
symbolics TM

Volume38
Lisp Language

Volume 38. Lisp Language

#996032

Copyright C 1984, Symbolics, Inc. of Csmbrldge, Massachusetts. All rights reserved.
Printed in USA. This document may not be reproduced In whole or In part without the
prior written consent of Symbolics, Inc.

Design: Schafer/Lacasse
Cover and title page typography: Lltho Composition Co.

Text typography: Century Schoolbook and Helvetica produced on a Symbolics 3600
Lisp Machine from Bltstream, Inc., outlines; text master printed on Symbolics
LGP-1 Laser Graphics Printer.

The first Lisp Machine system was a product of the eftorts of many
people at the M.1.T. Artificial Intelligence Laboratory, and of the unique
environment there. Portions of earliest versions of many of the documents
In this documentation set were written at the Al Lab.

symbolics TM

Contents

Lisp
Language

FUNC
Functions

MAC
Macros

DEFS
Defstruct

FLAV
Objects,
Message Passing,
and Flavors

COND
Conditions

PKG
Packages

symbolics™

FUNC Functions

Cambridge, Massachusetts

Functions
II 990073

February 1984

Thi• document corresponds to Releae 5.0.

This document was prepared by the Documentation Group of Symbolics, Inc.

-No representation or affirmation of fact contained In this document should be construed
as a warrarity by Symbolics, and Its contents are subject to change without notice.
Symbolics, Inc. assumes no ·responsibility for any errors that might appear In this
document.

Symbolics software described in this document is furnished only under license, and may
be used only in accordance with the terms of such license. Title to, and ownership of,
such software shall at all times remain In Symbolics, Inc. Nothing contained herein
Implies the granting _of a license to make, use, or sell any Symbolics equlpmen' or
software.

Symbolics Is a trademark of Symbolics, Inc., Csmbridge, Massachusetts.

Copyright C 1981, 1979, 1978 Massachusetts Institute of Technology.
All rights reserved.

Enhancements copyright C 1984, 1983, 1982 Symbolics, Inc. of Csmbrldge,
Massachusetts.
All rights reserved. Printed In USA.
This document may not be reproduced in whole or In part without the prior written
consent of Symbolics, Inc.

Printing year and number: 87 86 85 84 9 8 7 6 5 4 3 2 1

FUNC Functions

Symbolics. Inc. February 1984

Table of Contents

Page

L Functions 1

1.1 What is a Function? 1
1.2 Function Specs 1
1.3 Simple Function Definitions 4
1.4 Operations the User Can Perform on Functions 7
1.5 Kinds of Functions 7

1.5.1 Interpreted Functions 9
1.5.2 Compiled. Functions 10
1.5.3 Other Kinds of Functions 11

1.6 Function-defining Special Forms 11
1.7 Lambda-list Keywords 14
1.8 How Programs Maniplilate Definitions 16
1.9 How Programs Examine Functions 22
1.10 Encapsulations 24

1.10.1 Rename-within Encapsulations 29

2. Closures 31
2.1 What a Closure is 31
2.2 Examples of the Use of Closures 33
2.3 Closure-manipulating Functions 34
2.4 Entities 36

Index 37

FUNC Functions 1

Symbolics, Inc. February 1984

1. Functions

Functions are the basic building blocks of. Lisp programs. This chapter describes the
functions in Zetalisp that are .used to manipulate· functions. It also. explains how to
manipulate special forms and macros.

This chapter contains internal details intended for those writing programs to.
m~ipulate programs as well ·as .material suitable for the beginner.

1.1 What is a Function?

There are many different kinds of functions in Zetalisp. Here are the printed
representations of examples of some of them:

f oo
(lambda (x) fear (last x)))
(named- lambda foo (x) (car (last (x))))
(subst (x) (car (last x)))

l<dtp•fef-pointer append 1424771>
l<dtp-u-entry last 270>
l<dtp-closure 1477464>

We will examine these and .other types of functions in detail later. They all have
one thing in common: a function is a Lisp object that can be applied to arguments.
All of the above objects can be applied to some arguments and will return a value.
Functions are Lisp objects and . so can be 'manipulated in all the usual ways: you can
pass them as arguments, return them as values, and make other Lisp objects refer
to them.

1.2 Function Specs

The name of a function does not have to be a symbol. Various kinds of lists
describe other c places where a function can be found. A Lisp object that describes a
place to find a function is ealled a function spec. <"Spec" is short for "specification".)
Here are the printed representations of some typical function specs:

f oo
(:property foo bar)
(:method tv:graphics-mixin :draw-line)
(:internal foo 1)
(:within foo bar)
(:location l<dtp-locative 7435216>)

Function specs have two purposes: they specify a place to remember a function, and

2 FUNC Functions

Symbolics, Inc. February 1984

they serve to name functions. The most common kind of function spec is a symbol,
that specifies that. the function cell of the sjmbol is the place to remember the
function. We will see all the kinds of. function specs, and what they mean, shortly.
Function specs. are not the same thing as functions ... You cannot, in general, apply a
function spec to arguments. The time to use a func_tion spec is. when you want to
do something to the furlction, such as define it, look at its definition. or compile it.

Some kinds of functions remember their own .names, and some do not. ·The "name"
remembered by a function can, be any kind of function spec, although it is usually a
symbol. (See the section ·"What is a Function?".) In that section, the example
starting with the symbol named-lambda, the one whose printed representation
included dtp-fef-pofuter, and· the dtp-u-entry remembered names (the function
specs foo, append, and last ~specti!~ly). The others did not remember their
names.

To define a fu,nction spec means to make that function spec remember a given
function. This is done with the fdeftne function; you give fdetine a function spec
and a function, and fdefine remembers the function in the place specified by the
function spec. The .function associated with a function s~ is called the definition
of the function spec. A single function ean be the definition of more than one
function spec at the same time, or of no function specs.

To define a function means to create a new function, and define a given function
spec ~ that new function. This is what the detun special form does. Several other
special forms such as defmethod and defseleet do this too.

·These special forms that define functions usually take a function spec, create a
function· whose name is that ~ction spec, ·and then define that function spec to be
the newly created function. Most function definitions are done this way, and so
usually if you go to· a function spec and see what function is there, the function,s
name will be the same as the function spec. However, if you define a fun~tion
named foo with defun, and· then define the symbol bar to be this same function,
the name of the function is unaffected; both foo and bar are defined to be the
same function, and the name of that function is foo, not bar.

A function spec's definition in general consists of a basic definition surrounded by
encapsulations. Both the basic definition and the encapsulations are functions, but
of recognizably different km,ds. What defun creates is a basic definition, and usually
that is all there is. Encapsulations are made by function-altering functions sueh as
trace and advise. When the function is called, the entire definition, which includes
the tracing and advice, is used. If the function is "redefined" with defon, only the
basic definition is changed; the encapsulations· are left in place. See the section
"Encapsulations".

A. function spec. is a Lisp object of one of the following types:

a symbol _
The function is ·remembered in the function cell· of the symbol. See the

FUNC Functions 3

Symbolics, Inc. . February 1984

'•

section "The Function Cell". Function cells and the primitive functions to
manipulate them are explained in that. section.

(:property symbol property) ,
The function is remembered on the property list of the symbol; doing
(get symbol property) would return. the function. Storing functions on
property lists is a frequently used technique for dispatching (that is, deciding
at run-time which function to call, on the basis of input data).

(:method flavor-name message)

(:method flavor-name method-type message)
The function is--remembered inside intemal data structures of the flavor
system. See the document Objects, Message Passing, and Flavors.

(:select-method function-spec message)
H the definition of function-spec is a select-method, ·this refers to the function
to which the select method dispatches upon receiving message. It is an error
if function-spec does not contain a select method or if the select method does
not support message. . defseleet now defines. its' component functions using
this function spec instead of creating a special symbol for each function.

(:bandier flavor-name message)
This is a name for the function actually called when a message message is
sent to an instance of the flavor flavor-name. The difference between
:bandier. and :method is that the handler may be a method· inherited from
some other flavor or a combined method automatically written by the flavor .
system. Methods are what you define in source files; handlers are not. Note
that redefining or encapsulating a handler affects only the named flavor, not
any. other· flavors built out of it. Thus :bandier function specs are often
used with ·trace and advise.

(:location pointer)
The function is stored in the cdr of pointer, which may be a locative or a list.
This is for pointing at an arbitrary place which there is no other way to
describe. This form of function spec is not useful in defun (and related
special forms) because the reader has no printed representation for locative
pointers and always creates new lists; these function specs are intended for
programs that manipulate functions. See the section "How· Programs
Manipulate Definitions".

(:within within-function function-to-affect)
This refers to the meaning of the symbol function~to-affect, but only where it
occurs in the text of the definition of within-function.. H you define this
function spec as anything but the symbol function-UHJ,ffect itself, then that
symbol is replaced throughout the definition of within-function by a new
Symbol which· is then defined as you specify. See the section
"Encapsulations".

(:internal function-spec number)

4 FUNC Functions

Symbolics. Inc. February 1984

Some Lisp functions contain internal functions, created by
(function Oambda •••)) forins. These internal functions need names when
compiled, but they do not have symbols as names; instead they are named by
:internal function-specs. function-spec is the containing function. number is
a sequence number; the first ·internal .function the compiler. comes across in a
given function will be numbered 0, the next 1, and so on. Internal functions
are remembered inside the FEF ·of their containing function.

Here is an. example of the use _of a function spec that is not a, symbol: -

(defun (:property foo bar-maker) (thing &optional kind)
--......

(set-the 'bar-thing (make-bar 'foo thing kind)))

This puts a· function on foo's bat-maker property. Now· you can say:

(funcall (get 'foo 'bar-maker) 'baz)

Unlike the other kinds of function spec, a symbol can be used as a function. If you
apply a symbol to arguments, the symbol's function definition is· used instead. If the
definition of the first symbol is another symbol, the definition of the second symbol
is used, and so on, any number of times. But this is an exception; in general, you
cannot apply function specs to· arguments.

A keyword symbol that identifies function specs (may appear in the ear of a list that
is a function spec) is identified by· a sys:function-spec-handler property whose
value is a function which implements the various manipulations on function specs of
that type. The interface to this function is internal and not documented in this
manual.

For compatibility with Maclisp, the function-defining special forms defun, macro,
and defselect (and other defining forms built· out of them, such as defunp and
defmacro) will also .accept a list:

(symbol property>

as a function name. This is translated into:

(: prop.erty symbol property)

symbol must not be one of the keyword symbols which identifies a function spec,
since that would be ambiguous. ·

1.3 Simple Function Definitions

defun ' Special Form
defun is the usual way of defining a function that is part of a program. A
defun form looks· like:

(defun name lambda-list
body .••)

FUNC Functions 5

Symbolics, Inc. February 1984

name is the function spec you wish to define as a function. The lambda-list
is a list of the names to give to the arguments of the function. Actually, it.
is a 'little more general than that; it can· contain lambda-list keywords such
as .&optional and &rest. (Keywords are explained in other sections. See
the section "Functions: Evaluation". See the section "Lambda-list
Keywords".) Additional syntactic features of defun are explained in ·another
section. See the section "Function-defining Special Forms".

defun creates a list which looks like:

(named-lambda name lambda-liJJt body . ..) ·

and puts it, in the function cell of name. name is now defined 8$ a function
and can be called by other forms.

Examples:

(defun addone (x)
(1+ x))

(defun foo (a &optional (b 5) c arest e aaux j)
(setq j'(+ (addone a) b))
(cond ((not (null c))

(cons j e))
(t j)))

addone is a function that expects a number as an argument, and returns a
number one larger. foo is a. complicated· function that takes one required
argument, two optional arguments, and any number of additional arguments
that are given to· the function as a list named e.

A declaration (a list starting with declare) can appear as the first element of
the body. It is equivalent to a local-declare surrounding the entire defun
form. For example:

(defun foo (x)
(declare (special x))
(bar)) ; bar uses s: free.

is equivalent to and preferable to:

(local-declare ((special x))
(defun. foo (x)

(bar)))

(It is preferable because the editor expects the open parenthesis of a top-level
function definition to be the first character on. a line, which isn',t possible in
the second form without incorrect indentation.)

A documentation string can also appear as the first element of the body
(following the declaration, if there is one). (It shouldn't be the only thing in
the body; otherwise it is the value returned by the function and so is not
interpreted as documentation. A string as an element of a body other than

6 FUNC Functions
- I Sym~. Inc~ February 1984

the last element is only evaluat,ed for sidel effect, and since evaluation of
strings has no. side effects, they are not ~seful-in this PQSition to do any
computation, so they are interpreted as d~entation.) ; ·This documentation
string becomes part of the function's debqgging info and can be obtain~
with the function. documentation. The jfirst line of the string should: be a
complete 8entence t~t makes sense read iby itself, since there are two editor
commands to get at the documentation, one of which . is. '"brier' and prints.
only the first line~ Example:

(defun.iny-~ppend (!crest lists)
•Like append but copies all the lists. .

This is like the Lisp functfon appeJld, except that
append copies all lists except the 'last, whereas
this function copies all of its arguments •
in-eluding· the last one.•

...) :

defunp Macro
Usually when a function uses prog, the prog form is the entire body of the

· function; the definition of such a function looks like
(defun name arglist (prog varlist ...)). Although the use of prog is
generally disco~, prog ·fans may want t<l. use this. special form. For
convenience, the defunp ·macro can· be used to produce such definitions. A
defunp form such as:

(defunp fctn (args)
f orml
f orm2

formn) ·

expands into:

(defun fctn (args)
(prog ()

f orml
f orm2

· -(return f ormn)))

You can think of defunp as being like defun except that you can return
out of the middle of the function's body.

See the ·section "Function-defining special· Forms". Information on defining
functions, and other ways . of doing so, are djscussed in that section.

FUNC r:gnclions 7

1.4 Operations the User Ca~ Perform on Functions

Here is·. a list of the· various things a user (as. opposed to a program) is likely to want c

to do to a function. In all cases, you specify a function spec to ~Y where to find
the function.

To print out, the~ definition of the function spec with indentation to make it legible,
use grlndef. This works only for interpreted functions. If the definition is a
compiled function, it cannot be printed out as Lisp· code, but its compiled code can be
printed by the disassemble furiction.

To find out about how to call the function,_you can ask to see its documentation, or
its argument· names: <The· argument names are usually chosen to have mnemonic
significance for the caller). Use arglist to see the argument names and
documentation to see the documentation string. There are also editor commands
for doing these things: the c-sh-D and "'-sh-D commands are for looking at a
function's documentation, and ~~-A is for looking at an argument list. c-sh-A
doeSi not ask for the function name; it acts on the fµnction that is called by the
innermost expression that the cursor is ·inside .. Usually this is .the function that will
be called . by the form you are in the process of writing.

You can see the function's debugging info alist by means of the function
debugging-info.

When you are debugging, you can use trace to obtain a printout or a break loop
whenever the function. is called. You can customize. the definition of the function,
either temporarily or permanently, using advise.

1.5 Kinds of Functions

There are many kinds of functions in Zetalisp. This section briefly describes each
kind of function. Note that a function is also a piece of data and can be passed as
an argument, returned, put in a list, and so forth;

Before we start classifying the functions, we will first discuss .something about how
the evaluator works. When the evaluator is given a list whose first element is a
symbol, the form may. be a function form, a special form~ or a macro form. If the
definition of the symbol is a function, then the function is just· applied to the result
of evaluating the rest of the subforms. If the definition is a cons whose car is
macro, then it is a macro· . .form. See the· document Macros. "1h&t about special
forms?

Conceptually, the evaluator knows specially about all special forms (hence their
name). However, the Zetalisp implementation actually uses the definition of symbols
that name special forms as places to hold pieces of the evaluator. The definitions of
such symbols as pros, do, and, and or actually hold Lisp objects, which we will call

8 FUNC Functions

Symbolics, Inc. FebruBfY 1984

special functions. Each of these functions is the part of the Lisp interpreter that
knows how to deal with that special form. Normally you do not have to know about
this; it is just part of how the evaluator works. However, if you try to add.
encapsulations to and or something like that, knowing this will help you understand
the behavior you will get.

Special functions are written like regular functions except that the keywords "e
- and &eval are used to make some of the arguments be "quoted" ·arguments. See

the section "Lambda-list Keywords". The evaluator looks at the pattern in which
arguments to the special -function are "quoted" or not, and it calls the special
function in a special way: for each regular argument, it passes the result of
evaluating the corresponding subform, but for each "quoted" argument, it· passes the
subform itself without evaluating it first. ·For example, eond works by having a
special function that takes a "quoted" &rest argument; when this fun~tion is called
it is passed a list of eond clauses as its argument. ·

If you apply or funcall a special function yourself, you have to understand what
the special form is going to do. with its arguments; it. is likely to call eval on parts of
them. This is different from applying a regular function, which is passed 8rgument
values rather than Lisp expressions.

Defining your own special form, by using "e yourself, can be done; it is a way
to extend the Lisp language. Macros are another way of extending the Lisp
language. It is preferable to implem.ent language extensions as macros rather than
special forms, because macros directly define· a Lisp-to-Lisp translation and therefore
can be understood by ooth .the interpreter and the compiler. Special· forms, on the
other_ hand, only extend the interpreter.· The compiler has to be modified to
understand each new special form so that code usmg it can be compiled. Since all
real programs are eventually compiled, writing your own special functions is strongly
discouraged.

(In fact, many of the special forms in Zetalisp are actually implemented as macros,
rather than as special functions. They are implemented this way because it is easier
to write a macro than to· write both a new special . function and a new ad hoc
module in the compiler. However,. they are sometimes documented in this set as
special forms, rather than macros, because you should not in any way depend on the
way they are implemented; they might get changed in the future to be special
functions, if there was some reason to do so.)

There ~ four kinds of functions, classified by how they work.

First, there are interpreted· functions: you define them with· defml, they are
represented as· list structure, and they are interpreted· by the Lisp evaluator.

Secondly,· there are compiled .functions: they are defined by compile or by loading a
bin file, they are represented by a special Lisp data type, and they are executed
directly by the microcode. Similar to compiled functions are microcode functions,
which are written in microcode (either by hand or by the micro-compiler) and
executed directly by the hardware.

FUNC Functions

Symbolics, Inc. February 1984

Thirdly, there are various types of Lisp object which can be applied to arguments,
but when they are applied they dig up another function somewhere and apply it
instead. These include dtp-select-method, closures, instances, and entities.

Finally, there are various types of Lisp object which, when used as functions, do
something special related to the specific data type. These include arrays and stack
groups.

1.5.1 Interpreted Functions

An interpreted function is a piece of list structure that represents a program
according to the rules of the Lisp interpreter. Unlike other kinds of functions, an
interpreted function can be printed out and read back in (it has a printed
representation that the reader understands), and it can be pretty-printed. See the
section "Formatting Lisp Code". It can also be opened up and examined with the
usual functions for list-structure manipulation.

9

There are four kinds of interpreted functions: lambdas, named-lambdas, substs,
and named-substs. A lambda function is the simplest kind. It is a list that looks
like this:

(1 ambda lambda-list forml form2 . .. >

The symbol lambda identifies this list as a lambda function. lambda-list is a
description of what arguments the function takes. See the section "Functions:
Evaluation". The forms make up the body of the funetion. When the function is
called, the argument variables are bound to the values of the arguments as described
by lambda-list, and then the forms in the body are evaluated, one by one. The
value of the function is the value of its last form.

A named-lambda is like a lambda but contains an extra element in which the
system remembers the function's name, documentation, and other information.
Having the function's name there allows the Debugger and other tools to give the J

user more information. This is the kind of,function that defun creates. A
named-lambda function looks like this:

(named-lambda name lambda-list body forms ...)

If the name slot contains a symbol, it is the function's name. Otherwise it is a list
whose car is the name and whose cdr is the function's debugging information alist.
See debugging-info. Note that the name need not be a symbol; it can be any
function spec. For example:

(defun (foo bar) (x)
(car (reverse x)))

will give foo a bar property whose value is:

(named-lambda ((:property foo bar)) (x) (car (reverse x)))

A subst is just like a lambda as far as the interpreter is concerned. It is a list
that looks like this:

10 FUNC Functions

Symbolics. Inc. February 1984

(subst lambda-list forml form2 ...)

The difference between a subst and a lambda is the way they are handled by the
compiler. A call to a normal function is compiled as a closed subroutine; the compiler
generates code to compute the values of the arguments and then apply the function
to those values. A call to a subst is compiled as an open subroutine; the compiler
incorporates the body forms of the subst into the function being compiled,
substituting the argument forms for references to the variables in the subst's
lambda-list. This is a simple but useful facility for open or in-line coded functions.
It is simple because the argument forms can be evaluated multiple times or out of
order, and so the semantics of a subst may not be the same in the interpreter and
the compiler. substs are described more fully in the section that explains defsubst.
See the section "Substitutable Functions".

A named-subst is the same as a subst except that it has a name just as a
named-lambda does. It looks like:

(named-subst name lambda-list forml form2 ... >

where name is interpreted the same way as in a named-lambda.

1.5.2 Compiled Functions

There are two kinds of compiled functions: macrocoded functions and microcoded
functions. The Lisp compiler converts lambda and named-lambda functions into
macrocoded functions. A macrocoded function's printed representation looks like:

l<dtp-fef-pointer append 1424771>

This type of Lisp object is also called a "Function Entry Frame", or "FEF' for short.
Like "car" and "cdr", the name is historical in origin and does not really mean
anything. The object contains Lisp Machine machine code that does the
computation expressed by the function; it also contains a description of the
arguments accepted, any constants required, the name, documentation, and other
things. Unlike Maclisp "subr-objects", macrocoded functions are full-fledged objects
and can be passed as arguments, stored in data structure, and applied to arguments.

The printed representation of a microcoded function looks like:

l<dtp-u-entry last 270>

Most microcompiled functions are basic Lisp primitives or subprimitives written in
Lisp Machine microcode. You can also convert your own macrocode functions into
microcode functions in some circumstances, using the microcompiler.

The compiler now records, as part of its debugging-info property, which top-level
macros were expanded in the process of compiling it. This information is used by
who-calls and similar functions. Thus you can now use who-calls for macros.
who-calls can also find callers of open-coded functions, such as substitutable
functions. Functions compiled in earlier versions of the system have not recorded
this information; hence who-calls will not be able to find them until those sources
have been recompiled.

FUNC Functions 11

Symbolics, Inc. February 1984

1.5.3 Other Kinds of Functions

A closure is a kind of function that contains another function and a set of special
variable bindings. When the closure is applied, it puts the bindings into effect and
then applies the other function. When that returns, the closure bindings are
removed. Closures are made with the function closure. See the section "Closures".
Entities are slightly different from closures. See the section "Entities: Closures".

A select-method (dtp-select-method) is an alist of symbols and functions. When
one is called the first argument is looked up in the alist to find the particular
function to be called. This function is applied to the rest of the arguments. The
alist may have a list of symbols in place of a symbol, in which case the associated
function is called if the first argument is any of the symbols on the list. If cdr of
last of the alist is not nil, it· is a default handler function, which gets called if the
message key is not found in the alist. Select-methods can be created with the
defselect special form.

An instance is a message-receiving object which has some state and a table of
message-handling functions (called methods). See the document Objects, Message
Passing, and Flavors.

An array can be used as a function. The arguments to the array are the indices
and the value is the contents of the element of the array. This works this way for
Maclisp compatibility and is not recommended usage. Use aref instead.

A stack group can be called as a function. This is one way to pass control to
another stack group. See the section "Stack Groups: Internals".

1.6 Function-defining Special Forms

defun is a special form that is put in a program to define a function. defsubst and
macro are others. This section explains how these special forms work, how they
relate to the different kinds of functions, and how they connect to the rest of the
function-manipulation system.

Function-defining special forms typically take as arguments a function spec and a
description of the function to be made, usually in the form of a list of argument
names and some forms which constitute the body of the function. They construct a
function, give it the function spec as its nan.le, and define the function spec to be
the new function. Different special forms make different kinds of functions. defun
makes a named-lambda function, and defsubst makes a named-subst function.
macro makes a macro; though the macro definition is not really a function, it is like
a function as far as definition handling is concerned.

These special forms are used in writing programs because the function names and
bodies are constants. Programs that defme functions usually want to compute the
functions and their names, so they use fdefine.

12 FUNG Functions

Symbolics, Inc. February 1984

All of these function-defining special forms alter only the basic definition of the
function spec. Encapsulations are preserved. See the section "Encapsulations".

The special forms only create interpreted functions. There is no special way of
defining a compiled function. Compiled functions are made by compiling interpreted
ones. The same special form which defines the interpreted function, when processed
by the compiler, yields the compiled function. See the document The Compiler.

Note that the editor understands these and other "defining'' special forms (for
example, defmethod, defvar, defmacro, and defstruct) to some extent, so that
when you ask for the definition of something, the editor can find it in its source file
and show it to you. The general convention is that anything which is used at top
level (not inside a function) and starts with def should be a special form for defining
things and should be understood by the editor. defprop is an exception.

The defun special form (and the defunp macro that expands into a defun) are
used for creating ordinary interpreted functions. See the section "Simple Function
Definitions".

For Maclisp compatibility, a type symbol may be inserted between name and
lambda-list in the defun form. The following types are understood:

expr

f expr

macro

The same as no type.

"e and &rest are prefixed to the lambda list.

A macro is defined instead of a normal function.

If lambda-list is a non-nil symbol instead of a list, the function is recognized as a
Maclisp lexpr and it is converted in such a way that the arg, setarg, and listify
functions can be used to access its arguments.

The defsubst special form is used to create substitutable functions. It is used just
like defun but produces a list starting with named-subst instead of one starting
with named-lambda. The named-subst function acts just like the corresponding
named-lambda function when applied, but it can also be open-coded (incoi-porated
into its callers) by the compiler. See the section "Substitutable Functions".

The macro special form is the primitive means of creating a macro. It gives a
function spec a definition which is a macro definition rather than a actual function.
A macro is not a function because it cannot be applied, but it can appear as the car
of a form to be evaluated. Most macros are created with the more powerful
defmacro special form. See the document Macros.

The defselect special form defines a select-method function.

Unlike the above special forms, the next two (de:ff and def) do not create new
functions. They simply serve as hints to the editor that a function is being stored
into a function spec here, and therefore if someone asks for the source code of the
definition of that function spec, this is the place to look for it.

FUNG Functions 13

Symbolics, Inc. February 1984

def Special Form
If a function is created in some strange way, wrapping a def special form
around the code that creates it informs the editor of the connection. The
form:

(def function-spec
forml form2 . ..)

simply evaluates the forms forml, form2, and so on. It is assumed that these
forms will create or obtain a function somehow, and make it the definition of
function-spec.

Alternatively; you could put (def function-spec) in front of or anywhere near
the forms which define the function. The editor only uses it to tell which
line to put the cursor on.

deff function-spec definition-creator Special Form
deff is a simplified version of def. It evaluates the form definition-creator,
which should produce a function, and makes that function the definition of
function-spec, which is not evaluated. deff is used for giving a function spec
a definition that is not obtainable with the specific defining forms such as
defun and macro. For example:

(deff foo 'bar)

will make foo equivalent to bar, with an indirection so that if bar changes,
foo will likewise change;

(deff foo (function bar))

copies the definition ~f bar into foo with no indirection, so that further
changes to bar will have no effect on foo.

@define Macro
This macro turns into nil, doing nothing. It exists for the sake of the
@ listing generation program, which uses it to declare names of special forms
which define objects (such as functions) that @ should cross-reference.

defselect Special Form
defselect defines a function that is a select-method. This function contains
a table of subfunctions; when it is called, the first argument, a symbol on the
keyword package called the message name, is looked up in the table to
determine which subfunction to call. Each subfunction can take a different
number of arguments, and have a different pattern of &optional and &rest
arguments. defselect is useful for a variety of "dispatching'' jobs. By
analogy with the more general message passing facilities described in the
Objects, Message Passing, and Flavors document, the subfunctions are
sometimes called methods and the first argument is sometimes called a

1 message.

14 FUNG Functions

Symbolics, Inc. February 1984

The special form looks like:

(def se 1 ect <function-spec default-handler no-which-operations)
C message-name C args ...)

body ...)
(message-name (args ...)

body ...)
...)

function-spec is the nam~ of the function to be defined. default-handler is
optional; it must be a symbol and is a function that gets called if the select
method is called with an unknown message. If default-handler is unsupplied
or nil, then an error occurs if an unknown message is sent. lf
no-which-operations is non-nil, the :which-operations method that would
normally be supplied automatically is suppressed. The :which-operations
method takes no arguments and returns a list of all the message names in
the defselect.

The :operation-handled-p and :send-if-handles methods are automatically
supplied. See the message :operation-handled-p. See the message
:send-if-handles.

If function-spec is a symbol, and default-handler and no-which-operations are
not supplied, then the first subform of the defselect may be just
function-spec by itself, not enclosed in a list.

The remaining subforms in a defselect define methods. message-name is
the message name, or a list of several message names if several messages are
to be handled by the same subfunction. args is a lambda-list; it should not
include the first argument, which is the message name. body is the body of
the function.

A method subform can instead look like:

(message-name . symbol)

In this case, symbol is the name of a function that is to be called when the
message-name message is received. It will be called with the same arguments
as the select-method, including the message symbol itself.

1.7 Lambda-list Keywords

This section documents all the keywords that may appear in the lambda-list
(argument list) of a function, a macro, or a special form. See the section "Functions:
Evaluation". Some of them are allowed everywhere, while others are only allowed in
one of these contexts; those are so indicated.

FUNC Functions 15

Symbolics, Inc. February 1984

lambda-list-keywords Variable
The value of this variable is a list of all of the allowed "&" keywords. Some
of these are obsolete and do not do anything; the remaining ones are listed
below.

&optional

&rest

&key

Separates the required arguments of a function from the
optional arguments. See the section "Functions:
Evaluation".

Separates the required and optional arguments of a
function from the rest argument. There may be only one
rest argument. See the section °Functions: Evaluation".
That section contains full information about rest
arguments.

Separates the positional arguments and rest argument of a
function from the keyword arguments. See the section
"Functions: Evaluation".

&allow-other-keys
In a function that accepts keyword arguments, says that
keywords that are not recognized are allowed. They and
the corresponding values are ignored, as far as keyword
arguments are concerned, but they do become part of the
rest argument, if there is one.

&aux Separates the arguments of a function from the auxiliary
variables. Following &aux you can put entries of the
form:

&special

&local

&functional

"e

(variable initial-value-form)

or just variable if you want it initialized to nil or do not
care what the initial value is.

Declares the following arguments and/or auxiliary variables
to be special within the scope of this function.

Turns off a preceding &special for the variables that
follow.

Preceding an argument, tells the compiler that the value of
this argument will be a function. When a caller of this
function is compiled, if it passes a quoted constant
argument that looks like a function (a list beginning with
the symbol lambda) the compiler will know that it is
intended to be a function rather than a list that happens
to start with that symbol, and will compile it.

Declares that the following arguments are not to be
evaluated. This is how you create a special function. The
caveats about special forms are in another section. See the
section "Kinds of Functions".

16

&eval

&list-of

&body

FUNC Functions

Symbolics, Inc. February 1984

Tums off a preceding "e for the arguments which
follow.

This is for macros defined by defmacro only. See the
section "Advanced Features of defmacro".

This is for macros defined by defmacro only. It is similar
to &rest, but declares to grindef and the code-formatting
module of the editor that the body forms of a special form
follow and should be indented accordingly. See the section
"Advanced Features of defmacro".

1.8 How Programs Manipulate Definitions

fdefine function-spec definition &optional (carefully nil) (no-query Function
nil)

This is the primitive that defun and everything else in the system use to
change the definition of a function spec. If carefully is non-nil, which it
usually should be, then only the basic definition is changed, the previous basic
definition is saved if possible (see undefun), and any encapsulations of the
function such as tracing and advice are carried over from the old definition to
the new definition. carefully also causes the user to be queried if the
function spec is being redefined by a file different from the one that defined
it originally. However, this warnings is suppressed if either the argument
no-query is non-nil, or if the global variable inhibit-fdefine-warnings is t.

If fdefine is called while a file is being loaded, it records what file the
function definition came from so that the editor can find the source code.

If function-spec was already defined as a function, and carefully is non-nil,
the function-spec's :previous-definition property is used to save the
previous definition. If the previous definition is an interpreted function, it is
also saved on the :previous-expr-definition property. These properties are
used by the undefun function, which restores the previous definition, and
the uncompile function, which restores the previous interpreted definition.
The properties for different kinds of function specs are stored in different
places; when a function spec is a symbol its properties are stored on the
symbol's property list.

defun and the other function-defining special forms all supply t for carefully
and nil or nothing for no-query. Operations that construct encapsulations,
such as trace, are the only ones that use nil for carefully.

inhibit-fdefine-warnings Variable
This variable is normally nil. Setting it to t prevents fdefine from warning
you and asking about questionable function definitions such as a function

FUNC Functions 17

Symbolics. Inc. February 1984

being redefined by a different file than defined it originally, or a symbol that
belongs to one package being defined by a file that belongs to a different
package. Setting it to :just-warn allows the warnings to be printed out, but
prevents the queries from happening; it assumes that your answer is "yes'',
that is, that it is all right to redefine the function.

record-source-file-name function-spec &optional (type 'defunJ Function
no-query

record-source-file-name associates the definition of a function with its
source files, so that tools such as Edit Definition (M-.) can find the source file
of a function. It also detects when two different files both try to define the
same function, and warns the user.

record-source-file-name is called automatically by defun, defmacro,
defstruct, demavor, and other such defining special forms. Normally you
do not invoke it explicitly. If you have your own defining macro, however,
that does not expand into one of the above, then you can make its expansion
include a record-source-file-name form.

function-spec

type

no-query

The function spec for the entity being defined.

The type of entity being defined, with defun as the
default. type can be any symbol, typically the name of the
corresponding special form for defining the entity. Some
standard examples:

defun
defvar
deffiavor
defstruct

Both macros and substs are subsumed under the type
defun, because you cannot have a function named x in one
file and a macro named x in another file.

Controls queries about redefinitions. t means to suppress
queries about redefining. The default value of no-query
depends on the value of inhibit-fdefine-warnings. When
inhibit-fdefine-warnings is t, no-query is t; otherwise it
is nil. Regardless of the value for no-query, queries are
suppressed when the definition is happening in a patch
file.

You cannot specify the source file name with this function. The function is
always associated with the pathname for the file being loaded
(fdefine-file-pathname).

When redefining functions, some users try to avoid redefinition warnings and
queries by using the form (remprop symbol ':source-file-name). The

18 FUNC Functions

Symbolics. Inc. February 1984

preferred way to do this is to use the form
(record-source-file-name function-spec 'detun t). The former method
causes the system to forget both the original definition and other definitions
for the same symbol (as a variable, flavor, structure, and so forth).
record-source-file-name lets the system know that the function is defined
in two places, and it avoids redefinition warnings and queries.

Of course, if you are redefining something other than a function, use the
appropriate definition type symbol instead of detun as the second argument
to record-source-file-name. For example, if you are redefining a flavor, use
defflavor as the second argument.

sys:fdefine-file-pathname Variable
While loading a file, this is the generic-pathname for the file. The rest of
the time it is nil. fdefine uses this to remember what file defines each
function.

sys:function-parent function-spec Function
When a symbol's definition is produced as the result of macro expansion of a
source definition, so that the symbol's definition does not appear textually in
the source, the editor cannot find it. The accessor, constructor, and alterant
macros produced by a defstruct are an example of this. The
sys:function-parent declaration can be inserted in the source definition to
record the name of the outer definition of which it is a part.

The declaration consists of the following:

(sys:function-parent name type)

name is the name of the outer definition. type is its type, which defaults to
defun. (This is the same type as in record-source-file-name; it is usually
the name of the defining special form.)

You can define the type of an entity being defined:

(defprop feature "Feature" si:definition-type-name)
(defprop defun "Function" si:definition-type-name)

sys:function-parent is a function related to the declaration. It takes a
function spec and returns nil or another function spec. The first function
spec's definition is contained inside the second function spec's definition. The
second value is the type of definition.

Two examples:

FUNC Functions 19

Symbolics. Inc. February 1984

(defsubst foo (x y)
(declare (sys:function-parent bar))
...)

(defmacro defxxx (name ooo)
'(local-declare ((sys:function-parent ,name defxxx))

(defmacro ...)
(defmacro ...)

))

Using the sys:function-parent declaration

A definition is a Lisp expression that appears in a source program file and has a
name by which a user would like to refer to it. Definitions come in a variety of
types. The main point of definition types is that two definitions with the same
name and different types can exist simultaneously, but two definitions with the same
name and the same type redefine each other when evaluated. Some examples of
definition type symbols and special forms that define such definitions are:

Type symbol
defun
defvar
deftlavor
defstruct

Type name in English
function
variable
flavor
structure

Special form names
defun, deflnacro, defntethod
defvar, defconst, defconstant
deftlavor
defstruct

Things to note: More than one special form can define a given kind of definition.
The name of the most representative special form is typically chosen as the type
symbol. This symbol typically has a si:definition-type-name property of a string
that acts as a prettier form of the name for people to read.
record-source-file-name and related functions take a name and a type symbol as
arguments. The. editor understands certain definition-making special forms, and
knows how to parse them to get out the name and the type. This mechanism has
not yet been made user-extensible. Currently the editor assumes that any top-level
form it does not know about that starts with "(def' must be defining a function (a
definition of type defun) and assumes that the cadr of that form is the name of the
function. Heuristics appropriate for defun are applied to this name if it is a list. In
general, a definition whose name is not a symbol and whose type is not defun does
not work properly. This will be fixed in a future release.

The declaration sys:function-parent is of interest to users. The function with the
same name is probably not of interest to users; it is part of the mechanism by which
the Zmacs command Edit Definition (M-.) figures out what file to look in.

Example:

We have functions called "frobulators" that are stored on the property list of symbols
and require some special bindings wrapped around their bodies. Frobulator
definitions are not considered function definitions, because the name of the

20 FUNG Functions

Symbolics, Inc. February 1984

frobulator does not become defined as a Lisp function. Indeed, we could have a
frobulator named list and Lisp's list function would continue to work. Instead we
make a new definition type.

(defmacro define-frobulator (name arg-list &body body)
' (progn 'compile

(add-to-list-of-known-frobulators ',name)
(record-source-file-name ',name 'define-frobulator)
(defun (:property ,name frobulator) (self ,@arg-list)

(declare (sys:function-parent ,name define-frobulator))
(let (,(make-frobulator-bindings name arg-list))

,@body))))

(defprop define-frobulator "frobulator" si:definition-type-name)

Here we would tell the editor how to parse define-frobulator if its parser were
user-extensible. Because it is not, we rely on its heuristics to make ri-. work
adequately for frobulators.

Next we define a frobulator. This is not an interesting definition, for we do not
actually know what the word "frobulate" means. We could always recast this
example as a symbolic differentiator: We would define the+ frobulator to return a
list of + and the frobulations of the arguments, the • frobulator to return sums of
products of factors and derivatives of factors, and so forth.

(define-frobulator list()
(frobulate-any-number-of-args self))

In define-frobulator, we call record-source-file-name so that when a file
containing frobulator definitions is loaded, we will know what file those definitions
came from. Inside the function that is generated, we include a function-parent
declaration because no definition of that function is apparent in any source file. The
system will take care of doing
(record-source-file-name '(:property list frobulator) 'defun), as it always does
when a function definition is loaded. Suppose an error occurs in a frobulator
function - in the list example above, we might try to call
frobulate-any-number-of-args, which is not defined - and we use the Debugger
c-E command to edit the source. This will be trying to edit
(:property list frobulator), the function in which we were executing. The
definition that defines this function does not have that name; rather, it is named
list and has type define-frobulator. The sys:function-parent declaration enables
the editor to know that fact.

If your definition-making special form and your definition type symbol do not have
the same name, you should define the special form's zwei:definition-function-spec
property to be the definition type symbol. This helps the editor parse such special
forms.

For another example, more complicated but real, use mexp or the Zmacs command
Macro Expand Expression (c-sh-M) to look at the macro expansion of:

FUNC Functions

Symbolics, Inc. February 1984

(defstruct (foo :cone-name) one two)

The macro sys:defsubst-with-parent that it calls is just defsubst with a
sys:function-parent declaration inside. It exists only because of a bug in an old
implementation of defsubst that made doing it the straightforward way not work.

21

fset-carefully symbol definition &optional force-fiag Function
This function is obsolete. It is equivalent to:

C fdefi ne symbol ,definition t force-fiag)

fdefinedp function-spec Function
This returns t if function-spec has a definition, or nil if it does not.

fdefinition function-spec Function
This retµrns function-spec's definition. If it has none, an error occurs.

sys:fdefinition-location function-spec Function
This returns a locative pointing at the cell that contains function-spec's
definition. For some kinds of function specs, though not for symbols, this
can cause data structure to be created to hold a definition. For example, if
function-spec is of the :property kind, then an entry may have to be added
to the property list if it isn't already there. In practice, you should write
(locf (fdefinition function-spec)) instead of calling this function explicitly.

fundefine function-spec Function
Removes the definition of function-spec. For symbols this is equivalent to
fmakunbound. If the function is encapsulated, fundefine removes both
the basic definition and the encapsulations. Some types of function specs
(:location for example) do not implement fundefine. fundefine on a
:within function spec removes the replacement of function-to-affect, putting
the definition of within-function back to its normal state. fundefine on a
:method function spec removes the method completely, so that future
messages will be handled by some other method. See the document Objects,
Message Passing, and Flavors.

si:function-spec-get function-spec indicator Function
Returns the value of the indicator property of function-spec, or nil if it
doesn't have such a property. ·

si:function-spec-putprop function-spec value indicator Function
Gives function-spec an indicator property whose value is value.

undefun function-spec Function
If function-spec has a saved previous basic definition, this interchanges the
current and previous basic definitions, leaving the encapsulations alone. This
undoes the effect of a defun, compile, and so on. (See the function
uncompile.)

22 FUNC Functions

Symbolics. Inc. February 1984

1.9 How Programs Examine Functions

These functions take a function as argument and return information about that
function. Some also accept a function spec and operate on its definition. The others
do not accept function specs in general but do accept a symbol as standing for its
definition. (Note that a symbol is a function as well as a function spec).

documentation function Function
Given a function or a function spec, this finds its documentation string,
which is stored in various different places depending on the kind of function.
If there is no documentation, nil is returned.

debugging-info function Function
This returns the debugging info alist of function, or nil if it has none.

arglist function &optional real-fiag Function
arglist is given a function or a function spec, and returns its best guess at
the nature of the function's lambda-list. It can also return a second value
which is a list of descriptive names for the values returned by the function.

If function is a symbol, arglist of its function definition is used.

If the function is an actual lambda-expression, its cadr, the lambda-list, is
returned. But if function is compiled, arglist attempts to reconstruct the
lambda-list of the original definition, using whatever debugging information
was saved by the compiler. Sometimes the actual names of the bound
variables are not available, and arglist uses the symbol si:*unknown* for
these. Also, sometimes the initialization of an optional parameter is too
complicated for arglist to reconstruct; for these it returns the symbol
si:*hairy*.

Some functions' real argument lists are not what would be most descriptive
to a user. A function may take a &rest argument for· technical reasons even
though there are standard meanings for the first element of that argument.
For such cases, the definition of the function can specify, with a local
declaration, a value to be returned when the user asks about the argument
list. Example:

(defun foo (&rest rest-arg)
(declare (arglist x y &rest z))
.....)

real-flag allows the caller of arglist to say that the real argument list should
be used even if a declared argument list exists. Note that while normally
declares are only for the compiler's benefit, this kind of declare affects all
functions, including interpreted functions.

arglist cannot be relied upon to return the exactly correct answer, since

FUNC Functions

Symbolics, Inc. February 1984

some of the information may have been lost. Programs interested in how
many and what kind of arguments there are should use args-info instead.
In general arglist is to be used for documentation purposes, not for
reconstructing the original source code of the function.

23

When a function returns multiple values, it is useful to give the values names
so that the caller can be reminded wliich value is which. By means of a
return-list declaration in the function,s definition, entirely analogous to the
arglist declaration above, you can specify a list of mnemonic names fore-the
returned values. This list will ~ returned by arglist as the second value.

(arglist 'arglist)
=> (function &optional real-flag) and (arglist return-list)

args-info function FUnction
args-info returns a fixnum called the "numeric argument descriptor" of the
function, ·which describes the way the function takes arguments. This
descriptor is used internally by the microcode, the evaluator, and the
compiler. function can be a function or a function spec.

The information is stored in various bits and byte fields in the fixnum, which
are referenced by the symbolic names shown below. By the usual Lisp
Machine convention, those starting with a single "%" are bit-masks (meant to
be loganded or bit-test.ed with the number), and those starting with "%%"
are byte descriptors (meant to be used with ldb or ldb-test).

Here are the fields:

%%arg-desc-min-args
This is the minimum number of arguments that may be passed to
this function, that is, the number of "required" parameters.

%%arg-desc-max-args
This is the maximum number of arguments that may be passed to
this function, that is, the sum of the number of "required"
parameters and the number of "optional" parameters. If there is a
rest argument, this is not really the maximum number of arguments
that may be passed; an arbitrarily large number of arguments is
permitted, subject to limitations on the maximum size of a stack
frame (about 200 words).

%arg-desc-evaled-rest
If this bit is set, the function has a "rest" argument, and it is not
"quoted".

%arg-desc-quotederest
If this bit is set, the function has a "rest" argument, and it is

1 "quoted". Most special forms have this bit.

%arg-desc-fef-quote-hair

24 FUNG Functions

Symbolics. Inc. February 1984

If this bit is set, there are some quoted arguments other than the
"rest" argument (if any), and the pattern of quoting is too complicated
to describe here. The ADL (Argument Description List) in the FEF
should be consulted. This is only for special forms.

%arg-desc-interpreted
This function is not a compiled-code object, and a numeric argument
descriptor cannot be computed. Usually args-info will not return this
bit, although %args-info will.

%arg-desc-fef-bind-hair
There is argument initialization, or something else too complicated to
describe here. The ADL (Argument Description List) in the FEF
should be consulted.

Note that %arg-desc-quoted-rest and %arg-desc-evaled-rest cannot both
be set.

%args-info function Function
This is an internal function; it is like args-info but does not work for
interpreted functions. Also, function must be a function, not a function spec.
It exists because it has to be in the microcode anyway, for apply and the
basic function-calling mechanism.

1.10 Encapsulations

The definition of a function spec actually has two parts: the basic definition, and
encapsulations. The basic definition is what functions like defun create, and
encapsulations are additions made by trace or advise to the basic definition. The
purpose of making the encapsulation a separate object is to keep track of what was
made by defun and what was made by trace. If defun is done a second time, it
replaces the old basic definition with a new one while leaving the encapsulations
alone.

Only advanced users should ever need to use encapsulations directly via the
primitives explained in this section. The most common things to do with
encapsulations are provided as higher-level, easier-to-use features: trace and advise.

The way the basic definition and the encapsulations are defined is that the actual
definition of the function spec is the outermost encap~ulation; this contains the next
encapsulation, and so on. The innermost encapsulation contains the basic definition.
The way this containing is done is as follows. An encapsulation is actually a
function whose debugging info alist contains an element of the form:

(si :encapsulated-definition unintemed-symbol encapsulation-type>

The presence of such an element in the debugging info alist is how you recognize a

FUNC Functions 25
Symbolics, Inc. February 1984

function to be an encapsulation. An encapsulation is usually an interpreted function
(a list starting with named-lambda) but it can be a compiled function also, if the
application that created it wants to compile it.

unintemed-symbol's function definition is the thing that the encapsulation contains,
usually the basic definition of the function spec. Or it can be another encapsulation,
which has in it another debugging info item containing another uninterned symbol.
Eventually you get to a function that is not an encapsulation; it does not have the
sort of debugging info item that encapsulations all have. That function is the basic
definition of the function spec.

Literally speaking, the definition of the function spec is the outermost encapsulation,
period. The basic definition is not the definition. If you are asking for the
definition of the function spec because you want to apply it, the outermost
encapsulation is exactly what you want. But the basic definition can be found
mechanically from the definition, by following the debugging info alists. So it makes
sense to think of it as a part of the definition. In regard to the function-defining
special forms such as defun, it is convenient to think of the encapsulations as
connecting between the function spec and its basic definition.

An encapsulation is created with the macro si:encapsulate.

si:encapsulate Macro
A call to si:encapsulate looks like:

(si :encapsulate function-spec outer-function type
body-form
extra-debugging-info)

All the subforms of this macro are evaluated. In fact, the macro could
almost be replaced with an ordinruy function, except for the way body-form is
handled.

function-spec evaluates to the function spec whose definition the new
encapsulation should become. outer-function is another function spec, which
should often be the same one. Its only purpose is to be used in any error
messages from si:encapsulate.

type evaluates to a symbol that identifies the purpose of the encapsulation; it
says what the application is. For example, it could be advise or trace. The
list of possible types is defined by 'the system because encapsulations are
supposed to be kept in an order according to their type. See the variable
si:encapsulation-standard-order. type should have an
si:encapsulation-grind-function property that tells grindef what to do
with an encapsula~ion of this type.

body-form is a form that evaluates to the body of the encapsulation-definition,
the code to be executed when it is called. Backquote is typically used for this
expression. See the section "Backquote". si:encapsulate is a macro

26 FUNC Functions

Symbolics, Inc. February 1984

because, while body is being evaluated, the variable
si:encapsulated-function is bound to a list of the form
(function unintemed-symbol), referring to the uninterned symbol used to
hold the prior definition of function-spec. If si:encapsulate were a function,
body-fonn would just get evaluated normally by the evaluator before
si:encapsulate ever got invoked, and so there would be no opportunity to
bind si:encapsulated-function. The form body-fonn should contain
(apply si:encapsulated-function arglist) somewhere if the encapsulation
is to live up to its name and truly serve to encapsulate the original definition.
(The variable arglist is bound by some of the code that the si:encapsulate
macro produces automatically. When the body of the encapsulation is run,
arglist's value will be the list of the arguments that the encapsulation
received.)

extra-debugging-info evaluates to a list of extra items to put into the
debugging info alist of the encapsulation function (besides the one starting
with si:encapsulated-definition that every encapsulation must have).
Some applications find this useful for recording information about the
encapsulation for their own later use.

When a special function is encapsulated, the encapsulation is itself a special
function with the same argument quoting pattern. (Not all quoting patterns
can be handled; if a particular special form's quoting pattern cannot be
handled, si:encapsulate signals an error.) Therefore, when the outermost
encapsulation is started, each argument has been evaluated or not as
appropriate. Because each encapsulation calls the prior definition with apply,
no further evaluation takes place, and the basic definition of the special form
also finds the arguments evaluated or not as appropriate. The basic
definition may call eval on some of these arguments or parts of them; the
encapsulations should not.

Macros cannot be encapsulated, but their expander functions can be; if the
definition of function-spec is a macro, then si:encapsulate automatically
encapsulates the expander function instead. In this case, the definition of
the uninterned symbol is the original macro definition, not just the original
expander function. It would not work for the encapsulation to apply the
macro definition. So during the evaluation of body-fonn,
si:encapsulated-function is bound to the form
(cdr (function unintemed-symbol)), which extracts the expander function
from the prior definition of the macro.

Because only the expander function is actually encapsulated, the
encapsulation does not see the evaluation or compilation of the expansion
itself. The value returned by the encapsulation is the expansion of the
macro call, not the value computed by the expansion.

It is possible for one function to have multiple encapsulations, created by different

FUNC Functions 27

Symbolics, Inc. February 1984

subsystems. In this case, the order of encapsulations is independent of the order in
which they were made. It depends instead on their types. All possible
encapsulation types have a total order and a new encapsulation is put in the right
place among the existing encapsulations according to its type and their types.

si:encapsulation-standard-order Variable
The value of this variable is a list of the allowed encapsulation types, in the
order that the encapsulations are supposed to be kept in (innermost
encapsulations first). If you want to add new kinds of encapsulations, you
should add another symbol to this list. Initially its value is:

(advise trace si:rename-within)

advise encapsulations are used to hold advice. trace encapsulations are used
for implementing tracing. si:rename-within encapsulations are used to
record the fact that function specs of the form
(:within within-function altered-function) have been defined. The
encapsulation goes on within-function. See the section "Rename-within
Encapsulations".

Every symbol used as an encapsulation type must be on the list
si:encapsulation-standard-order. In addition, it should have an
si:encapsulation-grind-function property whose value is a function that grindef
will call to process encapsulations of that type. This function need not take care of
printing the encapsulated function, because grindef will do that itself. But it
should print any information about the encapsulation itself that the user ought to
see. Refer to the code for the grind function for advise to see how to write one.
See the special form advise.

To find the right place in the ordering to insert a new encapsulation, it is necessary
to parse existing ones. This is done with the function
si:unencapsulate-function-spec.

si:unencapsulate-function-spec function-spec &optional Function
encapsulation-types

This takes one function spec and returns another. If the original function
spec is undefined, or has only a basic definition (that is, its definition is not
an encapsulation), then the original function spec is returned unchanged.

If the definition of function-spec is an encapsulation, then its debugging info
is examined to find the uninterned symbol that holds the encapsulated
definition, and also the encapsulation type. If the encapsulation is of a type
that is to be skipped over, the uninterned symbol replaces the original
function spec and the process repeats.

The value returned is the uninterned symbol from inside the last
encapsulation skipped. This uninterned symbol is the first one that does not
have a definition that is an encapsulation that should be skipped. Or the

28 FUNC Functions

Symbolics, Inc. February 1984

value can be function-spec if function-spec's definition is not an encapsulation
that should be skipped.

The types of encapsulations to be skipped over are specified by
encapsulation-types. This can be a list of the types to be skipped, or nil,
meaning skip all encapsulations (this is the default). Skipping all
encapsulations means returning the uninterned symbol that holds the basic
definition of function-spec. That is, the definition of the function spec
returned is the basic definition of the function spec supplied. Thus:

(fdefinition (si:unencapsulate-function-spec 'foo))

returns the basic definition of foo, and

(fdefine (si:unencapsulate-function-spec 'foo) 'bar)

sets the basic definition (just like using fdefine with carefully Supplied as t).

encapsulation-types can also be a symbol, which should be an encapsulation
type; then we skip all types that are supposed to come outside of the
specified type. For example, if encapsulation-types is trace, then we skip all
types of encapsulations that come outside of trace encapsulations, but we do
not skip trace encapsulations themselves. The result is a function spec that
is where the trace encapsulation ought to be, if there is one. Either the
definition of this function spec is a trace encapsulation, or there is no trace
encapsulation anywhere in the definition of function-spec, and this function
spec is where it would belong if there were one. For example:

(let ((tern (si:unencapsulate-function-spec spec 'trace)))
(and (eq tern (si:unencapsulate-function-spec tern '(trace)))

(si:encapsulate tern spec 'trace ~c ... body ...))))

finds the place where a trace encapsulation ought to go, and makes one
unless there is already one there.

(let ((tern (si:unencapsulate-function-spec spec 'trace)))
(fdefine tern (fdefinition (si:unencapsulate-function-spec

tern ' (trace)))))

eliminates any trace encapsulation by replacing it by whatever it
·encapsulates. (If there is no trace encapsulation, this code changes nothing.)

These examples show how a subsystem can insert its own type of
encapsulation in the proper sequence without knowing the names of any
other types of encapsulations. Only the si:encapsulation-standard-order
variable, which is used by si:unencapsulate-function-spec, knows the
order.

FUNG Functions 29

Symbolics, Inc. February 1984

1.10.1 Rename-within Encapsulations

One special kind of encapsulation is the type si:rename-within. This encapsulation
goes around a definition in which renamings of functions have been done.

How is this used?

If you define, advise, or trace (:within too bar), then bar gets renamed to
altered-bar-within-too wherever it is called from too, and too gets a
si:rename-within encapsulation to record the fact. The purpose of the
encapsulation is to enable various parts of the system to do what seems natural to
the user. For example, grindet notices the encapsulation, and so knows to print
bar instead of altered-bar-within-too, when grinding the definition of too.

Also, if you redefine too, or trace or advise it, the new definition gets the same
renaming done (bar replaced by altered-bar-within-foo). To make this work,
everyone who alters part of a function definition should pass the new part of the
definition through the function si:rename-within-new-definition-maybe.

si:rename-within-new-definition-maybe function-spec Function
new-structure

Given new-structure that is going to become a part of the definition of
function-spec, perform on it the replacements described by the
si:rename-within encapsulation in the definition of function-spec, if there is
one. The altered (copied) list structure is returned.

It is not necessary to call this function yourself when you replace the basic
definition because tdefine with carefully supplied as t does it for you.
si:encapsulate does this to the body of the new encapsulation. So you only
need to call si:rename-within-new-definition-maybe yourself if you are
rplac'ing part of the definition.

For proper results, function-spec must be the outer-level function spec. That
is, the value returned by si:unencapsulate-function-spec is not the right
thing to use. It will have had one or more encapsulations stripped off,
including the si:rename-within encapsulation if any, and so no renamings
will be done.

30 FUNC Functions

Symbolics. Inc. February 1984

FUNC Functions 31

Symbolics, Inc. February 1984

2. Closures

A closure is a type of Lisp functional object useful for implementing certain advanced
access and control structures. Closures give you more explicit control over the
environment, by allowing you to save the environment created by the entering of a
dynamic contour (that is, a lambda, do, prog, progv, let, or any of several other
special forms), and then use that environment elsewhere, even after the contour has
been exited.

2.1 What a Closure is

We will use a particular view of lambda-binding in this section because it makes it
easier to explain what closures do. In this view, when a variable is bound, a new
value cell is created for it. The old value cell is saved away somewhere and is
inaccessible. Any references to the variable will get the contents of the new value
cell, and any setq's will change the contents of the new value cell. When the
binding is undone, the new value cell goes away, and the old value cell, along with
its contents, is restored.

For example, consider the following sequence of Lisp forms:

(setq a 3)

C let CC a 1 O))
(print (+ a 6)))

(print a)

Initially there is a value cell for a, and the setq form makes the contents of that
value cell be 3. Then the lambda-combination is evaluated. a is bound to 10: the
old value cell, which still contains a 3, is saved away, and a new value cell is created
with 10 as its contents. The reference to a inside the lambda expression evaluates
to the current binding of a, which is the contents of its current value cell, namely
10. So 16 is printed. Then the binding is undone, discarding the new value cell,
and restoring the old value cell, which still contains a 3. The final print prints out
a 3.

The form (closure var-list function), where var-list is a list of variables and function
is any function, creates and returns a closure. When this closure is applied to some
arguments, all the value cells of the variables on var-list are saved away, and the
value cells that those variables had at the time closure was called- (that is, at the
time the closure was created) are made to be the value cells of the symbols. Then
function is applied to the arguments.

32 FUNC Functions

Symbolics. Inc. February 1984

Here is another, lower level explanation. The closure object stores several things
inside of it. First, it saves the function. Secondly, for each variable in var-list, it
remembers what that variable's value cell was when the closure was created. Then
when the closure is called as a function, it first temporarily restores the value cells it
has remembered inside the closure, and then applies function to the same arguments
to which the closure itself was applied. When the function returns, the value cells
are restored to be as they were before the closure was called.

Now, if we evaluate the form:

(setq a
(let ((x 3))

(closure '(x) 'frob)))

what happens is that a new value cell is created for x, and its contents is a fIXDum
3. Then a closure is created, which remembers the function frob, the symbol x,
and that value cell. Finally the old value cell of x is restored, and the closure is
returned. Notice that the new value cell is still around, because it is still known
about by the closure. When the closure is applied, say by doing (funcall a 7), this
value cell will be restored and the value of x will be 3 again. If frob uses x as a
free variable, it will see 3 as the value.

A closure can be made around any function, using any form that evaluates to a
function. The form could evaluate to a lambda expression, as in '(lambda () x), or
to a compiled function, as would (function (lambda() x)). In the example above,
the form is 'frob and it evaluates to the symbol frob. A symbol is also a good
function. It is usually better to close around a symbol that is the name of the
desired function, so that the closure points to the symbol. Then, if the symbol is
redefined, the closure will use the new definition. If you actually prefer that the
closure continue to use the old definition that was current when the closure was
made, then close around the definition of the symbol rather than the symbol itself.
In the above example, that would be done by:

(closure '(x) (function frob))

Because of the way closures are implemented, the variables to be closed over must
not get turned into "local variables" by the compiler. Therefore, all such variables
must be declared speciaj. This can be done with an explicit declare, with a special
form such as defvar, or with let-closed. In simple cases, a local-declare around
the binding will do the job. Usually the compiler can tell when a special declaration
is missing, but in the case of making a closure the compiler detects this after already
acting on the assumption that the variable is local, by which time it is too late to fix
things. The compiler will warn you if this happens.

In Zetalisp's implementation of closures, lambda-binding never really allocates any
storage to create new value cells. Value cells are created only by the closure
function itself, when they are needed. Thus, implementors of large systems need
not worry about storage allocation overhead from this mechanism if they are not
using closures.

FUNC Functions 33

Symbolics. Inc. February 1984

Zetalisp closures are not closures in the true sense, as they do not save the whole
variable-binding environment; however, most of that environment is irrelevant, and
the explicit declaration of which variables are to be closed allows the implementation
to have high efficiency. They also allow you to explicitly choose for each variable
whether it is to be bound at the point of call or bound at the point of definition (for
example, creation of the closure), a choice which is not conveniently available in
other languages. In addition, the program is clearer because the intended effect of
the closure is made manifest by listing the variables to be affected.

The implementation of closures (which is not usually necessary for you to
understand) involves two kinds of value cells. Every symbol has an internal value
cell, which is where its value is normally stored. When a variable is closed over by a
closure, the variable gets an external value cell to hold its value. The external value
cells behave according to the lambda-binding model used earlier in this section. The
value in the external value cell is found through the usual access mechanisms (such
as evaluating the symbol, calling symeval, and so on), because the internal value cell
is made to contain an invisible pointer to the external value cell currently in effect.
A symbol will use such an invisible pointer whenever its current value cell is a value
cell that some closure is remembering; at other times, there will not be an invisible
pointer, and the value will just reside in the internal value cell.

2.2 Examples of the Use of Closures

One thing we can do with closures is to implement a generator, which is a kind of
function that is called successively to obtain successive elements of a sequence. We
will implement a function make-list-generator, which takes a list and returns a
generator that will return successive elements of the list. When it gets to the end it
should return nil.

The problem is that in between calls to the generator, the generator must somehow
remember where it is up to in the list. Since all of its bindings are undone when it
is exited, it cannot save this information in a bound variable. It could save it in a
global variable, but the problem is that if we want to have more than one list
generator at a time, they will all try to use the same global variable and get in each
other's way.

Here is how we can use closures to solve the problem:

(defun make-list-generator (1)
(declare (special 1))
(closure '(l)

(function (lambda()
(prog 1 (car l)

(setq l (cdr 1)))))))

Now we can make as many list generators as we like; they will not get in each

34 FUNC Functions

Symbolics. Inc. February 1984

other's way because each has its own (external) value cell for I. Each of these value
cells was created when the make-list-generator function was entered, and the
value cells are remembered by the closures.

The following form uses closures to create an advanced accessing environment:

(declare (special a b))

(defun foo ()
(setq a 5))

(defun bar ()
(cons a b))

(let ((a 1)
(b 1))

(setq x (closure.'(a b) 'foo))
(setq y (closure '(a b) 'bar)))

When the let is entered, new value cells are created for the symbols a and b, and
two closures are created that both point to those value cells. If we do (funcall x),
the function foo will be run, and it will change the contents of the remembered
value cell of a to 5. If we then do (funcall y), the function bar will return (5 .. 1).

This shows that the value cell of a seen by the closure y is the same value cell seen
by the closure x. The top-level value cell of a is unaffected.

2.3 Closure-manipulating Functions

closure var-list function Function
This creates and returns· a closure of function over the variables in var-list.
Note that all variables on var-list must be declared special if the function is
to compile correctly.

To test whether an object is a closure, use the closurep predicate. See the section
"Predicates". The typep function will return the symbol closure if given a closure.
(typep x 'closure) is equivalent to (closurep x).

symeval-in-closure closure symbol Function
This returns the binding of symbol in the environment of closure; that is, it
returns what you would get if you restored the value cells known about by
closure and then evaluated symbol. This allows you to "look around inside" a
closure. If symbol is not closed over by closure, this is just like symeval.

set-in-closure closure symbol x Function
This sets the binding of symbol in the environment of closure to x; that is, it
does what would happen if you restored the value cells known about by
closure and then set symbol to x. This allows you to change the contents of

FUNC Functions

Symbolics, Inc. February 1984

the value cells known about by a closure. If symbol is not closed over by
closure, this is just like set.

35

locate-in-closure closure symbol Function
This returns the location of the place in closure where the saved value of
symbol is stored. An equivalent form is
(locf (symeval-in-closure closure symbol)).

closure-alist closure Function
Returns an alist of (symbol o value) pairs describing the bindings which the
closure performs when it is called. This list is not the same one that is
actually stored in the closure; that one contains pointers to value cells rather
than symbols, and closure-alist translates them back to symbols so you can
understand them. As a result, clobbering part of this list will not change the
closure.

closure-function closure Function
Returns the closed function from closure. This is the function that was the
second argument to closure when the closure was created.

let-closed ((variable value) ...) function Special Form
When using closures, it is vecy common to bind a set of variables with initial
values, and then make a closure over those variables. Furthermore, the
variables must be declared as "special" for the compiler. let-closed is a
special form that does all of this. It is best described by example:

(let-closed ((a 5) b Cc 'x))
(function (lambda() ...)))

macro-expands into

(local-declare ((special ab c))
(let ((a 5) b (c 'x))

(closure '(a b c)
(function (lambda() ...)))))

copy-closure closure Function
Creates and returns a new closure by copying closure, which should be a
closure or an entity. copy-closure generates new external value cells for
each variable in the closure and initializes their contents from the external
value cells of closure.

closure-variables closure Function
Creates and returns a list of all of the variables in closure, which should be a
closure or an entity. It returns a copy of the list that was passed as the
first argument to closure when closure was created.

36 FUNG Functions

Symbolics, Inc. February 1984

boundp-in-closure closure symbol Function
Returns t if symbol is bound in the environment of closure; that is, it does
what boundp would do if you restored the value cells known about by
closure. If symbol is not closed over by closure, this is just like boundp.

makunbound-in-closure closure symbol Function
Makes symbol be unbound in the environment of closure; that is, it does
what makunbound would do if you restored the value cells known about by
closure. If symbol is not closed over by closure, this is just like
makunbound.

A note about all of the xxx-in-closure functions (set-, symeval-, boundp--, and
makunbound-): if the variable is not directly closed over, the variable's value cell
from the global environment is used. That is, if closure A closes over closure B,
.x.u-in-closure of A does not notice any variables closed over by B.

A note about closure-alist: if any variable in the closure is unbound, this function
signals an error. It has been changed to return the variables in forward order,
rather than in reverse order as it used to. Use of this function is not recommended.

2.4 Entities

An entity is almost the same thing as a closure; the data type is nominally different
but an entity behaves just like a closure when applied. The difference is that some
system functions, such as print, operate on them differently. When print sees a
closure, it prints the closure in a standard way. When print sees an entity, it calls
the entity to ask the entity to print itself.

To some degree, entities are made obsolete by flavors. See the document Objects,
Message Passing, and Flavors. The use of entities as message-receiving objects is
explained in anoth~r section. See the section "Entities".

entity variable-list function Function
(LM-2 only) Returns a newly constructed entity. This function is just like
the function closure except that it returns an entity instead of a closure.

To test whether an object is an entity, use the entityp predicate. See the section
"Predicates". The functions symeval-in-closure, closure-alist, closure-function,
and so on also operate on entities.

FUNC Functions 37

Symbolics, Inc. February 1984

Index

&

@

A

B

sl:encapsulated-deflnltlon debugging info
Debugging info

Numeric
% %arg-desc-evaled-rest numeric

% %arg-desc-fef-bind-hair numeric
%%arg-desc-fef-quote-halr numeric

% %arg-desc-lnterpreted numeric
%%arg-desc-max-args numeric
% %arg-desc-mln-args numeric

% %arg-desc-quoted-rest numeric

& &
& keywords 14

@ @
@define macro 13

A A

B

advise special form 7
alist element 24
alist functions 7, 16, 22, 24
%%arg-desc-evaled-rest numeric argument

descriptor field 23
%%arg-desc-fef-bind-halr numeric argument

descriptor field 23
%%arg-desc-fef-quote-halr numeric argument

descriptor field 23
%%arg-desc-lnterpreted numeric argument

descriptor field 23
%%arg-desc-max-args numeric argument descriptor

field 23
%%arg-desc-mln-args numeric argument descriptor

field 23
%%arg-desc-quoted-rest numeric argument

descriptor field 23
argllst function 7, 22
argllst variable 24
args-lnfo function 23
%args-lnfo function 24
argument descriptor 16, 23
argument descriptor field 23
argument descriptor field 23
argument descriptor field 23
argument descriptor field 23
argument descriptor field 23
argument descriptor field 23
argument descriptor field 23
Arguments to functions 16, 22
Arrays 7
Arrays used as functions 11
&aux lambda-list keyword 14

Basic definition of the function spec 1, 24
Binding 31
Binding variables 31
&body lambda-list keyword 14
boundp-ln-closure function 36

B

38

c

D

Operations the User

External value
Internal value

Value

What a

Entities:
Examples of the Use of

c-sh-A
c-sh-0
m-sh-0

Macro expansion in

sl:encapsulated-deflnltion

Using the sys:functlon-parent

Basic

How Programs Manipulate
Simple Function

sys:

Numeric argument
% %arg-desc-evaled-rest numeric argument

%%arg-desc-fef-blnd-halr numeric argument
%%arg-desc-fef-quote-halr numeric argument

% %arg-desc-lnterpreted numeric argument
% %arg-desc-max-args numeric argument

FUNC Functions

Symbolics. Inc. February 1984

c c

D

c-sh-A command 7
c-sh-D command 7
Can Perform on Functions 7
Cdr storing functions 1
cell 31
cell 31
cell 31
Closed subroutine 9
closure function 11, 34
Closure is 31
closure-allst function 35
closure-function function 35
Closure-manipulating Functions 34
closure-variables function 35
closurep function 34
Closures 7, 11, 31
Closures 36
Closures 33
command 7
command 7
command 7
Compiled functions 7, 10, 11
compiler process 10
copy-closure function 35
Coroutine 31

debugging info alist element 24
Debugging info alist functions 7, 16, 22, 24
debugging-info function 7, 22
declaration 19
def special form 13
deff special form 13
Defining function specs 1
Defining functions 1, 4, 11
Definition 1, 19
Definition names 18
definition of the function spec 1, 24
Definition types 19
Definitions 16
Definitions 4
Definitions of functions 16
defmacro special form 11
defmethod special form 1
defselect special form 1, 11, 13
defsubs special form 11
defsubst-with-parent macro 19
defun special form 1, 4, 11
defunp macro 6, 11
descriptor 16, 23
descriptor field 23
descriptor field 23
descriptor field 23
descriptor field 23
descriptor field 23

D

FUNC Functions

Symbolics, Inc. February 1984

%%arg-desc-min-args numeric argument
%%arg-desc-quoted-rest numeric argument

descriptor field 23
descriptor field 23
disassemble function 7
documentation function 7, 22
Documentation string functions 7, 16, 22
dtp-select-method 7, 11

39

E E E

F

sl:encapsulated-deflnltlon debugging Info alist
sl:
sl:

sl:
sl:

Rename-within

Function

How Programs

Macro

F

element 24
encapsulate macro 25
encapsulated-definition debugging info alist

element 24
encapsulated-function variable 24
encapsulation-standard-order variable 27
Encapsulations 1, 24
Encapsulations 29
Entities 7, 11
Entities: Closures 36
Entity 36
entity function 36
Entry Frame 1 O
&eval lambda-list keyword 14
Evaluation of special functions 7
Evaluator 7
Examine Functions 22
Examples of the Use of Closures 33
expansion in compiler process 10
expr Maclisp type 11
External value cell 31

fdeflne function 1, 16
sys: fdeflne-file-pathname variable 18

fdefinedp function 21
fdeflnltion function 21

sys: fdefinltlon-locatlon function 21
FEF 10
fexpr Maclisp type 11

%%arg-desc-evaled-rest numeric argument descriptor
field 23

%%arg-desc-fef-bind-hair numeric argument descriptor
field 23

%%arg-desc-fef-quote-hair numeric argument descriptor
field 23

%%arg-desc-lnterpreted numeric argument descriptor
field 23

%%arg-desc-max-args numeric argument descriptor field 23
%%arg-desc-mln-args numeric argument descriptor field 23

%%arg-desc-quoted-rest numeric argument descriptor
field 23

Flavor system storing functions
Flavors 36

advise special form 7
def special form 13

deft special form 13

F

40

defmacro special
defmethod special

defselect special
defsubs special

defun special
let-closed special

macro special
trace special

Function-defining Special
Special

Function Entry

argllst
args-info

%args-lnfo
boundp-ln-closure

closure
closure-allst

closure-function
closure-variables

closurep
copy-closure

debugging-Info
disassemble

documentation
entity

fdefine
fdefinedp

fdefinition
fset-carefully

fundefine
grlndef

locate-In-closure
makunbound-ln-closure

print
record-source-file-name

set-In-closure
sl:functlon-spec-get

sl:functlon-spec-putprop
si:rename-withln-new-definition-maybe

sl:unencapsulate-function-spec
symeval-ln-closure

sys:fdefinition-locatlon
sys:function-parent

typep
uncomplle

undefun
who-calls

Simple

Basic definition of the
:Internal
:location
:method

:property
:within

FUNC Functions

Symbolics. Inc. February 1984

form 11
form 1
form 1, 11, 13
form 11
form 1, 4, 11
form 35
form 11
form 7
Forms 11
forms 7
Frame 10
fset-carefully function 21
Function 1
function 7, 22
function 23
function 24
function 36
function 11, 34
function 35
function 35
function 35
function 34
function 35
function 7, 22
function 7
function 7, 22
function 36
function 1, 16
function 21
function 21
function 21
function 21
function 7
function 35
function 36
function 36
function 17
function 34
function 21
function 21
function 29
function 27
function 34
function 21
function 18
function 34
function 16
function 21
function 10
Function Definitions 4
Function Entry Frame 10
Function renaming 29
function spec 1, 24
function spec type 1
function spec type 1
function spec type 1
function spec type 1
function spec type 1

FUNC Functions 41

Symbolics. Inc. February 1984

G

H

Symbol

:method
Defining

Using the sys:
sys:

sl:
sl:

What Is a

Arguments to
Arrays used as

Cdr storing
Closure-manipulating

Compiled
Debugging Info alist

Defining
Definitions of

Documentation string
Evaluation of special

Flavor system storing
Functions:

How Programs Examine
Interpreted

Kinds of
Lambda

Macrocoded
Microcoded

named-lambda
named-subset

named-subst
Names of

Operations the User Can Perform on
, Other Kinds of

Redefining
Select-method

Special
subst

Symbols used as
Storing

G

H

function spec type
Function Specs 1
function specs 16
function specs 1
Function-defining Special Forms 11
function-parent declaration · 19
function-parent function 18
function-spec-get function 21
functlon-spec-putprop function 21
Function? 1
&functional lambda-list keyword 14
functions 16, 22
functions 11
functions 1
Functions 34
functions 7, 10, 11
functions 7, 16, 22, 24
functions 1, 4, 11
functions 16
functions 7, 16, 22
functions 7
functions 1
Functions 1
Functions 22
functions 7, 9
Functions 7
functions 9
functions 10
functions 10
functions 9, 11
functions 11
functions 9
functions 1
Functions 7
Functions 11
functions 17
functions 11
functions 7
functions 9
functions 1
functions on property lists
Functions: Functions 1
fundeflne function 21

Generator 33
grlndef function 7

sl: *hairy* symbol 16, 22
How Programs Examine Functions 22
How Programs Manipulate Definitions 16

G

H

42

I

K

L

sl:encapsulated-deflnltlon debugging
Debugging

What a Closure
What

&aux lambda-list
&body lambda-list
&eval lambda-list

&functional lambda-list
&list-of lambda-list
&local lambda-list

&optional lambda-list
"e

"e lambda-list
&rest lambda-list

&special lambda-list
&

Lambda-list

Other

&aux
&body
&eval

&functional
&list-of
&local

&optional
"e

&rest
&special

lambda

Storing functions on property

FUNC Functions

Symbolics. Inc. February 1984

info alist element 24
info alist functions 7, 16, 22, 24
lnhlblt-fdeflne-wamlngs variable 16
Instance 11
Instances 7
:Internal function spec type
Internal value cell 31
Interpreted functions 7, 9
is 31
Is a Function? 1

I

K K

L

keyword 14
keyword 14
keyword 14
keyword 14
keyword 14
keyword 14
keyword 14
keyword 7
keyword 14
keyword 14
keyword 14
keywords 14
Keywords 14
Kinds of Functions 7
Kinds of Functions 11

Lambda functions 9
lambda list 16, 22
Lambda-binding 31
Lambda-list 9
lambda-list keyword 14
lambda-list keyword 14
lambda-list keyword 14
lambda-list keyword 14
lambda-list keyword 14
lambda-list keyword 14
lambda-list keyword 14
lambda-list keyword 14
lambda-list keyword 14
lambda-list keyword 14
Lambda-list Keywords 14
lambda-list-keywords variable 15
let-closed special form 35
Lexpr Maclisp type 11
list 16, 22
&list-of lambda-list keyword 14
lists 1
&local lambda-list keyword 14
Local variables 31
locate-in-closure function 35

L

FUNC Functions

Symbolics, Inc. February 1984

M

0

p

expr
fexpr
Lex pr

macro
@define

defunp
sl:encapsulate

sys:defsubst-wHh..parent

How Programs

Definition

%%arg-desc-evaled-rest
% %arg-desc-fef-bind-hair

% %arg-desc-fef-quote-halr
%%arg-desc-lnterpreted

%%arg-desc-max-args
% %arg-desc-min-args

%%arg-desc-quoted-rest

Operations the User Can

Macro expansion in compiler
How
How

:location function spec type

M

N

0

m-sh-D command 7
Maclisp 11
Maclisp type 11
Maclisp type 11
Maclisp type 11
Macllsp type 11
macro 13
macro 6, 11
macro 25
macro 19
Macro expansion in compiler process 10
macro Maclisp type 11
macro special form 11
Macrocoded functions 10
Macros 7, 11
makunbound-in-closure function 36
Manipulate Definitions 16
:method function spec type
:method function specs 16
Microcoded functions 10

named-lambda functions 9, 11
named-subset functions 11
named-subst functions 9
names 18
Names of functions 1
Numeric argument descriptor 16, 23
numeric argument descriptor field 23
numeric argument descriptor field 23
numeric argument descriptor field 23
numeric argument descriptor field · 23
numeric argument descriptor field 23
numeric argument descriptor field 23
numeric argument descriptor field 23

Open subroutine 9

43

M

N

0
Operations the User Can Perform on Functions 7
&optional lambda-list keyword 14

p

Other Kinds of Functions 11

Perform on Functions 7
print function 36
process 10
Programs Examine Functions 22
Programs Manipulate Definitions 16
:property function spec type 1

p

44 FUNC Functions

Symbolics, Inc. February 1984

Storing functions on property lists

Q Q Q
"e keyword 7
"e lambda-list keyword 14

R R R
record-source-file-name 18
record-source-file-name function 17
Redefining functions 17
Rename-within 29
Rename-within Encapsulations 29

sl: rename-within-new-definition-maybe function . 29
Function renaming 29

&rest lambda-list keyword 14

s s s

Basic definition of the function
:Internal function
:location function
:method function

:property function
:within function
Symbol function

advise
def

deft
defrnacro

def method
def select
def subs

defun
let-closed

macro
trace

Function-defining

Select-method 11
Select-method functions 11
set-In-closure function 34
sl:*halry* symbol 16, 22
si:*unknown* symbol 16, 22
sl:encapsulate macro 25
sl:encapsulated-deflnltlon debugging info alist

element 24
sl:encapsulated-functlon variable 24
sl:encapsulatlon-standard-order variable 27
sl:function-spec-get function 21
sl:functlon-spec-putprop function 21
sl:rename-wlthln-new-deflnltlon-maybe

function 29
sl:unencapsulate-functlon-spec function 27
Simple Function Definitions 4
spec 1, 24
spec type 1
spec type 1
spec type 1
spec type 1
spec type 1
spec type 1
special form 7
special form 13
special form 13
special form 11
special form 1
special form 1, 11, 13
special form 11
special form 1, 4, 11
special form 35
special form 11
special form 7
Special forms 7
Special Forms 11
Special functions 7

FUNC Functions

Symbolics, . Inc. February 1984

T

u

Evaluation of

:method function
Defining function

Function

Cdr
Flavor system

Documentation
Closed

Open

al:*halry*
s1:•unknown*

Using the

Flavor

:Internal function spec
:location function sf)ec
:method function spec

:property function spec
:within function spec

expr Maclisp
fexpr Maclisp
Lexpr Maclisp

macro Maclisp
Symbol function spec

Definition

sl:
al:

Arrays
Symbols

Operations the

T

u

special functions 7
&9'>8Cial lambda-list keyword 14
Special variables 31
specs 16
specs 1
Specs 1
Stack-groups 7
storing functions
storing functions 1
Storing functions on property lists
string functions 7, 16, 22
subroutine 9
subroutine 9
subst functions 9
symbol 16, 22
symbol 16, 22
Symbol function spec type
Symbols used as functions 1
aymeval-ln-closure function 34
sys:defsubst-with-parent macro 19
ays:fdefln•flle-pathname variable 18
sys:fdeflnitlon-locatlon function 21
ays:functlon-parent declaration 19
aya:functlon-parent function 18
system storing functions 1

trace special form 7 type- 1
type 1
type 1
type 1
type 1
type 11
type 11
type 11
type 11
type 1
typep function 34
types 19

uncomplle function 16
undefun function 21
unencapsulat•function-spec function 27
unknown symbol 16. 22
used as functions 11
used as functions 1
User can Perform on Functions 7

45

T

u

46 FUNC Functions

Symbolics, Inc. February 1984

v v v
Value cell 31

External value cell 31
Internal value cell 31
arglist variable 24

inhlblt-fdeflne-wamlngs variable 16
lambda-list-keywords variable 15

sl:encapsulated-function variable 24
sl:encapsulatlon-standard-order variable 27

sys:fdeflne-file-pathname variable 18
Binding variables 31

Local variables 31
Special variables 31

w w w
What a Closure is 31
What Is a Function? 1
who-calls function 10
:within function spec type

symbolics™

MAC Macros

Cambridge, Massachusetts

Macros
990068

March 1984

Thia document corresponds to Release 5.0.

This document was prepared by the Documentation Group of Symbolics, Inc.

No representation or affirmation of fact contained in this document should be construed
as a warranty by Symbolics, and Its contents are subject to change without notice.
Symbolics, Inc. assumes no ~sponslblllty for any errors that might appear in this
document.

Symbolics software described In this document Is furnished only under license, and may
be used only In accordance with the terms of such license. Trtle to, and ownership of,
such software shall at all times remain In Symbolics, Inc. Nothing contained herein
Implies the granting Qf a license to make, use, or sell any Symbolics equipment or
software.

Symbolics Is a trademark of Symbolics, Inc., cambrldge, Massachusetts.

Copyright C 1981, 1979, 1978 Massachusetts Institute of Technology.
All rights reserved.

Enhancements copyright C 1984, 1983, 1982 Symbolics, Inc. of cambrldge,
Massachusetts.
All rights reserved. Printed In USA.
This document may not be reproduced in whole or in part without the prior written
consent of Symbolics, Inc.

Printing year and number: 87 86 85 84 9 8 7 6 5 4 3 2 1

MAC Macros

Symbolics, Inc. March 1984

Table of Contents

Page

1. Introduction to Macros 1

1.1 Lambda Macros 3

2. Aids for Defining Macros 5

2.1 defmacro 5
2.2 Backquote 7

3. Substitutable Functions 11

4. Symbol Macros 13

5. Hints to Macro Writers 15

5.1 N rune Conflicts 15
5.2 Prog-context Conflicts 17
5.3 Macros Expanding Into Many Forms 18
5.4 Macros That Surround Code 20
5.5 Multiple and Out-of-order Evaluation 21
5.6 Nesting Macros 24
5.7 Functions Used During Expansion 26

6. Aid for Debugging Macros 27

7. Displacing Macros 29

8. Advanced Features of defmacro 31

9. Functions to Expand Macros 33

10. Generalized Variables 35

Index 39

MAC Macros 1

Symbolics. Inc. March 1984

1. Introduction to Macros

If eval is handed a list whose car is a symbol, then eval inspects the definition of
the symbol to find out what to do. If the definition is a cons, and the car of the
cons is the symbol macro, then the definition (that is, that cons) is called a macro.
The cdr of the cons should be a function of one argument. eval applies the
function to the form it was originally given, takes whatever is returned, and
evaluates that in lieu of the original form.

Here is a simple example. Suppose the definition of the symbol first is:

(macro lambda (x)
(list 'car (cadr x)))

This thing is a macro: it is a cons whose car is the symbol macro. What happens if
we try to evaluate a form (first '(ab c))? Well, eval sees that it has a list whose
car is a symbol (namely, first), so it looks at the definition of the symbol and sees
that it is a cons whose car is macro; the definition is a macro.

eval takes the cdr of the cons, which is supposed to be the macro's expander
function, and calls it providing as an argument the original form that eval was
handed. So it calls (lambda (x) (list 'car (cadr x))) with argument
(first '(a b c)). Whatever this returns is the expansion of the macro call. It will
be evaluated in place of the original form.

In this case, xis bound to (first '(ab c)), (cadr x) evaluates to '(ab c), and
(list 'car (cadr x)) evaluates to (car '(ab c)), which is the expansion. eval now
evaluates the expansion. (car '(ab c)) returns a, and so the result is that
(first '(a b c)) returns a.

What have we done? We have defined a macro called first. What the macro does
is to translate the form to some other form. Our translation is very simple - it just
translates forms that look like (first x) into (car x), for any form x. We can do
much more interesting things with· macros, but first we will show how to define a
macro.

macro Special Form
The primitive special form for defining macros is macro. A macro definition
looks like this:

(macro name C arg)
body>

name can be any function spec. arg must be a variable. body is a sequence
of Lisp forms that expand the macro; the last form should return the
expansion.

To define our first macro, we would say:

2 MAC Macros

Symbolics, Inc. March 1984

(macro first (x)
(list 'car (cadr x)))

Here are some more simple examples of macros. Suppose we want any form that
looks like (addone x) to be translated into (plus 1 x). To define a macro to do this
we would say

(macro addone (x)
(list 'plus '1 (cadr x))))

Now say we wanted a macro that would translate (increment x) into
(setq x (1+ x). This would be:

(macro increment (x)
(list 'setq (cadr x) (list '1+ (cadr x)))

Of course, this macro is of limited usefulness. The reason is that the form in the
cadr of the increment form had better be a symbol. If you tried
(increment (car x)), it would be translated into (setq (car x) (1+ (car x))), and
setq would complain. (If you're interested in how to fix this problem: See the
macro setf. However, this is irrelevant to how macros work.)

You can see from this discussion that macros are very different from functions. A
function would not be able to tell what kind of subforms are around in a call to
itself; they get evaluated before the function ever sees them. However, a macro gets
to look at the whole form and see just what is going on there. Macros are not
functions; if first is defined as a macro, it is not meaningful to apply first to
arguments. A macro does not take arguments at all; its expander function takes a
Lisp form and turns it into another Lisp form.

The purpose of functions is to compute; the purpose of macros is to translate.
Macros are used for a variety of purposes, the most common being extensions to the
Lisp language. For example, Lisp is powerful enough to express many different
control structures, but it does not provide every control structure anyone might ever
possibly want. Instead, if you want some kind of control structure with a syntax
that is not provided, you can translate it into some form that Lisp does know about.

For example, you might want a limited iteration construct that increments a variable
by one until it exceeds a limit (like the FOR sta~ement of the BASIC language).
You might want it to look like:

(for a 1 100 (print a) (print (*a a)))

To get this, you could write a macro to translate it into:

(do a 1 (1+ a) (> a 100) (print a) (print (* a a)))

A macro to do this could be defined with:

,MAC Macros 3

Symbolics. Inc. March 1984

(macro for (x)
(cons 'do

(cons (cadr x)
(cons (caddr x)

(cons (list '1+ (cadr x))
(cons (list '> (cadr x) (cadddr x))

(cddddr x)))))))

Now you have defined your own new control structure primitive, and it will act just
as if it were a special form provided by Lisp itself.

1.1 Lambda Macros

Lambda macros are similar to regular Lisp macros, except that regular Lisp macros
replace, and expand into, Lisp forms, whereas lambda macros replace, and expand
into, Lisp functions. They are an advanced feature, used only for certain special
language extensions or embedded programming systems.

To understand what lambda macros do, consider how regular Lisp macros work.
When the evaluator is given a Lisp form to evaluate, it inspects the car of the form
to figure out what to do. If the car is the name of a function, the function is
called. But if the car is the name of a macro, the macro is expanded, and the result
of the expansion is considered to be a Lisp form and is evaluated. Lambda macros
work analogously, but in a different situation. When the evaluator finds that the
car of a form is a list, it looks at the car of this list to figure out what to do. If this
car is the symbol lambda, the list is an ordinary function, and it is applied to its
arguments. But if this car is the name of a lambda macro, the lambda macro is
expanded, and the result of the expansion is considered to be a Lisp function and is
applied to the arguments.

Like regular macros, lambda macros are named by symbols and have a body, which
is a function of one argument. To expand the lambda macro, the evaluator applies
this body to the entire lambda macro function (the list whose car is the name of the
lambda macro), and expects the body to return another function as its value.

Several special forms are provided for dealing with lambda macros. The primitive for
defining a new lambda macro is lambda-macro; it is analogous with the macro
special form. For convenience, deflambda-macro and deflambda-macro-displace
are defined; these work like defmacro to provide easy parsing of the function into
its component parts. The special form deffunction creates a new Lisp function
that uses a named lambda macro instead of lambda in its definition.

lambda-macro name lambda-list &body body Special Form
Analogously with macro, defines a lambda macro to be called name.
lambda-list should be a list of one variable, which is bound to the function
being expanded. The lambda macro must return a function. Example:

4 MAC Macros

Symbolics, Inc. March 1984

(lambda-macro ilisp (x)
'(lambda (&optional ,@(second x) &rest ignore) . ,(cddr x)))

This defines a lambda macro called ilisp. After it has been defined, the
following list is a valid Lisp function:

(ilisp Cx y z) (list x y z))

The above function takes three· arguments and returns a list of them, but all
of the arguments are optional and any extra arguments are ignored. (This
shows how to make functions that imitate Interlisp functions, in which all
arguments are always optional and extra arguments are always ignored.) So,
for example:

(funcall l'(ilisp (x y z) (list x y z)) 1 2) => (1 2 nil)

deflambda-macro Special Fonn
deflambda-macro is like defmacro, but defines a lambda macro instead of
a normal macro.

deflambda-macro-<ijsplace Special Fonn
deflambda-macro-displace is like defmacro-displace, but defines a
displacing lambda macro instead of a displacing normal macro.

d~ffunction function-spec lambda-macro-name lambda-list &body Special Fonn
body

Defines a function using an arbitrary lambda macro in place of lambda. A
deffunction form is like a defun form, except that the the function spec is
immediately followed by the name of the lambda macro to be used.
deffunction expands the lambda macro immediately, so the lambda macro
must already be defined before deffunction is used. For example, suppose
the ilisp lambda macro were defined, as in the example above. Then the
following example would define a function called new-list, that would use the
lambda macro called ilisp:

(deffunction new-list ilisp (x y z)
(listxyz))

new-list's arguments are optional, and any extra arguments are ignored.
Examples:

(new-list 1 2) => (1 2 nil)
(new-list 1 2 3 4) -> (1 2 3)

Lambda macros can be accessed with the (:lambda-macro name) function spec.

MAC Macros 5

Symbolics, Inc. March 1984

2. Aids for Defining Macros

The main problem with the definition for the for macro is that it is verbose and
clumsy. See the section "Introduction to Macros". If it is that hard to write a macro
to do a simple specialized iteration construct, one would wonder how anyone could
write macros of any real sophistication.

There are two things that make the definition so inelegant. One is that you must
write things like "(cadr x)" and "(cddddr x)" to refer to the parts of the form you
want to do things with. The other problem is that the long chains of calls to the
list and cons functions are very hard to read.

Two features are provided to solve these two problems. The defmacro macro solves
the former, and the "backquote" (') reader macro solves the latter.

2.1 defmacro

Instead of referring to the parts of our form by "(cadr x)" and such, we would like
to give names to the various pieces of the form, and somehow have the (cadr x)
automatically generated. This is done by a macro called defmacro. It is easiest to
explain what defmacro does by showing an example. Here is how you would write
the for macro using defmacro:

(defmacro for (var lower upper . body)
(cons 'do

(cons var
(cons lower

(cons (list '1+ var)
(cons (list '>var upper)

body))))))

The (var lower upper . body) is a pattern to match against the body of the form
(to be more precise, to match against the cdr of the argument to the macro's ~

expander function). If defmacro tries to match the following two lists:

(var lower upper . body)
(a 1 100 (print a) (print (* a a)))

var will get bound to the symbol a, lower to the fixnum 1, upper to the fIXnum
100, and body to the list ((print a) (print(* a a))). Then inside the body of the
defmacro, var, lower, upper, and body are variables, bound to the matching
parts of the macro form.

defmacro Macro
defmacro is a general-purpose macro-defining macro. A defmacro form
looks like:

6 MAC Macros

Symbolics. Inc. March 1984

(def macro name pattern . body>

The pattern may be anything made up out of symbols and conses. It is
matched against the body of the macro form; both pattern and the form are
car'ed and cdr'ed identically, and whenever a non-nil symbol is hit in pattern,
the symbol is bound to the corresponding part of the form. All of the
symbols in pattern can be used as variables within body. name is the name
of the macro to be defined; it can be any function spec. See the section
"Function Specs". body is evaluated with these bindings in effect, and its
result is returned to the evaluator as the expansion of the macro.

defmacro could have been defined in terms of destructuring-bind as
follows:

(defmacro defmacro (name pattern &body body)
'(macro ,name (form)

(destructuring-bind ,pattern (cdr form)
• ,body)))

See the special form destructuring-bind

Note that the pattern need not be a list the way a lambda-list must. In the above
example, the pattern was a "dotted list", since the symbol body was supposed to
match the cddddr of the macro form. If we wanted a new iteration form, like for
except that our example would look like:

(for a (1 100) (print a) (print (* a a)))

(just because we thought that was a nicer syntax), then we could do it merely by
modifying the pattern of the defmacro above; the new pattern would be
(var (lower upper) • body).

Here is how we would write our other examples using defmacro:

(defmacro first (the-list)
(list 'car the-list))

(defmacro addone (form)
(list 'plus '1 form))

(defmacro increment (symbol)
(list 'setq symbol (list '1+ symbol)))

All of these were very simple macros and have very simple patterns, but these
examples show that we can replace the (cadr :x) with a readable mnemonic name
such as the-list or symbol, which makes the program clearer, and enables
documentation facilities such as the arglist function to describe the syntax of the
special form defined by the macro.

There is another version of defmacro which defines displacing macros. See the
section "Displacing Macros". defmacro has other, more complex features. See the
section "Advanced Features of defmacro".

MAC Macros 7

Symbolics. Inc. March 1984

2.2 Backquote

Now we deal with the other problem: the long strings of calls to cons and list.
This problem is relieved by introducing some new characters that are special to the
Lisp reader. Just as the single-quote character makes it easier to type things of the
form (quote x), so will some more new special characters make it easier to type
forms that create new list structure. The functionality provided by these characters
is called the backquote facility.

The backquote facility is used by giving a backquote character ('), followed by a form.
If the form does not contain any use of the comma character, the backquote acts
just like a single quote: it creates a form that, when evaluated, produces the form
following the backquote. For example:

'(ab c) => (ab c)
'(a b c) => (a b c)

So in the simple cases, backquote is just like the regular single-quote macro. The
way to get it to do interesting things is to include a comma somewhere inside the
form following the backquote. The comma is followed by a form, and that form gets
evaluated even though it is inside the backquote. For example:

(setq b 1)

'(a b c) => (a b c)
'(a ,b c) => (a 1 c)
'Cabe ,(+ b 4) ,(- b 1) (def ,b)) => Cabe 5 O (def 1))

In other words, backquote quotes everything except things preceded by a comma;
those things get evaluated.

A list following a backquote can be thought of as a template for some new list
structure. The parts of the list that are preceded by commas are forms that fill in
slots in the template; everything else is just constant structure that will appear in
the result. This is usually what you want in the body of a macro; some of the form
generated by the macro is constant, the same thing on every invocation of the
macro. Other parts are different every time the macro is called, often being
functions of the form that the macro appeared in (the "arguments" of the macro).
The latter parts are the ones for which you would use the comma. Several
examples of this sort of use follow.

When the reader sees the '(a ,b c) it is actually generating a form such as
(list 'ab 'c). The actual form generated may use list, cons, append, or whatever
might be a good idea; you should never have to concern yourself with what it
actually turns into. All you need to care about is what it evaluates to. Actually, it
does not use the regular functions cons, list, and so forth, but uses special ones
instead so that the grinder can recognize a form that was created with the
backquote syntax, and print it using backquote so that it looks like what you typed
in. You should never write any program that depends on this, anyway, because
backquote makes no guarantees about how it does what it does. In particular, in

8 MAC Macros

Symbolics, Inc. March 1984

some circumstances it may decide to create constant forms that will cause sharing of
list structure at run time, or it may decide to create forms that will create new list
structure at run time. For example, if the reader sees '(r • ,nil), it may produce the
same thing as (cons 'r nil), or '(r • nil). Be careful that your program does not
depend on which of these it does.

This is generally found to be pretty confusing by most people; the best way to
explain further seems to be with examples. Here is how we would write our three
simple macros using both the defmacro and backquote facilities.

(defmacro first (the-list)
'(car ,the-list))

(defmacro addone (form)
' (pl us 1 , form))

(defmacro increment (symbol)
'(setq ,symbol Cl+ ,symbol)))

Finally, to demonstrate how easy it is to define macros with these two facilities, here
is the final form of the for macro.

(defmacro for (var lower upper . body)
'(do ,var , lower (1+ ,var) (> ,var ,upper) • ,body))

Look at how much simpler that is than the original definition. Also, look how
closely it resembles the code it is producing. The functionality. of the for really
stands right out when written this way.

If a comma inside a backquote form is followed by an "at-sign" character (@), it has
a special meaning. The ",@" should be followed by a form whose value is a list;
then each of the elements of the list is put into the list being created by the
backquote. In other words, instead of generating a call to the cons function,
backquote generates a call to append. For example, if a is bound to (x y z), then
'(1 ,a 2) would evaluate to (1 (x y z) 2), but '(1 ,@a 2) would evaluate to
(1 x y z 2).

Here is an example of a macro definition that uses the",@" construction. Suppose
you wanted to extend Lisp by adding a kind of special form called repeat-forever,
which evaluates all of its subforms repeatedly. One way to implement this ~uld be
to expand:

into:

C repeat-forever forml form2 form3)

(prog ()
a forml

form2
form3
(go a))

You could define the macro by:

MAC Macros 9

Symbolics. Inc. March 1984

(defmacro repeat-forever body
' (prog ()

a ,@body
(go a)))

A similar construct is ",." (comma, dot). This means the same thing as ",@" except
that the list which is the value of the following form may be freely smashed;
backquote uses nconc rather than append This should of course be used with
caution.

Backquote does not make any guarantees about what parts of the structure it
shares and what parts it copies. You should not do destructive operations such as
nconc on the results of backquote forms such as:

'(,ab c d)

since backquote might choose to implement this as:
(cons a '(b c d))

and nconc would smash the constant. On the other hand, it would be safe to
nconc the result of:

'(ab ,c ,d)

since there is nothing this could ~xpand into that does not involve making a new
list, such as:

(list 'a 'b c d)

Backquote of course guarantees not to do any destructive operations (rplaca,
rplacd, nconc) on the components of the structure it builds, unless the ",." syntax
is used.

Advanced macro writers sometimes write "macro-defining macros": forms that
expand into forms which, when evaluated, define macros. In such macros it is often
useful to use nested backquote constructs. The following example illustrates the use
of nested backquotes in the writing of macro-defining macros.

This example is a very simple version of defstruct. You should first understand the
basic description of defstruct before proceeding with this example. The defstruct
below does not accept any options, and only allows the simplest kind of items; that
is, it only allows forms like:

(defstruct (name)
iteml
item2
item3
item4
...)

We would like this form to expand into:

10

(progn 'compile
(defmacro iternl (x)

'(aref ,x O))
(def macro itern2 (x)

'(aref ,x 1))
(def macro itern3 (x)

' (aref , x 2))
(def macro itern4 (x)

' (aref , x 3))
...)

MAC Macros

Symbolics, Inc. March 1984

The meaning of the (progn 'compile ...)is discussed in another section. See the
section "Macros Expanding Into Many Forms". Here is the macro to perform the
expansion:

(defmacro defstruct ((name) . items)
(do ((item-list items (cdr item-list))

(ans nil)
(i 0 (1+ i)))

((null item-list)
'(progn 'compile • ,(nreverse ans)))

(setq ans
(cons '(defmacro ,(car item-list) (x)

'(aref ,x ,',i))
ans))))

The interesting part of this definition is the body of the (inner) defmacro form:

' (aref , x , ', i)

Instead of using this backquote construction, we could have written:

(list 'aref x ,i)

That is, the ",'," acts like a comma that matches the outer backquote, while the ","
preceding the "x" matches with the inner backquote. Thus, the symbol i is
evaluated when the defstruct form is expanded, whereas the symbol x is evaluated
when the accessor macros are expanded.

Backquote can be useful in situations other than the writing of macros. Whenever
there is a piece of list structure to be consed up, most of which is constant, the use
of backquote can make the program considerably clearer.

MAC Macros 11

Symbolics, Inc. March 1984

3. Substitutable Functions

A substitutable function is a function that is open-coded by the compiler. It is like
any other function when applied, but it can be expanded instead, and in that regard
resembles a macro.

defsubst Special Form
defsubst is used for defining substitutable functions. It is used just like
defun:

(defsubst name lambda-list . body>

and does almost the same thing. It defines a function that executes
identically to the one that a similar call to defun would define. The
difference comes when a function that calls this one is compiled. Then, the
call will be open-coded by substituting the substitutable function's definition
into the code being compiled. The function itself looks like
(named-subst name lambda-list. body). Such a function is called a subst.
For example, if we define:

(defsubst square (x) (* x x))

(defun foo Ca b) (square (+ ab)))

then if foo is used interpreted, square will work just as if it had been
defined by defun. If foo is compiled, however, the squaring will be

·substituted into it and it will compile just like:

(defun foo (a b) (* (+ a b) (+ a b)))

square's definition would be:

(named-subst square (x) (* xx))

See the section "Interpreted Functions". The internal formats of substs and
named-substs are explained in that section.

defsubst now creates compiled functions, where they were previously only
interpreted. Thus a subst is now faster when invoked as a function. As a
consequence of changes to the implementation of subst, it is now possible to
get new compiler warnings when compiling files containing defsubst. For
example, the following defsubst would not have· previously gotten a warning,
even though x is free in add-with-x.

(defsubst add-with-x (y) (+ x y))

The current implementation would issue a warning because substs are now
implemented with compiled code objects. (This example would still work if
expanded in an environment which lexically contained x.)

A similar square could be defined as a macro, with:

12 MAC Macros

Symbolics, Inc. March 1984

(defmacro square (x) '(* ,x ,x))

In general, anything that is implemented as a subst can be reimplemented
as a macro, just by changing the defsubst to a defmacro and putting in
the appropriate backquote and commas. The disadvantage of macros is that
they are not functions, and so cannot be applied to arguments. Their
advantage is that they can do much more powerful things than substs can.
This is also a disadvantage since macros provide more ways to get into
trouble. If something can be implemented either as a macro or as a subst,
it is generally better to make it a subst.

You will notice that the substitution performed is very simple and takes no
care about the possibility of computing an argument twice when it really
ought to be computed once. For instance, the functions:

(defsubst reverse-cons (x y) (cons y x))
(defsubst in-order (a b c) (and (< a b) (< b c)))

present problems. When compiled, because of the substitution a call to
reverse-cons would evaluate its arguments in the wrong order, and a call to
in-order could evaluate its second argument twice. For this reason the
writer of defsubsts must be cautious. Also all occurrences of the argument
names in the body are replaced with the argument forms, wherever they
appear. Thus an argument name should not be used in the body for
anything else, such as a function name or a symbol in a constant.

As with defun, name can be any function spec.

MAC Macros 13

Symbolics, Inc. March 1984

4. Symbol Macros

A symbol macro translates a symbol into a substitute form. When the Lisp
evaluator is given a symbol, it checks whether the symbol has been defined as a
symbol macro. If so, it evaluates the symbol's replacement form instead of the
symbol itself. Use define-symbol-macro to define a symbol macro.

define-symbol-macro name form Special Form
This special form defines a symbol macro. name is a symbol to be defined as
a symbol· macro. form is a Lisp form to be substituted for the symbol when
the symbol is evaluated. A symbol macro is more like a subst than a macro:
form is the form to be substituted for the symbol, not a form whose
evaluation results in the substitute form.

A symbol defined as a symbol macro cannot be used in the context of a
variable. You cannot use setq on it, and you cannot bind it. You can use
setf on it: setf substitutes the replacement form, which should access
something, and expands into the appropriate update function. Exam.pie:

(define-symbol-macro foo (+ 3 bar))
(setq bar 2)
foo => 5

Here is a more complex example. Suppose you want to define some new
instance variables and methods for a flavor. You want to test the methods
using existing instances of the flavor. For testing purposes, you might use
hash tables to simulate the instance variables, using one hash table per
instance variable with the instance as the key. You could then implement an
instance variable x as a symbol macro:

(defvar x-hash-table (make-hash-table))
(define-symbol-macro x (send x-hash-table ':get-hash self))

To simulate setting a new value for x, you could use (setf x value), which
would expand into (send x-hash-table ':put-hash self value).

14 MAC Macros

Symbolics. Inc. March 1984

~c~~ m
Symbolics, Inc. March 1984

5. Hints to Macro Writers

There are many useful techniques for writing macros. Over the years, Lisp
programmers have discovered techniques that most programmers find useful, and
have identified pitfalls that must be avoided. This section discusses some of these
techniques, and illustrates them with examples.

The most important thing to keep in mind as you learn to write macros is that you
should first figure out what the macro form is supposed to expand into, and only
then should you start to actually write the code of the macro. If you have a firm
grasp of what the generated Lisp program is supposed to look like, from the start,
you will find the macro much easier to write.

In general any macro that can be written as a substitutable function should be
written as one, not as a macro, for several reasons:

• Substitutable functions are easier to write and to read.

•They can be passed as functional arguments (for example, you can pass them
to mapcar).

• There are some subtleties that can occur in macro definitions that need not be
worried about in substitutable functions.

See the section "Substitutable Functions". A macro can be a substitutable function
only if it has exactly the semantics of a function, rather than a special form. The
macros we will see in this section are not semantically like functions; they must be
written as macros.

5.1 Name Conflicts

One of the most common errors in writing macros is best illustrated by example.
Suppose we wanted to write dolist as a macro that expanded into a do. The first
step, as always, is to figure out what the expansion should look like. Let's pick a
representative example form, and figure out what its expansion should be. Here is a
typical dolist form.

(dolist (element (append a b))
(push element *big-list*)
(foo element 3))

We want to create a do form that does the thing that the above dolist form says
to do. That is the basic goal of the macro: it must expand into code that does the
same thing that the original code says to do, but it should be in terms of existing
Lisp constructs. The do form might look like this:

16

(do ((list (append ab) (cdr list))
(element))

((null list))
(setq element (car list))
(push element *big-list*)
(foo element 3))

MAC Macros

Symbolics, Inc. March 1984

Now we could start writing the macro that would generate this code, and in general
convert any dolist into a do, in an analogous way. However, there is a problem
with the above scheme for expanding the dolist. The above expansion works fine.
But what if the input form had been the following:

(dolist (list (append a b))
(push list *big-list*)
(foo 1 ist 3))

This is just like the form we saw above, except that the user happened to decide to
name the looping variable list rather than element. The corresponding expansion
would be:

(do ((list (append ab) (cdr list))
(1 ist))

((null 1 ist))
(setq list (car list))
(push list *big-list*)
(foo 1 ist 3))

This does not work at all! In fact, this is not even a valid program, since it contains
a do that uses the same variable in two different iteration clauses.

Here is another example that causes trouble:

(let ((list nil))
(dolist (element (append ab))

(push element list)
(foo 1 i st 3)))

If you work out the expansion of this form, you will see that there are two variables
named list, and that the user meant to refer to the outer one but the generated
code for the push actually uses the inner one.

The problem here is an accidental name conflict. This can happen in any macro
that has to create a new variable. If that variable ever appears in a context in
which user code might access it, then you have to worcy that it might conflict with
some other name that the user is using for his own program.

One way to avoid this problem is to choose a name that is vecy unlikely to be picked
by the user, simply by choosing an unusual name. This will probably work, but it is
inelegant since there is no guarantee that the user will not just happen to choose
the same name. The only sure way to avoid the name conflict is to use an
uninterned symbol as the variable in the generated code. The function gensym is
useful for creating such symbols.

MAC Macros 17

Symbolics. Inc. March 1984

Here is the expansion of the original form, using an uninterned symbol created by
gensym.

(do ((g0005 (append ab) (cdr g0005))
(element))

((nu 11 g0005))
(setq element (car g0005))
(push element *big-list*)
(foo element 3))

This is the right kind of thing to expand into. Now that we understand how the
expansion works, we are ready to actually write the macro. Here it is:

(defmacro dolist ((var form) • body)
(let ((dummy (gensym)))

'(do ((,dummy ,form (cdr ,dummy))
(,var))

((nu 11 , dummy))
(setq ,var (car ,dummy))
. , body)))

Many system macros do not use gensym for the internal variables in their
expansions. Instead they use symbols whose print names begin and end with a dot.
This provides meaningful names for these variables when looking at the generated
code and when looking at the state of a computation in the Debugger. However,
this convention means that users should avoid naming variables this way.

5.2 Prag-context Conflicts

A related problem occurs when you write a macro that expands into a prog (or a
do, or something that expands into prog or do) behind the user's back (unlike
dolist, which is documented to be like do).

Consider the error-restart special form; suppose we wanted to implement it as a
macro that expands into a prog. If it expanded into a standard prog, then the
following (contrived) Lisp program would not behave correctly:

(prog ()
(setq a 3)
(error-restart

(cond ((> a 1 O)
(return 5))

((> a 4)

(cerror nil t ·1~se "You lose."))))
(setq b 7))

The problem is that the return would return from the error-restart instead of the
prog. The way to avoid this problem is to use a named prog whose name is t.
The name t is special. in that it is invisible to the return function. If we write

18 MAC Macros

Symbolics, Inc. March 1984

error-restart as a macro that expands into a prog named t, then the return will
pass right through the error-restart form and return from the prog, as it ought
to.

In general, when a macro expands into a prog or a do around the user's code, the
prog or do should be named t so that return forms in the user code will return to
the right place, unless the macro is documented as generating a prog/do-like form
that may be exited with return.

5.3 Macros Expanding Into Many Forms

Sometimes a macro wants to do several different things when its expansion is
evaluated. Another way to say this is that sometimes a macro wants to expand into
several things, all of which should happen sequentially at run time (not macro
expand time). For example, suppose you wanted to implement defconst as a macro.
defconst must do two things: declare the variable to be special, and set the variable
to its initial value. (We will implement a simplified defconst that only does these
two things, and does not have any options.) What should a defconst form expand
into? Well, what we would like is for an appearance of:

(defconst a (+ 4 b))

in a file to be the same thing as the appearance of the following two forms:

(declare (special a))
(setq a (+ 4 b))

However, because of the way that macros work, they expand into only one form, not
two. So we need to have a defconst form expand into one form that is just like
having two forms in the file.

There is such a form. It looks like this:

(progn 'compile
(declare (special a))
(setq a (+ 4 b)))

In interpreted Lisp, it is easy to see what happens here. This is a progn special
form, and so all its subforms are evaluated, in turn. First the form 'compile is
evaluated. The result is the symbol compile; this value is not used, and evaluation
of 'compile has no side effects, so the 'compile subform is effectively ignored.
Then the declare form and the setq form are evaluated, and so each of them
happens, in turn. So far, so good.

The interesting thing is the way this form is treated by the compiler. The compiler
specially recognizes any progn form at top level in a file whose first subform is
'compile. When it sees such a form, it processes each of the remaining subforms of
the progn just as if that form had appeared at top level in the file. So the compiler
behaves exactly as if it had encountered the declare form at top level, and then

MAC Macros 19

Symbolics. Inc. March 1984

encountered the setq form at top level, even though neither of those forms was
actually at top level (they were both inside the progn). This feature of the compiler
is provided specifically for the benefit of macros that want to expand into several
things.

Here is the macro definition:

(defmacro defconst (variable init-form)
' (progn 'compile

(declare (special ,variable))
(setq ,variable ,init-form)))

Here is another example of a form that wants to expand into several things. We
will implement a special form called define-command, which is intended to be used
in order to define commands in some interactive user subsystem. For each
command, there are two things provided by the define-command form: a function
that executes the command, and a text string that contains the documentation for
the command (in order to provide an online interactive documentation feature). This
macro is a simplified version of a macro that is actually used in the Zwei editor.
Suppose that in this subsystem, commands are always functions of no arguments,
documentation strings are placed on the help property of the name of the command,
and the names of all commands are put onto a list. A typical call to
define-command would look like:

(define-command move-to-top
"This command moves you to the top."
(do()

((at-the-top-p))
(move-up-one)))

This could expand into:

(progn 'compile
(defprop

move-to-top
"This command moves you to the top."
help)

(push 'move-to-top *conunand-name-list*)
(defun move-to-top()

(do()
((at-the-top-p))

(move-up-one)))

The define-command expands into three forms. The first one sets up the
documentation string and the second one puts the command name onto the list of
all command names. The third one is the defun that actually defines the function
itself. Note that the defprop and push happen at load time (when the file is
loaded); the function, of course, also gets defined at load time. (See the description
of eval-when for more discussion of the differences among compile time, load time,
and eval time.)

20 MAC Macros

Symbolics. Inc. March 1984

This technique makes Lisp a powerful language in which to implement your own
language. When you write a large system in Lisp, frequently you can make things
much more convenient and clear by using macros to extend Lisp into a customized
language for your application. In the above example, we have created a little
language extension: a new special form that defines commands for our system. It
lets the writer of the system put documentation strings right next to the code that
they document, so that the two can be updated and maintained together. The way
that the Lisp environment works, with load-time evaluation able to build data
structures, lets the documentation data base and the list of commands be
constructed automatically.

5.4 Macros That Surround Code

There is a particular kind of macro that is very useful for many applications. This is
a macro that you place "around" some Lisp code, in order to make the evaluation of
that code happen in some context. For a very simple example, we could define a
macro called with-output-in-base, that executes the forms within its body with any
output of numbers that is done defaulting to a specified base.

(defmacro with-output-in-base ((base-form) &body body)
'(let ((base ,base-form))

. , body))

A typical use of this macro might look like:

(with-output-in-base (*default-base*)
(print x)
(print y))

that would expand into:

(let ((base *default-base*))
(print x)
(print y))

This example is too trivial to be very useful; it is intended to demonstrate some
stylistic issues. There are some special forms in Zetalisp that are similar to this
macro. See the special form with-open-file. See the special form
with-input-from-string. The really interesting thing, of course, is that you can
define your own such special forms for your own specialized applications. One very
powerful application of this technique was used in a system that manipulates and
solves the Rubik's cube puzzle. The system heavily uses a special form called
with-front-and-top, whose meaning is "evaluate this code in a context in which
this specified face of the cube is considered the front face, and this other specified
face is considered the top face".

The first thing to keep in mind when you write this sort of macro is that you can
make your macro much clearer to people who might read your program if you

MAC Macros 21

Symbolics, Inc. March 1984

conform to a set of loose standards of syntactic style. By convention, the names of
such special forms start with "with-". This seems to be a clear way of expressing
the concept that we are setting up a context; the meaning of the special form is "do
this stuff with the following things true"·. Another convention is that any
"parameters" to the special form should appear in a list that is the first subform of
the special form, and that the rest of the subforms should make up a body of forms
that are evaluated sequentially with the last one returned. All of the examples cited
above work this way. In our with-output-in-base example, there was one
parameter (the base), which appears as the first (and only) element of a list that is
the first subform of the special form. The extra level of parentheses in the printed
representation serves to separate the "parameter" forms from the "body'' forms so
that it is textually apparent which is which; it also provides a convenient way to
provide default parameters (a good example is the with-input-from-string special
form, which takes two required and two optional "parameters"). Another
convention/technique is to use the &body keyword in the defmacro to tell the
editor how to correctly indent the special form. See the section "Advanced Features
of defmacro".

The other thing to keep in mind is that control can leave the special form either by
the last form's returning, or by a nonlocal exit (that is, something doing a *throw).
You should write the special form in such a way that everything will be cleaned up
appropriately no matter which way control exits. In our with-output-in-base
example, there is no problem, because nonlocal exits undo lambda-bindings.
However, in even slightly more complicated cases, an unwind-protect form is
needed: the macro must expand into an unwind-protect that surrounds the body,
with "cleanup" forms that undo the context-setting-up that the macro did. For
example, using-resource is implemented as a macro that does an
allocate-resource and then performs the body inside of an unwind-protect that
has a deallocate-resource in its "cleanup" forms. This way the allocated resource
item will be deallocated whenever control leaves the using-resource special form.

5.5 Multiple and Out-of-order Evaluation

In any macro, you should always pay attention to the problem of multiple or out-of
order evaluation of user subforms. Here is an example of a macro with such a
problem. This macro defines a special form with two subforms. The first is a
reference, and the second is a form. The special form is defined to create a cons
whose car and cdr are both the value of the second subform, and then to set the
reference to be that cons. Here is a possible definition:

(defmacro test (reference form)
'(setf ,reference (cons ,form ,form)))

Simple cases will work all right:

22 MAC Macros

Symbolics. Inc. March 1984

(test foo 3) ==>
(setf foo (cons 3 3))

But a more complex example, in which the subform has side effects, can produce
surprising results:

(test foo (setq x (1+ x))) ==>
(setf foo (cons (setq x (1+ x))

(setq x (1+ x))))

The resulting code evaluates the setq form twice, and so :x: is increased by two
instead of by one. A better definition of test that avoids this problem is:

(defmacro test (reference form)
(let ((value (gensym)))

'(let ((,value ,form))
(setf ,reference (cons ,value ,value)))))

With this definition, the expansion works as follows:

(test foo (setq x (1+ x))) ==>
(let ((g0005 (setq x (1+ x))))

(setf foo (cons g0005 g0005)))

In general, when you define a new special form that has some forms as its
subforms, you have to be careful about just when those forms get evaluated. If you
are not careful, they can get evaluated more than once, or in an unexpected order,
and this can be semantically significant if the forms have side effects. There is
nothing fundamentally wrong with multiple or out-of-order evaluation if that is really
what you want and if it is what you document your special form to do. However, it
is very common for special forms to simply behave like functions, and when they are
doing things like what functions do, it is natural to expect them to be function-like
in the evaluation of their subforms. Function forms have their subforms evaluated,
each only once, in left-to-right order, and special forms that are similar to function
forms should try to work that way too for clarity and consistency.

There is a tool that makes it easier for you to follow the principle explained above.
It is a macro called once-only. It is most easily explained by example. The way
you would write test using once-only is as follows:

(defmacro test (reference form)
(once-only (form)

'(setf ,reference (cons ,form ,form))))

This defines test in such a way that the form is only evaluated once, and
references to form inside the macro body refer to that value. once-only
automatically introduces a lambda-binding of a generated symbol to hold the value of
the form. Actually, it is more clever than that; it avoids introducing the lambda
binding for forms whose evaluation is trivial and may be repeated without harm or
cost, such as numbers, symbols, and quoted structure. This is just an optimization
that helps produce more efficient code.

The once-only macro makes it easier to follow the principle, but it does not

MAC Macros 23

Symbolics, Inc. March 1984

completely nor automatically solve the problems of multiple and out-of-order
evaluation. It is just a tool that can solve some of the problems some of the time; it
is not a panacea.

The following description attempts to explain what once-only does, but it is a lot
easier to use once-only by imitating the example above than by trying to
understand once-only's rather tricky definition.

once-only Macro
A once-only form looks like:

(once-only var-list
forml
form2
...)

var-list is a list of variables. The forms are a Lisp program that presumably
uses the values of those variables. When the form resulting from the
expansion of the once-only is evaluated, the first thing it does is to inspect
the values of each of the variables in var-list; these values are assumed to be
Lisp forms. For each of the variables, it binds that variable either to its
current value, if the current value is a trivial form, or to a generated symbol.
Next, once-only evaluates the forms, in this new binding environment, and
when they have been evaluated it undoes the bindings. The result of the
evaluation of the last form is presumed to be a Lisp form, typically the
expansion of a macro. If all of the variables had been bound to trivial forms,
then once-only just returns that result. Otherwise, once-only returns the
result wrapped in a lambda-combination that binds the generated symbols to
the result of evaluating the respective nontrivial forms.

The effect is that the program produced by evaluating the once-only form is
coded in such a way that it only evaluates each form once, unless evaluation
of the form has no side effects, for each of the forms that were the values of
variables in var~list. At the same time, no unnecessary lambda-binding
appears in this program, but the body of the once-only is not cluttered up
with extraneous code to decide whether or not to introduce lambda-binding in
the program it constructs.

Note well: while once-only attempts to prevent multiple evaluation, it does
not necessarily preserve the order of evaluation of the forms! Since it
generates the new bindings, the evaluation of complex forms (for which a
new variable needs to be created) may be moved ahead of the evaluation of
simple forms (such as variable references). once-only does not solve all of
the problems mentioned in this section.

Caution! A number of system macros, setf for example, fail to follow this
convention. Unexpected multiple evaluation and out-of-order evaluation can occur
with them. This was done for the sake of efficiency, is prominently mentioned in

24 MAC Macros

Symbolics, Inc. March 1984

the documentation of these macros, and will be fixed in the future. It would be best
not to compromise the semantic simplicity of your own macros in this way.

5.6 Nesting Macros

A useful technique for building language extensions is to define programming
constructs that employ two special forms, one of which is used inside the body of the
other. Here is a simple example. There are two special forms; the outer one is
called with-collection, and the inner one is called collect. collect takes one
subform, which it evaluates; with-collection just has a body, whose forms it
evaluates sequentially. with-collection returns a list of all of the values that were
given to collect during the evaluation of the with-collection's body. For example:

(with-collection
(dotimes (i 5)

(collect i)))

=> (1 2 3 4 5)

Remembering the first piece of advice we gave about macros, the next thing to do is
to figure out what the expansion looks like. Here is how the above example could
expand:

(let ((g0005 nil))
(dotimes Ci 5)

(push i g0005))
(nreverse g0005))

Now, how do we write the definition of the macros? Well, with-collection is pretty
easy:

(defmacro with-collection (&body body)
(let ((var (gensym)))

'(let ((,var nil))
,@body
(nreverse ,var))))

The hard part is writing collect. Let's try it:

(defmacro collect (argument)
'(push ,argument ,var))

Note that something unusual is going on here: collect is using the variable var
freely. It is depending on the binding that takes place in the body of
with-collection in order to get access to the value of var. Unfortunately, that
binding took place when with-collection got expanded; with-collection's expander
function bound var, and it got unbound when the expander function was done. By
the time the collect form gets expanded, var has long since been unbound. The

MAC Macros 25
Symbolics, Inc. March 1984

macro definitions above do not work. Somehow the expander function of
with-collection has to communicate with the expander function of collect to pass
over the generated symbol.

The only way for with-collection to convey information to the expander function of
collect is for it to expand into something that passes that information. What we
can do is to define a special variable (which we will call *collect-variable*), and
have with-collection expand into a form that binds this variable to the name of
the variable that the collect should use. Now, consider how this works in the
interpreter. The evaluator will first see the with-collection form, and call in the
expander function to expand it. The expander function creates the expansion, and
returns to the evaluator, which then evaluates the expansion. The expansion
includes in it a let form to bind *collect-variable* to the generated symbol. When
the evaluator sees this let form during the evaluation of the expansion of the
with-collection form, it will set up the binding and recursively evaluate the body of
the let. Now, during the evaluation of the body of the let, our special variable is
bound, and if the expander function of collect gets run, it will be able to see the
value of collection-variable and incorporate the generated symbol into its own
expansion.

Writing the macros this way is not quite right. It works fine interpreted, but the
problem is that it does not work when we try to compile Lisp code that uses these
special forms. When code is being compiled, there is no interpreter to do the
binding in our new let form; macro expansion is done at compile time, but generated
code does not get run until the results of the compilation are loaded and run. The
way to fix our definitions is to use compiler-let instead of let. compiler-let is a
special form that exists ,specifically to do the sort of thing we are trying to do here.
compiler-let is identical to let as far as the interpreter is concerned, so changing
our let to a compiler-let will not affect the behavior in the interpreter; it will
continue to work. When the compiler encounters a compiler-let, however, it
actually performs the bindings that the compiler-let specifies, and proceeds to
compile the body of the compiler-let with all of those bindings in effect. In other
words, it acts as the interpreter would.

Here is the right way to write these macros:

(defvar *collect-variable*)

(defmacro with-collection (&body body)
(let ((var (gensym)))

'(let ((,var nil))
(compiler-let ((*collect-variable* ',var))

. , body)
(nreverse ,var))))

(defmacro collect (argument)
'(push ,argument ,*collect-variable*))

26 MAC Macros

Symbolics, Inc. March 1984

5.7 Functions Used During Expansion

The technique of defining functions to be used during macro expansion deserves
explicit mention here. It may not occur to you, but a macro expander function is a
Lisp program like any other Lisp program, and it can benefit in all the usual ways
by being broken down into a collection of functions that do various parts of its work.
Usually macro expander functions are pretty simple Lisp programs that take things
apart and put them together slightly differently and such, but some macros are
quite complex and do a lot of work. Several features of Zetalisp, including flavors,
loop, and defstruct, are implemented using very complex macros, which, like any
complex well-written Lisp program, are broken down into modular functions. You
should keep this in mind if you ever invent an advanced language extension or ever
find yourself writing a five-page expander function.

A particular thing to note is that any functions used by macro-expander functions
must be available at compile time. You can make a function available at compile
time by surrounding its defining form with an (eval-when (compile load eval) •••).
See the special form eval-when. Doing this means that at compile time the
definition of the function will be interpreted, not compiled, and hence will run more
slowly. Another approach is to separate macro definitions and the functions they
call during expansion into a separate file, often called a "defs" (definitions) file. This
file defines all the macros but does not use any of them. It can be separately
compiled and loaded up before compiling the main part of the program, which uses
the macros. The system facility helps keep these various files straight, compiling and
loading things in the right order. See the document Maintaining Large Systems.

MAC Macros 27

Symbolics. Inc. March 1984

6. Aid for Debugging Macros

mexp Function
mexp goes into a loop in which it reads forms and sequentially expands
them, printing out the result of each expansion (using the grinder to improve
readability). See the section "Formatting Lisp Code". It terminates when it
reads an atom (anything that is not a cons). If you type in a form that is
not a macro form, there will be no expansions and so it will not type
anything out, but just prompt you for another form. This allows you to see
what your macros are expanding into, without actually evaluating the result
of the expansion.

28 MAC Macros

Symbolics, Inc. March 1984

MAC Macros 29

Symbolics, Inc. March 1984

7. Displacing Macros

Every time the the evaluator sees a macro form, it must call the macro to expand
the form. If this expansion always happens the same way, then it is wasteful to
expand the whole form every time it is reached; why not just expand it once? A
macro is passed the macro form itself, and so it can change the car and cdr of the
form to something else by using rplaca and rplacd! This way the first time the
macro is expanded, the expansion will be put where the macro form used to be, and
the next time that form is seen, it will already be expanded. A macro that does this
is called a displacing macro, since it displaces the macro form with its expansion.

The major problem with this is that the Lisp form gets changed by its evaluation.
If you were to write a program that used such a macro, call grindef to look at it,
then run the program and call grindef again, you would see the expanded macro
the second time. Presumably the reason the macro is there at all is that it makes
the program look nicer; we would like to prevent the unnecessary expansions, but
still let grindef display the program in its more attractive form. This is done with
the function displace.

Another thing to worry about with displacing macros is that if you change the
definition of a displacing macro, then your new definition will not take effect in any
form that has already been displaced. If you redefine a displacing macro, an existing
form using the macro will use the new definition only if the form has never been
evaluated.

displace form expansion Function
form must be a list. displace replaces the car and cdr of form so that it
looks like:

(si :displaced original-form expansion>

original-form is equal to form but has a different top-level cons so that the
replacing mentioned above does not affect it. si:displaced is a macro, which
returns the caddr of its own macro form. So when the si:displaced form is
given to the evaluator, it "expands" to expansion. displace returns
expansion.

The grinder knows specially about si:displaced forms, and will grind such a form as
if it had seen the original form instead of the si:displaced form.

So if we wanted to rewrite our addone macro as a displacing macro, instead of
writing:

(macro addone (x)
(list 'plus '1 (cadr x)))

we would write:

30 MAC Macros

Symbolics. Inc. March 1984

{macro addone (x)
(displace x {list 'plus '1 (cadr x))))

Of course, we really want to use defmacro to define most macros. Since there is
no way to get at the original macro form itself from inside the body of a defmacro,
another version of it is provided:

defmacro-displace Macro
defmacro-displace is just like defmacro except that it defines a displacing
macro, using the displace function.

Now we can write the displacing version of addone as:
(defmacro-displace addone {val)

(list 'plus '1 val))

All we have changed in this example is the defmacro into defmacro-displace.
addone is now a displacing macro.

~c~~ ~

Symbolics, Inc. March 1984

8. Advanced Features of defmacro

The pattern in a defmacro is more like the lambda-list of a normal function than
revealed above. It is allowed to contain certain &-keywords.

&optional is followed by variable, (variable), (variable default), or
(variable default present-p), exactly the same as in a function. Note that default is
still a form to be evaluated, even though variable is not being bound to the value of
a form. variable does not have to be a symbol; it can be a pattern. In this case
the first form is disallowed because it is syntactically ambiguous. The pattern must
be enclosed in a singleton list. If variable is a pattern, default can be evaluated
more than once.

Using &rest is the same as using a dotted list as the pattern, except that it may be
easier to read and leaves a place to put &aux.

&aux is the same in a macro as in a function, and has nothing to do with pattern
matching.

defmacro has a couple of additional keywords not allowed in functions.

&body is identical to &rest except that it informs the editor and the grinder ':hat
the remaining subforms constitute a "body" rather than "arguments" and should be
indented accordingly.

&list-of pattern requires the corresponding position of the form being translated to
contain a list (or nil). It matches pattern against each element of that list. Each
variable in pattern is bound to a list of the corresponding values in each element of
the list matched by the &list-of. This may be clarified by an example. Suppose we
want to be able to say things like:

(send-commands (aref turtle-table i)
(forward 100)
(beep)
(left 90)
(pen 'down 'red)
(forward 50)
(pen 'up))

We could define a send-commands macro as follows:

(defmacro send-commands (object
&body &list-of (command . arguments))

'(let ((o ,object))
. ,(mapcar #'(lambda (com args) '(send o ',com. ,args))

command arguments)))

Note that this example uses &body together with &list-of, so you do not see the
list itself; the list is just the rest of the macro-form.

32 MAC Macros

Symbolics, Inc. March 1984

You can combine &optional and &list-of. Consider the following example:

(defmacro print-let (x &optional &list-of ((vars vals)

'((lambda (,@vars) (print ,x))
,@vals))

(print-let foo) ==>
((lambda (base *nopoint)

(print foo))
12
t)

(print-let foo ((bar 3))) ==>
((lambda (bar)

(print foo))
3)

' ((base 1 O.)
(*nopoi nt t))))

In this example we are not using &body or anything like it, so· you do see the list
itself; that is why you see parentheses around the (bar 3).

MAC Macros 33

Symbolics, Inc. March 1984

9. Functions to Expand Macros

The following two functions are provided to allow the user to control expansion of
macros; they are often useful for the writer of advanced macro systems, and in tools
that want to examine and understand code which may contain macros.

macroexpand-1 form Function
If form is a macro form, this expands it (once) and returns the expanded
form. Otherwise it just returns form. macroexpand-1 expands defsubst
function forms as well as macro forms.

macroexpand form Function
If form is a macro form, this expands it repeatedly until it is not a macro
form, and returns the final expansion. Otherwise, it just returns form.
macroexpand expands defsubst function forms as well as macro forms.

34 MAC Macros

Symbolics. Inc. March 1984

~c~~ ~

Symbolics, Inc. March 1984

10. Generalized Variables

In Lisp, a variable is something that can remember one piece of data. The main
operations on a variable are to recover that piece of data, and to change it. These
might be called access and update. The concept of variables named by symbols can
be generalized to any storage location that can remember one piece of data, no
matter how that location is named. See the section "Variables: Evaluation".

For each kind of generalized variable, there are typically two functions which
implement the conceptual access and update operations. For example, symeval
accesses a symbol's value cell, and set updates it. array-leader accesses the
contents of an array leader element, and store-array-leader updates it. car
accesses the car of a cons, and rplaca updates it.

Rather than thinking of this as two functions, which operate on a storage location
somehow deduced from their arguments, we can shift our point of view and think of
the access function as a name for the storage location. Thus (symeval 'foo) is a
name for the value of foo, and (aref a 105) is a name for the 105th element of the
array a. Rather than having to remember the update function associated with each
access function, we adopt a uniform way of updating storage locations named in this
way, using the setf special form. This is analogous to the way we use the setq
special form to convert the name of a variable (which is also a form that accesses it)
into a form that updates it.

setf is particularly useful in combination with structure-accessing macros, such as
those created with defstruct, because the knowledge of the representation of the
structure is embedded inside the macro, and you should not have to know what it is
in order to alter an element of the structure.

setf is actually a macro that expands into the appropriate update function. It has a
database, explained below, that associates from access functions to update functions.

setf access-form value Macro
setf takes a form that accesses something, and "inverts" it to produce a
corresponding form to update the thing. A setf expands into an update
form, which stores the result of evaluating the form value i~to the place
referenced by the access-form. Examples:

(setf (array-leader foo 3) 'bar)
==> (store-array-leader 'bar foo 3)

(setf a 3) ==> (setq a 3)
(setf (plist 'a) '(foo bar)) ==> (setplist 'a '(foo bar))
(setf (aref q 2) 56) ==> (aset 56 q 2)
(setf (cadr w) x) ==> (rplaca (cdr w) x)

If access-form invokes a macro or a substitutable function, then setf expands
the access-form and starts over again. This lets you use setf together with
defstruct accessor macros.

36 MAC Macros

Symbolics. Inc. March 1984

For the sake of efficiency, the code produced by setf does not preserve order
of evaluation of the argument forms. This is only a problem if the argument
forms have interacting side-effects. For example, if you evaluate:

(setq x 3)
(setf (aref a x) (setq x 4))

then the form might set element 3 or element 4 of the array. We do not
guarantee which one it will do; do not just try it and see and then depend
on it, because it is subject to change without notice.

Furthermore, the value produced by setf depends on the structure type and
is not guaranteed; setf should be used for side effect only.

Besides the access and update conceptual operations on variables, there is a third
basic operation, which we might call locate. Given the name of a storage cell, the
locate operation will return the address of that cell as a locative pointer. See the
section "Locatives". This locative pointer is a kind of name for the variable that is a
first-class Lisp data object. It can be passed as an argument to a function that
operates on any kind of variable, regardless of how it is named. It can be used to
bind the variable, using the bind subprimitive.

Of course this can only work on variables whose implementation is really to store
their value in a memory cell. A variable with an update operation that encrypts the
value and an access operation that decrypts it could not have the locate operation,
since the value as such is not actually stored anywhere.

locf access-form Macro
locf takes a form which accesses some cell, and produces a corresponding
form to create a locative pointer to that cell. Examples:

(locf (array-leader foo 3)) ==> Cap-leader foo 3)
(locf a) ==> (value-cell-location 'a)
(locf (plist 'a)) ==> (property-cell-location 'a)
(locf (aref q 2)) ==> (aloe q 2)

If access-form invokes a macro or a substitutable function, then locf expands
the access-form and starts over again. This lets you use locf together with
defstruct accessor macros.

If access-form is (cdr list), locf returns the list itself instead of a locative.

Both setf and locf work by means of property lists. When the form
(setf (aref q 2) 56) is expanded, setf looks for the setf property of the symbol
aref. The value of the setf property of a symbol should be a cons whose car is a
pattern to be matched with the access-form, and whose cdr is the corresponding
update-form, with the symbol si:val in place of the value to be stored. The setf
property of aref is a cons whose car is (aref array. subscripts) and whose cdr is
(aset si:val array . subscripts). If the transformation that setf is to do cannot
be expressed as a simple pattern, an arbitrary function may be used: When the

MAC Macros 37

Symbolics, Inc. March 1984

form (setf (foo bar) baz) is being expanded, if the setf property of foo is a
symbol, the function definition of that symbol will be applied to two arguments,
(foo bar) and baz, and the result will be taken to be the expansion of the setf.

Similarly, the locf function uses the locf property, whose value is analogous. For
example, the locf property of aref is a cons whose car is (aref array. subscripts)
and whose cdr is (aloe array .. subscripts). There is no si:val in the case of
locf.

incf access-form [amount] Macro
Increments the value of a generalized variable. (incf ref) increments the
value of ref by 1. (incf ref amount) adds amount to ref and stores the sum
back into ref.

incf expands into a setf form, so ref can be anything that setf understands
as its access-form. This also means that you should not depend on the
returned value of an incf form.

You must take great care with incf because it may evaluate parts of ref more
than once. For example:

(incf (car (mumble))) ==>
(setf (car (mumble)) (1+ (car (mumble)))) ==>
(rplaca (mumble) (1+ (car (mumble))))

The mumble function is called more than once, which may be significantly
inefficient if mumble is expensive, and which may be downright wrong if
mumble has side effects. The same problem can come up with the decf,
swapf, push, and pop macros.

decf access-form [amount] Macro
Decrements the value of a generalized variable. (decf ref) decrements the
value of ref by 1. (decf ref amount) subtracts amount from ref and stores
the difference back into ref.

decf expands into a setf form, so ref can be anything that setf understands
as its access-form. This also means that you should not depend on the
returned value of a decf form.

swapf a b Macro
Exchanges the value of one generalized variable with that of another. a and
b are access-forms suitable for setf. The returned value is not defined. All
the caveats that apply to incf apply to swapf as well: Forms within a and b
may be evaluated more than once. Examples:

38

(swapf a b)
==> (setf a (progl b (setf b a)))
==> (setq a (progl b (setq b a)))

(swapf (car (foo)) (car (bar)))

MAC Macros

Symbolics. Inc. March 1984

==> (setf (car (foo)) (progl (car (bar)) (setf (car (bar)) (car (foo)))))
==> (rplaca (foo) (progl (car (bar)) (rplaca (bar) (car (foo)))))

Note that in the second example the functions foo and bar are called twice.

push item access-form Macro
Adds an item to the front of a list which is stored in a generalized variable.
(push item ref) creates a new cons whose car is the result of evaluating item
and whose cdr is the contents of ref, and stores the new cons into ref.

The form:
(push (hairy-function x y z) variable)

replaces the commonly used construct:

(setq variable (cons (hairy-function x y z) variable))

and is intended to be more explicit and esthetic.

All the caveats that apply to incf apply to push as well: forms within ref
may be evaluated more than once. The returned value of push is not
defined.

pop access-form Macro
Removes an element from the front of a list which is stored in a generalized
variable. (pop ref> finds the cons in ref, stores the cdr of the cons back into
ref, and returns the car of the cons. Example:

(setq x '(a b c))
(pop x) => a
x => (b c)

All the caveats that apply to incf apply to pop as well: forms within ref
may be evaluated more than once.

MAC Macros 39

Symbolics, Inc. March 1984

'

•

A

B

c

D

Index

' Comma character (,) In backquote facility 7

•
Dot (.) In symbols 15

A

B

Access functions 35
Advanced Features of defmacro 31
Aid for Debugging Macros 27
Aids for Defining Macros 5
&aux keyword for defmacro 31

Backquote 7
Backquote character (') 7

Comma character(,) In backquote facility 7

Comma
Backquote

Macros That Surround

Prog-context
Name

Aid for

Aids for

Selective evaluation In macro

Advanced Features of
&aux keyword for

&body keyword for
&list-of keyword for

&optional keyword for

c

D

&body keyword for defmacro 31

character (,) In backquote facility 7
character (') 7
Code 20
Comma character(,) in backquote facility 7
Conflicts 17
Conflicts: Macros 15

Debugging Macros 27
decf macro 37
Decrementing generalized variables 37
deffunctlon special form 4
define-symbol-macro special form 13
Defining Macros 5
Defining special forms 20
definitions 7
deflambda-macro special form 4
deftambda-macro-dlsplace special form 4
defmacro 5
defmacro 31
defmacro 31
defmacro 31
defmacro 31
defmacro 31

'

•

A

B

c

D

40 MAC Macros

Symbolics. Inc. March 1984

&rest keyword for defmacro 31
defmacro macro 5
defmacro-dlsplace macro 30
defstruct macro 7
defsubst 11
defsubst special form 11
displace function 29
Displaced macro expansions 29
Displacing Macros 29
do special form 17
Dot (.) in symbols 15

Functions Used During Expansion 26

E E E
Removing elements from list 38
Inserting elements into list 38

Multiple and Out-of-order Evaluation 21
Selective evaluation In macro definitions 7

Functions to Expand Macros 33
Macros expanded to Lisp functions 3
Macro expander functions 26

Macros Expanding Into Many Forms 18
Functions Used During Expansion 26

Displaced macro expansions 29

F F F
Comma character(,) In backquote facility 7

Advanced Features of defmacro 31
deffunctlon special form 4

define-symbol-macro special form 13
deflambda-macro special form 4

deflambda-macro-dlsplace special form 4
defsubst special form 11

do special form 17
lambda-macro special form 3

macro special form 1, 3
prog special form 17
sett speeial form 35

Defining special forms 20
Macros Expanding Into Many Forms 18

displace function 29
gensym function 15

macroexpand function 33
macroexpand-1 function 33

mexp function 27
Access functions 35
Locate functions 35

Macro expander functions 26
Macros expanded to Lisp functions 3

Purpose of functions 1
subst functions 11

Substitutable Functions 11
Update functions 35

Functions to Expand Macros 33
Functions Used During Expansion 26

MAC Macros 41

Symbolics, Inc. March 1984

G G G
Generalized Variables 35

Decrementing generalized variables 37
Incrementing generalized variables 37

Locating generalized variables 35
Updating generalized variables 35

gensym function 15

H H H
Hints to Macro Writers 15

I
lncf macro 37
Incrementing generalized variables 37
Inserting elements Into list 38
Introduction to Macros 1

K K K
&aux keyword for defmacro 31

&body keyword for defmacro 31
&list-of keyword for defmacro 31

&optional keyword for defmacro 31
&rest keyword for defmacro 31

L L L
Lambda Macros 3
lambda-macro special form 3

Macros expanded to Lisp functions 3
Inserting elements Into list 38

Removing elements from list 38
&list-of keyword for defmacro 31
Lists as templates 7
Locate functions 35
Locating generalized variables 35
Locative pointer 35
locf macro 36

M M M
decf macro 37

defmacro macro 5
defmacro-dlsplace macro 30

defstruct macro 7
lncf macro 37
locf macro 36

once-only macro 23
pop macro 38

push macro 38
setf macro 35

swapf macro 37
Selective evaluation in macro definitions 7

42

N

0

p

R

Displaced

Hints to

Aid for Debugging
Aids for Defining

Displacing
Functions to Expand

Introduction to
Lambda

Macro-defining
Name Conflicts:

Nesting
Symbol

Macros Expanding Into

Multiple and

Locative

N

0

p

R

MAC Macros

Symbolics, Inc. March 1984

Macro expander functions 26
macro expansions 29
macro special form 1, 3
Macro Writers 15
Macro-defining macros 5, 7
macroexpand function 33
macroexpand-1 function 33
Macros 1
Macros 27
Macros 5
Macros 29
Macros 33
Macros 1
Macros 3
macros 5, 7
Macros 15
Macros 24
Macros 13
Macros expanded to Lisp functions 3
Macros Expanding Into Many Forms 18
Macros That Surround Code 20
Many Forms 18-
mexp function 27
Multiple and Out-of-order Evaluation 21

Name Conflicts: Macros 15
Nesting Macros 24

once-only macro 23
&optional keyword for defmacro 31
Out-of-order Evaluation 21

pointer 35
pop macro 38
prog special form 17
Prog-context Conflicts 17
Purpc>se of functions 1
push macro 38

Removing elements from list 38
&rest keyword for defmacro 31

N

0

p

R

MAC Macros 43

Symbolics. Inc. March 1984

s s s
Selective evaluation In macro definitions 7
sett macro 35
sett special form 35

deffunctlon special form 4
defln•symbol-macro special form 13

deflambda-macro special form 4
deflambda-macro-dlsplace special form 4

defsubst special form 11
do special form 17

lambda-macro special form 3
macro special form 1, 3

prog special form 17
self special form 35

Defining special forms 20
Subst 11
subst functions 11
Substitutable Functions 11

Macros That Surround Code 20
swapf macro 37

Un Interned symbol 15
Symbol Macros 13

Dot(.) In symbols 15

T T T
Lists as templates 7
Macros That Surround Code 20

u u u
Unlntemed symbol 15
Update functions 35
Updating generalized variables 35

Functions Used During Expansion 26

v v v
Decrementing generalized variables 37

Generalized Variables 35
Incrementing generalized variables 37

Locating generalized variables 35
Updating generalized variables 35

w w w
Hints to Macro Writers 15

44 MAC Macros

Symbolics. Inc. March 1984

' ' '
Backquote character (') 7

symbolics™

DEFS Defstruct

Cambridge, Massachusetts

J

Defstruct
990057

February 1984

This document corresponds to Release_ 5.0.

This document was prepared by the Documentation Group of Symbolics, Inc.

No representation or affirmation of fact contained in this document should be construed
as a warranty by Symbolics, and its contents are subject to change without notice.
Symbolics, Inc. assumes no responsibility for any errors that might appear in this
document.

Symbolics software described in this document is furnished only under license, and may
be used only in accordance with the terms of such license. Title to, and ownership of,
such software shall at all times remain in Symbolics, Inc. Nothing contained herein
implies the granting of a license to make, use, or sell any Symbolics equipment or
software.

Symbolics is a trademark of Symbolics, Inc., Cambridge, Massachusetts.

Copyright © 1981, 1979, 1978 Massachusetts Institute of Technology.
All rights reserved.

Enhancements copyright C 1984, 1983 Symbolics, Inc. of Cambridge, Massachusetts.
All rights reserved. Printed in USA.
This document may not be reproduced in whole or in part without the prior written
consent of Symbolics, Inc.

Printing year and number: 87 86 85 84 9 8 7 6 5 4 3 2 1

DEFS Defstruct

Symbolics, Inc. February 1984

Table of Contents

Page

1. Introduction to Structure Macros 1

2. How to Use defstruct 5

3. Options to defstruct 7

4. Using the Constructor and Alterant·Macros 15

4.1 Constructor Macros 15
4.2 By-position Constructor Macros 16
4.3 Alterant Macros 17

5. Byte Fields 19

6. Grouped Arrays 21

7. :Nalt1ed Structures 23

8. The si:defstruct-description Structure 27

9. Extensions to defstruct 29

9.1 An Example of defstruct-define-type 29
9.2 Syn tax of defstruct-define-type 30
9.3 Options to defstruct-define-type 30

Index 35

DEFS Defstruct 1

Symbolics. Inc. February 1984

1. Introduction to Structure Macros

defstruct provides a facility in Lisp for creating and using aggregate data types with
named elements. These are like "structures" in PL/I, or "records" in PASCAL. In
this chapter we see how macros can be used to extend Lisp's data structures. (To
see how to use macros to extend the control structures of Lisp: See the document
Macros. See the section "Loop".

To explain the basic idea, assume you were writing a Lisp program that dealt with
space ships. In your program, you want to represent a space ship by a Lisp object
of some kind~ The interesting things about a space ship, as far as your program is
concerned, are its position (X and Y), velocity (X and Y), and mass. How do you
represent a space ship?

Well, the representation could be a list of the x-position, y-position, and so on.
Equally well it could be an array of five elements, the zeroth being the x-position,
the first being the y-position, and so on. The problem with both of these
representations is that the "elements" (such as x-position) occupy places in the object
that are quite arbitrary, and hard to remember (Hmm, was the mass the third or
the fourth element of the array?). This would make programs harder to write and
read. It would not be obvious when reading a program that an expression such as
(cadddr ship!) or (aref ship2 3) means "they component of the ship's velocity'',
and it would be very easy to write caddr in place of cadddr.

What we would like to see are names, easy to remember and to understand. If the
symbol foo were bound to a representation of a space ship, then:

(ship-x-position foo)

could return its x-position, and:

(ship-y-position foo)

its y-position, and so forth. The defstruct facility does just this.

defstruct itself is a macro that defines a structure. For the space ship example
above, we might define the structure by saying:

(defstruct (ship)
ship-x-position
ship-y-position
ship-x-velocity
ship-y-velocity
ship-mass)

This says that every ship is an object with five named components. (This is a very
simple case of defstruct; we will see the general form later.) The evaluation of this
form does several things. First, it defines ship-x-position to be a function that,
given a ship, returns the x component of its position. This is called an accessor

2 DEFS Defstruct

Symbolics, Inc. February 1984

function, because it accesses a component of a structure. defstruct defines the
other four accessor functions analogously.

defstruct will also define make-ship to be a macro that expands into the necessary
Lisp code to create a ship object. So (setq x (make-ship)) will make a new ship,
and set x to it. This macro is called the constructor macro, because it constructs a
new structure.

We also want to be able to change the contents of a structure. To do this, we use
the setf macro as follows (for example):

(setf (ship-x-position-x) 100)

Here x is bound to a ship, and after the evaluation of the setf form, the
ship-x-position of that ship will be 100. Another way to change the contents of a
structure is to use the alterant macro. See the section "Alterant Macros".

How does all this map into the familiar primitives of Lisp? In this simple example,
we left the choice of implementation technique up to defstruct; it will choose to
represent a ship as an array. The array has five elements, which are the five
components of the ship. The accessor functions are defined thus:

(defun ship-x-function (ship)
(aref ship 0))

The constructor macro (make-ship) expands into (make-array 5), which makes an
array of the appropriate size to be a ship. Note that a program that uses ships
need not contain any explicit knowledge that ships are represented as five-element
arrays; this is kept hidden by defstruct.

The accessor functions are not actually ordinary functions; instead they are substs.
See the section "Interpreted Functions". This difference has two implications: it
allows setf to understand the accessor functions, and it allows the compiler to
substitute the body of an accessor function directly into any function that uses it,
making compiled programs that use defstruct exactly equal in efficiency to programs
that "do it by hand." Thus writing (ship-mass s) is exactly equivalent to writing
(aref s 4), and writing (setf (ship-mass s) m) is exactly equivalent to writing
(aset m s 4), when the program is compiled. It is also possible to tell defstruct to
implement· the accessor functions as macros; this is not normally done in Zetalisp,
however.

We can now use the describe-defstruct function to look at the ship object, and
see what its contents are:

DEFS Defstruct 3

Symbolics. Inc. February 1984

(describe-defstruct x 'ship) =>

#<art-q-5 17073131> is a ship
ship-x-position: 100
ship-y-position: nil
ship-x-velocity: nil
ship-y-velocity: nil
ship-mass: nil

#<art-q-5 17073131>

See the function describe-defstruct.

By itself, this simple example provides a powerful structure definition tool. But, in
fact, defstruct has many other features. First of all, we might want to specify
what kind of Lisp object to use for the "implementation" of the structure. The
example above implemented a "ship" as an array, but defstruct can also implement
structures as array-leaders, lists, and other things. (For array-leaders, the accessor
functions call array-leader, for lists, nth, and so on.)

Most structures are implemented as arrays. Lists take slightly less storage, but
elements near the end of a long list are slower to access. Array leaders allow you to
have a homogeneous aggregate (the array) and a heterogeneous aggregate with
named elements (the leader) tied together into one object.

defstruct allows you to specify to the constructor macro what the various elements
of the structure should be initialized to. It also lets you give, in the defstruct form,
default values for the initialization of each element.

The defstruct in Zetalisp also works in various dialects of Maclisp, and so it has
some features that are not useful in Zetalisp. When possible, the Maclisp-specific
features attempt to do something reasonable or harmless in Zetalisp, to make it
easier to write code that will run equally well in Zetalisp and Maclisp. (Note that
this defstruct is not necessarily the default one installed in Maclisp!)

4 DEFS Defstruct

Symbolics, Inc~ February 1984

DEFS Defstruct 5

Symbolics, Inc. February 1984

2. How to Use defstruct

defstruct
A call to defstruct looks like:

C defstruct (name option-1 option-2 ...)
slot-description-1
slot-description-2
...)

Macro

name must be a symbol; it is the name of the structure. It is given a
si:defstruct-description property that describes the attributes and elements
of the structure; this is intended to be used by programs that examine Lisp
programs, that want to display the contents of structures in a helpful way.
name is used for other things, described below.

Each option may be either a symbol, which should be one of the recognized
option names, or a list, whose car should be one of the option names and the
rest of which should be "arguments" to the option. See the document
Objects, Message Passing, and Flavors. Some options have arguments that
default; others require that arguments be given explicitly.

Each slot-description may be in any of three forms:

(1) slot-name
(2) (slot-name default-init)
(3) C cslot-name-1 byte-spec-1 default-init-1)

C slot-name-2 byte-spec-2 default-init-2)
.. -)

Each slot-description allocates one element of the physical structure, even
though in form (3) several slots are defined.

Each slot-name must always be a symbol; an accessor function is defined for
each slot.

In form (1), slot-name simply defines a slot with the given name. An
accessor function will be defined with the name slot-name. See the option
:cone-name. Form (2) is similar, but allows a default initialization for the
slot. See the section "Constructor Macros". Initialization is explained further
in that section. Form (3) lets you pack several slots into a single element of
the physical underlying structure, using the byte field feature of defstruct.
See the section "Byte Fields".

Because evaluation of a defstruct form causes many functions and macros to be
defined, you must take care not to define the same name with two different
defstruct forms. A name can only have one function definition at a time; if it is
redefined, the latest definition is the one that takes effect, and the earlier definition

6 DEFS Detstruct

Symbolics, Inc. February 1984

is clobbered. (This is no different from the requirement that each defun that is
intended to define a distinct function must have a distinct name.)

To systematize this necessary carefulness, as well as for clarity in the code, it is
conventional to prefix the names of all of the accessor functions with some text
unique to the structure. In the space ship example, all the names started with
ship-. See the section "Introduction to Structure Macros". The :cone-name option
can be used to provide such prefixes at.ttomatically. Similarly, the conventional name
for the constructor macro in the space ship example was make-ship, and the
conventional name for the alterant macro was alter-ship. See the section "Alterant
Macros".

The describe-defstruct function lets you examine an instance of a structure.

describe-defstruct instance &optional name Function
describe-defstruct takes an instance of a structure, and prints out a
description of the instance, including the contents of each of its slots. name
should be the name of the structure; you must provide the name of the
structure so that describe-defstruct can know what structure instance is
an instance of, and therefore figure out what the names of the slots of
instance are.

If instance is a named structure, you do not have to provide name, since it is
just the named structure symbol of instance. Normally the describe
function calls describe-defstruct if it is asked to describe a named
structure; however, some named structures have their own idea of how to
describe themselves. See the section "Named Structures".

DEFS Defst~uct 7

Symbolics, Inc. February 1984

3. Options to defstruct

This section explains each of the options that can be given to defstruct.

Here is an example that shows the typical syntax of a call to defstruct that gives
several options.

(defstruct (foo (:type :array)

a
b)

(:make-array (:type 'art-Sb :leader-length 3))
:cone-name
(:size-symbol foo))

:type The :type option specifies what kind of Lisp object will be used to implement
the structure. It must be given one argument, which must be one of the
symbols enumerated below, or a user-defined type. If the option itself is not
provided, the type defaults to :array. You can define your own types. See
the section "Extensions to defstruct".

:array Use an array, storing components in the body of the array.

:named-array Like :array, but make the array a named structure using
the name of the structure as the named structure symbol.
See the section "Named Structures". Element 0 of the
array will hold the named structure symbol and so will not
be used to hold a component of the structure.

:array-leader Use an array, storing components in the leader of the
array. (See the option :make-array.)

:named-array-leader

:list

:named-list

:f"IXD.um-array

:fl.on um-array

:tree

Like :array-leader, but make the array a named
structure using the name of the structure as the named
structure symbol. See the section "Named Structures".
Element 1 of the leader will hold the named structure
symbol and so will not be used to hold a component of the
structure.

Use a list.

Like :list, but the first element of the list will hold the
symbol that is the name of the structure and so will not
be used as a component. ·

Like :array, but the type of the array is art-32b.

Like :array, but the type of the array is art-float.

The structure is implemented out of a binary tree of
conses, with the leaves serving as the slots.

8

:tlxnum

DEFS Defstruct

Symbolics. Inc. February 1984

This unusual type implements the structure as a single
flXllum. The structure may only have one slot. This is
only useful with the byte field feature; it lets you store a
bunch of small numbers within fields of a flXllum, giving
the fields names. See the section "Byte Fields".

:grouped-array See the section "Grouped Arrays". This option is described
there.

:constructor
This option takes one argument, which specifies the name of the constructor
macro. If the argument is not provided or if the option itself is not provided,
the name of the constructor is made by concatenating the string "make-" to
the name of the structure. If the argument is provided and is nil, no
constructor is defined. See the section "Constructor Macros". Use of the -
constructor macro is explained in that section.

:alterant
This option takes one argument, which specifies the name of the alterant
macro. If the argument is not provided or if the option itself is not provided,
the name of the alterant is made by concatenating the string "alter-" to the
name of the structure. If the argument is provided and is nil, no alterant is
defined. See the section "Alterant Macros". Use of the alterant macro is
explained in that section.

:default-pointer
Normally, the accessors defined by defstruct expect to be given exactly one
argument. However, if the :default-pointer argument is used, the
argument to each accessor is optional. If you use an accessor in the usual
way it will do the usual thing, but if you invoke it without its argument, it
will behave as if you had invoked it on the result of evaluating the form that
is the argument to the :default-pointer argument. Here is an example:

(defstruct (room (:default-pointer *default-room*))
room-name
room-contents)

(room-name x) ==> (aref x 0)
(room-name) ==> (aref *default-room* O)

If the argument to the :default-pointer argument is not given, it defaults
to the name of the structure.

:cone-name
It is conventional to begin the names of all the accessor functions of a
structure with a specific prefix, usually the name of the structure followed by
a hyphen. The :cone-name option allows you to specify this prefix and have

. it concatenated onto the front of all the slot names to make the names of
the accessor functions. The argument should be a symbol; its print-name is
used as the prefix. If :cone-name is specified without an argument, the

DEFS Defstruct 9

Symbolics. Inc. February 1984

prefix will be the name of the structure followed by a hyphen. If you do not
specify the :cone-name option, the names of the accessors are the same as
the slot names, and it is up to you to name the slots according to some
suitable convention. ·

The constructor and alterant macros are given slot names, not accessor
names. It is important to keep this in mind when using :cone-name, since
it c~uses the slot and accessor names to be different. Here is an example:

:include

(defstruct (door :cone-name)
knob-color
width)

(setq d (make-door knob-color 'red width 5.0))

(door-knob-color d) ==> red

This option is used for building a new structure definition as an extension of
an old structure definition. Suppose you have a structure called person that
looks like this:

(defstruct (person :cone-name)
name
age
sex)

Now suppose you want to make a new structure to represent an astronaut.
Since astronauts are people too, you would like them to also have the
attributes of name, age, and sex, and you would like Lisp functions that
operate on person structures to operate just as well on astronaut
structures. You can do this by defining astronaut with the :include option,
as follows:

(defstruct (astronaut (:include person))
helmet-size
(favorite-beverage 'tang))

The :include option inserts the slots of the included structure at the front
of the list of slots for this structure. That is, an astronaut will have five
slots; first the three defined in person, and then after those the two defined
in astronaut itself. The accessor functions defined by the person structure
can be applied to instances of the astronaut structure, and they will work
correctly. The following examples illustrate how you can use astronaut
structures:

10 DEFS Defstruct

Symbolics, Inc. February 1984

(setq x (make-astronaut name 'buzz·
age 45.
sex t
helmet-size 17.5))

(person-name x) => buzz
(favorite-beverage x) => tang

Note that the :cone-name option was not inherited from the included
structure; it only applies to the accessor functions of person and not to those
of astronaut. Similarly, the :default-pointer and :but-first options, as
well as the :cone-name option, only apply to the accessor functions for the
structure in which they are enclosed; they are not inherited if you :include
a structure that uses them.

The argument to the :include option is required, and must be the name of
some previously defined structure of the same type as this structure.
:include does not work with structures of type :tree or of type
:grouped-array.

The following is an advanced feature. Sometimes, when one structure
includes another, the default values for the slots that came from the included
structure are not what you want. The new structure can specify different
default values for the included slots than the included structure specifies, by
giving the :include option as:

(:include name new-init-1 ... new-init-n)

Each new-init is either the name of an included slot or a list of the form
(name-of-included-slot init-fonn). If it is just a slot name, then in the new
structure the slot will have no initial value. Otherwise its initial value form
will be replaced by the init-fonn. The old (included) structure is unmodified.

For example, if we had wanted to define astronaut so that the default age
for an astronaut is 45., then we could have said:

(defstruct (astronaut (:include person (age 45.)))
helmet-size
(favorite-beverage 'tang))

:named
This means that you want to use one of the "named" types. If you specify a
type of :array, :array-leader, or :list, and give the :named option, then
the :named-array, :named-array-leader, or :named-list type is used
instead. Asking for type :array and giving the :named option as well is the
same as asking for the type :named-array; the only difference is stylistic.

:make-array
If the structure being defined is implemented as an array, this option may be
used to control those aspects of the array that are not otherwise constrained
by defstruct. For example, you might want to control the area in which
the array is allocated. Also, if you are creating a structure of type

DEFS Defstruct 11

Symbolics, Inc. February 1984

:array-leader, you almost certainly want to specify the dimensions of the
array to be created, and you may want to specify the type of the array. Of
course, this option is only meaningful if the structure is, in fact, being
implemented by an array.

The argument to the :make-array option should be a list of alternating
keyword symbols to the make-array function, and forms whose values are
the arguments to those keywords. See the function make-array. For
example, (:make-array (:type 'art-16b)) would request that the type of the
array be art-16b. Note that the keyword symbol is not evaluated.

defstruct overrides any of the :make-array options that it needs to. For
example, if your structure is of type :array, then defstruct supplies the size
of that array regardless of what you say in the :make-array option.

Constructor macros for structures implemented as arrays all allow the
keyword :make-array to be supplied. Attributes supplied therein override
any :make-array option attributes supplied in the original defstruct form.
If some attribute appears in neither the invocation of the constructor nor in
the :make-array option to defstruct, then the constructor chooses
appropriate defaults.

The :make-array option lets you control the initialization of arrays created
by defstruct as instances of structures. make-array initializes the array
before the constructor code does. Therefore, any initial value supplied via the
new :initial-value keyword for make-array is overwritten in any slots
where you gave defstruct an explicit initialization.

If a structure is of type :array-leader, you probably want to specify the
dimensions of the array. The dimensions of an array are given to
:make-array as a position argument rather than a keyword argument, so
there is no way to specify them in the above syntax. To solve this problem,
you can use the keyword :dimensions or the keyword :length (they mean
the same thing), with a value that is anything acceptable as make-array's
first argument.

:times This option is used for structures of type :grouped-array to control the
number of repetitions of the structure that will be allocated by the
constructor macro. See the section "Grouped Arrays". The constructor
macro also allows :times to be used as a keyword that overrides the value
given in the original defstruct form. If :times appears in neither the
invocation of the constructor nor in the :make-array option to defstruct,
then the constructor only allocates one instance of the structure.

:size-symbol
The :size-symbol option allows you to specify a global variable whose value
will be the "size" of the structure; this variable is declared with defconst.
The exact meaning of the size varies, but in general this number is the one
you would need to know if you were going to allocate one of these structures
yourself. The symbol has this value both at compile time and at run time.

12 DEFS Defstruct

Symbolics, Inc. February 1984

If this option is present without an argument, then the name of the
structure is concatenated with "-size" to produce the symbol.

:size-macro
This is similar to the :size-symbol option. A macro of no arguments is
defined that expands into the size of the structure. The name of this macro
defaults as with :size-symbol

:initial-offset
This allows you to tell defstruct to skip over a certain number of slots
before it starts allocating the slots described in the body. This option
requires an argument (which must be a fixnum) that is the number of slots
you want defstruct to skip. To use this option, you must have some
familiarity with how defstruct is implementing your structure; otherwise,
you will be unable to make use of the slots that defstruct has left unused.

:but-first
This option is best explained by example:

(defstruct (head (:type :list)
(:default-pointer person)
(:but-first person-head))

nose
mouth
eyes)

The accessors expand like this:

(nose x)
(nose)

==> (car (person-head x))
==> (car (person-head person))

The idea is that :but-first's argument will be an accessor from some other
structure, and it is never expected that this structure will be found outside
that slot of that other structure. Actually, you can use any one-argument
function, or a macro that acts like a one-argument function. It is an error
for the :but-first option to be used without an argument.

:callable-accessors
This option controls whether accessors are really functions, and therefore
"callable", or whether they are really macros. With an argument oft, or
with no argument, or if the option is not provided, then the accessors are
really functions. Specifically, they are substs, so that they have all the
efficiency of macros in compiled programs, while still being function objects
that can be manipulated (passed to mapcar, and so on). If the argument is
nil then the accessors will really be macros.

:eval-when
Normally the functions and macros defined by defstruct are defined at eval
time, compile time, and load time. This option allows you to control this
behavior. The argument to the :eval-when option is just like the list that is
the first subform of an eval-when special form. For example:
(:eval-when (:eval :compile)) causes the functions and macros to be
defined only when the code is running interpreted or inside the compiler.

DEFS Defstruct 13

Symbolics, Inc. February 1984

:property
For each structure defined by defstruct, a property. list is maintained for the
recording of arbitrary properties about that structure. (That is, there is one
property list per structure definition, not one for each instantiation of the
structure.)

The :property option can be used to give a defstruct an arbitrary property.
(:property property-name value) gives the defstruct a property-name
property of value. Neither argument is evaluated. To access the property
list, the user will have to look inside the defstruct-description structure.
See the section "The si:defstruct-description Structure".

:print The :print option gives you implementation-independent control over the
printed representation of a structure.

(defstruct (foo :named

foo-a
foo-b)

(:print "#<Foo -s -S>" (foo-a foo) (foo-b foo)))

The :print option takes a format string and its arguments. The arguments
are evaluated in an environment in which the name symbol for the structure
is bound to the structure instance being printed.

People used to use a named-structure-invoke handler to define :print
handlers. This is no longer necessary; the :print option does it for you.

:predicate
The :predicate option causes defstruct to generate a predicate that

recognizes instances of the structure. The first example defines a single
argument function, foo-p, that returns t only for instances of structure foo.
The second example defines a function called is-it-a-foo?.

(defstruct (foo :named :predicate)
foo-a
foo-b)

(defstruct (foo :named (:predicate is-it-a-foo?))
foo-a
foo-b)

The :predicate option has one optional argument, the name for the function
being generated. The default name for the generated function is formed by
appending -p to the structure name.

The :predicate option is restricted to work only for named types.

:copier
The :copier option causes defstruct to generate a function for copying

instances of the structure.
(defstruct (foo (:type list) :copier)

foo-a
foo-b)

14 DEFS Defstruct

Symbolics. Inc. February 1984

This example would generate a function named copy-foo, with a definition
approximately like this:

(defun copy-foo (x)
(list (car x) (cadr x)))

type In addition to the options listed above, any currently defined type (any legal
argument to the :type option) can be used as an option. This is mostly for
compatibility with the old ver~ion of defstruct. It allows you to say just type
instead of (:type type). It is an error to give an argument to one of these
options.

other Finally, if an option is not found among those listed above, defstruct checks
the property list of the name of the option to see if it has a non-nil
:defstruct-option property. If it does have such a property, then if the
option was of the form (option-name value), it is treated just like
(:property option-name value). That is, the defstruct is given an
option-name property of value. It is an error to use such an option without
a value.

This provides a primitive way for you to define your own options to
defstruct, particularly in connection with user-defined types. See the section
"Extensions to defstruct". Several of the options listed above are actually'
implemented using this mechanism.

DEFS Defstruct 15

Symbolics. Inc. February 1984

4. Using the Constructor and Alterant Macros

After you have defined a new structure with defstruct, you can create instances of
this structure using the constructor macro, and you can alter the values of its slots
using the alterant macro. By default, defstruct defines both the constructor and
the alterant, forming their names by concatenating "make-" and "alter-",
respectively, onto the name of the structure. You can specify the names yourself by
passing the name you want to use as the argument to the :constructQr or
:alterant options, or specify that you do not want the macro created at all by
passing nil as the argument.

4.1 Constructor Macros

A call to a constructor macro, in general, has the form:

c name-of-constructor-macro
symbol-1 fonn-1
symbol-2 form-2
...)

Each symbol may be either the name of a slot of the structure, or a specially
recognized keyword. All the forms are evaluated.

If symbol is the name of a slot (not the name of an accessor), then that element of
the created structure will be initialized to the value of fonn. If no symbol is present
for a given slot, then the slot will be initialized to the result of evaluating the
default initialization form specified in the call to defstruct. (In other words, the
initialization form specified to the constructor overrides the initialization form
specified to defstruct.) If the defstruct itself also did not specify any initialization,
the element's initial value is undefined. You should always specify the initialization,
either in the defstruct or in the constructor macro, if you care about the initial
value of the slot.

Notes: The order of evaluation of the initialization forms is not necessarily the same
as the order in which they appear in the constructor call, nor the order in which
they appear in the defstruct; you should make sure your code does not depend on
the order of evaluation. The forms are reevaluated on every constructor-macro call,
so that if, for example, the form (gensym) were used as an initialization form,
either in a call to a constructor macro or as a default initialization in the defstruct,
then every call to the constructor macro would create a new symbol.

There are two symbols that are specially recognized by the constructor. They are
:make-array, which should only be used for :array and :array-leader type
structures (or the named versions of those types), and :times, which should only be

16 DEFS Defstruct

Symbolics. Inc. February 1984

used for :grouped-array type structures. If one of these symbols appears instead
of a slot name, then it is interpreted just as the :make-array option or the :times
option, and it overrides what was requested in that option. For example:

(make-ship ship-x-position 10.0
ship-y-position 12.0
:make-array (:leader-length 5 :area disaster-area))

4.2 By-position Constructor Macros

If the :constructor option is given as (:constructor name arglist), then instead of
making a keyword-driven constructor, defstruct defines a "function style"
constructor, taking arguments whose meaning is determined by the argument's
position rather than by a keyword. The arglist is used to describe what the
arguments to the constructor will be. In the simplest case something like
(:constructor make-foo (ab c)) defines make-foo to be a three-argument
constructor macro whose arguments are used to initialize the slots named a, b, and
c.

In addition, the keywords &optional, &rest, and &aux are recognized in the
argument list. They work in the way you might expect, but there are a few fine
points worthy of explanation: ·

(:constructor make-foo
(a &optional b (c 'sea) &rest d &aux e (f 'eff)))

This defines make-foo to be a constructor of one or more arguments. The first
argument is used to initialize the a slot. The second argument is used to initialize
the b slot. If there is no second argument, then the default value given ~n the body
of the defstruct (if given) is used instead. The third argument is used to initialize
the c slot. If there is no third argument, then the symbol sea is used instead.
Any arguments following the third argument are collected into a list and used to
initialize the d slot. If there are three or fewer arguments, then nil is placed in the
d slot. The e slot is not initialized; its initial value is undefined. Finally, the f slot
is initialized to contain the symbol eff.

The actions taken in the b and e cases were carefully chosen to allow the user to
specify all possible behaviors. Note that the &aux "variables" can be used to
completely override the default initializations given in the body.

Since there is so much freedom in defining constructors this way, it would be cruel
to only allow the :constructor option to be given once. So, by special dispensation,
you are allowed to give the :constructor option more than once, so that you can
define several different constructors, each with a different syntax.

Note that even these "function-style" constructors do not guarantee that their
arguments will be evaluated in the order that you wrote them. Also note that you

DEFS Defstruct 17

Symbolics. Inc. February 1984

cannot specify the :make-array nor :times information in this form of constructor
macro.

4.3 Alterant Macros

A call to the alterant macro, in general, has the form:

(name-of-alterant-macro instance-form
slot-name-1 form-1
slot-name-2 form-2
...)

instance-form is evaluated, and should return an instance of the structure. Each
form is evaluated, and the corresponding slot is changed to have the result as its
new value. The slots are altered after all the forms are evaluated, so you can
exchange the values of two slots, as follows:

(alter-ship enterprise
ship-x-position (ship-y-position enterprise)
ship-y-position (ship-x-position enterprise))

As with the constructor macro, the order of evaluation of the forms is undefined.
Using the alterant macro can produce more efficient Lisp than using consecutive
setfs when you are altering two byte fields of the same object, or when you are
using the :but-first option.

You can use alterant macros on structures whose accessors require additional
arguments. Put the additional arguments before the list of slots and values, in the
same order as required by the accessors.

18 DEFS Defstruct

Symbolics, Inc. February 1984

DEFS Defstruct 19

Symbolics, Inc. February 1984

5. Byte Fields

The byte field feature of defstruct allows you to specify that several slots of your
structure are bytes in an integer stored in one element of the structure. See the
section "Byte Manipulation Functions". For example, suppose we had the following
structure:

(defstruct (phone-book-entry (:type :list))
name
address
(area-code 617.)
exchange
line-number)

This will work correctly. However, it wastes space. Area codes and exchange
numbers are always less than 1000., and so both can fit into 10. bit fields when
expressed as binary numbers. Since Lisp Machine fixnums have (more than)
20. bits, both of these values can be packed into a single fixnum. To tell defstruct
to do so, you can change the structure definition to the following:

(defstruct (phone-book-entry (:type :list))
name
address
((area-code #01212 617.)
(exchange #00012))

line-number)

The magic octal numbers #01212 and #o0012 are byte specifiers to be used with
the functions ldb and dpb. The accessors, constructor, and alterant will now
operate as follows:

(area-code pbe)
(exchange pbe)

==> (ldb #01212 (caddr pbe))
==> (ldb #00012 (caddr pbe))

(make-phone-book-entry
name "Fred Derf"
address "259 Octal St."
exchange ex
line-number 7788.)

==> (list "Fred Derf" "259 Octal St." (dpb ex 12 2322000) 17154)

20

(alter-phone-book-entry pbe
area-code ac
exchange ex)

==> ((lambda (g0530)
(setf (nth 2 g0530)

DEFS Defstruct

Symbolics. Inc. February 1984

(dpb ac 1212 (dpb ex 12 (nth 2 g0530)))))
pbe)

Note that the alterant macro is optimized to only read and write the second element
of the list once, even though you are altering two different byte fields within it.
This is more efficient than using two setfs. Additional optimization by the alterant
macro occurs if the byte specifiers in the defstruct slot descriptions are constants.
However, you need not worry about the details of how the alterant macro does its
work.

If the byte specifier is nil, then the accessor will be defined to be the usual kind
that accesses the entire Lisp object, thus returning all the byte field components as
a fIXnum. These slots may have default initialization forms.

The byte specifier need not be a constant; a variable or, indeed, any Lisp form, is
legal as a byte specifier. It will be evaluated each time the slot is accessed. Of
course, unless you are doing something very strange you will not want the byte
specifier to change between accesses.

Constructor macros initialize words divided into byte fields as if they were deposited
in the following order:

1. Initializations for the entire word given in the defstruct form.

2. Initializations for the byte fields given in the defstruct form.

3. Initializations for the entire word given in the constructor macro form.

4. Initializations for the byte fields given in the constructor macro form.

Alterant macros work similarly: the modification for the entire Lisp object is done
first, followed by modifications to specific byte fields. If any byte fields being
initialized or altered overlap each other, the action of the constructor and alterant
will be unpredictable.

DEFS Defstruct 21

Symbolics, Inc. February 1984

6. Grouped Arrays

The grouped array feature allows you to store several instances of a structure side
by-side within an array. This feature is somewhat limited; it does not support the
:include and :named options.

The accessor functions are defined to take an extra argument, which should be an
integer, and is the index into the array of where this instance of the structure
starts. This index should normally be a multiple of the size of the structure, for
things to make sense. Note that the index is the first argument to the accessor
function and the structure is the second argument, the opposite of what you might
expect. This is because the structure is &optional if the :default-pointer option is
used.

Note that the "size" of the structure (for purposes of the :size-symbol and
:size-macro options) is the number of elements in one instance of the structure; the
actual length of the array is the product of the size of the structure and the
number of instances. The number of instances to be created by the constructor
macro is given as the argument to the :times option to defstruct, or the :times
keyword of the constructor macro.

22 DEFS Defstruct

Symbolics. Inc. February 1984

DEFS Defstruct 23

Symbolics. Inc. February 1984

7. Named Structures

The named structure feature provides a very simple form of user-defined data type.
Any array may be made a named structure, although usually the :named option of
defstruct is used to create named structures. The principal advantages of a named
structure are that it has a more informative printed representation than a normal
array and that the describe function knows how to give a detailed description of it.
(You do not have to use describe-defstruct, because describe can figure out what
the names of the slots of the structure are by looking at the named structure's
name.) Because of these improved user-interface features it is recommended that
"system" data structures be implemented with named structures.

An.other kind of user-defined data type, more advanced but less efficient when just
used as a record structure, is provided by the flavor feature. See the document
Objects, Message Passing, and Flavors.

A named structure has an associated symbol, called its "named structure symbol",
that represents what user-defined type it is an instance of; the typep function,
applied to the named structure, will return this symbol. If the array has a leader,
then the symbol is found in element 1 of the leader; otherwise it is found in element
0 of the array. (Note: if a numeric-type array is to be a named structure, it must
have a leader, since a symbol cannot be stored in any element of a numeric array.)

If you call typep with two arguments, the first being an instance of a named
structure and the second being its named structure symbol, typep will return t. t
will also be returned if the second argument is the named structure symbol of a
:named defstruct included (using the :include option), directly or indirectly, by the
defstruct for this structure. For example, if the structure astronaut includes the
structure person, and person is a named structure, then giving typep an instance
of an astronaut as the first argument, and the symbol person as the second
argument, will return t. This reflects the fact that an astronaut is, in fact, a
person, as well as being an astronaut.

You may associate with a named structure a function that will handle various
operations that can be done on the named structure. Currently, you can control
how the named structure is printed, and what describe will do with it.

To provide such a handler function, make the function be the
named-structure-invoke property of the named structure symbol. The functions
th.at know about named structures will apply this handler function to several
arguments. The first is a "keyword" symbol to identify the calling function, and the
second is the named structure itself. The rest of the arguments passed depend on
the caller; any named structure function should have a "&rest" parameter to absorb
any extra arguments that might be pass:2d. Just what the function is expected to
do depends on the keyword it is passed as its first argument. The following are the
keywords defined at present:

24 DEFS Defstruct

Symbolics, Inc. February 1984

:which-operations
Should return a list of the names of the operations the function handles.

:print-self
The arguments are :print-self, the named structure, the stream to output
to, the current depth in list-structure, and t if slashification is enabled (print
versus princ). The printed representation of the named structure should be
output to the stream. If the named structure symbol is not defined as a
function, or :print-self is not in its :which-operations list, the printer will
default to a reasonable printed representation, namely:

#<named-structure-symbol octal-address>

:describe
The arguments are :describe and the named structure. It should output a
description of itself to standard-output. If the named structure symbol is
not defined as a function, or :describe is not in its :which-operations list,
the describe system will check whether the named structure was created by
using the :named option of defstruct; if so, the names and values of the
structure's fields will be enumerated.

Here is an example of a simple named-structure handler function:

(defun (person named-structure-invoke) (op self &rest args)
(selectq op

(:which-operations '(:print-self))
(:print-self

(format (first args)
(if (third args) "#<person -A>" "-A")
(person-name self)))

(otherwise (ferror nil "Illegal operation -S" op))))

For this definition to have any effect, the person defstruct used as an example
earlier must be modified to include the :named attribute.

This handler causes a person structure to include its name in its printed
representation; it also causes princ of a person to print just the name, with no
"#<" syntax. Even though the astronaut structure of our examples :includes the
person structure, this named~structure handler will not be invoked when an
astronaut is printed, and an astronaut will not include his name in his printed
representation. This is because named structures are not as general as flavors. See
the document Objects, Message Passing, and Flavors.

The following functions operate on named structures.

named-structure-p x Function
This semi-predicate returns nil if x is not a named structure; otherwise it
returns x's named structure symbol.

DEFS Defstruct 25

Symbolics, Inc. February 1984

named-structure-symbol x Function
x should be a named structure. This returns x's named structure symbol: if
x has an array leader, element 1 of the leader is returned, otherwise element
0 of the array is returned.

make-array-into-named-structure array Function
array is made to be a named structure, and is returned.

named-structure-invoke operation structure &rest args Function
operation should be a keyword symbol, and structure should be a named
structure. The handler function of the named structure symbol, found as
the value of the named-structure-invoke property of the symbol, is called
with appropriate arguments. (This function used to take its first two
arguments in the opposite order, and that argument order will continue to
work indefinitely, but it should not be used in new programs.)

See also the :named-structure-symbol keyword to make-array.

26 DEFS Defstruct

Symbolics, Inc. February 1984

DEFS Detstruct 27

Symbolics, Inc.. February 1984

8. The si:defstruct-description Structure

This section discusses the internal structures used by defstruct that might be
useful to programs that want to interface to defstruct nicely. For example, if you
want to write a program that examines structures and displays them the way
describe and the Inspector do, your program will work by examining these
structures. The information in this section is also necessary if you are thinking of
defining your own structure types.

Whenever the user defines a new structure using defstruct, defstruct creates an
instance of the si:defstruct-description structure. This structure can be found as
the si:defstruct-description property of the name of the structure; it contains
such useful information as the name of the structure, the number of slots in the
structure, and so on.

The si:defstruct-description structure is defined as follows, in the
system-internals package (also called the si package): (This is a simplified version
of the real definition. There are other slots in the structure that we are not telling
you about.)

(defstruct (defstruct-description

name

(:default-pointer description)
(:cone-name defstruct-description-))

size
property-a list
slot-alist)

The name slot contains the symbol supplied by the user to be the name of the
structure, such as spaceship or phone-book-entry.

The size slot contains the total number of locations in an instance of this kind of
structure. This is not the same number as that obtained from the :size-symbol or
:size-macro options to defstruct. A named structure, for example, usually uses up
an extra location to store the name of the structure, so the :size-macro option will
get a number one larger than that stored in the defstruct description.

The property-alist slot contains an alist with pairs of the form
(property-name • property) containing properties placed there by the :property
option to defstruct or by property names used as options to defstruct. (See the
option :property.)

The slot-alist slot contains an alist of pairs of the form
(slot-name • slot-description). A slot-description is an instance of the
defstruct-slot-description structure. The defstruct-slot-description structure is
defined something like this, also in the si package: (This is a simplified version of
the real definition. There are other slots in the structure which we aren't telling
you about.)

28 DEFS Defstruct

Symbolics. Inc. February 1984

(defstruct (defstruct-slot-description
(:default-pointer slot-description)
(:cone-name defstruct-slot-description-))

number
ppss
init-code
ref-macro-name)

The number slot contains the number of the location of this slot in an instance of
the structure. Locations are numbered starting with 0, and continuing up to one
less than the size of the structure. The actual location of the slot is determined by
the reference-consing function associated with the type of the structure. See the
section "Options to defstruct-define-type".

The ppss slot contains the byte specifier code for this slot if this slot is a byte field
of its location. If this slot is the entire location, then the ppss slot contains nil

The init-code slot contains the initialization code supplied for this slot by the user
in the defstruct form. If there is no initialization code for this slot, then the init
code slot contains the symbol si:%%defstruct-empty%%.

The ref-macro-name slot contains the symbol that is defined as a macro or a subst
that expands into a reference to this slot (that is, the name of the accessor
function).

DEFS Detstruct 29

Symbolics, Inc. February 1984

9. Extensions to defstruct

The macro defstruct-define-type can be used to teach defstruct about new types
that it can use to implement structures.

defstruct-define-type Macro
This macro is used for teaching defstruct about new types; it is described in
the rest of this chapter.

9.1 An Example of defstruct-define-type

Let us start by examining a sample call to defstruct-define-type. This is how the
:list type of structure might have been defined:

(defstruct-define-type :list
(:cons (initialization-list description keyword-options)

: 1 ist
'(list • ,initialization-list))

(:ref (slot-number description argument)
'(nth ,slot-number ,argument)))

This is the simplest possible form of defstruct-define-type. It provides defstruct
with two Lisp forms: one for creating forms to construct instances of the structure,
and one for creating forms to become the bodies of accessors for slots of the
structure.

The keyword :cons is followed by a list of three variables that will be bound while
the constructor-creating form is evaluated. The first, initialization-list, will be
bound to a list of the initialization forms for the slots of the structure. The second,
description, will be bound to the defstruct-description structure for the
structure. See the section "The si:defstruct-description Structure". For a
description of the third variable, keyword-options, and the :list keyword: See the
section "Options to defstruct-define-type".

The keyword :ref is followed by a list of three variables that will be bound while the
accessor-creating form is evaluated. The first, slot-number, will bound to the
number of the slot that the new accessor should reference. The second,
description, will be bound to the defstruct-description structure for the
structure. The third, argument, will be bound to the form that was provided as
the argument to the accessor.

30 DEFS Defstruct

Symbolics. Inc. February 1984

9.2 Syntax of defstruct-define-type

The syntax of defstruct-define-type is:

(defstruct-define-type type
option-1
option-2
...)

where each option is either the symbolic name of an option or a list of the form
(option-name • rest). Different options interpret rest in different ways. The symbol
type is given an $i:defstruct-type-description property of a structure that
describes the type completely.

9.3 Options to defstruct-define-type

This section is a catalog of all the options currently known about by
defstruct-define-type.

:cons The :cons option to defstruct-define-type is how you supply defstruct
with the code necessary to cons up a form that will construct an instance of
a structure of this type.

The :cons option has the syntax:

(: cons (inits description keywords) kind
body>

body is some code that should construct and return a piece of code that will
construct, initialize, and return an instance of a structure of this type.

The symbol inits will be bound to the information that the constructor
conser should use to initialize the slots of the structure. The exact form of
this argument is determined by the symbol kind. There are currently two
kinds of initialization. There is the :list kind, where inits is bound to a list
of initializations, in the correct order, with nils in uninitialized slots. And
there is the :alist kind, where inits is bound to an alist with pairs of the
form (slot-number • init-code).

The symbol description will be bound to the instance of the
defstruct-description structure that defstruct maintains for this particular
structure. See the section "The si:defstruct-description Structure". This
is so that the constructor conser can find out such things as the total size of
the structure it is supposed to create.

The symbol keywords will be bound to an alist with pairs of the form
(keyword. value), where each keyword was a keyword supplied to the
constructor macro that was not the name of a slot, and value was the Lisp
object that followed the keyword. This is how you can make your own

DEFS Defstruct 31

Symbolics, Inc. February 1984

special keywords, like the existing :make-array and :times keywords. See
the section "Constructor Macros". You specify the list of acceptable keywords
with the :keywords option.

It is an error not to supply the :cons option to defstruct-define-type.

:ref The :ref option to defstruct-define-type is how you supply defstruct with
the necessary code that it needs to cons up a form that will reference an
instance of a structure of this type.

The :ref option has the syntax:

C :ref <number description arg-1 ... arg-n>
body> ,

body is some code that should construct and return a piece of code that will
reference an instance of a structure of this type.

The symbol number will be bound to the location of the slot that is to be
referenced. This is the same number that is found in the number slot of
the defstruct-slot-description structure. See the section "The
si:defstruct-description Structure".

The symbol description will be bound to the instance of the
defstruct-description structure that defstruct maintains for this particular
structure.

The symbols arg-i are bound to the forms supplied to the accessor as
arguments. Normally there should be only one of these. The last argument
is the one that will be defaulted by the :default-pointer option. See the
section "Options to defstruct". defstruct will check that the user has
supplied exactly n arguments to the accessor function before calling the
reference consing code.

It is an error not to. supply the :ref option to defstruct-define-type.

:overhead
The :overhead option to defstruct-define-type is how you declare to
defstruct that the implementation of this particular type of structure "uses
up" some number of locations in the object actually constructed. This option
is used by various "named" types of structures that store the name of the
structure in one location.

The syntax of :overhead is: (:overhead n) where n is a fIXnum that says
how many locations· of overhead this type needs.

This number is used only by the :size-macro and :size-symbol options to
defstruct. See the section "Options to defstruct".

:named
The :named option to ·.:lefstruct-define-type controls the use of the
:named option to defstruct. With no argument, the :named option means
that this type is an acceptable "named structure". With an argument, as in

32 DEFS Defstruct

Symbolics, Inc. February 1984

(:named type-name), the symbol type-name should be the name of some
other structure type that defstruct should use if someone asks for the
named version of this type. (For example, in the definition of the :list type
the :named option is used like this: (:named :named-list).)

:keywords
The :keywords option to defstruct-define-type allows you to define
additional constructor keywords for this type of structure. (The :make-array
constructor keyword for structures of type :array is an example.) The
syntax is: (:keywords keyword-1 ••• keyword-n) where each keyword is a
symbol that the constructor conser expects to find in the keywords alist
(explained above).

:defstruct
The :defstruct option to defstruct-define-type allows you to run some
code and return some forms as part of the expansion of the defstruct
macro.

The :defstruct option has the syntax:

(:defstruct (description)
body)

body is a piece of code that will be run whenever defstruct is expanding a
defstruct form that defines a structure of this type. The symbol description
will be bound to the instance of the defstruct-deseription structure that
defstruct maintains for this particular structure.

The value returned by the body should be a list of forms to be included with
those that the defstruct expands into. Thus, if you only want to run some
code at defstruct-expand time, and you do not want to actually output any
additional code, then you should be careful to return nil from the code in
this option.

:predicate
The :predicate option specifies how to construct a :predicate option for

defstruct.

(:predicate (description name)
'(defun ,name (x)

(and (frobbozp x)
(eq (frobbozref x O)

',(defstruct-description-name)))))

The syntax for the option follows.

(:predicate (description name)
body>

The variable description is bound to the defstruct-description structure
maintained for the structure for which we are to generate a predicate. The
variable name is bound to the symbol that is to be defined as a predicate.
body is a piece of code that is evaluated to return the defining form for the
predicate.

DEFS Detstruct 33

Symbolics, Inc. February 1984

:copier
The :copier option specifies how to copy a particular type of structure for

situations when it is necessary to provide a copying function other than the
one that defstruct would generate.

(:copier (description name)
'(fset-carefully ',name 'copy-frobboz))

The syntax for the option follows.

(: copier C description name)
body>

description is bound to an instance of the defstruct-description structure,
name is bound to the symbol to be defined, and body is some code to
evaluate to get the defining form.

34 DEFS Defstruct

Symbolics. Inc. February 1984

DEFS Defstruct 35

Symbolics, Inc. February 1984

A

B

c

D

Index

A
Accessor functions 1, 21

Names of structure accessor functions 7
Aggregate data types 1
Alterant macros 7, 17, 19

Using the Constructor and Alterant Macros 15
:alterant option for defstruct 7
Array structure type 7

A

:array symbol in :type option to defstruct 7
:array-leader symbol in :type option to defstruct 7

Grouped Arrays 21

B

c

&aux keyword 16

Binary tree structure type 7
:but-first option for defstruct 7
By-position Constructor Macros 16
Byte Fields 19
Byte specifiers 19

:callable-accessors option for defstruct 7
:cone-name option for defstruct 7
:cons option for defstruct-define-type 29, 30

Using the Constructor and Alterant Macros 15
Constructor macro 1, 7, 15
Constructor Macros 15, 19

By-position Constructor Macros 16
:constructor option for defstruct 7, 16

B

c

Control over printed representation of a structure 13
:copier option for defstruct 13

Aggregate

Macro
:alterant option for

:array symbol in :type option to
:array-leader symbol in :type option to

:but-first option for
:callable-accessors option for

:cone-name option for
:constructor option for

:copier option for
:default-pointer option for

D

:copier option for defstruct-define-type 33
Copying instances of the structure 13

Data structures
data types 1
:default-pointer option for defstruct 7
defining macros 1
defstruct 7
defstruct 7
defstruct 7
defstruct 7
defstruct 7
defstruct 7
defstruct 7, 16
defstruct 13
defstruct 7

D

36

E

:displace option for
:eval-when option for

:flxnum symbol in :type option to
:flxnum-array symbol In :type option to
:flonum-array symbol in :type option to

:grouped-array symbol in :type option to
:Include option for

:Initial-offset option for
:list symbol in :type option to

:make-array option for
:named option for

:named-array symbol in :type option to
:named-array-leader symbol in :type option to

:named-list symbol in :type option to
:predicate option for

:print option for
:property option for

:size-macro option for
:size-symbol option for

:times option for
:tree symbol in :type option to

:type option for
Extensions to

How to Use
Options to

:cons option for
:cOPler option for

:defstruct option for
:keywords option for

:named option for
:overhead option for
:predicate option for

:ref option for
An Example of

Options to
Syntax of

sl:
The si:

E

DEFS Defstruct

Symbolics. Inc. February 1984

defstruct 7
defstruct 7
defstruct 7
defstruct 7
defstruct 7
defstruct 7
defstruct 7
defstruct 7
defstruct 7
defstruct 7
defstruct 7
defstruct 7
defstruct 7
defstruct 7
defstruct 13
defstruct 13
defstruct 7, 27
defstruct 7
defstruct 7
defstruct 7
defstruct 7
defstruct 7
defstruct 29
defstruct 5
defstruct 7
defstruct macro 5, 19
:defstruct option for defstruct-define-type 30
defstruct-deflne-type 29, 30
defstruct-define-type 33
defstruct-define-type 30
defstruct-define-type 30
defstruct-define-type 30
defstruct-define-type 30
defstruct-define-type 32
defstruct-define-type 29, 30
defstruct-define-type 29
defstruct-define-type 30
defstruct-define-type 30
defstruct-define-type macro 29
defstruct-descrlptlon property 5, 27
defstruct-description Structure 27
defstruct-slot-descrlptlon structure 27
describe function 23
:describe messages 23
describe-defstruct function 1, 6
:displace option for defstruct 7

:eval-when option for defstruct 7
Evaluation of structure initialization forms 15

E

An Example of defstruct-deftne-type 29
Extensions to defstruct 29

DEFS Defstruct 37

Symbolics, Inc. February 1984

F F F
Byte Fields 19

Fixnum structure type 7
:fixnum symbol in :type option to defstruct 7
:fixnum-array symbol in :type option to

defstruct 7
:flonum-array symbol in :type option to

defstruct 7
Evaluation of structure Initialization forms 15

describe function 23
descrlbe-defstruct function 1, 6

make-array-Into-named-structure function 25
named-structure-invoke function 25

named-structure-p function 24
named-structure-symbol function 25

typep function 23
Accessor functions 1, 21

Names of structure accessor functions 7

G G G
Grouped Arrays 21
:grouped-array symbol in :type option to

defstruct 7

H H H
How to Use defstruct 5

I I
:Include option for defstruct 7
lnlt-code slot 27
:initial-offset option for defstruct 7

Evaluation of structure initialization forms 15
Initialization in structures 15

Recognizing instances of a structure 13
Copying instances of the structure 13

Introduction to Structure Macros

K K K
&aux keyword 16

&optional keyword 16
&rest keyword 16, 23

Programmer-defined keywords 30
:keywords option for defstruct-deflne-type 30

38 DEFS Defstruct

Symbolics, Inc. February 1984

L ·L L
Structure property list 7

List structure type 7
:list symbol in :type option to defstruct 7

M M M

N

Constructor
defstruct

defstruct-define-type

Alterant
By-position Constructor

Constructor
Introduction to Structure

Macro defining
Using the Constructor and Alterant

:describe
:print-self

:which-operations

N

Maclisp 1
macro 1, 7, 15
macro 5, 19
macro 29
Macro defining macros
macros 7, 17, 19
Macros 16
Macros 15, 19
Macros 1
macros 1
Macros 15
:make-array option for defstruct 7
:make-array symbol 15
make-array-Into-named-structure function
messages 23
messages 23
messages 23

25

N
Named structure name 27

:named option for defstruct 7
:named option for defstruct-define-type 30
Named structure name 27
Named structure property-alist 27
Named structure size 27
Named structure slot-allst 27
Named structure symbol 23
Named structures 7, 23
:named-array symbol in :type option to

defstruct 7
:named-array-leader symbol in :type option to

defstruct 7
:named-list symbol in :type option to defstruct 7
named-structure-invoke function 25
named-structure-Invoke property 23
named-structure-p function 24
named-structure-symbol function 25
Names of structure accessor functions 7
Names of structures 5
number slot 27

DEFS Defstruct 39

Symbolics. Inc. February 1984

0 0 0
:alterant option for defstruct 7
:but-first option for defstruct 7

:callable-accessors option for defstruct 7
:cone-name option for defstruct 7
:constructor option for defstruct 7, 16

:copier option for defstruct 13
:default-pointer option for defstruct 7

:displace option for defstruct 7
:eval-when option for defstruct 7

:Include option for defstruct 7
:lnltlal-offset option for defstruct 7
:make-array option for defstruct 7

:named option for defstruct 7
:predicate option for defstruct 13

:print option for defstruct 13
:property option for defstruct 7, 27

:size-macro option for defstruct 7
:size-symbol option for defstruct 7

:times option for defstruct 7
:type option for defstruct 7

:cons option for defstruct-define-type 29, 30
:copier option for defstruct-define-type 33

:defstruct option for defstruct-define-type 30
:keywords option for defstruct-define-type 30

:named option for defstruct-define-type 30
:overhead option for defstruct-define-type 30
:predicate option for defstruct-define-type 32

:ref option for defstruct-define-type 29, 30
:array symbol in :type option to defstruct 7

:array-leader symbol in :type option to defstruct 7
:fixnum symbol in :type option to defstruct 7

:fixnum-array symbol in :type option to defstruct 7
:flonum-array symbol in :type option to defstruct 7

:grouped-array symbol in :type option to defstruct 7
:list symbol in :type option to defstruct 7

:named-array symbol in :type option to defstruct 7
:named-array-leader symbol in :type option to defstruct 7

:named-list symbol in :type option to defstruct 7
:tree symbol in :type option to defstruct 7

&optional keyword 16
Options to defstruct 7
Options to defstruct-define-type 30
:overhead option for defstruct-define-type 30

p p p
ppss slot 27
:predicate option for defstruct 13
:predicate option for defstruct-define-type 32
:print option for defstruct 13
:print-self messages 23

Control over printed representation of a structure 13
Programmer-defined keywords 30

named-structure-Invoke property 23
sl :defstruct-descrlptlon property 5, 27

Structure property list 7

40 DEFS Defstruct

Symbolics. Inc. February 1984

:property option for defstruct 7, 27
Named structure property-allst 27

R R R
Recognizing Instances of a structure 13
:ref option for defstruct-define-type 29, 30
ref-macro-name slot 27

Control over printed representation of a structure 13
&rest keyword 16, 23

s s s
The

Named structure

I nit-code
number

ppss
ref-macro-name
Named structure

Byte
Control over printed representation of a

Copying instances of the
defstruct-slot-descriptlon
Recognizing instances of a

The sl :defstruct-descrlption
Names of

Evaluation of
Introduction to

Named

Named
Named
Named
Named

Array
Binary tree

Fixnum
List

Data
Initialization in

Named
Names of

:make-array
:times

Named structure
:array

:array-leader
:fixnum

:fixnum-array
:flonum-array

si:defstruct-descriptlon property 5, 27
sl:defstruct-descrlptlon Structure 27
size 27
:size-macro option for defstruct 7
:size-symbol option for defstruct 7
Slot 5
slot 27
slot 27
slot 27
slot 27
slot-alist 27
Slot-description 27
specifiers 19
structure 13
structure 13
structure 27
structure 13
Structure 27
structure accessor functions 7
structure initialization forms 15
Structure Macros 1
structure name 27
Structure property list 7
structure property-allst 27
structure size 27
structure slot-alist 27
structure symbol 23
structure type 7
structure type 7
structure type 7
structure type 7
Structures 1
structures 1
structures 15
structures 7, 23
structures 5
symbol 15
symbol 15
symbol 23
symbol in :type option to defstruct 7
symbol in :type option to defstruct 7
symbol in :type option to defstruct 7
symbol in :type option to defstruct 7
symbol in :type option to defstruct 7

DEFS Defstruct 41

Symbolics, Inc. February 1984

:grouped-array symbol in :type option to defstruct 7
:list symbol in :type option to defstruct 7

:named-array symbol in :type option to defstruct 7
:named-array-leader symbol in :type option to defstruct 7

:named-list symbol in :type option to defstruct 7
:tree symbol in :type option to defstruct 7

Syntax of defstruct-define-type 30

T T T
:times option for defstruct 7
:times symbol 15

Binary tree structure type 7
:tree symbol in :type option to defstruct 7

Array structure type 7
Binary tree structure type 7

Fixnum structure type 7
list structure type 7

:type option for defstruct 7
:array symbol in :type option to defstruct 7

:array-leader symbol In :type option to defstruct 7
:fixnum symbol in :type option to defstruct 7

:fixnum-array symbol in :type option to defstruct 7
:flonum-array symbol in :type option to defstruct 7

:grouped-array symbol in :type option to defstruct 7
:list symbol in :type option to defstruct 7

:named-array symbol in :type option to defstruct 7
:named-array-leader symbol in :type option to defstruct 7

:named-list symbol in :type option to defstruct 7
:tree symbol in :type option to defstruct 7

typep function 23
Aggregate data types 1

w w w
:which-operations messages 23

symbolics™

FLAV Objects, Message
Passing, and Flavors

Cambridge, Massachusetts

Objects, Message Passing, and Flavors
990052

February 1984

This document corresponds to Release 5.0.

This document was prepared by the Documentation Group of Symbolics, Inc.

No representation or affirmation of fact contained in this document should be construed
as a warranty by Symbolics, and its contents are subject to change without notice.
Symbolics, Inc. assumes no responsibility for any errors that might appear in this
document.

Symbolics software . described in this document is furnished only under license, and may
be used only in accordance with the terms of such license. Title to, and ownership of,
such software shall at all times remain in Symbolics, Inc. Nothing contained herein
implies the granting of a license to make, use, or sell any Symbolics equipment or
software.

Symbolics is a trademark of Symbolics, Inc., Cambridge, Massachusetts.

Copyright ©> 1981, 1979, 1978 Massachusetts Institute of Technology.
All rights reserved.

Enhancements copyright©> 1984, 1983, 1982 Symbolics, Inc. of Cambridge,
Massachusetts.
All rights reserved. Printed in USA.
This document may not be reproduced in whole or in part without the prior written
consent of Symbolics, Inc.

Printing year and number: 87 86 85 84 9 8 7 6 5 4 3 2 1

FLA V Objects, Message Passing, and Ravors

Symbolics, Inc. February 1984

Table of Contents

Page

1. Introduction 1

2. Objects 3

3. Modularity 5

4. Generic Operations 9

5. Generic Operations in Lisp 11

6. Simple Use of Flavors 13

7. Mixing Flavors 19

8. Flavor Functions 23

8.1 Facility for Handling Messages to Flavor Objects 27

9. demavor Options 35

10. Flavor Families 45

1L Vanilla Flavor 47

12. Method Combination 49

13. Copying Instances 55

14. Implementation of Flavors 57

14.1 Order of Definition 57
14.2 Changing a Flavor 58

15. Entities 61

16. Useful Zmacs Commands 63

17. Property List Messages 65

Index 67

FLA V Objects, Message Passing, and Flavors

Symbolics, Inc. February 1984

1. Introduction

The object oriented programming style used in the Smalltalk and Actor families of
languages is available in Zetalisp, and used by the Lisp Machine software system.

1

Its purpose is to perform generic operations on objects. Part of its implementation is
simply a convention in procedure calling style; part is a powerful language feature,
called Flavors, for defining abstract objects. This chapter attempts to explain what
programming with objects and with message passing means, the various means of
implementing these in Zetalisp, and when you should use them. It assumes no prior
knowledge of any other languages.

2 FLA V Objects. Message Passing. and Ravors

Symbolics. Inc. February 1984

FLA V Objects, Message Passing, and Flavors 3

Symbolics, Inc. February 1984

2. Objects

When writing a program, it is often convenient to model what the program does in
terms of objects: conceptual entities that can be likened to real-world things.
Choosing what objects to provide in a program is very important to the proper
organization of the program. In an object-oriented design, specifying what objects
exist is the first task in designing the system. In a text editor, the objects might be
"pieces of text", "pointers into text", and "display windows". In an electrical design
system, the objects might be "resistors", "capacitors", "transistors", "wires", and
"display windows". After specifying what objects there are, the next task of the
design is to figure out what operations can be performed on each object. In the text
editor example, operations on "pieces of text" might include inserting text and
deleting text; operations on "pointers into text" might include moving forward and
backward; and operations on "display windows" might include redisplaying the
window and changing with which "piece of text" the window is associated.

In this model, we think of the program as being built around a set of objects, each
of which has a set of operations that can be performed on it. More rigorously, the
program defines several types of object (the editor above has three types), and it can
create many instances of each type (that is, there can be many pieces of text, many
pointers into text, and many windows). The program defines a set of types of
object, and the operations that can be performed on any of the instances of each
type.

This should not be wholly unfamiliar to the reader. Earlier in this manual, we saw
a few examples of this kind of programming. A simple example is disembodied
property lists, and the functions get, putprop, and remprop. The disembodied
property list is a type of object; you can instantiate one with (cons nil nil) (that is,
by evaluating this form you can create a new disembodied property list); there are
three operations on the object, namely get, putprop, and remprop. Another
example in the manual was the first example of the use of defstruct, which was
called a ship. defstruct automatically defined some operations on this object: the
operations to access its elements. We could define other functions that did useful
things with ships, such as computing their speed, angle of travel, momentum, or
velocity, stopping them, moving them elsewhere, and so on.

In both cases, we represent our conceptual object by one Lisp object. The Lisp
object we use for the representation has structure, and refers to other Lisp objects.
In the property list case, the Lisp object is a list with alternating indicators and
values; in the ship case, the Lisp object is an array whose details are taken care of
by defstruct. In both cases, we can say that the object keeps track of an internal
state, which can be examined and altered by the operations available for that type of
object. get examines the state of a property list, and putprop alters it;
ship-x-position examines the state of a ship, and (setf (ship-mass ship) 5.0)
alters it.

4 FLA V Objects, Message Passing. and Ravors

Symbolics. Inc. February 1984

We have now seen the essence of object-oriented programming. A conceptual object
is modelled by a single Lisp object, which bundles up some state information. For
every type of object, there is a set of operations that can be performed to examine or
alter the state of the object.

FLA V Objects, Message Passing, and Ravors 5
Symbolics, Inc. February 1984

3. Modularity

An important benefit of the object-oriented style is that it lends itself to a
particularly simple and lucid kind of modularity. If you have modular programming
constructs and techniques available, it helps and encourages you to write programs
that are easy to read and understand, and so are more reliable and maintainable.
Object-oriented programming lets a programmer implement a useful facility that
presents the caller with a set of external interfaces, without requiring the caller to
understand how the internal details of the implementation work. In other words, a
program that calls this facility can treat the facility as a black box; the program
knows what the facility's external interfaces guarantee to do, and that is all it
knows.

For example, a program that uses disembodied property lists never needs to know
that the property list is being maintained as a list of alternating indicators and
values; the program simply performs the operations, passing them inputs and getting
back outputs. The program only depends on the external definition of these
operations: it knows that if it putprops a property, and doesn't remprop it (or
putprop over it), then it can do get and be sure of getting back the same thing it
put in. The important thing about this hiding of the details of the implementation
is that someone reading a program that uses disembodied property lists need not
concern himself with how they are implemented; he need only understand what
they undertake to do. This saves the programmer a lot of time, and lets him
concentrate his energies on understanding the program he is working on. Another
good thing about this hiding is that the representation of property lists could be
changed, and the program would continue to work. For example, instead of a list of
alternating elements, the property list could be implemented as an association list or
a hash table. Nothing in the calling program would change at all.

The same is true of the ship example. The caller is presented with a collection of
operations, such as ship-x-position, ship-y-position, ship-speed, and
ship-direction; it simply calls these and looks at their answers, without caring how
they did what they did. In our example above, ship-x-position and
ship-y-position would be accessor functions, defined automatically by defstruct,
while ship-speed and ship-direction would be functions defined by the
implementor of the ship type. The code might look like this:

6

(defstruct (ship)
ship-x-position
ship-y-position
ship~x-velocity

ship-y-velocity
ship-mass)

(defun ship-speed (ship)
(sqrt (+ (A (ship-x-velocity ship) 2)

FLA V Objects. Message Passing. and Flavors

Symbolics, Inc. February 1984

(A (ship-y-velocity ship) 2))))

(defun ship-direction (ship)
(atan (ship-y-velocity ship)

(ship-x-velocity ship)))

The caller need not know that the first two functions were structure accessors and
that the second two were written by hand and do arithmetic. Those facts would
not be considered part of the black box characteristics of the implementation of the
ship type. The ship type does not guarantee which functions will be implemented
in which ways; such aspects are not part of the contract between ship and its
callers. In fact, ship could have been written this way instead:

(defstruct (ship)
ship-x-position
ship-y-position
ship-speed
ship-direction
ship-mass)

(defun ship-x-velocity (ship)
(* (ship-speed ship) (cos (ship-direction ship))))

(defun ship-y-velocity (ship)
(* (ship-speed ship) (sin (ship-direction ship))))

In this second implementation of the ship type, we have decided to store the
velocity in polar coordinates instead of rectangular coordinates. This is purely an
implementation decision; the caller has no idea which of the two ways the
implementation works, because he just performs the operations on the object by
calling the appropriate functions.

We have now created our own types of objects, whose implementations are hidden
from the programs. that use them. Such types are usually referred to as abstract
types. The object-oriented style of programming can be used to create abstract types
by hiding the implementation of the operations, and simply documenting what the
operations are defined to do.

Some more terminology: the quantities being held by the elements of the ship
structure are referred to as instance variables. Each instance of a type has the

FLA V Objects, Message Passing, and Flavors 7

Symbolics, Inc. February 1984

same operations defined on it; what distinguishes one instance from another (besides
identity (eqness)) is the values that reside in its instance variables. The example
above illustrates that a caller of operations does not know what the instance
variables are; our two ways of writing the ship operations have different instance
variables, but from the outside they have exactly the same operations.

One might ask: "But what if the caller evaluates (aref ship 2) and notices that he
gets back the x-velocity rather than the speed? Then he can tell which of the two
implementations were used." This is true; if the caller were to do that, he could
tell. However, when a facility is implemented in the object-oriented style, only
certain functions are documented and advertised: the functions which are considered
to be operations on the type of object. The contract from ship to its callers only
speaks about what happens if the caller calls these functions. The contract makes
no guarantees at all about what would happen if the ealler were to start poking
around on his own using aref. A caller who does so is in error; he is depending on
something th~t is not specified in the contract. No guarantees were ever made
about the results of such action, and so anything may happen; indeed, ship may get
reimplemented overnight, and the code that does the aref will have a different
effect entirely and probably stop working. This example shows why the concept of a
contract between a callee and a caller is important: the contract is what specifies the
interface between the two modules.

Unlike some other languages that provide abstract types, Zetalisp makes no attempt
to have the language automatically forbid constructs that circumvent the contract.
This is intentional. One reason for this is that the Lisp Machine is an interactive
system, and so it is important to be able to examine and alter internal state
interactively (usually from a debugger). Furthermore, there is no strong distinction
between the "system" programs and the "user" programs on the Lisp Machine; users
are allowed to get into any part of the language system and change what they want
to change.

In summary: by defining a set of operations, and making only a specific set of
external entrypoints available to the caller, the programmer can create his own
abstract types. These types can be useful facilities for other programs and
programmers. Since the implementation of the type is hidden from the callers,
modularity is maintained, and the implementation can be changed easily.

We have hidden the implementation of an abstract type by making its operations
into functions which the user may call. The important thing is not that they are
functions--in Lisp everything is done with functions. The important thing is that we
have defined a new conceptual operation and given it a name, rather than requiring
anyone who wants to do the operation to write it out step-by-step. Thus we say
(ship-x-velocity s) rather than (aref s 2).

It is just as true of such abstract-operation functions as of ordinary functions that
sometimes they are simple enough that we want the compiler to compile special code
for them rather than really calling the function. (Compiling special code like this is

8 FLA V Objects, Message Passing. and Flavors

Symbolics. Inc. February 1984

often called open-coding.) The compiler is directed to do this through use of macros,
defsubsts, or optimizers. defstruct arranges for this kind of special compilation for
the functions that get the instance variables of a structure.

When we use this optimization, the implementation of the abstract type is only
hidden in a certain sense. It does not appear in the Lisp code written by the user,
but does appear in the compiled code. The reason is that there may be some
compile~ functions that use the macros (or whatever); even if you change the
definition of the macro, the existing compiled code will continue to use the old
definition. Thus, if the implementation of a module is changed programs that use it
may need to be recompiled. This is something we sometimes accept for the sake of
efficiency.

In the present implementation of flavors, which is discussed below, there is no such
compiler incorporation of nonmodular knowledge into a program, except when the
"outside-accessible instance variables" feature is used. See the section "deffiavor
Options". This problem is explained further in that section. If you don't use the
"outside-accessible instance variables" feature, you don't have to worcy about this.

FLA V Objects, Message Passing, and Flavors 9

Symbolics, Inc. February 1984

4. Generic Operations

Suppose we think about the rest of the program that uses the ship abstraction. It
may want to deal with other objects that are like ships in that they are movable
objects with mass, but unlike ships in other ways. A more advanced model of a
ship might include the concept of the ship's engine power, the number of passengers
on board, and its name. An object representing a meteor probably would not have
any of these, but might have another attribute such as how much iron is in it.

However, all kinds of movable objects have positions, velocities, and masses, and the
system will contain some programs that deal with these quantities in a uniform way,
regardless of what kind of object the attributes apply to. For example, a piece of the
system that calculates every object's orbit in space need not worry about the other,
more peripheral attributes of various types of objects; it works the same way for all
objects. Unfortunately, a program that tries to calculate the orbit of a ship will need
to know the ship's attributes, and will have to call ship-x-position and
ship-y-velocity and so on. The problem is that these functions won't work for
meteors. There would have to be a second program to calculate orbits for meteors
that would be exactly the same, except that where the first one calls
ship-x-position, the second one would call meteor-x-position, and so on. This
would be very bad; a great deal of code would have to exist in multiple copies, all of
it would have to be maintained in parallel, and it would take up space for no good
reason.

What is needed is an operation that can be performed on objects of several different
types. For each type, it should do the thing appropriate for that type. Such
operations are called generic operations. The classic example of generic operations is
the arithmetic functions in most programming languages, including Zetalisp. The +
(or plus) function will accept either fixnums or flonums, and perform either furn.um"
addition or flonum addition, whichever is appropriate, based on the data types of the
objects being manipulated. In our example, we need a generic x-position operation
that can be performed on either ships, meteors, or any other kind of mobile object
represented in the system. This way, we can write a single program to calculate
orbits. When it wants to know the x position of the object it is dealing with, it
simply invokes the generic x-position operation on the object, and whatever type of
object it has, the correct operation is performed, and the x position is returned.

A terminology for the use of such generic operations has emerged from the Smalltalk
and Actor languages: performing a generic operation is called sending a message.
The objects in the program are thought of as little people, who get sent messages
and respond with answers. In the example above, the objects are sent x-position
messages, to which they respond with their x position. This message passing is how
generic operations are performed.

Sending a message is a way of invoking a function. Along with the name of the

10 FLA V Objects. Message Passing, and Flavors

Symbolics. Inc. February 1984

message, in general, some arguments are passed; when the object is done with the
message, some values are returned. The s~nder of the message is simply calling a
function with some arguments, and getting some values back. The interesting thing
is that the caller did not specify the name of a procedure to call. Instead, it
specified a message name and an object; that is, it said what operation to perform,
and what object to perform it on. The function to invoke was found from this
information.

When a message is sent to an object, a function therefore must be found to handle
the message. The two data used to figure out which function to call are the type of
the object, and the name of the message. The same set of functions are used for all
instances of a given type, so the type is the only attribute of the object used to
figure out which function to call. The rest of the message besides the name are
data which are passed as arguments to the function, so the name is the only part of
the message used to find the function. Such a function is cruled a method. For
example, if we send an x-position message to an object of type ship, then the
function we find is "the ship type's x-position method". A method is a function
that handles a specific kind of message to a specific kind of object; this method
handles messages named x-position to objects of type ship.

In our new terminology: the orbit-calculating program finds the x position of the
object it is working on by sending that object a message named x-position (with no
arguments). The returned value of the message is the x position of the object. If
the object was of type ship, then the ship type's x-position method was invoked; if
it was of type meteor, then the meteor type's x-position method was invoked.
The orbit-calculating program just sends the message, and the right function is
invoked based on the type of the object. We now have true generic functions, in the
form of message passing: the same operation can mean different things depending on
the type of the object.

FLA V Objects, Message Passing, and Flavors 11

Symbolics. Inc. February 1984

5. Generic Operations in Lisp

How do we implement message passing in Lisp? By convention, objects that receive
messages are always functional objects (that is, you can apply them to arguments),
and a message is sent to an object by calling that object as a function, passing the
name of the message as the first argument, and the arguments of the message as
the rest of the arguments. Message names are represented by symbols; normally
these symbols are in the keyword package since messages are a protocol for
communication between different programs, which may reside in different packages.
So if we have a variable my-ship whose value is an object of type ship, and we
want to know its x position, we send it a message as follows:

(funcall my-ship ':x-position)

This form returns the x position as its returned v~ue. To set the ship's x position
to 3.0, we send it a message like this:

(funcall my-ship ':set-x-position 3.0)

It should be stressed that no new features are added to Lisp for message sending;
we simply define a convention on the way objects take arguments. The convention
says that an object accepts messages by always interpreting its first argument as a
message name. The object must consider this message name, find the function
which is the method for that message name, and invoke that function.

This raises the question of how message receiving works. The object must somehow
find the right method for the message it is sent. Furthermore, the object now has
to be callable as a function; objects can't just be defstructs any more, since those
aren't functions. But the structure defined by defstruct was doing something
useful: it was holding the instance variables (the internal state) of the object. We
need a function with internal state; that is, we need a coroutine.

Of the Zetalisp features presented so far, the most appropriate is the closure. See
the section "Closures". A message-receiving object could be implemented as a closure
over a set of instance variables. The function inside the closure would have a big
selectq form to dispatch on its first argument.

While using closures does work, it has several serious problems. The main problem
is that in order to add a new operation to a system, it is necessacy to modify a lot of
code; you have to find all the types that understand that operation, and add a new
clause to the selectq. The problem with this is that you cannot textually separate
the implementation of your new operation from the rest of the system; the methods
must be interleaved with the other operations for the type. Adding a new operation
should only require adding Lisp code; it should not require modifying Lisp code.

The conventional way of making generic operations is to have a procedure for each
operation, which has a big selectq for all the types; this means you have to modify

12 FLA V Objects. Message Passing. and Flavors

Symbolics, Inc. February 1984

code to add a type. The way described above is to have a procedure for each type,
which has a big selectq for all the operations; this means you have to modify code
to add an operation. Neither of these has the desired property that extending the
system should only require adding code, rather than modifying code.

Closures are also somewhat clumsy and crude. A far more streamlined, convenient,
and powerful system for creating message-receiving objects exists; it is called the
Flavor mechanism. With flavors, you can add a new method simply by adding code,
without modifying anything. Furthermore, many common and useful things to do
are very easy to do with flavors. The rest of this chapter describes flavors.

FLA V Objects, Message Passing, and Ravors 13

Symbolics, Inc. February 1984

6. Simple Use of Flavors

A flavor, in its simplest form, is a definition of an abstract type. New flavors are
created with the defflavor special form, and methods of the flavor are created with
the defmethod special form. New instances of a flavor are created with the
make-instance function. This section explains simple uses of these forms.

For an example of a simple use of flavors, here is how the ship example above
would be implemented.

(defflavor ship ex-position y-position
x-velocity y-velocity mass)

()

:gettable-instance-variables)

(defmethod (ship :speed) ()
(sqrt (+ (A x-velocity 2)

(A y-velocity 2))))

(defmethod (ship :direction) ()
Catan y-velocity x-velocity))

The code above creates a new flavor. The first subform of the defflavor is ship,
which is the name of the new flavor. Next is the list of instance variables; they are
the five that should be familiar by now. The next subform is something we will get
to later. The rest of the subforms are the body of the defflavor, and each one
specifies an option about this flavor. In our example, there is only one option,
namely :gettable-instance-variables. This means that for each instance variable,
a method should automatically be generated to return the value of that instance
variable. The name of the message is a symbol with the same name as the instance
variable, but interned on the keyword package. Thus, methods are created to
handle the messages :x-position, :y-position, and so on.

Each of the two defmethod forms adds a method to the flavor. The first one adds
a handler to the flavor ship for messages named :speed The second subform is
the lambda-list, and the rest is the body of the function that handles the :speed
message. The body can refer to or set any instance variables of the flavor, the same
as it can with local variables or special variables. When any instance of the ship
flavor is invoked with a first argument of :direction, the body of the second
defmethod will be evaluated in an environment in which the instance variables of
ship refer to the instance variables of this instance (the one to which the message
was sent). So when the arguments of atan are evaluated, the values of instance
variables of the object to which the message was sent will be used as the arguments.
atan will be invoked, and the result it returns will be returned by the instance
itself.

14 FLA V Objects. Message Passing, and Flavors

Symbolics. Inc. February 1984

Now we have seen how to create a new abstract type: a new flavor. Every instance
of this flavor will have the five instance variables named in the deffiavor form, and
the seven methods we have seen (five that were automatically generated because of
the :gettable-instance-variables option, and two that we wrote ourselves). The
way to create an instance of our new flavor is with the make-instance function.
Here is how it could be used:

(setq my-ship (make-instance 'ship))

This will return an object whose printed representation is:

#<SHIP 13731210>

(Of course, the value of the magic number will vary; it is not interesting anyway.)
The argument to make-instance is, as you can see, the name of the flavor to be
instantiated. Additional arguments, not used here, are init options, that is,
commands to the flavor of which we are making an instance, selecting optional
features. This will be discussed more in a moment.

Examination of the flavor we have defined shows that it is quite useless as it stands,
since there is no way to set any of the parameters. We can fix this up easily, by
putting the :settable-instance-variables option into the demavor form. 'rhis
option tells demavor to generate methods for messages named :set-x-position,
:set-y-position, and so on; each such method takes one argument, and sets the
corresponding instance variable to the given value.

Another option we can add to the deffiavor is :initable-instance-variables, to
allow us to initialize the values of the instance variables when an instance is first
created. :initable-instance-variables does not create any methods; instead, it
makes initialization keywords named :x-position, :y-position, and so on, that can
be used as init-option arguments to make-instance to initialize the corresponding
instance variables. The set of init options are sometimes called the init-plist because
they are like a property list.

Here is the improved deffiavor:

(defflavor ship ex-position y-position
x-velocity y-velocity mass)

()

:gettable-instance-variables
:settable-instance-variables
:initable-instance-variables)

All we have to do is evaluat~this new deffiavor, and the existing flavor definition
will be updated and now include the new methods and initialization options. In fact,
the instance we generated a while ago will now be able to accept these new
messages! We can set the mass of the ship we created by evaluating

(funcall my-ship ':set-mass 3.0)

and the mass instance variable of my-ship will properly get set to 3.0.

FLA V Objects, Message Passing, and Flavors 15

Symbolics, Inc. February 1984

In order to improve the clarity of heavily object-oriented programs, we do not use
funcall to send messages. Instead, we use the send function, which has a shorter,
more euphonious, and more specific name.

In fact, send and funcall are currently identical in their effects. Use of send is
purely a matter of style. In a future release, it will be possible to send messages to
objects of any data type. send and funcall will be identical when sending to an
instance, but will be different when sending to objects of some other data types.
Programs that use send to send messages and funcall to call functions will continue
to work when this change is made.

send object message-name &rest arguments Function
Sends the message named message-name to the object. arguments are the
arguments passed.

lexpr-send object message-name &rest arguments Function
Sends the message named message-name to the object. arguments are the
arguments passed, except that the last element of arguments should be a list,
and all the elements of that list are passed as arguments. Example:

(send some-window ':set-edges 10 10 40 40)

does the same thing as

(setq new-edges '(10 10 40 40))
(lexpr-send some-window ':set-edges new-edges)

If you want to experiment with flavors, it is useful to know that describe of an
instance tells you the flavor of the instance and the values of its instance variables.
If we were to evaluate (describe my-ship) at this point, the following would be
printed:

#<SHIP 13731210>, an object of flavor SHIP,
has instance variable values:

X-POSITION: unbound
V-POSITION: unbound
X-VELOCITV:
V-VELOCITV:
HASS:

unbound
unbound
3.0

Now that the instance variables are "initable", we can create another ship and
initialize some of the instance variables using the init-plist. Let's do that and
describe the result:

16 FLA V Objects, Message Passing, and Ravors

Symbolics. Inc. February 1984

(setq her-ship (make-instance 'ship ':x-position 0.0
':y-position 2.0
':mass 3.5))

==> #<SHIP 13756521>

(describe her-ship)
#<SHIP 13756521>, an object of flavor SHIP,

has instance variable values:
X-POSITION: 0.0
V-POSITION:
X-VELOCITV:
V-VELOCITV:
HASS:

2.0
unbound
unbound
3.5

A flavor can also establish default initial values for instance variables. These default
values are used when a new instance is created if the values are not initialized any
other way. The syntax for specifying a default initial value is to replace the name of
the instance variable by a list, whose first element is the name and whose second is
a form to evaluate to produce the default initial value. For example:

(defvar *default-x-velocity* 2.0)
(defvar *default-y-velocity* 3.0)

(defflavor ship ((x-position 0.0)
Cy-position 0.0)
ex-velocity *default-x-velocity*)
Cy-velocity *default-y-velocity*)
mass)

()

:gettable-instance-variables
:settable-instance-variables
:initable-instance-variables)

(setq another-ship (make-instance 'ship ':x-position 3.4))

(describe another-ship)
#<SHIP 14563643>, an object of flavor SHIP,

has instance variable values:
X-POSITION: 3.4
V-POSITION: 0.0
X-VELOCITV: 2.0
V-VELOCITV: 3.0
HASS: unbound

x-position was initialized explicitly, so the default was ignored. y-position was
initialized from the default value, which was 0.0. The two velocity instance variables
were initialized from their default values, which came from two global variables.
mass was not explicitly initialized and did not have a default initialization, so it was
left unbound.

FLA V Objects. Message Passing, and Ravors 17

Symbolics, Inc. February 1984

There are many other options that can be used in deffiavor, and the init options
can be used more flexibly than just to initialize instance variables; full details are
given later in this chapter. But even with the small set of features we have seen so
far, it is easy to write object-oriented programs.

18 FLA V Objects. Message Passing, and Flavors

Symbolics. Inc. February 1984

FLA V Objects. Message Passing. and Flavors 19

Symbolics. Inc. February 1984

7. Mixing Flavors

Now we have a system for defining message-receiving objects so that we can have
generic operations. If we want to create a new type called meteor that would
accept the same generic operations as ship, we could simply write another deftlavor
and two more defmethods that looked just like those of ship, and then meteors
and ships would both accept the same operations. ship would have some more
instance variables for holding attributes specific to ships, and some more methods for
operations that are not generic, but are only defined for ships; the same would be
true of meteor.

However, this would be a wasteful thing to do. The same code has to be repeated
in several places, and several instance variables have to be repeated. The code now
needs to be maintained in many places, which is always undesirable. The power of
flavors (and the name "flavors") comes from the ability to mix several flavors and get
a new flavor. Since the functionality of ship and meteor partially overlap, we can
take the common functionality and move it into its own flavor, which might be
called moving-object. We would define moving-object the same way as we
defined ship in the previous section. Then, ship and meteor could be defined like
this:

(defflavor ship (engine-power number-of-passengers name)
(moving-object)

:gettable-instance-variables)

(defflavor meteor (percent-iron) (moving-object)
:initable-instance-variables)

These deftlavor forms use the second subform, which we ignored previously. The
second subform is a list of flavors to be combined to form the new flavor; such
flavors are called components. Concentrating on ship for a moment (analogous
things are true of meteor), we see that it has exactly one component flavor:
moving-object. It also has a list of instance variables, which includes only the
ship-specific instance variables and not the ones that it shares with meteor. By
incorporating moving-object, the ship flavor acquires all of its instance variables,
and so nePd not name them again. It also acquires all of moving-object's methods,
too. So with the new definition, ship instances will still accept the :x-velocity and
:speed messages, and they will do the same thing. However, the :engine-power
message will also be understood (and will return the value of the engine-power
instance variable).

What we have done here is to take an abstract type, moving-object, and build two
more specialized and powerful abstract types on top of it. Any ship or meteor can
do anything a moving object can do, and each also has its own specific abilities.
This kind of building can continue; we could define a flavor called

20 FLA V Objects. Message Passing. and Ravors

Symbolics. Inc. February 1984

ship-with-passenger that was built on top of ship, and it would inherit all of
moving-object's instance variables and methods as well as ship's instance variables
and methods. Furthermore, the second subform of defflavor can be a list of several
components, meaning that the new flavor should combine all the instance variables
and methods of all the flavors in the list, as well as the ones those flavors are built
on, and so on. All the components taken together form a big tree of flavors. A
flavor is built from its components, its components' components, and so on. We
sometimes use the term "components" to mean the immediate components (the ones
listed in the defflavor), and sometimes to mean all the components (including the
components of the immediate components and so on). (Actually, it is not strictly a
tree, since some flavors might be components through more than one path. It is
really a directed graph; it can even be cyclic.)

The order in which the components are combined to form a flavor is important.
The tree of flavors is turned into an ordered list by performing a top-down,
depth-first walk of the tree, including nonterminal nodes before the subtrees they
head, and eliminating duplicates. For example, if flavor-l's immediate components
are flavor-2 and flavor-3, and flavor-2's components are flavor-4 and flavor-5,
and flavor-S's component was flavor-4, then the complete list of components of
flavor-I would be:

flavor-1, flavor-2, flavor-4, flavor-5, flavor-3

The flavors earlier in this list are the more specific, less basic ones; in our example,
ship-with-passengers would be first in the list, followed by ship, followed by
moving-object. A flavor is always the first in the list of its own components.
Notice that flavor-4 does not appear twice in this list. Only the first occurrence of
a flavor appears; duplicates are removed. (The elimination of duplicates is done
during the walk; if there is a cycle in the directed graph, it will not cause a
nonterminating computation.)

The set of instance variables for the new flavor is the union of all the sets of
instance variables in all the component flavors. If both flavor-2 and flavor-3 have
instance variables named foo, then flavor-I will have an instance variable named
foo, and any methods that refer to foo will refer to this same instance variable.
Thus different components of a flavor can communicate with one another using
shared instance variables. (Typically, only one component ever sets the variable, and
the others only look at it.) The default initial value for an instance variable comes
from the first component flavor to specify one.

The way the methods of the components are combined is the heart of the flavor
system. When a flavor is defined, a single function, called a combined method, is
constructed for each message supported by the flavor. This function is constructed
out of all the methods for that message from all the components of the flavor.
There are many different ways that methods can be combined; these can be selected
by the user when a flavor is defined. The user can also create new forms of
combination.

FLA V Objects, Message Passing, and Ravors 21

Symbolics. Inc. February 1984

There are several kinds of methods, but so far, the only kinds of methods we have
seen are primary methods. The default way primary methods are combined is that
all but the earliest one provided are ignored. In other words, the combined method
is simply the primary method of the first flavor to provide a primary method. What
this means is that if you are starting with a flavor foo and building a flavor bar on
top of it, then you can override foo's method for a message by providing your own
method. Your method will be called, and foo's will never be called.

Simple overriding is often useful; if you want to make a new flavor bar that is just
like foo except that it reacts completely differently to a few messages, then this will
work. However, often you don't want to completely override the base flavor's (foo's)
method; sometimes you want to add some extra things to be done. This is where
combination of methods is used.

The usual way methods are combined is that one flavor provides a primary method,
and other flavors provide daemon methods. The idea is that the primary method is
"in charge" of the main business of handling the message, but other flavors just
want to keep informed that the message was sent, or just want to do the part of
the operation associated with their own area of responsibility.

When methods are combined, a single primary method is found; it comes from the
first component flavor that has one. Any primary methods belonging to later
component flavors are ignored. This is just what we saw above; bar could override
foo's primary method by providing its own primary method.

However, you can define other kinds of methods. In particular, you can define
daemon methods. They come in two kinds, before and after. There is a special
syntax in defmethod for defining such methods. Here is an example of the syntax.
To give the ship flavor an after-daemon method for the :speed message, the
following syntax would be used:

(defmethod (ship :after :speed) ()
body)

Now, when a message is sent, it is handled by a new function called the combined
method. The combined method first calls all of the before daemons, then the
primary method, then all the after daemons. Each method is passed the same
arguments that the combined method was given. The returned values from the
combined method are the values returned by the primary method; any values
returned from the daemons are ignored. Before-daemons are called in the order that
flavors are combined, while after-daemons are called in the reverse order. In other
words, if you build bar on top of foo, then bar's before-daemons will run before any
of those in foo, and bar's after-daemons will run after any of those in foo.

The reason for this order is to keep the modularity order correct. If we create
flavor-1 built on flavor-2; then it should not matter what flavor-2 is built out of.
Our new before-daemons go before all methods of flavor-2, and our new after
daemons go after all methods of flavor-2. Note that if you have no daemons, this
reduces to the form of combination described above. The most recently added

22 FLA V Objects. Message Passing. and Flavors

Symbolics, Inc. February 1984

component flavor is the highest level of abstraction; you build a higher-level object on
top of a lower-level object by adding new components to the front. The syntax for
defining daemon methods can be found in the description of defmethod below.

To clarify this, let's consider a simple example: the :print-self method. The Lisp
printer (that is, the print function) prints instances of flavors by sending them
:print-self messages. The first argument to the :print-self message is a stream
(we can ignore the others for now), and the receiver of the message is supposed to
print its printed representation on the stream. In the ship example above, the
reason that instances of the ship flavor printed the way they did is because the
ship flavor was actually built on top of a vecy basic flavor called vanilla-flavor; this
component is provided automatically by deffiavor. It was vanilla-flavor's
:print-self method that was doing the printing. Now, if we give ship its own
primacy method for the :print-self message, then that method will take over the
job of printing completely; vanilla-flavor's method will not be called at all.
However, if we give ship a before-daemon method for the :print-self message, then
it will get invoked before the vanilla-flavor message, and so whatever it prints will
appear before what vanilla-flavor prints. So we can use before-daemons to add
prefixes to a printed representation; similarly, after-daemons can add suffixes.

There are other ways to combine methods besides daemons, but this way is the
most common. The more advanced ways of combining methods are explained in a
later section. See the section "Method Combination". The vanilla-flavor and what
it does for you are also explained later. See the section "Vanilla Flavor".

FLA V Objects. Message Passing, and Flavors 23

Symbolics, Inc. February 1984

8. Flavor Functions

deffiavor Macro
A flavor is defined by a form

C def flavor flavor-name (varl var2 . ..) <fiavl flav2 . ..)
optl opt2 ...)

flavor-name is a symbol which serves to name this flavor. It will get an
si:flavor property of the internal data-structure containing the details of the
flavor.

(typep obj), where obj is an instance of the flavor named flavor-name, will
return the symbol flavor-name. (typep obj flavor-name) is t if obj is an
instance of a flavor, one of whose components (possibly itself) is flavor-name.

varl, var2, and so on, are the names of the instance-variables containing the
local state for this flavor. A list of the name of an instance-variable and a
default initialization form is also acceptable; the initialization form will be
evaluated when an instance of the flavor is created if no other initial value
for the variable is obtained. If no initialization is specified, the variable will
remain unbound.

flavl, flav2, and so on, are the names of the component flavors out of which
this flavor is built. The features of those flavors are inherited as described
previously.

optl, opt2, and so on, are options; each option may be either a keyword
symbol or a list of a keyword symbol and arguments. The options to
deffiavor are described in another section. See the section "deffiavor
Options".

all-flavor-names
This is a list of the names of all the flavors that have ever been
deffiavor'ed.

Variable

defmethod Macro
A method, that is, a function to handle a particular message sent to an
instance of a particular flavor, is defined by a form such as

C defmethod <flavor-name method-type message) lambda-list
forml form2 . .. >

flavor-name is a symbol which is the name of the flavor which is to receive
the method. method-type is a keyword symbol for the type of method; it is
omitted when you are defining a primary method, which is the usual case.
message is a keyword symbol which names the message to be handled.

24 FLA V Objects. Message Passing, and Ravors

Symbolics, Inc. February 1984

The meaning of the method-type depends on what kind of method
combination is declared for this message. For instance, for daemons :before
and :after are allowed. See the section "Method Combination". That section
contains a complete description of method types and the way methods are
combined.

lambda-list describes the arguments and "aux variables" of the function; the
first argument to the method, which is the message keyword, is automatically
handled, and so it is not included in the lambda-list. Note that methods
may not have "e arguments; that is they must be functions, not special
forms. forml, form2, and so on, are the function body; the value of the last
form is returned.

The variant form

(def method <flavor-name message> function)

where function is a symbol, says that flavor-name's method for message is
function, a symbol which names a function. That function must take
appropriate arguments on the LM-2; the first argument is the message
keyword. On the 3600, the first three arguments are the object receiving
the message, the mapping table (which can safely be ignored), and the
message keyw-ord.

If you redefine a method that is already defined, the old definition is replaced
by the new one. Given a flavor, a message name, and a method type, there
can only be one function, so if you define a :before daemon method for the
foo flavor to handle the :bar message, then you replace the previous before
daemon; however, you do not affect the primacy method or methods of any
other type, message name, or flavor.

The function spec for a method looks like:

(:method flavor-name message> or
(:method flavor-name method-type message>

This is useful to know if you want to trace or advise a method, or if you
want to poke around at the method function itself, for example, disassemble
it.

make-instance flavor-name init-optionl valuel init-option2 Function
value2 ...

Creates and returns an instance of the specified flavor. Arguments after the
first are alternating init-option keywords and arguments to those keywords.
These options are used to initialize instance variables and to select arbitracy
options, as described above. If the flavor supports the :init message, it is
sent to the newly created object with one argument, the init-plist. This is a
disembodied property-list, containing the init-options specified and those
defaulted from the flavor's :default-init-plist. make-instance is an easy-to
call interface to instantiate-flavor; for full details refer to that function.

FLA V Objects. Message Passing. and Flavors 25

Symbolics. Inc. February 1984

instantiate-flavor flavor-name init-plist &optional
send-init-message-p retum-unhandled-keywords
area

Function

This is an extended version of make-instance, giving yoti more features.
Note that it takes the init-plist as an argument, rather than taking an
&rest argument of init-options and values.

The init-plist argument must be a disembodied property list; locf of an
&rest argument will do. Beware! This property list can be modified; the
properties from the default-init-plist that do not simply initialize instance
variables are putprop'ed on if not already present, and some :init methods
do explicit putprops onto the init-plist.

In the event that :init methods do remprop of properties already on the
init-plist (as opposed tb simply doing get and putprop), then the init-plist
will get rplacd'ed. This means that the actual list of options will be
modified. It also means that locf of an &rest argument will not work; the
caller of instantiate-flavor must copy its rest argument (for example, with
copylist); this is because rplacd is not allowed on &rest arguments.

First, if the flavor's method-table and other internal information have not
been computed or are not up to date, they are computed. This may take a
substantial amount of time and invoke the compiler, but will only happen
once for a particular flavor no matter how many instances you make, unless
you change something.

Next, the instance variables are initialized. There are several ways this
initialization can happen. If an instance variable is declared initable, and a
keyword with the same spelling as its name appears in init-plist, it is set to
the value specified after that keyword. If an instance variable does not get
initialized this way, and an initialization form was specified for it in a
deffiavor, that form is evaluated and the variable is set to the result. The
initialization form may not depend on any instance variables nor on self; it
will not be evaluated in the "inside" environment in which methods are
called. If an instance variable does not get initialized either of these ways it
will be left unbound; presumably an :init method should initialize it.

Note that a simple empty disembodied property list is (nil), which is what
you should give if you want an empty init-plist. If you use nil, the property
list of nil will be used, which is probably not what you want.

If any keyword appears in the init-plist but is not used to initialize an
instance variable and is not declared in an :init-keywords option it is
presumed to be a misspelling. See the section "defflavor Options". So any
keywords that you handle in an :init handler should also be mentioned in
the :init-keywords option of the definition of the flavor. If the
retum-unhandled-keywords argument is not supplied, such keywords are
complained about by signalling an error. But if retum-unhandled-keywords is

26 FLA V Objects, Message Passing. and Flavors

Symbolics, Inc. February 1984

supplied non-nil, a list of such keywords is returned as the second value of
instantiate-flavor.

Note that default values in the init-plist can come from the
:default-init-plist option to deffiavor. See the section "deffiavor Options".

If the send-init-message-p argument is supplied and non-nil, an :init message
is sent to the newly created instance, with one argument, the init-plist. get
can be used to extract" options from this property-list. Each flavor that needs
initialization can contribute an :init method, by defining a daemon.

If the area argument is specified, it is the number of an area in which to
cons the instance; otherwise it is consed in the default area.

defwrapper Macro
This is hairy and if you don't understand it you should skip it.

Sometimes the way the flavor system combines the methods of different
flavors (the daemon system) is not powerful enough. In that case
defwrapper can be used to define a macro which expands into code which is
wrapped around the invocation of the methods. This is best explained by an
example; suppose you needed a lock locked during the processing of the :foo
message to the bar flavor, which takes two arguments, and you have a
lock-frobboz special-form which knows how to lock the lock (presumably it
generates an unwind-protect). lock-frobboz needs to see the first
argument to the message; perhaps that tells it what sort of operation is going
to be performed (read or write).

(defwrapper (bar :foo) ((arg1 arg2) . body)
~c1ock-frobboz (self argl)

, body))

The use of the body macro-argument prevents the defwrapper'ed macro
from knowing the exact implementation and allows several defwrappers
from different flavors to be combined properly.

Note well that the argument variables, argl and arg2, are not referenced
with commas before them. These may look like defmacro "argument"
variables, but they are not. Those variables are not bound at the time the
defwrapper-defined macro is expanded and the back-quoting is done; rather
the result of that macro-expansion and back-quoting is code which, when a
message is sent, will bind those variables to the arguments in the message as
local variables of the combined method.

Consider another example. Suppose you thought you wanted a :before
daemon, but found that if the argument was nil you needed to return from
processing the message immediately, without executing the primary method.
You could write a wrapper such as

FLA V Objects, Message Passing, and Flavors 27

Symbolics, Inc. February 1984

(defwrapper (bar :foo) ((argl) • body)
'(cond ((null argl)) ;Do nothing if argl is nil

C t before-code
. , body)))

Suppose you need a variable for communication among the daemons for a
particular message; perhaps the :after daemons need to know what the
primary method did, and it is something that cannot be easily deduced from
just the arguments. You might use an instance variable for this, or you
might create a special variable which is bound during the processing of the
message and used free by the methods.

(defvar *communication*)
(defwrapper (bar :foo) (ignore . body)

'(let ((*communication* nil))
. , body))

Similarly you might want a wrapper which puts a *catch around the
processing of a message so that any one of the methods could throw out in
the event of an unexpected condition.

Redefining a wrapper automatically performs the necessary recompilation of
the combined method of the flavor. If a wrapper is given a new definition,
the combined method is recompiled so that it gets the new definition. If a
wrapper is redefined with the same old definition, the existing combined
methods will keep being used, since they are still correct.

Like daemon methods, wrappers work in outside-in order; when you add a
defwrapper to a flavor built on other flavors, the new wrapper is placed
outside any wrappers of the component flavors. However, all wrappers
happen before any daemons happen. When the combined method is built,
the calls to the before-daemon methods, primary methods, and after-daemon
methods are all placed together, and then the wrappers are wrapped around
them. Thus, if a component flavor defines a wrapper, methods added by new
flavors will execute within that wrapper's context.

8.1 Facility for Handling Messages to Flavor Objects

Whoppers are related to wrappers. A wrapper is a kind of macro that can be used
to handle a message to an object of some flavor. Whoppers can do most of the
things that wrappers can do, but have several advantages.

Both wrappers and whoppers. are used in certain cases in which :before and :after
daemons are not powerful enough. :before and :after daemons let you put some
code before or after the execution of a method; wrappers and whoppers let you put
some code around the execution of the method. For example, you might want to
bind a special variable to some value around the execution of a method. You might

28 FLA V Objects, Message Passing, and Ravors

Symbolics, Inc. February 1984

also want to establish a condition handler or set up a *catch. Wrappers and
whoppers can also decide whether or not the method should be executed.

The main difference between wrappers and whoppers is that a wrapper is like a
macro, whereas a whopper is like a function. If you modify a wrapper, all of the
combined methods that use that wrapper have to be recompiled; the system does
this automatically, but it still takes time. If you modify a whopper, only the
whopper has to be recompiled; the combined methods need not be changed.
Another disadvantage of wrappers is that a wrapper's body is expanded in all of the
combined methods in which it is involved, and if that body is very large and complex,
all of that code is duplicated in many different compiled-code objects instead of being
shared. Using whoppers is also somewhat easier than using wrappers. Whoppers
are slightly slower than wrappers since they require two extra function calls each
time a message is sent.

Whoppers are defined with the following special form:

defwhopper (flavor-name message-name) arglist body... Special Form
Defines a whopper for the specified, message to the specified flavor. arglist is
the list of arguments, which should be the same as the argument list for any
method handling the specified message.

When a message is sent to an object of some flavor, and a whopper is defined for
that message, the whopper runs before any of the methods (primary or daemon).
The arguments are passed, and the body of the whopper is executed. If the
whopper does not do anything special, the methods themselves are never run; the
result of the whopper is returned as the result of. sending the message. However,
most whoppers usually run the methods for the message. To make this happen, the
body of the whopper calls one of the following two functions:

continue-whopper &rest arguments Function
Calls the methods for the message that was intercepted by the whopper.
arguments is the list of arguments passed to those methods. This function
must be called from inside the body of a whopper. Normally the whopper
passes down the same arguments that it was given. However, some
whoppers might want to change the values of the arguments and pass new
values; this is valid.

lexpr-continue-whopper &rest arguments Function
This is like continue-whopper, but the last element of arguments is a list
of arguments to be passed. It is useful when the arguments to the
intercepted message include an &rest argument.

The following whopper binds the value of the special variable base to 3 around the
execution of the :print-integer message to flavor foo (this message takes one
argument):

FLA V Objects, Message Passing, and Ravors

Symbolics, Inc. February 1984

(defwhopper (foo :print-integer) (n)
(let ((base 3))

(continue-whopper n)))

29

The following whopper sets up a •catch around the execution of the
:compute-height message to flavor giant, no matter what arguments this message
uses:

(defwhopper (giant :compute-height) (&rest args)
(*catch 'too-high

(lexpr-continue-whopper args)))

Like daemon methods, whoppers work in outward-in order; when you add a
defwhopper to a flavor built on other flavors, the new whopper is placed outside
any whoppers of the component flavors. However, all whoppers happen before any
daemons happen. Thus, if a component defines a whopper, methods added by new
flavors are considered part of the continuation of that whopper and are called only
when the whopper calls its continuation.

Whoppers and wrappers· are considered equal for purposes of combination. If two
flavors are combined, one having a wrapper and the other having a whopper for
some method, then the wrapper or whopper of the flavor that is further out is on
the outside. If, for some reason, the vecy same flavor has both a wrapper and a
whopper for the same message, the wrapper goes outside the whopper.

~un,F'l\'WPca> \
defun-method function-spec flavor argument-list body... Special Form

Sometimes you write a function which is not itself a methoct but which is to
be called by methods and wants to be able to access the instance variables ~f
the. object self. defun-method is like defun, but the function is able to
access the instance variables of flavor. It is valid to call the function only
while executing inside a method or a defun-method for an object of the
s~cified flavor, or of some flavor built upon it.

function-spec must be a symbol.

defun-method works by defining two functions: one is a function named
function-spec, and the other is a function named
(:defun-method function-spec). An optimizer is also added to function-spec
(since optimizers currently can oo added only to symbols, function-spec is
constrained to be a symbol for now). The function named function-spec can
be. called from anywhere, as long as self is bound to an appropriate instance.
The environment is correctly set up, and the internal :defun-method is
called. This requires calling into the Flavor system and has some
performance penalty over sending a message. However, if function-spec is
called from a context where the compiler can know the current flavor (in

other words, some constraints on what self can be), the optimizer on
function-spec turns into a call to the :defun-method internal function,
generating inline code to pass the correct environment.

30 FLA V Objects, Message Passing, and Flavors

Symbolics. Inc. February 1984

Also, because of the optimizer, defun-method acts like a subst in that better
code is generated if the defun-method is defined in a file earlier than where
it is used. However, defun-methods are not much faster than message
passing, even when the optimized version of the call is being used.

Note that it is faster to send a computed message than it is to call a
computed function that is a defun-method! It is slower to use funcall to
call the function being defined with a defun-method than it is to send a
message in which you have to have a form that computes the name of the
message at run time.

defselect-method function-spec flavor body... Special Form
This special form is like defselect, but the forms of the body are able to
access the instance variables of flavor. See defun-method.

undeffiavor flavor-name Function
Removes the flavor named by flavor-name.

undefmethod (flavor [type] message) Macro

(undefmethod (flavor :before :message))

removes the method created by

(defmethod (flavor :before :message) (args) ...)

To remove a wrapper, use undefmethod with :wrapper as the method
type.

undefmethod is simply an interface to fundefine. undefmethod accepts
the same syntax as defmethod.

undefun-method function-spec Special Form
undefun-method undoes the effect of defun-method in the same way that
undefmethod undoes the effect of defmethod. This is a special form, not
a function, so function-spec is not evaluated.

When you redefine a defun-method to no longer be a defun-method, you must
use undefun-method for the :defun-method function generated internally by it.
Otherwise the compiler will think that the function is still a defun-method and
hence will generate the wrong code.

self Variable
When a message is sent to an object, the variable self is automatically bound
to that object, for the benefit of methods which want to manipulate the
object itself (as opposed to its instance variables).

recompile-flavor flavor-name &optional single-message
(use-old-combined-methods t) (do-dependents
t)

Function

FLA V Objects, Message Passing, and Flavors 31

Symbolics, Inc. February 1984

Updates the internal data of the flavor and any flavors that depend on it. If
single-message is supplied non-nil, only the methods for that message are
changed. The system does this when you define a new method that did not
previously exist. If use-old-combined-methods is t, then the existing combined
method functions will be used if possible. New ones will only be generated if
the set of methods to be called has changed. This is the default. If
use-old-combined-methods is nil, automatically generated functions to call
multiple methods or to contain code generated by wrappers will be
regenerated unconditionally. If do-dependents is nil, only the specific flavor
you specified will be recompiled. Normally it and all flavors that depend on it
will be recompiled.

recompile-flavor only affects flavors that- have already been compiled.
Typically this means it affects flavors that have been instantiated, but does
not bother with mixins. See the section "Flavor Families".

compile-flavor-methods flavor... Macro
The form (compile-flavor-methods ftavor-name-1 ftavor-name-2 .••), placed
in a file to be compiled, will cause the compiler to include the automatically

· generated combined methods for the named flavors in the resulting bin file,
provided all of the necessary flavor definitions have been made. Furthermore,
when the bin file is loaded, internal data structures (such as the list of all
methods of a flavor) will get generated.

This means that the combined methods get compiled at compile time, and
the data structures get generated at load time, rather than both things
happening at run time. This is a very good thing to use, since the need to
invoke the compiler at run-time makes programs that use flavors slow the
first time they are run. (The compiler will still be called if incompatible
changes have been made, such as addition or deletion of methods that must
be called by a combined method.)

You should only use compile-flavor-methods for flavors that are going to
be instantiated. For a flavor that will never be instantiated (that is, a flavor
that only serves to be a component of other flavors that actually do get
instantiated), it is a complete waste of time, except in the unusual case
where those other flavors can all inherit the combined methods of this flavor
instead of each one having its own copy of a combined method which
happens to be identical to the others.

The compile-flavor-methods forms should be compiled after all of the
information needed to create the combined methods is available. You should
put these forms after all of the definitions of all relevant flavors, wrappers,
and methods of all components of the flavors mentioned.

When a compile-flavor-methods form is seen by the interpreter, the
combined methods are compiled and the internal data structures are
generated.

32 FLA V Objects, Message Passing, and Flavors

Symbolics, Inc. February 1984

get-handler-for object message Function
Given an object and a message, will return that object's method for that
message, or nil if it has none. When object is an instance of a flavor, this
function can be useful to find which of that flavor's components supplies the
method. If you get back a combined method, you can use the List Combined
Methods Zmacs command to find out what it does. See the section "Useful
Zmacs Commands".

This is related to the :handler function spec. See the section "Function
Specs".

This function can be used with other things than flavors, and has an
optional argument which is not relevant here and not documented.

flavor-allows-init-keyword-p flavor-name keyword Function
Returns non-nil if the flavor named flavor-name allows keyword in the init
options when it is instantiated, or nil if it does not. The non-nil value is
the name of the component flavor which contributes the support of that
keyword.

si:flavor-allowed-init-keywords flavor-name Function
Returns a list of all symbols that are valid init-options for the flavor, sorted
alphabetically. flavor-name should be the name of a flavor (a symbol). This
function is primarily useful for people, rather than programs, to call to get
information. You can use this to help remember the name of an init-option
or to help write documentation about a particular flavor.

symeval-in-instance instance symbol &optional no-error-p Function
This function is used to find the value of an instance variable inside a
particular instance. Instance is the instance to be examined, and symbol is
the instance variable whose value should be returned. If there is no such
instance variable, an error is signalled, unless no-e"!'r-p is non-nil in which
case nil is returned. - -

set-in-instance instance symbol value Function
This function is used to alter the value of an instance variable inside a
particular instance. Instance is the instance to be altered, symbol is the
instance variable whose value should be set, and value is the new value. If
there is no such instance variable, an error is signalled.

locate-in-instance instance symbol Function
Returns a locative pointer to the cell inside instance which holds the value of
the instance variable named symbol.

describe-flavor flavor-name Function
This function prints out descriptive information about a flavor; it is self
explanatory. An important thing it tells you that can be hard to figure out

FLA V Objects. Message Passing, and Ravors 33

Symbolics. Inc. February 1984

yourself is the combined list of component flavors; this list is what is printed
after the phrase "and directly or indirectly depends on".

si:*flavor-compilations* Variable
This variable contains a history of when the flavor mechanism invoked the
compiler. It is a list; elements toward the front of the list represent more
recent compilations. Elements are typically of the form

C :method flavor-name type message-name>

and type is typically :combined.

You may setq this variable to nil at any time; for instance before loading
some files that you suspect may have missing or obsolete
compile-flavor-methods in them.

si:*flavor-compile-trace* Variable
A string containing a textual description of each invocation of the compiler by
the flavor system. New elements are appended to the end of the string (it
has a fill pointer).

si:flavor-default-init-putprop flavor value property Function
si:flavor-default-init-putprop is just like putprop except that its first
argument is either a flavor structure or the name of a flavor. It puts the
property on the default init plist of the specified flavor.

si:flavor-default-init..;get flavor property Functio!l
si:flavor-default-init-get is just like get except that its first argument is
either a flavor structure or the name of a flavor. It retrieves the property
from the default init plist of the specified flavor. You can use setf:

(setf (si:flavor-default-init-get f p) x)

si:flavor-default-init-remprop flavor property Function
si:flavor-default-init-remprop is just like remprop except that its first
argument is either a flavor structure or the name of a flavor. It removes the
property from the default init plist of the specified flavor.

funcall-self message arguments... Function
When self is an instance or an entity, (funcall-self args •••) has the same
effect as (funcall self args •••) except that it is a little faster since it doesn't
have to re-establish the context in which the instance variables evaluate
correctly. If self is not an instance (nor an "entity''), funcall-self and
funcall self do the same thing.

When self is an instance, funcall-self will only work correctly if it is used in
a method or a function, wrapped in a declare-flavor-instance-variables,
that was called (not necessarily directly) from a method. Otherwise the
instance-variables will not be already set up.

34 FLA V Objects. Message Passing, and Flavors

Symbolics. Inc. February 1984

(funcall-self ...) is no longer used and· is no longer any faster; use
(send self ...) instead. See the function send.

lexpr-funcall-self message arguments... list-of-arguments Function
This function is a cross between lexpr-funcall and funcall-self. When self
is an instance or an entity, (lexpr-funcall-self args •••) has the same effect
as (lexpr-funcall self args •••) except that it is a little faster since it doesn't
have to re-establish the context in which the instance variables evaluate
correctly. If self is not an instance (nor an "entity''), lexpr-funcall-self and
lexpr-funcall do the same thing.

(lexpr-funcall-self ...) is no longer used; use (lexpr-send self ...) instead.
See the function lexpr-send.

declare-flavor-instance-variables (flavor) body... Macro
Sometimes you will write a function which is not itself a method, but which
is to be called by methods and wants to be able to access the instance
variables of the object self. The form

(declare-flavor-instance-variables <flavor-name)
fitnction-definition)

surrounds the /Unction-definition with a declaration of the instance variables
for the specified flavor, which will make them accessible by name. Currently
this works by declaring them as special variables, but this implementation
may be changed in the future. Note that it is only legal to call a function
defined this way while executing inside a method for an object of the
specified flavor, or of some flavor built upon it.
declare-flavor-instance-variables is obsolete. It exists only for
compatibility with the old flavor system (pre-System 210).

FLA V Objects, Message Passing, and Ravors 35

Symbolics, Inc. February 1984

9. defftavor Options

There are quite a few options to defflavor. They are all described here, although
some are for very specialized purposes and not of interest to most users. Each
option can be written in two forms; either the keyword by itself, or a list of the
keyword and "arguments" to that keyword.

Several of these options declare things about instance variables. These options can
be given with arguments which are instance variables, or without any arguments in
which case they refer to all of the instance variables listed at the top of the
deftlavor. This is not necessarily all the instance variables of the component
flavors; just the ones mentioned in this flavor's defflavor. When arguments are
given, they must be instance variables that were listed at the top of the defflavor;
otherwise they are assumed to be misspelled and an error is signalled. It is legal to
declare things about instance variables inherited from a component flavor, but to do
so you must list these instance variables explicitly in the instance variable list at the
top of the deftlavor.

:gettable-instance-variables
Enables automatic generation of methods for getting the values of instance
variables. The message name is the name of the variable, in the keyword
package (that is, put a colon in front of it.)

Note that there is nothing special about these methods; you could easily
define them yourself. This option generates them automatically to save you
the trouble of writing out a lot of very simple method definitions. (The same
is true of methods defined by the :settable-instance-variables option.) If
you define a method for the same message name as one of the automatically
generated methods, the new definition will override the old one, just as if you
had manually defined two methods for the same message name.

:settable-instance-variables
Enables automatic generation of methods for setting the values of instance
variables. The message name is ":set-" followed by the name of the variable.
All settable instance variables are also automatically made gettable and
initable. (See the note in the description of the
:gettable-instance-variables option.)

:initable-instance-variables
The instance variables listed as arguments, or all instance variables listed in
this defflavor if the keyword is given alone, are made initable. This means
that they can be initialized through use of a keyword (a colon followed by the
name of the variable) as an init-option argument to make-instance.

:init-keywords
The arguments are declared to be keywords in the initialization property-list

36 FLA V Objects. Message Passing. and Flavors

Symbolics, Inc. February 1984

which are processed by this flavor's :init methods. The system uses this for
error-checking: before the system sends the :init message, it makes sure that
all the keywords in the init-plist are either initable-instance-variables, or
elements of this list. If the caller misspells a keyword or otherwise uses a
keyword that no component flavor handles, make-instance signals an error.
When you write a :init handler that accepts some keywords, they should be
listed in the :init-keywords option of the flavor.

:default-init-plist
The arguments are alternating keywords and value forms, like a property-list.
When the flavor is instantiated, these properties and values are put into the
init-plist unless already present. This allows one component flavor to default
an option to another component flavor. The value forms are only evaluated
when and if they are used. For example,

(:default-init-plist :frob-array
(make-array 100))

would provide a default "frob array" for any instance for which the user did
not provide one explicitly. :default-init-plist entries that initialize instance
variables are not added to the init-plist seen by the :init methods.

:required-instance-variables
Declares that any flavor incorporating this one which is instantiated into an
object must contain the specified instance variables. An error occurs if there
is an attempt to instantiate a flavor that incorporates this one if it does not
have these in its set of instance variables. Note that this option is not one
of those which checks the spelling of its arguments in the way described at
the start of this section (if it did, it would be useless).

Required instance variables may be freely accessed by methods just like
normal instance variables. The difference between listing instance variables
here and listing them at the front of the deffiavor is that the latter
declares that this flavor "owns" those variables and will take care of
initializing them, while the former declares that this flavor depends on those
variables but that some other flavor must be provided to manage them and
whatever features they imply.

:required-init-keywords
The arguments are keywords. It is an error to try to make an instance of

this flavor or any incorporating it without specifying these keywords as
arguments to make-instance (or instantiate-flavor) or a
:default-init-plist option in a component flavor. This error can often be
detected at compile time.

:required-methods
The arguments are names of messages which any flavor incorporating this
one must handle. An error occurs if there is an attempt to instantiate such
a flavor and it is lacking a method for one of these messages. Typically this
option appears in the defflavor for a base flavor. See the section "Flavor

FLA V Objects, Message Passing, and Ravors 37

Symbolics, Inc. February 1984

Families". Usually this is used when a base flavor does a (send self •.•) to
send itself a message that is not handled by the base flavor itself; the idea is
that the base flavor will not be instantiated alone, but only. with other
components (mixins) that do handle the message. This keyword allows the
error of having no handler for the message be detected when the flavor is
defined (which usually means at compile time) rather than at run time.

:required-flavors
The arguments are names of flavors which any flavor incorporating this one
must include as components, directly or indirectly. The difference between
declaring flavors as required and listing them directly as components at the
top of the demavor is that declaring flavors to be required does not make
any commitments about where those flavors will appear in the ordered list of
components; that is left up to whoever does specify them as components.
The main thing that declaring a flavor as required accomplishes is to allow
instance variables declared by that flavor to be accessed. It also provides
error checking: an attempt to instantiate a flavor which does not include the
required flavors as components will signal an error. Compare this with
:required-methods and :required-instance-variables.

For an example of the use of required flavors, consider the ship example
given earlier, and suppose we want to define a relativity-mixin which
increases the mass dependent on the speed. We might write,

(defflavor relativity-mixin () (moving-object))
(defmethod (relativity-mixin :mass) ()

(//mass (sqrt (- 1 (A(// (send self ':speed)
speed-of-light)

2)))))

but this would lose because any flavor that had relativity-mi.xin as a
component would get moving-object right after it in its component list. As
a base flavor, moving-object should be last in the list of components so that
other components mixed in can replace its methods and so that daemon
methods combine in the right order. relativity-mixin has no business
changing the order in which flavors are combined, which should be under the
control of its caller, for example:

(defflavor starship()
(relativity-mixin long-distance-mixin ship))

which puts moving-object last (inheriting it from ship).

So instead of the definition above we write,

(defflavor relativity-mixin () ()
(:required-flavors moving-object))

which allows relativity-mi.xi.n's methods to access moving-object instance
variables such as mass (the rest mass), but does not specify any place for
moving-object in the list of components.

38 FLA V Objects, Message Passing, and Flavors

Symbolics, Inc. February 1984

It is very common to specify the base. flavor of a mixin with the
:required-flavors option in this way.

:included-flavors
The arguments are names of flavors to be included in this flavor. The
difference between declaring flavors here and declaring them at the top of
the demavor is that when component flavors are combined, if an included
flavor is not specified as a normal component, it is inserted into the list of
components immediately after the last component to include it. Thus
included flavors act like defaults. The important thing is that if an included
flavor is specified as a component, its position in the list of components is
completely controlled by that specification, independently of where the flavor
that includes it appears in the list.

:included-flavors and :required-flavors are used in similar ways; it would
have been reasonable to use :included-flavors in the relativity-mixin
example above. The difference is that when a flavor is required but not
given as a normal component, an error is signalled, but when a flavor is
included but not given as a normal component, it is automatically inserted
into the list of components at a "reasonable" place.

:no-vanilla-flavor
Normally when a flavor is defined, the special flavor si:vanilla-flavor is
included automatically at the end of its list of components. The vanilla flavor
provides some default methods for the standard messages which all objects
are supposed to understand. These include :print-self, :describe,
:which-operations, and several other messages. See the section "Vanilla
Flavor".

If any component of a flavor specifies the :no-vanilla-flavor option, then
si:vanilla-flavor will not be included in that flavor. This option should not
be used casually.

:mixture
Defines a family of related flavors. When make-instance (or

instantiate-flavor) is called, it uses keywords in the init-plist to decide
which flavor of the family to instantiate. Thus, init options can be used to
select the flavor as well as instance-variable values.

The ancestral flavor is the one that includes the :mixture option in its
demavor. The flavors in the family are automatically constructed by mixing
various mixins with the ancestral flavor. The names for the family members
are chosen automatically. The name of such an automatically constructed
flavor is a concatenation of the names of its components, separated by
hyphens; however, obvious redundancies are removed heuristically.

demavor of the ancestral flavor also defines the automatically constructed
flavors. compile-flavor-methods of the ancestral flavor also compiles
combined methods of the automatically constructed flavors.

FLA V Objects. Message Passing. and Ravors 39

Symbolics. Inc. February 1984

The :mixture option has the following form:

(:mixture spec spec ...)

Each spec is processed independently, and all the resulting mixins are mixed
together. A spec may be any of the following:

(keyword mixin)
Add mixin if the value of keyword is t; add nothing if nil.

(keyword (value mixin) (value mixin) ...)
Look up the value of keyword in this alist and add the specified mixin.

(keyword mixin subspec subspec ...)

(keyword (value mixin subspec subspec ...) ...)
Subspecs take on the same forms as specs. Subspecs are processed
only when the specified keyword has the specified value. Use them
when there are interdependencies among keywords.

A mixin is one of the following:

symbol

nil

string

The name of a flavor to be mixed in

No flavor needs to be mixed in if the keyword takes on
this value

This value is illegal: Signal an error with the string as the
message

make-instance and instantiate-flavor check that the keywords are given
with legal values.

Example:

(defflavor cereal-stream(...) (stream)

(:init-keywords :characters :direction :ascii :hang-up-when-close)
(:mixture (:characters

(t nil (:direction (:in buffered-line-input-stream)
(:out buffered-output-character-stream))

(:ascii ascii-translating-character-stream))
(nil nil (:direction (:in buffered-input-stream)

(:out buffered-output-stream))
(:ascii "Ascii translation is not meaningful

for binary streams")))
(:hang-up-when-close hang-up-when-close-mixin)))

Note the need for an :init-keywords declaration for any keywords that are
used only in the :mixture declaration.

In this declaration, any kind of stream may have a :hang-up-when-close

40 FLA V Objects. Message Passing. and Ravors

Symbolics. Inc. February 1984

option. The :characters option does not itself add any mixins (hence the
nil), but the processing of the :direction option depends on whether it is
used with a character stream or a binary stream. The :ascii option is
allowed only for character streams, and we specify an error message if it is
used with a binary stream. If :ascii had not been mentioned in the
:characters nil case, the keyword would have been ignored by
make-instance on the assumption that. an :init method was going to do
something with it.

:default-handler
The argument is the name of a function which is to be called when a
message is received for which there is no method. It will be called with
whatever arguments the instance was called with, including the message
name; whatever values it returns will be returned. If this option is not
specified on any component flavor, it defaults to a function which will signal
an error.

On the 3600, the function used with the :default-handler option to
deffiavor receives two additional arguments that it does not receive on the
LM-2. The first argument is self and the second is always nil.

This is equivalent to using the :unclaimed-message message. See the
section "Vanilla Flavor".

Example:

(defflavor lisp-stream (forward) ()
(:default-handler lisp-stream-forward))

(defun lisp-stream-forward (#+3600 self #+3600 ignore message &rest arguments)
(lexpr-funcall (send self ':forward) message arguments))

Note the use of #+3600 to indicate that the extra arguments apply only to
the 3600.

:ordered-instance-variables
This option is mostly for esoteric internal system uses. The arguments are
names of instance variables which must appear first (and in this order) in all
instances of this flavor, or any flavor depending on this flavor. This is used
for instance variables which are specially known about by microcode, and in
connection with the :outside-accessible-instance-variables option. If the
keyword is given alone, the arguments default to the list of instance variables
given at the top of this deffiavor.

:outside-accessible-instance-variables
The arguments are instance variables which are to be accessible from
"outside" of this object, that is from functions other than methods. A macro
(actually a defsubst) is defined which takes an object of this flavor as an
argument and returns the value of the. instance variable; setf may be used to
set the value of the instance variable. The name of the macro is the name
of the flavor concatenated with a hyphen and the name of the instance

FLA V Objects, Message Passing, and Ravors

Symbolics, Inc. February 1984

variable. These macros are similar to the accessor macros created by
defstruct. See the document Defstruct.

41

This feature works in two different ways, depending on whether the instance
variable has been declared to have a fixed slot in all instances, via the
:ordered-instance-variables option.

If the variable is not ordered, the position of its value cell in the instance will
have to be computed at run time. This takes noticeable time, more than
actually sending a message would take. An error will be signalled if the
argument to the accessor macro is not an instance or is an instance which
does not have an instance variable with the appropriate name. However,
there is no error check that the flavor of the instance is the flavor the
accessor macro was defined for, or a flavor built upon that flavor. This error
check would be too expensive.

If the variable is ordered, the compiler will compile a call to the accessor
macro into a subprimitive which simply accesses that variable's assigned slot
by number. This subprimitive is only 3 or 4 times slower than car. The
only error-checking performed is to make sure that the argument is really an
instance and is really big enough to contain that slot. There is no check
that the accessed slot really belongs to an instance variable of the appropriate
name. Any functions that use these accessor macros will have to be
recompiled if the number or order of instance variables in the flavor is
changed. The system will not know automatically to do this recompilation.
If you aren't very careful, you may forget to recompile something, and have a
very hard-to-find bug. Because of this problem, and because using these
macros is less elegant than sending messages, the use of this option is
discouraged. In any case the use of these accessor macros should be confined
to the module which owns the flavor, and the "general public" should send
messages.

:accessor-pref"ix
Normally the accessor macro created by the
:outside-accessible-instance-variables option to access the flavor fs
instance variable v is named f-v. Specifying (:accessor-prefix get$) would
cause it to be named get$v instead.

:special-instance.,. variables
Use the :special-instance-variables option if you need instance variables to
be bound as special variables when an instance is entered. Its format is like
that of :gettable-instance-variables; that is, the option can be
:special-instance-variables to declare all of the instance variables to be
special variables, or it can be of the format
(:special-instance-variables ab c) to declare only the instance variables a,
b, and c to be special variables. When any method is called, these special
variables are bound to the values in the instance, and references to these
variables from methods are compiled as special variable references. This
detracts from performance and should be avoided.

42 FLA V Objects, Message Passing, and Ravors

Symbolics. Inc. February 1984

:method-order
The old name - :select-method-order - is still accepted, but it might go
away in a future release. This is purely an efficiency hack. The arguments
are names of messages that are frequently used or for which speed is
important. Their combined methods are inserted into the handler hash table
first, so that they are found by the first hash probe.

:method-combination
Declares the way that methods from different flavors will be combined. Each
"argument" to this option is a list (type order messagel message2 •••).
Messagel, message2, and so on, are names of messages whose methods are to
be combined in the declared fashion. type is a keyword which is a defined
type of combination. See the section "Method Combination". Order is a
keyword whose interpretation is up to type; typically it is either
:base-flavor-first or :base-flavor-last.

Any component of a flavor may specify the type of method combination to be
used for a particular message. If no component specifies a type of method
combination, then the default type is used, namely :daemon. If more than
one component of a flavor specifies it, then they must agree on the
specification, or else an error is signalled.

:documentation
The list of arguments to this option is remembered on the flavor's property
list as the :documentation property. The (loose) standard for what can be
in this list is as follows; this may be extended in the future. A string is
documentation on what the flavor is for; this may consist of a brief overview
in the first line, then several paragraphs of detailed documentation. A
symbol is one of the following keywords:

:mixinA flavor that you may want to mix with others to provide a u~<:".:ful
feature.

:essential-mixin
A flavor that must be mixed in to all flavors of its class, or
inappropriate behavior will ensue.

:lowlevel-mixin
A mixin used only to build other mixins.

:combination
A combination of flavors for a specific purpose.

:special-purpose
A flavor used for some internal or kludgey purpose by a particular
program, which is not intended for general use.

This documentation can be viewed with the describe-flavor function or the
Describe Flavor (M-X) Zmacs command.

FLA V Objects, Message Passing, and Ravors 43

Symbolics, Inc. February 1984

:abstract-flavor
Declares that the flavor exists only to define a protocol; it is not intended to
be instantiated by itself. Instead, it is intended to have more specialized
flavors mixed in before being instantiated.

Trying to instantiate an abstract flavor signals an error.

:abstract-flavor is an advanced feature that affects paging. It decreases
paging and usage of virtual memory by allowing abstract flavors to have
combined methods. Normally, only instantiated flavors get combined
methods, which are little Lisp functions that are automatically built and
compiled by the flavor system to call all of the methods that are being
combined to make the effective method. Sometimes many different
instantiated flavors use the same combination of methods as each other. If
this is the case, and the abstract flavor's combined methods are the same
ones that are needed by the instantiated flavors, then all instantiated flavors
can simply share the combined methods of the abstract flavor instead of
having to each make their own. This sharing improves performance because
it reduces the working set.

compile-flavor-methods is permitted on an abstract flavor. It is useful for
combined methods that most specializations of that flavor would be able to
share. This was one reason for this change. Without the :abstract-flavor
declaration, compile-flavor-methods warned you about the flavor not being
one that could be instantiated.

44 FLA V Objects, Message Passing, and Flavors

Symbolics, Inc. February 1984

FLA V Objects, Message Passing, and Ravors

Symbolics, Inc. February 1984

10. Flavor Families

The following organization conventions are recommended for all programs that use
flavors.

A base flavor is a flavor that defines a whole family of related flavors, all of which
will have that base flavor as one of their components. Typically the base flavor
includes things relevant to the whole family, such as instance variables,
:required-methods and :required-instance-variables declarations, default
methods for certain messages, :method-combination declarations, and
documentation on the general protocols and conventions of the family. Some base
flavors are complete and can be instantiated, but most are not instantiatable and
merely serve as a base upon which to build other flavors. The base flavor for the
foo family is often named basic-foo.

45

A mixin flavor is a flavor that defines one particular feature of an object. A mixin
cannot be instantiated, because it is not a complete description. Each module or
feature of a program is defined as a separate mixin; a usable flavor can be
constructed by choosing the mixins for the desired characteristics and combining
them, along with the appropriate base flavor. By organizing your flavors this way,
you keep separate features in separate flavors, and you can pick and choose among
them. Sometimes the order of combining mixins does not matter, but often it does,
because the order of flavor combination controls the order in which daemons are
invoked and wrappers are wrapped. Such order dependencies would be documented
as part of the conventions of the appropriate family of flavors. A mixin flavor that
provides the mumble feature is often named mumble-mixi.n.

If you are writing a program that uses someone else's facility to do something, using
that facility's flavors and methods, your program might still define its own flavors, in
a simple way. The facility might provide a base flavor and a set of mixins, and the
caller can combine these in various combinations depending on exactly what it wants,
since the facility probably would not provide all possible useful combinations. Even if
your private flavor has exactly the same components as a pre-existing flavor, it can
still be useful since you can use its :default-init-plist to select options of its
component flavors and you can define one or two methods to customize it "just a
little".

46 FLA V Objects, Message Passing, and Flavors

Symbolics. Inc. February 1984

FLA V Objects. Message Passing, and Ravors 47
Symbolics, Inc. February 1984

11. Vanilla Flavor

The messages described in this section are a standard protocol which all message
receiving objects are assumed to understand. The standard methods that implement
this protocol are automatically supplied by the flavor system unless the user
specifically tells it not to do so. These methods are associated with the flavor
si:vanilla-flavor:

si:vanilla-flavor Flavor
Unless you specify otherwise (with the :no-vanilla-flavor option to
deffiavor), every flavor includes the "vanilla" flavor, which has no instance
variables but provides some basic useful methods.

:print-self stream prindepth slashify-p Message
The object should output its printed-representation to a stream. The printer
sends this message when it encounters an instance. The arguments are the
stream, the current depth in list-structure (for comparison with prinlevel),
and whether slashification is enabled (print vs princ). See the section
"What the Printer Produces". Vanilla-flavor ignores the last two arguments,
and prints something like #<flavor-name octal-address>. The flavor-name
tells you what type of object it is, and the octal-address allows you to tell
different objects apart (provided the garbage collector doesn't move them
behind your back).

:describe Message
The object should describe itself, printing a description onto the
standard-output stream. The describe function sends this message when
it encounters an instance or an entity. Vanilla-flavor outputs the object, the
name of its flavor, and the names and values of its instance-variables, in a
reasonable format.

:which-operations Message
The object should return a list of the me·ssages it can handle. Vanilla-flavor
generates the list once per flavor and remembers it, minimizing consing and
compute-time. If a new method is added, the list is regenerated the next
time someone asks for it.

:operation-handled-p operation Message
operation is a message name. The object should return t if it has a handler
for the specified message, or nil if it does not.

:get-handler-for operation Message
operation is a message name. The object should return the method it uses
to handle operation. If it has no handler for that message, it should return

48 FLA V Objects. Message Passing, and Ravors

Symbolics. Inc. February 1984

nil This is like the get-handler-for function, but you can only use it on
objects known to accept messages.

:send-if-handles operation &rest arguments Message
operation is a message name and arguments is a list of arguments for that
message. The object should send itself that message with those arguments,
if it handles the message. If it doesn't handle the message it should just
return nil.

:eval-inside-yourself form , Message
The argument is a form which is evaluated in an environment in which
special variables with the names of the instance variables are bound to the
values of the instance variables. It works to setq one of these special
variables; the .instance variable will be modified. This is mainly intended to
be used for debugging. An especially useful value of form is (break t); this
gets you a Lisp top level loop inside the environment of the methods of the
flavor, allowing you to examine and alter instance variables, and run
functions that use the instance variables.

:funcall-inside-yourself function &rest args Message
function is applied to args in an environment in which special variables with
the names of the instance variables are bound to the values of the instance
variables. It works to setq one of these special variables; the instance
variable will be modified. This is mainly intended to be used for debugging.

:unclaimed-message message &rest arguments Message
For each message, the flavor system checks to be sure that a method exists
for this message. When no method is found, it checks for a handler for
:unclaimed-message. When such a handler exists, it is invoked with
arguments message (the unclaimed message) and all of the arguments that
were sent to the unclaimed message.

This is equivalent to using the :default-handler option to deffiavor. See
the section "deffiavor Options".

FLA V Objects. Message Passing. and Ravors 49

Symbolics. Inc. February 1984

12. Method Combination

As was mentioned earlier, there are many ways to combine methods. The way we
have seen is called the :daemon type of combination. To use one of the others, you
use the :method-combination option to demavor to say that all the methods for
a certain message to this flavor, or a flavor built on it, should be combined in a
certain way.

The following types of method combination are supplied by the system. It is possible
to define your own types of method combination; for information on this, see the
code. Note that for most types of method combination other than :daemon you
must define the order in which the methods are combined, either :base-flavor-first
or :base-flavor-last, in the :method-combination option. In this context, base
flavor means the last element of the flavor's fully expanded list of components.

Which method type keywords are allowed depends on the type of method
combination selected. There are also certain method types used for internal
purposes.

:daemon

:progn

:or

:and

:list

:inverse-list

This is the default type of method combination. All the :before
methods are called, then the primary (untyped) method for the
outermost flavor that has one is called, then all the :after
methods are called. The value returned is the value of the
primary method.

All the methods are called, inside a progn special form. Methods
can have a :progn type for documentation. This means that all
of the methods are called, and the result of the combined method
is whatever the last of the methods returns.

All the methods are called, inside an or special form. Methods
can have an :or type for documentation. This means that each
of the methods is called in turn. If a method returns a non-nil
value, that value is returned and none of the rest of the methods
are called; otherwise, the next method is called. In other words,
each method is given a chance to handle the message; if it doesn't
want to handle the message, it should return nil, and the next
method will get a chance to try.

All the methods are called, inside an and special form. Methods
can have an :and type for documentation. The basic idea is
much like :or.

Calls all the methods and returns a list of their returned values.
Methods can have a :list type for documentation.

Calls each method with one argument; these arguments are

50

:pass-on

:append

:nconc

FLA V Objects, Message Passing, and Ravors

Symbolics, Inc. February 1984

successive elements of the list which is the sole argument to the
message. Methods can have an :inverse-list type for
documentation. Returns no particular value. If the result of a
:list-combined message is sent back with an
:inverse-list-combined message, with the same ordering and with
corresponding method definitions, each component flavor receives
the value which came from that flavor.

Calls each method on the values returned by the preceding one.
The values returned by the combined method are those of the
outermost call. Methods can have a :pass-on type for
documentation. The format of the declaration in the defflavor
is:

(:method-combination (:pass-on (ordering . arglist)) . operation-names)

Where ordering is :base-flavor-first or :base-flavor-last. arglist
may include the &aux and &optional keywords.

All the component methods are called as arguments to append.
It expects each of the methods to return a list; the final result is
the result of appending all these lists. Methods can have an
:append type for documentation.

All the component methods are called as arguments to nconc. It
expects each of the methods to return a list; the final result is
the result of concatenating these lists. Methods can have an
:append type for documentation.

:daemon-with-or This is like the :daemon method combination type, except the
primacy method is wrapped in an or special form with all :or
methods. Multiple values will be returned from the primacy
method, but not the :or methods. This will produce combined
methods like this (simplified to ignore multiple values):

(progn (foo-before-method)
(or (foo-or-method)

(foo-primary-method))
(foo-after-method))

This is primarily useful for flavors in which a mixin introduces an
alternative to the primacy method. Each :or message gets a
chance to run before the primacy method and to decide whether
the primacy method should be run or not; if any :or method
returns a non-nil value, the primacy method is not run (nor are
the rest of the :or methods). Note that the ordering of the
combination of the :or methods is controlled by the order keyword
in the :method-combination option to defflavor.

:daemon-with-and
This is like :daemon-with-or except combining :and methods in

FLA V Objects. Message Passing. and Flavors 51

Symbolics. Inc. February 1984

an and special form. The primary method will only be run if all
of the :and methods return non-nil values.

:daemon-with-override

:case

This is like the :daemon method combination type, except an or
special form is wrapped around the entire combined method with
all :override typed methods before the combined method. This
differs from :daemon-with-or in that the :before and :after
daemons are not run unless none of the :override methods
returns non-nil. The combined method looks something like this:

(or (foo-override-method)
(progn (foo-before-method)

(foo-primary-method)
(foo-after-method)))

Takes a subsidiary message name. It dispatches on this message
name just as the original message name caused a primary
dispatch. This facility is used in the condition handling system.
(See the document Conditions.)

(defmethod (sys:subscript-out-of-bounds :case :proceed :new-subscript)
(&optional (sub (prompt-and-read 7 :number

"Subscript to use instead: ")))
"Supply a different subscript0

(values ':new-subscript sub))

(send obj ':proceed ':new-subscript new-sub)

Here is a table of all the method types used in the standard system (a user can add
more, by defining new forms of method combination).

(no type)

:before

:after

:override

:default

If no type is given to defmethod, a primary method is created.
This is the most common type of method.

These are used for the before-daemon and after-daemon methods
used by :daemon method combination.

This allows some of the features of :or method combination to be
used with daemons. An :override method can choose at run
time whether to act like a primary method or to act as if it was
not there. In typical usages of this feature, the :override
method usually returns nil and does nothing, but in exceptional
circumstances it takes over the handling of the message.
:override is used only with the :daemon-with-override method
combination.

If there are no untyped methods among any of the flavors being
combined, then the :default methods (if any) are treated as if

52

:or

:and

:wrapper

:whopper

:combined

FLA V Objects. Message Passing. and Ravors

Symbolics. Inc. February 1984

they were untyped. If there are any untyped methods, the
:default methods are ignored.

Typically a base-flavor defines some default methods for certain of
the messages understood by its family. See the section "Flavor
Famili~s".

These are used for :daemon-with-or and :daemon-with-and
method combination.

This type is used internally by defwrapper.

This type is used internally by defwhopper.

Used internally for automatically generated combined methods.

The most common form of combination is :daemon. One thing may not be clear:
when do you use a :before daemon and when do you use an :after daemon? In
some cases the primary method performs a clearly defined action and the choice is
obvious: :before :launch-rocket puts in the fuel, and :after :launch-rocket turns
on the radar tracking.

In other cases the choice can be less obvious. Consider the :init message, which is
sent to a newly created object. To decide what kind of daemon to use, we observe
the order in which daemon methods are called. First the :before daemon of the
highest level of abstraction is called, then :before daemons of successively lower
levels of abstraction are called, and finally the :before daemon (if any) of the base
flavor is called. Then the primary method is called. After that, the :after daemon
for the lowest level of abstraction is called, followed by the :after daemons at
successively higher levels of abstraction.

Now, if there is no interaction among all these methods, if their actions are
completely orthogonal, then it doesn't matter whether you use a :before daemon or
an :after daemon. It makes a difference if there is some interaction. The
interaction we are talking about is usually done through instance variables; in
general, instance variables are how the methods of different component flavors
communicate with each other. In the case of the :init message, the init-plist can
be used as well. The important thing to remember is that no method knows
beforehand which other flavors have been mixed in to form this flavor; a method
cannot make any assumptions about how this flavor has been combined, and in
what order the various components are mixed.

This means that when a :before daemon has run, it must assume that none of the
methods for this message have run yet. But the :after daemon knows that the
:before daemon for each of the other flavors has run. So if one flavor wants to
convey information to the other, the first one should "transmit" the information in a
:before daemon, ~d the second one should "receive" it in an :after daemon. So
while the :before daemons are run, information is "transmitted"; that is, instance

FLA V Objects, Message Passing, and Flavors 53

Symbolics, Inc. February 1984

variables get set up. Then, when the :after daemons are run, they can look at the
instance variables and act on their values.

In the case of the :init method, the :before daemons typically set up instance
variables of the object based on the init-plist, while the :after daemons actually do
things, relying on the fact that all of the instance variables have been initialized by
the time they are called.

Of course, since flavors are not hierarchically organized, the notion of levels of
abstraction is not strictly applicable. However, it remains a useful way of thinking
about systems.

Combination Method Types

Methods· used with :progn, :append, :nconc, :and, :or, :list, :inverse-list, and
:pass-on combination types can use the combination type as the method type. This
is useful in documenting how the method is used.

In the following example, (:method foo :or :rmd-frabjous-frob) could have been
defined as (:method foo :find-frabjous-frob). The only difference is one of style:
Using :or as the method type makes it clear that the methods are combined using
:or combination.

(defflavor foo (frobl) (bar)
(:method-combination (:or :base-flavor-last :find-frabjous-frob)))

(defmethod (foo :or :find-frabjous-frob) (type)
(dolist (frob frobl)

(when (send frob ':frabjous-p type)
(return frob))))

54 FLA V Objects, Message Passing. and Ravors

Symbolics, Inc. February 1984

FLA V Objects, Message Passing, and Flavors 55

Symbolics. Inc. February 1984

13. Copying Instances

Many people have asked "How do I copy an instance?" and have expressed surprise
when told that the flavor system does not include any built-in way to copy instances.
Why isn't there just a function copy-instance that creates a new instance of the
same flavor with all its instance variables having the same values as in the original
instance? This would work for the simplest use of flavors, but it isn't good enough
for most advanced uses of flavors. A number of issues are raised by copying:

• Do you or do you not send an :init message to the new instance? If you do,
what init-plist options do you supply?

• If the instance has a property list, you should copy the property list (e.g. with
copylist) so that sending a :putprop or :remprop message to one of the
instances does not affect the properties of the other instance.

•The instance may be contained in data structure maintained by the program
of which it is a part. For example, a graphics system might have a list of all
the objects that are currently visible on the screen. Copying such an instance
requires making the appropriate entries in the data structure.

• If the instance is a pathname, the concept of copying is not even meaningful.
Pathnames are interned, which means that there can only be one pathname
object with any given set of instance-variable values.

• If the instance is a stream connected to a network, some of the instance
variables represent an agent in another host elsewhere in the network.
Copying the instance requires that a copy of that agent somehow be
constructed.

• If the instance is a stream connected to a file, should copying the stream make
a copy of the file or should it make another stream open to the same file?
Should the choice depend on whether the file is open for input or for output?

In general, you can see that in order to copy an instance one must understand a lot
about the instance. One must know what the instance variables mean so that the
values of the instance variables can be copied if necessary. One must understand
what relations to the external environment the instance has so that new relations
can be established for the new instance. One must even understand what the
general concept "copy" means in the context of this particular instance, and whether
it means anything at all.

Copying is a generic operation, whose implementation for a particular instance
depends on detailed knowledge relating to that instance. Modularity dictates that

56 FLA V Objects, Message Passing. and Ravors

Symbolics. Inc. February 1984

this knowledge be contained in the instance's flavor, not in a "general copying
function". Thus the way to copy an instance is to send it a message.

The flavor system chooses not to provide any default method for copying an
instance, and does not even suggest a standard name for the copying message,
because copying involves so many semantic issues.

One way that people have organized copying of instances is to define a message,
:copy, whose methods are combined with :append method combination. Each
method supplies some init-plist options. Thus each component flavor controls the
copying of its own aspect of the instance's behavior. The resulting appended list of
init-plist options is used to create the new instance. Each component flavor has an
:init method that extracts the init-plist options that are relevant to it and initializes
the appropriate aspect of the new instance. A wrapper can be used to clean up the
interface to the :copy message seen from the outside. A simple example follows:

(defflavor basic-copyable-object() ()
(:method-combination (:append :base-flavor-last :copy)))

(defwrapper (basic-copyable-object :copy) (() . body)
'(lexpr-funcall #'make-instance (typep self) (progn ,@body)))

(defflavor copyable-property-list-mixin () (si:property-list-mixin))

(defmethod (copyable-property-list-mixin :copy) ()
'(:property-list ,(copylist (send self :property-list))))

(defflavor example() (copyable-property-list-mixin basic-copyable-object))

(setq a (make-instance 'example))

(send a :putprop 1 'value)

(setq b (send a : copy))

(send b ':get 'value) =>

(send b :putprop 1.5 'value)

(send b :get 'value) => 1.5

(send a :get 'value) => 1

A related feature is the :fasd-form message which provides a way for an instance to
tell the compiler how to copy it from one Lisp world into another, via a bin file.
This is different from making a second copy of the instance in the same Lisp world.
:fasd-form is a way to get an equivalent instance when the bin file is loaded.

FLA V Objects, Message Passing, and Ravors 57

Symbolics. Inc. February 1984

14. Implementation ~f Flavors

An object which is an instance of a flavor is implemented using the data type
dtp-instance. The representation is a structure whose first word, tagged with a
header data type, points to a structure (known to the microcode as an "instance
descriptor") containing the internal data for the flavor. The remaining words of the
structure are value cells containing the values of the instance variables. The
instance descriptor is a defstruct which appears on the si:flavor property of the
flavor name. It contains, among other things, the name of the flavor, the size of an
instance, the table of methods for handling messages, and information for accessing
the instance variables.

defflavor creates such a data structure for each flavor, and links them together
according to the dependency relationships between flavors.

A message is sent to an instance simply by calling it as a function, with the first
argument being the message keyword. The instance descriptor contains a hash table
that associates the message keyword to the actual function to be called. If there is
only one method, this is that method, otherwise it is an automatically generated
function, called the combined method, which calls the appropriate methods in the
right order. See the section "Mixing Flavors". If there are wrappers, they are
incorporated into this combined method. The function that handles the message is
called with three special arguments preceding the arguments of the message. These
are self (the object to which the message was sent), self-mapping-table (an
internal data structure used in the accessing of instance variables), and the message
keyword. (The LM-2 binds self and self-mapping-table as special variables rather
than passing them as arguments.)

The function-specifier syntax
(:method flavor-name optional-method-type message-name) is understood by fdefine
and related functions.

14.1 Order of Definition

There is a certain amount of freedom to the order in which you do deftlavor's,
defmethod's, and defwrapper's. This freedom is designed to make it easy to load
programs containing complex flavor structures without having to do things in a
certain order. It is considered important that not all the methods for a flavor need
be defined in the same file. Thus the partitioning of a program into files can be
along modular lines.

The rules for the order of definition are as follows.

Before a method can be defined (with defmethod or defwrapper) its flavor must

58 FLA V Objects. Message Passing. and Flavors

Symbolics, Inc. February 1984

have been defined (with demavor). This makes sense because the system has to
have a place to remember the method, and because it has to know the instance
variables of the flavor if the method is to be compiled.

When a flavor is defined (with demavor) it is not necessary that all of its
component flavors be defined already. This is to allow demavor's to be spread
between files according to the modularity of a program, and to provide for mutually
dependent flavors. Methods can be defined for a flavor some of whose component
flavors are not yet defined; however, in certain cases compiling those methods will
produce a warning that an instance variable was declared special (because the system
did not realize it was an instance variable). Such a warning indicates that the
compiled code will not work.

The methods automatically generated by the :gettable-instance-variables and
:settable-instance-variables options to demavor are generated at the time the
demavor is done.

The first time a flavor is instantiated, the system looks through all of the component
flavors and gathers various information. At this point an error will be signalled if
not all of the components have been demavor'ed. This is also the time at which
certain other errors are detected, for instance lack of a required instance-variable (see
the :required-instance-variables option to demavor). The combined methods
are generated at this time also, unless they already exist. They will already exist if
compile-flavor-methods was used, but if those methods are obsolete because of
changes made to component flavors since the compilation, new combined methods
will be made.

After a flavor has been instantiated, it is possible to make changes to it. These
changes will affect all existing instances if possible. This is described more fully
immediately below.

14.2 Changing a Flavor

You can change anything about a flavor at any time. You can change the flavor's
general attributes by doing another demavor with the same name. You can add or
modify methods by doing defmethod's. If you do a defmethod with the same
flavor-name, message-name, and (optional) method-type as an existing method, that
method is replaced with the new definition. You can remove a flavor with
undef:ftavor and a method with undefmethod.

These changes will always propagate to all flavors that depend upon the changed
flavor. Normally the system will propagate the changes to all existing instances of
the changed flavor and all flavors that depend on it. However, this is not possible
when the flavor has been changed so drastically that the old instances would not
work properly with the new flavor. This happens if you change the number of
instance variables, which changes the size of an instance. It also happens if you

FLA V Objects, Message Passing, and Flavors 59

Symbolics, Inc. February 1984

change the order of the instance variables (and hence the storage layout of an
instance), or if you change the component flavors (which can change several subtle
aspects of an instance). The system does not keep a list of all the instances of each
flavor, so it cannot find the instances and modify them to conform to the new flavor
definition. Instead it gives you a warning message, on the error-output stream, to
the effect that the flavor was changed incompatibly and the old instances will not
get the new version. The system leaves the old flavor data-structure intact (the old
instances will continue to point at it) and makes a new one to contain the new
version of the flavor. If a less drastic change is made, the system modifies the
original flavor data-structure, thus affecting the old instances that point at it.
However, if you redefine methods in such a way that they only work for the new
version of the flavor, then trying to use those methods with the old instances won't
work.

60 FLA V Objects, Message Passing, and Flavors

Symbolics, Inc. February 1984

FLA V Objects, Message Passing, and Ravors 61

Symbolics, Inc. February 1984

15. Entities

This section applies to the LM-2 only. An entity is a Lisp object; the entity is one of
the primitive data types provided by the Lisp Machine system (the data-type
function returns dtp-entity if it is given an entity). Entities are just like closures:
they have all the same attributes and functionality. The only difference between
the two primitive types is their data type: entities are clearly distinguished from
closures because they have a different data type. The reason there is an important
difference between them is that various parts of the (not so primitive) Lisp system
treat them differently. See the section "Entities: Closures". The Lisp functions that
deal with entities are discussed in that section.

A closure is simply a kind of function, but an entity is assumed to be a message
receiving object. Thus, when the Lisp printer is given a closure, it prints a simple
textual representation, but when it is handed an entity, it sends the entity a
:print-self message, which the entity is expected to handle. The describe function
also sends entitie:1 messages when it is handed them. So when you want to make a
message-receiving object out of a closure, you should use an entity instead. See the
section "Generic Operations in Lisp".

Usually there is no point in using entities instead of flavors. Entities were
introduced into Zetalisp before flavors were, and perhaps they would not have been
had flavors already existed. Flavors have had considerably more attention paid to
efficiency and to good tools for using them.

Entities are created with the entity function. See the section "Entities: Closures".
The function part of an entity should usually be a function created by defselect.

62 FLA V Objects, Message Passing, and Ravors

Symbolics, Inc. February 1984

FLA V Objects. Message Passing. and Flavors 63

Symbolics. Inc. February 1984

16. Useful Zmacs Commands

This section briefly documents some Zmacs commands that are useful in conjunction
with flavors.

M-. The M-. (Edit Definition) command can find the definition of a flavor in the
same way that it can fmd the defmition of a function.

Edit Definition can find the definition of a method if you give

(:method f1,avor type message)

as the function name. The keyword :method may be omitted. Completion
will occur on the flavor name and message name as usual with Edit
Definition.

Describe Flavor (M-X)

Asks for a flavor name in the minibuffer and describes its characteristics.
When typing the flavor name you have completion over the names of all
defined flavors (thus this command can be used to aid in guessing the name
of a flavor). The display produced is mouse sensitive where there are names
of flavors and of methods; as usual the right-hand mouse button gives you a
menu of operations and the left-hand mouse button does the most common
operation, typically positioning the editor to the source code for the thing you
are pointing at.

List Methods (M-X)

Edit Methods (M-X)
Asks you for a message in the minibuffer and lists all the flavors which have
a method for that message. You may type in the message name, point to it
with the mouse, or let it default to the message which is being sent by the
Lisp form the cursor is inside of. List Methods produces a mouse-sensitive
display allowing you to edit selected methods or just see which flavors have
methods, while Edit Methods skips the display and· proceeds directly to
editing the methods. As usual with this type of command, the Zmacs
command control-. is redefined to advance the cursor to the next method in
the list, reading in its source file if necessary. Pressing c-. while the display
is on the screen edits the first method.

List Combined Methods (M-X)

Edit Combined Methods (M-X)
Asks you for a message and a flavor in two minibuffers and lists all the

methods which would be called if that message were sent to an instance of
that flavor. You may point to the message and flavor with the mouse, and
there is completion for the flavor name. As in List/Edit Methods, the display
is mouse sensitive and the Edit version of the command skips the display and
proceeds directly to the editing phase.

64 FLA V Objects. Message Passing. and Ravors

Symbolics, Inc. February 1984

List Combined Methods can be vezy useful for telling what a flavor will do in
response to a message. It shows you the primacy method, the daemons, and
the wrappers and lets you see the code for all of them; type control-. to get
to successive ones.

FLA V Objects, Message Passing, and Ravors 65

Symbolics, Inc. February 1984

17. Property List Messages

It is often useful to associate a property list with an abstract object, for the same
reasons that it is useful to have a property list associated with a symbol. This
section describes a mixin flavor that can be used as a component of any new flavor
in order to provide that new flavor with a property list. See the section "Property
Lists". That section contains a general discussion of property lists, plus more details
and examples. [Currently, the functions get, putprop, and so on, do not accept
flavor instances as arguments and send the corresponding message; this will be
fixed.]

si:property-list-mixin Flavor
This mixin flavor provides the basic operations on property lists.

:get indicator of si:property-Iist-mixin Method
The :get message looks up the object's indicator property. If it finds such a
property, it returns the value; otherwise it returns nil.

:getl indicator-list of si:property-Iist-mixin Method
The :get) message is like the :get message, except that the argument is a
list of indicators. The :getl message searches down the property list for any
of the indicators in indicator-list, until it finds a property whose indicator is
one of those elements. It returns the portion of the property list beginning
with the first such property that it found. If it doesn't find any, it returns
nil.

:putprop property indicator of si:property-Iist-mixin
This gives the object an indicator-property of property.

Method

:remprop indicator of si:property-list-mixin Method
This removes the object's indicator property, by splicing it out of the property
list. It returns that portion of the list inside the object of which the former
indicator-property was the car.

:push-property value indicator of si:property-list-mixin Method
The indicator-property of the object should be a list (note that nil is a list
and an absent property is nil). This message sets the indicator-property of
the object to a list whose car is value and whose cdr is the former
indicator-property of the list. This is analogous to doing

(push value (get object indicator)>

See the push special form.

66 FLA V Objects, Message Passing. and Ravors

Symbolics. Inc. February 1984

:property-list of si:property-list-:mixin Method
This returns the list of alternating indicators and values that implements the
property list.

:set-property-list list of si:property-list-mixin Method
This sets the list of alternating indicators and values that implements the
property list to list.

:property-list list (for. si:property-list-mixin) lnit Option
This initializes the list of alternating indicators and values that implements
the property list to list.

FLA V Objects, Message Passing, and Ravors

Symbolics, Inc. February 1984

Index

3

A

B

c

#+3600 40

3
Use of :default-handler on the 3600 system 40

Combining
Compiling operations on

Order of
Order of

Printing
Method

A

B

c

Abstract types 5, 13
abstract types 19
abstract types 5
Abstract-operation functions 5
:accessor-prefix option for defflavor 35
Actor 1, 9
Adding new methods 11, 30
:after daemon method 49
:after method type 49
After-daemon methods 19
all-flavor-names variable 23
:and method combination type 49
:append method combination type 49
application of whoppers 27
application of wrappers 26, 27

Base flavor 45
:before daemon method 49
:before method type 49
Before-daemon methods 19
Bin file 31

:case method combination type 49
Changing a Flavor 58
Changing a method 58
Changing a wrapper 58
Closure 11, 61
closures 61
Combination 49
Combination Method Types 53

67

3

A

B

c

:combination symbol In :documentation option to

:and method
:append method

:case method
:daemon method

:Inverse-list method

defflavor 35
combination type 49
combination type 49
combination type 49
combination type 49
combination type 49

68

D

FLA V Objects, Message Passing, and Ravors

Symbolics, Inc. February 1984

:list method
:nconc method

:or method
:progn method

Instance variables of

Edit
List

Describe Flavor (m-X) Zmacs
Edit Combined Methods (m-X) Zmacs

Edit Definition Zmacs
Edit Methods (m-X) Zmacs

List Combined Methods (m-X) Zmacs
List Methods (m-X Zmacs

Cm-.> Zmacs
Useful Zmacs

D

combination type 49
combination type 49
combination type 49
combination type 49
combined flavors 19
Combined method 19
:combined method type 49
Combined methods 31
Combined Methods (m-X) Zmacs command 63
Combined Methods (m-X) Zmacs command 63
Combining abstract types 19
Combining flavors 19, 26
Combining methods 26, 27
command 63
command 63
command 63
command 63
command 63
command 63
command 63
Commands 63
complle-ftavor-methods macro 31
Compiling operations on abstract types 5
Components 19
continue-whopper function 28
Copying Instances 55
Coroutine 11
Creating flavors 23, 57
Creating instances of flavors 24
Creating methods 23, 57
Creating whoppers 27
Creating wrappers 26

:after daemon method 49
:before daemon method 49

dip-entity
dip-Instance

dip-Instance-header
dip-select-method

Use of

:daemon method combination type 49
Daemon methods 19
data type 61
data type 57
data type 57
data type 57
data-type function 61
declare-ftavor-lnstance-varlables macro 34
:defautt method type 49
Default values for instance variables 13, 19
:defautt-handler on the 3600 system 40
:defautt-handler option for defflavor 35, 40
:defautt-lnlt-pllst option for defflavor 35

:accessor-preflx option for defflavor 35

D

:combination symbol in :documentation option to defflavor 35
:default-handler option for· defflavor 35, 40
:default-lnlt-plist option for defflavor 35
:documentation option for defflavor 35

:essentlal-mlxln symbol in :documentation option to
defflavor 35

:gettable-Instance-variables option for defflavor 13, 35, 57

FLA V Objects, Message Passing, and Ravors

Symbolics, Inc. February 1984

:lncluded-ftavors option for defflavor 35
:lnlt-keywords option for defflavor 35

:lnltable-lnstance-varlables option for defflavor 13, 35
:lowlevel-mlxln symbol In :documentation option to

defflavor 35
:method-combination option for defflavor 35, 49

:method-order option for defflavor 35
:mlxln symbol In :documentation option to defflavor 35

:mixture option for defflavor 38
:no-vanlll•ftavor option for deftlavor 35

:ordered-Instance-variables option for defflavor 35
:outslde-accesslble-lnstance-varlables option for defftavor 35

:required-flavors option for defflavor 35
:requlred-lnlt-keywords option for defflavor 36

:required-Instance-variables option for defflavor 35
:required-methods option for defflavor 35

:select-method-order option for defflavor 35
:settable-Instance-variables option for deftlavor 13, 35, 57

:special-purpose symbol in :documentation option to
defftavor 35

defflavor macro 13, 19, 23, 57
defflavor Options 35
Defining flavors 23, 57
Defining methods 23, 57
Defining whoppers 27
Defining wrappers 26

Order of Definition 57
Edit Definition Zmacs command 63

defmethod macro 13, 23, 58
defselect-method special form 30
defstruct function 5

Removing a defun-method 30
defun-method special form 29, 30
defwhopper special form 28
defwrapper macro 26
Describe Flavor (m-X) Zmacs command 63
describe function 13, 47, 61
:describe message 47
describe-flavor function 32

Instance descriptor 57

:combination symbol in
:essential-mixin symbol in
:lowlevel-mlxln symbol in

:mlxin symbol In
:special-purpose symbol in

:documentation option for defflavor 35
:documentation option to defflavor 35
:documentation option to deftlavor 35
:documentation option to defflavor 35
:documentation option to deftlavor 35
:documentation option to defflavor 35
dip-entity data type 61
dip-Instance data type 57
dip-Instance-header data type 57
dip-select-method data type 57

69

70

E

F

FLA V Objects. Message Passing. and Ravors

Symbolics, Inc. February 1984

E E
Edit Combined Methods (m-X) Zmacs command 63
Edit Definition Zmacs command 63
Edit Methods (m-X) Zmacs command 63
Editing methods 63

Printing entities 61

Whoppers

Flavor

Outside-accessible instance variables
Bin

Base
Changing a

Message to an object of some
Mlxln

Remove
al :property-llst-mlxln

sl:vanlll•flavor
Vanilla

vanlll•flavor
Describe

Facility for Handling Messages to

sl:

sl:
sl:
sl:
si:
sl:

Combining
Creating

Creating Instances of
Defining
Entitles:

Implementation of
Instance variables of combined

Introduction: Objects, Message Passing, and
Mixing

Modifying
Simple Use of

Tree of
defselect-method special

defun-method special

F

Entitles: Flavors 61
entity function 61
:essentlal-mlxln symbol In :documentation option

to defftavor 35
:eval-lnslde-yourself message 48

facility 27
F

Facility for Handling Messages to Flavor Objects 27
Families 45
:fasd-form message 55
feature 5
file 31
flavor 45
Flavor 58
flavor 27
flavor 45
flavor 30
flavor 65
flavor 47
Flavor 47
flavor 19
Flavor (m-X) Zmacs command 63
Flavor Families 45
Flavor Functions 23
Flavor Objects 27
Flavor system messages 47
Flavor system methods 47
flavor-allowed-lnit-keywords function 32
flavor-allows-inlt-keyword-p function 32
flavor-compllatlons variable 33
flavor-compile-trace variable 33
ftavor-default-lnlt-get function 33
flavor-default-lnlt-putprop function 33
flavor-default-lnlt-remprop function 33
Flavors 1, 11
flavors 19, 26
flavors 23, 57
flavors 24
flavors 23, 57
Flavors 61
Flavors 57
flavors 19
Flavors 1
Flavors 19
flavors 30, 58
Flavors 13
flavors 19
form 30
form 29, 30

FLA V Objects, Message Passing, and Ravors 71

Symbolics. Inc. February 1984

defwhopper special form 28
undefun-method special form 30

:funcall-lnslde-yourself message 48
funcall-self function 33

continue-whopper function 28
data-type function 61
defstruct function 5
describe function 13, 47, 61

describe-flavor function 32
entity function 61

flavor-allows-lnlt-keyword-p function 32
funcall-self function 33

get function 3, 65
get-handler-for function 32

Instantiate-flavor function 25
lexpr-contlnue-whopper function 28

lexpr-funcall-self function 34
lexpr-send function 15

locate-In-Instance function 32
make-Instance function 13, 24

putprop function 3, 65
recompile-flavor function 30

remprop function 5
send function 15

set-in-Instance function 32
si:flavor-allowed-lnlt-keywords function 32

sl:flavor-default-lnlt-get function 33
sl:flavor-default-lnlt-putprop function 33

sl:flavor-default-lnlt-remprop function 33
symeval-ln-lnstance function 32

undefflavor function 30
Functional objects 11

Abstract-operation functions 5
Flavor Functions 23

G G G
Generic Operations 9
Generic Operations in Lisp 11
get function 3, 65
:get method of sl:property-llst-mlxln 65
get-handler-tor function 32
:get-handler-for message 47
:getl method of si:property-list-mlxin 65
:gettable-Instance-variables option for

defflavor 13, 35, 57

H H H
Facility for Handling Messages to Flavor Objects 27

72

I

K

L

M

:property-II st

Default values for
Initializing
Value of

Outside-accessible

Copying
Creating

I

K

FLA V Objects, Message Passing, and Ravors

Symbolics. Inc. February 1984

Implementation of Flavors 57
:Included-flavors option for demavor 35
lnlt option for sl:property-llst-mlxln 66
lnlt options 13
:lnlt-keywords option for demavor 35
lnlt-pllst 13
:lnltable-lnstance-varlables option for

defflavor 13, 35
Initialization keywords 13
Initializing instance variables 13, 25, 49
Instance descriptor 57
Instance variables 5, 11, 35, 55
Instance variables 13, 19
Instance variables 13, 25, 49
Instance variables 32
Instance variables feature 5
Instance variables of combined flavors 19
Instances 1, 3, 57
Instances 55
Instances of flavors 24
Instantiate-flavor function 25
Introduction: Objects, Message Passing, and

Flavors 1
:Inverse-list method combination type 49

Keyword package 11

I

K
lnltiallzatlon keywords 13

L
lexpr-contlnue-whopper function 28
lexpr-tuncall-self function 34
lexpr-send function 15

L

Generic Operations In Lisp 11
List Combined Methods (m-X) Zmacs command 63

Property List Messages 65

List Methods
Describe Flavor

Edit Combined Methods
Edit Methods

List Combined Methods
compile-flavor-methods

declare-flavor-lnstance-varlables

M

:llst method combination type 49
List Methods (m-X Zmacs command 63
Listing methods 63
locate-In-instance function 32
:lowlevel-mlxin symbol in :documentation option to

defflavor 35

Cm-.} Zmacs command 63
(m-X Zmacs command 63
(m-X) Zmacs command 63
(m-X) Zmacs command 63
(m-X) Zmacs command 63
(m-X) Zmacs command 63
macro 31
macro 34

M

FLA V Objects, Message Passing, and Ravors

Symbolics. Inc. February 1984

ctemavor
defmethod
defwrapper

undefmethod

:describe
:eval-lnslde-yourself

:fasd-form
:funcall-lnslde-yourself

:get-handler-for
:operatlon-handled-p

:print-self
:send-If-handles

:unclaimed-message
:which-operations

Sending a

Introduction: Objects,

Flavor system
Methods for

Property List
Relationship between methods and

Facility for Handling

:after daemon
:before daemon

Changing a
Combined

:and
:append

:case
:daemon

:inverse-list
:list

:nconc
:or

:progn
:get

:get I
:property-II st

:push-property
:putprop

:remprop
:set-property-list

:after
:before

:combined
:defaun

:wrapper
Primary

Combination

macro 13, 19, 23, 57
macro 13, 23, 58
macro 26
macro 30, 58
mak•instance function 13, 24
Message 1
message 47
message 48
message 55
message 48
message 47
message 47
message 19, 47
message 48
message 48
message 47
message 9, 57
Message names 11
Message passing 9, 11
Message Passing, and Flavors 1
Message to an object of some flavor 27
Message-receiving object 11, 61
messages 47
messages 63
Messages 65
messages 9
Messages to Flavor Objects 27
Method 1, 9, 32
method 49
method 49
method 58

-method 19
Method Combination 49
method combination type 49
method combination type 49
method combination type 49
method combination type 49
method combination type 49
method combination type 49
method combination type 49
method combination type 49
method combination type 49
method of sl:property-list-mixin 65
method of sl:property-list-mixin 65
method of sl:property-list-mlxin 66
method of sl:property-list-mlxin 65
method of sl:property-list-mlxln 65
method of sl:property-llst-mlxln 65
method of si:property-llst-mixin 66
method type 49
method type 49
method type 49
method type 49
method type 49
method type 49
Method Types 53

73

:method-combination option for ctemavor 35, 49
:method-order option for defflavor 35

74

N

0

Adding new
After-daemon

Before-daemon
Combined
Combining

Creating
Daemon
Defining
Editing

Flavor system
Listing

Modifying
Primary

Removing
List
Edit

Edit Combined
List Combined

Relationship between

N

FLA V Objects. Message Passing, and Ravors

Symbolics, Inc. February 1984

methods 11, 30
methods 19
methods 19
methods 31
methods 26, 27
methods 23, 57
methods 19
methods 23, 57
methods 63
methods 47
methods 63
methods 58
methods 19
methods 30
Methods (m-X Zmacs command 63
Methods (m-X) Zmacs command 63
Methods (m-X) Zmacs command 63
Methods (m-X) Zmacs command 63
methods and messages 9
Methods for messages 63
Mixln flavor 45
:mlxln symbol In :documentation option to

defflavor 35
Mixing Flavors 19
:mixture option for defflavor 38
Modifying flavors 30, 58
Modifying methods 58
Modifying wrappers 58
Modularity 5

N
Message names 11

:nconc method combination type 49
Adding new methods 11, 30

Message-receiving
Message to an

Programmer-defined

Facility for Handling Messages to Flavor
Functional

Introduction:

Generic
Programmer-defined

Generic
Compiling

:accessor-preflx
:default-handler
:default-lnlt-pllst

0

:no-vanilla-flavor option for deftlavor 35

object 11, 61
object of some flavor 27
object types 5
Object-oriented programming
Objects 1, 3
Objects 27
objects 11
Objects, Message Passing, and Flavors
Open-coding 5
:operatlon-handled-p message 47
Operations 9
operations 5
Operations In Lisp 11
operations on abstract types 5
Optimization 5
option for defflavor 35
option for defflavor 35, 40
option for defflavor 35

0

FLA V Objects, Message Passing, and Ravors

Symbolics, Inc. February 1984

p

:documentation
:gettabl•lnstance-variables

:Included-flavors
:lnlt-keywords

:lnltabl•lnstance-variables
:method-combination

:method-order
:mixture

:no-vanlll•flavor
:ordered-Instance-variables

:outslde-accesslbl•lnstance-variables
:required-flavors

:requlred-lnlt-keywords
:required-Instance-variables

:required-methods
:select-method-order

:settabl•lnstance-variables
:property-list init

:combination symbol in :documentation
:essentlal-mlxln symbol in :documentation
:lowlevel-mixln symbol in :documentation

:mlxln symbol in :documentation
:special-purpose symbol in :documentation

defflavor
lnit

Keyword
Program

Message
Introduction: Objects, Message

Object-oriented

:get method of sl:
:getl method of sl:

:property-list init option for sl:

p

option for defflavor 35
option for defflavor 13, 35, 57
option for defflavor 35
option for defflavor 35
option for defflavor 13, 35
option for defflavor 35, 49
option for c:1emavor 35
option for defflavor 38
option for defflavor 35
option for demavor 35
option for defflavor 35
option for defflavor 35
option for defflavor 36
option for defflavor 35
option for defflavor 35
option for ctemavor 35
option for defflavor 13, 35, 57
option for sl:property-list-mlxln 66
option to defflavor 35
option to defflavor 35
option to defflavor 35
option to defflavor 35
option to defflavor 35
Options 35
options 13
:or method combination type 49
Order of application of whoppers 27
Order of application of wrappers 26, 27
Order of Definition 57
:ordered-Instance-variables option for

defflavor 35
Outside-accessible instance variables feature 5
:outslde-accesslbl•lnstance-variables option for

defflavor 35

package 11
partitioning 57
passing 9, 11
Passing, and Flavors 1
Primary method type 49
Primary methods 19
:print-self message 19, 47
Printing closures 61
Printing entitles 61
:progn method combination type 49
Program partitioning 57
Programmer-defined object types 5
Programmer-defined operations 5
programming 1
Property List Messages 65
:property-list init option for

sl:property-list-mlxln 66

75

p

:property-list method of sl:property-llst-mlxln 66
property-list-mlxln 65
property-list-mlxln 65
property-list-mlxln 66

76

R

s

:property-Hat method of al:
:push-property method of al:

:putprop method of sl:
:remprop method of sl:

:set-property-Hat method of al:
al:

:get method of
:getl method of

:property-list lnit option for
:property-list method of

:push-property method of
:putprop method of

:remprop method of
:set-property-list method of

Message to an object of

FLA V Objects. Message Passing. and Ravors

Symbolics. Inc. February· 1984

property-llst-mlxln 66
property-llst-mlxln 65
property-llst-mlxln 65
property-llst-mlxln 65
property-llst-mlxln 66
property-llst-mlxln flavor 65
:push-property method of

sl:property-list-mlxln 65
putprop function 3, 65
:putprop method of sl:property-list-mlxln 65

R R

s

recomplle-ftavor function 30
Relationship between methods and messages 9
Remove flavor 30
Removing a defun-method 30
Removing methods 30
remprop function 5
:remprop method of sl:property-list-mlxln 65
:requlred-ftavors option for defflavor 35
:requlred-lnlt-keywords option for defflavor 36
:required-Instance-variables option for

defflavor 35
:required-methods option for defflavor 35

:select-method-order option for defflavor 35
self variable 30
send function 15
:send-If-handles message 48
Sending a message 9, 57
set-In-Instance function 32
:set-property-list method of

sl:property-llst-mlxln 66
:settable-Instance-variables option for

defflavor 13, 35, 57
al:*ftavor-compllatlons* variable 33
sl:*ftavor-complle-trace* variable 33
al:flavor-allowed-lnlt-keywords function 32
al:flavor-default-lnlt-get function 33
al:flavor-default-lnlt-putprop function 33
sl:flavor-default-lnlt-remprop function 33
sl:property-list-mlxln 65
al:property-list-mlxln 65
sl:property-list-mlxln 66
al:property-list-mlxln 66
sl:property-list-mlxln 65
al:property-list-mlxln 65
sl:property-llst-mlxln 65
sl:property-list-mlxln 66
sl:property-llst-mlxln flavor 65
sl:vanlll•ftavor flavor 47
Simple Use of Flavors 13
Smalltalk 1, 9
some flavor 27

s

FLA V Objects, Message Passing, and Rsvors

Symbolics, Inc. February 1984

T

u

clefselect-method
defun-method

defwhopper
undefun-method

:combination
:essentlal-mlxln
:lowlevel-mlxln

:mlxln
:special-purpose

Use of :default-handler on the 3600
Flavor
Flavor

:aftlr method
:and method combination

:append method combination
:before method

:case method combination
:combined method

:daemon method combination
:default method

:Inverse-list method combination
:llst method combination

:nconc method combination
:or method combination

:progn method combination
:wrapper method

dip-entity data
dip-Instance data

dip-Instance-header data
dip-select-method data

Primary method
Abstract

Combination Method
Combining abstract

Compiling operations on abstract
Programmer-defined object

T

u

special form 30
special form 29 •. 30
special form 28
special form 30

77

:special-purpose symbol In :documentation option
to defflavor 35

symbol In :documentation option to defnavor 35
symbol In :documentation option to defnavor 35
symbol In :documentation option to defftavor 35
symbol In :documentation option to defnavor 35
symbol In :documentation option to deftlavor 35
aymeval-ln-lnstance function 32
system 40
system messages 47
system methods 47

Tree of flavors 19
type 49
type 49
type 49
type 49
type 49
type 49
type 49
type 49
type 49
type 49
type 49
type 49
type 49
type 49
type 61
type 57
type 57
type 57
type 49
types 5, 13
Types 53
types 19
types 5
types 5

:unclalmed-meaage message 48
undefftavor function 30
undefmethod macro 30, 58
undefun-method special form 30
Useful Zmacs Commands 63

T

u

78 FLA V Objects. Message Passing. and Ravors

Symbolics. Inc. February 1984

v v v
Value of instance variables 32

Default values for instance variables 13, 19
Vanilla Flavor 47
vanlll•ftavor flavor 19

al: vanlll•flavor flavor 47
all-flavor-names variable 23

self variable 30
sl:*'ftavor-compllatlons* variable 33

al:*ftavor-complle-trace* variable 33
Default values for Instance variables 13, 19

Initializing Instance variables 13, 25, 49
Instance variables 5, 11, 35, 55

Value of Instance variables 32
Outside-accessible Instance variables feature 5

Instance variables of combined flavors 19

w w w
:which-operations message 47

Creating whoppers 27
Defining whoppers 27

Order of application of whoppers 27
Whoppers facility 27
Wrapper 27

Changing a wrapper 58
:wrapper method type 49

Creating wrappers 26
Defining wrappers 26

Modifying wrappers 58
Order of application of wrappers 26, 27

z z z
Describe Flavor {m-X) Zmacs command 63

Edit Combined Methods (m-X) Zmacs command 63
Edit Definition Zmacs command 63

Edit Methods {m-X) Zmacs command 63
List Combined Methods {m-X) Zmacs command 63

List Methods {m-X Zmacs command 63
Cm-.) Zmacs command 63
Useful Zmacs Commands 63

symbolics TM

COND Conditions

Cambridge, Massachusetts

Signalling and Handling Conditions
990097

March 1984

This document corresponds to Release 5.0.

This document was prepared by the Documentation Group of Symbolics, Inc.

No representation or affirmation of fact contained in this document should be construed
as a warranty by Symbolics, and its contents are subject to change without notice.
Symbolics, Inc. assumes no responsibility for any errors that might appear in this
document.

Symbolics software described in this document is furnished only under license, and may
be used only in accordance with the terms of such license. Title to, and ownership of,
such software shall at all times remain in Symbolics, Inc. Nothing contained herein
implies the granting of a license to make, use, or sell any Symbolics equipment or
software.

Symbolics is a trademark of Symbolics, Inc., Cambridge, Massachusetts.
UNIX is a trademark of Bell Laboratories, Inc.
TENEX is a registered trademark of Bolt Beranek and Newman Inc.

Enhancements copyright <C> 1984, 1983 Symbolics, Inc. of Cambridge, Massachusetts.
All rights reserved. Printed in USA.
This document may not be reproduced in whole or in part without the prior written
consent of Symbolics, Inc.

Printing year and number: 87 86 85 84 9 8 7 6 5 4 3 2 1

COND Signalling and Handling Conditions

Symbolics, Inc. March 1984

Table of Contents

Page

1. Introduction 1

1.1 Overview and Definitions 1
1.2 Overview of This Document 2

2. Conditions 3

2.1 Example of a Handler 3
2.2 Signalling 4
2.3 Condition Flavors 4

3. Creating New Conditions 7

3.1 Creating a Set of Condition Flavors 8

4. Establishing Handlers 9

4.1 What is a Handler? 9
4.2 Classes of Handlers 9
4.3 Reference material 10
4.4 Application: Handlers Examining the Stack 16

4.4.1 Reference material 17

5. Signalling Conditions 23

5.1 Signalling Mechanism 23
5.1.1 Finding a Handler 23
5.1.2 Signalling Simple Conditions 24
5.1.3 Signalling Errors 24
5.1.4 Restriction Due to Scope 24

5.2 Reference material 25

6. Default Handlers and Complex Modularity 29

6.1 Reference Material 30

7. Interactive Handlers 31

8. Restart Handlers 33

8.1 Reference material 34
8.2 Invoking Restart Handlers Manually 36

9. Proceeding 37

ii COND Signalling and Handling Conditions

Symbolics, Inc. March 1984

9.1 Protocol for Proceeding 37
9.2 Proceed Type Messages 39
9.3 Proceeding with condition-bind handlers 40
9.4 Proceed Type Names 40
9.5 Signallers 40
9.6 Reference material 41

10. Issues for Interactive Use 43

10.1 Tracing Conditions 43
10.2 Breakpoints 43
10.3 Debugger Bug Reports 44
10.4 Debugger Special Commands 45
10.5 Special Keys 46

11. Condition Flavors Reference 49

11.1 Messages and lnit Options 49
11.2 Standard Conditions 51

11.2.1 Fundamental Conditions 51
11.2.2 Lisp Errors 53
11.2.3 File-system Errors 64
11.2.4 Pathname Errors 72
11.2.5 Network Errors 73
11.2.6 Tape Errors 75

Index 77

COND Signalling and Handling Conditions iii

Symbolics, Inc. March 1984

List of Figures

Figure 1. Condition flavor hierarchy 6

COND Signalling and Handling Conditions

Symbolics, Inc. March 1984

1. Introduction

This document describes the condition signalling and handling system for the Lisp
Machine. This document is for applications programmers.

1

In conjunction with using this document, you might want to review the discussion of
flavors. See the document Objects, Message Passing, and Flavors.

1.1 Overview and Definitions

An event is "something that happens" during execution of a program. That is, it is
some circumstance that the system can detect, like the effect of dividing by zero.
Some events are errors - which means something happened that was not part of
the contract of a given function - and some are not. In either case, a program can
report that the event has occurred, and .it can find and execute user-supplied code as
a result.

The reporting process is called signalling, and subsequent processing is called
handling. A handler is a piece of user-supplied code that assumes control when it is
invoked as a result of signalling. Lisp Machine software includes default mechanisms
to handle a standard set of events automatically.

The mechanism for reporting the occurrence of an event relies on flavors. Each
standard class of events has a corresponding flavor called a condition. For example,
occurrences of the event "dividing by zero" correspond to the condition
sys:divide-by-zero.

The mechanism for reporting the occurrence of an event is called signalling a
condition. The signalling mechanism creates a condition object of the flavor
appropriate for the event. The condition object is an instance of that flavor. The
instance contains information about the event, such as a textual message to report,
and various parameters of the condition. For example, when a program divides a
number by zero, the signalling mechanism creates an instance of the flavor
sys:divide-by-zero.

Handlers are pieces of user or system code that are bound for a particular condition
or set of conditions. When an event occurs, the signalling mechanism searches all of
the currently bound handlers to find the one that corresponds to the condition. The
handler can then access the instance variables of the condition object to learn more
about the condition and hence about the event.

Handlers have dynamic scope, so that the handler that is invoked for a condition is
the one that was bound most recently.

The condition system provides flexible mechanisms for determining what to do after

2 COND Signalling and Handling Conditions

Symbolics. Inc. March 1984

a handler runs. The handler can tcy to proceed, which means that the program
might be able to continue €xecution past the point at which the condition was
signalled, possibly after correcting the error. Any program can designate restart
points. This facility allows a user to retcy an operation from some earlier point in a
program.

Some conditions are vecy specific to a particular set of error circumstances and
others are more general. For example, fs:delete-failure is a specialization of
fs:file-operation-failure which is in turn a specialization of fs:file-error. You
choose the level of condition that is appropriate to handle according to the needs of
the particular application. Thus, a handler can correspond to a single condition or to ·
a predefined class of conditions. This capability is provided by the flavor inheritance
mechanism.

1.2 Overview of This Document

This document is for applications programmers. It contains descriptions of all
conditions that are signalled by Lisp Machine software. With this information, you
can write your own handlers for events detected by the system or define and handle
classes of events appropriate for your own application.

This manual describes the following major topics.

• Mechanisms for handling conditions that have been signalled by system or
application code.

•Mechanisms for defining new conditions.

• Mechanisms that are appropriate for application programs to use to signal
conditions.

• All of the conditions that are defined by and used in the system software.

COND Signalling and Handling Conditions

Symbolics, Inc. March 1984

2. Conditions

This section provides an overview of how applications programs treat conditions.

•A program signals a condition when it wants to report an occurrence of an
event.

•A program binds a handler when it wants to gain control when an event
occurs.

When the system or a user function detects an error, it signals an appropriate
condition and some handler bound for that condition then deals with it.

Conditions are flavors. Each condition is named by a symbol that is the name of a
flavor, for example, sys:unbound-variable, sys:divide-by-zero, fs:file-not-found.
As part of signalling a condition, the program creates a condition object of the
appropriate flavor. The condition object contains information about the event, such
as a textual message to report and various parameters. For example, a condition
object of flavor fs:file-not-found contains the path~ame that the file system failed
to find.

3

Handlers are bound with dynamic scope, so the most recently bound handler for the
condition is invoked. When an event occurs, the signalling mechanism searches all of
the current handlers, starting with the innermost handler, for one that can handle
the condition that has been signalled. When an appropriate handler is found, it can
access the condition object to learn more about the error.

2.1 Example of a Handler

condition-case is a simple form for binding a handler. For example:

(condition-case()
(// a b)

(sys:divide-by-zero *infinity*))

This form does two things.

• Evaluates (/ / a b) and returns the result.

• Binds a handler for the sys:divide-by-zero condition which applies during the
evaluation of (/ / a b).

In this example, it is a simple handler that just returns a value. If division by zero
happened in the course of evaluating(// ab), the form would return the value of
infinity instead. If any other error occurred, it would be handled by the system's
default handler for that condition or by some other user handler of higher scope.

4 COND Signalling and Handling Conditions

Symbolics. Inc. March 1984

You can also bind a handler for a predefined class of conditions. For example, the
symbol fs:file-operation-failure refers to the set of all error conditions in file
system operations, such as "file not found" or "directory not found" or "link to
nonexistent file", but not to such errors as "network connection closed" or "invalid
arguments to open", which are members of different classes.

2.2 Signalling

You can signal a condition by calling either signal or error. signal is the most
general signalling function; it can signal any condition. It allows either a handler or
the user to proceed from the error. error is a more restrictive version that accepts
only error conditions and does not allow proceeding. error is guaranteed never to
return to its caller.

Both signal and error have the same calling sequence. The first argument is a
symbol that names a condition; the rest are keyword arguments that let you provide
extra information about the error. See the section "Signalling Conditions". Full
details on using the signalling mechanism are in that section.

Applications programs rarely need to signal system conditions although they can.
Usually when you have a signalling application, you need to define a new condition
flavor to signal it. Two simpler signalling functions, called ferror and fsignal, are
applicable when you want to signal without defining a new condition.

It is very important to understand that signalling a condition is not just the same
thing as throwing to a tag. *throw is a simple control-structure mechanism
allowing control to escape from an inner form to an outer form. Signalling is a
convention for finding and executing a piece of user-supplied code when one of a
class of events occurs. A condition handler might in fact do a *throw, but it is
under no obligation to do so. User programs can continue to use *throw; it is
simply a different capability with a different application.

2.3 Condition Flavors

Symbols for conditions are the names of flavors; sets of conditions are defined by the
flavor inheritance mechanism. For example, the flavor lmfs:lmfs-file-not-found is
built on the flavor fs:file-not-found, which is built on fs:file-operation-failure,
which is in turn built on the flavor error.

The flavor inheritance mechanism controls which handler is invoked. For example,
when a Lisp Machine file system operation fails to find a file, it could signal
lmfs:lmfs-file-not-found. The signalling mechanism invokes the first appropriate
handler that it finds, in this case, a handler for fs:file-not-found, one for
fs:file-operation-failure, or one for error. In general, if a handler is bound for

COND Signalling and Handling Conditions 5

Symbolics, Inc. March 1984

flavor a, and a condition object c of flavor b is signalled, then the handler is invoked
if (typep c 'a) is true; that is, if a is one of the flavors that b is built on.

The symbol condition refers to all conditions, including simple, error, and debugger
conditions. The symbol error refers to the set of all error conditions. Figure 1
shows an overview of the flavor hierarchy.

error is a base flavor for many conditions, but not all. Simple conditions are those
built on condition; debugger conditions are those built on
dbg:debugger-condition. Error conditions or errors are those built on error. For
your own condition definitions, whether you decide to treat something as an error or
as a simple condition is up to the semantics of the application.

From a more technical viewpoint, the distinction between simple conditions and
debugger conditions hinges on what action occurs when the program does not
provide its own handler. For a debugger condition, the system invokes the
Debugger; for a simple condition, signal simply returns nil to the caller.

6

debugger conditions

simple

debugger conditions

(sys:pdl-overflow)

conditions

COND Signalling and Handling Conditions

Symbolics. Inc. March 1984

simple conditions
(fquery
fs:logln-requlred
sys:abort)

. sys:network-error fs:flle-error fs:pathname-error

I
sys:local-network-error sys:remote-network-error fs:flle-request-f allure fs:flle-operatlon-fallure

Figure 1. Condition flavor hierarchy

COND Signalling and Handling Conditions

Symbolics, Inc. March 1984

3. Creating New Conditions

An application might need to detect and signal events that are specific to the
application. To support this, you need to define new conditions.

Defining a new condition is straightforward. For simple cases, you need only two
forms: one defines the flavor, and the other defines a :report message. Build the
flavor definition on either error or condition, depending on whether or not the
condition you are defining represents an error. The following example defines an
error condition.

(defflavor block-wrong-color() (error))

(defmethod (block-wrong-color :report) (stream)
(format stream "The block was of the wrong color."))

Your program can now signal the error as follows:

(error 'block-wrong-color)

:report requires one argument, which is a stream for it to use in printing an error
message. Its message should be a sentence, ending with a period and with no
leading or trailing newlines.

7

The :report method must not depend on the dynamic environment in which it is
invoked. That is, it should not do any free references to special variables. It should
use only its own instance variables. This is because the condition object might
receive a :report message in a dynamic environment that is different from the one
in which it was created. This situation is common with condition-case.

The above example is adequate but does not take advantage of the power of the
condition system. For example, the error message tells you only the class of event
detected, not anything about this specific event. You can use instance variables to
make condition objects unique to a particular event. For example, add instance
variables :block and :color to the flavor so that error can use them to build the
condition object:

(defflavor block-wrong-color (block color) (error)
:initable-instance-variables
:gettable-instance-variables)

(defmethod (block-wrong-color :report) (stream)
(format stream "The block -s was -s, which is the wrong color."

block color))

The :initable-instance-variables option defines the two instance variables :block
and :color; the :gettable-instance-variables option defines methods for the :block
and :color messages, which handlers can send to find out details of the condition.

8 COND SignaUing and Handling Conditions

Symbolics. Inc. March 1984

Your program would now sign.al the error as follows:

(error 'block-wrong-color ':block the-bad-block
':color the-bad-color)

The only other interesting thing to do when creating a condition is to define proceed
types. See the section "Proceeding''.

It is a good idea to use compile-flavor-methods for any condition whose
instantiation is considered likely, to avoid the need for run-time combination and
compilation of the flavor. See the macro compile-flavor-methods. Otherwise, the
flavor must be combined and compiled the first time the event occurs, which causes
perceptible delay.

3.1 Creating a Set of Condition Flavors

You can define your own sets of conditions and condition hierarchies. Just create a
new flavor and build the flavors on each other accordingly. The base flavor for the
set does not need a :report method if it is never going to be signalled itself. For
example:

(defflavor block-world-error() (error))

(defflavor block-wrong-color (block color) (block-world-error)
:initable-instance-variables)

(defflavor block-too-big (block container) (block-world-error)
:initable-instance-variables)

(defmethod (block-too-big :report) (stream)
(format stream "The block -s is too big to fit in the -S."

block container))

(defmethod (block-wrong-color :report) (stream)
(format stream "The block -s was -s. which is the wrong color."

block color))

COND Signalling and Handling Conditions

Symbolics. Inc. March 1984

4. Establishing Handlers

4.1 What is a Handler?

A handler consists of user-supplied code that is invoked when an appropriate
condition signal occurs. Lisp Machine software includes default handlers for all
standard conditions. Application programs need not handle all conditions explicitly
but can provide handlers for just the conditions most relevant to the needs of the
application.

4.2 Classes of Handlers

9

The simplest form of handler handles every error condition, each in the same way.
The form for binding this handler is ignore-errors. In addition, four basic forms
are available to bind handlers for particular conditions. Each of these has a standard
version and a conditional variant:

• condition-bind and condition-bind-if
condition-bind is the most general form. It allows the handler to run in the
dynamic environment in which the error was signalled and to try to proceed
from the error.

• condition-bind-default and condition-bind-default-if
condition-bind-default is a variant of condition-bind It binds a handler
on the default condition list instead of the bound condition list. The
distinction is described in these two sections. See the section "Signalling
Conditions". See the section "Default Handlers and Complex Modularity".

• condition-case and condition-case-if
condition-case is the simplest form to use. It returns to the dynamic
environment in which the handler was bound and so does not allow
proceeding.

• condition-call and condition-call-if
condition-call is a more general version of condition-case. It uses user
specified predicates to select the clause to be executed.

In the conditional variants, the handlers are bound only if some expression is true.

10 COND Signalling and Handling Conditions

Symbolics. Inc. March 1984

4.3 Reference material

condition-bind bindings body... Special Form
condition-bind binds handlers for conditions and then evaluates its body
with those handlers bound. One of the handlers might be invoked if a
condition signal occurs while the body is being evaluated. The handlers
bound have dynamic scope.

The following simple example sets up application-specific handlers for two
standard error conditions, fs:file-not-found and fs:delete-failure.

(condition-bind ((fs:file-not-found 'my-fnf-handler)
(fs:delete-failure 'my-delete-handler))

(deletef pathname))

The format for condition-bind is:

(condition-bind ((condition-flavor-1 handler-1)
Ccondition-flavor-2 handler-2)

form-1
form-2

form-n)

C condition-flavor-m handler-m > >

condition-flavor-j The name of a condition flavor or a list of names of
condition flavors. The condition-flavor-) need not be
unique or mutually exclusive. (See the section "Finding a
Handler". Search order is explained in that section.)

handler-j

form-i

A form that is evaluated to produce a handler function.
One handler is bound for each condition flavor clause in
the list. The forms for binding handlers are evaluated in
order from handler-1 to handler-m. All the handler-j
forms are evaluated and then all handlers are bound.

When handler is a lambda-expression, it is compiled. (In a
future release, it will be a proper lexical closure, capable of
referring to the lexical variables of the containing block,
but for now it is a separate top-level function.)

A body, constituting an implicit progn. The forms are
evaluated sequentially. The condition-bind form retm:ns
whatever values form-n returns (nil when the body
contains no forms). The handlers that are bound
disappear when the condition-bind form is exited.

If a condition sign.al occurs for one of the condition-flavor-j during evaluation
of the body, the signalling mechanism examines the bound handlers in the

COND Signalling and Handling Conditions 11

Symbolics, Inc. March 1984

order in which they appear in the condition-bind form, invoking the first
appropriate handler. You can think of the mechanism as being analogous to
typecase or selectq. It invokes the handler function with one argument,
the condition object. The handler runs in the dynamic environment in which
the error occurred; no *throw is performed.

Any handler function can take one of three actions:

• It can return nil to indicate that it does not want to handle the
condition after all. The handler is free to decide not to handle the
condition, even though the condition-flavor-j matched. (In this case the
signalling mechanism continues to search for a condition handler.)

•It can throw to some outer catch-form, using *throw.

• If the condition has any proceed types, it can proceed from the
condition by sending a :proceed message to the condition object and
returning the resulting values. In this case, signal returns all of the
values returned by the handler function. (Proceed types are not
available for conditions signalled with error. See the section
"Proceeding''.)

condition-bind-if cond-form bindings body... Special Form
condition-bind-if binds its handlers conditionally. In all other respects, it is
just like condition-bind It has extra subform called cond-form, for the
conditional. Its format is:

(condition-bind-if cond-form

form-1
form-2

form-n>

((condition-flauor-1 handler-1>
(condition-flauor-2 handler-2 >

(condition-flauor-m handler-m > >

condition-bind-if first evaluates cond-form. If the result is nil, it evaluates
the handler forms but does not bind any handlers. It then executes the
body as if it were a progn. If the result is not nil, it continues just like
condition-bind binding the handlers and executing the body.

condition-bind-default bindings body ... Special Form

condition-bind-default-if cond-form bindings body... Special Form
These forms bind their handlers on the default handler list instead of the
bound handler list. (See the section "Finding a Handler".) In other respects
condition-bind-default is just like condition-bind, and
condition-bind-default-if is just like condition-bind-if. Such default

12 COND Signalling and Handling Conditions

Symbolics. Inc. March 1984

handlers are examined by the signalling mechanism only ~ter all of the
bound handlers have been examined. Thus, a condition-bind-default can
be overridden by a condition-bind outside of it. This advanced feature is
described in more detail in another section. See the section "Default
Handlers and Complex Modularity".

condition-case (vars ...) form clause... Special Form
condition-case binds handlers for conditions, expressing the handlers as
clauses of a case-like construct instead of as functions. The handlers bound
have dynamic scope.

Examples:

(condition-case()
(time:parse string)

(time:parse-error *default-time*))

(condition-case (e)
(time:parse string)

(time: parse-error
(format error-output "-A, using default time instead." e)
default-time))

(do () (nil)
(condition-case (e)

(return (time:parse string))
(time:parse-error

(setq string
(prompt-and-read

':string
"-A-%Use what time instead? " e)))))

The format is:

(condition-case (varl var2 ...)
form

(condition-flavor-1 form-1-1 form-1-2 ... form-1-n>
< condition-fiavor-2 form-2-1 fonn-2-2 ... fonn-2-n)

(condition-flavor-m form-m-1 fonn-m-2 ... fonn-m-n))

Each condition-f7,avor-j is either a condition flavor, a list of condition flavors,
or :no-error. If :no-error is used, it must be the last of the handler
clauses. The remainder of each clause is a body, a list of forms constituting
an implicit progn.

condition-case binds one handler for each clause. The handlers are bound
simultaneously.

If a condition is signalled during the evaluation of form, the signalling
mechanism examines the bound handlers in the order in which they appear
in the definition, invoking the first appropriate handler.

COND Signalling and Handling Conditions 13

Symbolics, Inc. March 1984

condition-case normally returns the values returned by form. If a condition
is signalled during the evaluation of form, the signalling mechanism
determines whether the condition is one of the condition-fiavor-j. If so, the
following actions occur:

1. It automatically performs a *throw to unwind the dynamic
environment back to the point of the condition-case. This discards
the handlers bound by the condition-case.

2. It executes the body of the corresponding clause.

3. It makes condition-case return the values produced by the last form
in the handler clause.

While the clause is executing, varl is bound to the condition object that was
signalled and the rest of the variables (var2, ...) are bound to nil. If none of
the clauses needs to examine the condition object, you can omit varl.

(condition-case() ...)

As a special case, condition-fiavor-m (the last one) can be the special symbol
:no-error. If form is evaluated and no error is· signalled during the
evaluation, condition-case executes the :no-error clause instead of
returning the values returned by form. The variables varl, var2, and so on
are bound to the values produced by form, in the style of
multiple-value-bind, so that they can be accessed by the body of the
:no-error case. Any extra variables are bound to nil.

When an event occurs that none of the cases handles, the signalling
mechanism continues to search the dynamic environment for a handler. You
can provide a case that handles any error condition by using error as one
condition-fiavor-j.

condition-case-if cond-form (vars ...) form clause... Special Form
condition-case-if binds its handlers conditionally. In all other respects, it is
just like condition-case. Its syntax includes cond-form, a subform that
controls binding handlers:

(con di ti on-case-if cond-form (Var)
form

(condition-fiavor-1 form-1-1 form-1-2 ... form-1-n>
(condition-fiavor-2 form-2-1 form-2-2 ... form-2-n>

C condition-fiavor-m form-m-1 form-m-2 ... form-m-n) >

condition-case-if first evaluates cond-form. If the result is nil, it does not
set up any handlers; it just evaluates the form. If the result is not nil, it
continues just like condition-case, binding the handlers and evaluating the
form.

14 COND Signalling and Handling Conditions

Symbolics. Inc. March 1984

The :no-error clause applies whether or not cond-form is nil.

condition-call (vars ...) form clause... Special Form
condition-call binds handlers for conditions, expressing the handlers as
clauses of a case-like construct instead of as functions. These handlers have
dynamic scope.

condition-call and condition-case have similar applications. The major
distinction is that condition-call provides the mechanism for using a
complex conditional criterion to determine whether or not to use a handler.
condition-call clauses do not have the ability to decline to handle a
condition because the clause is selected on the basis of the predicate, rather
than on the basis of the type of a condition.

The format is:

(con di t fon-ca 11 (var)
form

Cpredicate-1 form-1-1 form-1-2 ... form-1-n>
Cpredicate-2 form-2-1 form-2-2 ... form-2-n)

Cpredicate-m form-m-1 form-m-2 ... form-m-n > >

Each predicate-j must be a function of one argument. The predicates are
called, rather than evaluated. The form-j-i are a body, a list of forms
constituting an implicit progn. The handler clauses are bound
simultaneously.

When a condition is signalled, each predicate in turn (in the order in which
they appear in the definition) is applied to the condition object. The
corresponding handler clause is executed for the first predicate that returns a
value other than nil. · The predicates are called in the dynamic environment
of the signaller.

condition-call takes the following actions when it finds the right predicate:

1. It automatically performs a *throw to unwind the dynamic
environment back to the point of the condition-call. This discards
the handlers bound by the condition-call.

2. It executes the body of the corresponding clause.

3. It makes condition-call return the values produced by the last form in
the clause.

During the execution of the clause, the variable var is bound to the condition
object that was signalled" If none of the clauses needs to examine the
condition object, you can omit var:

(condition-call () ••.)

COND Signalling and Handling Conditions 15

Symbolics. Inc. March 1984

condition-call and :no-error

As a special case, predicate-m (the last one) can be the special symbol
:no-error. If form is evaluated and no error is signalled during the
evaluation, condition-case executes the :no-error clause instead of
returning the values returned by form. The variables vars are bound to the
values produced by form, in the style of multiple-value-bind, so that they
can be accessed by the body of the :no-error case. Any extra variables are
bound to nil.

Some limitations on predicates:

• Predicates must not have side effects. The number of times that the
signalling mechanism chooses to invoke the predicates and the order in
which it invokes them are not defined. For side effects in the dynamic
enVironment of the signal, use condition-bind

• The predicates are not lexical closures and therefore cannot access
variables of the lexically containing form, unless those variables are
declared special.

• Lambda-expression predicates are not compiled.

condition-call-if cond-form (vars ...) form clause... Special Form
condition-call-if binds its handlers conditionally. In all other respects, it is
just like condition-call. Its format includes cond-form, the subform that
controls binding handlers:.

(condition-call-if cond-form (Var)
form
Cpredicate-1 form-1-1 form-1-2 ... form-1-n)
Cpredicate-2 form-2-1 form-2-2 ... form-2-n >

Cpredicate-m form-m-1 form-m-2 ... form-m-n))

condition-call-if first evaluates cond-form. If the result is nil, it does not
set up any handlers; it just evaluates the form. If the result is not nil, it
continues just like condition-call, binding the handlers and evaluating the
form.

The :no-error clause applies whether or not cond-form is nil

ignore-errors body... Special Form
ignore-errors sets up a very simple handler on the bound handlers list that
handles all error conditions. Normally, it executes body and returns the first
value of the last form in body as its first value and nil as its second value.
If an error signal occurs while body is executing, ignore-errors immediately
returns with nil as its first value· and something not nil as its second value.

ignore-errors replaces errset and catch-error.

16 COND Signalling and Handling Conditions

Symbolics, Inc. March 1984

4.4 Application: Handlers Examining the Stack

condition-bind handlers are invoked in the dynamic environment in which the
error is signalled. Thus the Lisp stack still holds the frames that existed when the
error was signalled. A handler can examine the stack using the functions described
in this section.

One important application of this facility is for writing error logging code. For
example, network servers might need to keep providing service even though no user
is available to run the Debugger. By using these functions, the server can record
some information about the state of the stack into permanent storage, so that a
maintainer can look at it later and determine what went wrong.

These functions return information about stack frames. Each stack frame is
identified by a frame pointer, represented as a Lisp locative pointer. In order to use
any of these functions, you need to have appropriate environment bindings set up.
The macro dbg:with-erring-frame both sets up the environment properly and
provides a frame pointer to the stack frame that got the error. Within the body of
that macro, use the appropriate functions to move up and down stack frames; these
functions take a frame pointer and return a new frame pointer by following links in
the stack.

These frame-manipulating functions are actually subprimitives, even though they do
not have a% sign in their name. If given an argument that is not a frame pointer,
they stand a good chance of crashing the machine. Use them with care.

The functions that return new frame pointers work by going to the next frame or
the previous frame of some category. "Next" means the frame of a procedure that
was invoked more recently (the frame called by this one; toward the top of the
stack). "Previous" means the frame of a procedure that was invoked less recently
(the caller of this frame; towards the base of the stack).

These functions assume three categories of frames: interesting active frames, active
frames, and open frames.

•An active frame simply means a procedure that is currently running (or active)
on the stack.

• Interesting active frames include all of the active frames except those that are
parts of the internals of the Lisp interpreter, such as frames for eval, apply,
funcall, let, and other basic Lisp special forms. The list of such functions is
the value of the system constant dbg:*uninteresting-functions*.

• Open frames include all the active frames as well as frames that are still under
construction, for functions whose arguments are still being computed. See the
section "How to Read Assembly Language (LM-2)". On the 3600, open frames
and active frames are synonymous.

COND Signalling and Handling Conditions 17

Symbolics, Inc. March 1984

4.4.1 Reference material

The functions in this section all take a frame pointer as an argument. For
functions that indicate a direction on the stack, using nil as the argument indicates
the frame at relevant end of the stack. For example, when you are using a function
that looks up the stack, nil as the argument indicates the top-most stack frame.

Remember to use the functions in this section only within the context of the
dbg:with-erring-frame macro.

dbg:with-erring-frame (var object) Macro
dbg:with-erring-frame sets up an environment with appropriate bindings
for using the rest of the functions that examine the stack. It binds var with
the frame pointer to the stack frame that signalled the error·. var is always
a pointer to an interesting stack frame. object is the condition object for the
error, which was the first argument given to the condition-bind handler.

(defun my-handler (condition-object)
(dbg:with-erring-frame (frame-ptr condition-object)

body ...)>

Inside body, the variable frame-ptr is bound to the frame pointer of the
frame that got the error.

dbg:get-frame-function-and-args frame-pointer Function
dbg:get-frame-function-and-args returns a list containing the name of the
function for frame-pointer and the values of the arguments.

dbg:frame-next-active-frame frame-pointer Function
dbg:frame-next-active-frame returns a frame pointer to the next active
frame following frame-pointer. If frame-pointer is the last active frame on the
stack, it returns nil.

dbg:frame-next-interesting-active-frame frame-pointer Function
dbg:frame-next-interesting-active-frame returns a frame pointer to the
next interesting active frame following frame-pointer. If frame-pointer is the
last interesting active frame on the stack, it returns nil.

dbg:frame-next-open-frame frame-pointer Function
dbg:frame-next-open-frame returns a _frame pointer to the next open
frame following frame-pointer. If frame-pointer is the last open frame on the
stack, it returns nil.

dbg:frame-previous-active-frame frame-pointer Function
dbg:frame-previous-active-frame returns a frame pointer to the previous
active frame before frame-pointer. If frame-pointer is the first active frame on
the stack, it returns nil.

18 COND Signalling and Handling Conditions

Symbolics. Inc. March 1984

dbg:frame-previous-interesting-active-frame frame-pointer Function
dbg:frame-previous-interesting-active-frame returns a frame pointer to
the previous interesting active frame before frame-pointer. If frame-pointer is
the first interesting active frame on the stack, it returns nil.

dbg:frame-previous-open-frame frame-pointer Function
dbg:frame-previous-open-frame returns a frame pointer to the previous
open frame before frame-pointer. If frame-pointer is the first open frame on
the stack, it returns nil.

dbg:frame-next-nth-active-frame frame-pointer &optional (count Function
1)

dbg:frame-next-nth-active-frame goes up the stack by count active frames
from frame-pointer and returns a frame pointer to that frame. It returns a
second value that is not nil. When count is positive, this is like calling
dbg:frame-next-active-frame count times; count can also be negative or
zero. If either end of the stack is reached, it returns a frame pointer to the
first or last active frame and nil.

dbg:frame-next-nth-interesting-active-frame frame-pointer Function
&optional (count 1)

dbg:frame-next-nth-interesting-active-frame goes up the stack by count
interesting active frames from frame-pointer and returns a frame pointer to
that frame. It returns a second value that is not nil. When count is
positive, this is like calling dbg:frame-next-interesting-active-frame count
times; count can also be negative or zero. If either end of the stack is
reached, it returns a frame pointer to the first or last active frame and nil.

dbg:frame-next-nth-open-frame frame-pointer &optional (count 1) Function
dbg:frame-next-nth-open-frame goes up the stack by count open frames
from frame-pointer and returns a frame pointer to that frame. It returns a
second value that is not nil. When count is positive, this is like calling
dbg:frame-next-open-frame count times; count can also be negative or zero.
If either end of the stack is reached, it returns a frame pointer to the first
or last active frame and nil.

dbg:frame-out-to-interesting-active-frame frame-pointer Function
dbg:frame-out-to-interesting-active-frame returns either frame-pointer (if
it points to an interesting active frame) or the previous interesting active
frame before frame-pointer. (This is what the c-M-U command in the
debugger does.)

dbg:frame-active-p frame-pointer Function
dbg:frame-active-p indicates whether frame-pointer is an active frame.

COND Signalling and Handling Conditions

Symbolics, Inc. March 1984

Value
nil
not nil

Meaning
Frame is not active
Frame is active

19

dbg:frame-real-function frame-pointer Function
dbg:frame-real-function returns either the function object associated with
frame-pointer or self when the frame was the result of sending a message to
an instance.

dbg:frame-total-number-of-args frame-pointer Function
dbg:frame-total-number-of-args returns the number of arguments that
were passed in frame-pointer. For functions that take an &rest parameter,
each argument is counted separately. On the 3600, sending a message to an
instance results in two implicit arguments being passed internally along with
the other arguments. These implicit arguments are included in the count.

dbg:frame-number-of-spread-args frame-pointer &optional (type Function
· ':supplied)

dbg:frame-number-of-supplied-args returns the number of "spread"
arguments that were passed in frame-pointer. (These are the arguments
that are not part of a &rest parameter.) On the 3600, sending a message to
an instance results in two implicit arguments being passed internally along
with the other arguments. These implicit arguments are included in the
count.

type requests more specific definition of the number:
Value Meaning
:supplied Returns the number of arguments that were actually

passed by the caller, except for arguments that were bound
to a &rest parameter. This is the default.

:expected ·Returns the number of arguments that were expected by
the function being called.

:allocated Returns the number of arguments for which stack
locations have been allocated. In the absence of a &rest
parameter, this is the same as :expected for compiled
functions, and the same as :supplied for interpreted and
LM-2 microcoded functions. If stack locations were
allocated for arguments that were bound to a &rest
parameter, they are included in the returned count.

These values would all be the same except in cases where a wrong-number
of-arguments error occurred, or where there are optional arguments (expected
but not supplied).

dbg:frame-arg-value frame-pointer n &optional callee-context
no-error-p

dbg:frame-arg-value returns the value of the nth argument to

Function

20 COND Signalling and Handling Conditions

Symbolics, Inc. March 1984

frame-pointer. It returns a second value, which is a locative pointer to the
word in the stack that holds the argument. If n is out of range, then it
takes action based on no-error-p: if no-error-p is nil, it signals an error,
otherwise it returns nil. n can also be the name of the argument (a symbol,
but it need not be in the right package). Each argument passed for a &rest
parameter counts as a separate argument when n is a number. On the
LM-2, this function ignores its third argument. On the 3600, it controls
whether you get the caller or callee copy of the argument (original or possibly
modified.)

dbg:frame-number-of-locals frame-pointer Function
dbg:frame-number-of-locals returns the number of local variables allocated
for frame-pointer.

dbg:frame-local-value frame-pointer n &optional no-error-p Function
dbg:frame-local-value returns the value of the nth local variable in
frame-pointer. n can also be the name of the local variable (a symbol, but it
need not be in the right package). It returns a second value, which is a
locative pointer to the word in the stack that holds the local variable. If n is
out of range, then the action is based on no-error-p: if no-error-p is nil, it
signals an error, otherwise it returns nil.

dbg:frame-self-value frame-pointer &optional instance-frame-only Function
dbg:frame-self-value returns the value of self in frame-pointer, or nil if
self does not have a value. If instance-frame-only is not nil then it returns
nil unless this frame is actually a message-sending frame created by send.

dbg:frame-real-value-disposition frame-pointer Function
dbg:frame-real-value-disposition returns a symbol indicating how the
calling function is going to handle the values to be returned by this frame.
If the calling function just returns the values to its caller, then the symbol
indicates how the final recipient of the values is going to handle them.
Value Meaning

· :ignore The values would be ignored; the function was called for
effect.

:single The first value would be received and the rest would not;
the function was called for value.

:multiple All the values would be reeeived; the function was called
for multiple values. It returns a second value indicating
the number of values expected. nil indicates an
indeterminate number. The 3600 currently always returns
nil.

dbg:print-function-and-args frame-pointer &optional show-pc-p Function
dbg:print-function-and-args prints the name of the function executing in
frame-pointer and the names and values of its arguments, in the same format

COND Signalling and Handling Conditions 21

Symbolics, Inc. March 1984

as the Debugger uses. If show-pc-p is true, the program counter value of the
frame, relative to the beginning of the function, is printed in octal.
dbg:print-function-and-args returns the number of local slots occupied by
arguments.

dbg:print-frame-locals frame-pointer local-start &optional (indent Function
0)

dbg:print-frame-locals prints the names and values of the local variables of
frame-pointer. local-start is the first local slot number to print; the value
returned by dbg:print-function-and-args is often suitable for this. indent
is the number of spaces to indent each line; the default is no indentation.

22 COND Signalling and Handling Conditions

Symbolics, Inc. March 1984

COND Signalling and Handling Conditions

Symbolics. Inc. March 1984

5. Signalling Conditions

5.1 Signalling Mechanism

The following functions and macros invoke the signalling mechanism, which finds
and invokes a handler for the condition.

error
signal
ferror
f signal
signal-proceed-case

5.1.1 Finding a _Handler

23

The signalling mechanism finds a handler by inspecting four lists of handlers, in this
order:

1. It first looks down the list of bound handlers, which are handlers set up by
condition-bind, condition-case, and condition-call forms.

2. Next, it looks down the list of default handlers, which are set up by
condition-bind-default.

3. Next, it looks down the list of interactive handlers. This list normally contains
only one handler, which enters the Debugger if the condition is based on
dbg:debugger-condition and declines to handle it otherwise.

4. Finally, it looks down the list of restart handlers, which are set up by
error-restart, error-restart-loop, and catch-error-restart. See the section
"Default Handlers and Complex Modularity". See the section "Restart
Handlers".

5. If it gets to the end of the last list without finding a willing handler, one of
two things happens.

• signal returns nil when both of the following are true:

o The condition was signalled with signal, fsignal, or
signal-proceed-case.

o The condition object is not an instance of a condition based on
error.

• The Debugger assumes control.

The signalling mechanism checks each handler to see if it is willing to handle the

24 COND Signalling and Handling Conditions

Symbolics. Inc. March 1984

condition. Some handlers have the ability to decline to handle the condition, in
which case the signalling mechanism keeps searching. It calls the first willing
handler it finds.

As we have seen, the signalling mechanism searches for handlers in a specific order.
It looks at all the bound handlers before any of the default handlers and all of the
default handlers before any of the restart handlers. Thus, it tries any
condition-bind handler before any handler bound by condition-bind-default, even
though the condition-bind-default is within the dynamic scope of the
condition-bind. Similarly, it considers a condition-bind handler before an
error-restart handler, even when the error-restart handler was bound more
recently. See the section "Default Handlers and Complex Modularity".

While a bound or default handler is executing, that handler and all handlers inside it
are removed from the list of bound or default handlers. This is to prevent infinite
recursion when a handler signals the same condition that it is handling, as in the
following simplistic example:

(condition-bind ((error '(lambda (x) (ferror "foo"))))
(ferror "foo"))

If you want recursion, the handler should bind its own condition.

5.1.2 Signalling Simple Conditions

If a simple condition or a debugger condition not based on error is signalled, the
signalling mechanism searches for a handler on the bound handler and default
handler lists. When it finds one, it invokes it. Otherwise, the first restart handler
for that condition handles it. If no restart handler for the condition is found, signal
returns nil; error enters the Debugger.

5.1.3 Signalling Errors

In practice, if the signal function is applied to an error condition object, signal is
very unlikely to return nil, because most processes contain a restart handler that
handles all error conditions. The function at the base of the stack of most processes
contains a catch-error-restart form that handles error and sys:abort. Thus, if
you are in the Debugger as a result of an error, you can always use ABORT. The
restart handler at the base of the stack always handles sys:abort and either
terminates or restarts the process.

5.1.4 Restriction Due to Scope

A condition must be signalled only in the environment in which the event that it
represents took place, to insure that handlers run in the proper dynamic
environment. Therefore, you cannot sign.al a condition object that has already been
signalled once. In particular, when you are writing a handler, you cannot have that

COND Signalling and Handling Conditions 25

Symbolics, Inc. March 1984

handler signal its condition argument. Similarly, if a condition object is returned by
some program (such as the open function given nil for the :error keyword), you
cannot signal that object.

It is not correct to pass on the condition by signalling the handler's condition
argument. This is incorrect:

(defun condition-handler (condition)
(if something (*throw ...) (signal condition)))

Instead you should do this:

or this:

(defun condition-handler (condition)
(if something (*throw ...) nil))

(defun condition-handler (condition)
(if something (*throw •..) (signal 'some-other-condition)))

5.2 Reference material

signal flavor-name &rest init-options Function
signal is the primitive function for signalling a condition. The argument
flavor-name is a condition flavor symbol. The init-options are the init options
when the condition-object is created; they are passed in the :init message
to the instance. (See the function make-instance.) signal creates a new
condition object of the specified flavor, and signals it. If no handler handles
the condition and the object is not an error object, signal returns nil. If no
handler handles the condition and the object is an error object, the Debugger
assumes control.

In a more advanced form of signal, flavor-name can be a condition object
that has been created with make-condition but not yet signalled. In this
case, init-options is ignored.

error flavor-name &rest init-options Function
error is the function for signalling a condition that is not proceedable. The
argument flavor-name is a condition flavor symbol or an error object, created
by make-condition. The init-options are the init options specified when the
error object is created; they are passed in the :init message. error is similar
to signal but restricted in the following ways:

• error sets the proceed types of the error object to nil so that it cannot
be proceeded.

• If no handler exists, the Debugger assumes control, whether or not the
object is an error object.

26 COND Signalling and Hand~ing Conditions

Symbolics. Inc. March 1984

• error never returns to its caller.

In a more advanced form of error, f1,avor-name can be a condition object
that has been created with make-condition but not yet signalled. In this
case, init-options is ignored.

For compatibility with the old Maclisp error function, error tries to
determine that it has been called with Maclisp-style arguments and turns
into an fsign.al or ferror as appropriate. If f1,avor-name is a string or a
symbol that is not the name of a flavor, and error has no more than three
arguments, error assumes it was called with Maclisp-style arguments.

fsignal format-string &rest format-args Function
fsignal is a simple function for signalling when you do not care to use a
particular condition. fsignal signals dbg:proceedable-ferror. (See the
flavor dbg:proceedable-ferror.) The arguments are passed as the
:format-string and :format-args init keywords to the error object.

ferror format-string &rest format-args Function
ferror is a simple function for signalling when you do not care what the
condition is. ferror signals ferror. (See the flavor ferror.) The arguments
are passed as the :format-string and :format-args init keywords to the
error object.

The old (ferror nil ...) syntax continues to be accepted for compatibility
reasons indefinitely; the nil is ignored. An error is signalled if the first
argument is a symbol other than nil; the first argument must be nil or a
string.

sys:parse-ferror format-string &rest format-args Function
Signals an error of flavor sys:parse-ferror. format-string and format-args
are passed as the :format-string and :format-args init options to the error
object.

See the flavor sys:parse-ferror.

errorp object Function
errorp returns t if object is an error object, and nil otherwise. That is:

(errorp x) <=> (typep x 'error)

make-condition f1,avor-name &rest init options Function
make-condition creates a condition object of the specified flavor with the
specified init-options. This object can then be signalled by passing it to
signal or error. Note that you are not supposed to design functions that
indicate errors by returning error objects; functions should always indicate
errors by signalling error objects. This function makes it possible to build
complex systems that use subroutines to generate condition objects so that
their callers can signal them.

COND Signalling and Handling Conditions 27

Symbolics, Inc. March 1984

check-arg var-name predicate description Macro
The check-arg form is useful for checking arguments to make sure that
they are valid. A simple example is:

(check-arg foo stringp "a string")

foo is the name of an argument whose value should be a string. stringp is
a predicate of one argument, which returns t if the argument is a string.
"a string" is an English description of the correct type for the variable.

The general form of check-arg is

(check-arg var-name
predicate
description>

var-name is the name of the variable whose value is of the wrong type. If
the error is proceeded this variable will be setq'ed to a replacement value.
predicate·is a test for whether the variable is of the correct type. It can be
either a symbol whose function definition takes one argument and returns
non-nil if the type is correct, or it can be a nonatomic form which is
evaluated to check the type, and presumably contains a reference to the
variable var-name. description is a string which expresses predicate in
English, to be used in error messages.

The predicate is usually a symbol such as rlXJ>, stringp, listp, or closurep,
but when there isn't any convenient predefined predicate, or when the
condition is complex, it can be a form. For example:

(check-arg a
(and (numberp a) (~a 10.) (>a 0.))
"a number from one to ten")

If this error got to the Debugger, the message

The argument a was 17, which is not a number from one to ten.

would be printed.

In general, what constitutes a valid argument is specified in two ways in a·
check-arg. description is human-understandable and predicate is executable.
It is up to the user to ensure that these two specifications agree.

check-arg uses predicate to determine whether the value of the variable is of
the correct type. If it is not, check-arg signals the
sys:wrong-type-argument condition. See the flavor
sys:wrong-type-argument.

check-arg-type var-name type-name [description] Macro
This is a useful variant of the check-arg form. A simple example is:

(check-arg foo :number)

foo is the name of an argument whose value should be a number. :number

28 COND Signalling and Handling Conditions

Symbolics, Inc. March 1984

is a value which is passed as a second argument to typep; that is, it is a
symbol that specifies a data type. The English form of the type name, which
gets put into the error message, is found automatically.

The general form of check-arg-type is:

C check-arg-type var-name
type-name
description)

var-name is the name of the variable whose value is of the wrong type. If
the error is proceeded this variable will be setq'ed to a replacement value.
type-name describes the type which the variable's value ought to have. It can
be exactly those things acceptable as the second argument to typep.
description is a string which expresses predicate in English, to be used in
error messages. It is optional. If it is omitted, and type-name is one of the
keywords accepted by typep, which describes a basic Lisp data type, then the
right description will be provided correctly. If it is omitted and type-name
describes some other data type, then the description will be the word "a"
followed by the printed representation of type-name in lowercase.

argument-typecase arg-name &body clauses Special Form
argument-typecase is a hybrid of typecase and check-arg-type. Its
clauses look like clauses to typecase. argument-typecase automatically
generates an otherwise clause which signals an error. The proceed types to
this error are similar to those from check-arg; that is, you can supply a new
value that replaces the argument that caused the error.

For example, this:

(defun foo (x)
(argument-typecase x

(:symbol (print 'symbol))
(:number (print 'number))))

is the same as this:

(defun foo (x)
(check-arg x

(typecase x
(:symbol (print 'symbol) t)
(:number (print 'number) t)
(otherwise n i 1))

"a symbol or a number"))

COND Signalling and Handling Conditions 29

Symbolics, Inc. March 1984

6. Def a ult Handlers and Complex Modularity

When more than one handler exists for a condition, which one should be invoked?
The signalling mechanism has an elaborate rule, but in practice, it usually invokes
the innermost handler. See the section "Finding a Handler". "Innermost" is defined
dynamically and thus means "the most recently bound handler".

This decision is made on the basic principle of modularity and referential
transparency: a function should behave the same way, regardless of what calls it.
Therefore, whether a handler bound by a function gets invoked should not depend
on what is going on with that function's callers.

For example, suppose function a sets up a handler to deal with the
fs:file-not-found condition, and then calls procedure b to perform some service for
it. Now, unbeknownst to a, h sometimes opens a file, and h has a condition
handler for fs:file-not-found If h's file is not found, h's handler handles the error
rather than a's. This is as it should be, because it should not be visible to a that b
uses a file (this is a hidden implementation detail of b). a's unrelated condition
handler should not meddle with h's internal functioning. Therefore, the signalling
mechanism follows a basic inside-to-outside searching rule.

Sometimes a function needs to signal a condition but still handle the condition itself
if none of its callers handles it. On first encounter, this need seems to require an
outside-to-inside searching rule instead of the inside-to-outside searching rule
mandated by modularity considerations. How can you circumvent the rules to allow
a function to han~le something only if no outer function handles it?

Several strategies are available for dealing with this. Because of our lack of
experience with the condition signalling system, we are not yet sure which of these
are better than others. We are providing several mechanisms in order to allow
experimentation and flexibility.

• The simplest solution is to provide a proceed type for proceeding from the
Debugger. That is, your program signals an error to allow callers to handle
the condition. If none of them handles it, the Debugger assumes control.
Provided that the user decides to use the proceed type, your program then gets
to handle the condition. If what your program wanted to do was to prompt
the user anyway, this might be the right thing. This is most likely true if you
think that a program error is probably happening and the user might want to
be able to trace and manipulate the stack using the Debugger.

•Another simple solution is to sign.al a condition that is not an error. signal
returns nil when no handler is found, and your program can take appropriate
action.

• Use condition-bind-default to create a handler on the default handler list.

30 COND Signalling and Handling Conditions

Symbolics. Inc. March 1984

The signalling mechanism searches this list only after searching through all
regular bound handlers. One drawback of this scheme is that it works only to
one level. If you have three nested functions, you cannot get outside-to-inside
modularity for all three, because only two lists exist, the bound list and the
default list. This facility is probably good enough for some applications
however.

• Use dbg:condition-handled-p to determine whether a handler has been
bound for a particular flavor. This has the advantage that it works for any
number of levels of nested handler, instead of only two. One disadvantage is
that it can return :maybe, which is ambiguous.

The simple ~olutions work only if your program is doing the signalling. If some
other program is signalling a condition, you cannot control whether the condition is
an error condition or whether it has any proceed types; you can only write handlers.

6.1 Reference Material

dbg:condition-handled-p condition-flavor Function
dbg:condition-handled-p searches the bound handler list and the default
handler list to see whether a handler exists for condition-flavor. This
function should be called only from a condition-bind handler function. It
starts looking from the point, in the lists from which the current handler was
invoked and proceeds to look outwards through the bound handler list and
the default handler list. It returns a value to indicate what it found:

Value
:maybe

nil
t

Meaning
condition-bind h~ers for the flavor exist. These
handlers are permitt to decline to handle the condition.
You cannot determine w at would happen without actually
running the handler.
No handler exists.
A handler exists.

COND Signalling and Handling Conditions

Symbolics, Inc. March 1984

7. Interactive Handlers

The interactive handler list contains one element: a handler that invokes the
Debugger if the condition is built on dbg:debugger-condition and declines to
handle the condition if it is not. No standard procedure exists for changing the
contents of this list.

31

One of the original design goals of the condition signalling mechanism was to support
building complex applications that could take over the function of the Debugger and
provide their own. The exact definition of the problem is not completely clear
however. We are not sure whether the current system provides this functionality.

If you are writing an application that needs to take over error handling completely,
you might be _able to create a condition-bind handler that handles error, to
prevent invocation of the Debugger. This strategy might have problems that we have
not anticipated. If you really need to get the Debugger out of the way, you might.
try changing the interactive handler list. We have not defined a way to do this;
read the code for complete details. We cannot guarantee that whatever you do will
work in future releases. However, we encourage your experimentation. Please
contact us so that we can help you if possible.

Briefly, the variable holding the list is named dbg:*interactive-handlers*, which
holds an interactive handler object. The list is reset to hold the standard Debugger
when you warm boot the machine.

An interactive handler object must handle the following messages:

:handle-condition-p cond Message
:handle-condition-p examines cond which is a condition object. It returns
nil it if declines to handle the condition and something other than nil when
it is prepared to handle the condition.

:handle-condition cond ignore Message
cond is a condition object. You should handle this condition, ignoring the
second argument. :handle-condition can return values or throw in the
same way that condition-bind handlers can.

32 COND Signalling and Handling Conditions

Symbolics. Inc. March 1984

COND Signalling and Handling Conditions 33
Symbolics, Inc. March 1984

8. Restart Handlers

One way to handle an error is to restart at some earlier point the program that got
the error. A program can specify points where it is safe or convenient for it to be
restarted should a condition signal occur during processing a function. The basic
special form for doing this is called error-restart. The following example is taken
from the system code:

(defun connect (address contact-name
&optional (window-size default-window-size)
(timeout(* 10. 60.))
&aux conn real-address (try 0))

(error-restart (connection-error

forms ...))

"Retry connection to -A at -s with longer timeout"
address contact-name)

This code fragment evaluates forms and returns the final value(s) if successful. If
the Debugger assumes control as a result of a chaos:connection-error condition,
the user is given the opportunity of restarting the program. The Debugger's prompt
message would be something like this:

What does a contact-name look like:

s-A: "Retry connection to SCRC at FILE 1 with longer timeout"

If the user were to press s-A at this point, the forms implementing the connection
would be evaluated again. That is, the body of the error-restart would be started
again from the beginning.

Two variations on this basic paradigm are provided. error-restart-loop is an
infinite loop version of error-restart. It always starts over regardless of whether a
condition has been signalled. catch-error-restart never restarts, even when a
condition is signalled. Instead it always returns, returning either the values from
the body (if successful) or nil if a condition signal occurred.

catch-error-restart is the most primitive version of this control structure. The
other two are built from it. It too has a conditional variant, catch-error-restart-if,
for binding a restart handler conditionally.

A common paradigm is to use one of these forms in the command loop of an
interactive program, with condition-flavor being (error sys:abort). This way, if an
unhandled error occurs, the user is offered the option of returning to the command
loop, and the ABORT key returns to the command loop. Which form you use depends
on the nature of your command loop.

34 COND Signalling and Handling Conditions

Symbolics. Inc. March 19B4

8.1 Reference material

The use of "error-" in the names of these functions has no real significance. They
could have been called condition-restart, condition-restart-loop, and so on,
because they apply to all conditions.

error-restart (condition-flavor format-string format-arg ... J body... Special Form
This form establishes a restart handler for condition-flavor and then
evaluates the body. If the handler is not invoked, error-restart returns the
values produced by the last form in the body and the restart handler
disappears. When the restart handler is invoked, control is thrown back to
the dynamic environment inside the error-restart form and execution of the
body starts all over again. The format is:

C error-restart (condition-flavor format-string . format-args)
form-1
form-2
...)

condition-flavor is either a condition or a list of conditions that can be
handled. format-string and format-args are a control string and a list of
arguments (respectively) to be passed to format to construct a meaningful
description of what would happen if the user were to invoke the handler.
format-args are evaluated when the handler is bound. The Debugger uses
these values to create a message explaining the intent of the restart handler.

Note: this is not compatible with the definition of error-restart in previous
releases, (System 210 and earlier).

error-restart-loop (condition-flavor format-string format-args ...) Special Form
body ...

error-restart-loop establishes a restart handler for condition-flavor and then
evaluates the body. If the handler is not invoked, error-restart-loop
evaluates the body again and again, in an infinite loop. Use the return
function to leave the loop. This mechanism is useful for interactive top
levels.

If a condition is signalled during the execution of the body and the restart
handler is invoked, control is thrown back to the dynamic environment inside
the error-restart-loop form and execution of the body is started all over
again. The format is:

(error-restart- loop (condition-flavor format-string . format-args)
form-1
form-2
...)

COND Signalling and Handling Conditions 35

Symbolics, Inc. March 1984

condition-flavor is either a condition or a list of conditions that can be
handled. format-string and format-args are a control string and a list of
arguments (respectively) to be passed to format to construct a meaningful
description of what would happen if the user were to invoke the handler.
The Debugger uses these values to create a message explaining the intent of
the restart handler.

catch-error-restart (condition-flavor format-string . format-args) Special Form
body ...

catch-error-restart establishes a restart handler for condition-flavor and
then evaluates the body. If the handler is not invoked, catch-error-restart
returns the values produced by the last form in the body, and the restart
handler disappears. If a condition is signalled during the execution of the
body and the restart handler is invoked, control is thrown back to the
dynamic environment of the catch-error-restart form. In this case,
catch-error-restart also returns nil as its first value and something other
than nil as its second value. Its format is:

(catch-error- res tart (condition-flavor format-string . format-args)
form-1
form-2
...)

condition-flavor is either a condition or a list of conditions that can be
handled. format-string and format-args are a control string and a list of
arguments (respectively) to be passed to format to construct a meaningful
description of what would happen if the user were to invoke the handler.
The Debugger uses these values to create a message explaining the intent of
the restart handler.

catch-error-restart-if cond-form (condition-flavor format-string . Special Form
format-args) body ...

catch-error-restart-if establishes its restart handler conditionally. In all
other respects, it is the same as catch-error-restart. Its format is:

C catch-error-restart-if cond-form
(condition-flavor format-string . format-args)

form-1
form-2
...)

catch-error-restart-if first evaluates cond-form. If the result is nil, it
evaluates the body as if it were a progn but does not establish any handlers.
If the result is not nil, it continues just like catch-error-restart,
establishing the handlers and executing the body.

36 COND Signalling and Handling Conditions

Symbolics. Inc. March 1984

8.2 Invoking Restart Handlers Manually

dbg:invoke-restart-handlers object &key flavors Function
dbg:invoke-restart-handlers searches the list of restart handlers to find a
restart handler for object. The flavors argument controls which restart
handlers are examined. flavors is a list of condition names. When flavors is
omitted, the function examines every restart handler. When flavors is
provided, the function examines only those restart handlers that handle at
least one of the conditions on the list.

The first restart handler that it finds to handle the condition is invoked and
given object. It returns nil if no appropriate restart handler is found.

dbg:invoke-restart-handlers can be called by handlers set up by condition-bind
or condition-bind-default. The object argument should be the condition object
passed to the handler. The handler calls this function to bypass the interactive
handlers list, letting the innermost restart handler handle the condition. A program
that wants to attempt to continue with a computation in the presence of errors
might find this useful. For example, it could be used to support batch-mode
compilation, with the user away from the console.

COND Signalling and Handling Conditions 37

Symbolics. Inc. March 1984

9. Proceeding

In some situations, execution can proceed past the point at which a condition was
signalled. Events for which this is the case are called proceedable conditions. Some
external agent makes the decision about whether it is reasonable to proceed after
repairing the original problem. The agent is either a condition°bind handler or
the user operating the Debugger.

In general, many different ways are available to proceed from a particular condition.
Each way is identified by a proceed type, which is represented as a symbol.

9.1 Protocol for Proceeding

For proceeding to work, two conceptual agents must agree:

• The programmer who wrote the program that signals the condition;

• The programmer who wrote the condition-bind handler that decided to
proceed from the condition, or else the user who told the Debugger to proceed.

The signaller signals the condition and provides the various proceed types. The
handler chooses from among the proceed types to make execution proceed.

Each agent has certain responsibilities to the other; each must follow the protocol
described below to make sure that any handler interacts correctly with any signaller.
The following description should be considered a two-part protocol that each agent
must follow in order to communicate correctly with the other.

In very simple cases, the signaller can use fsign.al, which does not require any new
flavor definitions.

In all other cases, the signaller signals the condition using sign.al or
signal-proceed-case. The signaller also defines a condition flavor with at least one
method to handle a proceed type. The way to define a method that creates a new
proceed type is somewhat unusual in that it uses a style of method combination
called :case combination. Here's an example from the system:

(defmethod (sys:subscript-out-of-bounds :case :proceed :new-subscript)
(&optional (sub (prompt-and-read ':number

"Supply a different subscript. 0

(values ':new-subscript sub))

"Subscript to use instead: ")))

This code fragment creates a proceed type called :new-subscript for the condition
flavor sys:subscript-out-of-bounds. New proceed types are always defined by
adding a :case :proceed method handler to the condition flavor. The method must
always return values rather than throwing.

38 COND Signalling and Handling Conditions

Symbolics, Inc. March 1984

In :case method combination, the first argument to the :proceed message is like a
subsidiary- message name, causing a further dispatch just as the original. message
name caused a primary dispatch. The method from the example is invoked
whenever an object of this flavor receives a :proceed message like this:

(send obj ':proceed ':new-subscript new-sub)

The variables in the lambda list for the method come from the rest of the
arguments of the send.

All of the arguments to a :proceed method must be optional arguments. The
:proceed method should provide default values for all its arguments. One useful
way of doing· this is to prompt a user for the arguments using the query-io stream.
The example uses prompt-and-read. If all the optional arguments were supplied,
the :proceed method must not do any input or output using query-io.

This facility has been defined assuming that condition-bind handlers would supply
all the arguments for the method themselves. The Debugger runs this method and
does not supply arguments, relying on the method to prompt the user for the
arguments.

As in the example, the method should have a documentation string as the first form
in its body. The :document-proceed-type message to a proceedable condition
object displays the string. This string is used by the Debugger as a prompt to
describe the proceed type. For example, the subscript e~ple might result in the
following Debugger prompt:

s-A: Supply a different subscript

The string should be phrased as a one-line description of the effects of proceeding
from the condition. It should not have any leading or trailing newlines. (You can
use the messages that the Debugger prints out to describe the effects of the s
commands as models if you are interested in stylistic consistency.)

Sometimes a simple fixed string is not adequate. You can provide a piece of Lisp
code to compute the documentation text at run time by providing your own method
for :case :document-proceed-type. This method definition takes the following
form:

(def method (condition-flavor : case : document-proceed-type proceed-type)
(stream>

body ...)

The body of the method should print documentation for proceed-type of
condition-flavor onto stream.

The body of the :proceed method can do anything it wants. In general, it tries to
repair the state of things so that execution can proceed past the point at which the
condition was signalled. It can have side-effects on the state of the environment, it
can return values so that the function that called signal can try to fix things up, or
it can do both. Its operation is invisible to the handler; the signaller is free to divide

COND Signalling and Handling Conditions 39

Symbolics, Inc. March 1984

the work between the function that calls signal and the :proceed method as it
sees fit. When the :proceed method returns, signal returns all of those values to
its caller. That caller can examine them and take action accordingly.

The meaning of these returned values is 'Strictly a matter of convention between the
:proceed method and the function calling signal. It is completely internal to the
signaller and invisible to the handler. By convention, the first value is often the
name of a proceed type. See the section "Signallers".

:proceed can return nil

A :proceed method can return a first value of nil if it declines to proceed from the
condition. If a nil returned by a :proceed method becomes the return value for a
condition-bind handler, this signifies that the handler has declined to handle the
condition, and the condition continues to be signalled. When the :proceed message
was sent by the Debugger, the Debugger prints a message saying that the condition
was not proceeded, and it returns to its command level. This might be used by an
interactive :proceed method that gives the user the opportunity either to proceed or
to abort; if the user aborts, the method returns nil. Returning nil from a
:proceed method should not be used as a substitute for detecting earlier (such as
when the condition object is created) that the proceed type is inappropriate for that
condition.

9.2 Proceed Type Messages

By default, condition objects have to handle all proceed types defined for the
condition flavor. Condition objects can be created that handle only some of the
proceed types for their condition flavor. When the signaller creates the condition
object (with signal or make-condition), it can use the :proceed-types init option
to specify which proceed types the object accepts. The value of the init option is a
list of keyword symbols naming the proceed types.

(signal 'my-condition ':proceed-types '(:abc))

The :proceed-types message to a condition object returns a list of keywords for the
proceed types that the object is prepared to handle. (See the method
(:method condition :proceed-types).)

The :proceed-type-p message examines the list of valid proceed types to see
whether it contains a particular proceed type. (See the method
(:method condition :proceed-type-p).)

A condition flavor might also have an :init daemon that could modify its
dbg:proceed-types instance variable.

40 GOND Signalling and Handling Conditions

Symbolics. Inc. March 1984

9.3 Proceeding with condition-bind handlers

Suppose the handler is a condition-bind handler function. Just to review, when
the condition is signalled, the handler function is called with one argument, the
condition object. The handler function can throw to some tag, return nil to say
that it doesn't want to handle the condition, or try to proceed the condition.

The handler must not attempt to proceed using an invalid proceed type. It must
determine which proceed types are valid for any particular condition object. It must
do this at run-time because condition objects can be created that do not handle all of
the proceed types for their condition flavor. (See the init option
(:method condition :proceed-types).) In addition, condition objects created with
error instead of sign.al do not have any proceed types. The handler can use the
:proceed-types and :proceed-type-p messages to determine which proceed types
are available.

To proceed from a condition, a handler function sends the condition object a
:proceed message with one or more arguments. The first argument is the proceed
type (a keyword symbol) and the rest are the arguments for that proceed type. All
of the standard proceed types are documented with their condition flavors. Thus the
programmer writing the handler function can determine the meanings of the
arguments. The handler function must always pass all of the arguments, even
though they are optional.

Sending the :proceed message should be the last thing the handler does. It should
then return immediately, propagating the values from the :proceed method back to
its caller. Determining the meaning of the returned values is the business of the
signaller only; the handler should not look at or do anything with these values.

9.4 Proceed Type Names

Any symbol can be used as the name of a proceed type, although using keyword
symbols is conventional. The symbols :which-operations and
:case-documentation are not valid names for proceed types because they are
treated specially by the :case flavor combination. Do not use either of these symbols
as the name of a proceed type when you create a new condition flavor.

9.5 Signallers

Signallers can use the signal-proceed-case special form to signal a proceedable
condition. signal-proceed-case assumes that the first value returned by every
proceed type is the keyword symbol for that proceed type. This convention is not
currently enforced.

COND Signalling and Handling Conditions 41

Symbolics, Inc. March 1984

9.6 Reference material

signal-proceed-case Special Form
signal-proceed-case signals a proceedable condition. It has a clause to
handle each proceed type of the condition. It has a slightly more complicated
syntax than most special forms: you provide some variables, some argument
forms, and some clauses:

(signal-proceed-case ((varl var2 ...) argl arg2 ...)
Cproceed-type-1 bodyl ...)
Cproceed-type-2 body2 ...)
...)

The first thing this form does is to call signal, evaluating each arg form to
pass as an argument to signal. In addition to the arguments you supply,
signal-proceed-case also specifies the :proceed-types init option, which it
builds based on the proceed-type-i clauses.

When signal returns, signal-proceed-case treats the first returned value as
the symbol for a proceed type. It then picks a proceed-type-i clause to run,
based on that value. It works in the style of selectq: each clause starts with
a proceed type (a keyword symbol), or a list of proceed types, and the rest of
the clause is a list of forms to be ~valuated. signal-proceed-case returns
the values produced by the last form.

varl, var2, and so on, are bound to successive values returned from signal
for use in the body of the proceed-type-i clause selected.

One proceed-type-i can be nil. If signal returns nil, meaning that the
condition was not handled, signal-proceed-case runs the nil clause if one
exists, or simply returns nil itself if no nil clause exists. Unlike selectq, no
otherwise clause is available for signal-proceed-case.

The value passed as the :proceed-types option to signal lists the various
proceed types in the same order as the clauses, so that the Debugger displays
them in that order to the user and the RESUME command runs the first one.

42 COND Signalling and Handling Conditions

Symbolics. Inc. March 1984

0

0

COND Signalling and Handling Conditions 43

Symbolics. Inc. March 1984

10. Issues for Interactive Use

10.1 Tracing Conditions

trace-conditions Variable
The value of this variable is a condition or a list of conditions. It can also be
t, meaning all conditions, or nil, meaning none.

If any condition is signalled that is built on the specified flavor (or flavors),
the Debugger immediately assumes control, before any handlers are searched
or called.

If the user proceeds, by using RESUME, signalling continues as usual. This
might in fact revert control to the Debugger again. This variable is provided
for debugging purposes only. It lets you trace the signalling of any condition
so that you can figure out what conditions are being signalled and by what
function. You can set this variable to error to trace all error conditions, for
example, or you can be more specific.

This variable replaces the errset variable from earlier releases.

10.2 Breakpoints

The functions breakon and unbreakon can be used to set breakpoints in a
program. They use the encapsulation mechanism like trace and advise to force
the function to signal a condition when it is called. See the section
"Encapsulations".

breakon &optional function-spec condition-form Function
With no arguments, breakon returns a list of all functions with breakpoints
set by breakon.

breakon sets a breakpoint for the function-spec. Whenever function-spec is
called, the condition sys:call-trap is signalled, and the Debugger assumes
control. At this point, you can inspect the state of the Lisp environment and
the stack. Proceeding from the condition then causes the program to
continue to run.

The first argument can be any function spec, so that you can trace methods
and other functions not named by symbols. See the section "Function
Specs".

condition-form can be used for making a conditional breakpoint.
condition-form should be a Lisp form. It is evaluated when the function is

44 COND Signalling and Handling Conditions

Symbolics, Inc. March 1984

called. If it returns nil, the function call proceeds without signalling
anything. condition-form arguments from multiple calls to breakon
accumulate and are treated as an or condition. Thus, when any of the
forms becomes true, the breakpoint "goes off'. condition-form is evaluated in
the dynamic environment of the function call. You can inspect the
arguments of function-spec by looking at the variable arglist.

unbreakon &optional function-spec condition-form Function
Turns off a breakpoint set by breakon. If function-spec is not provided, all
breakpoints set by breakon are turned off. If condition-form is provided, it
turns off only that condition, leaving any others. If condition-form is not
provided, the entire breakpoint is turned off for that function.

Calling a function for which a breakpoint is set signals a condition with the following
message:

Break on entry to function name

It provides a :no-action proceed type, which allows the function entry to proceed.
The "trap on exit" bit is set in the stack frame of the function call, so that when
the function returns or is thrown through another condition is signalled. Similarly,
the "Break on exit from marked frame" message and the :no-action proceed type
are provided, allowing the function return to proceed.

10.3 Debugger Bug Reports

The c-M command in the Debugger sends a bug report, creating a new process and
running the bug function in that process. By default, the first argument to bug is
the symbol lispm, so that the report is sent to the BUG-LISPM mailing list. Also
by default, the mail-sending text buffer initially contains a standard set of
information dumped by the Debugger. You can control this behavior for your own
condition flavors. You can control the mailing list to which the bug report is sent by
defining your own primary method for the following message.

:bug-report-recipient-system Message
This message is sent by the c-M command in the Debugger to find the
mailing list to which to send the bug report mail. The default method (the
one in the condition flavor) returns lispm, and this is passed as the first
argument to the bug function.

You can control the initial contents of the mail-sending buffer by altering the
handling of the following message, either by providing your own primary method to
replace the default message, or by defining a :before or :after daemon to add your
own specialized information before or after the default text.

COND Signalling and Handling Conditions 45

Symbolics, Inc. March 1984

:bug-report-description stream number Message
This message is sent by the c-M command in the Debugger to print out the
text that is the initial contents of the mail-sending buffer. The handler
should simply print whatever information it considers appropriate onto stream.
number is the numeric argument given to c-M. The Debugger interprets
number as the number of frames from the backtrace to include in the initial
mail buffer.

10.4 Debugger Special Commands

When the Debugger assumes control because an error condition was signalled and
not handled, it offers the user various ways to proceed or to restart. Sometimes you
want to offer the user other kinds of options. In the system, the most common
example of this occurs when you forget to type a pack.age prefix. It signals a
sys:unbound-symbol error and offers to let you use the symbol from the right
package instead. This is neither a proceed type nor a restart-handler; it is a
Debugger special command.

You can add one or more special commands to· any condition flavor. For any
particular instance, you can control whether to offer the special command. For
example, the pack.age-guessing service is not offered unless some other symbol with
the same print name exists in a different pack.age. Special.commands are called only
by the Debugger; condition-bind handler functions never see them.

Special commands provide the same kind of functionality that a condition-bind
handler does. There is no reason, for example, that the pack.age-prefix service could
not have been provided by condition-bind It is only a matter of convenience to
have it in a special command.

To add special commands to your condition flavor, you must mix in the flavor
dbg:special-commands-mixi.n, which provides both the instance variable
dbg:special-commands and several method combinations. Each special command
to a particular flavor is identified by a keyword symbol, just the same way that
proceed types are identified. You can then create handlers for any of the following
messages:

:special-command command-type Message
:special-command is sent when the user invokes the special command. It
uses :case method-combination and dispatches on the name of the special
command. No arguments are passed. The syntax is:

(defmethod (my-flavor :case :special-command my-command-keyword) ()
"documentation"
body ...)

Any communication with the user should take place over the query-io

46 COND Signalling and Handling Conditions

Symbolics, Inc. March 1984

stream. The method can return nil to return control to the Debugger or it
can return the same thing that any of the :proceed methods would have
returned in order to proceed in that manner.

:document-special-command command-type stream Message
:document-special-command prints the documentation of command-type
onto stream. If you don't handle this message explicitly, the default handler
uses the documentation string from the :special-command method. You
can, however, handle this message in order to print a prompt string that has
to be computed at run-time. This is analogous to :document-proceed-type.
The_ syntax is:

C defmethod (my-flavor :case :document-special-command my-command-keyword)
(stream)

body ...)

:initialize-special-commands Message
The Debugger sends :initialize-special-commands after it prints the error
message. The methods are combined with :progn combination, so that each
one can do some initialization. In particular, the methods for this message
can remove items from the list dbg:special-commands in order to decide
not to offer these special commands.

10.5 Special Keys

The system normally handles the ABORT and SUSPEND keys so that ABORT aborts what
you are doing and SUSPEND enters a breakpoint. Without a CONTROL modifier, a
keystroke command takes effect only when the process reads the character from the
keyboard; with the CONTROL modifier, a keystroke command takes effect immediately.
The META modifier means "do it more strongly"; M-ABORT resets the process entirely,
and M-SUSPEND enters the Debugger instead of entering a simple read-eval-print loop.

A complete and accurate description of what these keys do requires a discussion of
conditions and the Debugger.

With no CONTROL modifier, ABORT and SUSPEND are detected when your process tries
to do input from the keyboard (typically by doing an input stream operation such as
:tyi on a window). Therefore, if your process is computing or waiting for something
else, the effects of the keystrokes are deferred until your process tries to do input.

With a CONTROL modifier, ABORT and SUSPEND are intercepted immediately by the
Keyboard Process, which sends your process an :interrupt message. Thus, it
performs the specified function immediately, even if it is computing or waiting.

ABORT Prints the following string on the terminal-io stream, unless it
suspects that output on that stream might not work.

COND Signalling and Handling Conditions 47
Symbolics. Inc. March 1984

M-ABORT

SUSPEND

M-SUSPEND

[Abort]

It then signals sys:abort, which is a simple condition. Programs
can set up bound handlers for sys:abort, although most do not.
Many programs set up restart handlers for sys:abort; most
interactive programs have such a handler in their command loops.
Therefore, ABORT usually restarts your program at the innermost
command loop. Inside the Debugger, ABORT has a special meaning.

Prints the following string on the terminal-io stream, unless it
suspects that output on that stream might not work.

[Abort all]

It th~n sends your process a :reset message, with the argument
:always. This has nothing to do with condition signalling. It
just resets the process completely, unwinding its entire stack.
What the process does after that depends on what kind of process
it is and how it was created: it might start over from its initial
function, or it might disappear. See the document Processes.

Calls the break function with the argument break. This has
nothing to do with condition signalling. See the special form
break.

Causes the Debugger to assume control without signalling any
condition. The Debugger normally expects to be invoked because
of some condition object, though, which it needs to interact
properly with proceeding and restarting. Therefore, a condition
object of flavor break is created in order to give the Debugger
something to work with. break is not an error flavor; it is built
on condition. It has no proceed types, but RESUME in the
Debugger causes the Debugger to return and the process to
resume what it was doing.

Several techniques are· available for overriding the standard operation of ABORT and
SUSPEND when they are being used with modifier keys.

• For using these keys with the CONTROL modifier, use the asynchronous
character facility. See the section "Flavors and Messages".

• Defining your own hook function and binding tv:kbd-tyi-hook to it also
overrides the interception of these characters with no CONTROL modifier. See
the section "Flavors and Messages". ·

At the Debugger command loop, ABORT is the same as the Debugger c-i! command.
It throws directly to the innermost restart handler that is appropriate for either the
current error or the sys:abort condition.

When the Debugger assumes control, it displays a list br commands appropriate to
the current condition, along with key assignments for each. Proceed types come

48 COND Signalling and Handling Conditions

Symbolics, Inc. March 1984

first, followed by special commands, followed by restart handlers. One alphabetic key
with the SUPER modifier is assigned to each command on the list. In addition, ABORT
is always assigned to the innermost restart handler that handles sys:abort or the
condition that was signalled; RESUME is always assigned to the first proceed type in
the :proceed-types list. See the section "Proceed Type Messages".

If RESUME is not otherwise used, it invokes the first error restart that does not
handle abort. When you enter the Debugger with M-SUSPEND, RESUME resumes the
process.

You can customize the Debugger, assigning certain keystrokes to certain proceed
types or special commands, by setting these variables in your init file:

dbg:*proceed-type-special-keys• Variable
The value of this variable should be an alist associating proceed types with
characters. When an error supplies any of these proceed types, the Debugger
assigns that proceed type to the specified key. For example, this is the
mechanism by which the :store-new-value proceed type is offered on the
M-C keystroke.

dbg:*special-command-special-keys• Variable
The value of this variable should be an alist associating names of special
commands with characters. When an error supplies any of these special
commands, the Debugger assigns that special command to the specified key.
For example, this is the mechanism by which the :package-dwim special
command is offered on the c-sh-P keystroke.

COND Signalling and Handling Conditions 49

Symbolics, Inc. March 1984

11. Condition Flavors Reference

A condition object is an instance of any flavor built out of the condition flavor. An
error object is an instance of any flavor built out of the error flavor. The error
flavor is built out of the dbg:debugger-condition flavor, which is built out of the
condition flavor. Thus, all error objects are also condition objects.

Every flavor of condition that is instantiated must handle the :report message.
(Flavors that just define sets of conditions need not handle it). This message takes
a stream as its argument and prints out a textual message describing the condition
on that stream. The printed representation of a condition object is like the default
printed representation of any instance when slashifying is turned on. However,
when slashifying is turned off (by princ or the -A format directive), the printed
representation of a condition object is its :report message. Example:

(condition-case (co)
(open "f:>a>b.c")

(fs:file-not-found
(prinl co))) prints out #<QFILE-NOT-FOUNO 33712233>

(condition-case (co)
(open "f:>a>b.c")

(fs:file-not-found
(princ co))) prints out The file was not found

For F:>a>b.c

11.1 Messages and lnit Options

These messages can be sent to any condition object. They are handled by the basic
condition flavor, on which all condition objects are built. Some particular condition
flavors handle other messages; those are documented along with the particular
condition flavors in another section. See the section "Standard Conditions".

:document-proceed-type proceed-type stream of condition Method
Prints out a description of what it means to proceed, using the given
proceed-type, from this condition, on stream. This is used mainly by the
Debugger to create its prompt messages. Phrase such a message as an
imperative sentence, without any leading or trailing return characters. This
sentence is for the human users of the machine who read this when they
have just been dumped unexpectedly into the Debugger. It should be
composed so that it makes sense to a person to issue that sentence as a
command to the system.

50 COND Signalling and Handling Conditions

Symbolics. Inc. March 1984

:proceed-type-p proceed-type of condition Method
Returns t if proceed-type is one of the valid proceed types of this condition
object. Otherwise, returns nil.

:proceed-types of condition Method
Returns a list of all the valid proceed types for this condition.

:set-proceed-types new-proceed-types of condition Method
Sets the list of valid proceed types for this condition to new-proceed-types.

:proceed-types proceed-types (for condition) lnit Option
Defines the set of proceed types to be handled by this instance. proceed-types
is a list of proceed types (symbols); it must be a subset of the set of proceed
types understood by this flavor. If this option is omitted, the instance is able
to handle all of the proceed types understood by this flavor in general, but by
passing this option explicitly, a subset of acceptable proceed types can be
established. This is used by signal-proceed-case.

If only one way to proceed exists, proceed-types can be a single symbol instead
of a list.

If you pass a symbol that is not an understood proceed type, it is ignored. It
does not signal an error because the proceed type might become understood
later when a new defmethod is evaluated; if not, the problem is caught
later.

The order in which the proceed types occur in the list controls the order in
which the Debugger displays them in its list. Sometimes you might want to
select an order that makes more sense for the user, although usually this is
not important. The most important thing is that the RESUME command in
the Debugger is assigned to the first proceed type in the list.

:special-commands of condition Method
Returns a list of all Debugger special commands for this condition. See the
section "Debugger Special Commands".

:special-command-p command-type of condition Method
Returns t if command-type is a valid Debugger special command for this
condition object; otherwise, returns nil.

:report stream of condition Method
Prints the text message associated with this object onto stream. The
condition flavor does not support this itself, but it is a required message,
and any flavor built on condition that is instantiated must support this
message.

COND Signalling and Handling Conditions 51

Symbolics, Inc. March 1984

:report-string of condition Method
Returns a string containing the report message associated with this object.
It works by sending :report to the object.

11.2 Standard Conditions

This section presents the standard condition flavors provided by the system. Some
of these flavors are the flavors of actual condition objects that get instantiated in
response to certain conditions. Others never actually get instantiated, but are used
to build other flavors.

In some cases, the flavor that the system uses to signal an error is not exactly the
one listed here, but rather a flavor built on the one listed here. This often comes
up when the same error can be reported by different programs that implement a
generic protocol. For example, the condition signalled by a remote file-syste~ stream
when a file is not found is different from the one signalled by a local file-system
stream; however, only the generic fs:file-not-found condition should ever be handled
by programs, so that a program works regardless of what kind of file-system stream
it is using. The exact flavors signalled by each file system are considered to be
internal system names, subject to change without notice and not documented herein.

Do not look at system source code to figure out the names of error flavors without
being careful to choose the right level of flavor! Furthermore, take care to choose a
flavor that can be instantiated if you try to signal a system-defined condition. For
example, you can not signal a condition object of type fs:file-not-found because this
is really a set of errors and this flavor does not handle the :report message. If you
were to implement your own file system and wanted to signal an error when a file
cannot be found, it should probably have its own flavor built on fs:file-not-found
and other flavors.

Choosing the appropriate condition to handle is a difficult problem. In general you
do not want to choose a condition on the basis of the apparent semantics of its
name. Rather you should choose it according to the appropriate level of the
condition flavor hierarchy. This holds particularly for file-related errors. See the
section "File-system Errors".

11.2.1 Fundamental Conditions

These conditions are basic to the functionality of the condition mechanism, rather
than having anything to do with particular system errors.

condition Flavor
This is the basic flavor on which all condition objects are . built.

52 COND Signalling and Handling Conditions

Symbolics. Inc. March 1984

dbg:debugger-condition Flavor
This flavor is built on condition. It is used for entering the Debugger
without necessarily classifying the event as an error. This is intended
primarily for system use; users should normally build on error instead.

error Flavor
This flavor is built on dbg:debugger-condition. All flavors that represent
errors, as opposed to debugger conditions or simple conditions, are built on
this flavor.

f error Flavor
This is a simple error flavor for the ferror function. Use it when you do not
want to invent a new error flavor for a certain condition. Its only state
information is an error message, normally created by the call to the ferror
function. It has two gettable and inittable instance variables format-string
and format-args. The format function is applied to these values to produce
the :report message.

dbg:proceedable-ferror Flavor
This is a simple error flavor for the fsignal function. Use it when you do
not want to invent a new error flavor for a certain condition, but you want
the condition to be proceedable. Its only state information is an error
message, created by the call to the fsignal function. Its only proceed type is
:no-action. Proceeding in this way does nothing and causes fsignal (or
signal) to return the symbol :no-action.

sys:no-action-mixin Flavor
This flavor can be mixed into any condition flavor to define a proceed type
called :no-action. Proceeding in this way causes the computation to proceed
as if no error check had occurred. The signaller might try the action again
or might simply go on doing what it would have done. For example,
proceedable-ferror is just ferror with this mixin.

sys:abort Flavor
The ABORT key on the keyboard was pressed. This is a simple condition.
When sys:abort is signalled, control is thrown straight to a restart handler
without entering the Debugger. See the section "Special Keys".

break Flavor
This is the flavor of the condition object passed to the Debugger as a result
of the M-BREAK command. It is never actually signalled; rather, it is a
convention to ensure that the Debugger always has a condition when it
assumes control. This is based on dbg:debugger-condition. See the
section "Special Keys".

COND Signalling and Handling Conditions

Symbolics, Inc. March 1984

11.2.2 Lisp Errors

This section describes the conditions signalled for basic Lisp errors. All of the
conditions in this section are based on the error flavor unless otherwise indicated.

11.2.2.1 Base flavor: sys:cell-contents-error

53

sys:cell-contents-error Flavor
All of the kinds of errors resulting from finding invalid contents in a cell of
virtual memory are built on this flavor. This represents a set of errors
including the various kinds of unbound-variable errors, the undefined-function
error, and the bad data-type error.
Proceed type Ac~"fon
:new-value Takes one argument, a new value to be used instead of

the contents of the cell.
:store-new-value Takes one argument, a new value to replace the contents

of the cell.
:no-action If you have intervened and stored something into the cell,

the contents of the cell can be reread.

sys:unbound-variable Flavor
All of the kinds of errors resulting from unbound variables are built on this
flavor. Because these are a subset of the "cell contents" errors, this flavor is
built on sys:cell-contents-error. The :variable-name message returns the
name of the variable that was unbound (a symbol).

sys:unbound-symbol Flavor
An unbound symbol (special variable) was evaluated. Some instances of this
flavor provide the :package-dwim special command, which takes no
arguments and asks whether you want to examine the value of various other
symbols with the same print name in other packages. This proceed type is
provided only if any such symbols exist in any other packages. (See also
dbg:*defer-package-dwim*.) This flavor is built on sys:unbound-variable.
The proceed types from sys:cell-contents-error are provided, as is the
:variable-name message from sys:unbound-variable.

sys:unbound-closure-variable Flavor
An unbound closure variable was evaluated. This flavor is built on
sys:unbound-variable. The proceed types from cell-contents-error are
provided, as is the :variable-name message from sys:unbound-variable.

sys:unbound-instance-variable Flavor
An unbound instance variable was evaluated. The :instance message
returns the instance in which the unbound variable was found. The proceed
types from cell-contents-error are provided, as is the :variable-name
message from sys:unbound-variable.

54 COND Signalling and Handling Conditions

Symbolics, .Inc. March 1984

sys:undefined-function Flavor
An undefined function was invoked; that is, an unbound function cell was
referenced. This flavor is built on sys:cell-contents-error and provides all
of its proceed types. The :function-name message returns the name of the
function that was undefined (a function spec). This also provides
:package-dwim service, like sys:unbound-symbol.

sys: bad-data-type-in-memory Flavor
A word with an invalid type code was read from memory. This flavor is built
on sys:cell-contents-error and provides all of its proceed types.
Message Value returned
:address virtual address, as a locative pointer, from which the word

:data-type
:pointer

11.2.2.2 Location Errors

was read
numeric value of the data-type tag field of the word
numeric value of the pointer field of the word

sys:unknown-setf-reference Flavor
setf did not find a setf property on the car of the form. The :form
message returns the form that setf tried to operate on. This error is
signalled when the setf macro is expanded.

sys:unknown-locf-reference Flavor
locf did not find a locf property on the car of the form. The :form
message returns the form that locf tried to operate on. This error is
signalled when the locf macro is expanded.

11.2.2.3 Base flavor: sys:arithmetic-error

sys:arithmetic-error Flavor
Represents the set of all arithmetic errors. No condition objects of this flavor
are actually created; any arithmetic error signals a more specific condition,
built on this one. This flavor is provided to make it easy to handle any
arithmetic error.

All arithmetic errors handle the :operands message. On the 3600, this
returns a list of the operands in the operation that caused the error. On the
LM-2, this message almost always returns nil.

sys:divide-by-zero Flavor
Division by zero was attempted. This flavor is built on
sys:arithmetic-error. The :function message returns the function that
did the division.

COND Signalling and Handling Conditions 55

Symbolics, Inc. March 1984

sys:non-positive-log Flavor
Computation of the logarithm of a nonpositive number was attempted. This
flavor is built on sys:arithmeti~-error. The :number message returns the
nonpositive number.

math:singular-matrix Flavor
A singular matrix was given to a matrix operation such as inversion, taking
of the determinant, or computation of the LU decomposition. This flavor is
built on sys:arithmetic-error.

11.2.2.4 Base flavor: sys:floating-point-exception

sys:floating-point-exception and the condition flavors based on it are designed to
support IEEE floating-point standards. See the section "Numbers". By default, all
IEEE traps are enabled, except for the inexact-result trap. Future releases will
provide control over the floating-point operating mode, including rounding mode and
enabling and disabling of traps.

The trap handlers that signal these conditions from the system all cause pressing
the RESUME key to mean "return the result that would have been returned if the
trap had been disabled". For example, pressing RESUME on an overflow returns the
appropriately signed infinity as the result. On an underflow it returns the
denormalized (possibly zero) result.

sys:floating-point-exception Flavor
This is the base flavor for floating-point exceptional conditions. No condition
objects of this flavor are actually created. This flavor is provided to make it
easy to handle any floating-point exception. It is built on
sys:arithmetic-error.
Message Value returned
:operation A symbol indicating the operation that caused the

exception.
:operands The list of operands to the operation.
:non-trap-result The result that would have been returned if this

trap had been disabled.
:saved-float-operation-status

Proceed type
:new-value

The value of sys:float-operation-status at the time of
the exception.

Action
Takes one argument and uses this value as the result of
the operation.

sys:float-divide-by-zero Flavor
A floating-point division by zero was attempted. This flavor is built on
sys:divide-by-zero and sys:floating-point-exception.

56 COND Signalling and Handling Conditions

Symbolics, Inc. March 1984

sys:floating-exponent-overftow Flavor
Overflow of an exponent occurred during floating-point arithmetic. This
flavor is built on sys:floating-point-exception. The :function message
returns the function that got the overflow, if it is known, and nil if it is not
known. On the LM-2, the :small-float-p message returns t if "small"
flonums were involved. The :new-value proceed type is provided with one
argument, a floating-point number to use instead.

sys:floating-exponent-underftow Flavor
Underflow of an exponent occurred during floating-point arithmetic. This
flavor is built on sys:floating-point-exception. The :function message
returns the function that got the underflow, if it is known, and nil if it is
not known. On the LM-2, the :small-float-p message returns t if "small"
flonums were involved. The :use-zero proceed type is provided with no
arguments; a 0.0 (or possibly O.OsO on the LM-2) is used instead.

sys:float-inexact-result Flavor
A floating-point result does not exactly represent the operation's result, due
to the fixed precision of floating-point representation. Since most floating
point calculations are inexact, the inexact-result trap is disabled by default.
This flavor is built on sys:floating-point-exception.

sys:float-invalid-operation Flavor
An invalid floating-point operation was attempted, such as dividing infinity by
infinity. This flavor is built on sys:floating-point-exception.

sys:negative-sqrt Flavor
Computing the square root of a negative number was attempted. This flavor
is built on sys:float-invalid-operation.

sys:float-divide-zero-by-zero Flavor
A floating-point division of zero by zero was attempted. This flavor is built
on sys:float-invalid-operation and sys:float-divide-by-zero. Most
programs handle not this condition itself, but rather one of the component
condition flavors.

11.2.2.5 Miscellaneous System Errors Not categorized by Base Flavor

sys:end-of-file Flavor
A function doing input from a stream attempted to read past the end-of-file.
The :stream message returns the stream.

sys:wrong-stack-group-state Flavor
A stack group was in the wrong state to be resumed. The :stack-group
message returns the stack group.

COND Signalling and Handling Conditions 57

Symbolics, Inc. March 1984

sys:draw-off-end-of-screen Flavor
Drawing graphics past the edge of the screen was attempted.

sys:draw-on-unprepared-sheet Flavor
A drawing primitive (such as tv:%draw-line) was used on a screen array not
inside a tv:prepare-sheet special form. The :sheet message returns the
sheet (window) that should have been prepared.

sys: bitblt-destination-too-small Flavor
The destination array of a bitblt was too small.

sys: bitblt-array-fractional-word-width Flavor
An array passed to bitblt does not have a first dimension that is a multiple
of 32 bits. The :array message returns the array.

sys:write-in-read-only Flavor
Writing into a read-only portion of memory was attempted. The :address
message returns the address at which the write was attempted. ·

sys:pdl-overflow Flavor
A stack (pell) overflowed. The :pdl-name message returns the name of the
stack (a string, such as "regular"· or "special"). The :grow-pdl proceed type
is provided, with no arguments; it increases the size of the stack. This is
based on dbg:debugger-condition, not on error.

sys:area-overflow Flavor
This is signalled when the maximum-size (:size argument to make-area) is
exceeded.

sys:virtual-memory-overflow Flavor
This is an irrecoverable error that is signalled when you run out of virtual
memory.

sys:region-table-overflow Flavor
This is an irrecoverable error that is signalled when you run out of regions.

sys:cons-in-f°ixed-area Flavor
Allocation of storage from a fixed area of memory was attempted.
Message Value returned
:area name of the area
:region region number

sys: throw-tag-not-seen Flavor
*throw or throw was called, but no matching •catch or catch was found.

58

Message
:tag
:values

COND Signalling and Handli(1g Conditions

Symbolics. Inc. March 1984

Value returned
Catch-tag that was being thrown to.
List of the values that were being thrown. If •throw was
called, this is always a list of two elements, the value being
thrown and the tag; if the new throw special form of
Common Lisp (currently implemented only on the 3600) is
used, the list may be of any length.

The :new-tag proceed type is provided with one argument, a new tag (a
symbol) to try instead of the original.

sys:instance-variable-zero-referenced Flavor
Referencing instance variable 0 of an instance was attempted. This usually
means that some method is referring to an instance variable that was deleted
by a later evaluation of a deffiavor form.

sys:instance-variable-pointer-out-of-range Flavor
Referencing an instance variable that does not exist was attempted. This
usually means that some method is using an obsolete instance because a
deffiavor form got evaluated again and changed the flavor incompatibly.

sys:disk-error Flavor
An error was reported by the disk software or controller. The
:retry-disk-operation proceed type is provided; it takes no arguments.

sys: redefinition Flavor
This is a simple condition rather than an error condition. It signals an
attempt to redefine something by some other file than the one that originally
defined it. The :definition-type argument specifies the kind of definition: it
might be defun if the function cell is being defined, defstruct if a structure
is being defined, and so on.
Message Value returned
:name symbol (or function spec) being redefined.
:old-pathname pathname that originally defined it
:new-pathname pathname that is now trying to define it

Either pathname will be nil if the definition was from inside the Lisp
environment rather than from loading a file.

The following proceed types are provided:
Message Action
:proceed Redefinition should go ahead; in the future no warnings

should be signalled for this pair of pathnames.
:inhibit-definition

Definition is not changed and execution proceeds.
:no-action Function should be redefined as if no warning had

occurred.

COND Signalling and Handling Conditions 59

Symbolics, Inc. March 1984

Note: if this condition is not handled, the action is controlled by the value of
fs:inhibit-fdefine-warnings.

11.2.2.6 Function-calling Errors

sys:zero-args-to-select-method Flavor
A select method was applied to no arguments. The :select-method message
returns the select method. This applies only to the LM-2.

sys:too-few-arguments Flavor
A function was called with too few arguments.
Message Value returned
:function the function
:nargs number of arguments supplied
:argument-list list of the arguments passed

The :additional-arguments proceed type is provided with one argument, a
list of additional argument values to which the function should be applied. If
the error is proceeded, these new arguments are appended to the old
arguments and the function is called with this new argument list.

sys: too-many-arguments Flavor
A function was called with too many arguments.
Message Value returned
:function the function
:nargs number of arguments supplied
:argument-list list of the arguments passed

The :fewer-arguments proceed type is provided with one argument, the
new number of arguments with which the function should be called. In
proceeding from this error, the function is called with the first n arguments
only, where n is the number specified.

sys:wrong-type-argument Flavor
A function was called with at least one argument of invalid type.
Message Value returned
:function function with invalid argument(s)
:old-value invalid value
:description description of valid value
:arg-name name of the argument
:arg-number number of the argument (the first argument to a function

is 0, and so on) or nil if this does not apply

:description, :arg-name, and :arg-number are valid messages only when
the error was signalled by check-arg, check-arg-type, or
argument-typecase. Check to be sure that the message is valid before
sending it (remember :operation-handled-p).

60 COND Signalling and Handling Conditions

Symbolics. Inc. March 1984

Proceed type Action
:argument-value Takes one argument, the new value to use for the

argument.
:store-argument-value

Takes one argument, the new value to use and to store
back into the local variable in which it was found.
(Currently valid only on the 3600.)

11.2.2.7 Array Errors

dbg:bad-array-mixin Flavor
Errors involving an array that seems to be the wrong object include this
flavor. It provides the :array message, which returns the array.
Proceed type Action
:new-array Takes one argument, an array to use instead of the old

one.
:store-new-array Takes one argument, an array to use instead of the old

one and to store back into the local variable in which it
was found. (Currently valid only on the 3600.)

sys: bad-array-type Flavor
A meaningless array type code was found in virtual memory, indicating a
system bug. The :type message returns the numeric type code.

sys:array-has-no-leader Flavor
Using the leader of an array that has no array leader was attempted. The
:array message returns the array. This includes the bad-array-mixin
flavor.

sys:fill-pointer-not-f"IXDum Flavor
The fill pointer of an array was not a fixnum. The :array message returns
the array. This includes the bad-array-mixin flavor.

sys:array-wrong-number-of-dimensions
The wrong number of subscripts was presented to an array.
Message Value returned
:dimensions-given number of subscripts presented
:dimensions-expected

number that should have been given
:array the array

This includes the bad-array-mixin flavor.

Flavor

sys:number-array-not-allowed Flavor
A number array (such as an art-4b or art-16b) was used in a context in
which number arrays are not valid, such as an attempt to make a pointer to
an element with aloe or locf. This includes the bad-array-mixin flavor.

COND Signalling and Handling Conditions 61

Symbolics, Inc. March 1984

sys:subscript-out-of-bounds Flavor
An attempt was made to reference an array using out-of-bounds subscripts,
an out-of-bounds array leader element, or an out-of-bounds instance variable.
Message· Value returned
:object the object (an array or instance) if it is known, and nil

otherwise
:function function that did the reference, or nil if it is not known
:subscript-used the subscript that was actually used
:subscript-limit the limit that it passed

The messages to access the subscripts and limits are complex due to
differences between the LM-2 and the 3600. (The LM-2 can report only the
computed product, not the individual subscripts of a reference to a
multidimensional array; the 3600 can report the individual subscripts.) These
values are fixnums; if a multidimensional array was used, they are computed
products. The :subscripts-used and :subscripts-limit messages always
return lists of the values.
Proceed type Action
:new-subscript Takes an arbitrary number of arguments, the new

subscripts for the array reference.
:store-new-subscript

11.2.2.8 Eval Errors

Takes the same arguments as :new-subscript and stores
them back into the local variables in which they were
found. (Currently only on the 3600.)

sys:invalid-form Flavor
The evaluator attempted to evaluate an invalid form. The :form message
returns the form.

sys:invalid-function Flavor
The evaluator attempted to apply an object that is not a function or a
symbol whose definition is an object that is not a function. The :function
message returns the object that was applied. The :new-function proceed
type is provided, with one argument: a new function to be UP~d.

sys:invalid-lambda~list Flavor
The evaluator attempted to apply a function with an invalid lambda list.
This is built on sys:invalid-function. The :function message and the
:new-function proceed type are provided.

sys:undefined-keyword-argument Flavor
The evaluator attempted to pass a keyword to a function that does not
recognize that keyword.

62

Message
:keyword
:value

Proceed type
:no-action
:new-keyword

COND Signalling and H~ndling Conditions

Value returned
Unrecognized keyword
The value passed with it

Action

Symbolics, Inc. March 1984

The keyword and its value are ignored.
Specifies a new keyword to use instead. Its one argument
is the new keyword.

sys:funcall-macro Flavor
The evaluator attempted to apply a symbol whose definition is a macro as if
it were a function. The :eval-macro-funcall proceed type is defined with no
arguments. It proceeds by building a form in which the macro is given these
arguments and evaluating that form.

sys:unclaimed-message Flavor
This flavor is built on error. The flavor system signals this error when it
finds a message for which no method is available.
Message Value returned
:object the object
:message the message-name
:arguments the arguments of the message1

The object can be an instance or a select method.

11.2.2.9 Interning errors based on sys:package-error

sys:package-error Flavor
All package-related error conditions are built on sys:package-error.

sys:package-not-found Flavor
A package-name lookup did not find any package by the specified name.

The :name message returns the name. The :relative-to message returns
nil if only absolute names are being searched, or else the package whose
relative names are also searched.

The :no-action proceed type may be used to try again. The :new-name
proceed type may be used to specify a different name or package. The
:create-package proceed type creates the package with default
characteristics.

1The :arguments message on the LM-2 for a select-method always returns nll, because the information is
lost.

COND Signalling and Handling Conditions 63

Symbolics, Inc. March 1984

sys:package-locked Flavor
There was an attempt to intern a symbol in a locked package.

The :symbol message returns the symbol. The :package message returns
the package.

The :no-action proceed type interns the symbol just as if the package had
not been locked. Other proceed types are also available when interning the
symbol would cause a name conflict.

11.2.2.10 Errors Involving Lisp Printed Representations

si:*print-object-error-message• Variable
Controls what- happens when errors are signalled inside the Lisp printer.
When nil (the default), the error is not handled. Otherwise, the value
should be a string. If an error is signalled during the printing of an object,
that string is sent to the stream instead of the printed representation of the
object, and the printing function immediately returns to its caller. This
applies to all functions that are entries to the Lisp printer, including print,
princ, and print.

Example:

(let ((si:*print-object-error-message* "[Error printing object]"))
(format t "foo: -s, bar: -S" foo bar))

This is useful because bar is printed even if the printing of foo causes an
error.

sys:print-not-readable Flavor
The Lisp printer encountered an object that it cannot print in a way that
the Lisp reader can understand. The printer signals this condition only if
si:print-readably is not nil (it is normally nil). The :object message
returns the object. The :no-action proceed type is provided; proceeding this
waY' causes the object to be printed as if si:print-readably were nil.

sys:read-error Flavor
This flavor, built on sys:parse-error, includes errors encountered by the
Lisp reader.

sys: read-end-of-file Flavor
The Lisp reader encountered an end-of-file while in the middle of a string or
list. This flavor is built on sys:read-error and sys:end-of-file.

sys: read-list-end-of-file Flavor
The Lisp reader attempted to read past the end-of-file while it was in the
middle of reading a list. This is built on sys:read-end-of-file. The :list
message returns the list that was being built.

64 COND Signalling and Handling Conditions

Symbolics. Inc. March 1984

sys:read-string-end-of-file Flavor
The Lisp reader attempted to read past the end-of-file while it was in the
middle of reading a string. This is built on sys:read-end-of-file. The
:string message returns the string that was being built.

11.2.3 File-system Errors

The following condition flavors are part of the Lisp Machine's generic file system
interface. These flavors work for all file systems, whether local Lisp Machine file
systems, remote Lisp Machine file systems (accessed over a network), or remote file
systems of other kinds, such as UNIX or TOPS-20. All of them report errors
uniformly.

Some of these condition flavors describe situations that can occur during any file
system operation. These include not only the most basic flavors, such as
fs:file-request-failure and fs:data-error, but also flavors such as fs:file-not-found
and fs:directory-not-found. Other file system condition flavors describe failures
related to specific file system operations, such as fs:rename-failure, and
fs:delete-failure. Given all these choices, you have to determine what condition is
appropriate to handle, for example in checking for success of a rename operation.
Would fs:rename-failure include cases where, say, the directory of the file being
renamed is not found?

The answer to this question is that you should handle fs:file-operation-failure.
fs:rename-failure and all other conditions at that level are signalled only for errors
that relate specifically to the semantics of the operation involved. If you cannot
delete a file because the file is not found, fs:file-not-found would be signalled.
Suppose you cannot delete the file because its "don't delete switch" is set, which is
an error relating specifically to deletion. fs:delete-failure would be signalled.
Therefore, since you cannot know whether a condition flavor related to an operation
requested or some more general error will be signalled, you will usually want to
handle one of the most general flavors of file system error.

Under normal conditions, you would bind only for fs:file-request-failure or
fs:file-operation-failure rather than for the more specific condition flavors
described in this section. Some guidelines for using the different classes of errors:

error

fs:file-error

Any error at all. It is not wise in general to attempt to handle
this, because it catches program and operating system bugs as
well as file-related bugs, thus "hiding'' knowledge of the system
problems from you.

Any file related error at all. This includes
fs:file-operation-failure as well as fs:file-request-failure.
Condition objects of flavor fs:file-request-failure usually indicate
that the file system, host operating system, or network did not
operate properly. If your program is attempting to handle file-

COND Signalling and Handling Conditions 65

Symbolics, Inc. March 1984

related errors, it should not handle these: it is usually better to
allow the program to enter the debugger. Thus it is very rare
that one would want to handle fs:file-error.

fs:file-operation-failure
This includes almost all predictable file-related errors, whether
they are related to the semantics of a specific operation, or are
capable of occurring during many kinds of operations. Therefore,
fs:file-operation-failure is usually the appropriate condition to
handle.

Specific conditions It is appropriate and correct to handle specific conditions, like
fs:delete-failure, if your program assigns specific meaning to (or
has specific actions associated with) specific occurrences, such as a
nonexistent directory or an attempt to delete a protected file. If
you do not "care" about specific conditions, but you wish to handle
predictable file-related errors, you should handle
fs:file-operation-failure. You should not attempt to handle, say,
fs:delete-failure to test for any error occurring during deletion; ·it
does not mean that.

fs:file-error
This set includes errors encountered during file operations.

Flavor
This flavor is

built on error.
Message
:pathname
:operation

Value returned
pathname that was being operated on or nil
name of the operation that was being done: this is a
keyword symbol such as :open, :close, :delete, or
:change-properties, and it might be nil if the signaller
does not know what the operation was or if no speCific
operation was in progress

In a few cases, the :retry-file-error proceed type is provided, with no
arguments; it retries the file system request. All flavors in this section accept
these messages and might provide this proceed. type.·

fs:file-request-failure Flavor
This set includes all file-system errors in which the request did not manage
to get to the file system.

fs:file-operation-failure Flavor
This set includes all file-system errors in which the request was delivered to
the file system, and the file system decided that it was an error.

Note: every file-system error is either a request failure or an operation failure, and
the rules given above explain the distinction. However, these rules are slightly
unclear in some cases. If you want to be sure whether a certain error is a request
failure or an operation failure, consult the detailed descriptions in the rest of this
section.

66 COND Signalling and Handling Conditions

Symbolics, Inc. March 1984

11.2.3.1 Request failures based on fs:file-request-failure

fs:data-error Flavor
Bad data are in the file system. This might mean data errors detected by
hardware or inconsistent data inside the file system. This flavor is built on
fs:file-request-failure. The :retry-file-operation proceed type from
fs:file-error is provided in some cases; send a :proceed-types message to
find out.

fs:host-not-available Flavor
The file server or file system is intentionally denying service to users. This
does not mean that the network connection failed; it means that the file
system explicitly does not care to be available. This flavor is built on
fs:file-request-failure.

fs:no-file-system Flavor
The file system is not available. For example, this host does not have any
file system, or this host's file system cannot be initialized for some reason.
This flavor is built on fs:file-request-failure.

fs:network-lossage Flavor
The file server had some sort of trouble trying to create a new data
connection and was unable to do so. This flavor is built on
fs:file-request-failure.

fs:not-enough-resources Flavor
Some resource was not available in sufficient supply. Retrying the operation
might work if you wait for some other users to go away or if you close some
of your own files. This flavor is built on fs:file-request-failure.

fs:unkn.own-operation Flavor
An unsupported file-system operation was attempted. This flavor is built on
fs:file-request-failure.

11.2.3.2 Login Problems

Some login problems are correctable and some are not. To handle any correctable
login problem, you set up a handler for fs:login-required rather than handling the
individual conditions.

The correctable login problem conditions work in a special way. The Lisp Machine's
generic file system interface, in the user-end of the remote file protocol, always
handles these errors with its own condition handler; it then signals the
fs:login-required condition. Therefore to handle one of these problems, you set up
a handler for fs:login-required. The condition object for the correctable login
problem can be obtained from the condition object for fs:login-required by sending
it an :original-condition message.

COND Signalling and Handling Conditions 67

Symbolics, Inc. March 1984

fs:login-problems Flavor
This set includes all problems encountered while trying to log in to the file
system. Currently, none of these ever happen when you use a local file
system. This flavor is built on fs:file-request-failure.

fs:correctable-login-problems Flavor
This set includes all correctable problems encountered while trying to log in
to the foreign host. None of these ever happen when you use a local file
system. This flavor is built on fs:login-problems.

fs:unknown-user Flavor
The specified user. name is unknown at this host. The :user-id message
returns the user name that was used. This flavor is built on
fs:correctable-login-problems.

fs:invalid-password
The specified password was invalid. This flavor is built on
fs:correctable-login-problems.

Flavor

fs:not-logged-in Flavor
A file operation was attempted before logging in. Normally the file system
interface always logs in before doing any operation, but this problem can
come up in certain unusual cases in which logging in has been aborted. This
flavor is built on fs:correctable-login-problems.

fs:login-required Flavor
This is a simple condition built on condition. It is signalled by the file
system interface whenever one of the correctable login problems happens.
Message Value returned
(send (send error :access-path) :host)

the foreign host
:host-user-id user name that would be the default for this host
:original-condition

condition object of the correctable login problem

The :password proceed type is provided with two arguments, a new user
name and a new password, both of which should be strings. If the condition
is not handled by any handler, the file system prompts the user for a new
user name and password, using the query-io stream.

11.2.3.3 File Lookup

fs:fi.le-lookup-error
This set includes all file-name lookup errors. This flavor is built on
fs:fi.le-operation-failure.

Flavor

68 COND Signalling and Handling Conditions

Symbolics, Inc. March 1984

fs:file-not-found Flavor
The file was not found in the containing directory. The TOPS-20 and
TENEX "no such file type" and "no such file version" errors also signal this
condition. This flavor is built on fs:file-lookup-error.

fs:multiple-file-not-found Flavor
None of a number of possible files was found. This flavor is built on
fs:file-lookup-error. It is signalled when load is not given a specific file
type but cannot find either a source or a binary file to load.

The flavor allows three init keywords of its own. These are also the names
of messages that return the following:

:operation

:pathname

:pathnames

The operation that failed

The pathname given to the operation

A list of pathnames that were sought unsuccessfully

The condition has a :new-pathname proceed type to prompt for a new
pathname.

fs:directory-not-found Flavor
The directory of the file was not found or does not exist. This means that
the containing directory was not found. If you are trying to open a directory,
and the actual directory you are trying to open is not found,
fs:file-not-found is signalled. This flavor is built on fs:file-lookup-error.

This flavor has two Debugger special commands: :create-directory, to
create only the lowest level of directory, and
:create-directories-recursively, to create any missing superiors as well.

fs:device-not-found Flavor
The device of the file was not found or does not exist. This flavor is built on
fs:file-lookup-error.

fs:link-target-not-found Flavor
The target of the link that was opened did not exist. This flavor is built on
fs:file-lookup-error.

11.2.3.4 fs:access-error

fs:access-error Flavor
This set includes all protection-violation errors. This flavor is built on
fs:file-operation-failure.

fs:incorrect-access-to-file Flavor
Incorrect access to the file in the directory was attempted. This flavor is
built on fs:access-error.

COND Signalling and Handling Conditions 69

Symbolics. Inc. March 1984

fs:incorrect-access-to-directory Flavor
Incorrect access to some directory containing the file was attempted. This
flavor is built on fs:access-error.

11.2.3.5 fs:invalid-pathname-syntax

fs:invalid-pathname-syntax Flavor
This set includes all invalid pathname syntax errors. This is not the same as
fs:parse-pathname-error. (See the flavor fs:parse-pathname-error.)
These errors occur when a successfully parsed pathname object is given to
the file system, but something is wrong with it. See the specific conditions
that follow. This flavor is built on fs:file-operation-failure.

fs:invalid-wildcard Flavor
The pathname is not a valid wildcard pathname. This flavor is built on
fs:invalid-pathname-syntax

fs:wildcard-not-allowed Flavor
A wildcard pathname was presented in a context that does not allow
wildcards. This flavor is built on fs:invalid-pathname-syntax.

11.2.3.6 fs :wrong-kind-of-file

fs:wrong-kind-of-file Flavor
This set includes errors in which an invalid operation for a file, directory, or
link was attempted.

fs:invalid-operation-for-link Flavor
The specified operation is invalid for links, and this pathname is the name of
a link. This flavor is built on fs:wrong-kind-of-file.

fs:invalid-operation-for-directory Flavor
The specified operation is invalid for directories, and this pathname is the
name of a directory. This flavor is built on fs:wrong-kind-of-file.

11.2.3.7 fs:creation-failure

fs:creation-failure Flavor
This set includes errors related to attempts to create a file, directory, or link.
This flavor is built on fs:file-operation-failure.

fs:file-already-exists Flavor
A file of this name already exists. This flavor is built on fs:creation-failure.

fs:create-directory-failure Flavor
This set includes errors related to attempts to create a directory. This flavor
is built on fs:creation-failure.

70 COND Signalling and H~ndling Conditions

Symbolics. Inc. March 1984

fs:directory-already-exists Flavor
A directory or file of this name already exists. This flavor is built on
fs:creation-directory-failure.

fs:create-link-failure Flavor
This set includes errors related to attempts to create a link. This flavor is
built on fs:creation-failure.

11.2.3.8 fs:rename-failure

fs:rename .. failure Flavor
This set includes errors related to attempts to rename a file. The
:new-pathname message returns the target pathname of the rename
operation. This flavor is built on fs:file-operation-failure.

fs:rename-to-existing-file Flavor
The target name of a rename operation is the name of a file that already
exists. This flavor is built on fs:rename-failure.

fs:rename-across-directories Flavor
The devices or directories of the initial and target pathnames are not the
same, but on this file system they are required to be. This flavor is built on
fs:rename-failure.

fs:rename-across-hosts Flavor
The hosts of the initial and target pathnames are not the same. This flavor
is built on fs:rename-failure.

11.2.3.9 fs:change-property-failure

fs:cbange-property-failure Flavor
This set includes errors related to attempts to change properties of a file.
This might mean that you tried to set a property that only the file system is
allowed to set. For file systems without user-defined properties, it might
mean that no such property exists. This flavor is built on
fs:file-operation-failure.

fs:unknown-property
The property is unknown. This flavor is built on
fs:change-property-failure.

Flavor

fs:invalid-property-value Flavor
The new value provided for the property is invalid. This flavor is built on
fs:change-property-failure.

COND Signalling and Handling Conditions 71

Symbolics, Inc. March 1984

11.2.3.10 fs:delete-failure

fs:delete-failure Flavor
This set includes errors related to attempts to delete a file. It applies to
cases where the file server reports that it cannot delete a file. The exact
events involved depend on what the host file server has received from the
host. This flavor is built on fs:file-operation-failure.

fs:directory-not-empty Flavor
An invalid deletion of a nonempty directory was attempted. This flavor is
built on fs:delete-failure.

fs:dont-delete-flag-set Flavor
Deleting a file with a "don't delete" flag was attempted. This flavor is built
on fs:delete-failure.

11.2.3.11 Miscellaneous Operations Failures

fs:circular-link Flavor
The pathname is a link that eventually gets linked back to itself. This flavor
is built on fs:file-operation-failure.

fs:unimplemented-option
This set includes errors in which an option to a command is not
implemented. This flavor is built on fs:file-operation-failure.

Flavor

fs:inconsistent-options Flavor
Some of the options given in this operation are inconsistent with others.
This flavor is built on fs:file-operation-failure.

ts: invalid-byte-size Flavor
The value of the "byte size" option was not valid. This flavor is built on
fs:unimplemented-option.

fs:no-more-room Flavor
The file system is out of room. This can mean any of several things:

• the entire file system might be full
• the particular volume that you are using might be full
•your directory might be full
• you might have run out of your allocated quota
• other system-dependent things

This flavor is built on fs:file-operation-failure. The :retry-file-operation
proceed type from fs:file-error is sometimes provided.

72 COND Signalling and Handling Conditions

Symbolics. Inc. March 1984

fs:filepos-out-of-range Flavor
Setting the file pointer past the end-of-file position or to a negative position
was attempted. This flavor is built on fs:file-operation-failure.

fs:file-locked Flavor
The file is locked. It cannot be accessed, possibly because it is in use by
some other process. Different file systems can have this problem in various
system-dependent ways. This flavor is built on fs:file-operation-failure.

fs:file-open-for-output Flavor
Opening a file that was already opened for output was attempted. This
flavor is built on fs:file-operation-failure. Note: ITS, TOPS-20, and
TENEX file servers do not use this condition; they signal fs:file-locked
instead.

fs:not-available Flavor
The file or device exists but is not available. Typically, the disk pack is not
mounted on a drive, the drive is broken, or the like. Probably operator
intervention is required to fix the problem, but retrying the operation is likely
to work after the problem is solved. This flavor is built on
fs:file-operation-failure. Do not confuse this with fs:host-not-available.

11.2.4 Pathname Errors

fs:pathname-error Flavor
This set includes errors related to pathnames. This is built on the error
flavor. The following flavors are built on this one.

fs:parse-pathname-error Flavor
A problem occurred in attempting to parse a pathname.

fs:invalid-pathname-component Flavor
Attempt to create a pathname with an invalid component.
Message Value returned
:pathname the pathname
:component-value

the invalid value
:component the name of the component (a keyword symbol such as

:name or :directory)
:component-description

a "pretty name" for the component (such as file name or
directory)

The :new-component proceed type is defined with one argument, a
component value to use instead.

At the time this is signalled, a pathname object with the invalid component

COND Signalling and Handling Conditions 73

Symbolics. Inc. March 1984

has actually been created; this is what the :pathname message returns.
The error is signalled just after the pathname object is created before it goes
in the pathname hash table.

fs:unknown-pathname-host Flavor
The function fs:get-pathname-host was given a name that is not the name
of any known file computer. The :name message returns the name (a
string).

fs:undefined-logical-pathname-translation Flavor
A logical pathname was referenced but is not defined. The
:logical-pathname message returns the logical pathname. This flavor has a
:define-directory proceed type, which prompts for a physical pathname
whose directory component is the translation of the logical directory on the
given host.

11.2.5 Network Errors

sys:network-error Flavor
This set includes errors signalled by networks. These are generic network
errors that are used uniformly for any supported networks. This flavor is
built on error.

11.2.5.1 Local Network Problems

sys:local-network-error Flavor
This set includes network errors related to problems with one's own Lisp
Machine rather than with the network or the foreign host. This flavor is
built on sys:network-error.

sys:network-resources-exhausted Flavor
The local network control program exhausted some resource; for example, its
connection table is full. This flavor is built on sys:local-network-error.

sys:unknown-address Flavor
The network control program was given an address that is not understood.
The :address message returns the address. This flavor is built on
sys:local-network-error.

sys:unknown-host-name Flavor
The host parser (si:parse-host) was given a name that is not the name of
any known host. The :name message returns the name. This flavor is built
on sys:local-network-error.

74 COND Signalling and Handling Conditions

Symbolics,· Inc. March 1984

11.2.5.2 Remote Network Problems

sys:remote-network-error Flavor
This set includes network errors related to problems with the network or the
foreign host, rather than with one's own Lisp Machine.
Message Value returned
:foreign-host the remote host
:connection the connection or nil if no particular connection is involved

This flavor is built on sys:network-error.

sys: bad-connection-state Flavor
This set includes remote errors in which a connection enters a bad state.
This flavor is built on sys:remote-network-error. It actually can happen
due to local causes, however. In particular, if your Lisp Machine stays inside
a without-interrupts for a long time, the network control program might
decide that a host is not answering periodic status requests and put its
connections- into a closed state.

sys:connection-error Flavor
This set includes remote errors that occur while trying to establish a new
network connection. The :contact-name message to any error object in this
set returns the contact name that you were trying to connect to. This flavor
is built on sys:remote-network-error.

sys:host-not-responding Flavor
This set includes errors in which the host is not responding, whether during
initial connection or in the middle of a connection. This flavor is built on
sys:remote-network-error.

11.2.5.3 Connection Problems

sys:host-not-responding-during-connection Flavor
The network control program timed out while trying to establish a new
connection to a host. The host might be down, or the network might be
down. This flavor is built on sys:host-not-responding and
sys:connection-error.

sys:host-stopped-responding Flavor
A host stopped responding during an established network connection. The
host or the network might have crashed. This flavor is built on
sys:host-not-responding and sys:bad-connection-state.

sys:connection-refused Flavor
The foreign host explicitly refused to accept the connection. The :reason
message returns a text string from the foreign host containing its
explanation, or nil if it had none. This flavor is built on
sys:connection-error.

COND Signalling and Handling Conditions 75

Symbolics, Inc. March 1984

sys:connection-closed Flavor
An established connection became closed. The :reason message returns a
text string from the foreign host containing its explanation, or nil if it had
none. This flavor is buil~ on sys:bad-connection-state.

sys:connection-closed-locally Flavor
The local host closed the connection and then tried to use it. This flavor is
built on sys:bad-connection-state.

sys: connection-lost Flavor
The foreign host reported a problem with an established connection and that
connection can no longer be used. The :reason message returns a text
string from the foreign host containing its explanation, or nil if it had none.
This flavor is built on sys:bad-connection-state.

sys:connection-no-more-data
No more data remain on this connection. This flavor is built on
sys: bad-connection-state.

11.2.6 Tape Errors

tape: tape-error
This set includes all tape errors. This flavor is built on error.

Flavor

Flavor

tape:mount-error Flavor
A set of errors signalled because a tape could not be mounted. This includes
problems such as no ring and drive not ready. Normally, tape:make-stream
handles these errors and manages mount retry. This flavor is built on
tape:tape-error.

tape:tape-device-error Flavor
A hardware data error, such as a parity error, controller error, or interface
error, occurred. This flavor has tape:tape-error as a :required-flavor.

tape: end-of-tape Flavor
The end of the tape was encountered. When this happens on writing, the
tape usually has a few more feet left, in which the program is expected to
finish up and write two end-of-file marks. Normally, closing the stream does
this automatically. Whether or not this error is ever seen on input depends
on the tape controller. Most systems do not see the end of tape on reading,
and rely on the software that wrote the tape to have cleanly terminated its
data, with EOFs.

This flavor is built on tape:tape-device-error and tape:tape-error.

76 COND Signalling and Handling Conditions

Symbolics. Inc. March 1984

COND Signalling and Handling Conditions

Symbolics, Inc. March 1984

Index

A

B

A
sys:

ts:
ts:

Interesting
Storage

Reference Material:
sys:

Checking for valid

Base flavor: sys:
sys:
sys:

sys:·
sys:

dbg:
sys:
sys:
sys:

Miscellaneous System Errors Not Categorized by

Request failures
Interning errors

Trap on exit

sys:
sys:

Conditional

Debugger

B

ABORT 52
abort flavor 24, 46, 52
ABORT key 24, 46
access-error 68
access-error flavor 68
Active frame 16
active frame 16
allocation error 57
Application: Handlers Examining the Stack 16
Application: Handlers Examining the Stack 17
area-overflow flavor 57
argument-typecase special form 28
arguments· 27
Arithmetic errors 54
arithmetic-error 54
arithmetic-error 55
arithmetic-error flavor 54
Array Errors 60
array-has-no-leader flavor 60
array-wrong-number-of-dimensions flavor 60

bad-array-mlxln flavor 60
bad-array-type flavor 60
bad-connection-state flavor 7 4
bad-data-type-in-memory flavor 54
Base Flavor 56
Base flavor: sys:arithmetic-error 54
Base flavor: sys:cell-contents-error 53
Base flavor: sys:floatlng-point-exceptlon 55
based on fs:file-request-failure 66
based on sys:package-error 62
Binding condition handlers 3
Binding handlers 9
bit 43
bitblt errors 57
bitblt-array-fractional-word-width flavor 57
bitblt-destination-too-small flavor 57
Bound handlers 10, 23, 24
break flavor 52
Break on exit from marked frame message 43
breakon function 43
Breakpoints 43
breakpoints 43
bug function 44
Bug Reports 44
BUG-LISPM mailing list 44
:bug-report-description message 45
:bug-report-recipient-system message 44

77

A

B

78

c
sys:

:proceed

Miscellaneous System Errors Not
Invalid contents In
Base flavor: sys:

sys:
fs:
fs:

fs:

Unbound
Error logging

Invalid type
:case flavor

:case method
c-M Debugger

m-BREAK Debugger
Debugger Special

Maclisp

Default Handlers and
Reference Material: Default Handlers and

:document-proceed-type method of
:proceed-type-p method of

:proceed-types init option for
:proceed-types method of

:report method of
:report-string method of

:set-proceed-types method of
:speclal-command-p method of
:special-commands method of

Signalling a
sys:wrong-type-argument

Creating a Set of

Proceedable
Binding

Creating
Proceeding with

c

COND Signalling and Handling Conditions

Symbolics. Inc. March 1984

c-M Debugger command 44
call-trap flavor 43
can return nil 39
:case flavor combination 40
:case method combination 37
:case-documentation symbol 40
catch-error-restart special form 23, 24, 33, 35
catch-error-restart-If special form 33, 35
categorized by Base Flavor 56
cell errors 53
cell-contents-error 53
cell-contents-error flavor 53
change-property-failure 70
change-property-failure flavor 70
check-arg macro 27
check-arg-type macro 27
Checking for valid arguments 27
circular-link flavor 71
Classes of Handlers 9
closure variable error 53
code 16
code error 54
combination 40
combination 37
command 44
command 52
Commands 45
compatibility 25
compile-flavor-methods macro 7
Complex Modularity 29
Complex Modularity 30
Condition 1
condition 49
condition 50
condition 50
condition 50
condition 50
condition 51
condition 50
condition 50
condition 50
condition 1
condition 27
condition flavor 4, 49, 51
Condition flavor hierarchy 4
Condition Flavors 4, 55
Condition Flavors 8
Condition Flavors Reference 49
condition functions 41
condition handlers 3
Condition hierarchies 8
Condition objects 1, 3, 39, 49
condition objects 26
condition-bind handlers 40
condition-bind special form 10, 23, 37
condition-bind-default special form 11, 23, 29
condition-bind-default-If special form 11

c

COND Signalling and Handling Conditions

Symbolics, Inc. March 1984

D

dbg:

Conditions:
Creating New

Debugger
Error

Fundamental
Introduction: Signalling and Handling

Proceedable
Reference Material: Signalling

Signalling
Signalling proceedable

Signalling Simple
Simple

Standard
Tracing

Using the RESUME key with floating point

Network
sys:
sys:
sys:
sys:
sys:
sys:
sys:

Invalid
fs:
fs:
fs:

File
fs:
fs:

D

condition-bind-if special form 11
condition-call and :no-error 15
condition-call special form 14, 23
condition-call-if special form 15
condition-case special form 12, 23
condition-case-if special form 13
conditlon-handled-p function 29, 30
Conditional breakpoints 43
Conditions 3
Conditions 7
conditions 4
conditions 4
Conditions 51
Conditions 1
conditions 37
Conditions 25
Conditions 23
conditions 41
Conditions 24
conditions 4
Conditions 51
Conditions 43
conditions 55
Conditions as instances of flavors
Conditions: Conditions 3
Connection Problems 7 4
connection problems 7 4
connection-closed flavor 75
connection-closed-locally flavor 75
connection-error flavor 7 4
connection-lost flavor 75
connection-no-more-data flavor 75
connection-refused flavor 7 4
cons-in-fixed-area flavor 57
contents in cell errors 53
correctable-login-problems flavor 67
create-directory-failure flavor 69
create-link-failure flavor 70
:create-package proceed type 62
Creating a Set of Condition Flavors 8
Creating condition objects 26
Creating New Conditions 7
creation errors 69
creation-failure 69
creation-failure flavor 69
Customizing Debugger keystrokes 46

79

D
fs: data-error flavor 66

cl:>g :*interactive-handlers• variable 31
dbg:•proceed-type-special-keys• variable 48

. dbg:*special-command-special-keys• variable 48
dbg:bad-array-mixin flavor 60
dbg:condition-handled-p function 29, 30
dbg:debugger-condition flavor 23, 31, 49, 52
dbg:frame-actlve-p function 18
dbg:frame-arg-value function 19

80

Entering

c-M
m-BREAK

Customizing

dbg:

Reference Material:
:gettable-Instance-variables option for
:inltable-lnstance-varlables option for

Overview and
fs:
fs:
File
fs:
fs:
fs:
fs:

Enabling and

sys:
sys:

Overview of This

COND Signalling and Handling Conditions

Symbolics, Inc. March 1984

dbg:frame-local-value function 20
dbg :frame-next-active-frame function 17
dbg:frame-next-lnterestlng-active-frame

function 17
dbg :frame-next-nth-active-frame function 18
dbg:frame-next-nth-lnterestlng-actlve-frame

function 18
dbg:frame-next-nth-open-frame function 18
c:l>g :frame-next-open-frame function 17
dbg:frame-number-of-locals function 20
dbg:frame-number-of-spread-args function 19
dbg:frame-out-to-lnterestlng-actlve-frame

function 18
dbg:frame-prevlous-actlve-frame function 17
dbg:frame-prevlous-lnterestlng-actlve-frame

function 18
dbg:frame-prevlous-open-frame function 18
dbg:frame-real-function function 19
dbg:frame-real-value-disposltion function 20
dbg:frame-self-value function 20
dbg:frame-total-number-of-args function 19
dbg:get-frame-function-and-args function 17
dbg:lnvoke-restart-handlers function 36
dbg:print-frame-locals function 21
dbg:print-function-and-args function 20
dbg:proceedable-ferror flavor 52
dbg:speclal-commands-mlxln flavor 45
dbg:wlth-errlng-frame macro 16, 17
Debugger 24, 37, 43
Debugger 52
Debugger Bug Reports 44
Debugger command 44
Debugger command 52
Debugger conditions 4
Debugger keystrokes 46
Debugger Special Commands 45
debugger-condition flavor 23, 31, 49, 52
Default handlers 23, 24
Default Handlers and Complex Modularity 29
Default Handlers and Complex Modularity 30
demavor 7
demavor 7
Definitions 1
delete-failure 71
delete-failure flavor 71
deletion errors 71
devlce-nof..found flavor 68
directory-already-exists flavor 70
directory-not-empty flavor 71
directory-not-found flavor 68
disabling of floating-point traps 55
Disk error 58
disk-error flavor 58
divide-by-zero flavor 1, 54
Division by zero error 54
Document 2
:document-proceed-type message 37
:document-proceed-type method of condition 49

COND Signalling and Handling Conditions 81

Symbolics, Inc. March 1984

E

:document-speclal-command message 46
fs: dont-delete-flag-set flavor 71

sys: draw-off-end-of-screen flavor 57
sys: draw-on-unprepared-sheet flavor 57

Drawing on unprepared sheet error 57
Drawing pas1 edge of screen error 57

Restriction Due to Scope 24

Drawing past

Read past the
sys:

tape:

Disk
Division by zero

Drawing on unprepared sheet
Drawing pas1 edge of screen

Exponen1 overflow
Exponent underflow

Illegal redefinition
Invalid type code

Logari1hm of nonpositive number
Read past the end-of-file

Read-only
Singular matrix operation

Square root of a negative number
Stack group sta1e

Stack overflow
S1orage alloca1ion

Throw tag
Unbound closure variable

Unbound ins1ance variable
Undefined function

Arithmetic
Array
bitblt
Eval

Evaluator
File creation
File deletion
File lookup

File property
File rename
File-system

E
edge of screen error 57
Elements out-of-bounds 61
Enabling and disabling of floating-point traps 55
Encapsulation mechanism 43
end-of-file error 56
end-of-file flavor 56 .
end-of-tape flavor 75
Entering Debugger 52
error 58
error 54
error 57
error 57
error 56
error 56
error 58
error 54
error 55
error 56
error 57
error 55
error 56
error 56
error 57
error 57
error 57
error 53
error 53
error 54
Error conditions 4
error flavor 4, 49, 52
error function 4, 25
Error logging code 16
Error object 49
error-restart special form 23, 33, 34
error-restart-loop special form 23, 33, 34
errorp func1ion 26
Errors 1
errors 54
Errors 60
errors 57
Errors 61
errors 61
errors 69
errors 71
errors 67
errors 70
errors 70
Errors 64

E

82

F

Function-calling
Instance variable

Invalid contents in cell
Invalid file operation

Invalid pathname syntax
Lisp

Location
Login

Network
Pathname

Protection-violation
Signalling

Tape
Unbound variable

Interning

Miscellaneous System

Reference Material:

Application: Handlers
Reference Material: Application: Handlers

Floating point
Trap on

Break on

Miscellaneous file operations
Miscellaneous Operations

Request

Invalid
Miscellaneous

fs:
fs:
fs:
fs:
fs:
fs:
fs:

Request failures based on fs:
fs:

fs:

F

COND Signalling and Handling Conditions

Symbolics, Inc. March 1984

Errors 59
errors 58
errors 53
errors 69
errors 69
Errors 53
Errors 54
errors 66
Errors 73
Errors 72
errors 68
Errors 24
Errors 75
errors 53
errors based on sys:package-error 62
Errors inside Lisp printer 63
Errors Involving Lisp Printed Representations 63
Errors Not Categorized by Base Flavor 56
Establishing Handlers 9
Establishing Handlers 10
Eval Errors 61
Evaluator errors 61
Event 1
Examining the Stack 16
Examining the Stack 17
Example of a Handler 3
exceptions 55
exit bit 43
exit from marked frame message 43
Exponent overflow error 56
Exponent underflow error 56

failures 71
Failures 71
failures based on fs:file-request-fallure 66
terror flavor 52
terror function 4, 26
File creation errors 69
File deletion errors 71
File Lookup 67
File lookup errors 67
file operation errors 69
file operations failures 71
File property errors 70
File rename errors 70
file-already-exists flavor 69
file-error flavor 65
file-locked flavor 72
file-lookup-error flavor 67
file-not-found flavor 68
file-open-for-output flavor 72
file-operation-failure flavor 3, 65
file-request-failure 66
file-request-failure flavor 65
File-system Errors 64
fllepos-out-of-range flavor 72

F

COND Signalling and Handling Conditions

Symbolics, Inc. March 1984

sys:

break
condition·

dbg:bad-array-mixin
dbg:debugger-condltlon
dbg:proceedabl•ferror

dbg:speclal-commands-mlxln
error

ferror
fs:access-error

fs:change-property-fallure
fs:clrcular-llnk

fs:correctable-logln-problems
fs:create-directory-failure

fs:create-llnk-fallure
fs:creation-failure

fs:data-error
fs:delete-failure

fs:devlce-not-found
fs:directory-already-exlsts

fs:directory-not-empty
fs:dlrectory-not-found
fs:dont-delete-flag-set

fs:file-already-exlsts
fs:file-error

fs:file-locked
fs:file-lookup-error

fs:file-not-found
fs:file-open-for-output

fs:file-operation-failure
fs:file-request-failure

fs:filepos-out-of-range
fs:host-not-avallable

fs:lnconslstent-optlons
fs:lncorrect-access-to-directory

fs:lncorrect-access-to-flle
fs:invalid-byte-slze

fs:invalid-operatlon-for-directory
fs:invalid-operation-for-link

fs:lnvalid-password
fs:lnvalid-pathname-component

fs:lnvalid-pathname-syntax
fs:invalld-property-value

fs:lnvalld-wildcard
fs:llnk-target-not-found

fs:logln-problems
fs:logln-requlred

fs:multiple-file-not-found
fs:network-lossage

fs:no-file-system
fs:no-more-room

fs:not-available
fs:not-enough-resources

fs:not-logged-ln
fs:parse-pathname-error

fs:pathname-error
fs:rename-across-dlrectorles

flll-polnter-not-flxnum flavor 60
Finding a Handler 23
flavor 52
flavor 4, 49, 51
flavor 60
flavor 23, 31, 49, 52
flavor 52
flavor 45
flavor 4, 49, 52
flavor 52
flavor 68
flavor 70
flavor 71
flavor 67
flavor 69
flavor 70
flavor 69
flavor 66
flavor 71
flavor 68
flavor 70
flavor 71
flavor 68
flavor 71
flavor 69
flavor 65
flavor 72
flavor 67
flavor 68
flavor 72
flavor 3, 65
flavor 65
flavor 72
flavor 66
flavor 71
flavor 69
flavor 68
flavor 71
flavor 69
flavor 69
flavor 67
flavor 72
flavor 69
flavor 70
flavor 69
flavor 68
flavor 67
flavor 67
flavor 68
flavor 66
flavor 66
flavor 71
flavor 72
flavor 66
flavor 67
flavor 72
flavor 72
flavor 70

83

84 COND Signalling and Handling Conditions

fs:rename-across-hosts flavor 70
fs:rename-failure flavor 70

fs:rename-to-existing-file flavor 70
fs:undefined-logical-pathname-translation flavor 73

fs:unlmplemented-optlon flavor 71
fs:unknown-operatlon flavor 66

fs:unknown-pathname-host flavor 73
fs:unknown-property flavor 70

fs:unknown-user flavor 67
fs:wildcard-not-allowed flavor 69

fs:wrong-klnd-of-file flavor 69
math:slngular-matrlx flavor 55

Symbolics. Inc. March 1984

Miscellaneous System Errors Not categorized by Base

sys:abort
sys:area-overflow

sys:arlthmetlc-error
sys:array-has-no-leader

sys:array-wrong-number-of-dlmenslons
sys:bad-array-type

sys:bad-connection-state
sys:bad-data-type-ln-memory

sys:bitbH-array-fractlonal-word-wldth
sys:bltblt-destlnatlon-too-small

sys:call-trap
sys:cell-contents-error
sys:connectlon-closed

sys:conneclion-closed-locally
sys:connection-error
sys:connection-lost

sys:connectlon-no-more-data
sys:connection-refused

sys:cons-ln-flxed-area
sys:disk-error

sys:divlde-by-zero
sys:draw-off-end-of-screen

sys:draw-on-unprepared-sheet
sys:end-of-flle

sys:flll-polnter-not-fixnum
sys:float-divide-by-zero

sys:float-dlvlde-zero-by-zero
sys:float-inexact-result

sys:float-invalld-operatlon
sys:floating-exponent-overflow

sys:floatlng-exponent-underflow
sys:floatlng-point-exception

sys:funcall-macro
sys:host-not-respondlng

sys:host-not-responding-durlng-connection
sys:host-stopped-respondlng

sys:lnstance-varlable-polnter-out-of-range
sys:lnstance-varlable-zero-referenced

sys:lnvalld-form
sys:lnvalid-functlon

sys:lnvalld-lambda-llst
sys:local-network-error

sys:negatlve-sqrt
sys:network-error

Flavor 56
flavor 24, 46, 52
flavor 57
flavor 54
flavor 60
flavor 60
flavor 60
flavor 74
flavor 54
flavor 57
flavor 57
flavor 43
flavor 53
flavor 75
flavor 75
flavor 74
flavor 75
flavor 75
flavor 74
flavor 57
flavor 58
flavor 1, 54
flavor 57
flavor 57
flavor 56
flavor 60
flavor 55
flavor 56
flavor 56
flavor 56
flavor 56
flavor 56
flavor 55
flavor 62
flavor 74
flavor 74
flavor 74
flavor 58
flavor 58
flavor 61
flavor 61
flavor 61
flavor 73
flavor 56
flavor 73

COND Signalling and Handling Conditions

Symbolics. Inc. March 1984

sys:network-resources-exhausted
sys:no-actlon-mlxln
sys:non-posltlv•log

sys:number-array-not-allowed
sys:package-error

sys:package-locked
sys:package-not-found

sys:pdl-overflow
sys:prlnt-not-readable

sys:read-end-of -file
sys:read-error

sys:read-llst-end-of-file
sys:read-strlng-end-of-file

sys: redefinition
sys:region-table-overflow
sys:remote-network-error

sys:subscrlpt-out-of..t>ounds
sys:throw-tag-not-seen
sys:too-few-arguments

sys:too-many-argumenta
sys:unbound-closure-varlable

sys:unbound-instance-varlable
sys:unbound-symbol
sys:unbound-varlable

sys: unclaimed-message
sys:undefined-function .

sys: undefined-keyword-argument
sys:unknown-address

sys:unknown-host-name
sys:unknown-locf-reference
sys:unknown-setf-reference
sys:virtual-memory-overflow

sys:write-ln-read-only
sys:wrong-stack-group-state

sys:wrong-type-argument
sys:zero-args-to-select-method

tape:end-of-tape
tape:mount-error

tape:tape-device-error
tape:tape-error

:case
Condition

Base
Base
Base

Condition
Conditions as instances of

Creating a Set of Condition
Condition

sys:
sys:
sys:
sys:

Using the RESUME key with

sys:

flavor 73
flavor 52
flavor 55
flavor 60
flavor 62
flavor 63
flavor 62
flavor 57
flavor 63
flavor 63
flavor 63
flavor 63
flavor 64
flavor 58
flavor 57
flavor 74
flavor 61
flavor 57
flavor 59
flavor 59
flavor 53
flavor 53
flavor 53
flavor 53
flavor 62
flavor 54
flavor 61
flavor 73
flavor 73
flavor 54
flavor 54
flavor 57
flavor 57
flavor 56
flavor 59
flavor 59
flavor 75
flavor 75
flavor 75
flavor 75
flavor combination 40
flavor hierarchy 4
Flavor inheritance mechanism 4
flavor: sys:arithmetlc-error 54
flavor: sys:cell-contents-error 53
flavor: sys:ftoating-polnt-exceptlon 55
Flavors 3
Flavors 4, 55
flavors 1
Flavors 8
Flavors Reference 49
float-divide-by-zero flavor 55
float-divide-zero-by-zero flavor 56
float-inexact-result flavor 56
float-invalid-operation flavor 56
floating point conditions 55
Floating point exceptions 55
floating-exponent-overflow flavor 56

85

86

sys:
Enabling and disabling of

Base flavor: sys:
sys:

argument-typecase special
catch-error-restart special

catch-error-restart-if special
condition-bind special

condition-bind-default special
condition-bind-default-if special

condition-bind-if special
condition-call special

condition-call-if special
condition-case special

condition-case-If special
error-restart special

error-restart-loop special
Ignore-errors special

signal-proceed-case special
Active

Interesting active
Next

Open
Previous

Stack
Break on exit from marked

dbg:
dbg:
dbg:

dbg:
dbg:
dbg:
dbg:

dbg:
dbg:
dbg:
dbg:
dbg:
dbg:
dbg:

dbg:
dbg:
dbg:
dbg:
dbg:

COND Signalling and Handling Conditions

Symbolics, Inc. March 1984

ftoatlng-exponent-underflow flavor 56
floating-point traps 55
floating-point-exception 55
floating-point-exception flavor 55
form 28
form 23, 24, 33, 35
form 33, 35
form 10, 23, 37
form 11, 23, 29
form 11
form 11
form 14, 23
form 15
form 12, 23
form 13
form 23, 33, 34
form 23, 33, 34
form 15
form 37, 41
frame 16
frame 16
frame 16
frame 16
frame 16
frame 16
frame message 43
Frame pointer 16
frame-actlve-p function 18
frame-arg-value function 19
frame-local-value function 20
Frame-manipulating functions 16
frame-next-active-frame function 17
frame-next-Interesting-active-frame function 17
frame-next-nth-active-frame function 18
frame-next-nth-Interesting-active-frame

function 18
frame-next-nth-open-frame function 18
frame-next-open-frame function 17
frame-number-of-locals function 20
frame-number-of-spread-args function 19
frame-out-to-Interesting-active-frame function 18
frame-previous-active-frame function 17
frame-previous-interesting-active-frame

function 18
frame-previous-open-frame function 18
frame-real-function function 19
frame-real-value-disposition function 20
frame-self-value function 20
frame-total-number-of-args function 19
fs:access-error 68
fs:access-error flavor 68
fs:change-property-failure 70
fs:change-property-fallure flavor 70
fs:clrcular-llnk flavor 71
fs:correctable-logln-problems flavor 67
fs:create-directory-fallure flavor 69
fs:create-link-fallure flavor 70
fs:creatlon-failure 69

COND Signalling and Handling Conditions 87

Symbolics, Inc. March 1984

fs:creatlon-failure flavor 69
fs:data-error flavor 66
fs:delete-fallure 71
fs:delete-fallure flavor 71
fs:devlce-not-found flavor 68
fs:directory-already-exlsts flavor 70
fs:directory-not-empty flavor 71
fs:directory-not-found flavor 68
fs:dont-delete-flag-set flavor 71
fs:file-already-exlsts flavor 69
fs:file-error flavor 65
fs:file-locked flavor 72
fs:file-lookup-error flavor 67
fs:file-not-found flavor 68
fs:file-open-for-output flavor 72
fs:file-operation-failure flavor 3, 65

Request failures based on fs:file-request-failure 66
fs:file-request-failure flavor 65
fs:filepos-out-of-range flavor 72
fs:host-not-available flavor 66
fs:lnconsistent-options flavor 71
fs:incorrect-access-to-directory flavor 69
fs:incorrect-access-to-file flavor 68
fs:lnvalid-byte-size flavor 71
fs:invalid-operation-for-directory flavor 69
fs:invalld-operation-for-llnk flavor 69
fs:lnvalid-password flavor 67
fs:invalid-pathname-component flavor 72
fs:invalid-pathname-syntax 69
fs:invalid-pathname-syntax flavor 69
fs:invalid-property-value flavor 70
fs:invalid-wildcard flavor 69
fs:link-target-not-found flavor 68
fs:login-problems flavor 67
fs:login-requlred flavor 67
fs:muttiple-file-not-found flavor 68
fs:network-lossage flavor 66
fs:no-file-system flavor 66
fs:no-more-room flavor 71
fs:not-available flavor 72
fs:not-enough-resources flavor 66
fs:not-logged-in flavor 67
fs:parse-pathname-error flavor 72
fs:pathname-error flavor 72
fs:rename-across-directories flavor 70
fs:rename-across-hosts flavor 70
fs:rename-failure 70
fs:rename-fallure flavor 70
fs:rename-to-existing-file flavor 70
fs:undefined-logical-pathname-translation

flavor 73
fs:unlmplemented-option flavor 71
fs:unknown-operation flavor 66
fs:unknown-pathname-host flavor 73
fs:unknown-property flavor 70
fs:unknown-user flavor 67
fs:wildcard-not-allowed flavor 69
fs:wrong-klnd-of-file 69

88

G

sys:
breakon

bug
dbg:conditlon-handled-p

dbg:frame-actlve.p
dbg:frame.arg-value

dbg:frame-local-value
dbg:frame-next-actlve-frame

dbg :frame-next-interesting-active-frame
dbg:frame-next-nth-active-frame

dbg:frame-next-nth-lnteresting-actlve.frame
dbg:frame-next-nth-open-frame

dbg:frame-next-open-frame
dbg:frame-number-of-locals

dbg:frame-number-of-spread-args
dbg :frame-out-to-Interesting-active-frame

dbg:frame-previous-active-frame
dbg :frame-previous-interesting-active-frame

dbg:frame-previous-open-frame
dbg:frame-real-functlon

dbg:frame.real-value.dlsposltion
dbg:frame-self-value

dbg:frame-total~number-of-args
dbg:get-frame-function-and-args

dbg:invoke-restart-handlers
dbg:print-frame-locals

dbg:print-functlon-and-args
error

errorp
ferror

fslgnal
make-condition

signal
sys:parse-ferror

unbreakon
Undefined

Frame-manipulating
Handler-list searching
Proceedable condition

Restart handler
Signalling

dbg:

Stack

COND Signalling and Handling conditions

Symbolics. Inc. March 1984

fs:wrong-klnd-of-file flavor 69
fsignal function 4, 26, 37
funcall-macro flavor 62
function 43
function 44
function 29, 30
function 18
function 19
function 20
function 17
function 17
function 18
function 18
function 18
function 17
function 20
function 19
function 18
function 17
function 18
function 18
function 19
function 20
function 20
function 19
function 17
function 36
function 21
function 20
function 4, 25
function 26
function 4, 26
function 4, 26, 37
function 26
function 4, 25, 37
function 26
function 44
function error 54
Function-calling Errors 59
functions 16
functions 30
functions 41
functions 34
functions 4, 25
Fundamental Conditions 51

G G
get-frame-function-and-args function 17
:gettable-instance.variables option for defflavor 7
group state error 56

COND Signalling and Handling Conditions

Symbolics. Inc. March 1984

H

I

Example of a
Finding a

Restart
Interactive

What Is a
Binding

Binding condition
Bound

Classes of
Default

Establishing
Interactive

Proceeding with condition-bind
Reference Material: Establishing

Reference Material: Restart
Restart

Search rule for invoking
Default

Reference Material: Default
Application:

Reference Material: Application:
Invoking Restart

Introduction: Signalling and
Condition

Condition flavor
fs:

sys:
sys:
sys:

fs:
fs:
fs:

Flavor
:proceed-types
:proceed-types
Messages and

Errors
Unbound

sys:
sys:

89

H H

I

:handle-condition message 31
:handle-conditlon-p message 31
Handler 1
Handler 3
Handler 23
handler functions 34
handler object 31
Handler-list searching functions 30
Handler? 9
handlers 9
handlers 3
handlers 10, 23, 24
Handlers 9
handlers 23, 24
Handlers 9
handlers 23, 31
handlers 40
Handlers 10
Handlers 34
handlers 23, 33
handlers 23, 29
Handlers and Complex Modularity 29
Handlers and Complex Modularity 30
Handlers Examining the Stack 16
Handlers Examining the Stack 17
Handlers Manually 36
Handling 1
Handling Conditions
hierarchies 8
hierarchy 4
host-not-available flavor 66
host-not-responding flavor 7 4
host-not-responding-during-connection flavor 74
host-stopped-responding flavor 7 4

Ignore-errors special form 15
Illegal redefinition error 58
Inconsistent-options flavor 71
incorrect-access-to-directory flavor 69
incorrect-access-to-file flavor 68
Inexact-result trap 55
inheritance mechanism 4
init option 39
init option for condition 50
lnit Options 49
:initable-instance-variables option for defflavor 7
:initialize-special-commands message 46
inside Lisp printer 63
instance variable error 53
Instance variable errors 58
Instance variable out-of-bounds 61
Instance variables 7
instance-variable-pointer-out-of-range flavor 58
instance-variable-zero-referenced flavor 58

90

K

L

Conditions as

Issues for
dbg:

fs:
sys:
sys:
sys:

fs:
fs:
fs:
fs:
fs:
fs:
fs:
fs:

dbg:
Search rule for

Errors
What

ABORT
RESUME

SUPER
Using the RESUME

Special
Customizing Debugger

COND Signalling and Handling Conditions

Symbolics~ Inc. March 1984

Instances of flavors 1
Interactive handler object 31
Interactive handlers 23, 31
Interactive Use 43
Interactive-handlers variable 31
Interesting active frame 16
Interning errors based on sys:package-error 62
Introduction: Signalling and Handling Conditions
Invalid contents in cell errors 53
Invalid file operation errors 69
Invalid pathname syntax errors 69
Invalid type code error 54
Invalid-byte-size flavor 71
Invalid-form flavor 61
Invalid-function flavor 61
Invalid-lambda-list flavor 61
Invalid-operation-for-directory flavor 69
Invalid-operation-for-link flavor 69
Invalid-password flavor 67
Invalid-pathname-component flavor 72
Invalid-pathname-syntax 69
Invalid-pathname-syntax flavor 69
Invalid-property-value flavor 70
lnvalid-wlldcard flavor 69
Invoke-restart-handlers function 36
Invoking handlers 23, 29
Invoking Restart Handlers Manually 36
Involving Lisp Printed Representations 63
Is a Handler? 9
Issues for Interactive Use 43

K K

L

key 24, 46
key 46
key 46
key with floating point conditions 55
Keys 46
keystrokes 46

L
fs: link-target-not-found flavor 68

Errors Involving
Errors inside

BUG-LISPM mailing

sys:

Error

fs:
fs:
File

Lisp Errors 53
Lisp Printed Representations 63
Lisp printer 63
list 44
Local Network Problems 73
local-network-error flavor 73
Location Errors 54
Logarithm of nonpositive number error 55
logging code 16
Login errors 66
Login Problems 66
login-problems flavor 67
login-required flavor 67
Lookup 67

COND Signalling and Handling Conditions

Symbolics. Inc. March 1984

File lookup errors 67

M

check-arg
check-arg-type

compile-flavor-methods
dbg:wlth-errlng-frame

BUG-US PM

Invoking Restart Handlers
Break on exit from

Reference

Reference

Reference
Reference
Reference
Reference

Singular
Encapsulation

Flavor inheritance
Signalling

:bug-report-description
:bug-report-recipient-system

:document-proceed-type
:document-special-command

:handle-condition
:handle-condltlon-p

:Initialize-special-commands
:proceed

:proceed-type-p
:proceed-types

:report
:special-command

Break on exit from marked frame
No method for

:package
:symbol

:name
:relative-to

Proceed Type

:proceed
:report

:case
No

:document-proceed-type
:proceed-type-p
:proceed-types

:report
:report-string

:set-proceed-types
:special-command-p

M
m-BREAK Debugger command 52
Maclisp compatibility 25
macro 27
macro 27
macro 7
macro 16, 17
mailing list 44
make-condition function 26
Manually 36
marked frame message 43
Material: Application: Handlers Examining the

Stack 17
Material: Default Handlers and Complex

Modularity 30
Material: Establishing Handlers 10
Material: Proceeding 41
Material: Restart Handlers 34
Material: Signalling Conditions 25
math:singular-matrix flavor 55
matrix operation error 55
mechanism 43
mechanism 4
Mechanism 23, 29
message 45
message 44
message 37
message 46
message 31
message 31
message 46
message 40
message 39
message 39
message 49
message 45
message 43
message 62
message to sys:package-locked 63
message to sys:package-locked 63
message to sys:package-not-fOund 62
message to sys:package-not-found 62
Messages 39
Messages and lnit Options 49
method 37, 40
method 7
method combination 37
method for message 62
method of condition 49
method of condition 50
method of condition 50
method of condition 50
method of condition 51
method of condition 50
method of condition 50

91

M

92

N

0

:special-commands

Default Handlers and Complex
Reference Material: Default Handlers and Complex

tape:
fs:

Proceed Type
Square root of a

sys:

Local
Remote

sys:
fs:

sys:
Creating

:proceed can return

sys:
condition-call and

fs:
fs:

sys:
Logarithm of

Miscellaneous System Errors
fs:
fs:
fs:

Logarithm of nonpositive
Square root of a negative

sys:

Error
Interactive handler

Condition
Creating condition

Singular matrix
Invalid file

Miscellaneous
Miscellaneous file

:proceed-types init
:proceed-types init

:gettable-Instance-variables

N

0

COND Signalling and Handling Conditions

Symbolics, Inc. March 1984

method of condition 50
Miscellaneous file operations failures 71
Miscellaneous Operations Failures 71
Miscellaneous System Errors Not Categorized by

Base Flavor 56
Modularity 29
Modularity 30
mount-error flavor 75
muttiple-file-not-found flavor 68

:name message to sys:package-not-found 62
Names 40
negative number error 56
negative-sqrt flavor 56
Network connection problems 74
Network Errors 73
Network Problems 73
Network Problems 7 4
network-error flavor 73
network-lossage flavor 66
network-resources-exhausted flavor 73
New Conditions 7
:new-name proceed type 62
Next frame 16
nil 39
No method for message 62
:no-action proceed type 43, 62, 63
no-action-mixln flavor 52
:no-error 15
no-file-system flavor 66
no-more-room flavor 71
non-positive-log flavor 55
nonpositive number error 55
Not Categorized by Base Flavor 56
not-available flavor 72
not-enough-resources flavor 66
not-logged-In flavor 67
number error 55
number error 56
number-array-not-allowed flavor 60

object 49
object 31
objects 1, 3, 39, 49
objects 26
Open frame 16
operation error 55
operation errors 69
Operations Failures 71
operations failures 71
option 39
option for condition 50
option for defflavor 7

N

0

COND Signalling and Handling Conditions

Symbolics. Inc. March 1984

p

:lnltable-lnstance-varlables
Messages and lni1

Elements
Instance variable

Exponent
Stack

Interning errors based on sys:
sys:

:package message to sys:
:symbol message to sys:

sys:
:name message to sys:

:relative-to message to sys:
sys:
sys:

fs:
Drawing

Read

Invalid
fs:

sys:
Using the RESUME key with floating

Floating
Frame

Restart

dbg:
dbg:
sys:

sl:
Errors Involving Lisp

Errors inside Lisp
Connection

Local Network
Login

Network connection
Remote Network

:create-package
:new-name
:no-action

dbg:

p

option for defflavor 7
Options 49
out-of-bounds 61
out-of-bounds 61
Out-of-bounds subscripts 61
overflow error 56
overflow error 57
Overview and Definitions
Overview of This Document 2

:package message to sys:package-locked 63
package-error 62
package-error flavor 62
package-locked 63
package-locked 63
package-locked flavor 63
package-not-found 62
package-not-fOund 62
package-not-found flavor 62
parse-ferror function 26
parse-pathname-error flavor 72
past edge of screen error 57
past the end-of-file error 56
Pathname Errors 72
pathname syntax errors 69
pathname-error flavor 72
pdl-overflow flavor 57
point conditions 55
point exceptions 55
pointer 16
points 1
Previous frame 16
print-frame-locals function 21
print-functlon-and-args function 20
print-not-readable flavor 63
print-object-error-message variable 63
Printed Representations 63
printer 63
Problems 74
Problems 73
Problems 66
problems 74
Problems 74
:proceed can return nil 39
:proceed message 40
:proceed method 37, 40
Proceed type 37
proceed type 62
proceed type 62
proceed type 43, 62, 63
Proceed Type Messages 39
Proceed Type Names 40
:proceed-type-p message 39
:proceed-type-p method of condition 50
proceed-type-special-keys variable 48
:proceed-types init option 39

93

p

94

R

Signalling
dbg:

Protocol for
Reference Material:

File

sys:
sys:
sys:

sys:
Illegal
sys:

Condition Flavors

sys:

sys:
File
fs:
fs:
fs:
fs:
fs:

Debugger Bug
Errors Involving Lisp Printed

Reference Material:
Invoking

R

COND Signalling and Handling Conditions

Symbolics; Inc. March 1984

:proceed-types. ini1 option for condition 50
:proceed-types message 39
:proceed-types method of condHlon 50
Proceedable condition functions 41
Proceedable conditions 37
proceedable conditions 41
proceedable-ferror flavor 52
Proceeding 37
Proceeding 37
Proceeding 41
Proceeding with condition-bind handlers 40
Prompt string 37, 48
property errors 70
Protection-violation errors 68
Protocol for Proceeding 37

Read past the end-of-file error 56
read-end-of-file flavor 63
read-error flavor 63
read-list-end-of-file flavor 63
Read-only error 57
read-string-end-of-file flavor 64
redefinition error 58
redefinition flavor 58
Reference 49

R

Reference Material: Application: Handlers Examining
the Stack 17

Reference Material: Default Handlers and Complex
Modularity 30

Reference Material: Establishing Handlers 10
Reference Material: Proceeding 41
Reference Material: Restart Handlers 34
Reference Material: Signalling Conditions 25
region-table-overflow flavor 57
:relative-to message to sys:package-not-found 62
Remote Network Problems 7 4
remote-network-error flavor 7 4
rename errors 70
rename-across-directories flavor 70
rename-across-hosts flavor 70
rename-failure 70
rename-failure flavor 70
rename-to-existing-file flavor 70
:report message ~ 49
:report method 7
:report method of condition 50
:report-string method of condition 51
Reports 44
Representations 63
Request failures based on fs:file-request-fallure 66
Restart handler functions 34
Restart handlers 23, 33
Restart Handlers 34
Restart Handlers Manually 36
Restart points 1
Restriction Due to Scope 24

COND Signalling and Handling Conditions

Symbolics, Inc. March 1984

s

Using the
:proceed can

Square
Search

Restriction Due to
Drawing past edge of

Handler-list
Creating a

Drawing on unprepared

Introduction:

Reference Material:

Signalling

math:

Debugger
argument-typecase
catch-error-restart

catch-error-restart-If
condition-bind

condition-bind-default
condition-bind-default-If

condition-bind-If
condition-call

condition-call-If
condition-case

condition-case-If
error-restart

error-restart-loop
Ignore-errors

signal-proceed-case

dbg:

dbg:

Application: Handlers Examining the

s

RESUME key 46
RESUME key with floating point conditions 55
return nil 39
root of a negative number error 56
rule for invoking handlers 23, 29

Scope 24
screen error 57
Search rule for invoking handlers 23, 29
searching functions 30
Set of Condition Flavors 8
:set-proceed-types method of condition 50
sheet error 57
sl:*print-object-error-message• variable 63
signal function 4, 25, 37
signal-proceed-case special form 37, 41
Signallers 40
Signalling 1, 4
Signalling a condition 1
Signalling and Handling Conditions
Signalling Conditions 23
Signalling Conditions 25
Signalling Errors 24
Signalling functions 4, 25
Signalling Mechanism 23, 29
Signalling proceedable conditions 41
Signalling Simple Conditions 24
Simple conditions 4
Simple Conditions 24
Singular matrix operat!on error 55
singular-matrix flavor 55
Slashifying 49
Special Commands 45
special form 28
special form 23, 24, 33, 35
special form 33, 35
special form 10, 23, 37
special form 11, 23, 29
special form 11
special form 11
special form 14, 23
special form 15
special form 12, 23
special form 13
special form 23, 33, 34
special form 23, 33, 34
special form 15
special form 37, 41
Special Keys 46
:special-command message 45
:special-command-p method of condition 50
•special-command-special-keys• variable 48
:special-commands method of condition 50
special-commands-mixln flavor 45
Square root of a negative number error 56
Stack 16

95

s

96 COND Signalling and Handling Conditions

Symbolics, Inc. March 1984

Reference Material: Application: Handlers Examining the
Stack 17

Stack frame 16
Stack group state error 56
Stack overflow error 57
Standard Conditions 51

Stack group state error 56
Storage allocation error 57

Prompt string 37, 48
Subprimitives 16

sys: subscript-out-of-bounds flavor 61
Out-of-bounds subscripts 61

SUPER key 46
:case-documentation symbol 40

:which-operations symbol 40
:symbol message to sys:package-locked 63

Invalid pathname syntax errors 69
sys:abort flavor 24, 46, 52
sys:area-overflow flavor 57
sys:arithmetlc-error 55

Base· flavor: sys:arithmetic-error 54
sys:arlthmetlc-error flavor 54
sys:array-has-no-leader flavor 60
sys:array-wrong-number-of-dlmensions flavor 60
sys:bad-array-type flavor 60
sys:bad-connection-state flavor 7 4
sys:bad-data-type-in-memory flavor 54
sys:bltblt-array-fractional-word-width flavor 57
sys:bitblt-destination-too-small flavor 57
sys:call-trap flavor 43

Base flavor: sys:cell-contents-error 53
sys:cell-contents-error flavor 53
sys:connectlon-closed flavor 75
sys:connectlon-closed-locally flavor 75
sys:connection-error flavor 74
sys:connectlon-lost flavor 75
sys:connectlon-no-more-data flavor 75
sys:connectlon-refused flavor 7 4
sys:cons-ln-flxed-area flavor 57
sys:dlsk-error flavor 58
sys:divlde-by-zero flavor 1, 54
sys:draw-off-end-of-screen flavor 57
sys:draw-on-unprepared-sheet flavor 57
sys:end-of-file flavor 56
sys:fill-pointer-not-fixnum flavor 60
sys:float-dMde-by-zero flavor 55
sys:float-divide-zero-by-zero flavor 56
sys:float-lnexact-result flavor 56
sys:float-lnvalid-operation flavor 56
sys:floating-exponent-overflow flavor 56
sys:floating-exponent-underflow flavor 56

Base flavor: sys:floating-point-exception 55
sys:floating-polnt-exceptlon flavor 55
sys:funcall-macro flavor 62
sys:host-not-responding flavor 74
sys:host-not-respondlng-durlng-connection

flavor 74
sys: host-stopped-responding flavor 7 4

COND Signalling and Handling Conditions

Symbolics. Inc. March 1984

Interning errors based on

:package message to
:symbol message to

:name message to
:relative-to message to

Miscellaneous

97

sys:lnstance-varlable-pointer-out-of-range
flavor 58

sys:lnstance-varlable-zero-referenced flavor 58
sys:lnvalld-form flavor 61
sys:lnvalid-function flavor 61
sys:lnvalid-lambda-list flavor 61
sys:local-network-error flavor 73
sys:negative-sqrt flavor 56
sys:network-error flavor 73
sys:network-resources-exhausted flavor 73
sys:no-action-mlxln flavor 52
sys:non-posltlve-log flavor 55
sys:number-array-not-allowed flavor 60
sys:package-error 62
sys:package-error flavor 62
sys:package-locked 63
sys:package-locked 63
sys:package-locked flavor 63
sys:package-not-found 62
sys:package-not-found 62
sys:package-not-found flavor 62
sys:parse-ferror function 26
sys:pdl-overflow flavor 57
sys:print-not-readable flavor 63
sys:read-end-of-flle flavor 63
sys:read-error flavor 63
sys:read-list-end-of-flle flavor 63
sys:read-strlng-end-of-flle flavor 64
sys:redefinitlon flavor 58
sys:reglon-table-overflow flavor 57
sys:remote-network-error flavor 74
sys:subscript-out-of-bounds flavor 61
sys:throw-tag-not-seen flavor 57
sys:too-few-arguments flavor 59
sys:too-many-arguments flavor 59
sys:unbound-closure-variable flavor 53
sys:unbound-lnstance-variable flavor 53
sys:unbound-symbol flavor 53
sys:unbound-varlable flavor 53
sys:unclalmed-message flavor 62
sys:undeflned-function flavor 54
sys:undeflned-keyword-argument flavor 61
sys:unknown-address flavor 73
sys:unknown-host-name flavor 73
sys:unknown-locf-reference flavor 54
sys:unknown-setf-reference flavor 54
sys:vlrtual-memory-overflow flavor 57
sys:wrlte-ln-read-only flavor 57
sys:wrong-stack-group-state flavor 56
sys:wrong-type-argument condition 27
sys:wrong-type-argument flavor 59
sys:zero-args-to-select-method flavor 59
System Errors Not Categorized by Base Flavor 56

98

T

u

Throw

tape:
tape:

Overview of

sys:
sys:
sys:

Inexact-result

Enabling and disabling of floating-point
:create-package proceed

:new-name proceed
:no-action proceed

Proceed
Invalid

Proceed
Proceed

sys:
sys:
sys:
sys:

sys:

sys:
sys:

fs:
Exponent

f s:

sys:
sys:
sys:

fs:
fs:
fs:

sys:
fs:

Drawing on

T

u

COND Signalling and Handling Conditions

Symbolics. Inc. March 1984

tag error 57
Tape Errors 75
tape-device-error flavor 75
tape-error flavor 75
tape:end-of-tape flavor 75
tape:mount-error flavor 75
tape:tape-devlce-error flavor 75
tape:tape-error flavor 75
This Document 2
*throw 4
Throw tag error 57
throw-tag-not-seen flavor 57
too-few-arguments flavor 59
too-many-arguments flavor 59
TOPS-20 64
trace-conditions variable 43
Tracing Conditions 43
trap 55
Trap on exit bit 43
traps 55
type 62
type 62
type 43, 62, 63
type 37
type code error 54
Type Messages 39
Type Names 40

Unbound closure variable error 53
Unbound instance variable error 53
Unbound variable errors 53
unbound-closure-variable flavor 53
unbound-instance-variable flavor 53
unbound-symbol flavor 53
unbound-variable flavor 53
unbreakon function 44
unclaimed-message flavor 62
Undefined function error 54

T

u

undefined-function flavor 54
undefined-keyword-argument flavor 61
undefined-logical-pathname-translation flavor 73
underflow error 56
unimplemented-option flavor 71
UNIX 64
unknown-address flavor 73
unknown-host-name flavor 73
unknown-locf-reference flavor 54
unknown-operation flavor 66
unknown-pathname-host flavor 73
unknown-property flavor 70
unknown-self-reference flavor 54
unknown-user flavor 67
unprepared sheet error 57

COND Signalling and Handling Conditions 99

Symbolics, Inc. March 1984

v v v
Checking for valid arguments 27

dbg:*interactive-handlers• Variable 31
dbg:*proceed-type-speclal-keys* variable 48

dbg:*special-command-special-keys* variable 48
sl :*print-object-error-message* variable 63

trace-conditions variable 43
Unbound closure variable error 53

Unbound instance variable error 53
Instance variable errors 58
Unbound variable errors 53
Instance variable out-of-bounds 61
Instance variables 7

sys: virtual-memory-overflow flavor 57

w w w
What is a Handler? 9
:which-operations symbol 40

fs: wlldcard-not-allowed flavor 69
dbg: with-erring-frame macro 16, 17
sys: write-In-read-only flavor 57

fs: wrong-kind-of-file 69
fs: wrong-kind-of-file flavor 69

sys: wrong-stack-group-state flavor 56
sys: wrong-type-argument condition 27
sys: wrong-type-argument flavor 59

z z z
Division by zero error 54

sys: zero-args-to-select-method flavor 59

symbolics™

PKG Packages

Cambridge, Massachusetts

Packages
990086

February 1984

This document corresponds to Release 5.0.

This document was prepared by the Documentation Group of Symbolics, Inc.

No representation or affirmation of fact contained in this document should be construed
as a warranty by Symbolics, and its contents are subject to change without notice.
Symbolics, Inc. assumes no responsibility for any errors that might appear in this
document.

Symbolics software described in this document is furnished only under license, and may
be used only in accordance with the terms of such license. Title to, and ownership of,
such software shall at all times remain in Symbolics, Inc. Nothing contained herein
implies the granting of a license to make, use, or sell any Symbolics equipment or
software.

Symbolics is a trademark of Symbolics, Inc., Cambridge, Massachusetts.

Copyright C 1984, Symbolics, Inc. of Cambridge, Massachusetts.
All rights reserved. Printed in USA.
This document may not be reproduced in whole or in part without the prior written
consent of Symbolics, Inc.

Printing year and number: 87 86 85 84 9 8 7 6 5 4 3 2 1

PKG Packages

Symbolics, Inc. February 1984

Table of Contents

Page

1. The Need for Multiple Contexts 1

2. Sharing of Symbols Among Packages 3

2.1 External Symbols 4
2.2 Package Inheritance 4
2.3 The global Package 5
2.4 Home Package of a Symbol 7
2.5 Importing and Exporting Symbols 7
2.6 Shadowing Symbols 8
2.7 Keywords 9

3. Packages and Writing Programs 13

4. Package Names 15

4.1 Relative Package Names 16

5. Qualified Names 19

5.1 Avoiding the Internal/External Distinction 19
5.2 Qualified Names as Interfaces 20
5.3 Printed Representation of Symbols 20
5.4 Multilevel Qualified Names 21

6. Examples 23

7. Consistency Rules 25

8. Name Conflicts: Packages 27

9. Package Functions, Special Forms, and Variables 31

9.1 The Current Package 31
9.2 Defining a Package 32
9.3 Mapping Names to Symbols 37
9.4 Home Package of a Symbol 40
9.5 Mapping Between Names and Packages 41
9.6 Package Iteration 42
9. 7 Interpackage Relations 44
9.8 Import, Export, and Shadow 45
9.9 Package "Commands" 46

ii

9.10 System Packages

10. Package-related Conditions

11. Multipackage Programs

12. Compatibility with the Old Package System

12.1 External-only Packages and Locking

Index

PKG Packages

Symbolics, Inc. February 1984

49

51

53

57

58

61

PKG Packages 1

Symbolics, Inc. February 1984

1. The Need for Multiple Contexts

A Lisp program is a collection of function definitions. The functions are known by
their names, and so each must have its own name to identify it. Clearly a
programmer must not use the same name for two different functions.

The Lisp Machine consists of a huge Lisp environment, in which many programs
must coexist. All of the "operating system", the compiler, the editor, and a wide
variety of programs are provided in the initial environment. Furthermore, evecy
program that you use during his session must be loaded into the same environment.
Each of these programs is composed of a group of functions; each function must
have its own distinct name to avoid conflicts. For example, if the compiler had a
function named pull, and you loaded a program that had its own function named
pull, the compiler's pull would be redefined, probably breaking th~ compiler.

It would not really be possible to prevent these conflicts, since the programs are
written by many different people who could never get together to hash out who gets
the privilege of using a specific name such as pull

Now, if we are to enable two programs to coexist in the Lisp world, each with its
own function pull, then each program must have its own symbol named "pull",
because one symbol cannot have two function definitions. The same reasoning
applies to any other use of symbols to name things. Not only functions but
variables, flavors, and many other things are named with symbols, and hence require
isolation between symbols belonging to different programs.

A package is a mapping from names to symbols. When two programs are not closely
related and hence are likely to have conflicts over the use of names, the programs
can use separate packages to enable each program to have a different mapping from
names to symbols. In the example above, the compiler can use a package that maps
the name pull into a symbol whose function definition is the compiler's pull
function. Your program can use a different package that maps the name pull into a
different symbol whose function definition is your function. When your program is
loaded, the compiler's pull function is not redefined, because it is attached to a
symbol that is not affected by your program._ The compiler does not break.

The word "package" is used to refer to a mapping from names to symbols because a
number of related symbols are packaged together into a single entity. Since the
substance of a program (such as its function definitions and variables) consists of
attributes of symbols, a package also packages together the parts of a program. The
package system allows the author of a group of closely related programs that should
share the same symbols to define a single package for those programs.

It is important to understand the distinction between a name and a symbol. A
name is a sequence of characters that appears on paper (or on a screen or in a file).
This is often called a printed representation. A symbol is a Lisp object inside the

2 PKG Packages

Symbolics. Inc. February 1984

machine. You should keep in mind how Lisp reading and loading work. When a
source file is read into the Lisp Machine, or a compiled binary file is loaded in, the
file itself obviously cannot contain Lisp objects; it contains printed representations of
those objects, When the reader encounters a printed representation of a symbol, it
uses a package to map that printed representation (a name) into the symbol itself.
The loader does the same thing. The package system arranges to use the correct
package whenever a file is read or loaded; this is explained in detail in section 3,
page 13.

Here is another example: suppose there are two programs named chaos and arpa,
for handling the Chaosnet and Arpanet respectively. The author of each program
wants to have a function called get-packet, which reads in a packet from the
network. Also, each wants to have a function called allocate-pbuf, which allocates
the packet buffer. Each "get" routine first allocates a packet buffer, and then reads
bits into the buffer; therefore, each version of get-packet should call the respective
version of allocate-pbuf.

Without the package system, the two programs could not coexist in the same Lisp
environment. But the package system can be used to provide a separate space of
names for each program. What is required is to define a package named chaos to
contain the Chaosnet program, and another package arpa to hold the Arpanet
program. When the Chaosnet program is read into the machine, the names it uses
are translated into symbols via the chaos package. So when the Chaosnet
program's get-packet refers to allocate-pbuf, the allocate-pbuf in the chaos
package is found, which is the allocate-pbuf of the Chaosnet program - the right
one. Similarly, the Arpanet program's get-packet would be read in using the arpa
package and would refer to the Arpanet program's allocate-pbuf.

PKG Packages 3

Symbolics, Inc. February 1984

2. Sharing of Symbols Among Packages ,

So far we have seen how the package system keep~ programs isolated by giving each
program its own set of symbols. Another important job for the package system is to
provide controlled sharing of symbols between packages. It would not be adequate
for each package's set of symbols to be completely disjoint from the symbols of every
other package. For example, almost every package ought to include the whole Lisp
language: car, cdr, format, and so on should be available to every program.

There is a critical tension between these two goals of the package system. On the
one hand, we want to keep the packages isolated, to avoid the need to think about
conflicts between programs in the choice of names for things. On the other hand,
we want to provide connections among packages so that the facilities of one program
can be made available to other programs. All of the complexity of the package
system arises from this tension. Almost all of the features described in this
document exist to provide easy ways to control the sharing of symbols among
packages, while avoiding accidental unwanted sharing of symbols. Unexpected
sharing of a symbol between packages, when the authors of the programs in those
packages expected to have private symbols of their own, is a name conflict and can
cause programs to go awry. See the section "Name Conflict: Packages".

Note that sharing symbols is not as simple as merely making the symbols defined by
the Lisp language available in every package. A very important feature of the Lisp
Machine is shared programs; if one person writes a function to, say, print numbers
in Roman numerals, any other function can call it to print Roman numerals. This
contrasts sharply with many other systems, where many different programs have
been written to accomplish the same thing.

For example, the routines to manipulate a robot arm might be a separate program,
residing in its own package. A second program called blocks (the blocks world, of
course) wants to manipulate the arm, so it would want to call functions from the
arm package. This means that the blocks program must have a way to name those
robot arm functions. One way to do this is to arrange for the name-to-symbol
mapping of the blocks package to map the names of those functions into the same
identical symbols as the name-to-symbol mapping of the arm package. These
symbols would then be shared between the two packages.

This sharing must be done with great care. The symbols to be shared between the
two packages constitute an interface between two modules. The names to be shared
must be agreed upon by the authors of both programs, or at least known to them.
They cannot simply make every symbol in the arm program available to the blocks
program. Instead they must define some subset of the symbols used by the arm
program as its interface and make only those symbols available. Typically each name
in the interface is carefully chosen (more carefully than names that are only used
internally). The arm program comes with documentation listing the symbols that

4 PKG Packages

Symbolics. Inc. February 1984

constitute its interface and describing what each is used for. This tells the author
of the blocks program not only that a particular symbol is being used as the name of
a function in the arms program (and thus can't be used for a function elsewhere),
but also what that function does (move the arm, for instance) when it is caiied.

The package system provides for several styles of interface between modules. For
several examples of how the blocks program and the arm program might
communicate: See the section "Examples: Packages".

An important aspect of the package system is that it makes it necessary to clarify
the modularity of programs and the interfaces between them. The package system
provides some tools to allow the interface to be explicitly defined and to check that
everyone agrees on the interface. These are explained in the rest of the document.

2.1 External Symbols

The name-to-symbol mappings of a package are divided into two classes, external and
internal. We refer to the symbols accessible via these mappings as being external
and internal symbols of the package in question, though really it is the mappings
that are different and not the symbols themselves. Within a given package, a name
refers to one symbol or to none; if it does refer to a symbol, that symbol is either
external or internal in that package, but not both.

External symbols are part of the package's public interface to other packages. These
are supposed to be chosen with some care and are advertised to outside users of the
package. Internal symbols are for internal use only, and these symbols are normally
hidden from other packages. Most symbols are created as internal symbols; they
become external only if they are explicitly exported from a package.

A symbol may appear in many packages. It may be external in one package and
internal in another. It is valid for a symbol to be internal in more than one
package, and for a symbol to be external in more than one package. A name may
refer to different symbols in different packages. However, a symbol always has the
same name no matter where it appears. This restriction is imposed both for
conceptual simplicity and for ease of implementation.

2.2 Package Inheritance

The name-to-symbol mappings of a package are divided into two classes in another
way. Some mappings are established by the package itself, while others are
inherited from other packages. When package A inherits mappings from package B,
package A is said to use package B. A symbol is said to be accessible in a package if
its name maps to it in that package, whether directly or by inheritance. A symbol is
said to be present in a package if its name maps to it directly (not by inheritance).

PKG Packages 5

Symbolics. Inc. February 1984

If a symbol is accessible to a package, then it can be referenced by a program that is
read into that package. Inheritance allows a package to be built up by combining
symbols from a number of other packages.

Package inheritance interacts with the distinction between internal and external
symbols. When one package uses another, it inherits only the external symbols of
that package. This is necessary in order to provide a well-defined interface and avoid
accidental name conflicts. The external symbols are the ones that are carefully
chosen and advertised. If internal symbols were inherited, it would be hard to
predict just which symbols were shared between packages.

A package may use any number of other packages; it inherits the external symbols
of all of them. If two of these external symbols had the same name it would be
unpredictable which one would be inherited, so this is considered to be a name
conflict error. Consequently the order of the used packages is immaterial and does
not affect what symbols are accessible.

Only symbols that are present in a package can be external symbols of that package.
However, the package system hides this restriction by copying an inherited mapping
directly into a package if you request that the symbol be exported. Note: When
package A uses package B, it inherits the external symbols of B. But these do not
become external symbols of A, and will not be inherited by package C that uses
package A. A symbol becomes an external symbol of A only by an explicit request to
export it from A.

A package may be made to use another package by the :use option to defpackage
or make-package or by calling the use-package function. See the section
"Defining a Package". See the section "lnterpackage Relations".

2.3 The global Package

Almost every package should have the basic symbols of the Lisp language accessible
to it. This includes symbols that are names of useful functions, such as cdr, cons,
and print; symbols that are names of special forms, such as cond and selectq;
symbols that are names of useful variables, such as base, standard-output, and *;
symbols that are names of useful constants, such as lambda-list-keywords and
%%kbd-control-meta; and symbols that are used by the language as symbols in
their own right, such as &optional, t, nil, and special.

Rather than providing an explicit interface between every program and the Lisp
language, listing explicitly the particular symbols from the Lisp language that that
program intends to use, it is more convenient to make all the Lisp symbols
accessible. Unless otherwise specified, every package inherits from the global
package. The external symbols of global are all the symbols of the Lisp language,
including all the symbols documented without a colon (:) in their name. The global
package has no internal symbols.

6 PKG Packages

Symbolics, Inc. February 1984

All programs share the global symbols, and cannot use them for private purposes.
For example, the symbol delete is the name of a Lisp function and thus is in the
global package. Even if a program does not use the delete function, it will inherit
the global symbol naiued delete and therefore cannot define its own function with
that name to do something different. Furthermore, if two programs each want to
use the symbol delete as a property list indicator, they may bump into each other
because they will not have private symbols. There exists a mechanism called
shadowing that you can use to declare that a private symbol is desired rather than
inheriting the global symbol. See the section "Shadowing Symbols". You can also
use the where-is function and the Where Is Symbol (M-X) editor command to
determine whether a symbol is private or shared when writing a program.

Similar to the global package is the system package, which contains all the symbols
that are part of the "operating system" interface or the machine architecture, but
not regarded as part of the Lisp language. The system package is not inherited
unless specifically requested.

Here is how package inheritance works in the example of the two network
programs. (See the section "The Need for Multiple Contexts".) When the Chaosnet
program is read into the Lisp world, the current package is the chaos package.
Thus all of the names in the Chaosnet program are mapped into symbols by the
chaos package. If there is a reference to some well-known global symbol such as
append, it is found by inheritance from the global package, assuming no symbol by
that name is present in the chaos package. If, however, there is a reference to a
symbol that you created, a new symbol will be created in the chaos package.
Suppose the name get-packet is referenced for the first time. No symbol by this
name is directly present in the chaos package, nor is such a symbol inherited from
global. Therefore the reader (actually the intern function) creates a new symbol
named get-packet and makes it present in the chaos package. When get-packet
is referred to later in the Chaosnet program, that symbol will be found.

When the Arpanet program is read in, the current package is arpa instead of
chaos. When the Arpanet program refers to append, it gets the global one; that
is, it shares the same symbol that the Chaosnet program got. However, if it refers
to get-packet, it does not get the same symbol the Chaosnet program got, because
the chaos package is not being searched. Rather, the arpa and global packages
are searched. A new symbol named get-packet is created and made present in the
arpa package.

So what has happened is that there are two get-packets: one for chaos and one
for arpa. The two programs are loaded together without name conflicts.

PKG Packages 7

Symbolics, Inc. February 1984

2.4 Home Package of a Symbol

Every symbol has a home package. When a new symbol is created by the reader
and made present in the current pack.age, its home pack.age is set to the current
pack.age. The home pack.age of a symbol may be obtained with the
symbol-package function.

Most symbols are present only in their home package; however, it is possible to make
a symbol be present in any number of pack.ages. Only one of those pack.ages can be
distinguished as the home pack.age; normally this will be the first pack.age in which
the symbol was present. The pack.age system makes an effort to ensure that a
symbol is present in its home pack.age. When a symbol is first created by the reader
(actually by the intern function), it is guaranteed to be present in its home package.
If the symbol is removed from its home pack.age (by the remob function), the home
pack.age of the symbol will be set to nil, even if the symbol is still present in some
other package.

Some symbols are not present in any pack.age; they are said to be unintemed. See
the section "Mapping Names to Symbols". The make-symbol function can be used
to create such a symbol. An uninterned symbol has no home pack.age; the
symbol-package function will return nil given such a symbol.

When a symbol is printed, for example, with print, the printer produces a printed
representation that the reader will turn back into the same symbol. If the symbol is
not accessible to the· current pack.age, a qualified name is printed. See the section
"Qualified Names". The symbol's home pack.age is used as the prefix in the qualified
name.

2.5 Importing and Exporting Symbols

A symbol may be made accessible to packages other than its home pack.age in two
ways, importing and exporting.

Any symbol may be made present in a pack.age by importing it into that pack.age.
This is how a symbol can be present in more than one pack.age at the same time.
After importing a symbol into the current pack.age, it may be referred to directly
with an unqualified name. Importing a symbol does not change its home pack.age,
and does not change its status in any other pack.ages in which it is present.

When a symbol is imported, if another symbol with the same name is already
accessible to the pack.age, a name-conflict error is signalled. The shadowing-import
operation is a combination of shadowing (described in the next section) and
importing; it resolves a name conflict by getting rid of any existing symbol accessible
to the pack.age.

Any number of symbols may be exported from a package. This declares them to be

8 PKG Packages

Symbolics, Inc. February 1984

external symbols of that package and makes them accessible in any other packages
that use the first package. To use a package means to inherit its external symbols.

When a symbol is exported, the package system makes sure that no name conflict is
caused in any oi the packages that inherit the newiy exported symbol.

A symbol may be imported by using the :import, :import-from, or
:shadowing-import option to defpackage and make-package, or by calling the
import or shadowing-import function. A symbol may be exported by using the
:export option to defpackage or make-package, or by calling the export
function. See the section "Defining a Package". See the section "Import, Export,
and Shadow".

2.6 Shadowing Symbols

You can avoid inheriting unwanted symbols by shadowing them. To shadow a
symbol that would otherwise be inherited, you create a new symbol with the same
name and make it present in the package. The new symbol is put on the package's
list of shadowing symbols, to tell the package system that it is not an accident that
there are two symbols with the same name. A shadowing symbol takes precedence
over any other symbol of the same name that would otherwise be accessible to the

· package. Shadowing allows the creator of a package to avoid name conflicts that are
anticipated in advance.

Here is an example of shadowing. Suppose you want to define a function named
nth that is different from the normal nth function. (Perhaps you want nth to be
compatible with the Interlisp function of that name.) Simply writing (defun nth •••)
in your program would redefine the system-provided nth function, probably breaking
other programs that use it. (The system detects this and queries you before
proceeding with the redefinition.)

The way to resolve this conflict is to put the program (call it snail) that needs the
incompatible definition of nth in its own package and to make the snail package
shadow the symbol nth.

Now there are two symbols named nth, so defining snail's nth to be an Interlisp
compatible function will not affect the definition of the global nth. Inside the snail
program, the global symbol nth cannot be seen, which is why we say that it is
shadowed. If some reason arises to refer to the global symbol nth inside the snail
program, the qualified name global:nth can be used.

A shadowing symbol may be established by the :shadow or :shadowing-import
option to defpackage or make-package, or by calling the shadow or
shadowing-import function. See the section "Import, Export, and Shadow".

PKG Packages 9

Symbolics, Inc. February 1984

2.7 Keywords

The Lisp reader is not context-sensitive; it reads the same printed representation as
the same symbol regardless of whether the symbol is being used as the name of a
function, the name of a variable, a quoted constant, a syntactic word in a special
form, or anything else. The consistency and simplicity afforded by this lack of
context sensitivity are very important to Lisp's interchangeability of programs and
data, but they do cause a problem in connection with packages. If a certain
function is to be shared between two packages, then the symbol that names that
function has to be shared for all contexts, not just for functional context. This can
accidentally cause a variable, or a property list indicator, or some other use of a
symbol, to be shared. between two packages when not desired. Consequently, it is
important to minimize the number of symbols that are shared between packages,
since every such symbol becomes a "reserved word" that cannot be used without
thinking about the implications. Furthermore, the set of symbols shared among all
the packages in the world is not legitimately user-extensible, because adding a new
shared symbol could cause a name conflict between unrelated programs that use
symbols by that name for their own private purposes.

On the other hand, there are many important applications for which the package
system just gets in the way and one would really like to have all symbols shared
between packages. Typically this occurs when symbols are used as objects in their
own right, rather than just as names for things.

This dilemma is partially resolved by the introduction of keywords into the language.
Keywords are a set of symbols that is disjoint from all other symbols and exist as a
completely independent set of names. There is no separation of packages as far as
keywords are concerned; all keywords are available to all packages and there cannot
be two distinct keywords with the same name. There can, of course, be a keyword
with the same name as one or more ordinary symbols. To distinguish keywords
from ordinary symbols, the printed representation of a keyword starts with a colon
(:) character.

Since keywords are disjoint from ordinary symbols, the sharing of keywords among
all packages does not affect the separation of ordinary symbols into private symbols
of each package. The set of keywords is user-extensible; simply reading the printed
representation of a new keyword is enough to create it.

Keywords are implemented as symbols whose home package is the keyword
package, which has the empty string as a nickname. See the section "Package
Names". Hence the printed representation of a keyword, a symbol preceded by a
colon, is actually just a qualified name. As a matter of style, keywords are never
imported into other packages and the keyword package is never inherited (used) by
another package.

As a syntactic convenience, every keyword is a constant that evaluates to itself (just
like numbers and strings). This eliminates the need to write a lot of " ' " marks

10 PKG Packages

Symbolics. Inc. February 1984

when calling a function that takes &key arguments, but makes it impossible to have
a variable whose name is a keyword. However, there is no desire to use keywords as
names of variables (or of functions), because the colon would look ugly. In fact, no
syntactic words of the Lisp language are keywords. Names of special forms, the
otherwise that goes at the end of a selectq, the lambda that identifies an
interpreted function, names of declarations such as special and arglist, all are not
keywords.

The only aspects of symbols significant to keywords are name and property list;
otherwise, keywords could just as easily be some other data type. <Note that
keywords are referred to as enumeration types in some other languages.)

Some examples of how keywords are used:

Keywords can be used as symbolic names for elements of a finite set. For example,
when opening a file with the open function one must specify a direction. The
various directions are named with keywords, such as :input and :output. See the
document Streams.

One of the most common uses of keywords is to name arguments to functions that
take a large number of optional arguments and therefore are inconvenient to call
with arguments identified positionally. Each argument is preceded by a keyword
that tells the function how to use that argument. When the function is called, it
compares each keyword that was passed to it against each of the keywords it knows,
using eq.

Another common use for keywords is as names for messages that are passed to
active objects such as instances. When an instance receives a message, it compares
its first argument against all the message names it knows, using eq. See the
section "Generic Operations".

Since there cannot be two distinct keywords with the same name, keywords are not
used for applications in which name conflicts can arise. For example, suppose a
program stores data on the property lists of symbols. The data are internal to the
program but the symbols may be global. An example of this would be a program
understanding program that puts some information about each Lisp function and
special form on the symbol that names that function or special form. The indicator
used should not be a keyword, because some other program might choose the same
keyword to store its own internal data on the same symbol, and there would be a
name conflict.

It is permissible, and in fact quite common, to use the same keyword for two
different purposes when the two purposes are always separable by context. For
instance, the use of keywords to name arguments to functions does not permit the
possibility of a name conflict if you always know what function you are calling.

To see why keywords are used to name &key arguments, consider the function
make-array, which takes one required argument followed by any number of
keyword arguments. For example, the following specifies, after the first required

PKG Packages 11

Symbolics, Inc. February 1984

argument, two options with names :leader-length and :typf, and values 10 and
art-string.

(make-array 100 :leader-length 10 :type 'art-string)

The file containing make-array's definition is in the system-intemals package, but
the function is accessible to eveiyone without the use of a qualified name because
the symbol make-array is itself inherited from global. But all the keyword names,
such as type, are short and should not have to exist in global where they would
either cause name conflicts or use up all the "good" names by turning them into
reserved words. However, if all callers of make-array had to specify the options
using long-winded qualified names such as system-internals:leader-length and
system-internals:type (or even si:leader-length and si:type) the point of making
make-array global so that one can write make-array rather than
system-internals:make-array would be lost. Furthermore, by rights one should
not have to know about internal symbols of another package in order to use its
documented external interface. By using keywords to name the arguments, we avoid
this problem while not increasing the number of characters in the program, since we
trade a "'" for a ":".

The data type names used with the typep function and the typecase and
check-arg-type special forms are sometimes keywords and sometimes not keywords.
The names of data types that are built into the machine, such as :symbol, :list,
:f"ixnum, and :compiled-function, are keywords. On the other hand, the names of
data tyPes that are defined as flavors or structures, such as package or tv:window,
are not keywords. This unfortunate anomaly exists for historical reasons and will be
removed by Common Lisp, where names of data types, like names of functions, are
never keywords.

When in doubt as to whether or not a symbol of the language is supposed to be a
keyword, check the manual to see whether it is documented with a colon at the
front of its name.

12 PKG Packages

Symbolics, Inc. February 1984

PKG Packages 13

Symbolics, Inc. February 1984

3. Packages and Writing Programs

If you are an inexperienced user, you need never be aware of the existence of
packages when writing programs. The user package is selected by default as the
package for reading expressions typed at the Lisp Listener. Files will be read in the
user package if no package is specified. Since all the functions that users are likely
to need are provided in the global package, which is used by user, they are all
accessible. In the documentation, functions that are not in the global package are
documented with colons in their names, so typing the name the way it is
documented will work. Keywords, of course, must be typed with a prefix colon, but
since that is the way they are documented it is possible to regard the colon as just
part of the name, not as anything having to do with packages.

The current package is the value of the variable package. The current package in
the "selected" process is displayed in the status line. This allows you to tell how
forms you type in will be read.

If you are writing a program that you expect others to use, you should put it in
some package other than user, so that its internal functions will not conflict with
names other users use. Whether for this reason or for any other, if you are loading
your programs into packages other than user there are special constructs that you
will need to know about, including defpackage, qualified names, and file attribute
lists. See the section "Defining a Package". See the section "Qualified Names".

Obviously, every file must be loaded into the right package to serve its purpose. It
may not be so obvious that every file must be compiled in the right package, but it's
just as true. Any time the names of symbols appearing in the file must be
converted to the actual symbols, the conversion must take place relative to a
package.

The way that the system usually decides which package to use for a file is the file's
attribute list. See the section "File Property Lists". The package can also be
selected by make-system. See the section "Making a System". A compiled file
re~embers the name of the package it was compiled in, and loads into the same
package. In the absence of any of these specifications, the package defaults to the
current value of package, which is usually the user package unless you change it.

The file attribute list of a character file is the line at the front of the file that looks
something like:

;;; -*- Hode:Lisp; Package:System-Internals -*-
This specifies that the package whose name or nickname is system-internals is to
be used. Alphabetic case does not matter in these specifications. Relative package
names are not used, since there is no meaningful package to which the name could
be relative. See the section "Relative Package Names".

14 PKG Packages

Symbolics, Inc. February 1984

If the package attribute contains parentheses, then the package will be automatically
created if it is not found. This is useful when a single file is in its own package, not
shared with any other files, and no special options are required to set up that
package. The valid forms of package attribute are:

-*- Package: Name -*-
Signal an error if the package is not found, allowing you to load the
package's definition from another file, specify the name of an existipg package
to use instead, or create the package with default characteristics.

-*-Package: (Name)-*-
If the package is not found, create it with the specified name and default
characteristics. It will use global so that it inherits the Lisp language
symbols.

-*- Package: (Name use) -*-
If the package is not found, create it with the specified name and make it
use use, which can be the name of a package or a list of names of packages.

-*- Package: (Name use size) -*-
If the package is not found, create it with the specified name and make it
use use, which can be the name of a package or a list of names of packages.
size is a decimal number, the expected number of symbols that will be
present in the package.

-*-Package: (Name keyword value keyword value •..)-*-
If the package is not found, create it with the specified name. The rest of
the list supplies the keyword arguments to make-package. In the event of
an ambiguity between this form and the previous one, the previous one is
preferred. You can avoid ambiguity by specifying more than one keyword.

Binary files have similar file attribute lists. The compiler always puts in a :package
attribute to cause the binary file to be loaded into the same package it was compiled
in, unless this attribute is overridden by arguments to load.

PKG Packages 15

Symbolics. Inc. February 1984

4. Package Names

Each package has a name and perhaps some nicknames. These are assigned when
the package is created, though they can be changed later. A package's name should
be something long and self-explanatory like editor; there might be a nickname that
is shorter and easier to type, like ed. Typically the name of a package is also the
name of the program that resides in that package.

There is a single name space for packages. Instead of setting up a second-level
package system to isolate names of packages from each other, we simply say that
package name conflicts are to be resolved by using long explanatory names. There
are sufficiently few pack.ages in the world that a mechanism to allow two packages
to have the same name does not seem necessary. Note that for the most frequent
use of package names, qualified names of symbols, name clashes between packages
can be alleviated using the mechanism described in the next section - relative
names.

The syntax conventions for package names are the same as for symbols. When the
reader sees a package name (as part of a qualified symbol name), alphabetic
characters in the package name are converted to uppercase unless preceded by the
"/" escape character or unless the package name is surrounded by "I" characters.
When a package name is printed by the printer, if it does not consist of all
uppercase alphabetics and non-delimiter characters, the "/" and "I" escape characters
are used.

Package name lookup is currently case-insensitive, but it may be changed in the
future to be case-sensitive. In any case it would not be a good idea to make two
packages whose names differ only in alphabetic case.

Internally names of packages are strings, but the functions that require a package
name argument from the user accept either a symbol or a string. If you supply a
symbol, its print-name will be used, and this will already have undergone case
conversion by the usual rules. If you supply a string, you must be careful to
capitalize the string in the same way that the package's name is capitalized.

Note that 1Fo<>1:IBarl refers to a symbol whose name is "Bar" in a package whose
name is "Foo". By contrast, 1Foo:Barj refers to a 7-character symbol with a colon
in its name, and is interned in the current package. Following the convention used
in the documentation for symbols, we will show package names as being in
lowercase, even though the name string is really in uppercase.

In addition to the normal packages discussed up until now, there can be invisible
packages. An invisible package has a name, but it is not entered into the system's
table that maps package names to packages. An invisible package cannot be
referenced via a qualified name (unless you set up a relative name for it) and cannot
be used in such contexts as the :use keyword to defpackage and make-package

16 PKG Packages

Symbolics. Inc. February 1984

(unless you pass the package object itself, rather than its name). Invisible packages
are useful if you simply want a package to use as a data structure, rather than as
the package in which to write a program.

4.1 Relative Package Names

In addition to the absolute package names (and nicknames) described in the previous
section, there can be relative names for packages. If p is a relative name for
package B, relative to package A, then in contexts where relative names are allowed
and A is the contextually relevant package the name p may be used instead of b.
The relative name mapping belongs to package A and defines a new name (p) for
package B. It is important not to confuse the package that the name is relative to
with the package that is named.

There are two important differences between relative names and absolute names:
relative names are recognized only in certain contexts, and relative names may
"shadow" absolute names. One application for relative names is to replace one
package by another. Thus if a program residing in package A normally refers to the
thermodynamics package, but for testing purposes we would like it to use the
phlogiston package instead, we can give A a relative name mapping from the name
thermodynamics to the phlogiston package. This relative name shadows the
absolute name thermodynamics.

Another application for relative names is to ease the establishment of a family of
mutually dependent packages. For example, if you have three packages named
algebra, rings, and polynomials, these packages may refer to each other so
frequently that you would like to use the nicknames a, r, and p rather than spelling
out the full names each time. It would obviously be bad to use up these one-letter
names in the system-wide space of package names; what if someone else has a
program with two packages named reasoning and truth-maintenance, and would
like to use the nicknames rand t? The solution to this name conflict is to make
the abbreviated names be relative names defined in the algebra, rings, and
polynomials packages. These abbreviations will only be seen by references
emanating from those packages, and there is no conflict with other abbreviations
defined by other packages.

An extension of the shadowing application for relative names is to set up a complete
family of packages parallel to the normal one, such as experimental-global and
experimental-user. Within this family of packages you establish relative name
mappings so that the usual names such as global and user may be used. Certain
system utility programs work this way.

When package A uses package B, in addition to inheriting package B's external
symbols, any relative name mappings established by package B will be inherited. In
the event of a name conflict between relative names defined directly by A and

PKG Packages 17

Symbolics. Inc. February 1984

inherited relative names, the inherited name will be ignored. The results if two
relative name mappings inherited from two different packages conflict are
unpredictable.

The Lisp system does not itself use relative names, so a freshly booted Lisp Machine
will contain no relative-name mappings.

Relative names are recognized in the following contexts:

• Qualified symbol names - The package name before the colon is relative to the
package in which the symbol is being read (the value of the variable package).
The printer prefers a relative package name to an absolute package name
when it prints a qualified symbol name.

• Package references in package-manipulating functions - For example, the
package names in the :use option to defpackage and in the first argument to
use-package may be relative names. All such relative names are relative to
the value of the variable package.

• Package arguments that default to the current package - The functions
intern, intern-local, intern-soft, intern-local-soft, remob, export,
unexport, import, shadow, shadowing-import, use-package, and
unuse-package all take an optional second argument that defaults (except in
the case of remob) to the current package. If supplied, this argument may be
a package, an absolute name of a package, or a relative name of a pack.age.
All such relative names are relative to the value of the variable package.

Relative names are not recognized in "global" contexts, where there is no obvious
contextual package to be relative to, such as:

• File attribute lists ("-*-" lines)

•Package names requested from you as part of error recovery, or in commands
such as the Set Package (r.-.--x) editor command.

• The pkg-find-package function (unless its optional third argument is
specified).

•Package arguments to the mapatoms, pkg-goto, describe-package, and
pkg-kill functions.

• Package specifiers in the do-symbols, do-local-symbols, and
do-external-symbols special forms, and the interned-symbols and
local-interned-symbols loop iteration paths.

When a package object is printed, if it has a relative name (relative to the value of
package) that differs from its absolute name, both names are printed.

18 PKG Packages

Symbolics. Inc. February 1984

Relative names are established with the :relative-names and
:relative-names-for-me options to defpackage and make-package. You can also
use the pkg-add-relative-name function to establish a relative name. The
pkg-delete-relative-name function removes a relative name.

PKG Packages 19

Symbolics, Inc. February 1984

5. Qualified Names

Often it is desirable to refer to an external symbol in some package other than the
current one. You do this through the use of a qualified name, consisting of a
package name, then a colon, then the name of the symbol. This causes the
symbol's name to be looked up in the specified package, rather than in the current
one. For example, editor:buffer refers to the external symbol named buffer of the
package named editor, regardless of whether there is a symbol named buffer in
the current package. If there is no package named editor, or if no symbol named
buffer is present in editor or if buffer is an internal symbol of editor, an error is
signalled.

On rare occasions, you may need to refer to an internal symbol of some package
other than the current one. It is invalid to do this with the colon qualifier, since
accessing an internal symbol of some other package is usually a mistake. See the
section "Avoiding the Internal/External Distinction". However, this operation is legal
if you use "::" as the separator in place of the usual colon. If the reader sees
editor::buffer, the effect is exactly the same as reading buffer with package
temporarily rebound to the package whose name is editor. This special-purpose
qualifier should be used with caution.

Qualified names are implemented in the Lisp reader by treating the colon character
(:) specially. When the reader sees one or two colons preceded by the name of a -
package, it will read in the next Lisp object with package bound to that package.
Note that the next Lisp object need not be a symbol; the printed representation of
any Lisp object may follow a package prefix. If the object is a list, the effect is
exactly as if every symbol in that list had been written as a qualified name, using
the prefix that appears in front of the list. When a qualified name is among the
elements of the list, the package name in the second package prefix is taken relative
to the package selected by the first package prefix. The internal/external mode is
controlled entirely by the innermost package prefix in effect.

5.1 Avoiding the Internal/External Distinction

To ease the transition for people whose programs are not yet organized according to
the distinction between internal and external symbols, a package may be set up so
that the ":" type of qualified name does the same thing as the "::" type. This is
controlled by the package that appears before the colon, not by the package in which
the whole expression is being read. To set this attribute of a package, use the
:colon-mode keyword to defpackage and make-package. :external causes ":" to
behave as described above, accessing only external symbols. :internal causes ":" to
behave the same as "::", accessing all symbols. Note that :internal mode is

20 PKG Packages

Symbolics. Inc. February 1984

compatible with :external mode except in cases where an error would be signalled.
In Release 5.0, the default mode is :internal and all predefined system packages are
created with this mode. In Common Lisp the default mode is :external.

5.2 Qualified Names as Interfaces

In the example of the blocks world and the robot arm, a program in the blocks
package could call a function named go-up defined in the arm package by calling
arm:go-up. go-up would be listed among the external symbols of arm, using
:export in its defpackage, since it is part of the interface allowing the outside
world to operate the arm. If the blocks program uses qualified names to refer to
functions in the arm program, rather than sharing symbols as in the original
example, then the possibility of name conflicts between the two programs is
eliminated.

Similarly, if the chaos program wanted to refer to the arpa program's
allocate-pbuf function, it would simply call arpa:allocate-pbuf, assuming that
function had been exported. If it was not exported (because arpa thought no one
from the outside had any business calling it), the chaos program would call
arpa::allocate-pbuf.

5.3 Printed Representation of Symbols

The printer uses qualified names when necessary. (The princ function, however,
never prints qualified names for symbols.) The goal of the printer (for example, the
prinl function) when printing a symbol is to produce a printed representation that
the reader will turn back into the same symbol. When a symbol that is accessible in
the current package (the value of package) is printed, a qualified name is not used,
regardless of whether the symbol is present in the package. This happens for one of
three reasons: because this is its home package, is present because it was imported,
or is not present but was inherited. When an inaccessible symbol is printed, a
qualified name is used. The printer chooses whether to use ":" or "::" based on
whether the symbol is internal or external and the :colon-mode of its home
package. The qualified name used by the printer may be read back in and will yield
the same symbol. If the inaccessible symbol were printed without qualification, the
reader would translate that printed representation into a different symbol, probably
an internal symbol of the current package.

The qualified name used by the printer is based on the symbol's home package, not
on the path by which it was originally read (which of course cannot be known).
Suppose foo is an internal symbol of package A, has been imported into package B,
and has then been exported from package B. If it is printed while package is
neither A nor B, nor a package that uses B, the name printed will be a::foo, not
b:foo, because foo's home package is A. This is an unlikely case, of course.

PKG Packages 21

Symbolics, Inc. February 1984

In addition to the simplest printed representation of a symbol, its name standing by
itself, there are four forms of qualified name for a symbol. These are accepted by
the reader and are printed by the printer when necessary; except when printing an
uninterned symbol, the printer prints some printed representation that will yield the
same symbol when read. The following table shows the four forms of qualified
name, assuming that the foo package specifies :colon-mode :external. If foo
specifies :colon-mode :internal, as is currently the default, the first and second
forms are equivalent.

foo:bar

foo::bar

:bar

#:bar

When read, looks up bar among the external symbols of the
package named foo. Printed the when symbol bar is external in
its home package foo and is not accessible in the current package.

When read, interprets bar as if foo were the current package.
Printed when the symbol bar is internal in its home package foo
and is not accessible in the current package.

When read, interprets bar as an external symbol in the keyword
package. Printed when the home package of the symbol bar is
keyword.

When read, creates a new uninterned symbol named bar.
Printed when the symbol named bar has no home package.

5.4 Multilevel Qualified Names

Due to shadowing by relative names, a given package may sometimes be inaccessible.
In this case a multilevel qualified name, containing more than one package prefix,
may be used.

Suppose packages moe, larry, curly, and shemp exist. For its own reasons, the
moe package uses curly as a relative name for the shemp package. Thus, when
the current package is larry the printed representation curly:hair designates a
symbol in the curly package, but when the current package is moe the same
printed representation designates a symbol in the shemp package.

If the moe package is current and the symbol hair in the curly package needs to
be read or printed, the printed representation curly:hair cannot be used since it
refers to a different symbol. If curly had a nickname that is not also shadowed by
a relative name it would be used, but suppose there is no nickname. In this case
the only possible way to refer to that symbol is with a multilevel qualified name.
larry:curly:hair would work, since the larry: escapes from the scope of moe's
relative name. The printer actually prefers to print global:curly:hair because of
the way it searches for a usable qualified name.

22 PKG Packages

Symbolics. Inc. February 1984

PKG Packages 23

Symbolics, Inc. February 1984

6. Examples

Consider again the example of the robot arm in the blocks world. There are two
separate programs, written by different people, interacting with each other in a
single Lisp environment. The arm-control program resides in a package named arm,
and the blocks-world program resides in a package named blocks. The operation of
the two programs requires them to interact. For example, to move a block from one
place to another the blocks program calls functions in the arm program with
names like raise-arm, move-arm, and grasp. To find the edges of the table, the
arm program accesses variables of the blocks program.

Communication between the two programs requires that they both know about
certain objects. Usually these objects are the sort that have names (for example,
functions or variables). The names are symbols. Thus each program must be able
to name some symbols and to know that the other program is naming the same
symbols.

Let us consider the case of the function grasp in the arm-control program, which
the blocks-world program must call in order to pick up a block with the arm. The
grasp function is named by the symbol grasp in the arm package. Assume that
we are not going to use either of the mechanisms (keywords and the global
package) that make symbols available to all packages; we only want grasp to be
shared between the two specific packages that need it. There are basically three
ways provided by the package system for a symbol to be known by two separate
programs in two separate packages.

If the blocks package imports· the symbol grasp from the arm package, then both
packages will map the name grasp into the same symbol. The blocks package
could be defined by:

(defpackage blocks
(:import-from arm grasp))

The arm package can export the symbol grasp, along with whatever other symbols
constitute its interface to the outside world. If the blocks package uses the arm
package, then both packages will again map the name grasp into the same symbol.
The package definitions would look like:

(defpackage arm
(:export grasp move-arm raise-arm ...))

(defpackage blocks
(:use arm global))

Note that the blocks package must explicitly mention that it is using the global
package as well as the arm package, since it is not letting its :use clause default.
The difference between this method (the export method) and the first method (the

24 PKG Packages

Symbolics. Inc. February 1984

import method) is that the list of symbols that is to constitute the interface is
associated with the arm package, that is, the package that provides the interface,
not the package that uses the interface.

In the third method, we do not have the two packages map the same name into the
same symbol. Instead we use a different, longer name for the symbol in the blocks
program than the name used by the arm program. This makes it clear, when
reading the text of the blocks program, which symbol references are connected with
the interface between the two programs. These longer names are called qualified
names. Again, the arm package defines the interface:

(defpackage arm
(:export grasp move-arm raise-arm ...))

A fragment of the blocks-world program might look like

(defun pick-up (block)
(clear-top block)
(arm:grasp (block-coordinates block ':top))
(arm: raise-arm))

arm:grasp and arm:raise-arm are qualified names. pick-up, block, clear-top,
and block-coordinates are internal symbols of the blocks-world program. defun is
inherited from the global package. :top is a keyword. Note that although the two
programs do not use the same names to refer to the same symbol, the names they
use are related in an obvious way, avoiding confusion. The package system makes
no provision for the same symbol to be named by two completely arbitrary names.

PKG Packages 25

Symbolics, Inc. February 1984

7. Consistency Rules

Package-related bugs can be very subtle and confusing: the program is not using the
same symbols as you think it is using. The package system is designed with a
number of safety features to prevent most of the common bugs that would otherwise
occur in normal use. This may seem overprotective, but experience with earlier
package systems has shown that such safety features are needed.

In dealing with the package system, it is useful to keep in mind the following
consistency rules, which remain in force as long as the value of package is not
changed by you or your code:

•Read-Read consistency: Reading the same print name always gets you the
same (eq) symbol.

•Print-Read consistency: An interned symbol always prints as a sequence of
characters that, when read back in, yields the same (eq) symbol.

•Print-Print consistency: If two interned symbols are not eq, then their printed
representations will not be the same sequence of characters.

These consistency rules remain true in spite of any amount of implicit interning
caused by typing in Lisp forms, loading files, and so on. This has the important
implication that results are reproducible regardless of the order of loading files or the
exact history of what symbols were typed in when. The rules can only be violated
by explicit action: changing the value of package, forcing some action by continuing
from an error, or calling a function that makes explicit modifications to the package
structure (remob, for example).

In order to ensure that the consistency rules are obeyed, the system ensures that
certain aspects of the package structure are chosen by conscious decision of the
programmer, not by accidents such as which symbols happen to be typed in by a
user. External symbols, the symbols that are shared between packages without
being explicitly listed by the "accepting'' package, must be explicitly listed by the
"providing'' package. No reference to a package can be made before it has been
explicitly defined.

26 PKG Packages

Symbolics. Inc. February 1984

PKG Packages 27

Symbolics, Inc. February 1984

8. Name Conflicts: Packages

A fundamental invariant of the package system is that within one package any
particular name can only refer to one symbol. A name conflict is said to occur when
there is more than one candidate symbol and it is not obvious which one to choose.
If the system does not always choose the same way, the read-read consistency rule
would be violated. For example, some programs or data might have been read in
under a certain mapping of the name to a symbol. If the mapping changes to a
different symbol, then additional programs or data are read, the two programs will
not access the same symbol even though they use the same name. Even if the
system did always choose the same way, a name conflict is likely to result in a
different mapping from names to symbols than you expected, causing programs to
execute incorrectly. Therefore, any time a name conflict occurs, an error is signalled.
You may continue from the error and tell the package system how to resolve the
conflict.

Note that if the same symbol is accessible to a package through more than one path,
for instance as an external of more than one package, or b-0th through inheritance
and through direct presence in the package, there is no name conflict. Name
conflicts only occur between distinct symbols with the same name.

See the section "Shadowing Symbols". As discussed there, the creator of a package
can tell the system in advance how to resolve a name conflict through the use of
shadowing. Every package has a list of shadowing symbols. A shadowing symbol
takes precedence over any other symbol of the same name that would otherwise be
accessible to the package. A name conflict involving a shadowing symbol is always
resolved in favor of the shadowing symbol, without signalling an error (except for one
exception involving import described below). The :shadow and
:shadowing-import options to defpackage and make-package may be used to
declare shadowing symbols. The functions shadow and shadowing-import may
also be used.

Name conflicts are detected when they become possible, that is, when the package
structure is altered. There is no need to check for name conflicts during every
name lookup. The functions use-package, import, and export check for name
conflicts.

Using a package makes the external symbols of the package being used accessible to
the using package; each of these symbols is checked for name conflicts with the
symbols already accessible.

Importing a symbol adds it to the internals of a package, checking for a name
conflict with an existing symbol either present in the package or accessible to it.
import signals an error even if there is a name conflict with a shadowing symbol,
because two explicit directives from you are inconsistent.

28 PKG Packages

Symbolics. Inc. February 1984

Exporting a symbol makes it accessible to all the packages that use the package from
which the symbol is exported. All of these packages are checked for name conflicts.
(export s p) does (intern-soft s q) for each package q in
(package-used-by-list p). Note that in the usual case of exporting symbols only
during the initial definition of a package, there will be no users of the package yet
and the name-conflict checking will take no time.

intern does not need to do any name-conflict checking, because it never creates a
new symbol if there is already an accessible symbol with the name given.

Note that the function intern-local can create a new symbol with the same name
as an already accessible symbol. Nevertheless, intern-local does not check for name
conflicts. This function is considered to be a low-level primitive and indiscriminate
use of it can cause undetected name conflicts. Use import, shadow, or
shadowing-import for normal purposes.

shadow and shadowing-import never signal a name-conflict error, because by
calling these functions the user has specified how any possible conflict is to be
resolved. shadow does name-conflict checking to the extent that it checks whether
a distinct existing symbol with the specified name is accessible, and if so whether it
is directly present in the package or inherited; in the latter case a new symbol is
created to shadow it. shadowing-import does name-conflict checking to the extent
that it checks whether a distinct existing symbol with the same name is accessible; if
so it is shadowed by the new symbol, which implies that it must be remobed if it
was directly present in the package.

unuse-package, unexport, and remob (when the symbol being remobed is not a
shadowing symbol) do not need to do any name-conflict checking, because they only
remove symbols from a package; they do not make any new symbols accessible.

remob of a shadowing symbol can uncover a name conflict that had previously been
resolved by the shadowing. If package A uses packages B and C, A contains a
shadowing symbol x, and Band C each contain external symbols named x, then
remobing x from A will reveal a name conflict between b:x and c:x if those two
symbols are distinct. In this case remob will signal an error.

Aborting from a name-conflict error leaves the original symbol accessible. Package
functions always signal name-conflict errors before making any change to the
package structure. Note: when multiple changes are to be made, for example when
exporting a list of symbols, it is valid for each change to be processed separately, so
that aborting from a name conflict caused by the second symbol in the list will not
unexport the first symbol in the list. However, aborting from a name-conflict error
caused by exporting a single symbol will not leave that symbol accessible to some
packages and inaccessible to others; exporting appears as an atomic operation.

Continuing from a name-conflict error offers you a chance to resolve the name
conflict in favor of either of the candidates. This can involve shadowing or
remobing. Another possibility that is offered to the user is to merge together the

PKG Packages 29

Symbolics, Inc. February 1984

conflicting symbols' values, function definitions, and property lists in the same way
as globalize. This is useful when the conflicting symbols are not being used as
objects, but only as names for functions (or variables, or flavors, for example). You
are also offered the choice of simply skipping the particular package operation that
would have caused a name conflict.

A name conflict in use-package between a symbol directly present in the using
package and an external symbol of the used package may be resolved in favor of the
first symbol by making it a shadowing symbol, or in favor of the second symbol by
remobing the first symbol from the using package. The latter resolution is
dangerous if the symbol to be remobed is an external symbol of the using package,
since it will cease to be an external symbol.

A name conflict in use-package between two external symbols inherited by the
using package from other packages may be resolved in favor of either symbol by
importing it into the using package and making it a shadowing symbol.

A name conflict in export between the symbol being exported and a symbol already
present in a package that would inherit the newly exported symbol may be resolved
in favor of the exported symbol by remobing the other one, or in favor of the
already present symbol by making it a shadowing symbol.

A name conflict in export or remob due to a package inheriting two distinct
symbols with the same name from two other packages may be resolved in favor of
either symbol by importing it into the using package and making it a shadowing
symbol, just as with use-package.

A name conflict in import between the symbol being imported and a symbol
inherited from some other package may be resolved in favor of the symbol being
imported by making it a shadowing symbol, or in favor of the symbol already
accessible by not doing the import. A name conflict in import with a symbol
already present in the package may be resolved by remobing that symbol, or by not
doing the import.

Good user-interface style dictates that use-package and export, which can cause
many name conflicts simultaneously, first check for all of the name conflicts before
presenting any of them to you. You may then choose to resolve all of them
wholesale, or to resolve each of them individually, requiring a lot of interaction but
permitting different conflicts to be resolved different ways.

30 PKG Packages

Symbolics. Inc. February 1984

PKG Packages 31

Symbolics, Inc. February 1984

9. Package Functions, Special Forms, and Variables

Pac}\ages are represented as Lisp objects. A package is a structure that contains
various fields and a hash table that maps from names to symbols. Most of the
structure field accessor functions for packages are only used internally by the
package system and are not documented.

The typep function with one argument returns the symbol package if given a
package object. (typep obj 'package) is a predicate that is true if obj is a package
object.

Many of the functions that operate on packages will accept either an actual package
or the name of a package. A package name may be either a string or a symbol.

Many of the functions and variables associated with packages have names that begin
with "pkg-". This naming convention is considered to be obsolescent and will
eventually be phased out in favor of the Common Lisp-compatible naming convention
that uses a prefix of "package-" on names that do not already contain the word
package. Currently, however, only "pk~~',is valid.

9.1 The Current Package

package Variable
The value of package is the current package; many functions that take
packages as optional arguments default to the value of package, including
intern and related functions. The reader and the printer deal with printed
representations that depend on the value of package. Hence the current
package is part of the user interface and is displayed in the status line at the
bottom of the screen.

It is often useful to bind package to a package around some code that deals
with that package. The operations of loading, compiling, and editing a file all
bind package to the package associated with the file.

pkg-goto &optional pkg globally Function
pkg may be a package or the name of a package. pkg is made the current
package; in other words, the variable package is set to the package named
by pkg. pkg-goto can be useful to "put the keyboard inside" a package
when you are debugging.

pkg defaults to the user package. -

If globally is specified non-nil, then package is set with setq-globally
instead of setq. This is useful mainly in an init file, where you want to
change the default package for user interaction, and a simple setq of

32 PKG Packages

Symbolics, lnco February 1984

package will not work because it is bound by load when it loads the init
file.

pkg-bind pkg body... Macro
pkg may be a package or a package name. The forms of the body are
evaluated with the variable package bound to the package named by pkg.
The values of the last form are returned.

Example:
(pkg-bind "zwei"

(read-from-string function-name))

The difference between pkg-bind and a simple let of the variable package
is that pkg-bind ensures that the new value for package is actually a
package; it coerces package names (strings or symbols) into actual package
objects.

9.2 Defining a Package

The defpackage special form is the preferred way to create a package. A
defpackage form is treated as a definition form by the editor, hence the Edit
Definition (M-.) command can find package definitions.

Typically you put a defpackage form in its own file, separate from the rest of a
program's source code. The reason to use a separate file is that a package must be
defined before it can be used. In order to compile, load, or edit your program, the
package in which its symbols are to be read must already be defined. Typically the
file containing the defpackage will be read in the user package, while all the rest
of the files of your program will be read in your own private package.

When a large program consisting of multiple source files is maintained with the
system system, one source file typically contains nothing but a defpackage form
and a def system form. (Occasionally a few other housekeeping forms will be
present.) This file is called the system declaration file. The packages and systems
built into the initial Lisp system are defined in two files: sys:sys;pkgdcl defines all
the packages while sys:sys;sysdcl defines all the systems. See the document
Maintaining Large Systems.

In the simplest cases, where no nontrivial defpackage options are required, the
defpackage form may be omitted and no separate file is required. All the
information required to create your package is contained in the file attribute list of
the file containing your program. See the section "Packages and Writing Programs".

The make-package function is available as the primitive way to create package
objects.

PKG Packages 33

Symbolics. Inc. February 1984

defpackage name options... Special Fonn
Define a package named name; the name must be a symbol so that the
source file name of the package can be recorded. If no package by that
name already exists, a new package· is created according to the specified
options. If a package by that name already exists, its characteristics are
altered according to the options specified. If any characteristic cannot be
altered, an error will be signalled. If the existing package was defined by a
different file, you will be queried before it is changed, as with any other type
of definition.

Each option is a keyword or a list of a keyword and arguments. A keyword
by itself is equivalent to a list of that keyword and one argument, t; this
syntax really only makes sense for the :external-only and
:hash-inherited-symbols keywords.

Wherever an argument is said to be a name or a package, it may be either a
symbol or a string. Usually symbols are preferred, because the reader will
standardize their alphabetic case and because readability is increased by not
cluttering up the defpackage form with string quote (") characters.

None of the arguments are evaluated. The keywords allowed are:

(:nicknames name name ...)
The package is given these nicknames, in addition to its primary
name.

(:pref1x-name name)
This name is used when printing a qualified name for a symbol in
this package. The specified name should be one of the nicknames of
the package or its primary name. If :prefix-name is not specified, it
defaults to the shortest of the package's names (the primary name
plus the nicknames).

(:use package package .•.)
External symbols and relative name mappings of the specified
packages are inherited. If this option is not specified, it defaults to
(:use global). To inherit nothing, specify (:use).

(:shadow name name ••.)
Symbols with the specified names are created in this package and
declared to be shadowing.

(:export name name ..•)
Symbols with the specified names are created in this package, or
inherited from the packages it uses, and declared to be external.

(:import symbol symbol •••)
The specified symbols are imported into the package. Note that
unlike :export, :import requires symbols, not names; it matters in
which package this argument is read.

34 PKG Packages

Symbolics, Inc. February 1984

(:shadowing-import symbol symbol ••.)
The same as :import but no name conflicts are possible; the symbols
are declared to be shadowing.

(:import-from package name name ••.)
The specified symbols are imported into the package. The symbols to
be imported are obtained by looking up each name in package. This
option exists primarily for system bootstrapping, since the same thing
can normally be done by :import. The difference between :import
and :import-from may be visible if the file containing a defpackage
is compiled; when :import is used the symbols will be looked up at
compile time, but when :import-from is used the symbols will be
looked up at load time. If the package structure has been changed
between the time the file was compiled and the time it is loaded,
there may be a difference.

(:relative-names (name package) (name package) •.•)
Declare relative names by which this package can refer to other
packages. The package being created cannot be one of the packages~
since it has not been created yet.

(:relative-names-for-me (package name) (package name) •..)
Declare relative names by which other packages can refer to this
package. It is valid to use the name of the package being created as
a package here; this is useful when a package has a relative name for
itself.

(:size number)
The number of symbols expected to be present in the package. This
controls the initial size of the package's hash table. If the :size
specification is an underestimate, there is no problem; the hash table
will be expanded as necessary.

(:hash-inherited-symbols boolean)
If true, inherited symbols are entered into the package's hash table to
speed up symbol lookup. If false (the default), looking up a symbol in
this package will search the hash table of each package it uses.

(:external-only boolean)
If true, all symbols in this package will be external and the package
will be locked. This feature is only used to simulate the old package
system that was used before Release 5.0. See the section "External
only Packages and Locking''.

(:include package package •••)
Any package that uses this package will also use the specified
packages. Note that if the :include list is changed, the change will
not be propagated to users of this package. This feature is only used
to simulate the old package system that was used before Release 5.

PKG Packages 35

Symbolics, Inc. February 1984'

(:new-symbol-function function)
function is called when a new symbol is to be made present in the
package. The default is si:pkg-new-symbol unless :external-only is
specified. Do not specify this option unless you understand the
internal details of the package system.

(:colon-mode mode)
If mode is :external, qualified names mentioning this package behave
differently depending on whether ":"or "::" is used, as in Common
Lisp. ":" names access only external symbols. If mode is :internal,
":" names access all symbols. :internal is the default currently. See
the section "Avoiding the Internal/External Distinction".

(:prefix-intern-function function)
The function to call to convert a qualified name referencing this
package with ":" (rather than "::") to a symbol. The default is
intern unless (:colon-mode :external) is specified. Do not specify
this option unless you understand the internal details of the package
system.

make-package name &key Function
make-package is the primitive subroutine called by defpackage.
make-package makes a new package and returns it. An error is signalled if
the package name or nickname conflicts with an existing package.
make-package takes the same arguments as defpackage except that
standard &key syntax is used, and there is one additional keyword,
:invisible.

When an argument is called a name, it may be either a symbol or a string.
When an argument is called a package, it may be the name of the package
as a symbol or a string, or the package itself.

The keyword arguments are:

:nicknames '(name name ...)
The package is given these nicknames, in addition to its primary
name.

:prefix-name name
This name is used when printing a qualified name for a symbol in
this package. The specified name should be one of the nicknames of
the package or its primary name. If :pre:fix-name is not specified, it
defaults to the shortest of the package's names (the primary name
plus the nicknames).

:invisible boolean
If true, the package is not entered into the system's table of
packages, and therefore cannot be referenced via a qualified name.
This is useful if you simply want a package to use as a data
structure, rather than as the package in which to write a program.

36 PKG Packages

Symbolics, Inc. February 1984

:use '(package package ...)
External symbols and relative name mappings of the specified
packages are inherited. If only a single package is to be used, the
name rather than a list of the name may be passed. If no package is
to be used, specify nil The default value for :use is global.

:shadow '(name name ...)
Symbols with the specified names are created in this package and
declared to be shadowing.

:export '(name name ...)
Symbols with the specified names are created in this package, or
inherited from the packages it uses, and declared to be external.

:import '(symbol symbol ...)
The specified symbols are imported into the package. Note that
unlike :export, :import requires symbols, not names; it matters in
which package this argument is read.

:shadowing-import '(symbol symbol ...)
The same as :import but no name conflicts are possible; the symbols
are declared to be shadowing.

:import-from '(package name name ...)
The specified symbols are imported into the package. The symbols to
be imported are obtained by looking up each name in package.

:relative-names '((name package) (name package) •••)
Declare relative names by which this package can refer to other
packages. The package being created cannot be one of the packages,
since it has not been created yet.

:relative-names-for-me '((package name) (package name) •••)
Declare relative names by which other packages can refer to this
package.

:size number
The number of symbols expected to be present in the package. This
controls the initial size of the package's hash table. If the :size
specification is an underestimate, there is no problem; the hash table
will be expanded as necessary.

:hash-inherited-symbols boolean
If true, inherited symbols are entered into the package's hash table to
speed up symbol lookup. If false (the default), looking up a symbol in
this package will search the hash table of each package it uses.

:external-only boolean
If true, all symbols in this package will be external and the package
will be locked. This feature is only used to simulate the old package
system that was used before Release 5.0. See the section "External
only Packages and Locking".

PKG Packages 37

Symbolics. Inc. February 1984

:include '(package package ...)
Any package that uses this package will also use the specified
packages. Note that if the :include list is changed, the change will
not be propagated to users of this package. This feature is only used
to simulate the old package system that was used before Release 5.

:new-symbol-function function
function is called when a new symbol is to be made present in the
package. The default is si:pkg-new-symbol unless :external-only is
specified. Do not specify this option unless you understand the
internal details of the package system.

:colon-mode mode
If mode is :external, qualified names mentioning this package behave
differently depending on whether ":"or "::" is used, as in Common
Lisp. ":" names access only external symbols. If mode is :internal,
":" names access all symbols. :internal is the default currently. See
the section "Avoiding the Internal/External Distinction".

:prefix-intern-function function
The function to call to convert a qualified name referencing this
package with ":" (rather than "::") to a symbol. The default is
intern unless (:colon-mode :external) is specified. Do not specify
this option unless you understand the internal details of the package
system.

pkg-kill package Function
Kill package by removing it from all package system data structures. The
name and nicknames of package cease to be recognized package names. If
package is used by other packages, it is un-used, causing its external symbols
to stop being accessible to those packages. If other packages have relative
names for package, the names are deleted.

Any symbols in package will still exist and their home package will not be
changed. If this is undesirable, evaluate
(mapatoms #'remob package nil) first.

package may be a package or the name of a package.

9.3 Mapping Names to Symbols

The name of a symbol is a string, corresponding to the printed representation of
that symbol with quoting characters removed. Mapping the name of a symbol into
the symbol itself is called interning, for historical reasons. Interning is only
meaningful with respect to a particular package, since packages are name-to-symbol
mappings. Unless a package is explicitly specified, the current package is assumed.

38 PKG Packages

Symbolics, Inc. February 1984

There are four functions for interning, named intern, intern-soft, intern-local,
and intern-local-soft. Each of these functions takes two arguments and returns
two values. The arguments are a name and a package. The name may be a string
or a symbol. The package argument may be a package, the name of a package as a
string or a symbol, or nil or unsupplied, in which case the current package (the
value of package) is used by default.

The -soft functions will not create new symbols, but will only find existing symbols.
The other two functions will add a new symbol to the package if no existing symbol
with the specified name is found. When adding a new symbol, if the name
argument is a string, a new symbol is created and its home package is made to be
the specified package. If the name argument is a symbol, that symbol is used as the
new symbol. If it has a home package, it is not changed, but if it does not have a
home package its home package is set to the package to which it was just added.

The -local functions only look for symbols present in the package; they do not
search through inherited symbols. The other two functions see all accessible
symbols.

The first value is the symbol that was found or created, or nil if no symbol was
found and a -soft function was called. The second value is a flag that takes on one
of the following values:

nil

:internal

:external

:inherited

No preexisting symbol was found. If the function called was not a
-soft version, a new internal symbol was added to the package.

An existing internal symbol was found to be present in the
package.

An existing external symbol was found to be present in the
package.

An existing symbol was found to be inherited by the package.
This symbol is necessarily external in the package from which it
was inherited, and cannot be external in the package being
searched.

Note that the first value should not be used as a flag to detect whether or not a
symbol was found, since the false value, nil, is a symbol. The second value must be
used for this purpose. The -soft functions return both values nil if they do not find
a symbol.

Note: interning is sensitive to case; that is, it will consider two character strings
different even if the only difference is one of uppercase versus lowercase (unlike most
string comparisons elsewhere in the Lisp Machine system). Symbols are converted to
uppercase when you type them in because the reader converts the case of characters
in the printed representation of symbols; the characters are converted to uppercase
before intern is ever called. So if you call intern with a lowercase "foo" and then
with an uppercase "FOO", you will not get the same symbol.

PKG Packages 39

Symbolics, Inc. February 1984

intern string &optional (pkg package) Function
Find or create a symbol named string accessible to pkg, either directly present
in pkg or inherited from a package it uses.

If string is not a string but a symbol, intem searches for a symbol with the
same name. If it doesn't fmd one, it interns string - rather than a newly
created symbol - in pkg (even if it is also interned in some other package)
and returns it.

intem-local string &optional (pkg package) Function
Find or create a symbol named string directly present in pkg. Symbols
inherited by pkg from packages it uses are not considered, thus intern-local
can cause a name conflict. intern-local is considered to be a low-level
primitive and indiscriminate use of it can cause undetected name conflicts.
Use import, shadow, or shadowing-import for normal purposes.

If string is not a string but a symbol, and no symbol with that print name is
already interned in pkg, intem-local interns string - rather than a newly
created symbol - in pkg (even if it is also interned in some other package)
and returns it.

intem-soft string &optional (pkg package) Function
Find a symbol named string accessible to pkg, either directly present in pkg
or inherited from a package it uses. If no symbol is found, the two values
nil nil are returned.

intern-local-soft string &optional (pkg package) Function
Find a symbol named string directly present in pkg. Symbols inherited by
pkg from packages it uses are not considered. If no symbol is found, the two
values nil nil are returned.

intern-local-soft is a good low-level primitive for when you want complete
control of what packages to search and when to add new symbols.

find-all-symbols string Function
Search all packages for symbols named string and return a list of them.
Duplicates are removed from the list; if a symbol is present in more than one
package, it only appears once in the list. The global package is searched
first and so global symbols will appear earlier in the list than symbols that
shadow them. In general packages are searched in the order that they were
created.

string may be a symbol, in which case its name is used. This is primarily for
user convenience when calling find-all-symbols directly from the read-eval
print loop.

Invisible packages are not searched.

The where-is function is a more user-oriented version of find-all-symbols;

40 PKG Packages

Symbolics. Inc. February 1984

it returns information about string, rather than just a list. See the function
where-is.

remob symbol &optional package Function
remob removes symbol from package (the name is historical and means
"REMove from OBlist"). symbol itself is unaffected, but intern will no
longer find it in package. Removing a symbol from its home package sets its
home package to nil; removing a symbol from a package different from its
home package leaves the symbol's home package unchanged.

remob returns t if the symbol was found and removed, or nil if it was not
found.

remob is always "local", in that it removes only from the specified package
and not from any other packages. Thus remob has no effect unless the
symbol is present in the specified package, even if it is accessible from that
package via inheritance.

If package is unspecified it defaults to the symbol's home package. Note this
exception well: the default value of remob's package argument is not the
current package.

9.4 Home Package of a Symbol

Every symbol has a home package. When a new symbol is created by the reader
and made present in the current package, its home package is set to the current
package. The home package of a symbol may be obtained with the
symbol-package function.

Most symbols are present only in their home package; however, it is possible to make
a symbol be present in any number of packages. Only one of those packages can be
distinguished as the home package; normally this will be the first package in which
the symbol was present. The package system makes an effort to ensure that a
symbol is present in its home package. When a symbol is first created by the reader
(actually by the intern function), it is guaranteed to be present in its home package.
If the symbol is removed from its home package (by the remob function), the home
package of the symbol will be set to nil, even if the symbol is still present in some
other package.

Some symbols are not present in any package; they are said to be unintemed. See
the section "Mapping Names to Symbols". The make-symbol function can be used
to create such a symbol. An uninterned symbol has no home package; the
symbol-package function will return nil given such a symbol.

When a symbol is printed, for example, with prinl, the printer produces a printed
representation that the reader will turn back into the same symbol. If the symbol is
not accessible to the current package, a qualified name is printed. See the section

PKG Packages 41

Symbolics, Inc. February 1984

"Qualified Names". The symbol's home package is used as the prefix in the qualified
name.

9.5 Mapping Between Names and Packages

pkg-name package Function
Get the (primary) name of a package. The name is a string.

It is an error if package is not a package object. (The phrase "it is an error"
has special significance in Common Lisp. See the Common Lisp manual, not
available from Symbolics, for more information.) Note that pkg-name is a
structure accessing function and does not check that its argument is a
package object, only that it is some kind of an array with a leader.

pkg-find-package x &optional (create-p :error) (relative-to nil) Function
pkg-find-package tries to interpret x as a package. Most of the functions
whose descriptions say "... may be either a package or the name of a
package" call pkg-find-package to interpret their package argument.

If x is a package, pkg-find-package returns it.

If x is a symbol or a string, it is interpreted as the name of a package. If
relative-to is specified and non-nil, then it must be a package or the name of
a package. If relative-to or one of the packages it uses has a relative name of
x, the package named by that relative name is used. If the relative name
search fails, or if no relative name search is called for (that is, relative-to is
nil, which is the default), then if a package with a primary name or
nickname of x exists it is returned. ·

If x is a list, it is presumed to have come from a file attribute line.
pkg-find-package is done on the car of the list. If that fails, a new
package is created with that name, according to the specifications in the rest
of the list. See the section "Packages and Writing Programs".

If no package is found, the create-p argument controls what happens. Note
that this can only happen if x is a symbol or a string. The possible values
for create-p are:

:error or nil

:find

:ask

An error is signalled. The error can be continued by
defining the package manually, creating it automatically
with default attributes, or using a different package name
instead. :error is the default. nil is accepted as a
synonym for :error for backwards compatibility.

Just return nil.

Ask the user whether to create it.

42

t

PKG Packages

Symbolics. Inc. February 1984

Create a package with the specified name with default
attributes. It will inherit from global but not from any
other packages.

The package name search is independent of alphabetic case. However, this
may be changed in the future for Common Lisp compatibility and should not
be depended upon. In any event it is not considered good style to have two
distinct packages whose names differ only in alphabetic case.

9.6 Package Iteration

mapatoms function &optional (package package) (inherited-p t) Function
function should be a function of one argument. mapatoms applies function
to each of the symbols in package. If inherited-p is t, this is all symbols
accessible to package, including symbols it inherits from other packages. If
inherited-p is nil, function only sees the symbols that are directly present in
package.

Note that when inherited-p is t symbols that are shadowed but otherwise
would have been inherited will be seen; this slight blemish is for the sake of
efficiency. If this is a problem, function can try intern in package on each
symbol it gets, and ignore the symbol if it is not eq to the result of intern;
this measure is rarely needed.

mapatoms-all function Function
function should be a function of one argument. mapatoms-all applies
function to all of the symbols in all of the packages in existence, except for
invisible packages. Note that symbols that are present in more than one
package will be seen more than once.

Example:

(mapatoms-all
(function

(lambda (x)
(and (alphalessp 'z x)

(print x)))))

do-symbols (variable [package] [result]) body... Special Form
Evaluate the body forms repeatedly with variable bound to each symbol
accessible in package. package may be a package object or a string or symbol
that is the name of a package, or it may be omitted, in which case the value
of package is used by default.

When the iteration terminates, result is evaluated and its values are
returned. The value of variable is nil during the evaluation of result. If
result is not specified, the value returned is nil.

PKG Packages 43

Symbolics, Inc. February 1984

The return special form may be used to cause a premature exit from the
iteration.

do-local-symbols (variable [package] [result}) body... Special Fonn
Evaluate the body forms repeatedly with variable bound to each symbol
present in package. package may be a package object or a string or symbol
that is the name of a package, or it may be omitted, in which case the value
of package is used by default.

When the iteration terminates, result is evaluated and its values are
returned. The value of variable is nil during the evaluation of result. If
result is not specified, the value returned is nil.

The return special form may be used to cause a premature exit from the
iteration.

do-external-symbols (variable [package] [result]) body... Special Fonn
Evaluate the body forms repeatedly with variable bound to each external
symbol exported by package. package may be a package object or a string or
symbol that is the name of a package, or it may be omitted, in which case
the value of package is used by default.

When the iteration terminates, result is evaluated and its values are
returned. The value of variable is nil during the evaluation of result. If
result is not specified, the value returned is nil.

The return special form may be used to cause a premature exit from the
iteration.

do-all-symbols (variable [result}) body... Special Form
Evaluate the body forms repeatedly with variable bound to each symbol
present in any package (excluding invisible packages).

When the iteration terminates, result is evaluated and its values are
returned. The value of variable is nil during the evaluation of result. If
result is not specified, the value returned is nil.

The return special form may be used to cause a premature exit from the
iteration.

See the section "Iteration Paths". This section contains a discussion of the
interned-symbols and local-interned-symbols loop iteration paths.

44 PKG Packages

Symbolics. Inc. February 1984

9.7 lnterpackage Relations

pkg-add-relative-name from-package name to-package Function
Add a relative name named name, a string or a symbol, that refers to
to-package. From now on, qualified names using name as a prefix, when the
current package is from-package or a package that uses from-package, will
refer to to-package.

from-package and to-package may be packages or names of packages.

It is an error if from-package already defines name as a relative name for a
package different from to-package.

pkg-delete-relative-name from-package name Function
If from-package defines name as a relative name, it is removed. from-package
may be a package or the name of a package. name may be a symbol or a
string. It is not an error if from-package does not define name as a relative
name.

package-use-list package Function
The list of other packages used by the argument package. package may be a
package object or the name of a package (a symbol or a string). The
elements of the list returned are package objects.

package-used-by-list package Function
The list of other packages that use the argument package. package may be
a package object or the name of a package (a symbol or a string). The
elements of the list returned are package objects.

use-package packages-to-use &optional package Function
The packages-to-use argument should be a list of packages or package names,
or a single package or package name. These packages are added to the use
list of package if they are not there already. All external symbols in the
packages to use become accessible in package. package may be a package
object or the name of a package (a symbol or a string). If unspecified,
package defaults to the value of package. Returns t.

unuse-package packages-to-unuse &optional package Function
The packages-to-unuse argument should be a list of packages or package
names, or a single package or package name. These packages are removed
from the use-list of package and their external symbols are no longer
accessible, unless they are accessible through another path. package may be
a package object or the name of a package (a symbol or a string). If
unspecified, package defaults to the value of package. Returns t.

PKG Packages 45

Symbolics, Inc. February 1984

~-1

?_,J) 1f
9.8 Import, Export, and Shadow ,,f1 ~ · - • !:J.A. '

,. ~ c;'-f,'·r· ~ ,_~-----1
(01{.- /U7..;::JS \o ~ / /., O·..r - /

/ r-1
export symbols &optional package .,/ Function

The symbols argument should be a list of symbols or a single symbol. These
symbols become available as external symbols in package. package may be a

·package object or the name of a package (a symbol or a string). If
unspecified, package defaults to the value of package. Returns · t. The
:export option to defpackage and make-package is equivalent.

unexport symbols &optional package Function
The argument should be a list of symbols or a single symbol. These symbols
become internal symbols in package. package may be a package object or the
name of a package (a symbol or a string). If unspecified, package defaults to
the value of package. Returns t.

package-external-symbols package Function
A list of all the external symbols exported by package. package may be a
package object or the name of a package (a symbol or a string).

import symbols &optional package Function
The argument should be a list of symbols or a single symbol. These symbols
become internal symbols in package, and can therefore be referred to without
a colon qualifier. import signals a correctable error if any of the imported
symbols has the same name as some distinct symbol already available in the
package.

package may be a package object or the name of a package (a symbol or a
string). If unspecified, package defaults to the value of package. Returns t ..

shadowing-import symbols &optional package Function
This is like import, but it does not signal an error even if the importation of
a symbol would shadow some symbol already available in the package. If a
distinct symbol with the same name is already present in the package, it is
removed (using remob).

The imported symbol is placed on the shadowing-symbols list of package.

shadowing-import should be used with caution. It changes the state of the
package system in such a way that the consistency rules do not hold across
the change. package may be a package object or the name of a package (a
symbol or a string). If unspecified, package defaults to the value of package.
Returns t.

shadow symbols &optional package Function
The argument should be a list of symbols or a single symbol. The name of
each symbol is extracted, and package is searched for a symbol of that name.
If no such symbol is present in this package (directly, not by inheritance), a

46 PKG Packages

Symbolics. Inc. February 1984

new symbol is created with this name and inserted in package as an internal
symbol. The symbol is also placed on the shadowing-symbols list of package.

shadow should be used with caution. It changes the state of the package
system in such a way that the consistency rules do not hold across the
change. package may be a package object or the name of a package (a
symbol or a string). If unspecified, package defaults to the value of package.
Returns t.

package-shadowing-symbols package Function
The list of symbols that have been declared as shadowing symbols in this
package by shadow or shadowing-import. All symbols on this list are
present in the specified package. package may be a package object or the
name of a package (a symbol or a string).

9.9 Package "Commands"

describe-package package Function
Print a description of package's attributes and the size of its hash table of
symbols on standard-output. package may be a package or the name of a
package. The describe function calls describe-package when its argument
is a package.

where-is pname Function
Find all symbols named pname and print on standard-output a description
of each symbol. The symbol's home package and name are printed. If the
symbol is present in a different package than its home package (that is, it
has been imported), that fact is printed. A list of the packages from which
the symbol is accessible is printed, in alphabetical order. where-is searches
all packages that exist, except for invisible packages.

If pname is a string it is converted to uppercase, since most symbols' names
use uppercase letters. If pname is a symbol, its exact name is used.

where-is returns a list of the symbols it found.

The find-all-symbols function is the primitive that does what where-is does
without printing anything.

globalize name &optional package Function
Export a symbol named name from package. If this causes any name
conflicts with symbols with the same name in packages that use package,
instead of signalling an error make an attempt to resolve the name conflict
automatically. Print an explanation of what is being done on error-output.

globalize is useful for patching up an existing package structure. For

PKG Packages 47

Symbolics, Inc. February 1984

example, if a new function is added to the Lisp language globalize can be
used to add its name to the global package and hence make it accessible to
all packages. There might already be symbols with the desired name in
existence, either by coincidence or because the function was already defined
or already called. globalize will make all such symbols have the new
function as their definition.

package may be a package or the name of a package, as a symbol or a string.
It defaults to the global package. globalize is the only function that does
not care whether package is locked.

name may be a symbol or a string. If package already contains a symbol by
that name, that symbol is chosen. Otherwise, if name is a symbol, it is
chosen. If name is a string and any of the packages that use package
contains a nonshadowing symbol by that name, one such symbol is chosen.
Otherwise, a new symbol named name is created. Whichever symbol is
chosen this way is made present in package and exported from it. If the
home package of the chosen symbol is a package that uses package, then the
home package is set to package; in other words, the symbol is "promoted" to
a "higher" package. If the home package of the chosen symbol is some other
package, it is not changed. This case typically occurs when the chosen
symbol is inherited by package from some package it uses.

The above rules for choosing a symbol to export ensure that there will be no
name conflict if at all possible. If any nonshadowing symbols exist named
name but that are distinct from the chosen symbol present in the packages
that use package, then a name conflict occurs. globalize does its best to
resolve the name conflict by merging together the values, function definitions,
and properties of all the symbols involved. After merging, all the symbols
have the same value, the same function definition, and the same properties.
The value cells, function cells, and property list cells of all the symbols are
forwarded to the corresponding cells of the chosen symbol, using
dtp-one-q-forward. This ensures that any future change to one of the
symbols is reflected by all of the symbols.

The merging operation simply consists of making sure that there are no
conflicts. If more than one of the symbols has a value (is boundp), all the
values must be eql or an error is signalled. Similarly, all the function
definitions of symbols that are :fboundp must be eql and all the properties
with any particular indicator must be eql. If an error occurs the user must
manually resolve it by removing the unwanted value, definition, or property
(using makunbound, fmakunbound, or remprop) then try again.

Note that if name is a symbol, globalize attempts to use that symbol, but
there is no guarantee that it will not use some other symbol. If name is in a
package that does not use package, and globalize does not use name as the
symbol (because there is already another symbol by that name in package or

48 PKG Packages

Symbolics. Inc. February 1984

in some package that uses package), then name will not be merged with the
chosen symbol. It is generally more predictable to use a string, rather than a
symbol, for name.

Of course, globalize cannot cause two distinct symbols to become eq. Its
conflict resolution techniques are only useful for symbols that are used as
names for things like functions and variables, not for symbols that are used
for their own sake. It is sometimes possible to get the desired effect by using
one of the conflicting symbols as the first argument to globalize, rather
than using a string.

For example, suppose a program in the color package deals with colors by
symbolic names, perhaps using selectq to test for such symbols as red,
green, and yellow. Suppose there is also a function named red in the
math package and someone decides that this function is generally useful and
should be made global. Doing (globalize 'color:red) ensures that the
exported symbol is the one that the color program is looking for; this means
that every package except the math package will see the right symbol to use
if it wants to call the color program. Programs that call the red function do
not care which of the two symbols they use as the name of the function,
since both symbols have the same definition. Usually the situation described
in this example would not arise, because standard programming style dictates
that the color program should have been using keywords for this application.

globalize returns two values. The first is the chosen symbol and the second
is a (possibly empty) list of all the symbols whose value, function, and
property cells were forwarded to the cells of the chosen symbol.

To disable the messages printed by globalize, bind error-output to a null
stream (one that throws away all output). For example:

(let ((error-output 'si:null-stream))
(globalize 'rumpelstiltskin))

There is a subtle pitfall in the interaction between globalize and the binary files
output by the compiler. Because of this it is best to use a string, rather than a
symbol, as the argument to globalize in files that are to be compiled. Suppose a
file contains the following form at top level:

(eval-when (compile load eval)
(globalize 'si:rumpelstiltskin))

If the file is loaded without being compiled, the form is read and evaluated in the
obvious fashion. rumpelstiltskin is read as the symbol by that name in the si
package, that symbol is passed to the globalize function, and the symbol is moved
to the global package. Now suppose the file is compiled. Again rumpelstiltskin is
read as the symbol by that name in the si package. The eval-when causes the
compiler first to evaluate the globalize form, and then to place a representation of
the form into its output file. But at the time the output file is being generated, the

PKG Packages 49

Symbolics, Inc. February 1984

symbol rumpelstiltskin is global; the compiler no longer has any way to know that
it came from the si pack.age. When the binary file is loaded, it will globalize the
symbol rumpelstiltskin in the current pack.age, not the one in the si pack.age as
the programmer intended. Furthermore, if at compile time there was a
rumpelstiltskin symbol in the current pack.age, the compile-time globalize will
turn that symbol into a shadowing symbol. When the binary file is loaded, it will
tzy to refer to the symbol rumpelstiltskin in the global pack.age, which will get an
error since the global pack.age is locked. The same pitfall can arise without the use
of eval-when if the file being compiled was previously loaded into the Lisp that
compiled it, perhaps for test purposes.

9.10 System Packages

The following are some of the pack.ages initially present in the Lisp world. New
packages will be added to this list from time to time. The list is presented in
"logical" order, with the most important or interesting packages first. A number of
pack.ages that are not of general interest have been omitted from the list for the
sake of brevity.

global Contains the global symbols of the Lisp language, including
function names, variable names, special form names, and so on.
All symbols in global are supposed to be documented. global
does not inherit symbols from any other pack.age.

keyword Contains keyword symbols. keyword has a blank nickname so
that keywords will print as :foo rather than keyword:foo.
keyword does not inherit symbols from any other package.

user The default package for user programs that do not have their own
package. When first booted the Lisp Machine uses the user
package to read expressions typed in by the user.

sys or system Contains symbols shared among various system programs.
system is for symbols global to the Lisp Machine "operating
system", while global is for symbols global to the Lisp language.

si or system-internals

compiler

Most of the programs that implement the Lisp language and
operating system are in the system-internals pack.age.
system-internals is one of the packages that uses system. The
externally advertised symbols of these programs are in system or
global. system-internals would not exist as a separate pack.age
from system if the system took advantage of the distinction
between internal symbols and external symbols, but it does not
yet do so.

Contains the compiler. compiler is one of the packages that use
system.

50 PKG Packages

Symbolics. Inc. February 1984

dbg or debuggerContains the condition system and the debugger. debugger is
one of the packages that use system.

zwei

tv

Contains the editor and Zmail.

Contains the window system. tv is one of the packages that use
system.

fs or file-system Contains pathnames and the generic file access system.
file-system is one of the pack.ages that use system.

lmfs Contains the Lisp Machine file storage system. lmfs is one of the
packages that use system.

format Contains the function format and its associated subfunctions.

net or network Contains the external interfaces to the generic network system.
network is one of the packages that uses system. Each network
implementation and network-related program has its own package,
which uses network.

neti or network-internals

chaos

Contains the programs that implement the generic network
system. network-internals is one of the packages that use
network and system.

Contains the Chaosnet control program. chaos is one of the
packages that use network and system.

cl or common-lisp-global

fonts

Contains the global symbols of the Common Lisp Compatibility
Package. Inside of Common Lisp this package is called lisp. The
CLCP is not described in this documentation set.
common-lisp-global does not use global.

Contains the names of all fonts. fonts does not inherit symbols'
from any other package.

The following variables have the most important packages as their values.

pkg-global-package Variable
The global package.

pkg-keyword-package Variable
The keyword package.

pkg-system-package Variable
The system package.

PKG Packages 51

Symbolics, Inc. February 1984

10. Package-related Conditions

This section documents the most basic package-related conditions. There are other
conditions built on these, but most programmers should not need to deal with them.

sys:package-error Flavor
All package-related error conditions are built on sys:package-error.

sys:package-not-found Flavor
A package-name lookup did not find any package by the specified name.

The :name message returns the name. The :relative-to message returns
nil if only absolute names are being searched, or else the package whose
relative names are also searched.

The :no-action proceed type may be used to try again. The :new-name
proceed type may be used to specify a different name or package. The
:create-package proceed type creates the package with default
characteristics.

sys:external-symbol-not-found Flavor
A ":" qualified name referenced a name that had not been exported from the
specified package.

The :string message returns the name being referenced (no symbol by this
name exists yet). The :package message returns the package.

The :export proceed type exports a symbol by that name and uses it.

sys:package-locked Flavor
There was an attempt to intern a symbol in a locked package.

The :symbol message returns the symbol. The :package message returns
the package.

The :no-action proceed type interns the symbol just as if the package had
not been locked. Other proceed types are also available when interning the
symbol would cause a name conflict.

sys:name-conflict Flavor
Any sort of name conflict occurred (there are specific flavors, built on
sys:name-coritlict, for each possible type of name conflict.) The following
proceed types may be available, depending on the particular error:

The :skip proceed type skips the operation that would cause a name conflict.

The :shadow proceed type prefers the symbols already present in a package
to conflicting symbols that would be inherited. The preferred symbols are
added to the package's shadowing-symbols list.

52 PKG Packages

Symbolics. Inc. February 1984

The :export proceed type prefers the symbols being exported (or being
inherited due to a use-package) to other symbols. The conflicting symbols
are remob'ed if they are directly present, or shadowed if they_ are inherited.

The :unintem proceed type removes the conflicting symbol (with remob).

The :shadowing-import proceed type imports one of the conflicting symbols
and makes it shadow the others. The symbol to be imported is an optional
argument.

The :share proceed type causes the conflicting symbols to share value,
function, and property cells. It as if globalize were called.

The :choose proceed type pops up a window in which the user may choose
between the above proceed types individually for each conflict.

PKG Packages 53

Symbolics, Inc. February 1984

11. Multipackage Programs

Usually, each independent program occupies one package. But large programs, such
as Macsyma, are usually made up of a number of subprograms, and each
subprogram may be maintained by a different person or group of people. We would
like each subprogram to have its own name space, since the program as a whole has
too many names for anyone to remember. The package system can provide the
same benefits to programs that are part of the same superprogram as it does to
programs that are completely independent.

Putting each subprogram into its own package is easy enough, but it is likely that
there will be a fair number of functions and symbols that should be shared by all of
Macsyma's subprograms. These would be internal interfaces between the different
subprograms.

A package named macsyma can be defined and each of the internal interface
symbols can be exported from it. Each subprogram of Macsyma has its own
package, which uses the macsyma package in addition to any other packages it
uses. Thus the interface symbols are accessible to all subprograms, through package
inheritance. These interface symbols typically get their function definitions, variable
values, and other properties from various subprograms read into the various internal
Macsyma packages, although there is nothing wrong with also putting a subprogram
directly into the macsyma package. This is similar to the way the Lisp system
works; the global package exports a large number of symbols, which get their
values, definitions, and so on from programs residing in other packages that use
global, such as system-internals or compiler.

It is also often convenient for the macsyma package to supply relative names that
can be used by the various subprograms to refer to each other's packages. This
allows package name abbreviations to be used internally to Macsyma without
contaminating the external environment.

The system declaration file for Macsyma would then look something like the
following:

54 PKG Packages

Symbolics. Inc. February 1984

;Contains the interfaces between the various subprograms
(defpackage macsyma

(:export meval mprint ptimes •..)
(:colon-mode :external)) ;error-checking in qualified name

;The integration package based on the Risch algorithm
(defpackage risch

(:use macsyma global))

;The integration package based on pattern matching
(defpackage sin

(:use macsyma global))

;Interface to the operating system. This uses the SYSTEM package
;because it needs many system-dependent functions and constants.
;This package also has a local nickname because its primary name
;is so long.
(defpackage macsyma-system-interface

(:relative-names-for-me (macsyma sysi))
(:use macsyma system global))

It is possible to break the interface symbols down into separate categories. For
instance, it might be desirable to separate internal symbols only used inside of
Macsyma from symbols that are also useful to the outside world. The latter symbols
clearly should be externals of the macsyma package. You could create an additional
package named macsyma-internals that exports all the symbols that are interfaces
between different subprograms of Macsyma but are not for use by the outside world.
In this case we would have:

(defpackage risch
(:use macsyma-internals macsyma global))

A program in the outside world that needed to use parts of Macsyma would either
use qualified names such as macsyma:solve or would include macsyma in the :use
option in its package definition.

The interface symbols can be broken down into even more categories. Each sub
package can have its own list of exported symbols, and can use whichever other
subpackages it depends on. The subset of these exported symbols that are also
useful to the outside world can be exported from the macsyma package as well. In
this case our example system declaration file would look something like:

PKG Packages 55

Symbolics, Inc. February 1984

;Contains the interfaces between the various subprograms
(defpackage macsyma

(:export solve integrate •..)
(:colon-mode :external)) ;error-checking in qualified name

;The rational function package
(defpackage rat

(:export ptimes .•.)
(:use macsyma global))

;The integration package
(defpackage risch

(:export integrate)
(:use rat macsyma global))

;The Macsyma interpreter
(defpackage meval

(:export meval mprint ...))

The symbol integrate exported by the macsyma package and the symbol
integrate exported by the risch package are the same symbol, because risch
inherits it from macsyma.

Sometimes one can get involved in forward references when setting up this sort of
package structure. In the above example, risch needs to use rat, hence rat was
defined first. If rat also needed to use risch, there would be no way to write the
package definitions using only defpackage. In this case one can explicitly call
use-package after both packages have been defined. For example:

;The rational function package
(defpackage rat

(:export ptimes .•.)
(:use macsyma global))

;The integration package
(defpackage risch

(:export integrate)
(:use rat macsyma global))

;Now complete the forward references
(use-package 'risch 'rat)

An analogous issue arises when using :import.

;also uses risch

Now, the risch program and the sin program both do integration, and so it would
be natural for each to have a function called integrate. From inside sin, sin's
integrate would be referred to as integrate (no prefix needed), while risch's would
be referred to as risch::integrate or as risch:integrate if risch exported it (which

56 PKG Packages

Symbolics. /he. February 1984

is likely). Similarly, from inside risch, risch's own integrate would be called
integrate, whereas sin's would be referred to as sin::integrate or sin:integrate.

If sin's integrate were a recursive function, you would refer to it from within sin
itself, and would not have to type sin:integrate every time; you would just say
integrate.

If the names sin and risch are considered to be too short to use up in the general
space of package names, they can be made local abbreviations within Macsyma's
family of package through local names. The package definitions would be

;Contains the interfaces between the various subprograms
(defpackage macsyma

(:export meval mprint ptimes .••)
(:colon-mode :external)) ;error-checking in qualified name

;The integration package based on the Risch algorithm
(defpackage macsyma-risch-integration

(:relative-names-for-me (macsyma risch))
(:use macsyma global))

;The integration package based on pattern matching
(defpackage macsyma-pattern-integration

(:relative-names-for-me (macsyma sin))
(:use macsyma global))

From inside the macsyma package or any package that uses it the two integration
functions would be referred to as sin:integrate and as risch:integrate. From
anywhere else in the hierarchy, they could be called macsyma:sin:integrate and
macsyma:risch:integrate, or macsyma-pattern-integration:integrate and
macsyma-risch-integration:integrate.

PKG Packages 57

Symbolics. Inc. February 1984

12. Compatibility with the Old Package System

The package system used before Release 5.0 used a hierarchical arrangement of
packages and used package-declare rather than defpackage to create packages.
Most users will not see any change between the old and new package systems, since
the same function names continue to work and most of the old functionality can be
simulated. All programs do need to be recompiled, however, because old assumptions
built into the compiled code - such as where keyword symbols reside and what the
indices of fields in the package structure are - are no longer valid.

If packl was a subpackage of pack2 in the hierarchical package system, then in the
current system packl should use pack2 and pack2 should be declared external-only
so that all of its symbols will be inherited by packl. Relative names follow the
package use relations just as refnames used to follow the subpackage relations.

package-declare name superior size [file-alist] clause... Special Form
This special form exists only for compatibility with the pre-Release-5 package
system. defpackage should be used instead.

name is the name of the package to be created. It must be a string or a
symbol (a list is no longer acceptable).

superior is used as the :use option to defpackage.

size is used as the :size option to defpackage.

file-alist must be nil; this feature has been obsolete for several years. It may
be omitted if there are no clauses.

Each clause is a list whose first element is one of the following symbols and
whose remaining elements are "arguments". It makes no difference in what
package the symbols are read, since only their names are used.

borrow

intern

shadow

refname

myrefname

Used as the :import-from option to defpackage.

Used as the :export option to defpackage.

Used as the :shadow option to defpackage.

Used as an element of the :relative-names option to
defpackage. Note that this clause is usually unnecessary
in the current package system, since package naming
works more rationally.

Used as an element of the :relative-names-for-me option
to defpackage, unless the first argument is global, in
which case it is used as an element of the :nicknames
option. Note that this clause is usually unnecessary in the
current package system, since package naming works more
rationally.

58 PKG Packages

Symbolics. Inc. February 1984

The use, external, advertise, forward, forward-alias, indirect,
indirect-alias, keyword, and subpackage clauses that package-declare
used to accept cannot be simulated and are no longer allowed. None of these
were documented and some of them did not work.

pkg-create-package name &optional superior size Function
This function exists only for compatibility with the pre-Release-5 package
system. make-package should be used instead.

name must be a symbol or a string; lists are no longer accepted. superior is
used as the :use argument to make-package. If superior is nil then
:invisible t is specified. size is used as the :size argument to
make-package.

The dont-lock-superior argument no longer exists. Package locking is now
controlled explicitly by the :extemal-only option to defpackage and
make-package.

The global functions pkg-contained-in, pkg-debug-copy, pkg-load,
pkg-refname-alist, and pkg-super-package no longer exist. The first three of
these were not documented.

The functions intern, intem-local, intem-soft, and intem-local-soft no longer
return three values. Now only two values are returned. The second value is
different but upward-compatible.

The functions mapatoms-all and where-is no longer take an optional argument
defaulting to the global package. They now always process all packages that are
not invisible. The function package-used-by-list can help if you need to process
only the subset of all packages that use some particular package.

12.1 External-only Packages and Locking

The facilities described in this section are primarily for compatibility with the old,
hierarchical package system used before Release 5. Full use of these facilities
requires knowing about functions that are in the si package and not described in
this document.

A package can be locked, which means that any attempt to add a new symbol to it
will signal an error. Continuing from the error will add the symbol.

When reading from an interactive stream, such as a window, the error for adding a
new symbol to a locked package does not go into the debugger. Instead it asks you
to correct your input, using the input editor. You cannot add a new symbol to a
locked package just by typing its name; you must explicitly call intem, export, or
globalize.

PKG Packages 59

Symbolics, Inc. February 1984

A package can be declared external-only. This causes any symbol added to the
package to be exported automatically. Since exporting of symbols should be a
conscious decision, when you create an external-only package it is automatically
locked. Any attempt to add a new symbol to an external-only package signals an
error because it is locked. If adding the symbol would cause a name conflict in some
package that uses the package to which the symbol is being added, the error
message mentions that fact. Continuing from the error will add the symbol anyway.
In the event of name conflicts, appropriate proceed types for resolving name conflicts
are offered.

To set up an external-only package, it can be temporarily unlocked and then the
desired set of symbols can be interned in it. Unlocking an external-only package
disables name-conflict checking, since the system (perhaps erroneously) assumes you
know what you are doing. The global package is external-only and locked. Its
contents are initialized when the system is built by reading files containing the
desired symbols with package bound to the global package object, which is
temporarily unlocked. The system package is external-only, locked, and initialized
the same way.

60 PKG Packages

Symbolics. Inc. February 1984

PKG Packages 61

Symbolics, Inc. February 1984

"

A

B

c

Index

"
Package "Commands" 46

Sharing of Symbols
Package

File

#: package qualifier 19

: character as keyword identifier 9
: package qualifier 19, 33, 35

A

B

c

Adding new symbols to locked packages 58
Among Packages 3
attribute 13
attribute list 13
Avoiding the Internal/External Distinction 19

Binary files 46

Case sensitivity of interning 37
Change current package 31
chaos package 49
character as keyword identifier 9
check-arg-type special form 9
:choose proceed type 51

, cl package 49
:external colon mode 33, 35
:internal colon mode 33, 35

Where Is Symbol (m-X) Zmacs
Package

Common Lisp

Package-related
Name

Package name
Symbol name

Name

:colon-mode option for defpackage 19, 33
:colon-mode option for make-package 19, 35
command 5
commands 46
Common Lisp Compatibility Package 49
common-lisp-global package 49
Compatibility Package 49
Compatibility with the Old Package System 57
Compiled file 13
compiler package 49
Condition system package 49
Conditions 51
conflicts 46
conflicts 15
conflicts 8
Conflicts: Packages 27

"

A

B

c

62

D

E

PKG Packages

Symbolics, Inc. February 1984

Print-Print
Print-Read

Read-Read

The Need for Multiple

Change
The

System

:colon-mode option for
:export option for

:external-only option for
:hash-inherited-symbols option for

:import option for
:import-from option for

:include option for
:new-symbol-function option for

:nicknames option for
:prefix-intern-function option for

:prefix-name option for
:relative-names option for

:relative-names-for-me option for
:shadow option for

:shadow-import option for
:shadowing-import option for

:size option for
:use option for

Avoiding the Internal/External

D

E

consistency 25
consistency 25
consistency 25
Consistency Rules 25
Contexts 1
:create-package proceed type 51
Current package 31
current package 31
Current Package 31

Data type names 9
dbg package 49
debugger package 49
declaration file 32, 53
Defining a Package 32
defpackage 19, 33
defpackage 7, 33
defpackage 33
defpackage 33
defpackage 7, 33
defpackage 7, 33
defpackage 33
defpackage 33
defpackage 33
defpackage 33
defpackage 33
defpackage 16, 33
defpackage 16, 33
defpackage 8, 33
defpackage 33
defpackage 7, 8
defpackage 33
defpackage 4, 33
defpackage special form 32, 33
describe-package function 46
Distinction 19
do-all-symbols special form 43
do-external-symbols special form 43
do-local-symbols special form 43
do-symbols special form 42

Editor package 49
Examples: Packages 23
export function 27, 45
:export option for defpackage 7, 33
:export option for make-package 7, 35
:export proceed type 51

Import, Export, and Shadow 45
Exporting symbols 7, 23, 27, 45, 46

Importing and Exporting Symbols 7
:external colon mode 33, 35
External Symbols 4, 7
:external-only option for defpackage 33
:external-only option for make-package 35

D

E

PKG Packages 63

Symbolics, Inc. February 1984

F

:package message to sys:
:string message to sys:

sys:

Compiled
Sysdcl

System declaration

Binary

sys:external-symbol-not-found
sys:name-conflict
sys:package-error

sys:package-locked
sys:package-not-found

check-arg-type special
defpackage special

do-all-symbols special
do-external-symbols special

do-local-symbols special
do-symbols special

package-declare special
typecase special

Package Functions, Special

describe-package
export

find-all-symbols
globalize

import
Intern

Intern-local
lntern-local~soft

Intern-soft
make-package
make-symbol

mapatoms
mapatoms-all

package-external-symbols
package-shadowing-symbols

package-use-II st
package-used-by-list

pkg-add-relative-name
pkg-contained-in

pkg-create-package
pkg-debug-copy

pkg-delete-relative-name
pkg-find-package

pkg-goto
pkg-kill

pkg-load

F

External-only Packages and Locking 58
external-symbol-not-found 51
external-symbol-not-found 51
external-symbol-not-found flavor 51

file 13
file 32
file 32, 53
File attribute list 13
file-system package 49
files 46
find-all-symbols function 39
flavor 51
flavor 51
flavor 51
flavor 51
flavor 51
fonts package 49
form 9
form 32, 33
form 43
form 43
form 43
form 42
form 57
form 9
format package 49
Forms of qualified names 20
Forms, and Variables 31
fs package 49
function 46
function 27, 45
function 39
function 46
function 7, 27, 45
function 5, 27, 39
function 27, 39
function 39
function 39
function 35
function 7, 40
function 42
function 42, 57
function 45
function 46
function 44
function 44, 57
function 16, 44
function 57
function 58
function 57
function 16, 44
function 41
function 31
function 37
function 57

F

64 PKG Packages

G

H

Symbolics. Inc. February 1984

pkg-name
pkg-refname-alist

pkg-super-package
prlnc

re mob
shadow

shadowing-Import
symbol-package

typep
unexport

unuse-package
use-package

where-ls
Package

G

function 41
function 57
function 57
function 20
function 7, 27, 40
function 8, 27, 45
function 7, 8, 27, 45
function 7, 40
function 9, 31
function 27, 45
function 27, 44
function 4, 27, 44
function 5, 46, 57
Functions, Special Forms, and Variables 31

global package 5, 49
The global Package 5

Global symbols 5
globallze function 46

H

G

H
:hash-Inherited-symbols option for defpackage 33
:hash-Inherited-symbols option for

make-package 35
Home package 40
Home Package of a Symbol 7, 40

: character as keyword identifier 9
Import function 7, 27, 45
:Import option for defpackage 7, 33
:Import option for make-package 7, 35
Import, Export, and Shadow 45
:Import-from option for defpackage 7, 33
:import-from option for make-package 7, 35
Importing and Exporting Symbols 7
Importing symbols 7, 23, 27, 45
:Include option for defpackage 33
:Include option for make-package 35

Package Inheritance 4, 33
Interface between two modules 3

Internal interfaces 53
Qualified Names as Interfaces 20

Intern function 5, 27, 39
Intern-local function 27, 39
Intern-local-soft function 39
Intern-soft function 39
:Internal colon mode 33, 35
Internal interfaces 53
Internal symbols 4

Avoiding the Internal/External Distinction 19
Interning 37

Case sensitivity of interning 37

I

PKG Packages 65

Symbolics, Inc. February 1984

K

L

M

Where
Package

K

lnterpackage Relations 44
:Invisible option for make-package 35
Invisible packages 15
Is Symbol (m-X) Zmacs command 5
Iteration 42

: character as keyword identifier 9
keyword package 49
Keywords 9

Lisp
Common

File attribute

Adding new symbols to
External-only Packages and

Where Is Symbol
pkg-bind

:colon-mode option for
:export option for

· :external-only option for
:hash-inherited-symbols option for

:import option for
:import-from option for

:Include option for
:invisible option for

:new-symbol-function option for
:nicknames option for

:prefix-intern-function option for
:prefix-name option for

:relative-names option for
:relative-names-for-me option for

:shadow option for
:shadowing-import option for

:size option for
:use option for

:package
:string

:package
:symbol

:name
:relative-to

L

M

language package 49
Lisp Compatibility Package 49
Lisp language package 49
list 13
lmfs package 49
locked packages 58
Locking 58

(m-X) Zmacs command 5
macro 32
make-package 19, 35
make-package 7, 35
make-package 35
make-package 35
make-package 7, 35
make-package 7, 35
make-package 35
make-package 35
make-package 35
make-package 35
make-package 35
make-package 35
make-package 16, 35
make-package 16, 35
make-package 8, 35
make-package 7, 8, 35
make-package 35
make-package 4, 35
make-package function 35
make-symbol function 7, 40
mapatoms function 42
mapatoms-all function 42, 57
Mapping Between Names and Packages 41
Mapping from names to symbols 1
Mapping Names to Symbols 37
message to sys:external-symbol-not-found 51
message to sys:external-symbol-not-found 51
message to sys:package-locked 51
message to sys:package-locked 51
message to sys:package-not-found 51
message to sys:package-not-found 51

K

L

M

66 PKG Packages

N

0

:external colon
:Internal colon

Interface between two

The Need for

Package
Symbol

sys:

Data type
Forms of qualified

Multilevel Qualified
Package
Qualified

Relative Package
Shadowing package

Mapping Between
Qualified
Mapping

Mapping from
The

Adding

Compatibility with the
Shadowing-import

:colon-mode
:export

:external-only
:hash-inherited-symbols

:Import
:Import-from

:include
:new-symbol-function

:nicknames
:prefix-Intern-function

:prefix-name
:re lat Ive-names

:relative-names-for-me

N

0

Symbolics, Inc. February 1984

mode 33, 35
mode 33, 35
modules 3
Muhilevel Qualified Names 21
Muhipackage Programs 53
Muhiple Contexts 1

Name conflicts 46
name conflicts 15
name conflicts 8
Name Conflicts: Packages 27
:name message to sys:package-not-found 51
name-conflict flavor 51
Names 1
names 9
names 20
Names 21
Names 15
Names 19, 23
Names 16, 44
names 16
Names and Packages 41
Names as Interfaces 20
Names to Symbols 37
names to symbols 1
Need for Muhiple Contexts
net package 49
netl package 49
network package 49
network-internals package 49
new symbols to locked packages 58

N

:new-name proceed type 51
:new-symbol-function option for defpackage 33
:new-symbol-function option for

make-package 35
:nicknames option for defpackage 33
:nicknames option for make-package 35
:no-action proceed type 51

Old Package System 57
operation 7
option for defpackage 19, 33
option for defpackage 7, 33
option for defpackage 33
option for defpackage 33
option for defpackage 7, 33
option for defpackage 7, 33
option for defpackage 33
option for defpackage 33
option for defpackage 33
option for defpackage 33
option for defpackage 33
option for defpackage 16, 33
option for defpackage 16, 33

0

PKG Packages 67

Symbolics. Inc. February 1984

:shadow option for defpackage 8, 33
:shadow-Import option for defpackage 33

:shadowing-Import option for defpackage 7, 8
:size option for defpackage 33
:use option for defpackage 4, 33

:colon-mode option for make-package 19, 35
:export option for make-package 7, 35

:external-only option for make-package 35
:hash-Inherited-symbols option for make-package 35

:Import option for make-package 7, 35
:Import-from option for make-package 7, 35

:Include option for make-package 35
:lnvlslble option for make-package 35

:new-symbol-function option for make-package 35
:nicknames option for make-package 35

:prefix-Intern-function option for make-package 35
:prefix-name option for make-package 35

:relative-names option for make-package 16, 35
:relative-names-for-me option for make-package 16, 35

:shadow option for make-package 8, 35
:shadowing-Import option for make-package 7, 8, 35

:size option for make-package 35
:use option for make-package 4, 35

p p p
Change current package 31

chaos package 49
cl package 49

Common Lisp Compatibility Package 49
common-lisp-global package 49

comp lier package 49
Condition system package 49

Current package 31
dbg package 49

debugger package 49
Defining a Package 32

Editor package 49
file-system package 49

fonts package 49
format package 49

f s package 49
global package 5, 49
Home package 40

keyword package 49
Lisp language package 49

lmfs package 49
net package 49
net I package 49

network package 49
network-Internals package 49

Pathnames package 49
Remove package 37

Removing symbol from package 40
sl package 49

sys package 49
system package 5, 49

system-Internals package 49

68 PKG Packages

The Current
The global

tv
user

Window system
Zmail
zwel

Relative
Shadowing

Home
#:

Compatibility with the Old

sys:

:package message to sys:
:symbol message to sys:

sys:
:name message to sys:

:relative-to message to sys:
sys:

Adding new symbols to locked
Examples:

Invisible
Mapping Between Names and

Name Conflicts:
Sharing of Symbols Among

System
External-only

Package 31
Package 5
package 49
package 13, 49
package 49
package 49
package 49

Symbolics, Inc. February 1984

Package "Commands" 46
Package attribute 13
Package commands 46
Package Functions, Special Forms; and

Variables 31
Package Inheritance 4, 33
Package heration 42
:package message to

sys:extemal-symbol-not-found 51
:package message to sys:package-locked 51
Package name conflicts 15
Package Names 15
Package Names 16, 44
package names 16
Package of a Symbol 7, 40
package qualifier 19
package qualifier 19, 33, 35
package qualifier 33, 35
Package System 57
package variable 13, 31
package-declare special form 57
package-error flavor 51
package-external-symbols function 45
package-locked 51
package-locked 51
package-locked flavor 51
package-not-found 51
package-not-found 51
package-not-found flavor 51
Package-related Conditions 51
package-shadowing-symbols function 46
package-use-list function 44
package-used-by-list function 44, 57
packages 58
Packages 23
packages 15
Packages 41
Packages 27
Packages 3
Packages 49
Packages and Locking 58
Packages and Writing Programs 13
Pathnames package 49
pkg-add-relative-name function 16, 44
pkg-bind macro 32
pkg-contained-In function 57
pkg-create-package function 58
pkg-debug-copy function 57
pkg-delete-relative-name function 16, 44
pkg-find-package function 41
pkg-global-package variable 50

PKG Packages 69

Symbolics. Inc. February 1984

Q

R

:choose
:create-package

:export
:new-name
:no-action

:shadow
:shadowing-Import

:share
:skip

:unintem
Multipackage

Packages and Writing

Forms of
Multilevel

#:package
: package

:: package

pkg-goto function 31
pkg-keyword-package variable 50
pkg-klll function 37
pkg-load function 57
pkg-name function 41
pkg-refnam.allst function 57
pkg-super-package function 57
pkg-system-package variable 50
:prefix-intem-functlon option for defpackage 33
:preflx-lntem-functlon option for

make-package 35
:prefix-name option for defpackage 33
:prefix-name option for make-package 35
prlnc function 20
Print-Print consistency 25
Print-Read consistency 25
Printed representation 1
Printed Representation of Symbols 20
Private symbol 5
proceed type 51
proceed type 51
proceed type 51
proceed type 51
proceed type 51
proceed type 51
proceed type 51
proceed type 51
proceed type 51
proceed type 51
Programs 53
Programs 13

Q Q

R

Qualified Names 19, 23
qualified names 20
Qualified Names 21
Qualified Names as Interfaces 20
qualifier 19
qualifier 19, 33, 35
qualifier 33, 35

Read-Read consistency 25
R

lnterpackage Relations 44
Relative Package Names 16, 44
:relative-names option for defpackage 16, 33
:relative-names option for make-package 16, 35
:relative-names-for-me option for defpackage 16,

33
:relative-names-for-me option for

make-package 16, 35
:relative-to message to sys:package-not-found 51
remob function 7, 27, 40
Remove package 37
Removing symbol from package 40

Printed representation 1

70 PKG Packages

s

Symbolics, Inc. February 1984

Printed Representation of Symbols _20
Consistency Rules 25

Case
Import, Export, and

check-arg-type
defpackage

do-all-symbols
do-external-symbols

do-local-symbols
do-symbols

package-declare
typecase

Package Functions,

Home Package of a
Private

Where Is
Removing

Exporting
External

Global
Importing

Importing and Exporting
Internal

Mapping from names to
Mapping Names to

Printed Representation of
Shadowing
Uninterned

s
sensitivity of interning 37
Shadow 45
shadow function 8, 27, 45
:shadow option for defpackage 8, 33
:shadow option for make-package 8, 35
:shadow proceed type 51
:shadow-Import option for defpackage 33
Shadowing 5
Shadowing package names 16
Shadowing Symbols 8, 27, 45
shadowing-Import function 7, 8, 27, 45
Shadowing-import operation 7

s

:shadowing-Import option for defpackage 7, 8
:shadowing-Import option for make-package 7, 8,

35
:shadowing-Import proceed type 51
:share proceed type 51
Sharing of Symbols Among Packages 3
sl package 49
:size option for defpackage 33
:size option for make-package 35
:skip proceed type 51
special form 9
special form 32, 33
special form 43
special form 43
special form 43
special form 42
special form 57
special form 9
Special Forms, and Variables 31
:string message to

sys:external-symbol-not-found 51
Subprograms 53
Symbol 7, 40
symbol 5
Symbol (m-X) Zmacs command 5
symbol from package 40
:symbol message to sys:package-locked 51
Symbol name conflicts 8
symbol-package function 7, 40
Symbols 1
symbols 7, 23, 27, 45, 46
Symbols 4, 7
symbols 5
symbols 7, 23, 27, 45
Symbols 7
symbols 4
symbols 1
Symbols 37
Symbols 20
Symbols 8, 27, 45
symbols 7, 40

PKG Packages 71

Symbolics, Inc. February 1984

T

u

Sharing of
Adding new

:package message to
:string message to

:package message to
:symbol message to

:name message to
:relative-to message to

Compatibility with the Old Package

Condition
Window

Interface between
:choose proceed

:create-package proceed
:export proceed

:new-name proceed
:no-action proceed

:shadow proceed
:shadowing-Import proceed

:share proceed
:skip proceed

:unlntem proceed
Data

T

u

Symbols Among Packages 3
symbols to locked packages 58
sys package 49
sys:extemal-symbol-not-found 51
sys:extemal-symbol-not-found 51
sys:extemal-symbol-not-found flavor 51
sys:name-confllct flavor 51
sys:package-error flavor 51
sys:package-locked 51
sys:package-locked 51
sys:package-locked flavor 51
sys:package-not-found 51
sys:package-not-found 51
sys:package-not-found flavor 51
Sysdcl file 32
System 57
System declaration file 32, 53
system package 5, 49
system package 49
system package 49
System Packages 49
system-internals package 49

tv package 49
two modules 3
type 51
type 51
type 51
type 51
type 51
type 51
type 51
type 51
type 51
type 51
type names 9
typecase special form 9
typep function 9, 31

unexport function 27, 45
:unlntem proceed type 51
Unintemed symbols 7, 40
unuse-package function 27, 44
:use option for defpackage 4, 33
:use option for make-package 4, 35
use-package function 4, 27, 44
user package 13, 49

T

u

72 PKG Packages

Symbolics. Inc. February 1984

v v v
package variable 13, 31

pkg-global-package variable 50
pkg-keyword-package variable 50
pkg-system-package variable 50

Package Functions. Special Forms, and Variables 31

w w w
Where Is Symbol (m-X) Zmacs command 5
where-ls function s. 46, 57
Window system package 49

Packages and Writing Programs 13

z z z
Where Is Symbol (m-X) Zmacs command 5

Zmail package 49
zwel package 49

	00-0001
	00-0002
	00-0003
	01-0001_990073_Functions_Feb84
	01-0002
	01-001
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	01-29
	01-30
	01-31
	01-32
	01-33
	01-34
	01-35
	01-36
	01-37
	01-38
	01-39
	01-40
	01-41
	01-42
	01-43
	01-44
	01-45
	01-46
	02-0001_990068_Macros_Mar84
	02-0002
	02-001
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	03-0001_990057_Defstruct_Feb84
	03-0002
	03-001
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	04-0001_990052_Objects_Feb84
	04-0002
	04-001
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	04-54
	04-55
	04-56
	04-57
	04-58
	04-59
	04-60
	04-61
	04-62
	04-63
	04-64
	04-65
	04-66
	04-67
	04-68
	04-69
	04-70
	04-71
	04-72
	04-73
	04-74
	04-75
	04-76
	04-77
	04-78
	05-0001_990097_Signalling_Mar84
	05-0002
	05-001
	05-002
	05-003
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	05-45
	05-46
	05-47
	05-48
	05-49
	05-50
	05-51
	05-52
	05-53
	05-54
	05-55
	05-56
	05-57
	05-58
	05-59
	05-60
	05-61
	05-62
	05-63
	05-64
	05-65
	05-66
	05-67
	05-68
	05-69
	05-70
	05-71
	05-72
	05-73
	05-74
	05-75
	05-76
	05-77
	05-78
	05-79
	05-80
	05-81
	05-82
	05-83
	05-84
	05-85
	05-86
	05-87
	05-88
	05-89
	05-90
	05-91
	05-92
	05-93
	05-94
	05-95
	05-96
	05-97
	05-98
	05-99
	06-0001_990086_Packages_Feb84
	06-0002
	06-001
	06-002
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	06-47
	06-48
	06-49
	06-50
	06-51
	06-52
	06-53
	06-54
	06-55
	06-56
	06-57
	06-58
	06-59
	06-60
	06-61
	06-62
	06-63
	06-64
	06-65
	06-66
	06-67
	06-68
	06-69
	06-70
	06-71
	06-72

