Job ID: printopdf-21

Title: Symbolics Common Lisp Programming Cc

Requesting User: genera

Billing Info: {job-billing}

UNIX
Printing E asy

System oftware
Products




Symbolics Common Lisp Programming Constructs

Structure Macros

This section contains reference information on the use of defstruct, future-
common-lisp:defstruct, and zl:defstruct. For an overview of structure macros: See
the section "Overview of Structure Macros".

Basic Use of defstruct

Genera provides three defstruct symbols:

defstruct The Symbolics Common Lisp symbol, which offers many exten-
sions to the defstruct as specified by Common Lisp.

future-common-lisp:defstruct
This macro adheres to the draft ANSI Common Lisp specifica-
tion. You can define CLOS methods that specialize on instances
of structure classes defined by future-common-lisp:defstruct.

zl:defstruct From Zetalisp, and provided for compatibility reasons.

defstruct options &body items Macro

Defines a record-structure data type. A call to defstruct looks like:

(defstruct (name option-1 option-2 ...)
slot-description-1
slot-description-2

o)

name must be a symbol; it is the name of the structure. It is given a si:defstruct-
description property that describes the attributes and elements of the structure;
this is intended to be used by programs that examine other Lisp programs and
that want to display the contents of structures in a helpful way. name is used for
other things; for more information, see the section "Named Structures".

Because evaluation of a defstruct form causes many functions and macros to be
defined, you must take care not to define the same name with two different
defstruct forms. A name can only have one function definition at a time. If a
name is redefined, the later definition is the one that takes effect, destroying the
earlier definition. (This is the same as the requirement that each defun that is in-
tended to define a distinct function must have a distinct name.)

Each option can be either a symbol, which should be one of the recognized option
names, or a list containing an option name followed by the arguments to the op-
tion. Some options have arguments that default; others require that arguments be
given explicitly. For more information about options, see the section "Options for
defstruct”.

Each slot-description can be in any of three forms:



Page 449

1: slot-name
2: (sTot-name default-init)
3: ((slot-name-1 byte-spec-1 default-init-1)
(sTot-name-2 byte-spec-2 default-init-2)
.2)

Each slot-description allocates one element of the physical structure, even though
several slots may be in one form, as in form 3 above.

Each slot-name must always be a symbol; an accessor function is defined for each
slot.

In the example above, form 1 simply defines a slot with the given name slot-name.
An accessor function is defined with the name sloz-name. The :conc-name option
allows you to specify a prefix and have it concatenated onto the front of all the
slot names to make the names of the accessor functions. Form 2 is similar, but al-
lows a default initialization for the slot. Form 3 lets you pack several slots into a
single element of the physical underlying structure, using the byte field feature of
defstruct.

For a table of related items: See the section "Functions Related to defstruet Struc-
tures".

|

future-common-lisp:defstruct name-and-options &body slot-descriptions Macro

Defines a record-structure data type, and a corresponding class of the same name.
You can define methods that specialize on structure classes.

The syntax and semantics of future-common-lisp:defstruct adhere to the draft
ANSI Common Lisp specification.

zl:defstruct Macro

Defines a record-structure data type. Use the Common lisp macro defstruct.
defstruct accepts all standard Common Lisp options, and accepts several additional
options. zl:defstruct is supported only for compatibility with pre-Genera 7.0 re-
leases. See the section "Differences Between defstruct and zl:defstruct".

The basic syntax of zl:defstruct is the same as defstruct: See the macro
defstruct.

For information on the options that can be given to zl:defstruct as well as
defstruct: See the section "Options for defstruect".

The :export option is accepted by zl:defstruct but not by defstruct. Stylistically, it
is preferable to export any external interfaces in the package declarations instead
of scattering :export options throughout a program’s source files.

:export
Exports the specified symbols from the package in which the



Page 450

structure is defined. This option accepts as arguments slot
names and the following options: :alterant, :accessors,
:constructor, :copier, :predicate, :size-macro, and :size-
symbol.

The following example shows the use of :export.

(z1:defstruct (2d-moving-object
(:type :array)
:conc-name
;; export all accessors and the
;; make-2d-moving-object constructor
(:export :accessors :constructor))
mass
X-pos
y-pos
x-velocity
y-velocity)

See the section "Importing and Exporting Symbols".

Options for defstruct

This section describes the options that can be given to defstruct and zl:defstruct.
The description of each option states any differences in behavior of the option,
when given to defstruct and zl:defstruct.

Note: The :export option can be given to zl:defstruct but not defstruct. It is de-
scribed elsewhere: See the macro zl:defstruct.

Here is an example that shows the typical syntax of a call to defstruct that gives
several options.

(cl:defstruct (foo (:type vector)
:conc-name
(:size-symbol foo))

b)

:type
Specifies the kind of Lisp object to be used to implement the
structure. The option requires one argument, which must be
one of the symbols enumerated below, or a user-defined type. If
the option itself is not provided, the type defaults to :array.
You can define your own types by using defstruct-define-type.

The :type option can be given to both defstruet and
zl:defstruct, but they accept different arguments.

These arguments are accepted by the defstruct :type option,
but not by the zl:defstruct :type option:



Page 451

vector

Use a vector, storing components as vector elements.

If the structure is :named, element 0 of the vector holds
the named structure symbol and is therefore not used to
hold a component of the structure.

You can use the :make-array option with (:type vector)
to specify the area in which the structures should be
made. For example:

(defstruct
(foo (:type vector)
(:make-array (:area xfoo-areax)))
Xy 2)

(vector element-type)

Use a vector, storing components as vector elements.
Each component must be of a type that can be stored in
a vector of element-type. The structure may be :named
only if the type symbol is a subtype of the specified ele-
ment-type.

If the structure is :named, element 0 of the vector holds
the named structure symbol and is therefore not used to
hold a component of the structure.

These arguments are accepted by the defstruct :type option

and the zl:defstruct :type option:

list

dist

Use a list, storing components as list elements.

If the structure is :named, the car of the list holds the
named structure symbol and is therefore not used to
hold a component of the structure.

You can use the :make-list option with (:type list) to
specify further options about the list that implements
the structure.

Same as the list option for defstruct.

:named-list

Like :list, but the first element of the list holds the sym-
bol that is the name of the structure, and so is not used
as a component.



:alterant

Page 452

:array

Use an array, storing components in the body of the ar-
ray.

:named-array

Like :array, but make the array a named structure us-
ing the name of the structure as the named structure
symbol. See the section "Named Structures". Element 0
of the array holds the named structure symbol and is
therefore not used to hold a component of the structure.

:array-leader

Use an array, storing components in the leader of the
array. See the section "Options for defstruct".

:named-array-leader

Like :array-leader, but make the array a named struc-
ture using the name of the structure as the named
structure symbol. See the section "Named Structures".
Element 1 of the leader holds the named structure sym-
bol and so is not used to hold a component of the struc-
ture.

:tree
Implements structure out of a binary tree of conses, with
the leaves serving as the slots.

:grouped-array

See the section "Grouped Arrays". This option is de-
scribed there.

Allows you to customize the name of the alterant function. If
(:alterant name) is supplied, the name of the alterant function
is name. name should be a symbol; its print name is the name
of the alterant function.

If :alterant is specified without an argument, the name of the
alterant is alter-structure. This is also the default behavior of
zl:defstruct, when the :alterant option is not given.

If (:alterant nil) is specified, no alterant is defined. This is al-
so the default behavior of zl:defstruect, when the :alterant op-
tion is not given.



:but-first

:callable-accessors

Page 453

The following example defines the alterant to be change-door-
slot.

(cl:defstruct (door (:alterant change-door-slot))
knob-color width)

(setq d (make-door :knob-color ’red :width 5.0))

(change-door-slot d
knob-color ’blue
width 5.5)

For more information on the use of the alterant macro: See
the section "Alterant Macros for defstruct Structures".

defstruct and zl:defstruct Difference

defstruct and zl:defstruct have different default behavior
when :alterant is not supplied:

defstruct Does not define an alterant.

zl:defstruct Defines an alterant named alter-structure.

The argument to :but-first is an accessor from some other
structure, and it is expected that this structure will never be
found outside that slot of that other structure. Actually, you
can use any one-argument function, or a macro that acts like a
one-argument function. It is an error for :but-first to be used
without an argument.

This example should clarify the use of :but-first.

(cl:defstruct (head (:type list)
(:default-pointer person)
(:but-first person-head))
nose
mouth
eyes)

The nose accessor expands like this:

(nose x) => (car (person-head x))
(nose) => (car (person-head person))

This option controls whether accessors are really functions,
and therefore "callable", or whether they are macros.

The accessors are functions if this option is not provided, pro-
vided with no argument, or provided with an argument of ft.
Specifically, they are substs, so that they have all the efficien-
cy of macros in compiled programs, while still being function
objects that can be manipulated (passed to mapear, and so on).



:conc-name

Page 454

If this option is provided with an argument of nil, then the ac-
cessors will be macros, not substs.

Note that if you use the :default-pointer option, the accessors
cannot be made callable.

Allows you to customize the names of the accessor functions. If
(:conc-name prefix) is supplied, the name of each accessor
function is prefix-siot. prefix should be a symbol; its print name
is concatenated onto the front of all the slot names to make
the names of the accessor functions.

If :conc-name is specified without an argument, the name of
each accessor is structure-slot; that is, the name of the struc-
ture followed by a hyphen, followed by the slot name. This is
also the default behavior of defstruct, when the :conc-name
option is not given.

:conc-name changes the name of the accessor functions, but
has no effect on slot names that are given to the constructor
and alterant macros. Thus when you use :conc-name, the slot
names and accessor names are different.

In the following example, the :conc-name option specifies the
prefix "get-door-", which causes the accessor functions to be
named get-door-knob-color and get-door-width.

(cl:defstruct (door (:conc-name get-door-))
knob-color
width)

(setg d (make-door :knob-color ’‘red :width 5.8))

(get-door-knob-color d) => red

If (:cone-name nil) is specified, the name of each accessor is
slot, the name of the slot. This is also the default behavior of
zl:defstruct, when the :conc-name option is not given. When
the name of the accessor is just slof, you should name the slots
according to a suitable convention. You should always prefix
the names of all accessor functions with some text unique to
the structure.

defstruct and zl:defstruct Difference

defstruct and zl:defstruct have different default behavior
when :conc-name is not supplied:

defstruct Names each accessor structure-siot.

zl:defstruct Names each accessor slot, the name of the
slot.



Page 455

:constructor

Takes one argument, which specifies the name of the con-
structor. If the argument is not provided or if the option itself
is not provided, the name of the constructor is made by con-
catenating the string '"'make-'" to the name of the structure. If
the argument is provided and is nil, no constructor is defined.
A more general form of this option is also available: See the
section "By-position Constructors for defstruct Structures".

For more information about the use of the constructor: See the
section "Constructors for defstruct Structures".

defstruct and zl:defstruct Difference

defstruct Defines a constructor function.

zl:defstruct Defines a constructor macro.

:constructor-make-array-keywords

If the structure being defined is implemented as an array,
this option can be used to take certain zl:make-array key-
words as arguments, and determine them on an instance by in-
stance basis. This is in contrast to the keyword option :make-
array, which supplies zl:make-array keywords that apply to all
instances of the structure.

For example, you can use this option to define a structure that
is implemented as an array leader, and specify the length of
the array after the leader elements.

The arguments to the :constructor-make-array-keywords op-
tion are zl:make-array keywords. The :constructor-make-
array-keywords option lets you control the initialization of ar-
rays created by defstruct as instances of structures. zl:make-
array initializes the array before the constructor code does.
Therefore, any initial value supplied via the new :initial-value
keyword for zl:make-array is overwritten in any slots where
you gave defstruet an explicit initialization.

Here is an example of a defstruct using :constructor-make-
array-keywords to create an array whose defstruct slots are
in the array-leader. Using this option, you can indicate how
long the part of the array after the leader should be each time
you make a new array-leader.

;; the name of the defstruct is make-Togic-variable-environment
(make-logic-variable-environment :length 10)

To define this defstruct:



Page 456

(defstruct (logic-variable-environment
(:type :array-leader)
:named
(:constructor-make-array-keywords length))
;; place to stash wayward variables and some bits for later use.
home-for-wayward-variables
(bits (make-logic-variable-environment-bits)))

:copier
The :copier option allows you to customize the name of the
copier function. If (:copier name) is supplied, the name of the
copier function is name. name should be a symbol; its print
name is the name of the copier function.

The automatically defined copier function simply makes a new
structure and transfers all components verbatim from the argu-
ment into the newly created structure. No attempt is made to
make copies of the components. Corresponding components of
the old and new structures are therefore eql.

If :copier is specified without an argument, the name of the
copier function is copy-structure. This is also the default be-
havior of defstruet when the :copier option is not given.

If (:copier nil) is specified, no copier is defined. This is also
the default behavior of zl:defstruct when the :copier option is
not given.

For example:
(cl:defstruct (foo (:type list) :copier)
foo-a
foo-b)
This example would generate a function named copy-foo, with
a definition approximately like this:

(defun copy-foo (x)
(1ist (car x) (cadr x)))

defstruct and zl:defstruct Difference

defstruct and zl:defstruct have different default behavior
when :copier is not supplied:

defstruct Defines a copier name copy-structure.

zl:defstruct Does not define a copier.

:default-pointer
Normally, the accessors defined by defstruct expect to be
given exactly one argument. However, if the :default-pointer
argument is used, the argument to each accessor is optional.



:eval-when

:include

Page 457

You can continue to use the accessor function in the usual
way. You can also invoke an accessor without its argument; it
behaves as if you had invoked it on the result of evaluating
the form that is the argument to the :default-pointer argu-
ment. For example:

(cl:defstruct (room (:default-pointer xroom-13x)
:conc-name)
name
contents)

(setq play-room
(make-room :name ’den :contents ’tv))
(setq xroom-13x
(make-room :name ’kitchen :contents ’fridge))

(room-name play-room) => DEN
(room-name) => KITCHEN

If the argument to the :default-pointer argument is not given,
it defaults to the name of the structure.

Normally, the functions and macros defined by defstruct are
defined at eval time, compile time, and load time. This option
allows you to control this behavior. The argument to the :eval-
when option is just like the list that is the first subform of an
eval-when special form. For example, (:eval-when (eval
compile)) causes the functions and macros to be defined only
when the code is running interpreted or inside the compiler.
Note that the default for defstruct is (load eval) .

Allows you to build a new structure definition as an exten-
sion of an old structure definition. Suppose you have a struc-
ture called person that looks like this:

(defstruct (person)
name
age
sex)

Now suppose you want to make a new structure to represent
an astronaut. Since astronauts are people too, you would like
them to also have the attributes of name, age, and sex, and
you would like Lisp functions that operate on person struc-
tures to operate just as well on astronaut structures. You can
do this by defining astronaut with the :include option, as fol-
lows:



Page 458

(defstruct (astronaut (:include person))
helmet-size
(favorite-beverage ’tang))

The :include option inserts the slots of the included structure
at the front of the list of slots for this structure. That is, an
astronaut will have five slots; first, the three defined in
person, then the two defined in astronaut itself. The accessor
functions defined by the person structure can be applied to in-
stances of the astronaut structure. The following illustrates
how you can use astronaut structures:

(setq x (make-astronaut :name ’buzz
:age 45
:sex t
:helmet-size 17.5))

(person-name Xx) => buzz
(astronaut-favorite-beverage x) => tang

Note that the :cone-name option was not inherited from the
included structure; it applies only to the accessor functions of
person and not to those of astronaut. Similarly, the :default-
pointer and :but-first options, as well as the :conc-name op-
tion, apply only to the accessor functions for the structure in
which they are enclosed; they are not inherited if you include a
structure that uses them.

The argument to the :include option is required, and must be
the name of some previously defined structure of the same
type as this structure. :include does not work with structures
of type :tree or of type :grouped-array.

The following is an advanced feature. Sometimes, when one
structure includes another, the default values for the slots that
came from the included structure are not what you want. The
new structure can specify different default values for the in-
cluded slots than the included structure specifies, by giving the
:include option as:

(:include name new-init-1 ... new-init-n)

Each new-init is either the name of an included slot or a list
of the form (name-of-included-slot init-form). If it is just a slot
name, the slot has no initial value in the new structure. Oth-
erwise, its initial value form is replaced by the inii-form. The
old (included) structure is unmodified.

For example, to define astronaut so that the default age for
an astronaut is 45, the following can be used:



:initial-offset

:inline

:make-list

:make-array

Page 459

(defstruct (astronaut (:include person (age 45)))
helmet-size
(favorite-beverage ’tang))

Allows you to tell defstruct to skip over a certain number of
slots before it starts allocating the slots described in the body.
This option requires an argument (which must be a fixnum)
that is the number of slots you want defstruct to skip. To use
this option, you must understand how defstruct is implement-
ing your structure; otherwise, you will be unable to make use
of the slots that defstruct has left unused.

Causes functions to be compiled inline. Values can be
:accessors, :constructor, :copier, :predicate, or the name of a
slot. Defaults to compiling accessors, constructors, and predi-
cates inline. Note that the default is for most functions to be
compiled inline. For example:

(:inline :constructor x-pos y-pos)

This example causes the constructor functions, x-pos and
y-pos, to be compiled inline. For information on inline func-
tions: See the section "Inline Functions".

You can use the :make-list option with (:type list) or (:type
:list) to specify further options about the list that implements
the structure. For example, you can specify the area in which
the structures should be made.

(defstruct
(foo (:type 1list)
(:make-list (:area xfoo-areax)))
Xy 2)

If the structure being defined is implemented as an array, this
option can be used to control those aspects of the array that
are not otherwise constrained by defstruct. For example, you
might want to control the area in which the array is allocated.
Also, if you are creating a structure of type :array-leader, you
almost certainly want to specify the dimensions of the array to
be created, and you might want to specify the type of the ar-
ray. Of course, this option is only meaningful if the structure
is, in fact, being implemented by an array.

The argument to the :make-array option should be a list of al-
ternating keyword symbols to the zl:make-array function (note
that this is the Zetalisp version), and forms whose values are
the arguments to those keywords. For example, (:make-array



:named

:predicate

Page 460

(:area *foo-area*)) requests that structures of this type be
consed in *foo-area*. Note that the keyword symbol is not
evaluated.

When necessary, defstruct overrides any of the :make-array
options. For example, if your structure is of type :array, then
defstruct supplies the size of that array, regardless of what
you say in the :make-array option.

Constructor macros for structures implemented as arrays all
allow the keyword :make-array. Attributes supplied therein
override any :make-array option attributes supplied in the
original defstruct form. If some attribute appears in neither
the invocation of the constructor nor in the :make-array op-
tion to defstruct, the constructor chooses appropriate defaults.

The :make-array option lets you control the initialization of
arrays created by defstruct as instances of structures.
zl:make-array initializes the array before the constructor code
does. Therefore, any initial value supplied via the new :initial-
value keyword for zl:make-array is overwritten in any slots
where you gave defstruct an explicit initialization.

If a structure is of type :array-leader, you probably want to
specify the dimensions of the array. The dimensions of an ar-
ray are given to :make-array as a position argument rather
than a keyword argument, so there is no way to specify them
in the above syntax. To solve this problem, you can use the
keyword :dimensions or the keyword :length (they mean the
same thing) with any value that zl:make-array accepts as a
first argument.

Allows you to use one of the "named" types. If you specify a
type of :array, :array-leader, or :list, and give the :named
option, then the :named-array, :named-array-leader, or
:named-list type is used instead. Asking for type :array and
giving the :named option as well is the same as asking for the
type :named-array; the only difference is stylistic.

Allows you to customize the name of the predicate function.
The predicate function recognizes objects of this structure. If
(:predicate name) is supplied, the name of the predicate func-
tion is name. name should be a symbol; its print name is the
name of the predicate function. The :predicate option works
only for named types.

If :predicate is specified without an argument, the name of
the predicate is structure-p. This is also the default behavior of
defstruct, when the :predicate option is not given.



:print

:print-function

Page 461

If (:predicate nil) is specified, no predicate is defined. This is
also the default behavior of zl:defstruct, when the :predicate
option is not given.

The following example defines a single-argument predicate
function, foo-p, that returns t only for objects of structure foo.

(cl:defstruct (foo :named :predicate)
foo-a
foo-b)

The following example defines a predicate function called is-it-
a-foo?.

(cl:defstruct (foo :named (:predicate is-it-a-foo?))
foo-a
foo-b)

defstruct and zl:defstruct Difference

The difference is in the default behavior, when :predicate is
not supplied.

defstruct If :type option is not given, or if both
:type and :named are given, default is
same as :predicate without an argument.
If :type option is given and :named is not
given, default is same as (:predicate nil).

zl:defstruct Default is same as (:predicate nil) regard-
less of whether the :type option is given.

Has the same effect as the Common Lisp :print-function op-
tion. Gives you implementation-independent control over the
printed representation of a structure. Using this option defeats
the sys:printing-random-object mechanism. See the macro
sys:printing-random-object.

The :print option takes a format string and its arguments. The
arguments are evaluated in an environment in which the name
symbol for the structure is bound to the structure instance be-
ing printed.

The :print option makes it unnecessary to use a named-
structure-invoke handler to define :print handlers.

Allows you to specify a function to be used to print this type of
structure. The printer uses the print function for structures of
unspecified type and when the type is specified as a named
vector. The printer never uses a print function for a structure
implemented as a named list, but the describe-defstruct func-
tion does.



:property

:size-symbol

Page 462

The print function should accept three arguments: the struc-
ture to be printed, the stream, and an integer indicating the
current depth. The function must be acceptable to the
function special form.

The function must respect the following print control variables:
*print-escape®, *print-pretty*, and *print-structure-contents®.

You can use the function sys:print-cl-structure or the macro
sys:print-cl-structure in a printer function. See the function
sys:print-cl-structure. See the macro sys:cl-structure-printer.

(defun file-branch-print-function (b stream depth)
(if xprint-escapex
(if xprint-structure-contentsx
(sys:cl-structure-printer file-branch b stream depth)
(sys:printing-random-object (b stream :typep)
(format stream "~A" (file-branch-name b))))
(format stream "~A" (file-branch-name b))))

Common Lisp specifies that :print-funetion may be used only
if :type is not used; however, Genera does not enforce this re-
striction.

Note: The :print-function option is accepted by defstruet but
not by zl:defstruct.

For each structure defined by defstruct, a property list is
maintained to record of arbitrary properties about that struc-
ture. (That is, there is one property list per structure defini-
tion, not one for each instantiation of the structure.)

The :property option can be used to give a defstruct an arbi-
trary property. (:property property-name value) gives the
defstruct a property-name property of value. Neither argument
is evaluated. To access the property list, you should look inside
the si:defstruct-deseription structure. See the section
"defstruct Internal Structures".

Allows you to specify a global variable whose value is the
"size" of the structure; this variable is declared with
zl:defconst. The exact meaning of the size varies, but in gen-
eral, this number is the one you would need to know if you
were going to allocate one of these structures yourself. The
symbol has this value both at compile time and at run time. If
this option is present without an argument, then the name of
the structure is concatenated with '"-size" to produce the sym-
bol.



:size-macro

:times

type

other

Page 463

Similar to the :size-symbol option. A macro of no arguments is
defined that expands into the size of the structure. The name
of this macro defaults as with :size-symbol.

Used for structures of type :grouped-array, to control the
number of repetitions of the structure that are allocated by the
constructor macro. The constructor macro also allows :times to
be used as a keyword that overrides the value given in the
original defstruet form. If :times appears in neither the invo-
cation of the constructor nor in the :make-array option to
defstruct, then the constructor allocates only one instance of
the structure.

In addition to the documented options to defstruct and
zl:defstruct, any currently defined type (any valid argument to
the :type option) can be used as an option. This is mostly for
compatibility with older versions of zl:defstruect. It allows you
to say just fype instead of (:type fype). It is an error to give an
argument to one of these options.

Finally, if an option is not found among the other options,
defstruct or zl:defstruct checks the property list of the name
of the option to see if it has a non-nil :defstruct-option prop-
erty. If it does have such a property, then if the option was of
the form (option-name value), it is treated just like (:property
option-name value). That is, the structure is given an option-
name property of value. It is an error to use such an option
without a value.

This provides a primitive way for you to define your own op-
tions to defstruct or zl:defstruect, particularly in connection
with user-defined types. See the section "Extensions to
defstruct". Several options to defstruct and zl:defstruct are
implemented using this mechanism.

defstruct Structures and type-of

Under certain circumstances, defstruct and zl:defstruct define the name of the
structure as a type name in both the Common Lisp and Zetalisp type systems. In
these circumstances it is illegal for the name of the structure to be the same as
the name of an existing type (including a flavor or a built-in type).

The name of the structure is defined as a type name when the structure is defined
in one of these ways:

e With defstruct, when the :type option is not given.



Page 464

e With defstruct, when the (:type :vector) and :named options are given.

e With defstruct, when the (:type (:vector element)) and :named options are
given.

e With zl:defstruct, when the (:type :named-array) option is given.
e With zl:defstruct, when the (:type :array) and :named options are given.
e With zl:defstruct, when the (:type :named-array-leader) option is given.

e With zl:defstruct, when the (:type :array-leader) and :named options are
given.

When a structure is defined as a type name, (type-of object) returns the symbol
that is the name of the object’s structure.

(typep object ’structure-name) and (zl:typep object ’structure-name) return t if the
flavor of object is named structure-name, nil otherwise.

Using the Constructor and Alterant Macros for defstruct Structures
The documentation in this section regarding defstruct also applies to zl:defstruct.

This section describes how to create instances of structures and alter the values of
their slots. After you have defined a new structure with defstruct, you can create
instances of this structure using the constructor, and you can alter the values of
its slots using the alterant macro.

By default, defstruct defines a constructor function, forming its name by concate-
nating '"'make-" onto the name of the structure. If you use the :alterant option
with no argument, an alterant macro is defined, its name formed by concatenating
"alter-" onto the name of the structure.

You can specify the names of the constructor or alterant macros by passing the
name you want to use as the argument to the :constructor or :alterant options.
You can also specify that you do not want the macro created at all by passing nil
as the argument.

Constructors for defstruct Structures

Note that defstruet implements the constructor as a function, but zl:defstruect im-
plements it as a macro.

A call to a constructor has the form:
(name-of-constructor
symbol-1 form-1
symbol-2 form-2
-)



Page 465

Each symbol indicates a slot of the structure (this is not necessarily the same as
the name of the accessor). symbol can also be one of the specially recognized key-
words described further on. If symbol indicates a sloz, that element of the created
structure is initialized to the value of the corresponding form. All the forms are
evaluated.

When using the constructor for a defstruct-defined structure, the symbol that indi-
cates a slot must be the name of that slot in the keyword package.

(cl:defstruct door1
knob-color
width)
(make-door1 :knob-color ’
:width 5.5)

red ;slot name in keyword package

When using the constructor for a zl:defstruct-defined structure, the symbol that
indicates a slot should just be the name of the slot.

(z1:defstruct door2
knob-color
width)

3

(make-door2 knob-color ’red ;s1ot name

width 5.5)

If no symbol is present for a given slot, the slot is initialized to the result of eval-
uating the default initialization form specified in the call to defstruct. In other
words, the initialization form specified to the constructor overrides the initializa-
tion form specified to defstruct. If the defstruct itself also did not specify any
initialization, the element’s initial value is undefined.

Two symbols are specially recognized by the constructor:

:make-array Should be used only for :array and :array-leader type struc-
tures, or the named versions of those types.

:times Should be used only for :grouped-array type structures.

If one of these symbols appears instead of a slot name, it is interpreted just as the
:make-array option or the :times option, and it overrides what was requested in
that option.

For example:
(make-ship ship-x-position 10.0
ship-y-position 12.0
:make-array (:leader-length 5 :area disaster-area))

The order of evaluation of the initialization forms is not necessarily the same as
the order in which they appear in the constructor call, nor the order in which they
appear in the defstruet. You should make sure your code does not depend on the
order of evaluation.



Page 466

The forms are reevaluated every time a constructor is called. For example, if the
form (gensym) is used as an initialization form (either in a call to a constructor
or as a default initialization in the defstruct) then every call to the constructor
creates a new symbol.

By-position Constructors for defstruct Structures

Note that defstruet defines a constructor function, but zl:defstruct defines a con-
structor macro.

If the :constructor option is given as (:constructor name arglist), then instead of
making a keyword-driven constructor, defstruct or zl:defstruct defines a construc-
tor that takes arguments interpreted by their position rather than by a keyword.
The arglist is used to describe what the arguments to the constructor will be. In
the simplest case, something like (:constructor make-foo (a b ¢)) defines make-
foo to be a three-argument constructor whose arguments are used to initialize the
slots named a, b, and c.

In addition, you can use the keywords &optional, &rest, and &aux in the argu-
ment list. They work as you might expect, but note the following:

(:constructor make-foo
(a &optional b (c ’sea) &rest d &aux e (f ’eff)))

This defines make-foo to be a constructor of one or more arguments. The first ar-
gument is used to initialize the a slot. The second argument is used to initialize
the b slot. If there is no second argument, the default value (if any) given in the
body of the defstruct or zl:defstruct is used instead. The third argument is used
to initialize the ¢ slot. If there is no third argument, the symbol sea is used in-
stead. Any arguments following the third argument are collected into a list and
used to initialize the d slot. If there are three or fewer arguments, nil is placed in
the d slot. The e slot is not initialized; its initial value is undefined. Finally, the f
slot is initialized to contain the symbol eff.

The actions taken in the b and e cases were carefully chosen to allow you to speci-
fy all possible behaviors. Note that the &aux "variables" can be used to completely
override the default initializations given in the body.

Note that you are allowed to give the :constructor option more than once, so that
you can define several different constructors, each with a different syntax.

The following restrictions should also be noted:

e For zl:defstruct, these "function-style" constructors do not guarantee that their
arguments will be evaluated in the order which you wrote them.

e You cannot specify the :make-array or :times information in this form of con-

structor.

Alterant Macros for defstruct Structures

A call to the alterant macro has the form:



Page 467

(name-of-alterant-macro object
slot-name-1 form-1
slot-name-2 form-2

)

Object is evaluated, and should return an object of the structure. Each form is
evaluated, and the corresponding slot is changed to have the result as its new val-
ue. The slots are altered after all the forms are evaluated, so you can exchange
the values of two slots, as follows:

(alter-ship enterprise
ship-x-position (ship-y-position enterprise)
ship-y-position (ship-x-position enterprise))

As with the constructor macro, the order of evaluation of the forms is undefined.
Using the alterant macro can produce more efficient code than using consecutive
setfs when you are altering two byte fields of the same object, or when you are
using the :but-first option.

You can use alterant macros on structures whose accessors require additional ar-
guments. Put the additional arguments before the list of slots and values, in the
same order as required by the accessors.

Differences Between defstruct and zl:defstruct

defstruct and zl:defstruct provide a similar functionality. defstruct adheres to the
Common Lisp standard, with several extensions that were derived from useful fea-
tures of zl:defstruct. zl:defstruct is supported for compatibility with previous re-
leases.

Most of the documentation on defstruct pertains equally well to zl:defstruct. (See
the section "Structure Macros".) This section describes the differences between
defstruct and zl:defstruct.

e (Constructor Difference

defstruct defines constructor functions, whereas zl:defstruct defines constructor
macros.

When using the constructor function for a defstruct-defined structure, you give
keyword arguments with the same name as the slots, to initialize the slots.

(cl:defstruct door2 knob-color)
(make-door2 :knob-color ’red) ;slot name in keyword package

When using the constructor macro for a zl:defstruct-defined structure, you give
the names of the slots as the arguments to initialize the slots.

(z1:defstruct door1 knob-color)
(make-door1 knob-color ’blue) ;s1ot name alone

e Option Differences



Page 468

Most of the options accepted by defstruct are also accepted by zl:defstruct.
Some of the options that are accepted by both have a slightly different behavior
when given to defstruct than when given to zl:defstruct. The option with the
most notable differences is :type. These differences are explicitly stated in the
documentation: See the section "Options for defstruct".

The defstruct-only options are: :print-function and :constructor-make-array-
keywords. The zl:defstruct-only option is :export.

Default Behavior Differences

defstruct and zl:defstruct behave differently when no options are given. The
differences in default behavior are noted below.

defstruct Default Behavior:

The structure is implemented as a named vector. This means that by default,
the :named option is implied. However, if you supply the :type option, the
:named option is no longer implied; you should specify :named if you want a
named structure.

The name of the structure becomes a valid type specifier for typep.

Accessor functions are defined for each slot, named by the convention:

structure-slot

No alterant is defined, but you can use setf with an accessor function to
change a slot value, such as:

(setf (accessor object) new-value)

A copier function is defined, named by the convention:

copy-structure

If the :type option is not given, or the :type and :named options are both
given, a predicate function is defined, named by the convention:

structure-p

However, if :type is given and :named is not given, no predicate function is
defined.

zl:defstruct Default Behavior:

o

The structure is implemented as an unnamed array.

o

The name of the structure does not become a valid type specifier for typep.



Page 469

Accessor functions are defined for each slot, named by the convention:

slot

An alterant function is defined, named by the convention:

alter-structure

You can use setf with an accessor function to change a slot value.

(setf (accessor object) new-value)
° No copier function is defined.

No predicate function is defined.

Advanced Use of defstruct

Functions Related to defstruct Structures

This summary briefly describes the functions related to defstruct structures.

defstruct options &body items
Defines a new aggregate data structure with named compo-
nents.

zl:defstruct Defines a new aggregate data structure with named compo-
nents.

describe-defstruct x &optional defstruct-type
Prints out a description of a given instance of a structure, in-
cluding the contents of each of its slots.

defstruct-define-type type &body options
Teaches defstruct and zl:defstruct about new types that it can
use to implement structures.

sys:print-cl-structure object stream depth
Function intended for use in a defstruct :print-function op-
tion; enables you to respect *print-escape*.

sys:cl-structure-printer siructure-name object stream depth
Macro intended for use in a defstruct :print-function option;
enables you to respect *print-escape?®.

Using defstruct Byte Fields

The byte field feature of defstruct or zl:defstruct allows you to specify that sever-
al slots of your structure are bytes in an integer stored in one element of the
structure. For example, consider the following structure:



Page 470

(defstruct (phone-book-entry (:type :1ist))
name
address
(area-code 617)
exchange
1ine-number)

Although this works correctly, it wastes space. Area codes and exchange numbers
are always less than 1000, and so both can fit into 10 bit fields when expressed as
binary numbers. To tell defstruct or zl:defstruct to do so, you can change the
structure definition to one of the following forms.

Using defstruct, the syntax is:

(defstruct (phone-book-entry (:type :1ist))
name
address
((Tine-number)
(area-code 617 :byte (byte 1@ 10))
(exchange @ :byte (byte 18 8))))

Using zl:defstruct, the syntax is:

(z1:defstruct (phone-book-entry (:type :1ist))
name
address
((area-code (byte 1@ 1@) 617)
(exchange (byte 1@ @))
(1Tine-number)))

The lists (byte 10 10) and (byte 10 0) are byte specifiers to be used with the func-
tions ldb and dpb. The accessors, constructor, and alterant macros now operate as
follows:

(setq pbe (make-phone-book-entry
:name “Fred Derf"”
:address "259 Orchard St.”"
:exchange 232
:1ine-number 7788))

=> (list "Fred Derf” "259 Orchard St." (dpb 232 12 2322@808) 17154)

(phone-book-entry-area-code pbe) => (LDB (BYTE 1@ 1@) (NTH 2 F00))

(alter-phone-book-entry pbe
area-code ac
exchange ex)



Page 471

=> ((lambda (gB53@)
(setf (nth 2 g@530)
(dpb ac 1212 (dpb ex 12 (nth 2 gB538)))))

pbe)

Note that the alterant macro is optimized to read and write the second element of
the list only once, even though you are altering two different byte fields within it.
This is more efficient than using two setfs. Additional optimization by the alterant
macro occurs if the byte specifiers in the defstruet slot descriptions are constants.

If the byte specifier is nil, the accessor is defined to be the usual kind that access-
es the entire Lisp object, thus returning all the byte field components as a integer.
These slots can have default initialization forms.

The byte specifier need not be a constant; you can use a variable (or any Lisp
form). It is evaluated each time the slot is accessed. Of course, you do not ordinar-
ily want the byte specifier to change between accesses.

Constructor macros initialize words divided into byte fields as if they were deposit-
ed in the following order:

1. Initializations for the entire word given in the defstruct or zl:defstruct form.

2. Initializations for the byte fields given in the defstruct or zl:defstruct form.
3. Initializations for the entire word given in the constructor macro form.

4. Initializations for the byte fields given in the constructor macro form.

Alterant macros work similarly: The modification for the entire Lisp object is done
first, followed by modifications to specific byte fields. If any byte fields being ini-
tialized or altered overlap each other, the actions of the constructor and alterant
macros are unpredictable.

Grouped Arrays

The grouped array feature allows you to store several instances of a structure
side-by-side within an array. This feature is somewhat limited; it does not support
the :include and :named options.

The accessor functions are defined to take an extra argument, which should be an
integer that acts as the index into the array of where this instance of the struc-
ture starts. This index should normally be a multiple of the size of the structure.
Note that the index is the first argument to the accessor function and the struc-
ture is the second argument, the opposite of what you might expect. This is be-
cause the structure is &optional if the :default-pointer option is used.

Note also that the "size" of the structure (for purposes of the :size-symbol and
:size-macro options) is the number of elements in one instance of the structure;



Page 472

the actual length of the array is the product of the size of the structure and the
number of instances. The number of instances to be created by the constructor
macro is given as the argument to the :times option to defstruct or zl:defstruect,
or the :times keyword of the constructor macro.

Named Structures

Introduction to Named Structures

The named structure feature provides a very simple form of user-defined data type.
Any array can be made a named structure using zl:make-array-into-named-
structure. See the function zl:make-array-into-named-structure. Usually however,
the :named option of defstruct is used to create named structures. See the section
"defstruct Structures and type-of".

The principal advantages of a named structure are that it has a more informative
printed representation than a normal array and that the describe function knows
how to give a detailed description of it. (You do not have to wuse
describe-defstruct, because describe can figure out the names of the structure’s
slots by looking at the named structure’s name.) We recommend, therefore, that
"system" data structures be implemented with named structures.

Note: Flavors offers another kind of user-defined data type, more advanced but
less efficient when used only as a record structure: See the section "Flavors".

A named structure has an associated symbol called its "named structure symbol",
that it represents the user-defined type of which the structure is an instance. The
type-of function, applied to the named structure, returns this symbol. If the array
has a leader, the symbol is found in element 1 of the leader; otherwise it is found
in element 0 of the array.

Note: If a numeric-type array is to be a named structure, it must have a leader,
since a symbol cannot be stored in any element of a numeric array.

If you call typep with two arguments, the first an instance of a named structure
and the second its named structure symbol, it returns t. It also returns t if the
second argument is the named structure symbol of a :named defstruct included
(using the :include option), directly or indirectly, by the defstruct for this struc-
ture. For example, if the structure astronaut includes the structure person, and
person is a named structure, then giving typep an instance of an astronaut as
the first argument, and the symbol person as the second argument, returns t.
This reflects the fact that an astronaut is, in fact, a person, as well as an astro-
naut.

Handler Functions for Named Structures

You can associate with a named structure a function that handles various opera-
tions that can be done on it. You can control both how the named structure is
printed and what desecribe will do with it.



Page 473

To provide such a handler function, make the function the named-structure-
invoke property of the named structure symbol. The functions that know about
named structures apply this handler function to several arguments. The first is a
"keyword" symbol to identify the calling function, and the second is the named
structure itself. The rest of the arguments passed depend on the caller; any named
structure function should have a "&rest" parameter to absorb any extra arguments
that might be passed. What the function is expected to do depends on the keyword
it is passed as its first argument. The following keywords are defined:

:which-operations

Returns a list of the names of the operations handled by the
function.

:print-self

The arguments are :print-self, the named structure, the
stream to which to output, the current depth in list-structure,
and t if slashification is enabled (prinl versus prine). The
printed representation of the named structure should be output
to the stream. If the named structure symbol is not defined as
a function, or :print-self is not in its :which-operations list,
the printer defaults to a reasonable printed representation. For
example:

fi<named-structure-symbol octal-address>
:describe

The arguments are :describe and the named structure. It
should output a description of itself to *standard-output*. If
the named structure symbol is not defined as a function, or
:describe is not in its :which-operations list, the describe sys-
tem checks whether the named structure was created by using
the :named option of defstruect; if so, the names and values of
the structure’s fields are enumerated.

Here is an example of a simple named-structure handler function. For this exam-

ple to have any effect, the person defstruct used in this example must be modified
to include the :named attribute.

(defselect ((:property person named-structure-invoke))
(:print-self (person stream ignore slashify-p)
(format stream
(if slashify-p "fi<person ~a>" "7a")
(person-name person))))
This example causes a person structure to include its name in its printed repre-

sentation; it also causes prine of a person to print just the name, with no "#<"
syntax.

In this example, the :which-operations handler is automatically generated, as well
as the handlers for :operation-handled-p and :send-if-handles.



Page 474

Another way to write this handler is as follows:

(defselect ((:property person named-structure-invoke))
(:print-self (person stream ignore slashify-p)
(if slashify-p
(si:printing-random-object (person stream :typep)
(princ (person-name person) stream))
(princ (person-name person) stream))))

This example uses the sys:printing-random-object special form, which is a more
advanced way of printing #< ... >. It interacts with the si:print-readably variable
and special form.

Functions That Operate on Named Structures

named-structure-p structure
Returns nil if the given object is not a named structure.

named-structure-symbol named-structure
Returns the named structure symbol of the given named struc-
ture.

named-structure-invoke operation structure &rest args
Calls the handler function of the named structure symbol.

Also refer to the :named-structure-symbol keyword to make-array.

Note: The following Zetalisp function is included to help you read old programs. In
your new programs, where possible, use the Common Lisp equivalent of this func-
tion.

zl:make-array-into-named-structure
Turns the given array into a named structure.

Extensions to defstruct

This section describes the use of defstruct-define-type.

An Example of defstruct-define-type

defstruct-define-type works by examining a call to the macro. This is how the
:list type of structure might have been defined:

(defstruct-define-type :1ist
(:cons (initialization-list description keyword-options)
:1ist
‘(Tist . ,initialization-Tist))
(:ref (slot-number description argument)
‘(nth ,slot-number ,argument)))



Page 475

This is the simplest possible form of defstruct-define-type. It provides defstruct
with two Lisp forms: one for creating forms to construct instances of the struc-
ture, and one for creating forms to become the bodies of accessors for slots of the
structure.

The keyword :cons is followed by a list of three variables that are bound while the
constructor-creating form is evaluated. The first, initialization-list, is bound to a
list of the initialization forms for the slots of the structure. The second,
description, is bound to the si:defstruct-description structure for the structure.
See the section "defstruct Internal Structures". For a description of the third
variable, keyword-options, and the :list keyword: See the section "Options to
defstruct-define-type".

The keyword :ref is followed by a list of three variables that are bound while the
accessor-creating form is evaluated. The first, slot-number, is bound to the num-
ber of the slot that the new accessor should reference. The second, deseription, is
bound to the si:defstruct-description structure for the structure. The third,
argument, is bound to the form that was provided as the argument to the acces-
SOT.

defstruct-define-type type &body options Macro

Teaches defstruct and zl:defstruct about new types that it can use to implement
structures.

The body of this function is shown in the following example:

(defstruct-define-type fype
option-1
option-2
)
where each option is either the symbolic name of an option or a list of the form
(option-name . rest). See the section "Options to defstruct-define-type".

Different options interpret rest in different ways. The symbol #ype is given an
si:defstruct-type-description property of a structure that describes the type com-
pletely.

For a table of related items: See the section "Functions Related to defstruet Struc-
tures".

Options to defstruct-define-type

The documentation in this section regarding defstruct also applies to zl:defstruct.

:cons
Supplies defstruct with the code necessary to cons up a form
that constructs an instance of a structure of this type.

The :cons option has the syntax:



:ref

Page 476

(:cons (inits description keywords) kind
body)

body is some code that should construct and return a piece of
code that constructs, initializes, and returns an instance of a
structure of this type.

The symbol inits is bound to the information that the construc-
tor conser should use to initialize the slots of the structure.
The exact form of this argument is determined by the symbol
kind. There are currently two kinds of initialization:

o :list — inits is bound to a list of initializations, in the cor-
rect order, with nils in uninitialized slots.

e :alist — inits is bound to an alist with pairs of the form
(slot-number . init-code).

The symbol description is bound to the instance of the
si:defstruct-description structure that defstruct maintains for
this particular structure. See the section "defstruct Internal
Structures". This is so that the constructor conser can find out
such things as the total size of the structure it is supposed to
create.

The symbol keywords is bound to an alist with pairs of the
form (keyword . value), where each keyword was a keyword
supplied to the constructor macro that was not the name of a
slot, and value was the Lisp object that followed the keyword.
This is how you can make your own special keywords, such as
the existing :make-array and :times keywords. See the section
"Constructors for defstruet Structures". You specify the list of
acceptable keywords with the :keywords option.

It is an error not to supply the :cons option to defstruct-
define-type.

Supplies defstruct with the code it needs to cons up a form
that will reference an instance of a structure of this type.

The :ref option has the syntax:

(:ref (number description arg-1 ... arg-n)
body)

body is some code that should construct and return a piece of
code that will reference an instance of a structure of this type.

The symbol number is bound to the location of the slot that is
to be referenced. This is the same number that is found in the
number slot of the si:defstruct-slot-description structure. See
the section "defstruet Internal Structures".

The symbol description is bound to the instance of the
si:defstruct-description structure that defstruct maintains for
this particular structure.



:overhead

:named

:keywords

:defstruct

Page 477

The symbols arg-i are bound to the forms supplied to the ac-
cessor as arguments. Normally, there should be only one of
these. The last argument is the one that is defaulted by the
:default-pointer option. See the section "Options for
defstruct”. defstruct checks that the user has supplied exactly
n arguments to the accessor function before calling the refer-
ence consing code.

It is an error not to supply the :ref option to defstruct-define-
type.

Declares to defstruct that the implementation of this particu-
lar type of structure "uses up" some number of locations in the
object actually constructed. This option is used by various
"named" types of structures that store the name of the struc-
ture in one location.

The syntax of :overhead is (:overhead n), where n is a fixnum
that says how many locations of overhead this type needs.

This number is used only by the :size-macro and :size-symbol
options to defstruct. See the section "Options for defstruct".

Controls the use of the :named option to defstruct. With no
argument, the :named option means that this type is an ac-
ceptable "named structure". With an argument, as in (:named
type-name), the symbol type-name should be the name of some
other structure type that defstruct should use if someone asks
for the named version of this type. (For example, in the defini-
tion of the :list type the :named option is used like this:
(:named :named-list).)

Allows you to define additional constructor keywords for this
type of structure. (The :make-array constructor keyword for
structures of type :array is an example.) The syntax is:
(:keywords keyword-1 ... keyword-n), where each keyword is a
symbol that the constructor conser expects to find in the key-
words alist. See the section "Options to defstruct-define-type".

Allows you to to run some code and return some forms as part
of the expansion of the defstruct macro.

The :defstruct option has the syntax:

(:defstruct (description)
body)

body is a piece of code that runs whenever defstruet is ex-
panding a defstruct form that defines a structure of this type.



Page 478

The symbol description is bound to the instance of the
si:defstruct-description structure that defstruct maintains for
this particular structure.

The value returned by body should be a list of forms to be in-
cluded with those that the defstruct expands into. Thus, if you
only want to run some code at defstruct-expand time, and you
do not actually want to output any additional code, then you
should be careful to return nil from the code in this option.

:predicate
Specifies how to construct a :predicate option for defstruct.
The syntax for the option is:

(:predicate (description name)
body)

The variable description is bound to the si:defstruct-
description structure maintained for the structure for which a
predicate is generated. The variable name is bound to the sym-
bol that is to be defined as a predicate. body is a piece of code
that is evaluated to return the defining form for the predicate.

(:predicate (description name)
* (defun ,name (X)
(and (frobbozp x)
(eq (frobbozref x 8)
’, (defstruct-description-name)))))

:copier
The :copier option specifies how to copy a particular type of
structure for situations when it is necessary to provide a copy-
ing function other than the one that defstruct would generate.
(:copier (description name)

3

‘(fset-carefully ’,name ’copy-frobboz))
The syntax for the option is:

(:copier (description name)
body)

description is bound to an instance of the si:defstruct-
description structure, name is bound to the symbol to be de-
fined, and body is some code to evaluate to get the defining
form.

defstruct Internal Structures
The documentation in this section regarding defstruct also applies to zl:defstruct.

If you want to write a program that examines structures and displays them the
way describe and the Inspector do, your program will work by examining the in-



Page 479

ternal structures used by defstruct. In addition to discussing these internal struc-
tures, this section also provides the information necessary to define your own
structure types.

Whenever you use defstruct to define a new structure, it creates an instance of
the si:defstruct-description structure. This structure can be found as the
si:defstruct-description property of the name of the structure; it contains such
useful information as the name of the structure, the number of slots in the struc-
ture, and so on.

The following example shows a simplified version of how si:defstruct-description
structure is actually defined. si:defstruct-description is defined in the system-
internals (or si) package and includes additional slots that are not shown in this
example:

;;;8implified version of si:defstruct-description structure
(cl:defstruct (defstruct-description
(:default-pointer description)
(:conc-name defstruct-description-))
name
size
property-alist
slot-alist)

The name slot contains the symbol supplied by the user to be the name of the
structure, such as spaceship or phone-book-entry.

The size slot contains the total number of locations in an instance of this kind of
structure. This is not the same number as that obtained from the :size-symbol or
:size-macro options to defstruct. A named structure, for example, usually uses up
an extra location to store the name of the structure, so the :size-macro option
gets a number one larger than that stored in the defstruet description.

The property-alist slot contains an alist with pairs of the form (property-name .
property) containing properties placed there by the :property option to defstruct
or by property names used as options to defstruct. See the section "Options for
defstruct".

The slot-alist slot contains an alist of pairs of the form (slot-name
slot-description). A slot-description is an instance of the si:defstruct-slot-
description structure. The si:defstruct-slot-description structure is defined some-
thing like this, also in the si package:

;;;simplified version of the actual implementation
(cl:defstruct (defstruct-slot-description
(:default-pointer slot-description)
(:conc-name defstruct-slot-description-))
number
ppss
init-code
ref-macro-name)



Page 480

Note that this is a simplified version of the real definition and does not fully rep-
resent the complete implementation. The number slot contains the number of the
location of this slot in an instance of the structure. Locations are numbered start-
ing with 0, and continuing up to one less than the size of the structure. The actu-
al location of the slot is determined by the reference-consing function associated
with the type of the structure. S