
Upgrading to Genera 8.0

Preface

Upgrading to Genera 8.0 presents an overview of porting applications running in

Genera 7.2 or Genera 7.4 Ivory to Genera 8.0. Information here will be useful to

you if you are:

• Porting applications running in Genera 7.2 on 3600-series machines to Genera

8.0. 

• Porting applications running in Genera 7.4 Ivory on Ivory-based machines to

Genera 8.0. 

• Porting applications running on the 3600 series to the Ivory series.�

In addition, information is included on converting Lisp code from Zetalisp to Sym-

bolics Common Lisp, and on converting from Flavors to CLOS. Note that flavors

are fully supported in Genera 8.0; conversion tools are provided primarily for rea-

sons of portability. 

Porting Your Application to Genera 8.0

Genera 8.0 is the first Genera release that runs uniformly across all Symbolics

machines: the 3600 series and the XL400 , Symbolics UX-family, and MacIvory. 

Major features of this release include: 

• Source compatibility. The same source code is supported for all types of Symbol-

ics machines in Genera 8.0. In most cases, code that ran in Genera 7.2 or Gen-

era 7.4 Ivory can be run in Genera 8.0 after recompilation.

• Portability. Genera 8.0 supports the Common Lisp Object Standard (CLOS) for

portability of Lisp programs that use this standard. (A tool for converting code

that uses Flavors to CLOS is provided. Such a conversion may be useful for

porting programs to other Common Lisp systems. However, it is important to

note that such a conversion is not required for running code in Genera 8.0.)

• Networking and I/O. Many areas of the system provide more robust and faster

performance. Genera 8.0 includes support for the Sun Remote Procedure Call

(RPC) protocol. In addition, handling of character I/O streams, support of

Postscript hardcopy, Symbolics Network File System (NFS) and the X Window

System client function are improved. (Symbolics NFS and Symbolics X Window

System are Genera layered products).

• New Scheduler. Users of the 3600 series can now use a new Scheduler facility,

first released as part of the Ivory-only Genera 7.3 release. 



Page 861

• Many bug fixes and improvements. The compiler produces faster code, and the

Common Lisp Developer is part of Genera 8.0.�

The Genera 8.0 Release Notes describe changes made since Genera 7.4 Ivory. In

addition, many chapters of the release notes contain a section, "Changes to ...

Since Genera 7.2", for users of 3600-family machines migrating from Genera 7.2.

These sections list changes made to Genera in Genera 7.3 Ivory and Genera 7.4

Ivory.

One important addition in 8.0 is Symbolics CLOS, our implementation of the Com-

mon Lisp Object System. For more information, see the section "CLOS is Available

in Genera 8.0". For information on converting from Flavors to CLOS, see the sec-

tion "Flavors to CLOS Conversion".

Code Recompilation�

Genera 8.0 provides source code compatibility with Genera 7.2 for the 3600 series

and Genera 7.4 Ivory for the Ivory series. Most users will need only to recompile

their programs to run them under Genera 8.0. 

For Genera 7.2 users, recompilation is required if you are porting programs from

Genera 7.2 on the 3600 series. Some code may seem to run properly without re-

compilation, but running such code in Genera 8.0 will introduce subtle bugs and

unexpected behavior.

For Genera 7.4 Ivory users, if you are porting code from Genera 7.4 Ivory on a

Symbolics UX-family, XL400, or MacIvory, we recommend that you recompile your

code to take advantage of bug fixes and performance improvements, but it is not a

requirement.

Applications using Symbolics layered products will also benefit from recompilation. 

For both layered-language and Symbolics Common Lisp applications, object code

produced for a 3600-series machine (in binary files or world loads) may not be

loaded into an Ivory-based machine, or vice versa. In such cases, recompilation is a

requirement. 

The following table lists common situations of porting programs to Genera 8.0 and

summarizes what you need to do in each case:

Situation Actions

3600 series to 3600 series Recompile your code in Genera 8.0 

(Genera 7.2 to Genera 8.0) on a 3600-series machine.

Ivory series to Ivory series Recompile your code in Genera 8.0 

(Genera 7.4 Ivory to Genera 8.0) on an Ivory-based machine.

Layered products applications* Recompile your code in Genera 8.0 

(Genera 7.2 or 7.4 Ivory to following instructions for the machine 

Genera 8.0) types you are using. 

3600 series to Ivory series Recompile your code in Genera 8.0 

(Genera 8.0 to Genera 8.0) on a 3600-series machine.  



Page 862

See the section "Porting Genera Applications to Ivory Machines".

  

Recompile your code in Genera 8.0 

on an Ivory-based machine.�

*Including Symbolics C, FORTRAN, Pascal, Joshua, Statice, and Symbolics Concor-

dia.

Using Ivory-based Machines�

If you are porting applications from the 3600 series to an Ivory-based machine,

first convert your code to Genera 8.0 on a 3600-series machine.

If you are running an existing application on an Ivory-based machine (MacIvory,

XL400, or Symbolics UX-family) for the first time, see the section "Porting Genera

Applications to Ivory Machines". This tells you how to convert applications that

run on Genera 7.2 on the 3600 series to Genera 8.0 on Ivory-based machines (the

XL400, MacIvory, and the Symbolics UX-family), as well as presenting some gener-

al issues you need to be aware of when porting such code. Additional sections de-

scribe issues in maintaining parallel Ivory and 3600-series systems and present

some variables and macros you may find useful in converting your programs.

Incompatible Changes to Undocumented Interfaces �

Programs being moved from Genera 7.2 on the 3600 series to Genera 8.0 on the

3600 series will encounter some incompatible changes to undocumented facilities,

mainly in the window system. Some points to be aware of:

• The use of undocumented names in the system, system-internals, and common-

lisp-internals packages is suspect.

• The polling scheduler has been replaced with an event-driven version.

• The window system has been changed, in particular the locking strategy, to al-

low access to the display, mouse, and keyboard hardware of MacIvory to go

through the Macintosh host. The window system no longer uses without-

interrupts.�

The vast majority of the Genera system software remains essentially unchanged,

particularly higher levels of the system such as Dynamic Windows and Zwei. Many

programs that use undocumented interfaces will continue to work, for the time be-

ing. See the document Genera 8.0 Release Notes, for further information on

changes to undocumented interfaces. 

Porting Genera Applications to Ivory Machines

This section presents an overview of the work involved in porting applications run-

ning on the 3600 series of Symbolics machines to machines based on the Ivory pro-

cessor (XL400, Symbolics UX-family, and MacIvory).



Page 863

The first several sections discuss general issues you need to be aware of when

porting code to Ivory-based systems. This information is primarily useful in deter-

mining the scope and cost of a porting effort. (In general, this effort should be a

fairly simple one, involving little more than recompiling your code.) Additional sec-

tions describe issues in maintaining parallel Ivory and 3600-series systems and

present some variables and macros you may find useful in porting your programs. 

See the following sections:

"General Considerations in Porting Programs to Ivory-based Machines"

"Software Management Differences for Ivory-based Machines"

"Changes to Undocumented Interfaces for Genera on Ivory-based Machines"

"Changes to Subprimitives and System Constants for Genera on Ivory-based Machines"

"Changes to Genera I/O for Ivory-based Machines"

"Compiling a System for Multiple Machine Types"

"Variables and Macros for Converting to Ivory"

�

MacIvory Users 

If you are porting your application to MacIvory, portions of the following docu-

ments may be of interest: 

• MacIvory User’s Guide

• Genera 8.0 Release Notes�

XL400 Users

If you are porting your application to an XL400, portions of these documents may

be of interest: 

• XL User’s Guide

• Genera 8.0 Release Notes�

Symbolics UX-family Users�

If you are porting your application to a Symbolics UX-family machine, portions of

these documents may be of interest: 

• User’s Guide to the Symbolics UX

• Genera 8.0 Release Notes�

We recommend you read through these books before converting any programs.

General Considerations

A key aspect of Genera’s design philosophy is that different architectural levels

are carefully separated, and may be changed independently. The instruction set ar-

chitecture may be changed, as it was when the 3600 series was introduced, with-



Page 864

out affecting the overall system architecture. The processor architecture may be

freely changed, as it was in the 3675, 3620, and 3650, with no effect on the soft-

ware. Or, the overall software system architecture may be changed, as it was in

Genera 7.0, independent of the underlying instruction set and processor architec-

ture.

Ivory-based systems use a different instruction set and processor architecture than

the 3600 series, but maintain the Genera system architecture and provide full

source-code compatibility for Genera applications. The new architecture enables a

single-chip processor implementation, with accompanying benefits in system cost,

performance, reliability, and the opportunity to configure systems that were previ-

ously infeasible.

Source code compatibility means that programs using Common Lisp, Symbol-

ics Common Lisp extensions, or the Genera substrate in the documented man-

ner need only be recompiled in order to run on the new machines. Symbolics’

layered languages, and the code they produce, are compatible to this same degree.

Object code produced for a 3600-series machine (in binary files or world loads)

may not be loaded into an Ivory-based machine, or vice versa.

Therefore, the porting task primarily consists of recompiling software, and main-

taining and distributing consistent object code for both families of machines. Oc-

casionally, an application will require source changes to make it portable to the

Ivory-based series; this can result from the use of undocumented internal functions

of the system, or more rarely from the use of low-level "subprimitive" operations,

as discussed in the section "Changes to Subprimitives and System Constants for

Genera on Ivory-based Machines".

Once an application is ported to Genera Ivory and the Ivory processor, you might

want to change its user interface, for instance to fit into the Macintosh user inter-

face in a MacIvory system. This is best done after the basic porting is done. You

might also want to tune the application’s performance (see the section "Metering

Interface").

In addition, you may want to use some features of the new scheduler. For further

information, see the section "Converting to the New Scheduler". 

Software Management Differences

Binary File Formats for Ivory-based Systems�

Since the Ivory processor implements a different instruction set from the 3600

series, all programs must be recompiled to run on it. Compiling a file on an Ivory-

based system produces a binary file in a file format identified by the file type

ibin. This binary file format is distinct from the type of binary file produced by

compiling the same file on a 3600-series machine (which is identified by the file

type .bin). The System Construction Tool (SCT) helps manage this, ensuring that

the correct binary files for a given software system are loaded and compiled, de-

pending on the target processor (see the section "Compiling a System for Multiple

Machine Types").



Page 865

Data Files�

The differences between the 3600-series bin file format and the Ivory ibin file for-

mat are limited to the representation of compiled code; data stored in binary files

is compatible between the two processors. So binary files containing only data and

no compiled code, such as those produced by sys:dump-forms-to-file, can be used

freely on both processors. 

World-load Files

3600-series and Ivory-based machines require different world loads. The .ilod file

extension indicates world-load files for Ivory-based machines, and the .load file ex-

tension indicates world-load files for the 3600-series. Files with the .ilod extension

can be copied only between Symbolics Ivory-based machines. Files with the .load

extension can be copied only between Symbolics 3600-series machines. For further

information, see the section "Copy World Command".

Read-time Conditionals�

Many incompatibilities in different vendors’ software are handled using read-time

conditionals. If you currently distinguish Symbolics software with #+3600, change

your sources to say #+Symbolics. Use #+3600 to distinguish any code that is dif-

ferent on the 3600 series and Ivory. If you want to distinguish Symbolics Genera

from Symbolics CLOE, change your sources from #+3600 to #+Genera. In addition,

the following read-time conditionals are valid: #-Symbolics, #+IMach, #-3600, and

#-IMach.

� Changes to Undocumented Interfaces

Adapting Genera to run on Ivory-based systems required changing portions of the

underlying system software to various degrees. Although this software is undocu-

mented, the source code is either included with Symbolics’ standard software li-

cense or is available for an additional fee. If you have application software that us-

es undocumented features gleaned from the 3600-series system source code, be

aware that such code may not work on Ivory-based systems without modification.

The following is a summary of the major areas of change. Machine dependencies

are most likely to be in one of these areas, although any use of undocumented

names in the system, system-internals, or common-lisp-internals packages is

suspect.

• Internal system functions have been rewritten to accommodate Ivory’s differing

object representations, including arrays, compiled functions, various types of

numbers, logic variables, and stack groups.

• Internal functions with knowledge of the control stack format, including the im-

plementation of throw and similar functions, stack-group manipulation, and the

Debugger, have been rewritten to accommodate the Ivory stack format.



Page 866

• Primitive graphics operations that were implemented in 3600-series microcode

have been rewritten in (highly tuned) Lisp.

• The garbage collector has been extensively modified to accommodate the stream-

lined GC support hardware used in Ivory.

• The virtual memory system has been modified to accommodate the memory map-

ping techniques used by Ivory, and to support more efficiently the larger virtual

and physical address space provided by Ivory.

• The polling scheduler has been replaced with an event-driven version.

• Internal functions of the scheduler and the I/O system have been rewritten to

accommodate Ivory’s improved interrupt architecture.

• The window system has been changed, in particular the locking strategy, to al-

low access to the display, mouse, and keyboard hardware of MacIvory to go

through the Macintosh host. The window system no longer uses without-

interrupts.�

Note that most of these areas of the system also received significant improvements

in performance or functionality during the porting process. Some of these improve-

ments are transparent, and others will require some (optional) source changes to

gain their full benefit.

The vast majority of the Genera system software remains essentially unchanged,

particularly higher levels of the system such as Dynamic Windows and Zwei. Many

programs that use undocumented interfaces will continue to work, for the time be-

ing. 

� Changes to Subprimitives and System Constants

All subprimitives documented in the the Genera Documentation Set work exactly

the same on Ivory as on the 3600 series. However, since some object representa-

tions have been changed (for example, the internal structure of arrays has been

streamlined) and some fundamental implementation parameters are different (for

example, the virtual address space size has been increased), code that uses these

subprimitives may not be machine independent.

There have been a few changes to subprimitive constants documented in Internals.

The constants, and their equivalents on Ivory, are listed in the following table. All

symbols are in the system package unless otherwise noted.



Page 867

3600 Series Ivory Equivalents

 

dtp-fix (16 values) dtp-fixnum

dtp-float (16 values) dtp-single-float

dtp-closure dtp-dynamic-closure

dtp-extended-number dtp-small-ratio

 dtp-double-float

 dtp-bignum

 dtp-big-ratio

 dtp-complex

 dtp-spare-number

dtp-list dtp-list

 dtp-list-instance

dtp-array dtp-array

 dtp-array-instance

 dtp-string

 dtp-string-instance

stack-area� stack-area

 si:control-stack-area

 si:structure-stack-area

 si:binding-stack-area

Additionally, the values of many documented system constants have changed.

These changes do not affect code that uses these constants by name; only code

that depends on their values is affected. Note the following: 

• When using sys:%start-function-call, you must finish with a sys:%finish-

function-call; it is illegal to abort out of the started call.

• The textual output of various system-describing functions will change somewhat,

reflecting a different implementation. Examples of affected functions are

disassemble, describe-area, zl:gc-status, and room.

• sys:%unsynchronized-device-read is no longer valid.

• In contrast to the 3600 series’ 28-bit address space and 36-bit word size, Ivory

provides a 32-bit address space and a 40-bit word. Additionally, the address

space in Ivory is partitioned differently from that on the 3600 series; numerical

addresses should not be built into programs. A minor software implication is

that addresses represented as two’s-complement fixnums are negative for half of

the address space. Software that converts object locations to fixnum addresses

and then assumes that they will be positive will not work properly. Numeric

area numbers should not be used, either.

• The larger word size results in a larger page size (in terms of bits per page).

Therefore, the sector size for disks on Ivory-based systems can be expected to

differ from the sector size for disks on the 3600 series. On Ivory-based systems,

disks use a page size of 1280 bytes per page. I/O software that depends on the



Page 868

3600-series page size (1152 bytes per page) may have to be modified. This af-

fects programs that call such interfaces as sys:disk-read or that use the disk

interface documented in Internals. 

� Changes to Genera I/O

Ivory is used in a number of different system configurations, all of which have I/O

hardware that differs from that used in the 3600 series. Some of these configura-

tions are stand-alone workstations that provide the same sort of I/O environment

provided with 3600-series systems: dedicated disks formatted for optimal perfor-

mance, a high-resolution, directly addressable console display, a Symbolics key-

board, and a three-button mouse. In such systems, the internal workings of the

I/O-related system software may be substantially different (due to differences in

I/O hardware and Ivory’s interrupt architecture), but the documented interfaces

provided to application programs remain the same.

One exception to this is that the 3600-series facilities for audio output (with the

exception of beep) are not supported. Also, note that Ivory machines do not use

the LBUS used in the 3600 series, and any code that depends on a specific LBUS

device, such as the UNIBUS interface, is not portable to Ivory-based systems.

Ivory is also used in embedded systems, configurations in which an Ivory processor

is embedded in another computer, and relies on that computer to provide some or

all of its I/O services. In these systems, the documented interfaces perform the

same basic functions, but there may be qualitative differences in the services pro-

vided. For example, the screen may be smaller, or hold less information, the key-

board may not have all the same keys, or the mouse may not have three buttons.

The exact limitations of each system configuration can be expected to vary.

To isolate application programs from these system differences, Symbolics recom-

mends using the highest levels of abstraction possible. User interfaces built on Dy-

namic Windows, for example, readily adapt to differing system configurations with

little or no effort, and may in fact gain interesting new functionality on some ma-

chines. Programs that directly use I/O devices such as disks or serial lines should

use the devices through the documented stream interfaces. Network access has

been highly abstracted for some time now, and is readily portable across system

configurations. 

Compiling a System for Multiple Machine Types

The System Construction Tool (SCT) incorporates capabilities that allow you to

easily compile systems for different machine types (such as the 3600 and Ivory)

from the same set of sources. It also provides functions that allow you to share

patches for systems compiled for more than one machine type.

The Compile System command and compile-system function accept the :version

option, which takes a value N or Newest and specifies a system’s version number.

You can use :version N to compile systems for different machine types in this

way: First, compile the system on one machine type. From the second type of ma-



Page 869

chine, recompile the system specifying the version number of the system you have

just compiled. Specifying the :version option makes SCT compile the same version

of each source file that was compiled when the system was compiled before, in-

stead of compiling the newest version of each source file. It causes SCT to look at

the journals and compile the same version of the system from the same sources for

the new machine type.

For example, compile the system Sample on a 3600-series machine with:

Compile System Sample �

Assuming that the resulting version was numbered 5, type one of the following

lines on the second, Ivory-based machine to compile Sample for that machine type:

Compile System Sample :Version 5 �

or 

(compile-system Sample :version 5)�

The same version of the system Sample is now compiled for both machines.

For the 3600-series, the resulting binary files are identified by the extension .bin.

For Ivory-based systems, binary files are identified by the extension .ibin. 

Maintaining Parallel Systems for Multiple Machine Types

Use the following functions to maintain parallel systems for multiple machine

types.

sct:compile-uncompiled-patches systems &optional (machine-type sct:*local-

machine-type*) Function

Compiles those patches in systems that are uncompiled for the current machine

type. For instance, if you create a patch for a system from a 3600, the patch is

compiled only for the 3600 machine type. To compile the patch for another ma-

chine type, such as the MacIvory, use sct:compile-uncompiled-patches from a

MacIvory.

Using the form (sct:compile-uncompiled-patches) compiles patches for all systems.

To specify some systems, use a form like:

(sct:compile-uncompiled-patches :zmail :lmfs :my-system)�

See the function sct:recompile-changed-patches for related information. 

sct:recompile-changed-patches systems &optional (machine-type sct:*local-

machine-type*) Function

Recompiles those patches in systems whose Lisp files are newer than their binary

files. For example, if you recompile a patch for a system on a 3600, you can use

sct:recompile-changed-patches on an Ivory-based machine to recompile it for an

Ivory.



Page 870

Using the form (sct:recompile-changed-patches) compiles patches for all systems.

To specify some systems, use a form like:

(sct:recompile-changed-patches :my-system)�

See the function sct:compile-uncompiled-patches for related information. 

Variables and Macros for Converting to Ivory

si:*default-binary-file-type* Variable

A variable that takes the canonical type of compiled files as its value: :BIN for the

3600-series and :IBIN for Ivory-based machines. 

sys:system-case (keylist form...)... Macro

Selectively executes forms depending on what system it is executing on. This

macro exists only on Ivory-based machines, not the 3600 series, and is used only in

machine-dependent code. It works in both wired and pageable code. Since all Ivory-

based systems are binary compatible, for both .ibin files and world loads (.ilod

files), run-time dispatching with sys:system-case is used when code must vary for

different Ivory-based systems.

Each keylist can be a system-type name, a list of system-type names, the symbol

otherwise or the symbol t. System-type names are compared without regard for

packages. If no otherwise clause is present, a default one that signals an error is

provided (this is like ecase).

The currently recognized system-types are:

System-Type System

Native A standalone Symbolics computer. Examples are XL400,

XL1200, and NXP1000 systems.

MacIvory A Symbolics processor embedded in a Macintosh modular com-

puter. Examples are MacIvory, MacIvory model 2, and

MacIvory model 3.

UX A Symbolics processor embedded in a Sun-3 or Sun-4 system.

Examples are Symbolics UX400S and Symbolics UX1200S.

VME A Symbolics processor in a VME-based system. This could be a

standalone Symbolics computer such as the XL1200, or an em-

bedded processor such as the UX1200S.

Embedded Any Symbolics processor embedded in a host computer. Exam-

ples are any of the MacIvory models or the UX embeddings.

Domino A Symbolics processor with a proprietary I/O architecture.

Domino systems normally do not have a hardware console. An

example is the NXP1000. 



Page 871

A clause of the form (keylist (error)) signals an error for any of the systems iden-

tified by keylist. Clauses of this form may be used only if no otherwise clause is

specified.

The clause (otherwise (error)) is equivalent to omitting an otherwise clause. The

one difference is that this clause, in effect, states that you are aware that all oth-

er system types should signal an error and you will not be warned about missing

required system types at compile time.

A clause of the form (never keylist) is equivalent to the clause (keylist (error)).

Clauses of this form may be used only if no otherwise clause is specified.

graphics:with-scan-conversion-mode (stream &key :round-coordinates :center-circles

:host-allowed :sketch) &body body Special Form

Binds the local environment so that the figures produced within it are drawn us-

ing the specified scan conversion mode. Use this form in place of graphics:with-

coordinate-mode. Note that this scheme permits the future inclusion of other

controls, such as anti-aliasing.

stream The output stream.

:round-coordinatesThe coordinates specified to the drawing function are rounded

to integer values and special, faster integer drawing methods

are used. Use this mode when speed is important in drawing a

filled figure or one with thick lines and exactness is of little

importance. The default is yes.

:center-circles Figures are drawn so that they are centered around a whole

pixel. The center of a circle is offset by half a device unit. For

example, a circle with specified radius r and center <x, y>

would be drawn with actual center <x+1,y+1> and radius r+1/2.

Use this mode when you want small circles that need not align

with other shapes to appear symmetrical around a single pixel.

This option corresponds to graphics:with-coordinate-mode

:center. The default is no.

:host-allowed Permits the use of the embedding host’s drawing routines. For

example, on the MacIvory, QuickDraw graphics are used. Use

of this option overrides the effect of most other options to this

function. On embedded systems, like the MacIvory, this can im-

prove the performance of graphics, but slightly alter the shape

of the graphic. The default is yes.

:sketch Equivalent to :round-coordinates and :host-allowed. (with a

value of t or nil for both). Use this to declare unspecifically

that speed is preferred over accuracy. The default is t.

See the section "Scan Conversion" for related information. 



Page 872

Maximum Stack Levels for Ivory-based Machines

Maximum stack level values differ for Ivory-based machines and 3600-series ma-

chines as shown in this table: 

Form 3600-series Value Ivory-series Value

 

call-arguments-limit 128 50

lambda-parameters-limit 128 50

multiple-value-limit 128 50

For further information:

See the constant call-arguments-limit.

See the constant lambda-parameters-limit.

See the constant multiple-values-limit.

Converting to the New Scheduler

New Scheduler facilities became available to users of Ivory-based machines in Gen-

era 7.3 Ivory. Genera 8.0 makes this facility available for 3600-series machines as

well. For a description of new Scheduler facilities, see the section "Overview of the

Scheduler".

Converting Code for the New Scheduler

No conversion is required for most user code. Several relatively minor incompati-

bilities that might require you to modify your code are documented in the section

"Scheduler Incompatibilities That Might Require Code Changes". 

There can be some performance differences when you run "old scheduler" code in

the new scheduler. Even though most code does not need to be changed, you may

want to take advantage of some features of the new scheduler. 

In the new scheduler, processes that wait for wait-functions are at a disadvantage.

Processes that wakeup can run immediately; processes that wait have to wait for

the wait-function poller to poll the wait-functions again, which increases delay and

increases system overhead. In general, it pays to convert your code to use block

and wakeup, rather than polling.

For more information about the differences between blocking and waiting (blocking

with polling), see the section "Blocking Vs. Waiting".

For commands to control the rate and style of polling, see the section "Blocking,

Waiting, and Waking Processes". 

Scheduler Incompatibilities That Might Require Code Changes



Page 873

Tracking Active Processes

The internal data structure sys:active-processes is no longer used, and is always

nil. It is included in the world so that old code does not break, but it is not useful.

See the function process:map-over-active-processes. See the function

process:map-over-all-processes. 

� The Scheduler Stack Group

There is no longer a scheduler stack group, so sys:scheduler-stack-group has no

meaning. It is included in the world, for compatibility with existing code. It should

not be used in new code. Its value is nil.

If a piece of code referenced this variable in order to determine if it was safe to

call process-wait, it should call process:safe-to-process-wait-p instead. 

Clock Functions

Clock functions are considered obsolete, although they are supported for compati-

bility reasons. They should be replaced by timers or periodic actions.

The old scheduler attempted to run each clock function at most 60 times per sec-

ond. Typically, they ran 10 times per second.

In the new scheduler, a clock function runs every process:*clock-queue-interval*

by default. The priority of the clock-function queue is high, so the clock-functions

run this frequently regardless of how busy the machine is. process:*clock-queue-

interval* is 1/6 seconds by default. 

This is slightly less frequently than in the old scheduler on a machine with com-

pute-bound processes. If you decrease the interval in order to increase the fre-

quency, the clock functions will preempt running processes, increasing the system

overhead. 

If a clock function returns a value, the clock-function queue interprets that num-

ber as the number of sixtieths of a second in which this clock function wants to

run again. You can use this technique to vary the rate of clock-function polling.

� Process Stack Groups

In the new scheduler, (process-stack-group process) can return different types of

objects than in the old scheduler. In the old scheduler, process-stack-group of a

simple process would return the initial function, and process-stack-group of any

other type of process would return the stack group.

In the new scheduler, simple processes temporarily acquire stack groups when they

are runnable. Additionally, non-simple processes get rid of their stack group when

they are not needed (typically, after a call to process:reset-and-release-resources,

or process:kill).



Page 874

So, in the new scheduler process-stack-group can return either nil or a stack

group. 

� Warm Boot Actions

In the new scheduler at warm boot time, the scheduler initialization goes over ev-

ery process, not just active processes, and executes the warm-boot-action. If a pro-

cess is arrested, the warm-boot-action might not actually take effect until the pro-

cess is unarrested, later, (this is true of RESETting an arrested process), but all

processes will have their warm-boot-actions run on them at warm-boot time.

The old scheduler ran only the warm-boot-actions of unarrested processes. 

Scheduler Incompatibilities That Do Not Require Code Changes

*current-process* is Not nil Inside the Scheduler

In the old scheduler the value of *current-process* was the process that is cur-

rently executing, or nil while the scheduler is running. Since the scheduler just

runs in your process it is, effectively, never running. *current-process* is never

nil during the normal course of operations except for a short period during initial-

ization during booting. 

Quantum

The process quantum is not used by the new scheduler, with one exception. The

:quantum-boost keyword argument to si:with-process-non-interactive-priority is

used. It is interpreted as follows: the quantum boost is assumed to be a timer in-

terval, measured in 60ths of a second (for compatibility). If the non-interactive-

priority is nested within a si:with-process-interactive-priority, the quantum-boost

specifies how long the priority should remain interactive, before actually reducing

the priority to the non-interactive level. 

� Priority

All old priorities are interpreted to be :foreground priorities in the new scheduler.

Any entry points in the scheduler compatibility package, or any functions that ex-

isted in previous releases (for example make-process or process-run-function),

take old scheduler priorities as their arguments, and return old scheduler priori-

ties as their values.

To explicitly convert an old scheduler priority to a new priority, you can use

(process:make-process-priority :foreground old-pri).

The compatibility function process::process-priority-to-old-priority takes a sched-

uler priority and converts it to an integer representing an old scheduler priority.

:foreground priorities are converted to their priority level. :background priorities



Page 875

are arbitrarily converted to -256, and :deadline priorities are arbitrarily converted

to 110.

Non-integer priorities are no longer supported. The floor of that priority is used

instead. 

� Sequence Breaks and Break Intervals

si:*default-sequence-break-interval* and si:sequence-break-interval are not oper-

ational in the new scheduler. A preemption will occur whenever the highest priori-

ty runnable process is not the *current-process*, and preemption is enabled.

If a high priority process is awakened by something that happens during a se-

quence break, and preemption is enabled, the current process is preempted.

si:sequence-break-interval will not delay it. Nor will si:sequence-break-interval

cause periodic preemptions. In the new scheduler there is no reason to arbitrarily

preempt the current process. In the old scheduler periodic preemption was neces-

sary to evaluate wait-functions, force the current process to yield the processor,

and so on.

In the new scheduler each of these functions is performed by different agents.

Wait functions are either evaluated periodically by the wait-function poller, or at

wakeup time. The minimum polling rate is set by the caller of block-and-poll-

wait-function, and by the variable process:*process-wait-interval*. The current

process is periodically preempted by the priority manager. This allows multipro-

cessing even when the current process does not voluntarily yield the processor.

The interval that the scheduler waits between these interrupts is controlled by the

:wakeup keyword to process:set-scheduler-parameters. Finally, many activities

are driven by timers. The parameter process:*timer-resolution* controls the reso-

lution at which timers go off. The timer facility is free to delay a timer execution

for *timer-resolution* timer units. Increasing this makes timers less responsive,

but reduces the system overhead. 

Using the Conversion Tools with Genera 8.0

About the Conversion Tools

The Conversion Tools are a series of special-purpose Zmacs commands that save

you time and effort in editing large pieces of code in ways that can be done semi-

automatically. This is particularly useful when converting from one Lisp dialect to

another.

The available Conversion Tools are: 

• Flavors to CLOS, for converting object-oriented programs from using Flavors to

using the Common Lisp Object System (CLOS). See the section "Flavors to

CLOS Conversion".



Page 876

• Zetalisp to Common Lisp, for converting Zetalisp programs to Symbolics Com-

mon Lisp. See the section "Zetalisp to Common Lisp Conversion".

• Symbolics Common Lisp to portable Common Lisp, for assistance in converting

Symbolics Common Lisp programs to more portable programs that will run in a

variety of Common Lisp implementations, including Genera and Cloe as well as

other vendors’ Common Lisps. See the section "Symbolics Common Lisp to

Portable Common Lisp Conversion".

• Package Conversion, for moving a program to a different package. See the sec-

tion "Package Conversion".

• Tools you write yourself, to do any source-to-source conversions you may re-

quire. See the section "Creating Your Own Conversion Set".

Though the Conversion Tools are simple, the conversion task is not. For this rea-

son you must use the Conversion Tools with knowledge and care. For example,

when converting Zetalisp to Common Lisp, you should be sufficiently comfortable

with both Zetalisp and Common Lisp to be aware of function equivalences and to

understand the possible effects of a conversion (such as a changed order of argu-

ment evaluation for functions whose calling sequence is different in Common Lisp).

It is also very desirable that you be familiar with the details and the intent of the

code you are converting. As a trivial example, in order to get the correct conver-

sion of a Zetalisp division operation, you must know what numeric data types the

operation is intended for, whether or not truncated division is needed, and so on;

this knowledge will let you select quickly among the three Common Lisp alterna-

tives offered you by the Conversion Tools.

Obviously, you also need familiarity with the basic workings of the Zmacs editor.

Bear in mind that the conversion commands are intended as an aid to conversion,

not as a fully automatic conversion tool. Used properly, they will save you time

and effort, but you must monitor the results carefully after each step and be

aware that you might have to do some manual work after conversion: for instance,

comments might not end up exactly in the right place in the rearranged program,

indentation might change, converted functions might need some additions to the

code, and so on. 

Loading the Conversion Tools

The Conversion Tools reside on the source tape you received with Genera. Once

you have restored the distribution tape as described in your Software Installation

Guide, type this from the Lisp Listener:

Load System Conversion-Tools�

When the system files are loaded, you are ready to use the Conversion Tools.

For your convenience, the distribution tape also includes two sample programs you

can use to try out the Conversion Tools: SYS:CONVERSION-TOOLS;CONVERSION-TEST-



Page 877

PROGRAM.LISP (the main example), and SYS:CONVERSION-TOOLS;CONVERSION-OCTAL-TEST-

PROGRAM.LISP (for radix conversion).

If you need further information, see the section "Getting Started with Conversion".

Converting From Flavors to CLOS

When to Convert From Flavors to CLOS

CLOS is the Common Lisp Object System, an object-oriented programming lan-

guage similar to Flavors that is part of the Common Lisp standard being produced

by X3J13, The ANSI Common Lisp working group.

You should convert from Flavors to CLOS if you want to to port your application

to other Common Lisp implementations. You do not need to convert code to

CLOS to run your programs in Genera 8.0; Flavors are fully supported in this

release. Convert existing programs using conversion tools provided by Symbolics.

Note that you can begin using CLOS by developing new programs using Common

Lisp Developer. The Common Lisp Developer adds a new dimension to the Genera

development environment, by enabling you to define certain programs in an envi-

ronment that replaces Genera’s fault-tolerant interpretation of Common Lisp with

a stricter interpretation, which is more predictive of other Common Lisp imple-

mentations.

See the section "Developing Portable Common Lisp Programs".

Complete integration between Flavors and CLOS is not currently provided. This

means that some Flavors programs cannot be converted to CLOS at this time. For

example, a Flavors program that makes use of Flavors defined by Genera (such as

window or stream flavors) cannot be converted to CLOS until the integration be-

tween CLOS and Flavors is completely supported.

Flavors to CLOS Conversion

Commands: m-X Convert Functions of Region

m-X Convert Functions of Buffer

m-X Convert Functions of Tag Table�

To translate a Flavors program to CLOS, issue one of the above commands. When

prompted "Conversion to use", select Flavors to CLOS. This semiautomatic conver-

sion will do most of the work required to convert a program from Flavors to

CLOS. Additional manual effort will be required if the program uses Flavors fea-

tures that do not have any direct counterpart in CLOS.

Each form in the program that can be converted to CLOS results in an interactive

query showing the old form in context in the editor buffer and one or more sug-

gested replacement functions. You can then enter one of a variety of single-

character commands. Press HELP for a list of options. For further information, see

the section "Getting Help with Conversion".



Page 878

This is not a conversion from Symbolics Common Lisp to portable Common Lisp.

The Flavors to CLOS conversion converts only Flavors functions and macros; it

does not touch the rest of the program.

If your Flavors program is in Zetalisp, it is recommended, but not required, that

you first convert it to Common Lisp before converting it to CLOS. See the section

"Zetalisp to Common Lisp Conversion".

The general idea is to convert a flavor to a class with the same name, to convert

messages to generic functions, and to convert Flavors generic function and method

definitions to CLOS generic function and method definitions with the same generic

function name. Flavors names and syntax are replaced with CLOS names and syn-

tax wherever a correspondence exists. Flavors features that do not exist in CLOS

are left in the program for you to convert by hand.

CLOS uses symbols that are not accessible in packages such as cl-user and scl.

Unless you first move your Flavors program into a package that uses clos or

future-common-lisp, the CLOS symbols will be inserted into your program with

package prefixes. Thus defmethod will be converted to clos:defmethod. If you

later move your program to a package or an implementation where CLOS is direct-

ly accessible, you can use m-X Query Replace to remove the package prefixes. For

information about moving your Flavors program to another package, see the sec-

tion "Package Conversion".

The conversion tool extracts information about your program, such as what

method-combination type a generic function uses or what instance variables and

defun-in-flavor functions are defined for a flavor, by looking in three places: 

1. Forms that have already been converted during the same conversion opera-

tion.

2. Forms that have been read into editor buffers.

3. Flavor and generic function definitions that have been loaded into the world.�

Consequently, you will get better results if the entire program is read into the edi-

tor or loaded into the world before converting any of it.

The new version of the program can’t be used at the same time as the old version,

because it uses the same names with different meanings (a class is different from

a flavor, and a CLOS generic function is different from a Flavors generic func-

tion). However, if you move the new version into a new package before converting

it you can avoid this problem. For information about moving your Flavors program

to another package, see the section "Package Conversion".

CLOS does not have any equivalent of Flavors’ functions whose scope is limited to

methods for a particular flavor. Therefore defun-in-flavor is converted to

clos:defmethod (with the addition of an argument, since self is no longer con-

veyed automatically) and defmacro-in-flavor is converted to ordinary defmacro.

These conversions can result in name conflicts, if the same name had been used in

the scope of two different flavors. These conflicts will probably show up as method

lambda-list congruency errors and must be resolved manually.



Page 879

Options for defflavor or defgeneric that do not have counterparts in CLOS are

converted into an :unconverted-flavor-options or :unconverted-defgeneric-options

option to remind you to convert these options manually. CLOS does not accept

:unconverted-flavor-options or :unconverted-defgeneric-options, so if you com-

pile the program without completing the manual conversion, an error will be re-

ported.

Some defflavor options, such as :required-flavors or :abstract-flavor, can simply

be deleted without harming the operation of a working program. Other options,

like :mixture or :special-instance-variables, have no simple conversion to CLOS.

If you use them you might have to restructure your program. The following op-

tions have fairly straightforward conversions that are a little too complex to be

done automatically: 

:constructor Use defun to define a function that calls clos:make-

instance.

:default-handler Use clos:defmethod to define a default method for each

generic function that needs default handling.

:init-keywords Use &key in a clos:initialize-instance method.�

Symbolics CLOS has an extension to allow slots to be located with locf. If you use

:locatable-instance-variables in Flavors, it is converted to the Symbolics CLOS

:locator slot-option. This will not work in other CLOS implementations.

Some Flavors efficiency features with no counterpart in CLOS are simply discard-

ed. For example, defwhopper-subst is simply converted into an :around method,

and defsubst-in-flavor is treated the same as defun-in-flavor.

Messages are converted to generic functions. This applies both to receivers

(defmethod, :gettable-instance-variables, and so on.) and to senders (send, lexpr-

send). Messages sent with funcall or apply are not recognized as messages and

are not converted. The first time a particular message is encountered during a

conversion operation, you will be prompted for the name of the replacement gener-

ic function. You can press RETURN to accept the offered default. You can press

SPACE to complete to "None", which means to leave this message unconverted. You

can later convert the message by hand, or leave it as a message if your program

runs partially in CLOS and partially in Flavors. A generic function name that is

already in use as a special form, macro, or nongeneric function will not be accept-

ed.

The following Flavors constructs are not automatically converted. They are left in

the program and must be converted by hand. Some of these do not have any sim-

ple conversion to CLOS; if you use them, you might have to restructure your pro-

gram. Others are used infrequently enough that automatic conversion did not seem

worthwhile.

compile-flavor-methods

define-method-combination

defwrapper

:fasd-form



Page 880

get-handler-for

lexpr-send-if-handles

operation-handled-p

recompile-flavor

send-if-handles

:unclaimed-message

:which-operations�

In addition, none of the documented Flavors constructs in the flavor, system, and

zl packages is converted. These are generally too internal to have exact correspon-

dences in CLOS.

Mixed use of Flavors and CLOS is not supported at present. That is, a class can-

not inherit from a flavor, a flavor cannot inherit from a class, CLOS generic func-

tions cannot be used with Flavors methods, and Flavors generic functions cannot

be used with CLOS methods nor with CLOS instances. The only supported mixed

use is that CLOS generic functions can be used with Flavors instances and CLOS

methods can be specialized to a flavor as if it was a class. Therefore if you convert

a program to CLOS, you must convert all uses of a given flavor to use a class in-

stead, and all Flavors methods for a given generic function to be CLOS methods

instead. 

Zetalisp to Common Lisp Conversion

The Zetalisp to Common Lisp Conversion Tools convert programs from Symbolics’

Zetalisp dialect to Symbolics’ extended version of Common Lisp. The kinds of

changes needed to convert your code from the Zetalisp to the Common Lisp pack-

age structure and syntax are summarized in the six-step breakdown of the Zetalisp

portion of the Conversion Tools system as follows:

1.  Syntax Conversion

2.  Radix Conversion (optional)

3.  Name Conflict Resolution

4.  Package Prefix Conversion

4a. CL Prefix Removal (optional)

5.  Function Conversion

5a. Remaining ZL Prefix Removal (optional)

6.  Structure Conversion�

These six steps are executed entirely via Zmacs commands that run over files read

into the editor buffer. The conversion commands are simple and easy to use; some

are largely automated; others depend on your input for correct results. A Help fa-

cility, invoked by pressing the HELP key, is also available.

Each of the six steps produces a program that is complete, can be recompiled, and

that functions equivalently to the source program. Each step is dependent on its

predecessor and must, therefore, occur in the enumerated order, including the

three optional steps, 2, 4a and 5a, if you choose to execute them.



Page 881

Note

The Zetalisp to Common Lisp Conversion Tools do not necessarily produce portable

Common Lisp code. Using the Common Lisp package is helpful, since after conver-

sion Symbolics Common Lisp symbols will be identifiable by their scl: prefixes; but

the Zetalisp to Common Lisp Conversion Tools do not especially flag conversions

that might involve the use of functions that have Symbolics Common Lisp exten-

sions to Common Lisp.

The Conversion Tools specifically don’t do the following function conversions: 

• Zetalisp functions for which there is no Common Lisp analog

• Zetalisp functions used inside a macro

• Complex Zetalisp functions, or those requiring rearrangement of the code in

their vicinity�

Unconverted functions will, of course, remain prefixed by zl: as a result of the

Package Prefix conversion; they’ll be easy to find either visually or with Zmacs

Search commands.

We now present a step-by-step description of the Zetalisp to Common Lisp Conver-

sion Tools, listing the Zmacs commands used to perform each step.

Step One: Syntax Conversion

Commands: m-X Convert Lisp Syntax of Region

m-X Convert Lisp Syntax of Buffer

m-X Convert Lisp Syntax of Tag Table

Zetalisp uses "/" as the syntax-quoting (escape) character. Common Lisp uses "\"

for that purpose. Since the syntax is reliable in both cases, the conversion is auto-

mated.

The syntax conversion done in this first step results in the following changes:

ZL Becomes

character CL character

 //  /

 #/  #\

 #\  #\

 /  \

 \  \\

 #^  #\control-

 #Q  #+lispm

 #M  #+Maclisp

 #N  #+NIL�



Page 882

(The last four character changes are listed only for the sake of completeness; they

are unlikely to appear in any files.)

The buffer syntax conversion tool changes the syntax in the file attribute line to

Common Lisp. The tag table syntax conversion tools asks whether to change the

syntax in the file attribute line; normally you answer yes.

Syntax Conversion of a Buffer

Type:

m-X Convert Lisp Syntax of Buffer�

The system verifies the name of the input buffer, as usual for file and buffer re-

lated commands. (Use HELP to see a display of all your buffer names, if you don’t

want to convert the current buffer.)

The syntax conversion then proceeds automatically. The file attribute line is

changed to Common Lisp from Zetalisp, and all uses of the Zetalisp quoting char-

acter "/" have changed to the Common Lisp quoting character "\". 

Syntax Conversion of a Region

Command: m-X Convert Lisp Syntax of Region�

To apply the syntax conversion to a region, first mark the region, then issue the

conversion command. Only the region you marked is converted, and the rest of

your code remains unchanged. 

Syntax Conversion of a Tag Table

Command: m-X Convert Lisp Syntax of Tag Table�

You can use the Tag Table option of the conversion command if you have previous-

ly issued either m-X Select System As Tag Table or m-X Select Some Files As Tag

Table. When you type the conversion command, the system first reads in all the

files in the Tag Table that are in Zetalisp. It then displays a list, "Files to be

converted" and asks whether to convert all, none, or some of these files. If you opt

for conversion, the system asks whether it should set the file attribute lists also.

The syntax conversion then proceeds automatically; the system displays the name

of each file as it is converted, ending with the message "Done." 

Be sure to test your program after the syntax conversion, and to save the buffer

before proceeding to the next step. 

Step Two: Radix Conversion (Optional)

If any of your files have a base of 8 (octal), you may wish to convert them to base

10 (decimal); if so, you must do it now. This step is completely optional, since

Common Lisp programs can have nonstandard radices.



Page 883

Commands: m-X Convert Base of Region

m-X Convert Base of Buffer

m-X Convert Base of Tag Table�

After verifying the buffer (or files, in the case of Tag Tables) to convert, the con-

version commands give you the option of having large octal numbers (numbers

larger than 10 octal) converted to decimal automatically or selectively. If you opt

for selective conversion, you are queried separately for each "large" number in

your program. The range of responses is:

Action Character or Key

Do it Y, SPACE

Skip it N, RUBOUT

Manual Edit c-R

Do it, then Allow Edit , (comma)

Redisplay screen c-L, REFRESH�

If you edit your program manually during conversion, press END to signal comple-

tion of your edit and return to the current conversion step. 

Step Three: Name Conflict Resolution

Commands: m-X Find Conflicting Symbols in Buffer

m-X Find Conflicting Symbols in Tag Table

In your Zetalisp program you may have defined some functions or variables whose

names will conflict with the names of Common Lisp functions after conversion. For

instance, you might have defined a function named search that conflicts with the

Common Lisp function search.

Before your program can be moved to a new package, all function and variable

names that conflict with the names of functions or variables inherited by the new

package must be changed. This happens in two stages. First the Conversion Tools

generate a buffer that lists all conflicting symbol names. You then edit this buffer,

typing a new name after each of these symbols. During this edit you can also

delete lines whose symbols are not truly conflicting, such as symbols used only for

naming local variables. Then use m-X Multiple Query Replace command to substi-

tute the new name for the old one in the source program.

Name Conflict Resolution of a Buffer

The output buffer produced by the Syntax Conversion step is our input buffer for

this next step. Type:

m-X Find Conflicting Symbols in Buffer�

After verifying the filename, the system asks how the buffer’s package will be

converted. See the section "Step Four: Package Prefix Conversion".



Page 884

Select your choice. Now the system creates a buffer:

[Creating ZMACS Buffer "Conflicting symbols".]�

and places you in it. In our example, the Conflicting Symbols buffer might contain

only the name

�

SEARCH

�

Now edit the buffer to supply a new name. The new name must appear on the

same line as the old name, immediately following it. After editing, our sample buf-

fer of conflicting symbols looks like this:

�

SEARCH  MY-SEARCH

�

Move back to your input buffer and type:

�

m-1 m-X Multiple Query Replace from Buffer

�

(m-1 specifies that only whole-word occurrences of the symbol are picked for sub-

stitution.) The Query Replace command works in the usual fashion, letting you

confirm or bypass the substitution in each individual case. 

Name Conflict Resolution of a Tag Table

Command: m-X Find Conflicting Symbols in Tag Table�

If you are working with a Tag Table, the conversion command asks how the pack-

ages used by files in the Tag Table will be converted. It then creates the buffer of

conflicting symbols, which you edit as described earlier. Now type: 

m-1 m-X Tags Multiple Query Replace from Buffer�

Zmacs displays each occurrence of a symbol to be replaced, and you respond with

an instruction to replace or skip, as appropriate, then press c-. to continue. See

the section "Performing Operations with Tag Tables". The system notifies you

when it has finished all substitutions. 

Step Four: Package Prefix Conversion

Commands: m-X Convert Package of Region

m-X Convert Package of Buffer

m-X Convert Package of Tag Table

This step modifies a program so that it can be read in a Common Lisp package in-

stead of a Zetalisp package, but still get the same symbols. Each time a symbol in-



Page 885

herited from Zetalisp is referenced, if the same symbol does not occur in Common

Lisp a zl: package prefix is inserted in front of the symbol. No symbol substitution

is done; the file is just changed to read the same global symbols into the new

package. For instance, memq is converted to read zl:memq, not to the correspond-

ing Common Lisp function name, member (that translation occurs later).

For a description of this step, see the section "Package Conversion".

A number of Zetalisp global symbols are much more often used as the names of lo-

cal variables than as functions; examples are zl:args and zl:array. The Conversion

Tools display a list of such symbols and offer you the option of suppressing their

conversion. This will later save you the trouble of removing the unnecessary zl:

prefixes generated by the conversion. You can edit the list, adding or removing

symbols as required.

Step Four-a: CL Prefix Removal (Optional)

If your program was already using functions in the Common Lisp package by

means of an explicit cl: package prefix, you may want to remove these prefixes

now. Use the standard Zmacs Search and Replace commands for this purpose. 

Step Five: Function Conversion

Commands: m-X Convert Functions of Region

m-X Convert Functions of Buffer

m-X Convert Functions of Tag Table

Many Zetalisp functions and variables readily translate into their corresponding

Common Lisp functions. Three such types of translation are performed in this

step.

The simplest translation is the direct substitution of one symbol for another; you

can opt to have the system do these without querying you about each case. Other

translations may involve some changes such as the addition of a keyword, the

changing of an expression to a list, a changed order of arguments, and so on. In

such cases the conversion command displays the proposed change, and asks you to

confirm it. The most complicated renamings involve cases where there may be

more than one option for translating a given Zetalisp function. Here, the conver-

sion command displays the available options, along with some explanation about

each, and asks you to select the most appropriate among them. This is where max-

imum familiarity with the code and the conversion set comes into play.

Before doing the function conversion, the system also prompts you for a conversion

set; typically this is Zetalisp to Common Lisp. It can also be any of several other

predefined conversion sets, such as Flavors to CLOS, or a conversion set that you

have defined yourself.

As already stated, Zetalisp functions without a Common Lisp analogue, Zetalisp

symbols not appearing their usual syntactic context, and complex Zetalisp functions

are not translated in this step. However, all such untranslated functions remain



Page 886

prefixed by zl: as a result of Package Prefix Conversion, so you can find them and

deal with them yourself later.

The substituting mechanism is careful not to lose comments; they may not, how-

ever, end up exactly in the right place in the rearranged program. Indentation

might also have changed. You should look the program over as the conversion pro-

gresses. 

Function Conversion of a Buffer

The output buffer produced by the Package Prefix Conversion step is our input

buffer for this next step. Type:

m-X Convert Functions of Buffer�

After verifying the file name as usual, the Conversion Tools prompt for a conver-

sion set; the options can be displayed by pressing HELP.

The defstruct option is for Structure conversion, the final conversion step. Here,

select Zetalisp to Common Lisp as the conversion set.

Next indicate whether or not you want to be queried for straightforward renam-

ings. Since these are simply direct symbol substitutions, the favored approach is to

let the system do them automatically.

After doing the simple conversions, the system uses a typeout window to query you

on all other substitutions. Before each query, the system displays the affected

line(s) in bold along with the immediate context so you can identify the code. For

a table of your possible actions at this point, see the section "Getting Help with

Conversion". 

Function Conversion of a Region

Command: m-X Convert Functions of Region�

This works analogously to the Buffer version of the command, except that it oper-

ates only on the region you have marked. 

Function Conversion of a Tag Table

Command: m-X Convert Functions of Tag Table�

The sequence of events is as for the Buffer version: the conversion command

prompts you for a conversion set, asks if you want to be queried for simple re-

namings, and displays proposed changes or options, requesting a response. It dis-

plays each file name as it finishes its conversion; its last message is "Now no

more sets of possibilities." 

Step Five-a: Remaining ZL Prefix Removal



Page 887

Some Zetalisp functions may have been too complicated to convert automatically

because the change requires rearranging the code in the vicinity of the function. 

Structure definitions and constructors are still unconverted, and should be left

with their zl: prefixes until the Structure Conversion step.

Some Zetalisp functions might remain, however, because a global symbol is really

being used in an innocent way and is not suppressed explicitly during the initial

package conversion. Such zl: prefixes can be removed altogether, since the new lo-

cal symbols serve better. Use the standard Zmacs Search and Replace commands

to do this. 

Step Six: Structure Conversion

Commands: m-X Convert Functions of Region

m-X Convert Functions of Buffer

m-X Convert Functions of Tag Table

To convert structures, you use the same command as for Function Conversion, ex-

cept that this time you specify defstruct as the conversion set instead of Zetalisp

to Common Lisp. As before, you have the option of doing straightforward renam-

ings without a query. Keep in mind that since the system being converted is not

guaranteed to be loaded, you will be asked about all forms beginning with make-

that have an even number of arguments and no keywords other than :make-array.

This may include a number of legitimate function calls.

For the most part, the defstruct macro is compatible with its zl:defstruct coun-

terpart. However, some of the options accepted by both have a slightly different

behavior when given to cl:defstruct than when given to zl:defstruct. In some cas-

es, default behavior when no options are given also differs. There are, as well, dif-

ferences in the format of the constructors generated by each defstruct; these are

discussed in more detail below. For these reasons, we need a special conversion

phase just to convert structure definitions and constructors. This phase deals with

all defstruct forms, and all forms beginning with make- that appear to be struc-

ture constructor macros. You will probably need to do some editing of the conver-

sion results, as we explain later.

In Zetalisp, you give the structure component names to the constructor macro as

arguments for initializing these components, or slots. Common Lisp constructor

functions take instead keyword arguments with the same name as the structure

components. Further, Common Lisp constructor functions don’t accept keyword ar-

guments to the :make-array keyword. This Zetalisp form of a constructor macro,

for example, is not acceptable to Common Lisp:

:make-array (:length 20)�

The Conversion Tools let you get around this restriction by offering a Symbolics

Common Lisp extension to defstruct that adds the option :constructor-make-

array-keywords to a cl:defstruct macro. This option is followed by a list of all

the :make-array arguments destined for use by the constructor function; these ar-



Page 888

guments then become top-level arguments to the constructor instead of appearing

as keyword arguments to the :make-array keyword argument in the constructor.

Only arguments included in the :constructor-make-array-keywords option to

defstruct can be used in the constructor function.

If you opt for this approach, and if during conversion the system finds that the zl:

constructor contains :make-array keyword arguments that were not explicitly spec-

ified in the zl:defstruct :make-array option, it gives you an explicit message,

telling you to add the missing keywords. The message is also recorded in the com-

piler warnings database to let you do your editing all at once after the conversion.

Warning: Currently, the constructor function always expands to a call to zl:make-

array. This works in most cases, but could create problems if your Zetalisp struc-

ture definition specifies a type for the new structure (or any other keyword argu-

ment to zl:make-array that differs from a make-array keyword). 

Structure Conversion of a Buffer

All previous phases of Common Lisp conversion must have already been executed

on the buffer before performing Structure Conversion.

This section uses examples in the file

SYS:CONVERSION-TOOLS;CONVERSION-STRUCTURES-TEST-PROGRAM.LISP�

Type:

m-X Convert Functions of Buffer�

After verifying the filename to convert as usual, the conversion command asks for

a conversion set to use; this time, type defstruct . As for function conversion, you

are asked if the conversion should do straightforward renamings without query;

answer Yes. Straightforward renamings include converting zl:defstruct to

defstruct, changing the names of structure components in constructor functions to

keywords, and changes involving different default behavior in Zetalisp and Com-

mon Lisp defstruct, as in the use of :conc-name in our sample.

After querying you for each conversion (press HELP for the full list of possible re-

sponses), the system produces the new code. Major changes are as follows:

All zl:defstruct macros have become Common Lisp defstruct.

In all the converted constructor functions, the names of the structure components

have become keyword arguments.

Example differences in zl: and cl: defstruct default behavior 

The treatment of the :conc-name option to defstruct points to differences in the

default behavior of the Zetalisp and Common Lisp forms. The zl:defstruct for the

structure my-structure contains a :conc-name option without an argument. This

form of the option is the default for defstruct. Therefore, :conc-name becomes re-

dundant and is removed during the conversion. In contrast, the zl:defstruct for

the structure header-structure in the example does not contain a :conc-name op-

tion, because we wanted to use the default version of the zl:defstruct, which is



Page 889

the :conc-name nil option. Since this is not the default behavior for defstruct, the

conversion adds an explicit :conc-name nil option.

Treatment of :make-array keywords

The zl:defstruct for the structure header-structure in our example specifies that

the structure should be implemented as an array, and uses a :make-array option

to define the array length.

The Zetalisp constructor macro, make-header-structure, also uses the :make-

array keyword, followed by two keyword arguments to it, namely :length and

:displaced-to. To allow use of the latter two in the CL constructor function, which

does not accept keyword arguments to :make-array, the conversion did the follow-

ing:

It replaced the :make-array option in the zl:defstruct with the Symbolics Common

Lisp option :constructor-make-array-keywords, following it with the former

:length argument to :make-array which now serves as an argument rather than a

keyword.

It also replaced the :make-array option in the Zetalisp constructor macro by the

top-level keyword arguments, :length and :displaced-to.

While converting the constructor macro, the system finds that the constructor

:displaced-to argument is missing from the argument list of the :constructor-

make-array-keywords option in the defstruct. This is because it was not specified

in the zl:defstruct, appearing only in the constructor. The system therefore dis-

plays a message, telling you to add this argument to the list of arguments follow-

ing the :constructor-make-array-keywords, in the defstruct, so that the construc-

tor function can subsequently use it. To deal with all such messages together at

the end of the conversion, execute m-X Edit Compiler Warnings, which displays the

Compiler Warnings database. 

If your zl:defstruct used the :type option:

Suppose your original code specifies that the structure be implemented as a string

array, as follows:

(zl:defstruct (header-structure :array-leader

(:make-array (:length 20

      :type ’zl:art-string)))

  slot-1)

�

(defun make-one ()

  (make-header-structure slot-1 ’one :make-array (:length 40)))

�

This is then converted to the following Common Lisp form:

(defstruct (header-structure (:conc-name nil) :array-leader

                             (:constructor-make-array-keywords

                               (length 20) (element-type ’string-char)))

  slot-1)



Page 890

�

(defun make-one ()

  (make-header-structure :slot-1 ’one :length 40))

�

Since the constructor function currently expands to a call to zl:make-array, the

form (zl:make-array 20 ... :element-type ’string-char) would result. This is not

legal, since Zetalisp recognizes only type as an array type specifier. 

This problem will be fixed in a future release. Currently, you can get around it by

editing the converted code of the defstruct to restore the original Zetalisp type

declaration:

�

(defstruct (header-structure (:conc-name nil) :array-leader

                             (:constructor-make-array-keywords (length 20)

                                                               (type ’zl:art-string)))  

  slot-1)

�




