Introduction to Lisp on the Lisp Machine

Draft formatted on 11 Jan 84 at 09:26

Draft -- For internal Use Only

We appreciate any comments on the organization, technical completeness, and technical
accuracy of this draft. (Comments about weakness of the product design should go to the
appropriate mailing list instead.) Thanks.

Name: L . , Date:

Copyright © , Symbolics, Inc. of Cambridge, - Massachusetts.

All rights reserved. Printed-in USA.

This document may not be reproduced in whole or in part without the prior written consent of
Symbolics, Inc. _ , : : s

‘Introduction to Lisp on the Lisp Machine

January 1984

" This document corresponds to Release 4.5.

This document was prepared by the Documentation Group of Symbolics, Inc.Principal
- writer(s): Jonathan Baigley, Lois Flynne, and Allan Wechsler

No representation or affirmation of fact contained in this document should be construed
as 8 warranty by Symbolics, and its contents are subject to change without notice.
Symbolics, Inc. assumes no responsxbxlxty for any errors that might appear in this
document.

-~ Symbolics software described in this document is furnished only under license, and may
be used only in accordance with the terms of such license. Title to, and ownership of,
such software shall at all times remain in Symbolics, Inc. Nothing contained herein
implies the granting of a license to make, use, or sell any Symbolics equipment or
software.

k Symbolics is a trademark of Symbolics, Inc., Cambridge, Massachusetts.

- Copyright © , Symbolics, Inc. of Caxnbndge, Massachusetu.

Al rights reserved. Printed in USA. = -

This document may not be reproduced in whole or in part thhout the pnor written
consent of Symbolics, Inc.

Student Notes Introduction to Lisp on the Lisp Machine i
Symbolics, Irc. January 1984

Table of Contents

- Q0”0 O0O0N AL

’Page
1. LISP WORLD OBJECTS 3
- Their Nature & Representation
1.1 Numbers
1.2 Symbols
1.3 Conses
1.3.1 Using Conses
1.3.2 Describing Lists
1.4 Functions
1.5 Nomenclature 1
1.6 Games & Practice with LISP WORLD OBJECTS 1
2. SIMPLE FUNCTIONS 13
2.1 Essentlal Characterlstlcs-- E 14
* Review - :)
2.2 Fetchers & Examiners 15
2.3 Changers & Constructors 16
2.3.1 Symbol Values & Function-Values 16
2.3.2 Conses & Lists o : 18
2.4 Arithmetizers , 19
2.5 Predicates : 21
2.6 Games & Practice with FUNCTION CALLING , 23
3. PRINT & READ 25
& Printed Representations
3.1 Print & Read ‘ 26
3.1.1 Communications Functions : 26

3.1.2 Communications Channels 26

" Student Notes Introduction to Lisp on the Lisp Machine

4. EVAL & EVALUATION of FORMS

5.

3.1.3 Effects on the Lisp World

3.2 Numbers

3.3 Symbols
- 3.3.1 Simple Printed Representations
3.3.2 Complicated Representations
3.4 Conses & Lists
3.5 Functions
‘3.6 Games & Practice with
PRINTED REPRESENTATIONS

" 4.1 Modelling & Problem Solving--
Forms & Evaluation
4.1.1 Forms
4.1.2 Evaluation
4.2 Evaluation of Simple Forms
~ 4.2.1 Numbers
4.2.2 Symbols
‘4.3 Evaluation of Compound Forms
4.3.1 Operators
4.3.2 Functions
4.3.3 Special Operators
: ~ 4.3.4 Operands
4.4 Ring-around the READ-EVAL-PRINT Rosy

- 4.5 Games & Practice with -

 EVAL &EVALUATIONof FORMS

FUNCTION DEFINITION

5.1 Extending the Lisp World
5.2 LambdaExpressions & DEFUNs
- -5.2.1 LambdaExpressions ,
5.2.2 DEFUN & Lambda Expressions

Symbolics, Inc. “ January 1984

27
28
29
29

29

31
32
33

35

36

36
36
37
37
37
38

38

38
38

39

40
43

47

48
49
49
51

Student Notes Introduction to Lisp on the Lisp Machine

iii

Symbolics, Inc.. January 1984

6.

5.3 Compiling Lisp Code Definitions
5.4 Parameter List Keywords

5.5 Games & Practice with FUNCTION DEFINITION

FLOW OF CONTROL--
CONDITIONALS, RECURSION &
ITERATION

6.1 Which forms to evaluate, when and how
6.1.1 AND/OR
6.1.2 IF
6.1.3 COND
6.2 Recursion
6.3 Games & Practice with
RECURSIVE DEFINITIONS
6.4 Iteration & Loop
6.4.1 Numeric iteration
6.4.2 Going through the slements of a list
6.4.3 Local variables and arbitrary-exiting
6.5 Games & Practice with ITERATION & LOOP
6.5.1 Examples of LOOP
6.5.2 Exercises

The Lisp Machine

7.1 Games and Practice with the Lisp Machine

Lists

8.1 List Manipulation
8.1.1 Review of Terminology
8.1.2 List Manipulation Functions
8.2 Lists as Tables
8.3 Games and Practice Using Lists

52
53
55

57

58
58
59
59
60
61

63
63
64
64
65
65
67

69

70

81

82
82
82
83
86

iv

Student Notes Introduction to Lisp on the Lisp Machine

Symbolics, Inc. January 1984

9. Graphics

10.

1.

9.1 Windows, Modes, and Graphics
9.2 The incantations
9.3 Games & Practice with Graphics
9.3.1 Examples
9.3.2 Exercises

MORE LISP WORLD OBJECTS
Their Nature & Representation

10.1 Arrays & Strings
10.1.1 Types of Arrays
" 10.1.2 Printed Representation
10.1.3 Arrays vs. Lists
10.2 Array & String Manlipulating Functions
| 10.2.1 Constructors & Changers
10.2.2 Fetchers & Examiners
10.2.3 String Particulars
10 3 Games & Practice with ARRAYS & STRINGS
2 10.3.1 Exercises

‘Additional Lisp Machine Features

11.1 Debugging Tools
11.1.1 Usingthe Lisp Machlne and your own code to
~ helpyou.
11.1.2 Modifying your code to help you.
11.1.3 The Debugger
11.1.4 Monitoring your code without modlﬂcatlons
11.1.5 Looking at data
11.2 More Zmacs Commands
11.2.1 Debugging Commands
11.2.2 Typing Lisp code

89

90
91
02
92
93

95

96
97
97
07
o8
o8
99
99

102

102

103

104
104

105
105
108
109

110

110
110

Student Notes Introduction to Lisp on the Lisp Machine

Symbolics, inc. January 1984

12.

13.

14,

15.

16.

VARIABLE BINDINGS & SCOPING
ISSUES

12.1 Varlables
12.2 How the Compiler Decides What to Make Into Local
Variables

12.3 How You Can Make Free References Work ,

12.4 Why You Should And Shouldn’t Use Special Variables
12.4.1 Protecting Your Special Variables

12.5 Terminology and Future Changes

12.6 Games & Practice with VARIABLE BINDINGS
12.6.1 Chess Program Example

PACKAGES

13.1 Avoiding Name Conflicts
13.2 Some Packages
13.3 Games and Practice with Packages

SMART MACROS
14.1 SETF & Friends

-14.2 Plist & Information Stored on the Property List of

Symbols
14.3 Games & Practice with SMART MACROS
Projects

15.1 Criteria for good projects
15.2 Ideas for good projects
15.3 Your mission Jim, if you should choose to accept it...

STRUCTURES & DATA ABSTRACTION

16.1 Representatlons & Structure Macres
16.1.1 Structure Macros

113

114
116

116
117
117
117
118
118

121

122
122
123
125
125
126

127

129

130
131
132

133

134
134

" Student Notes Introduction to Lisp on the Lisp Machine

17.

Symbolics, Inc. January 1984

16.1.2 DEFSTRUCT
16.1.3 Constructor Macro
16.1.4 Alterant Macro
16.1.5 Accessor Functions
16.1.6 DESCRIBE-DEFSTRUCT
16.2 Games & Practice with
STRUCTURES & DATA ABSTRACTION
16.2.1 Examples of using DEFSTRUCT
16.2.2 Exerclses

Flavors

17.1 Mechanics of the Flavor System
17.1.1 Flavor instances
17.1.2 SEND
17.1.3 How do instances learn new behaviors?
17.1.4 Flavor combination '
17.1.5 Advanced Method Combination
17.2 Motivation for Using Flavors ,
17.3 Games and Practice Using Flavors
17.3.1 Examples

Index

135
136
136
136
136
137

137
138

139

140
140
141
141
142
146
146
148
148

163

Student Notes Introduction to Lisp on the Lisp Machine

Symbolics, Inc. January 1984

Introduction to Lisp Machine Programming

Course Key Notes

Symbolics Educational Services

Student Notes Introduction to Lisp on the Lisp Machine

Symbolics, Inc. January 1984

Succinct summaries of the main points of the lectures
and labs, with lots of practice exercises & illustrative
examples.

Student Notes Introduction to Lisp on the Lisp Machine . 3
Symbolics, Inc. December 1983

1. LISP WORLD OBJECTS
Their Nature & Repr.esentatlon

NUMBERS
SYMBOLS
CONSES
FUNCTIONS

Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. December 1983

NUMBERS
Magnitude

1.1 Numbers

Numbers, poor dears, are dull beasts. The only interesting thing about them is their
MAGNITUDE

The magnitude of a number is depicted in decimal digits. However, numbers do not have any
intrinsic base. Bases have to do with the external representation of numbers.

Student Notes Introduction to Lisp on the Lisp Machine 5
Symbolics, Inc. December 1983

SYMBOLS
Name

Value

Function Value
Property List

1.2 Symbols

A Symbol is an interesting and versatile creature which has a
e Name
and may have a

» Ward
+ Functional Ward

e Property List

Symbols are born into the Lisp World with their names enscribed.

Later, a symbol may acquire a ward, or, a functional ward, or a property list, or not. Wards,
functional wards, and property lists are relationships that symbols have with other Lisp objects.

All three of these relationships are one-way: that is, given a symbol you can find out what its
ward is, but given any old Lisp object you can’t find out what symbols it is the ward of.

Any of these relationships can be changed. The ward of a symbol may be any Lisp object ...
including the symbol itself. The functional ward of a symbol ought to be a function object,
but may be any Lisp object. We will ignore the property list for now.

6 Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. December 1983

CONSES & LISTS
Car
Cédr

1.3 Conses

Conses are most useful creatures. They have a

* CAR

« CDR

Conses must have a CAR and a CDR. The car or cdr of a cons may be any Lisp object,
including another cons, or even the cons itself.

Cars and cdrs are relationships that a cons has with other Lisp objects. The relationship is the
same as the relationship that symbols have with their wards, except that a cons is required to
have both a car and a cdr.

1.3.1 Using Conses

Conses are often used to link or relate lots of objects together. When we use both cars and
cdrs to link objects together the resulting structure is called a tree. Trees have only conses as
~ their internal "support” and the objects of interest are at the "fringe”.

Another way we link objects together is by using cdrs to link conses and make the car of each
cons be the object of interest. This structure is called a /ist.

The formal definition of a list is:

» Either the symbol whose name is NIL,

e Or (yes, recursively) a cons whose cdr is a list.

Lists are the backbone of Lisp, which is an acronym for LISt Processing.

1.3.2 Describing Lists

We will continue the backbone metaphor. The conses which make up a list will be called the
backbone.

Each individual cons in the backbone will be called a verrabra.
The car of each vertabra is an element of the list.

The length of the list is equal to the number of elements or vertabra in the list.

Student Notes Introduction to Lisp on the Lisp Machine

Symbolics, Inc. December 1983

Note that it would be equivalent to use the cars of the conses as links and the cdrs as the
objects of interest. Lisp has a convention which asks you to use cdrs.

8 ' Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. - December 1983

FUNCTIONS
‘Definitions
Actions

1.4 Functions

Functions are the actors, of the Lisp World, the movers, the shakers, the changers, the doers,
the enquirers, the informers, the examiners, the calculators.

Functions have
. DEFINITiONS
which prescribe
* ARGUMENTS
* ACTIONS

or, "What is to be done in what way with what to whom.”

» The function definition specifies the number of arguments, and the action to be taken
with those arguments.

o There may be zero, or, more arguments which may be any Lisp World object.
« Functions are run or called with Lisp objects as arguments.

» The function has a right to expect to be called with the correct number and type of
arguments. If this is not the case, an error will be signalled.

* The function performs the action specified by the deﬁnition, with the supplied arguments
and usually returns a result. ‘

» The result may be any Lisp object.

« If something gb& wrong, an error will be signalled. In this case, a function may not
return a result. (It depends on how you choose to handle the error.)

 Some functions are "environmentally clean”. - They are only used for value, that is, for
-the Lisp object they return. - Other functions have an effect on the Lisp world and are
not environmentally clean. These functions are used for effecs, but may also be used for
the result that they return. : ‘

Student Notes Introduction to Lisp on the Lisp Machine

Symbolics, Inc. December 1983

Definitions may be
¢ Interpreted Definitions, expressed in Lisp Code.
» Compiled Definitions, expressed in Compiled Code
¢ Micro-Code Dcfmiﬁom |
We won’t distinguish between these three kinds of definitions for a while.

Student Notes Introduction to Lisp on the Lisp Machine

10
Symbolics, Inc. December 1983

Nomenclature

1.5 Nomenclature

Some of the words we have used were invented for the purpose of the course, or have been
adopted as better than previous words. In this section we list possible words you may see or

hear for the same concepts.

Symbol
o Atom. The definition of an atom is anything that is not a cons. People will often use
"atom" when they really mean "symbol".
Ward |
e Value. Means exactly the same thing as ward. We prefer "ward" because it eliminates
multiple uses of the word "value”, and because it implies a relationship.

o Value cell. Same as above, but has to do with the Lisp Machine implementation of
symbols.

» Binding. The traditional word for the ward concept. Unfortunately, it has a double
meaning. We will use "to bind" for only one meaning which will be discussed later.

" .has no ward.” ’
o ... is unbound. From the word "binding," this is exactly the same as saying "has no
ward."
Functional Ward
e Functional Value and Function Value Cell. Same as above.

o Function. Not a good word, because a symbol’s functional ward may not actually be a
function. , ;

Cons
o Dotted Pair. This description has to do with the printed representation of conses, which
will be discussed soon.

Student Notes Introduction to Lisp on the Lisp Machine

11

Symbolics, Inc. December 1983

1.6 Games & Practice with LISP WORLD OBJECTS

Simple Manipulations with Lisp Wprld Objects

Figure 1. Lisp World 1.

Question: What is the ward of the car of this cons?

Answer: The ward of the car of this cons is

ooooo

GAMES & PRACTICE

12 Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. December 1983

MORE GAMES & PRACTICE

Using Lisp objects to mode! real objects

Often we use Lisp objects to model real world objects. Try to come up with a correlation
between some of these real objects and relationships that they have, with Lisp objects and Lisp
relationships. '

« mice (the little black things with three buttons)
¢ boats

e trains

e planes

* a deck of cards

Here is a sample of a correlation between a real object - a tiddlywink - and Lisp objects:

Real Lisp

Tiddlywink Cons

X-coordinate of tiddlywink Car of cons

Y-coordinate of tiddlywink Cdr of cons

Moving the wink Changing car and/or cdr of cons

Squopping! a wink Mzking the car and cdr of both winks
~ be the same

‘Squopping means getting one wink to land on another,

Student Notes Introduction to Lisp on-the Lisp Machine 13
Symbolics, Inc. December 1983

2. SIMPLE FUNCTIONS

Fetchers and Examiners
Constructors and Changers
Arithmetizers

Testers

14 ’ Student Notes Introduction to Lisp on the Lisp Machine
' Symbolics, Inc. December 1983

2.1 Essential Characteristics--
Review
¢ Functions are Lisp World objects.

e They have definitions which prescribe what actions they will take with what
arguments.

e The arguments of a function may be any Lisp World object. Functions may take zero
_ OT more arguments.

e Functions are called or run with their arguments. These must be of the correct type and
number. o

o The called function carries out its prescribed action with the given arguments.

o It returns a result, or signals an error

e The result may be any Lisp object.

o All functions return a result, which can be used in some way. (Called for value)
o Some functions effect 8 change in the Lisp World as well. (Called for effect)

« Functions do not have names.

e The name of the symbol that has the given function as its functional ward is used to
refer to the function.

Student Notes Introduction to Lisp on the Lisp Machine 15
Symbolics, Inc. December 1983

SYMEVAL
FSYMEVAL
CAR

CDR

2.2 Fetchers & Examiners

These are benign functions. They effect no changes in the Lisp World.

SYMEVAL & FSYMEVAL

e take one argument which must be a symbol
* return the ward or functional ward of the symbol as the result
s signal an error if

o the number or type of argument supplied is incorrect

For example, if you run the function symeval with two symbols, or if you run it
with a cons.

o the symbol does not have a ward or functional ward

CAR & CDR

« take one argument which must be a cons
e return the car or the cdr of the cons as the result

« signal an error if the number or type of argument supplied is incorrect

16 ‘ Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. December 1983

SET

FSET
MAKUNBOUND
FMAKUNBOUND

2.3 Changers & Constructors

2.3.1 Symbol Values & Function-Values

These functions produce changes in the Lisp World. Of course, they also return a result
which you can use.

SET & FSET

 take two arguments

o the first argument must be a symbol
o the second argument to SET may be any Lisp World object

o the second argunient to FSET ought to be a function object, but this is only a
convention. (A strongly encouraged convention, but still a convention.)

o install the second argument as the ward or functlonal ward of the first argument,
changing the state of the Lisp World

e return the second argument as the wsult

« signal an error if the number or type of argument supplied is incorrect.

WARNING No type-check is made to make sure that the second argument to FSET is a
function-object.

Student Notes Initroduction to Lisp on the Lisp Machine

17

Symbolics, Inc. December 1983

MAKUNBOUND & FMAKUNBOUND

* take one argument which must be a symbol

* removes the ward or functional ward, if any

» take no action if the symbol has no ward or functional ward
s return the symbol as the result

* signal an error if the argument is not a symbol or there are too many or too few
arguments.

18 Student Notes Introduction to Lisp on the Lisp Mackine
Symbolics, Inc. December 1983

RPLACA
RPLACD
‘CONS

2.3.2 Conses & Lists ‘
These functions produce changes in the Lisp World also.
RPLACA & RPLACD

* take two arguments
o the first argument must be a cons
» the second argument may be any Lisp object

« replace the CAR of the first argument or the CDR of the first argument with the second
argument ‘

o return the changed coens (the first argument) as the result

» signal an error if the first argument is not a cons or if there are too many or too few
arguments.

CONS
o takes two arguments which may be any Lisp World objects

« creates a new cons with the first argument as the car and the second argument as the v
cdr

« returns the new cons as the result

o signals an error if there are too many or too few arguments.

Student Notes Introduction to Lisp on the Lisp Machine 19
Symbolics, Inc. December 1983

2.4 Arithmetizers

+, -, % //, ~ are the work-horse arithmetic functions. They all

¢ take numbers as arguments;
these numbers may be fixed point, or, floating point numbers

 have no effect on the Lisp World
except that sometimes they may have to create a numeric value. This is irrelevant, as the

identity of a number is seldom used for anything.
e return 2 number as the result;

the number will be floating point if any of the arguments was a floating point number.
Otherwise, it will be fixed point. // and ~ both truncate towards O as opposed to

rounding down.

* signal an error if their arguments are of the wrong type or the wrong number

+ and *
o take zero, or, more numbers as arguments \
e If you give them no arguments
o + returns 0
o ¥ returns 1

* If you give them ome, or, more arguments

o 4+ returns the sum of its arguments... + starts with 0 and adds in all of its
arguments one at a time

o * returns the product of its arguments... * starts with 1 and multiplies in all of its
arguments one at a time

20 ~ , Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. December 1983

-and //

» take one, or, more numbers as arguments
¢ If you give them one argument
o - returns the negative of its argument
o // returns the reciprocal of its argument

o With two, or, more arguments

o - subtracts the sum of the rest of its arguments from its first argument and returns
that as the result

o // divides its first argument by the product of the rest of its arguments and reurns
that as its result '

« takes exactly two numbers as arguments
o raises the first number to the power of the second number

e returns that as its resuit

Student Notes Introduction to Lisp on the Lisp Machine 21
Symbolics, Inc. December 1983

SYMBOLP, NUMBERP, LISTP, FUNCTIONP
EQ, EQUAL, =
NOT, NULL

2.5 Predicates

Predicates are used for cémparing two or more Lisp objects in some way. A predicate will
return the symbol NIL if the comparison is 7of true. It will return something other than NIL

if the comparison /s true.

A common thing to return is the symbol T. Some predicates may return a more interesting
result which you could then use. Remember, anything except NIL means true.

The names of functions which are predicates will often end in -p, to indicate to the reader that
this is a predicate. (Convention!)

SYMBOLP, NUMBERP, LISTP, and FUNCTIONP
« take one argument, which may be of any type
« are used to determine the type of the argument
o return T if the argument is of the right type, and NIL if it is not

e LISTP does not tell if its argument is a list. It will return T if its argument is any cons.
Yes, it’s badly named.

22 - Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. December 1983

EQ, EQUAL, and =
o all take two arguments

» are use to determine whether the two arguments are equal for some meaning of the word
" "
equal”.

EQ is used to determine whether the two arguments it was given are really the same object.
This is most interesting when you ask this question in terms of relationships of the two objects.
For example, it is reasonable to ask whether the ward of one symbol is the same object as the
ward of another symbol.

EQUAL is used to determine whether two structures of conses have the same “shape" and
elements. This can be formally defined by saying

o objects other than conses are EQUAL only if they are EQ,

« and conses are EQUAL if the respective CARs and CDRs are EQUAL.

Yes, this is non-intuitive. It’s much more common to use EQ rather than EQUAL.

= is used to compare two numbers. It is not important to determine whether or not two
numbers are EQ, because you should only be concerned with their magnitude.

NOT and NULL

NOT and NULL are synonomous. They invert the meaning of a test.- That is, they return
the symbol T if their argument is NIL. Otherwise they return NIL. The reason for having
both is for clarity of reading.

Other predicates are described in the Lisp Machine Manual, pages 8 - 12 and pages 94 - 96.

Student Notes Introduction to Lisp on the Lisp Machine

23

Symbolics, Inc. December 1983

2.6 Games & Practice with FUNCTION CALLING

Indicate what Lisp object is returned, and what side effects happen when the following
functions are run with the given arguments.
Function: SET

Arguments: RALPH, §

Function: RPLACD

Arguments: (A . B), NIL
-Some of these exercises will require figures-

24

Student Notes Introduction to Lisp on the Lisp Machine

Symbolics, Inc. - December 1983

Student Notes Introduction to Lisp on the Lisp Machine

25

Symbolics, Inc. December 1983

3. PRINT & READ
& Printed Representatlons

PRINT
READ

26 : Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. ' December 1983

3.1 Print & Read

3.1.1 Communications Functions

PRINT and READ are two of the functions that handle communication between the intefnal
Lisp World and the external world.

» A printed representation is simply a string of characters used to represent a Lisp World
object.

* PRINT

o translates internal Li;p World objects into external printed representations.
e’requires at least one argument which may be any Lisp object

o may take a second argument described below

o returns its first argument

* READ
o translates external printed representations into Lisp World objects
o creates new objects, if necessary under the rules
o requires no arguments, but may take one as described below
o returns the object representéd by the printed representation that i; reads in
¢ The rules as to what characters represent what are understood by PRINT and READ.
o Only numbers, symbols and conses have ﬁr:t class printed represeniations.
« Other objects, such as functions, have second class printed‘ representations. Such objects |
can be printed out, but the printed representation cannot be understood by READ.

These objects need to be attached to a symbol as the ward or functional ward of the
symbol. Then you can use the printed representation of the symbol to get to it.

3.1.2 Communications Channels

You can optionally designate which output sink you want PRINT to print on, and which input
source you want READ to read from. The defaults are the console display and the keyboard
repectively. '

Student Notes Introduction to Lisp on the Lisp Machine 27
Symbolics, Inc. December 1983

3.1.3 Effects on the Lisp World

PRINT is environmentally clean. It has no effects on the Lisp World.

READ, however, usually does produce effects. These effects are summarized by the data type
of the printed representation "given" to READ.

¢ Symbols:
» READ maintains a data base of symbols whose printed representations it has seen.
o When it reads the printed representation of a symbol, it
« checks this data base to see if it has seen it before

o If it hasn’t, it creates a new symbol, inscribes the printed representation there-
on as the symbol’s name and adds it to its data base. This is known as
interning the symbol.

o returns either the new symbol, or the symbol that it found in its data base

« Conses:

o READ always creates new conses, even if the printed representations look identical.

28 Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. December 1983

Printed representation of
NUMBERS

3.2 Numbers

The printed representation of a number is usually the base 10 numeral which represents its
magnitude. Scientific notation and other bases can be invoked.

no"r Y\F‘W‘—'\.
bave &

s sad o ?@%

o ot

Student Notes Introduction to Lisp on the Lisp Machine 29
Symbolics, Inc. December 1983

Printed representation of
SYMBOLS

3.3 Symbols

3.3.1 Simple Printed Representations

In most cases, the printed representation of a symbol is simply its name, the set of characters
branded on.

Most cases means those symbols whose names are made up of characters chosen from a limited
set... upper-case letters, certain punctuation characters, e.g. &%!<>?$=+*, and numbers, as long
as there is at least one non-number in the name. ,

3.3.2 Complicated Representations

In the rest of the cases, the printed representation is complicated. - The rest of the cases cover
the following:

» Symbols whose names include funny characters such as
o Lower case letters
o White space characters T /

<
o Characters that have special meanings like ()7w " oN#

¢ Symbols whose names might be mistaken for the printed representation of another kind
of object, such as a number or a cons.

30 - Student Notes Introduction to Lisp on the Lisp Machine

- Symbolics, Inc. - December 1983

The Rules for handling such cases are as follows:

« Slashify

o If there are any | characters in vthe name, then a / is placed in front thus /|.

o Similarly any / characters are "slashified" thus //.

» Enclose in Bars

Finally, if there are other special characters, or the name looks like another type of
object, then the whole name is "barred” thus, [59.76}, [It’sIt], |(fred/[FRED)|.

i & f - %&{L/
/ / D)
| AG - <= D
[eolle = RE/ i/ <L)
\ =3

Student Notes Introduction to Lisp on the Lisp Machine ' ' 31
Symbolics, Inc. December 1983

Printed representation of
CONSES & LISTS

3.4 Conses & Lists

Conses may be represented in dot-notation, or in list-notation. READ understands both
notations. PRINT will always use list notation if possible. List notation is preferred.

The printed representation of a cons proceeds by the following algorithm.

1. Dot-Notation Representation

o Left parenthesis

¢ PR of CAR of COI;IS
e Space

e Period

* Space

* PR of CDR of CONS

* Right parenthesis

2. List Notation Representation

Note that this is just an optimization of the above algorithm.

o Start with your basic dot notation printed representation
(A.@B.(C.(D.NIL))))

¢ Erase any occurrences of <space>.<space>NIL

(A.(B.(C.DNM

e Whenever you encounter any match for the following pattern..
<space>(<somatorother>)
erase the dot and the leading left parenthesis and the corresponding right
parenthesis. (A B C D)

Example: (X . (Y))
X.(Y.2)

>> (X Y)
>>XY.2)

32 ' ' ‘Student Notes Introduction to Lisp on the Lisp Machine
. Symbolics, Inc. - December 1983

Printed representation of
FUNCTIONS

3.5 Functions

Functions are totally uncouth and declasse when it comes to printed representations. PRINT
will print out a printed representation if you insist. But the printed representation is quite
incomprehensible. If you try to type this in, READ will refuse to read it. It’s that second
class!

Of course, that's why symbols have functional wards. You can use the name of a symbol to
get to a particular function.

Student Notes Introduction to Lisp on the Lisp Machine ' 33
Symbolics, Inc. December 1983

3.6 Games & Practice with
PRINTED REPRESENTATIONS

1. Pretend that you are playing the job of the function READ. The following printed
representations are typed in. Draw the graphic representation of the Lisp object that you
return.

a((a.b)c.d
b. [abe/4/]]
c.(ab(c)}
d. (ab(c) (d) /1 3)
e. (setq a 5)
f. ((((a) b) ¢) ©)
g //
2. Now pretend that you are doing the job of the PRINT function. Write the printed
representation you will display when given the object shown in each of the following

figures.

-some figures-

34

Student Notes Introduction to Lisp on the Lisp Machine

- -Symbolics, Inc.. December 1983

Student Notes Introduction to Lisp on the Lisp Machine

35

Symbolics, Inc. December 1983

4. EVAL & EVALUATION of FORMS

Modelling & Forms
Problem Solving &
Evaluation

36 k) Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. December 1983

4.1 Modelling & Problem Solving--
Forms & Evaluation

Problem sbiving consists of
« constructing a model of the problem
e manipulating the model
e producing and testing the result
Problem solving in Lisp involves

o creating a model of the pr;blem in the form of a form
o evaluating that form

* returning a result or signalling an error

4.1.1 Forms

A form is any Lisp Object that is intended for evaluation.

4.1.2 Evaluation

Evaluation is the process carried out by the function EVAL.

« EVAL is the Lisp Interpreter. It is the very heart of Lisp.
* It takes one argument, a form, which it evaluates.
« It is the only function that evaluates its argument.

« All other functions receive their arguments as they are, usually already evaluated by
EVAL. o

‘e EVAL is the only function that understands the form model. ;

Student Notes Introduction to Lisp on the Lisp Machine 37
Symbolics, Inc. December 1983

Simple Forms
Numbers
Symbols

4.2 Evaluation of Simple Forms

4.2.1 Numbers

If the form is a number, EVAL returns that number as the value of the form (or, said another
way, as the result of running EVAL.)

4.2.2 Symbols
If the form is a symbol, EVAL returns the ward of the symbol as the value of the form.
If the symbol has no ward, an error is signalled.

38 Student Notes Introduction to Lisp on the Lisp Machine
' Symbolics, Inc. December 1983

Compound Forms
Operator &
Operands

4.3 Evaluation of Compound Forms

A compound form is a form that is a list of one or more elements.

» The first element of a compound form is called the operator.

o The rest of the elements, if any, are called the operands.

4.3.1 Operators
There are two kinds of operators—

o functions

o special operators

If the operator is neither a function nor a special operator, EVAL will make the functional
ward of the operator be the operator and will keep doing this until it

* gets a function or special operator or

* gets an error.

4.3.2 Functions

Functions are Lisp World objects as described. Usually, they are referenced through a symbol
name. Therefore, the first element of the form handed to EVAL is most often a symbol that
~ has a function as its functional ward. Sometimes it is a list which constitutes an anonymous
function definition. g

4.3.3 Special Operators

Strudent Notes Introduction to Lisp on the Lisp Machine 39
Symobolics, Inc. December 1983

Special operators should not be confused with functions, though symbol names are used to
reference special operators, and the functional ward of the symbol is used.

Special operators are like irregular verbs. The evaluation rules differ from case to case. There is
no general rule as there is for functions.

There are two main types of special operators.

* Wired-in Special Operators
EVAL maintains "exception” rules for each special operator of this class.

e Macros
The functional ward of the symbol indicates that the operator is a macro. In this case,
the form is expanded into a new form accordmg to the particular rules of that macro,
and then the new form is evaluated.

We will not discuss this further. Just understand that macros, like all other special forms,
each have their own rules of evaluation.
4.3.4 Operands
Rules for the evaluation of operands, if any, are prescribed by the type of operator.
o If the operator is a function

o Operands, if any, are evaluated, in order, following the same mles for evaluation of
simple and compound forms

o If all operands are successfully evaluated without error, the results of evaluating
each operand are handed to the function as its arguments

o The function is then run with these arguments to produce the result of the
evaluation of the compound form.

 If the operator is a wired-in special operator, the rules for that given operator are
followed with respect to evaluation of operands. For example,

o The special operator QUOTE requires that the operand be left unevaluated

o The special operator SETQ requires the first operand be left unevaluated, while the
second operand is evaluated.

e If the operator is a macro, evaluation of operands is dependent upon the form to which
the macro expands

e For example, a form in which the operator is the macro IF expands to a form in which
the operator is the wired-in special operator COND.

40 , » Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. December 1983

READ
EVAL
PRINT
4.4 Ring-around the READ-EVAL-PRINT Rosy
e READ .
o accepts input from the currently designated input source which by default is the
keyboard

o reads until it has a valid printed representation of a Lisp object
* o expands read-macro characters such as * ¢ # if any
o converts the external printed representation into a Lisp object

o hands this to EVAL

Student Notes Introduction to Lisp on the Lisp Machine 41
Symbolics, Inc. December 1983

EVAL
o looks at the form it has been handed

o If the form is a number, the result is the number

o If the form is a symbol, the result is the ward of the symbol, or, if the
symbol has no ward, an error is signalled

« If the form is a cons,
o the cons better be a list
o if the car of the cons (or its functional ward, etc.) is a function,
1. the operands of the form are EVALuated

2. the function is called with the results of the EVALuation of the
operands as its arguments

the result is the result of the function call or the function signals
an error.

o if the car of the cons is a wired-in spzcial operator,

1. the operands of the form may or may not be evaluated, depending
on the operator

the result depends on the unique rules of the special operator

o if the car of the cons is a macro

1. the form is expanded according to the given macro definition
2. the macro expansion is EVALuated
the result is the result of the evaluation of the macro expansion

o if the car of the cons is NOT a function, a wired-in special operator,
or a macro, then EVAL signals an error

o hands the result of evaluating the form to PRINT

42 : Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. December 1983

PRINT

o builds an external printed representation of the object that is the result of the
evaluation ,

o diplays that printed representation on the currently designated output device

Student Notes Introduction to Lisp on the Lisp Machine 43
Symbolics, Inc. December 1983

4.5 Games & Practice with |
EVAL & EVALUATION of FORMS

For each of the following groups of forms,

e write in the printed representation that will be displayed if you had typed in that form to
a READ-EVAL-PRINT loop

¢ assume that you type in the forms in order

e assume that the machine is cold-booted between the groups, but not between the
individual forms '

* if you get an error, ignore the rest of the forms in the group and go to the next group
If you’re not sure what would happen.

* try drawing the graphic representation of what the world looks like before and after the
evaluation of the form

¢ and try evaluating these forms on a machine

44

Student Notes Introduction to Lisp on the Lisp Machine

1. (setq a 3)
2(+28)
3. (setq b 'c)
4.(+ab)

1. (setq herman ’joe)

2. (setq joe herman)

3. joe

4. (symeval joe)

5. (symeval herman)

6. (makunbound herman)

7. herman

Symbolics, Inc. December 1983

Student Notes Introduction to Lisp on the Lisp Machine

45

Symbolics, Inc. December 1983

1. (setq list °(a b ¢))

2. (setq big-list (list list list))

3. (rplaca list 'b)

4. big-list

5. (setq big-list-2 (list "(a b c) ’(a b ¢)))

" 6. (eq (car big-list-2) (cadr big-list-2))

1. (setq 1 ’(a b c))

2. (rplacd (last 1) 1)

46

Student Notes Introduction to Lisp on the Lisp Machine

Symbolics, Inc. December 1983

Student Notes Introduction to Lisp on the Lisp Machine

47

Symbolics, Inc. December 1983

5. FUNCTION DEFINITION

Defining Functions
Lisp Code/Interpreted

Compiled /Machine Code

48 , Smdem‘ Notes Introduction to Lisp on the Lisp Machme
Symbolics, Inc. December 1983

5.1 Extending the Lisp World

Programming in Lisp consists of wntzng Lisp code that extends the existing Lisp World,
creating new objects and new relationships between objects.

Defining new functions is a major part of Lisp Machine prograrmmng ‘It brings new actors
to the stage, and advances the action played thereon.

Function definitions start out being written in Lisp code.
The Lisp code version is usually then compiled into machine code.

The compiled version naturally runs faster.

Student Notes Introduction to Lisp on the Lisp Machine 49
Symbolics, Inc. December 1983

LAMBDA EXPRESSIONS

DEFUN

5.2 LambdaExpressions & DEFUNs

5.2.1 Lambda Expressions

A lambda expression is a function

A lambda expression is made up of the following elements:

¢ The symbol LAMBDA, which is a keyword recognized by EVAL.
« A parameter list, which is a list of zero or more symbols.

¢ A body, which consists of zero or more forms

e () (e <)Y

50

Student Notes Introduction to Lisp on the Lisp Machine

Symbolics, Inc. December 1 983

Evaluation of forms containing Lambda Expressions k

When EVAL is handed a compound form, in which the operator is a list, v

1.

EVAL checks to see if the CAR of the operator of the form is the keyword LAMBDA.
If it is not, it signals an error.

. It then checks to see that the number of symbols in the parameter list matches the

number of operands in the form. If a mismatch is found, it signals an error.

These operands are evaluated and the result of the evaluation of each operand becomes
the ward of the corresponding symbol in the parameter list. The old ward of the symbol,
if any, is saved away, and the new ward is attached temporarily.

This processing is known as binding. The symbol is now said to be bound, or temporarily
bound.

. EVAL then proceeds to evaluate each of the forms in the body of the lambda expression.

The temporary ward of each symbol in the lambda parameter list is detached and the
old ward, if any, of the symbol is restored.

This is known as unbinding. However, when a symbol goes through the unbinding
process, it does not necessarily become unbound. Unbound is technical term meaning ke

- symbol has no ward. Going through the unbinding process merely brings the symbol back

to its previous state, which may or may not be unbound.

. The result of evaluating the last form in the body is returned as the r&sult of the

evaluation.

Student Notes Introduction to Lisp on the Lisp Machine 51
Symbolics, Inc. December 1983

5.2.2 DEFUN & LambdaExpressions

. Lambda Expressions are created by a Compound Form which is a list of the following
elements:)

» The special operator DEFUN

e The Name of the function.
Strictly speaking, this is the name of the symbol which will be used to invoke the lambda
expression

¢ Lambda Parameter List

. Body L e o e b e Cen ,

The special operator DEFUN causes EVAL to
o create a lambda expression,

o attach it to a symbol as the functional ward of the symbol, and

e return the symbol as the result

S

— P)
(Deser he bens

. Cd— LA MROA
:Ef:wk!)xm VT {‘:{“‘; K e (NM < ok L £ Q) EJ X

a4

Nt w13 e
i

— HENRY (). . : (9

. (\\\j e gl ;(? i ‘33*“"‘» ,ﬂ[ﬁ,,m\r \7 {C C»&j\ C(gu ””\) 18 e ’ ls\fh‘
4 = Mo ; ~-

U
N

52 ~ Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc.. December 1983

5.3 Compiling Lisp Code Definitlons

For speed and efficiency, one normally compiles Lisp Machine programs. W_mf 3
'COMPILE takes , | w.,,n,vﬂ”T @(\f e

e }/ ¢ a single required argument whxch must be a function specxf’ cation of some kind. For
jﬁf" now, the only thing a function specification can be is a symbol with a functional ward,

K which must be some kind of function.

,<\°\ * an optional second argument, which ought to be a Lambda Expression. If this second

\@ff‘/ argument is given, then this will replace the former functional ward of the symbol in the

© ! | first argument. Cerr e *‘”%EPM ’[(wk-fa,/‘() (c:w’* K ,):’}

The compiler converts the mterpreted Junction into a FEF (old term) or comptled Junction,
which becomes the functional ward of the symbol.

There are three ways to invoke the compiler

1. from a Lisp Listener by a call to COMPILE as above.

2. from within the Editor which has various cbmmands to read code from a buffer and
compile it.

3. by a call to compiler:compile-file which translates a source code file saved on the file
system into a BIN, or machine code, file. This function can be invoked from a Lxsp
Listener or from the Editor, using the Compile File command.

You will use the compiler when you do the first exercises on the Lisp Machine.

/
(Ji}fﬂéx(‘x Le. Q/Gé() 3‘13 ‘5‘-""@\;}

{ t}’ w\,,y’
o — 2 .
N S &Q@.ﬂff’ e

P e T e
f R S R I & i
;) N
2 A AN i«’\ j J)
o g 3 \Na"& e

[sl plre

Student Notes Introduction to Lisp on the Lisp Machine 53
Symbolics, Inc. December 1983

(e ?wyx <. {e,ﬁﬁ\a.. Ay (:}(= &W’T;@““ «ﬂ.ﬂf_ (6_ ‘\) \
5.4 Parameter List Keywords [+ X :Q)

You can define functions that take optional arguments or any number of arguments as well as
required arguments. This is done by inserting special keywords in the parameter list. Here are
the four most useful ones:

&optional This says that all the parameters following the word "&optional” are
optional. If you don’t supply arguments corresponding to these parameters,
they will take on a ward of NIL. You can force a default ward for the
parameter (if you want sometlnng other than NIL) by specifying the
parameter as a list:

(defun my-function (&optional (argument-1 t) arg-2)
.

In the body of the above function, argument-1 has a default value of T, and
arg-2 has a default value of NIL. You can override these defaults just by
, supplying the function with the values you want when you run the function.
&rest This keyword is used when you want to get any number of arguments.
There can only be one &rest argument. It must follow any required or
optional arguments. The ward of the &rest argument is a Jist of the
arguments supplied.

(defun my-function (&rest all-of-em)
(do-something-to (car all-of-em))

o)

(defun other-function (one-argument
&optional (arg 34.2)
&rest all-the-rest)

(....))

&aux The parameters following &aux are not supplied at all. They are just used
. as local variables. Their wards get saved away and restored just like the
other parameters, so you can use them without being ecologically unclean.
You can supply default values in the same way as with &optional
arguments.

{(defun user-program (argl arg2 &aux (temp nil))
(setq temp (* argl arg2))
ceo)

Student Notes Introduction to Lisp on the Lisp Machine

54
Symbolics, Inc.. December 1983
&key &key is a lot like &optional. &key arguments do not have to be supplied.

Their important feature is that they don’t have to be supplied in order. You
specify which argument you are supplying by using a keyword. This is best
explamed by using an example

(defun foo (&key one (two 2) three)
(terpri)
‘(print one) -
(print two)
(print three))

;the keywords don’t need to be quoted in Release 5+

(foo *;three 9 *:one 1) ===>

Keyword arguments must be supplied in pairs, the keyword and the value.
In Release 5+, keywords don’t need to be quoted because they evaluate to
themselves. (They are symbols that have themselves as their ward.) All
keywords begin with a colon.

A\

~

¢

v

Student Notes Introduction to Lisp on the Lisp Machine v 55
Symbolics, Inc. December 1983 ‘

5.5 Games & Practice with FUNCTION DEFINITION

1. Write a function called AVE which takes two numbers and returns their average.

2. Using the above function, write a function called AVE-4 which takes four arguments and
returns their average.

3. (You won’t be able to do this one with just the information we’ve given you so far.)
Write a function that takes any number of arguments and returns their average.

L2 c —s h — A P ﬁwcé—. - // Al
c .

36

Student Notes Introduction to Lisp on the Lisp Machine

Symbolics, Inc. December 1983

Student Notes Introduction to Lisp on the Lisp Machine 57
Symbolics, Inc. December 1983

6. FLOW OF CONTROL--
CONDITIONALS, RECURSION & ITERATION

WHEN/UNLESS
IF
COND, AND, OR

Loor

58 s Student Notes Introduction to Lisp oh the Lisp Machine
Symbolics, Inc. December 1983

6.1 Which forms to evaluate, when and how

The bodi of a function definition consists of zero, or, more forms. Each form may be
evaluated, and the result of the evaluation of the last form returned as the result of the
.function call.

There is a family of special operators, referred to as conditionals which control the flow of
form evaluation based on the outcome of some logical test. -

These include:

+ one-way conditionals such as WHEN and UNLESS.
* two-way conditionals suck as IF

« multi-way conditionals such as COND, AND and OR

_ There is another family of special operators that control iteration. We will only discuss LOOP,
since it can do everything that the others can do.
6.1.1 AND/OR

AND and OR are special operators.
You can use and and or both for controlling the flow of a program, and for combining tests.

Both AND and OR forms have an indefinite number of operands which get EVALuated as

follows:
r— : :
« Evaluation of AND’s operands continues until

1. A NIL result is encountered, in which case the result returned is NIL, or

2. All,operands are evaluated, in which case the result returned is the result of
evaluating the last operand. ‘ '

» Evaluation of OR’s operazids conﬁnus until
1.LA ‘NON-NIL result is encounte:ed, in which case the rsuit returned is that result
2. All operands are evaluated, in which case the result returned is.NIL

A v ¢

&

SIS | 4
0/{‘ e .\f ‘E’é‘(X
~ e
(\§ , . j@’ 9 ‘ ’{/

Student Notes Introduction to Lisp on the Lisp Machine 59
Symbolics, Inc. December 1983

86.1.2 IF 7 }«;/Q_C,,rnc».xgm Lo o m et e oK

IF is a special operator, to be precise a macro. IF deals with conditional operations of the

if-test-thenthis and the if-test-thenthis-elsethat... kind. .
1

‘ c,\) P
(o e)
1. a test-form which evaluates to NIL or NON-NIL (e ™D
P 5,
2. a single then-form which gets evaluated if the evaluation of the test-form returns
NON-NIL2. In this case, the result of evaluating the then-form is returned as the
result.

i (5 (=x
* requires at least two arguments. (e
{ e

« accepts an indefinite number of additional arguments...
else-forml...else-formN. These get evaluated in turn if the test-form evaluates to NIL.
The result of evaluating the last else-form is returned as the result.

If there is no else-form explicitly given, an else-form of NIL is assumed by default. (Or you
can think of it as returning the result of the test-form.)

6.1.3 COND

COND is a special operator that deals with multi-way conditional branches.

COND forms have an indefinite number of operands, each of which must be a list. This list is
made up of one, or, more forms.

The CAR of each operand is checked.

e If it evaluates to NON-NIL, each of the remaining forms in the list are evaluated, and
the result of evaluating the last such form is returned as the value of the COND.

¢ If it evaluates to NIL, then the rest of the forms in the list are ignored, and evaluation
moves to the next operand.

¢ Evaluation proceeds in this way until
1. either the CAR of one of the operands evaluates to NON-NIL, or

2. there are no more operands, in which case, the result returned is NIL

2'I‘his is a good place to use the special operator PROGN. PROGN takes any number of arguments, and
returns the last one. This lets you combine any number of forms into a single form.

3))

60 ' Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. December 1983

~

6.2 Recu rsion

Recursion is simply using a function from within that same function. You should use recursion
when the problems seems to lend itself to recursion - like when dealing with binary trees, or
problems with recursive definitions. Don’t feel like you have to use recursion just because
you’re programming in Lisp. Iteration is just as good, if not better. Use the method that feels
right.

Student Notes Introduction to Lisp on the Lisp Machine

61

Symbolics, Inc. December 1983

6.3 Games & Practice with
RECURSIVE DEFINITIONS

Here are some functions that use recursion.

;s This function takes a number and returns that element of the
; Fibonacci series. The Fibonacci series begins like this:

; 0,1,1,2,3,5... The zeroth Fibonacci number is 0, the first

; one is 1, and the sixth is 8.

.o
t R
.o
9
.o
0
.w
LR

(defun fib (n)

(if (or (= n 0) ;are we at the "bottom"?
(=n1l))
n ;yes, Just return the argument
(+ (fib (- n 1)) ;no, add up the fibs of n-1 and n-2

(rib (- n 2)))))

62 Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. December 1983

This function will return a list of all the leaves in the tree,
excluding all occurences of NIL. The argument “tree® can be any
structure built of conses. It uses one &aux argument as a local
variable - this makes it almost completely ecologically

clean.

we we we we we
we we we we we
s we we we we

(defun make-list-from-iree (tree &aux (1ist nil))
(if (Vistp tree)

;; Now we have a node in the tree. Recursively call ourself
;; on the car and cdr, "appending® the result onto our running
;s list.

(progn
(setq list (nconc list (make-list-from-tree (car tree))))
(setq list (nconc list (make-list-from-tree (cdr tree)))))

HA Now we're at a leaf. For no particular reason, we've decided
;; not to put NIL’s into the list.

(when tree ;don’t push NIL on the list
;[you might want to, though,
H depending on the application]
(setq list (cons tree list))))

s; Now return the list as the result. This is necessary both to get
;; the final answer, and for intermediate results

Tist)

Here are some exercises that can either be best solved by wrmng a recursive function, or at
least solved equally as well with recursion or iteration.

‘1. Write a function that takes a cons as an argument, and prints out all the "leaves” of the
tree. That is, look at the car and cdr of the cons, and print them if they’re anything
except a'cons. If either of them is a cons, do the same thing for that cons. A good
name for this function is print-fringe.

2. Write a function that takes a list of numbers as its single argument and returns the sum
of all the numbers in the list.

3. Write a function that uses either recursion or iteration to find the largst number in a
list of numbers. Note: Yes, there is a very simple way of doing this, using the
MAXIMIZE keyword of LOOP. Don’t do it that way, this is an exercise.

Student Notes Introduction to Lisp on the Lisp Machine 63
Symbolics, Inc. December 1983

6.4 Iteraﬂon & Loop

'LOOP

LOOP is a special operator (actually a macro) that allows you to do all kinds of iteration.
There are so many different ways of writing loops using LOOP that the syntax of it is often
called Joop language.

You might say that LOOP is a very special operator, and that there are very complex rules for
what is evaluated and what isn’t, and in what order. The keywords that LOOP uses are not
evaluated, everything else usually is.

So that we don’t confuse you right away, we'’re just going to discuss the simple kinds of
iteration.

LOOP takes a bunch of keywords and interprets them in order to do the right thing. The
syntax of LOOP is basically:

(loop iteration clauses
DO
body)

The body (any number of forms) is executed aécording to the instructions in the iteration
clauses. When any iteration clause finishes, the body stops being executed.

The DO separates the body from the iteration clauses. Remember to always include the DO!
It is a common mistake. This should be one of the first things you look fo@a loop doesn’t
seem to be working properly.

LOOP returns NIL unless you do something special (see below.)

There are examples of all of the simple kinds of iteration in the Games and Practice section.

8.4.1 Numeric iteration
Normal run-of-the-mill numeric iteration is accomplished by the following format:
(\ ‘“\ (, ..,,,\)
(loop for i from 1i{to 100\by 5!

o

B
do
(print i) ...more body forms...)

The symbol following the for is a local variable within the loop. It is incremented each time
through by the szep, the amount following by. The step is optional and defaults to 1. When
the counter is greater than the end, the body stops being executed, and LOOP returns NIL.

The start, end, and step operands are evaluated, so you can use a variable in their place.

64 Smdeut'Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. December 1983

6.4.2 Going through the elements of a list

To do'something for each element in a list we do:

(loop for each-element in '(a b ¢ d)
do
(print each-element))

Notice how close the keywords in this example are to the English words in the sentence above.
This is very much the spirit of LOOP.

Again, the symbol after for is a local variable. It gets temporarily bound to an element of the
given list.

The list is the thing following the keyword in. The /list operand is evaluated, so you can have
a form (often a symbol) that evaluates to a list.

6.4.3 Local variables and arbitrary exiting

You can get extra local variables by using the keyword with.

You can force a LOOP to exit by using the RETURN function. It takes one argument,
which is the value to return from the whole loop. You can also use RETURN in any of the
more primitive functions that LOOP is made of, but we won’t talk about them.

(loop with foo = nil
with bar = t
do
(if bar (return foo)) ;see if bar’s value has been changed
(....)

..more forms...)

!) =
({oe 7"'2«” i ‘Q(i x {

o ‘\f o’
Qfg L O

s P
. [A i
a4~

Student Notes Introduction to Lisp on the Lisp Machine

65

Symbolics, Inc. December 1983

6.5 Games & Practice with ITERATION & LOOP

6.5.1 Examples of LOOP
Examples of functions that use simple LOOPs. [Not LOOPS]

These examples show how to do

¢ simple numeric iteration,
¢ simple iteration through the elements of a list, and

e a simple way to do completely arbitrary iteration and finishing.

; This function takes a 1ist as an argument and prints
; each element.

{(defun print-elements-of-list (1ist)
{LOOP FOR element IN list
Do
(print element)))

::; This function adds the numbers in a list together,
s:: returning the sum.
(defun_ add-em—up (list-of-numbers)

(letQ((éum 0)) ;local variable SUM to keep running total
ﬁrlvtthop FOR i IN Vist-of-numbers DO ..

(setq sum (+ 1 sum)))
\\\sum)) ’ ;return value of SUM as value of LET,
Rt ;LOOP returns NIL.

:: Here is a slightly different implementation. (How do these two
;: functions differ? Hint: Try to run each of them.)

(defun other-add-em-up (&rest numbers)
;:local variable SUM to keep running total
(let ((sum 0))
(LOOP FOR 1 IN numbers DO
(setq sum (+ {1 sum)))
sum)) ;return value of SUM as value of LET,
;LOOP returns NIL.

:; This function prints the squares of all numbers from 0 to N.
;; How many numbers will this function print?
nA
(defun print-squares (n)
(LOOP FOR i FROM 0 TO n DO
(print (~ 1 2))))

Student Notes Introduction to Lisp on the Lisp Machine

Symbolics, Inc. December 1983

;3; This function prints the numbers from 1 to n‘squared>with
;3; n numbers on a line. Note use of nested loops, and BELOW.

3
(defun print-board (size)_d; gm«afﬂ \Jd‘ &
(terpri) BT AN 4
yr \
(LOOP WITH total =.0 o7
FOR i FROM 0 BELOW size DO ... 74 I_“V
>=,(LOOP _FOR j FROM 0(BELOWDsize DO - U

(" - (pri€]} (setq total (1+ total))))
- (terpri)))Qnyﬁkk;b\lg,

This function takes a 1ist of numbers as an argument. It
prints the sequence of numbers that begins at zero and

goes up by each given amount in turn. Note use of explicit
return to exit functjon on some arbitrarily weird condition.

{defun series (1list)
(setq list (copylist list)) ;so we don't get any surprises later
(rplacd (last 1ist) list) ;this makes the list circular
(LOOP WITH total = 0 DO
' (setq total (+ total (car list)))
;; Now check for some random condition we happen to be
:; interested in. If it’s true, return some random thing.
(if (= total 319.) (RETURN ‘uh-oh-spaghettios))
(print total)
(setq list (cdr list))))

This function uses both iteration and recursion. It takes a
*tree® of numbers, that is, a 1ist whose elements are either
a number or, recursively, a tree of numbers. W¥e use
iteration to go through each list, and recursion to go down
all the levels of the tree.

s we we we we
wr we ws we we

(defun add-up-tree (tree &aux (sum 0))
(LOOP FOR thing IN tree DO
(setq sum (+ sum (if (1istp thing)
(add-up-tree thing)
‘ thing))))
sum) ;return sum as value of whole function

Student Notes Introduction to Lisp on the Lisp Machine _ 67

Symbolics, Inc. December 1983

6.5.2 Exercises

Here are some exercises that are best solved by using LOOP. Some of these exercises lend
themselves to a recursive solution as well. Try some of them this way too. It will give you an
interesting perspective on when to use iteration and when to use recursion.

1.

(

Write a function that takes one argument, a number, prints out all muitiples of that \a/
number. For example, if you give the function 5 as an argument, it will print out - o
0,5,10,15...etc. :

. Write a function that takes (a list of) an arbitrary number of numbers, and returns the

average of those numbers.

. Write a function that takes a list containing both symbols and numbers and returns the
number of symbols in the list. Here is an example of running it:

(number-of-symbols *(a bl 2c9de))
5 .

. Write a function to print all the divisors of a given number.

. Write a function which takes a list of numbers. For each number in the list, print that

many asterisks on a single line.. Use a different line for each number in the list. Helpful
Hint: The form (PRINC "*") will display a single star. The function TERPRI will
perform a carriage return.

. Write a function which prints the numbers from 1 to 1000 (or more). However, print

the word "buzz" if the number either contains a 7 as a digit, or is divisible by seven.

68

Student Notes Introduction to Lisp on the Lisp Machine

Symbolics, Inc. December 1983

Student Notes Introduction to Lisp on the Lisp Machine

69

Symbolics, Inc. December 1983

7. The Lisp Machine

Booting
Logging in
The Lisp Listener

The Editor

70 : ' Student Notes Introduction to Lisp on the Lisp Machine
: , Symbolics, Inc. December 1983

7.1 Games and Practice with the Lisp Machine

This is an exercise designed to give your fingers some practice. If you follow these steps you -
will see a fast introduction to a lot of the simpier features of the Lisp Machine programming
‘environment. T .

<

There is a lot of information here that isYwritten down anywhere else, or at least is not

gathered together in a sequential manner. Please read through this exercise even if you have
used the Lisp Machine before.

You should note that the appropriate procedure is usually documented in the Lisp Machine
Summary.

What we're going to do in these steps is to:
1. Show you how to start the machine and login

2. Practice typing a few forms to the READ-EVAL-PRINT loop

3. Write a function and save it in a file

Do exactly as this guide says. Every time we use the word "should" (when we are explaining
something that should happen), we mean that if it doesn’t happen that way, you should get
your instructor to help you figure out what went wrong. But above all,

DON'T WORRY!

Student Notes Introduction to Lisp on the Lisp Machine 71
Symbolics, Inc. December 1983

Step 1. Don't worry.

Unless you really know what you are doing and try very hard, you can’t break anything and
Yyou can’t do anybody any harm. Your attitude should be one of, "What the heck..let’s try it!"

However, do try especially hard to type things exactly as we tell you to here. While it’s not a
big deal, you'll probably need some help to get back on the the right path.

Previous experience has shown that working in pairs is beneficial. It helps to have two pairs of
eyes watching for interesting things. If you decide to work with someone else, switch off
between the person typing and the person kibitzing.

Read through the description of each step before doing it.

Step 2. Cold-boot the machine.

If the machine says Cold booted on the bottom line, right hand side, then you don’t need to
do this step. You can do it anyway, it won’t hurt.

There are some sub-steps that you may have to do, depending on the current state of the
machine.

1. See if there is someone already logged in. Right next to the time (one space over,) there
may be a name. If there is just two inches or so of blank space next to the time, then
nobody is logged in. If there is a name, ask that person or your instructor whether it’s
okay to boot the machine.

2. Get to a Lisp Listener window. All interaction with the Lisp Machine is done "through" a
window. Lisp Listener windows run a READ-EVAL-PRINT loop. Windows are
rectangular areas of the screen, usually surrounded by a black border. Windows usually
have labels in their lower left hand corner.

a. If there is a window visible that has a label that says "Lisp Listener" and a number,
and the cursor in that window is blinking, then you’re all set for the moment.

b. If those two conditions are not true, then you have to do something to make it
true.

* Press the SELECT key, and let go. On the bottom line, in the center, it
should say "System-" or "Select:". '

N\
AL
(s’

72 Student Notes Introduction to Lisp on the Lisp Machine

Symbolics, Inc. - December 1983

* Now type a single "L".

This should bring up a Lisp Listener window. Get your instructor to help you if it
didn’t.

3. Type in the form (si:%halt). si:%halt is a function that takes no arguments and whose
contract is to halt the Lisp processor and bring you to the Fep (Front End Processor)
command level. At the top of the screen, overwriting anything that might be there,
should be the prompt, Fep>.

4. Type a "b" and a return. "B" stands for boot. Actually you can type out the whole word,
"boot", but you don’t have to. This completely reinitializes the machine. It resets
everything. - The last user’s work will be lost unless it was explicitly saved away, so you
should always check that somebody is finished with a machine before you cold-boot it.

At the bottom of the screen, black dashes called run bars flash. After a minute, the screen
clears and the system types out the herald. Wait until things settle down. The run bars stop
flashing, and the word "Tyi" appears in the middle of the bottom line of the screen.

The bottom line is called the who line.

On the right hand side of the who line it should say "Cold booted.” This means that the
machine is completely untouched. The Lisp World is in its pristine, original state. The only
time you can be sure of this is when you see that message. As you do the next step, you
will see that as soon as you type the first character, the "Cold booted” message goes away.

Step 3. Log in.

If your user name happens to be GRGIC, type (login,"GRGICf‘). If your user name is not
GRGIC, just substitute your name for GRGIC in that incantation. (If you don’t know what
your user name is, try your last name, or ask your instructor.) Watch the bottom of the

-display. Various mildly entertaining things will happen down there. Then things should quiet

down. The run bars will stop flashing, and the word "Tyi" will reappear in the center of the
who line.

The only things moving on the screen should be the flashing rectangular blinker and the clock
at the lower left-hand corner of the screen. ‘

It ought to say T right under where you typed (login ...). If it doesn’t, and especxally if an
error message is being displayed, call your instructor. After the instructor has fixed things up,
go back to step 1. : ‘

In case you’re really curious, the who line shows, from left to right, the date, the time, your
user name, the current package (forget it), and the current machine state, which is Tyl
whenever the machine is waiting for you to TYpe In.

Student Notes Introduction to Lisp on the Lisp Machine 73
Symbolics, Inc. December 1983

The run bars below the who line flash whenever the machine is doing something. The one on
the right (the run bar) means the Lisp processor is running, and the one on the left (the page
par) means that the disk is running. You can make the run bar hght up by movmg the mouse

Step 4. Do a simple calculation.

Type the following Lisp form: (* 365 24 60 60)

Note that you don’t need to type a return. (Some of you will say to yourselves "Of course!",
for the rest of you: why not?)

If you make mistakes when you’re typing to the Lisp Listener, don’t despair. Of course, you
can use the RUB OUT key to erase mistakes. But Lisp Listeners (and almost any other place
that ask you to type things in) have a feature known as the input editor or rubout handler.
This allows you to use most simple editor commands, even though you’re not running the
editor. Try control-B to go back, and control-F to go forward characters.

There is another interesting feature of the input editor. If you type-centrot=C; it will bring &= |
back the last thing that you typed, omitting the last character. After one M you can€™ s e
then type meta=C’ to rotate through all the last few things you typed This is known as yanking Jj

in text. e ﬂ

When you’ve typed in the whole form, the READ-EVAL-PRINT loop should print 31536000,
which is almost the number of seconds in a year.

Problem I: A solar year has 365 days, 5 hours, 48 minutes, and 46 seconds. Use the Lisp
Listener to calculate the number of seconds in a solar year. Try to use the _control<C (yank)
feature to minimize typing. 5} 55 a5¢ L -

Step 5. Get an error message and recover. '

Look at the following Lisp form: (+ 7 *A) Prae v aci ena A s wbo e :
Figure out what’s wrong with it. What kind of error will you get when you try to evaluate it?
Now try it and see how close your guess was.

Look at the error message. You should be able to understand at least part of it. Notice that
the blinker is blinking to the right of an arrow. The arrow prompt means that you are talking
to the debugger, a fancy tool for analyzing and fixing errors. Debugger commands are mostly
single keystrokes. The snnplest debugger command is ABORT, which means, "Give up

4 N 72 e oy —
® =\ e e I R TN P 7?

SR ﬁw/'\ iy
Y A (/ s g R)

74 : Student Notes Introduction to Lisp on the Lisp Machine
, . “Symbolics, Inc. ' December 1983
| ~ e Fe) TaTaed st
ot erm Eee v o-ae ;’ﬁw«»\ iy ! " !
' s . ;m"‘:,e.".«gs:«'mw gs.m+w

PPV AL /l’ ey ﬁé”ﬂ’ *"ﬁ;‘}; “

completely on trying to evaluate this form. Just get me back to the Lisp Listener.” Try that
now. '

Now analyze each of the following erroneous Lisp forms, guess what the error will be, and then
compare your guess with the real error message. As you get used to popping into and out of
the debugger, notice that the debugger gives you other options besides simply aborting. You
might try using these to fix each situation. Remember you can always get out of the debugger,
back to the Lisp Listener, by typing ABORT. ‘

7™

Lo
i ol { c,q,,.,‘.@.,,nxsx,q~/:§“ Lerd gy

(+ 12 *A) R A

(+ 12.A)

(/7.4 0) reploce eNia Soem

(++ 13 14) (¢syme~al N .

(2 23) (*412)) (§sqmeust 7+) e fﬂmﬁwhy*

(SETQ °X 5) % R R Y - f,:'“wﬁﬂi

(CAE *(1 2 3)) (£sgmeval ‘ca

You should play with the Lisp Listener for a while. Try some of the things you learned in
class. , ,

Student Notes Introduction to Lisp on the Lisp Machine 75
Symbolics, Inc. December 1983

Now you will do some things that are a microcosm of the standard program development
process on the Lisp Machine. You are going to "develop” a factorial program. You should
pretend that this is an enormous program and that between cold-boots are full days of work.

Step 6. Enter the editor and get into Lisp Mode.

s

_\o** Press the SELECT key and then an E. The SELECT key isn’t a shift key; you don” hold it
down while pressing the E. The shift keys (the ones you do hold down while pressing other
keys) all have brown printing on them.

Wer

The screen will change. The new display shows you that you are now running the Zmacs
editor.

Type m-X. Watch the display change near the bottom of the screen as you do this. The meta-
X command begins an extended command. 'I’he editor is now prompting you for the name of
the extended command.

Type in the words "lisp mode™. (No quotes.) Watch what happens when you type the space.
There is a completion facility for extended commands and other long inputs. When enough of
a word has been typed in for the command or part of command to be uniquely specified, you
can just go on to the next word.

Type return to finish the command.

Just to leam somethmg else, try typmg m-x "lis m" and then a return. The cursor jumps to
the spot that you have to fill in to make the command be unique. Press the HELP key, and
read the display. Remember that the HELP key can give different help in different contexts - if
you’re confused at any time, try typing HELP - it can’t hurt. Now type a "p" and then another
return.

Step 7. Type a short program with a bug in it.

) ‘wé.’ﬁ,.\ S B L
L’:," } ¥ -

You can use this one or invent your own. Look up editor commands in the red Lisp Machine

Summary booklet. I A O o P e ™
7 (qi < i eﬁ' C (4:‘/5&%{?*‘;»@";: ¢ ia"'j(;(\ K ~

lf”“ e

Toypa ! > / ;;“fw (DEFUN FACTORIAL (N) mﬁ;ﬁ»f«w -t { paws BT
Veepns 7 T e (LEL ((PRODUCT 1)) 4R o
e CWACTOR N)
(sn@konucr*\(: PRODUCT FACTOR)))))
(\ e M“\MW «'% 5

anins

A o

- .
? 57 . I
e . s s B | s
SO R ey D N ety

P

76 Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. December 1983

. C. - P - @, e & M& - Qe,r{"t‘"
L)

Step 8. Compile the buffer and go back to the interpreter.

« meta-x Compile Buffer will compile the whole buffer

" "Fhere’s one command that does all of this. It's m-2.
C 3/ mother common ways to compile your buffer and go to a Lisp Listener:

,A control-shift-C will compile the nearest function definition or form .« ~‘-<ﬁ.<‘; Ly

* meta-x Compile Changed Definitions of Buffer Well, you can probably guess what
v\/(dﬂ this does. You don’t have to type the whole name in. Just type m—x C SPACE C

/‘,; i RET N.
L v%w’

Sws N""L BRERAK will give you a little "Lisp Listener-like” window within your editor. You should
use this when you want to try out a function that is known to work, but you're just not
sure about what it returns or something like that. If you’re debugging your own ;
functions, use the Lisp Listener. If your function gets an error while in the Lisp o
Listener, you don’t have to abort out of it to go look at the code in the editor. ¢ e

; ”/ "
oy

(,/j There are also comparable commands for evaluating code.

e SELECT L will get you to a Lisp Listener from anywhere

o » You can also change the size and position of the editor and/or Lisp Listener windows so et
(, that both are showing at the same time. Do this by clicking the right mouse button (S n
g : "det-Sereen-“ s
AL twice fast to get up the system menu, and then click left on)
> | e b o i a-«’" ES y/
/\ To switch between the editor and Lisp Listener you can still use the select key, but you

'+ can also click left on the window you want to type to.

Step 9. Test the program and get an error message.

Try (FACTORIAL 6). Look at the error message carefully.

Step 10. Exit the debugger and return to the editor.

Student Notes Introduction to Lisp on the Lisp Machine

77

Symbolics, Inc. December 1983

Now get out of the debugger (use ABORT), and go back to Zmacs. Can you figure out what
caused the error? If you’re stumped, ask your instructor.

Step 11. Try again.

When you have figured out the problem, fix it (one inserted character will do it). Then
recompile and return to the Lisp Listener.

Step 12. Test the program again.

Note that it still doesn’t work. Pretend that you can’t find the problem and are giving up for
the day.

Step 13. Return to the editor and write the buffer out to a file.

Use the red booklet to figure out how. You should call the file something that ends with
" lisp". .

A pathname is a way to get at a parficular file. Pathnames have at least four components:

* a host name which is followed bj a colon (3) f"{f
P Ak .
M7 el e,

. directories, which are specified using the syntax that the host supports (">" on Lisp
Machines, */" on Unix systems, etc.)
e file name

e file type or extension

o Sometimes a version number, and sometimes a device are included, but this is rare.

The various file commands prompt you with a default filename. You only have to type in

78 Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. December 1983

what you want to change about the default. For example, while you’re in this course, you'll
almost never want to change the default host. So if the the default pathname given was
acadia:>your-name>foo.lisp and you want to write the buffer into
acadia:>your-name>test.lisp, then you only have to type in "test" and it will keep the default
host, directories, and file type. ~

Step 14. Log out and cold boot.

Get to a Lisp Listener and type-the form (logout). Then follow the boot process described
above. It’s good etiquette to boot your machine when you’re done. That way the next person
to use the machine doesn’t have to wonder whether or not you were finished.

Pretend to go home for the day.

Step 15. Log in, enter the editor, and read in the file. -

o 5 F‘"

Use the red booklet to find the command for reading in a file. The same defaulting
mechanisms exist here.

Additionally, you can get completion of file names. Type COMPLETE to get as much of the
pathname completed as is unique, or END to complete the pathname and get the file if the
partial text can uniquely specify a file. RETURN says don’t complete the name at all, just get
the file as Pve typed it, creating a new file if necessary. TP
.) M/ (B ‘:?"_,-4 ’(J('SLSJ”
Jfahst”
w7
. W §.7 I) S@
ﬁ P "“)o)

- Step 16. Debug the program.
When it works, go on to the next step.

Step 17. Write out the modified buffer.

Student Notes Introduction to Lisp on the Lisp Machine 79
Symbolics, Inc. December 1983

Step 18. Compile the file.

Use the command m-X Compile File. This creates a binary file that contains the equivalent
of the text in your regular file. You can then use the load function to bring the contents of
the file back into the Lisp World.

Step 19. Log out and cold boot,
This is the end of the second pretend day.
Step 20. Log in and load the compiled file.

- A ——
Sebe b]

Use the LOAD function. It has a single required argument, which is the only one usually
used. The argument is a pathname, which you enclose in double quotes. Note (for future
reference) that if you’re loading in a file from a Unix system, you must double the slashes in
the pathname. Now you can use the factorial function that you wrote "yesterday”.

80

Student Notes Introduction to Lisp on the Lisp Machine
' Symbolics, Inc. December 1983

Student Notes Introduction to Lisp on the Lisp Machine

81

Symbolics, Inc. December 1983

8. Lists

List Manipulation

Lists as Tables

82 ‘ Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. December 1983

8.1 List Manipulation

8.1.1 Review of Terminology o
e A list is either the symbol NIL, or a cons whose cdr is a list.

* The conses that make up the list are collectively known as the backbone, and individually
known as vertabrae.

e The car’s of the vertabrae are known as elements.

'« There are equal numbers of vertabrae and elements.

8.1.2 List Manipulation Functions

~_ These are the most common functions used for dealing with lists.
W/{”ﬁ See Lisp Machine Manual, pp. 53 - 63, for more details on these and other related functions.
0 .

Making lists

LIST &rest elements '
takes any number of things, and makes a list with those things‘g; elements.

COPYLIST /ist returns a list which is EQUAL but not EQ to /Jist. o AR
.) P A .:/ w‘uJ
A . Uj./ Q\w
S
Examining lists
LENGTH /ist returns the length, or » mber of elements in list.
FIRST, SECOND, THIRD, .. SEVENTH list
get that element of /ist.
NTH n list gets the nth element of list.
LAST list returns the last cons of Jisz, not the last element. Yes, this is badly named.

. i{,{lyl’}(/ ““‘\\\ ‘ ' ‘ _7
LA \t;?‘ ‘ @,\> LFD/ |

—~ ()
© &)

Student Notes Introduction to Lisp on the Lisp Machine 83

Symbolics, Inc. December 1983

Adding to lists , e
S e e

NCONC &rest lists e A N %
concatenates all the lists together, by changing the ci;r of the last cons in '~ .t !

«,O’/‘L/:(/"/ each list to"be the first cons in the next list. R T S
_g/‘k e o & g

APPEND &rest lists .
makes a list which is a concatenation of all the lists, without modifying any
lists. It does this by copying all the lists except for the last one.

Adding things to the front of lists
Can be done using CONS, but somehow you have to get a hold on the new
cons. Usually this is done with SETQ.

(setq stack (cons ’new-top stack))

Reversing lists ‘)

R

NREVERSE /ist reverses list by changing the order of conses by manipulating cdr’s.u M:b 2 :_‘vﬂ it
REVERSE list ‘ ‘

PUTE - Lawaty

makes a reversed copy of /ist

i ey PN A

oy

77
!’\, S A o ¥ # g

g

8.2 Lists as Tables

There are basically four families of functions here. Each family has three variants on a single
theme. The variants specify what predicate is being used for comparison for the theme.

>

84 Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. December 1983

The ASS family - ASSQ, ASSOC, ASS
Used for looking up associations between one thing and something else. The
functions take two arguments, an item and an alist or association list.

An item is just any Lisp object. An association list is a list of conses. The
car of each element (each cons) is the key that we use to look up the cdr.

(setq grade-alist *{((a . 100)
(b . 80)
(c . 70)
(d . 60)
(f.. 0)))

(assq °d grade-alist) ===> (d . 60)

A common trick is to say: :
-1)
(cdr (assq *d grade-alist)) ===> 60 ‘ (a\ - (/7
o -1 L S{y/,_a/
This gives you the answer or NIL. o Ma} Lo
The MEM family - MEMQ, MEMBER, MEM r S

Take an item and a list, and see if the item is an element of the list. m\”/fﬂ ,

Returns the sublist whose car is the first occurence of item or NIL.

The REM family - REMQ, REMOVE, REM
Take an item and a list, and remove all (or a specified number) of the 7

L

occurences of the item in the list. Makes a copy of the list. ™
2y . \)\j‘ - I
‘00/\07 /,,v"/ For”
0 w/‘f '

(PW ’a% Y e _b},

(‘re.m% v /GQ é’) g v W‘:]e’f("o:
e e

Student Notes Introduction to Lisp on the Lisp Machine

Symbolics, Inc. December 1983

s

The DEL family - DELQ, DELETE, DEL

%

Take an item and a list and actually modify the list to remove the item.
These functions should not be used only for effect. Instead, you must use

them both for value and effect.

(setq my-1ist *(a b c d))
(remq *a my-list) ===> (b ¢ d)
my-1ist ===2)> (a b ¢ d)
(delq b my-list) ===> (a c d)
my-list ===> (a ¢ d)

" (delq ’a my-list) ===> (c d)

my-1ist ===> (a ¢c d) .
L ne

The last delq did give us the desired effect. We wanted to have no more
a’s in the ward of my-list. It didn’t work because delq doesn’t change the
fact that the ward of my-list is a particular cons. That cons is not part of
the list that delq returns, but it remains the ward of my-list.

To get the desired effect:

(setq my-list (delq ’'a my-list))

nole 3/¢/py
- T e

poh
Pe

86 Student Notes Introduction to Lisp on the Lisp Machine
) Symbolics, Inc. December 1983

8.3 Games and Practice Using Lists

Use Lisp list functions, preferably on the Lisp Machine, to do the following:

1. Make a list of U.S. presidents NIXON, FORD, CARTER and REAGAN., Call the
list PRES. (That is, create a list of four elements, the symbols NIXON, FORD,
CARTER and REAGAN; and make the list be the ward of the symbol PRES.)

We’ll give you this first one.

(setq pres (list °'nixon *ford ‘carter 'reagan))

Qe\ .
2. Remove Nixon from the list. How many elements does the ward of PRES have? It
should have three.

3. Add Johnson to the list. Now ihcre should be four elements in the ward of PRES.

4. Make a new list callied DENT consisting of the second and last elements of PRES, as
well as Truman, Eisenhower, and Kennedy.

5. Reverse the order of elements in DENT and attach it to the front of PRES. There are
a number of ways to do this: Do you use NREVERSE or REVERSE? APPEND or
NCONC? In this exercise, it doesn’t matter which way you do it, as long as you
understand the g‘t;fferenca Each of the four functions above has a very different effect.

L= e he et g ¥ e “\A) ool '?W

o al b,
6. Alter PRES so that the second occurrence of Ford becomes Nixon. You don’t have to
write a general way of doing it, just count over and splice it out by hand.

7. Create three new lists called P-1, P-2, and P-3. Each of these is a copy of PRES but

with (o olon¥ 5
a. Both occurrences of Reagan removed st dsST ‘@‘3&
) : " M)

b. The first occurrence of Reagan removed
c. The last occurrence of Reagan removed

Is there any difference between using DELQ and REMQ for these three operations?

8. Write a function called SHUFFLE which takes two lists as ‘a:gumehts, and returns a
single list containing alternating elements of the first list and of the second list.

{shuffle *(a bc) °(1 2 3)) ===>

(A182C3)

Student Notes Introduction to Lisp on the Lisp Machine 87
Symbolics, Inc. December 1983

9. Write a function calléd UNSHUFFLE that takes a single list, and returns a list which
might have been equal to the first argument to SHUFFLE.

(unshuffle *(a foo b bar ¢ d)) ===>

(A B C)

88

Student Notes Introduction to Lisp on the Lisp Machine

Symbolics, Inc.. December 1983

Student Notes Introduction to Lisp on the Lisp Machine

89

Symbolics, Inc. December 1983

9. Graphics

Graphic operations

90 ‘ Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc.: December 1983

9.1 Windows, }Modes, and Graphics

~Just so we can do some fun things right away, these are incantations you can use to get various
- graphical things to happen on the screen.

No explanation will be made as to what these incantations do exactly, until Flavors and
message-passing is explained. Then all this will be obvious.

« All of the graphic operations happen on a window.

» Windows have a Cartesian coordinate system that is upside-down. That is, the point (0,0)
is the upper left corner of the window. Y coordinates increase as you go down, but X
coordinates increase normaIIy, to the right.

» Each square between integral points is referred to as a pixel. Pixels are the smallest
addressable units of the screen.

* The symbol terminal-fo has as its ward the "current" (in some sense, anyway) window.

* All graphics are drawn in a particular mode, referred to as an alu. Alu’s are just
numbers, but are usually referred to by using a symbol whose ward is the proper number.

e tv:alu-for means to turn on all the pixels being drawn, no matter what was there
before

o tv:alu-andca means to erase all the pixels being drawn, no matter what was there
before

o tv:alu-xor means to flip all the pxxels being drawn, depending on what was there
before

» “All graphic incantations begin with:

(send terminal-io

then they have additional operands to determine what kind of thing to draw, and where,
and how to overwrite existing displays.

Send is just a function, although it do(s some complex things. This means that the evaluation
‘of these "incantations" proceeds just like the evaluation of any other normal form. All the
operands are evaluated.

 Student Notes Introduction to Lisp on the Lisp Machine 91
Symbolics, Inc. December 1983

9.2 The Incantations

Here are the other operands:

(send terminal-io ":draw-point x y) o Vional Al 29

draws the point at (x,y) in the defaixlt mode. You can supply an optional
last argument to specify the mode, like this
(send terminal-io ":draw-point x y tv:ala-xor).

(send terminal-io ":draw-line x1 y1 x2 y2) o plicnal ale
draws a line from (x1,yl1) to (x2,y2). There are two optional arguments, for 3} <
specifying the mode and drawing the end-point. This last one defaults to T,
meaning draw it.

(send terminal-lo :draw-rectangle width height x y &optional ala)
draws a filled-in rectangle with dimensions width by height with its upper 3
left corner at (x,y). Note that this only allows you to draw horizontal-
vertical rectangles - for other ones, use :draw-triangle twice. And, no, you
don’t have to type "&optional”.

(send terminal-io ":draw-triangle x1 ylv x2 y2 x3 y3 &optional alu) 3
draws a triangle with corners at (x1,y1), (x2, y2), and (x3,y3).

(send terminal-lo ":draw-circle center-x center-y radius &optional alu) 3
draws the outline of a circle of the specified radius and center.

(send terminal-io ":draw-filled-in-circle center-x center-y radius &optional alu) N/
draws a filled-in circle of the specified radius and center.

(send terminal-io ’:clear-screen)
Clears the screen.

There are other ones as well, but they are harder to explain, and not necessary at thxs point in
your Lisp life. See Introduction to Using the Window System, pages 28 - 32; and the Release 4.0
Release Notes.

92 » Srudent Notes Introduction to Lisp on the Lisp Machine
’ Symbolics, Inc. December 1983

9.3 Games & Practice with Graphics

8.3.1 Examples -

Here is program that moves a rectangle across the screen.

(defun move ()
(loop for x from 100. to 1000. do
(send terminal-io *:draw-rectangle
40. 40. x_100. tv:alu-xor)
(send terminal-io ’:draw-rectangle
40. 40. x 100. tv:alu-xor)))

Here is a recursive function that draws a neat picture. Try running it with
(squares 400 200 200).

(defun squares (size x y)
(cond
;:just return nil when the square is very small

((£ size 2) nil)

:; otherwise draw the square, shrink the size and
;3 corner, and keep going

(t (send terminal-ic ':draw-rectangle
) - 'size size x y tv:alu-xor)
(squares (- size 10.) (+ x 5.) (+ ¥y 5.)))))

Student Notes Introduction to Lisp on the Lisp Machine 93
Symbolics, Inc. December 1983

This function draws a line given a starting point, length and angle, instead of taking the end-
points. This will be useful for the exercises. The arguments are:

e x and y for a starting point
e the length of a line to draw
¢ the angle (in degrees) to draw it at,

 and optionally the mode to draw it in.

(defun angle-line (x y length angle &optional (alu tv:alu-ior)) :

(send terminal-io ’:draw-line /
"} X

~ y ‘ -

(fixr (+ x (* length (cosd angle))))

! (fixr (+ y (* length (sind angle)))) !

alu)) - \ ~ /

9.3.2 Exercises

Now here are some exercises. You might want to use the function angle-line for some of
them.

1. Write a function called POLYGON that draws a regular polygon (not filled in) given
four arguments: the X and Y coordinates of the center of the polygon, the radius of the
circumscribed circle, and the number of sides.

Extra credit: Have it draw a five-pointed star when given 2.5 as the number of sides. In
order to get the extra credit you must also figure out why this is a reasonable thing to

expect!

94 Student Notes Introduction to Lisp on the Lisp Machine
‘ Symbolics, Inc. December 1983

2. The Arcturian Stribbage-Tree begins life as a small seed. During the first year of life it
grows a tall stalk exactly 27 meters high. Then it sends out two symmetrical branches
from the top of the stalk at an angle of 45 degrees from the vertical. These grow for a
half-year, until they are each 13.5 meters long. Then the branches divide into sub-
branches which grow for a quarter of a year... Write a program that draws a picture of
an Arcturian Stribbage-Tree that is almost two years old.

.Q‘ﬁ*“ 3. An order-zero Dragon Curve is a line segment. If you know how to draw an order-N
. Dragon Curve, if’s easy to draw an order-N+1 Dragon Curve. Just draw an order-N and
L draw another order-N backwards, from the end of the first order-N curve. When you
T "\ .draw a curve "backwards," turn 90 degrees to the right before drawing it. If you're
.+ ., going forwards, just draw the order-N. Write a program to draw Dragon Curves of any
» order.

. (This one requires a little math.) Snowflakes are complicated many-sided polygons. You
can make an order-N+1 Snowflake from an order-N Snowflake by gluing an equilateral
triangle to the middle third of each side. (For this to work, the sides of the triangle
must be one-third of the length of the side you are gluing it to.) Oh, by the way, an
order-0 Snowflake is just a single equilateral triangle. Write a program to draw
Snowflakes of any order.

Student Notes Introduction to Lisp on the Lisp Machine o5
Symbolics, Inc. December 1983

10. MORE LISP WORLD OBJECTS
Theilr Nature & Representation

Arrays

Strings

96 o - Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. December 1983

Dimensions
Cells
Array-Types

Lists vs. Arrays

10.1 Arrays & Strings

An array is a Lisp object that has
e dimensions and

e elements or cells

~An array may have one through seven dimensions, and each dimension may have one or more

~elements, or, cells,
i~ " i)

8 PRy
" The ceflgi)f an array are numbered O through n-1, whege n is the number of elements of a
,given dimension.

) " Each cell of an array may connect to any Lisp World object, including an array.

e 7 An array of any type may be the ward of a symbol or the car or cdr of a cons. It is a bona-
fide Lisp World object, and can be used anyplace where any other Lisp object can be used.

A siring is a one dimensional array (of type art-string) wherein each element or cell is an eight-
 bit unsigned fixnum which represents a character.

Student Notes Introduction to Lisp on the Lisp Machine 97
Symbolics, Inc. December 1983

10.1.1 Types of Arrays
The types of arrays include:

* art-q-arrays whose elements may be any Lisp World Object.

e art-nb-arrays whose elements are n-bit fixnums, where n ranges from 1 to 32. These
elements, however, are not real Lisp Objects since they are truncated. Their advantage is
that they occupy less storage than art-q type arrays. Arrays of this type are used a lot
by the window system.

e art-string-arrays are very similar to art-8b arrays. Both of these types of arrays have
elements which are fixnums representing characters. There are many differences in
effects between arrays of type art-8b and type art-string, but the elements of both kinds
of arrays are the same.

We will discuss strings separately from the other types of arrays.

Various other -array types exist.

10.1.2 Printed Representation

The printed representation of arrays is second class.

10.1.3 Arrays vs. Lists

Lists and arrays are used when you have collections of data.

Lists are useful when you are going to be
e adding to or subtracting from such collections
* doing a lot of interpolating
« manipulating stuff that occurs early in the list
Arrays are what you want when
» you are NOT going to be changing the number of elements, and,
* you want to refer to a particular item by its location.

" For accessing the first three elements, a list, however, is faster than an array.

98 o -+ . Student Notes: Introduction to Lisp on the Lisp Machine
Symbolics, Inc. - December 1983

Array Makers
Array Accessors

Array Changers

10.2 Array & String Manipulating Functions

As with other Lisp World objects, there is a collection of functions that deal with arrays in
general, and strings in particular.

These functions fall into the categories of
'« Constructors & Chmgefé
¢ Fetchers & Examiners

10.2.1 Constructors & Changers

Array Makers |

Arrays are created by a call to MAKE-ARRAY.
MAKE-ARRAY takes

-« one required argument,
--a list of one up to seven numbers specifying the number of elements for each dimension

of the array.

a variety of optional arguments

- —each consists of a keyword specifying the nature of the argument, and the actual
argument.

:TYPE is one such keyword for which the appropriate argument is the array type
specification name, such as ART-Q, or, ART-STRING, or, ART-1B, etc.

Since arrays have only second class printed representations, they are normally brought into
being as the values of symbols. The symbol name is then used to refer to the array. For
example, ' '

(setq my-array (make-array *(10 10) ’:type ‘art-1b))

Student Notes Introduction to Lisp on the Lisp Machine 99

Symbolics, Inc. December 1983

Array Setters
Objects become elements of an array by a call to ASET.

ASET takes

o three, or, more required arguments

1. the object to be assigned

2. the array object
3. the subscripts of the element that 4ls being assigned ‘

10.2.2 Fetchers & Examiners
An element of an array can be accessed by a call to AREF.

AREF takes
* two, or, more required arguments
1. the array object

2. the subscripts of the element being referenced N

10.2.3 String Particulars

The printed representation of a string is any collection of characters enclosed in double quotes
(™. | (vertical bar), / (slash) and " (double quote) are slashified. When you type a

"string", READ calls make-array with :type art-string.

100 Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. . December 1983

READ has a macro-abbreviation (like *) for reading in integers that are represented by
characters. The syntax #/ followed by a single character actually means the integer that
that character represents.

Example:

(SETQ S "This is a string®) ===> *This is a string"
3N,
(AREF S 0) ===> 84. \”

(ASET #/u S 13.) ====)> 117.

'S ====) *This is a strung"

(SETQ STRNG
(MAKE-ARRAY 5 °*:TYPE °*ART-STRING))

(ASET #/S STRNG 0)
(ASET #/T STRNG 1)
(ASET #/R STRNE 2)
(ASET #/N STRNG 3)
(ASET #/6 STRNG 4)

(PRINT STRNG) ====)> *"STRNG"

Special characters such as space, CR, LF, C-A, etc. are handled by another character
macro...#£\SP, #\CR, #\C-A, etc. This way it’s obvious what character you mean to
use, rather than using #/ format with an invisible character. (#/ works with invisible
characters, of course.)

Like numbers (but not like other types of arrays), strings evaluate to themselves. |

Student Notes Introduction to Lisp on the Lisp Machine 101
Symbolics, Inc. December 1983

Strings are numbered not by the elements in the string but by the crack numbering system.

Example:

Crack 1 is just to the left of character 1 (See how this might be confusing? "Fencepost"
errors are much more common in strings, where you’re often trying to get a chunk from
the middle. Better to say "the substring between crack O and crack 1," so that you know
exactly which characters you mean.)

(SUBSTRING "FRED" 1 3)======)> *RE"

(SUBSTRING “"FRED" 1)========)> "RED"

General form exaxixples:

(STRINE[-reverse]-search[[-not]-char or -set]
<key> <{string> <{startd> {stop>)

(STRING-SEARCH #/E "FREDDY®)---->2

(STRING-SEARCH-SET °*(#/E #/F) “"FREDDY")----- >0

These functions can be used with READLINE to break input into components..

(defun get-and-parse-sentence ()
(let* ((sentence (readline))
(first-non-space
(string-search-not-char #\sp sentence))
(command (substring i

sentence - g
first-non-space <.’ «<-" ._J.
(string-search-char #\sp sentence ...-“

. fir5t~non-quqe)))
;3 Start processing based on the command -

)

102 ‘ Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. December 1983

10.3 Games & Practice with ARRAYS & STRINGS

10.3.1 Exercises

1. An excelient exercise, recommended for everyone, is the game of Life. This is a simple
simulation of an environment of single-cell organisms. The cells can survive if they have
a few neighbors, for mutual protection from the elements. The cells die if it gets too
crowded. '

The game is played on a rectagular board of squares. The size of the board does not
matter. The exact rules of survival are as follows:

¢ A cell survives to the next generation if it has two or three neighbors, out of a
possible eight.

* A cell dies if it has more than three neighbors or less than two.
¢ A cell is born in an empty square if there are exactly three neighbors.

* All "checking" for birth, survival, and death happens for all cells before any new
cells are born or existing cells die. That is, all births and deaths happen
simultaneously.

You get to choose how the board is drawn, and how the initial configuration of cells gets
entered.

There are lots of optimizations possible. Make sure to get a working version before
attempting to do any optimization.

2. Write a function that takes a string as an argument. The string will be a sentence.
Your function should return a list of strings, representing the words in the sentence.

3. Write a function that takes a string as an argument. The string will contain a line from
a Lisp program. Your function should return a string containing the comment, or NIL if
there is none. Try to account for at least one of the special cases, like checking to see
whether the semi-colon is contained in a string - in which case it doesn’t make a
comment. : ‘

4. Write a function called string-singularize, which takes a string and returns a string which
is -a good guess as to what its singular form is.

Student Notes Introduction to Lisp on the Lisp Machine 103
Symbolics, Inc. December 1983

11. Additional Lisp Machine Features

Debugging Techniques

Other Editor Commands

Student Notes Introduction to Lisp on the Lisp Machine

104
Symbolics, Inc. December 1983

11.1 Debugging Tools

The most important debugging tools are your brain and your eyes.

Most of the tools that the Lisp Machine provides will just gather more information about the
state of the Lisp World for your brain to interpret.

11.1.1 Using the Lisp Machine and yourown code to help you.
« Remember that any function can be called by hand at top-level in a Lisp Listener.. You
don’t have to have your "mainline” call your "subroutines”. If you suspect a certain
function, try

o going to another Lisp Listener, (SELECT c—L if you need a new one)

o and running the function, giving it the necessary arguments by hand.

o Split the screen into an Editor window and a Lisp Listener window, if that seems more
convenient. From the system menu (click right twice, or hold the SHIFT key down and

click right once), use

o Split Screen - Allows you to evenly divide up the screen n among some windows.

"Note: Click on "Existing Window", not "Ednt" to get yeur-%xtor window.
“Lise isTS Lesp

o Edit Screen - this is the general screen editor that allows you to change the- size and
position of any window.

Student Notes Introduction to Lisp on the Lisp Machine 105

Symbolics, Inc. December 1983

11.1.2 Modifying your code to help you.

Wrapping a PRINT form around a piece of suspected code.

Since PRINT just returns its argument, you can stick a call to PRINT in
anywhere without affecting how the function runs.

The function BEEP.

Breakpoints.

If you’re not sure whether your program gets to a certain point, or if your
program deals with graphics, you can insert a (beep). It flashes the screen
and returns NIL.

You can get your program to stop at a particular place so you can poke
around by using BREAK or DBG.

(break here) ;break is a special operator
;the argument is a label and is not
;evaluated

(dbg) ;dbg is just a function

BREAK puts you into a read-eval-print loop. You can look at the values of
symbols (or special variables), but not local variables. This means that
BREAK is not so good for gathering information about compiled code.

DBG puts you in the debugger. Use the "DBG:" functions to look at local
variables and arguments.

Type RESUME to get out of either type of breakpoint and to continue your
function’s execution.

11.1.3 The Debugger

The debugger has lots of commands for information gathering and for manipulation of the
execution of your program. If you go into the debugger and type C~HELP, it will list out all
the possible commands. There’s about 40 of them, here we’ve cut that to about 15 of the most

useful ones:

106 - Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. December 1983

- Special commands For each kind of error, there are a few special commands dealing with the
particular error. One of these will be useful if you want to "help the
program along”, and let it keep going. '

ABORT Always used for "forget about this, go back to the previous top-level".
RESUME Used for the most commonly used special command.
c=N Goes down the stack, to the function that called this one, and displays

information ahout that function call.

c-P Goes up the stack, to the function that this one called, and displays
information about that function call.

c-L, or REFRESH Clears the screen, and redisplays the error message plus a backtrace of the
stack (a list of all the functions that were called to reach this one).

m-L Clears the screen, and displays more extensive (but not necessarily more
useful) information about this function call.
c-B Displays a backtrace of the stack.

(dbg:arg n) Accesses the nth argument to this function.

You can use the macro SETF to change the values of the arguments, like
this:

;:; makes the value of the zeroth
;35 argument be 32.5

(setf (dbg:arg 0) 32.5)

We'll be discussing SETF soon.

(dbg:loc n) Accesses the nth local variable in this function. You can use SETF on this,
" too.

Student Notes Introduction to Lisp on the Lisp Machine 107

Symbolics, Inc. December 1983

c—R

c-m-R

cE

e S

c-M

c~m-U

Returns from this function. It prompté you for a value to return if one is
necessary. Useful when you know about the error you got, and want to
ignore it and go on.

Reinvoke this function. Useful when you’ve gone into the editor, found the
bug, recompiled, and now you want the program to continue.

Edits the current function. Goes into the editor, reads in the file that this
function was defined in, and locates the function within the file.

Goes into Zmail, and sets up a bug report to be sent to the right place
(based on your site).

Goes into the Window Debugger, which some people like better. It has
some of the same features as the regular debugger, plus it displays some
extra information nicely.

108

Student Noies Introduction to Lisp on the Lisp Machine

Symbolics, Inc. December 1983

11.1.4 Monitoring your code without modifications

The Stepper.

Tracing

The STEP function will evaluate a form, stopping at the beginning and%nd
of each function call. It only works for interpreted code. This makes- it not
very useful.

This feature allows you to observe the execution of your program when a
particular function is entered (called) or exited. The special operator trace
will enable this feature.

(trace get-number-of-neighbors)

You can also get fancier handling by using the TRACE option in the system
menu. Click the mouse button twice (or hold the shift key down while
clicking once) to get the system menu. Click left on trace This will pop up
a little window asking you for a function to trace. Then a menu will appear
giving you a choice of fancy options.

Use the special operator UNTRACE to untrace a function, or all functions
if you call it with no arguments

;;:;stop tracing this function

(untrace get-number-of-neighbors)

;s:8top tracing all functions

(untrace)

Helpful hint: Avoid tracing standard Lisp functions. Naturally some of the
background processes use these functions, but they never expect to have to
type anything out. If they do have to type something out, the process will
hang until you let it type out. Needless to say, this will cause you grief. So
just trace your own functions, and leave the driving to us.

Student Notes Introduction to Lisp on the Lisp Machine ’ 109
Symbolics, Inc. December 1983

11.1.5 Looking at data

DESCRIBE DESCRIBE is a function that takes one argument, and will display some
information based on the type of the argument. DESCRIBE knows about
symbols, conses, numbers, functions, named defstructs (you have to use the
:NAMED option), and other things.

The inspecror. The inspector is a utility that allows you to browse through data structures.
You can invoke the inspector by:

1. SELECT I, or

2. the function inspect. It takes an optional argument which is the first
thing to inspect.

In the inspector, you can type in a form and its value will be inspected.
Move the mouse over any displayed thing, and click left to inspect the
highlighted thing. There is a list of all things that have been inspected, so
you can go back to any of them.

110 Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. December 1983

11.2 More Zmacs Commands

11.2.1 Debugging Commands

m-X Find Unbalanced Parentheses

will make a good guess as to how your parentheses are unbalanced. It only
counts them, though, so if you have the right number but they’re in the
wrong place - tough luck. ‘

m-X Edit Compiler Warnings
will split the screen into two windows, showing the compiler warnings for
each function in the top window, and the function in the bottom one. Use
c~. to get to the next function.

11.2.2 Typing Lisp code

m-. is "edit definition". Allows you to type in the name of a function, and then
proceeds to edit that function. It will read in the proper file, if necessary,
and go to the right location in that file. This is the best way to read through
the system sources.

c-sh-A when typed in the middle of a fdrm, will display the arguments of the
operator. This command works in the input editor as well.

Student Notes Introduction to Lisp on the Lisp Machine 111
Symobolics, Inc. December 1983

.

m-X Lisp Mode gets you into the mode where all of the rest of these commands work. If.~
;yo”u ,gxe file you edit has a #ype (or extension) of "lisp" (.lisp, .1, .Isp), then
We automatically. 7

LINE will go down one line and space over to the right place. (Hopefully, you
knew this one already.)
TAB will indent the current line to right place. If you don’t like the "right”

place, c~TAB will try some other good places.
c-n—Q will completely indent the following Lisp form. 1,

m-X Fill Long Comment
will fill up lines containing comments. The comment should begin at the
beginning of the line.

‘m-X Auto Fill Mode
works in Lisp mode, as well as Text mcde. It does its best to automatically
indent.

c=3 makes a comment at the end of the current line. Use c-m=; to get rid of a
comment at the end of the current line.

%

=0

112 Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. December 1983

Student Notes Introduction to Lisp on the Lisp Machine 113
Symbolics, Inc. December 1983

12. VARIABLE BINDINGS & SCOPING ISSUES

Variables and Binding

Scoping

114 Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. December 1983

12.1 Variables

Programming languages use variables to hold a value. In Lisp, we've used symbols as variables,
because they seemed best suited for it. Sometimes though, we used the car of a cons, or an
element of an array to hold a value.

The compiler’s contract is to take a function (usually an interpreted funcﬁox{) and write a
function that works exactly the same way, except faster.

One of the ways it does this is by not using symbols as variables. Instead jt uses a fancy thing
called a local variable. We’ve used this term loosely before, but now it’s a technical term.

6 f; A local variable is not a Lisp object. It is just a place that the compiley reserves to hold a
A e " value. The compiler only uses local variables to replace the use of symbols that get bound.

4 Remember that binding is a temporary saving away of a symbol’s (variable’s) ward, to be
restored at a later time.

\

o

The main point is that variables that get bound are represented differently in compiled code
(local variables) from the way they’re represented in interpreted code (symbols). This can
cause some difficulties.

Student Notes Introduction to Lisp on the Lisp Machine 115
Symbolics, Inc. December 1983

Here is an example of where you can run into difficulty;: (from the Lisp Machine Manual,
page 15.)

{(setg a 2) ;set the ward of the
;symbol A to be 2

(defun foo () ;define a function
(let ((a 5)) ;bind the variable A to be 5
(bar))) ;call BAR '
(defun bar () ;define BAR
a) ;Just return the value of the
' ;variable A
(foo) ===>5 ‘ ;does what we expect
(compile "foo). ;The compiler now ma he A in

;F00 be a local variable.

(foo) ===>2 ;It doesn’t work. Or does it?

A The function BAR makes a free reference to the variable A. This means that the function has
used the value of the variable, but has not bound it. BAR doesn’t even know whether the
variable A Aas a value.

The important point here is that you can’t make a free reference to a local variable. That
is, for the technical meaning of the the term "local variable.” If you make a free reference,
you will always be referring to a symbol,

Note that this problem does not come up unless you make a free reference,

116 Student Notes Introduction to Lisp on the Lisp Machine
' Symbolics, Inc. December 1983

12.2 How the Compiler Decides What to Make into Local Variables

Any symbol that gets bound, bj
» lambda binding
* let binding
* loop with binding

is a candidate for getting turned into a local variable. If the only thing about the symbol that
gets used by the function is the ward, then the compiler will use a local variable to represent
that variable. In any other case,.the compiler will use a symbol or special variable.

A special variable is just a variable that is implemented by a symbol. The thing that makes
special variables special is that you can make free references to them.

If the compiler doesn’t make a variable into a local variable, then it declares it special. You've

probably seen this message. Declaring it to be special just means that the compiler is using a
symbol. .

12.3 How You Can Make Free References Work

You can declare variables special, too. The special operator DECLARE does this. It tells the
compiler to ignore its rules about local variables, and to use a symbol whenever it compiles this
variable.

DECLARE’s should not be done within a function, but at top-level - usually the top-level in a
file. For example,

(declare (special ®a¥))
(setqg a 2)

(defun bar ()
a))

Most people don’t use DECLARE, though. There is a special operator called DEFVAR which
is used to simultaneously declare a variable to be special, and to give it an initial value. Also,
the editor knows about forms that begin with "def" so you can look up this variable without
knowing what file originally declared it. DEFVAR’s shouldn’t be done within functions either.

(defvar a 2)

(defun bar ()
a)

Student Notes Introduction to Lisp on the Lisp Machine 117
Symbolics, Inc. December 1983

12.4 Why You Should And Shouldn’t Use Special Variables

Both the advantage and disadvantage of using special variables is that any function can make a
free reference to their value.

This means that it saves you some hassle because you don’t have to pass this variable as an
argument to every function that needs to use it.

This also means that functions that you didn’t write have access to this variable and can
maliciously or unintentionally change its value.

12.4.1 Protecting Your Special Variables

* By convention, names of special variables begin and end with "*". This way, nobody
will do something like

(setq *my-variable* (test-function))

It’s assumed that if you change the value of a variable named "*...*", then you better
know what you’re doing.

* Bind the special variable in a top-level function. Make sure that all the functions that
refer to the special variable get called in the context of this binding.

12.5 Terminology and Future Changes

Special variables and all variables in interpreted code are said to be dynamically scoped.
Local variables are /exically scoped.

Dynamic scope refers to the fact that the value of a dynamically scoped variable depends on
the runtime environment. The value of lexically scoped variables can be determined just from
looking at the rext of the code.

By about 1985 or so, the interpreter will be lexically scoped as well. The COmmon Lisp dialect
requires this. Symbolics will be supporting Common Lisp.

118 Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. December 1983

12.6 Games & Practice with VARIABLE BINDINGS

12.6.1 Chess Program Example

This is the board. Each element is either NIL or a "piece”, which contains some kind of
information about what kind of piece it is, and other information particular to specific piece.
For example, whether or not the king is in check, or whether or not a rook can castle.

(defvar ®chess-board®* (make-array *(8 8)))

This function moves a piece. You tell it which piece to move by referencing the position on
the board. You don’t have to pass the board as an argument because the function makes a
free reference to *chess-board®*. There is only one board, so there is no need for all functions
that want to use the board to have get it as an argument.

(defun move-piece (from-rank from-file to-rank to‘-f'lle)
(let ((piece (aref *chess-board* from-rank from-file)))
(aset piece *chess-board® to-rank to-file)
(aset nil schess-board®* from-rank from-file)))

Here’s another useful function:

(defun set-up-chess-board ()
(aset ... *chess-board®* 0 0)
(aset ... ®*chess-board® 0 1)

(aset ... *chess-board®* 7 6)
(aset ... *chess-board* 7 7))

Now consider this situation, or a similar one where it might be more appropriate to have two
copies of the same program running at once:

1. You start up a chess game not by using chess-top-level (below), but by doing the
appropriate internal things: (set-up-chess-board) (loop ...). The intention is to debug the
program, but it seems to be working pretty well, and you play for an hour.

2. Then you get a bug. You decide that you don’t want to ruin your almost-finished game,
so you go into another Lisp Listener, and start up another game.

3. You fix the bug.
4. Then you go back to the first Lisp Listener, and ... oh no! You’re playing ihe second

- game! Since both games referred to the same board (*chess-boards), the second game
clobbered the first. ‘ '

Student Notes Introduction to Lisp on the Lisp Machine

119

Symbolics, Inc. December 1983

If instead, you had started up a game using this function:

(defun chess-top-level ()
;the LET is the key thing to notice here
(let ((*chess-board* (make-array *(8 8))))
(set-up-chess-board)
(loop ...
do _
(move-piece ...)
R)))

then you won’t clobber any games if you have more than one, since you’ll always be playing

with the "local" chess board.

120 Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. December 1983

Student Notes Introduction to Lisp on the Lisp Machine 121
Symbolics, Inc. December 1983

13. PACKAGES

Avoiding name conflicts

Keywords

122 Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. December 1983

13.1 Avoiding Name Conflicts

When more than one person is working on a program, there is the possibility of name conflicts.

Packages allow you have your own set of names that you can use, without fear of a conflict
with someone else.

A package is (mostly) just the database that READ uses to look up symbol names.

There is always a current package. This is the one that is displayed near the middle of the
who-line at the bottom of the screen. (The thing that says "USER:")

When READ gets the printed representation of a symbol, it looks in the current package to
see if it already knows about it. If it doesn’t find the symbol name there, it goes to the
package’s superior package, and looks there. It keeps going until it reaches the highest package.
If it wasn’t found in any of them, then it gets interned in the current package.

The hierarchy of packages is normally very flat. All existing packages are inferiors of the
GLOBAL package.

The easiest way to make a package is when writing your program in a file, make the first line
(the mode line) say:

followest LJ ®
b sV

-~

s -¥- Package: (your-package-name global 300); -*- ™ e Lparse o R

com otoea M<K "se.'_' @a—r/ka%, bu}‘f ‘\-.A—n hoe To N‘)\"‘; %)
kK) e T gl 3o by e
You can change the current package either temporarily or permanently. 2<% Ho - S R

¢ When you're typing to READ, you can temporarily change the current package for the
next printed representation by typing in a package name and a colon.

* You can change the current package permanently by using the function PKG-GOTO.
It takes one argument, a package name. a Heretbacl o«-&\,l Yo Siles
g(‘ e "\1 ‘,0,\ t ’Ad‘

(pkg-goto ‘user) wpteate L
e seetie-
{pkg-goto 'tv) 5

13.2 Some Packages

USER where little programs usually go. The default package for people who don’t
- have to worry about packages.

GLOBAL contains symbols that you want to be able to access from within any
package, like all the standard Lisp symbols.

> T e b hsY T

jReSe. s

Student Notes Introduction to Lisp on the Lisp Machine 123

Symbolics, Inc. December 1983

KEYWORD

TV
SI

The keyword package is for interning symbols that you just use for their
name. For example, keyword arguments like :TYPE for make-array are
just used for their names. You never want to evaluate a keyword. The

keyword package’s name is also the empty string.

In Release 5, all symbols in the keyword package automagically have
themselves as their wards. This is so you don’t have to quote them - they
evaluate to themselves.

In Release 4, there is no package called "keyword", but you still use the
empty-string convention. The USER package has abbreviation.

contains window system stuff
contains low-level system stuff (System Internals)

There are lots of other packages.

13.3 Games and Practice with Packages

1. Put one of your programs into its own package.

124) Strudent Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. December 1983

Student Notes Introduction to Lisp on the Lisp Machine 125
Symbolics, Inc. December 1983

14. SMART MACROS

14.1 SETF & Frlends

For every kind of Lisp World Object there are functions and special operators to

« construct & change

o fetch & examine

the object.

SETF is a macro that essentially handles some of the busy work of accessing and altering
objects and relationships in a general way.

SETF takes two arguments.

o The first argument must be a form.
« It examines that form to see what function you are using.

o It then works out what you would need to do to make the result of a call on that form
be the same thing as the second argument to SETF.

e Example:

* (SETF (CAR FOO) 3) is the same as (RPLACA FOO 3)

* (SETF (CDR FOO) 3) is the same as (RPLACD FOO 3)

 (SETF (THIRD LIST) 'BAR) is the same as (RPLACA (CDDR LIST) 'BAR)

» (SETF (AREEF fred 2 3) 67) is the same as (ASET 67 fred 2 3)
INCEF is similar to SETF.

However, its second argument is the amount by which to increase the result of evaluating its
first argument.

This increased amount then replaces the old amount.
Example:
(INCF (AREF fred 2 3) 5) is the same as (ASET (+ (AREF fred 2 3) 5) fred 2 3)

Student Notes Introduction to Lisp on the Lisp Machine

126
Symbolics, Inc. December 1983

14.2 Plist & Information Stored on the Property List of Symbols

The information used by SETF and INCF to determine which alterént function is appropriate
given the accessor function used in the first argument is located on the property list of the

symbol used to name the function.
PLIST is the function used to examine the property list of a symbol. -

Student Notes Introduction to Lisp on the Lisp Machine 127
Symbolics, Inc. December 1983

14.3 Games & Practice with SMART MACROS

128 Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. December 1983

Student Notes Introduction to Lisp on the Lisp Machine 129
Symbolics, Inc. December 1983

15. Projects

130 Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. December 1983

One of the goals of this course is for you to write a good-sized Lisp program. At this point,
you've probably either finished, or are getting finished with the game of Life. This is a good
first program. ‘

For your project, we’d like you to do something a little more ambitious. Here are some
guidelines.

15.1 Criteria for good projects

Not too hard The goal should be achievable within the course schedule. If you don’t
reach a point of "closure” you may go away feeling frustrated, even if you
have learned 2 lot. We want to show you that you are capable of producing
finished programs with the machine.

Not too easy This isn’t so important if there are obvious extensions. If you finish way
ahead of time, your instuctor can always suggest extensions or modifications.
Some students feel insecure, and select an easy project for that reason. This
is fine. Just go for whatever you feel comfortable with, and make additions
later.

Graphics Graphics are so cool and so universally useful that it would be a shame to
leave them out of any project completely. Fancy hackery with text in
different fonts can be an adequate substitute, if the project does not depend
on the font editor to do all the work. Graphics are fun — don’t miss out!

Nontrivial user interface
A "trivial" user interface is one where the user just types Lisp forms and the
program just types back Lisp objects. We encourage: mouse commands,
menus, single-keystroke commands, non-lisp command languages (not too

hairy, though).

- Data abstraction and modelling
If the program manipulates abstract objects of any kind, try to model those
abstract objects with Lisp objects. We encourage the use of DEFSTRUCT,
-and-for-students-who-feel confident, the use of flavors-for-data-abstraction.-

Fun, i.e. not too work-related or drudgy
Part of our job is to make you feel "on vacation" from "real work". If we
can make it seem like Lisp isn’t "real work" you will learn it better. Ideas
on how to encourage this "holiday from work" feeling are solicited. But one
of the best things we can do is to encourage fun projects. You should do a
project that you can laugh about if it breaks.

Working on projects that directly relate to work should be discouraged for
two reasons. First, it makes learning Lisp too much like work. Second,
work-inspired projects are hard for the instructor to evaluate because the
student is an expert in the area and the instructor (generally) is not.

In the early stages of learning Lisp, it isn’t important exactly what
applications one works on. You will get at least as much out of a pool-table
simulation as they will get out of a sewage-treatment plant simulation.

Student Notes Introduction to Lisp on the Lisp Machine 131
Symbolics, Inc. December 1983

We're not adamant. We’re reasonable. If you insist on doing sewage-
treatment, fine. You paid.

Instructable Please don’t insist on doing a project that is in a problem domain that the
instructor is not familiar with. If you do, the instructor will have to make a
choice of whether to try to become an instant expert in neuropathology (or
whatever) or whether to regretfully inform you that he or she will be unable
to offer much support. We favor the latter, in general. The time the
instructor spends learning neuropathology could be spent helping other
students learning Lisp. You will have been warned that the instructor won’t
be much help. If you insist on doing neuropathology, well, you paid.

15.2 ldeas for good projects

« Finishing the game of Life, if you haven’t done so, or giving it a fancy mouse interface.
(Only do this if you want to. If you haven’t finished the Life program and are bored
with it, do something else.)

¢ Calculator simulation

¢ Turtle graphics

¢ Games:

o Tic Tac Toe

o Othello

o Checkers
Note: unless the game has a real easy strategy, the actual Al part of the program may be
beyond the scope of the course. But games are still great projects. You can write a
program that acts as a smart game board, so two pecple can sit at the console and play
against each other, with the machine taking care of captures and things like that.

¢ Video Games

A simple Space Invaders is actually within the range of possibility. We’ve seen a couple
of creative and interesting video games come out of this course.

e Computer-aided design:
From the most abstract sort of design tool ("Put a big triangle over there. Erase that
square.") to real applications like plumbing, wiring, and mechanical design, there are

zillions of possible projects in this domain.

¢ A graphic representation of the Lisp World (reasonably difficult).

132 Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. December 1983

If you can’t think of anything, talk to your instructor. There are a number of projects that
have been done already which are interesting, but not unique.

Comments

Watch out for vagueness. Try to have a detailed vision. Try to imagine exactly how you want
your program to work when somebody uses it.

Don’t be overambitious

We encourage grand visions, but we want to make sure that you have an achievable subgoal.
Here is one scenario:

"I want to do a CAD program for designing radios,” says a student. "You'll draw a
schematic with the mouse, and then be able to simulate the response of the radio to
real signals. It'll be able to draw graphs of selectivity and stuff like that."

The instructor responds, "That sounds great — really ambitious, and exactly the kind
of thing that this machine is intended for. The actual circuit entry sounds most
interesting to me — how about concentrating on that first, and doing the simulation
stuff if there’s enough time?"

In this case, the student would be gently advised that it would be best to start with only a
couple of kinds of circuit elements, or maybe only one. This way the student can concentrate
on mouse clicking, basic graphics, and the structure of the circuit database, and can get the
major pieces of the circuit entry program into place.

If the circuit-entry program works for only one kind of circuit element, say resistors, it can
easily be extended to other circuit elements. Keeping this in mind will encourage the student
to write extensible, modular code.

15.3 Your mission Jim, if you should choose to accept it...

Write a short description of the project you are going to do. It should be a description of how
it will look to a user. Give this to the instructor for comments. When the two of you have
agreed on a specification, do it. This book will self-destruct in five seconds.

Student Notes Introduction to Lisp on the Lisp Machine 133
Symbolics, Inc. December 1983

16. STRUCTURES & DATA ABSTRACTION

Representations
Structure Macros
Structure Makers

Structure Accessors

134 Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. December 1983

16.1 Representations & Structure Macros

Lisp World Objects are used to model, or, represent real world objects and their relationships.
A good representation bears a strong, easy to remember, easy to use resemblance to the
original. v

The higher the level of abstraction, the better.

16.1.1 Structure Macros

Structure Macros extend the representation capabilities of the Lisp World by providing a
mechanism to make easy mappings from Lisp World objects to real world objects.

They do NOT create new types of Lisp World Objects.

They simply enable you to call existing Lisp objects by different names, and to access and
change them by operations that are closer to the real world operations.

Structure Macros do much of the busy work of creating the tools for

« constructing
» accessing &

¢ altering

the modelled objects, without you having to worry about exactly how they are implemented.

Student Notes Introduction to Lisp on the Lisp Machine 135
Symbolics, Inc. December 1983 '

16.1.2 DEFSTRUCT

DEFSTRUCT is the name of the structure macro. As a macro it is a special operator.

It enables you to create objects of some (potentially unknown) Lisp world type, and refer to
that kind of object by a real world name, and parts of that kind,object by real world names.
The parts of the object are called slots. of.

It offers a large number of options that specify a variety of attributes the structure and
structure tools may possess.

The DEFSTRUCT form is a list consisting of
« DEFSTRUCT
« g list consisting of

o the name of the structure

o zero or more options such as

« the :type option which specifies what type of object to use to lmplement the
structure. An art-q array is the default.

 the :conc-name feature which prefixes the name of all accessor macros with
the name of the structure.

« the :include option which includes an earlier structure definition as part of a
new definition.

e one or more slot-descriptions that are descriptions of the attributes of the structure
being defined. A slot description may be:

o a symbol, whose name will be used for the slot-name

o a list of a symbol and an initial value to put in the slot
All DEFSTRUCT does is create some new macros:

e a constructor macro
¢ an alterant macro

« and an accessor macro for each slot

136 Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. December 1983

16.1.3 Constructor Macro
The name of this macro is a hyphenation of MAKE and the name of the structure.
Running the constructor-macro results in the creation of a concrete example of the structure.

The values of any or all attributes named in the slot-descriptions may be specified at this
time.
16.1.4 Alterant Macro

The name of this macro is a hyphenation of ALTER and the structure name.
This macro allows you to change the value in any of the slots in a particular structure.

A call to this macro consists of 3 list as follows:

1. The name of the alterant macro
2. The concrete structure example to be altered

3. One or more pairs consisting of an attribute name followed by the corresponding value
to be assigned.

16.1.5 Accessor Functions

For each attribute named in the slot-descriptions of the abstract structure, a macro is created
that fetches the value of the given attribute for any concrete instance.

The name of the macro may be simply the name of the attribute, or, a hyphenation of the
structure name with the attribute name. This will depend on whether the :conc-name option
was invoked in defining the structure.

An accessor macro requiwskone argument which must be a form that evaluates to an instance
of the given structure.
16.1.6 DESCRIBE-DEFSTRUCT

DESCRIBE-DEFSTRUCT is a function that allows an all inclusive view of a structure
instance.

Tt takes two arguments

¢ a structure instance

¢ the structure name

Student Notes Introduction to Lisp on the Lisp Machine 137
Symbolics, Inc. December 1983

16.2 Games & Practice with
STRUCTURES & DATA ABSTRACTICN

16.2.1 Examples of using DEFSTRUCT

(DEFSTRUCT (SHIP)

SPEED
CREW
CAPTAIN)
(DEFSTRUCT (PERSON)
AGE
SEX
NATURE)
(SETQ BLIGH (MAKE-PERSON
AGE 50
SEX °*MALE

" NATURE °TYRANNICAL))
(SETQ BOUNTY (MAKE-SHIP CAPTAIN BLIGH))

(NATURE (CAPTAIN BOUNTY)) ===> TYRANNICAL

Here is an improved version:

138

Student Notes Introduction to Lisp on the Lisp Machine

Symbolics, Inc. December 1983

(DEFSTRUCT (SHIP :CONC-NAME)

SPEED
CREW
CAPTAIN)

(DEFSTRUCT (PERSON :CONC-NAME)

AGE
SEX
(NATURE *600D))

(DEFSTRUCT (SAILOR :CONC-NAME (:INCLUDE PERSON))

HOME-PORT
RANK)
(SETQ BLIGH (MAKE-SAILOR AGE 50
SEX *MALE N
NATURE °TYRANNICAL o
RANK *CAPTAIN e
HOME-PORT *UNKNOWN))
(SETQ BOUNTY (MAKE-SHIP CAPTAIN BLIGH L\
CREW 7 A
CAPTAIN BLIGH)) - * ./
(SAILOR-RANK BLIGH) ===> CAPTAIN

(PERSON-AGE BLIGH) ===> 50

16.2.2 Exercises

Pretend you are writing an airline reservation system. Think of some of the objects you
would have to model in such a program. Write some reasonable DEFSTRUCT’s for the
objects. Then write one function that the big program might need. For example, you might
model airports and airplanes. Write a function that gets run whenever a flight leaves an
airport and adds the plane to the destination airport’s data, and removes the plane from the

origin.

Don’t get too, too fancy.

Student Notes Introduction to Lisp on the Lisp Machine 139
Symbolics, Inc. January 1984

17. Flavors

Mechanics

Motivation

140 Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. January 1984

The Flavor system is an extension of Lisp. It is fully integrated into the language so you can
write code that uses both flavor stuff, and all the regular stuff we’ve talked about so far. But
you can certainly write Lisp programs without using Flavors.

First we will talk about the mechanics of using the flavor system, and then we’ll explain the
motivation.

17.1 Méchanlcs of the Flavor System

17.1.1 Flavor instances
Flavor instances:
e are a new kind of Lisp object.
« have instance variables, similar to slots in a structure.
* have a message handler. A message handler is a table of message names and methods.
« receive (are sent) messages.

A message is just a symbol. It should be interned in the keyword package.

A merhod is (mostly) just a function. It is not the functional ward of any symbol, though.
The only way it can be referenced is through the message handler.

Student Notes Introduction to Lisp on the Lisp Machine 141
Symbolics, Inc. January 1984

17.1.2 SEND

The send function is used to send a message to an instance.
SEND
4‘ 1. scans the instance’s message handler for method to use
2. "binds" symbols to instance variable values (sort of, anyway)
3. binds the variable SELF to the instance itself
4. runs the method in this context
5. "unzips" the instance variable bindings
6. returns what the method returns

We've already used the send function when we did graphics. The ward of terminal-io is an
instance.

17.1.3 How do instances learn new behaviors?
Or, how do we add a new message-method pair to an instance’s message handler?

¢ Usually we have lots of instances of the same kind, so we’d like to teach all of them at
once.

¢ "Kind" = Flavor
* A flavor gives you
o a template to stamp out new instances with
» message handler that all the instances of that flavor share

« instances learn new methods by adding message-method pairs to the message handler

142 Student Notes Introduction to Lisp on the Lisp Machine
‘ Symbolics, Inc. January 1984

DEFMETHOD
o defines a method for a particular flavor
DEFFLAVOR

» defines a template for the "size and shape"” of instances
» creates a message handler that is shared by all instances of this flavor

* may create some initial methods
MAKE-INSTANCE

« makes an instance of a particular flavor

17.1.4 Flavor combination
» Flavors can be added together to get behavior of all combined flavors

Now the following question comes up: Which flavor’s method gets to run if more than one
included flavor has a method for a particular message?
The answer lies in:

The order of flavor combination

Note that the following is only the effect of how flavors are combined, not how they actually
do it.

Student Notes Introduction to Lisp on the Lisp Machine 143
Symbolics, Inc. January 1984

When an instance receives a message, it:
» Searches through its message handler looking for the message
o If it finds the message, it runs the corresponding method
o If not:

o It goes to leftmost included flavor (as defined in the DEFFLAVOR) and searches
its message handler

o If the message is not found in this flavor, Keep going "down and to the left" until
you reach the bottom (i.e. the leftmost, bottom-most flavor). If still not found, go
up one level and one flavor to the right. This is a left-to-right, depth-first search.
Loops in the flavor structure are allowed and cause no problem.

o Use the first method that you find, or signal an error if none is found.

So the order in which you combine methods becomes crucial when more than one flavor has a
method for a particular message. If there is no overlap of messages, then the order won’t
matter.

Here is a simple example of flavor combination, showing which method will run when more
than one flavor defines a method for the same message.

144 Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. January 1984

;;; None of these flavors have any instance variables.

(defflavof a ()
)

(defflavor b ()
))

(defflavor ¢ ()
(b a))

(defflavor d ()
(a))

(defflavor e ()
(d c))

(defflavor f ()
(c d))

;3 A1l of these flavors define the :doit message, or include a flavor
;; that defines the :doit message

{defmethod (a :doit) ()
(print *This is flavor A"))

(defmethod (b :doit) ()
(print *This is flavor B"))

{defmethod (d :doit) ()
(print “This is flavor D"))

Student Notes Introduction to Lisp on the Lisp Machine

145

Symbolics, Inc. January 1984

(setq
(setq
(setq
(setq
(setq

(setq

(send
(send
(send
(send
(send

(send

b

c

d

{make-instance ’a))

(make~-instance ’b))

{make-instance °’c))

(make-instance °’d))

{make-~instance ’e))

(make-insténce 1))

*:doit) ===>
*:doit) ===>
*:doit) ===>
*:doit) ===>
?:doit) ===>

*:doit) ===>

*This

*This

*This

"This

"This

*"This

is
is
is
is
is

is

A defines
B defines

C includes B and A

:doit

:doit

D defines :doit

E includes D and C

F includes C and D

flavor

flavor

flavor

flavor

flavor

flavor

AI

Dl

146 Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. January 1 984

17.1.5 Advanced Method Combination
This section may not be covered in every instance (pim intended) of the course.

 This is more advanced stuff, that you don’t need to understand in-order to understand
anything else in flavors.

» Typically only one method per message wil get to run. You might, in certain
circumstances, want all the flavors to add their little bit to the effect.

» For example, you might want all the included flavors’ methods to run. Or you might
want all the methods to try to run until one works properly.

¢ The most common (and default) way of combining methods is called DAEMON
combination. This only lets one method run, as we saw before, but lets you define
additional methods that run either before or after the PRIMARY method runs.

* You can write daemon methods by simply specifying :before or :after before the
message-name in the defmethod.

¢ Other ways of combining methods are PROGN, AND, OR, and LIST. These are more
complex, and are almost never used. If you want to see an example of this, the
:mouse-click methods are combined using OR.

17.2 Motivation for Using Flavors

The motivation for using flavors usually arises in large programs, so it’s difficult for us to
provide small examples.

When you want to have lots of particular kinds of things.
This is very similar to why you want to use DEFSTRUCT.

When abstract types of things share behavior.
This is similar to DEFSTRUCT’s include facility, except that including
flavors is more flexible, because you don’t have to be strictly hierarchecal.

When you can separate out a particular behavior that different types of things share.
This is why we have "mixins". You define a flavor that can be mixed into
completely different kinds of flavors. If the behavior that it specifies is
appropriate for mixing in with more than one other flavor, there’s no
problem of type-checking or anything like that,

When you want to do something whenever you create an "instance” of a type of thing.
You can specxfy an :after :init method that does something whenever an
instance is created. ,

When you want to define a protocol that different programs can use.
The protocol for output streams is a good example. You can easily write
"device-independent” programs by just doing output to a stream. The

Student Notes Introduction to Lisp on the Lisp Machine 147
Symbolics, Inc. January 1984

messages are the same, no matter how the actual output is implemented. On
the other side, a person implementing a new kind of output device can just
implement methods for all the messages that generic streams handle. Then
all the existing programs can work on the new output device too.

148 Student Notes Introduction to Lisp on the Lisp Machine
 Symbolics, Inc. January 1984

17.3 Games and Practice Using Flavors

17.3.1 Examples
Here are some examples of DEFFLAVOR’s and DEFMETHOD"s for defining tiddlywinks.

(defflavor wink (x y) ;instance variables for location
Q0
:settable-instance-variables) ;settable makes instance
;variables gettable and
;initable too.

;35 This method allows a wink to move all at once.

(defmethod (wink :move-to) (new-x new-y) ;don’t call arguments
;x and y
(setq x new-x)
(setq y new-y))

33; Another way of doing this is like tﬁis, in some cases this
+3: way is preferred:

(defmethod (wink :move-to) (new-x new-y)
(send self ’:set-x new-x)
(send self *:set-y new-y))

A program that used the wink flavor might look like this:

(defun play-game ()
(let ((winks (loop with list = nil

for i from 1 to 10

do

(push (make-instance ’wink
*:x (random 10)
*:y (random 10))

list)
finally (return 1ist))))

coee

(send (first winks) *:move-to (random 3) (random 3))

eeee))

Student Notes Introduction to Lisp on the Lisp Machine : 149
Symbolics, Inc. January 1984

We could add colors to the wmks by just adding some more code.

e :
(defflavor(;tolor-mixiqﬁ}(color-tab1e current-color)
)

:settable-instance-variables)

We call this flavor color-mixin because it is intended to be mixed in with other flavors, and
not instantiated by itself. That is, you should never see:

(make-instance *color-mixin

*:color-table °(black white)
*:current-color ’white)

Then we make a new flavor, and slightly redefine play-game:

(defflavor color-wink ()
(color-mixin wink))

(defun play-game ()
(let ((winks (loop with list = nil

for i from 1 to 10

do

;; all changes are in the make-instance

(push (make-instance ’color-wink
*:x (random 10)
*:y (random 10)
*:color-table
*{black white)

*:current-color *black)
list)

finally (return list))))

DRy

(send (first winks) ’:move-to (random 3) (random 3))

)]

150 Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. January 1984

There’s no point in having a new flavor if it either

e doesn’t add any new instance variables itself, or
« doesn’t add any new methods itself, or ‘

« include other flavors

color-wink adds a new flavor which includes new instance variables, and a new method, called
:flip. The reason why we defined :flip as a method for color-wink, and not color-mixin, is
because flipping is something that only colored winks do. Color-mixin should remain as
general as possible, so that we could include it into other flavors. For example, some of the
celestial objects in the solar system program on the next page could include color-mixin and
could change color when they get eclipsed. (Or something.)

;3; This method flips a wink over. It assumes that there are
;:; only two colors in the color table.
(defmethod (color-wink :f1ip) ()
(if (eq current-color (first color-table))
(setq current-color (second color-table))
(setq color (first color-table))))

et
o

Student Notes Introduction to Lisp on the Lisp Machine 151

Symbolics, Inc. January 1984

The following example is a complete small program that uses flavors. You will need to ask
your instructor how to run it, if you want to see it go.

-e

e ®we we

ve we we

ws ve we wo

e wve we we
wo we we vwe
we ws we we

.o

we

we we woe we wo wo we we ws we

v we
. we

we

e we we s B0 we

o we wo we

-%- Base: 10 -*-
Flavor examples:

These examples are a simple way to get animation. Each instance
keeps a list of characters and a font. The characters are assumed
to be a sequence of images that form a repeatable motion.

The :animate message tells the instance how to move. A high-level
function will be sending the :animate message to a bunch of
®*animated” objects.

First we define a basic object that all objects should include.

Then we define the character-display-mixin that allows basic-objects
to be actively displayed. Character-display-mixin keeps track of
updating the display each time the :animate message is sent.

Finally we define two flavors that define the motion of particular
kinds of objects.

While the flavors we define are generic to any image, using any
font, you should load the solar font to get the right font for the
high level solar system functions. Find out what file this font is
in from your instructor, and use the LOAD function.

Use m-x Display Font Solar to see what characters are available

! 711
| gad e Fo

152 Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. January 1984

s3: This flavor just gives us a point to do or place
;3; things at.
(defflavor basic-object (x y)

() '
; :settable makes i.v.’s initable and gettable too!
settable-instance-~variables)

;3: This flavor allows animation using a 1ist of characters that is
;3; looped through (forever).
(defflavor character-display-mixin

(font
start-char - ;index of first char in sequence
nchars snhumber of chars in sequence

(char-pointer 0) ;where we are in sequence
(x-offset nil)) ;offset due to font size
Q)
:settable-instance-variables
{:required-flavors basic-object)
(:required-methods :animate))

Student Notes Introduction to Lisp on the Lisp Machine 153
Symbolics, Inc. January 1984

::: Keep a 1ist of all of these things so we can animate ail of them.

(defvar ®*1ist-of-displayable-objects® nil)

;;; Get what appears to be the center of the object

(defmethod (character-display-mixin :x) ()
(+# x x-offset))

;:; This might be needed in the future
(defmethod (character-display-mixin :y) ()
y)

;:: Get the actual coordinates

(defmethod (character-display-mixin :real-x) ()
x)

{(defmethod (character-display-mixin :real-y) ()
y)

(defmethod (character-display-mixin :after :init) (&rest ignore)
;: This adds the new instance to the 1list
(push self s®list-of-displayable-objects*)
;s This sets up the right displacement for the x-coordinate
(setq x-offset (// (font-blinker-width font) 2)))

154 Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. January 1984

;33 Primitive graphics

(defmethod (character-display-mixin :draw-self) ()
(send terminal-io ’:draw-char
font (+ start-char char-pointer) x y tv:alu-ior))

(defmethod (character-display-mixin :erase-self) ()
(send terminal-io °:draw-char
font (+ start-char char-pointer) x y tv:alu-andca))

::; Erase the character before it moves
(defmethod (character-display-mixin :before :animate) ()
(send self ':erase-self))

;3; Some other flavor defines the motion using the :animate method.
s:s This method should just update the X and Y instance variables
;3; according to how the object wants to move each time.

;:; Draw the character after the cbject has been moved.
(defmethod (character-display-mixin :after :animate) ()
(if (= char-pointer (1- nchars))
(setq char-pointer 0)
(setq char-pointer (1l+ char-pointer)))
(send self ®':draw-self))

Student Notes Introduction to Lisp on the Lisp Machine 155
Symbolics, Inc. January 1984

This flavor defines an :animate method that moves an object in a
circle, centered around another (possibly moving) object.

{(defflavor revolving-object-mixin
((theta 0) ;changed at animate time
(delta-theta nil) ;defined at init time
radius suser defined
mother) ;user defined, must be an
;instance of basic-object
;with has-satellites-mixin
)
:settable-instance-variables
(:required-flavors basic-object)) ;must have x and y instance
;variables for :animate

(defvar ®arc® 30) ;How far objects move along the
;circumference of the circle

:3: This method defines the size of the angle that the instance moves
;s; each time it is ":animated®. A1l "revolving objects" move the same
:3; distance each time, but the angle varies with the circumference of
ss: the orbit.
(de

fmethod (revolving-object-mixin :after :init) (&rest ignore)
(setq deita-theta (// (* 360 *arc*) (* 2 3.14159 radius))))

;; Here is the important method. 1It’s main job is to change X and Y in
;s such a way that the object moves in a circle.
defmethod (revolving-object-mixin :animate) ()

(setq theta (+ theta delta-theta)) :move along the circle

{when (> theta 360.) ;Tix up angle to look nice

(setq theta (- theta 360.))) -

s: change x

(setq x (+ (send mother ’:x) (fix (* radius (cosd theta)))))

:: change y

(setq y (+ (send mother °*:y) (fix (® radius (sind theta))))))

(

156

Student Notes Introduction to Lisp on the Lisp Machine

s3; This mixin is for objects that have satellites.
;33 it has to move all the satellites too.

(defflavor has-satellites-mixin (old-x
old-y
(satellites nil))
Q)
:settable-instance-variables
(:required-flavors character-display-mixin)
(:required-methods :animate))

(defmethod (has-satellites-mixin :before :animate) ()
(setq o0ld-x x o0ld-y y))

(defmethod (has-satellites-mixin :after :animate) ()
(loop for s in satellites
do
(send s ':erase-self)
(send s *:set-x (+ (send s ':real-x)
(- x old-x)))

(send s *:set-y (+ (send s ’:real-y)

' (- y old-y)))
(send s ':draw-self)))

Symbolics, Inc. January 1984

Each time it moves,

Student Notes Introduction ta Lisp on the Lisp Machine 157
Symbolics, Inc. January 1984

: This is an instantiable flavor.
e

d

(defflavor satellite (name)
(has-satellites-mixin ;some can have satellites
revolving-object-mixin
character~-display-mixin
basic-object)
:settable-instance-variables)

(defmethod (satellite :after :init) (&rest ignore)

;;the mother better have has-satellites-mixin
(push self (send mother ’:satellites)))

This is an instantiable flavor aiso.

(defflavor fixed-object (name)
(has-satellites-mixin
character-display-mixin
basic-object)

:settable-~instance-variabhles)

s:; No motion for a fixed object. You don’t actually need to
;3; define a primary method, but we put one in for
s:; completeness.

(defmethod (fixed-object :animate) ()
nil)

This function actually does the animation.

defun doit (&optional (sleep 10))
{send terminal-io ’:clear-screen)
(format t *Type any character to stop:®)
(loop do
;(process-sleep sleep)
(loop for object in *list-of-displayable-cbjects®* do
(send object ’:animate)) .
(when (send terminal-io ’:tyi-no-hang)
(return ®list-of-displayable-objects®*))))

H

-
A
o

158 Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. January 1984

::; This function is good if you just want to see what happens.

(defun solar-demo (&optional (sleep 10))
{let* ((*1ist-of-displayable-objects* nil)
(so1 (make-instance 'fixed-object
:name "Sol
v:x 350.
*:y 350.
*:font fonts:solar
*:start-char #/2
*:nchars 3))
(earth (make-instance °'satellite
*:name “Earth"
*:mother sol
*:radius 150.
*:x (send sol *:x)
*:y (+ 150. (send sol ’:y))
*:font fonts:solar
':start-char #/E
*:nchars 2))
(saturn (make-instance ’'satellite
*:name “Saturn®
*:mother sol
*:radius 250.
*:x (send sol ’:x)
*:y (+ 250. (send sol *:y))
?:font fonts:solar
':start-char #/S
*:nchars 2))
(moon-1 (make-instance ’satellite
:name “Moon®
*:mother earth
*:radius 30.
*:x (send earth ’:x)
*:y (+ 30. (send earth *:y))
*:font fonts:solar
*:start-char #/m
*:nchars 1))
(moon-2 (make-instance ‘satellite
* :name “"Moon*
*:mother earth
*:radius 60.
*:x (send earth *:x)
*:y (+ 60. (send earth *:y))
*:font fonts:solar
*:start-char #/m
*:nchars 1)))
{(doit sleep)))

Student Notes Introduction to Lisp on the Lisp Machine 159
Symbolics, Inc. January 1984

;:: Try this on the value that SOLAR-DEMO returns:

{loop for o in * do (describe o))

o4 V4 Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. January 1984

160

These two functions create new objects with a nice
user-interface. As a side-effect, the objects are added
to the list of objects. Note that if you have DOIT
running in one Lisp Listener, and you run one of the
following functions in another, the object gets
dynamically added to the display.

we we we we we we
ws we we wi we we
e we we we we

{defun make-fixed-object ()
(format t
~&Please enter the following pieces of information.~%)
(let ((name (prompt-and-read ’:string "Name: %))
(x (prompt-and-read ’:number *"X coordinate: %))
(y (prompt-and-read °®:number "Y coordinate: "))
(char (progn (format t *~&Starting character: *)
(send terminal-io ’:tyi)))
(nchars (prompt-and-read °’:number
*Number of chars in sequence: “)))
(make-instance 'fixed-object
: *:name name

Yix X g
: e ’;ﬂw

A . -
* :zo:t fonts 0M

*:start-char char
*:nchars nchars)))

(defun make-satellite ()

(format t
*~&Please enter the following pieces of information.~¥%")
(let

({name (prompt-and-read *:string "Name: *))

(mother

(prompt-and-read
*:eval-form
"Form to evaluate and use for sateilite’s mother: “))
(radius (prompt-and-read °®:number ®"Radius: "))
(char (progn {(format t "~&Starting character: *)
(send terminal-io ’:tyo
(send terminal-io *:tyi))))
(nchars (prompt-and-read °:number
SNumber of chars in sequence: ")))
(make-instance *satellite
*:name name
*:mother mother
*:radius radius
*:x (send mother ’:x)
*:y (+ radius (send mother *:y))
*:font fonts:solar
*:start-char char
*:nchars nchars)))

Student Notes Introduction to Lisp on the Lisp Machine 161
Symbolics, Inc. January 1984

HH ;t‘tt‘tttttt“tlttltl‘ltlt“tlllt!!ttt‘t‘tltt‘llttttttlttt
Now we can add some new things easily. For example, it°’s
easy to make a shooting gallery target that walks back and
forth. We just define a new flavor that defines its
animation behavior, (and new font/character sequence) and
mix it in with basic-object and character-dispiay-mixin.

v we we wo we

.
»
°
td
-
»
-
®
-
’

ws we we we wo

(defflavor target-object-mixin

(height ;the height that it walks at

(direction 1) ;start going to right

(incr 1)) ;default to one pixel at a time
()

:settable-instance-variables
{:required-flavors basic-object))

This :animate method ignores the Y coordinate, and just
moves X back and forth across the window. It has to take
the width of the font into account so that the display
doesn’t go off the edge of the window.

(defmethod (target-object-mixin :animate) ()
(when (or
;; solar font is 50. wide.
{2 x (- (send terminal-io ’:inside-width) 50.))
(< x 0)) T
(setq direction (- direction)))
(setqg x (+ x (® direction incr))))

s:; This is an instantiable flavor to make shooting gallery
s targets.

(defflavor target (name)
(target-object-mixin
character-display-mixin
basic-object)
:settable-instance-variables)

162 Student Notes Introduction to Lisp on the Lisp Machine
Symbolics, Inc. January 1984

(defun make-target ()
(format t
“~3Please enter the following pieces of information.~%")
(let ((name (prompt-and-read ’:string "Name: "))
- (height (prompt-and-read ®’:number “"Height: *))
(incr (prompt-and-read
" ?:number
*Distance to move each loop (1<n<25): *)))
(make-instance 'target
*:incr incr
*:name name
*:height height
*:x 1
*:y height
*:font fonts:solar
*:start-char #/C
*:nchars 4)))

REELESRERVEEEEELE RS E TR ERER (22223 2332321233

..
-
.o

It’s important to note that revolving-object-mixin and
target-object-mixin were made separate flavors. This way
we can mix in these flavors to create new ones.

s we we
s we we
s we we

Suppose that we didn't want to use
character-display-mixin, but instead had a way of
displaying planets in the real world, hooked up by motors
and cables. Then we could mix basic-object,
revolving-object-mixin and a new flavor, 3d-display-mixin,
to manage the real display.

e we we ws we we
ws we we we we we
we we we we we we

Revolving-object-mixin just defines the revolving

behavior. It should not be necessarily tied to display on
the screen. You should be able to mix this flavor into any
other flavor that you want to be able to revolve. For
example, you might be impliementing a program that deals
with motor shafts or merry-go-rounds and then you can use
revolving-object-mixin.’

e Wi we we we we we
e ws we we we we we
e we we we we we we

(defun s-demo (&optional (sleep 10)) (let* ((*list-of-displayable-objects® nil) (sol (make-instance
*fixed-object *:name "Sol" *x 350. *:y 350. “font fonts:solar *start-char #/§ ":nchars 3)) (moon
(make-instance ’satellite *name "Moon" ":mother sol *:radius 10. ":x (send sol ":x) %y (+ 10.
(send sol *y)) ":font fonts:solar *:start-char #/m “nchars 1))) (doit sleep)))

Student Notes Introduction to Lisp on the Lisp Machine 163
Symbolics, Inc. January 1984

IndeXx

Symbelics, fne.

Table of Contents

Page

1. Input and Oulput | 1

1.1 Streams

1.2 Files

1.3 Formatted Cutput

1.4 Querying the User

1.5 Games and Practice Using input and Cutput
1.6 Answers to Some Exercises

(e I o B4 I 2 - I]

Symbolics, inc.

1. Input and Cutput

Streams
Files

Formatted Output

Querying the Uger

Symbolics, Inc.

1.1 Streams

o All input and output is done through cbjects called streams. A stream is a source or sink
(or both) of characters.

o Streams are almost always flavor instances.
o Windows are streams. (They have a stream flavor mixed in.)

o The input and output functions that we’ve seen so far (like PRINT and READ) take a
stream as an optional argument. ’

o Streams accept the following messages:
TYI Get the next character from the stream
:TYO char Put the character out to the stream

And lots of others. Usually you won’t need to use stream messages other than these two.

1.2 Files

Files are nothing speciéL You just have to get a stream to the file.

The open function takes a pathname as an argument, (and optional options,) and returns a
stream to that file. A

You have to use the close function on the stream whea you’re done with it.
Use with-open-file to automatically close the stream.

Symbolics, Inc.

1.3 Formatted Output

You can do all kinds of fancy formatted output by using the FCRMAT function.
FORMAT takes as arguments:

stream - A stream or NIL or T. If you supply a stream, the output goes on that siream. If
you supply NIL, then format will do no output, and just return the string it wouid have
printed. If you supply T, it will go to standard-outpat, wkich is usuaily the same as
terminzl-io (the current window).

control-string - A string which is displayed on the stream. It is interpreted specially by format.
Characters following tilde’s (~’s) are directives to format. Some of them will take an
argument from any further arguments supplied.) ’

format-args - see above and below

A directive in a format control string means "do some display other than this exact text".
Sometimes doing this doesn’t need something to "do it on", like going to a new line, or clearing
the screen. Other times you do need something to do it on, like when you say "display tie
answer in octal.”

Here are some examples that should make this clearer. We're using a first argument of NiL so
FORMAT will return a string and not do any output. If we supplied something else, format
would display the "result” on the appropriate stream.

The ~o and ~d directives take an argument.
(setq ans 10.)
{format nil "The answer is ~o {octal).® ans) =s=)>
The answer is 12 (octal).
(format nil
The answer, ~d., squared is: ~d (all in decimal)
ans

(~ ans 2)) ===

*The answer, 10., squared 1s: 100 (all in decimal)"®

The ~% directive does not take an argument

Symbolics, Inc.

(format nil "~XThe answer is ~o (octal)." ans) ===

The answer is 12 (octai).®

Other useful directives are:

~F Floating point notation
~E Scientific notation
~& Fresh line. Makes sure you’re at the beginning of a line. Doesn’t give you a
newline if you don’t need it. l)
v ~A Prints a Lisp object like PRINC ’} (fFoemeT wil nou..r response weo ~od Pen
~S Prints a Lisp object like PRIN1 C o den,)
. nslden)
Even more format directives are described in the Lisp Machme Manual. Just about any output ' I do nl

you’d like to do can be done with format.

* o L;ﬂq sl o veodl o /4%*23‘ ~Ywrns (L, sb—. g i antt

S)""SL)'Fl C—J‘:M V\CTM»’)\S VAL Ot S/Q_.SL,,FI.‘L &\S"‘-’(/C_

Symbolics, Irc.

1.4 Querying the User

Of course, you can ask questions of the user by using a combination of format and read or
readiine. But these functions are designed to do some of the more common things you need.

y-or-n-p

yes-or-no-p

Used as a predicate to ask the user whether to go on or not. it takes an
optional argument, a string to be displayed, and waits for the user to type a
"y" or an "n". It returns T or NIL based on the response.

(defun game-top-level ()
(loop do
(play-game)
while (y-or-n-p "Play agatin? “))}

is the same as y-or-n-p, but requires that the user type in "yes" or "no" with
a return. This is meant for questions that are more serious, and shouid
require conscious thought on the part of the user.

(defun clear-out-all-known-data ()
{when (yes-or-no-p
"Ars you sure you know what you're doing? *)
(ok-lets-really-do~it)))

is a general facility for asking questions that have a small, finite number of
possible answers. Both y-or-n-p and yes-or-no-p use fquery internally.

Sometimes it’s not clear as to whether to use fquery or 2 menu. Use a
menu when either you have a lot of choices to make at oance, or if all the
other interaction is being done with the mouse.

fquery needs two arguments, a list of options, and a prompt. The prompt is
a format control string. You can supply any number of format arguments.
The first argument, the options, are usually used like this:

Symbolics, Inc.

:3: Almost all uses of fquery look a lot like this.

(setq rain-force~multiplier
{fquery *{:type :tyi
schoices (((1 "Lightly*) #/L)
{{(2 "Pretty hard?®) #/P)
{(3 "Cats and dogs") #/C #/d}))
s~&How hard is it raining? '))" =za2)

ss: User types help, then o, then c.

How hard 1s it raining? (L, P, or C)

(Type L (Lightly), P (Pretty hard),or C {Cats and dogs))
How hard 1s it raining? (L, P, or C)

How hard is it raiaing? (L, P, or C) Cats and dogs

3

:s: The :readline :type is much less common, because the
:s: user has to type in the whole responsa.
{setq type
(Tquery *(:type :readiine
:choices ((saved *File")
(saved "Tape®)
(lost "Hardcopy"®)
(lost "Screen®)))
*What happened to the data set number ~d? *
(data-set-number *current-data®)))

prompt-and-read
is for, obviously enough, prompting the user and getting a response. It
allows you to specify the "kind" of reading, and to specify the type of thing
that must be read in.

Arguments to prompt-and-read are similar to those for fquery. It takes a
type, which is the type of thing which must be entered by the user, and a
format control string with format arguments.

Here are some examples.

Symbolics, Inc.

' {defun print-squares-1 (}
{(format t "~%XType 0 to stop.~%~%4")

{loop
as n = (prompt-and-read
snumber
*.%Type a number to square: “;
do

(unless (= n 0) (format ¢
.&The squzre of ~d is ~d.
n {*n 2)}}

whila (not (= a 9))))

(defun print-squares-2 ()
{format t *~%Type <{end> to stop.~%~-%%}
(loop '
as n = {prompt-and-read
*(:number :or-nil t)
*.%Typa a number to squars: ")
do
(when n (format t
“~&The square of ~d is ~d.®
n(*~n2)))
while n))

The most common options for prompt-and-read

Option Action
eval-form ~ Reads a Lisp form. Evaluates it and returns the value.
- expression Reads the printed representation of a Lisp object, and
' returns the object (without evaluating it.)
:number Reads a number.
sstring Reads a string, terminated by RE;_@ crf\N_B. e cn GE S
spathname Reads a pathname.

All of the above options have a way of returning NIL if the user just hits
END. See Release 5.0 Release Notes for more details, or ask your instructor.

Symébolics, Inc.

1.5 Games and Practice Using input and Quiput

1. Write a function that has a nice user interface for inputting nursbers and returning their
average. It should allow you to type in as many numbers 2s you want, then hit END to
finish. Then it should display the average and ask you if you wzat t¢ do some more
averaging.

2. Mzke the above function have an option to write the informaticn cut to a file when it’s
done.

3. Make the first function have an option that asks the user what kied of calculation should
be done on the data: average, median or mode.

Symkolics, Inc,

1.6 Answers to Some Exercisas

(defun average-1l ()
(let (numbers
ave)
(format t "~&Average program. Type in the numbers tc be averaged.~%~%")
(loop
as
new-number = (prompt-and-read
*(:number :or-nil %)
*Type a number, or <{end> to end: "}
do (when new-number (push new-number numbers))
until (null new-number))
(setq ave (// (lcop for n in numbers
summing n)
(float (length numbers))))
(format t "~%~XThe average of the numbers is: ~D.° ave)))

(defun average-2 () -
(let (numbers
ave)
{format t "~ZAverage program. Type in the numbers to be averaged.~%~X")
(loop !
as
new-number = (prompt-and-read
*(:number :or-nil t)
"Type a number, or <{end> to end: *)
do (when new-number (push new-number numbers))
unt1l (null naw-number))
(setq ave (// (lcop for n in numbers
summing n)
{(float (length numbers))))
(format t "~%~%XThe average of the numbers is: ~D.~X" ave)
(when (y-or-n-p "Write this information to a file?®)
(with-open-file (str (prompt-and-read :pathname "Name of {ile: *)
?:0ut)
(format str ®~X;;; Format of fila: number of pieces of data, ~
then data, then average of data~%~¥%~%")
(format str "~d " (langth numbers))
{loop for n in (reverss numbers)
do
(format str "~d " n))
{format str ®"~d " ave)))}))

	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	A-001
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09

