Job ID: printopdf-22
Title: Symbolics Common Lisp Dictiofiary

Requesting User: genera

Billing Info: {job-billing}

UNIX
Printing E asy

System oftware
Products

Symbolics Common Lisp Dictionary

number &rest numbers Function

In your new programs, we recommend that you use function =, which is the Com-
mon Lisp equivalent of =

Returns t if number is not numerically equal to any of numbers, and nil otherwise.
Either argument can be of any numeric type.

< number &rest more-numbers Function

In your new programs, we recommend that you use function <=, which is the Com-
mon Lisp equivalent of <.

< compares its arguments from left to right. If any argument is greater than the
next, < returns nil. But if the arguments are monotonically increasing or equal,
the result is t.

Arguments must be noncomplex numbers, but they need not be of the same type.
Examples:

(£5) =>T

(£123) =>T

(£36 2 8) => NIL

(£56.3) =>T

> number &rest more-numbers Function

In your new programs, we recommend that you use function >= which is the Com-
mon Lisp equivalent of >,

> compares its arguments from left to right. If any argument is less than the next,
> returns nil. But if the arguments are monotonically decreasing or equal, the re-
sult is t.

Arguments must be noncomplex numbers, but they need not be of the same type.
Examples:

(28) =>T

(23221 =>1T

(>5 46 2) => NIL

(> 6.02s23 6.02d23) => T

+ &rest numbers Function

Returns the sum of its arguments. If there are no arguments, it returns 0, which
is the identity for this operation. An error signals if any argument is a non-
number.

Page 836

If the arguments are of different numeric types, they are converted to a common
type, which is also the type of the result. See the section "Coercion Rules for
Numbers".

Examples:
(+) => 0
(+ -8) => -8

(+1234) =>18
(+ 2 5.9) => 7.9
(+ 5/2 2 2/3) => 31/6

When using Genera, the following functions are synonyms of + :

zl:plus
zl:+$

For a table of related items, see the section "Arithmetic Functions".

+ Variable

While a form is being evaluated by a read-eval-print loop, + is bound to the previ-
ous form that was read by the loop. Variable ++ is likewise bound to the penulti-
mate evaluated form, and +++ to the form whose evaluation is removed from the
form currently undergoing evaluation.

(floor 5 2) => 2 1
(eval +) => 2 1

++ Variable

Holds the previous value of +, that is, the form evaluated two interactions ago.

+++ Variable

Holds the previous value of ++, that is, the form evaluated three interactions ago.

zl:+$ &rest args Function

Returns the sum of its arguments. If there are no arguments, it returns 0, which
is the identity for this operation.

The following functions are synonyms of zl:+$:

zl:plus
+

- number &rest more-numbers Function

Page 837

With only one argument, returns the negative of its argument. With more than
one argument, - returns its first argument minus all of the rest of its arguments.
In this way, - serves the dual function of a unary minus and polyadic minus.
However, this can cause confusion, particularly when used with apply or given an
unexpected number of arguments.

If the arguments are of different numeric types they are converted to a common
type, which is also the type of the result. See the section "Coercion Rules for
Numbers".

Examples:
(- 8) => -8
(- 93) =>6

(-9421) =>2
(- #C(3 4) 4) => H#C(-1 4)
(- 9 5/68) => 49/6
(-1234) => -8

When using Genera, the following function is a synonym of - :
z1:-$

For a table of related items, see the section "Arithmetic Functions".

- Variable

While a form is being evaluated by a read-eval-print loop, - is bound to the form
itself.

(print -) prints: (print -)

zl:-$ arg &rest args Function

With only one argument, returns the negative of its argument. With more than
one argument, zl:-§ returns its first argument minus all the rest of its arguments.

The following function is a synonym of zl:-$§ :

z1:/ number &rest more-numbers Function

In your new programs, we recommend that you use the function /, which is the
Common Lisp equivalent of the function /.

With more than one argument, / is the same as zl:quotient; it returns the first ar-
gument divided by all of the rest of its arguments. With only one argument, (/ x)
is the same as (/ 1 x).

With integer arguments, / acts like truncate, except that it returns only a single
value, the quotient.

Page 838

Note that in Zetalisp syntax / is the quoting character and must therefore be dou-
bled.

Examples:
(z1:/ 3 2) =>1 ;Integer division truncates.
(z1:/ 3 -2) => -1
(z1:/ -3 2) => -1
(z1:/ -3 -2) => 1
(z1:7 3 2.8) => 1.5
(z1:/ 3 2.08d8) => 1.5d8@
(z1:/ 4 2) => 2
(z1:7 12. 2. 3.) => 2
(z1:/ 4.8) => .25

The following function is a synonym of / :
z1:/$

For a table of related items, see the section "Arithmetic Functions".

/ number &rest more-numbers Function

With more than one argument, / successively divides the first argument by all the
others and returns the result. With one argument, / returns the reciprocal of the
argument: (/ x) is the same as (/ 1 x). If the arguments are of different numeric
types, they are converted to a common type, which is also the type of the result.
See the section "Coercion Rules for Numbers".

/ follows normal mathematical rules, so if the mathematical quotient of two inte-
gers is not an exact integer, the function returns a ratio. To obtain an integer re-
sult, use one of these functions: floor, ceiling, truncate, round.

(/7 4) => 1/4

(/ 4.8) => 0.25

(/93 =>3

(/ 18 4) => 9/2 ;returns rational number in canonical form
(/ 181 18.8) => 10.1 ;applies coercion rules

(/ 181 18) => 181/10

(/ 24 4 2) => 3

(/ 36. 4. 3.) => 3

(/ 36.8 4.8 3.8) => 3.0

(/ #ic(1 1) f#fic(1 =-1)) => ffc(@ 1)
(/ #c(3 4) 5) => #c(3/5 4/5)

For a table of related items, see the section "Arithmetic Functions".

z1:/$ arg &rest args Function

With more than one argument, zl-user:$ is the same as zl:quotient; it returns the
first argument divided by all of the rest of its arguments. With only one argu-
ment, (zl-user:$ x) is the same as (zl-user:$ 1 x).

Page 839

With integer arguments, zl-user:$ acts like truncate, except that it returns only a
single value, the quotient.

Note that in Zetalisp syntax zl:/ is the quoting character and must therefore be
doubled.

The following function is a synonym of zl-user:$:
zl:/

/= number &rest numbers Function

Returns t if all arguments are not equal, and nil otherwise. Arguments can be of
any numeric type; the rules of coercion are applied for arguments of different nu-
meric types.

Two complex numbers are considered = if their real parts are = and their imagi-
nary parts are =.

Examples:
(/= 4) => T
(/= 4 4.8) => NIL
(/= 4 #c(4.8 B)) => NIL
(/= 4 5) => T
(/=4567) =>T
(/=456 74) => NIL
(/=45 4 7 4) => NIL
(/= #c(3 2) #c(2 3) #c(2 =3)) => T
(/= #c(3 2) #c(2 3) #c(2 -3) #c(2 3.8)) => NIL

When using Genera, the following function is a synonym of /= :
+*

For a table of related items, see the section "Numeric Comparison Functions".

/ Variable

While a form is being evaluated by a read-eval-print loop, / is bound to a list of
the results printed the last time through the loop.

If you are using CLOE, variable / is bound to the list of values returned by the
last evaluated form. Variable // is bound to the list of values returned by the
penultimate evaluated form, and variable /// is bound to the list of values re-
turned by the form evaluated three before the current form.

(floor 5 2) => 2, 1
/= (2 1)

/! Variable

Page 840

Holds the previous value of waser::////////////////, that is, the list of results printed two
times through the loop ago.

n Variable

Holds the previous value of waser:://///II11HHHHTTTTTTTTHIIIIINIII, that is, the list of results
printed three times through the loop ago.

< number &rest more-numbers Function

Compares its arguments from left to right. If any argument is not less than the
next, < returns nil. But if the arguments are monotonically strictly increasing, the
result is t.

Arguments must be noncomplex numbers, but they need not be of the same type.
An error is returned if any of the arguments are complex or not numbers.

Examples:

(<« 34) =T

(< 11.8) => NIL

(< B8 1/22.834) =T
(< 81324 =>NIL

(< 572 5) => t

(< 33.12) => t

When using Genera, the following function is a synonym of < :

zl:lessp

For a table of related items, see the section "Numeric Comparison Functions".

<= number &rest more-numbers Function

Compares its arguments from left to right. If any argument is greater than the
next, <= returns nil. But if the arguments are monotonically increasing or equal,
the result is t.

Arguments must be noncomplex numbers, but they need not be of the same type.
An error is returned if any of the arguments are complex or not numbers.

Examples:
(<= 8) =T
(<= 34) =T
(<= 1) =>1T
(<= 1.8) => T
(<=81/22.834) =>1T

(<= 1334) =T
(<= 5/2) => nil

1
1
0
(<=2 1 32 4) => NIL
0
5
(<= 33.83.54) =>t

Page 841

When using Genera, the following function is a synonym of <= :

<

For a table of related items, see the section "Numeric Comparison Functions".

= number &rest more-numbers Function

Tests for numeric equality of numbers, and works for any type of number. Differs
from eq in that non-identical but numerically equal numbers will not be eq but
will be =. Differs from eql in that numerically equal numbers need not be of the
same type to be =. Returns t if all arguments are numerically equal.

= takes arguments of any numeric type; the arguments can be of dissimilar numer-
ic types.
Examples:

(=8) =>1T

(= 3 4) => NIL

(=33.03.8d8) =>T

(=4 #C(4 9) }#C(4.0 0.9) #§iC(4.0d0 B.0d0)) => T

(=9 0.9) => t

(= #c(1 2) #c(1.8 2.8)) => t
For a discussion of non-numeric equality predicates, see the section "Comparison-
performing Predicates".

For a table of related items, see the section "Numeric Comparison Functions".

> number &rest more-numbers Function

Compares its arguments from left to right. If any argument is not greater than
the next, > returns nil. But if the arguments are monotonically strictly decreasing,
the result is t.

Arguments must be noncomplex numbers, but they need not be of the same type.
An error is returned if any of the arguments are complex or not numbers.

Examples:

(>43.8) =T
(>4321/20) =T
(>431280) =>NIL
(>4 3) =>t

(>3 32) => nil

When using Genera, the following function is a synonym of > :

zl:greaterp

For a table of related items, see the section "Numeric Comparison Functions".

>= number &rest more-numbers Function

Page 842

Compares its arguments from left to right. If any argument is less than the next,
>= returns nil. But if the arguments are monotonically decreasing or equal, the re-
sult is t.

Arguments must be noncomplex numbers, but they need not be of the same type.
An error is returned if any of the arguments are complex or not numbers.

Examples:
(>=8) =T
(>=43.0) =T
>=432180) =T
(>=42318) =>NIL
(> 43321/28) =>7T
(>=43) => 1t
(>>332) =>1

When using Genera, the following function is a synonym of >= :

>

For a table of related items, see the section "Numeric Comparison Functions".

zl:\ x y Function

In your new programs, we recommend that you use either the function rem or

remainder which are the Common Lisp equivalents of the function zI-

LS 111 TTLTTLTITYATEEALL AL EALULELEAEE LU AR
IAAAAUAL AU LR
ALV
AL
AL LU AEEUALEE AL
AU/
AL A
AU ALV
AL LA LDLUEAEALUELULAAEEALEELELELDLEUAEEAEEALEULE A LEELEUEALEELLEELLLALAA
ALV REAAAANEL AL TAELAEL AR BT TR IIIIIY

Returns the remainder of x divided by y. x and y must be integers.

zl-

18 57537 4 |11 11UULETATALAAAAL AN E LA AUAARRR UL T UAAARAA AL AL EUEUAARA AU TR UL UL E LR TR LRI
ALV EE U EEEUEEL AL EEEUEE LA EREUR LA
AUV EEE LR EEE VLT EEEUU AL EEEUEELALLREUEEL AL
LTV EE LT ALEEEUU AL EEEU LA LREUE LA
ULV TR EEEEEU R EEEU UL EEEUU LA ETEU LA LREUE AL
UL EUUUEEEUUEEEEEEU LR EE UL EEEUE AL EEEEU AL EEEE LA LREUE LA
AU UUUEEEEEEVUUEEEEUEEEEE LR LR ALEEEEE AL EEEE LA LREUR LA
AUV EVUUEEEEUEUEEEEEEE LR AT LEEEEEU AL AALEEEUE AL EEEU LA ALLREUR LA
XA EEE AT EE LT EE UL EEEUE DAL TR TLR UL
AU EEE LA EEEUEEAAA LA EEEEE AU LT LR ERERE LA LLRR R AL

acts like truncate, except that it returns only a single value, the remainder.

Page 843

Examples:

(z1:\\ 3 2) => 1
(zT:\\ =3 2) => -1
(zT:\\ 3 -2) => 1
(z1:\\ -3 -2) => -1

The following functions are synonyms for zl-

TS/@12A11TTLTTIELATEEEAAL LUV TR
L1V
ALV TR LT LAV
ALV
ALV
ALV LR LA
L1 R TARRLTLRARELEURTRLARTLARELLEAAEERLEAREREARERARELREAREERLAAREREEAARELARELRLRAR LRI
AL 1L U AT LTAAAE AU UL TR AR TR
L1 LA LTLAAAE AR UL LR UL
LA AL ULV AL AL

rem
zl:remainder

Note: In programs using the Zetalisp syntax you would represent zl-

18 £5753 4 | 11111 ANTATALAAAA AL ELAAUUAAR AR UL TATAAARAA AL RAUUEUAAAA AU LALUEAA AU UL UL TR E LR TR AR
LUV EVUUEEEEUEEEEE VLR UUEEEE UL EEEUEEUALEEEUU AL EEEUEELAALLREUR AL
AUV LR AEEEEEE LR ALEEEEUEE A EEEEEEEE AL EEEUEEELAALLEEUR LA
AL UL EUUEEEEUUEEEEUEUUEEEEE LR LLEEEEUE LTI LLEEEUE AL LTI AL
NV EEEEE AL EE UL TR LA LRERELL ALV
LA LE LUV EEEEU AU EE AL EE LA EEEUEUEAALE TR LA LLRERELL AL
AL UL EE UL EE UL EEEUE AL EEEUEE AT LRERELLA ALV
ALV EEELE TR EEEEELAA LU EEEUELELAA LR AL
ALV EE AR EEE AU EE AR EEEU DAL LR U LA LREUELL AR
XUV EE UL EE UL LAV

as \. The function is represented here as zl-

18 57537 4 11 1ILLVETATALAAAAARE UL AU AAAAR VR UL TLUAAARA AR ULEUAAUAUETALUEL AU UL UL LT LR E LRI
ALV EEUEUA UL EEEU AR UL LU EREUEELAA LRV
ALV EEE AT EE AR LT EREULELAALLRERE DAL LLR AR
ALV UAEE UL UL EE UL EEEEEEAAL LT EEEUUEEL AL RN
ULV EEEEEEL LA EEEU LA EEEUEELAARLREUE AL
ALV EE UL LU LT EEEUUEEL LA LREU LA
AU R EEEEEE UL LR EEEUUEE AL EEEUEE LA LREUR AL
AUV LU EEEE AR EE LT LR ETEUEELLALLREUE LA
ALV AAEEEEEE AT EEEEU AL ETEU LA LREUE LA LLRN A
AU VUEEREEUEEEEUUEEEEE VAR EEEEEAEEEEU ARV EEEUE LA TR AL TR ATV

because all objects in this manual are represented as if printed by prinl with

package bound to the Common Lisp readtable. In Common Lisp, the backslash

character (\) is the escape character and must be doubled.

zl:\\ x v &rest args Function

Page 844

Returns the remainder of x divided by y. The arguments must be integers.
The following functions are synonyms of \\:

zl:remainder
rem

We recommend that you use rem in new programs.

Note: In programs using the Zetalisp syntax you would represent \\ as \. The func-
tion is represented here as \\ only because all objects in this manual are represent-
ed as if printed by prinl with *package* bound to the Common Lisp readtable. In
Common Lisp, the backslash character (\) is the escape character and must be
doubled.

zl:~ x y Function

Returns x raised to the yth power. The result is an integer if both arguments are
integers (even if y is negative!) and floating-point if either x or y or both is float-
ing-point. If the exponent is an integer a repeated-squaring algorithm is used,
while if the exponent is floating the result is (exp (* y (log x))).

The following functions are synonyms of zl:~ :

zl:expt
z1:~$

zI:*$ x y Function

Returns x raised to the yth power. The result is an integer if both arguments are
integers (even if y is negative!) and floating-point if either x or y or both is float-
ing-point. If the exponent is an integer a repeated-squaring algorithm is used,
while if the exponent is floating the result is (exp (* y (log x))).

The following functions are synonyms of zl:*$:

zl:expt
zl:»

* &rest numbers Function

Returns the product of its arguments. If there are no arguments, it returns 1,
which is the identity for this operation.

If the arguments are of different numeric types they are converted to a common
type, which is also the type of the result. See the section "Coercion Rules for
Numbers".

Examples:

Page 845

(x) =>1

(x 4 6) => 24

(x 1234) =>24

(x 2.5 4) => 10.0

(x 3.08s4 10) => 300000.0
(x 1.8 2.8 3/2 4/3) => 4.0

(x #c(1.9 2.8) 3/2 #c(2 4/3)) => #c(-1.8 8.0)
When using Genera, the following functions are synonyms of * :

zl:times

z1:*$

For a table of related items, see the section "Arithmetic Functions".

% Variable

While a form is being evaluated by a read-eval-print loop, * is bound to the result
printed the last time through the loop. If several values were printed (because of a
multiple-value return), * is bound to the first value. If no result was printed, * is
not changed. Variable ** is bound to the value returned by the penultimate evalu-
ated form, and *** is bound to the value returned by the form evaluated three be-
fore the current form. The star forms always return only a single value.

(floor 5 2) => 2, 1
x => 2

g Variable

Holds the previous value of *, that is, the result of the form evaluated two interac-
tions ago.

g Variable

Holds the previous value of #**, that is, the result of the form evaluated three in-
teractions ago.

z1:*$ &rest args Function

Returns the product of its arguments. If there are no arguments, it returns 1,
which is the identity for this operation.

The following functions are synonyms of zl:*$:

zl:times
£

1+ number Function

Page 846

(14+ number) is the same as (+ number 1).
Examples:

(1+ 5) => 6
(1+ 3.0d8) => 4.8de

(1+ 3/2) => 5/2

(1+ #C(4 5)) => #C(5 5)

When using Genera, the following functions are synonyms of 1+ :

zl:add1
z1:1+$

For a table of related items: See the section "Arithmetic Functions".

z1:1+$ x Function
(z1:1+$ x) is the same as (+ x 1).

The following functions are synonyms of zl:1+$:

zl:add1
1+

1- number Function

(1- number) is the same as (- number 1). Note that this name might be confusing:
(1- number) does not mean 1 - number; rather, it means number - 1.
Examples:

(1- 9) => 8

(1- 4.9) => 3.0

(1- 4.9d8) => 3.8de

(1- #C(4 5)) => HC(3 5)

When using Genera, the following functions are synonyms of 1- :

zl:subl
7z1:1-$

For a table of related items: See the section "Arithmetic Functions".

z1:1-$ x Function
(z1:1-$ x) is the same as (- x 1).

The following functions are synonyms of zl:1-$:

zl:subl
1-

sys:%ld-aloc array index Function

Page 847

Returns a locative pointer to the array element-cell selected by the index. sys:%1d-
aloc is like zl:aloc, except that it ignores the the number of dimensions of the ar-
ray and acts as if it were a one-dimensional array by linearizing the multidimen-
sional elements.

Current style suggests that you should use (loef (sys:%ld-aref |...|)) instead of
sys:%ld-aloc.

When using sys:%l1d-aloc it is necessary to understand how arrays are stored in
memory: See the section "Row-major Storage of Arrays".

For an example of accessing elements of a multidimensional array as if it were a
one-dimensional array: See the function sys:%1d-aref.

For a table of related items: See the section "Accessing Multidimensional Arrays
as One-dimensional".

sys:%ld-aref array index Function

Returns the element of array selected by the index. sys:%ld-aref is the same as
aref, except that it ignores the number of dimensions of the array and acts as if it
were a one-dimensional array by linearizing the multidimensional elements. copy-
array-portion uses this function.

For example:

(setq xarrayx (make-array ’(20 30 50))) => H<Art-Q-20-30-50 5023116>
(setf (aref xarrayx 5 6 7) ’foo) => FOO

;;; The following three forms have the same effect.

(aref xarrayx 5 6 7) => FOO

(sys:%1d-aref xarrayx (+ (x (+ (x 5 30) 6) 50) 7)) => FOO
(sys:%1d-aref xarrayx (array-row-major-index xarrayx)) => F0O
(sys:%1d-aref xarrayx (array-row-major-index xarrayx 5 6 7)) => FO0O

When using sys:%l1d-aref it is necessary to understand how arrays are stored in
memory: See the section "Row-major Storage of Arrays".

For a table of related items: See the section "Accessing Multidimensional Arrays
as One-dimensional".

sys:%ld-aset value array index Function

Stores a value into the specified array element, selected by the index. sys:%1d-aset
is the same as zl:aset, except that it ignores the number of dimensions of the ar-
ray and acts as if it were a one-dimensional array.

copy-array-portion uses this function.

Current style suggests that you should use (setf (sys:%ld-aref |...|)) instead of
sys:%ld-aset.

Page 848

When using sys:%ld-aset it is necessary to understand how arrays are stored in
memory: See the section "Row-major Storage of Arrays".

For an example of accessing elements of a multidimensional array as if it were a
one-dimensional array: See the function sys:%1d-aref.

For a table of related items: See the section "Accessing Multidimensional Arrays
as One-dimensional".

2d-array-blt alu nrows ncolumns from-array from-row from-column to-array to-row
to-column Function

Copies a rectangular portion of from-array into a portion of fo-array. 2d-array-blt
is similar to bitblt but takes (row,column) style arguments on two-dimensional ar-
rays, while bitblt takes (x,y) arguments on rasters.

The number of columns in from-array times the number of bits per element must
be a multiple of 32. The same is true for to-array.

This can be used on sys:art-fixnum or sys:art-lb, sys:art-2b,... sys:art-16b arrays.
It can also be used on sys:art-q arrays provided all the elements are fixnums.

For a table of related items: See the section "Copying an Array".

Sys:%32-bit-difference fixnumi fixnum?2 Function

Returns the difference of fixnumil and fixnum?2 in 32-bit two’s complement arith-
metic. Both arguments must be fixnums. The result is a fixnum.

For a table of related items, see the section "Machine-Dependent Arithmetic Func-
tions".

sys:%32-bit-plus fixnuml fixnum?2 Function

Returns the sum of fixnumi and fixnum2 in 32-bit two’s complement arithmetic.
Both arguments must be fixnums. The result is a fixnum.

For a table of related items, see the section "Machine-Dependent Arithmetic Func-
tions".

abs number Function

Returns |number|, the absolute value of number. For noncomplex numbers, abs
could have been defined by:

(defun abs (number)
(cond ((minusp number) (minus number))
(t number)))

Note that if number is equal to negative zero in IEEE floating-point format the
above algorithm returns -0.0.

Page 849

For complex numbers, abs could have been defined by:
(defun abs (number)

(sqrt (+ (T (realpart number) 2) (= (imagpart number) 2))))
(abs 81) => 81

(abs -81.8) => 81.8

(abs f#ic(3 4)) => 5.0
See the function phase.

For a table of related items, see the section "Arithmetic Functions".

acons key datum alist Function

Constructs a new association list by adding the pair (key . datum) onto the front of
alist. acons returns a new association list which has the new key and datum pair
added to it. See the section "Association Lists". This is equivalent to using the
cons function on key and datum, and consing it onto the old list as follows:

(acons key datum alist) = (cons (cons key datum) alist)

Example:

(setg bird-alist ’((wader . heron) (raptor . eagle))) =>
((WADER . HERGON) (RAPTOR . EAGLE))

(acons ’diver ’loon bird-alist) =>
((DIVER . LOON) (WADER . HERGON) (RAPTOR . EAGLE))

bird-alist =>
((WADER . HERON) (RAPTOR . EAGLE))

In the following example, acons updates the association list of tenured professors
and their classes.

(setqg professors-with-tenure
(("smith" . (CS282 CS231))
("parks” . (CS221)) ("hunter” . (CS216 CS232))))

(setq professors-with-tenure
(acons "Jones” (list CS181 CS242)
professors-with-tenure))

(professors-with-tenure
*(("Jones” . (CS1@1 CS242)) ("smith" . (CS282 CS231))
("parks” . (CS221)) ("hunter” . (CS216 CS232))))

For a table of related items: See the section "Functions that Operate on Associa-
tion Lists".

Page 850

acos number Function

Computes and returns the arc cosine of the argument (that is, the angle whose co-
sine is equal to number). The result is in radians.

The argument can be any noncomplex or complex number. Note that if the abso-
lute value of number is greater than one, the result is complex, even if the argu-
ment is not complex.

The arc cosine being a mathematically multiple-valued function, acos returns a
principal value whose range is that strip of the complex plane containing numbers
with real parts between 0 and w. The range excludes any number with a real part
equal to zero and a negative imaginary part, as well as any number with a real
part equal to m and a positive imaginary part.

Examples:
(acos 1) => 0.0
(acos @) => 1.5707964 ; W/2 radians

(acos -1) => 3.1415927 ; =w

(acos 2) => {#{C(0.8 1.3169578)

(acos -2) => H#C(3.1415927 -1.316958)
(acos (/7 (sgrt 2) 2)) => 0.785398

For a table of related items, see the section "Trigonometric and Related
Functions".

acosh number Function

Computes and returns the hyperbolic arc cosine of the argument (that is, the angle
whose cosh is equal to number). The result is in radians.

The argument can be any noncomplex or complex number, except -1. Note that if
the value of number is less than one, the result is complex, even if the argument
is not complex. The hyperbolic arc cosine being mathematically multiple-valued in
the complex domain, acosh returns a principal value whose range is that half-strip
of the complex plane containing numbers with a non-negative real part and an
imaginary part between -m and m (inclusive). A number with real part zero is in
the range if its imaginary part is between zero (inclusive) and n (inclusive).

Example:

(acosh 1) => 0.0 ;(cosh B) => 1.0
(acosh -2) => #c(1.316958 3.1415927)

For a table of related items, see the section "Hyperbolic Functions".

clos:add-method generic-function method Generic Function

Adds method to generic-function and returns the modified generic-function.
clos:add-method is the underlying mechanism of the clos:defmethod macro.

generic-function A generic function object.

Page 851

method A method object.
If the generic function already has a method with the same parameter specializers
and qualifiers as method, then the existing method is replaced with method.

An error is signaled if:

e The lambda-list of the method is not congruent with the lambda-list of the
generic function.

e The method object is already attached to a different generic function object.

zl:addl x Function
(zl:addl x) is the same as (+ x 1).

The following functions are synonyms of zl:addl:

1+
z1:1+$

adjoin item list &key (:test #eql) :tesi-not (:key #’identity) (:area sys:default-cons-
area) :localize :replace

Function

Adds an element to a set, provided it is not already a member. If item is added,
the noew cons is returned. Otherwise, list is returned. The keywords are:

:test Any predicate that specifies a binary operation on a supplied
argument and an element of a target list. The item matches
the specification only if the predicate returns t. If :test is not
supplied, the default operation is eql.

:test-not Similar to :test, except that item matches the specification only
if there is an element of the list for which the predicate re-
turns nil.

:key If not nil, should be a function of one argument that will ex-

tract the part to be tested from the whole element. This func-
tion is applied to both item and members of list.

:localize Can be nil, t, or a positive integer when using Genera:

nil Does not localize the top level of the list
before returning the list.

t Localizes the top level of list structure, by
calling sys:localize-list or sys:localize-tree
on the list before returning it.

Page 852

integer Localizes integer levels of list structure, by
calling sys:localize-list or sys:localize-tree
on the list before returning it.

:replace Destructively modifies the specified element (or elements) and
replaces it with the value provided. :replace’s value can be t
or nil. Not available in CLOE.

Note that, since adjoin adds an element only if it is not already a member, the
sense of :test and :test-not have inverted effect: with :test, an item is added to
the list only if there is no element of the list for which the predicate returns t.
With :test-not, an item is added if there is no element for which the predicate re-
turns nil.

When :test is eql, the default, then:
(adjoin item list) = (if (member item Tist) Tist (cons item Tist))
Here are some examples:

(setq bird-1ist ’((loon . diver) (heron . wader))) =>
((LOON . DIVER) (HERON . WADER))

(setq bird-1list (adjoin ’(eagle . raptor) bird-list :key #’car)) =>
((EAGLE . RAPTOR) (LOON . DIVER) (HERON . WADER))

(adjoin ’(eagle . oops) bird-list :key #’car) =>
((EAGLE . RAPTOR) (LOON . DIVER) (HERGON . WADER))

(setq add-to-list ’(j-jones "John Jones" "acct rep"))
(setq list (adjoin add-to-list list
:test #’string-equal :key }H’cadr))

For a table of related items: See the section "Functions for Constructing Lists and
Conses".

Compatibility Note: The keywords :area, :localize, and :replace are Symbolics ex-
tension to Common Lisp, not available in CLOE.

adjust-array array new-dimensions &key :element-type :initial-element :initial-
contents :fill-pointer :displaced-to :displaced-index-offset :displaced-conformally
Function

Changes the dimensions of an array. It returns an array of the same type and
rank as array, but with the new-dimensions. The number of new-dimensions must
equal the rank of the array. All elements of array that are still in the bounds are
carried over to the new array.

:element-type specifies that elements of the new array are required to be of a cer-
tain type. An error is signalled if array contains elements that are not of that
type. :element-type thus provides an error check.

Page 853

:zinitial-element allows you to specify an initial element for any elements of the
new array that are not in the bounds of array.

The :initial-contents and :displaced-to options have the same effect as they do for
make-array. If you use either of these options, none of the elements of array are
carried over to the new array.

You can use the :fill-pointer option to reset the fill pointer of array. If array had
no fill pointer an error is signalled.

If the size of the array is being increased, adjust-array might have to allocate a
new array somewhere. In that case, it alters array so that references to it are
made to the new array instead, by means of "invisible pointers" under Genera. See
the function structure-forward. adjust-array returns this new array if it creates
one, and otherwise it returns array. Be careful to be consistent about using the re-
turned result of adjust-array, because you might end up holding two arrays that
are not the same (that is, not eq), but that share the same contents.

Compatibility Note: :displaced-conformally is a Symbolics extension to Common
Lisp, and not available in CLOE.

(setq xprint-arrayx t)
(setq array-1 (make-array ’(2 3 2) :initial-element ’a :adjustable t))
=> #3ACCA A) (A A) (AA)) ((AA) (AA) (AR)))

(adjust-array array-1 ’(3 2 2) :initial-element ’b)
=> #3ACC(A A) (A A)) ((AA) (AA)) ((BB) (BB)))

(setq an-array (make-array 10 :element-type ’string-char :adjustable t
zinitial-element f#\x))
=> " XXXXXXXXXX "

(adjust-array an-array 15 :initial-element #\y)
=> XXX XXXXXXXYYYYY

(setq xprint-arrayx t)

(setq an-array (make-array ’(2 3) :adjustable t
:initial-contents " ((1 2 3)(4 5 6))))

#2A((1 2 3)(4 5 6))

(adjust-array an-array ’(3 2) :initial-element #\y)
#H2A((1 2) (4 3) (1\y #\y))

zl:adjust-array-size array new-size Function

If array is a one-dimensional array, its size is changed to be new-size. If array has
more than one dimension, its size is changed to new-size by changing only the first
dimension.

If array is made smaller, the extra elements are lost. If array .is made bigger, the
new elements are initialized in the same fashion as make-array would initialize
them: either to nil, 0 or (code-char 0), depending on the type of array.

Page 854

Example:
(setg a (make-array H))
(setf (aref a 4) ’foo)
(aref a 4) => foo
(z1:adjust-array-size a 2)
(aref a 4) => an error occurs

See the function adjust-array.

The meaning of zl:adjust-array-size for conformal indirect arrays is undefined.

adjustable-array-p array Function

Returns t if array is adjustable, and nil if it is not. Lisp dialects supported by
Genera make most arrays adjustable even if the :adjustable option to make-array
is not specified; but to guarantee that an array can be adjusted after created, it is
necessary to use the :adjustable option. Under CLOE, arrays are adjustable only if
the :adjustable option is specified non-nil.

(setq foo (make-array (4 5)))
(adjustable-array-p foo) => nil ;under CLOE
=T ;under Genera
(setq bar (make-array (4 5) :adjustable t))
(adjustable-array-p bar) => t ;CLOE and Genera

For a table of related items: See the section "Getting Information About an Array".

:advance-input-buffer &optional new-pointer Message

If new-pointer is non-nil, it is the index in the buffer array of the next byte to be
read. If new-pointer is nil, the entire buffer has been used up.

sys:*all-flavor-names* Variable

This is a list of the names of all the flavors that have ever been created by
defflavor.

For a summary of all functions, macros, special forms, and variables related to
Flavors: See the section "Summary of Flavor Functions and Variables".

&allow-other-keys Lambda List Keyword

In a lambda-list that accepts keyword arguments, specifies that keywords that are
not specifically listed after &key are allowed. They and their corresponding values
are ignored, as far as keywords arguments are concerned, but they do become part
of the &rest argument, if there is one.

zl:aloe array &rest subscripts Function

Page 855

Returns a locative pointer to the element of array selected by the subscripts. The
subscripts must be integers and their number must match the dimensionality of ar-
ray. See the section "Cells and Locatives".

Current style suggests using locf with aref instead of zl:aloc. For example:

(Tocf (aref array subscripts))

alpha-char-p char Function

Returns t if char is a letter of the alphabet.

(alpha-char-p #f\A) => T
(alpha-char-p #\1) => NIL

For a table of related items, see the section "Character Predicates".

alphalessp x y Function

(alphalessp x y) is equivalent to (string-lessp x y). If the arguments are not
strings, alphalessp compares numbers numerically, lists by element, and all other
objects by printed representation. alphalessp is a Maclisp all-purpose alphabetic
sorting function.

Examples:

(alphalessp “apple” "orange") => T
(alphalessp ’tom ’tim) => NIL
(alphalessp "same" "same") => NIL
(alphalessp ’symbol "string”) => NIL
(alphalessp (abc) (abd)) =T

alphanumericp char Function

Returns t if char is a letter of the alphabet or a base-10 digit.

(alphanumericp #\7) => T
(alphanumericp #\%) => NIL

For a table of related items, see the section "Character Predicates".

always keyword for loop

always expr

Causes the loop to return t if expr always evaluates non-null.
If expr evaluates to nil, the loop immediately returns nil, with-
out running the epilogue code (if any, as specified with the
finally clause); otherwise, t is returned when the loop finishes,
after the epilogue code has been run. If the loop terminates be-
fore expr is ever evaluated, the epilogue code is run and the
loop returns t.

Page 856

always expr is like (and expri expr2 ...), except that if no expr
evaluates to nil, always returns t and and returns the value
of the last expr. If the loop terminates before expr is ever eval-
uated, always is like (and).

If you want a similar test, except that you want the epilogue
code to run if expr evaluates to nil, use while.
Examples:

(defun loop-always (my-list)
(Toop for x in my-list
finally (print "what you going to do next ?")
do
(princ x) (princ " ")
do
and always (equal x ’a))) => LOOP-ALWAYS

(lToop-always ’(b c a d)) => B NIL

(lToop-always ’(a a)) => A A
"what you going to do next ?* T

See the section "Aggregated Boolean Tests for loop".

and &rest types Type Specifier

Allows the definition of data types that are the intersection of other data types
specified by types. As a type specifier, and can only be used in list form.

Examples:

(typep 89 ’(and integer number)) =>T
(subtypep ’hit-vector ’(and vector array)) => T and T
(sys:type-arglist ’and) => (&REST TYPES) and T

See the section "Data Types and Type Specifiers".

For a discussion of the function and: See the section "Flow of Control".

and &rest forms Special Form

Evaluates each form one at a time, from left to right. If any form evaluates to nil,
and immediately returns nil without evaluating any other form. If every form eval-
uates to non-nil values, and returns the value of the last form.

and can be used in two different ways. You can use it as a logical and function,
because it returns a true value only if all of its arguments are true. So you can
use it as a predicate:

Examples:

Page 857

(if (and ’this ’that) "reaches this point") => "reaches this point”
(if (and (equal 1 1) (equal nil ’())) "equal”) => "equal”

(if (and socrates-is-a-person all-people-are-mortal)
(setq socrates-is-mortal t))

Because the order of evaluation is well-defined, you can do:

(if (and (boundp ’x)
(eq x ’foon))
(setq y ’bar)) => NIL

knowing that the x in the eq form is not evaluated if x is found to be unbound.
You can also use and as a simple conditional form:
Examples:

(and) => T
(and t nil) => NIL
(and t ’hi (numberp 3.14)) => T

(when (and (setq temp (assq x y))
(rplacd temp 2)))

(when (and bright-day
glorious-day
(princ "It is a bright and glorious day.")))

In the following example, very-expensive-function is not evaluated because a prior
form is false:

(setq foo 12 bar (3 4 5))

(if (and (eql 12 foo)
(eql foo bar)
(very-expensive-function bar))

bar
foo)

Note: (and) => t , which is the identity for the and operation.
For a table of related items: See the section "Conditional Functions".

CLOE Note: This is a macro in CLOE.

zl:ap-1 array index Function

This is an obsolete version of zl:aloe that works only for one-dimensional arrays.
There is no reason ever to use it.

Page 858

zl:ap-2 array index1 index2 Function

This is an obsolete version of zl:aloc that works only for two-dimensional arrays.
There is no reason ever to use it.

zl:ap-leader array index Function

Returns a locative pointer to the indexed element of array’s leader. array should be
an array with a leader, and index should be an integer. See the section "Cells and
Locatives".

However, the preferred method is to use locf and array-leader as shown in the
following example:

(setq xarrayx
(make-array ’(2 3) :element-type ’character
:leader-Tist ’(t nil)))

(locf (array-leader xarrayx 1))

append &rest lists Function

Concatenates lists, returning the resulting list. The arguments to append are lists.
They are not changed (see ncone). Example:

(append ’(abc) ’(de f) nil ’(g)) => (abcdef Qg

append makes copies of the top-level list structure of all the arguments it is
given, except for the last one. So the new list shares the conses of the last argu-
ment to append, but all the other conses are newly created. Only the lists are
copied, not the elements of the lists. The function concatenate can perform a sim-
ilar operation, but always copies all its arguments. See also ncone, which is like
append but destroys all its arguments except the last.

The last argument does not have to be a list, but can be any Lisp object, which
becomes the tail of the constructed list. For example,

(append ’(abc) ’d) => (abc . d)
A version of append that only accepts two arguments could have been defined by:

(defun append2 (x y)
(cond ((atom x) y)
((cons (car x) (append2 (cdr x) y)))))

The generalization to any number of arguments could then be made (relying on
car of nil being nil):

(defun append (&rest args)
(if (< (length args) 2) (car args)
(append2 (car args)
(apply (function append) (cdr args)))))

Page 859

These definitions do not express the full functionality of append; the real defini-
tion under Genera minimizes storage utilization by cdr-coding the list it produces.
See the section "Cdr-Coding".

Example:
(setgqa’(12)b’@34) c’B6)AdT7) =>7
(setg x (append a b c)) => (1 2 3 4 5 6)
(setf (car c) ’foo) (setf (car b) ’bar) x =>
(1 2 bar 4 foo 6)
(append a b c d) => (1 2 bar 4 foo 6 . 7)
a=> (12

To copy a list, use copy-list; the old practice of using
(append x *())

to copy lists is unclear and obsolete.

For a table of related items: See the section "Functions for Constructing Lists and
Conses".

append keyword for loop

append expr {into var}

Causes the values of expr on each iteration to be appended together. When the
epilogue of the loop is reached, var has been set to the accumulated result and
can be used by the epilogue code.

It is safe to reference the values in var during the loop, but they should not be
modified until the epilogue code for the loop is reached.

The forms append and appending are synonymous.

Examples:

(defun splice-list (list1 1ist2)
(lToop for item1 in Tlist1

for item2 in list2

append (Tist item1) into result

append (1ist item2) into result

finally (return (append result)))) => SPLICE-LIST
(splice-list ’(Let not the of minds) ’(me to marriage true)) =>
(LET ME NOT TO THE MARRIAGE OF TRUE)

Is equivalent to

Page 860

(defun splice-list (1list1 1ist2)
(lToop for item1 in Tlist1

for item2 1in list2

appending (list item1) into result

appending (1ist item2) into result

finally (return (append result)))) => SPLICE-LIST
(splice-1ist ’(Let not the of minds) ’(me to marriage true)) =>
(LET ME NOT TO THE MARRIAGE OF TRUE)

Not only can there be multiple accumulations in a loop, but a single accumulation
can come from multiple places within the same loop form, if the types of the col-
lections are compatible. append, collect, and nconc are compatible.

See the section "Accumulating Return Values for loop".

apply function argument &rest arguments
Function

Applies the function function to arguments. function can be any function, but it
cannot be a special form or a macro. The arguments for function consist of the
last argument to apply appended to the end of the list of all other arguments to
apply except for function itself. It is as if all the arguments to apply except func-
tion were given to list* to create the argument list.

Examples:

(setq fred ’+)

(apply fred (1 2)) => 3

(apply fred 1 2 *(3 4) => 10

(apply ’cons ’((+ 2 3) 4)) => ((+ 2 3) . 4) not (b . 4)
Note that if the function takes keyword arguments, you must put the keywords as
well as the corresponding values in the argument list.

(apply #’ (lambda (8&key a b) (list a b)) ’(:b 3) => (nil 3)
Compatibility Note: In Symbolics Common Lisp, apply is extended to allow you to
call an array as a function.

See the section "Functions for Function Invocation".

zl:apply fn args Function

Applies the function fr to the list of arguments args. args must be a list; fn can
be any function, but it cannot be a special form or a macro. The arguments for fn
consist of the elements of the list args.

Examples:

Page 861

(setq fred ’+)

(z1:apply fred (1 2)) => 3

(setq fred ’-)

(z1:apply fred (1 2)) => -1

(z1:apply ’cons ’((+ 2 3) 4)) => ((+ 2 3) . 4) not (5 . 4)

Of course, args can be nil. Note: Unlike Maclisp, zl:apply never takes a third ar-
gument; there are no "binding context pointers" in Symbolics Common Lisp.

See the function funcall.

See the section "Functions for Function Invocation".

apropos string &optional package (do-inherited-symbols t) do-packages-used-by
Function

Searches for all symbols whose print-names contain string as a substring. When it
finds a symbol, it prints out the symbol’s name; if the symbol is defined as a func-
tion and/or bound to a value, it tells you so, and prints the names of the argu-
ments (if any) to the function or the dynamic value of the symbol. If package is
specified, it only searches for symbols containing string in that package, otherwise
all packages are searched, as if by do-all-symbols. Because symbols can be avail-
able in more than one package by inheritance, apropos might print information
about the same symbol more than once.

Compatibility Note: Symbolics Common Lisp provides two additional optional ar-
guments, do-inherited-symbols and do-packages-used-by. If do-inherited-symbols is t,
the set of packages searched includes all packages that package uses. If do-
packages-used-by is t, the set also includes all packages that use package. You can-
not use these two optional arguments in CLOE runtime.

apropos prints its information to *standard-output*. It returns nil.

zl:apropos apropos-substring &optional pkg (do-packages-used-by t) do-packages-used
Function

Searches for all symbols whose print-names contain apropos-substring as a sub-
string. When it finds a symbol, it prints out the symbol’s name; if the symbol is
defined as a function and/or bound to a value, it tells you so, and prints the names
of the arguments (f any) to the function. It checks all symbols in a certain set of
packages. The set always includes pkg. If do-packages-used-by is t, the set also in-
cludes all packages that use pkg. If do-packages-used is t, the set also includes all
packages that pkg uses. pkg defaults to the global package, so normally all pack-
ages are searched. apropos returns a list of all the symbols it finds. This is simi-
lar to the Find Symbol command, except that Find Symbol only searches the cur-
rent package unless you specify otherwise.

apropos-list string &optional package do-packages-used-by Function

Page 862

Searches for all symbols whose print-names contain siring as a substring. If the
Symbolics Common Lisp optional argument package is specified, the function only
searches for symbols containing string in that package, otherwise all packages are
searched, as if by do-all-symbols. It returns a list of the symbols it finds.

Compatibility Note: Symbolics Common Lisp provides the additional optional argu-
ment do-packages-used-by. If do-packages-used-by is t, the set also includes all pack-
ages that use package. Package and do-packages-used-by may not work in other im-
plementations of Common Lisp and does not work in CLOE Runtime.

For more information, see the function apropos.

zl:ar-1 array index Function

This is an obsolete version of aref that works only for one-dimensional arrays.
There is no reason ever to use it.

zl:ar-2 array indexI index2 Function

This is an obsolete version of aref that works only for two-dimensional arrays.
There is no reason ever to use it.

aref array &rest subscripts Function

Returns the element of array selected by the subscripts. The subscripts must be in-
tegers and their number must match the dimensionality of array.

(setq this-array (make-array ’(2 3) :initial-contents

"((@bc) (de f))))

(aref this-array @ @) => A
(aref this-array 8 1) => B
(aref this-array @ 2) => C
(aref this-array 1 @) => D

setf can be used with aref to set the value of an array element.
(setf (aref this-array 1 @) ’x) => X
(aref this-array 1 @) => X
The subscripts can refer to an element beyond a fill pointer
(setg this-array
(make-array ’(3 2 2) :element-type ’integer :initial-contents
“(((5 6) (12 8))
((7 8) (5 13))
((9 4) (22 6)))))

(aref this-array 1 8 8) => 7

For a table of related items: See the section "Basic Array Functions".

Page 863

zl:arg x Function

(zl:arg nil), when evaluated during the application of a lexpr, gives the number of
arguments supplied to that lexpr. This is primarily a debugging aid, since lexprs
also receive their number of arguments as the value of their lambda-variable.

(zl:arg 1), when evaluated during the application of a lexpr, gives the value of the
i’th argument to the lexpr. i must be an integer in this case. It is an error if i is
less than 1 or greater than the number of arguments supplied to the lexpr. Exam-
ple:

(defun foo nargs ;define a lexpr foo.
(print (arg 2)) ;print the second argument.
(+ (arg 1) ;return the sum of the first

(arg (- nargs 1)))) ;and next to last arguments.

zl:arg exists only for compatibility with Maclisp lexprs. To write functions that
can accept variable numbers of arguments, use the &optional and &rest keywords.
See the section "Evaluating a Function Form".

arglist function &optional real-flag Function

Given an ordinary function, a generic function, or a function spec, returns a repre-
sentation of the function’s lambda-list. It can also return a second value that is a
list of descriptive names for the values returned by the function. The third value
is a symbol specifying the type of function:

Returned Value Function Type

nil ordinary or generic function
subst substitutable function

special special form

macro macro

si:special-macro both a special form and a macro
array array

If function is a symbol, arglist of its function definition is used.

Some functions’ real argument lists are not what would be most descriptive to a
user. A function can take an &rest argument for technical reasons even though
there are standard meanings for the first element of that argument. For such cas-
es, the definition of the function can specify, with a local declaration, a value to be
returned when the user asks about the argument list. Example:

(defun foo (&rest rest-arg)
(declare (arglist x y &rest z))

Note that since the declared argument list is supplied by the user, it does not nec-
essarily correspond to the function’s actual argument list.

real-flag allows the caller of arglist to say that the real argument list should be
used even if a declared argument list exists.

Page 864

If real-flag is t or a declared argument list does not exist, arglist computes its re-
turn value using information associated with the function. Normally the computed
argument list is the same as that supplied in the source definition, but occasional-
ly some differences occur. However, arglist always returns a functionally correct
answer in that the number and type of the arguments is correct.

When a function returns multiple values, it is useful to give the values names so
that the caller can be reminded which value is which. By means of a values decla-
ration in the function’s definition, entirely analogous to the arglist declaration
above, you can specify a list of mnemonic names for the returned values. This list
is returned by arglist as the second value.

(arglist ’arglist)
=> (function &optional real-flag) and (arglist values type)

args-info fcn Function

Returns an integer called the "numeric argument descriptor" of fcn, which de-
scribes the way the function takes arguments. This descriptor is used internally by
the microcode, the evaluator, and the compiler. fcn can be a function or a function
spec.

The information is stored in various bits and byte fields in the integer, which are
referenced by the symbolic names shown below. By the usual Symbolics convention,
those starting with a single "%" are bit-masks (meant to be bit-tested with the
number with logand or zl:bit-test), and those starting with "%%" are byte descrip-
tors (meant to be used with 1db or 1db-test).

Here are the fields:

sys:%%arg-desc-min-args
This is the minimum number of arguments that can be passed to this
function, that is, the number of "required" parameters.

sys:%%arg-desc-max-args
This is the maximum number of arguments that can be passed to this
function, that is, the sum of the number of "required" parameters and the
number of "optional" parameters. If there is an &rest argument, this is not
really the maximum number of arguments that can be passed; an arbitrari-
ly large number of arguments is permitted, subject to limitations on the
maximum size of a stack frame (about 200 words).

sys:%%arg-desc-rest-arg
If this is nonzero, the function takes an &rest argument or &key argu-
ments. A greater number of arguments than sys:%%arg-desc-max-args can
be passed.

sys:%arg-desc-interpreted
This function is not a compiled-code object.

sys:%%arg-desc-interpreted
This is the byte field corresponding to the sys:%arg-desc-interpreted bit.

Page 865

sys:%%arg-desc-quoted
This is obsolete.

sys:%args-info function Function

An internal function; it is like args-info, but does not work for interpreted func-
tions. Also, function must be a function, not a function spec.

zl:argument-typecase arg-name &body clauses Special Form

A hybrid of zl:typecase and zl:check-arg-type. Its clauses look like clauses to
zl:typecase. zl:argument-typecase automatically generates an otherwise clause
which signals an error. The proceed types to this error are similar to those from
zl:check-arg; that is, you can supply a new value that replaces the argument that
caused the error.

For example, this:

(defun foo (x)
(argument-typecase x
(:symbol (print ’symbol))
(:number (print ’number))))

is the same as this:

(defun foo (x)
(check-arg x
(typecase x
(:symbol (print ’symbol) t)
(:number (print ’number) t)
(otherwise nil))
"a symbol or a number"))

For a table of related items: See the section "Condition-Checking and Signalling
Functions and Variables".

array &optional (element-type **) (dimensions *) Type Specifier
array is the type specifier symbol for the Lisp data structure of that name.

The types array, cons, symbol, number, and character are pairwise disjoint.

The type array is a supertype of the types:

simple-array
vector

This type specifier can be used in either symbol or list form. Used in list form,
array allows the declaration and creation of specialized arrays whose members are
all members of the type element-type and whose dimensions match dimensions.

Page 866

element-type must be a valid type specifier, or unspecified. For standard Symbolics
Common Lisp type specifiers: See the section "Type Specifiers".

dimensions can be a non-negative integer, which is the number of dimensions, or it
can be a list of non-negative integers representing the length of each dimension
(any of which can be an asterisk). dimensions can also be an asterisk.

Note that (array t) is a proper subset of (array *). This is because (array t) is
the set of arrays that can hold any Symbolics Common Lisp object (the elements
are of type t, which includes all objects). On the other hand, (array *) is the set
of all arrays whatsoever, including for example arrays that can hold only charac-
ters. (array character) is not a subset of (array t); the two sets are in fact dis-
joint because (array character) is not the set of all arrays that can hold charac-
ters, but rather the set of arrays that are specialized to hold precisely characters
and no other objects. To test whether an array foo can hold a character, you
should not use

(typep foo ’(array character))
but rather
(subtypep ’character (array-element-type foo))
Examples:
(setq example-array (make-array ’(3) :fill-pointer 2))
=> #<ART-Q-3 43063275>
(typep example-array ’array) => T

(typep example-array ’simple-array) => NIL
; simple arrays do not have fill-pointers.

(z1:typep #x181) => :ARRAY

(subtypep ’array t) => T and T

(array-has-fill-pointer-p example-array) => T

(arrayp example-array) => T

(sys:type-arglist ’array)

=> (&OPTIONAL (ELEMENT-TYPE ’x) (DIMENSIONS ’x)) and T
See the section "Data Types and Type Specifiers".

See the section "Arrays".

zl:array x type &rest dimlist Macro

Creates an sys:art-q type array in sys:default-cons-area with the given dimen-
sions. (That is, dimlist is given to zl:make-array as its first argument.) fype is ig-
nored. If x is nil, the array is returned; otherwise, the array is put in the function
cell of symbol, and symbol is returned. This exists for Maclisp compatibility.

Use the Common Lisp function make-array in your new programs.

zl:*array x type &rest dimlist Function

Page 867

Creates an sys:art-q type array in sys:default-cons-area with the given dimen-
sions, and evaluates all of the arguments. It exists for Maclisp compatibility.

zl:array-#-dims array Function

We recommend that you use the function array-rank, which is the Common Lisp
equivalent of zl:array-#-dims.

Returns the dimensionality of array. For example:
(z1:array-ft-dims (make-array ’(3 5))) => 2

For a table of related items: See the section "Getting Information About an Array".

zl:array-active-length array Function

Returns the number of active elements in array. If array does not have a fill
pointer, this returns whatever (array-total-size array) would have. If array does
have a fill pointer that is a non-negative fixnum, zl:array-active-length returns it.
See the section "Array Leaders".

A general explanation of the use of fill pointers is in that section.

Note that length provides the same functionality for lists and vectors.

sys:array-bits-per-element Variable

The value of sys:array-bits-per-element is an association list that associates each
array type symbol with the number of bits of unsigned numbers (or fixnums) it
can hold, or nil if it can hold Lisp objects. This can be used to tell whether an ar-
ray can hold Lisp objects or not. See the section "Association Lists".

For a table of related items: See the section "Array Representation Tools".

sys:array-bits-per-element index Function

Given the internal array-type code numbers, returns the number of bits per cell
for unsighed numeric arrays, or nil for a type of array that can contain Lisp ob-
jects.

array-dimension array dimension-number Function

Returns the length of the dimension numbered dimension-number of array. dimen-
sion-number should be a non-negative integer less than the rank of array.

(setq foo (make-array (3 2 4 6)))
(array-dimension foo @) => 3
(array-dimension foo 3) => 6

For a table of related items: See the section "Getting Information About an Array".

Page 868

array-dimension-limit Constant

Represents the upper exclusive bound on each individual dimension of an array.
The value of this is 134217728 under Genera, and CLOE.

(when (> max-number-in-categories array-dimension-1limit)
(setq xnumber-of-arrays-neededx
(ceiling max-number-in-categories array-dimension-1imit)))

For a table of related items: See the section "Basic Array Functions".

zl:array-dimension-n n array Function

Returns the size for the specified dimension of the array. array can be any kind of
array, and n should be an integer. If n is between 1 and the dimensionality of ar-
ray, this returns the nth dimension of array. If n is 0, this returns the length of
the leader of array; if array has no leader it returns nil. If n is any other value,
this returns nil. Examples:
(setq a (make-array ’(3 5) :leader-length 7))
(zl:array-dimension-n 1 a) => 3
(z1:array-dimension-n 2 a) => 5
(z1:array-dimension-n 3 a) => nil
(z1:array-dimension-n @ a) => 7

We recommend that you use the function array-dimension, which is the Common
Lisp equivalent of zl:array-dimension-n.

array-dimensions array Function

Returns a list whose elements are the dimensions of array. Example:

(setq a (make-array ’(3 9)))
(array-dimensions a) => (3 5)

For a table of related items: See the section "Getting Information About an Array".

sys:array-displaced-p array Function

Tests whether the array is a displaced array. array can be any kind of array. This
predicate returns t if array is any kind of displaced array (including an indirect
array). Otherwise it returns nil.

For a table of related items: See the section "Getting Information About an Array".

sys:array-element-byte-size array Function

Given an array, returns the number of bits that fit into an element of that array.
For arrays that can hold general Lisp objects, the result is 32; this assumes that
you are storing bits into the array with sys:%logdpb, rather than storing numbers
into the array with dpb.

Page 869

For a table of related items: See the section "Array Representation Tools".

sys:array-element-size array Function

Given an array, returns the number of bits that fit into an element of that array.
For arrays that can hold general Lisp objects, the result is 31; this assumes that
you are storing fixnums in the array and manipulating their bits with dpb (rather
than sys:%logdpb). You can store any number of bits per element in an array that
holds general Lisp objects, by letting the elements expand into bignums.

For a table of related items: See the section "Array Representation Tools".

array-element-type array Function

Returns the type specifier of the elements allowed in the array. In some cases this
may be different thatn the element-type specified in the call to make-array. Ex-
ample:

(setq a (make-array ’(3 9)))

(array-element-type a) => T

(array-element-type "foo") => STRING-CHAR

(setq bar (make-array ’(3 2 4) :element-type ’bit))

(array-element-type bar) => (integer @ (2))

For a table of related items: See the section "Getting Information About an Array".

sys:array-elements-per-q index Function

Given the internal array-type index, returns the number of array elements stored
in one word, for an array of that type.

For a table of related items: See the section "Array Representation Tools".

sys:array-elements-per-q index Variable

This is an association list that associates each array type symbol with the number
of array elements stored in one word, for an array of that type. See the section
"Association Lists".

For a table of related items: See the section "Array Representation Tools".

zl:array-grow array &rest dimensions Function

Creates a new array of the same type as array, with the specified dimensions.
Those elements of array that are still in bounds are copied into the new array.
The elements of the new array that are not in the bounds of array are initialized
to nil or 0 as appropriate. If array has a leader, the new array has a copy of it.
zl:array-grow returns the new array and also forwards array to it, like adjust-
array.

Page 870

Unlike adjust-array, zl:array-grow usually creates a new array rather than grow-
ing or shrinking the array in place. (If the array is one-dimensional and it is being
shrunk, zl:array-grow does not create a new array.) zl:array-grow of a multidi-
mensional array can change all the subscripts and move the elements around in
memory to keep each element at the same logical place in the array.

array-has-fill-pointer-p array Function

Returns t if the array has a fill pointer; otherwise it returns nil. array can be any
array.

(setg foo (make-array 12 :element-type ’string-char :fill-pointer @))

(array-has-fill-pointer-p foo) => t

array-has-leader-p array Function
Returns t if array has a leader; otherwise it returns nil. array can be any array.

For a table of related items: See the section "Operations on Array Leaders". Also:
See the section "Getting Information About an Array".

array-in-bounds-p array &rest subscripts Function

Checks whether subscripts is a valid set of subscripts for array, and returns t if
they are; otherwise it returns nil

In the following example, the second set of indices returns an out-of-bounds result
because Common Lisp arrays are zero based. Therefore, 2 is the highest allowable
index for a dimension of 3.

(setq foo (make-array (3 2 4 6)))
(array-in-bounds foo 2 1 3 5) => t
(array-in-bounds foo 3 1 3 5) => nil

For a table of related items: See the section "Getting Information About an Array".

sys:array-indexed-p array Function

Returns t if array is an indirect array with an index-offset. Otherwise it returns
nil. array can be any kind of array. Note, however, that displaced arrays with an
offset are not considered indexed.

sys:array-indirect-p array Function

Returns t if array is an indirect array. Otherwise it returns nil. array can be any
kind of array.

Page 871

array-leader array index Function

Returns the indexed element of array’s leader. array should be an array with a
leader, and index should be an integer.

For a table of related items: See the section "Operations on Array Leaders".

array-leader-length array Function

Returns the length of array’s leader if it has one, or nil if it does not. array can
be any array.

For a table of related items: See the section "Getting Information About an Array".

array-leader-length-limit Variable

This is the exclusive upper bound of the length of an array leader. It is 1024 on
Symbolics 3600-family computers, 256 on Ivory-based machines.

(condition-case (err)
(make-array 4 :leader-length array-leader-length-Timit)
(errar (princ err)))
=> Leader Tength specified (1824) is too Tlarge.
H#<FERROR 60065043>

zl:array-length array Function

We recommend that you use the function array-total-size, which is the Common
Lisp equivalent of zl:array-length.

Returns the total number of elements in array. array can be any array. The total
size of a one-dimensional array is calculated without regard for any fill pointer.
For a one-dimensional array, zl:array-length returns one greater than the maxi-
mum allowable subscript. For example:

(z1:array-length (make-array 3)) => 3
(z1:array-length (make-array ’(3 5))) => 15

Note that if fill pointers are being used and you want to know the active length of
the array, you should use length or zl:array-active-length instead of zl:array-
length.

zl:array-length does not return the same value as the product of the dimensions
for conformal arrays.

For a table of related items: See the section "Getting Information About an Array".

zl:array-pop array &optional (default nil) Function

We recommend that you use the function vector-pop, which is the Common Lisp
equivalent of the function zl:array-pop.

Page 872

Decreases the fill pointer by one and returns the array element designated by the
new value of the fill pointer. array must be a one-dimensional array that has a fill
pointer.

The second argument, if supplied, is the value to be returned if the array is emp-
ty. If zl:array-pop is called with one argument and the array is empty, it signals
an error.

The two operations (decrementing and array referencing) happen uninterruptibly.
If the array is of type sys:art-q-list, an operation similar to nbutlast has taken
place. The cdr coding is updated to ensure this.

See the function vector-pop.

zl:array-push array x Function

Attempts to store x in the element of the array designated by the fill pointer and
increase the fill pointer by one. array must be a one-dimensional array that has a
fill pointer, and x can be any object allowed to be stored in the array. If the fill
pointer does not designate an element of the array (specifically, when it gets too
big), it is unaffected and zl:array-push returns nil; otherwise, the two actions
(storing and incrementing) happen uninterruptibly, and zl:array-push returns the
former value of the fill pointer, that is, the array index in which it stored x.

If the array is of type sys:art-q-list, an operation similar to nconc has taken
place, in that the element has been added to the list by changing the cdr of the
formerly last element. The cdr coding is updated to ensure this.

See the function vector-push.

zl:array-push-extend array x &optional extension Function

Similar to zl:array-push except that if the fill pointer gets too large, the array is
grown to fit the new element; that is, it never "fails" the way zl:array-push does,
and so never returns nil. extension is the number of elements to be added to the
array if it needs to be grown. It defaults to something reasonable, based on the
size of the array. zl:array-push-extend returns the former value of the fill pointer,
that is, the array index in which it stored x.

See the function vector-push-extend.

zl:array-push-portion-extend fo-array from-array &optional (from-start 0) from-end
Function

We recommend that you use the function vector-push-portion-extend, which is
the Symbolics Common Lisp equivalent of the function zl:array-push-portion-
extend.

Copies a portion of one array to the end of another, updating the fill pointer of the
other to reflect the new contents. The destination array must have a fill pointer.
The source array need not. This is equivalent to numerous zl:array-push-extend

Page 873

calls, but more efficient. zl:array-push-portion-extend returns the fo-array and the
index of the next location to be filled.

Example:
(setq to-string
(z1:array-push-portion-extend to-string
from-string
(or from B)
t0))

This is similar to zl:array-push-extend except that it copies more than one ele-
ment and has different return values. The arguments default in the usual way, so
that the default is to copy all of from-array to the end of to-array.

zl:array-push-portion-extend adjusts the array size using adjust-array. It picks
the new array size in the same way that zl:array-push-extend does, making it big-
ger than needed for the information being added. In this way, successive additions
do not each end up consing a new array. zl:array-push-portion-extend uses copy-
array-portion internally.

See the function vector-push-portion-extend.

array-rank array Function

Returns the number of dimensions of array. For example:

(array-rank (make-array (3 5))) => 2

For a table of related items: See the section "Getting Information About an Array".

array-rank-limit Constant

Represents the exclusive upper bound on the rank of an array. The value of this is
8 under Genera, and 256 under CLOE.

(when (> number-of-categories array-rank-1limit)
(setq xnumber-of-arrays-neededx
(ceiling number-of-categories array-rank-1imit)))

For a table of related items: See the section "Basic Array Functions".

array-row-major-index array &rest subscripts Function

Takes an array and valid subscripts for the array and returns a single positive in-
teger, less than the total size of the array, that identifies the accessed element in
the row-major ordering of the elements. The number of subscripts supplied must
equal the rank of the array. Each subscript must be a nonnegative integer less
than the corresponding array dimension. Like aref, array-row-major-index returns
the position whether or not that position is within the active part of the array.

For example:

Page 874

window is a conformal array whose 0,0 coordinate is at 256,256 of big-array. The
following code creates a 1/4 size portal into the center of big-array.

;53 —-%- Syntax: Zetalisp; Package: USER; Base: 10; Mode: LISP -x-
(setg big-array (make-array ’ (1824 10824) :type ’art-q
:initial-value 8))
(setq window (make-array ’ (512 512) :type ’art-q
:displaced-to bhig-array
:displaced-index-offset
(array-row-major-index big-array 256 256)
:displaced-conformally t))

For a one-dimensional array, the result of array-row-major-index equals the sup-
plied subscript.

An error is signalled if some subscript is not valid.

array-row-major-index can be used with the :displaced-index-offset option of
make-array to construct the desired value for multidimensional arrays.

(setq foo (make-array ’(2 3 3) :initial-contents
"(((@12) (345) (678))
((9 18 11) (12 13 14) (15 16 17)))))
(array-row-major-index foo 8 2 2) => 8

For a table of related items: See the section "Getting Information About an Array".

sys:array-row-span array Function

Returns the number of array elements spanned by one of its rows, given a two-
dimensional array. Normally, this is just equal to the length of a row (that is, the
number of columns), but for conformally displaced arrays, the length and the span
are not equal.
(sys:array-row-span (make-array ’(4 5))) => 5
(sys:array-row-span (make-array ’(4 H)
:displaced-to (make-array ’(8 9))
:displaced-conformally t))
=> 9

Note: If the array is conceptually a raster, it is better to use decode-raster-array
than sys:array-row-span.

For a table of related items: See the section "Getting Information About an Array".
See the section "Accessing Multidimensional Arrays as One-dimensional".

array-total-size array Function

Returns the total number of elements in array. The total size of a one-dimensional
array is calculated without regard for any fill pointer.

(array-total-size (make-array (3 5 2))) => 30

Page 875

Note that if fill pointers are being used and you want to know the active length of
the array, you should use length or under Genera, zl:array-active-length.

array-total-size does not return the same value as the product of the dimensions
for Genera conformal arrays.

For a table of related items: See the section "Getting Information About an Array".

array-total-size-limit Constant

Represents the exclusive upper bound on the number of elements of an array. The
value of this is 134217728 under Genera and CLOE.

(when (> number-of-data-elements array-total-size-limit)
(setq xnumber-of-arrays-neededx
(ceiling number-of-data-elements array-total-size-1limit)))

For a table of related items: See the section "Basic Array Functions".

sys:array-type array Function

Returns the symbolic type of array. Example:
(sys:array-type (make-array ’(3 5))) => SYS:ART-Q

sys:*array-type-codes* Variable

The value of sys:*array-type-codes* is a list of all of the array type symbols such
as sys:art-q, sys:art-4b, sys:art-string and so on. The values of these symbols are
internal array type code numbers for the corresponding type.

For a table of related items: See the section "Array Representation Tools".

sys:array-types index Function

Returns the symbolic name of the array type. The index is the internal numeric
code stored in sys:*array-type-codes*.

For a table of related items: See the section "Array Representation Tools".

zl:arraydims array Function

Returns a list whose first element is the symbolic name of the type of array, and
whose remaining elements are its dimensions. array can be any array; it also can
be a symbol whose function cell contains an array (for Maclisp compatibility).

Example:
(setq a (make-array ’(3 5)))
(zl:arraydims a) => (sys:art-q 3 5)

Note: the list returned by (array-dimensions x) is equal to the cdr of the list re-
turned by (zl:arraydims x).

Page 876

See the function array-dimensions.

arrayp object Function

Returns t if its argument is an array, otherwise nil. Note that strings are arrays.

(setq screen (make-array (640 350) :element-type ’bit))
(arrayp screen) => t

(arrayp "foo") => t

(arrayp ’((a b)(c d))) => nil

zl:as-1 value array index Function

This is an obsolete version of zl:aset that works only for one-dimensional arrays.
There is no reason ever to use it.

zl:as-2 value array index1 index2 Function

This is an obsolete version of zl:aset that works only for two-dimensional arrays.
There is no reason ever to use it.

zl:ascii n Function
Returns a symbol whose printname is the character n.
n can be an integer (a character code), a character, a string, or a symbol.

Examples:
(zl:ascii 2) => o
(zl:ascii t\y) => |yl
(zl:ascii "Y") =>Y
(zl:ascii ’a) => A

The symbol returned is interned in the current package.

This function is provided for Maclisp compatibility only.

ascii-code spec Function

Returns an integer that is the ASCII code named by spec. If spec is a character,
char-to-ascii is called. Otherwise, spec can be a string or keyword that names one
of the ASCII special characters.

ascii-code returns an integer, for example, (ascii-code #: #\RETURN) => #o0l5.
ascii-code also recognizes strings and looks up the names of the ASCII "control"
characters. Thus (ascii-code "SOH") and (ascii-code #:|#\l|) return 1. (ascii-
code #\c-A) returns 65, not 1; there is no mapping between Symbolics character
set control characters and ASCII control characters.

Page 877

Valid ASCII special character names are listed below. All numbers are in octal.

NUL 000 HT o011 DC1 o021 SUB 032
SOH 001 LF 012 DC2 022 ESC 033
STX 002 NL 012 DC3 023 ALT 033
ETX 003 VT 013 DC4 024 FS 034
EOT 004 FF 014 NAK 025 GS 035
ENQ 005 CR 015 SYN 026 RS 036
ACK 006 SO 016 ETB 027 Us 037
BEL 007 SI 017 CAN 030 SP 040
BS 010 DLE 020 EM 031 DEL 177
TAB 011

For a table of related items, see the section "ASCII Characters".

ascii-to-char code Function

Converts code (an ASCII code) to the corresponding character. The caller must ig-
nore LF after CR if desired.

ascii-to-char performs an inverse mapping of the function char-to-ascii, and this
mapping embeds the ASCII character character set in the Symbolics character set.
There is no attempt to map more obscure ASCII control codes into the also ob-
scure and unrelated Symbolics control codes. For example, Escape, is a character
in the Symbolics character set corresponding to the key marked Escape. The ASCII
code Escape is not the same as the Symbolics Escape. See the function char-to-
ascii. See the function ascii-code. See the section "ASCII Conversion String Func-
tions".

The functions char-to-ascii and ascii-to-char provide the primitive conversions
needed by ASCII-translating streams. They do not translate the Return character
into a CR-LF pair; the caller must handle that. They just translate #\Return into
CR and #\Line into LF. Except for CR-LF, char-to-ascii and ascii-to-char are
wholly compatible with the ASCII-translating streams.

They ignore Symbolics control characters; the translation of #\e-G is the ASCII
code for G, not the ASCII code to ring the bell, also known as "control G." (asecii-
to-char (ascii-code "BEL')) is #\n, not #\¢-G. The translation from ASCII to char-
acter never produces a Symbolics control character.

For a table of related items, see the section "ASCII Characters".

ascii-to-string ascii-array Function

Converts ascii-array, an sys:art-8b array representing ASCII characters, into a
Lisp string. Note that the length of the string can vary depending on whether
ascii-array contained a Newline character or Carriage Return Line Feed charac-
ters. See the section "ASCII Characters".

Example:

Page 878

(setq a-string-array

(z1:make-array 5 :type zl:art-8b :initial-value (ascii-code }#\x)))
=> }#(120 120 120 120 120)
(ascii-to-string a-string-array) => "xxxxx"

For a table of related items: See the section "ASCII Conversion String Functions".

zl:aset element array &rest subscripts Function

Stores element into the element of array selected by the subscripts. The subscripts
must be integers and their number must match the dimensionality of array. The
returned value is element.

Current style suggests using setf and aref instead of zl:aset. For example:

(setf (aref array subscripts...) new-value)

ash number count Function

Shifts number arithmetically left count bits if count is positive, or right -count bits
if count is negative. Unused positions are filled by zeroes from the right, and by
copies of the sign bit from the left. Thus, unlike Ish, the sign of the result is al-
ways the same as the sign of number. If number is an integer, this is a shifting
operation. If number is a floating-point number in Genera, this does scaling (multi-
plication by a power of two), rather than actually shifting any bits. If you are us-
ing CLOE, it is an error for number to be a float.

Examples:

(ash 1 3) => 8

(ash 18 3) => 84
(ash 18 -3) => 1
(ash 1 -3) => 0
(ash 1.5 3) => 12.8
(ash -1 3) => -8
(ash -1 -3) => -1

See the section "Functions Returning Result of Bit-wise Logical Operations".

For a table of related items: See the section "Functions Returning Result of Bit-
wise Logical Operations".

asin number Function
Computes and returns the arc sine of number. The result is in radians.

The argument can be any noncomplex or complex number. Note that if the abso-
lute value of number is greater than one, the result is complex, even if the argu-
ment is not complex.

The arc sine being a mathematically multiple-valued function, asin returns a prin-
cipal value whose range is that strip of the complex plane containing numbers

Page 879

with real parts between -m/2 and n/2. Any number with a real part equal to -m/2
and a negative imaginary part is excluded from the range. Also excluded from the
range is any number with real part equal to m/2 and a positive imaginary part.

Examples:

(asin 1) => 1.5707964 ; /2 radians
(asin @) => 0.0

(asin -1) => -1.5707964 ;-T/2 radians
(asin 2) => #c(1.5787964 -1.316958)
(asin -2) => #c(-1.5787964 1.3169578)
(asin (/ (sgrt 2) 2)) => 0.785398

For a table of related items, see the section "Trigonometric and Related
Functions".

asinh number Function

Computes and returns the hyperbolic arc sine of number. The result is in radians.
The argument can be any noncomplex or complex number.

The hyperbolic arc sine being mathematically multiple-valued in the complex plane,
asinh returns a principal value whose range is that strip of the complex plane
containing numbers with imaginary parts between -n/2 and m/2. Any number with
an imaginary part equal to -n/2 is not in the range if its real part is negative; any
number with real part equal to n/2 is excluded from the range if its imaginary
part is positive.

Example:
(asinh @) => 0.0 ;(sinh B8) => 0.0

For a table of related items, see the section "Hyperbolic Functions".

zl:ass pred item list Function

Looks up item in the association list /ist. Returns the first cons whose car matches
item according to pred, or nil if none does. (zl:ass ‘eq a b) is the same as (zl:assq
a b). As with zl:mem, you can use noncommutative predicates; the first argument
to the predicate is item and the second is the indicator of the element of list. See
the function zl:mem.

For a table of related items: See the section "Functions that Operate on Associa-
tion Lists".

assert test-form &optional references format-string &rest format-args Macro

Signals an error if the value of fest-form is nil. It is possible to proceed from this
error; the function lets you change the values of some variables, and starts over,
evaluating tesi-form again.

assert returns nil.

Page 880

test-form is any form.

references is a list, each item of which must be a generalized variable reference
that is acceptable to the macro setf. These should be variables on which test-form
depends, whose values can sensibly be changed by the user in attempting to cor-
rect the error. Subforms of each of references are only evaluated if an error is sig-
nalled, and can be re-evaluated if the error is re-signalled (after continuing with-
out actually fixing the problem).

format-string is an error message string.

format-args are additional arguments; these are evaluated only if an error is sig-
nalled, and reevaluated if the error is signalled again.

The function format is applied in the usual way to format-string and and format-
args to produce the actual error message.

If format-string (and therefore also formai-args) are omitted, a default error mes-
sage is used.

For a table of related items: See the section "Condition-Checking and Signalling
Functions and Variables".

assoc item a-list &key (test #eql) test-not (key #identity) Function

Searches the association list a-list. The value returned is the first pair in a-list
whose car satisfies the predicate specified by :test, or nil if no such pair is found.
If nil is one of the elements in the association list, assoc passes over it. The key-
words are:

:test Any predicate that specifies a binary operation on a supplied
argument and an element of a target list. The ifem matches
the specification only if the predicate returns t. If :test is not
supplied, the default operation is eql.

:test-not Similar to :test, except that item matches the specification only
if there is an element of the list for which the predicate re-
turns nil.

:key If not nil, should be a function of one argument that will ex-

tract the part to be tested from the whole element.

Example:

(assoc ’loon ’((eagle . raptor) (loon . diver))) =>
(LOON . DIVER)

3

(assoc ’diver ’((eagle . raptor) (loon . diver))) => NIL

(assoc ’2 ’((Tabc) (2bcd) (-7xy2z2)) =>(2BCD)

It is possible to rplacd the result of assoe (provided that it is non-nil) in order to
update a-list.

Page 881

(setq values ’((x . 108) (y . 200) (z . 5@))) =>
((X . 18@) (Y . 2088) (Z . 508))

(assoc ’y values) => (Y . 200)

3

(rplacd (assoc ’y values) 201) => (Y . 201)

(assoc ’y values) => (Y . 201)

The two expressions:
(assoc item alist :test pred)
and
(find item alist :test pred :key #’car)

are almost equivalent in meaning. The difference occurs when nil appears in a-list
in place of a pair, and the item being searched for is nil. In these cases, find com-
putes the car of the nil in a-list, finds that it is equal to ifem, and returns nil,
while assoc ignores the nil in a-list and continues to search for an actual cons
whose car is nil. See also, find and position.

It is often better to update an association list by adding new pairs to the front,
rather than altering old pairs. The following example demonstrates an association
list consisting of pairs of keys and association lists.

(setq financial-statement)
> ((MONTHLY-CASH-ON-HAND ((11 . 52) (12 . 73)))
(MONTHLY-EXPENSE ((18 . 28) (11 . 21)))
(MONTHLY-REVENUE ((18 . 31) (11 . 42))))

In the following example, the first call to assoe extracts the monthly-cash-on-hand
association list. The second assoc extracts the monthly-cash-on-hand for the month
of November from monthly-cash-on-hand:

(setq monthly-cash-on-hand
(assoc ’monthly-cash-on-hand financial-statement))
=> (MONTHLY-CASH-ON-HAND ((11 . 52) (12 . 73)))
(assoc ’11 (cdr monthly-cash-on-hand))
=>(11 . 52)
In the next example, rplacd alters a value stored in the association list, and assoc
delivers the pointer for rplacd.

(assoc ’monthly-revenue financial-statement)
=> (MONTHLY-REVENUE . ((18 . 31) (11 . 42)))

(setf (cdr (assoc ’11 (assoc ’monthly-revenue financial-statement)))
22)

(assoc ’monthly-revenue financial-statement)
=> (MONTHLY-REVENUE . ((18 . 31) (11 . 22)))

Usually, association lists are updated by adding a new pair to the front of the list,
as shown in the following example:

Page 882

(acons ’11 ’22 (assoc ’monthly-revenue financial-statement))

(assoc ’monthly-revenue financial-statement)
=> (MONTHLY-REVENUE . ((11 . 22)(18 . 31)(11 . 42)))

For a table of related items: See the section "Functions that Operate on Associa-
tion Lists".

zl:assoc item in-list Function

Looks up ifem in the association list in-list. Returns the first cons whose car is
zl:equal to item, or nil if none is found. Example:

(zl:assoc ’(a b) "((x . y) ((@ab) . 7) ((c .d) .e))
=> ((ab) . 7)
zl:assoc could have been defined by:
(defun assoc (item Tist)
(cond ((null Tist) nil)

((equal item (caar 1list)) (car Tist))
((assoc item (cdr Tist)))))

For a table of related items: See the section "Functions that Operate on Associa-
tion Lists".

assoc-if predicate a-list &key :key Function

Searches the association list a-list. Returns the first pair in ¢-list whose car satis-
fies predicate, or nil if there is no such pair in a-list. The keyword is:

:key If not nil, should be a function of one argument that will ex-
tract the part to be tested from the whole element. :key is a
Symbolics extension to Common Lisp.

Example:

(assoc-if ff’integerp ’((eagle . raptor) (1 . 2))) =>
1.2

(assoc-if #’symbolp ’((eagle . raptor) (1 . 2))) =>
(EAGLE . RAPTOR)

(assoc-if #’floatp ’((eagle . raptor) (1 . 2))) =>
NIL
In the following example, the function finds the largest numeric key in an associa-

tion list by repeating assoc-if with a test for a key greater than the greatest key
found so far.

Page 883

(defun find-largest-key (a-list &optional (start 0))
(if (setq pair
(assoc-if #f’ (lambda(x) (> x start)) a-list))
(find-largest-key a-list (car pair))))

For a table of related items: See the section "Functions that Operate on Associa-
tion Lists".

Compatibility Note: :key is a Symbolics extension to Common Lisp, not available
in CLOE.

assoc-if-not predicate a-list &key :key Function

Searches the association list a-list. The value returned is the first pair in a-list
whose car does not satisfy predicate, or nil if there is no such pair in a-list. The
keyword is:

:key If not nil, should be a function of one argument that will ex-
tract the part to be tested from the whole element. :key is a
Symbolics extension to Common Lisp.

Example:

(assoc-if-not #’integerp ’((eagle . raptor) (1 . 2))) =>
(EAGLE . RAPTOR)
(assoc-if-not #’symbolp ’
1.2

((eagle . raptor) (1 . 2))) =>

(assoc-if-not #’symbolp ’((eagle . raptor) (loon . diver))) =>
NIL

In the following example, the callto assoc-if-not finds the first pair in a-list such
that its key is not string-equal to "salary".
(assoc-if-not #’ (lambda(x) (string-equal "salary” x))
a-list)

For a table of related items: See the section "Functions that Operate on Associa-
tion Lists".

Compatibility Note: :key is a Symbolics extension to Common Lisp, not available
in CLOE.

zl:assq item in-list Function
Looks up item in the association list in-list. The value is the first cons whose car

is eq to item, or nil if none is found. Examples:

(zl:assq ’r "((a . b) (c . d) (r . x) (s .y) (r. 2)))
=> (r . x)

Page 884

(zl:assq ’fooo ’((foo . bar) (zoo . goo)))
=> nil

(zl:assq b ’((abc) (bcd) (xy 2)))
=> (b c d)

You can rplacd the result of zl:assq as long as it is not nil, if you want to update
the "table" in-list. Example:

(setq values ’((x . 16@) (y . 200) (z . 5@)))
(zl:assq 'y values) => (y . 2@8)

(rplacd (zl:assq ’y values) 201)

(zl:assq ’y values) => (y . 2081) now

A typical trick is to use (edr (zl:assq x y)). Since the cdr of nil is guaranteed to
be nil, this yields nil if no pair is found (or if a pair is found whose cdr is nil.)

zl:assq could have been defined by:

(defun zl:assq (item list)
(cond ((null Tist) nil)
((eq item (caar list)) (car 1list))
((z1:assq item (cdr list)))))

For a table of related items: See the section "Functions that Operate on Associa-
tion Lists".

atan y &optional x Function

With two arguments, y and x, computes and returns the arc tangent of the quanti-
ty y/x. If either argument is a double-float, the result is also a double-float. In the
two argument case neither argument can be complex. The returned value is in ra-
dians and is always between -m (exclusive) and m (inclusive). The signs of y and «x
determine the quadrant of the result angle.

Note that either y or x (but not both simultaneously) can be zero. The examples il-
lustrate a few special cases.

With only one argument y, atan computes and returns the arc tangent of y. The
argument can be any noncomplex or complex number. The result is in radians and
its range is as follows: for a noncomplex y the result is noncomplex and lies be-
tween -m/2 and w/2 (both exclusive); for a complex y the range is that strip of the
complex plane containing numbers with a real part between -n/2 and w/2. A num-
ber with real part equal to -n/2 is not in the range if it has a non-positive imagi-
nary part. Similarly, a number with real part equal to n/2 is not in the range if its
imaginary part is non-negative.

Examples:

Page 885

(atan 8) => 0.0

(atan B8 673) => 0.0 ;(atan (/' y X))
(atan 1 1) => 0.7853982 ;first quadrant
(atan 1 -1) => 2.3561945 ;second quadrant
(atan -1 -1) => -2.3561945 ;third quadrant
(atan -1 1) => -0.7853982 ; fourth quadrant

(atan 1 B) => 1.5707964

(setq theta (/ pi 4)) — 0.785398

(atan (cos theta) (sin theta)) = theta => 0.785398
When given a single argument, atan accepts a complex argument.
(atan (/ (cos theta) (sin theta))) = theta => 0.785398

(atan y) is the same as
(x -1 (log (x (+ 1 (x 1 y))
(sgrt (/1 (+ 1 (expt y 2)))))))

For a table of related items, see the section "Trigonometric and Related
Functions".

zl:atan y x Function

Returns the angle, in radians, whose tangent is y/x. zl:atan always returns a num-
ber between zero and 2.

Examples:

(zl:atan 1 1) => 0.7853982
(z1:atan -1 -1) => 3.926991

For a table of related items: See the section "Trigonometric and Related
Functions".

zl:atan2 y x Function

Returns the angle, in radians, whose tangent is y/x. zl:atan2 always returns a
number between -n and m.

Similar to zl:atan, except that it accepts only noncomplex arguments.

For a table of related items: See the section "Trigonometric and Related
Functions".

atanh number Function

Computes and returns the hyperbolic arc tangent of number. The result is in radi-
ans. The argument can be any noncomplex or complex number. Note that if the
absolute value of the argument is greater than one, the result is complex even if
the argument is not complex.

Page 886

The hyperbolic arc tangent being mathematically multiple-valued in the complex
plane, atanh returns a principal value whose range is that strip of the complex
plane containing numbers with imaginary parts between -n/2 and 7/2. Any number
with an imaginary part equal to -n/2 is not in the range if its real part is non-
negative; any number with imaginary part equal to /2 is excluded from the range
if its real part is non-positive.

Example:

(atanh @) => 0.0

For a table of related items, see the section "Hyperbolic Functions".

atom object Function
Returns t if object is not a cons, otherwise nil.
Note that (atom ’()) is true because () is equivalent to nil.
(atom x)
is equivalent to
(type x ’atom)
is equivalent to
(not (typep x ’cons))
Note that arrays, strings, structures, vectors, numbers, and symbols are all atoms.

(atom " ()) => t

(setq foo (make-array ’(4 2)) bar "24" baz ’(a foo bar))
(atom foo) => t

(atom bar) => t

(atom baz) => nil

For a table of related items, see the section "Predicates that Operate on Lists".

atom object Function
Returns t if object is not a cons, otherwise nil
Note that (atom ’()) is true because () is equivalent to nil.
(atom x)
is equivalent to
(type x ’atom)
is equivalent to
(not (typep x ’cons))

Note that arrays, strings, structures, vectors, numbers, and symbols are all atoms.

Page 887

(atom ’()) => t

(setq foo (make-array ’(4 2)) bar "24" baz ’(a foo bar))
(atom foo) => t

(atom bar) => t

(atom baz) => nil

For a table of related items, see the section "Predicates that Operate on Lists".

atom Type Specifier
atom is the type specifier symbol for the predefined Lisp object of that name.
atom = (not cons).
Examples:
(typep ’a ’atom) => T
(z1:typep ’a) => :SYMBOL
(subtypep ’atom ’common) => NIL and NIL
(atom ’a) => T
(sys:type-arglist ’“atom) => NIL and T
See the section "Data Types and Type Specifiers".

See the section "Symbols, Keywords, and Variables".

&aux Lambda List Keyword

Separates the arguments of a function from the auxiliary variables. If it is present,
all specifiers after it are entries of the form:

(variable initial-value-form)

zZl:base Variable

The value of zl:base is a number that is the radix in which integers and ratios
are printed in, or a symbol with a si:princ-function property. The initial value of
zl:base is 10. zl:base should not be greater than 36 or less than 2.

The printing of trailing decimal points for integers in base 10 is controlled by the
value of variable *print-radix*. See the section "Printed Representation of Rational
Numbers".

In your new programs use the Common Lisp variable *print-base®.

beep &optional beep-type (stream zl:terminal-io) Function

Tries to attract the user’s attention by causing an audible beep, or flashing the
screen, or something similar. If the stream supports the :beep operation, this func-
tion sends it a :beep message, passing type along as an argument. Otherwise it

Page 888

just causes an audible beep on the terminal. fype is a keyword selecting among
several different beeping noises. The allowed types have not yet been defined; zype
is currently ignored and should always be nil. See the message :beep.

:beep &optional type Message

This is supported by interactive streams. It attracts the attention of the user by
making an audible beep and/or flashing the screen. type is a keyword selecting
among several different beeping noises. The allowed types have not yet been de-
fined; type is currently ignored and should always be nil.

bignum Type Specifier

bignum is the type specifier symbol for the predefined primitive Lisp object of
that name.

The types bignum and fixnum are an exhaustive partition of the type integer,
since integer = (or bignum fixnum). These two types are internal representations
of integers used by the system for efficiency depending on integer size; in general,
bignums and fixnums are transparent to the programmer.

Examples:
(typep 10000000000000000000000000000AAAAA *bignum) => T
(typep ’1 ’bignum) => NIL
(z1:typep ’10000000000000000000E0OBALOBAABA) => :BIGNUM
(subtypep ’bignum ’integer) => T and T ; subtype and certain
(typep 565682366398848747848463539404874 ’common) => T
(z1:bigp 444444444445555555555555555556666666666666) => T
(sys:type-arglist ’bignum) => NIL and T
(type-of 089889374897338373689484949494373639484099876) => BIGNUM
See the section "Data Types and Type Specifiers".

See the section "Numbers".

zl:bigp object Function
Returns t if object is a bignum, otherwise nil.

For a table of related items, see the section "Numeric Type-checking Predicates".

bit array &rest subscripts Function

Returns the element of array selected by the subscripts. The subscripts must be in-
tegers and their number must match the dimensionality of array. The array must
be an array of bits.

Page 889

(setq foo (make-array (2 3)
:adjustable t
:element-type ’bit
:initial-contents " ((1 1 1)
(181))))

(bit foo 1 1) => 0

Note that the bit-array in the previous example is adjustable, and therfore not
simple. Therfore, we can not use sbit for foo. We could have used aref, but bit is
generally more efficient for bit-arrays.

For a table of related items: See the section "Arrays of Bits".

bit Type Specifier
bit is equivalent to the type (integer 0 1) and (unsigned-byte 1).

bit-and first second &optional third Function

Performs logical and operations on bit arrays. The arguments must be bit arrays
of the same rank and dimensions. A new array is created to contain the result if
the third argument is nil or omitted. If the third argument is t, the first array is
used to hold the result.

For a table of related items: See the section "Arrays of Bits".

bit-andcl first second &optional third Function

Performs logical and operations on the complement of first with second on bit ar-
rays. The arguments must be bit arrays of the same rank and dimensions. A new
array is created to contain the result if the third argument is nil or omitted. If
the third argument is t, the first array is used to hold the result.

For a table of related items: See the section "Arrays of Bits".

bit-ande2 first second &optional third Function

Performs logical and operations on first with the complement of second on bit ar-
rays. The arguments must be bit arrays of the same rank and dimensions. A new
array is created to contain the result if the third argument is nil or omitted. If
the third argument is t, the first array is used to hold the result.

For a table of related items: See the section "Arrays of Bits".

bit-eqv first second &optional third Function

Performs logical exclusive nor operations on bit arrays. The arguments must be bit
arrays of the same rank and dimensions. A new array is created to contain the re-

Page 890

sult if the third argument is nil or omitted. If the third argument is t, the first
array is used to hold the result.

For a table of related items: See the section "Arrays of Bits".

bit-ior first second &optional third Function

Performs logical inclusive or operations on bit arrays. The arguments must be bit
arrays of the same rank and dimensions. A new array is created to contain the re-
sult if the third argument is nil or omitted. If the third argument is t, the first
array is used to hold the result.

For a table of related items: See the section "Arrays of Bits".

bit-nand first second &optional third Function

Performs logical not and operations on bit arrays. The arguments must be bit ar-
rays of the same rank and dimensions. A new array is created to contain the re-
sult if the third argument is nil or omitted. If the third argument is t, the first
array is used to hold the result.

bit-nor first second &optional third Function

Performs logical not or operations on bit arrays. The arguments must be bit arrays
of the same rank and dimensions. A new array is created to contain the result if
the third argument is nil or omitted. If the third argument is t, the first array is
used to hold the result.

For a table of related items: See the section "Arrays of Bits".

bit-not source &optional destination Function

Returns a bit-array of the same rank and dimensions that contains a copy of the
argument with all the bits inverted. source must be a bit-array. If destination is nil
or omitted, a new array is created to contain the result. If destination is t, the re-
sult is destructively placed in the source array.

(bit-not #x10681) => {x0110@
For a table of related items:

See the section "Arrays of Bits".

bit-orel first second &optional third Function

Performs logical or operations on the complement of first with second on bit ar-
rays. The arguments must be bit arrays of the same rank and dimensions. A new
array is created to contain the result if the third argument is nil or omitted. If
the third argument is t, the first array is used to hold the result.

Page 891

For a table of related items: See the section "Arrays of Bits".

bit-ore2 first second &optional third Function

Performs logical or operations on first with the complement of second on bit ar-
rays. The arguments must be bit arrays of the same rank and dimensions. A new
array is created to contain the result if the third argument is nil or omitted. If
the third argument is t, the first array is used to hold the result.

For a table of related items: See the section "Arrays of Bits".

zl:bit-test x y Function

In your new programs, we recommend that you use the function logtest, which is
the Common Lisp equivalent of the function zl:bit-test.

zl:bit-test is a predicate that returns t if any of the bits designated by the 1’s in x
are 1’s in y.

For a table of related items: See the section "Predicates for Testing Bits in Inte-
gers".

bit-vector &optional (size '*) Type Specifier
bit-vector is the type specifier symbol for the Lisp data structure of that name.

The type bit-vector is a subtype of the type vector; (bit-vector) means (vector
bit).

The type bit-vector is a supertype of the type simple-bit-vector.
The types (vector t), string, and bit-vector are disjoint.

This type specifier can be used in either symbol or list form. Used in list form,
bit-vector allows the declaration and creation of specialized types of bit vectors
whose size is restricted to the specified size. (bit-vector size) means the same as
(array bit (size)): the set of bit-vectors of the indicated size.

Examples:

(setq array-bit-vector
(make-array ’(3) :element-type ’bit :fill-pointer 2))
=> fl<ART-1B-3 43015121>

(typep #x10110 ’bit-vector) => T

(typep #x101 ’(bit-vector 3)) => T

(typep array-bit-vector ’hit-vector) =>T

(subtypep ’bit-vector ’vector) => T and T

(bit-vector-p #fx) => T ;empty bit vector

(sys:type-arglist ’bit-vector) => (&0PTIONAL (SIZE ’x)) and T

See the section "Data Types and Type Specifiers".

Page 892

See the section "Arrays".

bit-vector-cardinality bit-vector &key (:start 0) :end Function

Counts how many of the bits in the range are one’s and returns the number
found.

bit-vector is a one-dimensional array whose elements are required to be bits. See
the type specifier bit-vector.

:start and :end must be non-negative integer indices into the bit-vector. :start
must be less than or equal to :end, or else an error is signalled. :start defaults to
zero (the start of the bit vector).

:start indicates the start position for the operation within the bit-vector. :end is
the position of the first element in the bit-vector beyond the end of the operation.

For example:

(bit-vector-cardinality #x11111)
=> b

(bit-vector-cardinality #x11100)
=> 3

(bit-vector-cardinality #x1118811 :start 8 :end 5H)
=> 3

For a table of related items: See the section "Operations on Vectors".

bit-vector-disjoint-p bit-vector-1 bit-vector-2 &key (:startl 0) :endl (:start2 0) :end2
Function

Tests two bit vectors to see if they are disjoint (have no common positions contain-
ing 1’s) in a range specified by :startl, :endl, :start2, and :end2.

bit-vector-1 and bit-vector-2 are one-dimensional arrays whose elements are required
to be bits.See the type specifier bit-vector.

:startl, :endl, :start2, and :end2 must be non-negative integer indices into bit-
vector]l and bit-vector-2. :startl and :start2 must be less than or equal to :endl and
:end2, or else an error is signalled. :startl and :start2 default to zero (the start of
the bit vector). If :end is unspecified or nil, the length bit-vector is used.

:startl and :start2 indicate the start positions for the operation within the bit-
vector. :endl and :end2 are the position of the first element in the bit-vector be-
yond the end of the operation.

For example:

Page 893

(bit-vector-disjoint-p #x001000001 {x001000001)
=> NIL

(bit-vector-disjoint-p #x11100100008 #x111008100811)
=> NIL

(bit-vector-disjoint-p #x11100100008 f#x1110010011 :start1 1 :end1 6 :start2 6 :end2 8)
= T

For a table of related items: See the section "Operations on Vectors".

bit-vector-p object Function

Tests whether the given object is a bit vector. A bit vector is a one-dimensional ar-
ray whose elements are required to be bits. See the type specifier bit-vector.

(bit-vector-p (make-array 3 :element-type ’bit :fill-pointer 2))
=T

(bit-vector-p (make-array 5 :element-type ’string-char))
=> NIL

For a table of related items: See the section "Operations on Vectors".

bit-vector-position bit bit-vector &key (:start 0) :end Function

If bit-vector contains an element matching bi¢, returns the index within the bit vec-
tor of the leftmost such element as a non-negative integer; otherwise nil is re-
turned.

bit is either 0 or 1.

bit-vector is a one-dimensional array whose elements are required to be bits. See
the type specifier bit-vector.

:start and :end must be non-negative integer indices into the bit-vector. :start
must be less than or equal to :end , or else an error is signalled. :start defaults to
zero (the start of the bit vector). If :end is unspecified or nil, the length bit-
vector is used.

:start indicates the start position for the operation within the bit vector. :end is
the position of the first element in the bit-vector beyond the end of the operation.
For example:

(bit-vector-position 1 #x11111)
=> 0

(bit-vector-position 1 #x0011111)
=> 2

Page 894

(bit-vector-position 1 #x8811111 :start 3 :end 5)
=> 3

(bit-vector-position @ #x111)
=> NIL

For a table of related items: See the section "Operations on Vectors".

bit-vector-subset-p bit-vector-1 bit-vector-2 &key (:startl 0) :endl (:start2 0) :end2
Function

Tests if one bit vector is a subset of another bit vector (subset means that for
each position of bit-vector-2 that contains a one, the same position in bit-vector-1
also contains a 1) in a range specified by :startl, :endl, :start2, and :end2.

bit-vector-1 and bit-vector-2 are one-dimensional arrays whose elements are required
to be bits.See the type specifier bit-vector.

:startl, :endl, :start2, and :end2 must be non-negative integer indices into bit-
vector]l and bit-vector-2. :startl and :start2 must be less than or equal to :endl and
:end2, else an error is signalled. :startl and :start2 default to zero (the start of
the bit vector). If :end is unspecified or nil, the length bit-vector is used.

:startl and :start2 indicate the start position for the operation within the bit vec-
tor. :endl and :end2 are the positions of the first element in the bit-vector beyond
the end of the operation.

For example:

(bit-vector-subset-p #x00100100111 }#x00100100111)
= T

(bit-vector-subset-p #x1110010011 }#x0010010011)
=> NIL

(bit-vector-subset-p #x11100000 #x11100011 :start1 @ :end1 6 :start2 @ :end2 6)
= T

(bit-vector-subset-p #x11100000 {x11100011 :start1 @ :end1 8 :start2 8 :end2 8)
=> NIL

For a table of related items: See the section "Operations on Vectors".

bit-vector-zero-p bit-vector &key (:start 0) :end Function
Tests if bit-vector is a bit vector of zeros in the range specified by :start and :end.
bit-vector is a one-dimensional array whose elements are required to be bits.

:start and :end must be non-negative integer indices into the bit-vector. :start
must be less than or equal to :end, or else an error is signalled. :start defaults to
zero (the start of the bit vector).

Page 895

:start indicates the start position for the operation within the bit vector. :end is
the position of the first element in the bit-vector beyond the end of the operation.
See the type specifier bit-vector.

For example:

(bit-vector-zero-p #x00000 :start @ :end H)
= T

(bit-vector-zero-p #x00011)
=> NIL

(bit-vector-zero-p #x00011 :start @ :end 3)
=T

For a table of related items: See the section "Operations on Vectors".

bit-xor first second &optional third Function

Performs logical exclusive or operations on bit arrays. The arguments must be bit
arrays of the same rank and dimensions. A new array is created to contain the re-
sult if the third argument is nil or omitted. If the third argument is t, the first
array is used to hold the result.

For a table of related items: See the section "Arrays of Bits".

bitblt a¢lu width height from-raster from-x from-y to-raster to-x to-y Function

Copies a rectangular portion of from-raster into a rectangular portion of to-raster.
from-raster and to-raster must be two-dimensional arrays of bits or bytes (sys:art-
1b, sys:art-2b, sys:art-4b, sys:art-8b, sys:art-16b, or sys:art-fixnum). The value
stored can be a Boolean function of the new value and the value already there, un-
der the control of alu. This function is most commonly used in connection with
raster images for TV displays.

The top-left corner of the source rectangle is:
(raster-aref from-raster from-x from-y)
The top-left corner of the destination rectangle is:

(raster-aref fo-raster to-x to-y)

width and height are the dimensions of both rectangles. If width or height is zero,
bitblt does nothing.

from-raster and to-raster are allowed to be the same array. bitblt normally travers-
es the arrays in increasing order of x and y subscripts. If width is negative,
(abs width) is used as the width, but the processing of the x direction is done
backwards, starting with the highest value of x and working down. If height is
negative it is treated analogously. When bitblting an array to itself, when the two
rectangles overlap, it might be necessary to work backwards to achieve the desired

Page 896

effect, such as shifting the entire array upwards by a certain number of rows.
Note that negativity of width or height does not affect the (x,y) coordinates speci-
fied by the arguments, which are still the top-left corner even if bitblt starts at
some other corner.

If the two arrays are of different types, bitblt works bit-wise and not element-wise.
That is, if you bitblt from an sys:art-2b raster into an sys:art-4b raster, then two
elements of the from-raster correspond to one element of the fo-raster. width is in
units of elements of the to-raster. Note that the width and heigth arguments are
relative to the to-raster array, not the from-raster array.

If bitblt goes outside the bounds of the source array, it wraps around. This allows
such operations as the replication of a small stipple pattern through a large array.
If bitblt goes outside the bounds of the destination array, it signals an error.

If src is an element of the source rectangle, and dst is the corresponding element
of the destination rectangle, then bitblt changes the value of dst to (boole alu src
dst). The following are the symbolic names for some of the most useful alu func-
tions:

tv:alu-seta plain copy

tv:alu-setz set destination to 0

tv:alu-ior inclusive or

tv:alu-xor exclusive or

tv:alu-andca and with complement of source

For a chart of more alu possibilities: See the function boole.

bitblt is written in highly optimized microcode and goes very much faster than the
same thing written with ordinary raster operations would. Unfortunately this caus-
es bitblt to have a couple of strange restrictions. Wraparound does not work cor-
rectly if from-raster is an indirect array with an index offset. On black-and-white
screens, bitblt signals an error if the widihs of from-raster and fo-raster are not
both integral multiples of the machine word length. On color screens, the product
of the number of bits per raster element and the width must be an integral multi-
ple of 32. You can determine the number of bits per raster element by the number
of bits which correspond to a single pixel on the screen. For sys:art-lb arrays,
width must be a multiple of 32., for sys:art-2b arrays it must be a multiple of 16.,
and so on. Use :draw-1-bit-raster rather than bitblt in programs that run without
modification on color screens.

For a table of related items: See the section "Operations on Rasters". Also: See the
section "Copying an Array'.

block name &body body
Special Form

Provides an exit context for the evaluation of its body argument. Evaluates each
form in sequence and normally returns the (possibly multiple) values of the last
form. However, (return-from name value) or (return or (return (values-list /ist))

Page 897

form) might be evaluated during the evaluation of some form. In that case, the
(possibly multiple) values that result from evaluating vaelue are immediately re-
turned from the innermost block that has the same name and that lexically con-
tains the return-from form. Any remaining forms in that block are not evaluated.

name is not evaluated. It must be a symbol.

The scope of name is lexical. That is, the return-from form must be inside the
block itself (or inside a block that that block lexically contains), not inside a func-
tion called from the block.

do, prog, and their variants establish implicit blocks around their bodies; you can
use return-from to exit from them. These blocks are named nil unless you specify
a name explicitly.

Examples:

(bTock nil
(print "clear")
(return)
(print "open")) => "clear" NIL

(et ((x 2400))
(bTlock time-x
(when (= x 24800)
(return-from time-x "time to go"))
("time time time"))) => “time to go”

(defun bar ()
(princ "zero ")
(bTock a
(princ "one *) (return-from a "two ")
(princ "three "))
(princ "four ")
t) => BAR
(bar) => zero one four T

(block negative
(mapcar (function (lambda (x)
(cond ((minusp Xx)
(return-from negative x))
(t (fx)))))
y))

(block foo
(Tet ((num xa-numberx)
(result 0))
(dotimes (i num result)
(if (=1 28) (return-from foo result))
(setq result (+ result (expt i 2))))))

defun establishes an implicit block whose name is the same as that of the defined

Page 898

function.

(defun matrix-find (elt matrix)
(dotimes (i (array-dimension matrix 0))
(dotimes (j (array-dimension matrix 1))
(if (eql elt (aref matrix i j))
(return-from matrix-find (values i j))))))

The following two forms are equivalent:

(cond ((predicate x)
(do-one-thing))
(t
(format t “The value of X is “S™7" x)
(do-the-other-thing)
(do-something-else-too0)))

(bTock deal-with-x
(when (predicate x)

(return-from deal-with-x (do-one-thing)))
(format t "The value of X is 7S7%" x)
(do-the-other-thing)
(do-something-else-to0))

The interpreter and compiler generate implicit blocks for functions whose name is
a list (such as methods) just as they do for functions whose name is a symbol. You
can use return-from for methods. The name of a method’s implicit block is the
name of the generic function it implements. If the name of the generic function is
a list, the block name is the second symbol in that list.

For a table of related items: See the section "Blocks and Exits Funections and Vari-
ables".

&body Lambda List Keyword

This keyword is used with macros only. It is identical in function to &rest, but it
informs output-formatting and editing functions that the remainder of the form is
treated as a body, and should be indented accordingly.

Note that either &body or &rest, but not both, should be used in any definition.

boole op integerl &rest more-integers Function

This function is the generalization of logical functions such as zl:logand, zl:logior
and zl:logxor. It performs bit-wise logical operations on integer arguments return-
ing an integer which is the result of the operation.

The argument op specifies the logical operation to be performed; sixteen operations
are possible. These are listed and described in the table below which also shows
the truth tables for each value of op.

Page 899

op can be specified by writing the name of one of the constants listed below which
represents the desired operation, or by using an integer between 0 and 15 inclusive
which controls the function that is computed. If the binary representation of op is
abed (@ is the most significant bit, d the least) then the truth table for the
Boolean operation is as follows:

integer2
[8 1
integerl gl a c
11 b d
Examples:
(boole 6 8 B) => 0 ; a=0
(boole 11 1 8) => -2 ; a=1 and b=0
(boole 2 6 9) => 9 ; a=b=d=0 c=1 therefore 1’s appear only

; when integer1 is @ and integer2 is 1

With two arguments, the result of boole is simply its second argument. At least
two arguments are required.

If boole has more than three arguments, it is associated left to right; thus,
(boole op x y z) = (boole op (boole op x y) 2)
(boole boole-and B8 1 1) => @

For the basic case of three arguments, the results of boole are shown in the table
below. This table also shows the value of bits abcd in the binary representation of
op for each of the sixteen operations. (For example, boole-clr corresponds to
#b0000, boole-and to #b0001, and so on.) As the table shows,

op = (boole op #b8101 #bBB11) = (boole op 5 3)

a b c d
Integerl 0 1 0 1

op Integer2 0 0 1 1 Operation Name
boole-clr 0 0 0 0 clear, always 0
boole-and 0 0 0 1 and

e
e
—
e

boole-andcl and complement of integerl
with integer2

boole-2 0 0 1 1 last of more-integers

boole-andc2 0 1 0 0 and integerl with complement
of integer2

boole-1 0 1 0 1 integerl

boole-xor 0 1 1 0 exclusive or

boole-ior 0 1 1 1 inclusive or

boole-nor 1 0 0 0 nor (complement of

inclusive or)
boole-eqv 1 0 0 1 equivalence (exclusive nor)

Page 900

boole-cl 1 0 1 0 complement of integerl
boole-orcl or complement of integerl
with integer2

—
=]
—
—

boole-c2 1 1 0 0 complement of integer2

boole-orc2 1 1 0 1 or integerl with complement
of integer2

boole-nand 1 1 1 0 nand (complement of and)

boole-set 1 1 1 1 set, always 1

Examples:

(boole boole-clr 3) => 3 ;with two arguments always returns
;integeri
(boole boole-set 7) => 7

(boole boole-1 1 8) => 1
(boole boole-2 1 @) => 0

(boole boole-orc2 1 4) => -5

(boole (if flag then boole-xor boole-ior) int1 int2)

As a matter of style the explicit logical functions such as logand, logior, and
logxor are usually preferred over the equivalent forms of boole. boole is useful,
however, when you want to generalize a procedure so that it can use one of sever-
al logical operations.

For a table of related items: See the section "Functions Returning Result of Bit-
wise Logical Operations".

boole-1 Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-
ical operation that returns the first integer argument of boole.

boole-2 Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-
ical operation that returns the last integer argument of boole.

boole-and Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-
ical and operation to be performed on the integer arguments of boole.

boole-andel Constant

Page 901

Can be used as the first argument to the function boole; it specifies a logical op-
eration to be performed on the integer arguments of boole, namely, a bit-wise logi-
cal and of the complement of the first integer argument with the next integer ar-
gument.

boole-andc2 Constant

Can be used as the first argument to the function boole; it specifies a logical op-
eration to be performed on the integer arguments of boole, namely, a bit-wise logi-
cal and of the first integer argument with the complement of the next integer ar-
gument.

boole-cl Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-
ical operation that returns the complement of the first integer argument of boole.

boole-c2 Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-
ical operation that returns the complement of the last integer argument of boole.

boole-clr Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-
ical clear operation to be performed on the integer arguments of boole.

boole-eqv Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-
ical equivalence operation to be performed on the integer arguments of boole.

boole-ior Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-
ical inclusive or operation to be performed on the integer arguments of boole.

boole-nand Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-
ical not-and operation to be performed on the integer arguments of boole.

boole-nor Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-
ical not-or operation to be performed on the integer arguments of boole.

Page 902

boole-orcl Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-
ical operation to be performed on the integer arguments of boole, namely, the logi-
cal or of the complement of the first integer argument with the next integer ar-
gument.

boole-orc2 Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-
ical operation to be performed on the integer arguments of boole, namely, the logi-
cal or of the first integer argument with the complement of the next integer ar-
gument.

boole-set Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-
ical set operation to be performed on the integer arguments of boole.

boole-xor Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-
ical exclusive or operation to be performed on the integer arguments of boole.

both-case-p char Function
Returns t if char is a letter that exists in another case.

(both-case-p #f\M) => T
(both-case-p #\m) => T

Returns T if char is an uppercase character and a lowercase character analog can
be obtained by using char-downcase, or if char is a lowercase character and an up-
percase character analog can be obtained by using char-upcase.

(both-case-p #\$) => nil
(both-case-p #\a) => t

For a table of related items, see the section "Character Predicates".

boundp symbol Function

Returns t if the dynamic (special) variable symbol is bound; otherwise, it returns
nil.

(defvar xalarmsx)

(boundp ’xalarmsx) => nil

Page 903

(setq xalarmsx 20)

(boundp ’xalarmsx) => t

See the section "Functions Relating to the Value of a Symbol".

boundp-in-closure closure symbol Function

Returns t if symbol is bound in the environment of closure; that is, it does what
boundp would do if you restored the value cells known about by closure. If symbol
is not closed over by closure, this is just like boundp. See the section "Dynamic
Closure-Manipulating Functions".

boundp-in-instance instance symbol Function
Returns t if the instance variable symbol is bound in the given instance.

For a summary of all functions, macros, special forms, and variables related to
Flavors: See the section "Summary of Flavor Functions and Variables".

break &optional format-string &rest format-args Function

Like zl:dbg, when evaluated, causes entry to the Debugger (a Debugger Break).
However, break takes a format-string and format-args instead of a process.

The format-string is a user-written error message that is printed in the Debugger’s
Break message whenever break is encountered and you enter the Debugger. for-
mat-args are the zl:format-style arguments to zl:format directives in format-string.

break is a temporary way to insert Debugger breakpoints into your program while
you are debugging it. It is not designed for permanent use in your program as a
way of signalling errors. Therefore, you would use this function only for the dura-
tion of your debugging session. Continuing from break will not trigger any unusu-
al recovery action.

zl:break &optional fag (conditional t) Special Form

Enters a breakpoint loop, which is similar to a Lisp top-level loop. (zl:break tag)
always enters the loop; (zl:break tag conditional) evaluates conditional and only
enter the break loop if it returns non-nil. If the break loop is entered, zl:break
prints out:

;Breakpoint fag; Resume to continue, Abort to quit.

The standard values for any variables are checked. If zl:break rebinds any of
these standard variables, it warns you that it has done so. zl:break then enters a
loop reading, evaluating, and printing forms. A difference between a break loop
and the top-level loop is that when reading a form, zl:break checks for the follow-
ing special cases: If the ABORT key is pressed, control is returned to the previous

Page 904

break or Debugger, or to top level if there is none. If the RESUME key is pressed,
zl:break returns nil. If the list (return form) is typed, zl:break evaluates form
and returns the result.

Inside the zl:break loop, the streams zl:standard-output, zl:standard-input, and
zl:query-io are bound to be synonymous to zl:terminal-io; zl:terminal-io itself is
not rebound. Several other internal system variables are bound, and you can add
your own symbols to be bound by pushing elements onto the value of the variable
sys:*break-bindings*. (See the variable sys:*break-bindings*.)

If tag is omitted, it defaults to nil.

There are two easy ways to write a breakpoint into your program: (zl:break) gets
a read-eval-print loop, and (zl:dbg) gets the Debugger. (These are the programmat-
ic equivalents of the SUSPEND and m—SUSFEND keys on the keyboard.)

sys:*break-bindings* Variable

When zl:break is called, it binds some special variables under control of the list
that is the value of sys:*break-bindings*. Each element of the list is a list of two
elements: a variable and a form that is evaluated to produce the value to bind it
to. The bindings happen sequentially. You can push things on this list (adding to
the front of it), but should not replace the list wholesale since several of the vari-
able bindings on this list are essential to the operation of zl:break.

break-on-warnings Variable

This variable controls the action of the function warn. If *break-on-warnings®* is
nil, warn prints a warning message without signalling.

If *break-on-warnings* is not nil, warn enters the Debugger and prints the warn-
ing message. The default value is nil

This flag is intended primarily for use when you are debugging programs that is-
sue warnings.

Note that this flag is still supported but is considered obsolete.

For a table of related items: See the section "Condition-Checking and Signalling
Functions and Variables".

breakon &optional function (condition t)
Function

With no arguments, returns a list of all functions with breakpoints set by
breakon.

breakon sets a trace-style breakpoint for the function. Whenever the function
named by function is called, the condition dbg:breakon-trap is signalled, and the
Debugger assumes control. At this point, you can inspect the state of the Lisp en-
vironment and the stack. Proceeding from the condition then causes the program
to continue to run.

Page 905

The first argument can be any function, so that you can trace methods and other
functions not named by symbols. See the section "Function Specs".

condition can be used for making a conditional breakpoint. condition should be a
Lisp form. It is evaluated when the function is called. If it returns nil, the func-
tion call proceeds without signalling anything. condition arguments from multiple
calls to breakon accumulate and are treated as an or condition. Thus, when any
of the forms becomes true, the breakpoint "goes off". condition is evaluated in the
dynamic environment of the function call. You can inspect the arguments of func-
tion by looking at the variable arglist.

For a table of related items: See the section "Breakpoint Functions".

dbg:bug-report-description condition stream nframes Generic Function

Called by the :Mail Bug Report (c-M) command in the Debugger to print out the
text that is the initial contents of the mail-sending buffer. The handler should sim-
ply print whatever information it considers appropriate onto stream. nframes is the
numeric argument given to c-M. The Debugger interprets nframes as the number
of frames from the backtrace to include in the initial mail buffer. A nframes of nil
means all frames.

The compatible message for dbg:bug-report-description is:
:bug-report-description

For a table of related items: See the section "Debugger Bug Report Functions".

dbg:bug-report-recipient-system condition Generic Function

Called by the :Mail Bug Report (z-M) command in the Debugger to find the mail-
ing list to which to send the bug report mail. The mailing list is returned as a
string.

The default method (the one in the condition flavor) returns "lispm'", and this is
passed as the first argument to the zl:bug function.

The compatible message for dbg:bug-report-recipient-system is:
:bug-report-recipient-system

For a table of related items: See the section "Debugger Bug Report Functions".

clos:built-in-class Class

The class of many of the predefined classes corresponding to Common Lisp types,
such as list and t.

These classes (objects whose class is clos:built-in-class) are provided so users can
define methods that specialize on them. They do not support the full behavior of
user-defined classes (whose class is clos:standard-class). For example, you cannot
use clos:make-instance to create instances of these classes.

Page 906

butlast x &optional (n 1) Function

Creates and returns a list with the same elements as x, excepting the last element.
Examples:

(butlast ’(abcd)) => (a b c)
(butlast ’((a b) (c d))) => ((a h))
(butlast ’(a)) => nil

(butlast nil) => nil

(setga ’(12345617))

(butlast a) => (1 2 3 4 5 6)
(butlast a 4) => (1 2 3)
a=>((12345617)

The name is from the phrase "all elements but the last".

For a table of related items: See the section "Functions for Modifying Lists".

byte size position Function

Creates a byte specifier for a byte size bits wide, position bits from the right-hand
(least-significant) end of the word. The arguments size and position must be inte-
gers greater than or equal to zero.

The byte specifier so created serves as an argument to various byte manipulation
functions.

Examples:

(1db (byte 2 1) 9) => @

(1db (byte 3 4) Ho012345) => 6
(setq byte-spec (byte 5 2))
(byte-size hyte-spec) => 5
(byte-position byte-spec) => 2

For a table of related items: See the section "Summary of Byte Manipulation Func-
tions".

byte-position bytespec Function
Extracts the position field of bytespec.
bytespec is built using function byte with bit size and position arguments.

Example:
(byte-position (byte 3 4)) => 4

For a table of related items: See the section "Summary of Byte Manipulation Func-
tions".

byte-size bytespec Function

Extracts the size field of bytespec.

Page 907

bytespec is built using function byte with bit size and position arguments.

Example:
(byte-size (byte 3 4)) => 3

For a table of related items: See the section "Summary of Byte Manipulation Func-
tions".

caaaar x Function

(caaaar x) is the same as (car (car (car (car x))))

caaadr x Function

(caaadr x) is the same as (car (car (car (cdr x))))

caaar x Function

(caaar x) 1s the same as (car (car (car x)))

caadar x Function

(caadar x) is the same as (car (car (cdr (car x))))

caaddr x Function

(caaddr x) is the same as (car (car (cdr (cdr x))))

caadr x Function

(caadr x) is the same as (car (car (cdr x)))

caar x Function

(caar x) 1s the same as (car (car x))

cadaar x Function

(cadaar x) is the same as (car (cdr (car (car x))))

cadadr x Function

Page 908

(cadadr x) is the same as (car (cdr (car (cdr x))))

cadar x Function

(cadar x) 1s the same as (car (cdr (car x)))

caddar x Function

(caddar x) is the same as (car (cdr (cdr (car x))))

cadddr x Function

(cadddr x) is the same as (car (cdr (cdr (cdr x))))

caddr x Function

(caddr x) is the same as (car (cdr (cdr x)))

cadr x Function

(cadr x) 1s the same as (car (cdr x))

call-arguments-limit Constant

A positive integer that is the upper exclusive bound on the number of arguments
that can be passed to a function. The current value is 128 for 3600-series ma-
chines, 50 for Ivory-based machines, and 256 for CLOE.

For example, let’s assume that we have two functions, process-elements-pairwise
and process-elements-atonce. The first takes the elements of an array and oper-
ates on them by repeatedly calling a subordinate function of two variables. The
second function atonce calls a subordinate function that takes each element of the
array as arguments. Then we might use the following code to call the appropriate
function:

(if (> (array-total-size array) call-arguments-limit)
(process-elements-pairwise array)
(process-elements-atonce array))

flavor:call-component-method function-spec &key apply arglist Function

Produces a form that calls function-spec, which must be the function-spec for a
component method. If no keyword arguments are given to flavor:call-component-

Page 909

method, the method receives the same arguments that the generic function re-
ceived. That is, the first argument to the generic function is bound to self inside
the method, and succeeding arguments are bound to the argument list specified
with defmethod. Additional internal arguments are passed to the method, but the
user never needs to be concerned about these.

arglist is a list of forms to be evaluated to supply the arguments to the method,
instead of simply passing through the arguments to the generic function.

When arglist and apply are both supplied, :apply should be followed by t or nil. If
:apply t is supplied, the method is called with apply instead of funcall. :apply nil
causes the method to be called with funcall.

When arglist is not supplied, the value following :apply is the argument that
should be given to apply when the method is called. (Certain internal arguments
are also included in the apply form.) For example:

(flavor:call-component-method function-spec :apply list)
Results in:

(apply #’function-spec internal arguments list)
In other words, the following two forms have the same effect:

(flavor:call-component-method function-spec :apply list)
(flavor:call-component-method function-spec :arglist (1ist list)
:apply t)
If function-spec is nil, flavor:call-component-method produces a form that returns
nil when evaluated.
For examples, see the section "Examples of define-method-combination".

For a summary of all functions, macros, special forms, and variables related to
Flavors, see the section "Summary of Flavor Functions and Variables".

flavor:call-component-methods function-spec-list &key (operator ’progn) Function

Produces a form that invokes the function or special form named operator. Each
argument or subform is a call to one of the methods in function-spec-list. operator
defaults to progn.

For a summary of all functions, macros, special forms, and variables related to
Flavors, see the section "Summary of Flavor Functions and Variables".

clos:call-method method &optional next-method-list Macro

Used within effective method forms (forms returned by the body of clos:define-
method-combination) to call a method. The macro clos:call-method calls the
method and supplies it with the arguments that were supplied to generic function.

The next-method-list argument to clos:call-method defines the "next method" for
clos:call-next-method and eclos:next-method-p. That is, if clos:call-next-method is

Page 910

called within the method, the first method in next-method-list will be called; if
clos:call-next-method is called within that method, the second method in next-
method-list will be called, and so on.

method A method object, or a list such as (clos:make-method form).
Such a list specifies a method object whose method function
has a body that is the given Lisp form.

next-method-list A list of method objects. Each element is either a method ob-
ject or a list such as (clos:make-method form), as described
above.

clos:call-method returns the value or values returned by the method.

When clos:call-method is called and the next-method-list argument is unsupplied,
it means that semantically there is no such thing as a "next method"; for example,
this is true for before-methods and after-methods in clos:standard method combi-
nation. Thus, when the next-method-list is unsupplied, clos:eall-next-method is not
allowed inside the method, and the behavior of clos:next-method-p is undefined. If
the next-method-list argument is supplied as nil, and the method uses clos:call-
next-method, then clos:no-next-method is called.

clos:call-next-method &rest args Function

Used within a method body to call the "next method". clos:call-next-method re-
turns the value or values returned by the method it calls.

args Arguments to be passed to the next method. If any args are
provided, the following condition must hold: the ordered set of
methods applicable for args must be the same as the ordered
set of methods applicable for the arguments that were passed
to the generic function. If this requirement is not satisfied, an
error is signaled.

If no args are provided, clos:call-next-method passes the
method’s original arguments on to the next method.

The method-combination type in use determines which kinds of methods can use
clos:call-next-method, and defines the meaning of "next method". The
clos:standard method-combination type supports clos:call-next-method in around-
methods and primary methods, but not in before-methods or after-methods. It de-
fines the next method as follows:

e If clos:call-next-method is called in an around-method, the next method is the
next most specific around-method, if one is applicable.

e If clos:call-next-method is called in the least specific applicable around-method,
the next method consists of the following:

° All the before-methods in most-specific-first order.

Page 911

° The most specific primary method. If clos:call-next-method is called in the
primary method, then the next method is the next most specific primary
method.

° All the after-methods in most-specific-last order.
If clos:call-next-method is called and there is no next method, then clos:no-next-
method is called. The default method for clos:no-next-method signals an error.

If clos:call-next-method is called with arguments but omits optional arguments,
the next method called defaults those arguments.

clos:call-next-method has lexical scope and indefinite extent.
You can use clos:next-method-p to test whether the next method exists.

If clos:call-next-method is called in a method that does not support it, an error is
sighaled. The method-combination type in use controls which kinds of methods sup-
port clos:call-next-method.

car x Function
Returns the head (car) of list or cons x. Example:
(car ’(abc)) => a

(setq a ’(first second third))=>
(FIRST SECOND THIRD)

(car a)=>

FIRST

(car (cdr a))=>

SECOND

Officially car is applicable only to conses and locatives. However, as a matter of
convenience, car of nil returns nil.

For a table of related items: See the section "Functions for Extracting from Lists".

zl:car-location cons Function
Returns a locative pointer to the cell containing the car of cons.

Note: there is no cdr-location function; since the cons itself can be used as a loca-
tive to its cdr.

For a table of related items: See the section "Functions for Finding Information
About Lists and Conses".

case test-object &body clauses Special Form

This is a conditional that chooses one of its clauses to execute by comparing a val-
ue to various constants. The constants can be any object.

Page 912

Its form is as follows:

(case test-object

(keylist consequent consequent ...)

(keylist consequent consequent ...)

(keylist consequent consequent ...)
L)

Structurally case is much like cond, and it behaves like cond in selecting one
clause and then executing all consequents of that clause. However, case differs in
the mechanism of clause selection.

The first thing case does is to evaluate test-object, to produce an object called the
key object. Then case considers each of the clauses in turn. If key is eql to any
item in the test list of a clause, case evaluates the consequents of that clause as
an implicit progn.

If no clause is satisfied, case returns nil.

case returns the value of the last consequent of the clause evaluated, or nil if
there are no consequents to that clause.

The keys in the clauses are not evaluated; they must be literal key values. It is an
error for the same key to appear in more than one clause. The order of the claus-
es does not affect the behavior of the case construct.

Instead of a test, one can write one of the symbols t and otherwise. A clause with
such a symbol always succeeds and must be the last clause; this is an exception to
the order-independence of clauses.

If there is only one key value for a clause, that key value can be written in place
of a list of that key, provided that no ambiguity results. Such a "singleton key" can
not be nil (which is confusable with (), a list of no keys), t, otherwise, or a cons.

Examples:

(Tet ((num 69))
(case num
((1 2) "math...ack")
((3 4) "great now we can count”))) => NIL

(Tet ((num 3))
(case num
((1 2) "one two")
((3 45 6) (princ "numbers”) (princ " three") (fresh-Tline))
(t "not today"))) => numbers three
T

(Tet ((object-one ’candy))
(case object-one
(apple (setq class ’health) "weekdays")
(candy (setqg class ’junk) “weekends")
(otherwise (setq class ’unknown) "all week long”))) => "weekends"
class => JUNK

Page 913

For a table of related items: See the section "Conditional Functions".

(defun print-field (object)
(when (consp object)
(case (list-length object)
(1 (print (car object)))
((2 345) (print (cadr object)))
(otherwise (print "too large to print”)))))

zl:caseq fest-object &body clauses Special Form

Provided for Maclisp compatibility; it is exactly the same as zl:selectq. This is not
perfectly compatible with Maclisp, because zl:selectq accepts otherwise as well as
t where zl:caseq would not accept otherwise, and because Maclisp accepts a more
limited set of keys then zl:selectq does. Maclisp programs that use zl:caseq work
correctly as long as they do not use the symbol otherwise as the key.

Examples:

(let ((a ’big-bang))
(caseq a
(light "day")
(dark "night"))) => NIL
(setg a 3) => 3

(caseq a
(1 "one")
(2 "two")

(t “not one or two")) => “not one or two"
(let ((a ’big-bang))
(caseq a
(light "day")
(dark "night")
(otherwise "night and day"))) => "night and day”

For a table of related items: See the section "Conditional Functions".

catch tag &body body Special Form

Provides an environment for evaluating its argument forms as an implicit progn
with dynamic exit capability throw. Although throw need not be in the lexical
scope of catch, it must be in the dynamic scope.

Used with throw for nonlocal exits. catech first evaluates tag to obtain an object
that is the "tag" of the catch. Then the body forms are evaluated in sequence, and
catch returns the (possibly multiple) values of the last form in the body.

However, a throw (or in Genera, a *throw) form might be evaluated during the
evaluation of one of the forms in body. In that case, if the throw "tag" is eq to the
catch "tag" and if this catch is the innermost catch with that tag, the evaluation

Page 914

of the body is immediately aborted, and catch returns values specified by the
throw or zl:*throw form.

If the catch exits abnormally because of a throw form, it returns the (possibly
multiple) values that result from evaluating throw’s second subform. If the catch
exits abnormally because of a zl:*throw form, it returns two values: the first is
the result of evaluating zl:*throw’s second subform, and the second is the result
of evaluating zl:*throw’s first subform (the tag thrown to).

(catch ’foo form) catches a (throw ’foo form) but not a (throw ’bar form). It is
an error if throw is done when no suitable catch exists.

The scope of the tags is dynamic. That is, the throw does not have to be lexically
within the cateh form; it is possible to throw out of a function that is called from
inside a catch form.

For example:

(catch ’done
(ask-database <pattern>
#’ (Tambda (x) (when (nice-p Xx)
(throw ’done x)))))

The throw to ’done returns x, the pattern searched for in the database. The sec-
ond example that follows acts as a somewhat extended example of a tiny parser.

(catch ’foo (list ’a (catch ’bar (throw ’foo ’h)))) — B
(defvar xinput-bufferx nil)

(defun parse (xinput-bufferx)
(catch ’parse-error
(list ’s (parse-np) (parse-vp))))

(defun parse-np (&aux (item (pop xinput-bufferx)))
(if (member item ’(a an the))
‘(np (det item) (n , (pop xinput-bufferx)))
(throw ’parse-error
(format t “Problem with “A in noun phrase.”%Z" item))))

(defun parse-vp (&aux (item (pop xinput-bufferx)))
(if (member item ’(eats sleeps runs))
(vp (v item))
(throw ’parse-error
(format t "Problem with A in verb phrase.”%" item))))

(parse ’(a man eats)) => (S (NP (DET A) (N MAN)) (VP (V EATS)))

(parse ’(a man walks)) => NIL
prints: Problem with WALKS 1in verb phrase.

For a table of related items, see the section "Nonlocal Exit Functions".

Page 915

zl:*catch tag &body body Special Form

An obsolete version of catch that is supported for compatibility with Maclisp. It is
equivalent to catch except that if zl:*catch exits normally, it returns only two
values: the first is the result of evaluating the last form in the body, and the sec-
ond is nil. If zl:*catch exits abnormally, it returns the same values as catch when
catch exits abnormally: that is, the returned values depend on whether the exit re-
sults from a throw or a zl:*throw. See the special form catch.

For a table of related items, see the section "Nonlocal Exit Functions".

catch-error form &optional (printflag t)
Macro
Evaluates form, trapping all errors.
form can be any Lisp expression.
printflag controls the printing or suppression of an error message by catch-error.

If an error occurs during the evaluation of form, catch-error prints an error mes-
sage if the value of printflag is not nil. The default value of printflag is t.

catch-error returns two values: if form evaluated without error, the value of form
and nil are returned. If an error did occur during the evaluation of form, t is re-
turned.

Only the first value of form is returned if it was successfully evaluated.

catch-error-restart (flavors description &rest args) &body body
Special Form

Establishes a restart handler for flavors and then evaluates the body. If the han-
dler is not invoked, catch-error-restart returns the values produced by the last
form in the body, and the restart handler disappears. If a condition is signalled
during the execution of the body and the restart handler is invoked, control is
thrown back to the dynamic environment of the catch-error-restart form. In this
case, catch-error-restart also returns nil as its first value and something other
than nil as its second value. Its format is:

(catch-error-restart (flavors description)
form-1
form-2
)

flavors is either a condition or a list of conditions that can be handled. description
is a list of arguments to be passed to format to construct a meaningful description
of what would happen if the user were to invoke the handler. The Debugger uses
these values to create a message explaining the intent of the restart handler.

The conditional variant of ecatch-error-restart is the form:

Page 916

catch-error-restart-if

For a table of related items: See the section "Restart Functions".

catch-error-restart-if cond (flavors description &rest args) &body body
Special Form

Establishes its restart handler conditionally. In all other respects, it is the same as
catch-error-restart. Its format is:
(catch-error-restart-if cond
(flavors description)
form-1
form-2

)

catch-error-restart-if first evaluates cond. If the result is nil, it evaluates body as
if it were a progn but does not establish any handlers. If the result is not nil, it
continues just like catch-error-restart, establishing the handlers and executing
body.

For a table of related items: See the section "Restart Functions".

ccase object &body body Special Form
The name of this function stands for "continuable exhaustive case".

Structurally ccase is much like case, and it behaves like case in selecting one
clause and then executing all consequents of that clause. However, ccase does not
permit an explicit otherwise or t clause. The form of ccase is as follows:

(ccase key-form

(test consequent consequent ...)
(test consequent consequent ...)
(test consequent consequent ...)
)

object (which serves as the key-form) must be a generalized variable reference ac-
ceptable to setf.

The first thing ccase does is to evaluate key-form, to produce an object called the
key object.

Then ccase considers each of the clauses in turn. If key is eql to any item in the
test list of a clause, ccase evaluates the consequents of that clause as an implicit

progn.

ccase returns the value of the last consequent of the clause evaluated, or nil if
there are no consequents to that clause.

The test lists in the clauses are not evaluated; literal key values must appear in
test. It is an error for the same key value to appear in more than one clause. The
order of the clauses does not affect the behavior of the ecase construct.

Page 917

If there is only one key value for a clause, that key value can be written in place
of a list of that key, provided that no ambiguity results. Such a "singleton key" can
not be nil (which is confusable with (), a list of no keys), t, otherwise, or a cons.

If no clause is satisfied, ccase uses an implicit otherwise clause to signal an error
with a message constructed from the clauses. To continue from this error supply a
new value for object argument, causing ccase to store that value and restart the
clause tests. Subforms of object can be evaluated multiple times.

Examples:

(Tet ((num 24))
(ccase num
((1 2 3) "integer less then 4")
((4 5 6) "integer greater than 3"))) =>
Error: The value of NUM is SI:xEVAL, 24, was of the wrong type.
The function expected one of 1, 2, 3, 4, 5, or 6.

SI:xEVAL:

Arg @ (SYS:FORM): (DBG:CHECK-TYPE-1 *NUM NUM ’#)

Arg 1 (SI:ENV): ((# #) NIL () () ...)

--defaulted args:--

Arg 2 (SI:HOOK): NIL
s-A, <RESUME>: Supply a replacement value to be stored into NUM
s-B, <ABORT>: Return to Lisp Top Level in dynamic Lisp Listener 1
— Supply a replacement value to be stored into NUM:
4
"integer greater than 3"

(Tet ((num 3))
(ccase num
((1 2) "one two")
((3456) (princ "numbers") (princ " three") (terpri))
(t "not today"))) => numbers three
T

(let ((Dwarf ’Sleepy))
(ccase Dwarf
((Grumpy Dopey) (setq class "confused”))
((Bilbo Frodo) (setq class "Hobbits not Dwarfs"))
(otherwise (setq class ’unknown) "talk to Snow White")))
=> “talk to Snow White"
class => UNKNOWN

For a table of related items: See the section "Conditional Functions".

For a table of related items: See the section "Condition-Checking and Signalling
Functions and Variables".

cdaaar x Function

(cdaaar x) is the same as (cdr (car (car (car x))))

cdaadr x

(cdaadr x) is the same as (cdr (car (car (cdr x))))

cdaar x

(cdaar x) is the same as (cdr (car (car x)))

cdadar x

(cdadar x) is the same as (cdr (car (cdr (car x))))

cdaddr x

(cdaddr x) is the same as (cdr (car (cdr (cdr x))))

cdadr x

(cdadr x) is the same as (cdr (car (cdr x)))

cdar x

(cdar x) 1s the same as (cdr (car x))

cddaar x

(cddaar x) is the same as (cdr (cdr (car (car x))))

cddadr x

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

cddar x

(cddar x) is the same as (cdr (cdr (car x)))

cdddar x

Page 918

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Page 919

(cdddar x) is the same as (cdr (cdr (cdr (car x))))

cddddr x Function
(cddddr x) is the same as (cdr (cdr (cdr (cdr x))))

cdddr x Function

(cdddr x) is the same as (cdr (cdr (cdr x)))

cddr x Function

(cddr x) 1is the same as (cdr (cdr x))

cdr x Function

Returns the tail (edr) of list or cons x. Example:
(cdr ’(abc)) == (b c)

(setg a (1 (first second third) c d)=>
=> (1 (FIRST SECOND THIRD) C D))

(setqg b (cdr a))

=> ((FIRST SECOND THIRD) C D)

(cdr (car h))

=> (SECOND THIRD)

Officially edr is applicable only to conses and locatives. However, as a matter of
convenience, edr of nil returns nil.

For a table of related items: See the section "Functions for Extracting from Lists".

ceiling number &optional (divisor 1) Function

Divides number by divisor, and truncates the result toward positive infinity. The
truncated result and the remainder are the returned values.

number and divisor must each be a noncomplex number. Not specifying a divisor is
exactly the same as specifying a divisor of 1.

If the two returned values are Q and R, (+ (x Q divisor) R) equals number. If divi-
sor is 1, then Q and R add up to number. If divisor is 1 and number is an integer,
then the returned values are number and 0.

The first returned value is always an integer. The second returned value is inte-
gral if both arguments are integers, is rational if both arguments are rational, and
is floating-point if either argument is floating-point. If only one argument is speci-
fied, then the second returned value is always a number of the same type as the
argument.

Page 920

Examples:

(ceiling 5) => 5 and @

(ceiling -5) => -5 and @

(ceiling 5.2) => 6 and -0.3000002
(ceiling -5.2) => -5 and -0.19999981
(ceiling 5.8) => 6 and -0.19999981
(ceiling -5.8) => -5 and -0.8000002
(ceiling 5 3) => 2 and -1

(ceiling -5 3) => -1 and -2

(ceiling 5 4) => 2 and -3

(ceiling -5 4) => -1 and -1

(ceiling 5.2 3) => 2 and -0.83000002
(ceiling -5.2 3) => -1 and -2.1999998
(ceiling 5.2 4) => 2 and -2.83000002
(ceiling -5.2 4) => -1 and -1.1999998
(ceiling 5.8 3) => 2 and -0.19999981
(ceiling -5.8 3) => -1 and -2.3000002
(ceiling 5.8 4) => 2 and -2.1999998
(ceiling -5.8 4) => -1 and -1.8000002

For a table of related items: See the section "Functions that Divide and Convert
Quotient to Integer".

cerror optional-condition-name continue-format-string error-format-string &rest args
Function

Signals proceedable (continuable) errors. Like error, it signals an error and enters
the Debugger. However, cerror allows the user to continue program execution
from the debugger after resolving the error.

If the program is continued after encountering the error, cerror returns nil. The
code following the call to cerror is then executed. This code should correct the
problem, perhaps by accepting a new value from the user if a variable was invalid.

If the code that corrects the problem interacts with the program’s use and might
possibly be misleading, it should make sure the error has really been corrected be-
fore continuing. One way to do this is to put the call to eerror and the correction
code in a loop, checking each time to see if the error has been corrected before
terminating the loop.

Compatibility Note: Optional-condition-name is a Symbolics Common Lisp exten-
sion, which allows you to specify a particular flavor error.

The continue-format-string argument, like the error-format-string argument, is given
as a control string to format along with args to construct a message string. The
error message string is used in the same way that error uses it. The continue
message string should describe the effect of continuing. The message is displayed
as an aid to the user in deciding whether and how to continue. For example, it
might be used by an interactive debugger as part of the documentation of its
"continue" command.

Page 921

The content of the continue message should adhere to the rules of style for error
messages.

In complex cases where the error-format-string uses some of the args and the con-
tinue-format-string uses others, it may be necessary to use the format directives ~*
and ~

to skip over unwanted arguments in one or both of the format control strings.

For a table of related items: See the section "Condition-Checking and Signalling
Functions and Variables".

clos:change-class instance new-class Generic Function

Changes the class of the existing instance to new-class, and returns the modified
instance. The modified instance is eq to the original instance.

instance The instance whose class is to be changed.

new-class The desired class of the instance. This can be the name of a
class or a class object.

clos:change-class modifies the structure of the instance to be correct for the new
class. It does the following:

e Adds local slots: For any local slot defined by the new class that is not defined
by the previous class, that slot is added to the instance.

e Deletes local slots: For any local slot defined by the previous class that is not
defined by the new class, that slot is deleted from the instance.

e Retains the values of local slots: For any local slot defined by both the previous
and the new class, the instance retains the value of that slot. If the slot was
unbound, it remains unbound.

e Retains the values of slots defined as shared in the previous class and local in
the new class.

e Replaces the values of slots defined as local in the previous class and shared in
the new class; the instance now "sees" the value of the shared slot.

Next, clos:change-class initializes newly added slots according to their initforms
by calling clos:update-instance-for-different-class with two arguments: a copy of
the instance before its class was changed (which enables methods to access the
slot values), and the modified instance. clos:change-class does not provide any ini-
tialization arguments in its call to clos:update-instance-for-different-class.

You can customize the behavior of this step by defining an after-method for
clos:update-instance-for-different-class.

See the section "Changing the Class of a CLOS Instance".

Page 922

change-instance-flavor instance new-flavor Function

Changes the flavor of an instance to another flavor. The result is a modified in-
stance, which is eq to the original.

For those instance variables in common (contained in the definition of the old fla-
vor and the new flavor), the values of the instance variables remain the same
when the instance is changed to the new format. New instance variables (defined
by the new flavor but not the old flavor) are initialized according to any defaults
contained in the definition of the new flavor.

Instance variables contained by the old flavor but not the new flavor are no longer
part of the instance, and cannot be accessed once the instance is changed to the
new format.

Instance variables are compared with eq of their names; if they have the same
name and are defined by both the old flavor (or any of its component flavors) and

the new flavor (or any of its component flavors), they are considered to be "in
common".

If you need to specify a different treatment of instance variables when the in-
stance is changed to the new flavor, you can write code to be executed at the time
that the instance is changed. See the generic function flavor:transform-instance.

Note: There are two possible problems that might occur if you use change-
instance-flavor while a process (either the current process or some other process)
is executing inside of a method. The first problem is that the method continues to
execute until completion even if it is now the "wrong" method. That is, the new
flavor of the instance might require a different method to be executed to handle
the generic function. The Flavors system cannot undo the effects of executing the
wrong method and cause the right method to be executed instead.

The second problem is due to the fact that change-instance-flavor might change
the order of storage of the instance variables. A method usually commits itself to a
particular order at the time the generic function is called. If the order is changed
after the generic function is called, the method might access the wrong memory
location when trying to access an instance variable. The usual symptom is an ac-
cess to a different instance variable of the same instance or an error "Trap: The
word #<DTP-HEADER-I nnnn> was read from Tocation nnnn*. If the garbage collector
has moved objects around in memory, it is possible to access an arbitrary location
outside of the instance.

When a flavor is redefined, the implicit change-instance-flavor that happens nev-
er causes accesses to the wrong instance variable or to arbitrary locations outside
the instance. But redefining a flavor while methods are executing might leave
those methods as no longer valid for the flavor.

We recommend that you do not use change-instance-flavor of self inside a
method. If you cannot avoid it, then make sure that the old and new flavors have
the same instance variables and inherit them from the same components. You can
do this by using mixins that do not define any instance variables of their own, and
using change-instance-flavor only to change which of these mixins are included.
This prevents the problem of accessing the wrong location for an instance variable,

Page 923

but it cannot prevent a running method from continuing to execute even if it is
now the wrong method.

A more complex solution is to make sure that all instance variables accessed after
the change-instance-flavor by methods that were called before the change-
instance-flavor are ordered (by using the :ordered-instance-variables option to
defflavor), or are inherited from common components by both the old and new
flavors. The old and new flavors should differ only in components more specific
than the flavors providing the variables.

For a summary of all functions, macros, special forms, and variables related to
Flavors, see the section "Summary of Flavor Functions and Variables".

:change-properties error-p &rest properties Message

Changes the file properties of the file open on this stream. You should not use
:change-properties. Instead, use fs:change-file-properties.

If the error-p argument is t, a Lisp error is signalled. If error-p is nil and an error
occurs, the error object is returned.

char string index Function

Returns the character at position index of string. The count is from zero. The
character is returned as a character object; it will necessarily satisfy the predicate
string-char-p.

string must be a string.
index must be a non-negative integer less than the length of string.

Note that the array-specific function aref, and the general sequence function elt
also work on strings.

To destructively replace a character within a string, use char in conjunction with
the function setf.

Examples:

(char "a string” 1) => #\Space
(string-char-p (char "a string” 3)) => T

(char (make-array 4 :element-type ’character
sinitial-element #\y) 3) => H\y
(string-char-p (char (make-array 4 :element-type ’character
zinitial-element #\.) 2)) => T

(char (make-array 4 :element-type ’character
:initial-element f#\.
:fill-pointer 2) 1) => #\.

Page 924

(defvar a-string
(make-array 10
:element-type ’string-char
:fill-pointer t
zinitial-element f#\a))
=> "aaaaaaaaaa”

(char a-string @) => f\a
(setf (char a-string 1) #\b) => #\b
a-string => "abaaaaaaaa”

(char a-string 1) => #\b

Because a-string is not a simple string, char rather than schar is used to access
elements of the string.

For a table of related items: See the section "String Access and Information".

char+ char &rest chars Function

This comparison predicate compares characters exactly, depending on all fields in-
cluding code, bits, character style, and alphabetic case. If all of the arguments are
equal, nil is returned, otherwise t.

(char/= #\A #\A #\A) => NIL
(char/= #\A #\B #\C) => T

char# can be used in place of user::char////=.

For a table of related items, see the section "Character Comparisons Affected by
Case and Style".

char< char &rest chars Function

This predicate compares characters exactly, depending on all fields including code,
bits, character style, and alphabetic case. If each of the arguments is equal to or
less than the next, t is returned, otherwise nil.

(char<= #\A #\B #i\C) =>T
(char<= #\C #\B #i\A) => NIL
(char<= #\A #1\A) => T

char< can be used instead of char<=.

char> char &rest chars Function

This comparison predicate compares characters exactly, depending on all fields in-
cluding code, bits, character style, and alphabetic case. If each of the arguments is
equal to or greater than the next, t is returned, otherwise nil.

Page 925

(char>= #\C #\B f#i\A) => T
(char>= #\A #\A) => T
(char>= #\A #\B #\C) => NIL

char> can be used instead of char>=.

For a table of related items, see the section "Character Comparisons Affected by
Case and Style".

For a table of related items, see the section "Character Comparisons Affected by
Case and Style".

char/= char &rest chars Function

This comparison predicate compares characters exactly, depending on all fields in-
cluding code, bits, character style, and alphabetic case. If all of the arguments are
equal, nil is returned, otherwise t.

(char/= #\A #\A #\A) => NIL
(char/= #\A #\B #\C) => T

char# can be used in place of user::char////=.

For a table of related items, see the section "Character Comparisons Affected by
Case and Style".

char< char &rest chars Function

This comparison predicate compares characters exactly, depending on all fields in-
cluding code, bits, character style, and alphabetic case. If all of the arguments are
ordered from smallest to largest, t is returned, otherwise nil.

(char< #\A #\B #\C) => T
(char< #\A #\A) => NIL
(char< #\A #\C #\B) => NIL

For a table of related items, see the section "Character Comparisons Affected by
Case and Style".

char<= char &rest chars Function

This predicate compares characters exactly, depending on all fields including code,
bits, character style, and alphabetic case. If each of the arguments is equal to or
less than the next, t is returned, otherwise nil.

(char<= #\A #\B #i\C) =>T
(char<= #\C #\B #\A) => NIL
(char<= #\A #\A) => T

char< can be used instead of char<=.

char= char &rest chars Function

Page 926

This comparison predicate compares characters exactly, depending on all fields in-
cluding code, bits, character style, and alphabetic case. If all of the arguments are
equal, t is returned, otherwise nil.

(char= #\A #\A #\A) => T
(char= #\A #\B #\C) => NIL

For a table of related items, see the section "Character Comparisons Affected by
Case and Style".

char> char &rest chars Function

This comparison predicate compares characters exactly, depending on all fields in-
cluding code, bits, character style, and alphabetic case. If all of the arguments are
ordered from largest to smallest, t is returned, otherwise nil.

(char> H#\C #\B #1\A) => T
(char> #\A #\A) => NIL
(char> #\A #\B #\C) => NIL

For a table of related items, see the section "Character Comparisons Affected by
Case and Style".

char>= char &rest chars Function

This comparison predicate compares characters exactly, depending on all fields in-
cluding code, bits, character style, and alphabetic case. If each of the arguments is
equal to or greater than the next, t is returned, otherwise nil.

(char>= #\C #\B #\A) => T
(char>= #\A #\A) => T
(char>= #\A #\B #\C) => NIL

char> can be used instead of char>=.

For a table of related items, see the section "Character Comparisons Affected by
Case and Style".

character Type Specifier

character is the type specifier symbol for the the predefined Lisp character data
type.

The types character, cons, symbol, and array are pairwise disjoint.
The type character is a supertype of the type string-char.

Examples:

Page 927

(typep #\0@ ’character) => T

(z1:typep #\~) => :CHARACTER

(characterp #\A) => T

(characterp (character "1")) =>T
(sys:type-arglist ’character) => NIL and T

See the section "Data Types and Type Specifiers". See the section "Characters".

character x
Function

Coerces x to a single character. If x is a character, it is returned. If x is a string,
an array, or a symbol, an error is returned. If x is a number, the number is con-
verted to a character using int-char. See the section "The Character Set".

For a table of related items, see the section "Character Conversions'.

characterp object Function

Returns t if object is a character object. See the section "Type Specifiers and Type
Hierarchy for Characters".

(setg foo ’(#\c 44 "h"))
(characterp foo) => nil
(characterp (car foo)) => t
(characterp (cadr foo)) => nil
(characterp (caddr foo)) => nil

Note in the previous example that "h" is not a character, but a string.
(characterp (aref "h" B@)) => t

For a table of related items: See the section "Character Predicates".

:characters Message

Returns t if the stream is a character stream, nil if it is a binary stream.

dbg:*character-style-for-bug-mail-prologue* Variable

Creates the bug-report banner inserted into the text of bug messages, enabling you
to choose the font. The default is NIL.NIL.TINY, specifying a small font for the
bug-report banner.
To display a bug-report banner in a small font you can type the following:
(setg dbg:xcharacter-style-for-bug-mail-prologuex
(si:character-style-for-device-font ’fonts:quantum si:xb&w-screenx))
To display a bug-report banner in a large font you can type the following:

(setq dbg:xcharacter-style-for-bug-mail-prologuex
(si:parse-character-style ’(nil nil :huge)))

Page 928

You can also type the following to specify a particular font:

(setq dbg:xcharacter-style-for-bug-mail-prologuex ’(nil nil :huge))

char-bit char name Function

Returns t if the bit specified by name is set in char; otherwise it returns nil. name
can be :control, :meta, :super, or :hyper. You can use setf on char-bit access-
form name.

(char-bit f#f\c-A :control) => T

(char-bit f#f\h-c-A :hyper) => T

(char-bit f#f\h-c-A :meta) => NIL

(setq char #\D)

(char-bit (set-char-bit char :control t) :control) => t

(char-bit char :control) => nil

For a table of related items, see the section "Character Fields".

char-bits char Function
Returns the bits field of char. You can use setf on (char-bits access-form).

(char-bits #\c-A) => 1
(char-bits #f\h-c-A) => 9
(char-bits #\m-c-A) => 3
(char-bits #\Control-D) => 1
(char-bits #\D) => @

For a table of related items, see the section "Character Fields".

char-bits-limit Constant

The value of char-bits-limit is a non-negative integer that is the upper limit for
the value in the bits field. Its value is 16.
(if (= char-bits-Timit 1)
(setq xno-bitsx t)
(setq xno-bitsx nil))

For a table of related items: See the section "Character Attribute Constants".

char-code char Function
Returns the code field of char.

(char-code #\A) => 65
(char-code #\&) => 38

For a table of related items, see the section "Character Fields".

Page 929

char-code-limit Constant

The value of char-code-limit is a non-negative integer that is the upper limit for
the number of character codes that can be used. Its value is 65536.
(Tet ((intnum (read stream))
(bits (read stream)))
(if (> intnum char-code-Timit)
(error "Cannot make ~A a character code” intnum)
(code-char intnum bits)))

For a table of related items: See the section "Character Attribute Constants".

char-control-bit Constant
The value of char-control-bit is the weight of the control bit, which is 1.

For a table of related items: See the section "Character Bit Constants".

char-downcase char Function

If char is an uppercase alphabetic character in the standard character set, char-
downcase returns its lowercase form; otherwise, it returns char. If character style
information is present it is preserved. In no case will the font or bits attribute val-
ues differ from those of char.

(char-downcase #\A) => ff\a
(char-downcase #\A) => #\a
(char-downcase #\3) => #\3
(char-downcase ff\a) => ff\a

For a table of related items, see the section "Character Conversions'.

char-equal char &rest chars Function

This is the primitive for comparing characters for equality; many of the string
functions call it. char and chars must be characters; they cannot be integers. char-
equal compares code and bits, ignores case and character style, and returns t if
the characters are equal. Otherwise it returns nil.

(char-equal #\A NA) => T
(char-equal #\A f#\Control-A) => NIL
(char-equal #\A #\B #\A) => NIL

Compatibility Note: Common Lisp specifies that char-equal should ignore bits.
This difference is incompatible. Under CLOE, lisp:char-equal ignores the bits at-
tribute of the character arguments.

For a table of related items, see the section "Character Comparisons Ignoring Case
and Style".

Page 930

char-fat-p char Function

Returns t if char is a fat character, otherwise nil. char must be a character object.
A character that contains non-zero bits or style information is called a fat charac-
ter. See the section "Type Specifiers and Type Hierarchy for Characters".

(char-fat-p #\A) => NIL
(char-fat-p #f\c-A) => T
(char-fat-p (make-character #\A :style ’(nil :bold nil))) =>T

For a table of related items: See the section "Character Predicates".

char-flipcase char Function

If char is a lowercase alphabetic character in the standard character set, char-
flipcase returns its uppercase form. If char is an uppercase alphabetic character in
the standard character set, char-flipcase returns its lowercase form. Otherwise, it
returns char. If character style information is present it is preserved.

(char-flipcase #\X) => #\x
(char-flipcase f\b) => H\B

For a table of related items, see the section "Character Conversions'.

char-font char Function

Returns the font field of the character object specified by char. Genera characters
do not have a font field so char-font always returns zero for character objects.

Genera does not support the Common Lisp concept of fonts, but supports the char-
acter style system instead. See the section "Character Styles". To find out the
character style of a character, use si:char-style: See the function si:char-style.

The only reason to use char-font would be when writing a program intended to be
portable to other Common Lisp systems.

(char-font #\A) => 0

For a table of related items: See the section "Character Fields".

char-font-limit Constant

The value of char-font-limit is the upper exclusive limit for the value of values of
the font bit. Genera characters do not have a font field so the value of char-font-
limit is 1. Genera does not support the Common Lisp concept of fonts, but sup-
ports the y character style system instead. See the section "Character Styles".

(if (= char-font-Timit 1)
(setg xno-fontsx t)
(setq xno-fontsx nil))

For a table of related items: See the section "Character Attribute Constants".

Page 931

char-greaterp char &rest chars Function

Compares characters for order; many of the string functions call it. char and chars
must be characters; they cannot be integers. The result is t if char comes after
chars ignoring case and style, otherwise nil. See the section "The Character Set".
Details of the ordering of characters are in that section.

This function compares the code and bits fields and ignores character style and
distinctions of alphabetic case.

(char-greaterp #\A #\B #\C) => NIL
(char-greaterp #\A #\B #\B) => T

Compatibility Note: Common Lisp specifies that char-greaterp should ignore bits.
This difference is incompatible.

For a table of related items, see the section "Character Comparisons Ignoring Case
and Style".

char-hyper-bit Constant
The name for the hyper bit attribute. The value of char-hyper-bit is 8.

For a table of related items: See the section "Character Bit Constants".

char-int char Function

Returns the character as an integer, including the fields that contain the charac-
ter’s code (which itself contains the character’s set and subindex into that charac-
ter set), bits, and style.

(char-int f\a) => 97
(char-int #\8) => 56
(char-int #\c-m-A) => 58331713 ;under Genera
(char-int
(make-character f#\a :style ’(nil :bold nil))) => 65633 ;under Genera

(char-int #\A) => 65

(eq (< (char-int charl) (char-int char2))
(char< charl char2))

=> T

(defvar char-arr (make-array 512))
(setf (elt char-arr (char-int f#f\a)) ’first)

For a table of related items, see the section "Character Conversions'.

char-lessp char &rest chars Function

Page 932

This primitive compares characters for order; many of the string functions call it.
char and chars must be characters; they cannot be integers. The result is t if char
comes before chars ignoring case and style, otherwise nil. See the section "The
Character Set". Details of the ordering of characters are in that section.

This comparison predicate compares the code and bits fields and ignores character
style and distinctions of alphabetic case.

(char-lessp #\A H#\B H#\C) => T
(char-lessp #\A #\B #\B) => NIL

Compatibility Note: Common Lisp specifies that char-lessp should ignore bits.
This difference is incompatible.

For a table of related items, see the section "Character Comparisons Ignoring Case
and Style".

char-meta-bit Constant
The name for the meta bit attribute. The value of char-meta-bit is 2.

For a table of related items: See the section "Character Bit Constants".

char-mouse-button char Function

Returns the number corresponding to the mouse button that would have to be
pushed to generate char. 0, 1, and 2 correspond to the Left, Middle, and Right
mouse buttons, respectively.

Example:
(char-mouse-button #\m-mouse-m) ==>

1

The complementary function is make-mouse-char.

char-mouse-equal charl char2 Function

Returns t if the mouse characters charl and char2 are equal, nil otherwise. char-
mouse-equal checks that its arguments are really mouse characters and signals an
error otherwise. You can also use eql, which is slightly faster, to compare mouse
characters, when you do not require the argument checking.

char-name char Function

char must be a character object. char-name returns the name of the object (a
string) if it has one. If the character has no name, or if it has non-zero bits or a
character style other than NIL.NIL.NIL, nil is returned.

(char-name #\Tab) => "Tab"
(char-name #\Space) => "Space”
(char-name #\A) => NIL

Page 933

For a table of related items, see the section "Character Names".

char-not-equal char &rest chars Function

This primitive compares characters for non-equality; many of the string functions
call it. char and chars must be characters; they cannot be integers. char-equal
compares code and bits, ignores case and character style, and returns t if the
characters are not equal. Otherwise it returns nil.

(char-not-equal #\A #\B) => T

(char-not-equal #\A #\c-A) => T
(char-not-equal #\A #\A) => NIL
(char-not-equal f\a #\A) => NIL

Compatibility Note: Common Lisp specifies that char-not-equal should ignore
bits. This difference is incompatible.

For a table of related items, see the section "Character Comparisons Ignoring Case
and Style".

char-not-greaterp char &rest chars Function

This primitive compares characters for order; many of the string functions call it.
char and chars must be characters; they cannot be integers. The result is t if char
does not come after chars ignoring case and style, otherwise nil. See the section
"The Character Set". Details of the ordering of characters are in that section.

This comparison predicate compares the code and bits fields and ignores character
style and distinctions of alphabetic case.

(char-not-greaterp #\A #\B) => T
(char-not-greaterp t#h\a #f\A) => T
(char-not-greaterp #\A f\a) => T
(char-not-greaterp #\A #\A) => T

For a table of related items, see the section "Character Comparisons Ignoring Case
and Style".

char-not-lessp char &rest chars Function

This primitive compares characters for order; many of the string functions call it.
char and chars must be characters; they cannot be integers. The result is t if char
does not come before chars ignoring case and style, otherwise nil. See the section
"The Character Set". Details of the ordering of characters are in that section.

This comparison predicate compares the code and bits fields and ignores character
style and distinctions of alphabetic case.

(char-not-lessp #\A #\B) => NIL
(char-not-lessp #\B f#f\b) => T
(char-not-lessp #\A NA) => T

Page 934

For a table of related items, see the section "Character Comparisons Ignoring Case
and Style".

si:char-style char Function

Returns the character style of the character object specified by char. The returned
value is a character style object.

(si:char-style #\a)
=> H#<CHARACTER-STYLE NIL.NIL.NIL 204004146>

(si:char-style (make-character #\a :style ’(:swiss :bold nil)))
=> H#<CHARACTER-STYLE SWISS.BOLD.NIL 116835602>

For a table of related items: See the section "Character Fields".

sys:char-subindex char Function
Returns the subindex field of char as an integer.

For a table of related items, see the section "Character Fields".

char-super-bit Constant
The name for the super bit attribute. The value of char-super-bit is 4.

For a table of related items: See the section "Character Bit Constants".

char-to-asecii ch Function

Converts the character object ch to the corresponding ASCII code. This function
works only for characters with neither bits nor style.

char-to-ascii performs an inverse mapping of the function ascii-to-char, and this
mapping embeds the ASCII character character set in the Symbolics character set
in an invertible way. There is no attempt to map more obscure ASCII control
codes into the also obscure and unrelated Symbolics control codes. For example,
Escape, is a character in the Symbolics character set corresponding to the key
marked Escape. The ASCII code Escape is not the same as the Symbolics Escape.
See the function ascii-to-char. See the function ascii-code. See the section "ASCII
Conversion String Functions".

It is an error to give char-to-ascii anything other than one of the 95 standard
ASCII printing characters. To get the ASCII code of one of the other characters,
use ascii-code, and give it the correct ASCII name.

The functions char-to-ascii and ascii-to-char provide the primitive conversions
needed by ASCII-translating streams. They do not translate the Return character
into a CR-LF pair; the caller must handle that. They just translate #\Return into
CR and #\Line into LF. Except for CR-LF, char-to-ascii and ascii-to-char are
wholly compatible with the ASCII-translating streams.

Page 935

They ignore Symbolics control characters; the translation of #\e-G is the ASCII
code for G, not the ASCII code to ring the bell, also known as "control G." (asecii-
to-char (ascii-code "BEL')) is #\r, not #\e¢-G. The translation from ASCII to char-
acter never produces a Symbolics control character.

For a table of related items, see the section "ASCII Characters".

char-upcase char Function

If char, which must be a character, is a lowercase alphabetic character in the
standard character set, char-upcase returns its uppercase form; otherwise, it re-
turns char. In Genera, if character style information is present, it is preserved. In
no case will the font or bits attribute values differ from those of char.

(char-upcase #\a) => H#\A
(char-upcase #\a) => h\A
(char-upcase #\3) => #\3
(char-upcase H\A) => H\A

For a table of related items, see the section "Character Conversions'.

zl:check-arg arg-name predicate-or-form type-string
Macro

Checks arguments to make sure that they are valid. A simple example is:
(z1:check-arg foo stringp "a string”)

foo is the name of an argument whose value should be a string. stringp is a pred-
icate of one argument, which returns t if the argument is a string. "A string” is
an English description of the correct type for the variable.

The general form of zl:check-arg is

(z1:check-arg var-name
predicate
description)

var-name is the name of the variable whose value is of the wrong type. If the er-
ror is proceeded this variable is setq’ed to a replacement value. predicate is a test
for whether the variable is of the correct type. It can be either a symbol whose
function definition takes one argument and returns non-nil if the type is correct,
or it can be a nonatomic form which is evaluated to check the type, and presum-
ably contains a reference to the variable var-name. description is a string which
expresses predicate in English, to be used in error messages.

The predicate is usually a symbol such as zl:fixp, stringp, zl:listp, or zl:closurep,
but when there isn’t any convenient predefined predicate, or when the condition is
complex, it can be a form. For example:

Page 936

(defun test1 (a)
(z1:check-arg a
(and (numberp a) (£ a 18.) (> a 8.))
“a number from one to ten")

L)
If testl is called with an argument of 17, the following message is printed:

The argument A to TEST1, 17, was of the wrong type.
The function expected a number from one to ten.

In general, what constitutes a valid argument is specified in two ways in a
zl:check-arg. description is human-understandable and predicate is executable. It is
up to the user to ensure that these two specifications agree.

zl:check-arg uses predicate to determine whether the value of the variable is of
the correct type. If it is not, zl:check-arg signals the sys:wrong-type-argument
condition. See the flavor sys:wrong-type-argument.

For a table of related items: See the section "Condition-Checking and Signalling
Functions and Variables".

zl:check-arg-type arg-name type &optional type-string Macro

A useful variant of the zl:check-arg form. A simple example is:
(z1:check-arg-type foo :number)

foo is the name of an argument whose value should be a number. :number is a
value which is passed as a second argument to zl:typep; that is, it is a symbol
that specifies a data type. The English form of the type name, which gets put into
the error message, is found automatically.

The general form of zl:check-arg-type is:

(z1:check-arg-type var-name
type-name
description)

var-name is the name of the variable whose value is of the wrong type. If the er-
ror is proceeded this variable is setq’ed to a replacement value. type-name de-
scribes the type which the variable’s value ought to have. It can be exactly those
things acceptable as the second argument to zl:typep. description is a string which
expresses predicate in English, to be used in error messages. It is optional. If it is
omitted, and type-name is one of the keywords accepted by zl:typep, which de-
scribes a basic Lisp data type, then the right description is provided correctly. If it
is omitted and type-name describes some other data type, then the description is
the word "a" followed by the printed representation of type-name in lowercase.

The Common Lisp equivalent of zl:check-arg-type is the macro:
check-type

For a table of related items: See the section "Condition-Checking and Signalling
Functions and Variables".

Page 937

check-type place type &optional (type-string ’nil) Macro

Signals an error if the contents of place are not of the desired zype. If you contin-
ue from this error, you will be asked for a new value; check-type stores the new
value in place and starts over, checking the type of the new value and signalling
another error if it is still not of the desired type. Subforms of place can be evalu-
ated multiple times because of the implicit loop generated. check-type returns nil.

place must be a generalized variable reference acceptable to the macro setf.

type must be a type specifier; it is not evaluated. For standard Symbolics Common
Lisp type specifiers, see the section "Type Specifiers".

type-string should be an English description of the type, starting with an indefinite
article ("a" or "an'"); it is evaluated. If fype-string is not supplied, it is computed
automatically from ¢ype. This optional argument is allowed because some applica-
tions of check-type may require a more specific description of what is wanted
than can be generated automatically from the type specifier.

The error message mentions place, its contents, and the desired type.
Examples:

(setq bees ’(bumble wasp jacket)) => (BUMBLE WASP JACKET)
(check-type bees (vector integer))
=> Error : The value of BEES in SI:xEVAL, (BUMBLE WASP JACKET),
was of the wrong type.
The function expected a vector whose typical element
is an integer.
(setq naards ’foo) => FOO
(check-type naards (integer @ x) "a positive integer”)
=> Error : The value of NAARDS in SI:xEVAL, F0Q0, was of the wrong
type.
The function expected a positive integer.

In CLOE, if a condition is signalled, handlers of this condition can use the func-

tions type-error-object and type-error-expected-type to access the contents of
place and the typespec, respectively.

Compatibility Note: In Zetalisp, the equivalent facility is called user::check-arg-
type.
See the section "Data Types and Type Specifiers".

Using check-type in CLOE

In CLOE, if store-value is called, check-type will store the new value which is
the argument to store-value (or which is prompted for interactively by the debug-
ger) in place and start over, checking the type of the new value and signalling an-
other error if it is still not the desired type. Subforms of place may be evaluated
multiple times because of the implicit loop generated. check-type returns nil.
Here’s an example of using cheek-type in CLOE:

Page 938

Lisp> (SETQ AARDVARKS ’(SAM HARRY FRED))
— (SAM HARRY FRED)
Lisp> (CHECK-TYPE AARDVARKS (ARRAY x (3)))
Error: The value of AARDVARKS, (SAM HARRY FRED),
is not a 3-long array.
1: Specify a value to use instead.
2: Return to Lisp Toplevel.

Debug> :1
Use Value: #(SAM FRED HARRY)
— NIL

Lisp> AARDVARKS
— #<ARRAY-T-3 13571>
Lisp> (MAP ’LIST #’IDENTITY AARDVARKS)
— (SAM FRED HARRY)
Lisp> (SETQ AARDVARK-COUNT ’F00)
— FOO
Lisp> (CHECK-TYPE AARDVARK-COUNT (INTEGER @ x) "a positive integer")
Error: The value of AARDVARK-COUNT, F0O0, is not a positive integer.
1: Specify a value to use instead.
2: Return to Lisp Toplevel.

Debug> :2
Lisp>
circular-list &rest args Function

Constructs a circular list whose elements are args, repeated infinitely. circular-list
is the same as list except that the list itself is used as the last cdr, instead of nil.
circular-list returns a circular list, repeating its elements infinitely. circular-list
is especially useful with mapcar, as in the expression:

(mapcar (function +) foo (circular-list 5))
which adds each element of foo to 5. circular-list could have been defined by:

(defun circular-Tist (&rest elements)
(setq elements (copylistx elements))
(rplacd (last elements) elements)
elements)

circular-list is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions for Constructing Lists and
Conses".

cis radians Function
This function can be defined by:

(defun cis (radians)
(complex (cos radians) (sin radians)))

Page 939

radians must be a noncomplex number.

(signum ftc(x y)) — (cis (phase f#ic(x y)))
Mathematically, this is equivalent to e/ ~radians,

For a table of related items: See the section "Trigonometric and Related
Functions".

clos:class-name class-object Generic Function

Returns the name of the class object. You can use setf with clos:class-name to set
the name of the class object.

class-object A class object.

If the class object has no name, nil is returned.

clos:class-of object Function

Returns the class of the given object. The returned value is a class object.

object Any Lisp object.

(flavor:method :clear sicheap) Method
Remove all of the entries from the heap.

For a table of related items: See the section "Heap Functions and Methods".

:clear-hash Message

Removes all of the entries from the hash table. This message is obsolete; use
clrhash instead.

clear-input &optional input-stream Function

Clears any buffered input associated with input-stream. It is primarily useful for
removing type-ahead from keyboards when some kind of asynchronous error has
occurred. If this operation doesn’t make sense for the stream involved, then clear-
input does nothing. clear-input returns nil.

(let ((c (read-char)))
(1ist (peek-char)
(progn (clear-input) (read-char-no-hang))))xy
=> (#\x NIL)

:clear-input Message

Page 940

The stream clears any buffered input. If the stream does not handle this, the de-
fault handler ignores it.

clear-output &optional output-stream Function

Some streams are implemented in an asynchronous, or buffered, manner. clear-
output attempts to abort any outstanding output operation in progress in order to
allow as little output as possible to continue to the destination. This is useful, for
example, to abort a lengthy output to the terminal when an asynchronous error
occurs. clear-output returns nil.

output-stream, if unspecified or nil, defaults to *standard-output®* and if t, is
terminal-io.

:clear-output Message

The stream clears any buffered output. If the stream does not handle this, the de-
fault handler ignores it.

:clear-rest-of-line Message

Erases from the current position to the end of the current line. This message is
supported by all terminal streams and windows.

:clear-rest-of-line replaces the obsolete message :elear-eol.

:clear-rest-of-window Message

Erases from the current position to the end of the current window. This message
is supported by all windows. Non-window streams do not support this operation.

:clear-window Message

Erases the window on which this stream displays. Non-window streams do not sup-
port this operation.

:clear-window replaces the obsolete message :clear-screen.

:close &optional mode Message

The stream is "closed", and no further operations should be performed on it; you
can, however, :close a closed stream. If the stream does not handle :close, the de-
fault handler ignores it.

The mode argument is normally not supplied. If it is :abort, we are abnormally ex-
iting from the use of this stream. If the stream is outputting to a file, and has not
been closed already, the stream’s newly created file is deleted, as if it were never
opened in the first place. Any previously existing file with the same name remains,
undisturbed.

Page 941

zl:closure symbol-list function Function

Use the Symbolics Common Lisp function make-dynamic-closure, which is equiva-
lent to the function zl:closure.

zl:closure creates and returns a dynamic closure of function over the variables in
symbol-list. Note that all variables on symbol-list must be declared special.

To test whether an object is a dynamic closure, use the zl:closurep predicate. See
the section "Predicates". The typep function returns the symbol zl:closure if given
a dynamic closure. (typep x :closure) is equivalent to (zl:closurep x).

See the section "Dynamic Closure-Manipulating Functions".

zl:closure-alist closure Function

Use the Symbolics Common Lisp function dynamic-closure-alist, which is equiva-
lent to the function zl:closure-alist.

Returns an alist of (symbol . value) pairs describing the bindings which the dy-
namic closure performs when it is called. This list is not the same one that is ac-
tually stored in the closure; that one contains pointers to value cells rather than
symbols, and zl:closure-alist translates them back to symbols so you can under-
stand them. As a result, clobbering part of this list does not change the closure.

If any variable in the closure is unbound, this function signals an error.

See the section "Dynamic Closure-Manipulating Functions".

closure-function closure Function

Returns the closed function from the dynamic closure closure. This is the function
that was the second argument to zl:closure when the dynamic closure was created.
See the section "Dynamic Closure-Manipulating Functions".

zl:closure-variables closure Function

Use the Symbolics Common Lisp function function dynamic-closure-variables,
which is equivalent to the function zl:closure-variables.

Creates and returns a list of all of the variables in the dynamic closure closure. It
returns a copy of the list that was passed as the first argument to zl:closure when
closure was created.

See the section "Dynamic Closure-Manipulating Functions".

zl:closurep x Function

Returns t if its argument is a closure, otherwise nil.

clrhash table Function

Page 942

Removes all of the entries from table and returns the hash table itself.
(hash-table-count (clrhash old-hash-table)) => @

For a table of related items: See the section "Table Functions".

zl:clrhash-equal hash-table Function

Removes all of the entries from hash-table. This function is obsolete; use clrhash
instead.

sys:cl-structure-printer structure-name object stream depth Macro

Expands into an efficient function that prints a given structure object of type struc-
ture-name to the specified stream in #S format. It depends on the information cal-
culated by defstruct, and so is only useful after the defstruct form has been com-
piled. This macro enables a structure print function to respect the variable *print-
escape®.

(defstruct (foo
(:print-function foo-printer))
aboc)

(defun foo-printer (object stream depth)
(if xprint-escapex
(sys:cl-structure-printer foo object stream depth)
other-printing-strategy))

For a table of related items: See the section "Functions Related to defstruet Struc-
tures".

code-char code &optional (bits 0) (font 0) Function

Constructs a character given its code field. code, bits, and font must be non-
negative integers. If code-char cannot construct a character given its arguments,
it returns nil.

To set the bits of a character, supply one of the character bits constants as the
bits argument. See the section "Character Bit Constants".

For example:

(code-char 65 char-control-bit) => #\c-A
(char-code 65) => f\A
(char-code 65 4) => #\Super-A

Since the value of char-font-limit is 1, the only valid value of font is 0. The only
reason to use the font option would be when writing a program intended to be
portable to other Common Lisp systems.

In Genera, to construct a new character that has character style other than
NIL.NIL.NIL, use make-character. See the function make-character.

Page 943

For a table of related items, see the section "Making a Character".

coerce object result-type Function
Converts an object to an equivalent object of another type.
object is a Lisp object.

result-type must be a type-specifier; object is converted to an equivalent object of
the specified type. If object is already of the specified type, as determined by
typep, it is returned.

If the coercion cannot be performed, an error is signalled. In particular, (coerce x
nil) always signals an error.

Example:

(coerce ’x nil)
=> Error: I don’t know how to coerce an object to nothing

It is not generally possible to convert any object to be of any type whatsoever; only
certain conversions are allowed:

Any sequence type can be converted to any other sequence type, provided the new
sequence can contain all actual elements of the old sequence (it is an error if it
cannot). If the resuli-type is specified as simply array, for example, then array t is
assumed. A specialized type such as string or (vector (complex short-float)) can
be specified;

Examples:

(coerce '(a b c) ’vector) => f#f(A B C)

(coerce ’(a b c) ’array) => #(A B C)

(coerce #x101 ’(vector (complex short-float))) => #(1 6 1)
(coerce f#(4 4) ’number)

=> Error: I don’t know how to coerce an object to a number

Elements of the new sequence will be eql to corresponding elements of the old se-
quence. Note that elements are not coerced recursively. If you specify sequence as
the result-type, the argument can simply be returned without copying it, if it al-
ready is a sequence.

Examples:

(coerce #(8 9) ’sequence) => #(8 9)
(eql (coerce #(1 2) ’sequence) #(1 2)) => NIL
(equalp (coerce #(1 2) ’sequence) #(1 2)) => T

In this respect, (coerce sequence type) differs from (concatenate type sequence),
since the latter is required to copy the argument sequence.

Some strings, symbols, and integers can be converted to characters. If object is a
string of length 1, the sole element of the string is returned. If object is a symbol
whose print name is of length 1, the sole element of the print name is returned. If
object is an integer n, (int-char n) is returned.

Page 944

Examples:

(coerce "b" ’character) => }\b

(coerce "ab" ’character)

=> Error: "AB" is not one character Tong.
(coerce ’a ’character) => #\A

(coerce ’ab ’character)

=> Error: "AB" is not one character Tong.
(coerce 65 ’character) => {\A

(coerce 1508 ’character) => H#\Circle

Any non-complex number can be converted to a short-float, single-float double-
float, or long-float. If simply float is specified as the result-type and if object is
not already a floating-point number of some kind, odject is converted to a single-
float.

Examples:

(coerce B ’short-float) => 0.0
(coerce 3.5L8 *float) => 3.5d@
(coerce 7/2 ’float) => 3.5

Any number can be converted to a complex number. If the number is not already
complex, a zero imaginary part is provided by coercing the integer zero to the type
of the given real part. If the given real part is rational, however, the rule of
canonicalization for complex rational numbers results in the immediate reconver-
sion of the the result type from type complex back to type rational.

Examples:

(coerce 4.5s8 ’complex) => HC(4.5 0.8)
(coerce 7/2 ’complex) => 7/2

(coerce #C(7/2 @) ’(complex double-float))
=> f##C(3.5d0 0.0da)

Any object can be coerced to type t.
Example:
(coerce ’house ’t) => HOUSE

is equivalent to
(identity ’house) => HOUSE

Coercions from floating-point numbers to rational numbers, and of ratios to inte-
gers are not supported because of rounding problems. Use one of the specialized
functions such as rational, rationalize, floor, and ceiling instead. See the section
"Numeric Type Conversions".

Similarly, coerce does not convert characters to integers; use the specialized func-
tions char-code or char-int instead.

See the section "Data Types and Type Specifiers".

collect keyword for loop

Page 945

collect expr {into var}

Causes the values of expr on each iteration to be collected into a list. When the
epilogue of the loop is reached, var has been set to the accumulated result and
can be used by the epilogue code.

It is safe to reference the values in var during the loop, but they should not be
modified until the epilogue code for the loop is reached.

The forms collect and collecting are synonymous.

Examples:

(defun loop1 (start end)
(loop for x from start to end
collect x)) => LOOP1
(Toop1 @ 4) => (B8 1 2 3 4)

(defun loop2 (small-Tlist)
(Toop for x from @
for item in small-Tist
collect (list x item))) => LOOP2
(Toop2 ’("one" "two" "three" "four"))
=> ((B "one”) (1 "two") (2 "three") (3 "four"))

The following examples are equivalent.

(defun loop3 (small-Tist)
(Toop for x from @
for item in small-list
collect x into result-1
collect item into result-2
finally (print (list result-1 result-2)))) => LOOP3
(Toop3 ’(abcde f)) =>
((@12345 (ABCDEF)) NIL

(defun loop3 (small-Tist)
(Toop for x from @
for item in small-Tist
collecting x into result-1
collecting item into result-2
finally (print (list result-1 result-2)))) => L0OOP3
(loop3 ’(abcdef)) =>
((@12345 (ABCDEF)) NIL

Not only can there be multiple accumulations in a loop, but a single accumulation
can come from multiple places within the same loop form, if the types of the col-
lections are compatible. collect, nconc, and append are compatible.

See the section "Accumulating Return Values for loop".

Page 946

zl:comment Special Form

Ignores its form and returns the symbol zl:comment. Example:

(defun foo (x)
(cond ((null x) B)
(t (comment x has something in it)
(1+ (foo (cdr x))))))

Usually it is preferable to comment code using the semicolon-macro feature of the
standard input syntax. This allows you to add comments to your code that are ig-
nored by the Lisp reader. Example:

(defun foo (x)
(cond ((null x) @)
(t (M+ (foo (cdr x)))) ;X has something in it
))

A problem with such comments is that they are discarded when the form is read
into Lisp. If the function is read into Lisp, modified, and printed out again, the
comment is lost. However, this style of operation is hardly ever used; usually the
source of a function is kept in an editor buffer and any changes are made to the
buffer, rather than the actual list structure of the function. Thus, this is not a
real problem.

See the section "Functions and Special Forms for Constant Values".

common Type Specifier

This is the type specifier symbol denoting an exhaustive union of the following
Common Lisp data types:

cons, symbol

(array x), where x is either t or a subtype of common

string, fixnum, bignum, ratio, short-float,

single-float, double-float long-float

(complex x) where x is a subtype of common

standard-char, hash-table, readtable, package,

pathname, stream, random-state

and all types created by the user with defstruct, or defflavor.

The type common is a subtype of type t.
Examples:

(typep ’#c(3 4) ’common) =>T
(subtypep ’common t) => T and T
(commonp ’cons) => T

(sys:type-arglist ’common) => NIL and T

Page 947

(setq four
(Tet ((x 4))
(closure ’(x) ’zerop))) => H<DTP-CLOSURE 1510647>

(typep four ’sys:dynamic-closure) => T

(subtypep ’sys:dynamic-closure ’common) => NIL and NIL

See the section "Data Types and Type Specifiers".

commonp object
Function

Returns true if object is a standard Common Lisp data object; otherwise, returns
false. However, some standard Common Lisp data objects (such as characters with
one or more bits attributes set) and function objects are not included in type
common. All structure objects are of type common, even though their types are
defined by the user with defstruect.

(commonp x) = (typep x ’common)
Examples:

(commonp 1.5d9) => T

(commonp 1.8) => T

(commonp -12.) => T

(commonp ’3kd) => T

(commonp ’symbol) => T

(commonp #c(3 4)) => T

(commonp 4) => T s equivalent to (typep 4 ’common) => T

See the section "Data Types and Type Specifiers".

See the section "Predicates".

commonp object
Function

Returns true if object is a standard Common Lisp data object; otherwise, returns
false. However, some standard Common Lisp data objects (such as characters with
one or more bits attributes set) and function objects are not included in type
common. All structure objects are of type common, even though their types are
defined by the user with defstruct.

(commonp x) = (typep x ’common)

Examples:

Page 948

(commonp 1.5d9) => T

(commonp 1.8) => T

(commonp -12.) => T

(commonp ’3kd) => T

(commonp ’symbol) => T

(commonp #c(3 4)) => T

(commonp 4) => T 1is equivalent to (typep 4 ’common) => T

See the section "Data Types and Type Specifiers".

See the section "Predicates".

compile-flavor-methods flavor! flavor2... Macro

Causes the combined methods of a program to be compiled at compile-time, and
the data structures to be generated at load-time, rather than both happening at
run-time. compile-flavor-methods is thus a very good thing to use, since the need
to invoke the compiler at run-time slows down a program using flavors the first
time it is run. (The compiler is still called if incompatible changes have been
made, such as addition or deletion of methods that must be called by a combined
method.)

It is necessary to use compile-flavor-methods when you use the :constructor op-
tion for defflavor, to ensure that the constructor function is defined.

Generally, you use compile-flavor-methods by including the forms in a file to be
compiled. (The compile-flavor-methods forms can also be interpreted.) This causes
the compiler to include the automatically generated combined methods for the
named flavors in the resulting binary file, provided that all of the necessary flavor
definitions have been made. Furthermore, when the binary file is loaded, internal
data structures (such as the list of all methods of a flavor) are generated.

You should use compile-flavor-methods only for flavors that will be instantiated.
For a flavor that will never be instantiated (that is, one that only serves to be a
component of other flavors that actually do get instantiated), it is almost always
useless. The one exception is the unusual case where the other flavors can all in-
herit the combined methods of this flavor instead of each having its own copy of a
combined method that happens to be identical to the others.

The compile-flavor-methods forms should be compiled after all of the information
needed to create the combined methods is available. You should put these forms af-
ter all of the definitions of all relevant flavors, wrappers, and methods of all com-
ponents of the flavors mentioned.

In general, Flavors cannot guarantee that defmethod macro-expands correctly un-
less the flavor (and all of its component flavors) have been compiled. Therefore,
the compiler gives a warning when you try to compile a method before the flavor
and its components have been compiled.

If you see this warning and no other warnings, it is usually the case that the fla-
vor system did compile the method correctly.

Page 949

In complicated cases, such as a regular function and an internal flavor function
(defined by defun-in-flavor or the related functions) having the same name, the
flavor system cannot compile the method correctly. In those cases it is advisable to
compile all the flavors first, and then compile the method.

See the function flavor:print-flavor-compile-trace.

For a summary of all functions, macros, special forms, and variables related to
Flavors, see the section "Summary of Flavor Functions and Variables".

compiled-function Type Specifier

This is the type specifier symbol for the predefined Lisp data type compiled-
function.
Examples:

(typep (compile nil ’(lambda (a b) (+ a b))) ’compiled-function)

= T

(z1:typep (compile nil ’(Tambda (a b) (+ a b))))
=> :COMPILED-FUNCTION

(sys:type-arglist ’compiled-function) => NIL and T
(compiled-function-p (compile nil ’(lambda (a) (+ a a)))) => T
See the section "Data Types and Type Specifiers".

See the section "Functions".

compiled-function-p x Function

Returns t if its argument is any compiled code object.

compiler-let bindlist &body body
Special Form

When interpreted, a compiler-let form is equivalent to let with all variable bind-
ings declared special. When the compiler encounters a compiler-let, however, it
performs the bindings specified by the form (no compiled code is generated for the
bindings) and then compiles the body of the compiler-let with all those bindings in
effect. In particular, macros within the body of the compiler-let form are expanded
in an environment with the indicated bindings. See the section "Nesting Macros".

compiler-let allows compiler switches to be bound locally at compile time, during
the processing of the body forms. Value forms are evaluated at compile time. See
the section "Compiler Switches". In the following example the use of compiler-let
prevents the compiler from open-coding the map.

(compiler-let ((compiler:open-code-map-switch nil))
(map (function (lambhda (x) ...)) foo))

Page 950

The body of the compiler-let form is an implicit progn; thus, the forms are evalu-
ated sequentially, and the value of the last evaluated form is returned. The differ-
ence between compiler-let and let is that the former use the bindings at the time
of semantic analysis, rather than use the bindings at execution time. For example,
causing the compiler to use the bindings while generating code for the body,
rather than generate code for the bindings. Of course, another difference is the
implicit special declaration of the bindings. In general, only embedded macrolet
and compiler-let forms can reliably recognize the bindings (though in some di-
alects these bindings may coincidentally be visible in interpreted code).

In the following example, compiler-let enables two macros which are used together
for effective communication. First, the macro with-end-push establishes a context
that points to the end of a list. Second macro push-onto-end uses the pointer to
add items to the end of the list, much as push adds to the beginning of a list. The
special variable *end-ptr* is bound to the pointer. Therefore, when push-onto-end
is expanded in the context of that binding, the appropriate pointer is employed.

(defvar xend-ptrx nil)

(defmacro with-end-push (Tist &body body)
(let ((lastptr (gensym)))
‘(let ((,lastptr (last ,1list)))
(compiler-let ((xend-ptrx ’,lastptr))
,body))))

(defmacro push-onto-end (val)
‘(setf ,xend-ptrx (setq ,xend-ptrx (cons ,val nil))))

(let ((mylist (list 1 2 3))
(a-Tist (1ist ’a ’h ’c ’d)))
(with-end-push mylist
(dolist (1 a-list mylist)
(push-onto-end 1))))

=> (123ABCD

The difference between compiler-let and let is only relevant when the actual code
that contains the macro with compiler-let is compiled.

See the section "Special Forms for Binding Variables".

:complete-connection &key (timeout (* 60. 6.)) Message

This message is sent to a new stream created by :start-open-auxiliary-stream, in
order to wait for the connection to be fully established. :complete-connection is
used whether or not this side is active.

Timeout is interpreted as the number of sixtieths of a second to wait before timing
out.

Page 951

When :complete-connection returns, the stream is fully connected to an active
network connection. At this point, :connected-p to that stream returns t.

:complete-connection signals an error if the connection times out or does not
complete for another reason.

complex &optional (type '*) Type Specifier
complex is the type specifier symbol for the predefined Lisp complex number type.

The types complex, rational, and float are pairwise disjoint subtypes of the type
number.

This type specifier can be used in either symbol or list form. Used in list form,
complex allows the declaration and creation of complex numbers, whose real part
and imaginary part are each of type type.

Examples:
(typep #c(3 4) ’complex) => T
(subtypep ’complex ’number) => T and T ;subtype and certain
(typep ’(complex 3 4) ’common) => T

The expression
(complexp #c(4/5 7.8)) => T

Is equivalent to
(typep #c(4/5 7.8) ’complex) => T

Here is an example of using the type argument for complex:
(typep #c (3.8 4.8) ‘complex) => T

(typep #c(3.0 4.08) ’(complex integer)) => NIL
(typep #c(3.0 4.08) ’(complex float)) =>T

(typep #c(3 4) ’(complex integer)) => T
See the section "Data Types and Type Specifiers".

See the section "Numbers".

complex realpart &optional imagpart Function

Constructs a complex number from real and imaginary noncomplex parts, applying
complex canonicalization.

If the types of the real and imaginary parts are different, the coercion rules are
applied to make them the same. If imagpart is not specified, a zero of the same
type as realpart is used. If realpart is an integer or a ratio, and imagpart is 0, the
result is realpart.

Examples:

Page 952

(complex 7) => 7

(complex 4.3 @) => #C(4.3 0.0)
(complex 2 @) => 2

(complex 3 4) => fiC(3 4)

(complex 3 4.0) => #C(3.0 4.0)
(complex 3.0d@ 4) => #C(3.0d0 4.0d0)
(complex 5/2 4.0d@) => #C(2.5d0 4.0dA)

Related Functions:

realpart
imagpart

For a table of related items: See the section "Functions that Decompose and Con-
struct Complex Numbers".

complexp object Function

Returns t if object is a complex number, otherwise nil. The following code tests
whether a and b are numbers. If numbers, they are added. Otherwise, we attempt
to extract complex numbers that are then tested by complexp.

(if (and (numberp a) (numberp b))
(+ a b)
(if (and (consp a)
(complexp (cadr a))
(consp b)
(complexp (cadr b)))
(+ (cadr a) (cadr h))
(error "couldn’t extract complexs from ~a and ~a" a b)))

For a table of related items, see the section "Numeric Type-checking Predicates".

complexp object Function

Returns t if object is a complex number, otherwise nil. The following code tests
whether a and b are numbers. If numbers, they are added. Otherwise, we attempt
to extract complex numbers that are then tested by complexp.

(if (and (numberp a) (numberp b))
(+ a b)
(if (and (consp a)
(complexp (cadr a))
(consp b)
(complexp (cadr h)))
(+ (cadr a) (cadr h))
(error "couldn’t extract complexs from ~a and ~a" a b)))

For a table of related items, see the section "Numeric Type-checking Predicates".

flavor:compose-handler generic flavor-name &key env Function

Page 953

Finds the methods that handle the specified generic operation on instances of the
specified flavor. Four values are returned:

handler-function-spec
The name of the handler, which can be a combined method, a
single method, or an instance-variable accessor.

combined-method-list
A list of function specs of all the methods called, in order of
execution; the order is approximate because of wrappers.

method-combination A list of the method combination type and parameters to it.

error nil normally, otherwise a string describing an error that oc-
curred.

For example, to use flavor:compose-handler on the generic function change-
status for the flavor box-with-cell:

(flavor:compose-handler ’change-status ’hox-with-cell)
-->(FLAVOR:COMBINED CHANGE-STATUS BOX-WITH-CELL)
((FLAVOR:METHOD CHANGE-STATUS CELL)
(FLAVOR:METHOD CHANGE-STATUS BOX-WITH-CELL))
(:AND :MOST-SPECIFIC-LAST)
NIL

The generic function change-status and the methods for the flavors box-with-cell
and cell are defined elsewhere. See the section "Example of Programming with
Flavors: Life".

In the second return value of sample output here, we put each method on one line,
for readability. This is not done by flavor:compose-handler.

For documentation of the env parameter, see the function flavor:compose-handler-
source.

For a summary of all functions, macros, special forms, and variables related to
Flavors, see the section "Summary of Flavor Functions and Variables".

flavor:compose-handler-source generic flavor-name &key env Function

Finds the methods that handle the specified generic operation on instances of the
flavor specified by flavor-name, and finds the source code of the combined method
(if any). Seven values are returned:

form A Lisp form which is the body of the combined method. If
there isn’t actually a combined method, this is nil.

handler-function-spec
The name of the handler, which can be a combined method, a
single method, or an instance-variable accessor.

Page 954

combined-method-list
A list of function specs of all the methods called, in order of
execution; the order is approximate because of wrappers.

wrapper-sources Information that the combined method requires so that Flavors
knows when it needs to be recompiled.

lambda-list A list describing what the arguments of the combined method
should be (not including the three interal arguments automati-
cally given to all methods).

method-combination A list of the method combination type and parameters to it.

error nil normally, otherwise a string describing an error that oc-
curred.

flavor:compose-handler-source is generally slower than flavor:compose-handler,
since the latter function can usually take advantage of pre-computed information
present in virtual memory.

The env parameter to flavor:compose-handler and flavor:compose-handler-source
can be used to insert hypotheses into their computations. If env is nil, the gener-
ics, flavors, and methods in the running world are used. env can be an alist of
modifications to the running world; each element takes the form:

(name flavor-structure generic-structure (method definition)...)

Everything except name can be nil. name is the name of a generic, or a flavor, or
both. flavor-structure is nil or the internal structure that describes the flavor.
generic-structure is nil or the internal structure that describes the generic function.
The remaining elements of an alist element refer to methods of the flavor named
name; method is a function spec and definition is nil if that method is to be ig-
nored, t if the method is to be assumed to exist, or the actual definition (expander
function) in the case of a wrapper.

env can also be the symbol compile, which is used internally to access the com-
pile-time environment.

For a summary of all functions, macros, special forms, and variables related to
Flavors, see the section "Summary of Flavor Functions and Variables".

si:compress-who-calls-database Function

Makes the who-calls database more compact and efficient. Call this function after
sizenable-who-calls. With the function (si:enable-who-calls ’:all), the function
si:compress-who-calls-database takes a long time to complete its job. However, it
is faster than using si:full-ge, and you can perform an Incremental Disk Save
(IDS) afterwards. See the section "Using the Incremental Disk Save (IDS) Facility".

clos:compute-applicable-methods generic-function function-arguments Function

Page 955

Returns the set of methods that are applicable for function-arguments; the methods
are sorted according to precedence order.

generic-function A generic function object.

function-arguments A list of the arguments to the generic function.

concatenate result-type &rest sequences Function

Combines the elements of the sequences in the order the sequences were given as
arguments. Returns the new, combined sequence.

The result does not share any structure with any of the argument sequences. The
type of the result is specified by result-type, which must be a subtype of type se-
quence. It must be possible for every element of the argument sequences to be an
element of a sequence of type result-type.

sequence can be either a list or a vector (one-dimensional array). Note that nil is
considered to be a sequence, of length zero.

For example:

(concatenate ’vector "abc" f(ab) "gh") => #(#\a #\b H#\c AB H#\g #\h)

3

(setqg vector (vector ’a 'b ’1 ’2)) => #(A B 1 2)

(setq list (make-list 3 :initial-element ’blah))
=> (BLAH BLAH BLAH)

(concatenate ’list vector Tist)
=> (A B 1 2 BLAH BLAH BLAH)

(concatenate ’vector 1ist vector) => H{(BLAH BLAH BLAH A B 1 2)

(concatenate ’string ’(#\a #\b #\c)) => "abc"

If only one sequence argument is provided and it has the type specified by result-
type, concatenate is required to to copy the argument rather than simply return-
ing it. If a copy is not required, but only possible type-conversion, then the func-
tion coerce can be appropriate.

For a table of related items: See the section "Sequence Construction and Access".

cond &rest clauses Special Form

Consists of the symbol cond followed by several clauses. Each clause consists of a
predicate form, called the antecedent, followed by zero or more consequent forms.

Page 956

(cond (antecedent consequent consequent...)
(antecedent)
(antecedent consequent ...)

)

Each clause represents a case that is selected if its antecedent is satisfied and the
antecedents of all preceding clauses were not satisfied. When a clause is selected,
its consequent forms are evaluated.

cond processes its clauses in order from left to right. First, the antecedent of the
current clause is evaluated. If the result is nil, cond advances to the next clause.
Otherwise, the edr of the clause is treated as a list of consequent forms that are
evaluated in order from left to right. After evaluating the consequents, cond re-
turns without inspecting any remaining clauses. The value of the cond special
form is the value of the last consequent evaluated, or the value of the antecedent
if there were no consequents in the clause. If cond runs out of clauses, that is, if
every antecedent evaluates to nil, and thus no case is selected, the value of the
cond is nil.

Examples:
(cond) => NIL

(cond ((= 2 3) (print "2 equals 3, new math"))
((<« 3 3) (print "3 < 3, not yet !"))) => NIL

(cond ((equal ’Becky ’Becky) "Girl")
((equal ’Tom ’Tom) “Bay")) => "Girl"

(cond ((equal ’Rover ’Red) "dog")
((equal ’Pumpkin ’Pickles) "cat")

(t “rat")) => "rat”
(cond ((zerop Xx) ;First clause:
(+y 3)) ; (zerop x) 1is the antecedent.
; (+y 3) is the consequent.
((null y) ;A clause with 2 consequents:
(setq y 4) ;this
(cons x 2)) ;and this.
(2) ;A clause with no consequents: the antecedent
;is just z. If z is non-nil, it is returned.
(t ;An antecedent of t
105) ;1s always satisfied.
) ;This is the end of the cond.

For a table of related items: See the section "Conditional Functions". The following
is an approximate possible implementation of zl-user:constantp using cond:

Page 957

(defun constantp (object)
(cond ((consp object) (eq (car object) (quote quote)))
((not (symbolp object)) t)
((defined-constant-p object) t)
((or (null object) (eq object t) t)
((keywordp object) t)
(t ni1)))

cond-every &body clauses Special Form

Has the same syntax as cond, but executes every clause whose predicate is satis-
fied, not just the first. If a predicate is the symbol otherwise, it is satisfied if and
only if no preceding predicate is satisfied. The value returned is the value of the
last consequent form in the last clause whose predicate is satisfied. Multiple val-
ues are not returned.

Examples:

(cond-every) => NIL

(cond-every ((> 2 3) (print "sister"))
((= 2 3) (print "brother"))) => NIL

3

(cond-every ((equal ’mom ’mom) (princ "mother "))
((equal ’dog ’cat) (princ "pet dog"))
((equal ’dad ’dad) (princ “father")))
=> mother father"father”

(cond-every ((= 1 1) t) ((= 2 2) "yes!")
(otherwise "no")) => "yes!"

For a table of related items: See the section "Conditional Functions".

condition-bind /ist &body body
Special Form

Binds handlers for conditions and then evaluates its body with those handlers
bound. One of the handlers might be invoked if a condition is signalled while the
body is being evaluated. The handlers bound have dynamic scope.

The following simple example sets up application-specific handlers for two standard
error conditions, fs:file-not-found and fs:delete-failure.

(condition-hind ((fs:file-not-found ’my-fnf-handler)
(fs:delete-failure ’my-delete-handler))
(deletef pathname))

The format for condition-bind is:

Page 958

(condition-bind ((condition-flavor-1 handler-1)

form-1
form-2

]-”o-r-m—n)

condition-flavor

handler

form

(condition-flavor-2 handler-2)

(condition-flavor-m handler-m))

The name of a condition flavor or a list of names of condition
flavors. condition-flavor need not be unique or mutually exclu-
sive. (See the section "Finding a Handler". Search order is ex-
plained in that section.)

A form that is evaluated to produce a handler function. One
handler is bound for each condition flavor clause in the list.
The forms for binding handlers are evaluated in order from
handler-1 to handler. All the handler-j forms are evaluated and
then all handlers are bound.

When handler is a lambda-expression, it is compiled. The han-
dler function is a lexical closure, capable of referring to the
lexical variables of the containing block.

Note: handler must have one argument, which is the condition
object. Otherwise, an error is signalled.

A body, constituting an implicit progn. The forms are evaluat-
ed sequentially. The eondition-bind form returns whatever val-
ues form returns (nil when the body contains no forms). The
handlers that are bound disappear when the condition-bind
form is exited.

If a condition signal occurs for one of the condition-flavors during evaluation of
the body, the signalling mechanism examines the bound handlers in the order in
which they appear in the condition-bind form, invoking the first appropriate han-
dler. You can think of the mechanism as being analogous to typecase or case. It
invokes the handler function with one argument, the condition object. The handler
runs in the dynamic environment in which the error occurred; no throw is per-

formed.

Any handler function can take one of three actions:

e It can return nil to indicate that it does not want to handle the condition after
all. The handler is free to decide not to handle the condition, even though the
condition-flavors matched. (In this case the signalling mechanism continues to
search for a condition handler.)

e It can throw to some outer catch-form, using throw.

Page 959

e If the condition has any proceed types, it can proceed from the condition by call-
ing the sys:proceed generic function on the condition object and returning the
resulting values. In this case, signal returns all of the values returned by the
handler function. (Proceed types are not available for conditions signalled with
error. See the section "Proceeding".)

The conditional variant of condition-bind is the form:
condition-bind-if

For a table of related items, see the section "Basic Forms for Bound Handlers".

condition-bind-default /ist &body body Special Form

Binds its handlers on the default handler list instead of the bound handler list.
See the section "Finding a Handler". In other respects condition-bind-default is
just like condition-bind. The default handlers are examined by the signalling
mechanism only after all of the bound handlers have been examined. Thus, a
condition-bind-default can be overridden by a condition-bind outside of it. This
advanced feature is described in more detail in another section. See the section
"Default Handlers and Complex Modularity".

The conditional variant of condition-bind-default is the form:
condition-bind-default-if

For a table of related items, see the section "Basic Forms for Default Handlers".

condition-bind-default-if cond list &body body Special Form

Binds its handlers on the default handler list instead of the bound handler list.
See the section "Finding a Handler". In other respects condition-bind-default-if is
just like condition-bind-if. The default handlers are examined by the signalling
mechanism only after all of the bound handlers have been examined. Thus, a
condition-bind-default-if can be overridden by a condition-bind outside of it. This
advanced feature is described in more detail in another section. See the section
"Default Handlers and Complex Modularity".

For a table of related items, see the section "Basic Forms for Default Handlers".

condition-bind-if cond list &body body
Special Form

Binds its handlers conditionally. In all other respects, it is just like
condition-bind. It has an extra subform called cond, for the conditional. Its format
is:

Page 960

(condition-bind-if cond
((condition-flavor-1 handler-1)
(condition-flavor-2 handler-2)

(condition-flavor-m handler-m))
form-1
form-2

form-n)
condition-bind-if first evaluates cond. If the result is nil, it evaluates the handler
forms but does not bind any handlers. It then executes the body as if it were a

progn. If the result is not nil, it continues just like condition-bind binding the
handlers and executing the body.

For a table of related items: See the section "Basic Forms for Bound Handlers".

condition-call (&rest varlist) form &body clauses Special Form

Binds handlers for conditions, expressing the handlers as clauses of a case-like
construct instead of as functions. These handlers have dynamic scope.

condition-call and condition-case have similar applications. The major distinction
is that condition-call provides the mechanism for using a complex conditional cri-
terion to determine whether or not to use a handler. condition-call clauses have
the ability to decline to handle a condition because the clause is selected on the
basis of the predicate, rather than on the basis of the type of a condition.

The format is:

(condition-call (var)
form
(predicate-1 form-1-1 form-1-2 ... form-1-n)
(predicate-2 form-2-1 form-2-2 ... form-2-n)

(predicate-m form-m-1 form-m-2 ... form-m-n))

Each predicate must be a function of one argument. The predicates are called,
rather than evaluated. The form-m-n are a body, a list of forms constituting an im-
plicit progn. The handler clauses are bound simultaneously.

When a condition is signalled, each predicate in turn (in the order in which they
appear in the definition) is applied to the condition object. The corresponding han-
dler clause is executed for the first predicate that returns a value other than nil.
The predicates are called in the dynamic environment of the signaller.

condition-call takes the following actions when it finds the right predicate:
1. It automatically performs a throw to unwind the dynamic environment back

to the point of the condition-call. This discards the handlers bound by the
condition-call.

Page 961

2. It executes the body of the corresponding clause.

3. It makes condition-call return the values produced by the last form in the
clause.

During the execution of the clause, the variable var is bound to the condition ob-
ject that was signalled. If none of the clauses needs to examine the condition ob-
ject, you can omit var:

(condition-call () ...)

condition-call and :no-error

As a special case, predicate-m (the last one) can be the special symbol :no-error. If
form is evaluated and no error is signalled during the evaluation, condition-case
executes the :no-error clause instead of returning the values returned by form.
The variables vars are bound to the values produced by form, in the style of
multiple-value-bind, so that they can be accessed by the body of the :no-error
case. Any extra variables are bound to nil.

Some limitations on predicates:

e Predicates must not have side effects. The number of times that the signalling
mechanism chooses to invoke the predicates and the order in which it invokes
them are not defined. For side effects in the dynamic environment of the signal,
use condition-bind.

e The predicates are not lexical closures and therefore cannot access variables of
the lexically containing form, unless those variables are declared special.

e Lambda-expression predicates are not compiled.

The conditional variant of condition-call is the form:
condition-call-if

For a table of related items: See the section "Basic Forms for Bound Handlers".

condition-call-if cond (&rest varlist) form &body clauses Special Form

Binds its handlers conditionally. In all other respects, it is just like condition-call.
Its format includes cond, the subform that controls binding handlers:

(condition-call-if cond (var)
form
(predicate-1 form-1-1 form-1-2 ... form-1-n)
(predicate-2 form-2-1 form-2-2 ... form-2-n)

(predicate-m form-m-1 form-m-2 ... form-m-n))

Page 962

condition-call-if first evaluates cond. If the result is nil, it does not set up any
handlers; it just evaluates the form. If the result is not nil, it continues just like
condition-call, binding the handlers and evaluating the form.

The :no-error clause applies whether or not cond is nil.

For a table of related items: See the section "Basic Forms for Bound Handlers".

condition-case (&rest varlist) form &rest clauses
Special Form

Binds handlers for conditions, expressing the handlers as clauses of a case-like
construct instead of as functions. The handlers bound have dynamic scope.

Examples:

(condition-case ()
(time:parse string)
(time:parse-error xdefault-timex))

(condition-case (e)
(time:parse string)
(time:parse-error
(format xerror-outputx "~A, using default time instead."” e)
xdefault-timex))

(do () (niT)
(condition-case (e)
(return (time:parse string))
(time:parse-error
(setq string
(prompt-and-read
:string
"“A~%Use what time instead? " e)))))

The format is:

(condition-case (varl var2 ...)
form
(condition-flavor-1 form-1-1 form-1-2 ... form-1-n)
(condition-flavor-2 form-2-1 form-2-2 ... form-2-n)

(condition-flavor-m form-m-1 form-m-2 ... form-m-n))

Each condition-flavor-j is either a condition flavor, a list of condition flavors, or
:no-error. If :no-error is used, it must be the last of the handler clauses. The re-
mainder of each clause is a body, a list of forms constituting an implicit progn.

condition-case binds one handler for each clause. The handlers are bound simul-
taneously.

Page 963

If a condition is signalled during the evaluation of form, the signalling mechanism
examines the bound handlers in the order in which they appear in the definition,
invoking the first appropriate handler.

condition-case normally returns the values returned by form. If a condition is sig-
nalled during the evaluation of form, the signalling mechanism determines whether
the condition is one of the condition-flavor-j. If so, the following actions occur:

1. It automatically performs a throw to unwind the dynamic environment back
to the point of the condition-case. This discards the handlers bound by the
condition-case.

2. It executes the body of the corresponding clause.

3. It makes condition-case return the values produced by the last form in the
handler clause.

While the clause is executing, varl is bound to the condition object that was sig-
nalled and the rest of the variables (var2, ..) are bound to nil. If none of the
clauses needs to examine the condition object, you can omit vari.

(condition-case () ...)

As a special case, condition-flavor-m (the last one) can be the special symbol :no-
error. If form is evaluated and no error is signalled during the evaluation,
condition-case executes the :no-error clause instead of returning the values re-
turned by form. The variables varl, var2, and so on are bound to the values pro-
duced by form, in the style of multiple-value-bind, so that they can be accessed by
the body of the :no-error case. Any extra variables are bound to nil.

When an event occurs that none of the cases handles, the signalling mechanism
continues to search the dynamic environment for a handler. You can provide a case
that handles any error condition by using error as one condition-flavor-j.

The conditional variant of condition-case is the form:
condition-case-if

For a table of related items: See the section "Basic Forms for Bound Handlers".

condition-case-if cond (&rest varlist) form &rest clauses Special Form

Binds its handlers conditionally. In all other respects, it is just like
condition-case. Its syntax includes cond, a subform that controls binding handlers:

(condition-case-if cond (var)
form
(condition-flavor-1 form-1-1 form-1-2 ... form-1-n)
(condition-flavor-2 form-2-1 form-2-2 ... form-2-n)

(condition-flavor-m form-m-1 form-m-2 ... form-m-n))

Page 964

condition-case-if first evaluates cond. If the result is nil, it does not set up any
handlers; it just evaluates the form. If the result is not nil, it continues just like
condition-case, binding the handlers and evaluating the form.

The :no-error clause applies whether or not cond is nil.

For a table of related items: See the section "Basic Forms for Bound Handlers".

dbg:condition-handled-p condition Function

Searches the bound handler list and the default handler list to see whether a han-
dler exists for the condition object, condition. This function should be called only
from a condition-bind handler function. It starts looking from the point in the
lists from which the current handler was invoked and proceeds to look outwards
through the bound handler list and the default handler list. It returns a value to
indicate what it found:

Value Meaning

:maybe condition-bind handlers for the flavor exist. These handlers
are permitted to decline to handle the condition. You cannot
determine what would happen without actually running the

handler.
nil No handler exists.
t A handler exists.
conjugate number Function

Returns the complex conjugate of number. If number is complex, then conjugate re-
turns a complex with the same real part as number, and with imaginary part the
negation of number’s imaginary part. A non-complex argument number is returned.
The conjugate of a noncomplex number is itself. conjugate could have been de-
fined by:
(defun conjugate (number)
(complex (realpart number) (- (imagpart number))))

For a table of related items, see the section "Arithmetic Functions".

:connected-p Message

Returns t if the stream is fully connected to an active network connection, nil
otherwise. If the stream is in a transitory state that is not completely connected,
:connected-p returns nil.

:connected-p must be callable in a scheduler context. That is, it cannot call
:process-wait.

cons x y Function

Page 965

Creates a new cons whose car is x and whose cdr is y.

cons can be thought of as creating a cons or a list, or as adding a new element to
the front of a list.

Examples:

(cons ’a ’b) => (a . b)
(cons ’a (cons ’b (cons ’c nil))) => (a b c)
(cons ’a (b cd)) => (abcd)

For a table of related items: See the section "Functions for Constructing Lists and
Conses".

cons Type Specifier
This is the type specifier symbol for the predefined Lisp object cons .
The types cons and null form an exhaustive partition of the type list.
The types cons, symbol, array, number, and character are pairwise disjoint.
Examples:

(typep ’(a.h) ’cons) =>T

(typep ’(a b c) ’cons) => T

(z1:listp ’(abc)) =>T

(subtypep ’cons ’list) => T and T

(subtypep ’1list ’cons) => NIL and T

(sys:type-arglist ’cons) => NIL and T

(consp ’(abc)) =>T

(type-of ’(signed-byte 3)) => CONS

See the section "Data Types and Type Specifiers". See the section "Type Specifiers
and Type Hierarchy for Lists".

cons-in-area x y area Function

Creates a cons, whose car is x and whose cdr is v, in the specified area. (Areas are
an advanced feature of storage management. See the section "Areas".)

Example:

3

(cons-in-area ’a ’b my-area) => (a . b)
cons-in-area is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions for Constructing Lists and
Conses".

consp object Function

Page 966

Returns t if its argument is a cons and nil otherwise. Thus, consp is the direct
inverse of atom , that is, (consp X) if and only if (not (atom X)). (consp nil)
returns nil since nil is the empty list but not a cons. For this reason, listp should
be used to determine whether or not an object is a list. If consp returns true for
object, the use of various functions that require a cons object, such as car and
cdr, is legitimate.

For a table of related items: See the section "Predicates that Operate on Lists".

constantp object Function

This predicate is t if object, when considered as a form to be evaluated, always
evaluates to the same thing. This includes self-evaluating objects such as numbers,
characters, strings, bit-vectors and keywords, as well as all constant symbols de-
clared by defconstant, such as nil, t, and pi. In addition, a list whose car is
quote, such as (quote rhumba) also returns t when it is given as object to
constantp.

This predicate is nil if object, considered as a form, may or may not always evalu-
ate to the same thing.

If you are using CLOE, consider the following example:

3

(constantp ’(quote foo)) => t
(constantp ’foo) => nil
(constantp (make-array foo (2 3))) => t

continue-whopper &rest args Special Form

Calls the combined method for the generic function that was intercepted by the
whopper. Returns the values returned by the combined method.

args is the list of arguments passed to those methods. This function must be
called from inside the body of a whopper. Normally the whopper passes down the
same arguments that it was given. However, some whoppers might want to change
the values of the arguments and pass new values; this is valid.

For more information on whoppers, including examples: See the section "Wrappers
and Whoppers'".

For a summary of all functions, macros, special forms, and variables related to
Flavors: See the section "Summary of Flavor Functions and Variables".

copy-alist al &optional area Function

Returns an association list that is equal to al, but is not eq. See the section "As-
sociation Lists". Only the top level of list structure is copied; that is, copy-alist
copies in the cdr direction, but not in the car direction. Each cons of al is replaced
in the copy by a new cons with the same car and cdr. See the function copy-seq.
See the function copy-tree.

Page 967

Here is an example of copy-alist:
(copy-alist ’((canoce.paddle) (rowboat.oar)))
returns the following association list, which is equal to the original association
list:
((cance.paddle) (rowboat.oar))
The optional area argument is the number of the area in which to create the new

list. (Areas are an advanced feature of storage management. See the section
"Areas".)

Compatibility Note: area is a Symbolics extension to Common Lisp. It is not sup-
ported under CLOE.

Example:
(setg alist-1 (pairlis (abcd) (12 3 4)))
= ((A. 1B . 2)(C . 3D . 4)

(setg alist-2 (copy-alist alist))
= ((A. 1B . 2)(C . 3D . 4)

(setf (cdr (assoc ’a alist-1)) 42)
=> 42

(assoc ’a alist-1)
=> (A . 42)

(assoc ’a alist-2)

= (A . 1)
This function is specifically intended for copying association lists, that is, a-lists
consisting of a list of conses.

For a table of related items: See the section "Functions for Copying Lists".

copy-array-contents from-array to-array Function

Copies the contents of from-array into the contents of fo-array, element by element.
from-array and to-array must be arrays. If to-array is shorter than from-array, the
rest of from-array is ignored. If from-array is shorter than to-array, the rest of to-
array is filled with nil if it is a general array, or 0 if it is a numeric array or
(code-char 0) for strings. This function always returns t.

Note that even if from-array or to-array has a leader, the whole array is used; the
convention that leader element 0 is the "active" length of the array is not used by
this function. The leader itself is not copied.

copy-array-contents works on multidimensional arrays. from-array and to-array
are "linearized" and row-major order is used. See the section "Row-major Storage
of Arrays".

copy-array-contents does not work on conformally displaced arrays.

Page 968

copy-array-contents-and-leader from-array to-array Function

Copies the contents and leader of from-array into the contents of to-array, element
by element. copy-array-contents copies only the main part of the array.

copy-array-contents-and-leader does not work on conformally displaced arrays.

For a table of related items: See the section "Copying an Array".

copy-array-portion from-array from-start from-end to-array to-start to-end Function

Copies the portion of the array from-array with indices greater than or equal to
from-start and less than from-end into the portion of the array fo-array with in-
dices greater than or equal to fo-start and less than to-end, element by element. If
there are more elements in the selected portion of fo-array than in the selected
portion of from-array, the extra elements are filled with the default value as by
copy-array-contents. If there are more elements in the selected portion of from-
array, the extra ones are ignored. Multidimensional arrays are treated the same
way as copy-array-contents treats them. This function always returns t.

copy-array-portion does not work on conformally displaced arrays.

This function copies one element at a time in increasing order of subscripts. This
means that when copying from and to the same array, the results might be unex-
pected if from-start is less than fo-start. You can safely copy from and to the same
array as long as from-start >= to-start.

For a table of related items: See the section "Copying an Array".

zl:copy-closure closure Function

Use the Symbolics Common Lisp function copy-dynamic-closure, which is equiva-
lent to the function zl:copy-closure.

Creates and returns a new closure by copying the dynamic closure closure. zl:copy-
closure generates new external value cells for each variable in the closure and ini-
tializes their contents from the external value cells of closure.

See the section "Dynamic Closure-Manipulating Functions".

copy-dynamic-closure closure Function

Creates and returns a new closure by copying the dynamic closure closure. copy-
dynamic-closure generates new external value cells for each variable in the clo-
sure and initializes their contents from the external value cells of closure.

See the section "Dynamic Closure-Manipulating Functions".

sys:copy-if-necessary thing &optional (default-cons-area sys:working-storage-area)
Function

Page 969

Moves thing from a temporary storage area, or stack list, to a permanent area.
Thing can be a string, symbol, list, tree, or &rest argument. sys:copy-if-necessary
checks whether thing is in a temporary area of some kind, and moves it if it is. If
thing is not in a temporary area, it is simply returned. The copy has the same
type and dimensionality as the source.

This function is used especially for &rest arguments, which are not guaranteed to
be in permanent storage. Sometimes the rest-argument list is stored in the func-
tion-calling stack, and loses its validity when the function returns. If you wish to
return a rest-argument or make it part of a permanent list structure, you must
copy it first, as you must always assume that it is one of these special lists.

Use sys:copy-if-necesary to copy a list if your only purposes are:
e To preserve a (possibly) stack-consed list outside of its stack extent.

e To copy an object in storage with dynamic extent, thus it is not suitable for
guaranteeing that a given list does not share structure with any other list.

In all other cases, you should use copy-list, which copies unconditionally, thus it is
suitable for making a private copy of a list. copy-list copies only lists, while
sys:copy-if-necessary copies trees of conses as well as copying several other object

types.
See the section "Lambda-List Keywords".
sys:copy-if-necessary is a Symbolics extension to Common Lisp.

For more information on stack lists: See the section "Consing Lists on the Control
Stack". See the function with-stack-list.

For more information on temporary storage areas, see the :ge keyword of make-
area. See the function make-area.

For a table of related items: See the section "Functions for Copying Lists".

copy-list list &optional area force-dotted Function

Returns a list that is equal to list, but not eq. Under Genera, the returned list is
fully cdr-coded, to minimize storage. (See the section "Cdr-Coding".)

Only the top level of the list structure is copied; that is, copy-list copies in the
cdr direction, but not in the car direction. Each element of list that is a cons is
replaced in the copy by a new cons with the same car and cdr. See also:

copy-alist
copy-seq
copy-tree
copy-tree-share

Compatibility Note: The optional arguments aree and forced-dotted are Symbolics
extensions to Common Lisp. Area is the number of the area in which to create the

Page 970

new list. (Areas are an advanced feature of storage management. See the section
"Areas".) Note that these options are not supported under CLOE.
Example:
(copy-list ’(heron loon sandpiper))
Returns the following list, which is equal to list, but not eq:

(heron loon sandpiper)

Example:
(setq a ’(one (two-a two-b)))
(setq b (list 1 a ’three))
=> (1 (ONE (TWO-A TWO-B)) THREE)
(setq c (copy-list b))
=> (1 (ONE (TWO-A TWO-B)) THREE)
(eq (last b) (last c)) => nil
(eq (cdr b) (cdr c)) => nil
(eq (cadr b) (cadr c)) =>t

For a table of related items: See the section "Functions for Copying Lists".

copy-list* list &optional area Function

Returns a list that is equal to list, but not eq, and whose last cons is never cdr-
coded.

See the function copy-list. See the section "Cdr-Coding". This increases efficiency
if you add something onto the list later with necone.

The optional area argument is the number of the area in which to create the new
list. (Areas are an advanced feature of storage management. See the section
"Areas".)

copy-list* is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions for Copying Lists".

copy-readtable &optional (from-readtable *readtable*) to-readtable Function

A copy is made of from-readtable, which defaults to the current readtable (the val-
ue of the global variable *readtable*). If from-readtable is nil, then a copy of a
standard Common Lisp readtable is made. For example,

(setq xreadtablex (copy-readtable nil))

will restore the input syntax to standard Common Lisp syntax, even if the original
readtable has been clobbered.

If fo-readtable is unsupplied or nil, a fresh copy is made. Otherwise, to-readtable
must be a readtable, which is destructively copied into.

Page 971

(Tetx ((foo "zzz\"zzz")
(newrt (copy-readtable))
(xreadtablex newrt)
(result (read-from-string foo)))
(set-syntax-from-char #\" #\7%)
(setq result (cons result (read-from-string foo))))

=> (222 . 12771"77Z1)

zl:copy-readtable &optional from-readtable to-readtable Function

from-readtable, which defaults to the current readtable, is copied. If fo-readtable is
unsupplied or nil, a fresh copy is made. Otherwise to-readtable is clobbered with
the copy. Use zl:copy-readtable to get a private readtable before using the other
readtable functions to change the syntax of characters in it. The value of
zl:readtable at the start of a session is the initial standard readtable, which usual-
ly should not be modified.

copy-seq sequence &optional area
Function

Non-destructively copies the argument sequence. Returns a new sequence which is
equalp to the argument, but not eq. The function copy-seq returns the same re-
sult as the function subseq, when the value of the start argument of subseq is 0.

sequence can be either a list or a vector (one-dimensional array). Note that nil is
considered to be a sequence, of length zero.

For example:
(setq name "Bill1") => "Bill"
(setqg a-copy (copy-seq name)) => "Bill”
a-copy => "Bill"
name => "Bill"
(equalp a-copy name) => T

(eq a-copy name) => NIL

Compatibility Note: The optional area argument is the number of the area in
which to create the new alist. (Areas are an advanced feature of storage manage-
ment.) area is a Symbolics extension to Common Lisp and is not supported by
CLOE. See the section "Areas".

In the following example, copy-seq makes a copy of a sequence before destructive-
ly operating with replace.

Page 972

(setq dated-copy (vector (get-name) (get-date) 123 456 987))
=> (SALLY 1-AUG-89 123 456 987)

(replace (copy-seq dated-copy) #((get-date) 321 654 789)
:start1 1)

=> (SALLY 2-AUG-89 321 654 789)

dated-copy => (SALLY 1-AUG-89 123 456 987)

For a table of related items: See the section "Sequence Construction and Access'.

copy-symbol symbol &optional copyprops Function

Returns a new uninterned symbol with the same print-name as symbol. If copy-
props is non-nil, then the value and function-definition of the new symbol are the
same as those of sym, and the property list of the new symbol is a copy of
symbol’s. If copyprops is nil (the default), then the new symbol is unbound and un-
defined, and its property list is empty.

(copy-symbol symbol nil) = (make-symbol (symbol-name symbol))

See the section "Functions for Creating Symbols".

copy-tree tree &optional area Function

Copies a tree of conses. The argument free can be any Lisp object. If it is not a
cons, it is returned; otherwise the result is a new cons made from the results of
calling copy-tree on the car and cdr of the argument. In other words, all conses in
the tree are copied recursively, stopping only when non-conses are encountered.
Circularities and the sharing of substructure are not preserved. The optional area
argument is the number of the area in which to create the new tree. (Areas are
an advanced feature of storage management. See the section "Areas".)

area is a Symbolics extension to Common Lisp, and is not available in CLOE.
Example:
(copy-tree ’((freesia) (carnation) (rose)))

returns the following tree:
((freesia) (carnation) (rose))
In the following example, we have an association list whose components are pairs

of keys and association lists. A call to copy-alist only provides a true copy of the
top level association list and not of the lower level a-list.

Page 973

(setq keys ’(monthly-cash-on-hand monthly-expense monthly-revenue))
(setq data ’((pairlis ’(11 12) ’ (52 73))

(pairlis (18 11) ’(20 21))

(pairlis * (18 11) ’(31 42))))
(setq financial-statement (pairlis keys data))

The function what-if, defined in the following example, executes coordinated
changes in the low-level association lists. These changes are made on a trial basis,
and copy-tree allows the changes to occur in a copy of the data-base rather than
the data base itself.

(defun what-if (a-list, revenue)
(Tet ((november-cash-on-hand
(assoc ’11 (assoc ’monthly-cash-on-hand a-1ist)))
(november-expense
(assoc ’11 (assoc ’monthly-expense a-list)))
(november-revenue revenue)
(december-cash-on-hand 8))
(setf (cdr (assoc ’11 (assoc ’monthly-revenue a-1list)))
november-revenue)
(setg december-cash-on-hand
(+ november-cash-on-hand (- november-revenue november-expense)))
(setf (cdr (assoc ’12 (assoc ’monthly-cash-on-hand a-1list)))
december-cash-on-hand)
december-cash-on-hand))

(what-if (copy-tree financial-statement) 4@) => 71

(assoc ’12 (assoc ’monthly-cash-on-hand financial-statement))
=> (12 . 73)

For a definition and diagram of a tree: See the section "Overview of Lists".

For a table of related items: See the section "Functions for Copying Lists".

copy-tree-share tree &optional area (hash (make-hash-table :test #zl:equal)) cdr-
code Function

Similar to copy-tree, it makes a copy of an arbitrary structure of conses, copying
at all levels, and optimally cdr-coding. However, it also assures that all lists, or
tails of lists, are optimally shared when equal.

The arguments for copy-tree-share are: the tree to be copied, and an optional
storage area, an externally created hash table to be used for the equality testing
and a cdr-code, which is the storage location of the conses that compose a tree or
list. The default storage area for the new list is the area occupied by the old list.
If cdr-code is t, lists will never be "forked" to enable sharing a tail. This wastes
space, but improves locality.

Note: copy-tree-share might be very slow, in the general case, for long lists. How-
ever, applying it at the appropriate level of a specific structure-copying routine

Page 974

(furnishing a common, externally created hash table) is likely to yield all the shar-
ing possible, at a much lower computational cost. For example, copy-tree-share
could be applied only to the branches of a long association list.
Example:

(copy-tree-share *((1 2 3) (12 3) (8123) (82 3)))
If x = °(1 2 3), the above returns (roughly):

“(,x ,x (8 . ,x) (B8 . ,(cdr x)))

copy-tree-share is a Symbolics extension to Common Lisp.

zl:copyalist al &optional area Function

In your new programs, we recommend that you use the function copy-alist which
is the Common Lisp equivalent of the function zl:copyalist.

Copies an association list. Returns a list that is zl:equal to al, but not eq. Each
element of al that is a cons is replaced in the copy by a new cons with the same
car and cdr. You can optionally specify the area in which to create the new copy.
The default is to copy the new list into the area occupied by the old list.

For a table of related items: See the section "Functions for Copying Lists".

zl:copylist list &optional area force-dotted Function

In your new programs we recommend that you use the function copy-list which is
the Common Lisp equivalent of the function zl:copylist.

Returns a list that is zl:equal to list, but not eq. zl:copylist does not copy any ele-
ments of the list: only the conses of the list itself. The returned list is fully cdr-
coded, to minimize storage. See the section "Cdr-Coding". If the list is "dotted",
that is, (edr (last list)) is a non-nil atom, this is true of the returned list also. You
can specify the area in which to create the new copy. The default is to copy the
new list into the area occupied by the old list.

For a table of related items: See the section "Functions for Copying Lists".

zl:copylist* list &optional area Function
Use the Common Lisp function copy-list*, which is equivalent to zl:copylist®.

Returns a list that is zl:equal to list, but not eq. zl:copylist* does not copy any el-
ements of the list: only the conses of the list. The last cons of the resulting list is
never cdr-coded. See the function zl:copylist. See the section "Cdr-Coding". This
increases efficiency, if you add something onto the list later using ncone.

For a table of related items: See the section "Functions for Copying Lists".

zl:copysymbol symbol &optional copyprops

Page 975

Function

Use the Common Lisp function copy-symbol, which is equivalent to
zl:copysymbol.

Returns a new uninterned symbol with the same print-name as symbol. If copy-
props is non-nil, then the value and function-definition of the new symbol are the
same as those of sym, and the property list of the new symbol is a copy of
symbol’s. If copyprops is nil (the default), then the new symbol is unbound and un-
defined, and its property list is empty.

(copy-symbol symbol nil) = (make-symbol (symbol-name symbol))

See the section "Functions for Creating Symbols".

zl:copytree tree &optional area Function

In your new programs, we recommend that you use the function copy-tree, which
is the Common Lisp equivalent of the function zl:copytree.

Copies all the conses of a tree and makes a new tree with the same fringe. You
can specify the area in which to create the new copy. The default is to copy the
new list into the area occupied by the old list.

For a table of related items: See the section "Functions for Copying Lists".

zl:copytree-share tree &optional area (hash (cl:make-hash-table :test #equal
:locking nil :number-of-values 0)) cdr-code Function

Use the Symbolics Comon Lisp function copy-tree-share, which is equivalent to
zl:copytree-share.

zl:copytree-share is similar to zl:copytree; it makes a copy of an arbitrary struc-
ture of conses, copying at all levels, and optimally cdr-coding. However, it also as-
sures that all lists or tails of lists are optimally shared when zl:equal.

zl:copytree-share takes as arguments the tree to be copied, and optionally a stor-
age area, an externally created hash table to be used for the equality testing and a
cdr-code, which is the storage location of the conses that compose a tree or list.
The default storage area for the new list is the area occupied by the old list. If
cdr-code is t, lists will never be "forked" to enable sharing a tail. This wastes
space, but improves locality.

Note: zl:copytree-share might be very slow, in the general case, for long lists.
However, applying it at the appropriate level of a specific structure-copying routine
(furnishing a common, externally created hash table) is likely to yield all the shar-
ing possible, at a much lower computational cost. For example, zl:copytree-share
could be applied only to the branches of a long alist.

Example:
(z1:copytree-share *((1 2 3) (12 3) (8123) (82 3)))

Page 976

If x = (1 2 3), the above returns (roughly):
“(,x ,x (8 . ,x) (8 . ,(cdr x)))

For a table of related items: See the section "Functions for Copying Lists".

si:coroutine-bidirectional-stream Flavor

A flavor implementing bidirectional coroutine streams. Defines :next-input-buffer,
:new-output-buffer, and :send-output-buffer methods. Use this to construct a
bidirectional stream to a function written in terms of input and output operations.

si:coroutine-input-stream Flavor

A flavor implementing input coroutine streams. Defines a :next-input-buffer
method. Use this to construct an input stream from a function written in terms of
output operations.

si:coroutine-output-stream Flavor

A flavor implementing output coroutine streams. Defines :new-output-buffer and
:send-output-buffer methods. Use this to construct an output stream to a function
written in terms of input operations.

cos radians Function
Returns the cosine of radians. radians can be of any numeric type.

Examples:

(cos B) => 1.0
(cos (/ pi 2)) => -0.0d@
(cos (/ pi 4)) => 08.787108677

For a table of related items: See the section "Trigonometric and Related
Functions".

cosd degrees Function
Returns the cosine of degrees. degrees can be of any numeric type.

Examples:

(cosd 90) => -0.0
(cosd 45) => 0.7071068
(cosd 36.2) => 0.80696034

For a table of related items: See the section "Trigonometric and Related
Functions".

cosh radians Function

Page 977

Returns the hyperbolic cosine of radians.

Example:
(cosh B8) => 1.0

For a table of related items: See the section "Hyperbolic Functions".

count item sequence &Kkey (:test #eql) :test-not (‘key #identity) :from-end (:start 0)
cend

Function

Counts the number of elements in a subsequence of sequence satisfying the predi-
cate specified by the :test keyword. ecount returns a non-negative integer, which
represents the number of elements in the specified subsequence of sequence.

item is matched against the elements specified by the test keyword. item can be
any Symbolics Common Lisp object.

sequence can be either a list or a vector (one-dimensional array). Note that nil is
considered to be a sequence, of length zero.

:test specifies the test to be performed. An element of sequence satisfies the test if
(funcall festfun item (keyfn x)) is true, where testfun is the test function specified
by :test, keyfn is the function specified by :key and x is an element of the se-
quence. The default test is eql.

For example:
(count ’a "(a b c d) :test-not f##’eql) => 3

:test-not is similar to :test, except that the sense of the test is inverted. An ele-
ment of sequence satisfies the test if (funcall testfun item (keyfn x)) is false.

The value of the keyword argument :key, if non-nil, is a function that takes one
argument. This function extracts from each element the part to be tested in place
of the whole element. For example:

(count ’a ’((a b) (ab) (bc)) :key ff’car) => 2

(count 1 #(1 2 314 1) :key #’(lambda (x) (- x 1))) => 1

The :from-end argument does not affect the result returned; it is accepted purely
for compatibility with other sequence functions. For example:
a’(aaabcd) :from-end t :start 3) => 0

3

(count

3

(count ’a ’(aaabcd) :from-end nil :start 3) => 0

For the sake of efficiency, you can delimit the portion of the sequence to be oper-
ated on by the keyword arguments :start and :end.

:start and :end must be non-negative integer indices into the sequence. :start
must be less than or equal to :end, else an error is signalled. It defaults to zero
(the start of the sequence).

Page 978

:start indicates the start position for the operation within the sequence. :end indi-
cates the position of the first element in the sequence beyond the end of the oper-
ation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by default.

For example:

3

(count ’a ’(a b a)) =>2

(count ’heron ’(heron loon heron pelican heron stork)) => 3
(count ’a (aabbaa) :start 1 :end 5) => 2

(count ’a ’(aabbaa) :start 1 :end 6) => 3

(count ’a ff(abbba))=>2

For a table of related items: See the section "Searching for Sequence Items".

count keyword for loop

count expr {into var} {data-type}

If expr evaluates non-nil, a counter is incremented. The data-type defaults to
fixnum. When the epilogue of the loop is reached, var has been set to the accu-
mulated result and can be used by the epilogue code.

It is safe to reference the values in var during the loop, but they should not be
modified until the epilogue code for the loop is reached.

The forms count and counting are synonymous.

Examples:

(defun num-entry (small-1list)
(Toop for x in small-list
count t into num
finally (return num))) => NUM-ENTRY
(num-entry "(a bc d)) =>4

is equivalent to

(defun num-entry (small-list)
(loop for x in small-Tist
counting t into num
finally (return num))) => NUM-ENTRY
(num-entry (a b c d)) =>4

Not only can there be multiple accumulations in a loop, but a single accumulation
can come from multiple places within the same loop form, if the types of the col-
lections are compatible. count and sum are compatible.

See the section "Accumulating Return Values for loop".

Page 979

count-if predicate sequence &key :key :from-end (:start 0) :end
Function

Returns a non-negative integer, which represents the number of elements in the
specified subsequence of sequence satisfying the predicate.

predicate is the test to be performed on each element.

sequence can be either a list or a vector (one-dimensional array). Note that nil is
considered to be a sequence, of length zero.

The value of the keyword argument :key, if non-nil, is a function that takes one
argument. This function extracts from each element the part to be tested in place
of the whole element.

For example:
(count-if #’atom ’((a b) ((a) b) (nil nil)) :key ff’car) => 2

(count-if #’zerop #(1 2 1) :key #’ (lambda (x) (- x 1))) => 2

The :from-end argument does not affect the result returned; it is accepted purely
for compatibility with other sequence functions.

For example:

(count-if #’oddp (1 1 2 2) :start 2 :from-end t) => 0

(count-if f##’oddp (1 1 2 2) :start 2 :from-end nil) => @

For the sake of efficiency, you can delimit the portion of the sequence to be oper-
ated on by the keyword arguments :start and :end.

:start and :end must be non-negative integer indices into the sequence. :start
must be less than or equal to :end, else an error is signalled. It defaults to zero
(the start of the sequence).

:start indicates the start position for the operation within the sequence. :end indi-
cates the position of the first element in the sequence beyond the end of the oper-
ation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by default.
For example:

(count-if #’oddp (1 2 1 2)) => 2
(count-if #’oddp (1 1 1 2 2 2) :start 2 :end 4) => 1
(count-if #’numberp ’(heron 1.8 a 2 f#\Space)) => 2

(setq pressure-readings ’(123@ 1400 :over-limit 1687))
(count-if #’ (lambda(x) (eq x :over-limit)) pressure-readings) => 1

For a table of related items: See the section "Searching for Sequence Items".

count-if-not predicate sequence &key :key :from-end (:start 0) :end

Page 980

Function

Returns a non-negative integer, which represents the number of elements in the
specified subsequence of sequence that do not satisfy the predicate.

predicate is the test to be performed on each element.

sequence can be either a list or a vector (one-dimensional array). Note that nil is
considered to be a sequence, of length zero.

The value of the keyword argument :key, if non-nil, is a function that takes one
argument. This function extracts from each element the part to be tested in place
of the whole element.

For example:
(count-if-not #’atom ’((a b) ((a) b) (nil nil)) :key ##’car) => 1

(count-if-not #’zerop #(1 2 1) :key #’(lambda (x) (- x 1))) => 1

The :from-end argument does not affect the result returned; it is accepted purely
for compatibility with other sequence functions.

For example:

(count-if-not #’oddp (1 1 2 2) :start 2 :from-end t) => 2

(count-if-not #’oddp (1 1 2 2) :start 2 :from-end nil) => 2

For the sake of efficiency, you can delimit the portion of the sequence to be oper-
ated on by the keyword arguments :start and :end.

:start and :end must be non-negative integer indices into the sequence. :start
must be less than or equal to :end, else an error is signalled. It defaults to zero
(the start of the sequence).

:start indicates the start position for the operation within the sequence. :end indi-
cates the position of the first element in the sequence beyond the end of the oper-
ation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by default.
For example:

(count-if-not #’numberp ’(heron 1.8 a 2 #\Space)) => 3

(count-if-not #’oddp ’(3 4 3 4)) => 2

(setqg pressure-readings ’ (1238 1488 :over-limit 1687))
(count-if-not #’ (lambda(x) (numberp X)) pressure-readings)

=> 1

For a table of related items: See the section "Searching for Sequence Items".

:creation-date Message

Page 981

Returns the creation date of the file, as a number which is a universal time. See
the section "Dates and Times". See the function fs:directory-list.

ctypecase object &body body Special Form

ctypecase is similar to typecase, except that it does not allow an explicit
otherwise or t clause, and if no clause is satisfied it signals a proceedable error
instead of returning nil.

ctypecase is a conditional that chooses one of its clauses by examining the type of
an object. Its form is as follows:

(ctypecase farm

(types consequent consequent ...)
(types consequent consequent ...)
)

First ctypecase evaluates form, producing an object. ectypecase then examines
each clause in sequence. fypes in each clause is a type specifier in either symbol or
list form, or a list of type specifiers. The type specifier is not evaluated. If the ob-
ject is of that type, or of one of those types, then the consequents are evaluated
and the result of the last one is returned (or nil if there are no consequents in
that clause). Otherwise, etypecase moves on to the next clause.

If no clause is satisfied, etypecase signals an error with a message constructed
from the clauses. To continue from this error, supply a new value for object, caus-
ing ctypecase to store that value and restart the type tests. Subforms of object can
be evaluated multiple times.

For an object to be of a given type means that if typep is applied to the object
and the type, it returns t. That is, a type is something meaningful as a second ar-
gument to typep. See the section "Data Types and Type Specifiers".

It is permissible for more than one clause to specify a given type, particularly if
one is a subtype of another; the earliest applicable clause is chosen. Thus, for
ctypecase, the order of the clauses can affect the behavior of the construct.

Examples:

(defun tell-about-car (x)
(ctypecase (car x)
(string "string”)))=> TELL-ABOUT-CAR
(tell-about-car ’("word” “more”)) => "string”
(tell-about-car ’(a 1)) => proceedable error is signalled

Page 982

(defun tell-about-car (x) ; see typecase
(ctypecase (car x)

(fixnum “number.")

((or string symbol) "string or symbol.")

(otherwise "I don’t know."))) => TELL-ABOUT-CAR
(tell-about-car (1 a)) => "number.”
(tell-about-car ’(a 1)) => "string or symbol."
(tell-about-car ’("word” "more")) => "string or symbol.”
(tell-about-car ’(1.8)) => "I don’t know."

For a table of related items: See the section "Conditional Functions".

For a table of related items: See the section "Condition-Checking and Signalling
Functions and Variables".

zl:cursorpos &rest args Function

This function exists primarily for Maclisp compatibility. It performs operations re-
lated to the cursor position, such as returning the position, moving the position, or
performing another cursor operation.

zl:cursorpos normally operates on the zl:standard-output stream; however, if the
last argument is a stream or t (meaning zl:terminal-io), zl:cursorpos uses that
stream and ignores it when doing the operations described below. Note that
zl:cursorpos works only on streams that are capable of these operations, such as
windows. A stream is taken to be any argument that is not a number and not a
symbol, or a symbol other than nil with a name more than one character long.

(zl:cursorpos) => (line . column), the current cursor position.

(cursorpos line column) moves the cursor to that position. It returns t if it suc-
ceeds and nil if it does not.

(cursorpos op) performs a special operation coded by op and returns t if it suc-
ceeds and nil if it does not. op is tested by string comparison, is not a keyword
symbol, and can be in any package.

F Moves one space to the right.

B Moves one space to the left.

D Moves one line down.

U Moves one line up.

T Homes up (moves to the top left corner). Note that t as the last argument

to zl:cursorpos is interpreted as a stream, so a stream must be specified if
the t operation is used.

N

Homes down (moves to the bottom left corner).

A Advances to a fresh line. See the :fresh-line stream operation.

Page 983

C Clears the window.

E Clears from the cursor to the end of the window.

L Clears from the cursor to the end of the line.

K Clears the character position at the cursor.

X B then K.

sys:debug-instance instance Function

Enters the Debugger in the lexical environment of instance. This is useful in de-
bugging. You can examine and alter instance variables, and run functions that use
the instance variables.

For a summary of all functions, macros, special forms, and variables related to
Flavors: See the section "Summary of Flavor Functions and Variables".

debug-io Variable

The value of *debug-io* is a stream to be used for interactive debugging purposes.
In CLOE-Runtime, *debug-io* is initially a synonym stream of *terminal-io*.
(format xdebug-iox "Return to top level?")
(if (positive-response (read xdebug-iox)))

zl:debug-io Variable

In your new programs, we recommend that you use the variable *debug-io*, which
is the Common Lisp equivalent of zl:debug-io.

If not nil, this is the stream that the Debugger should use. The default value is a
synonym stream that is synonymous with zl:terminal-io. If the wvalue of
dbg:*debug-io-override* is not nil, the Debugger uses the value of that variable
as the stream instead of the value of zl:debug-io.

The value of zl:debug-io can also be a string. This causes the Debugger to use
the cold-load stream; the string is the reason why the cold-load stream should be
used.

No program other than the Debugger should do stream operations on the value of
zl:debug-io, since the value cannot be a stream. Other programs should use
zl:query-io, zl:error-output, or zl:trace-output. zl:debug-io is equivalent to
debug-io.

dbg:*debugger-bindings* Variable

Page 984

When the Debugger is entered, it binds some special variables under control of the
list that is the value of dbg:*debugger-bindings*. Each element of the list is a
list of two elements: a variable and a form that is evaluated to produce the value
to bind it to. The bindings happen sequentially. You can push things on this list
(adding to the front of it), but should not replace the list wholesale since several
of the variable bindings on this list are essential to the operation of the Debugger.

debugging-info function Function

Returns the debugging info alist of function. Most of the elements of this alist are
an internal interface between the compiler and the Debugger.

decf access-form &optional amount Macro

Decrements the value of a generalized variable. (decf ref) decrements the value of
ref by 1. (decf ref amount) subtracts amount from ref and stores the difference
back into ref. It returns the new value of ref.

access-form can be any form acceptable to setf.
(decf (car (mumble)))

is almost equivalent to
(setf (car (mumble)) (1- (car (mumble))))

except that while the latter would evaluate mumble twice, decf actually expands
into a let and mumble is evaluated only once.

(setg arr (make-array (4) :element-type ’integer
:initial-element 5))
(decf (aref arr 3) 4) => f#f(5 55 1)

See the section "Generalized Variables".

declaration namel name2 ... Declaration

Tells the compiler that the names given are valid but non-standard declarations so
the compiler does not issue warnings about them. This allows you to put declara-
tions meant for another compiler or another program processor into your program.
declaration can only be used with proclaim.

See the section "Declaration Specifiers".

declare &rest forms Special Form
Provides additional information to the Lisp system (interpreter and compiler).

The declare special form can be used in two ways: at top level or within function
bodies. For information on top-level declare forms: See the section "How the
Stream Compiler Handles Top-level Forms".

Page 985

declare forms that appear within function bodies provide information to the Lisp
system (for example, the interpreter and the compiler) about this particular func-
tion. Expressions appearing within the function-body declare are declarations; they
are not evaluated. declare forms must appear at the front of the body of certain
special forms, such as let and defun. Some declarations apply to function defini-
tions and must appear as the first forms in the body of that function; otherwise
they are ignored.

See the section "Function-body Declarations".

The compiler also recognizes any number of declare forms as the first forms in
the bodies of the following macros and special forms. This means that you can
have special declarations that are local to any of these blocks. In addition, declara-
tions can appear at the front of the body of a function definition, like defun,
defmacro, defsubst, and so on.

destructuring-bind multiple-value-bind

let let*

do do*

zl:do-named (not in CLOE) zl:do*-named (not in CLOE)
prog prog*

lambda

See the section "Operators for Making Declarations".

decode-float float Function

Determines and returns the significand, the exponent, and the sign corresponding
to the floating-point argument float. The argument float is equal to:

(x sign significand (expt (float-radix sign) exponent))

The significand is returned as a floating-point number of the same format as float.
It is obtained by dividing the argument by an integral power of 2, the radix of the
floating-point representation, so as to bring its value between 1/2 (inclusive) and 1
(exclusive). The quotient is then returned as the significand.

The second result of decode-float is the integer exponent e to which 2 must be
raised to produce the appropriate power for the division.

The third result is a floating-point number, of the same format as the argument,
whose absolute value is one and whose sign matches that of the argument.

Examples:

Page 986

(decode-float 2.8) => 8.5 and 2 and 1.0
(decode-float -2.8) => 0.5 and 2 and -1.0
(decode-float 4.8) => 8.5 and 3 and 1.0
(decode-float 8.8) => 0.5 and 4 and 1.0
(decode-float 3.8) => 0.75 and 2 and 1.0
(decode-float 0.9) => 8.8 and @ and 1.0
(decode-float -8.8) => 0.8 and @ and -1.0
(decode-float 5.86) — .86325 3 1.0

;55 a possible use of decode-float

;35 (log-abs float)=(log (abs float))

(defun log-abs (float)
(multiple-value-bind (significand exponent)
(decode-float float)
(+ (log significand) ;1og ab= Tog a + Tog b
(x exponent (log 2))))) ;log (expt x y)= ylogx

(log-abs 2.0) => 0.6931472 ; (Tog 2) => 0.6931472

For a table of related items, see the section "Functions that Decompose and Con-
struct Floating-point Numbers".

decode-raster-array raster Function

Returns the following attributes of the raster as values: width, height, and span-
ning width. In a row-major implementation, width and height are the second and
first dimensions, respectively. The spanning width is the number of linear array el-
ements needed to go from (x,y) to (x,y+1). For nonconformal arrays, this is the
same as the width. For conformal arrays, this is the width of the underlying array
that provides the storage adjusted for possibly differing numbers of bits per ele-
ment.

decode-raster-array should be used rather than array-dimensions, zl:array-
dimension-n, or sys:array-row-span for the following reasons.

¢ decode-raster-array does error checking by ensuring that the array is two-
dimensional.

e A single call to decode-raster-array is faster than any non-null combination of
the alternatives.

¢ decode-raster-array always returns the width and height, which are not the
first and second dimensions as returned by array-dimensions or zl:array-
dimension-n.

For a table of related items: See the section "Operations on Rasters".

math:decompose ¢ &optional lu ps ignore Function

Page 987

Computes the LU decomposition of matrix a. If lu is non-nil, stores the result into
it and returns it; otherwise it creates an array to hold the result, and returns that.
The lower triangle of [u, with ones added along the diagonal, is L, and the upper
triangle of lu is U, such that the product of L and U is a. Gaussian elimination
with partial pivoting is used. The lu array is permuted by rows according to the
permutation array ps, which is also produced by this function. If the argument ps
is supplied, the permutation array is stored into it; otherwise, an array is created
to hold it. This function returns two values: the LU decomposition and the permu-
tation array.

def function &rest defining-forms Special Form

If a function is created in some strange way, wrapping a def special form around
the code that creates it informs the editor of the connection. The form:

(def function-spec
forml form2...)

simply evaluates the forms formi, form2, and so on. It is assumed that these forms
create or obtain a function somehow, and make it the definition of function-spec.

Alternatively, you could put (def function-spec) in front of or anywhere near the
forms that define the function. The editor only uses it to tell which line to put the
cursor on.

clos:defclass class-name superclasses slot-specifiers &rest class-options Macro
Defines a class named class-name, and returns the class object.

If a class already exists with that name, then the existing class is redefined. A re-
defined class is eq to the original class. See the section "Redefining a CLOS
Class".

class-name A symbol naming the class.

superclasses A list of class names. The new class inherits slots and other
characteristics from each of its superclasses. See the section
"CLOS Inheritance".

slot-specifiers Each slot-specifier is one of the following:

slot-name
(slot-name slot-options . ..)

The slot-options are:

:reader reader-name
Defines a method for a reader generic function named
reader-name. The reader takes a single argument (an ob-
ject that is a member of this class), and returns the val-
ue of this slot.

Page 988

swriter writer-name

Defines a method for a writer generic function named
writer-name. The writer takes two arguments (the new
value, and an object that is a member of this class), and
sets the value of this slot. writer-name can be a symbol
or a list of the form (future-common-lisp:setf symbol).
The following examples show the calling syntax in the
two cases:

;;; 1f the CLOS writer’s name is a symbol
(writer-name new-value instance)

;;; if the CLOS writer’s name is (clos:setf symbol)
(setf (symbol instance) new-value)

Note that when defining a writer method in CLOS to
use the setf syntax, the function spec must be (future-
common-lisp:setf symbol). However, when calling the
writer generic function, you can use either setf or
future-common-lisp:setf.

:accessor reader-name
Defines a method for a reader generic function named
reader-name, and a method for a writer named (future-
common-lisp:setf reader-name).

:locator locator-name

This is a Symbolics CLOS extension, which is supported
on 3600-family and Ivory-based machines only. This op-
tion defines a method for a locator generic function
which enables you to get a locative pointer to the cell in-
side an instance that contains the value of a slot. locator-
name can be a symbol or a list of the form (loef
symbol). In the latter case, the locator is called with locf
syntax:

(Tocf (symbol object))

:allocation allocation-type
Defines the allocation type of the slot. If allocation-type
is :instance, then a local slot is defined. If allocation-type
is :class, then a shared slot is defined. If the :allocation
option is not provided, the slot will be a local slot.

A local slot means that each instance of the class stores
its own value for the slot. In other words, the storage
for the slot is allocated on a per-instance basis.

A shared slot means that all members of the class share
the value of the slot. The storage for the slot is allocat-
ed only once.

class-options

Page 989

Both local and shared slots are inherited: See the section
"Inheritance of Slots and clos:defclass Options".

:initform form

Provides a default initial value for the slot. When a new
instance is created, the initform is used if the slot is not
initialized in some other way, such as by providing an
initialization argument in the call to clos:make-instance
that initializes the slot. The form is evaluated each time
it is used, in the same lexical environment in which the
clos:defclass form was evaluated. For local slots, the
form is evaluated in the dynamic environment in which
clos:make-instance was called; for shared slots, it is
evaluated in the dynamic environment in which the
clos:defclass form was evaluated.

:@initarg initarg-name
Provides a means to initialize the slot in a call to
clos:make-instance. This slot option declares the initarg-
name as a valid initialization argument to clos:make-
instance. If you provide the initarg-name and a value in
a call to clos:make-instance, the slot is initialized with
that value. This overrides the slot’s initform.

:type type-specifer
Declares that the value of the slot is of the type type-
specifier. Symbolics CLOS ignores this option.

:documentation string
Provides a documentation string describing the slot.

The following slot options may be given more than once for a
single slot: :reader, :writer, :accessor, :locator, and :initarg.
If any other slot option is given more than once for a single
slot, an error is signaled.

Options that pertain to the class as a whole. The class-options
are:

(:default-initargs initarg-list)

The initarg-list is a list of alternating initialization argu-
ment names and default initial value forms. If an initial-
ization argument name is not provided in a call to
clos:make-instance, and it does appear in the :default-
initargs initarg-list, the default value form is evaluated
and used. The form is evaluated in the same lexical en-
vironment as that in which the clos:defclass was evalu-
ated, and in the same dynamic environment in which
clos:make-instance was called. An error is signaled if
an initialization argument name appears more than once
in the initarg-list.

Page 990

(:documentation string)
Provides a documentation string describing the class.
You can get the documentation string of a class as fol-
lows:

(documentation class-name ’type)

(:metaclass class-name)
Specifies the class of the class being defined. The default
is clos:standard-class. In Symbolics CLOS, the effects
are undefined if any other value is given to this option.

The :default-initargs, :documentation, and :metaclass class
options may not be given more than once.

See the section "Inheritance of Slots and clos:defclass Options".

See the section "CLOS Class Precedence List".

zl:defconst variable initial-value &optional documentation Special Form

The same as defvar, except that variable is always set to initial-value regardless of
whether variable is already bound. The rationale for this is that defvar declares a
global variable, whose value is initialized to something but is then changed by the
functions that use it to maintain some state. On the other hand, zl:defconst de-
clares a constant, whose value is never changed by the normal operation of the
program, only by changes to the program. zl:defconst always sets the variable to
the specified value so that if, while developing or debugging the program, you
change your mind about what the constant value should be, and you then evaluate
the zl:defconst form again, the variable gets the new value. It is not the intent of
zl:defconst to declare that the value of variable never changes; for example,
zl:defconst is not license to the compiler to build assumptions about the value of
variable into programs being compiled. See defconstant for that.

See the section "Special Forms for Defining Special Variables".

defconstant variable initial-value &optional documentation Special Form

Declares the use of a named constant in a program. Additionally, defeconstant indi-
cates that the value of the constant remains the same. initial-value is evaluated
and variable set to the result. The value of variable is then fixed. It is an error if
variable has any special bindings at the time the defconstant form is executed.
Once a special variable has been declared constant by defconstant, any further as-
signment to or binding of that variable is an error.

The compiler is free to build assumptions about the value of the variable into pro-
grams being compiled. If the compiler does replace references to the name of the
constant by the value of the constant in code to be compiled, the compiler takes
care that such "copies" appear to be eql to the object that is the actual value of
the constant. For example, the compiler can freely make copies of numbers, but it
exercises care when the value is a list.

Page 991

In Symbolics Common Lisp, defeconstant and zl:defconst are essentially the same
if the value is other than a number, a character, or an interned symbol. However,
if the variable being declared already has a value, zl:defconst freely changes the
value, whereas defconstant queries before changing the value. defconstant’s
query offers three choices: Y, N, and P.

e The Y option changes the value.
e The N option does not change the value.

e The P option changes the value and when you change any future value, prints a
warning rather than a query.

The P option sets sys:inhibit-fdefine-warnings to :just-warn. defconstant obeys
that variable, just as query-about-redefinition does. Use (setq sys:inhibit-fdefine-
warnings nil) to revert to the querying mode.

When the value of a constant is changed by a patch file, a warning is printed.

defconstant assumes that changing the value is dangerous because the old value
might have been incorporated into compiled code, which is out of date if the value
changed.

In general, you should use defconstant to declare constants whose value is a
number, character, or interned symbol and is guaranteed not to change. An exam-

ple is n. The compiler can optimize expressions that contain references to these
constants. If the value is another type of Lisp object or if it might change, you
should use zl:defconst instead.

documentation, if provided, should be a string. It is accessible to the
documentation function.

For example:

(defvar xmax-alarmsx 1000
“The maximum number of times alarms can be sounded.")

For more information see the section "Special Forms for Defining Special
Variables".

deff function definition Special Form

This is a simplified version of def. It evaluates the form definition, which should
produce a function, and makes that function the definition of function, which is not
evaluated. deff is used for giving a function spec a definition that is not obtain-
able with the specific defining forms such as defun and macro. For example:

(deff foo ’bar)

makes foo equivalent to bar, with an indirection so that if bar changes, foo like-
wise changes;

(deff foo (function bar))

Page 992

copies the definition of bar into foo with no indirection, so that further changes to
bar have no effect on foo.

defflavor name instance-variables component-flavors &rest options Special Form
name is a symbol that is the name of this flavor.

defflavor defines the name of the flavor as a type name in both the Common Lisp
and Zetalisp type systems; for further information, see the section "Flavor In-
stances and Types". defflavor also defines the name of the flavor as a presentation
type name; for further information, see the section "User-defined Data Types as
Presentation Types".

instance-variables is a list of the names of the instance variables containing the lo-
cal state of this flavor. Each element of this list can be written in two ways: ei-
ther the name of the instance variable by itself, or a list containing the name of
the instance variable and a default initial value for it. Any default initial values
given here are forms that are evaluated by make-instance if they are not overrid-
den by explicit arguments to make-instance.

If you do not supply an initial value for an instance variable as an argument to
make-instance, and there is no default initial value provided in the defflavor
form, the value of an instance variable remains unbound. (Another way to provide
a default is by using the :default-init-plist option to defflavor.)

component-flavors is a list of names of the component flavors from which this fla-
vor is built.

Each option can be either a keyword symbol or a list of a keyword symbol and its
arguments. The syntax of the defflavor options is given below, and the semantics
of the options are described in detail elsewhere: See the section "Summary of
defflavor Options". See the section "Complete Options for defflavor".

Several options affect instance variables, including:

:initable-instance-variables
:gettable-instance-variables
:locatable-instance-variables (not available in CLOE)
:readable-instance-variables
:settable-instance-variables
:special-instance-variables (not available in CLOE)
:writable-instance-variables

The options listed above can be given in two ways:

keyword The keyword appearing by itself indicates that the option ap-
plies to all instance variables listed at the top of this defflavor
form.

(keyword varl var2 ...)
A list containing the keyword and one or more instance vari-
ables indicates that this option refers only to the instance vari-
ables listed here.

Page 993

Briefly, the syntax of the other options is as follows:

:abstract-flavor

(:area-keyword symbol) (not available in CLOE)

(:component-order args...)

(:conc-name symbol)

(:constructor args...)

(:default-handler function-name)

(:default-init-plist plist)

(:documentation string)

(:functions internal-function-names)

(:init-keywords symbols...)

(:method-combination symbol)

(:method-order generic-function-names)

(:mixture specs...)

:no-vanilla-flavor (not available in CLOE)

(:ordered-instance-variables symbols)

(:required-flavors flavor-names)

(:required-init-keywords init-keywords)

(:required-instance-variables symbols)

(:required-methods generic-function-names)

(:special-instance-variables-binding-methods generic-function-names)
(not available in CLOE)

The following form defines a flavor wink to represent tiddly-winks. The instance
variables x and y store the location of the wink. The default initial value of both x
and y is 0. The instance variable color has no default initial value. The options
specify that all instance variables are :initable-instance-variables; x and y are
:writable-instance-variables; and color is a :readable-instance-variable.

(defflavor wink ((x @) (y @) color) ;x and y represent Tocation
O ;no component flavors
:initable-instance-variables
(:writable-instance-variables x y) ;this implies readable

(:readable-instance-variables color))

You can specify that an option should alter the behavior of instance variables in-
herited from a component flavor. To do so, include those instance variables explic-
itly in the list of instance variables at the top of the defflavor form. In the follow-
ing example, the variables x and y are explicitly included in this defflavor form,
even though they are inherited from the component flavor, wink. These variables
are made initable in the defflavor form for big-wink; they are made writable in
the defflavor form for wink.

(defflavor big-wink (x y size)
(wink) ;wink is a component
(:initable-instance-variables x y))

If you specify a defflavor option for an instance variable that is not included in
this defflavor form, an error is signalled. Flavors assumes you misspelled the
name of the instance variable.

Page 994

For a summary of all functions, macros, special forms, and variables related to
Flavors, see the section "Summary of Flavor Functions and Variables".

format:defformat directive (arg-type) arglist body ... Function
Defines a new format directive.

directive is a symbol that names the directive. If directive is longer than one char-
acter, the user must enclose it in backslashes in calls to format. For example:

(format t ""\\foo\\" ...)

directive is usually in the format package; if it is in another package, the user
must specify the package in calls to format. For example, we’ve defined a format
directive called si:keystroke that prints out the short names for all characters.

(defun gtest ()

(loop for (name char) 1in ’(("Space” #f\space)
("c-Space" H\c-space)
("Tab" #\tab)
("Page” f#f\page)
("Left" #\mouse-L)
("c-Left" #\c-mouse-L)
("A" H\A)
("c-A" #\c-A))

do
(format t ""%Z7A: “C, "\\si:keystroke\\" name char char))) =>
Space: , Space
c-Space: c- , c-Space
Tab: , Tab
Page: , Page

Left: Mouse-L, Mouse-L
c-Left: c-Mouse-L, c-Mouse-L
A: A, A

c-A: c-A, c-A

NIL

format:defformat defines a function to be called when format is called using di-
rective. body is the body of the function definition. arg-type is a keyword that deter-
mines the arguments to be passed to the function as arglist:

:no-arg The directive uses no arguments. The function is passed one
argument, a list of parameters to the directive. The value re-
turned by the function is ignored.

:one-arg The directive uses one argument. The function is passed two
arguments: the argument associated with the directive and a
list of parameters to the directive. The value returned by the
function is ignored.

Page 995

:multi-arg The directive uses a variable number of arguments. The func-
tion is passed two arguments. The first is a list of the first ar-
gument associated with the directive and all the remaining ar-
guments to format. The second is a list of parameters to the
directive. The function should edr down the list of arguments,
using as many as it wants, and return the tail of the list so
that the remaining arguments can be given to other directives.

The function can examine the values of format:colon-flag and format:atsign-flag.
If format:colon-flag is not nil, the directive was given a : modifier. If
format:atsign-flag is not nil, the directive was given an @ modifier.

The function should send its output to the stream that is the value of
format:*format-output®.

Here is an example of a format directive that takes one argument and prints a
number in base 7:

(format:defformat format:base-7 (:one-arg) (argument parameters)
parameters ;ignored
(let ((xprint-basex 7))
(princ argument format:xformat-outputx)))

Now:

(format nil “> "\\base-7\\ <" 8) => "> 11 <"

deffunction fspec lambda-type lambda-list &body rest Special Form

Defines a function using an arbitrary lambda macro in place of lambda. A
deffunction form is like a defun form, except that the function spec is immediate-
ly followed by the name of the lambda macro to be used. deffunction expands the
lambda macro immediately, so the lambda macro must already be defined before
deffunction is used. For example, suppose the ilisp lambda macro were defined as
follows:

(lambda-macro ilisp (x)
‘(lambda (&optional ,@(second x) &rest ignore) . ,(cddr x)))

Then the following example would define a function called new-list that would use
the lambda macro called ilisp:

(deffunction new-1list ilisp (x y 2)
(lTist x y 2))

new-list’s arguments are optional, and any extra arguments are ignored. Examples:

(new-Tist 1 2) => (1 2 nil)
(new-1ist 1 2 3 4) -> (1 2 3)

defgeneric name arglist &body options Special Form

Page 996

Defines a generic function named name that accepts arguments defined by arglist,
a lambda-list. arglist is required unless the :funection option is used to indicate
otherwise. arglist represents the object that is supplied as the first argument to
the generic function. The flavor of the first element of arglist determines which
method is appropriate to perform this generic function on the object.

The semantics of the options for defgeneric are described elsewhere: See the sec-
tion "Options for defgeneric"'. The syntax of the opfions is summarized here:

(:compatible-message symbol)
(declare declaration)

(:dispatch flavor-name)
(:documentation string)
(:function body...)
:inline-methods

(zinline-methods :recursive)
(:method (flavor options...) body...)
(:method-arglist args...)
(:method-combination name args...)
(:optimize speed)

For example, to define a generic function total-fuel-supply that works on in-
stances of army and navy, and takes one argument (fuel-type) in addition to the
object itself, we might supply military-group as argI:

(defgeneric total-fuel-supply (military-group fuel-type)
"Returns today’s total supply
of the given type of fuel
available to the given military group.”
(:method-combination :sum))

The generic function is called as follows:

3

(total-fuel-supply blue-army ’:gas)

The argument blue-army is known to be of flavor army. Therefore, Flavors choos-
es the method that implements the total-fuel-supply generic function on instances
of the army flavor. That method takes only one argument, fuel-type:

(defmethod (total-fuel-supply army) (fuel-type)
body of method)

The arguments to defgeneric are displayed when you give the Arglist (n-+) com-
mand or press c-sh-A while this generic function is current.

It is not necessary to use defgeneric to set up a generic function. For further dis-
cussion: See the section "Use of defgeneric".

The function spec of a generic function is described elsewhere: See the section
"Function Specs for Flavor Functions".

For a summary of all functions, macros, special forms, and variables related to
Flavors: See the section "Summary of Flavor Functions and Variables".

Page 997

clos:defgeneric function-specifier lambda-list &rest options Macro

Defines a generic function and returns the generic function object. It is not always
necessary to use clos:defgeneric, because using clos:defmethod will automatically
create a generic function, if it does not already exist. However, clos:defgeneric is
useful for defining the interface of the generic function, and for specifying options
that pertain to the generic function as a whole, such as the method-combination

type.

The arguments to clos:defgeneric are:

function-specifier

lambda-list

options

The name of the generic function, which is either a symbol or
a list of the form (future-common-lisp:setf symbol). An error
is signaled if the function-specifier indicates an ordinary Lisp
function, a macro, or a special form. In other words, you can-
not use clos:defgeneric to redefine an ordinary function,
macro, or special form to be a generic function.

Specifies the lambda-list of the generic function. This is an or-
dinary lambda-list with some exceptions. Default values for op-
tional and keyword parameters may not be provided, and &aux
parameters may not be specified.

One or more of the following options:

(:argument-precedence-order {parameter-name}+)

Specifies the precedence order of the required parame-
ters, which is used when ordering methods from most
specific to least specific. The default argument prece-
dence order is left to right, such that the leftmost pa-
rameter is considered first, followed by the parameters
to its right. The name of each required parameter must
be given.

(declare {declaration}+)
Specifies one or more declarations that pertain to the
generic function. CLOS recognizes the optimize declara-
tion, which declares whether method selection should be
optimized for speed or space. Symbolics CLOS recognizes
the following declarations as well: arglist, wvalues,
sys:downward-funarg, and sys:function-parent.

(:documentation string)
Provides a documentation string describing the generic
function. You can get the documentation string of a class
as follows:

(documentation class-name ’type)

(:method-combination symbol {arg}*)
Specifies the method-combination type to be used by the
generic function, and any arguments to the method-

Page 998

combination type. The args are not evaluated. The de-
fault method-combination type is clos:standard.

(:method {method-qualifier}* specialized-lambda-list &body
body)
Enables you to define one or more methods for this
generic function in the clos:defgeneric form, rather than
having separate clos:defmethod forms. Sometimes it is
convenient to define default methods within the
clos:defgeneric form. For information on the arguments
to the :method option, see the macro clos:defmethod.

(:generic-function-class class-name)
Specifies the class of the generic function. The default is
clos:standard-generic-function. In Symbolics CLOS, the
effects are undefined if any other value is given to this
option.

(:method-class class-name)
Specifies the class of the methods for this generic func-
tion. The default is clos:standard-method. In Symbolics
CLOS, the effects are undefined if any other value is
given to this option.

zl: @define &rest ignore Macro

This macro turns into nil, doing nothing. It exists for the sake of the @ listing
generation program, which uses it to declare names of special forms that define
objects (such as functions) that @ should cross-reference.

si:define-character-style-families device character-set &rest plists Function

The mechanism for defining new character styles, and for defining which font
should be used for displaying characters from character-set on the specified device.
plists contain the actual mapping between character styles and fonts.

It is necessary that a character style be defined in the world before you access a
file that uses the character style. You should be careful not to put any characters
from a style you define into a file that is shared by other users, such as
sys.translations.

It is possible for plists to map from a character style into another character style;
this usage is called logical character styles. It is expected that the logical style
used has its own mapping, in this si:define-character-style-families form or an-
other such form, that eventually is resolved into an actual font.

plists is a nested structure whose elements are of the form:

Page 999

(:family family

(:size size
(:face face target-font
:face face target-font
:face face target-font)

:size size
(:face face target-font
:face face target-font)))

Each target-font is one of:

e A symbol such as fonts:eptfont, which represents a font for a black and white
Symbolics console.

e A string such as "furrier7', which represents a font for an LGP2 or LGP3
printer.

e A list whose car is :font and whose cadr is an expression representing a font,
such as (:font ("Furrier” "B" 9 1.17)). This is also a font for an LGP2/LGP3
printer.

e A list whose car is :style and whose edr is a character style, such as: (:style
family face size). This is an example of using a logical character style (see
ahead for more details).

Each size is either a symbol representing a size, such as :normal, or an asterisk *
used as a wildcard to match any size. The wildcard syntax is supported for the
:size element only. When you use a wildcard for size the target-font must be a
character style. The size element of target-font can be :same to match whatever
the size of the character style is, or :smaller or :larger.

If you define a new size, that size cannot participate in the merging of relative
sizes against absolute sizes. The ordered hierarchy of sizes is predefined. See the
section "Merging Character Styles".

The elements can be nested in a different order, if desired. For example:

(:size size
(:face face
(:family target-font)))

The first example simply maps the character style BOX. ROMAN.NORMAL into the
font fonts:boxfont for the character set si:*standard-character-set* and the de-
vice si:*b&w-screen*. The face ROMAN and the size NORMAL are already valid
faces and sizes, but BOX is a new family; this form makes BOX one of the valid
families.

;33 —-%- Package:SYSTEM-INTERNALS; Mode:LISP; Base: 10 -x-

(define-character-style-families xb&w-screenx xstandard-character-setx
*(:family :box
(:size :normal (:face :roman fonts:boxfont))))

Page 1000

Once you have compiled this form, you can use the Zmacs command Change Style
Region (invoked by c-4 c-J) and enter BOX.ROMAN.NORMAL. This form does not
make any other faces or sizes valid for the BOX family.

The following example uses the wildcard syntax for the :size, and associates the
faces :italic, :bold, and :bold-italic all to the same character style of
BOX.ROMAN.NORMAL. This is an example of using logical character styles. This
form has the effect of making several more character styles valid; however, all
styles that use the BOX family are associated with the same logical character
style, which uses the same font.

;33 —-%- Package:SYSTEM-INTERNALS; Mode:LISP; Base: 10 -x-

(define-character-style-families xb&w-screenx xstandard-character-setx
*(:family :box
(:size x (:face :italic (:style :box :roman :normal)
:bold (:style :box :roman :normal)
:bold-italic (:style :box :roman :normal)))))

For lengthier examples: See the section "Examples of si:define-character-style-
families".

For related information: See the section "Mapping a Character Style to a Font".

define-global-handler name conditions arglist &body body Function
name is a symbol, and a handler function by that name is defined.
conditions is a condition name, or a list of condition names.

arglist is a list of one element, the name of the argument (a symbol) which is
bound to the condition object.

A global handler is like a bound handler with an important exception: unlike a
bound handler which is of dynamic extent, a global handler is of indefinite extent.
Once defined, a global handler must therefore be specifically removed with
undefine-global-handler.

Similarly, since a global handler could be called in any process by any program, it
cannot use a throw the way a bound handler can. Instead it should return nil
(keep searching for another handler), or return multiple values where the first one
is the name of a proceed-type, as with bound handlers.

A note of caution: The global handler functions do not maintain the order of the
global handler list in any way. If there are two handlers whose conditions overlap
each other in such a way that some instantiable condition could be handled by ei-
ther, then either handler might run, depending on the order in which they were
defined. When there is more experience with use of global handlers we will try to
develop a good approach to this problem.

Example:

Page 1001

(define-global-handler infinity-is-three sys:divide-by-zero
(error)
(values :return-values ’(3)))

(/ 18) ==> 3

For a table of related items, see the section "Basic Forms for Global Handlers".

define-loop-macro keyword Macro

Can be used to make keyword, a loop keyword (such as for), into a Lisp macro
that can introduce a loop form. For example, after evaluating:

(define-loop-macro for) => T
you can now write an iteration as:

(for i from 1 below n do ...)

(for i from 1 to 5
do
(print 1)) =>

Ol B W =

NIL

This facility exists primarily for diehard users of a predecessor of loop. Its uncon-
strained use is not recommended, as it tends to decrease the transportability of the
code and needlessly uses up a function name.

See the macro loop.

define-loop-path Macro

Allows a function to generate code for a path to be declared to loop:

(define-l1oop-path path-name-or-names path-function
list-of-allowable-prepositions
datum-1 datum-2 ...)

This defines path-function to be the handler for the path(s) path-name-or-names,
which can be either a symbol or a list of symbols. Such a handler should follow
the conventions described below. The datum-i are optional; they are passed in to
path-function as a list.

path-name The name of the path that caused the path function to be in-
voked.

Page 1002

variable The "iteration variable".

data-type The data type supplied with the iteration variable, or nil if
none was supplied.

prepositional-phrases
A list with entries of the form (preposition expression), in the
order in which they were collected. This can also include some
supplied implicitly (for example, an of phrase when the itera-
tion is inclusive, and an in phrase for the default-loop-path
path); the ordering shows the order of evaluation that should
be followed for the expressions.

tnclusive? t if variable should have the starting point of the path as its
value on the first iteration (by virtue of being specified with
syntax like for var being expr and its path-name, nil other-
wise. When t, expr appears in prepositional-phrases with the of
preposition; for example, for x being foo and its cdrs gets
prepositional-phrases of ((of foo)).

allowed-prepositions The list of allowable prepositions declared for the path-name
that caused the path function to be invoked. It and data can be
used by the path function such that a single function can han-
dle similar paths.

data The list of "data" declared for the path-name that caused the
path function to be invoked. It might, for instance, contain a
canonicalized path-name, or a set of functions or flags to aid
the path function in determining what to do. In this way, the
same path function might be able to handle different paths.

The handler should return a list of either six or ten elements:

variable-bindings

A list of variables that need to be bound. The entries in it can be of the
form variable, (variable expression), or (variable expression data-type). Note
that it is the responsibility of the handler to make sure the iteration vari-
able gets bound. All of these variables are bound in parallel; if initialization
of one depends on others, it should be done with a setq in the prologue-
forms. Returning only the variable without any initialization expression is
not allowed if the variable is a destructuring pattern.

prologue-forms
A list of forms that should be included in the loop prologue.

the four items of the iteration specification
The four items: pre-step-endtest, steps, post-step-endtest, and pseudo-steps. See
the section "The Iteration Framework".

another four items of iteration specification
If these four items are given, they apply to the first iteration, and the pre-
vious four apply to all succeeding iterations; otherwise, the previous four
apply to all iterations.

Page 1003

See the section "Iteration Paths for loop".

define-loop-sequence-path path-name-or-names fetchfun sizefun &optional sequence-
type element-type Macro

One very common form of iteration is that over the elements of some object that
is accessible by means of an integer index. loop defines an iteration path function
for doing this in a general way, and provides a simple interface to allow users to
define iteration paths for various kinds of "indexable" data.

path-name-or-names is either an atomic path name or list of path names.

fetchfun is a function of two arguments: the sequence, and the index of the item to
be fetched. (Indexing is assumed to be zero-origined.)

sizefun is a function of one argument, the sequence; it should return the number
of elements in the sequence. sequence-type is the name of the data-type of the se-
quence, and element-type the name of the data-type of the elements of the se-
quence. These last two items are optional.

Examples:

(define-1oop-sequence-path ascii-char
(lambda (string 1)
(ascii-code (aref string i)))
length) => NIL

(loop for x being the ascii-char of "ABC"
doing
(print x)) =>
65
66
67 NIL ; 65 is the ascii equivalent of "A"

The Symbolics Common Lisp implementation of loop utilizes the Symbolics Com-
mon Lisp array manipulation primitives to define both array-element and array-
elements as iteration paths:

(define-loop-sequence-path (array-element array-elements)
aref array-active-Tlength)

Then, the loop clause:
for var being the array-elements of array

steps var over the elements of array, starting from 0. The sequence path function
also accepts in as a synonym for of.

The range and stepping of the iteration can be specified with the use of all the
same keywords that are accepted by the loop arithmetic stepper (for var from ...);
they are by, to, downto, from, downfrom, below, and above, and are interpreted
in the same manner. Thus:

Page 1004

(loop for var being the array-elements of array
from 1 by 2
.

steps var over all of the odd elements of array, and:

(loop for var being the array-elements of array
downto @

)

steps in "reverse" order.

All such sequence iteration paths allow you to specify the variable to be used as
the index variable, by use of the index keyword with the using prepositional
phrase. You can also use the sequence keyword with the wusing prepositional
phrase to specify the variable to be bound to the sequence.

See the section "Iteration Paths for loop".

define-method-combination name parameters method-patterns &body body Function

Provides a rich declarative syntax for defining new types of method combination.
This is more flexible and powerful than define-simple-method-combination.

name is a symbol that is the name of the new method combination type. parame-
ters resembles the parameter list of a defmacro; it is matched against the parame-
ters specified in the :method-combination option to defgeneric or defflavor.

method-patterns is a list of method pattern specifications. Each method pattern se-
lects some subset of the available methods and binds a variable to a list of the
function specs for these methods. Two of the method patterns select only a single
method and bind the variable to the chosen method’s function spec if a method is
found and otherwise to nil. The variables bound by method patterns are lexically
available while executing the body forms. See the section "Method-Patterns Option
to define-method-combination". Each option is a list whose car is a keyword.
These can be inserted in front of the body forms to select special options. See the
section "Options Available in define-method-combination”. The body forms are
evaluated to produce the body of a combined method. Thus the body forms of
define-method-combination resemble the body forms of defmacro. Backquote is
used in the same way. The body forms of define-method-combination usually pro-
duce a form that includes invocations of flavor:call-component-method and/or
flavor:call-component-methods. These functions hide the implementation-
dependent details of the calling of component methods by the combined method.

Flavors performs some optimizations on the combined method body. This makes it
possible to write the body forms in a simple and easy-to-understand style, without
being concerned about the efficiency of the generated code. For example, if a com-
bined method chooses a single method and calls it and does nothing else, Flavors
implements the called method as the handler rather than constructing a combined
method. Flavors removes redundant invocations of progn and multiple-value-progl
and performs similar optimizations.

Page 1005

The variables flavor:generic and flavor:flavor are lexically available to the body
forms. The values of both variables are symbols:

flavor:generic value is the name of the generic operation whose handler is
being computed.

flavor:flavor value i1s the name of the flavor.

The body forms are permitted to setq the variables defined by the method-patterns,
if further filtering of the available methods is required, beyond the filtering pro-
vided by the built-in filters of the method-patterns mechanism. It is rarely neces-
sary to resort to this. Flavors assumes that the values of the variables defined by
the method patterns (after evaluating the body forms) reflect the actual methods
that will be called by the combined method body.

body forms must not signal errors. Signalling an error (such as a complaint about
one of the available methods) would interfere with the use of flavor examining
tools, which call the user-supplied method combination routine to study the struc-
ture of the erroneous flavor. If it is absolutely necessary to signal an error, the
variable flavor:error-p is lexically available to the body forms; its value must be
obeyed. If nil, errors should be ignored.

For a summary of all functions, macros, special forms, and variables related to
Flavors, see the section "Summary of Flavor Functions and Variables".

clos:define-method-combination name &rest rest Macro

Defines a new method-combination type. There are two forms of clos:define-
method-combination: a short form, for defining simple method-combination types;
and a long form, for defining more complex method-combination types.

clos:define-method-combination returns the new method-combination object.

Short-form Syntax

clos:define-method-combination name short-form-option*

None of the subforms are evaluated. The arguments are:

name The name of the method-combination type, a symbol. If the
:operator option is not provided, the name of the method-
combination type must also name a Lisp operator, such as a
function, macro, or special form. The new method-combination
type combines applicable primary methods in a call to this op-
erator:

(operator (primary-method-1 args)
(primary-method-2 args)
-)

short-form-option ~ These options are:

Page 1006

(:documentation string)
Provides a documentation string for the method-
combination type.

(:identity-with-one-argument boolean)
If true, then an optimization is enabled for the case
where there is only one applicable method, and it is a
primary method. In that case, the operator is not called,
and the value of the method is returned as the value of
the generic function. This optimization makes sense for
operators such as progn, +, and, max, and others.

(:operator operator)
This option is used when you want the name of the
method-combination type to be different than the name
of the operator.

None of these options may be given more than once.

A simple method-combination type defined by the short form of clos:define-
method-combination has the same semantics as the simple built-in method-
combination types. For more information, see the section "CLOS Built-in Method-
Combination Types".

Long-form Syntax

clos:define-method-combination name lambda-list
({method-group-specifier}x)
[(:arguments . lamba-list)]
[(:generic-function generic-function-symbol)]
{declaration | doc-string}x
{form}x

Each method-group-specifier is of the form:
(variable {{qualifier-paitern}+ | predicate} {option}x)
The options are:

:description format-string
:order order
:required boolean

name is the name of the method-combination type, a symbol.

The lambda-list argument is an ordinary lambda-list. It receives any arguments
provided after the name of the method-combination type in the :method-
combination option to clos:defgeneric.

The next argument is a list of method-group-specifiers. Each method group specifi-
er selects a subset of the applicable methods to play a particular role, either by

Page 1007

matching their qualifiers against some patterns or by testing their qualifiers with
a predicate. These method group specifiers define all the method qualifiers that
can be used with this type of method combination. If an applicable method does
not fall into any method group, the system signals the error that the method is in-
valid for the kind of method combination in use.

Each method group specifier names a variable. During the execution of the forms
in the body of clos:define-method-combination, this variable is bound to a list of
the methods in the method group. The order of the methods in this list is most-
specific-first, unless this is changed by :order.

A qualifier pattern is a list or the symbol *. A method matches a qualifier pattern
if the method’s list of qualifiers is equal to the qualifier pattern (except that the
symbol * in a qualifier pattern matches anything). Thus a qualifier pattern can be
one of the following:

The empty list (), which matches unqualified methods.

The symbol *, which matches all methods.

A true list, which matches methods with the same number of qualifiers as the
length of the list when each qualifier matches the corresponding list element.

A dotted list that ends in the symbol *. The * matches any number of additional
qualifiers.

Each applicable method is tested against the qualifier patterns and predicates in
left-to-right order. As soon as a qualifier pattern matches or a predicate returns
true, the method becomes a member of the corresponding method group and no
further tests are made. Thus if a method could be a member of more than one
method group, it joins only the first such group. If a method group has more than
one qualifier pattern, a method need only satisfy one of the qualifier patterns to be
a member of the group.

The name of a predicate function can appear instead of qualifier patterns in a
method group specifier. The predicate is called for each method that has not been
assigned to an earlier method group; it is called with one argument, the method’s
qualifier list. The predicate should return true if the method is to be a member of
the method group. A predicate can be distinguished from a qualifier pattern be-
cause it is a symbol other than nil or *.

If there is an applicable method whose qualifiers are not valid for the method-
combination type (that is, the qualifiers do not match any qualifier patterns, nor
do they satisfy any predicate, nor do they fit any method group), the function
clos:invalid-method-error is called.

Method group specifiers can have keyword options following the qualifier patterns
or predicate. Keyword options can be distinguished from additional qualifier pat-
terns because they are neither lists nor the symbol *. Note that none of these op-
tions may appear more than once in a method group specifier. The keyword op-
tions are as follows:

Page 1008

:description format-string
Provides a description of the role of methods in the method
group. Programming environment tools use

(apply #’format stream format-string (method-qualifiers method))

to print this description, which is expected to be concise. This
keyword option allows the description of a method qualifier to
be defined in the same module that defines the meaning of the
method qualifier. In most cases, format-string will not contain
any format directives, but they are available for generality. If
:description is not specified, a default description is generated
based on the variable name and the qualifier patterns and on
whether this method group includes the unqualified methods.
The argument format-string is not evaluated.

:order order Specifies the order of methods. The order argument is a form
that evaluates to :most-specific-first or :most-specific-last. If
it evaluates to any other value, an error is sighaled. This key-
word option is a convenience and does not add any expressive
power. If :order is not specified, it defaults to :most-specific-
first.

:required boolean Specifies whether at least one method in this method group is
required. If the boolean argument is non-nil and the method
group is empty (that is, no applicable methods match the quali-
fier patterns or satisfy the predicate), an error is signaled.
This keyword option is a convenience and does not add any ex-
pressive power. If :required is not specified, it defaults to nil.
The boolean argument is not evaluated.

The use of method group specifiers provides a convenient syntax to select methods,
to divide them among the possible roles, and to perform the necessary error
checking. It is possible to perform further filtering of methods in the body forms
by wusing normal list-processing operations and the functions clos:method-
qualifiers and clos:invalid-method-error. It is permissible to use setq on the vari-
ables named in the method group specifiers and to bind additional variables. It is
also possible to bypass the method group specifier mechanism and do everything in
the body forms. This is accomplished by writing a single method group with * as
its only qualifier pattern; the variable is then bound to a list of all of the applica-
ble methods, in most-specific-first order.

The body forms compute and return the Lisp form that specifies how the methods
are combined, that is, the effective method. The effective method uses the macro
clos:call-method. This macro has lexical scope and is available only in an effective
method form. Given a method object in one of the lists produced by the method
group specifiers and a list of next methods, the macro clos:call-method will invoke
the method such that clos:call-next-method has available the next methods.

When clos:call-method is called and the next-method-list argument is unsupplied,
it means that semantically there is no such thing as a "next method"; for example,

Page 1009

this is true for before-methods and after-methods in clos:standard method combi-
nation. Thus, when the next-method-list is unsupplied, clos:call-next-method is not
allowed inside the method, and the behavior of clos:next-method-p is undefined. If
the next-method-list argument is supplied as nil, and the method uses clos:call-
next-method, then clos:no-next-method is called.

When an effective method has no effect other than to call a single method, CLOS
can employ an optimization that uses the single method directly as the effective
method, thus avoiding the need to create a new effective method. This optimization
is active when the effective method form consists entirely of an invocation of the
clos:call-method macro whose first subform is a method object and whose second
subform is nil. Each clos:define-method-combination body is responsible for strip-
ping off redundant invocations of progn, and, multiple-value-progl, and the like,
if this optimization is desired.

The list (:arguments . lambda-list) can appear before any declarations or documen-
tation string. This form is useful when the method-combination type performs
some specific behavior as part of the combined method and that behavior needs ac-
cess to the arguments to the generic function. Each parameter variable defined by
lambda-list is bound to a form that can be inserted into the effective method.
When this form is evaluated during execution of the effective method, its value is
the corresponding argument to the generic function.

The arguments to the generic function might not match the lambda-list. If there
are too few arguments, nil is assumed for missing arguments. If there are too
many arguments, the extra arguments are ignored. If there are unhandled keyword
arguments, they are ignored. Supplied-p parameters work in the normal fashion.
Default value forms are evaluated in the null lexical environment (except for bind-
ings of :arguments parameters to their left).

If the effective method form returned by the body forms includes (setq ,variable
...), or (setf ,variable ..), or (future-common-lisp:setf ,variable ...), and variable is
one of the :arguments parameters, the consequences are undefined.

Erroneous conditions detected by the body should be reported with clos:method-
combination-error or clos:invalid-method-error; these functions add any neces-
sary contextual information to the error message and will signal the appropriate
error.

The body forms are evaluated inside of the bindings created by the lambda-list and
method group specifiers. Declarations at the head of the body are positioned direct-
ly inside of bindings created by the lambda-list and outside of the bindings of the
method group variables. Thus method group variables cannot be declared.

If the list (:generic-function generic-function-symbol) is provided, then within the
body forms, generic-function-symbol is bound to the generic function object.

If a doc-string argument is present, it provides the documentation for the method-
combination type.

The functions clos:method-combination-error and clos:invalid-method-error can
be called from the body forms or from functions called by the body forms.

Page 1010

Examples

;;; Examples of the short form of define-method-combination
(define-method-combination and :identity-with-one-argument t)
(defmethod func and ((x class1) y) ...)

;3 The equivalent of this example in the long form is:

(define-method-combination and
(&optional (order ’:most-specific-first))
((around (:around))
(primary (and) :order order :required t))
(let ((form (if (rest primary)
‘(and ,@(mapcar {#’(lambda (method)
‘(call-method ,method ())
primary))
‘(call-method , (first primary) ()))))
(if around
‘(call-method , (first around)
(,B8(rest around)
(make-method , form)))
form)))

;;; Examples of the long form of define-method-combination

Page 1011

; The default method-combination technique
(define-method-combination standard ()

((around (:around))

(before (:before))

(primary () :required t)

(after (:after)))

(flet ((call-methods (methods)
(mapcar #’ (lambda (method)
‘(call-method ,method)))
methods)))
(Tet ((form (if (or before after (rest primary))
“(multiple-value-progl
(progn ,@(call-methods before)
(call-method , (first primary)
, (rest primary)))
,8(call-methods (reverse after)))
‘(call-method , (first primary)))))
(if around
‘(call-method , (first around)
(,@8(rest around)
(make-method , form)))
form))))

;A simple way to try several methods until one returns non-nil
(define-method-combination or ()
((methods (or)))
‘(or ,@(mapcar ft’ (Tambda (method)
*(call-method ,method))
methods)))

Page 1012

;A more complete version of the preceding
(define-method-combination or
(&optional (order ’:most-specific-first))
((around (:around))
(primary (or)))
;; Process the order argument
(case order
(:most-specific-first)
(:most-specific-last (setq primary (reverse primary)))
(otherwise (method-combination-error "~S is an invalid order.™@
:most-specific-first and :most-specific-Tast are the possible values.”
order)))
;; Must have a primary method
(unless primary
(method-combination-error "A primary method is required."))
;; Construct the form that calls the primary methods
(let ((form (if (rest primary)
“(or ,@(mapcar #’(lambda (method)
‘(call-method ,method))
primary))
‘(call-method , (first primary)))))
;; Wrap the around methods around that form
(if around
‘(call-method , (first around)
(,@8(rest around)
(make-method , form)))
form)))

;The same thing, using the :order and :required keyword options
(define-method-combination or
(&optional (order ’:most-specific-first))
((around (:around))
(primary (or) :order order :required t))
(let ((form (if (rest primary)
‘(or ,@(mapcar ft’ (Tambda (method)
*(call-method ,method))
primary))
‘(call-methaod , (first primary)))))
(if around
‘(call-method , (first around)
(,@8(rest around)
(make-method , form)))
form)))

Page 1013

;This short-form call is behaviorally identical to the preceding
(define-method-combination or :identity-with-one-argument t)

;0rder methods by positive integer qualifiers
; raround methods are disallowed to keep the example small
(define-method-combination example-method-combination ()
((methods positive-integer-qualifier-p))
‘(progn ,@(mapcar i’ (lambda (method)
*(call-method ,method))
(stable-sort methods #’<
:key #t’ (1ambda (method)
(first (method-qualifiers method)))))))

(defun positive-integer-qualifier-p (method-qualifiers)
(and (= (length method-qualifiers) 1)
(typep (first method-qualifiers) ’(integer @ x))))

;;; Example of the use of :arguments
(define-method-combination progn-with-Tock ()
((methods ()))
(:arguments object)
‘ (unwind-protect
(progn (lock (object-lock ,object))
,@(mapcar ##’ (1ambda (method)
*(call-method ,method))
methods))
(unTock (object-Tock ,object))))

define-modify-macro name args function &rest documentation-and-declarations
Macro

Defines a read-modify-write macro named name. An example of such a macro is
incf. The first subform of the macro will be a generalized-variable reference. The
function is literally the function to apply to the old contents of the generalized-
variable to get the new contents; it is not evaluated. args describes the remaining
arguments for the name; these arguments come from the remaining subforms of
the macro after the generalized-variable reference. args may contain &optional and
&rest markers. (The &key marker is not permitted here; &rest suffices for the pur-
poses of define-modify-macro.) documentation-and-declarations is documentation
for the macro name being defined.

The expansion of a define-modify-macro is equivalent to the following, except that
it generates code that follows the semantic rules outlined above.

Page 1014

(defmacro name (reference . lambda-list)
documentation-and-declarations
* (setf ,reference
(function ,reference ,argl ,arg2 ...)))

where argl, arg2, ..., are the parameters appearing in args; appropriate provision is
made for a &rest parameter.

As an example, inef could have been defined by:

(define-modify-macro incf (&optional (delta 1)) +)

A similar read-modify-write macro for the Togior operation of taking the logical
and of a number can be created by

(define-modify-macro logiorf (arg2) logior)
(setq first 5 second 6)
(logiorf first second) => 7

first => 7

In the previous example, the lambda list only refers to the second argument to
logior because these macros are presumed to take at least one argument, and only
additional arguments require specification. The unspecified first argument is up-
dated by the macro.

define-setf-method access-function subforms &body body Macro
In this context, the word "method" has nothing to do with flavors.

This macro defines how to setf a generalized-variable reference that is of the form
(access-function . . .). The value of the generalized-variable reference can always be
obtained by evaluating it, so access-function should be the name of a function or a
macro.

subforms is a lambda list that describes the subforms of the generalized-variable
reference, as with defmacro. The result of evaluating body must be five values
representing the setf method. (The five values are described in detail at the end of
this discussion.) Note that define-setf-method differs from the complex form of
defsetf in that while the body is being executed the variables in subforms are
bound to parts of the generalized-variable reference, not to temporary variables
that will be bound to the values of such parts. In addition, define-setf-method
does not have the defsetf restriction that access-function must be a function or a
function-like macro. An arbitrary defmacro destructuring pattern is permitted in
subforms.

By definition, there are no good small examples of define-setf-method because the
easy cases can all be handled by defsetf. A typical use is to define the setf method
for 1db.

Page 1015

;3; SETF method for the form (LDB bytespec int).
;;; Recall that the int form must itself be suitable for SETF.

(define-setf-method 1db (bytespec int)
(multiple-value-bind (temps vals stores
store-form accessform)

(get-setf-method int) ;Get SETF method for int.
(let ((btemp (gensym)) ;Temp var for byte specifier.
(store (gensym)) ;Temp var for byte to store.
(stemp (first stores))) ;Temp var for int to store.
;; Return the SETF method for LDB as five values.
(values (cons btemp temps) ;Temporary variables.
(cons bytespec vals) ;Value forms.
(1ist store) ;Store variables.

‘(let ((,stemp (dpb ,store ,btemp ,access-farm)))
,store-form
,store) ;Storing form.

‘*(1db ,btemp ,access-form);Accessing form.

))))

Here are the five values that express a setf method for a given access form.

e A list of temporary variables.

A list of value forms (subforms of the given form) to whose values the tempo-
rary variables are to be bound.

A second list of temporary variable, called store variables.

A storing form.

e An accessing form.

The temporary variables are bound to the value forms as if by let*; that is, the
value forms are evaluated in the order given and may refer to the values of earlier
value forms by using the corresponding variable.

The store variables are to be bound to the values of the newvalue form, that is,
the values to be stored into the generalized variable. In almost all cases, only a
single value is stored, and there is only one store variable.

The storing form and the accessing form may contain references to the temporary
variables (and also, in the case of the storing form, to the store variables). The ac-
cessing form returns the value of the generalized variable. The storing form modi-
fies the value of the generalized variable and guarantees to return the values of
the store variables as its values. These are the correct values for setf to return.
(Again, in most cases there is a single store variable and thus a single value to be
returned.) The value returned by the accessing form is, of course, affected by exe-
cution of the storing form, but either of these forms may be evaluated any number

Page 1016

of times, and therefore should be free of side effects (other than the storing action
of the storing form).

The temporary variables and the store variables are generated names, as if by
gensym or gentemp, so that there is never any problem of name clashes among
them, or between them and other variables in the program. This is necessary to
make the special forms that do more than one setf in parallel work properly.
These are psetf, shiftf and rotatef.

Here are some examples of setf methods for particular forms:

e For a variable x:

O

0
(g0e8a1)

(setg x ghlna1)
X

e For (car exp):
(goee2)
(exp)
(goee3)
(progn (rplaca gege2 geee3) gbee3’)
(car g@@n2)

e For (subseq seq s e):

(gaen4 gaars gneees)

(seq s e)

(geeo7)

(progn (replace gl@@4 glnA7 :start1 glves :end1 glnaae)
goeaT)

(subseq goge4 goeERs gores)

define-simple-method-combination name operator &optional single-arg-is-value
pretty-name Special Form

Defines a new type of method combination that simply calls all the methods, pass-
ing the values they return to the function named operator.

It is also legal for operator to be the name of a special form. In this case, each
subform is a call to a method. It is legal to use a lambda expression as operator.

name is the name of the method-combination type to be defined. It takes one op-
tional parameter, the order of methods. The order can be either :most-specific-
first (the default) or :most-specific-last.

When you use a new type of method combination defined by define-simple-
method-combination, you can give the argument :most-specific-first or :most-

Page 1017

specific-last to override the order that this type of method combination uses by
default.

If single-arg-is-value is specified and not nil, and if there is exactly one method, it
is called directly and operator is not called. For example, single-arg-is-value makes
sense when operator is +.

pretty-name is a string that describes how to print method names concisely. It de-
faults to (string-downcase name).

Most of the simple types of built-in method combination are defined with define-
simple-method-combination. For example:

(define-simple-method-combination :and and t)
(define-simple-method-combination :or or t)
(define-simple-method-combination :1ist list)
(define-simple-method-combination :progn progn t)
(define-simple-method-combination :append append t)

For a summary of all functions, macros, special forms, and variables related to
Flavors, see the section "Summary of Flavor Functions and Variables".

define-symbol-macro name form Special Form

Defines a symbol macro. name is a symbol to be defined as a symbol macro. form
is a Lisp form to be substituted for the symbol when the symbol is evaluated. A
symbol macro is more like an inline function than a macro: form is the form to be
substituted for the symbol, not a form whose evaluation results in the substitute
form.

Example:

(define-symbol-macro foo (+ 3 bar))
(setqg bar 2)
foo => 5

A symbol defined as a symbol macro cannot be used in the context of a variable.
You cannot use setq on it, and you cannot bind it. You can use setf on it: setf
substitutes the replacement form, which should access something, and expands into
the appropriate update function.

For example, suppose you want to define some new instance variables and methods
for a flavor. Then, you want to test the methods using existing instances of the
flavor. For testing purposes, you might use hash tables to simulate the instance
variables, using one hash table per instance variable with the instance as the key.
You could then implement an instance variable x as a symbol macro:

(defvar x-hash-table (make-hash-table))
(define-symbhol-macro x (gethash self x-hash-table)

To simulate setting a new value for x, you could use (setf x value), which would
expand into (setf (gethash self x-hash-table) value) .

Page 1018

deflambda-macro name pattern &body body Function
Like defmacro, but defines a lambda macro instead of a normal macro.

name is the name of the lambda macro to be defined; it can be any function spec.
See the section "Function Specs". The pattern can be anything made up out of sym-
bols and conses. It is matched against the body of the lambda macro form; both
pattern and the form are car’ed and cdr’ed identically, and whenever a non-nil
symbol occurs in pattern, the symbol is bound to the corresponding part of the
form. If the corresponding part of the form is nil, it goes off the end of the form.
&optional, &rest, &key, and &body can be used to indicate where optional pat-
tern elements are allowed.

All of the symbols in pattern can be used as variables within body.

body is evaluated with these bindings in effect, and its result is returned to the
evaluator as the expansion of the macro.

Here is an example of deflambda-macro used to define a lambda macro:

(deflambda-macro ilisp (arglist &rest body)
‘(lambda (&optional ,Barglist) ,@body))

This defines a lambda macro called ilisp. After it has been defined, the following
list is a valid Lisp function:

(ilisp (x y 2) (list x y 2))

zl:deflambda-macro-displace name pattern &body body Special Form

Like zl:defmacro-displace, but defines a displacing lambda macro instead of a dis-
placing normal macro.

deflocf access-function locate-function-or-subforms &body body Function

Defines how loef creates a locative pointer to a cell referred to by access-function,
similar to the way defsetf defines how setf sets a generalized-variable. See the
macro defsetf.

Subforms of the access-function are evaluated exactly once and in the proper left-
to-right order. A loef of a call on access-function will also evaluate all of access-
function’s arguments; it cannot treat any of them specially.

A deflocf function has two forms: a simple case and a slightly more complicated
one. In the simplest case, locate-function-or-subforms is the name of a function or
macro. In the more complicated case, locate-function-or-subforms is a lambda list of
arguments.

The simple form of defloef is

(deflocf array-leader ap-Teader)

This says that the form to create a locative pointer to array-leader is the function
ap-leader.

Page 1019

If the access-function and the locate-function-or-subforms take their arguments in a
different order or do anything special with their arguments, the more complicated
form must be used, for example:

(deflocf fs:pathname-property-1list (pathname)
‘(send ,pathname :property-list-location))

defmacro name pattern &body body Macro

A general-purpose macro-defining macro. A defmacro form looks like:
(defmacro name pattern . body)

name is the name of the macro to be defined; it can be any function spec. See the
section "Function Specs". Specifies the expansion of forms characterized by calling
name with arguments as indicated in pattern. The expansion function is stored as
the macro definition associated with name. The macro definition is evaluated in the
context of the global environment. (To establish macros in the current lexical en-
vironment, macrolet may be used instead of defmacro). The pattern argument
specifies an extension to Common Lisp syntax by characterizing a structured form
whose car is name. The chief distinction between macro lambda-lists and those
used in function definitions is that macro lambda-lists recursively specify list-forms
(also lambda-lists) that represent list forms actually appearing in the call. Consider
the macro do in the following example:

(do ((i @ (+ i 1))
(18 (-3 2)))
((<= 3 6) j)
(setf (aref xglobx i) j))

The outer parentheses in the variable initialization and step form
(i@ (+11))

are explicitly represented in the lambda-list of the do definition. The inner set sur-
rounding the + form is simply an argument form for the sfep parameter. This is
similar to a form argument paired to a defun parameter. However, in the latter
case the form is evaluated to produce a value for the parameter, while in the
macro case the form represents a textual replacement for the step parameter.

The pattern can be anything made up out of symbols and conses. It is matched
against the body of the macro form; both pattern and the form are car’ed and
cdr’ed identically, and whenever a non-nil symbol occurs in pattern, the symbol is
bound to the corresponding part of the form. If the corresponding part of the form
is nil, it goes off the end of the form. &optional, &rest, &key, and &body can be
used to indicate where optional pattern elements are allowed.

Of the existing limitations on this extension to the lambda-list function called de-
structuring, most notable is that a lambda-list-form may not be used where a list-
form appears in a defun-style lambda-list. For example, following the &optional
lambda-list keyword. All of the symbols in pattern can be used as variables within
body.

Page 1020

body is evaluated with these bindings in effect, and its result is returned to the
evaluator as the expansion of the macro. Macro lambda-lists may also contain
three additional lambda-list keywords: &body, &environment, and &whole.

defmacro could have been defined in terms of destructuring-bind as follows, ex-
cept that the following is a simplified example of defmacro showing no error-
checking and omitting the &environment and &whole features.

(defmacro defmacro (name pattern &body body)
‘(macro ,name (form env)
(destructuring-bind ,pattern (cdr form)
,@body)))

The pattern in a defmacro is like the lambda-list of a normal function. defmacro
is allowed to contain certain &-keywords.

defmacro destructures all levels of patterns in a consistent way. The inside pat-
terns can also contain &-keywords and there is checking of the matching of
lengths of the pattern and the subform. See the special form destructuring-bind.
This behavior exists for all of defmacro’s parameters, except for &environment,
&whole, and &aux.

You must use &optional in the parameter list if you want to call the macro with
less than its full complement of subforms. There must be an exact one-to-one cor-
respondence between the pattern and the data unless you use &optional in the pa-
rameter destructuring pattern.

(defmacro nand (&rest args) ‘(not (and ,&args)))

(defmacro with-output-to-string
((var &optional string &key index) &body body)
‘(Tet ((with-output-to-string-internal-string
, (or string ‘(make-array 168 :type ’art-string)))
L)

,@body))
defmacro accepts these keywords:

&optional &optional is followed by variable, (variable), (variable default),
or (variable default present-p), exactly the same as in a func-
tion. Note that defaouwlt is still a form to be evaluated, even
though variable is not being bound to the value of a form. vari-
able does not have to be a symbol; it can be a pattern. In this
case the first form is disallowed because it is syntactically am-
biguous. The pattern must be enclosed in a singleton list.

&rest The same as using a dotted list as the pattern, except that it
might be easier to read and leaves a place to put &aux.

&key Separates the positional parameters and rest parameter from
the keyword parameters. See the section "Evaluating a Func-
tion Form".

Page 1021

&allow-other-keys In a lambda-list that accepts keyword arguments, says that

&aux

&body

&whole

&environment

keywords that are not specifically listed after &key are al-
lowed. They and the corresponding values are ignored, as far
as keyword arguments are concerned, but they do become part
of the rest argument, if there is one.

The same in a macro as in a function, and has nothing to do
with pattern matching. It separates the destructuring pattern
of a macro from the auxiliary variables. Following &aux you
can put entries of the form:

(variable initial-value-form)

or just variable if you want it initialized to nil or do not care
what the initial value is.

Identical to &rest except that it informs the editor and the
grinder that the remaining subforms constitute a "body" rather
than "arguments" and should be indented accordingly. The
&body keyword should be used when the body is an implicit
progn to signal printing routines to indent the body of macro
calls as in an implicit progn.

For macros defined by defmacro or macrolet only. &whole is
followed by variable, which is bound to the entire macro-call
form or subform. variable is the value that the macro-expander
function receives as its first argument. &whole is allowed only
in the top-level pattern, not in inside patterns.

(defmacro abc (&whole form argl arg2)
(if (and arg2 (not arg?l))
‘(cde , (cdr form) ,arg2)
‘(efg ,argl ,arg2)))

For macros defined by defmacro or macrolet only.
&environment is followed by variable, which is bound to an
object representing the lexical environment where the macro
call is to be interpreted. This environment might not be the
complete lexical environment. It should be used only with the
macroexpand function for any local macro definitions that the
macrolet construct might have established within that lexical
environment. &environment is allowed only in the top-level
pattern, not in inside patterns. See the section "Lexical Envi-
ronment Objects and Arguments". See the macro defmacro.

&list-of is not supported as a result of making defmaero Common-Lisp compatible.
Use zl:loop or mapcar instead of &list-of.

See the special form destructuring-bind.

zl:defmacro-displace name pattern &body body Macro

Page 1022

Like defmacro, except that it defines a displacing macro, using the zl:displace
function.

defmacro-in-flavor (function-name flavor-name) arglist body...) Function

Defines a macro inside a flavor. Functions inside the flavor can use this macro,
but the macro is not accessible in the global environment.

See the section "Defining Functions Internal to Flavors".

For a summary of all functions, macros, special forms, and variables related to
Flavors, see the section "Summary of Flavor Functions and Variables".

defmethod Special Form

A method is the code that performs a generic function on an instance of a particu-
lar flavor. It is defined by a form such as:

(defmethod (generic-function flavor options...) (argl arg2...)
body...)

The method defined by such a form performs the generic function named by gener-
lc-function, when that generic function is applied to an instance of the given
flavor. (The name of the generic function should not be a keyword, unless you
want to define a message to be used with the old send syntax.) You can include a
documentation string and declare forms after the argument list and before the
body.

A generic function is called as follows:
(generic-function g-f-argl g-f-arg2...)

Usually the flavor of g-f-argl determines which method is called to perform the
function. When the appropriate method is called, self is bound to the object itself
(which was the first argument to the generic function). The arguments of the
method are bound to any additional arguments given to the generic function. A
method’s argument list has the same syntax as in defun.

The body of a defmethod form behaves like the body of a defun, except that the
lexical environment enables you to access instance variables by their names, and
the instance by self.

For example, we can define a method for the generic function list-position that
works on the flavor wink. list-position prints the representation of the object and
returns a list of its x and y position.

(defmethod (list-position wink) () ; no args other than object
"Returns a list of x and y position.”
(print self) ; self is bound to the instance
(list x y)) ; instance vars are accessible

The generic function list-position is now defined, with a method that implements
it on instances of wink. We can use it as follows:

Page 1023

(list-position my-wink)
--> f#t<WINK 61311676>
=> (4 9)

If no options are supplied, you are defining a primary method. Any options given
are interpreted by the type of method combination declared with the :method-
combination argument to either defgeneric or defflavor. See the section "Defin-
ing Special-Purpose Methods". For example, :before or :after can be supplied to
indicate that this is a before-daemon or an after-daemon. For more information:
See the section "Defining Before- and After-Daemons".

If the generic function has not already been defined by defgenerie, defmethod
sets up a generic function with no special options. If you call defgeneriec for the
name generic-function later, the generic function is updated to include any new op-
tions specified in the defgeneric form.

Several other sections of the documentation contain information related to
defmethod: See the section "defmethod Declarations". See the section "Writing
Methods for make-instance". See the section "Function Specs for Flavor
Functions". See the section "Setter and Locator Function Specs". See the section
"Implicit Blocks for Methods". See the section "Variant Syntax of defmethod". See
the section "Defining Methods to Be Called by Message-Passing".

For a summary of all functions, macros, special forms, and variables related to
Flavors: See the section "Summary of Flavor Functions and Variables".

clos:defmethod function-specifier {method-qualifier}* specialized-lambda-list &body
body Macro

Defines a method for a generic function and returns the method object.

If the generic function has not been defined, then clos:defmethod defines the
generic function with the default argument precedence order, method-combination
type, method class, and generic function class. The lambda-list of the generic func-
tion is congruent with that of the method. If the method’s lambda-list has keyword
parameters, then the generic function’s lambda-list will specify &key, but not name
any keyword parameters.

If the generic function has a method with the same parameter specializers and
qualifiers, then that method is redefined.

CLOS requires that the lambda-lists of a generic function and all its methods must
be congruent. If a method violates the congruency pattern of its generic function,
an error is signaled.

The arguments to clos:defmethod are:

function-specifier ~ 'The name of the generic function, which is either a symbol or
a list of the form (future-common-lisp:setf symbol). An error
is signaled if the function-specifier indicates an ordinary Lisp
function, a macro, or a special form. In other words, you can-
not use clos:defmethod to redefine an ordinary function,
macro, or special form to be a generic function.

method-qualifier

Page 1024

The method’s qualifier or qualifiers state the role of this
method in performing the work of the generic function. They
are non-nil atoms that are used by the method-combination
type. The clos:standard method-combination type supports the
qualifiers :around, :before, and :after, as well as unqualified
methods.

specialized-lambda-list

A specialized lambda-list is an extension of an ordinary lamb-
da-list that can specialize any of its required parameters. The
specialized lambda-list states the set of arguments for which
this method will be applicable, as described below.

A specialized parameter is a list in one of the following for-
mats:

(variable-name (eql form))
(variable-name class-name)

An unspecialized parameter appears as a variable name; this is
the same as if the parameter were specialized on the class
named t.

When a generic function is called with a set of arguments,
CLOS determines which methods are applicable, based on the
required arguments and the lambda-lists of the methods for
the generic function. For a method to be applicable, each re-
quired argument must satisfy the corresponding parameter in
the method’s lambda-list.

When a parameter is specialized with (eql form), the form is
evaluated once, at the time that the clos:defmethod form is
evaluated. The form is not evaluated each time the generic
function is called.

If the value of form is object, then the argument satisfies the
specialized parameter if the following form returns true:

(eql argument ’object)

When a parameter is specialized with a class name, the argu-
ment satisfies the specialized parameter if the following form
returns true:

(typep argument ’class-name)
When a parameter is unspecialized (the variable-name appears

as a lone symbol which is not enclosed within a list), any argu-
ment satisfies the parameter.

Note that if you are defining a future-common-lisp:setf
method, then the order of parameters in the specialized lamb-
da-list is as shown:

(new-value args...)

Page 1025

As in other methods, in future-common-lisp:setf methods, any

of the required parameters may be specialized.

declarations, documentation

body

Examples

The clos:defmethod syntax allows for declarations and/or docu-
mentation strings to appear after the specialized-lambda-list
and before the body.

The body contains forms that do the work of the generic func-
tion. When methods are defined to work together (via different
roles), each method implements some portion of the work of
the generic function. Often the body needs to access slots of
instances that are given as arguments to the generic function.
There are several ways to access slots: using reader or writer
generic functions, using eclos:with-accessors, or using
clos:with-slots.

The body has an implicit block around it. If the generic
function’s name is a symbol, the block has the same name as
the generic function. If the generic function’s name is (future-
common-lisp:setf symbol), the block has the name symbol.

The following examples show the applicability of methods:

;5 Applicable when first arg is a ship, second arg is a plane
(clos:defmethod collide ((s ship) (p plane) location)

body)

;5 Applicable when first arg is a plane, second arg is a plane
(clos:defmethod collide :after ((p plane) (p plane) Tlocation)

body)

;5 Applicable when second arg is a plane
(clos:defmethod collide (vehicle (p plane) location)

body)

;5 Applicable when first arg is eql to the value of xEnterprisex
(clos:defmethod collide ((ent (eql xEnterprisex)) vehicle location)

body)

The :accessor and :writer options to clos:defclass enable you to define future-
common-lisp:setf methods for slots automatically, but you can also do it by using
clos:defmethod, as shown in this example:

(clos:defclass boat () (speed location))

(clos:defmethod (future-common-lisp:setf ’speed) (new-value (b boat))
(setf (slot-value b) new-value))

Page 1026

defpackage name options... Special Form

Defines a package named name; the name must be a symbol so that the source file
name of the package can be recorded and the editor can correctly sectionize the
definition. If no package by that name already exists, a new package is created ac-
cording to the specified options. If a package by that name already exists, its char-
acteristics are altered according to the options specified. If any characteristic can-
not be altered, an error is signalled. If the existing package was defined by a dif-
ferent file, you are queried before it is changed, as with any other type of defini-
tion.

Each option is a keyword or a list of a keyword and arguments. A keyword by it-
self is equivalent to a list of that keyword and one argument, t; this syntax really
only makes sense for the :external-only and :hash-inherited-symbols keywords.

Wherever an argument is said to be a name or a package, it can be either a sym-
bol or a string. Usually symbols are preferred, because the reader standardizes
their alphabetic case and because readability is increased by not cluttering up the
defpackage form with string quote (") characters.

None of the arguments are evaluated. The keywords arguments, most of which are
identical to make-package’s, are:

(:nicknames name name...) for defpackage
:nicknames ’(name name...) for make-package
The package is given these nicknames, in addition to its primary name.

(:prefix-name name) for defpackage

:prefix-name name for make-package
This name is used when printing a qualified name for a symbol in this
package. You should make the specified name one of the nicknames of the
package or its primary name. If you do not specify :prefix-name, it defaults
to the shortest of the package’s names (the primary name plus the nick-
names).

(:use package package...)
External symbols and relative name mappings of the specified packages are
inherited. If this option is not specified, it defaults to (;use CL) ((:use
global) in Zetalisp). To inherit nothing, specify (:use).

(:shadow name name...) for defpackage

:shadow ’(name name...) for make-package
Symbols with the specified names are created in this package and declared
to be shadowing.

(:export name name...) for defpackage

:export ’(name name...) for make-package
Symbols with the specified names are created in this package, or inherited
from the packages it uses, and declared to be external.

(:import symbol symbol...) for defpackage

Page 1027

:import ’(name name...) for make-package
The specified symbols are imported into the package. Note that unlike
:export, :import requires symbols, not names; it matters in which package
this argument is read.

(:shadowing-import symbol symbol...) for defpackage

:shadowing-import ’(symbol symbol...) for make-package
The same as :import but no name conflicts are possible; the symbols are
declared to be shadowing.

(:import-from package name name...) for defpackage

:import-from ’(package name name...) for make-package
The specified symbols are imported into the package. The symbols to be im-
ported are obtained by looking up each name in package.
(defpackage only) This option exists primarily for system bootstrapping,
since the same thing can normally be done by :import. The difference be-
tween :import and :import-from can be visible if the file containing a
defpackage is compiled; when :import is used the symbols are looked up at
compile time, but when :import-from is used the symbols are looked up at
load time. If the package structure has been changed between the time the
file was compiled and the time it is loaded, there might be a difference.

(:relative-names (name package) (name package)...) - defpackage

:relative-names ’((name package) ...) - make-package
Declares relative names by which this package can refer to other packages.
The package being created cannot be one of the packages, since it has not
been created yet. For example, to be able to refer to symbols in the
common-lisp package print with the prefix lisp: instead of c¢l: when they
need a package prefix (for instance, when they are shadowed), you would
use :relative-names like this:

(defpackage my-package (:use cl)
(:shadow error)
(:relative-names (lisp common-1lisp)))

(let ((xpackagex (find-package ’my-package)))
(print (list ’my-package::error ’cl:error)))

(:relative-names-for-me (package name) ...) for defpackage
:relative-names-for-me ’((package name) ...) for make-package
Declares relative names by which other packages can refer to this package.
(defpackage only) It is valid to use the name of the package being created
as a package here; this is useful when a package has a relative name for
itself.

(:size number) for defpackage

:size number for make-package
The number of symbols expected in the package. This controls the initial
size of the package’s hash table. You can make the :size specification an
underestimate; the hash table is expanded as necessary.

Page 1028

(:hash-inherited-symbols boolean) for defpackage

:hash-inherited-symbols boolean for make-package
If true, inherited symbols are entered into the package’s hash table to
speed up symbol lookup. If false (the default), looking up a symbol in this
package searches the hash table of each package it uses.

(:external-only boolean) for defpackage

:external-only boolean for make-package
If true, all symbols in this package are external and the package is locked.
This feature is only used to simulate the old package system that was used
before Release 5.0. See the section "External-only Packages and Locking".

(:include package package...) for defpackage

:include ’(package package...) for make-package
Any package that uses this package also uses the specified packages. Note
that if the :include list is changed, the change is not propagated to users
of this package. This feature is used only to simulate the old package sys-
tem that was used before Release 5.0.

(:new-symbol-function function) for defpackage

:new-symbol-function function for make-package
function is called when a new symbol is to be made present in the package.
The default is si:pkg-new-symbol unless :external-only is specified. Do not
specify this option unless you understand the internal details of the package
system.

(:colon-mode mode) for defpackage

:colon-mode mode for make-package
If mode is :external, qualified names mentioning this package behave dif-
ferently depending on whether ":" or is used, as in Common Lisp.
names access only external symbols. If mode is :internal, ":" names access
all symbols. :external is the default. See the section "Specifying Internal
and External Symbols in Packages".

Meo nen
. .

(:prefix-intern-function function) for defpackage

:prefix-intern-function function for make-package
The function to call to convert a qualified name referencing this package
with ":" (rather than "::") to a symbol. The default is intern unless (:colon-
mode :external) is specified. Do not specify this option unless you under-
stand the internal details of the package system.

defparameter variable initial-value &optional documentation Special Form

The same as defvar, except that variable is always set to initial-value regardless of
whether variable is already bound. The rationale for this is that defvar declares a
global variable, whose value is initialized to something but is then changed by the
functions that use it to maintain some state. On the other hand, defparameter de-

Page 1029

clares a constant, whose value is never changed by the normal operation of the
program, only by changes to the program. defparameter always sets the variable
to the specified value so that if, while developing or debugging the program, you
change your mind about what the constant value should be, and you then evaluate
the defparameter form again, the variable gets the new value. It is not the intent
of defparameter to declare that the value of variable never changes; for example,
defparameter is not a license to the compiler to build assumptions about the val-
ue of variable into programs being compiled. See defconstant for that.

For example:

(defparameter xalarms-limitx 10
“The number of alarms allowed to sound before
a special message is printed.")

See the section "Special Forms for Defining Special Variables".

defprop sym value indicator Special Form

Gives sym’s property list an indicator-property corresponding to value. After this is
done, (get sym indicator) returns value. See the section "Property Lists".

defprop is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions That Operate on Property
Lists".

defselect fspec &body methods Special Form

Defines a function that is a select-method. This function contains a table of sub-
functions; when it is called, the first argument, a symbol on the keyword package
called the message name, is looked up in the table to determine which subfunction
to call. Each subfunction can take a different number of arguments, and have a
different pattern of &optional and &rest arguments. defselect is useful for a vari-
ety of "dispatching" jobs. By analogy with the more general message passing facili-
ties in flavors, the subfunctions are sometimes called methods and the first argu-
ment is sometimes called a message.

The special form looks like:

(defselect (function-spec default-handler no-which-operations)
(message-name (args...)
body...)
(message-name (args...)
body...)
L)

function-spec is the name of the function to be defined. default-handler is optional;
it must be a symbol and is a function that gets called if the select-method is
called with an unknown message. If default-handler is unsupplied or nil, then an
error occurs if an unknown message is sent. If no-which-operations is non-nil, the
:which-operations method that would normally be supplied automatically is sup-

Page 1030

pressed. The :which-operations method takes no arguments and returns a list of
all the message names in the defselect.

The :operation-handled-p and :send-if-handles methods are automatically sup-
plied. See the message :operation-handled-p. See the message :send-if-handles.

If function-spec is a symbol, and default-handler and no-which-operations are not
supplied, then the first subform of the defselect can be just function-spec by itself,
not enclosed in a list.

The remaining subforms in a defselect define methods. message-name is the mes-
sage name, or a list of several message names if several messages are to be han-
dled by the same subfunction. args is a lambda-list; it should not include the first
argument, which is the message name. body is the body of the function.

A method subform can instead look like:
(message-name . symbol)

In this case, symbol is the name of a function that is called when the message-
name message is received. It is called with the same arguments as the select-
method, including the message symbol itself.

defsetf access-function storing-function-or-args &optional store-variables &body body
Macro

Defines how to setf a generalized-variable reference of the form (access-function . .
.). The value of a generalized-variable reference can always be obtained by evaluat-
ing it, so access-function should be the name of a function or macro that evaluates
its arguments, behaving like a function.

The user of defsetf provides a description of how to store into the generalized-
variable reference and return the value that was stored (because setf is defined to
return this value). Subforms of the reference are evaluated exactly once and in the
proper left-to-right order. A setf of a call on access-function will also evaluate all
of access-function’s arguments; it cannot treat any of them specially. This means
that defsetf cannot be used to describe how to store into a generalized variable
that is a byte, such as (1db field reference). To handle situations that do not fit
the restrictions of defsetf, use define-setf-method, which gives the user additional
control at the cost of additional complexity.

A defsetf function can take two forms, simple and complex. In the simple case,
storing-function-or-args is the name of a function or macro. In the complex case,
storing-function-or-args is a lambda list of arguments.

The simple form of defsetf is

(defsetf access-function storing-function-or-args)

storing-function-or-args names a function or macro that takes one more argument
than access-function takes. When setf is given a place that is a call on access-
function, it expands into a call on storing-function-or-args that is given all the ar-

Page 1031

guments to access-function and also, as its last argument, the new value (which
must be returned by storing-function-or-args as its value).

For example, the effect of

(defsetf symbol-value set)

is built into the Common Lisp system. This causes the form (setf (symbol-value
foo) fu) to expand into (set foo fu). Note that

(defsetf car rplaca)

would be incorrect because rplaca does not return its last argument.

The complex form of defsetf looks like

(defsetf access-function storing-function-or-args
(store-variables) . body)

and resembles defmacro. The body must compute the expansion of a setf of a call
on access-function. storing-function-or-args is a lambda list that describes the argu-
ments of access-function and may include &optional, &rest, and &key markers.
Optional arguments can have defaults and "supplied-p" flags. store-variables de-
scribes the value to be stored into the generalized-variable reference.

The body forms can be written as if the variables in storing-function-or-args were
bound to subforms of the call on access-function and the store-variables were bound
to the second subform of setf. However, this is not actually the case. During the
evaluation of the body forms, these variables are bound to names of temporary
variables, generated as if by gensym or gentemp, that will be bound by the expan-
sion of setf to the values of those subforms. This binding permits the body forms
to be written without regard for order of evaluation. defsetf arranges for the tem-
porary variables to be optimized out of the final results in cases where that is
possible. In other words, an attempt is made by defsetf to generate the best code
possible.

Note that the code generated by the body forms must include provision for return-
ing the correct value (the value of store-variables). This is handled by the body
forms rather than by defsetf because in many cases this value can be returned at
no extra cost, by calling a function that simultaneously stores into the generalized
variable and returns the correct value.

Here is an example of the complex form of defsetf.

Page 1032

(defsetf subseq (sequence start &optional end) (new-sequence)
‘(progn (replace ,sequence ,new-sequence
:start1 ,start :end1 ,end)
,New-sequence))

For even more complex operations on setf: See the macro define-setf-method.

defstruct options &body items Macro

Defines a record-structure data type. A call to defstruct looks like:

(defstruct (name option-1 option-2 ...)
slot-description-1
slot-description-2

o)

name must be a symbol; it is the name of the structure. It is given a si:defstruct-
description property that describes the attributes and elements of the structure;
this is intended to be used by programs that examine other Lisp programs and
that want to display the contents of structures in a helpful way. name is used for
other things; for more information, see the section "Named Structures".

Because evaluation of a defstruct form causes many functions and macros to be
defined, you must take care not to define the same name with two different
defstruct forms. A name can only have one function definition at a time. If a
name is redefined, the later definition is the one that takes effect, destroying the
earlier definition. (This is the same as the requirement that each defun that is in-
tended to define a distinct function must have a distinct name.)

Each option can be either a symbol, which should be one of the recognized option
names, or a list containing an option name followed by the arguments to the op-
tion. Some options have arguments that default; others require that arguments be
given explicitly. For more information about options, see the section "Options for
defstruct".

Each slot-description can be in any of three forms:

1: slot-name
2: (slot-name default-init)
3: ((slot-name-1 byte-spec-1 default-init-1)
(slot-name-2 byte-spec-2 default-init-2)
.2)

Each slot-description allocates one element of the physical structure, even though
several slots may be in one form, as in form 3 above.

Each slot-name must always be a symbol; an accessor function is defined for each
slot.

In the example above, form 1 simply defines a slot with the given name slot-name.
An accessor function is defined with the name sloz-name. The :conc-name option
allows you to specify a prefix and have it concatenated onto the front of all the

Page 1033

slot names to make the names of the accessor functions. Form 2 is similar, but al-
lows a default initialization for the slot. Form 3 lets you pack several slots into a
single element of the physical underlying structure, using the byte field feature of
defstruct.

For a table of related items: See the section "Functions Related to defstruet Struc-
tures".

|

future-common-lisp:defstruct name-and-options &body slot-descriptions Macro

Defines a record-structure data type, and a corresponding class of the same name.
You can define methods that specialize on structure classes.

The syntax and semantics of future-common-lisp:defstruct adhere to the draft
ANSI Common Lisp specification.

zl:defstruct Macro

Defines a record-structure data type. Use the Common lisp macro defstruct.
defstruct accepts all standard Common Lisp options, and accepts several additional
options. zl:defstruct is supported only for compatibility with pre-Genera 7.0 re-
leases. See the section "Differences Between defstruct and zl:defstruct".

The basic syntax of zl:defstruct is the same as defstruct: See the macro
defstruct.

For information on the options that can be given to zl:defstruct as well as
defstruct: See the section "Options for defstruect”.

The :export option is accepted by zl:defstruct but not by defstruct. Stylistically, it
is preferable to export any external interfaces in the package declarations instead
of scattering :export options throughout a program’s source files.

:export
Exports the specified symbols from the package in which the
structure is defined. This option accepts as arguments slot
names and the following options: :alterant, :accessors,
:constructor, :copier, :predicate, :size-macro, and :size-
symbol.

The following example shows the use of :export.

Page 1034

(z1:defstruct (2d-moving-object
(:type :array)
:conc-name
;; export all accessors and the
;; make-2d-moving-object constructor
(:export :accessors :constructor))
mass
X-pos
y-pos
x-velocity
y-velocity)

See the section "Importing and Exporting Symbols".

defstruct-define-type type &body options Macro

Teaches defstruct and zl:defstruct about new types that it can use to implement
structures.

The body of this function is shown in the following example:

(defstruct-define-type fype
option-1
option-2
)
where each option is either the symbolic name of an option or a list of the form
(option-name . rest). See the section "Options to defstruct-define-type".

Different options interpret rest in different ways. The symbol #ype is given an
si:defstruct-type-description property of a structure that describes the type com-
pletely.

For a table of related items: See the section "Functions Related to defstruet Struc-
tures".

defsubst function lambda-list &body body Special Form
Defines inline functions. It is used just like defun and does almost the same thing.
(defsubst name lambda-list . body)

defsubst defines a function that executes identically to the one that a similar call
to defun would define. The difference comes when a function that calls this one is
compiled. Then, the call is open-coded by substituting the inline function’s defini-
tion into the code being compiled. Such a function is called an inline function. For
example, if we define:

(defsubst square (x) (x X X))

(defun foo (a b) (square (+ a b)))

then if foo is used interpreted, square works just as if it had been defined by
defun. If foo is compiled, however, the squaring is substituted into it and it com-

Page 1035

piles just like:
(defun foo (a b) (x (+ ab) (+ ah)))

square could have been defined as:

(defun square (x) (x X X))
(proclaim ’(inline square))

(defun foo ...)

See the declaration inline.

A similar square could be defined as a macro, with:
(defmacro square (x) ‘(x ,Xx ,X))

When the compiler open-codes an inline function, it binds the argument variables
to the argument values with let, so they get evaluated only once and in the right
order. Then, when possible, the compiler optimizes out the variables. In general,
anything that is implemented as an inline function can be reimplemented as a
macro, just by changing the defsubst to a defmacro and putting in the appropri-
ate backquote and commas, except that this does not get the simultaneous guaran-
tee of argument evaluation order and generation of optimal code with no unneces-
sary temporary variables. The disadvantage of macros is that they are not func-
tions, and so cannot be applied to arguments. Their advantage is that they can do
much more powerful things than inline functions can. This is also a disadvantage
since macros provide more ways to get into trouble. If something can be imple-
mented either as a macro or as an inline function, it is generally better to make it
an inline function.

As with defun, name can be any function spec, but you get the "subst" effect only
when name is a symbol.

The difference between an inline function and one not declared inline is the way
the calls to them are handled by the compiler. A call to a normal function is com-
piled as a closed subroutine; the compiler generates code to compute the values of
the arguments and then apply the function to those values. A call to an inline
function is compiled as an open subroutine; the compiler incorporates the body
forms of the inline function into the function being compiled, substituting the ar-
gument forms for references to the variables in the function’s lambda-list.

defsubst-in-flavor (function-name flavor-name) arglist &body body Function

Defines a function inside a flavor to be inline-coded in its callers. There is no
analogous form for methods, since the caller cannot know at compile-time which
method is going to be selected by the generic function mechanism.

See the section "Defining Functions Internal to Flavors".

Page 1036

For a summary of all functions, macros, special forms, and variables related to
Flavors, see the section "Summary of Flavor Functions and Variables".

defun Special Form
Defines a function that is part of a program. A defun form looks like:

(defun name lambda-list
body...)

name is the function spec you wish to define as a function. The lambda-list is a
list of the names to give to the arguments of the function. Actually, it is a little
more general than that; it can contain lambda-list keywords such as &optional and
&rest. (Keywords are explained elsewhere. See the section "Evaluating a Function
Form". See the section "Lambda-List Keywords".) Additional syntactic features of
defun are explained elsewhere. See the section "Function-Defining Special Forms".

In Genera, defun creates a list which looks like:
(si:digested-lambda. . .)

and puts it in the function cell of name. name is now defined as a function and
can be called by other forms.

Examples:
(defun addone (x)
(1+ x))

(defun add-a-number (x &optional (inc 1))
(+ x inc))

(defun average (&rest numbers &aux (total @))
(loop for n in numbers
do (setg total (+ total n)))
(// total (length numbers)))

addone is a function that expects a number as an argument, and returns a num-
ber one larger. add-a-number takes one required argument and one optional argu-
ment. average takes any number of additional arguments that are given to the
function as a list named numbers.

If you are using Genera, a declaration (a list starting with declare) can appear as
the first element of the body. It is equivalent to a zl:local-declare surrounding the
entire defun form. For example:
(defun foo (x)
(declare (special x))
(bar)) ;bar uses x free.

is equivalent to and preferable to:

(z1:1ocal-declare ((special x))
(defun foo (x)

(bar)))

Page 1037

(It is preferable because the editor expects the open parenthesis of a top-level
function definition to be the first character on a line, which isn’t possible in the
second form without incorrect indentation.)

A documentation string can also appear as the first element of the body (following
the declaration, if there is one). (It shouldn’t be the only thing in the body; other-
wise it is the value returned by the function and so is not interpreted as docu-
mentation. A string as an element of a body other than the last element is only
evaluated for side effect, and since evaluation of strings has no side effects, they
are not useful in this position to do any computation, so they are interpreted as
documentation.) This documentation string becomes part of the function’s debug-
ging info and can be obtained with the function documentation. The first line of
the string should be a complete sentence that makes sense read by itself, since
there are two editor commands to get at the documentation, one of which is "brief"
and prints only the first line. Example:

(defun my-append (&rest lists)

"Like append but copies all the lists.
This is Tike the Lisp function append, except that
append copies all lists except the last, whereas
this function copies all of its arguments
including the last one.”

.2)
If you are using CLOE, consider this example:

(defun new-function (argl arg2 arg3)
"returns substring of argl from position arg2+1 to position arg3-1."
(declare (string arg?l))
(subseq argl (+ arg2 1) (- arg3 1)))

defun-in-flavor (function-name flavor-name) arglist &body body Function

Defines an internal function of a flavor. The syntax of defun-in-flavor is similar
to the syntax of defmethod; the difference is the way the function is called and
the scoping of function-name.

See the section "Defining Functions Internal to Flavors".

For a summary of all functions, macros, special forms, and variables related to
Flavors, see the section "Summary of Flavor Functions and Variables".

zl:defunp Macro

Usually when a function uses prog, the prog form is the entire body of the func-
tion; the definition of such a function looks like (defun name arglist (prog varlist
...)). Although the use of prog is generally discouraged, prog fans might want to
use this special form. For convenience, the zl:defunp macro can be used to pro-
duce such definitions. A zl:defunp form such as:

Page 1038

(z1:defunp fctn (args)
form1
form2

formn)
expands into:

(z1:defun fctn (args)
(prog ()
form1
form2

.(return formn)))

You can think of zl:defunp as being like defun except that you can return out of
the middle of the function’s body.

defvar name &optional initial-value documentation-or-first-key &key :documentation
:localize Special Form

Declares name special and records its location for the sake of the editor so that
you can ask to see where the variable is defined. This is the recommended way to
declare the use of a global variable in a program. If a second subform is supplied,

(defvar name initial-value)

name is initialized to the result of evaluating the form initial-value unless it al-
ready has a value, in which case it keeps that value. initial-value is not evaluated
unless it is used; this is useful if it does something expensive like creating a large
data structure. See the special form sys:defvar-resettable. See the special form
sys:defvar-standard.

defvar should be used only at top level, never in function definitions, and only for
global variables (those used by more than one function). (defvar foo ’bar) is
roughly equivalent to:

(declare (special foo))
(if (not (boundp ’foo0))
(setq foo ’bar))

(defvar variable initial-value "documentation string")

allows you to include a documentation string that describes what the variable is
for or how it is to be used. Using such a documentation string is even better than
commenting the use of the variable, because the documentation string is accessible
to system programs that can show the documentation to you while you are using
the machine.

(defvar variable initial-value :documentation "string")

is an alternate syntax for defvar. The :ocalize keyword is used for optimizing
memory usage at the time of Symbolics distribution world building and is reserved
for Symbolics use only.

Page 1039

If defvar is used in a patch file or is a single form (not a region) evaluated with
the editor’s compile/evaluate from buffer commands, if there is an initial-value the
variable is always set to it regardless of whether it is already bound. See the sec-
tion "Patch Facility". See the section "Special Forms for Defining Special
Variables".

sys:defvar-resettable name initial-value &optional warm-boot-value documentation
Special Form

Like defvar, except that it also maintains a warm-boot value. During a warm-boot,
the system sets the variable to its warm-boot value. You can use this function to
assure that a variable is at a pre-determined state even after warm booting. See
the section "Warm Booting".

sys:defvar-standard name initial-value &optional ignore standard-value validation-
predicate documentation

Special Form

Like sys:defvar-resettable, except that it also defines a standard value that the
variable should be bound to in command and breakpoint loops. For example, the
standard values of zl:base and zl:ibase are 10. The validation-predicate is used to
ensure that the value of the variable is valid when it is bound in command loops.

For example, zl:base is defined like this:

(sys:defvar-standard z1:base 1@. 1@. 1@. validate-base)
(defun validate-base (b)
(and (fixnump b) (< 1 b 37.)))

See the section "Standard Variables".

defwhopper Special Form

The following form defines a whopper for a given generic-function when applied to
the specified flavor:

(defwhopper (generic-function flavor) (argl arg2..)
body)

The arguments should be the same as the arguments for any method performing
the generic function.

When a generic function is called on an object of some flavor, and a whopper is
defined for that function, the arguments are passed to the whopper, and the code
of the whopper is executed.

Most whoppers run the methods for the generic function. To make this happen,
the body of the whopper calls one of the following two functions: continue-
whopper or lexpr-continue-whopper. At that point, the before daemons, primary
methods, and after daemons are executed. Both continue-whopper and lexpr-
continue-whopper return the values returned by the combined method, so the rest
of the body of the whopper can use those values.

Page 1040

If the whopper does not use continue-whopper or lexpr-continue-whopper, the
methods themselves are never executed, and the result of the whopper is returned
as the result of calling the generic function.

Whoppers return their own values. If a generic function is called for value rather
than effect, the whopper itself takes responsibility for getting the value back to
the caller.

For more information on whoppers, including examples: See the section "Wrappers
and Whoppers'".

For a summary of all functions, macros, special forms, and variables related to
Flavors: See the section "Summary of Flavor Functions and Variables".

defwhopper-subst (flavor generic-function) lambda-list &body body Macro

Defines a wrapper for the generic-function when applied to the given flavor by com-
bining the use of defwhopper with the efficiency of defwrapper.

The following example shows the use of defwhopper-subst.

(defwhopper-subst (xns add-checksum-to-packet)
(checksum &optional (bias A))
(when (= checksum #0177777)
(setq checksum 0))
(continue-whopper checksum bias))

The body is expanded in-line in the combined method, providing improved time ef-
ficiency but decreased space efficiency, unless the body is small.

See the section "Wrappers and Whoppers".

For a summary of all functions, macros, special forms, and variables related to
Flavors: See the section "Summary of Flavor Functions and Variables".

defwrapper Macro

Offers an alternative to the daemon system of method combination, for cases in
which :before and :after daemons are not powerful enough.

defwrapper defines a macro that expands into code that is wrapped around the in-
vocation of the methods. defwrapper is used in forms such as:

(defwrapper (generic-function flavor) ((argl arg2) form)
body...)

The wrapper created by this form is wrapped around the method that performs
generic-function for the given flavor. body is the code of the wrapper; it is analo-
gous to the body of a defmacro. During the evaluation of body, the variable form
is bound to a form that invokes the enclosed method. The result returned by body
should be a replacement form that contains form as a subform. During the evalua-
tion of this replacement form, the variables argl, arg2, and so on are bound to the
arguments given to the generic function when it is called. As with methods, self is
implied as the first argument.

Page 1041

The symbol ignore can be used in place of the list (argl arg2) if the arguments to
the generic function do not matter. This usage is common.

For more information on wrappers, including examples: See the section "Wrappers
and Whoppers".

For a summary of all functions, macros, special forms, and variables related to
Flavors: See the section "Summary of Flavor Functions and Variables".

zl:del pred item list &optional (niimes -1) Function

Returns the list with all occurrences of item removed. pred is used to match ele-
ments of the list against item. The argument [list is actually modified (rplacded)
when instances of item are spliced out. zl:del should be used for value, not for ef-
fect.

For a table of related items: See the section "Functions for Modifying Lists".

delete item sequence &key (:test #eql) :test-not (:key #identity) :from-end (:start 0)
:end :count Function

Removes a sequence of those items in the subsequence of sequence delimited by
:start and :end which satisfy the predicate specified by the :test keyword argu-
ment. This is a destructive operation. The argument sequence can be destroyed and
used to construct the result; however, the returned form may or may not be eq to
sequence. The elements that are not deleted occur in the same order in the result
that they did in the argument.

For example:
(setg nums ’(1 2 3)) => (1 2 3)
(delete 1 nums) => (2 3)
nums => (1 2 3)
However,
nums => (1 2 3)
(delete 2 nums) => (1 3)
nums => (1 3)

item is matched against the elements specified by the fest keyword. The item can
be any Symbolics Common Lisp object.

sequence can be either a list or a vector (one-dimensional array). Note that nil is
considered to be a sequence, of length zero.

:test specifies the test to be performed. An element of sequence satisfies the test if
(funcall festfun item (keyfn x)) is true. Where festfun is the test function specified
by :test, keyfn is the function specified by :key and x is an element of the se-
quence. The default test is eql.

For example:

(delete 4 (6 1 6 4) :test f§’>) => (6 6 4)

Page 1042

:test-not is similar to :test, except that the sense of the test is inverted. An ele-
ment of sequence satisfies the test if (funcall testfun item (keyfn x)) is false.

The value of the keyword argument :key, if non-nil, is a function that takes one
argument. This function extracts from each element the part to be tested in place
of the whole element.

Example:

(delete @ ’((B8 1) (B8 1) (1 8)) :key H’second) => ((B8 1) (B 1))
(delete @ #(1 2 1) :key #’(lambda (x) (- x 1))) => }#(2)

If the value of the :from-end argument is non-nil, it only affects the result when
the :count argument is specified. In that case only the rightmost :count elements
that satisfy the predicate are deleted.

For example:

(delete 4 (4 2 4 1) :count 1) => (2 4 1)
(delete 4 ##(4 2 4 1) :count 1 :from-end t) => #(4 2 1)

:start and :end must be non-negative integer indices into the sequence. :start
must be less than or equal to :end, else an error is signalled. It defaults to zero
(the start of the sequence).

:start indicates the start position for the operation within the sequence. :end indi-
cates the position of the first element in the sequence beyond the end of the oper-
ation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by default.

For example:

(delete ’a f#fi(a b c a)) => #(B C)

(delete 4 (4 4 1)) => (1)

(delete 4 (4 1 4) :start 1 :end 2) => (4 1 4)
(delete 4 (4 1 4) :start @ :end 3) => (1)

The :count argument, if supplied, limits the number of elements deleted. If more
than :count elements of sequence satisfy the predicate, then only the leftmost
:count of those elements are deleted. A negative :count argument is equivalent to
a :count of 8.

For example:
(delete 4 (4 2 4 1) :count 1) => (2 4 1)
delete is the destructive version of remove.
For a table of related items: See the section "Functions for Modifying Lists".

For a table of related items: See the section "Sequence Modification".

:delete Message

Page 1043

Deletes the file open on this stream. The file does not really go away until the
stream is closed. You should not use :delete. Instead, use delete-file.

zl:delete item list &optional (ntimes -1) Function

Returns list with all occurrences of ifem removed. zl:equal is used for the compar-
ison. The argument list is actually modified (rplacd’ed) when instances of item are
spliced out. zl:delete should be used for value, not effect. That is, use:

(setq a (delete ’b a))
rather than:

(delete ’b a)

nitimes instances of ifem are deleted. niimes is allowed to be zero. If ntimes is
greater than or equal to the number of occurrences of item in the list, all oc-
curences of item in the list are deleted.

Use the Common Lisp function, delete.
For a table of related items: See the section "Functions for Modifying Lists".

For a table of related items: See the section "Sequence Modification".

delete-duplicates sequence &key (:test #eql) :test-not (:start 0) :end :from-end :key
:replace Function

Compares the elements of sequence pairwise, and if any two match, the one occur-
ring earlier in the sequence is discarded. The returned form is sequence, with
enough elements removed such that no two of the remaining elements match.
delete-duplicates is a destructive function.

sequence can be either a list or a vector (one-dimensional array). Note that nil is
considered to be a sequence, of length zero.

:test specifies the test to be performed. An element of sequence satisfies the test if
(funcall festfun item (keyfn x)) is true. Where festfun is the test function specified
by :test, keyfn is the function specified by :key and x is an element of the se-
quence. The default test is eql.

For example:

(delete-duplicates (1 11222 333) :test ##’>) =>(111222333)
(delete-duplicates (1 11222 3 3 3) :test #’=) => (1 2 3)

:test-not is similar to :test, except that the sense of the test is inverted. An ele-
ment of sequence satisfies the test if (funcall testfun item (keyfn x)) is false.

Use the keyword arguments :start and :end to delimit the portion of the sequence
to be operated on.

:start and :end must be non-negative integer indices into the sequence. :start
must be less than or equal to :end, else an error is signalled. It defaults to zero
(the start of the sequence).

Page 1044

:start indicates the start position for the operation within the sequence. :end indi-
cates the position of the first element in the sequence beyond the end of the oper-
ation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by default.

For example:

bcc)) =>(ABDO)

171 1)) => #(1)

2 22) :start 3) => #(1 11 2)

2 22) :start 2 :end 4) => f#(1 112 2 2)

(delete-duplicates ’(a a b
(delete-duplicates #(1 1 1
(delete-duplicates #(1 1 1
(delete-duplicates #(1 1 1

The function normally processes the sequence in the forward direction, but if a
non-nil value is specified for :from-end, processing starts from the reverse direc-
tion. If the :from-end argument is true, then the one later in the sequence is dis-
carded.

The value of the keyword argument :key, if non-nil, is a function that takes one
argument. This function extracts from each element the part to be tested in place
of the whole element.

For example:

(delete-duplicates ’((Smith S) (Jones J) (Taylor T) (Smith S)) :key }’second)
=> ((JONES J) (TAYLOR T) (SMITH 9))

When the :replace keyword is specified, elements that stay are moved up to the
position of elements that are deleted. :replace is not meaningful if the value of
:from-end is t.

Compatibility Note: :replace is a Symbolics extension to Common Lisp, and is not
available in CLOE.

For example:

(delete-duplicates ’((1 a) (2 b) (3 c) (1d) (4e) (3 1))
:key #’car :replace t) =>

((1d) (2b) (3f) (4e))

(delete-duplicates ’((1 a) (2 b) (3 c) (1d) (4e) (3 1))
:key #’car :replace nil) =>

((2b) (1d) (4e) (3F))

(delete-duplicates ’((1 a) (2 b) (3 c) (1d) (4e) (3 1))
:key #f’car :replace nil :from-end t) =>

((1Ta) (2b) (3c) (4e))

delete-duplicates is the destructive version of remove-duplicates.

For a table of related items: See the section "Sequence Modification".

(flavor:method :delete-by-item si:heap) ifem &optional (equal-predicate #=)
Method

Page 1045

Finds the first item that satisfies equal-predicate, and deletes it, returning the
item and key if it was found, otherwise it signals si:heap-item-not-found. equal-
predicate should be a function that takes two arguments. The first argument to
equal-predicate is the current item from the heap and the second argument is item.

For a table of related items: See the section "Heap Functions and Methods".

(flavor:method :delete-by-key si:heap) key &optional (equal-predicate #=) Method

Finds the first item whose key satisfies equal-predicate and deletes it, returning
the item and key if it was found; otherwise it signals si:heap-item-not-found.
equal-predicate should be a function that takes two arguments. The first argument
to equal-predicate is the current key from the heap and the second argument is
key.

For a table of related items: See the section "Heap Functions and Methods".

delete-if predicate sequence &key :key :from-end (:start 0) :end :count Function

Removes a sequence of those items in the subsequence of sequence delimited by
:start and :end which satisfy predicate. The elements that are not deleted occur in
the same order in the result that they did in the argument. This is a destructive
operation. The argument sequence can be destroyed and used to construct the re-
sult; however, the returned form may or may not be eq to sequence.

For example:
(setq a-list (1 abc)) => (1 ABUOC)
(delete-if #’numberp a-list) => (A B (C)
a-list => (1 A B [)
However,
(setq my-list (8 1 8)) => (8 1 0)
(delete-if #’zerop my-list) => (1)
my-list => (8 1)
predicate is the test to be performed on each element.

sequence can be either a list or a vector (one-dimensional array). Note that nil is
considered to be a sequence, of length zero.

The value of the keyword argument :key, if non-nil, is a function that takes one
argument. This function extracts from each element the part to be tested in place
of the whole element.

For example:

(delete-if #’atom ’((book 1) (math (room c)) (text 3)) :key }’second)
=> ((MATH (ROCM C)))

(delete-if #’zerop #(1 2 1) :key #’(lambda (x) (- x 1)))
=> #(2)

Page 1046

If the value of the :from-end argument is non-nil, it only affects the result when
the :count argument is specified. In that case only the rightmost :count elements
that satisfy the predicate are deleted.

For example:

(delete-if #’numberp (4 2 4 1) :count 1) => (2 4 1)
(delete-if #’numberp (4 2 4 1) :count 1 :from-end t) => (4 2 4)

Use the keyword arguments :start and :end to delimit the portion of the sequence
to be operated on.

:start and :end must be non-negative integer indices into the sequence. :start
must be less than or equal to :end, else an error is signalled. It defaults to zero
(the start of the sequence).

:start indicates the start position for the operation within the sequence. :end indi-
cates the position of the first element in the sequence beyond the end of the oper-
ation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by default.

For example:

(delete-if f#’atom *(’a 1 "list")) => (’A)
(delete-if #’numberp (4 1 4) :start 1 :end 2) => (4 4)
(delete-if #’evenp (4 1 4) :start @ :end 3) => (1)

The :count argument, if supplied, limits the number of elements deleted. If more
than :count elements of sequence satisfy the predicate, then only the leftmost
:count of those elements are deleted. A negative :count argument is equivalent to
a :count of 8.

For example:
(delete-if #’oddp (1 1 2 2) :count 1) => (1 2 2)

(setg text "Some, text; with too, much punctuation!.?")
(delete-if #f’ (lambda (x) (member x ’ (#\, #\? #\! #\;))) text)
a => "Some text with too much punctuation.”

delete-if 1s the destructive version of remove-if.

For a table of related items: See the section "Sequence Modification".

delete-if-not predicate sequence &key :key :from-end (:start 0) :end :count
Function

Removes a sequence of those items in the subsequence of sequence delimited by
:start and :end which satisfy predicate. The elements that are not deleted occur in
the same order in the result that they did in the argument. This is a destructive
operation. The argument sequence can be destroyed and used to construct the re-
sult; however, the returned form may or may not be eq to sequence.

Page 1047

For example:
(setg a-list "(’s abrc)) => (S ABDICO
(delete-if-not ff’atom a-list) => (A B ()
a-list => ("S A B ()

However,
(setg my-Tist (@ 1 8)) => (B8 1 0)
(delete-if-not #’zerop my-list) => (@ @)
my-Tist => (@ 1)

predicate is the test to be performed on each element.

sequence can be either a list or a vector (one-dimensional array). Note that nil is
considered to be a sequence, of length zero.

The value of the keyword argument :key, if non-nil, is a function that takes one
argument. This function extracts from each element the part to be tested in place
of the whole element.

For example:

(delete-if-not #’atom ’ ((book 1) (math (room c)) (text 3)) :key }’second)
=> ((BOOK 1) (TEXT 3))

(delete-if-not #’zerop #(1 2 1) :key #’(lambda (x) (- x 1))) => #(1 1)

If the value of the :from-end argument is non-nil, it only affects the result when
the :count argument is specified. In that case only the rightmost :count elements
that satisfy the predicate are deleted.

For example:

(delete-if-not #’oddp (4 2 4 1) :count 1) => (2 4 1)
(delete-if-not #’oddp (4 2 4 1) :count 1 :from-end t) => (4 2 1)

Use the keyword arguments :start and :end to delimit the portion of the sequence
to be operated on.

:start and :end must be non-negative integer indices into the sequence. :start
must be less than or equal to :end, else an error is signalled. It defaults to zero
(the start of the sequence).

:start indicates the start position for the operation within the sequence. :end indi-
cates the position of the first element in the sequence beyond the end of the oper-
ation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by default.

For example:

(delete-if-not f#’atom ’(’a 1 "1ist")) => (1 "Tist")
(delete-if-not #’numberp (4 1 4) :start 1 :end 2) => (4 1 4)
(delete-if-not #’evenp (4 1 4) :start @ :end 3) => (4 4)

Page 1048

The :count argument, if supplied, limits the number of elements deleted. If more
than :count elements of sequence satisfy the predicate, then only the leftmost
:count of those elements are deleted. A negative :count argument is equivalent to
a :count of 8.

For example:
(delete-if-not #’oddp (1 1 2 2) :count 1) => (1 1 2)
delete-if-not is the destructive version of remove-if-not.

For a table of related items: See the section "Sequence Modification".

zl:del-if pred list Function

Makes a modified list is made by applying pred (a function of one argument) to all
the elements of list and removing the ones for which the predicate returns non-nil
zl:del-if is the destructive version of zl:rem-if, without the extra-lists &rest argu-
ment.

For a table of related items: See the section "Functions for Modifying Lists".

zl:del-if-not pred list Function

Applies pred to all elements of list and removes those for which the pred returns
nil. Returns the modified list. zl:del-if-not is the destructive version zl:rem-if-not,
without the extra-lists &rest argument.

For a table of related items: See the section "Functions for Modifying Lists".

zl:delq item list &optional (ntimes -1) Function

Returns list with all occurrences of item removed. eq is used to match the ele-
ments of list against itfem. The argument list is actually modified (rplacd’ed) when
instances of item are spliced out. zl:delq should be used for value, not for effect.

For a table of related items: See the section "Functions for Modifying Lists".

denominator rational Function

If rational is a ratio, denominator returns the denominator of rational. If rational
is an integer, denominator returns 1.
Examples:

(denominator 4/5) => 5

(denominator 3) => 1

(denominator 4/8) => 2

(denominator (/ 12 -17)) => 17
(denominator (rational ©8.200)) => 67188864

For a table of related items: See the section "Functions that Extract Components
From a Rational Number".

Page 1049

deposit-byte into-value position size byte-value Function

Like dpb, except that instead of using a byte specifier, the bit position and size
are passed as separate arguments. The argument order is not analogous to that of
dpb so that deposit-byte can be compatible with older versions of Lisp.

For a table of related items: See the section "Summary of Byte Manipulation Func-
tions".

deposit-field newbyte bytespec integer Function

Returns an integer that is the same as integer except for the bits specified by byte-
spec which are taken from newbyte.

This is like function dpb ("deposit byte"), except that newbyte is not taken to be
right-justified; the bytespec bits of newbyte are used for the byiespec bits of the re-
sult, with the rest of the bits taken from integer. integer must be an integer.

bytespec is built using function byte with bit size and position arguments.
deposit-field could have been defined as follows:

(deposit-field newbyte bytespec integer) ==>
(dpb (1db bytespec newbyte) bytespec integer)

(deposit-field 320 (byte 3 6) 1888) => (+ 1088 256) => 1344

(setqg place-numb $#h108) => 4
(deposit-field #b100111 (byte 8 3) place-numb) => 36
place-numb => 4

Example:
(deposit-field #0230 (byte 6 3) #04567) => {04237

For a table of related items: See the section "Summary of Byte Manipulation Func-
tions".

describe anything &optional no-complaints
Function

Provides all the interesting information about any object (except array contents).
describe knows about arrays, symbols, all types of numbers, packages, stack
groups, closures, instances, structures, compiled functions, and locatives, and prints
out the attributes of each in human-readable form. For example,

(describe 5) 5 is an odd fixnum

Sometimes it describes something that it finds inside something else; such recur-
sive descriptions are indented appropriately. For instance, describe of a symbol
tells you about the symbol’s value, its definition, and each of its properties.
describe of a floating-point number shows you its internal representation in a way
that is useful for tracking down roundoff errors and the like.

Page 1050

If anything is a named-structure, describe handles it specially. To understand this:
See the section "Named Structures". First it gets the named-structure symbol, and
sees whether its function knows about the :describe operation. If the operation is
known, it applies the function to two arguments: the symbol :describe, and the
named-structure itself. Otherwise, it looks on the named-structure symbol for infor-
mation that might have been left by defstruct; this information would tell it the
symbolic names for the entries in the structure. describe knows how to use the
names to print out each field’s name and contents.

describe describes an instance by sending it the :describe message. The default
method prints the names and values of the instance variables.

This is the same as the Show Object command.
describe always returns its argument, in case you want to do something else to it.

Compatibility Note: The optional argument no-complaints is an extension to Com-
mon Lisp, which might not work in other implementations of Common Lisp.

:describe Message

The object that receives this message should describe itself, printing a description
onto the *standard-output®* stream. The desecribe function sends this message
when it encounters an instance.

The :describe method of flavor:vanilla calls flavor:describe-instance, which
prints the following information onto the *standard-output* stream: a description
of the instance, the name of its flavor, and the names and values of its instance
variables. It returns the instance. For example:

(send cell-object :describe)
-->ft<CELL 1168762135>, an object of flavor CELL,
has instance variable values:

X: 24

Y: 3
STATUS: :ALIVE
NEXT-STATUS: unbound
NEIGHBORS: unbound

=> H<CELL 1168762135>

For a summary of all functions, macros, special forms, and variables related to
Flavors: See the section "Summary of Flavor Functions and Variables".

(flavor:method :describe sicheap) &optional (stream zl:standard-output) Method

Describes the heap, giving the predicate, number of elements, and optionally the
contents. If stream is given, the output of :describe is printed on stream.

For a table of related items: See the section "Heap Functions and Methods".

describe-defstruct instance &optional name Function

Page 1051

Takes an instance of a structure and prints out a description of the instance, in-
cluding the contents of each of its slots. name should be the name of the struc-
ture; you must provide this name so that describe-defstruct can know of what
structure instance is an instance, and thus figure out the names of instance’s slots.

If instance is a named structure, you do not have to provide name, since it is just
the named structure symbol of instance. Normally the deseribe function calls
describe-defstruct if it is asked to describe a named structure; however, some
named structures have their own idea of how to describe themselves. See the sec-
tion "Named Structures".

For a table of related items: See the section "Functions Related to defstruet Struc-
tures".

describe-function fspec &key (stream *standard-output®) Function

Shows the arglist, values and proclaims for the compiled function fspec. The
:stream argument enables you to output the description to any stream.

(describe-function ’locativep) =>
Debugging info:
ARGLIST (OBJECT)
SYS:FUNCTION-PARENT (LOCATIVEP DEFINE-TYPE-PREDICATE)
Proclaimed properties:
NOTINLINE
NIL

See the section "Operations the User Can Perform on Functions".

dbg:describe-global-handlers Function

Displays the list of conditions for which global handlers have been defined, as well
as a list of these handlers.

flavor:describe-instance instance Function

Prints the following information onto the *standard-output* stream: a description
of the instance, the name of its flavor, and the names and values of its instance
variables. It returns the instance. For example:

(flavor:describe-instance cell-object)
-->f<CELL 1160762135>, an object of flavor CELL,
has instance variable values:

X: 24
Y: 3
STATUS: :ALIVE
NEXT-STATUS: unbound
NEIGHBORS: unbound

=> H<CELL 1160762135>

Page 1052

When you use describe on an instance, a default method (implemented for
flavor:vanilla) performs the flavor:describe-instance function.

For a summary of all functions, macros, special forms, and variables related to
Flavors: See the section "Summary of Flavor Functions and Variables".

clos:describe-object object stream Generic Function

Provides a mechanism for users to control what happens when describe is called
for instances of a class. clos:describe-object is called by describe and should not
be called by users.

object Any Lisp object.

stream A stream (this cannot be t or nil).

The default method lists the slot names and values.

The stream argument passed to clos:describe-object is not necessarily the same as
the stream passed to describe (it might be an intermediate stream that imple-
ments parts of describe). Therefore, methods for clos:describe-object should not
depend on the identity of the stream.

describe-package package Function

Print a description of package’s attributes and the size of its hash table of symbols
on *standard-output®. package can be a package object or the name of a package.
The describe function calls describe-package when its argument is a package.

zl:desetq {variable-pattern value-pattern)... Special Form

Lets you assign values to variables through destructuring patterns. In place of a
variable to be assigned, you can provide a tree of variables. The value to be as-
signed must be a tree of the same shape. The trees are destructured into their
component parts, and each variable is assigned to the corresponding part of the
value tree.

The first value-pattern is evaluated. If variable-pattern is a symbol, it is set to the
result of evaluating value-pattern. If variable-pattern is a tree, the result of evaluat-
ing value-pattern should be a tree of the same shape. The trees are destructured,
and each variable that is a component of variable-pattern is set to the value that is
the corresponding element of the tree that results from evaluating value-pattern.
This process is repeated for each pair of variable-pattern and value-pattern.
zl:desetq returns the last value. Example:

(desetq (a b) ’((x y) z) c b)

=>2z

a is set to (x y), b is set to z, and c is set to z. The form returns the value of the
last form, which is the symbol z.

Page 1053

destructuring-bind pattern datum &body body Special Form

Binds variables to values, using defmacro’s destructuring facilities, and evaluates
the body forms in the context of those bindings.

First datum is evaluated. If pattern is a symbol, it is bound to the result of evalu-
ating datum. If pattern is a tree, the result of evaluating data should be a tree of
the same shape. It signals an error if the trees do not match. The trees are disas-
sembled, and each variable that is a component of pattern is bound to the value
that is the corresponding element of the tree that results from evaluating datum.
Finally, the body forms are evaluated sequentially, the old values of the variables
are restored, and the result of the last body form is returned.

As with the pattern in a defmacro form, pattern actually resembles the lambda-
list of a function; it can have &-keywords. See the macro defmacro.

Example:
(destructuring-bind (a (b) &optional (c ’d))
“((xy) (2))

(values a b c))
=> (xy) zd

Under Genera, zl:destructuring-bind also exists. It is the same as destructuring-
bind except that it does not signal an error if the trees datum and pattern do not
match. If not enough values are supplied, the remaining variables are bound to nil.
If too many values are supplied, the excess values are ignored.

math:determinant matrix Function

Returns the determinant of matrix. matrix must be a two-dimensional square ma-
trix.

zl:dfloat x Function
Converts any noncomplex number to a double-precision floating-point number.

For a table of related items: See the section "Functions that Convert Numbers to
Floating-point Numbers".

zl:difference arg &rest args Function

Returns its first argument minus the sum of the rest of its arguments. Arguments
of different numeric types are converted to a common type, which is also the type
of the result. See the section "Coercion Rules for Numbers".

zl:difference is similar to the function - used with more than one argument.

For a table of related items, see the section "Arithmetic Functions".

Page 1054

digit-char weight &optional (radix 10) (style-index 0) Function

Returns the character that represents a digit with a specified weight weight. Re-
turns nil if weight is not between 0 and (1- radix) or radix is not between 2 and
36.

See the function digit-char-p.

For a table of related items, see the section "Character Conversions'.

digit-char-p char &optional (radix 10) Function

char must be a character object. digit-char-p returns the weight of that digit char-
acter (a number from zero to one less than the radix) if it is a valid digit in the
specified radix. It returns nil if chaer is not a valid digit in the specified radix; it
cannot return t.

(digit-char-p #\Q) => nil

(digit-char-p #\8) => 8

(digit-char-p (character ’b) 16) => 11

See the function digit-char.

For a table of related items, see the section "Character Predicates".

:direction Message

Returns one of the keyword symbols :input, :output, or :bidirectional.

disassemble function &optional from-pc to-pc Function

Prints out a human-readable version of the macroinstructions in function. function
is either a compiled function, or a symbol or function spec whose definition is a
compiled function.

Compatibility Note: The optional arguments from-pc and to-pc, are Symbolics ex-
tensions to Common Lisp, which might not work in other implementations of Com-
mon Lisp. Note that they are not available if you are using CLOE on a 386 based
machine.

The CLOE primitive takes a name, a lambda expression, or a compiled function ob-
ject as an argument. The function definition is retrieved and compiled if not al-
ready compiled. The compiled function object is then disassembled, and pretty
printed.

zl:dispatch ppss word &body clauses Special Form

(zl:dispatch byte-specifier number clauses...) is the same as select (not zl:selectq),
but the key is obtained by evaluating (Idb byte-specifier number). byte-specifier and
number are both evaluated. See the section "Byte Manipulation Functions". Byte
specifiers and ldb are explained in that section. Example:

Page 1055

(princ (dispatch 0202 cat-type
(8 "Siamese.")
(1 "Persian.")
(2 "Alley.")
(3 (ferror nil
"~S 1is not a known cat type."
cat-type))))

It is not necessary to include all possible values of the byte that is dispatched on.

For a table of related items: See the section "Conditional Functions".

zl:displace form expansion Function

Replaces the ear and edr of form so that it looks like:
(si:displaced original-form expansion)

form must be a list. original-form is equal to form but has a different top-level
cons so that the replacing mentioned above does not affect it. si:displaced is a
macro, which returns the caddr of its own macro form. So when the si:displaced
form is given to the evaluator, it "expands" to expansion. zl:displace returns ex-
pansion.

zl:dlet ((variable-pattern value-pattern)...) body... Special Form

Binds variables to values, using destructuring, and evaluates the body forms in the
context of those bindings. In place of a variable to be assigned, you can provide a
tree of variables. The value to be assighed must be a tree of the same shape. The
trees are destructured into their component parts, and each variable is assigned to
the corresponding part of the value tree.

First the variable-pattern is evaluated. If variable-pattern is a symbol, it is bound to
the result of evaluating the corresponding value-pattern. If variable-pattern is a
tree, the result of evaluating value-pattern should be a tree of the same shape. The
trees are destructured, and each variable that is a component of variable-patiern is
bound to the value that is the corresponding element of the tree that results from
evaluating value-pattern. The bindings happen in parallel; all the value-patterns are
evaluated before any variables are bound. Finally, the body forms are evaluated
sequentially, the old values of the variables are restored, and the result of the last
body form is returned. Example:

(z1:dlet (((a b) *((xy) 2))
(c 'd))

(values a b c))

=> (xy) zd

zl:dlet* ((variable-pattern value-pattern)...) body... Special Form

Page 1056

Binds variables to values, using destructuring, and evaluates the body forms in the
context of those bindings. In place of a variable to be assigned, you can provide a
tree of variables. The value to be assigned must be a tree of the same shape. The
trees are destructured into their component parts, and each variable is assigned to
the corresponding part of the value tree.

The first value-pattern is evaluated. If variable-pattern is a symbol, it is bound to
the result of evaluating value-pattern. If variable-pattern is a tree, the result of
evaluating value-pattern should be a tree of the same shape. The trees are de-
structured, and each variable that is a component of variable-pattern is bound to
the value that is the corresponding element of the tree that results from evaluat-
ing value-pattern. The process is repeated for each pair of variable-pattern and val-
ue-pattern. The bindings happen sequentially; the variables in each variable-pattern
are bound before the next value-pattern is evaluated. Finally, the body forms are
evaluated sequentially, the old values of the variables are restored, and the result
of the last body form is returned. Example:

(z1:dletx (((a b) ’((x y) z)) (c b)) (values a b c))

=> (xy) z z

do vars endtest &body body
Special Form

Provides a simple generalized iteration facility, with an arbitrary number of "index
variables" whose values are saved when the do is entered and restored when it is
left, that is, they are bound by the do. The index variables are used in the itera-
tion performed by do. At the beginning, they are initialized to specified values,
and then at the end of each trip around the loop the values of the index variables
are changed according to specified rules. do allows you to specify a predicate that
determines when the iteration terminates. The value to be returned as the result
of the form can, optionally, be specified.

do looks like this:

(do ((var init repeat) ...)
(end-test exit-form ...)
body. ..)

The first item in the form is a list of zero or more index variable specifiers. Each
index variable specifier is a list of the name of a variable var, an initial value
form init, which defaults to nil if it is omitted, and a repeat value form repeat. If
repeat is omitted, the var is not changed between repetitions. If init is omitted, the
var is initialized to nil

An index variable specifier can also be just the name of a variable, rather than a
list. In this case, the variable has an initial value of nil, and is not changed be-
tween repetitions.

All assignment to the index variables is done in parallel. At the beginning of the
first iteration, all the init forms are evaluated, then the vars are bound to the val-

Page 1057

ues of the init forms, their old values being saved in the usual way. The init forms
are evaluated before the vars are bound, that is, lexically outside of the do. At the
beginning of each succeeding iteration those vars that have repeat forms get set to
the values of their respective repeat forms. All the repeat forms are evaluated be-
fore any of the vars is set.

The second element of the do-form is a list of an end-testing predicate form end-
test, and zero or more forms, called the exit-forms. This resembles a cond clause.
At the beginning of each iteration, after processing of the variable specifiers, the
end-test is evaluated. If the result is nil, execution proceeds with the body of the
do. If the result is not nil, the exit-forms are evaluated from left to right and then
do returns. The value of the do is the value of the last exit-form, or nil if there
were no exit-forms (not the value of the end-test as you might expect by analogy
with cond).

Note that the end-test gets evaluated before the first time the body is evaluated.
do first initializes the variables from the init forms, then it checks the end-test,
then it processes the body, then it deals with the repeat forms, then it tests the
end-test again, and so on. If the end-test returns a non-nil value the first time,
then the body is never processed.

If the second element of the form is (nil), the end-fest is never true and there are
no exit-forms. The body of the do is executed over and over. The infinite loop can
be terminated by use of return or throw.

Example:

(do ((count 1 (+ count 1)))
(nil) ; Do forever.
(Tet ((item (read)))
(if (null item) (return) (princ item)))) => ABCDEFGNIL
;typed - abcdefg()

If a return special form is evaluated inside the body of a do, the do immediately
stops, unbinds its variables, and returns the values given to return. See the spe-
cial form return.

return and its variants are explained in more detail in that section. go special
forms and prog-tags can also be used inside the body of a do and they mean the
same thing that they do inside prog forms, but we discourage their use since they
make your program complicated and hard to understand.

Examples:

Page 1058

(setq foo-array (make-array ’(2 2) :initial-element ’a))
=> H#2A((A A) (A A))

(do ((x B8 (+ x 1)) ; prints out array
(n (array-dimension foo-array @)))
((= x nj)

(do ((y 8 (+y 1))
(n (array-dimension foo-array 1)))
((=yn)
(princ (aref foo-array x y)))) => AAAA
NIL
(arglist ’cl:array-dimensions) => (ARRAY) and NIL and NIL
(setg a-vector #(1 2 3)) => H#(1 2 3)

(do ((i B8 (+1 1)) ; changes every 2 in vector into a @
(n (length a-vector)))
((= 1 n))

(if (= 2 (aref a-vector 1))
(setf (aref a-vector i) @))) => NIL
A-VECTOR => #(1 @ 3)

(do ((z list (cdr z)) ;z starts as list and is cdr’ed each time.
(y other-1list) ;y starts as other-list, and is unchanged by the do.
(x) ;X starts as nil and is not changed by the do.
W) ;w starts as nil and is not changed by the do.
(nil) ;The end-test is nil, so this is an infinite loop.
body) ;Presumably the body uses return somewhere.

The following construction exploits parallel assignment to index variables:

(do ((x e (cdr x))
(oldx x %))
((nu11 x))
body)

On the first iteration, the value of oldx is whatever value x had before the do was
entered. On succeeding iterations, oldx contains the value that x had on the previ-
ous iteration.

body can contain no forms at all. Very often an iterative algorithm can be most
clearly expressed entirely in the repeats and exit-forms of a new-style do, and the
body is empty.

The following example is like (maplist ’f x y). (See the section "Mapping".)

(do ((x x (cdr x))

(y y (cdr y))

(z nil (cons (f x y) z))) ;exploits parallel assignment.
((or (null x) (null y))

(nreverse 2z)) ;typical use of nreverse.
)) ;no do-body required.

For information about a general iteration facility based on a keyword syntax rather
than a list-structure syntax:

Page 1059

See the section "The loop Iteration Macro". See the section "The CLOE Loop Iter-
ation Macro".

Zetalisp Note: Zetalisp supports another, "old-style" version of do. This form is in-
compatible with the language specification presented in Guy Steele’s Common
Lisp: the Language.

The older do looks like this:
(do var init repeat end-test body...)

The first time through the loop var gets the value of the init form; the remaining
times through the loop it gets the value of the repeat form, which is reevaluated
each time. Note that the init form is evaluated before var is bound, that is, lexical-
ly outside of the do. Each time around the loop, after var is set, end-test is evalu-
ated. If it is non-nil, the do finishes and returns nil. If the end-test evaluated to
nil, the body of the loop is executed.

If the second element of the form is nil, there is no end-fest nor exit-forms, and the
body of the do is executed only once. In this type of do it is an error to have re-
peats. This type of do is no more powerful than let; it is obsolete and provided on-
ly for Maclisp compatibility.

return and go can be used in the body. It is possible for body to contain no forms
at all.

Examples:

(do ((i @ (+ 1 1)) ; searches Tist for Dan.
(names ’ (Adam Brian Carla Dan Eric Fred) (cdr names)))
((nu11 names))
(if (equal ’Dan (car names))
(princ "Hey Danny Boooooy "))) => Hey Danny Boooooy NIL

(do ((zz x (cdr zz)))
((or (null zz2)
(zerop (f (car 22))))))
;this applies f to each element of x
;continuously until f returns zero.
;Note that the do has no body.

(defun list-splice (a b)
(do ((x a (cdr x))
(y b (cdr y))
(xy () (append xy (1ist (car x) (car y)))))
((endp x) (endp y) (append Xy X y)))) => LIST-SPLICE
(list-splice (1 2 3) ’(abc)) =>(1A2B30)
(list-splice (1 2 3) ’(abcde)) = (1A2B3CDE)

return forms are often useful to do simple searches:

Page 1060

(setq a-vector #(1 2 3)) => H#(1 2 3)

(do ((i B (+1 1)) ; Iterate over the length of vector
((and (= 3 (aref a-vector i)) ; If we find a element that = 3
(return 1)))) ;then return its index.

=> 2 ;note (aref a-vector 2) => 3

Example:
(do ((i 5 (+1 1))
(list (cdr xdata-listx) (cdr list))
(item (car xdata-listx) (car 1list)))
((>= 1 (length xdata-vectorx)) t)
(unless (= (aref xdata-vectorx i) item)
(return nil)))

For a table of related items: See the section "Iteration Functions".

do keyword for loop

do expression

expression is evaluated each time through the loop, as shown in the follow-
ing example:
(defun print-elements-of-1ist (list-of-elements)
(Toop for element in list-of-elements
do (print element)))
=> PRINT-ELEMENTS-0F-LIST

print-elements-of-list prints each element in its argument, which should be
a list. It returns nil.

The forms do and doing are synonymous. Examples

(defun print-list (small-Tist)
(loop for element in small-list
do
(princ element)
(princ " A "))) => PRINT-LIST
(print-Tist *(1 2 3)) => 1 A 2 A 3 A NIL

This is equivalent to

(defun print-list (small-Tist)
(loop for element in small-list
doing
(princ element)
(princ " A "))) => PRINT-LIST
(print-list (1 2 3)) == 1 A 2 A 3 A NIL

See the macro loop.

Page 1061

do* vars endtest &body body Special Form

Just like do, except that the variable clauses are evaluated sequentially rather
than in parallel. When a do starts, all the initialization forms are evaluated before
any of the variables are set to the results; when a do* starts, the first initializa-
tion form is evaluated, then the first variable is set to the result, then the second
initialization form is evaluated, and so on. The stepping forms work analogously.

Examples:

(do ((i 8 (+1 1))
(ie (+11))
((=118))
(princ 1)) => 08123456789NIL

(dox ((1 B8 (+ 1 1))
(8 (+11)))
((=118))
(princ 1)) => B24638NIL

Provides a comprehensive iteration control construct, and is a powerful analog to
iteration control loops as found in Algol derivative languages. composed of zero or
more variable specifiers, an end test and zero or more result forms, zero or more
declarations, and a body.

The variable specifier is a list of variable bindings, including optional initialization
values and an optional step form. All the variable binding initializations are execut-
ed sequentially, as are evaluation of the step forms. During initialization, later
variable specifiers and evaluation of step forms have the ability to refer to the
most current value of pre-specified variables. If init is omitted, then the variable is
bound to nil; if step is omitted, the variable value is not automatically changed
during dox iterations. Declarations may apply to any of the other three major parts
of the dox form.

The body of the do* form is an implicit tagbody that contains both statement
forms and tags that are targets of go statements in the body. The Go statements
that refer to tags in the body of the do* are not allowed in the variable specifiers,
end-test, or result forms.

After the variable specifiers are initialized, and after each variable specifier step
form evaluation (but before the body forms are evaluated) end-test is evaluated. If
the result is nil, the body of the do is evaluated. If the result is not nil, the result
forms of the do* are evaluated, and the value of the last one is returned as the
value of the do* form. No returns is nil.

The do* form is wrapped in an implict block whose name is nil, so that values
can be explicitly returned from do*, using return.

Page 1062

(dox ((i 5 (+1 1))
(1ist xdata-Tistx (cdr list))
(item (car Tist) (car list)))
((or (endp Tist)(>= i (length xdata-vectorx))) t)
(unless (= (aref xdata-vectorx i) item)
(return nil)))

For a table of related items: See the section "Iteration Functions".

do-all-symbols (var &optional result-form) &body body Special Form

Evaluates the body forms repeatedly with var bound to each symbol present in any
package (excluding invisible packages).

When the iteration terminates, result-form is evaluated and its values are returned.
The value of var is nil during the evaluation of resuli-form. If result-form is not
specified, the value returned is nil.

The return special form can be used to cause a premature exit from the iteration.
The following code uninterns all the symbols accessible in my-package, and re-
turns the list of symbols:

(let ((symbol-Tlist nil))
(do-symbols (symbol my package symbol-Tlist)
(unintern symbol)
(setq symbol-1ist (cons symbol symbol-list))))

do-external-symbols (var &optional pkg result-form) &body body Special Form

Evaluates the body forms repeatedly with var bound to each external symbol ex-
ported by pkg. pkg can be a package object or a string or symbol that is the name
of a package, or it can be omitted, in which case the value of *package* is used
by default.

When the iteration terminates, result-form is evaluated and its values are returned.
The value of var is nil during the evaluation of resuli-form. If result-form is not
specified, the value returned is nil.

The return special form can be used to cause a premature exit from the iteration.

The following code makes all the external symbols of the turbine-package accessi-
ble in the generator-package.

(do-external-symbols (symbol ’turbine-package)
(import symbol ’generator-package))

do-external-symbols has an implicit tagbody.
CLOE Note: This is a macro in CLOE.

do-local-symbols (var &optional pkg result-form) &body body Special Form

Page 1063

Evaluates the body forms repeatedly with var bound to each symbol present in
package. pkg can be a package object or a string or symbol that is the name of a
package, or it can be omitted, in which case the value of *package® is used by
default.

When the iteration terminates, result-form is evaluated and its values are returned.
The value of var is nil during the evaluation of result. If resuli-form is not speci-
fied, the value returned is nil.

The return special form can be used to cause a premature exit from the iteration.

zl:do-named block-name vars endtest &body body Special Form

Sometimes one do is contained inside the body of an outer do. The return func-
tion always returns from the innermost surrounding do, but sometimes you want
to return from an outer do while within an inner do. You can do this by giving
the outer do a name. You use zl:do-named instead of do for the outer do, and use
return-from, specifying that name, to return from the zl:do-named.

The syntax of zl:do-named is like do except that the symbol do is immediately fol-
lowed by the name, which should be a symbol. Example:

(z1:do-named out
((x 1 (+x M)
((= x 4))
(do ((y 1T (+ 1¥)))
((=y %)
(if (=y 2) (z1:return-from out (values x y))))) => 1 and 2

(z1:do-named george ((a 1 (1+ a))

(d ’foo))
((>a4) 7)
(do ((c b (cdr c)))

((nul1l c©))

(return-from george (cons b d))
o))

If the symbol t is used as the name, it is made "invisible" to returns; that is,
returns inside that zl:do-named return to the next outermost level whose name is
not t. (return-from t ...) returns from a zl:do-named named t. You can also make
a zl:do-named invisible to returns by including immediately inside it the form
(declare (si:invisible-block t)). This feature is not intended to be used by user-
written code; it is for macros to expand into.

If the symbol nil is used as the name, it is as if this were a regular do. Not hav-
ing a name is the same as being named nil

progs and zl:loops can have names just as dos can. Since the same functions are
used to return from all of these forms, all of these names are in the same name-
space; a return returns from the innermost enclosing iteration form, no matter

Page 1064

which of these it is, and so you need to use names if you nest any of them within
any other and want to return to an outer one from inside an inner one.

For a table of related items: See the section "Iteration Functions".

zl:do*-named block-name vars endtest &body body Special Form

Just like zl:do-named, except that the variable clauses are evaluated sequentially,
rather than in parallel. See the special form do*.

Examples:

(z1:do-named who-do
((i8 (+11)
(i8 (+11))
((= 1 18))
(princ 1)) => B123456789NIL

(z1:dox-named who-do
((18 (+11))
(8 (+11)))
((=118))
(princ 1)) => 01234567389NIL

For a table of related items: See the section "Iteration Functions".

do-symbols (var &optional pkg result-form) &body body Special Form

Evaluates the body forms repeatedly with var bound to each symbol accessible in
pkg. pkg can be a package object or a string or symbol that is the name of a
package, or it can be omitted, in which case the value of *package* is used by
default.

When the iteration terminates, result-form is evaluated and its values are returned.
The value of var is nil during the evaluation of result. If resuli-form is not speci-
fied, the value returned is nil.

The return special form can be used to cause a premature exit from the iteration.

dbg:document-proceed-type condition proceed-type stream Generic Function

Prints out a description of what it means to proceed, using the given proceed-type,
from this condition, on stream. This is used mainly by the Debugger to create its
prompt messages. Phrase such a message as an imperative sentence, without any
leading or trailing #\return characters. This sentence is for the human users of
the machine who read this when they have just been dumped unexpectedly into the
Debugger. It should be composed so that it makes sense to a person to issue that
sentence as a command to the system.

The compatible message for dbg:document-proceed-type is:

Page 1065

:document-proceed-type

For a table of related items, see the section "Basic Condition Methods and Init Op-
tions".

dbg:document-special-command condition special-command
Generic Function

Prints the documentation of special-command onto stream. If you don’t provide
your own method explicitly, the default handler uses the documentation string
from the dbg:special-command method. You can, however, provide this method in
order to print a prompt string that has to be computed at run-time. This is analo-
gous to dbg:document-proceed-type. The syntax is:

(defmethod (dbg:document-special-command my-flavor :my-command-keyword)
(stream)

body...)

The compatible message for dbg:document-special-command is:

:document-special-command

For a table of related items: See the section "Debugger Special Command Func-
tions".

documentation name &optional (type defun) Function

Finds the documentation string of the symbol, name, which is stored in various
different places depending on the symbol type. If there is no documentation, nil is
returned.

Symbolics Common Lisp provides the optional argument type. fype can be variable,
function, structure, type, or setf, according to the construct represented by name.
Type is a required argument in other implementations of Common Lisp, including
CLOE Runtime.

If you are using CLOE, consider the following example:

(defstruct person "The physical parts of a person”
(head xdefault-headx)
(right-arm xdefault-right-armx)
(Teft-arm xdefault-Teft-armx)
(right-leg xdefault-right-legx)
(left-leg xdefault-left-legx)
(other () :type Tist))

(documentation ’person ’structure)
=> "The physical parts of a person”

dolist (var lisiform &optional resultform) &body forms

Page 1066

Special Form
A convenient abbreviation for the most common list iteration.

dolist performs forms once for each element in the list that is the value of list-
form, with var bound to the successive elements.

You can use return and go and prog-tags inside the body, as with do.
dolist returns nil, or the value of resultform, if the latter is specified.

Examples:

(dolist (people ’(mary ann claire cindy) 4) (print people)) =>
MARY

ANN

CLAIRE

CINDY 4

(dolist (z (1 2 3 4) "hi") (princ (+ z 2))) => 3456"hi"

(dolist (j (1 2 3 4) t) (princ (- 1 3)) (if (= j 3)(return)))
=> B-1-2NIL

For a table of related items: See the section "Iteration Functions".

zl:dolist (var form) &body body
Special Form
A convenient abbreviation for the most common list iteration. zl:dolist performs

body once for each element in the list that is the value of form, with var bound to
the successive elements.

Examples:

(z1:dolist (people ’(mary ann claire cindy)) (print people)) =>
MARY

ANN

CLAIRE

CINDY NIL

(z1:dolist (z (1 2 3 4)) (princ (+ z 2))) => 3456NIL

(z1:dolist (j (1 2 3 4)) (princ (- 1 3)) (if (= j 3)(return)))
=> B-1-2NIL

Where

(z1:dolist (item (frobs foo))
(mung item))

Page 1067

is equivalent to:
(do ((1st (frobs foo) (cdr 1Ist))
(item))
((nul1l 1st))
(setg item (car 1st))
(mung item))
except that the name lIst is not used. You can use return and go and prog-tags in-
side the body, as with do. zl:dolist forms return nil unless returned from explicitly
with return.

See the special form dolist.

For a table of related items: See the section "Iteration Functions".

Provides a control device for iteration over the elements of a list, and is com-
posed of a single variable specifier, zero or more declarations, and an implicit
tagbody.

The variable specifier binds a variable to a form that must evaluate to a list. A
single, optional result form is permitted and is the value returned by the dolist.
If result is omitted, dolist returns nil (unless an explicit return is executed).
Declarations may apply to either of the other major parts of the dolist form.

The body of the dolist form is an implicit tagbody that contains both statement
forms and tags that are targets of go statements in the body. The go statements
referring to fags in the body of the dolist are not allowed in the variable speci-
fier. The body of the dolist is evaluated once for each element of the list. When
the end of the list is reached, the value of the specified variable is nil, and re-
sult form is evaluated.

The dolist form is wrapped in an implict block whose name is nil, so that val-
ues can be explicitly returned from dolist, using return.
(Tet ((i B))
(dolist (item xdata-listx t)
(unless (= (aref xdata-vectorx i) item)
(return nil))

(setg i (+ 1 1))))

See Also: CLtL 126, do, do*, loop, tagbody, dotimes

dotimes (var countform &optional resultform) &body forms Special Form
A convenient abbreviation for the most common integer iteration.

dotimes performs forms the number of times given by the value of countform, with
var bound to 0, 1, and so forth on successive iterations.

You can use return and go and prog-tags inside the body, as with do.
The function returns nil, or the value of resultform if the latter is specified.

Examples:

Page 1068

(dotimes (i 5 10)
(princ i)(princ “ ")) =>01 2 3 4 10

(dotimes (j 5 t)
(princ j)(if (= j 3) (return))) => B123NIL

Note that in CLOE, the iteration control variable var is required to take on only
fixnum values.

For a table of related items: See the section "Iteration Functions".

zl:dotimes (var form) &body body Special Form

A convenient abbreviation for the most common integer iteration. zl:dotimes per-
forms body the number of times given by the value of count, with index bound to
0, 1, and so forth on successive iterations.

Example:

(z1:dotimes (i 5)
(princ i) (princ " ")) =8 1 2 3 4 NIL

(z1:dotimes (j H)
(princ j)(if (= j 3) (return))) => B123NIL

Where

(z1:dotimes (i (// m n))
(frob 1))
is equivalent to:
(do ((i @8 (1+ 1))
(count (/7 m n)))

((= 1 count))
(frob 1))

except that the name count is not used. Note that i takes on values starting at 0
rather than 1, and that it stops before taking the value (/ m n) rather than after.
You can use return and go and prog-tags inside the body, as with do. zl:dotimes
forms return nil unless returned from explicitly with return. For example:
(z1:dotimes (i 5)
(if (eq (aref a i) ’foo)
(return 1)))

This form searches the array that is the value of a, looking for the symbol foo. It
returns the fixnum index of the first element of a that is foo, or else nil if none
of the elements are foo.

See the special form dotimes.

For a table of related items: See the section "Iteration Functions".

Page 1069

provides an control device for iteration over a sequence of natural numbers. It is
composed of a single variable specifier, zero or more declarations, and an implicit
tagbody.

The variable specifier is composed a binding of a variable to zero, and specifica-
tion of a form, countform which must evaluate to an integer. If countform is neg-
ative or zero, result is evaluated and dotimes exits. After each iteration, the value
of the control variable is incremented by one. A single, optional result form is
permitted, and is the value returned by dotimes. If result is omitted, dotimes re-
turns nil (unless an explicit return is done).

Declarations may apply to either of the other major parts of the dotimes form.

The body of the dotimes form is an implicit tagbody, containing both statement
forms, and tags which are targets of go statements in the body. Go statements re-
ferring to fags in the body of the dotimes are not allowed in the variable specifi-
er. The body of the dotimes is evaluated once for each integer value of the con-
trol variable, up to but not including the number returned by countform. After
the last iteration, and during the evaluation of result, the control variable count-
form has a value, which is the number of times the body was evaluated.

The dotimes form is wrapped in an implict block whose name is nil, so that val-
ues can be explicitly returned from dotimes, using return.

(dotimes (i 20 t)
(unless (= (aref xdata-vector-ax i) (aref xdata-vector-bx 1))
(return nil)))

See Also: CLtL 126, do, do*, loop, tagbody, dolist

double-float Type Specifier

double-float is the type specifier symbol for the predefined Lisp double-precision
floating-point number type.

The type double-float is a subtype of the type float. In Symbolics Common Lisp,
the type double-float is equivalent to the type long-float.

The type double-float is disjoint with the types short-float, and single-float.
Examples:
(typep -13D2 ’double-float) => T
(z1:typep -12D4) => :DOUBLE-FLOAT
(subtypep ’double-float ’float) => T and T ;subtype and certain
(commonp Ad@) => T
(sys:double-float-p 6.083e23) => NIL
(sys:double-float-p 1.5d9) => T
(equal-typep ’double-float ’long-float) => T
(sys:type-arglist ’double-float) => NIL and T
See the section "Data Types and Type Specifiers".

Page 1070

See the section "Numbers".

double-float-epsilon Constant

The value of this constant is the smallest positive floating-point number e of a for-
mat such that it satisfies the expression:

(not (= (float 1 e) (+ (float 1 e) e)))
The current value of double-float-epsilon is: 1.1102230246251568d-16.

double-float-negative-epsilon Constant

The value of this constant is the smallest positive floating-point number e of a for-
mat such that it satisfies the expression:

(not (= (float 1 e) (- (float 1 e) e)))
The current value of double-float-negative-epsilon is: 5.551115123125784d-17

sys:double-float-p object Function
Returns t if object is a double-precision floating-point number, otherwise nil.

For a table of related items, see the section "Numeric Type-checking Predicates".

dpb newbyte bytespec integer Function
The name of this function stands for "Deposit byte".

Returns a number that is the same as infeger except in the bits specified by byte-
spec.

bytespec is built using function byte with bit size and position arguments. Here
size indicates the number of low bits of newbyte to be placed in the result.

newbyte is interpreted as being right-justified, as if it were the result of 1db ("load
byte").

integer must be an integer.

Examples:
(dpb 1 (byte 1 2) 1) => 5
(dpb @8 (byte 1 31.) -1_31.) => -4294967296. ;3 a bignum (-1_32)

(dpb -1 (byte 46. ©8) -1_32.) => -1.
(dpb #0236 (byte 6 3) #o4567) => {to43@7
(dpb 328 (byte 7 @) 1024) = (dbp (logior 256 64) (byte 7 @) 1824)

= (dpb #b101006080 (byte 7 8) #b1600008008) = (logior 1824 64) => 10888

For a table of related items: See the section "Summary of Byte Manipulation Func-
tions".

Page 1071

dribble &optional pathname editor-p Function

Opens pathname as a "dribble file". It rebinds *standard-input®, *standard-
output*, *trace-output*, *error-output®, and *query-io* so that all of the termi-
nal interaction is directed to the file as well as to the terminal. If editor-p is
non-nil, it does not open pathname on the file computer, instead it directs the ter-
minal interaction into a Zmacs buffer whose name is pathname, creating it if it
does not exist.

To terminate the recording, reset the I/O streams, and close the file (if any), call
dribble again with no arguments:
(dribble)

Compatibility Note: The optional argument editor-p is a Symbolics extension to
Common Lisp which might not work in other implementations of Common Lisp,
and does not work in CLOE Runtime.

zl:dribble-end Function

Closes the file opened by zl:dribble-start and resets the I/O streams.

zl:dribble-start pathname &optional editor-p (concatenate-p t) (debugger-p nil)
Function

Opens pathname as a "dribble file". It rebinds *standard-input®, *standard-
output*, *trace-output*, *error-output®, and *query-io* so that all of the termi-
nal interaction is directed to the file as well as to the terminal. If editor-p is
non-nil, it does not open pathname on the file computer, instead it directs the ter-
minal interaction into a Zmacs buffer whose name is pathname, creating it if it
does not exist.

sys:dynamic-closure Type Specifier

sys:dynamiec-closure is the type specifier symbol for the predefined Lisp object of
that name.

See the section "Data Types and Type Specifiers". See the section "Scoping".

Examples:
(setq four
(et ((x 4))
(closure ’(x) ’zerop))) => #<DTP-CLOSURE 1510647>

(typep four ’sys:dynamic-closure) => T

(subtypep ’sys:dynamic-closure ’common) => NIL and NIL

dynamic-closure-alist closure Function

Page 1072

Returns an alist of (symbol . value) pairs describing the bindings which the dy-
namic closure performs when it is called. This list is not the same one that is ac-
tually stored in the closure; that one contains pointers to value cells rather than
symbols, and dynamic-closure-alist translates them back to symbols so you can
understand them. As a result, clobbering part of this list does not change the clo-
sure.

If any variable in the closure is unbound, this function signals an error. See the
section "Dynamic Closure-Manipulating Functions".

dynamic-closure-variables closure Function

Creates and returns a list of all of the variables in the dynamic closure closure. It
returns a copy of the list that was passed as the first argument to make-dynamic-
closure when closure was created. See the section "Dynamic Closure-Manipulating
Functions".

ecase object &body body Special Form
The name of this function stands for "exhaustive case" or "error-checking case".

Structurally ecase is much like case, and it behaves like case in selecting one
clause and then executing all consequents of that clause. However, ecase does not
permit an explicit otherwise or t clause. The form of ecase is as follows:

(ecase key-farm

(test consequent consequent ...)

(test consequent consequent ...)

(test consequent consequent ...)
.

The first thing ecase does is to evaluate object, to produce an object called the key
object.

Then ecase considers each of the clauses in turn. If key is eql to any item in the
clause, ecase evaluates the consequents of that clause as an implicit progn.

ecase returns the value of the last consequent of the clause evaluated, or nil if
there are no consequents to that clause.

The keys in the clauses are not evaluated; literal key values must appear in the
clauses. It is an error for the same key to appear in more than one clause. The or-
der of the clauses does not affect the behavior of the ecase construct.

If there is only one key for a clause, that key can be written in place of a list of
that key, provided that no ambiguity results. Such a "singleton key" can not be nil
(which is confusable with nil, a list of no keys), t, otherwise, or a cons.

If no clause is satisfied, ecase uses an implicit otherwise clause to signal an error
with a message constructed from the clauses. It is not permissible to continue
from this error. To supply your own error message, use case with an otherwise
clause containing a call to error.

Page 1073

Examples:

(Tet ((num 24))
(ecase num
((1 2 3) "integer")
((4 5 6) "integer"))) => non-proceedable error is signalled

(Tet ((num 3))
(ecase num
((1 2) "one two")
((3 4 56) (princ "numbers”) (princ “ three") (terpri))
(t "not today"))) => numbers three
T

For a table of related items: See the section "Conditional Functions".

For a table of related items: See the section "Condition-Checking and Signalling
Functions and Variables".

eighth list Function

Returns the eighth element of the list list. eighth is equivalent to
(nth 7 list)
For example:

(setq letters (abcdefghij) =>
(ARBCDEFGHTIJ

(eighth letters) => H

This function is provided because it makes more sense than using nth when you
are thinking of the argument as a list rather than just as a cons.

For a table of related items: See the section "Functions for Extracting from Lists".

elt sequence index
Function
Extracts an element from sequence at position index. Returns a new sequence.

sequence can be either a list or a vector (one-dimensional array). Note that nil is
considered to be a sequence, of length zero.

index must be a non-negative integer less than the length of sequence as returned
by length. The first element of a sequence has index 0.

For example:

(setq bird-1ist ’(heron stork pelican turkey)) =>
(HERON STORK PELICAN TURKEY)

Page 1074

(elt bird-Tist 2) => PELICAN

(equalp (elt bird-list 2) (third bird-list)) =>T

Note that elt observes the fill pointer in those vectors that have fill pointers. The
array-specific function aref can be used to access vector elements that are beyond
the vector’s fill pointer.

setf can be used with elt to destructively replace a sequence element with a new
value. For example:

(setf (elt bird-Tist 2) ’hawk) => HAWK

bird-Tist => (HERON STORK HAWK TURKEY)

The following example demonstrats the use of elt to reference array components
of either type Tist or type vector.

(setq seqgarr
(make-array 5 :element-type ’sequence

:initial-contents

‘((a bc)
, (vector ’d ’e ’f)
(xy)
(y 2)
(2))))

(elt (aref seqarr 8) 1) => B
(elt (aref seqarr 1) 1) => E
(setf (elt (aref seqarr @) 1) ’g) => G

(aref seqarr 1) => {(D G F)

For a table of related items: See the section "Sequence Construction and Access".

(flavor:method :empty-p si:heap) Method
Returns t if the heap is empty, otherwise returns nil.

For a table of related items: See the section "Heap Functions and Methods".

si:enable-who-calls &optional mode Function

mode describes how the who-calls database should record the callers of any func-
tion. For more information about the who-calls database, see the section "Enabling
the Who-Calls Database".

:all If you want to include callers of the Symbolics-supplied soft-
ware (that is, software contained in the distribution world) in

Page 1075

the database, use :all. This enables you to create the database
once and then save it when you save the world. (When used
with this argument, si:full-ge would discard the existing
database and then remake it).

:all-remake Includes callers of the Symbolics-supplied and site-specific soft-
ware in the database. Use this if you do not want to perform a
si:full-ge. (When used with this argument, si:full-ge would dis-
card the existing database and then remake it).

:new Enables the who-calls database to record the callers in any
layered products, special software, or programs loaded into the
world (after the site has been set). The Set Site command uses
this argument by default. :new does not cause the callers of
software in the distribution world to be recorded.

:all-no-make Enables the who-calls database to record the callers in any
layered products, special software, or programs loaded into the
world (after the site has been set), and does not cause the
callers of software in the distribution world to be recorded un-
til si:full-ge is performed. Once si:full-ge is performed, those
callers (for software in the distribution world) are recorded.

:explicit If you want only explicitly-named files to be in the database,
use the function si:enable-who-calls with the argument
:explicit.

Note: Creating a full database takes a long time and about 2000 pages of storage.

si:encapsulate function outer-function type body &optional extra-debugging-info
Macro

A call to si:encapsulate looks like:

(si:encapsulate function-spec outer-function type
body-form
extra-debugging-info)

All the subforms of this macro are evaluated. In fact, the macro could almost be
replaced with an ordinary function, except for the way body-form is handled.

function-spec evaluates to the function spec whose definition the new encapsulation
should become. outer-function is another function spec, which should often be the
same one. Its only purpose is to be used in any error messages from
si:encapsulate.

type evaluates to a symbol that identifies the purpose of the encapsulation; it says
what the application is. For example, it could be advise or trace. The list of possi-
ble types is defined by the system because encapsulations are supposed to be kept
in an order according to their type. See the variable si:encapsulation-standard-
order. fype should have an si:encapsulation-grind-function property that tells
grindef what to do with an encapsulation of this type.

Page 1076

body-form is a form that evaluates to the body of the encapsulation-definition, the
code to be executed when it is called. Backquote is typically used for this expres-
sion. See the section "Backquote-Comma Syntax". si:encapsulate is a macro be-
cause, while body is being evaluated, the variable si:encapsulated-function is
bound to a list of the form (function uninterned-symbol), referring to the unin-
terned symbol used to hold the prior definition of function-spec. If si:encapsulate
were a function, body-form would just get evaluated normally by the evaluator be-
fore si:encapsulate ever got invoked, and so there would be no opportunity to bind
si:encapsulated-function. The form body-form should contain
(apply si:encapsulated-function arglist) somewhere if the encapsulation is to live
up to its name and truly serve to encapsulate the original definition. (The variable
arglist is bound by some of the code that the si:encapsulate macro produces auto-
matically. When the body of the encapsulation is run, aerglist’s value is the list of
the arguments that the encapsulation received.)

extra-debugging-info evaluates to a list of extra items to put into the debugging in-
fo alist of the encapsulation function (besides the one starting with
si:encapsulated-definition that every encapsulation must have). Some applications
find this useful for recording information about the encapsulation for their own
later use.

When a special function is encapsulated, the encapsulation is itself a special func-
tion with the same argument quoting pattern. (Not all quoting patterns can be
handled; if a particular special form’s quoting pattern cannot be handled,
si:encapsulate signals an error.) Therefore, when the outermost encapsulation is
started, each argument has been evaluated or not as appropriate. Because each en-
capsulation calls the prior definition with apply, no further evaluation takes place,
and the basic definition of the special form also finds the arguments evaluated or
not as appropriate. The basic definition can call eval on some of these arguments
or parts of them; the encapsulations should not.

Macros cannot be encapsulated, but their expander functions can be; if the defini-
tion of function-spec is a macro, then si:encapsulate automatically encapsulates the
expander function instead. In this case, the definition of the uninterned symbol is
the original macro definition, not just the original expander function. It would not
work for the encapsulation to apply the macro definition. So during the evaluation
of body-form, si:encapsulated-function is bound to the form (edr (function unin-
terned-symbol)), which extracts the expander function from the prior definition of
the macro.

Because only the expander function is actually encapsulated, the encapsulation
does not see the evaluation or compilation of the expansion itself. The value re-
turned by the encapsulation is the expansion of the macro call, not the value com-
puted by the expansion.

si:encapsulation-standard-order Variable

The value of this variable is a list of the allowed encapsulation types, in the order
that the encapsulations are supposed to be kept in (innermost encapsulations first).
If you want to add new kinds of encapsulations, you should add another symbol to

Page 1077

this list. Initially its value is:

(advise breakon trace si:rename-within)

advise encapsulations are used to hold advice. breakon and trace encapsulations
are used for implementing tracing. si:rename-within encapsulations are used to
record the fact that function specs of the form (:within within-function altered-
function) have been defined. The encapsulation goes on within-function. See the
section "Rename-Within Encapsulations".

endp object Function

Tests for the end of a list. Returns nil when applied to a cons, and t when it is
applied to nil. endp signals an error when object is not a cons or nil.

Example:
(endp ’(heron loon sandpiper))
returns nil, since endp here is applied to a list. But:

(endp ())
returns t, since endp is applied to an empty list.

Under Cloe on the 386, endp signals an error, when the safety level is three, for
an atomic argument other than nil. If the safety level is less than three, endp, de-
pending upon the values of other optimization parameters, might signal an error
when given inappropriate arguements.

(setqg a ’(al a2 a3 ad4)) => (A1 A2 A3 A4)
(endp a) => NIL

(endp (cdddr a)) => NIL

(endp (cddddr a)) =>T

Because of its type checking properties, endp is the preferred predicate when test-
ing for the end of a list.

(proclaim ’(optimize (safety 3)))
(defun my-reverse-list(list)
"reverses a true list, endp signals error”
" if arg is not true list.”
(Tet ((curcon nil)
(ptr Tist))
(tagbody Toop
(unless (endp ptr)
(setq curcon (cons (car ptr) curcon))
(setq ptr (cdr ptr))
(go loop)))
curcon))

(my-reverse-list "(a b cd)) => (D C B A)

=> (my-reverse-1list ’abcd)
ERROR: ARGUMENT NOT A LIST

Page 1078

For a table of related items: See the section "Predicates that Operate on Lists".

clos:ensure-generic-function function-specifier &key :lambda-list :argument-
precedence-order :declare :documentation :generic-function-class :method-combination
:method-class :environment Function

Defines a new generic function, or modifies an existing one. This function is part
of the underlying implementation of -clos:defgeneric and clos:defmethod.
clos:ensure-generic-function returns the generic function object.

function-specifier ~ Either a symbol or a list of the form (future-common-lisp:setf
symbol); this names the generic function.

keywords The keywords have the same semantics as the options docu-
mented in clos:defgeneric.

The :method-class and :generic-function-class keywords can
be either class objects or names (in clos:defgeneric, they must
be names). Symbolics CLOS supports only the value
clos:standard-method for :method-class and the value
clos:standard-generic-function for :generic-function-class.

There is an additional keyword, :environment, which is the
same as the &environment argument to macro expansion
functions. It is typically used to distinguish between compile-
time and run-time environments.

If function-specifier does not name a generic function (or any other kind of func-
tion), then a new generic function is created. If function-specifier names an ordi-
nary Lisp function, a macro, or a special form, an error is signaled.

If function-specifier names an existing generic function, then that generic function
is modified, according to the keyword arguments :argument-precedence-order,
:declare, :documentation, :generic-function-class, :method-combination, and
:method-class. If any of those keyword values differ from the corresponding op-
tions in the generic function, then the keyword value replaces the existing option.

If the :lambda-list keyword is unsupplied and the generic function already exists,
then the existing lambda-list is left alone. If the :lambda-list keyword is unsup-
plied and the generic function does not already exist, then the generic function is
created with no lambda-list; the lambda-list will be created from the first method
defined for the generic function. If the :lambda-list keyword is supplied with a
value of nil, then the generic function accepts no arguments.

An error is signaled if the value of :lambda-list is not congruent with the lambda-
lists of all existing methods.

&environment Lambda List Keyword

This keyword is used with macros only. It should be followed by a single variable
that is bound to an environment representing the lexical environment in which the

Page 1079

macro call is to be interpreted. This environment is not required to be the com-
plete lexical environment; it should be used only with the function macroexpand
for the sake of any local macro definitions that the macrolet construct may have
established within that lexical environment. &environment is useful primarily in
the rare cases where a macro definition must explicitly expand any macros in a
subform of the macro call before computing its own expansion.

:eof Message

Indicates the end of data on an output stream. This is different from :close be-
cause some devices allow multiple data files to be transmitted without closing.
:close implies :eof when the stream is an output stream and the close mode is not
:abort.

eq x y Function

Returns t if and only if x and y are the same object. Note that things that print
the same are not necessarily eq to each other. In particular, numbers with the
same value need not be eq, and two similar lists are usually not eq. Examples:

(eq ’a ’b) => nil

(eq ’a ’a) => t

(eq (cons ’a ’b) (cons ’a ’b)) => nil

(setq x (cons ’a ’b)) (eq x x) => t

Note that in Symbolics Common Lisp and CLOE equal fixnums are eq; this is not
true in Maclisp. Equality does not imply eqness for other types of numbers. To
compare numbers, use =.

eq is implemented by comparing pointers. Certain datatypes, such as small inte-
gers and characters, can be stored locally in a pointer space. For these data ob-
jects, the same number or character object will yield true when compared by eg.
However, numbers with the same value are usually not the same object. Exercise
caution in these cases. Consider this function when comparing numbers and char-
acters.

See the section "Numeric Comparisons".

si:eq-hash-table Flavor

Creates an old style Zetalisp hash table using the eq function for comparison of
the hash keys. This flavor is superseded by table:basic-table. It accepts the follow-
ing init options:

:size Sets the initial size of the hash table in entries, as an integer.
The default is 100 (decimal). The actual size is rounded up
from the size you specify to the next size that is good for the
hashing algorithm. An automatic rehash of the hash table
might occur before this many entries are stored in the table
depending upon the keys being stored.

Page 1080

:area Specifies the area in which the hash table should be created.
This is just like the :area option to zl:make-array. See the
function zl:make-array. The default is sys:working-storage-
area.

:growth-factor Specifies how much to increase the size of the hash table when
it becomes full. If it is an integer, the hash table is increased
by that number. If it is a floating-point number greater than
one, the new size of the hash table is the old size multiplied
by that number.

:rehash-before-coldCauses zl:disk-save to rehash this hash table if its hashing
has been invalidated. (This is part of the before-cold initial-
izations.) Thus every user of the saved world does not have to
waste the overhead of rehashing the first time they use the
hash table after cold booting.

For eq hash tables, the hashing is invalidated whenever
garbage collection or world compression occurs because the
hash function is sensitive to addresses of objects, and those op-
erations move objects to different addresses. For equal hash
tables, the hash function is not sensitive to addresses of ob-
jects that sxhash knows how to hash but it is sensitive to ad-
dresses of other objects. The hash table remembers whether it
contains any such objects.

Normally a hash table is automatically rehashed "on demand"
the first time it is used after the hashing has become invali-
dated. This first :get-hash operation is therefore much slower
than normal.

The :rehash-before-cold option should be used on hash tables
that are a permanent part of your world, likely to be saved in
a world saved by zl:disk-save, and to be touched by users of
that world. This applies both to hash tables in Genera and to
hash tables in user-written subsystems saved in a world.

eql x y Function

Returns t if its arguments are eq, if they are numbers of the same type with the
same value, or if they are character objects that represent the same character.
The predicate = compares the values of two numbers even if the numbers are of
different types.

Examples:

Page 1081

(eql ’a ’a) => t

(eql 3 3) = t

(eql 3 3.8) => nil

(eql 3.8 3.8) => t

(eql #t/a tt/a) => t

(eql (cons ’a ’b) (cons ’a ’b)) => nil
(eql “foo" "FO0") => nil

The following expressions might return either t or nil:

(eql ’(a . b) ’(a . b))
(eql “foo" "foo")

In Symbolics Common Lisp:

(eql 1.0s0 1.0d@) => nil
(eql 0.0 -0.0) => nil

equal x y
Function

Returns t if its arguments are structurally similar (isomorphic) objects. If the two
objects are eql, then they are also equal. If the objects are of different data types,
then they are not equal.

Objects of each data type are compared differently for equal. equal returns t in
the following cases:

Conses The two cars are equal and the two cdrs are equal.

Strings The strings are of the same length, and corresponding charac-
ters of each string are char=.

Bit-vectors The vectors are of the same length, and corresponding ele-
ments of each vector are =.

Numbers The numbers are eql; that is, they must have the same type
and the same value.

Characters The characters are eql; that is, they must be character objects
representing the same character. The code and bits information
are taken into account for equal, but font information is not.

Symbols The symbols are eq; that is, they must be addressing the same
memory location.

Arrays The arrays are eq; that is, they must be addressing the same
array in memory.

Pathnames The pathname objects are equivalent; that is, all of the corre-
sponding components (host, device, directory name, and so on)
are the same. The sensitivity of the case of the pathname ob-
ject is dependent on the file naming conventions of the file
system the pathname object resides in.

For example:

(equal
(equal
(equal
(equal
(equal
(equal
(equal
(progn
(equal
(equal
(equal
(equal
(equal

An intuitive
their printed

Page 1082

’a ’a) => T

’a 'b) => NIL

3.0 3.0) =T

3 3.8) => NIL

#ic(3 -4.0) #ic(3 -4)) => NIL

(@ . h) ’(@a. b)) =T

(cons ’a ’'h) (cons ’a ’c)) => NIL
(setg x "(a . b)) (equal x x)) =>T
IN\A H\a) => NIL

A INA) => T

#\c-A #\A) => NIL

"Foo" "Foo") =>T

"FOO" "foo") => NIL

definition, which is not quite correct, is that two objects are equal if
representation is the same. For example:

(setg a (1 2 3))
(setg b ’(1 2 3))
(eq a b) => NIL

(equal

ab) =T

(setq a ’a) => A
(setg b a) => A

(equal

zl:equal x y

ab) =T

Function

Returns t if its arguments are similar (isomorphic) objects. See the function eq.
Two numbers are zl:equal if they have the same value and type (for example, a
flonum is never zl:equal to an integer, even if = is true of them). For conses,
zl:equal is defined recursively as the two cars being zl:equal and the two edrs be-
ing equal. Two strings are zl:equal if they have the same length, and the charac-
ters composing them are the same. See the function string-equal. Alphabetic case
is ignored. All other objects are zl:equal if and only if they are eq. Thus zl:equal
could have been defined by:

(defun

z1:equal (x y)

(cond ((eq x y) t)

((neq (typep x) (typep y)) nil)

((numberp x) (= X y))

((stringp x) (string-equal x y))

((Tistp x) (and (equal (car x) (car y))
(equal (cdr x) (cdr y))))))

As a consequence of the above definition, it can be seen that zl:equal may com-

pute forever

when applied to looped list structure. In addition, eq always implies

zl:equal; that is, if (eq a b) then (zl:equal a b). An intuitive definition of

Page 1083

zl:equal (which is not quite correct) is that two objects are zl:equal if they look
the same when printed out. For example:

(setg a ’(1 2 3))

(setg b ’(1 2 3))

(eq a b) => nil

(zl:equal a h) => t
(z1:equal "Foo" "foo") => t

si:equal-hash x Function

Computes a hash code of an object, and returns it as an integer. A property of
si:equal-hash is that (equal x y) always implies (= (si:equal-hash x) (si:equal-
hash y)). The number returned by si:equal-hash is always a nonnegative integer,
possibly a large one. si:equal-hash tries to compute its hash code in such a way
that common permutations of an object, such as interchanging two elements of a
list or changing one character in a string, always changes the hash code.

si:equal-hash uses %pointer to define the hash key for data types such as arrays,
stack groups, or closures. This means that some of the hash keys in equal hash
tables are based on a virtual memory address. Hash tables that are at all depen-
dent on memory addresses are rehashed when the garbage collector flips.

si:equal-hash returns a second value (t, :dynamic or nil), if it has used %pointer
to define the hash key.

Value meaning

nil Returned if the hash does not depend on the virtual address of
the object being hashed.

:dynamic Returned if the hash depends on the virtual address, but none
of the dependent addresses are ephemeral. That is, if :dynamic
is returned, future calls to si:equal-hash for the same object
might not return the same number if an intervening dynamic
GC occurs.

t Returned if the hash depends on the virtual address and at
least one of the virtual addresses is ephemeral. That is, if t is
returned, future calls to siiequal-hash for the same object
might not return the same number if an intervening ephemeral
GC occurs. The value t is the strongest and must be preserved
when merging more than one result.

For example, if running-flag is the merged flag that will eventually be returned,
the following form will efficiently do a hash/merge step:

(multiple-value-bind (hash flag) (si:equal-hash object)
;3 t is strongest, :dynamie next, do it fast
(setq running-flag (or (eq flag ’t) running-flag flag))
hash)

Page 1084

Here is an example of how to use si:equal-hash in maintaining hash tables of ob-
jects:

(defun knownp (x &aux i bkt) ;look up x in the table
(setq i (remainder (si:equal-hash x) 176))
;The remainder should be reasonably randomized.
(setg bkt (aref table 1))
;bkt is thus a 1ist of all those expressions that
;hash into the same number as does x.
(memg x bkt))

To write an "intern" for objects, one could:

(defun sintern (x &aux bkt i tem)
(setq i (remainder (si:equal-hash x) 2n-1))
;2n-1 stands for a power of 2 minus one.
;This is a good choice to randomize the
;result of the remainder operation.
(setq bkt (aref table 1))
(cond ((setq tem (memg x bkt))
(car tem))
(t (aset (cons x bkt) table i)

X))

For a table of related items: See the section "Table Functions".

si:equal-hash-table Flavor

Creates an old style Zetalisp hash table using the zl:equal function for comparison
of the hash keys. This flavor is superseeded by table:basic-table. It accepts the
following init option as well as those described for eq hash tables. See the flavor
si:eq-hash-table.

:rehash-threshold Specifies how full the table can be before it must grow. This is
typically a flonum. The default is 0.8, which represents 80
percent.

equal-typep typel type2 Function

Returns t if fypel and type2 are equivalent and denote the same data type. For the
standard type specifiers in Symbolics Common Lisp, see the section "Type Specifier
Symbols".

Examples:

Page 1085

(equal-typep ’bit ’(unsigned-byte 1)) =>T
(equal-typep ’double-float ’long-float) => T
(equal-typep ’bit ’(integer 8 1)) =>T
(equal-typep ’short-float ’single-float) => T
(equal-typep ’pathname ’complex) => NIL

equalp x y Function

Two objects are equalp if they are equal. Objects that have components are
equalp if they are of the same type and corresponding components are equalp.

equalp differs from equal when it compares characters, strings and arrays. equalp
returns t for character objects when they satisfy char-equal. char-equal ignores
case, as well as font information. For example:

(equalp #\A tha) => T
(equalp #\A H\NA) => T
(equalp #\c-A #\A) => NIL

equalp returns t for arrays when they have the same dimensions, the dimensions
match, and the corresponding elements are equalp. A string and a general array
that happens to contain some characters will be equalp even though it is not
equal. If either argument has a fill pointer, the fill pointer limits the number of
elements examined by equalp. Because equalp performs element-by-element com-
parisons of strings and ignores the alphabetic case of characters, case distinctions
are also ignored when equalp compares strings. For example:

(setq string "Any Random String") => "Any Random String”

(setq array (make-array 17 :initial-contents "any random string”))
=> H#<ART-Q-17 40102625>

(equalp string array) => T

(equalp 3 3.0) => t

(equalp "Abc" "abc") => t

error format-string &rest format-args Function
Signals conditions that are not proceedable.
error takes three possible argument lists, as follows:

error {format-string &rest format-args}
or

error {condition &rest init-options}

or

error {condition-object}

Case 1:

Page 1086

When error is called with format-string and format-args, under Genera it signals a
zl:ferror condition. Under CLOE Runtime system, it signals simple-error created
by the following code:

(MAKE-CONDITION ’SIMPLE-ERRCR
:FORMAT-STRING datum
:FORMAT-ARGUMENTS arguments)

format-string is given as a control string to format along with format-args to con-
struct an error message string.

Case 2:

When called with the arguments condition and init-options, a condition of type con-
dition with init options as specified by init-options is created and is signalled.

condition 1s the name of a condition flavor.

init-options are the init options specified when the error object is created; they are
passed in the :init message.

Used this way, error is similar to signal but restricted as follows:

e error sets the proceed types of the error object to nil so that it cannot be pro-
ceeded.

e If no handler exists, the Debugger assumes control, whether or not the object is
an error object.

e error never returns to its caller.

Compatibility Note: The arguments condition and init-options are Symbolics exten-
sions to Common Lisp.

Case 3:

In the third and more advanced form of error, condition-object can be a condition
object that has been created with make-condition but not yet signalled. In this
case, init-options is ignored.

Note: The argument condition-object is a Symbolics extension to Common Lisp.

For compatibility with the old Maclisp error function, error tries to determine
that it has been called with Maclisp-style arguments and turns into an zl:fsignal
or zl:ferror as appropriate. If condition is a string or a symbol that is not the
name of a flavor, and error has no more than three arguments, error assumes it
was called with Maclisp-style arguments.

Note that in CLOE, if typep condition cloe::*break-on-signals* is true, then the
debugger will be entered prior to beginning the signalling process. The signalling
process can be continued using the continue restart. This is true also for all other
functions and macros which signal errors, such as cerror, assert, and check-type.

For a table of related items: See the section "Condition-Checking and Signalling
Functions and Variables".

Page 1087

error-message-hook Variable
This variable lets you customize the error message printed by the Debugger.

You can bind *error-message-hook® to a one-argument function. Before printing
an error message the Debugger checks the value of *error-message-hook*; if this
variable is bound to a non-nil value, the Debugger evaluates it and displays the re-
sult at the end of the Debugger message.

Examples:
(defun my-error-hook ()

(format t “This is the error hook"))
(setq dbg:xerror-message-hookx ’dbg:my-error-hook)

(defun get-plists (list-of-objects)
(let ((dbg:xerror-message-hookx
(Tambda ()
(format t "While getting properties of ~S" list-of-objects))))
(symbol-plist list-of-objects))) => GET-PLISTS

(get-plists ’(a b c))

Trap: The argument given to the SYS:PROPERTY-CELL-LOCATION instruction, (A B C),
was not a symbol.
While getting properties of (A B C)

SYMBOL-PLIST:
Arg @ (SYMBOL): (A B C)
s-A, <RESUME>: Supply replacement argument

s-B: Return a value from the PROPERTY-CELL-LOCATION instruction
s-C: Retry the PROPERTY-CELL-LOCATION instruction
s-D: <ABORT>: Return to Lisp Top Level in Dynamic Lisp Listener 1

— Resume Proceed

Supply replacement argument

Form to evaluate and use as replacement argument:

’integer

(ZWEI : ZMACS-BUFFERS ((:SAGE-TYPE-SPECIFIER-RECORD #<SECTION-NODE Sage Type
Specifier Record INTEGER 254116776>))

*error-output® Variable

The value is a stream to which error messages should be sent. Normally, this is
the same as *standard-output*, but *standard-output* might be bound to a file
and *error-output* left going to the terminal or a separate file of error messages.

Page 1088

(with-open-stream (outstream “myfile" :direction :output)
(let ((xstandard-outputx outstream)
(xerror-outputx outstream)) ;redirects xerror-outputx to myfile.lisp
(fun-1ikely-to-signal-an-erraor)) ;capture any error messages in file
;end of let restores xerror-outputx, etc.
;more forms
) ;end of with-open-file closes file

zl:error-output Variable

In your new programs, we recommend that you use the variable *error-output*
which is the Common Lisp equivalent of zl:error-output. See *error-output®.

error-restart (flavors description &rest args) &body body Special Form

This form establishes a restart handler for flavors and then evaluates body. If the
handler is not invoked, error-restart returns the values produced by the last form
in body and the restart handler disappears. When the restart handler is invoked,
control is thrown back to the dynamic environment inside the error-restart form
and execution of body starts all over again. The format is:

(error-restart (flavors description)
form-1
form-2
)

flavors is either a condition or a list of conditions that can be handled. description
is a list of arguments to be passed to format to construct a meaningful description
of what would happen if the user were to invoke the handler. args are evaluated
when the handler is bound. The Debugger uses these values to create a message
explaining the intent of the restart handler.

For a table of related items: See the section "Restart Functions".

error-restart-loop (flavors description &rest args) &body body
Special Form

Establishes a restart handler for flavors and then evaluates the body. If the han-
dler is not invoked, error-restart-loop evaluates the body again and again, in an
infinite loop. Use the return function to leave the loop. This mechanism is useful
for interactive top levels.

If a condition is signalled during the execution of the body and the restart handler
is invoked, control is thrown back to the dynamic environment inside the error-
restart-loop form and execution of the body is started all over again. The format
is:

Page 1089

(error-restart-loop (flavors description)
form-1
form-2
o)

flavors is either a condition or a list of conditions that can be handled. description
is a list of arguments to be passed to format to construct a meaningful description
of what would happen if the user were to invoke the handler. The Debugger uses
these values to create a message explaining the intent of the restart handler.

For a table of related items: See the section "Restart Functions".

errorp thing
Function
Determines if thing is an error object; returns t if it is, and nil otherwise.
(errorp x) <=> (typep x ’error)

For a table of related items, see the section "Condition-Checking and Signalling
Functions and Variables".

errorp thing
Function
Determines if thing is an error object; returns t if it is, and nil otherwise.
(errorp x) <=> (typep x ’error)

For a table of related items, see the section "Condition-Checking and Signalling
Functions and Variables".

etypecase object &body body Special Form

The name of this function stands for "exhaustive type case" or "error-checking type
case". etypecase is similar to typecase, except that it does not allow an explicit
otherwise or t clause, and it signals a non-continuable error instead of returning
nil if no clause is satisfied.

etypecase is a conditional that chooses one of its clauses by examining the type of
an object. Its form is as follows:

(etypecase farm

(types consequent consequent ...)
(types consequent consequent ...)
)

First etypecase evaluates form, producing an object. etypecase then examines
each clause in sequence. fypes in each clause is a type specifier in either symbol or
list form, or a list of type specifiers. The type specifier is not evaluated. If the ob-

Page 1090

ject is of that type, or of one of those types, then the consequents are evaluated
and the result of the last one is returned (or nil if there are no consequents in
that clause). Otherwise, etypecase moves on to the next clause.

If no clause is satisfied, etypecase signals an error with a message constructed
from the clauses. It is not permissible to continue from this error. To supply your
own error message, use typecase with an otherwise clause containing a call to
error.

For an object to be of a given type means that if typep is applied to the object
and the type, it returns t. That is, a type is something meaningful as a second ar-
gument to typep.

See the section "Data Types and Type Specifiers".

It is permissible for more than one clause to specify a given type, particularly if
one is a subtype of another; the earliest applicable clause is chosen. Thus, for
etypecase, the order of the clauses can affect the behavior of the construct.

Examples:

(defun tell-about-car (x)
(etypecase (car x)
(string "string”))) => TELL-ABOUT-CAR
(tell-about-car ’("word” "more")) => "string”
(tell-about-car ’(a 1)) => non-proceedable error is signalled

(defun tell-about-car (x)
(etypecase (car x)

(fixnum “The car 1is a number.")

((or string symbol) "symbol or string”)

(otherwise "I don’t know."))) => TELL-ABOUT-CAR
(tell-about-car (1 a)) => “The car is a number.”
(tell-about-car ’(a 1)) => "symbol or string”
(tell-about-car ’("word” "more")) => "symbol or string”
(tell-about-car ’(1.8)) => "I don’t know."

For a table of related items: See the section "Conditional Functions".

For a table of related items: See the section "Condition-Checking and Signalling
Functions and Variables".

eval form &optional env Function

Evaluates form, and returns the result. Example:

(setg x 43 foo ’bar)
(eval (list ’‘cons x ’foo))
=> (43 . bar)

It is unusual to explicitly call eval, since usually evaluation is done implicitly. If
you are writing a simple Lisp program and explicitly calling eval, you are probably
doing something wrong. eval is primarily useful in programs that deal with Lisp
itself.

Page 1091

Also, if you are only interested in getting at the value of a symbol (that is, the
contents of the symbol’s value cell), then you should use the primitive function
symbol-value.

The actual name of the compiled code for eval is "si:*eval" because use of the
evalhook feature binds the function cell of eval.

Compatibility Note: The optional argument env, which defaults to the null lexical
environment, is a Symbolics extension to Common Lisp. You cannot use Env in
most other implementations of Common Lisp including CLOE Runtime. See the
section "Some Functions and Special Forms".

sys:eval-in-instanece instance form Function

Evaluates form in the lexical environment of instance. The following form returns
the sum of the instance variables x and y of the instance this-box-with-cell:

(sys:eval-in-instance this-box-with-cell ’(+ x y))
=> 6

You can use setq to modify an instance variable; this is often useful in debugging.
If you need to evaluate more than one form in the lexical environment of the in-
stance, you can use sys:debug-instance: See the function sys:debug-instance.

For a summary of all functions, macros, special forms, and variables related to
Flavors: See the section "Summary of Flavor Functions and Variables".

eval-when times-list &body forms Function

Allows you to tell the compiler exactly when the body forms should be evaluated.
times-list can contain one or more of the symbols load, compile, or eval, or can be
nil.

The interpreter evaluates the body forms only if the times-list contains the symbol
eval; otherwise eval-when has no effect in the interpreter.
If symbol is present Then forms are

load Written into the compiled code file to be evaluated when
the compiled code file is loaded, with the exception that
defun forms put the compiled definition into the compiled

code file.
compile Evaluated in the compiler.
eval Ignored by the compiler, but evaluated when read into the

interpreter (because eval-when is defined as a special
form there).

Example 1: Normally, top-level special forms such as defprop are evaluated at load
time. If some macro expansion depends on the existence of some property, for ex-
ample, constant-value, the definition of that property must be wrapped inside an

Page 1092

(eval-when (compile) ...) so that the property is available at compile (macro ex-
pansion) time.

(eval-when (compile load eval)
(defprop three 3 constant-value))

Example 2: eval-when should be used around defconstants of complex expressions.
This is because the compiler does not maintain an environment acceptable to eval
containing defconstants

(eval-when (compile load eval)
(defconstant name expr))

In other words, if you are sure that (1) evaluating the expr in the global environ-
ment gives the correct results, and (2) that no harm is done by changing the cur-
rent environment to have the (possibly new) value of name, then you can use the
global environment as a substitute for the compilation environment.

evenp integer Function

Returns t if integer is even, otherwise nil. If infeger is not an integer, evenp sig-
nals an error.

(evenp 1) => nil

(evenp @) => t

(evenp (x 2 (random n))) => t

See the section "Numeric Property-checking Predicates".

For a table of related items, see the section "Numeric Property-checking Predi-
cates".

every predicate sequence &rest more-sequences Function

Returns nil as soon as any invocation of predicate returns nil. predicate must take
as many arguments as there are sequences provided. predicate is first applied to
the elements of the sequences with an index of 0, then with an index of 1, and so
on, until a termination criterion is reached or the end of the shortest of the se-
quences is reached. If the end of a sequence is reached, every returns a non-nil
value. Thus considered as a predicate, it is true if every invocation of predicate is
true.

sequence can be either a list or a vector (one-dimensional array). Note that nil is
considered to be a sequence, of length zero.

For example:

(every #’oddp (1 3 5)) => T
(every #’equal (1 2 3) (3 2 1)) => NIL

(setg limit-value 1824 sequence (vector 16 64 512 128 32))

Page 1093

(every #’ (lambda(x) (<= x limit-value)) sequence) => t

If predicate has side effects, it can count on being called first on all those ele-
ments with an index of 0, then all those with an index of 1, and so on.

For a table of related items: See the section "Predicates that Operate on Lists".

For a table of related items: See the section "Predicates that Operate on Se-
quences".

zl:every list pred &optional (step #cdr) Function

Returns t if pred returns non-nil when applied to every element of list, or nil if
pred returns nil for some element. If step-function is specified, it replaces # ’edr as
the function used to get to the next element of the list; # ’ceddr is a typical func-
tion to use here. For example:

(zl:every (1 3 5) f’oddp) => T
(zl:every (1 2 3 4 5) f#’oddp) => NIL

(zl:every (1 2 3 45) #’oddp #’cddr) => T
For a table of related items: See the section "Predicates that Operate on Lists".

For a table of related items: See the section "Predicates that Operate on Se-
quences".

exp number Function

Returns e raised to the numberth power, where e is the base of natural logarithms.
If number is an integer or a single-float, the result is converted to a single-float; if
it is a double-float, the result is double-float.

Examples:

(exp 1) => 2.7182817

(exp #c(8 -3)) => #C(-0.9899925 -8.14112002)
(exp 0.08) => 1.083

(exp 2) => 7.389

For a table of related items: See the section "Powers of e and Log Functions".

zl:explode x Function

Returns a list of characters represented by symbols that are the characters that
would be typed out by (prinl x) (that is, the slashified printed representation of x).
Example:

(z1:explode *(+ 712 3)) => (Il + L I /L 110 12171011131 D)
(Note that there are slashified spaces in the above list.)

Page 1094

zl:explodec x Function

Returns a list of characters represented by symbols that are the characters that
would be typed out by (prine x) (that is, the unslashified printed representation of
x). Example:

(zl:explodec " (+ 712 3)) => (Il + | [110 120 1 1 131 1))

zl:exploden x Function

Returns a list of characters (as integers) that are the characters that would be
typed out by (princ x) (that is, the unslashified printed representation of x). Ex-
ample:

(z1:exploden ’(+ /712 3)) => (#/(#/+ #/Space #/1 #/2 #/Space #/3 #/))

export symbols &optional package Function

The symbols argument should be a list of symbols or a single symbol. If symbols is
nil, it is treated like an empty list. These symbols become available as external
symbols in package. package can be a package object or the name of a package (a
symbol or a string). If unspecified, package defaults to the value of *package*. Re-
turns t. The :export option to defpackage and make-package is equivalent.

The following bit of code uses intern with multiple-value-bind to create a new
symbol or determine the status of an old one. If the status of the interned symbol
is :internal, then the symbols is exported.

=> (multiple-value-bind (symbol status) (intern "new-symbol")
(when (or (null status) (eq status ’:internal))
(export symbol)))
=T

If "new-symbol" is truly a new symbol, then intern would have made it an internal
symbol. If we now execute the following code on "new-symbol", we will see that it
is now an external symbol, since it has been exported.

=> (multiple-value-bind (symbol status) (find-symbol "new-symbol")

status)
=> :EXTERNAL
expt base-number power-number Function

Computes and returns base-number raised to the power power-number. If the base-
number is of type rational and the power-number is an integer, the calculation is
exact (using the rule of rational canonicalization where applicable), and the result
is of type rational; otherwise, a floating-point approximation may result.

If power-number is zero of type integer, the result is the value one in the type of
base-number. This is true even if base-number is zero of any type. If power-number
is a zero of any other data type, the result is the value one, in the type of the ar-

Page 1095

guments after the application of the coercion rules, except as follows. An error re-
sults if the base-number is zero and the power-number is a zero not of type integer.

If base-number is negative and power-number is not an integer, the result of expt
can be complex, even though neither argument is complex. expt always returns the
principal complex value.

Complex canonicalization is applied to complex results.

Examples:
(expt 2 3) => 8
(expt .5 3) => 0.125
(expt -49 1/2) => f#{ic(@ 7) ;the principal value
(expt 1/2 -2) => 4
(expt 2. @) => 1
(expt @ 56) => 0@
(expt @ 3/2) => @
(expt 6.8 5) => 0.0
(expt 0.0 #c(3 4)) => 0.0
(expt ffc(@ 7) 2) => -49

For a table of related items, see the section "Arithmetic Functions".

zl:expt num expt Function

Returns num raised to the expith power. The result is an integer if both argu-
ments are integers (even if expt is negative!) and floating-point if either num or
expt or both is floating-point. If the exponent is an integer a repeated-squaring al-
gorithm is used, while if the exponent is floating the result is (zl:exp (* expt (log
num))).

(expt 3/5 2) — 9/25
(expt 4 3) — 64

(expt (exp 1) 2) — 7.389
The following functions are synonyms of zl:expt:

zl:»

z1:~$

For a table of related items: See the section "Arithmetic Functions" and see CLtL
203.

sys:external-symbol-not-found Flavor

A ":" qualified name referenced a name that had not been exported from the speci-
fied package.

Page 1096

The :string message returns the name being referenced (no symbol by this name
exists yet). The :package message returns the package.

The :export proceed type exports a symbol by that name and uses it.

false &rest ignore Function

Takes no arguments and returns nil. See the section "Functions and Special Forms
for Constant Values".

fboundp symbol Function

Returns t if symbol’s function cell contains a function definition, or if symbol
names a special form or a macro. Otherwise it returns nil. Since fboundp returns
t for special forms and macros, if you want to check for these cases use special-
form-p or macro-function.

(fboundp alarm-handler) => nil

(defun alarm-handler ()
(setq xalarmsx @))

(fboundp ’alarm-handler) => t

See the section "Functions Relating to the Function Cell of a Symbol".

feeiling number &optional (divisor 1) Function

Like ceiling, except that the first returned value is always a floating-point number
instead of an integer. The second returned value is the remainder. If number is a
floating-point number and divisor is not a floating-point number of longer format,
then the first returned value is a floating-point number of the same type as num-
ber.

Returns the floating point equivalent of the least integer greater than or equal to
number; or, in the case of a supplied second argument, returns the floating point
equivalent of the least integer greater than or equal to number divided by divisor.
A second value, the remainder, is also returned. The remainder returned is the
same as that returned by ceiling applied to the same arguments.

Examples:

(fceiling 5) => 5.8 and @

(fceiling -5) => -5.0 and @

(fceiling 5.2) => 6.8 and -0.3000002
(fceiling -5.2) => -5.0 and -0.19999981
(fceiling 5 3) => 2.0 and -1

(fceiling -5 3) => -1.8 and -2
(fceiling 5.2 4) => 2.0 and -2.8000002

Page 1097

(fceiling -5.2 4) => -1.0 and -1.1999998
(fceiling 4.2d@) => 5.08d0 and -08.7999999999999998d0
(fceiling -4.2d8) => -4.08d0 and -0.20000000000000018d0

For a table of related items: See the section "Functions that Divide and Return
Quotient as Floating-point Number".

fdefine function-spec definition &optional carefully-flag no-query-flag Function

The primitive that defun and everything else in the system use to change the def-
inition of a function spec. If carefully is non-nil, which it usually should be, only
the basic definition is changed, the pre