop. This function just
sends a :main-loop message to the window. We define :main-loop as a
method for basic-arrow-window-mixin. The method consists of an
error-restart-loop so that we can return to top level if sys:abort or an
error is signalled. We send the window an :any-tyi message. If the user
clicks right, we pop up a choose-variable-values window with the window's
current value of the variables. When the user exits, we refresh the window
and wait for another click. If the user aborts, sys:abort is signalled, and we
restart the loop.

;;; Top-level function for process associated with arrow window.
,,, The function is called when the window is created. Argument is
;;; the window. The function sends the window a :MAIN-LOOP message.
;;; This method should be the actual command loop for the process.
(defun window-loop (window)

(send window ':main-loop))

120 Program Development Tools and Techniques

Symbolics, Inc.

,,, Command loop for window associated with a separate process.
;;; Consists of an error-restart-loop that handles restarts from errors
;;; and sys:abort. Waits for mouse input. If a right click, pops up a
;;; choose-variable-values window to change characteristics of the
,,, figure. On exit, sets instance variables to the new values and
,,, refreshes the window, then waits for another mouse click. Assumes
;;; blips are lists of the form provided by TV:LIST-HOUSE-BUTTONS-HIXIN.
(defmethod (basic-arrow-window-mixin :main-loop) ()

;; Run forever in a loop. Offer a restart handler if an error
;; or SYS:ABORT is signalled.
(error-restart-loop ((error sys:abort) •Arrow Window Top Level•)

;; Wait for input
(let ((char (send self ':any-tyi)))

;; Pop up window if input is a list
(when (and (listp char)

;; .•• and a mouse click
(eq (first char) ':mouse-button)
;; .•. and a single click on the right button.
(eq (second char) #\mouse-r-1))

;; Bind global variables to instance-variable values
(let ((*do-the-stripes* do-stripes)

(*max-depth* max-dep)
(*fill-proportion* fill-prop))

;; Pop up a choose-variable-values window
(tv:choose-variable-values

'((*do-the-stripes* •stripe the arrows?" :boolean)
(*max-depth* •Number of recursion levels• :number)
(*fill-proportion•

•fraction of window to be filled• :number))
;; Hake the window wide to provide enough room for error
;; messages.
':extra-width 20
;; Give the user a chance to abort
':margin-choices '(•oo It• (•Abort• (signal 'sys:abort)))
':label •choose Options For Graphic")

;; Set instance variables to the new values
(setq do-stripes *do-the-stripes•

max-dep •max-depth*
fill-prop •fill-proportion•)

,, Recompute size and position of the figure
(send self ':compute-parameters)
;; Send :REFRESH message with argument of ':new-vals to make
;; sure the figure is redrawn if there is a bit-save array
(send self ':refresh ':new-vals))))))

We need to change the :after :refresh method for
basic-arrow-window-mixin so that it redraws the figure when the values
are changed even if the window has a bit-save array.

Program Development Tools and Techniques 121

Symbolics, Inc.

(defmethod (basic-arrow-window-mixin :after :refresh)
(&optional type)

;; Draw figure if not restored from a bit-save array
(when (or (not tv:restored-bits-p)

;; ••• or size has changed .~.

(eq type •:size-changed)
;; ••• or new values for figure parameters.
(eq type •:new-vals))

;; If restored from a bit-save array, clear screen first
(when tv:restored-bits-p

(send self •:clear-screen))
;; Bind global variables to self and instance variables
(let ((*dest• self)

(*do-the-stripes• do-stripes)
(•max-depth* max-dep)}

;; Draw the figure
(draw-arrow-graphic top-edge right-x top-y))))

Note that we can also manipulate the windows we create by using the
[Split Screen] and [Edit Screen] options from a system menu. We might
have more than one arrow window on the screen at the same time. We
might redisplay the figures on these windows at the same time. In this case,
the scheduler might switch between the arrow window processes, allowing
each to run for a time until all redisplays are complete.

Remember that we took care to bind rather than set the global variables in
the calculation module that hold the state of each arrow. We want the
values of some variables to be different in each window. Each process
maintains its own bindings for variables. When the scheduler switches
processes, bindings in the old process are undone and saved. They are
restored when the old process resumes. But if we had set the variables, the
program would not have run correctly when the scheduler switched
processes. The new process might have used variable values set in the old
process.

5.1.7 Slgnalllng Conditions
We want to add one more refinement to the output module. In our choose
variable-values windows, the variable type keywords, such as :number and
:pathname, provide for some error checking when users choose new values.
But two of our numeric variables have further restrictions: *max-depth*
must be a nonnegative integer, and *fill-proportion• must be a fraction
between 0 and 1.

The function tv:choose-variable-values has a :function option that lets us
name a function to be called whenever an item is to be changed. We can
use this function to check the values of our two variables and signal a
condition if the values are bad. We then print a message on the window
and ask the user to proceed by supplying a new value.

122 Program Development Tools and Techniques

Symbolics, Inc.

We start by defining flavors for the conditions we signal. We define a
general class of error conditions called bad-arrow-variable. We then define
two flavors built on bad-arrow-variable: bad-arrow-depth for improper
values of •max-depth* and bad·arrow-flll-proportion for improper values
of *fill-proportion*. For each of these instantiable flavors we define a
:report method and a :proceed method. The :report method prints a
string identifying the condition. The :proceed method allows the user to
proceed from the condition, in this case by supplying a new value. We
could have more than one :proceed method if we had other ways of
proceeding. :proceed methods are combined using :case method
combination.

If we want to create conditions for bad values of other variables in the
future, we can simply define new flavors built on bad-arrow-variable.

(defflavor bad-arrow-variable () (error)
(:documentation
•Noninstantiable class of bad-variable conditions.

The user might set some variables to impermissible values.
These conditions are to permit checking for bad values
beyond the system's error checking. Instantiable condition
flavors for specific variables should be built on this
flavor. n))

(defflavor bad-arrow-depth () (bad-arrow-variable)
(:documentation
•Proceedable condition: bad value for *MAX-DEPTH*.

An instantiable condition flavor for impermissible values
of ·•MAX-DEPTH*, the number of recursion levels in the
figure. n))

;;; Prints string on stream to report bad •MAX-DEPTH* value
(defmethod (bad-arrow-depth :report) (stream)

(format stream •No. of levels was not a -
nonnegative fixnum.•))

;;; Proceed type method for supplying new value of •MAX-DEPTH*
(defmethod (bad-arrow-depth :case :proceed :new-depth)

(&optional (dep (prompt-and-read
':number
•supply new value for -

no. of recursion levels: •)))
•supply a new value for number of recursion levels.•
(values ':new-depth dep))

Program Development Tools and Techniques 123

Symbolics, Inc.

(defflavor bad-arrow-fill-proportion () (bad-arrow-variable)
(:documentation
•Proceedable condition: bad value for •FILL-PROPORTION•.

An instantiable condition flavor for impermissible values of
•FILL-PROPORTION•, the fraction of the smaller dimension of
the page or window that the figure is to fill.•))

;;; Prints string on stream to report bad •FILL-PROPORTION* value
(defmethod (bad-arrow-fill-proportion :report) (stream)

(format stream "Proportion was not a fraction between -
0 and 1. •))

;;; Proceed type method for new value of •FILL-PROPORTION•
(defmethod (bad-arrow-fill-proportion :case :proceed

:new-proportion)
(&optional (prop (prompt-and-read

':number
"Supply new fraction of bounds -

be filled:•)))
•supply a new fraction of page or window to be filled.•
(values ':new-proportion prop))

Next we write the function, check-Item, to be called when a variable value
is changed. The function is called with four arguments: the choose
variable-values window, the variable, and the variable's old and new values.
We use condition-bind to bind a handler for our two conditions. This
handler will be called if we signal the conditions from within the
condition-bind. If we do find a bad variable value, we we expect the call
to signal to return the two values from the :proceed method: the proceed
type and the new variable value. We then check the new value and, if it is
good, set the variable to the new value. Finally, we refresh the window and
return t.

124

; ;;
; ; ;
; ;;
; ; ;
; ;;

' ' '
; ; ;

Program Development Tools and Techniques
Symbolics. Inc.

Called when a value changes in choose-variable-values window.
Arguments are the window, the variable, and its old and new values.
Binds handlers for conditions for impermissible values. If new
value is OK, sets variable to the new value, refreshes window, and
returns t. If value is not OK, signals the appropriate condition.
When SIGNAL returns, presumably with a new variable value, checks
the new value in the same way it checks a new value that comes

,,, from the window.
(defun check-item (cvv-window var old-val new-val)

;; We don't use the old value. To avoid a compiler complaint,
,, just evaluate it and ignore it. We could also use IGNORE
;; instead of OLD-VAL in the arglist, but then the arglist
;; would be less meaningful.
old-val
;; Bind handlers for the conditions we might signal
(condition-bind ((bad-arrow-depth 'bad-arrow-var-handler)

(bad-arrow-fill-proportion
'bad-arrow-var-handler))

(when (eq var '•max-depth•)
;; •MAX-DEPTH• must be nonnegative fixnum
(loop until (and (fixp new-val) (~ new-val O))

;; If it's not, bind QUERY-IO to the window and
;; signal a condition. SIGNAL should return
;; two values, the proceed type and the new
,, value from the proceed method. Ignore the
;; proceed type and set NEW-VAL to the new
;; value.
do (let ((query-io cvv-window))

(multiple-value (nil new-val)
(signal 'bad-arrow-depth)))))

(when (eq var '*fill-proportion•)
;; *FILL-PROPORTION• must be between 0 and 1
(loop until (and (~ new-val O) (S new-val 1))

;; If it's not, bind QUERY-IO to the window and
,, signal a condition. SIGNAL should return
;; two values, the proceed type and the new
;; value from the proceed method. Ignore the
,, proceed type and set NEW-VAL to the new
;; value.
do (let ((query-io cvv-window))

(multiple-value (nil new-val)
(signal 'bad-arrow-fill-proportion)))))

;; Variable value is now OK. Set variable to the new value.
;; Note that we DO want to evaluate VAR.
(set var new-val)
;; Refresh the window
(send cvv-window ':refresh)
;; Return t
t))

Next we need to add the :function option to our calls to

Program Development Tools and Techniques 125

Symbolics, Inc.

tv:choose-variable-values in the function do-arrows and the :main-loop
method of basic-arrow-window-mixin:

(defun do-arrow()
;; Pop up a choose-variable-values window
(tv:choose-variable-values

'((•do-the-stripes• •stripe the arrows?• :boolean)
(•max-depth* •Number of recursion levels• :number)
(*fill-proportion•

•fraction of page or window to be filled• :number)
(*dest-string• •output destination•

:choose (•Screen• •LGP• •file•))
(*output-file• •Pathname for file output• :pathname))

;; Make window wide enough to accommodate long pathnames
;; and error messages
':extra-width 20.
;; Call this function when a value is changed
':function 'check-item
;; Give user a chance to abort
':margin-choices '(•Do Itu (•Abort• {signal 'sys:abort)))
':label •choose Options for Graphic•)

126 Program Development Tools and Techniques

Symbolics, Inc.

(defmethod (basic-arrow-window-mixin :main-loop) ()
;; Run forever in a loop. Offer a restart handler if an error
;; or sys:abort is signalled.
(error-restart-loop ((error sys:abort) •Arrow Window Top Level•)

;; Wait for input
(let ((char (send self ':any-tyi)))

;; Pop up window if input is a list
(when (and (listp char)

;; ... and a mouse click
(eq (first char) ':mouse-button)
;; ... and a single click on the right button.
(eq (second char) #\mouse-r-1))

;; Bind global variables to instance-variable values
(let ((*do-the-stripes• do-stripes)

(•max-depth• max-dep)
(*fill-proportion• fill-prop))

,, Pop up a choose-variable-values window
(tv:choose-variable-values

'((*do-the-stripes• •stripe the arrows?• :boolean)
(•max-depth* •Number of recursion levels• :number)
(*fill-proportion•

•fraction of window to be filled" :number))
;; Make the window wide to provide enough room for error
;; messages.
':extra-width 20
;; Call a function to check for errors when values change
':function 'check-item
;; Give the u_ser a chance to abort
':margin-choices '("Do It• ("Abort• (signal 'sys:abort)))
':label •choose Options for Graphic")

;; Set instance variables to the new values
(setq do-stripes •do-the-stripes•

max-dep •max-depth•
fill-prop •fill-proportion•)

;; Recompute size and position of the figure
(send self ':compute-parameters)
;; Send :REFRESH message with argument of ':new-vals to make
:; sure the figure is redrawn if there is a bit-save array
(send self ':refresh ':new-vals))))))

Finally, we need to write a handler for the two conditions. When a
condition is signalled, the handler is called with one argument, the object of
the flavor of condition that is signalled. In check-item, we call signal with
query-lo bound to the choose-variable-values window. The handler checks
to be sure there is a proceed type for the object. If so, the handler turns
on a blinker on the window and sends the :report and :proceed messages to
the condition object. Finally, it turns off the blinker and passes back to its
caller the two values that the :proceed method returns.

Program Development Tools and Techniques 127

Symbolics. Inc.

Actually, the handler we define doesn't depend on the binding of query-lo
to the window. If query-lo is not bound to a window - that is, to an
instance of a flavor built on tv:sheet - the handler won't try to turn on a
blinker. If query-lo is bound to a window, the handler first looks (using
tv:sheet-f oil owing-blinker) for an existing blinker that follows the cursor.
If it doesn't find one, it makes a new blinker (using tv:make-blinker). It
encloses the handling operation in an unwind-protect to be sure that the
blinker is turned off in case of a nonlocal exit.

Handler for bad value of •MAX-DEPTH* or *FILL-PROPORTION•.
;;; Argument is the condition object created by SIGNAL. Uses QUERY-IO
;;; stream to report condition. Sends the condition object a :PROCEED
,,, message and passes back the values it returns.
(defun bad-arrow-var-handler (cond-obj &aux bl)

;; Find out whether this object has the right proceed type.
;; If not, return nil.
(if (send cond-obj ':proceed-type-p

(cond ((typep cond-obj 'bad-arrow-depth) ':new-depth)
((typep cond-obj 'bad-arrow-fill-proportion)

':new-proportion)))
;; Enclose the handling operation in an UNWIND-PROTECT so that
;; if we use a blinker we are sure to turn it off
(unwind-protect

(progn
;; Use a blinker if the QUERY-IO stream is a window
(setq bl (if (typep query-io 'tv:sheet)

;; If a cursor-following blinker exists, use it
(or (tv:sheet-following-blinker query-io)

;; Otherwise, make a new blinker
(tv:make-blinker query-io

'tv:rectangular-blinker
' : f o 11 ow-p t))))

;; If a blinker, make it blink
(if bl (send bl ':set-visibility ':blink))
;; Alert the user
(tv:beep)
;; Send a report, presumably describing the condition
(send cond-obj ':report query-io)
;; Send object a :PROCEED message and return the values
;; that the method returns
(send cond-obj ':proceed

(cond ((typep cond-obj 'bad-arrow-depth) ':new-depth)
((typep cond-obj 'bad-arrow-fill-proportion)
':new-proportion))))

;; If a blinker, turn it off
(if bl (send bl ':set-visibility nil)))))

After we have defined all the flavors and methods for the output module,
we insert a compile-flavor-methods form in the file. Without this macro,
combined methods are compiled and flavor data structures generated when

128 Program Development Tools and Techniques

Symbolics, Inc.

we make the first instance of a flavor - that is, at run time.
compile-flavor-methods speeds run-time operation by causing combined
methods to be compiled at compile time and data structures to be generated
at load time. It is useful only for flavors that will be instantiated, not for
flavors that are only components of instantiated flavors.

(compile-flavor-methods arrow-window lgp-pixel-stream
bad-arrow-depth bad-arrow-fill-proportion)

5.2 Programming Aids for Flavors and Windows

Some editor commands and Lisp functions provide information about flavors. You can find out
about component flavors, methods, instance variables, init keywords, and documentation. Using
the Inspector, you can examine instance variables and methods for instances of flavors (see
section 4.7, page 94). If a flavor has gettable instance variables, you can obtain their values by
sending messages to instances of the flavor.

These commands and functions are useful for finding information about windows as well.
Because windows are instances of flavors, you can retrieve characteristics that are stored in
gettable instance variables by sending messages to the windows (see Introduction to Using the
Window System). If a window is exposed, you can examine and alter some characteristics by
clicking on the [Attributes] item in the system menu. Clicking on [Attributes] pops up a
choose-variable-values window for such characteristics as font, label, margins, and vertical
spacing between lines.

As with other definitions, Edit Definition (m-.) prepares to edit definitions of flavors and
methods. Section 5.2.2 (page 129) describes how to use this command to edit method
definitions.

5.2.1 General Information
The facilities that display general information about a flavor are Describe
Flavor (m-X) and describe-flavor. These display somewhat different
descriptions of a flavor.

A useful predicate for instances of flavors is typep. Given an instance and
a flavor name, typep returns t if the instance includes the flavor as a
component.

Example
In handling bad values for the variables •max-depth• and
*fill-proportion•, we want to be sure that. query-lo is bound to a window
before turning on a blinker. We find out whether the object bound to
query-lo is built on tv:sheet by using typep:

(typep query-io 'tv:sheet)

Program Development Tools and Techniques 129

Symbolics, Inc.

5.2.2 Methods

Reference
Describe Flavor (m-X)

(describe-flavor flavor-name)

(typep arg !J!J!!)

Displays a description of a flavor that
includes the names of instance
variables and component flavors and
any documentation added by the
:documentation option to defflavor.
Also displays init keywords and
inherited ·methods and instance
variables. Names of flavors and
methods in the display are mouse
sensitive.

Prints a description of a flavor that
includes the names of instance
variables and component flavors and
any documentation added by the
:documentation option to def flavor.

When arg is an instance of a flavor
and type is a flavor name, returns t if
the instance includes the flavor as a
component or nil if it does not. If
type is omitted, returns a symbol
representing the flavor of the
instance.

Four Zmacs commands display information about the methods that handle
messages to instances of flavors. For instances of flavors built on
sl:vanilla-flavor - that is, for nearly all flavors - you can send messages
to find out which messages the object handles and whether or not it handles
a specific message.

You can use the Zmacs command Edit Definition (m-.) to edit the
definition of a method. Specify a method by typing a representation of its
function spec. This is a list of the following form:

(:method flavor type message)

When typing this representation for Edit Definition (m-.), type is optional.
If the method has a type, Zmacs will try to find the definition and ask you
whether or not that definition is the one you want.

You might know the name of a method but not the name of its flavor. Use
List Methods (m-X) to find methods for all flavors that handle a message.
You can click on one of the method names displayed to edit its definition.

130 Program Development Tools and Techniques
Symbolics. Inc.

Example
We want to edit the definition of the :main-loop method for
baslc-arrow-wlndow-mlxln. We use Edit Definition (m-.) and type:

(:method basic-arrow-window-mixin :main-loop)

Example
We want to find out which methods handle :show-lines messages and how
the methods handle the messages. List Methods (m-X) displays the following
methods:

Methods ·for :SHOW-LINES
(:METHOD BASIC-ARROW-WINDOW-MIXIN :SHOW-LINES)
(:METHOD LGP-PIXEL-MIXIN :SHOW-LINES)

We can click on one of the method names or press c-. to edit the
definition. We also could have found the source code directly by using Edit
Methods (m-X).

Example
We want to find out which methods are called when the system sends an
:lnit message to arrow-window. List Combined Methods (m-X) prompts for
message and flavor names and displays the following methods, in the order
in which they are called:

Combined method for :INIT message to ARROW-WINDOW flavor
(:METHOD TV:SHEET :WRAPPER :INIT)
(:METHOD TV:STREAM-HIXIN :BEFORE :INIT)
(:METHOD TV:BOROERS-MIXIN :BEFORE :INIT)
(:METHOD TV:ESSENTIAL-L.ABEL-MIXIN :BEFORE :INIT)
(:METHOD TV:ESSENTIAL-WINOOW :BEFORE :INIT)
(:METHOD TV:SHEET :!NIT)
(:METHOD TV:ESSENTIAL-SET-EDGES :AFTER :!NIT)
(:METHOD TV:LABEL-MIXIN :AFTER :!NIT)
(:METHOD TV:PROCESS-MIXIN :AFTER :!NIT)
(:METHOD BASIC-ARROW-WINOOW-MIXIN :AFTER :INIT)

Reference
List Methods (m-X)

Edit Methods (m-X)

Lists methods for all flavors that
handle a specified message. Press c-.
to edit the definitions of the methods
listed.

Prepares to edit definitions of

Program Development Tools and Techniques 131

Symbolics, Inc.

List Combined Methods (m-X)

Edit Combined Methods (m-X)

methods for all flavors that handle a
specified message. Press c-. to edit
subsequent definitions.

Lists all the methods that would be
called if a specified message were sent
to an instance of a specified flavor.
Press c-. to edit the definitions of
the methods listed.

Prepares to edit definitions of
methods that would be called if a
specified message were sent to an
instance of a specified flavor. Press
c-. to edit subsequent definitions.

(send instance ':which-operations) Returns a list of messages that
instance can handle.

(send instance ':operatlon-handled-p message)

(get-handler-for object message)

Returns t if instance has a handler for
message or nil if it does not.

Returns the method that handles
message to object, or nil if object has
no handler for message.

5.2.3 lnlt Keywords -
sl:flavor-allowed-lnlt-keywords retrieves the init keywords allowed for a
flavor.

Example
We want to find the allowed init keywords for lgp-plxel-strea1111.
sl:flavor-allowed-lnlt-keywords returns the following list:

(:DO-STRIPES :FILL-PROP :MAX-DEP :OUTPUT-STREAM)

These are all keywords for initable instance variables, the first three from
arrow-parameter-mlxln and the last from lgp-plxel-mlxln.

Reference
(sl:flavor-allowed-lnlt-keywords flavor-name)

Returns a list of any init keywords a
flavor can take.

132 Program Development Tools and Techniques

Symbolics, Inc.

Program Development Tools and Techniques 133

Symbolics, Inc.

Appendix A
Calculatlon Module for the Sample Program

The program used as an example in this document draws the recursive arrow -graphic on the
document's cover. This appendix contains Lisp code that calculates coordinates for the
endpoints of the lines that compose the figure. The code produces output by sending messages
to instances of flavors defined in another file. Appendix B (page 147) contains the code for
the flavors and methods that mediate between the program and the system output operations.
Appendix C (page 165) contains a reproduction of the LGP graphic the program produces.

; ::

'''

#I

-*- Mode: LISP; Package: (GRAPHICS GLOBAL 1000); Base: 10 -*
Copyright (c) 1983 Symbolics, Inc.

This file contains the calculation module for a program that
reproduces the recursive arrow graphic printed on the covers
of most Symbolics documents. The module calculates the
coordinates of the endpoints of line segments to be drawn.
It transmits these coordinates to a separate output module,
which contains the code needed to produce the figure on an
appropriate output device.

We use paper coordinates, origin at bottom left.

Each arrow in the figure can be seen as inscribed in a square
whose apex is at (apex-x, apex-y). Each arrow has a head and
a shaft. Top-edge is the top edge of each arrow, one of the
sides of the arrowhead. There are two classes of arrow in
the figure: The small arrows are the general case, and the
large, outer arrow is unique. The differences are the
structures of the shafts and the recursive appearance of
~he small arrows.

The module uses special variables to store information about
the current arrow, including the length of the top edge and
the coordinates of the vertexes.

The module first calculates coordinates for the vertexes of
the large, outer arrow. If the arrows are to be striped, it
determines the endpoints of the lines that make up the large
arrow's stripes, first in the head and then in the shaft.

134 Program Development Tools and Techniques

The module then recursively calculates coordinates for each of
the small arrows inside the figure. It outlines and stripes
one arrow at a time. For each arrow, the module first
calculates the coordinates of the vertexes of the head. If the
arrows are to be striped, it then determines the coordinates of
the endpoints of the lines that make up the current arrow's
stripes, first in the head and then in the shaft.

The output module initiates the calculation module by calling
DRAW-ARROW-GRAPHIC with three arguments: the length of the
figure's top edge and the coordinates of the top right point
(pO in the large arrow). This module transmits coordinates to
the output module by sending :SHOW-LINES messages to instances
of output flavors. The arguments to :SHOW-LINES are the
coordinates of the endpoints of lines to be drawn. The current
instance of the output flavor 1s the value of the special variable
•OEST•.

I
\

\

I
I

\

I
I

\
\

p3

pl
I

I

I
I

\
\

\

(apex-x, apex-y)

I \
I \

I \
I \

I \
I \

I top-edge \
I -----------------------------\ pO
\ \

\
\

\
\ p2
I

I
I

I
I p5

I \
I \

I \
I \ I

I \ I
\ I I p6

\ I I
\ I

p4 \ I
\ I

\ I
\ I

\I

\
\

\

I
I

I

\
\

I
I

\
I

Symbolics, Inc.

Program Development Tools and Techniques
Symbolics, Inc.

Points 3 and 4 are obscured, except in the case of the big arrow.
11

;;; Following are declarations for special variables and constants

(defconst •dl• 0.15
"Proportion of distance filled in between upper right stripes•)

(defconst •d2• 0.75
"Proportion of distance filled in between lower left stripes•)

(defconst •stripe-distance• 20
•Horizontal distance in pixels between stripes -Of large arrow•)

(defconst •max-depth• 7
"Number of levels of recursion•)

(defconst *do-the-stripes• t
•If T, permits striping•)

(defconst •dest• nil
•object to which output is sent•)

(defvar •depth• 0
•current level of recursion•)

(defvar •top-edge• nil
"length of the top edge of the arrow")

(defvar •top-edge-2• nil
0 Half the length of the top edge of the arrow•)

(defvar •top-edge-4• nil
"One-fourth the length of the top edge of the arrow•)

(defvar •x2• nil
"X-coord of projection of lower left stripe on top edge•)

(defvar •stripe-d• nil
•Horizontal distance in pixels between stripes•)

(defvar •pOx• nil
•x-coordinate of the tip of the arrow•)

(defvar •pOy• nil
•v-coordinate of the tip of the arrow")

(defvar •pix• nil
•x-coordinate of point pl in the arrow•)

135

136 Program Development Tools and Techniques

Symbolics, Inc.

(defvar •ply• nil
•v-coordinate of point pl in the arrow•)

(defvar •p2x• nil
•x-coordinate of point p2 in the arrow•)

(defvar •p2y• nil
•v-coordinate of point p2 in the arrow•)

(defvar •p3x• nil
•x-coordinate of point p3 in the arrow•)

(defvar •p3y• nil
•v-coordinate of point p3 in the arrow•)

(defvar •p4x• nil
•x-coordinate of point p4 in the arrow•)

(defvar •p4y• nil
•v-coordinate of point p4 in the arrow•)

(defvar •p5x* nil
•x-coordinate of point p5 in the arrow•)

(defvar •p5y• nil
•v-coordinate of point p5 in the arrow•)

(defvar •p6x• nil
•x-coordinate of point p6 in the arrow•)

(defvar •p6y• nil
•v-coordinate of point p6 in the arrow•)

. , , Following are the controlling functions for this module

Program Development Tools and Techniques

Symbolics, Inc.

,,, Function controlling the calculation module.
,,, Controls the calculation of the coordinates of the endpoints of the
;;; lines that make up the figure. The three arguments are the length of
;;; the top edge and the coordinates of the top right point of the large
,,, arrow. DRAW-ARROW-GRAPHIC calls DRAW-BIG-ARROW to draw the large arrow
;;; and then calls DO-ARROWS to draw the smaller ones.
(defun draw-arrow-graphic (•top-edge• •pOx* •pOy•)

;; Bind global variables
(let ((*top-edge-2* (// •top-edge• 2))

(*top-edge-4• (// •top-edge* 4))

; ; ;

; ; ;
; ; ;

;; Compute horizontal distance between stripes in the large
;; arrow, assuming 64 stripes in the large arrowhead.
(*stripe-distance• (// *top-edge• 64)))

(draw-big-arrow) ;Draw large arrow
;; Length of the top-edge for the first small arrow is half the
;; length for the large arrow. Bind new coordinates for the top
;; right point of the small arrow.
(let ((•top-edge• *top-edge-2*)

(•pOx• (- •pOx* •top-edge-2*))
(•pOy• (- •pOy• •top-edge-2•))
(•depth• 0))

(do-arrows)))) ;Draw small arrows

Recursive function controlling drawing of the small arrows.
If below the maximum recursion level, draws a small arrow. Binds
new values for depth, top edge, and coordinates of top right point,
and calls self recursively to draw a left-hand child arrow. Binds
special variables again and calls self to draw a right-hand child

;;; arrow.
(defun do-arrows ()

;; Don't exceed maximum recursion level
(when (< •depth* •max-depth*)

;; Bind values for half and one-fourth of top edge
(let ((•top-edge-2* (// •top-edge• 2))

(*top-edge-4* (// •top-edge• 4)))
(draw-arrow) ;Draw a small arrow
;; Increment depth. Divide top edge in half. Bind new
;; coordinates for top right point of next arrow.
(let ((*depth* (l+ *depth*))

(*top-edge• •top-edge-2•)
(*pOx• (+ •top-edge-4* (- •pox• •top-edge*)))
(*pOy• (- •pOy* •top-edge-4*)))

;; Draw a left-hand child arrow
(do-arrows))

;; Increment depth. Divide top edge in half. Bind new
;; coordinates for top right point of next arrow.
(let ((*depth* (l+ •depth*))

(*top-edge* •top-edge-2*)
(*pOx* (- *pOx* •top-edge-4*))
(*pOy• (+ •top-edge-4• (- •pOy• •top-edge•))))

;; Draw a right-hand child arrow
(do-arrows)))))

137

138 Program Development Tools and Techniques

' ' ' The following functions are common to the large and small arrows

,,, Calculates coordinates of points visible in large and small arrows.
;;; The four points that bound the head of each arrow are the only ones
;;; visible in the small arrows. Points 3 and 4 the base of the arrow
;;; -- are obscured, except in the large arrow. We calculate these in
,,, compute-arrow-shaft-points.
(defun compute-arrowhead-points ()

(let• ((plx (- •pox• •top-edge•))
(ply •pOy•)

;X-coord, point 1
;Y-coord, point 1

(p2x (+ plx •top-edge-4•))
(p2y (- •pOy• •top-edge-4*))
(p6x •pOx•)

;X-coord, point 2
;Y-coord, point 2
;X-coord, point 6

(p6y (- •pOy• •top-edge•))
(p5x (- •pox• •top-edge-4•))
(p5y (+ p6y •top-edge-4•)))

;Y-coord, point 6
;X-coord, point 5
;Y-coord, point 5

(values plx ply p2x p2y p5x p5y p6x p6y)))

,,, Calculates horizontal distance between stripes.
,,, Distance is a fraction of the distance between stripes for the
,,, large arrow. The divisor depends on the level of recursion.
;;; Distance divides length of top edge evenly when possible to
;;; maintain continuity between head and shaft of arrow.
(defun compute-stripe-d ()

;; Distance should be at least 3 pixels so that there is some
;; white space between lines.
(if (S •stripe-distance• 3) 3

;; First find a fraction of *STRIPE-DISTANCE• that depends
;; on recursion level
(loop for dist = (fixr (// •stripe-distance•

(selectq •depth•
(O 2)
(1 4)
(2 2)
(3 1.5)
(4 1.5)

(otherwise 2))))
;; Increment if it doesn't divide •TOP-EDGE• evenly
then (1+ dist)
when (= O (\ •top-edge• dist))
;; Stop when no remainder. Don't return a value
,, less than 3.
do (return (if (S dist 3) 3 dist)))))

Symbolics, Inc.

Program .Development Tools and Techniques
Symbolics, Inc.

; ; ;
; ; ;
;; ;
, , ,
, , ,

Calculates the number of lines that compose each stripe.
Calls COMPUTE-DENS to calculate the proportion of distance
between stripes to be filled, then multiplies by the actual
distance between stripes. Makes sure that there is at least
one line and that there aren't too many lines to leave some

;;; white space.
(defun compute-nlines (x)

;; Call COMPUTE-DENS and multiply result by *STRIPE-D*
(let ((nl (fix (* •stripe-d* (compute-dens x)))))

;; Supply at least one line
(cond ((~ nl 1) 1)

;; But leave some white space between lines
((~ nl (- •stripe-d• I)) (- •stripe-d* 2))
(t nl))))

;;; Calculates proportion of distance filled in between each stripe.
;;; The argument is the x-coordinate of the projection of the current
;;; stripe onto the line formed by the top edge. Determines where the
;;; projection of the current stripe is on this line in relation to the
;;; distance from first to last stripes in the arrow. Multiplies this
;;; fraction by the difference between densities of first and last
;;; stripes. Finally, adds the density of the first stripe.
(defun compute-dens (x)

(+ *di* (* (- •d2* *dl*)

: ;;
; ; ;
; ;;

; ; ;

;; ;
; ; ;

(// (- x •pox•) (float (- •xz• •pOx*))))))

The following two functions stripe the arrowheads. The
heads of the large and small arrows are identical, so we
use the same functions to stripe both.

Function controlling striping of the head of each arrow.
Determines coordinates of starting and ending points for each
stripe. Calls COMPUTE-NLINES to determine number of lines for
the stripe. Calls DRAW-ARROWHEAD-LINES to draw the lines that

;;; make up each stripe.
ldefun stripe-arrowhead ()

;; Find x-coord of top of last stripe to be drawn
(loop with last-x = (- •pox• •top-edge•)

;; Find starting x-coord for each stripe, decrementing
;; by distance between stripes. Stop at last x-coord.
for start-x from •pox• by •stripe-d• above last-x
;; Find ending y-coord for each stripe, decrementing by
;; distance between stripes.
for end-y downfrom •pOy• by •str1pe-d•
;; Find number of lines in the stripe
for nlines = (compute-nlines start-x)
,, Draw the lines that make up the stripe
do (draw-arrowhead-lines nlines start-x end-y last-x)))

139

140 Program Development Tools and Techniques

;;; Draws the lines that make up each stripe in an arrowhead.
;;; Arguments are number of lines in the stripe, starting x-coord
;;; and ending y-coord of first line, and x-coord of top of last
;;; stripe to be drawn. Decrements by one pixel when drawing each
; ; ; line.
(defun draw-arrowhead-lines (nlines start-x end-y last-x)

;; Set up a counter
(loop for i from 0 below nlines

;; Find starting x-coord, subtracting counter from first
;; x-coord
for first-x = (- start-x 1)
;; Make sure we don't go past the end of the arrowhead
while (< last-x first-x)
;; Draw a line
do (send •dest• ':show-lines

f1rst-x •pOy• •pox• (- end-y i))))

;;; The following functions draw and stripe the large arrow

;;; Function controlling drawing of the large arrow.
;;; Calls functions to find coordinates of vertexes of the arrow.
;;; Outlines the arrow. Binds distance between stripes and x-coord
;;; of projection of last stripe onto top edge. Finally, stripes
,,, head and shaft of arrow when required.
(defun draw-big-arrow()

;; Determine coordinates of arrowhead vertexes
(multiple-value-bind

(•plx• •ply• •p2x• •p2y• •p5x• •p5y• •p6x• •p6y•)
(compute-arrowhead-points)

;; Determine coordinates of shaft vertexes
(multiple-value-bind

(*p3x• •p3y• •p4x• •p4y*)
(compute-arrow-shaft-points)

(draw-big-outline) ;Outline arrow
(when •do-the-stripes•

;; Bind distance between stripes and x-coord of projection
;; of last stripe onto top edge
(let ((•stripe-d• •stripe-distance•)

(*x2• (- •pox• •top-edge• •top-edge•)))
(stripe-arrowhead) ;Stripe head
(stripe-big-arrow-shaft)))))) ;Stripe shaft

;;; Calculates coordinates for vertexes of shaft of large arrow.
;;; These points are obscured and not drawn for the small arrows.
{defun compute-arrow-shaft-points()

;X-coord of point
;Y-coord of point

3
3

(values (- •plx• •top-edge-4•)
{- •p2y• •top-edge-2•)
•p2x• ;X-coord of point 4
{- •p2y• •top-edge•))) ;Y-coord of point 4

Symbolics, Inc.

Program Development Tools and Techniques

Symbolics, Inc.

;;; Draws the outline of the large arrow.
(defun draw-big-outline ()

(send •dest• ':show-lines

; ; ;

; ; ;

; ; ;

; ; ;

•pox• •pOy• •plx• •ply• •p2x• •p2y• •p3x• •p3y•
•p4x• •p4y• •p5x• •p5y• •p6x• •p6y• •pox• •pOy•))

The next seven functions stripe the shaft of the large arrow.
First is a controlling function, then three functions to stripe
the left side and three more to stripe the right.

Function controlling striping of the shaft of the large arrow.
Just calls STRIPE-BIG-ARROW-SHAFT-LEFT to stripe the left side
and STRIPE-BIG-ARROW-SHAFT-RIGHT to stripe the right side.

(defun stripe-big-arrow-shaft ()
(stripe-big-arrow-shaft-left)
(stripe-big-arrow-shaft-right))

Function controlling striping of left side of big arrow's shaft.
;;; Iterates over the triangles that make up the shaft. Determines
,,, coordinates of the apex and bottom right point of each triangle.
;;; Calls DRAW-BIG-ARROW-SHAFT-STRIPES-LEFT to stripe each triangle.
(defun stripe-big-arrow-shaft-left()

;; Set up a counter for depth. Don't exceed maximum recursion
; ; level.
(loop for shaft-depth from 0 below •max-depth*

;; Find current top edge and its fractions
for top-edge = •top-edge• then (// top-edge 2)
for top-edge-2 = (// top-edge 2)
for top-edge-4 = (// top-edge 4)
;; Find coordinates of apex of triangle
for apex-x = •p2x• then (- apex-x top-edge-2)
for apex-y = •p2y* then (- apex-y top-edge-2)
;; Find x-coord of bottom right vertex
for right-x = (+ apex-x top-edge-4)
;; Find y-coord of bottom edge of triangle
for bottom-y = (- apex-y top-edge-4)
:: Find the x-coord of the projection of the first
;; stripe onto top edge ,
for xoff = (- •pOx• •top-edge•) then (- xoff top-edge)
;; Stripe each triangle
do (draw-big-arrow-shaft-stripes-left

top-edge-4 apex-x apex-y right-x bottom-y xoff)))

141

142 Program Development Tools and Techniques

. . .
, .. . ' .
; ; ;
; ; ;

Stripes each triangle in left side of big arrow's shaft .
Arguments are one-fourth current top edge, x- and y-coords
of apex of triangle, x- and y-coords of bottom right vertex,
and x-coord of projection of first stripe onto top edge.
Determines coordinates of starting and ending points for
each stripe. Finds number of lines in the stripe. Calls
DRAW-BIG-ARROW-SHAFT-LINES-LEFT to draw the lines that

,,, make up each stripe.
(defun draw-big-arrow-shaft-stripes-left

(top-edge-4 apex-x apex-y right-x bottom-y xoff)
(loop with half-distance = (// •stripe-distance• 2)

;; Find x-coord of last stripe in triangle
with last-x = (- apex-x top-edge-4)
,, Find x-coord of top of each stripe, decrementing
;; from the apex by HALF the horizontal distance
;; between stripes. Stop at last stripe.
for start-x from apex-x by half-distance above last-x
;; Find y-coord of top of stripe
for start-y downfrom apex-y by half-distance
;; Find x-coord of endpoint of stripe
for end-x downfrom right-x by •stripe-distance*
;; Find number of lines in the stripe
for nlines = (compute-nlines (- xoff (- right-x end-x)))
;; Draw a stripe
do (draw-big-arrow-shaft-lines-left

nlines start-x start-y end-x bottom-y last-x)))

,,, Draws the lines for a stripe on left side of big arrow's shaft.
,,, Arguments are number of lines in the stripe, coords of starting
,,, and ending points for first line, and x-coord of last stripe to
; ; ; be drawn .
(defun draw-big-arrow~shaft-lines-left

(nlines start-x start-y end-x end-y last-x)
;; Set up two counters we need to draw two lines at once
(loop for i from 0

for i2 from 0 by 2
;; Find x-coord of top of first line in stripe
for first-x = (- start-x i)
;; Don't exceed number of lines in stripe
while (< i2 nlines)
;; Don't go past the end of the triangle
while (< last-x first-x)
;; Draw a line
do (send •dest• ':show-lines first-x (- start-y 1)

(- end-x i2) end-y)
,, Draw a second line. The two lines are a refinement
,, to stagger the endpoints of the lines so the diagonal
;; edge looks neat.

'"(send •dest• ':show-lines first-x (- start-y i 1)
(- end-x i2 1) end-y)))

Symbolics, Inc.

Program Development Tools and Techniques

Symbolics, Inc.

;;; Function controlling striping of right side of big arrow's shaft.
;;; Iterates over the triangles that make up the shaft. Determines
;;; coordinates of the top point of each triangle. Calls
;;; DRAW-BIG-ARROW-SHAFT-STRIPES-RIGHT to stripe each triangle.
{defun stripe-big-arrow-shaft-right ()

;; Set up a counter for depth. Don't exceed maximum recursion
; ; l eve 1.
(loop for shaft-depth from 0 below •max-depth*

;; Find new top edge and its fractions

; ; ;

;; :
; ; ;
;; ;

for top-edge = •top-edge• then (// top-edge 2)
for top-edge-2 = (// top-edge 2)
for top-edge-4 = (// top-edge 4)
;; Find coords of top point of triangle
for start-x = (+ •p2x• top-edge-4)
for top-y = (- •p2y• •top-edge-4*)
then (- top-y top-edge-2 top-edge-4)
;; Find x-coord of projection of first stripe onto
;; top-edge
for xoff = (- •pox• •top-edge•) then (- xoff top-edge)
,, Stripe the triangle
do (draw-big-arrow-shaft-stripes-right

top-edge-2 top-edge-4 start-x top-y xoff)))

Stripes each triangle in right side of big arrow's shaft.
Arguments are one-half and one-fourth of ~urrent top edge,
coords of top point of the triangle, and x-coord of projection
of first stripe onto top edge. Determines coordinates of
starting and ending points for each stripe. Finds number of
lines that make up the stripe. Calls
DRAW-BIG-ARROW-SHAFT-LINES-RIGHT to draw a stripe.

{defun draw-big-arrow-shaft-stripes-right
(top-edge-2 top-edge-4 start-x top-y xoff)

(loop with half-distance = (// •stripe-distance• 2)
;; Find y-coord of last stripe in triangle
with last-y = (- top-y top-edge-2)
;; Find y-coord of starting point of stripe. Don't go
;; past the end of the triangle.
for start-y from top-y by •stripe-distance• above last-y
;; Find coords of ending point of the stripe, decrementing
;; by HALF the horizontal distance between stripes
for end-x downfrom (+ start-x top-edge-4) by half-distance
for end-y downfrom (- top-y top-edge-4) by half-distance
;; Find number of lines that make up the stripe
for nlines = (compute-nlines (- xoff (- top-y start-y)))
,, Draw a stripe
do (draw-big-arrow-shaft-lines-right

nlines start-x start-y end-x end-y last-y)))

143

144 Program Development Tools and Techniques

;;; Draws the lines for a stripe on right side of b1g arrow's shaft.
;;; Arguments are number of lines 1n the stripe, coordinates of starting
;;; and ending points for the first line, and y-coord of last stripe in
;;; the triangle.
(defun draw-big-arrow-shaft-lines-right

(nlines start-x start-y end-x end-y last-y)
;; Set up two counters we need to draw two lines at once
(loop for i from O

'''

for i2 from 0 by 2
;; Find y-coord of ending point of line
for stop-y = (- end-y i)
;; Don't exceed number of lines in the stripe
while (< i2 nlines)
;; Don't go past the bottom of the triangle
while (< last-y stop-y)
; ; Draw a line
do (send •dest• ':show-lines start-x (- start-y i2)

(- end-x i) stop-y)
;; Draw a second line. The two lines are a refinement
,, to stagger the endpoints of the lines so the diagonal
,, edge looks neat.
(send •dest• ':show-lines start-x (- start-y i2 1)

(- end-x i 1) stop-y)))

The remaining functions draw and stripe one of the small arrows

;;; Function controlling drawing of a small arrow.

Symbolics, Inc.

;;; Calculates coordinates of the arrowhead and outlines it. Binds x-coord
;;; of the projection of the last stripe onto the top edge. Calculates
; ; ;

' ' .
the horizontal d~stance between stripes.
head and shaft of the arrow.

When necessary, stripes the

(defun draw-arrow()
;; Calculate coordinates of arrowhead vertexes
(multiple-value-bind

(*plx• •ply• •p2x• •p2y• •p5x• •p5y• •p6x• •p6y•)
(compute-arrowhead-points)

;; Outline the arrowhead
(draw-outline)
(when •do-the-stripes•

;; Bind x-coord of projection of last stripe onto top edge
(let ((•x2• (- •pOx• •top-edge• •top-edge•))

;; Calculate distance between stripes
(•stripe-d• (compute-stripe-d)))

(stripe-arrowhead)
(stripe-arrow-shaft)))))

;Stripe head
;Stripe shaft

;;; Draws the outline of the head of a small arrow.
(defun draw-outline ()

(send *dest• ':show-lines •p2x• •p2y• •plx• •ply•
•pox• •pOy• •p6x• •p6y• •p5x• •p5y•))

Program Development Tools and Techniques

Symbolics, Inc.

;;; Function controlling striping of the shaft of a small arrow.
;;; Iterates over the descending triangles that make up the shaft.
,,, Calculates the coordinates of the top left and bottom right
,,, vertexes of each triangle. Finds the x-coord of the
,,, projection of the first stripe onto top edge. Calls
,,, DRAW-ARROW-SHAFT-STRIPES to stripe each triangle.
(defun stripe-arrow-shaft ()

;; Set up a counter for depth. Don't exceed maximum
;; recursion level.
(loop for shaft-depth from •depth* below •max-depth*

;; Calculate fractions of new top edge
for top-edge-2 = •top-edge-2• then (// top-edge-2 2)
for top-edge-4 = (II top-edge-2 2)
;; Find coords of top left point of triangle
for left-x = •p2x• then (- left-x top-edge-4)
for top-y = •p2y• then (- top-y top-edge-2 top-edge-4)
;; Find coords, of bottom right point of triangle
for right-x = (+ left-x top-edge-2)
for bottom-y = (- top-y top-edge-2)
;; Find x-coord of projection of first stripe onto top edge
for xoff = (- •pOx• •top-edge•)
then (- xoff top-edge-2 top-edge-2)
;; Stripe the triangle
do (draw-arrow-shaft-stripes

left-x top-y right-x bottom-y xoff)))

;;; Stripes each triangle in the shaft of a small arrow.
;;; Arguments are coordinates of the top left and bottom right
;;; points of the triangle, and the x-coord of the projection
;;; of the first stripe onto top edge. Calculates the y-coord
;;; of the starting point and the x-coord of the ending point
;;; of each stripe. Finds number of lines in the stripe. Calls
;;; DRAW-ARROW-SHAFT-LINES to draw the lines in the stripe.
(defun draw-arrow-shaft-stripes

(left-x top-y right-x bottom-y xoff)
;; Find y-coord of starting point of stripe. Don't go
;; below the bottom of the triangle.
(loop for start-y from top-y by •stripe-d• above bottom-y

;; Find x-coord of ending point of the stripe
for end-x downfrom right-x by •stripe-d•
;; Find number of lines in the stripe
for nlines = (compute-nlines (- xoff (- right-x end-x)))
;; Draw a stripe
do (draw-arrow-shaft-lines

nlines left-x start-y end-x bot\om-y)))

145

146 Program Development Tools and Techniques

;;; Draws the lines in a stripe in the shaft of a small arrow.
;;; Arguments are the number of lines in the stripe and the
;;; coordinates of the starting and ending points of the first line.
(defun draw-arrow-shaft-lines

(nlines left-x start-y end-x bottom-y)
;; Set up a counter. Don't exceed number of lines in the stripe.
(loop for i from O below nlines

;; Find x-coord of ending point of the line
for last-x = (- end-x i)
;; Don't go past the left edge of the triangle
while (< left-x last-x)
,, Draw a line
do (send •dest• ':show-lines left-x (- start-y i)

last-x bottom-y)))

Symbolics, Inc.

Program Development Tools and Techniques 147

Symbolics, Inc.

Appendix B
Output Module for the Sample Program

The program used as an example in this document draws the recursive arrow graphic on the
document's cover. This appendix contains Lisp code that defines the flavors and methods that
mediate between the program and the system output operations. Appendix A (page 133)
contains the code that calculates coordinates for the endpoints of the lines that compose the
figure. Appendix C (page 165) contains a reproduction of the LOP graphic the program
produces.

; ; ;

#I

-•- Mode: LISP; Package: (GRAPHICS GLOBAL 100~); Base: 10 -•
Copyright (c) 1983 Symbolics, Inc.

This file contains the output module for a program that
reproduces the recursive arrow graphic printed on the covers
of most Symbolics documents. The module allows the graphic
to be produced on a Lisp Machine screen, a Laser Graphics
Printer, or an LGP record file. For each of these devices,
the module produces output by sending appropriate messages
with the coordinates of the endpoints of line segments to
be drawn. This module receives these coordinates from a
separate calculation module.

For screen output, the module creates its own windows. It
defines a basic flavor of window that accepts point
coordinates in the screen coordinate system, with origin
at top left. It defines a more specialized window, built
on the basic window, for use with a calculation module that
uses LGP coordinates, with origin at bottom left. It
allows a process to be associated with each window and
1ets users modify the characteristics of the figure.

For LGP output, the module makes an instance of a flavor
with the output stream as an instance variable. Output is
directed to either a hardcopy device or a record file.

This module defines the top-level function, DO-ARROW, that
is called to produce the graphic. This function pops up
a choose-variable-values window to allow users to select the
output device and the characteristics of the figure. The
module defines conditions and handlers for attempts to give
variables impermissible values.

148 Program Development Tools and Techniques

This module determines the size of the figure and its
position within the page or window. It then calls the
function DRAW-ARROW-GRAPHIC in the calculat1on module.
It passes as arguments the length of the top edge of the
figure and the coordinates of the top right point. The
calculation module sends :SHOW-LINES messages to instances
of output flavors. The arguments to :SHOW-LINES are the
coordinates of the endpoints of lines to be drawn. The
current instance of the output flavor is the value of the
special variable •DEST•.
11

;;; Following are declarations for special variables

(defvar •dest-string• •screen•
•Destination of program output [Screen, LGP, or File]•)

(defvar •output-file• nil
•Pathname for LGP-record-file output•)

(defvar •fill-proportion• 0.9
•Proportion of smaller dimension to be filled by figure•)

, , ,
, , ,

The following fl~vor and its methods are common to both
screen and LGP output

(defflavor arrow-parameter-mixin
(width height top-edge right-x top-y)
()

(:gettable-instance-variables top-edge right-x top-y)
(:required-methods :compute-width-and-height)
(:documentation :mixin
•Provides parameters for size and position of figure.

Instance variables hold width and height of page or window;
length of top edge of figure; and coordinates of top right point
of figure. Methods calculate size and position of figure by
centering it within the page or window and making it fill no
more than the specified proportion of the smaller dimension.
The methods use a coordinate system with origin at bottom left;
other mixins must correct for this if output is going to a
window. Other flavors must also provide a method for calculating
w1dth and height of the page or window. This flavor should be
mixed into any instantiable flavor that produces output for the
arrow graphic.•))

Symbolics, Inc.

Program Development Tools and Techniques
Symbolics, Inc.

; ; ;
; ; ;
; ;;

; ; ;

Method controlling calculation of size and position of figure.
Sends messages to self to calculate width and height of page
or window, length of top edge of figure, and coordinates of
figure's top right point. These are separate methods so that
other flavors can shadow them or add daemons. Another flavor

;;; must provide a method to compute width and height, because
,,, this is specific to the output device.
(defmethod (arrow-parameter-mixin :compute-parameters) ()

;; Another flavor must supply method for width and height
(send self ':compute-width-and-height)
;; Make a preliminary estimate of length of top edge
(send self ':compute-top-edge)
;; Adjust top edge to make it a multiple of 128
(send self ':adjust-top-edge)
;; Calculate coordinates of top right point of figure.
;; We can't do this until we know how long top edge is.
(send self ':compute-right-x)
(send self ':compute-top-y))

,,, Makes a preliminary estimate of length of top edge.
;;; The top edge of the arrow is 80 percent of the horizontal
,,, or vertical length of the whole figure. First finds the
;;; smaller of the length or width of the page or window.
,,, Multiplies this by the proportion of this dimension that
;;; is to be filled by the figure. The result is the
,,, horizontal or vertical length of the figure. Multiplies
;;; this by 0.8 to get the length of the top edge.
(defmethod (arrow-parameter-mixin :compute-top-edge) ()

(setq top-edge
(fixr (* 0.8 •fill-proportion• (min width height)))))

;;; Adjusts length of top edge so it is a multiple of 128.
,,, There are 64 stripes in the head of the large arrow. The
;;; calculation module divides the length of top edge by two
,,, each time it goes down another recursion level. By making
,,, the original top edge a multiple of 128, we maximize
~;; continuity in striping between arrowheads and shafts and
;;; among the first several levels of recursion.
(defmethod (arrow-parameter-mixin :adjust-top-edge) ()

(setq top-edge
;; Minimum length of top edge is 128
(if (< top-edge 256) 128

;; Otherwise set to next lower multiple of 128
(* 128 (fix (// top-edge 128))))))

;;; Calculates x-coordinate of top right point of figure.
;;; Finds horizontal length of figure by dividing length of
,,, top edge by 0.8. Centers the figure horizontally within
,,, the page or window.
(defmethod (arrow-parameter-mixin :compute-right-x) ()

(setq right-x
(fixr (* 0.5 (+width (//top-edge 0.8))))))

149

150 Program Development Tools and Techniques

,,, Calculates y-coordinate of top right point of figure.
;;; Assumes that the origin is at bottom. Finds vertical
;;; length of figure by dividing length of top edge by 0.8.
;;; Centers the figure vertically within the page or window.
(defmethod (arrow-parameter-mixin :compute-top-y) ()

(setq top-y
(fixr (* 0.5 (+ height (// top-edge 0.8))))))

;;; Following are flavors and methods for screen output

(defflavor basic-arrow-window-mixin
(do-stripes max-dep fill-prop)
()

:initable-instance-variables
(:required-flavors arrow-parameter-m1xin tv:window)
(:default-init-plist

:edges-from ':mouse :minimum-width 200 :minimum-height 200
:blinker-p nil :expose-p t)

(:documentation :mixin
•Provides for a basic window to display the arrow graphic.

ARROW-PARAMETER-MIXIN is needed to position the figure within
the window. Instance variables hold values for maximum
recursion level, proportion of window to be filled, and
whether or not to stripe the figure. This flavor assumes
window coordinates, with origin at top left. It provides its
own :COMPUTE-TOP-Y method to use that origin. It provides a
method to find the width and height of the window, as
ARROW-PARAMETER-MIXIN requires. This flavor has a :SHOW-LINES
method to receive point coordinates from the calculation
module and draw lines on the window. It provides a :MAIN-LOOP
method so that the window can run in its own process and let
the user modify the graphic. TV:LIST-MOUSE-BUTTONS-MIXIN is
needed to handle mouse clicks if this method is used. This
flavor provides standard :AFTER daemons for the window-system
:INIT, :REFRESH, and :CHANGE-OF-SIZE-OR-MARGINS messages. This
flavor should be mixed in with ARROW-PARAMETER-MIXIN and
TV:WINDOW for any window that produces the graphic. It
should be included before ARROW-PARAMETER-HIXIN so that the
:COMPUTE-TOP-Y method shadows correctly.•))

Symbolics, Inc.

Program Development Tools and Techniques

Symbolics, Inc.

; ; ;

; ; ;
; ; ;
; ; ;

Receives endpoint coordinates and draws lines on a window.
Arguments are alternating x- and y-coordinates of the end
points of lines to be drawn. If there are more than two pairs
of coordinates, assumes that the endpoint of one line is the
starting point of the next. Sends messages for separate methods
to determine the actual coordinates. This is so that other

,,, flavors can modify the coordinates. Draws a line by sending self
;;; a :DRAW-LINE message, and so assumes that TV:GRAPHICS-MIXIN is
;;; included somewhere to provide this method.
(defmethod (basic-arrow-window-mixin :show-lines)

(x y &rest x-y-pairs)
;; First determine the starting point of the line. On
;; subsequent trips through the loop, the last endpoint
;; becomes the next starting point.
(loop for xO = (send self ':compute-xx) then xl

for yO = (send self ':compute-y y) then yr
;; •cddr• down the list created by making all but the
;; first pair of coordinates an &rest argument
for (xl yl) on x-y-pairs by l'cddr
,, Determine the endpoint of the line
do (setq xl (send self ':compute-x xl)

yl (send self ':compute-y yl))
;; Draw the line
(send self ':draw-line

xO yO xl yl tv:alu-ior t)))

;;; Determines the x-coordinate of an endpoint of a line.
;;; This is a separate method so that other flavors can shadow
,,, it or add daemons to manipulate the coordinate.
(defmethod (basic~arrow-window-mixin :compute-x) (x)

(fixr x))

151

152 Program Development Tools and Techniques

;;; Determines they-coordinate of an endpoint of a line.
;;; Assumes that the argument already uses window coordinates,
,,, with origin at top left. This is a separate method so that
;;; other flavors can shadow it or add daemons to manipulate
;;; the coordinate.
(defmethod (basic-arrow-window-mixin :compute-y) (y)

(fixr y))

; ; ;

' ' '
' ' '
; ; ;

Finds the inside width and height of the window.
Sends self an :INSIDE-SIZE message, and so assumes that
TV:MINIMUM-WINDOW is included somewhere to provide this
method.

(defmethod (basic-arrow-window-mix1n
:compute-width-and-height) ()

(multiple-value (width height)

; ; ;

' ' '
; ; ;
; ; :
; ; ;

' ' '

(send self ':inside-size)))

Calculates y-coordinate of top right point of figure.
Finds vertical length of the figure by dividing the length
of top edge by 0.8. Centers the figure vertically within
the window. Gives the result in window coordinates, with
origin at top left. This method shadows that in
ARROW-PARAMETER-MIXIN.

(defmethod (basic-arrow-window-mixin :compute-top-y) ()
(setq top-y

; ; :

' ' '
,, '

(fixr (• 0.5 (- height (// top-edge 0.8))))))

Calculates size and position of figure after initialization.
Binds the global variable •fill-proportion• to the value of
the corresponding instance variable so that the figure will

,,, be drawn correctly if the value of •fill-proportion• has
;;; changed.
(defmethod (basic-arrow-window-mixin :after :init) (ignore)

(let ((•fill-proportion• fill-prop))

' ' '
; ; ;
; ; ;
; ; ;

(send self ':compute-parameters)))

Calculates size and position of figure after window change.
Binds the global variable •fill-proportion• to tho value of
the corresponding instance variable so that the figure will
be drawn correctly if the value of •fill-proportion• has

;;; changed.
(defmethod (basic-arrow-window-mixin

:after :change-of-size-or-margins) (&rest ignore)
(let ((*fill-proportion• fill-prop))

(send self ':compute-parameters)))

Symbolics, Inc.

Program Development Tools and Techniques

Symbolics, Inc.

Draws the figure when necessary after window is refreshed.
Binds the global variable •dest• to self and the variables

;;; •do-the-strjpes• and •max-depth• to the corresponding instance
;;; variables so the figure will be drawn correctly if the values
;;; of the global variables have changed.
(defmethod (basic-arrow-window-mixin :after :refresh)

(&optional type)
;; Draw figure if not restored from a bit-save array
(when (or (not tv:restored-bits-p)

;; •.. or size has changed •••
(eq type ':size-changed)
;; ... or new values for figure parameters.
(eq type ':new-vals))

;; If restored from a bit-save array, clear screen first
(when tv:restored-bits-p

(send self ':clear-screen))
;; Bind global variables to self and instance variables
(let ((•dest• self)

(*do-the-stripes• do-stripes)
(•max-depth• max-dep))

;; Draw the figure
(draw-arrow-graphic top-edge right-x top-y))))

;;; Provides a mouse documentation line for the window.
,,, The only option is to click right and pop ~Pa
,,, choose-variable-values window of options for changing
;;; the graphic on this window.
(defmethod (basic-arrow-window-mixin

:who-line-documentation-string) ()
•R: Choose-variable-values options for changing figure on this window•)

153

154 Program Development Tools and Techniques

; ; ;

' ' ' ; ; ;
; ; ;
; ; ;
; ; ;

' ' '
; ; ;

Command loop for window associated with a separate process.
Consists of an error-restart-loop that handles restarts from
errors and sys:abort. Waits for mouse input. If a right
click, pops up a choose-variable-values window to change
characteristics of the figure. On exit, sets instance variables
to the new values and refreshes the window, then waits for another
mouse click. Assumes blips are lists of the form provided
by TV:LIST-MOUSE-BUTTONS-MIXIN.

(defmethod (basic-arrow-window-mixin :main-loop) ()
;; Run forever in a loop. Offer a restart handler if an error
;; or sys:abort is signalled.
(error-restart-loop ((error sys:abort) •Arrow Window Top Level•)

;; Wait for input
(let ((char (send self ':any-tyi)))

;; Pop up window if input is a list
(when (and (listp char)

;; ••• and a ~ouse click
(eq (first char) ':mouse-button)
;; ••• and a single click on the right button.
(eq (second char) l\mouse-r-1))

;; Bind global variables to instance-variable values
(let ((•do-the-stripes• do-stripes)

(•max-depth• max-dep)
(•fill-proportion• fill-prop))

,, Pop up a choose-variable-values window
(tv:choose-variable-values

'((*do-the-stripes• •stripe the arrows?• :boolean)
(•max-depth• •Number of recursion levels• :number)
(•fill-proportion•

•fraction of window to be filled• :number))
;; Make the window wide to provide enough room for error
;; messages.
':extra-width 20
;; Call a function to check for errors when values change
':function 'check-item
;; Give the user a chance to abort
':margin-choices '(•Do It• (•Abort• (signal 'sys:abort)))
':label •choose Options for Graphic•)

;; Set instance variables to the new values
(setq do-stripes •do-the-stripes•

max-dep •max-depth•
fill-prop •fill-proportion•)

;; Recompute size and position of the figure
(send self ':compute-parameters)
;; Send :REFRESH message with argument of ':new-vals to make
;; sure the figure is redrawn if there is a bit-save array
(send self ':refresh ':new-vals))))))

Symbolics. Inc.

Program Development Tools and Techniques

Symbolics, Inc.

(defflavor basic-arrow-window()
(basic-arrow-window-mixin
arrow-parameter-mixin
tv:any-tyi-mixin
tv:list-mouse-buttons-mixin
tv:process-mixin
tv:window)

(:documentation :combination
•rnstantiable flavor providing a basic window for output.

Though this flavor is instantiable, its methods assume that
point coordinates use the window coordinate system, with
origin at top left. To work with the current calculation
module it needs another mixin to convert LGP to screen
coordinates. In the component flavors, BASIC-ARROW-WINDOW-MIXIN
must come before ARROW-PARAMETER-HIXIN and TV:WINDOW for
shadowing and daemons to work correctly. TV:PROCESS-MIXIN
and TV:LIST-MOUSE-BUTTONS-HIXIN are not necessary unless the
window is associated with a separate process and the :MAIN-LOOP
method of BASIC-ARROW-WINDOW-HIXIN is the command loop.•))

(defflavor lgp-window-mixin
((scale-factor 2.5))
()

(:required-flavors basic-arrow-window)
(:documentation :mixin
•converts LGP to screen coordinates and vice versa.

When mixed in with BASIC-ARROW-WINDOW, this flavor allows
window output with a calculation module that uses LGP
coordinates. The instance variable SCALE-FACTOR is the
ratio of LGP to screen pixel density. The methods take
the height and width of the window in screen pixels and
calculate the length of the top edge and the coordinates
of the top right point of the figure in LGP pixels. In
drawing lines on the window, the methods convert LGP to
window coordinates. These methods shadow those in
ARROW-PARAMETER-MIXIN and BASIC-ARROW-WINDOW-MIXIN.•))

; ; ;
, , ,
; ; ;

Converts x-coord of line endpoint from LGP to screen pixels.
Corrects for higher density of LGP pixels. This method shadows
that of BASIC-ARROW-WINDOW-MIXIN.

(defmethod (lgp-window-mixin :compute-x) (x)
(fixr (// x scale-factor)))

;;; Converts y-coord of line endpoint from LGP to screen pixels.
;;; Corrects for higher density of LGP pixels and for screen origin
;;; at top left. This method shadows that of BASIC-ARROW-WINDOW-MIXIN.
(defmethod (lgp-window-mixin :compute-y) (y)

(fixr (- height (// y scale-factor))))

155

156 Program Development Tools and Techniques

,, ,
; ; ;

; ; ;

; ; ;

Calculates top edge in LGP pixels from screen proportions.
Multiplies length of smaller dimension, in screen pixels, by
proportion of this dimension to be filled by the figure.
Multiplies this by 0.8 to find top edge in screen pixels.
Corrects for higher density of LGP pixels. This method
shadows that of ARROW-PARAMETER-MIXIN.

(defmethod (lgp-window-mixin :compute-top-edge) ()
(setq top-edge

(fixr (* scale-factor 0.8 •fill-proportion•
(min width height)))))

,,, Calculates x-coord of top right point in LGP pixels.
;;; Finds horizontal length of figure in screen pixels by
;;; dividing top edge by 0.8. Centers figure horizontally
;;; in window, correcting for higher density of LGP pixels.
,,, This method shadows that of ARROW-PARAMETER-MIXIN.
(defmet,hod (lgp-window-mixin :compute-right-x) ()

(setq right-x

' , ,
; ; ;

, ' '
; ; ;
; ; ;

' ' '

(fixr (* 0.5 (+ (* width scale-factor)
(// top-edge 0.8))))))

Calculates y-coord of top right point in LGP pixels.
Finds vert1cal length of figure in screen pixels by
dividing top edge by 0.8. Centers figure vertically
in window, correcting for higher density of LGP pixels.
This method shadows those of ARROW-PARAMETER-MIXIN and
BASIC-ARROW-WINDOW-MIXIN.

(defmethod (lgp-window-mixin :compute-top-y) ()
(setq top-y

(fixr (* 0.5 (+ (* height scale-factor)
(// top-edge 0.8))))))

(defflavor arrow-window()
(lgp-window-mixin basic-arrow-window)

(:documentation :combination
•1nstantiable flavor for window output from LGP coordinates.

This flavor has all the features of BASIC-ARROW-WINDOW but
assumes that the calculation module uses LGP coordinates. This
is the flavor to instantiate for window output using the
current calcuJation module.•))

Symbolics. Inc.

Program Development Tools and Techniques

Symbolics. Inc.

;;; The following flavor and methods are for LGP output

(defflavor lgp-pixel-mixin
(output-stream)
()

:initable-instance-variables
(:required-flavors arrow-parameter-mixin)
(:documentation :mixin
•Provides methods for arrow graphic output on an LGP stream.

ARROW-PARAMETER-MIXIN is required to calculate the size of the
figure and position it in the center of the page. This flavor
has a method to calculate the width and height of the page, as
ARROW-PARAMETER-MIXIN requires. It has a :SHOW-LINES method to
receive point coordinates from the calculation mo~ule and draw
lines on the output stream. The method assumes that coordinates
are in LGP pixels. The method also assumes that flavor
LGP:BASIC-LGP-STREAM is included in output stream to provide
:SEND-COMMAND and :SEND-COORDINATES messages. This flavor
should be mixed, along with ARROW-PARAMETER-MIXIN, into an
instantiable flavor for LGP output. When that flavor is
instantiated, the instance variable output-stream should be
initialized.•))

; ;;
;; ;

; ; ;
; ; ;
; ;;
; ; ;
: ; ;

Receives endpoint coordinates and draws lines on LGP stream.
Arguments are alternating x- and y-coordinates of endpoints of
lines to be drawn. If there are more than two pairs of
coordinates, assumes that the endpoint of one line is the
starting point of the next. Draws a line by sending output
stream :SEND-COMMAND messages for LGP commands and
:SEND-COORDINATE messages for LGP coordinates. Assumes that
flavor LGP:BASIC-LGP-STREAM is included in output stream to

,,, provide these methods.
(defmethod (lgp-pixel-mixin :show-lines)

(xO yO &rest x-y-pairs)
;; Send command and coordinates to start drawing lines
(send self ':send-command-and-coordinates #/m xO yO)
;; •cddr• down the list created by making all but the first
;; pair of coordinates an &rest argument
(loop for (x y) on x-y-pairs by #'cddr

;; Send command and coordinates to draw a line
do (send self ':send-command-and-coordinates #/v x y)))

;;; Sends line-drawing commands to LGP output stream.
;;; :SEND-COMMAND transmits an LGP command. :SEND-COORDINATES
,,, transmits coordinates of an endpoint of a line to be drawn.
;;; Assumes that LGP:BASIC-LGP-STREAM is included in output stream
,,, to provide these methods.
(defmethod (lgp-pixel-mixin :send-command-and-coordinates) (cmd x y)

(send output-stream ':send-command cmd)
(send output-stream ':send-coordinates (fixr x) (fixr y)))

157

158 Program Development Tools and Techniques

. , , ...
, , ,
; ; ;
, , ,

Finds width and height of a page for LGP output •
This flavor is required by ARROW-PARAMETER-MIXIN. Finds the
values of two instance variables of LGP:BASIC-LGP-STREAM:
SI:PAGE-WIDTH and Sl:PAGE-HEIGHT. Assumes that
LGP:BASIC-LGP-STREAM is included in output stream to provide

,,, these instance variables.
(defmethod (lgp-pixel-mixin :compute-width-and-height) ()

(setq width (symeval-in-instance output-stream 9 Si:page-width)
height (symeval-in-instance output-stream 9 Si:page-height)))

(defflavor lgp•pixel-stream (}
(lgp-pixel-mixin arrow-parameter-mixin)

(:documentation :combination
•1nstantiable flavor for arrow output on LGP stream.

Assumes that the calculation module uses LGP coordinates.
When this flavor is instantiated, the LGP-PIXEL-MIXIN
instance variable OUTPUT-STREAM should be initialized.
The output stream can be directed to an LGP or a file,
but it must include flavor LGP:BASIC-LGP-STREAM for
output to work correctly.•))

;;; Following are condition flavors for bad variable values

(defflavor bad-arrow-variable (} (error}
(:documentation
•Noninstantiable class of bad-variable conditions.

The user might set s~me variables to impermissible values.
These conditions are to permit checking for bad values
beyond the system 9 s error checking. Instantiable condition
flavors for specific variables should be built on this
flavor.•))

(defflavor bad-arrow-depth () (bad-arrow-variable)
(: documentation
•Proceedable condition: bad value for •MAX-DEPTH•.

An instantiable condition flavor for impermissible values
of •MAX-DEPTH•, the number of recursion levels in the
figure.•))

;;; Prints string on stream to report bad •MAX-DEPTH* value
(defmethod (bad-arrow-depth :report) (stream)

(format stream •No. of levels was not a -
nonnegative fixnum.•))

Symbolics, Inc.

Program Development Tools and Techniques

Symbolics, Inc.

;;; Proceed type method for supplying new value of •MAX-DEPTH*
(defmethod (bad-arrow-depth :case :proceed :new-depth)

(&optional (dep (prompt-and-read
':number
•supply new value for -

no. of recursion levels: •)))
•supply a new value for number of recursion levels.•
(values ':new-depth dep))

(defflavor bad-arrow-fill-proportion () (bad-arrow-variable)
(:documentation
"Proceedable condition: bad value for *FILL-PROPORTION•.

An instantiable condition flavor for impermissible values of
•FILL-PROPORTION•, the fraction of the smaller di~ension of
the page or window that the figure is to fill.•))

;;; Prints string on stream to report bad *FILL-PROPORTION* value.
(defmethod (bad-arrow-fill-proportion :report) (stream)

(format stream •Proportion was not a fraction between -
0 and 1. •))

;;; Proceed type method for new value of *FILL-PROPORTION•
(defmethod (bad-arrow-fill-proportion :case :proceed

:new-proportion)
(&optional (prop (prompt-and-read

':number
•supply new fraction of bounds -

be filled: •)))
•supply a new fraction of page or window to be filled.•
(values ':new-proportion prop))

159

160 Program Development Tools and Techniques

' ' '

; ; ;
; ; ;

; ; ;

Top-level function

Top-level function to call to produce arrow graphic.
Pops up a choose-variable-values window to let user specify
output destination, number of recursion levels, proportion
of smaller dimension of page or window to be filled, and

;;; whether or not to str1pe f1gure. If screen output, makes a
;;; window. If LGP output, makes an LGP stream and calls
,,, DRAW-ARROW-GRAPHIC to draw the figure.
(defun do-arrow()

;; Pop up a choose-variable-values window
(tv:choose-variable-values

'((*do-the-stripes• •stripe the arrows?• :boolean)
(•max-depth* •Number of recursion levels• :number)
(*fill-proportion•

"Fraction of page or window to be filled• :number)
(•dest-string• •output destination•

:choose (•Screen• •LGP• •File•))
(•output-file• •Pathname for file output• :pathname))

;; Make window wide enough to accommodate long pathnames
;; and error messages
':extra-width 20.
;; Call this function when a value is changed
':function 'check-item
;; Give user a chance to abort
':margin-choices '(•oo It• (•Abort• (signal 'sys:abort)))
':label •choose Options for Graphic•)

Symbolics, Inc.

Program Development Tools and Techniques

Symbolics, Inc.

;; If figure is infinitely small, just return nil
(cond ((= •fill-proportion• 0) nil)

;; If screen output, make a window
((equal •dest-string• •screen•)
(tv:make-window 'arrow-window

;; Initialize instance variables to
;; values set by the user
':do-stripes *do-the-stripes•
':max-dep •max-depth*
':fill-prop •fill-proportion•
;; Specify top-level function for the
;; process associated with the window
':process '(window-loop)))

;; If LGP or file output, use an appropriate stream
(t (with-open-stream

(stream
;; This function returns a stream suitable for
;; LGP output
(si:make-hardcopy-stream

;; Argument is the output device. For LGP,
;; use the default hardcopy device.
(if (equal *dest-string• •1gp•)

si:•default-hardcopy-device•
;; For file output, use the correct format
;; for the hardcopy device and direct
;; output to the file specified by the user
(lgp:get-lgp-record-file-hardcopy-device

•output-file•))))
;; Make an instance of our LGP output flavor
(let ((•dest•

(make-instance 'lgp-pixel-stream
;; Initialize instance
;; variable to output stream
':output-stream stream)))

;; Position the figure on the page
(send •dest• ':compute-parameters)
;; Draw the figure, using instance-variable values
; ; as arguments
(draw-arrow-graphic (send •dest• ':top-edge)

(send •dest• ':right-x)
(send •dest• ':top-y)))))))

;;; Top-level function for process associated with arrow window.
;;; The function is called when the window is created. Argument is
;;; the window. The function sends the window a :MAIN-LOOP message.
;;; This method should be the actual command loop for the process.
(defun window-loop (window)

(send window ':main-loop))

161

162 Program Development Tools and Techniques

; ; ;
, , ,
, , ,
; ; ;
, , ,
; ; ;
; ; ;

Function to check variable values

Called when a value changes in choose-variable-values window.
Arguments are the window, the variable, and its old and new values.
Binds handlers for conditions for impermissible values. If new
value is OK, sets variable to the new value, refreshes window, and
returns t. If value is not OK, signals the appropriate condition.
When SIGNAL returns, presumably with a new variable value, checks
the new value in the same way it checks a new value that comes

,,, from the window.
(defun check-item (cvv-window var old .. val new-val)

,, We don't use the old value. To avoid a compiler complaint,
;; just evaluate it and ignore it. We could also use IGNORE
;; instead of OLD-VAL in the arglist, but then the arglist
,, would be less meaningful.
old-val
;; Bind handlers for the conditions we might signal
(condition-bind ((bad-arrow-depth 'bad-arrow-var-handler)

(bad-arrow-fill-proportion
'bad-arrow-var-handler))

(when (eq var '*max-depth•)
;; •MAX-DEPTH• must be nonnegative fixnum
(loop until (and (fixp new-val) (2: new-val 0))

,, If it's not, bind QUERY-IO to the window and
;; signal a condition. SIGNAL should return
;; two values, the proceed type and the new
;; value from the proceed method. Ignore the
;; proceed type and set NEW-VAL to the new
;; value.
do (let ((query-io cvV-window))

(multiple-value (nil new-val)
(signal 'bad-arrow-depth)))))

(when (eq var '*fill-proportion•)
;; *FILL-PROPORTION* must be between 0 and l
(loop until (and (~new-val 0) (~new-val 1))

,, If it's not, bind QUERY-IO to the window and
;; signal a condition. SIGNAL should return
,, two values, the proceed type and the new
;; value from the proceed method. Ignore the
;; proceed type and set NEW-VAL to the new
;; value.
do (let ((query-io cvv-window))

(multiple-value (nil new-val)
(signal 'bad-arrow-fill-proportion)))))

;; Variable value is now OK. Set variable to the new value.
;; Note that we 00 want to evaluate VAR.
(set var new-val)
;; Refresh the window
(send cvv-window ':refresh)
;; Return t
t))

Symbolics, Inc.

Program Development Tools and Techniques
Symbolics, Inc.

;;; Handler for bad-variable-value conditions

;;; Handler for bad value of •MAX-DEPTH• or •FILL-PROPORTION*.
,,, Argument is the condition object created by SIGNAL. Uses QUERY-IO
;;; stream to report condition. Sends the condition object a :PROCEED
;;; message and passes back the values it returns.
(defun bad-arrow-var-handler (cond-obj &aux bl)
~ ;; Find out whether this object has the right proceed type.

;; If not, return nil.
(if (send cond-obj ':proceed-type-p

(cond ((typep cond-obj 'bad-arrow-depth) ':new-depth)
((typep cond-obj 'bad-arrow-fill-proportion)
':new-proportion)))

;; Enclose the handling operation in an UNWlND-PROTECT so that
;; if we use a blinker we are sure to turn it off
(unwind-protect

(progn
;; Use a blinker if the QUERY-IO stream is a window
(setq bl (if (typep query-io 'tv:sheet)

;; If a cursor-following blinker exists, use it
(or (tv:sheet-following-blinker query-1o)

;; Otherwise, make a new blinker
(tv:make-blinker query-io

'tv:rectangular-blinker
':follow-p t))))

;; If a blinker, make it blink
(if bl (send bl ':set-visibility ':blink))
;; Alert the user
(tv:beep)
;; Send a report, presumably describing the condition
(send cond-obj ':report query-io)
;; Send object a :PROCEED message and return the values
;; that the method returns
(send cond-obj ':proceed

(cond ((typep cond-obj 'bad-arrow-depth) ':new-depth)
((typep cond-obj 'bad-arrow-fill-proportion)
':new-proportion))))

;; If a blinker, turn it off
(if bl (send bl ':set-visibility nil)))))

,,, This macro expression causes combined methods to be compiled at
;;; compile time and data structures to be generated at load time.
;;; Otherwise, these things happen at run time, when the first
;;; instance of a flavor is made.
(compile-flavor-methods arrow-window lgp-pixel-stream

bad-arrow-depth bad-arrow-fill-proportion)

163

164 Program Development Tools and Techniques

Symbolics, Inc.

Program Development Tools and Techniques 165
Symbolics, Inc.

Appendix C
Graphic Output of the Sample Program

The program used as an example in this document draws the recursive arrow graphic on the
document's cover. This appendix contains a reproduction of the LOP graphic the program
produces. Appendix A (page 133) contains Lisp code that calculates coordinates for the
endpoints of the lines that compose the figure. Appendix B (page 147) contains the code that
defines the flavors and methods that mediate between the program and the system output
operations.

166 Program Development Tools and Techniques

Symbolics, Inc.

Program Development Tools and Techniques
Symbolics, Inc.

Index

tr Dired {c->< o) 38

ABORT 89
abort, Flavor (in package sys:) 119
Aligning code 21
:any-tyi, Method for tv:any-tyi-mixin 119
any-tyi~mixin, Flavor (in package tv:) 118
apropos, Function 31
:arg, Option to trace 87
arglist, Function 3 6
arglist, Variable 89
[ARGPDL] 87
:argpdl, Option to trace 87
Argument lists 36
Atom Word Mode {m-><} 10
Attribute lists (in files) 7
[Attributes] 128
Attributes (of buffers) 7
Auto Fill Mode {m-><} 10

Backward Kill Sexp {c-m-Rueour) 54
Base 8
hasic-lgp-stream, Flavor (in package lgp:) 112, 113
:batch, Option to make-system 71
Beep {c-G) 52
Bit-save array 109, 120
:blinker-p, Init Option to tv:minimum-window 106
Blinkers 127
:both, Option to trace 87
[Break after] 87
[Break before] 8 7
:break, Option to trace 87, 91
~reak, Special Form 90
breakon, Function 90
Breakpoints 89
Brief Documentation (c-sh-D) 32, 35
Buffers

Attributes 7
Copying 55
Modes 9
Multiple 57

c-X (Replace) 51
c-; (Indent For Comment) 20
c-A (Debugger command) 75
c-B (Stepper command) 88
c-c (Lisp input editor command) 69
c-E (Debugger command) 75
c-E (Stepper command) 88
c-G (Beep) 52

c-HELP (Debugger command) 74
c-L (Debugger command) 75
c-m-; (Kill Comment) 20
c-m-\ {Indent Region) 21
c-m-H (Mark Definition) 54
c-m-K (Kill Sexp) 54
c-m-L (Select Previous Buffer) 52
c-m-Q (Indent Sexp) 21
c-m-R (Debugger command) 75
c-m-RUBOUT (Backward Kill Sexp) 54
c-m-SPACE (Move To Previous Point) 52
c-m.:susPEND 73
c-m-TAB (Indent For Lisp) 21
c-m-V (Scroll Other Window) 57
c-m-w (Debugger command) 73, 75
c-N (Debugger command) 75
c-N (Stepper command) 86
c-P (Debugger command) 75
c-R (Debugger command) 75
c-R (Reverse Search) 51
c-s (Incremental Search) 50
c-sh-A (Quick Arglist) 36
c-sh-C (Compile Region) 64
c-sh-D (Brief Documentation) 32, 35
c-sh-E (Evaluate Region) 68
c-sh-M (Macro Expand Expression) 94
c-sh-V (Describe Variable At Point) 32
c-SPACE (Set Pop Mark) 52
c-u (Stepper command) 88
c->< ((Start Kbd Macro) 56
c->< (Stepper command) 88
c-X) (End Kbd Macro) 56
c->< l (One Window) 57
c->< z (Two Windows) 57
c->< 3 (View Two Windows) 57
c->< 4 (Modified Two Windows) 57
c".>< ; (Set Comment Column) 21
c->< B (Select Buffer) 52
c->< c-D (Display Directory) 37
c-X c-F (Find File) 7
c->< c-x (Swap Point And Mark) 52
c->< D (tr Dired) 38
c->< E (Call Last Kbd Macro) 56
c->< F (Set Fill Column) 10
c-x G (Open Get Register) 55
c-x H (Mark Whole) 56
c->< J (Jump To Saved Position) 52
c-x o (Other Window) 57
c->< s (Save Position) 52
c-x ><(Put Register) 55
c-Y (Yank) 54

167

168

c-Z (Quit) 74
Call Last Kbd Macro (c-X E) 56
Callers 36
:case method combination 122
:change-of-size-or-margins, Method for tv:sheet
Changed code 49

109

choose-variable-values, Function (in package tv:)
121

Choose-variable-values window 114, 119
Comments 19
Compile Buffer (m-x) 64
Compile Changed Definitions (m-x) 64
Compile Changed Definitions Of Buffer (m-sh-C) 64
Compile File (m-x) 65
Compile Region (c-sh-C) 64

114.

compile-file, Function (in package compiler:) 65
compile-file-load, Function (in package compiler:) 66
compile-flavor-methods, Macro 128
Compiled functions 61
Compiler Warnings (m-X) 73
Compiler warnings 57, 63, 71
compiler:compile-file., Function 65
compiler:compile-file-load, Function 66
Compiling code 61, 62
COMPLETE 6
Completion 6
[Cond after] 87
[Cond before] 87
[Cond break after] 87, 91
[Cond break before] 87, 91
:cond, Option to trace 87
condition, Flavor 122
condition-bind, Macro 123
[Conditional] 87
Conditions 121
Copying buffers 55
Copying files 55
Creating files 7

Program Development Tools and Techniques
Symbolics, Inc.

:def ault-init-plist, Option to defflavor 106
def const, Macro 62
defflavor, Macro 103, 106
deffla vor Options

:default-init-plist 106
:documentation 129
:gettable-instance-variables 103
:initable-instance-variables 112, 115
:required-flavors 106
:required-methods 103

def system, Macro 51
defvar, Macro 13, 62
def window-resource, Macro 115
Deinstall Macro (m-x} 56
Describe Flavor (m-x) 129
describe, Function 28, 30, 94
Describe Variable At Point {c-sh-V) 32
describe-flavor, Function 129
Directories, File 3 7
Dired (m-x} 38
Disassemble (m-X} 97
disassemble., Function 94, 97
Display Debugger 73
Display Directory {c-X c-D) 37
documentation, Function 32, 36
:documentation, Option to defflavor 129
Documentation strings 32, 34
Down Comment Line (m-N) 20
:draw-line, Method for tv:graphics-mixin 11, 106

:edges-from, lnit Option to tv:minimum-window
[Edit] 7, 74

106

Edit Callers (m-x} 37
Edit Changed Definitions (m-x} 49
Edit Changed Definitions Of Buffer (m-x} 49
Edit Combined Methods (m-x) 131
Edit Compiler Warnings (m-x) 73
Edit Definition (m- .) 33, 128, 129
Edit Methods (m-x} 57, 131

:daemon method combination
Daemon methods 108, 109
dbg, Function 90

103, 106, 108, 109, 110, 111 [Edit Screen] 58, 121

Debugger 71, 73, 89
Debugger commands

c-A 75
c-E 75
c-HELP 74
c-L 75
c-m-R 75
c-m-W 73, 75
c-N 75
c-P 75
c-R 75
m-8 75
m-L 75

Debugging 71

Electric Shift Lock Mode (m-x) 10
END 6
End Kbd Macro (c-x >) 56
:entry, Option to trace 87
:entrycond, Option to trace 87
:entryprint, Option to trace 87
[Error] 87, 90
error, Flavor 122
:error, Option to trace 87, 91
error-restart-loop, Macro 119
Evaluate And Replace Into Buffer (m-x) 68
Evaluate Buffer (m-x) 68
Evaluate Changed Definitions (m-><) 68
Evaluate Changed Definitions Of Buffer (m-sh-E) 68
Evaluate Into Buffer (m-x} 68
Evaluate Minibuffer (m-ESCAPE) 68

Program Development Tools and Techniques

Symbolics, Inc.

Evaluate Region (c-sh-E) 68
Evaluating code 61, 66, 86
[Exit] 94
:exit, Option to trace 87
:exitbreak, Option to trace 87, 91
:exitcond, Option to trace 87
:exitprint, Option to trace 87
Expanding macros 91
:expose-p, Init Option to tv:minimum-window 106

Files
Attribute lists 7
Copying 55
Creating 7
Directories 3 7
Init 9, 56

Fill Long Comment (m-x) 20
Find File (c-X c-F) 7
Find Unbalanced Parentheses (m-x) 22
flavor-allowed-init-keywords, Function (in package si:)

131
Flavors

condition 122
error 122
lgp:basic-lgp-stream 112, 113
si:vanilla-flavor 129
sys:abort 119
tv:any-tyi-mixin 118
tv:graphics-mixin 106
tv:list-mouse-buttons-mixin 118
tv:minimum-window 107
tv:process-mixia 118
tv:sheet 127
tv:window 102, 105, 106, 107

Function Apropos (m-x) 34
:function, Option to tv:choose-variable-values 121
Functions 33

apropos 31
arglist 36
breakoa 90
Compiled 61
compiler:compile-file 65
compiler:compile-file-load 66
dbg 90
describe 28, 30, 94
describe-flavor 129
disassemble 94, 97
documentation 32, 36
get-haadler-f or 131
inspect 97
Interpreted 61
listarray 30
load 66
make-system 71
mexp 94
pkg-goto 17

plist 32
prompt-and-read 126
si:fiavor-allowed-init-keywords 131
si:make-bardcopy-stream 116
signal 102, 123, 126
step 89
tv:choose-variable-values 114, 121
tv:make-blinker 127
tv:make-window 102, 112, 115, 118
tv:sheet-followiug-blinker 127
typep 129
unbreakon 90
what-files-call 32
where-is 31
who-calls 32

Generic operations 102

169

get-bandler-f or, function 131
:gettable-instance-variables, Option to deffiavor 103
graphics-mixin, Flavor (in package tv:) 106

HELP 5, 6, 56, 86

Incremental Search (c-s) 50
Indent For Comment (c-; or m- ;) 20
Indent For Lisp (TAB or c-m-TAB) 21
Indent New Comment Line (m-LINE) 20
Indent New Line (LINE) 21
Indent Region (c-m-\) 21
Indent Sexp (c-m-Q) 21
Init files 9, 56
Init keywords (for flavors) 131
:init, Method for tv:sbeet 109
lnit Options

:hlinker-p to tv:minimum-window 106
:edges-from to tv:minimum-window 106
:expGse-p to tv:minimum-window 106
:minimum-height to tv:minimum-window 106
:minimum-width to tv:minimum-window 106
:process to tv:process-mixin 118

:initable-instance-variahles, Option to deffiavor 112,
115

Insert Buffer (m-x) 56
Insert File (m-x) 56
:inside-size, Method for tv:minimum-window 107
[Inspect] 97
inspect, Function 97
Inspector 94, 128
Install Macro (m-X) 56
Install Mouse Macro (m-x) 56
Instance variables 103, 112, 115
Interpreted functions 61

Jump To Saved Position (c-x J) 52

Keyboard macros 56

170

Kill Comment {c-m- ;) 20
Kill Sexp {c-m-K} 54
Killing text 52

lgp:hasic-lgp-stream, Flavor 112, 113
lgp:basic-lgp-stream Methods

:send-command 113
:send-coordinates 113

LINE (Indent New Line) 21
Lisp input editing 68
Lisp input editor commands

c-C 69
m-C 69

Lisp Mode {m-x} 10
List Callers (m-K} 31, 37
List Changed Definitions {m-X} 49
List Changed Definitions Of Buffer {m-x) 49
List Combined Methods (m-x) 131
List Matching Lines (m-x} 50
List Matching Symbols (m-X) 32
List Methods {m-x} 130
list-mouse-buttons-mixin, Flavor (in package tv:) 118
listarray, Function 30
Load Compiler Warnings (m-x} 73
Load File (m-x} 66
load, Function 66
Long Documentation {m-sh-D) 32, 36

m-% (Query Replace) 51
m-. (Edit Definition) 33, 128, 129
m-; (Indent For Comment) 20
m-B (Debugger command) 75
m-c (Lisp input editor command) 69
m-ESCAPE (Evaluate Minibuffer) 68
m-L (Debugger command) 75
m-LINE (Indent New Comment Line) 20
m-N (Down Comment Line) 20
m-P (Up Comment Line) 20
m-sh-C (Compile Changed Definitions Of Buffer) 64
m-sh-D (Long Documentation) 32, 36
m-sh.-E (Evaluate Changed Definitions Of Buffer) 68
m-SPACE (Push Pop Point Explicit) 52
m-w (Save Region) 54
m-Y (Yank Pop) 54
Macro Expand Expression {c-sh-M) 94
Macro Expand Expression All {m-x) 94
Macros

compile-flavor-methods 128
condition-bind 123
defconst 62
defflavor 103, 106
def system 51
def var 13, 62
def window-resource 11 S
error-restart-loop 119
Expanding 91

Program Development Tools and Techniques

Keyboard 56
with-open-stream 116

Symbolics, Inc.

make-blinker, Function (in package tv:) 127
make-hardcopy-stream, Function (in package si:) 116
make-system, Function 71
make-system Options

:batch 71
make-window, Function (in package tv:) 102, 112, 115,

118
Mark Definition {c-m-H} 54
Mark Whole {c-X H) 56
Menu items

[ARGPDL] 86
[Attributes] 128
(Break after] 86
[Break before] 8 6
[Cond after] 8 6
[Cond before] 86
[Cond break after] 86, 91
[Cond break before] 86, 91
[Conditional] 86
[Edit Screen] 58, 121
[Edit] 7, 74
[Error] 86, 90
[Exit] 94
[Inspect] 97
[Modify] 95
[Print after] 86
[Print before] 86
[Print] 86
[Retry] 74
[Return] 94, 95
[Split Screen] 58, 121
[Step] 86, 89
[Trace] 85, 89
[Untrace] 86
[Wherein] 8 6

Method combination
:case 122
:daemon 103, 106, 108, 109, 110, 111

Methods 129
:any-tyi for tv:any-tyi-mixin 119
:change-of-size-or-margins for tv:sheet l 09
Daemon 108, 109
:draw-line for tv:graphics-mixin 11, 106
:init for tv:sheet 109
:inside-size for tv:minimum-window 107
:operation-handled-p for si:vanilla-flavor 131
Primary 103, 108, 110
:proceed 122, 123, 126
:refresh for tv:sheet 109, 120
:report 122, 126
:send-command for lgp:basic-lgp-stream 113
:send-coordinates for lgp:basic-lgp-stream 113
:which-operations for si:vanilla-flavor 131
:who-line-documentation-string 119

Program Development Tools and Techniques
Symbolics, Inc.

mexp, Function 94
Minibuffer 6
:minimum-height, Init Option to tv:minimum-window

106
:minimum-width, Init Option to tv:minimum-window
minimum-window, Flavor (in package tv:) 107
Modes 9
Modified Two Windows {c-x 4) 57
[Modify] 95
Modularity 103
Mouse clicks 118
Mouse documentation string 119
Move To Previous Point (c-m-SPACE) 52
Moving text 51
Multiple

Buffers 57
Windows 57

Multiple Edit Callers {m-x) 37
Multiple List Callers (m-x) 37
multiple-value. Special Form 107

Name Last Kbd Macro (m-x) 56
:nil, Option to trace 87

Objects 28
One Window (c-X 1) 57
Open Get Register (c -x G) 5 5

Packages 7, 8, 17, 31, 36
Parentheses, Balancing 21
Pathnames 37

106 pkg-goto, Function 17
plist, Function 32
Primary methods 103, 108, 110
[Print] 87
[Print after] 87
[Print before] 87
Print Modifications (m-x) 50
:print, Option to trace 87
:proceed, Method 122, 123, 126
Proceed types 74, 122
Proceeding 122
:process, Init Option to tv:process-mixin 118
process-mixin, Flavor (in package tv:) 118
Processes 118, 119
prompt-and-read, Function 126
Push Pop Point Explicit {m-SPACE) 52
Put Register {c-x x) 55

Query Replace (m-l) 51
query-io, Variable 126, 127
Quick Arglist {c-sh-A) 36
Quit (c-z) 74

171

:operation.;.handled-p. Method for si:vanilla-flavor 131
Options

:refresh, Method for tv:sheet 109, 120
Registers 55

:arg to trace 87
:argpdl to trace 87
:batch to make-system 71
:both to trace 87
:break to trace 87, 91
:cond to trace 87
:default-init-plist to defflavor 106
:documentation to defflavor 129
:entry to trace 87
:entrycond to trace 87
:entryprint to trace 87
:error to trace 87, 91
:exit to trace 87
:exithreak to trace 87, 91
:exitcond to trace 87
:exitprint to trace 87
:function to tv:choose-variahle-values 121
:gettable-instance-variables to defflavor 103
:initable-instance-variahles to defflavor 112, 115
:nil to trace 8 7
:print to trace 87
:required-flavors to defflavor 106
:required-methods to defflavor 103
:step to trace 8 7, 8 9
:value to trace 87
:wherein to trace 87

Other Window {c-x o) 57

Reparse Attribute List (m-x) 9
Replace (c-x) 51
Replacing 50
:report, Method 122, 126
:required-flavors, Option to defflavor 106
:required-methods, Option to defflavor 103
Resources 115
Restart handlers 7 4
RESUME 68, 8 9
[Retry] 74
RETURN 6
[Return] 94, 9 5
Reverse Search (c-R) 51

Save Position {c-X s) 52
Save Region {m-w) 54
Scroll Other Window (c-m-v) 57
Searching 50
Select All Buffers As Tag Table (m-x) 51
Select Buffer {c-X B) 52
SELECT E 7
SELECT I 97
Select Previous Buffer {c-m-L) 52
Select System As Tag Table (m-x) 51
:send-command, Method for lgp:basic-lgp-stream 113
:send-coordinates, Method for lgp:basic-lgp-stream 113
Set Backspace {m-X) 9

172

Set Base (m-x) 9
Set Comment Column (c-X ;) 21
Set Fill Column (c-X F) 10
Set Fonts (m-x) 9
Set Key (m-x) 56
Set Lowercase (m-x) 9
Set Nofill (m-x) 9
Set Package (m-x) 9
Set Patch File (m-x) 9
Set Pop Mark (c-SPACE) 52
Set Tab Width (m-x) 9
Set Vsp (m-X) 9
sheet, Flavor (in package tv:) 127
sheet-following-blinker, Function (in package tv:) 127
si:flavor-allowed-init·keywords, Function 131
si:mak.e-hardcopy-stream, Function 116
si:vanilla-flavor, Flavor 129
si:vanilla-flavor Methods

:operation-handled-p 131
:which-operations 131

signal, Function 102, 123, 126
Signalling conditions 121
Source Compare (m-x) 50
Source Compare Merge (m-x) 50
SPACE 6
SPACE (Stepper command) 86
Special commands (Debugger) 74
Special Forms

break 90
multiple-value 107
trace 86, 89, 91
untrace 86, 87
unwind-protect 127

[Split Screen] 58, 121
Split Screen (m-x) 57
standard-output, Variable 66
Start Kbd Macro (c-x () 56
[Step] 87, 89
step, Function 89
:step, Option to trace 87, 89
Stepper 86
Stepper commands

c-B 88
c-E 88
c-N 86
c-U 88
c-X 88
SPACE 86

Stepping 66, 86
SUSPEND 68
Swap Point And Mark (c-X c-x) 52
Symbols 30
sys:abort, Flavor 119

TAB (Indent For Lisp) 21
Tags Query Replace (m-x) 51

Program Development Tools and Techniques

Tags Search (m-x) 51
Tags tables 50
terminal-io, Variable 11, 101
Text

Killing 52
Moving 51
Yanking 52

[Trace] 85, 89
Trace (m-x) 85, 89
trace Options

:arg 87
:argpdl 87
:both 87
:break 87, 91
:coud 87
:entry 87
:entrycond 87
:entryprint 87
:error 87, 91
:exit 87
:exit break 87, 91
:exitcond 8 7
:exitprint 87
:nil 87
:print 87
:step 87, 89
:value 87
:wherein 87

trace, Special Form 86, 89, 91
Tracing 84
tv:any-tyi-mixin, Flavor 118
tv:any-tyi-mixin Methods

:any-tyi 119

Symbolics, Inc.

tv:choose-variable-values, Function 114, 121
tv:cboose-variable-values Options

:function 121
tv:graphics-mixin, Flavor 106
tv:graphics-mixin Methods

:draw-line 11, 106
tv:list-mouse-buttons-mixin, Flavor 118
tv:make-blinker, Function 127
tv:make-window, Function 102, 112, 115, 118
tv:mioimum-wiodow, Flavor 107
tv:minimum-window Init Options

:blinker-p 1Q6 !
:edges-from 1106
:expose-p 106
:minimum-height 106
:minimum-width l 06

tv:mioimum-window Methods
:inside-size 107

tv:process-mixin, Flavor 118
tv:process-mixin Init Options

:process 118
tv:sheet, Flavor 127
tv:sheet Methods

Program Development Tools and Techniques

Symbolics. Inc.

:change-of-size-or-margins 109
:init 109
:refresh 109, 120

tv:sheet-following-blinker, Function 127
tv:window, Flavor 102, 105, 106, 107
Two Windows (c-X 2) 57
typep, Function 129

unbreakon, Function 90
[Untrace] 87
untrace, Special Form 86, 87
unwind-protect, Special Form 127
Up Comment Line (m-P) 20
Update Attribute List (m-X) 9

:value, Option to trace 87
values, Variable 89
vanilla-flavor, Flavor (in package si:) 129
Variables 32

arglist 89
query-io 126, 127
standard-output 66
terminal-io 11, 101
values 89

View Directory (m-x) 38
View Two Windows (c-x 3) 57

w·hat-files-call, Function 32
Where Is Symbol {m-x) 31
where-is, Function 31
(Wherein] 87
:wherein, Option to trace 87
:which-operations, Method for si:vanilla-flavor 131
who-calls, Function 32
:who-line-documentation-string. Method 119
Whoppers 108
window, Flavor (in package tv:) 102, 105, 106, 107
Windows

Choose variable values 114. 119
Multiple 57

with-open-stream, Macro 116

Yank {c-Y) 54
Yank Pop {m-Y) 54
Yanking text 52

173

symbolics TM

Program Development Tools and Techniques
#990001

Design: Schafer/Lacasse
Typesetting: Cover - Litho Composition Co.
Text-Symbolics LGP-1 Laser Graphics Printer
Printing: Henry Sawyer Co.

symbolics™

Program Development
Help Facilities
November 1982

Cambridge, Massachusetts

Prepared by Symbolics, Inc.
Written by Jan Walker

This document corresponds to Release 4.0.

The information in this document is subject to change without notice and
should not be construed as a commitment by Symbolics, Inc. Symbolics,
Inc. assumes no responsibility for any errors that may appear in this
document.

Symbolics, Inc. makes no representation that the interconnection of its
products in the manner described herein will not infringe on existing or
future patent rights, nor do the descriptions contained herein imply the
granting of a license to make, use, or sell equipment constructed in
accordance with its description.

Symbolics' software described in this document is furnished only under
license, and may be used only in accordance with the terms of such license.
Title to, and ownership of, such software shall at all times remain in
Symbolics, Inc.

Symbolics, Inc. assumes no responsibility for the use or reliability of its
software on equipment that is not supplied or maintained by Symbolics, Inc.

Symbolics is a trademark of Symbolics, Inc., Cambridge, Massachusetts.

Copyright ©1982, Symbolics, Inc. of Cambridge, Massachusetts. All rights reserved. This
document may not be reproduced in whole or in part without the prior written consent of
Symbolics, Inc.

Program Development Help Facilities

Table of Contents

Program Development Help Facllltles

Interaction Conventions
Mouse documentation line
Zmacs Completion
Completion in other contexts
Typeout windows in Zmacs
HELP key in any Zmacs editing window

Notation Conventions
Summary of Functions In Different Contexts

Zmacs commands for finding out about the state of buffers
Zmacs commands for finding out about the state of Zmacs
Zmacs commands for finding out about Lisp
Zmacs commands for finding out about flavors
Zmacs commands for interacting with Lisp
Lisp facilities for finding out about Lisp

Reference Description of Functions

November 1982

Symbolics. Inc.

Page

1

1
1
1
2
3
3
4

6
6
6
6
7
7
7

9

Symbolics. Inc.

Program Development Help Facilities Symbolics, Inc.

Program Development Help Facllltles

The Lisp Machine software development environment contains many help facilities. This
document summarizes the facilities for finding out information about the program you are writing
and about the general state of your Lisp environment.

This is not a document about program development and not a document about help facilities in
general. It is a collection of the support tools and facilities available for finding the kind of
information that you need while programming. It is not exhaustive but suggestive. It does not
recommend strategies for applying these facilities but rather lays out what is available for creating
a personal style of using the Lisp Machine effectively.

The document contains three parts. The first part explains some interaction conventions for name
completion and using the mouse to find information. The second part contains a summary by
topic of Zmacs and Lisp functions that provide information or assistance during programming.
The third part is an alphabetical reference listing of the functions that appear in the summary list.

This document is related to several other documents:

Lisp Machine Summary
Lisp Machine Manual
Zmac$ Manual

Refer to these other documents for related information and explanations of terminology.

Interaction Conventions

The Lisp Machine software has some general interaction conventions. For example, many editor
commands off er name completion. You can apply these facilities to exploring the command space
of the machine. This section describes some general facilities and strategies for making more
effective use of the machine.

Mouse documentation llne

The mouse documentation line contains information about what different mouse clicks mean. As
you move the mouse across different mouse-sensitive areas of the screen, the mouse documentation
line changes to reflect the changing commands available.

When no documentation appears, it does not necessarily mean that the mouse clicks are
undefined. Not all programs have provided material for the mouse documentation line. When
the mouse documentation line is blank at "top level" in a window, the mouse usually offers some
standard commands. mouse-L selects a window; mouse-R brings up either the system menu or a
menu specific to the application.

Zmacs Completion

Zmacs minibuff er commands off er completion over various name spaces. Completion is a facility
for reducing the number of keys you need to type to specify a name. As-soon as you have typed

October 1982 1 Symbolics, Inc.

Symbolics. Inc. Program Development Help Facilities

enough characters for a name to be recognized as unique, you can ask for completion. Up until
then, you can ask to see which names are possible completions of what you have typed. You can
tell when completion is available; the notation "(Completion)" appears at the right end of the
minibuff er label line.

Completion for extended commands (m-X commands)

The following table summarizes the keys that control completion for entering extended commands.

Action in m-X commands Key
SPACE Completes the words up to the current word, as far as they are unique.
HELP or c-'? Shows the possible completions in the typeout area.
mouse-R
c-/
ALTMODE

Pops up a menu of the possible completions.
Runs Apropos for each of the partially typed words in the name.
Displays the full command name, if possible.

RETURN,, END Confirms the command when possible, whether or not you have seen its full name.

Request completion by typing either AL TMODE or RETURN. Using AL TMODE shows the completed
name, requiring a further RETURN to confirm it; using RETURN gets you completion and
confirmation in one step.

Any time you are typing in a Zmacs extended command name, completion is available. Zmacs
command name completion works on initial substrings of each word in the command. For
example, 11 m-X e z 11 is enough to specify the extended command "Edit Zmacs Command".

Until Zmacs can recognize the name as unique, your request for completion just completes as far
as possible. Using ALTMODE at this point moves the input cursor to the first ambiguous place in
the command name.

Whenever you are entering a name in a minibuffer that offers completion, you can find out all
possible completions of what you have typed so far. Two styles are possible. Using HELP or c-'?
shows the list of completions in the typeout area; the names are mouse-sensitive. Using mouse-R
shows the list in a pop-up menu. One good strategy for browsing is to look at the list of
completions for initial substrings that are common command verbs, like "list" or "set".

Completion form-.

Them-. (Edit Definition) command offers completion over the set of names that is in the files
that have already been loaded into editor buffers. In this case, you request completion with
AL TMODE and then confirm it with RETURN.

m-. offers initial substring name completion, with hyphens rather than spaces delimiting the
words. For example, 11 e-d-i 11 would be sufficient for specifying edit-definition-internal
(assuming that Zmacs had previously parsed the source file containing it into a buffer).

Completion In other contexts

Completion is available in several other contexts, for example, buffer names and package names.
We are gradually extending the contexts in which completion is available. Be on the lookout for
the presence of "(Completion)" in the minibuffer label line. The conventions for extended
commands usually apply.

Symbolics. Inc. 2 November 1982

Program Development Help Facilities Symbolics, Inc.

Typeout windows In Zmacs

Most of the Zmacs commands for looking up information display the information in a typeout
window. A typeout window overlays the current buffer display with its contents and disappears as
soon as you type any character. Most typeout windows contain mouse-sensitive items. In
particular, Zmacs commands and Lisp function specs are mouse-sensitive and small menus of
operations on the names are available (Arglist, Edit Definition, and so on). See the mouse
documentation line.

HELP key In any Zmacs editing window

The HELP key enables you to locate help material that is relevant to the current context.
Individual programs are responsible for providing the routines that support the HELP key. The
most complex general help facility is that provided by Zmacs editing windows. The HELP key
provides access to a number of distinct kinds of help, depending on the key you press after the
HELP key.

Command

HELP ?

HELP A

HELP·c

HELP D

HELP L

HELP U

HELP V

HELP W

November 1982

Description

Displays a brief summary of the Zmacs help options (rather like the rest of this
chart).

For looking up all Zmacs commands whose names contain a specified substring.
You type the substring. Zmacs displays the one-line documentation for the
command and which key invokes it in the current context, if any. See HELP V
for looking up variable names. The "A" stands for "apropos". When people say,
"Use Apropos," they are referring to this function.

For looking up which command is bound to a particular key. You type the key;
Zmacs displays the name of the command and its summary paragraph. HELP C
uses Self Document.

For looking up the summary paragraph for a Zmacs command. You enter the
command name. Completion is available. It does not tell you how to invoke a
command. Use HELP W for that. HELP D uses Describe Command.

For finding out what you did that caused unexpected behavior. Zmacs displays a
representation of the last 60 keys that you pressed. HELP L uses What Lossage.

For undoing the last major operation. Zmacs preserves a copy of the buffer
before doing certain operations, in particular, sorting and filling. You can revert
to the state prior to one of those kinds of operations by using HELP U. Zmacs
queries you whether to go ahead with undoing; the only information you have
about what is being undone is the name of the class of operation, for example,
"fill" or "sort". HELP U uses Undo.

For looking up all Zmacs user variables whose print names contain a specified
substring. You type the substring. Zmacs displays the variable names and their
current values. See HELP A for looking up command names. HELP V uses
Variable Apropos.

For finding the key assignment for a particular command. You type the
command name; Zmacs displays the current key assignment. Completion is
available. HELP W uses Where Is. ·

3 Symbolics, Inc.

Symbolics. Inc. Program Development Help Facilities

Notation Conventions

,_

The keys with black lettering (like SHIFT or META) are shift keys, designed to be pressed in
combination with other keys. They do not themselves transmit characters. Their combinations
are shown hyphenated to remind you to press them at the same time as the associated key, not
before.

The keys with white lettering (like X or SYSTEM) all transmit a character. Combinations of these
keys are meant to be pressed in sequence, for example, SYSTEM L means to press the SYSTEM key,
release it, and then press the L key.

The CTRL and META key combinations are abbreviated with c- and m-; the SUPER, HYPER, and
SHIFT keys withs-, h-, and sh-, respectively. For example, the combined key press META-X is
pronounced "meta x" and written as "m-X".
This document uses the following notation conventions:

Appearance in document
send, chaos:host-up
RETURH,ABORT,c-F
SPACE
login

Representing
Printed representation of Lisp objects in running text.
Keyboard keys.
Space bar.
Literal type-in.
Lisp code examples.
Syntax descriptions of definitions.

(make-symbol "foo•)
function name arg J arg2
Undo, Tree Edit Any Command names in Zmacs and Zmail appear with initial letter of

each word capitalized.
Insert File (m-X) Extended command names in Zmacs and Zmail. Use m-X to invoke

one.
[Map Over]
(mouse-R)

Menu items.
Mouse clicks; L=left, M =middle, R =right.

Mouse commands use notations for menu items and mouse clicks in the following ways:

Square brackets delimit a mouse command; slashes (/) separate the members of a compound
mouse command. The notation indicates which button to click only when that differs from the
standard. For a single menu item, always click left. For example, the following two commands
are exactly the same:

[Previous]
[(mouse-L) Previous]

For a compound command, always click right on each menu item except the last, where you click
left. For example, the following two compound commands are exactly the same:

[Map Over I Move I Hardcopy]
[(mouse-R) Map Over/ (mouse-R) Move/ (mouse-L) Hardcopy]

For all other cases, the notation shows explicitly which button to click. For example:

[Map Over / (mouse-M) Move]

Symbolics. Inc. 4 October 1982

Program Development Help Facilities Symbolics, Inc.

Some more examples:

- Suppose you are to click right on menu item [Map Over], then click right on menu
item [Move], then click left on menu item [Hardcopy]. The notation is:

[Map Over/ Move/ Hardcopy]

- Suppose you are to click left on menu item [Previous]. The notation is:
[Previous]

- Suppose you are to click right on menu item [Map Over], then click middle on menu
item [Move]. The notation is:

[Map Over/ (mouse-M) Move]

- Suppose you are to click right on menu item [Previous]. The notation is:
[(mouse-R) Previous]

In this document, all Zmacs commands appear by name rather than by key binding. Command
tables indicate whether the command has a standard key binding or whether it must be used as
an extended command. For example, Edit Zmacs Command is an extended command and
requires that you invoke it with m-X. Forward Word is bound to the m-F key; you invoke it by
pressing the key.

Command
Edit Zmacs Command (m-X)
Forward Word (m-F)
Find File (c-X c-F)

Type of command
An extended command
A command with a standard key binding
A command with a standard key binding

Functions and their arguments appear in the following kind of summary line:

(apropos string package inferiors superiors)

Words in italics are the arguments to the function. The words reflect the meaning of the
argument .. Underlined words are optional arguments; you can leave them out. The reference
description for the function explains the meanings of the arguments and the default values for
optional arguments.

October 1982 5 Symbolics, Inc.

Symbolics, Inc. Program Development Help Facilities

Summary of Functions in Different Contexts

Both Zmacs and Lisp offer facilities for finding information either about themselves or about the
current environment. In addition, Zmacs offers ways to find information about Lisp functions
and variables.

This section lists the names of the functions and commands that are available, grouped according
to the context in which they are available. The purpose of this section is to summarize the
capabilities and to help you determine both the overall contexts for which you can find help and
a particular function that might be what you are looking for. Explanations for each of these
functions appear in an alphabetical listing in the third part of this document.

Zmacs commands for finding out about the state of buffers

Edit Buffers (m-X)
Edit Changed Definitions (m-X)
Edit Changed Definitions Of Buffer (m-X)
List Buffers (c-X c-B)
List Changed Definitions (m-X)
List Changed Definitions Of Buffer (m-X)
List Definitions (m-X)
List Matching Lines (m-X)
Print Modifications (m-X)
Select System as Tag Table (m-X)
Tags Search (m-X)

Zmacs commands for finding out about the state of Zmacs

Apropos (HELP A, m-X)
Describe Variable (m-X)
Edit Zmacs Command (m-X)
List Commands (m-X)
List Registers (m-X)
List Some Word Abbrevs (m-X)
List Tag Tables (m-X)
List Variables (m-X)
List Word Abbrevs (m-X)

Zmacs commands for finding out about Lisp

Brief Documentation (c-sh-D)
Describe Variable At Point (c-sh-V)
Edit Callers (m-X)
Edit Definition (m-.)
Edit File Warnings (m-X)
Function Apropos (m-X)
List Callers (m-X)
List Matching Symbols (m-X)
Long Documentation (m-sh-D)

Symbolics, Inc. 6 November 1982

Program Development Help Facilities

Multiple Edit Callers (m-X)
Multiple List Callers (m-X)
Quick Arglist (c-sh-A)
Where Is Symbol (m-X)

Zmacs commands for finding out about flavors

Describe Flavor (m-X)
Edit Combined Methods (m-X)
Edit Methods (m-X)
List Combined Methods (m-X)
List Methods (m-X)

Zmacs commands for interacting with Lisp

Break (BREAK)
Compile And Exit (m-2)
Compile Buff er (m-X)
Compile Changed Definitions (m-X)
Compile Changed Definitions Of Buffer (m-sh-C, m-X)
Compile File (m-X)
Compile Region (c-sh-C, m-X)
Compiler Warnings (m-X)
Edit Compiler Warnings (m-X)
Evaluate And Exit (c-m-2)
Evaluate And Replace Into Buffer (m-X)
Evaluate Buffer (m-X)
Evaluate Changed Definitions (m-X)
Evaluate Changed Definitions Of Buffer (m-sh-E, m-X)
Evaluate Into Buffer (m~X)
Evaluate Minibuff er (m-AL TMODE)
Evaluate Region (c-sh-E, m-X)
Evaluate Region Hack (m-X)
Evaluate Region Verbose (c-m-sh-E)
Load Compiler Warnings (m-X)
Macro Expand Expression (c-sh-M, m-X)
Trace (m-X)
Quit (c-2)

Lisp facllltles for finding out about Lisp

(apropos string package inferiors superiors)
(arglist function flgg)
(describe object)
(describe-area area-name)
(describe-defstruct instance structure-name)
(describe-flavor flavor-name)
(describe-package package-name)
(describe-system system-name)
(disassemble function)
(documentation function)

November 1982 7

Symbolics. Inc.

Symbolics. Inc.

Symbolics, Inc.

(si:flavor-allowed-init-keywords flavor-name)
(inspect object)
(compiler:load-compiler-warnings file flush-flag)
(mexp)
(trace specs)
(untrace specs)
(variable-boundp variable)
(what-files-call string package)
(where-ls symbol package)
(who-calls symbol package inferiors superiors)

Symbolics, Inc. 8

Program Development Help Facilities

November 1982

Program Development Help Facilities Symbolics. Inc.

Reference Description of Functions

This section contains a summary paragraph of documentation for each of the information-finding
commands and functions appearing in the summary lists of this document.

This reference list is in alphabetical order by name of the command or function. Zmacs editor
commands appear according to the names of the commands that implement them, rather than
according to the names of the keys that invoke them. For example, m~x Compile Buffer appears
under "C" rather than under "M"; c-sh-A appears under "Q" (because its name is Quick Arglist)
rather than under "C". For commands that are usually invoked by a single key rather than by
m-X, the key name appears with the command. (Remember you can always use HELP W to find a
key name.)

Some Zmacs commands come in pairs, for example, List Callers and Edit Callers. The commands
are very similar. The List version allows you to just look at the list or to decide to start editing
the items in the list. The list items are always mouse-sensitive. For the Edit version of the
command, c-. is always the command for moving to the next item.

Apropos (HELP A, m-X)
Displays all the Zmacs commands whose names contain a specified substring.
You type the substring. Zmacs displays one line of documentation for the
command and which key invokes it in the current context, if any.

(apropos string package inferiors superiors)
Displays all of the symbols whose print names contain the string. By default, it
looks in the global package and its descendants, but you can specify a package
name. For symbols that have function bindings, it displays the argument list.
For symbols that are bound, it displays a notation "Bol,Uld". apropos returns
the list of symbols that it found.

(apropos "forward• 'zwei)
(apropos "process• 'global nil)

The second example looks only in the global package, not in any of its
inferiors.

(arglist function JlJJS) (see also Quick Arglist)

BREAK

Returns a representation of the arguments that the function expects. When the
original function definition contained an arglist declaration, arglist returns
that list when flag is not specified or nil. When flag is not nil, then arglist
returns the real argument list from the function. When the original function
used a values declaration, arglist returns the names for the values returned by
the function.

(arglist 'make-array)

You cannot use arglist . to find the arguments for combined methods.

Enters a Lisp Listener from the current window. It uses the screen area of the
frame that was selected when you used BREAK. When you use it from the
editor, any Lisp forms you type are evaluated in the current package (the one
showing in the status line). Use RESUME to return to the original context.

Brief Documentation (c-sh-D) (see also Long Documentation)

November 1982

Displays brief documentation for the specified Lisp function. By default, it
displays documentation for the current function. With a numeric argument, it

9 Symbolics. Inc.

Symbolics, Inc.

c-m-sh-E

c-sh-A

c-sh-C

c-sh-D

c-sh-E

c-sh-V

Program Development Help Facilities

prompts for a function name, which you can either type in or select with the
mouse. It displays the first line from the summary paragraph in the echo area.

See Evaluate Region Verbose.

See Quick Arglist.

See Compile Region.

See Brief Documentation.

See Evaluate Region.

See Describe Variable At Point.

Compile And Exit (m-2)
Compiles the buffer and returns from top level. It selects the window from
which the last (ed) function or the last debugger c-E command was executed.

Compile Buffer (m-X)
Compiles the entire buffer. With a numeric argument, it compiles from point
to the end of the buffer. (This is useful for resuming compilation after a prior
Compile Buffer has failed.)

Compile Changed Definitions (m-X)
Compiles any definitions that have changed in any Lisp mode buffers. With a
numeric argument, it queries individually about whether to compile each
changed definition.

Compile Changed Definitions Of Buffer (m-sh-C, m-X)
Compiles any definitions in the current buffer that have been changed. With a
numeric argument, it prompts individually about whether to compile each
changed definition.

Compile File (m-X)
Compiles a file, offering to save it first. It prompts for a file name in the
mini buff er, using the file associated with the current buff er as the default. It
offers to save the file if the buffer has been modified.

Compile Region (c-sh-C, m-X)
Compiles the region, or if no region is 'defined, the current definition.

Compiler Warnings (m-X) (see also Edit Compiler Warnings)
Puts all pending compiler warnings in a buffer and selects that buffer. It loads
the compiler warnings database into a buffer called *Compiler-Warnings-I*,
creating that buffer if it does not exist.

(describe object) (see also inspect)
Displays available information about an object, in a format that depends on the
type of the object. For example, describing a symbol displays its value,
definition, and properties. describe returns the object.

(describe 'time:get-time)

(describe-area area-name)
Displays attributes of the specified area.

(describe-area (%area-number 'foo))
(describe-area 'working-storage-area)

(describe-def struct instance structure-name)

Symbolics, Inc.

Displays a description of the instance, showing the contents of each of its slots.
structure-name is not necessary for named structures but must be provided for

10 November 1982

Program Development Help Facilities Symbolics, Inc.

unnamed structures. When you use supply structure-name, you force the
function to use that structure name instead of letting the system figure it out;
in addition, it overrides the :describe option for structures that know how to
describe themselves.

Describe Flavor (m-X) (see also describe-flavor)
Displays a description of a flavor. It reads a flavor name via the mouse or
from the minibuffer using completion. It displays a description of the flavor in
a typeout window. The description includes names of flavors that the specified
one directly depends on and names of flavors that depend on it. It also
displays the documentation and the names of its instance variables.

(describe-flavor flavor-name) (see also Describe Flavor)
Displays descriptive information about a flavor.

{describe-flavor 'tv:basic-menu)

(describe-package package-name)
Displays information about a package.

{describe-package 'zwei)

That example is the same as this one:
{describe {pkg-find-package 'zwei))

(describe-system system-name)
Displays information about a system, including the name of the file containing
the system declaration and when the files in the current version of the system
were compiled.

Describe Variable (m-X)
Displays the documentation and current value for a Zmacs variable. It reads
the variable name from the minibuffer, using completion.

Describe Variable At Point (c-sh-V)
Displays information, in the echo area, about the current Lisp variable. The
information includes whether the variable is declared special, whether it has a
value, what file defines it, and whether it has documentation put on by defvar
or defconst. When nothing is available, it checks for lookalike symbols in
other packages.

(disassemble function) (see also mexp)
Displays the macro-instructions for the function. It does not work for
functions that are not compiled or that are implemented in microcode, like
cons or car. (See How to Read Assembly Language in the Lisp Machine
Manual.) ·

{disassemble 'plus)

Use this function for things like finding clues about whether a macro is being
expanded correctly.

(documentation function)
Returns the documentation string for a function or variable. It returns nil
when no documentation has been provided. (Note: as of Release 4.0, very few
functions have associated documentation.)

{documentation 'zwei:com-quick-arglist)

Edit Buffers (m-X) (see also List Buffers)

November 1982

Displays a list of all buffers, allowing you to save or delete buffers and to
select a new buffer. A set of single character subcommands lets you specify

11 SymbQ/ics, Inc.

Symbolics. Inc. Program Development Help Facilities

various operations for the buffers. For example, you can mark buffers to be
deleted, saved, or not modified. Use HELP to see further explanation. The
buff er is read-only; you can move around in it by searching and with
commands like c-N or c-P.

Edit Callers (m-X) (see also List Callers, Multiple Edit Callers)
Prepares for editing all functions that call the specified one. It reads a function
name via the mouse or from the minibuffer with completion. By default, it
searches the current package. You can control the package being searched by
giving the function an argument. With c-U, it searches all packages; with c-U
c-U, it prompts for a package name. It selects the first caller; use c-. (Next
Possibility) to move to a subsequent definition. It takes about 5 minutes to
search all packages.

Edit Changed Definitions (m-X) (see also List Changed Definitions)
Determines which definitions in any Lisp mode buff er have changed and selects
the first one. It makes an internal list of all the definitions that have changed
in the current session and selects the first one on the list. Use c-. (Next
Possibility) to move to a subsequent definition. Use a numeric argument to
control the· starting point for determining what has changed:
1 For each buffer, since the file was last read (the default).
2 For each buffer, since it was last saved.
3 For each definition in each buffer, since the definition was last compiled.

Edit Changed Definitions Of Buffer (m-X) (see also List Changed Definitions Of Buffer)
Determines which definitions in the buffer have changed and selects the first
one. It makes an internal list of all the definitions that have changed since the
buffer was read in and selects the first one on the list. Use c-. (Next
Possibility) to move to subsequent definitions. Use a numeric argument to
control the starting point for determining what has changed:
1 Since the file was last read (the default).
2 Since the buffer was last saved.
3 Since the definition was last compiled, for each definition in the buffer.

Edit Combined Methods (m-X) (see also List Combined Methods)
Prepares to edit the methods for a specified message to a specified flavor. It
prompts first for a message name, then for a flavor name. It selects the first
combined method component. Use c-. (Next Possibility) to move to a
subsequent definition. The definitions appear in the order that they would be
called when the message was sent. Error messages appear when the flavor does
not handle the message and when the flavor requested is not a composed,
instantiated flavor.

Edit Compiler Warnings (m-X) (see also Compiler Warnings)
Prepares to edit all functions whose compilation caused a warning message. It
queries, for each of the files mentioned in the database, whether you want to
edit the warnings for the functions in that file. It splits the screen, putting the
warning message in the top window. The bottom window displays the source
code whose compilation caused the message. Use c-. (Next Possibility) to
move to a subsequent warning and source function. After the last warning, it
returns the screen to its previous configuration.

Edit Definition (m-.)

Symbolics. Inc.

Prepares to edit the definition of a function, variable, flavor, or anything else
defined with a "defsomething" special form. It prompts for a definition name

12 November 1982

Program Development Help Facilities Symbolics. Inc.

from the minibuffer. Name completion is available for definitions in files that
have already been loaded into buffers. You can select a name by clicking the
mouse over a definition name in the current buffer. It selects the buffer
containing the definition for that name, first reading in the file if necessary.
With a numeric argument, it selects the next definition that satisfies the most
recent name given. It tells you in the echo area when it finds more than one
definition for a name.

Edit File Warnings (m-X)
Prepares to edit any functions in a specified file for which warnings exist. It
prompts for a file name, which can be either a source file or a compiled file. It
splits the screen, putting a warning message from the warnings database in the
top window. The bottom window displays the source code whose compilation
caused the message. If the database does not contain any warnings for this file,
it prompts for the name of a file containing the warnings. Use c:-. (Next
Possibility) to move to a subsequent warning and source function. After the
last warning, it returns the screen to its previous configuration.

Edit Methods (m-X) (see also List Methods)
Prepares to edit all the methods on any flavor for a particular message. It
prompts for a message name. It finds all the flavors with handlers for the
message, makes an internal list of the method names, and selects the definition
for the first one. Use c:-. (Next Possibility) to move to subsequent definitions.

Edit Zmacs Command (m-X)
, Finds the source for the function installed on a key. You can press any key

combination or enter an extended command name. Use a numeric argument to
edit the function that implements a prefix command (like m-X or c:-X).

Evaluate And Exit (c:-m-2)
Evaluates the buffer and returns from top level. It selects the window from
which the last (ed) function or the last debugger c:-E command was executed.

Evaluate And Replace Into Buffer (m-X)
Evaluates the Lisp object following point in the buff er and replaces it with its
result.

Evaluate Buffer (m-X)
Evaluates the entire buffer. With a numeric argument, it evaluates from point
to the end of the buffer.

Evaluate Changed Definitions (m-X)
Evaluates any definitions that have changed in any buffers. With a numeric
argument, it prompts individually about whether to evaluate particular changed
definitions.

Evaluate Changed Definitions Of Buff er (m-sh-E, m-X)
Evaluates any definitions in the current buff er that have been changed. With a
numeric argument, it prompts individually about whether to evaluate particular
changed definitions.

Evaluate Into Buff er (m-X)

November 1982

Evaluates a form read from the minibuffer and inserts the result into the
buffer. You enter a Lisp form in the minibuffer, which is evaluated when you
press END. The result of evaluating the form appears in the buffer before
point. With a numeric argument, it also inserts any typeout that occurs during
the evaluation into the buffer.

13 Symbolics. Inc~

Symbolics, Inc. Program Development Help Facilities

Evaluate Minibuff er (m-AL TMODE)
Evaluates forms from the minibuffer. You enter Lisp fornis in the minibuffer,
which are evaluated when you press END·. The value of the form itself appears
in the echo area. If the form displays any output, that appears as a typeout
window.

Evaluate Region (c-sh-E, m-X)
Evaluates the region. When no region has been defined, it evaluates the
current definition. It shows the results in the echo area.

Evaluate Region Hack (m-X)
Evaluates the region, ensuring that any variables appearing in a defvar have
their values set.· When no region has been defined, it evaluates the current
definition. It shows the results in the echo area.

Evaluate Region Verbose (c-m-sh-E)
Evaluates the region. When no region has been defined, it evaluates the
current definition. It shows the results in a typeout window.

(flavor-allowed-init-keywords flavor-name) (In si:)
Returns a list containing the init keywords and inittable instance variables
allowed for a particular flavor.

(si:flavor-allowed-init-keywords 'tv:basic-menu)

Function Apropos (m-X)
Displays all the Lisp functions whose print names contain a particular substring.
It reads the substring from the minibuffer. By default, it searches the current
package. You can control the package being searched by giving the function an
argument. With c-U, it searches all packages; with c-U c-U, it prompts for a
package name.

(inspect object) (see also describe)
Creates or selects an Inspector window and displays available information about
an object. inspect and describe provide similar information, except that
inspect is an interactive facility for further exploring a data structure.

(inspect tv:selected-window)
(inspect (tv:window-under-mouse))

List Buffers (c-X c-B) (see also Edit Buffers)
Prints a list of all the buffers and their associated files. The lines in the list
are mouse-sensitive, offering a menu of operations on the buffers. Clicking left
on a line selects the buffer. For buffers with associated files, the version
number of the file appears. For buffers without associated files, the size of the
buffer in lines appears. For Dired buffers, the pathname used for creating the
buffer appears as the version. The list of buffers appears sorted in order of last
access, with the currently selected one at the top. You can inhibit sorting by
setting zwei:*sort-zmacs-buffer-list* to nil.

List Callers (m-X) (see also Edit Callers, Multiple List Callers)

Symbolics, Inc.

Lists all functions that call the specified function. It reads a function name via
the mouse or from the minibuff er with completion. By default, it searches the
current package. You can control the package being searched by giving the
function an argument. With c-U, it searches all packages; with c-U c-U, it
prompts for a package name. The names are mouse-sensitive. Use c-. (Next
Possibility) to start editing the definitions in the list. It takes about 5 minutes
to search all packages. ·

14 November 1982

Program Development Help Facilities Symbolics, Inc.

List Changed Definitions (m-X) (see also Edit Changed Definitions)
Displays a list of any definitions that have been edited in any buffer. Use c-.
(Next Possibility) to start editing the definitions in the list. Use a numeric
argument to control the starting point for determining what has changed:
1 For each buffer, since the file was last read (the default).
2 For each buffer, since it was last saved.
3 For each definition in each buffer, since the definition was last compiled.

List Changed Definitions Of Buffer (m-X) (see also Edit Changed Definitions Of Buffer)
Displays the names of definitions in the buffer that have changed. It makes an
internal list of the definitions changed since the buffer was read in and offers
to let you edit them. Use c-. (Next Possibility) to move to subsequent
definitions. Use a numeric argument to control the starting point for
determining what has changed:
1 Since the file was last read (the default).
2 Since the buffer was last saved.
3 Since the definition was last compiled, for each definition in the buffer.

List Combined Methods (m-X) (see also Edit Combined Methods)
Lists the methods for a specified message to a specified flavor. It prompts first
for a message name, then for a flavor name. It lists the names in a typeout
window. Error messages appear when the flavor does not handle the message
and when the flavor requested is not a composed, instantiated flavor. Use c-.
(Next Possibility) to start editing the definitions in the list.

List Commands (m-X)
Lists names and one-line summaries for all extended commands available in the
current context. It displays the names in a typeout window. The list is not
sorted.

List Definitions (m-X)
Displays the definitions from a specified buffer. It reads the buffer name from
the minibuffer, using the current buffer as the default. It displays the list as a
typeout window. The individual definition names are mouse-sensitive.

List Matching Lines (m-X)
Displays all the lines following point in the current buffer that contain a given
string. It prompts for the string in the minibuffer. With a numeric argument,
it shows only the first n occurrences of the string following point. It does not
accept a numeric argument. The lines are mouse-sensitive.

List Matching Symbols (m-X)
Lists the symbols that satisfy a predicate. It prompts for a predicate lambda
expression of one argument. The predicate gets compiled, for speed. The
predicate must return something other than nil for the symbol to be included
in the list. For example

you pressed: m-X L M S
minibuf fer contains: ' (LAMBDA (SYMBOL))

revised minibuffer: '(LAMBDA (SYMBOL) (string-search "foo" symbol))
By default, it searches the current package. You can control the package being
searched by giving the function an argument. With c-U, it searches all
packages; with c-U c-U, it prompts for a package name. It selects the first one;
use c-. (Next Possibility) to move to a subsequent definition.

List Methods (m-X) (see also Edit, Methods)

November 1982 15 Symbolics, Inc.

Symbolics, Inc. Program Development Help Facilities

Lists all the function specs for all methods on any flavor that handle a
particular message. It prompts for the message name. It finds all the flavors
with methods for the message and displays the information in a typeout
window. The function specs are mouse-sensitive.

List Registers (m-X)
Displays names and contents of all defined registers. Use Apropos to see
commands for manipulating registers.

List Some Word Abbrevs (m-X)
Lists the abbreviations or expansions that contain the given string. Use
Apropos to see the other abbreviation commands.

List Tag Tables (m-X)
Lists the names of all the tag tables currently available. Use Apropos to see
other commands using tags.

List Variables (m-X)
Lists all Zmacs variable names and their values. With a numeric argument, it
also displays the documentation line for the variable. Zmacs variables are those
that have been provided for customizing the editor. Their names differ from
their internal Lisp names:

Zmacs variable name: Fill Column
Internal Lisp name: zwei:*fill-column*

List Word Abbrevs (m-X)
Lists all current abbreviations and their expansions.

(load-compiler-warnings file flush-flag) (In compiler:)
Loads a file containing compiler warning messages into the warnings database.
The file should contain the printed representation of compiler warnings (as
saved by print-compiler-warnings). It uses flush-flag to determine whether
to replace any of the warnings already in the database. When the flag is not
nil, it deletes any warnings associated with a source file before loading any new
warnings for that file. Otherwise, it merges warnings from the file with those
already in the warnings database. The default is t.

Load Compiler Warnings (m-X)
Loads a file containing compiler warning messages into the warnings database.
It prompts for the name of a file that contains the printed representation of
compiler warnings. It always replaces any warnings already in the database.

Long Documentation (m-sh-D) (see also Brief Documentation)

m-.

m-ALTMODE

m-sh-C

m-sh-D

m-sh-E

Displays the summary documentation for the specified Lisp function. It
prompts for a function name, which you can either type in or select with the
mouse. The default is the current function.

See Edit Definition.

See Evaluate MiniBuffer.

See Compile Changed Definitions Of Buffer.

See Long Documentation.

See Evaluate Changed Definitions Of Buffer.

Macro Expand Expression (c-sh-M, m-X)
Displays the macro expansion of the next Lisp expression in the buffer. It

Symbolics, Inc. 16 November 1982

Program Development Help Facilities Symbolics. Inc.

reads the Lisp expression following point and expands all macros within it at all
levels, displaying the result on the typeout window. With a numeric argument,
it pretty-prints the result back into the buffer, immediately following the
expression.

(mexp) (see also disassemble)
Displays the expansion of a macro. It prompts for a macro invocation to
expand and then displays its expansion without evaluating it. It continues
prompting until you enter something that is not a cons (for example,() stops
it.)

Multiple Edit Callers (m-X) (see also Edit Callers)
Prepares for editing all functions that call the specified ones. It reads a
function name from the minibuffer, with completion. It then keeps asking for
another function name until you end it with just RETURN. By default, it
searches the current package. You can control the package being searched by
giving the function an argument. With c-U, it searches all packages; with c-U
c-U, it prompts for a package name. It selects the first caller; use c-. (Next
Possibility) to move to a subsequent definition.

Multiple List Callers (m-X) (see also List Callers)
Lists all the functions that call the specified functions. It reads a function
name from the minibuffer, with completion. It continues prompting for a
function name until you end it with just RETURN. By default, it searches the
current package. You can control the package being searched by giving the
function an argument. With c-U, it searches all packages; with c-U c-U, it
prompts for a package name. Use c-. (Next Possibility) to start editing the
definitions in the list.

Print Modifications (m-X)
Displays the lines in the current buffer that have changed since the file was
first read into a buffer. With a numeric argument, it displays the lines that
have changed since the last save. To provide context, it shows the first line of
each section that contains a change, whether or not that line has changed. The
lines are mouse-sensitive, allowing you to move to the location of a change.

Quick Arglist (c-sh-A) (see also arglist)

Quit (c-Z!)

Displays the argument list for the current function. With a numeric argument,
it reads the function name via the mouse or from the minibuffer. When the
original function uses a values declaration, Quick Arglist returns the names for
the values returned by the function.

Returns from top level. It selects the window from which the last (ed)
function or the last debugger c-E command was executed.

Select System as Tag Table (m-X)
Creates a tags table for all the files in a system. It uses the file names as they
appear in the defsystem function for that system.

Tags Search (m-X) Searches all files in a tags table for a specified string. It reads the string from
the minibuff er and then prompts for a tags table name.

Trace (m-X) (see also untrace)
Toggles tracing for a function. It uses the same interface for specifying options
as the Trace program in the system menu. See Lisp Machine Manual, p. 457.

(trace ~ (see also untrace)

November 1982 17 Symbolics. Inc.

Symbolics, Inc. Program Development Help Facilities

Turns on tracing for a function. With no arguments, it returns a list of all
things currently being traced. With no additional options, tracing displays the
name and arguments for a function each· time it is called and its name and
value(s) each time it returns. Complex options are available for entering
breakpoints or executing code conditionally during tracing. See Lisp Machine
Manual, p. 457, and the Trace command in Zmacs.

(trace foo bar)
(trace #'(:method command-found :push))

Tracing very common functions (like format) or functions used by trace itself
or by the scheduler (like time:get-tlme) can crash the machine.

(untrace specs) Turns off tracing for a function that is being traced. With no argument, it
turns off tracing for all functions currently being traced.

(variable-boundp variable)
Returns nil or t indicating whether or not the variable is bound.

(variable-boundp tv:current-window)

(what-files-call symbol pqckgze)
Displays the names of files that contain uses of symbol as a function, variable,
or constant. It searches all the function cells of all the symbols in package. By
default, it searches the global package and its descendants. It returns a list of
the pathnames of the files containing the callers.

Where Is Symbol (m-X)
Displays the names of packages that contain symbols with the specified name.

(where-ls string pgckgge)
Displays the names of all packages that contain a symbol whose print name is
string. It ignores the case of string. By default, it looks in the global package
and its descendants. where-ls returns a list of the symbols that it finds.

(where-is "foobar•)

(who-calls symbol package inferiors superiors)

Symbolics, Inc.

Displays a line of information about uses of the symbol as a function, variable,
or constant. It searches all the function cells of all the symbols in package. By
default, it searches the global package and its descendants. It returns a list of
the names of the callers.

(who-calls 'time:get-time 'hacks)

18 November 1982

Symbolics, Inc. Program Development Help Facilities

Notes

November 1982 19 Symbolics, Inc.

symbolics TM

Program Development Help Facilities
#990093

Design: Schafer/Lacasse
Typesetting: Cover - Litho Composition Co.
Printing: Henry Sawyer Co.

	00-0001
	00-0002
	00-0003
	00-0004
	00-0005
	00-0006
	00-001
	00-002
	00-003
	00-004
	00-005
	01-00001_990001_Devel_Tools_Aug83
	01-00002
	01-0001
	01-0002
	01-0003
	01-001
	01-002
	01-003
	01-004
	01-005
	01-006
	01-007
	01-008
	01-009
	01-010
	01-011
	01-012
	01-013
	01-014
	01-015
	01-016
	01-017
	01-018
	01-019
	01-020
	01-021
	01-022
	01-023
	01-024
	01-025
	01-026
	01-027
	01-028
	01-029
	01-030
	01-031
	01-032
	01-033
	01-034
	01-035
	01-036
	01-037
	01-038
	01-039
	01-040
	01-041
	01-042
	01-043
	01-044
	01-045
	01-046
	01-047
	01-048
	01-049
	01-050
	01-051
	01-052
	01-053
	01-054
	01-055
	01-056
	01-057
	01-058
	01-059
	01-060
	01-061
	01-062
	01-063
	01-064
	01-065
	01-066
	01-067
	01-068
	01-069
	01-070
	01-071
	01-072
	01-073
	01-074
	01-075
	01-076
	01-077
	01-078
	01-079
	01-080
	01-081
	01-082
	01-083
	01-084
	01-085
	01-086
	01-087
	01-088
	01-089
	01-090
	01-091
	01-092
	01-093
	01-094
	01-095
	01-096
	01-097
	01-098
	01-099
	01-100
	01-101
	01-102
	01-103
	01-104
	01-105
	01-106
	01-107
	01-108
	01-109
	01-110
	01-111
	01-112
	01-113
	01-114
	01-115
	01-116
	01-117
	01-118
	01-119
	01-120
	01-121
	01-122
	01-123
	01-124
	01-125
	01-126
	01-127
	01-128
	01-129
	01-130
	01-131
	01-132
	01-133
	01-134
	01-135
	01-136
	01-137
	01-138
	01-139
	01-140
	01-141
	01-142
	01-143
	01-144
	01-145
	01-146
	01-147
	01-148
	01-149
	01-150
	01-151
	01-152
	01-153
	01-154
	01-155
	01-156
	01-157
	01-158
	01-159
	01-160
	01-161
	01-162
	01-163
	01-164
	01-165
	01-166
	01-167
	01-168
	01-169
	01-170
	01-171
	01-172
	01-173
	01-174
	02-0001_Help_Nov82
	02-0002
	02-001
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20

