Symbolics Common Lisp Language Concepts

Organization of Symbolics Common Lisp Documentation

Symbolics Common Lisp (SCL) is the Symbolics implementation of the Lisp lan-
guage. Lisp is a powerful and complex tool that can be used at many levels, by
people with widely varying programming experience. SCL is therefore intended to
serve a user spectrum that ranges from the novice programmer to the experienced
Lisp developer. These two facts motivate the organization of this documentation in-
to several parts, each reflecting a different stage of familiarity with Lisp.

For an overview of Symbolics Common Lisp, see the section "Overview of Symbol-
ics Common Lisp". This section is intended primarily as a learning aid — to give
the new user an introduction to key SCL concepts. The Overview does not present
topics in any detail. Rather, it is aimed at giving the new user a general sense of
each topic, including definitions of basic terms and simple examples of important
concepts. It is designed to be read sequentially, in a single sitting if desired.

If you are unfamiliar with the Symbolics notation conventions for Lisp documenta-
tion, see the section "Understanding Notation Conventions".

Your reference guide to Symbolics Common Lisp (SCL), the Symbolics implementa-
tion of the Lisp language, consists of the following volumes:

Symbolics Common Lisp Language Concepts
Documents the basic language concepts of Lisp, including data types, type
specifiers, functions and dynamic closures, inline functions and macros, eval-
uation, scoping, flow of control, declarations, and compatibility issues.

Symbolics Common Lisp Programming Constructs
Documents the higher-level programming constructs of Lisp, including
structures, CLOS, Flavors, conditions, packages, and input/output facilities
(including the reader, printed representation, input and output functions,
and streams).

Symbolics Common Lisp Dictionary
An alphabetic dictionary of all Lisp objects documented in the previous two
volumes.

The first two volumes give a conceptual presentation of Symbolics Common Lisp,
and provide in-depth coverage of topics presented in the Overview. The Dictionary
is the most detailed part of the documentation. This is a true dictionary of refer-
ence entries for all Symbolics Common Lisp symbols. Each entry provides a com-
plete description of a single Lisp object. For example, the entry for a given SCL
function would include its syntax, what it returns, examples of its use and cross-
references to related functions or topics. The entries are alphabetized and thumb
tabs are provided for rapid access to information about an individual symbol when
you need it. Because the dictionary entries appear in alphabetical order, this vol-
ume of Symbolics Common Lisp is not indexed; the other volumes are fully in-
dexed.

Page 6

Understanding Notation Conventions

You should understand several notation conventions before reading the documenta-
tion.

Lisp Objects

Functions
A typical description of a Lisp function looks like this:

function-name argl arg2 &optional arg3 (arg4 (foo3)) function
Adds together argl and arg2, and then multiplies the result by arg3. If arg3
is not provided, the multiplication is not done. function-name returns a list
whose first element is this result and whose second element is arg4. Exam-
ples:

(function-name 3 4) => (7 4)
(function-name 1 2 2 ’bar) => (6 bar)

The word "&optional" in the list of arguments tells you that all of the arguments
past this point are optional. The default value of an argument can be specified ex-
plicitly, as with arg4, whose default value is the result of evaluating the form (foo
3). If no default value is specified, it is the symbol nil. This syntax is used in
lambda-lists in the language. (For more information on lambda-lists, see the sec-
tion "Evaluating a Function Form".) Argument lists can also contain "&rest",
which is part of the same syntax.

Note that the documentation uses several fonts, or typefaces. In a function de-
scription, for example, the name of the function is in boldface in the first line, and
the arguments are in italics. Within the text, printed representations of Lisp ob-
jects are in the same boldface font, such as (+ foo 56), and argument references
are italicized, such as argl and arg2.

Other fonts are used as follows:

"Typein" or "example" font (function-name)
Indicates something you are expected to type. This font is also
used for Lisp examples that are set off from the text and in
some cases for information, such as a prompt, that appears on
the screen.

"Key" font (RETURN, =-L)
For keystrokes mentioned in running text.

Macros and Special Forms

The descriptions of special forms and macros look like the descriptions of these
imaginary ones:

Page 7

do-three-times form Special Form
Evaluates form three times and returns the result of the third evaluation.

with-foo-bound-to-nil form... Macro
Evaluates the forms with the symbol foo bound to nil. It expands as follows:

(with-foo-bound-to-nil
form1

form2 ...) ==>

(et ((foo nil))
form1

form2 ...)

Since special forms and macros are the mechanism by which the syntax of Lisp is
extended, their descriptions must describe both their syntax and their semantics;
unlike functions, which follow a simple consistent set of rules, each special form is
idiosyncratic. The syntax is displayed on the first line of the description using the
following conventions.

e Italicized words are names of parts of the form that are referred to in the de-
scriptive text. They are not arguments, even though they resemble the italicized
words in the first line of a function description.

e Parentheses ("()") stand for themselves.
e Brackets ("[1") indicate that what they enclose is optional.

e Ellipses ("...") indicate that the subform (italicized word or parenthesized list)
that precedes them can be repeated any number of times (possibly no times at
all).

e Braces followed by ellipses ("{ }...") indicate that what they enclose can be re-
peated any number of times. Thus, the first line of the description of a special
form is a "template" for what an instance of that special form would look like,
with the surrounding parentheses removed.

The syntax of some special forms is too complicated to fit comfortably into this
style; the first line of the description of such a special form contains only the
name, and the syntax is given by example in the body of the description.

The semantics of a special form includes not only its contract, but also which sub-
forms are evaluated and what the returned value is. Usually this is clarified with
one or more examples.

A convention used by many special forms is that all of their subforms after the
first few are described as "body...". This means that the remaining subforms con-
stitute the "body" of this special form; they are Lisp forms that are evaluated one
after another in some environment established by the special form.

This imaginary special form exhibits all of the syntactic features:

Page 8

twiddle-frob /(frob option...)] {parameter valuej... Special Form
Twiddles the parameters of frob, which defaults to default-frob if not speci-
fied. Each parameter is the name of one of the adjustable parameters of a
frob; each value is what value to set that parameter to. Any number of
parameter/value pairs can be specified. If any opfions are specified, they are
keywords that select which safety checks to override while twiddling the pa-
rameters. If neither frob nor any options are specified, the list of them can
be omitted and the form can begin directly with the first parameter name.

frob and the values are evaluated; the parameters and options are syntactic
keywords and are not evaluated. The returned value is the frob whose pa-
rameters were adjusted. An error is signalled if any safety check is violated.

Flavors, Flavor Operations, and Init Options
Flavors themselves are documented by the name of the flavor.

Flavor operations are described in three ways: as methods, as generic functions,
and as messages. When it is important to show the exact flavor for which the
method is defined, methods are described by their function specs. Init options are
documented by the function spec of the method.

When a method is implemented for a set of flavors (such as all streams), it is doc-
umented by the name of message or generic function it implements.

The following examples are taken from the documentation.

sys:network-error Flavor

This set includes errors signalled by networks. These are generic network errors
that are used uniformly for any supported networks. This flavor is built on error.

(flavor:method :clear-window tv:sheet) Method

Erases the whole window and move the cursor position to the upper left corner of
the window.

:tyo char Message

Puts the char into the stream. For example, if s is bound to a stream, then the
following form will output a "B" to the stream:

(send s :tyo #\B)

For binary output streams, the argument is a nonnegative number rather than
specifically a character.

dbg:special-command-p condition special-command Function

Page 9

Returns t if command-type is a valid Debugger special command for this condition
object; otherwise, returns nil.

The compatible message for dbg:special-command-p is:
:special-command-p

For a table of related items, see the section "Basic Condition Methods and Init Op-
tions".

(flavor:method :bottom tv:sheet) botiom-edge Init Option
Specifies the y-coordinate of the bottom edge of the window.

Variables

Descriptions of variables ("special" or "global" variables) look like this:
typical-variable Variable
The variable *typical-variable* has a typical value....

Macro Characters

Macro characters are explained in detail in the documentation. See the section
"How the Reader Recognizes Macro Characters".

The single quote character (°) and semicolon (;) have special meanings when typed
to Lisp; they are examples of what are called macro characters. It is important to
understand their effect.

When the Lisp reader encounters a single quote, it reads in the next Lisp object
and encloses it in a quote special form. That is, ’foo-symbol turns into (quote
foo-symbol), and ’(cons ’a ’b) turns into (quote (cons (quote a) (quote b))). The
reason for this is that "quote" would otherwise have to be typed in very frequently
and would look ugly.

In Lisp, quoting a character means inhibiting what would otherwise be special pro-
cessing of it. Thus, in Common Lisp, the backslash character, "\", is used for quot-
ing unusual characters so that they are not interpreted in their usual way by the
Lisp reader, but rather are treated the way normal alphabetic characters are
treated. So, for example, in order to give a "\" to the reader, you must type "\\",
the first "\" quoting the second one. When a character is preceded by a "\" it is
said to be slashified. Slashifying also turns off the effects of macro characters such
as single quote and semicolon. Note that in Zetalisp syntax, the slash, "/", is the
quoting character and must be doubled.

The following characters also have special meanings, and cannot be used in sym-
bols without slashification. These characters are explained in detail elsewhere: See
the section "How the Reader Recognizes Macro Characters".

”

Double-quote delimits character strings.

Page 10

Sharp-sign introduces miscellaneous reader macros.
¢ Backquote is used to construct list structure.
, Comma is used in conjunction with backquote.

Colon is the package prefix.
| Characters between pairs of vertical bars are quoted.

® Circle-X lets you type in characters using their octal codes. (Zetalisp only)

The semicolon is used as a commenting character. When the Lisp reader sees one,
the remainder of the line is ignored.

Character Case

All Lisp code in the documentation is written in lowercase. In fact, the Lisp reader
turns all symbols into uppercase, and consequently everything prints out in upper-
case. You can write programs in whichever case you prefer.

Packages and Keyword Names
For an explanation of packages: See the section "Packages".

Various symbols have the colon (:) character in their names. By convention, all
keyword symbols in the system have names starting with a colon. The colon char-
acter is not actually part of the print name, but is a truncated package prefix indi-
cating that the symbol belongs to the keyword package. (For more information on
colons: See the section "Introduction to Keywords".

For now, just pretend that the colons are part of the names of the symbols.)

The document set describes a number of internal functions and variables, which
can be identified by the "si:" prefix in their names. The "si" stands for "system-
internals". These functions and variables are documented because they are things
you sometimes need to know about. However, they are considered internal to the
system and their behavior is not as guaranteed as that of everything else.

Maclisp

Because Symbolics Common Lisp is descended from Maclisp, some Symbolics Com-
mon Lisp functions exist solely for Maclisp compatibility; they should not be used
in new programs. Such functions are clearly marked in the text.

Examples

The symbol "=>" indicates Lisp evaluation in examples. Thus, "foo => nil" means
the same thing as "the result of evaluating foo is nil".

The symbol "==> indicates macro expansion in examples. Thus,
"(foo bar) ==> (aref bar 0)" means the same thing as "the result of expanding the
macro (foo bar) is (aref bar 0)".

Page 11

The Character Set

The Genera character set is not the same as the ASCII character set used by most
operating systems. For more information: See the section "The Character Set".

Unlike ASCII, there are no "control characters" in the character set; Control and
Meta are merely things that can be typed on the keyboard.

Overview of Symbolics Common Lisp

This chapter provides you with a sense of the basic concepts and terms in Symbol-
ics Common Lisp, in a form that you can read at a single sitting. New users
should find this material of particular interest.

If you are unfamiliar with the Symbolics notation conventions for Lisp documenta-
tion, see the section "Understanding Notation Conventions".

The Lisp dialect documented here is Symbolics Common Lisp. Symbolics Common
Lisp is based on Common Lisp, and includes Common Lisp, as well as all the ad-
vanced features of Zetalisp. For details about the relationship between these di-
alects, see the section "Lisp Dialects Available in Genera".

General information about two topics, Cells and Locatives and Special Forms, ap-
pears exclusively in this Overview, the former because the topic does not require
further coverage, the latter because special forms are scattered throughout the
documentation and are covered in the context of various other topics. See the sec-
tion "Cells and Locatives". See the section "Special Forms and Built-in Macros".

The term form is ubiquitous in any discussion of the Lisp language and so is
worth mentioning here. A form is a data object that is meant to be evaluated.

Overview of Data Types

Overview of Data Types and Type Specifiers

Lisp is a typed language; Lisp programs manipulate data structures of a given
type, using them to build more complex structures. The term Lisp object refers to
the collectivity of basic data types that programs can create. Some examples of
Lisp objects are symbols, characters, and structure and flavor instances.

Symbolics Common Lisp provides a wide variety of data object types, as well as fa-
cilities for extending the type hierarchy. It is important to note that in Lisp it is
data objects that are typed, not variables. Any variable can have any Lisp object as
its value.

In Symbolics Common Lisp, a data type is a (possibly infinite) set of Lisp objects.
The defined data types are arranged into a hierarchy (actually a partial order) de-
fined by the subset relationship. We say that an object is "of" a datatype if the ob-
ject is a member of the set that makes up the type.

Page 12

A type called common encompasses all the data types required by the Common
Lisp language. Symbolics Common Lisp provides several additional data types, such
as flavors, which represent an extension to the Common Lisp type system. The set
of all objects in Symbolics Common Lisp is specified by the symbol t. The empty
data type, which contains no objects, is denoted by nil.

The type hierarchy can be conceptualized as a tree whose root is t. The following
terminology is useful for expressing the basic relationships among the branches
and sub-branches of this tree.

A given type is a supertype of those data types it encompasses. For example, the
type number is a supertype of all other numeric types such as rational, integer,
complex, and so on. These numeric types are called subtypes of number. They can,
in turn, have supertype-subtype relationships with each other; for example, the
type rational is a supertype of the type integer, which is a supertype of the type
signed-byte, and so forth.

The type t is a supertype of every type whatsoever: Every object belongs to type t.
The type nil is a subtype of every type whatsoever: No object belongs to type nil

Two or more data types can be disjoint, that is, no object can simultaneously be-
long to more than one of these types. For example, the types float and rational
are disjoint subtypes of the type number.

Subtypes of a common supertype form an exhaustive union formed by the supertype
if every object belonging to the supertype belongs to at least one of the subtypes.
For example, the type common denotes an exhaustive union of, among others, the
types cons, symbol, readtable, pathname, and all types created by the user with
defstruct or defflavor. If the types belonging to a common supertype are disjoint,
they form a partition. For example, the types bignum and fixnum form a partition
of the type integer, since every integer is either a fixnum or a bignum but not
both. If all elements of a supertype are members of one of the mutually disjoint
subtypes, this forms an exhaustive partition.

For a complete list of Symbolics Common Lisp data types, see the section "Hierar-
chy of Data Types".

Types of data objects, such as numbers or arrays, are identified by symbolic names
or lists, called type specifiers, that are associated with them. Type specifiers serve
as arguments to predicates that perform type-checking; they are also used by vari-
ous functions whose operation requires arguments or results of a specific data

type.

Examples of some major type specifier symbols are number, character, list,
array, table, flavor, and generic-function. These and many others are discussed
in individual chapters in the documentation.

Type specifier lists let you refine type distinctions and define your own types. For
example, the type specifier list (integer low high) lets you define an integer type
whose range is restricted to the limits indicated by the arguments low and high.

Since many Lisp objects belong to more than one group of data types, it does not
always make sense to ask what the type of an object is; instead, one usually asks

Page 13

only whether an object belongs to a given type. The predicate typep tests a Lisp
object against one of the standard type specifiers to determine if it belongs to that
type. The function type-of returns the most specific type that can be conveniently
computed and is likely to be useful to the user. For example:

(type-of 5/7) => RATIO

See the section "Type-checking Differences Between Symbolics Common Lisp and
Zetalisp".

Other basic operations with data types are:

e Converting an object of one type to an equivalent object of another type
(coerce).

e Testing relationships between objects in the type hierarchy (subtypep).
e Determining a type to which an object belongs (type-of).

e Getting the type specifier list for standard data types (sys:type-arglist).

Overview of Numbers

Symbolics Common Lisp includes several types of numbers, with different charac-
teristics. These are:

e Rational Numbers are used for exact mathematical calculations. These include:
° Integers are rational numbers without a fractional part, such as 0, 1, 2.

° Ratios are pairs of integers, representing the numerator and denominator of a
number, for example, 15/16, -26/3.

e Floating-point Numbers are used for approximate mathematical calculations.
Symbolics Common Lisp supports two forms:

e ° Single-floats are single-precision floating-point numbers, for example, 1.0e-45.

° Double-floats are double-precision floating-point numbers, for example, 5.0d-
324.

e Complex Numbers are used to represent the mathematical concept of the same
name, for example, #c(4.0 10).

In conventional computer systems, considerations such as number length, base, or
internal representation are important, and numbers therefore have "computer"
properties. In Symbolics Common Lisp, rational numbers are represented as num-
bers since their representation is not limited by machine word width, but only by
total memory limitations. Thus, rational numbers in Symbolics Common Lisp have
more familiar mathematical properties.

Page 14

For internal efficiency, Symbolics Common Lisp also has two primitive types of in-
tegers: fixnums and bignums. Fixnums are a range of integers that the system can
represent efficiently, while bignums are integers outside the range of fixnums.
When you compute with integers, the system automatically converts back and forth
between fixnums and bignums based solely on the size of the integer. With the ex-
ception of some specialized cases, the distinctions between fixnums and bignums
are invisible to you, in computing, printing or reading of integers.

The system canonicalizes numbers, that is, it represents them in the lowest form.

Rational canonicalization is the automatic reduction and conversion of ratios to in-
tegers, if the denominator evenly divides the numerator.

Integer canonicalization is the automatic internal conversion between fixnums and
bighums to represent integers.

Complex canonicalization is the matching of complex number types and the conver-
sion of a complex number to a noncomplex rational number when necessary.

Typically, functions that operate on numeric arguments are generic, that is, they
work on any number type. Moreover, arithmetic and numeric comparison functions
also accept arguments of dissimilar numeric types and coerce them to a common
type by conversion. When these functions return a number, the coerced type is al-
so the type of the result. Coercion is performed according to specific rules.

Functions are available to let you force specific conversions of numeric data types
(for example, convert numbers to floating-point numbers, convert noncomplex to
rational numbers).

When comparing numbers, note that although the predicates eq, eql, equal, and
equalp accept numbers as arguments, they don’t always produce the expected re-
sults. It is therefore preferable to use = to test numeric equality.

Integer division returns an exact rational number result, that is, it does not trun-
cate the result. (Integer division in Zetalisp truncates the result.)

Operations with numbers include type-checking (rationalp), arithmetic, numeric
comparison (=), and transcendental functions (exp); you can also do bit-wise opera-
tions (logior, byte-position), random number generation, and machine-dependent
arithmetic.

Some other terminology associated with numbers:

Radix An integer that denotes the base in which a rational number
prints and is interpreted by the reader. The default radix is 10
(decimal), and the range is from 2 to 36, inclusive. Current
radix for printing and reading is controlled by the variables
print-base and *read-base*, respectively.

Radix specifier A convention for displaying a rational number with its current
radix. For example, #2r181 is the binary representation of 5.
Controlled by the value of the variable *print-radix*.

Page 15

Exponent marker A character that indicates the floating-point format (double,
long, single, short) of a floating-point number. Controlled by
the value of the variable *read-default-float-format* for print-
ing and reading.

Overview of Symbols

A symbol is a Lisp object in the Lisp environment. A symbol has a print name, a
value (or binding), a definition (or the contents of its function cell), a property list,
and a package. It is important to understand that a symbol can be any Lisp object,
for example a variable, a function, or a list. It is also important to keep in mind
that while we sometimes say that a symbol is the name of some object, a name is
actually the printed representation of that object. A symbol is the object itself.

Two kinds of symbols should be mentioned explicitly here: keywords and variables.

Keywords are implemented as symbols whose home package is the keyword pack-
age. (See the section "Package Names".) The only aspects of symbols significant to
keywords are name and property list; otherwise, keywords could just as easily be
some other data type. (Note that keywords are referred to as enumeration types in
some other languages.)

There are three kinds of variables: special (or global), local (or lexical), and in-
stance. A special variable has dynamic scope: any Lisp expression can access it
simply by referring to its name. A local variable has lexical scope: only Lisp ex-
pressions lexically contained in the special form that binds the local variable can
access it. See the section "Overview of Dynamic and Lexical Scoping". An instance
variable has a different kind of lexical scope: only Lisp expressions lexically con-
tained in methods of the appropriate flavor can access it. Instance variables are
explained in another section. See the section "Overview of Flavors".

Overview of Lists

This section introduces the concepts of Lisp lists, the components of lists, and oth-
er data structures that are composed of lists.

Lists and list-like structures exist to organize data in tabular structures. The sim-
plest such structure is just a collection of items. For example:

scallop
clam
oyster
mussel

The kinds of things a program might do with such a structure are, for example:
e Find a given — first, last, second — item in the collection/table/list

e See if a given item is included

Page 16

e Add an item to or remove an item from the structure

e Copy the structure

These are just a few of the possible operations. The above collection, which is just
a plain list of items, approximately models the mathematical concept of a sef. Since
the need for this kind of structure and these operations is ubiquitous in the type
of programming that the Lisp language was designed for, Lisp has an enormous
collection of functions for performing these types of operations.

The Cons

The basic data type upon which all tabular structures are based is a record struc-
ture called a cons. A cons has two components: the head of the cons, which is
called the car, and the rest, or tail, of the cons, which is called the cdr. See figure

! for an illustration of a single cons cell.

I
Vo
car cdr
half half

Figure 1. Single Cons Cell
The basic operations on the cons data type are:

cons and xcons Create a cons with a specified car and cdr.

consp Determines if an object is a cons.
car Determines the car of the cons.
cdr Determines the edr of the cons.

With the cons data type and its associated operations, it is possible to create an
unlimited variety of tabular structures. The simplest such structure is the list.

Simple Lists

A list is not a primitive Lisp data type; rather, it is a record structure created out
of conses. The method by which lists are constructed allows the many special list
operations to be defined recursively. The key to the construction of a list using
conses is the object called nil, which is, by definition, the empty list. nil is also
represented as (). nil has its own special data type, null, which includes nil as its
only case.

Page 17

Having this special object to denote an empty list, it is now easy to define a list in
terms of conses:

A list is either nil or it is a cons whose tail (cdr) is a list.
The list of the above example can thus be created by:

(cons ’scallop (cons ’clam (cons ’oyster (cons ’mussel
’nil)))) => (SCALLOP CLAM OYSTER MUSSEL)

which is equivalent to
(list ’scallop ’clam ’oyster ’mussel)

Note that the printed form of the list is enclosed within parentheses. This struc-
ture could be diagrammed as:

first cons
car cdr
I I
SCALLOP |
I
second cons
car cdr
I I
CLAM |
I
third cons
car cdr
I I
OYSTER |
I
fourth cons
car cdr
I I
MUSSEL |
I

nil

Note that only the heads (cars) of the conses of this structure contain the ele-
ments of the list. The tail (cdr) of each cons contains the rest of the list, except
for the last cdr, which contains nil.

The form of this structure and its recursive generation, make it easy to generate
functions to search through lists, extract various parts of lists, and the like.

Special Kinds of Lists

e Property Lists

A table in which each of the items has some property associated with it is called a
property list. For example, a property list for a scallop might be:

Page 18

outer-color blue-black
interior-color mother-of-pearl
shell thin

culinary-value high

The kinds of operations that might be performed on a structure like this are
adding and removing properties and finding a property, given an item. For these
simple operations, a special kind of simple list, called a property list is sufficient. A
property list is just a list that has an even number of elements that are alternate-
ly items and the items’ properties. For example, the above list would be represent-
ed as

(OUTER-COLOR BLUE-BLACK INTERIOR-COLOR MOTHER-OF-PEARL SHELL THIN
CULINARY-VALUE HIGH)

The first members of the pairs in the list are called indicators and the second
members are called values or properties.

The functions for manipulating property lists are side-effecting operations; they
have the result of altering the property list itself, rather than of creating a new
list.

e Dotted Lists

A cons whose tail (cdr) is not the empty list is called a dotted list. This term is a
misnomer, since a dotted list is not a true list at all. The "dotted" part of the
name stems from the way a dotted list is represented in print with the car and
cdr separated by a dot:

(cons ’scallop ’clam) => (SCALLOP . CLAM)

Conses are the building blocks for a another structure called an association list.

e Association Lists

Another type of table is one in which each of the items in the table is identified
according to some key. For example:

pectinidae scallop
pelecypoda clam
ostrea oyster
mytilus mussel

The structure used to represent this sort of table is called an association list, or
alist. An association list is a list, the elements of which are conses. The conses
that compose an association list are not required to be dotted pairs, but they can
be. The car of one of these conses is called the indicator, and the cdr is called the
value. The table above is represented as:

((PECTINIDAE . SCALLOP) (PELECYPODA . CLAM) (OSTREA . OYSTER) (MYTILUS .
MUSSEL))

Page 19

The same kinds of abstract operations that can be performed on property lists can
be performed on association lists, but because of their more complicated structure,
additional operations can also be performed on them. You can, for example, search
on an indicator through an association list to find a value or on a value to find an
indicator. The function pairlis creates an association list by pairing elements from
each of two lists.

Association lists can be incrementally updated by adding new entries to the front.

o Trees

Trees are structures composed of one cons and possibly other conses that are asso-
ciated with that cons, as in these examples:

((PECTINIDAE . SCALLOP) (PELECYPODA . CLAM))
((MYTILUS . MUSSEL) (WHELK PERIWINKLE (FAMILIES . 5) SHELLS)(7 . 4))

Figure ! is a diagram of this structure.

il i
o b

MYTILUS MUSSEL

WHELK” L L N il

PERIWINKLE

AN

J <+—T—@
y 4
N

riel Lele
ot

FAMILIES 5 SHELLs il

Figure 2. Diagram of a Tree Structure

e Circular Lists

Page 20

A circular list is a simple list whose last cons’s tail points either to the first cons
of the list, or another cons in the list. The conses are linked together in a ring
with the cdr of each cons being the next cons in the ring. This list type is useful
especially for those functions that perform a specified operation on all the ele-
ments of a list, for example, mapecar. Circular lists must be used carefully, howev-
er, for they can cause many list functions to get into infinite loops.

Cdr-Coding Lists

Symbolics Common Lisp uses a special internal representation called cdr-coding for
conses and lists that effects a substantial reduction in the storage required for
these structures. Cdr-coded lists require, in the optimum case, only half the space
that regular lists use. The disadvantage of cdr-coded lists is that, once they have
been altered by operations like rplacd, necone, and nreverse, access to them can
be slowed down considerably.

Cdr-coded lists are created by list, list-in-area, make-list, or append.

Normal, that is, not-cdr-coded lists are created by cons, xcons, or ncons, and their
in-area variants.

The copylist function can be used to convert a normal list into a cdr-coded list.

Overview of Arrays

Basic Concepts of Arrays

An array is a Lisp object that consists of a group of elements. Each array element
is a Lisp object. General arrays allow the elements to be any type of Lisp object.
Specialized arrays place constraints on the type of Lisp objects allowed as array
elements.

The individual elements of an array are identified by numerical subscripts. When
accessing an element for reading or writing, you use the subscripts that identify
that element. The number of subscripts used to refer to one of the elements of the
array is the same as the dimensionality of the array. Thus, in a two-dimensional
array, two subscripts are used to refer to an element of the array.

The lowest value for any subscript is 0; the highest value is a property of the ar-
ray. Each dimension has a size, which is the lowest integer that is too great to be
used as a subscript. For example, in a one-dimensional array of five elements, the
size of the one and only dimension is five, and the acceptable values of the sub-
script are 0, 1, 2, 3, and 4.

The number of dimensions of an array is called its dimensionality, or its rank. The
dimensionality can be any integer from zero to seven, inclusive. A zero-dimensional
array has exactly one element.

A one-dimensional array is known as a vector. A general vector allows its elements
to be any type of Lisp object. Strings are vectors that require their elements to be

Page 21

of type string-char or character. Bit-vectors are vectors that require their ele-
ments to be of type bit.

For more information on the types of arrays: See the section "Data Types and
Type Specifiers".

Zetalisp Note: Zetalisp uses a different terminology for array types. A general ar-
ray is called a Zetalisp sys:art-q array. Zetalisp has many types of specialized ar-
rays, such as sys:art-fixnum and sys:art-boolean. These types are used by
zl:make-array, which is supported for compatibility with previous releases. For a
complete list of Zetalisp array types, see the section "Zetalisp Array Types".

The basic functions related to arrays enable you to create arrays (make-array), ac-
cess elements (aref), and alter elements (setf used with aref).

There are many types of array operations. Most of these can be done with special-
ized array functions, while some can be done with more general-purpose sequence
functions.

Several advanced and more specialized programming practices are also supported.
See the section "Advanced Concepts of Arrays".

Simple Use of Arrays

The following brief example illustrates the syntax of the basic functions for creat-
ing arrays, reading and writing their elements, and getting information on arrays.

First, we create and initialize an array that could be used to represent an 8-puzzle
game. The first argument represents the array’s dimensions; this is a two-
dimensional array, with three elements in each dimension. The keyword argument
:initial-contents is the mechanism for initializing the elements of the array.

(setq x8-puzzlex
(make-array ’(3 3)
:initial-contents
"((381)
(4 5 nil)
(276))))

=>}t<ART-Q-3-3 44063776>

make-array returns the array. Its printed representation is #<ART-Q-3-3
44003776>.

The next two forms read the elements specified by subscripts (0 2) and (1 2):
(aref x8-puzzlex 8 2) => 1
(aref x8-puzzlex 1 2) => NIL

To play the first move in the game, we switch the position of the nil with any ad-
joining element. When setf is used with aref as follows, the element changes to
the new value given.

Page 22

(setf (aref x8-puzzlex @ 2) nil) => NIL
(setf (aref x8-puzzlex 1 2) 1) => 1

Instead of continuing with the game, we request information on the *8-puzzle* ar-

ray:

e What is the rank of the array, or how many dimensions does it have?

(array-rank x8-puzzlex) => 2

The array has 2 dimensions, or a rank of 2.

e What are the dimensions of the array?

(array-dimensions x8-puzzlex) => (3 3)

The elements of the returned list (3 3) are the dimensions of the array.

e What is the type of the elements in the array?

(array-element-type x8-puzzlex) => T

The returned value, t, indicates that the array elements can be of any type.

Advanced Concepts of Arrays

This section introduces some of the advanced topics of arrays, as well as terminol-
ogy associated with those topics.

Array leader

Fill pointer

Typically, the elements of an array are a homogeneous set of
objects. Sometimes, however, it is desirable to store a few non-
homogeneous pieces of data attached to the array. You can use
an array leader to do this. An array leader is similar to a gen-
eral one-dimensional array that is attached to the main array.
You can create a leader using the :leader-length or :leader-list
option for make-array, and examine and store elements in the
array leader using numeric subscripts. Alternatively, you can
construct the leader wusing the :array-leader option for
defstruct, and then use automatically generated constructor
functions to access the slots of the leader.

By convention, element zero of the array leader of an array is
used to hold the number of elements in the array that are
"active" in some sense. When the zeroth element is used this
way, it is called a fill pointer. Many array-processing functions
recognize the fill pointer. For instance, if a string has seven
elements, but its fill pointer contains the value 5, then only el-
ements zero through four of the string are considered to be

Displaced array

Indirect array

Index offset

Raster

Plane

Array register

Adjusting an array

Array storage

Page 23

"active". This means that the string’s printed representation is
five characters long, string-searching functions stop after the
fifth element, and so on.

Normally, an array is represented as a small amount of header
information, followed by the contents of the array. However,
sometimes it is desirable to have the header information re-
moved from the array’s contents. A displaced array is such an
array. You can create one with the :displaced-to option to
make-array.

This is an array whose contents are defined to be the contents
of another array. You can create one by giving an array as the
value of the :displaced-to option to make-array.

Both indirect and displaced arrays can be created in such a
way that when an element is referenced or stored, a constant
number is added to the subscript given. This number is called
the index offset, and it is specified by giving an integer as the
value of the :displaced-index-offset option to make-array.

This is a two-dimensional array that is conceptually a rectan-
gle of bits, pixels, or display items. A variety of raster opera-
tions is available.

This is an array whose bounds, in each dimension, are plus-
infinity and minus-infinity. All integers are valid as subscripts.
A variety of plane operations is available.

When performance is especially important, you can use the ar-
ray register feature to optimize your code.

You can adjust an existing array to give it a new dimensionali-
ty. To ensure that an array will be adjustable after it is creat-
ed, use the :adjustable option to make-array.

In all Lisp dialects supported by Genera, arrays are stored in
memory in row-major order. This is an implementation detail
that does not concern most programmers. However, if you use
some of the advanced array practices, such as displaced arrays
or adjusting the array size dynamically, you need to understand
how arrays are stored in memory.

Overview of Sequences

A sequence is a data type that contains an ordered set of elements. It subsumes
the types list and vector (one-dimensional arrays).

Symbolics Common Lisp provides a range of general sequence functions that oper-
ate on both lists and vectors. These functions perform basic operations on se-
quences, irrespective of their underlying representation. The advantage of using a

Page 24

sequence operation, rather than one specifically for lists and vectors, is that you
need not know how the sequence has been implemented. It makes sense to reverse
a sequence or extract a range of sequence elements, whether the sequence is im-
plemented as a vector or a list.

The principal operations on sequences fall into the following categories:

e (Constructing and accessing
e Predicates

e Mapping

e Modifying

e Searching

e Sorting and merging

Argument keywords extend the power of the sequence functions. For example, the
keywords :test, :test-not, and :key allow you to set up arbitrarily complex tests for
customizing the operation of the sequence functions. See the section "Testing Ele-
ments of a Sequence".

Overview of Characters

A character is a type of Lisp object. A character object is used to represent letters
of the alphabet and numbers, among other things. Characters are the building
blocks of strings; a string is a one-dimensional array of characters.

The reader recognizes characters by the #\ prefix followed by the character. For
example: #\A is read as the character A; #\1 is read as the character 1. Non-
printing characters have names; the reader recognizes them by the #\ prefix fol-
lowed by a name, such as #\Space.

Each character object has the following attributes: the character code, the charac-
ter set, the character bits, and the character style.

A character set is a group of related characters. All characters in a character set
are recognized as belonging together, even if they are different sizes or styles.

Genera supports three character sets: the Symbolics standard character set, the
mouse character set, and the arrow character set. Characters that are in character
sets other than the Symbolics character set are represented by the #\ prefix fol-
lowed by the name of the character set, a colon, and the name of the character.
For example:

#\mouse:scissors
#arrow:eye

Two characters of different character sets can never be char-equal.

The character code is the attribute of a character that identifies the particular
character in the same way that ASCII codes represent particular characters. Two
characters in different sets never have the same code. For example, the Symbolics
standard character set a and the Greek character set o have different character
codes. (Note that Genera does not support a Greek character set.)

Page 25

The character bits are an attribute of characters. The bits represent the HYFER, SU-
FER, META, and COMTROL keys; they make it possible to distinguish between the
character "A" and the character "control A", for example.

Characters that have bits set are read by the reader in the same way that other
characters are read: the #\ prefix is followed by the character’s name. For example,
#\control-A or #\c-A is read as the character "control A". Other examples are: #\c-
m-Return, #\hyper-Space, #meta-B.

Using Modifier Keys

When any of the modifier bits (control, meta, super, or hyper) is set in conjunction
with a letter, the letter is always uppercased.

The Control-Shift- characters are encoded separately. =—sh-A is not a synonym for
c-A; they are distinct compound keystrokes. -—A names a gesture meaning to hold
down the COMTROL key which pressing the A key.

In addition to the four modifier keys HYPER, SUPER, CONMTROL, and META, the SHIFT
key is a modifier key for letters when used in combination with one of the other
modifiers. The CAFS LOCK key is not a modifier key and is always ignored in com-
pound keystrokes. Thus typing CONTROL and A at the same time gives c-A; pressing
COMTROL and SHIFT and » at the same time gives c-7, not c—sh--.

The names for compound keystrokes always show a letter as capitalized. This does
not mean that you have to use the SHIFT key; use the SHIFT key as a modifier on-
ly when sh- appears in the same name.

In addition, printing names of characters have case in them. Case is ignored on
input. Some new synonyms for existing characters are accepted. In particular,
names of the following form have these synonyms:

Name Equivalent to
#\c-sh-B #\c-shift-B
#\mouse-L #\mouse-L-1

A character style is a combination of three characteristics that describe how a
character appears. These characteristics are the family, face, and size.

Family Characters of the same family have a typographic integrity, so
that all characters of the same family resemble one another.
Examples: SWISS, DUTCH, and FIX.

Face A modification of the family, such as BOLD or ITALIC.
Size The size of the character, such as NORMAL or VERY-SMALL.

The character style is the grouping of the family, face, and size fields. A character
style is often represented by the convention:

Page 26

family.face.size
An example of a fully specified character style is:
SWISS.ITALIC.LARGE

Each element of the character style can be specified or left unspecified. A family,
face, or size of NIL means to use the default value. Most characters have the fol-
lowing character style:

NIL.NIL.NIL

Characters of style NIL.NIL.NIL are displayed in the default character style estab-
lished for the current output device.

Genera distinguishes between thin and fat characters:

Thin character A character whose character style is NIL.NIL.NIL and whose
bits are all zero. Thin characters are of type string-char. For
example: #\A

Fat character A character that has a character style other than NIL.NIL.NIL
or whose modifier bits are set to something other than zero.
Fat characters are of type character. For example: #\c-A

describe is useful for getting information about a character. It responds with the
character’s bits, style, code, and character set; it returns the character itself.

The following example shows the result of describing a thin character representing
the letter A.

(describe #\A) =>

#\A is a character with bits #b@, style NIL.NIL.NIL, and code 65

This is offset 65 in character set H<STANDARD-CHARACTER-SET 204000540>
H\A

The following example shows the result of describing a fat character that repre-
sents the letter A. This character has the Meta bit set and has the style
NIL.ROMAN.NIL. However, the character code of this fat character is the same as
the character code of the thin character representing the letter A.

(describe (make-character #\A :bits char-meta-hit

:style ’(nil :roman nil))) =>
#\m-sh-A 1is a character with bits #b10, style NIL.ROMAN.NIL, and code 65
This is offset 65 in character set H#<STANDARD-CHARACTER-SET 204008540>
#H\m-sh-A

Character styles are device independent. When you want to display a character on
a specific device (such as the black and white console, or the LGP3 printer), a spe-
cific font must be chosen to represent the character. The font is chosen depending
on: the character code, the character set, the character style, and the device type.
The system has a set of predefined mappings between character sets, character
styles, device types and specific fonts.

Page 27

Common Lisp has a font field instead of a character style field. As implemented in
SCL, characters have no font field and the char-font-limit is 1. This is in compli-
ance with Common Lisp.

In Symbolics documentation the word font is used in two contexts: to describe a
font that is specific to a device for representing characters, and to refer to the
font of a character as implemented in releases of Symbolics software prior to Gen-
era 7.0.

Mouse characters and the functions that manipulate them are described elsewhere.
See the section "Mouse Characters".

Overview of Strings

The Lisp data type, string, is a specialized type of vector, or one-dimensional array,
whose elements are characters.

Common Lisp defines a string as a vector whose elements are characters of type
string-char. Symbolics Common Lisp extends this definition by recognizing an ad-
ditional string type, namely a vector whose elements are of type character.
Strings of type string-char are called thin strings; they are made up of thin char-
acters. Strings of type character are called fat strings; they are made up of fat
characters.

Thin string An array whose elements are thin characters (standard charac-
ters of type string-char with no character style or modifier
bits attributes). For example, "any string". The predicate
string-char-p tests for thin characters.

Fat string An array whose elements are fat characters (of type character,
with fields holding information about character style and modi-
fier bits.) For example, "any string". The predicate string-
fat-p tests strings for fatness.

Characters and their attributes are discussed elsewhere in this Overview: See the
section "Overview of Characters".

The function stringp lets you test any Lisp object to determine if it is a string.

Zetalisp Note: Zetalisp uses a different terminology for string types. A thin string
is called sys:art-string, and a fat string is called sys:art-fat-string.

Common Lisp also distinguishes between the type string and a subtype of it called
simple-string. A simple-string is a simple-array, that is, an array that has no fill
pointer, is not adjustable after creation, and whose contents are not displaced
(shared with another array). A string is an array that can have a fill pointer, can
be adjusted after creation, and can be displaced. The types of arrays are discussed
elsewhere in this Overview: See the section "Advanced Concepts of Arrays".

The predicates string-p and simple-string-p test if an object is a string or a sim-
ple-string. The distinction between strings and simple strings is not especially im-
portant in Symbolics Common Lisp.

Page 28

The individual elements of strings are identified by numeric subscripts; when ac-
cessing portions of a string for reading or writing, you use the subscript to identi-
fy the elements. The subscript count always begins at zero. In many cases, string
operations also return an integer that is an index into the string array (as, for ex-
ample, to indicate the position of a character found in a string search).

As vectors, strings constitute a subtype of the type sequences. Hence, many string
operations can use general purpose array or sequence functions; a large number of
string-specific functions are also available.

The basic functions relating to strings let you create strings (make-string or
make-array), access a single string element (char or aref), modify strings or por-
tions of them (setf used with char or aref), and get information about string size
(string-length). Other typical string operations, for which a variety of functions
are provided, include comparing two strings, altering string case, removing por-
tions of a string, combining strings, and searching a string for a character or a
string of characters.

String comparisons and searches examine every individual element of the string.
The case-sensitivity of the comparison determines which attributes of a character
are respected or ignored.

A case-sensitive operation takes into account every single attribute of the charac-
ters compared, whereas a case-insensitive operation ignores the attributes specify-
ing character style and character case. Both case-sensitive and case-insensitive op-
erations compare attribute fields such as character code and modifier bits.

For example:

(string= "sail" "SAIL") => NIL
; case-sensitive comparison fails

(string-equal "sail" "SAIL") =>T
; case-insensitive comparison succeeds

The case-sensitive string comparison functions are distinguished by their use of al-
gebraic comparison symbols as suffixes (for example, string=); the case-insensitive
string comparison functions have alphabetic symbols as suffixes (for example,
string-equal, string-lessp).

The case-sensitive string search functions often use the suffix -exact (for example
string-search-exact-char); the case-insensitive string search functions omit this
suffix (for example, string-search-char).

Many string functions can be destructive or non-destructive with respect to their
argument(s). Functions beginning with the character "n" modify their argument so
that its original form is destroyed (for example, string-nreverse, which reverses
the characters of its argument and does not preserve it). Destructive functions
have a non-destructive counterpart, which preserves the original argument and re-

turns a modified copy of it (for example string-reverse).

Examples:

Page 29

; non-destructive lowercasing operation preserves

; the original argument

(setq original "THREE BLIND MICE") => "THREE BLIND MICE"
(string-downcase original) => "three blind mice”

original => "THREE BLIND MICE"

; destructive lowercasing - original argument is lost
(setq original "THREE BLIND MICE") => "THREE BLIND MICE"
(nstring-downcase original) => "three blind mice"
original => "three blind mice"

Most string operations use keyword arguments to help you customize the extent
and the direction of the operation. Keyword arguments are prefixed by a colon (:).
The most important are keyword arguments :start, :end, and :from-end.

:start and :end must be non-negative integer indices into the string array, and
:start must be smaller than or equal to :end. These keywords operate only on the
"active" portion of the string, that is, the portion below the limit specified by the
fill pointer, if there is one. :start indicates the start position for the operation
within the string. It defaults to zero (the start of the string). :end indicates the
position of the first element in the string beyond the end of the operation. It de-
faults to nil (the length of the string). If both :start and :end are omitted, the en-
tire string is processed by default.

For example:

; to capitalize the last four characters in "applejack”
(string-upcase "applejack” :start H) => "appleJACK"

; to reverse the middle three characters of “doodle”
(string-reverse "doodle"” :start 1 :end 4) => "ddoole”

If two strings are involved, the keyword arguments :startl, :endl, :start2, and
:end2 are used to specify substrings for each separate string argument.

For example:

; to compare the first three characters of two strings
(string= "apple" "applejack"” :end1 3 :end2 3) => T

For operations such as searches, it can be useful to specify the direction in which
the string is conceptually processed. This is controlled by the keyword argument
:from-end.

Where this keyword is present in the argument list, the function normally process-
es the string in the forward direction, but if a non-nil value is specified for :from-
end, processing starts from the reverse direction. Regardless of the direction of
processing, the count indicating the position of the item found always starts from
the beginning of the string.

For example:

Page 30

(string-search-exact #\e "heavenly") => 1
; normal search, returns the position of the
; first (leftmost) occurrence
; of the character "e"
(string-search-exact f#f\e "heavenly" :from-end t) => 4
; reverse search, returns the position of the last

; (rightmost) occurrence of the character "e
; counting from the beginning of the string

Cells and Locatives

A cell is a machine word that can hold a (pointer to a) Lisp object. For example, a
symbol has five cells: the print name cell, the value cell, the function cell, the
property list cell, and the package cell. The value cell holds (a pointer to) the
binding of the symbol, and so on. Also, an array leader of length n has n cells, and
a sys:art-q array of n elements has n cells. (Numeric arrays do not have cells in
this sense.)

A locative is a type of Lisp object used as a pointer to a single memory cell any-
where in the system; it lets you refer to a cell, so that you can examine or alter
its contents. Locatives are inherently a more "low-level" construct than most Lisp
objects; they require some knowledge of the nature of the Lisp implementation.
Most programmers never need them.

Here is a list of functions that create locatives to cells:

zl:aloc

zl:ap-leader
zl:car-location
zl:value-cell-location
sys:function-cell-location

Each function is documented with the kind of object to which it creates a pointer.

The macro loef can be used to convert a form that accesses a cell to one that cre-
ates a locative pointer to that cell.

For example:
(locf (fsymeval x)) ==> (sys:function-cell-location x)

locf is very convenient because it saves the writer and reader of a program from
having to remember the names of all the functions that create locatives. See the
section "Generalized Variables".

The contents of a cell can be accessed by location-contents and updated by (setf
(location-contents ...)).

Access to and modification of the contents of locatives is currently implemented by
the system using the operations edr and rplacd. Therefore, these instructions may
appear in the disassembly of compiled programs which operate on locatives. Also,

Page 31

you may sometimes see these functions used to manipulate locatives in old code.
This usage is obsolete and should not be employed in new software.

Table of Functions That Operate on Locatives

location-boundp /ocation Tests if the cell at location is bound to a value.
location-contents locative Returns the contents of the cell pointed to by
locative.

location-makunbound loc &optional variable-name
Causes the cell at loc to become unbound.

locativep x Tests if x is a locative.

locf reference Converts reference to a new form that creates a
locative pointer to that cell.

Overview of Table Management

A table is a data structure that consists of some number of entries, each containing
one or more objects. The number of objects per entry is fixed and uniform in any
given table. The simplest tables consist of entries that are keys. In the most com-
mon table, the first object in each entry of a table is the key, and the second ob-
ject is the value. More complex tables can have some combination of multiple keys
and multiple values.

This sample table is made up of key and value pairs, where the key is the bird
type and the value is a list of foods that a bird of that type eats:

KEY (bird) VALUE (diet)
blue-heron (frogs snakes turtles)

ENTRY horned-owl (mice snakes)
pelican (fish)

The principal operations on tables are:

Searching by key

Inserting and deleting entries
e Examining all entries

¢ Deleting all entries

Some tables also support the additional operations of retrieving the first entry, re-
trieving the last entry, and possibly retrieving the entries in order, by key.

Page 32

Genera’s table management facility performs these operations on tables of many
forms, using one common interface. Thus, you need not worry about the internal
representation of the data or other properties of the table. If you create tables
with this facility, your code is easily ported to Common Lisp, and you take advan-
tage of the efficiencies provided by the facility. If you create tables that do not use
the Symbolics extensions to the make-hash-table function, your code is already
compatible with Common Lisp.

Note: In figuring out the best internal representation for the given data, the table
management facility uses a small amount of overhead. Thus, if you know before-
hand that you need a simple table, for instance a property list or an association
list, it may be more efficient to create your own list rather than use the table
management facility to do it.

You create table objects with the make-hash-table function, and add new entries
by using a combination of the gethash function and the setf macro. Here is a sim-
ple example:

(setq bird-table (make-hash-table :size 10))
=> fi«Table 08/0 63151256>

(setf (gethash ’wader bird-table) ’flamingo) => FLAMINGO
(setf (gethash ’raptor bird-table) ’bald-eagle) => BALD-EAGLE
(hash-table-count bird-table) => 2

(describe bird-table)
=> H<Table 2/2 63151256> is a table with 2 entries.
Do you want to see the contents of the hash table? (Y or N) Yes.
Do you want it sorted? (Y or N) Yes.
Test function for comparing keys = EQL, hash function =
CLI::XEQLHASH
RAPTOR — BALD-EAGLE
WADER — FLAMINGO
ft< H#<Table 2/2 63151256>

In this example, the keys are wader and raptor, and the associated values are
flamingo and bald-eagle. Each entry in the table associates a bird type to a bird
name.

The table management facility is based on Flavors. It defines a large family of ta-
ble flavors, with generic functions for accessing them. This makes it easy to use,
as well as flexible and extensible.

Overview of Functions

Functions are the basic building blocks of Lisp programs. A function is a Lisp ob-
ject that, when applied to arguments, performs some action and returns a value.
You can manipulate functions in the same ways you manipulate other Lisp objects;

Page 33

you can pass them as arguments, return them as values, and make other Lisp ob-
jects refer to them.

There are four kinds of functions, classified by how they work:

o Interpreted functions, which are defined with defun, represented as list struc-
tures, and interpreted by the Lisp evaluator.

e Compiled functions, which are defined by compiling forms from a file or an edi-
tor buffer or by loading a binary file, are represented by a special Lisp data
type, and are executed directly by the machine.

e Various types of Lisp objects that can be applied to arguments, but when ap-
plied, call another function and apply it instead. These include symbols, dynamic
and lexical closures, and instances.

e Various types of Lisp objects that, when used as functions, do something special
related to the specific data type. These include arrays and stack groups.

Lisp has several functions known as function-defining special forms, which are used
in programs to define functions. For example, defun is a common function-defining
special form. Function-defining special forms typically take as arguments a func-
tion spec (see below) and a description of the function to be made.

Function-defining special forms include defun, defsubst, macro, defselect, deff,
and def.

A general programming-style rule of thumb: Anything that is used at top level (not
inside a function) and starts with def should be a function-defining special form so
that the editor can find it in your source file and show it to you whenever you ask
for a definition.

For more information on function-defining special forms, see the section "Function-
Defining Special Forms".

The name of a function is usually a symbol, but does not have to be a symbol. A
function can be represented by a function spec, which serves to name a function
and specifies a place to find and remember a function. Spec is short for specifica-
tion.

Function specs are not functions. You cannot apply a function spec to arguments.
You use function specs when you want to do something to the function, such as
define it, look at its definition, or compile it. Both function specs and functions
can be defined. To define a function spec means to make that function spec re-
member a given function — a task accomplished by the fdefine function. To define
a function means to create a new function and define a given function spec as that
new function — a task accomplished by the defun special-form. Several other spe-
cial forms, such as defmethod and defselect, also define functions.

A function spec’s definition generally consists of a basic definition surrounded by
encapsulations. The basic definition is what defun creates. See the section "How
Programs Manipulate Definitions". The encapsulation is composed of function-

Page 34

altering functions, such as trace and advise. See the section "Encapsulations".
When the function is called, the function’s definition plus the alterations are exe-
cuted.

For more information on function specs: See the section "Function Specs".

There are several operations a user would typically want to perform on functions.
These operations are:

e Print out the definition of the function spec with indentation. (This works only
with interpreted functions.)

e Find out about a function by looking at its documentation and its arguments.
e Look at the function’s debugging information.

e Trace the calling history and customize the definition of a function while de-
bugging.

e Examine the compiled code, if the function is compiled.

For more information on these operations: See the section "Operations the User
Can Perform on Functions".

A Lisp definition is a Lisp expression that appears in a source program file and
has a name to which a user can refer. Two definitions with the same name and
different types can exist simultaneously, but two definitions with the same name
and the same type redefine each other when evaluated. There are four basic types
of definitions:

e functions
e variables
e flavors

e structures

Many types of Lisp special forms, such as defun and defvar, can define these four
types of definitions. For more information about definitions: See the section "How
Programs Manipulate Definitions".

A Lisp declaration is an optional Lisp expression that provides the Lisp system
with information about your program, for example, documentation. Many Lisp
forms, such as defun, have declarative aspects. See the section "Declarations".

A dynamic closure is a Lisp functional object for implementing certain advanced
access and control structures. Closures give you more explicit control over the en-
vironment, by allowing you to save the environment created by the entering of a
dynamic contour, and then use that environment elsewhere, even after the contour
has been exited. There are several functions that manipulate dynamic closures, for

Page 35

example, zl:closure. For more information on dynamic closures: See the section
"Dynamic Closures".

Overview of Predicates

A predicate is a function that tests for some condition involving its arguments and
returns some non-nil value if the condition is true, or the symbol nil if it is not
true. Many predicates return the symbol t, instead of another non-nil value, if the
condition is true.

Predicate names usually end in the letter "p". The way the "p" is added to the end
of the predicate depends on whether or not there is an existing hyphen in the
name. For example, the predicate that tests for integers is integerp, while the
predicate that checks for compiled functions is compiled-function-p.

Predicates fall into several logical categories. These include: type-checking predi-
cates, which test an object for membership in a particular data type such as num-
bers, arrays, and so on; property-checking predicates, which determine whether an
object has certain properties (such as whether a number is odd or even); compari-
son predicates, which compare objects of the same type; and a few others.

For a complete list of predicates: See the section "Predicates". A full description of
each predicate is available in the dictionary of Lisp functions.

Overview of Macros

The macro facility allows the user to define arbitrary functions that convert cer-
tain Lisp forms into different forms before evaluating or compiling them.

This is done at the expression level, not at the character-string level, as in most
other languages. Macros are important in the writing of good code: they make it
possible to write code that is clear and elegant at the user level, but that is con-
verted to a more complex or more efficient internal form for execution.

When eval is given a list whose car is a symbol, it looks for local definitions of
that symbol; if that fails, it looks for a global definition. If the definition is a
macro, it contains an expander function. eval applies the expander function to two
arguments: the form that eval is trying to evaluate, and an object representing the
lexical environment. The expander function returns a new form. This is the expan-
sion of the macro call. eval evaluates this expansion in lieu of the original form.

An example of a macro expansion would be as follows:

(macroexpand ’ (return x))
=> (RETURN-FROM NIL
X) and T

Macros are used for a variety of purposes, the most common being extensions of
the Lisp language. Note that macros are not functions, and cannot be applied to
arguments.

Page 36

The defmacro construct provides a convenient way to define new macros, and the
backquote facility helps to increase their readability. Backquote (‘) is a reader
macro that generates lists. In simple cases, the backquote is just like the regular
single quote macro: it creates a form that when evaluated produces the form fol-
lowing the backquote. For example:

“123) =>(123)
"(123) =>(123)

If you include a comma (,) inside the form following a backquote, that form gets
evaluated even though it is inside the backquote. For example:

(setg b 1)
‘abc) == (ABC0C
‘a,bc)=>(A10

In other words, backquote quotes everything except things preceded by a comma;
those things get evaluated.

If an at-sign character follows the comma (,@), it has a special meaning. This con-
struct should be followed by a form whose value is a list; then each of the ele-
ments of the list is appended to the list being created by the backquote. For ex-
ample:

(setg a "(x y 2))
‘(1 ,a2) => (1 (XY 2) 2)
‘(1 ,6a 2) => (1 XY 2 2)

Here is a simple macro definition using the backquote facility:

(defmacro onep (num)

‘(zerop ,(- 1 num))) => ONEP
(onep 1) => T
(onep @) => NIL

Inline functions are somewhat similar to macros. An inline function executes like a
function; if it is called by another function that is being compiled, the inline
function’s definition is substituted into the code being expanded. In this respect,
an inline function is like a macro. If something can be implemented as either a
macro or an inline function, it is generally better to make it an inline function.

Special Forms and Built-in Macros

In order to define the terms "special form" and "macro" it is necessary first to re-
view some basic concepts.

The form is the standard evaluation unit in Lisp. It is a data object that is meant
to be evaluated as a program to produce one or more values (which are also data
objects). See the section "Introduction to Evaluation". There are three categories of
forms:

e self-evaluating forms, such as numbers, characters, strings, and bit-vectors

Page 37

e gsymbols, which stand for variables

o lists

The evaluator, when applied to a list, performs the operation specified by the first
element of the list, in order to produce a value to return. The first element of the
list is referred to as an operator. There are two categories of operators:

e functions

e special operators

Functions are explained at length in their own chapter. See the section
"Functions".

There are two kinds of special operators:
e gpecial forms

® macros

A special form is a special operator that is "built in" to the Lisp language; that is,
this type of special operator is contained within the compiler and interpreter.
(Sometimes special forms are referred to as primitive special operators. This latter
term more accurately expresses the concept, since a special form is not really a
"form" at all. The term "special form" is the one that has been in use in the Lisp
literature heretofore, so the current documentation retains it for the sake of con-
sistency.)

Most special forms are either control constructs (for example, case, do, loop) or
environment constructs (for example, let, defconstant). Evaluation of some special
forms calls for a nonlocal exit rather than returning a value. An example is
throw. There is no general syntax for a special form; each special form has its
own syntax.

A built-in macro is also defined and available within the language, but unlike spe-
cial forms, macros can also be defined by the user.

A macro call is a list whose first element is the name of a macro. Each macro has
its own expander function. When a macro call is made, the expander function com-
putes a new form that is to be evaluated in place of the original form. The result-
ing value is returned as the value of the original form. See the section "Introduc-
tion to Macros".

The definition of a special form can not be moved from one symbol to another,
while the definition of macro, or a function, can. Whether a particular special op-
erator is a special form or a macro is implementation dependent. An implementa-
tion is free to implement any special form as a macro and vice versa. The user
can define new functions and macros, but the set of special forms is fixed by the
implementation.

Page 38

Overview of Evaluation

Evaluation is the process of recursively executing Lisp forms and returning their
values. Simply put, evaluation is the computation performed by a program. A form
is passed to the evaluator. If the form is a symbol, the evaluator returns the bind-
ing (value) of the symbol. If the symbol has no binding, the evaluator signals an
error. If the form is a list, the evaluator looks first at the car of the list. If the
car is a symbol, it retrieves the functional value of that symbol. If that functional
value is a function definition, the remaining forms in the list are evaluated in turn
and then the function is applied to the result to produce the final value of the list.
If the symbol has no functional value, an error is signaled. If the car of the list is
another list, the ear of that list is evaluated, and so on.

For example, if the evaluator is given (+ 4 §), it determines first that the form is
a list. Then it looks at the +. It retrieves the functional value of this symbol,
which is the addition function. It next looks at the 4, which has as its value 4;
then it looks at 5, which is 5; and finally it applies the addition function to 4 and
5 which produces 9. It then returns 9 as the value of (+ 4 5). This is indicated in
the documentation like this:

(+ 4 85) => 9

Overview of Dynamic and Lexical Scoping

Scoping refers to the range of the environment in which a variable exists and can
be used in computation. There are two kinds of scoping, dynamic scoping and lexi-
cal scoping. If a variable has dynamic scope (that is, has been declared special) it
can be used in computation anywhere for as long as it exists, that is, from the
time it is bound until it is explicitly unbound. (See the section "Special Forms for
Defining Special Variables".) If a variable has lexical scope, it can only be used in
computation within the textual confines of the Lisp form that defines it.

For example:

(defun mapc (funct list)
(loop for x in list do ;X 1s bound here
(funcall funct x)))

(defun print-long-strings (strings x) ;X is bound here
(mapc #’ (lambda (str)
(if (> (length str) x) ;which x is this?
(print str)))
strings))

In the definition of mape, x is defined. Another x is defined as one of the argu-
ments to print-long-strings. In the computation performed by the lambda there is
a reference to x.

If x has dynamic scope, the reference to x in the function print-long-strings refers
to the x in mape because the loop in mape is executing when the reference to x
is made and the x in that loop is thus the most recently bound x. (This is probably
not what the programmer intended.)

Page 39

If x is lexically scoped, the x in mapc only exists as x inside the textual definition
of mape. Inside the textual definition of print-long-strings, the x refers to the ar-
gument to print-long-strings.

User-defined variables in Symbolics Common Lisp are lexically scoped unless you
explicitly declare them special.

Overview of Flow of Control

Symbolics Common Lisp provides a variety of structures for controlling program
flow. A conditional construct is one that allows a program to make a decision, and
do one thing or another based on some logical condition. Local and nonlocal exits
allow the transfer of control from one section of a program to another. Iteration
permits a programmer to execute a command multiple times.

The simplest conditional form is the if-then form, which can be extended to the if-
then-else form. An example of this two-way conditional is:

(if (=1 2) "equal"” "not equal”) => "not equal”

The logical forms and, or, and not let you build multi-way conditional constructs.
A multi-way conditional is often equivalent to an if-then-else-else... form, but it can
be clearer, more compact, and easier to read than a long line of else statements.

The most basic multi-way conditional is cond, consisting of the symbol cond fol-
lowed by several clauses. Each clause represents a case that is selected if its an-
tecedent is satisfied and the antecedents of all preceding clauses were not satis-
fied.

For example:

(cond ((and (equal "day" "day") (= 1 2)) "star light")
((> 1 2) "prefix or postfix")
(t “drop out")) => "drop out”

Note the use of t in the last clause as a "use if all else fails" provision.

Premature exit from a piece of code is another mechanism for controlling program
flow. Depending on their scope (the spatial or textual region or the program within
which references can occur), exits can be local or nonlocal.

block and return-from are the primitive special forms for local exit from a piece
of code. block defines a program portion that can be safely exited at any point,
and return-from does an immediate transfer of control to exit from block. Local
exits have lexical scope, that is, block and return-from can only operate within
the portion of code textually contained in the construct that establishes them.

catch and throw are the special forms used for nonlocal exits. catech evaluates
forms; if a throw is executed during the evaluation, the evaluation is immediately
aborted at that point and cateh immediately returns a value specified by throw.
Nonlocal exits have dynamic scope, that is, the catch/throw mechanism works even
if the throw form is not textually within the body of the catch form.

Page 40

The repetition of an action (usually with some changes between repetitions) is
called iteration, and is provided as a basic control structure in most languages. Re-
cursion is one alternative to iteration. This programming method has the function
call itself, thus causing an iteration. Recursion is analogous to mathematical in-
duction.

Here is a very simple example of recursion:

;; Two things are defined as EQUALX if they are either EQ, or if
;; they are lists containing EQUALX elements.
;; Therefore EQUALX calls EQUALX recursively.

(defun equalx (a b)
(cond ((eg a b) t)
(t
(and (listp a)
(1istp b)
(equalx (car a) (car h))
(equalx (cdr a) (cdr h))))))

This example uses recursion to traverse a tree:

(defun max-fringe (tree)
(if (atom tree)
tree
(max (max-fringe (car tree))
(max-fringe (cdr tree)))))

Symbolics Common Lisp provides three styles of iteration: mapping, do and loop.

Mapping is a type of iteration in which a function is successively applied to pieces
of a list. The result of the iteration is a list containing the respective results of
the function application.

Mapping is used when a problem is easily expressed by a function followed by any
number of lists.
For example:
(map ’list ##’+ (1 2 3 4) (231 4)) => (35 4 8)
The use of mapping results in clear and concise code.

For more general iteration than mapping, you can use the simplest form of itera-
tion, the do form. do provides a generalized iteration facility, with an arbitrary
number of "index variables" whose values are saved when the do is entered and
restored when it is left, that is, they are bound by the do. do is simple to use;
however, it is often quite hard to read later.

For example:

Page 41

(do ((i @ (+1 1)) ; searches 1list for Dan.
(names ’(Fiona Tiffany Jen Kristen Wendy Sandy Dan Tom)
(cdr names)))
((null names))
(if (equal ’Dan (car names))
(princ "Hi Jen"))) => Hi Jen
NIL

Even more simple and flexible than do is the loop macro which provides a pro-
grammable iteration facility. The basic structure of a loop is as follows:

(loop iteration clauses
do
body) ; loop alone returns nil

The iteration clauses control the number of times the body will be executed. When
any iteration clause finishes, the body stops being executed. The word do is the
keyword that introduces the body of loop.

The general approach is that a form introduced by the word loop generates a sin-
gle program loop, into which a large variety of features can be incorporated. These
features work by means of keywords, of which there is a large number. Note that
loop keywords are not prefixed with a colon (:) character. Keywords like repeat or
(for x from ...), for instance, let you control the number of times through an iter-
ation. Other keywords, such as (collect x into num) let you accumulate a return
value for the iteration. All of the keywords for loop are Symbolics Common Lisp
extensions to the language specification in Guy L. Steele’s Common Lisp: the Lan-
guage.

Here are some examples showing how loop keywords can be used:

(loop repeat 5
do
(princ "hi ")) => hi hi hi hi hi
NIL

(Toop for x from 1 to 5 by 1

with y = 9
initially (princ y)
do

(princ x)) => 912345

NIL

(Toop for x in ’(a d c e)
do
(princ x)) => ADCE
NIL

The order of loop keywords is mostly a matter of taste and style. Many of them
are accepted in several synonymous forms (for example, collect and collecting), to
let you write code that looks like stylized English. Using the appropriate keywords
helps you to write code that is easier to read.

Page 42

Not so clear:

(loop as x to 4 by 1 from 1
collect x into num
finally (return num)) => (1 2 3 4)

Better:

(Toop for x from 1 to 4 by 1
collect x into num
finally (return num)) => (1 2 3 4)

In more advanced uses of iteration it is possible to define your own iteration
paths, that is, to build your own iteration-driving clauses.

Overview of Structure Macros

Symbolics Common Lisp offers a variety of built-in data types, such as symbols,
lists, and arrays. You can use Lisp functions to create a new symbol, set the value
of the symbol, read its value, and alter its value. The same functionality is avail-
able for lists and arrays.

The structure macro facility enables you to extend Lisp’s data types by defining
new types of data structures. Once you have defined a new type of data structure,
you can create new structures of that type, and then read and set the values of
their elements.

The newly defined data structure is a convenient, concise, and high-level way to
represent an object. For example, if your program simulates an ocean environment,
you might need to represent boats. You can use structure macros to define a high-
level representation of boats. The elements of the data structure are called slots.
Further on, we define a sample boat structure that has slots for the boat’s x-posi-
tion, y-position, x-velocity, and y-velocity.

To define new structures, you use defstruct or zl:defstruct. These macros provide
a similar functionality. defstruct adheres to the Common Lisp standard, with sev-
eral extensions derived from useful features of zl:defstruct. zl:defstruct is sup-
ported for compatibility with previous releases.

In brief, the structure macro facility gives you the following features:
e Ability to define new aggregate data structures with named slots.

(defstruct boat
x-position
y-position
x-velocity
y-velocity)

e Constructor functions (generated automatically) for making objects of the newly-
defined type of structure.

Page 43

(setq boat-1 (make-boat))

e Slot-initialization capabilities, including a way to initialize slot values when con-
structing new objects, and to specify default slot values in the defstruct form.

(setq boat-2 (make-boat :x-position 12
:y-position 73
:x-velocity @
:y-velocity 25))

e Accessor functions (generated automatically) for reading the value of a slot.

(boat-x-position boat-2)

e Alterant macros (generated automatically) for changing the value of a slot.

(setf (boat-x-position boat-2) 12.5)

By creating a new, high-level data structure to represent the objects of a program,
you gain several advantages over using lower-level data structures, such as lists or
arrays. The program should be more readable and understandable.

For example, if you represent a boat with lists or arrays, it would not be obvious
when reading the program that an expression such as (fifth boat-1) or (aref
boat-2 4) means "the y component of the boat’s velocity".

The main purpose of using defstruct to define new structures is to increase the
clarity of a program that deals in some kind of objects. The clarity is a result of
named slots and automatically-generated constructor, accessor, and alterant
macros.

defstruct offers other features, such as the ability to control the internal represen-
tation of the structure. You can use the :type option to indicate that the structure
should be implemented as a list, an array, a named-array, and so on.

You can also create new structures that inherit slots from another structure. For
example, you might define a structure to represent a person. You might then de-
fine structures to represent astronauts, which could include the slots of the person
structure.

defstruct structures are useful and appropriate for many application programs.
Flavors is an alternate method of writing programs that need to represent objects.
Flavors offers greater flexibility in program development and several programming
practices that are not available with defstruet structures.

For related information:
See the section "Structure Macros".
See the section "Overview of Flavors".

See the section "Comparing defstruct Structures and Flavors".

Page 44

Overview of CLOS

Introduction to CLOS

The Common Lisp Object System (CLOS) enables users to program in an object-
oriented style within Common Lisp. CLOS is part of the draft ANSI specification
of Common Lisp.

Symbolics continues to support New Flavors, another object-oriented language. The
primary advantage of CLOS over Flavors is that CLOS is a standard part of ANSI
Common Lisp, and thus CLOS programs can be ported to other platforms. CLOS
offers some extra functionality which users will find valuable, and omits some of
the less vital functionality of Flavors. Users can continue to develop programs in
Flavors if they are not interested in developing portable code, do not need the ex-
tra features that CLOS offers, or have programs that need to access flavors.

We do not support programming in a style that mixes use of CLOS and Flavors.
That is, CLOS classes cannot inherit from flavors (and vice versa), and you cannot
call a CLOS generic function on a Flavors instance (and vice versa).

Classes, Types, and Instances

You can define new classes to represent objects that your program is modeling.
Each individual object is represented by an instance of the class. Each class has a
type associated with it.

In CLOS, every Lisp object is an instance of a class. You can use clos:class-of to
determine the class of any Lisp object.

In addition to user-defined classes, CLOS has a set of predefined classes. CLOS de-
fines classes that correspond to many Lisp types, including classes named array,
integer, list, t, and others. (Note that not all types have associated classes.) Since
methods can specialize on these predefined classes, CLOS enables the object-
oriented programming style to encompass many useful Lisp types as well as user-
defined types.

Slots

All instances of a class have the same structure, which is represented by its slots.
A slot has a name and a value. Slots are used to store state information about an
object.

CLOS enables you to read and write the value of a slot using accessors. A reader is
an accessor function that returns the value of a slot. A writer is an accessor func-
tion that sets the value of a slot.

CLOS supports two kinds of slots:

Local slot Each instance of the class stores its own value for a local slot.
In other words, the storage for the slot is allocated on a per-
instance basis. Local slots are used for state information which
should be associated with each individual instance.

Page 45

Shared slot All instances of the class share the value of a shared slot. The
storage for the slot is allocated on a per-class basis. Shared
slots are used for state information which should be associated
with all instances of the class.

Class Inheritance

CLOS enables you to define classes that inherit from other classes. Inheritance is a
key aspect of the object-oriented paradigm; it enables you to conveniently model
similar kinds of objects that have minor differences. You can identify shared as-
pects of these objects, and isolate each aspect in a discrete module, which you
might consider a "building block" class. You can then combine these modules to
create new classes. The sharable aspects are defined and implemented once, and
are included in the classes that should exhibit those behaviors.

CLOS supports multiple inheritance, which means that a class can inherit from any
number of "parent" classes. In contrast, note that defstruet supports only single
inheritance; there can only be one parent structure included in the definition of a
new type defined by defstruct.

When you define a class, you specify its direct superclasses. The new class inherits
from all its direct superclasses, and from all their direct superclasses, and so on.
The set of classes that the class inherits from is called its superclasses. The com-
plementary terms are direct subclasses and subclasses.

Suppose:

Class-A inherits from Class-B and Class-C.
Class-C inherits from Class-D.
Class-B inherits from Class-E.

Then:

Class-A is a direct subclass of Class-B and Class-C.
Class-A is a subclass of Class-B, Class-C, Class-D, and Class-E.

Class-B and Class-C are direct superclasses of Class-A.
Class-B, Class-C, Class-D, and Class-E are superclasses of Class-A.

A class inherits slots and other characteristics from its superclasses.

CLOS computes a class precedence list for each class. The purpose of the class
precedence list is to ensure an orderly and predictable inheritance behavior, espe-
cially in cases of potential conflict, where more than one class specifies a certain
characteristic.

The class precedence list is a list of the class itself and all its superclasses, in a
precedence order from most specific to least specific. Each class has precedence
over the classes that follow it in the class precedence list. In other words, each
class is more specific than the classes that follow it in the class precedence list.
The class precedence list for Class-A is:

Page 46

(Class-A Class-B Class-E Class-C Class-D clos:standard-object t)

Notice the classes clos:standard-object and t, which appear at the end of the
class precedence list. The predefined class clos:standard-object is automatically
included as a superclass of each user-defined class; it supports the default behavior
of user-defined classes. The predefined class t is automatically a superclass of ev-
ery class (both user-defined classes and predefined classes); it appears as the last
class in every class precedence list.

Generic Functions

A generic function is called with the same syntax as an ordinary Lisp function. The
difference lies in what happens when the function is called. An ordinary function
has a single body of code that is always executed when the function is called.
When a generic function is called, the body of code that is executed depends on
the arguments to the generic function.

A generic function can have several methods, each with its own body of code; the
arguments to the generic function cause one or more of the methods to be in-
voked. The combined body of code (which consists of one or more methods) is the
effective method, sometimes called the "handler". When a generic function is called,
the CLOS generic dispatch mechanism automatically chooses and executes the ap-
propriate effective method for each generic function call.

The CLOS model focuses on generic functions, which is an important difference
from other object-oriented systems, which focus on a class and methods for that
class. In many object-oriented systems (including Flavors), the effective method of
a generic function is chosen based on a single argument to the generic function,
which means that each method is associated with a single class. Another way to
think about this is that Flavors is "class-centric" and CLOS is "generic-function-
centric".

In CLOS, any one or more of the required arguments to the generic function can
select methods to be combined into the effective method. Each method can be asso-
ciated with a number of classes, up to the number of required arguments.

Methods

Methods perform the work of generic functions. The important concepts of CLOS
methods are:

e The method’s applicability. The lambda-list of the method states the sets of ar-
guments for which the method is applicable. Each required parameter can be
specialized. Each specialized parameter is an applicability test; a method is ap-
plicable if all the specialized parameters are satisfied by the arguments to the
generic function.

A parameter can be specialized in two ways:

Page 47

With a class name. To satisfy this applicability test, the argument must be an
instance of the class or an instance of any subclass.

With a list such as (eql form). To satisfy this applicability test, the argument
must be eql to the Lisp object that is the value of form. Note that the form
is evaluated once, at the time that the clos:defmethod form is evaluated. The
form is not evaluated each time the generic function is called.

Note that generic functions can accept optional, rest, and keyword arguments as
well as required arguments, but only required arguments participate in method
applicability.

e The method’s role. Each method has a qualifier that states the role that the
method plays in the generic function, and how it fits in with other methods. We
discuss some of the common method roles:

The role of a primary method is to perform the main work of the generic func-
tion.

There might be other methods that perform additional or auxiliary work; these
include before-methods and after-methods. Before-methods run before the primary
method, to do preparatory or initialization work. After-methods run after the pri-
mary method, to do clean-up work.

An around-method has special control; it can decide whether the primary method
should be executed; it can provide code that runs before the before-methods and
code that runs after the after-methods; and it can bind state around the call of
the other methods.

In addition to these roles, users can define new roles customized for a particular
application. For more information: See the section "CLOS Method Combination".

CLOS supports both the declarative style of programming (where before-methods,
primary methods, and after-methods are used, and each method is called auto-
matically when appropriate) and the imperative style (where the body of an
around-method uses clos:call-next-method to call a method imperatively). For a
discussion of these two styles, see "Controlling the Generic Dispatch" in the
book Object-Oriented Programming in COMMON LISP.

e The method’s body. The method’s body consists of Lisp forms that perform some
work of the generic function.

Method-Combination Types

Each generic function has a method-combination type, which controls the interac-
tion between different kinds of methods. The method-combination type controls:

e Which method roles are supported.

Page 48

e How the methods of the different roles work together in the generic function.

e How the value or values of the generic function are calculated.

The default method-combination type is called elos:standard. It supports primary
methods, before-methods, after-methods, and around-methods, as described above.

CLOS provides a set of predefined method-combination types (in addition to
clos:standard), and it also provides a mechanism for users to define new method-
combination types.

Generic Dispatch

The generic dispatch ties together all of the concepts mentioned above; it controls
the behavior of generic functions. The generic dispatch is an automatic mechanism
of CLOS that selects and executes the appropriate effective method of a generic
function based on the arguments to the generic function.

When a generic function is called, the CLOS generic dispatch does the following:

1. Finds the set of applicable methods. A method is applicable if each of its re-
quired parameters is satisfied by the corresponding argument to the generic
function.

2. Arranges the applicable methods in precedence order. The precedence order of
methods is calculated based on the parameter specializers of the methods, and
the class precedence lists of the required arguments to the generic function.

3. Uses the method-combination type of the generic function to determine how
the applicable methods should be combined into an effective method. (The ef-
fective method is the body of code that CLOS constructs to perform the
generic function for the given arguments.) The method-combination type uses
the sorted list of applicable methods as its input. It decides which methods
should be executed, and in what order.

4. Executes the effective method and returns its values.

Note that the Symbolics CLOS implementation optimizes the generic dispatch, so
that some of the steps of the generic dispatch are not executed on each generic
function call. The optimizations, however, do not change the semantic effect of the
generic dispatch procedure as described above.

CLOS Objects and Meta-Objects

The basic elements of CLOS programs are implemented by first-class objects; for
example, there are class objects, generic function objects, and method objects. These
objects are distinct from their names. Most operators in the CLOS Programmer In-
terface enable you to deal with objects by using the names of the objects; for ex-
ample, you can refer to generic functions and classes by their names.

Page 49

Underlying the CLOS Programmer Interface is another level called the Meta-object
Protocol. The Meta-object Protocol is not currently part of the draft ANSI standard
for Common Lisp. Symbolics CLOS does not implement the complete Meta-object
Protocol, but it does support some of its features. The purpose of the Meta-object
Protocol is to define CLOS itself in an extensible, object-oriented way, such that
users can develop different object-oriented paradigms, or paradigms that modify or
extend CLOS.

In the Meta-object Protocol, class objects, generic function objects, and method ob-
jects (among others) are implemented as instances of classes. Instances of these
classes are called meta-objects. Here are some of the predefined meta-objects:

e The default class of user-defined classes is clos:standard-class.
e The default class of generic functions is clos:standard-generic-function.

e The default class of methods is clos:standard-method.

A class whose instances are classes is called a metaclass. The class clos:standard-
class is a metaclass, because its instances are user-defined classes. There are two
other metaclasses of interest:

e The class of most of the predefined classes that correspond to Common Lisp
types (such as list) is clos:built-in-class.

e The class of classes defined by defstruct is clos:structure-class.

Basic Use of CLOS

This section introduces the basic CLOS operators and shows a brief example of us-
ing them.

Basiec CLOS Operators

When developing an object-oriented program, the most common things you will
need to do include defining classes, defining generic functions, defining methods,
and creating new instances.

clos:defclass class-name superclass-names slot-specifiers &rest class-options
Defines a class named class-name, and returns the class object.

clos:defgeneric function-name lambda-list &body options-and-methods
Defines a generic function and returns the generic function object.

clos:defmethod function-name {method-qualifier}* specialized-lambda-list &body
body
Defines a method for a generic function and returns the method object.

Page 50

clos:make-instance class &allow-other-keys
Creates, initializes, and returns a new instance of the given class.

Simple Example of Using CLOS

This section presents a simple example of using the basic CLOS operators to de-
fine classes, make instances, call accessors, define generic functions and methods.
Each of these subjects is covered in detail elsewhere in the documentation; this
section is intended only to give you an idea of what a CLOS program looks like.

Defining a Class

We might define a new class called person as follows:

(defclass person ()
((name :initarg :name :accessor name-of)
(ssn :initarg :ssn :accessor soc-sec-number
:documentation “social security number")
(address :initarg :address :accessor address)))

The class person has no superclasses (the second subform of clos:defclass is an
empty list). It has three local slots, named name, ssn, and address. Each slot has
some slot options. The slot options used here have the following effect:

:initarg Enables us to initialize this slot when making an instance.
Here, the initialization arguments are :name, :ssn, and
:address.

;accessor Defines two methods: a method for a reader and a method for

a writer generic function, which we can use to access the val-
ue of the slot. Here, the readers are named name-of, soc-sec-
number, and address. We can write the value of one of these
slots by using setf with the reader.

:documentation Documents the slot.

For more information on defining classes: See the macro clos:defclass. See the
section "CLOS Classes and Instances".

Making an Instance

We can make an instance of person as follows:

(setg xconstancex
(make-instance ’person :name "Constance McGill"
:ssn "012-34-5678"))

Notice that we initialized the value of the name slot by providing the :name ini-
tialization argument to clos:make-instance. Similarly, we initialized the value of
the ssn slot by providing the :ssn initialization argument.

We did not initialize the value of address, so that slot’s value is unbound.

Page 51

For more information on making instances: See the section "Creating and Initializ-
ing CLOS Instances".

Calling Accessor Generic Functions

We can read the value of the name and ssn slots of the instance by calling the
readers as follows:

(name-of xconstancex) => "Constance McGil1"
(soc-sec-number xconstancex) => "012-34-5678"

The writers are setf generic functions that must be called with the setf syntax.
Here, we write the value of the address slot:

(setf (address xconstancex) "44 Pine St")

For more information on accessing slots: See the section "Accessing Slots of CLOS
Instances".

Defining Classes that Inherit from Other Classes

We can define the class employee in such a way that it inherits from the class
person:

(defclass employee (person)

((salary :initarg salary :accessor salary)
(vacation-time :initform @ :accessor vacation-time)
(phone :reader phone-extension)

(rank :initarg rank :accessor rank)))

The class person is a direct superclass of employee. Conversely, the class
employee is a direct subclass of person.

The class employee inherits three local slots from person, and specifies four addi-
tional slots of its own.

We see two new slot options in this definition:

:initform Gives a default initial value for the slot.

:reader Defines a reader method, but no writer method.

The slot vacation-time has no initialization argument, so we cannot initialize it by
giving an argument in the call to clos:make-instance. Instead, this slot is always
initialized to the value of its initform, which is 0.

We might need a class to represent employees who are in the Human Resources
staff. We can define the class H-R-staff as a subclass of employee:

(defclass H-R-staff (employee) ()
(:documentation "H-R-staff have authority to alter records.”))

This class inherits four slots from employee, and three slots from person, but
adds no other slots. It uses the :documentation class option to document the class
as a whole.

Page 52

For more information on how class inheritance works: See the section "CLOS In-
heritance".

Defining a Generic Function and Methods

Here we define a generic function called change-name:

(defgeneric change-name (employee staff new-name)
(:documentation "Ensures that name change is done by authorized staff."))

At this point, the generic function is defined, but there are no methods defined for
it. If it is called with any set of arguments, an error will be signaled, stating that
there are no applicable methods. Thus, the next step is to define methods for this
generic function.

H-R staff people are authorized to change an employee’s name. The following
method for change-name is applicable when the first argument is of the type
employee and the second argument is of the type H-R-staff. The body of the
method changes the value of the employee’s name to a new name.

;33 Method intended to be called when an H-R person

;33 tries to change an employee’s name.

(defmethod change-name ((emp employee) (h-r H-R-staff) new-name)
(setf (name-of emp) new-name))

The following method for change-name is applicable when the first argument is of
the type employee. The second and third arguments set no restrictions on the ap-
plicability of the method. The intention is for this method to be called when the
second argument is a person who is not authorized to change an employee’s name;
it signals an error instead of changing the employee’s name.

;;; Method intended to be called when a non-h-r person

;;; tries to change an employee’s name.

(defmethod change-name ((emp employee) non-h-r new-name)
(declare (ignore non-h-r new-name))
(error "You aren’t authorized to change an employee’s name."))

If change-name is called with an employee as its first argument and a H-R-staff
person as its second argument, then both methods are applicable. The first method
is more specific than the second. Thus, only the first method is called, and it
changes the name of the employee.

If change-name is called with an employee as its first argument and a non-H-R-
staff person as its second argument, only the second method is applicable. That
method signals an error, because it is enforcing the principle that only authorized
staff can change an employee’s name.

At present, our model is that only H-R staff people are authorized to change an
employee’s name. Thus we have two methods: one intended to be called for H-R
staff people, and the other for other employees. Later on, we might decide that
people in the accounting department are also authorized to change an employee’s
name. We could define a primary method applicable for people in the accounting
department which would do the same thing that the method for H-R-staff does.

Page 53

Note that we assume that users do not call setf of name-of directly, because it is
not part of the advertised interface; calling it directly would bypass this error-
checking. CLOS does not include any protection features that would guard against
users calling setf of name-of directly.

For more information on methods and generic functions:
See the section "CLOS Methods and Generic Functions".
See the section "CLOS Method Combination".

See the macro clos:defmethod.

See the macro clos:defgeneric.

Overview of Flavors

Flavors is the part of Symbolics Common Lisp that supports object-oriented pro-
gramming. Flavors is a powerful and flexible tool for programming in a modular
style.

If you are developing code with the intention of porting it to other Lisps, you
should use CLOS instead, The primary advantage of CLOS over Flavors is that
CLOS is a standard part of ANSI Common Lisp, and thus CLOS programs can be
ported to other platforms. CLOS offers some extra functionality which users will
find valuable, and omits some of the less vital functionality of Flavors. Users can
continue to develop programs in Flavors if they are not interested in developing
portable code, do not need the extra features that CLOS offers, or have programs
that need to access flavors.

We do not support programming in a style that mixes use of CLOS and Flavors.
That is, CLOS classes cannot inherit from flavors (and vice versa), and you cannot
call a CLOS generic function on a Flavors instance (and vice versa).

For an introduction to CLOS, see the section "Overview of CLOS". For reference
information on CLOS, see the section "Symbolics CLOS".

The basic concepts of Flavors are simple to understand and it is easy to begin ex-
perimenting with Flavors. On the other hand, Flavors is a complex system that of-
fers many advanced options and programming practices. These advanced topics are
not presented here, but are covered in the reference documentation: See the sec-
tion "Flavors".

Concepts of Flavors

It is often convenient to organize programs around objects, which model real-world
things. Each object has some stafe, and a set of operations that can be performed
on it. Object-oriented programming is a technique for organizing very large pro-
grams. This technique makes it practical to manage programs that would other-
wise be impossibly complex.

An object-oriented program consists of a set of objects and a set of operations on
those objects. The design of such a program consists of three major tasks:

Page 54

e Choosing the kinds of objects to provide in the program.
e Defining the characteristics of each kind of object.

¢ Determining what operations can be performed on each kind of object.
Using Flavors terminology, an object-oriented program is built around:

Flavors Each kind of object is implemented as a flavor. A flavor is a
template for objects. In other words, a flavor is an abstraction
of the characteristics that all objects of this flavor have in
common.

Instances of a flavor
Each object is implemented as an instance of a flavor. In fact,
the term object is used interchangeably with instance.

Instance variables Each flavor specifies a set of state variables for objects of that
flavor. These are called instance variables.

Generic functions The operations that are performed on objects are known as
generic functions.

Methods The code that performs a generic function on instances of a
certain flavor is called a method. Typically, one generic func-
tion has several methods defined for it.

Often a flavor is defined by combining several other flavors, called its components.
The new flavor inherits instance variables, methods, and additional component fla-
vors from the components. In a well-organized program, each component flavor de-
fines a single facet of behavior. When two types of objects have some behavior in
common, they each inherit it from the same flavor. This code need not be dupli-
cated.

In summary, each real-world object is modelled by a single Lisp object. The ob-
ject’s flavor defines the inherent structure of the object. The state of each individ-
ual object is stored in its instance variables. Generic functions are used to perform
operations on flavor instances. Each generic function is implemented with one or
more methods; each method performs the operation on objects of a certain flavor.

Concept of Generic Functions

Like ordinary functions, generic functions take arguments, perform an operation,
and perhaps return useful values. The first argument to a generic function is an
object (an instance of a flavor). Unlike ordinary functions, generic functions be-
have a certain way for objects of one flavor, and behave in another way for objects
of another flavor.

For example, in writing a text editor we might define two flavors: character and
paragraph. It is important to be able to erase characters and paragraphs, so we
define a generic function called erase. When we use erase on a character object,

Page 55

we want the character to disappear from view, and not to be saved anywhere.
However, when we use erase on a paragraph object, we want the paragraph to
disappear, and we also want to save the paragraph in a buffer somewhere. This
feature aids users in restoring large bodies of text to their buffers.

Using Flavors terminology, we implement the generic function by writing two
methods. Both methods are associated with the generic function erase. One method
is associated with the character flavor; the other is associated with the
paragraph flavor. When the generic function erase is called on an object, the fla-
vor of the object determines which method is used.

Generic functions differ from ordinary functions in that each generic function can
have several methods associated with it, and Flavors chooses which one to use on
any given call by the flavor of the first argument. An ordinary function has a sin-
gle body of code that is always executed when the function is called.

For further discussion: See the section "Generic Functions". See the section "Using
Message-Passing Instead of Generic Functions".

Concept of Message-passing

In previous versions of Flavors, the only mechanism for operating on objects was
called message-passing. Using message-passing, you can operate on an object by
sending it a message. The object receives the message and selects the appropriate
method to execute. You use the function send to send the message and defmethod
to write methods for messages. In most cases the name of the message is a key-
word.

Generic functions are the preferred way to operate on objects. Generic functions
are smoothly integrated into the Lisp environment. Ordinary functions and generic
functions are called with the same syntax. Making generic functions syntactically
and semantically compatible with ordinary functions has the following advantages:

e The caller of a function need not know whether it is generic.

e The Common Lisp package system can be used to isolate modules and to distin-
guish between public and private interfaces by exporting the names of public
generic functions.

e Debugging tools such as trace can be used on generic functions.

e They are true Lisp functions that can be passed as arguments and used as the
first argument to funcall and mapcar:

(mapc i#t’reset counters)

It is important to continue to support message-passing because a large body of cus-
tomer code and Symbolics system code has been developed using message-passing.
There is generally not much point to converting existing code from message-
passing to generic functions. However, when writing new programs, it is good
practice to use generic functions instead of message-passing.

Page 56

For more information on message-passing: See the section "Using Message-Passing
Instead of Generic Functions".

Simple Use of Flavors

This section illustrates the basic concepts of using flavors. For a lengthier exam-
ple: See the section "Example of Programming with Flavors: Life".

Representing Objects

The program we are writing deals with ships. We must first determine a way to
represent ships. If the important things to know about a ship are its name, x-ve-
locity, y-velocity, and mass, we can represent ships as follows:

(defflavor ship (name x-velocity y-velocity mass)
O ; no component flavors
:readable-instance-variables
:writable-instance-variables
:initable-instance-variahles)

This defflavor form defines a flavor that represents ships. The name of the flavor
is ship. The instance variables are x-velocity, y-velocity, and mass. The empty
list could contain component flavors to be mixed into the definition of ship; in this
case, ship has no component flavors. The form contains three options, which have
the following effects:

:readable-instance-variables
Defines accessor functions that enable you to query the object
for the value of instance variables. In this case four functions
are automatically generated: ship-name, ship-x-velocity, ship-
y-velocity, and ship-mass.

:writable-instance-variables
Enables you to alter the value of instance variables using setf
and the accessor functions. When this option is supplied, the
instance variables are also made :readable-instance-variables.

:initable-instance-variables
Enables you to initialize the value of an instance variable when
you make a new instance.

The ship flavor is a framework, and many ships will fit into that framework. We
represent each real-life ship as an instance of the ship flavor. Each instance stores
information about one particular ship in its instance variables.

To create instances, we use make-instance as follows:

(setg my-ship (make-instance ’ship :name “Titanic”
:mass 14
:x-velocity 24
:y-velocity 2))

Page 57

As a result of giving the :initable-instance-variables option to defflavor, we were
able to initialize the values of the instance variables when making the instance of
ship. The symbol my-ship is now bound to the newly created instance.

Operating on Objects

We can query my-ship for the value of any of its instance variables by using a
function that was automatically generated as a result of the :readable-instance-
variables option to defflavor. For example:

(ship-name my-ship)
=> "Titanic”

Similarly, because we included the :writable-instance-variables option, we can
change the value of an instance variable. For example:

(setf (ship-mass my-ship) 100)
=> 100

We can examine the instance by using describe:
(describe my-ship)

H#<SHIP 54157652>, an object of flavor SHIP,
has instance variable values:

NAME “Titanic”
X-VELOCITY: 24
Y-VELOCITY: 2

MASS: 160

We can define new operations (called generic functions) for instances of the ship
flavor, using defmethod. Inside the body of the method, we can access the in-
stance variables of the object by name. For example:

(defmethod (speed ship) ()
(sart (+ (expt x-velocity 2)
(expt y-velocity 2))))

To the caller, a generic function is just like any other Lisp function:
(speed my-ship)
=>24.083189

Operating on Different Kinds of Objects with One Generic Function

Generic functions are more interesting when they can be used to operate on differ-
ent kinds of objects. Let’s introduce a new flavor, comet, and create an instance of
it:

(defflavor comet (x-velocity y-velocity z-velocity)

O

:initable-instance-variables)

Page 58

(setq my-comet (make-instance ’comet
:x-velocity 312
:y-velocity 23.5
:z-velocity 26))

We can define a new method that implements the speed generic function on in-
stances of comet:

(defmethod (speed comet) ()
(sqrt (+ (expt x-velocity 2)
(expt y-velocity 2)
(expt z-velocity 2))))

To find the speed of my-comet:

(speed my-comet)
=>313.9622

The generic function speed now has two different methods defined for it. One
method implements speed on ship objects, the other on comet objects. When you
call the generic function speed on an ohject, Flavors determines the flavor of that
object and chooses the appropriate method for it.

Mixing Flavors

For a simple example of mixing flavors, we can represent a passenger ship. A pas-
senger ship has the same characteristics as the ship flavor, with one additional
attribute: a list of passengers. We can use the ship flavor as a building block for
the new flavor, as follows:

(defflavor passenger-ship (passenger-1ist)

(ship)
:initable-instance-variahles)

The ship flavor is called a component flavor of passenger-ship. passenger-ship in-
herits instance variables and methods from ship. For example, when we make an
instance of passenger-ship, we can initialize name, mass, x-velocity, and
y-velocity, all instance variables inherited from ship:

(setq my-passenger-ship
(make-instance ’passenger-ship
:name "QE2"
:mass 450
:x-velocity 12
:y-velocity @
:passenger-Tist ’(Brown Jones Lee)))

Similarly, we can use the generic function speed on passenger-ship; the method
was inherited from the component flavor ship.

(speed my-passenger-ship)
=>12

Page 59

Motivation for Using Flavors

The motivation for using flavors usually arises in large programs. Flavors enable
you to organize programs around objects, which model real-world things. An object
has a state and operations that can be performed on it. Flavors can be considered
an extension of the Common Lisp facility for defining new structures with
defstruct.

Here are some guidelines for using flavors:

e When you would consider using defstruct.

e When your program contains lots of particular kinds of objects.
e When different kinds of objects share some characteristics.

e When one operation is appropriate for different kinds of objects.

e When you want to define a protocol that different programs can use.

The last item illustrates an important strength of Flavors. For example, we could
implement output streams as flavors. The "protocol" consists of a set of functions
that are guaranteed to work on any output stream. These functions might include
output-char, output-string, and output-line, among others.

This protocol makes it easy to write programs that appear device-independent, by
using the generic functions available for output streams. The use of the generic
functions is the same, no matter how the actual output is implemented.

From the other perspective, you can implement a new kind of output device by im-
plementing all the operations handled by output streams. Then all existing pro-
grams that deal with output streams work on the new device.

Various Various
Programs Single Protocol Output Devices
o +
User programs | output-char | Console
Hardcopy | output-string | Laser printer
Document Examiner | output-Tine |
o +

Using Flavors frees programs from needing to understand how each output opera-
tion is implemented on the different devices. This style of programming is modu-
lar, easy to extend, and easy to maintain.

Comparing defstruct Structures and Flavors
This section compares and contrasts defstruct structures and flavors.

Flavors and defstruct enable you to:

Page 60

e Use object-oriented programming in the Lisp environment, encouraging a modu-

lar style of programming.

e (Create and use new aggregate data types.

° Elements of the new data types are named.

e Specify that functions should be automatically generated to read and write the

elements of the new data types.

e Include the definition of one new data type in another:

° Elements are inherited from an existing structure.
° Functions for reading and writing elements are inherited.

The major differences between flavors and defstruct structures are as follows:

defstruct Structures

Each structure can have only
one component structure
(given with :include).

A structure does not inherit
operations from its
component structure.

It is difficult, inconvenient,
and sometimes impossible to
add, delete, or rename slots.

You can control the
internal representation
of the structure, such
as a list, array, or
other representation.

It is somewhat faster to
reference a slot of a
defstruct structure.

You can cache a
defstruct structure in
an array register.

Flavors

You can mix flavors liberally,
and include many flavor components
in the definition of a new flavor.

A flavor inherits methods for
operations from its component
flavors.

It is easy and convenient to

add, delete, and rename instance
variables, or to change other
flavor characteristics.

You cannot control the
internal representation
of a flavor.

It is somewhat slower to
access Instance variables
than slots.

You cannot cache an
instance in an

array register.

Flavors offers many advanced

Page 61

features and programming
practices that are not
available using defstruct.

Overview of Conditions

Conditions is an advanced topic geared to programmers who want to customize the
error handling mechanism.

The documentation describes the following major topics:

e Mechanisms for handling conditions that have been signalled by system or appli-
cation code.

e Mechanisms for defining new conditions.

e Mechanisms that are appropriate for application programs to use to signal con-
ditions.

e All of the conditions that are defined by and used in the system software.

Symbolics Common Lisp condition handling is based on flavors, which are an ex-
tension of the Common Lisp language. Here are some basic topics and the termi-
nology associated with them.

Event An event is "something that happens" during the execu-
tion of a program. It is some circumstance that the sys-
tem can detect, such as the effect of dividing by zero.

Some events are errors — which means something hap-
pened that was not part of the contract of a given func-
tion — and some are not. In either case, a program can

report that the event has occurred, and it can find and
execute user-supplied code as a result.

Condition Each standard class of events has a corresponding flavor
called a condition. For example, occurrences of the event
"dividing by zero" correspond to the condition sys:divide-
by-zero. Sets of conditions are defined by the flavor in-
heritance mechanism. The symbol condition refers to all
conditions, including simple, error, and debugger condi-

tions.
Simple conditions These are built on the basic flavor condition.
error conditions A base flavor for many conditions. Refers to the set of all

error conditions.

Debugger conditions Conditions built on the flavor dbg:debugger-condition.
They are used for entering the Debugger without neces-

Page 62

sarily classifying the event as an error. This is intended
primarily for system use.

Signalling The mechanism for reporting the occurrence of an event.
The signalling mechanism creates a condition object of the
flavor appropriate for the event. The condition object is
an instance of that flavor, which contains information
about the event, such as a textual message to report, and
various parameters of the condition. For example, when a
program divides a number by zero, the signalling mecha-
nism creates an instance of the flavor sys:divide-by-zero.
You can signal a condition by calling either signal or

error.
Handling The processing that occurs after an event is signalled.
Handler A piece of user-supplied code that is bound with a pro-

gram for a particular condition or set of conditions. When
an event occurs, the signalling mechanism searches all of
the currently bound handlers to find the one that corre-
sponds to the condition. The handler can then access the
instance variables of the condition object to learn more
about the condition and hence about the event. Genera in-
cludes default mechanisms to handle a standard set of
events automatically.

Proceeding After a handler runs, the program might be able to con-
tinue execution past the point at which the condition was
signalled, possibly after correcting the error.

Restart Any program can designate restart points. After a handler
runs, the restart facility allows a user to retry an opera-
tion from some earlier point in the program.

Overview of Packages

Lisp programs are made up of function definitions. Each function has a name to
identify it. Names are symbols. (See the section "Overview of Symbols".) Each sym-
bol can have only one function definition associated with it, so names of functions
must be unique or else the behavior of a program would be completely unpre-
dictable.

For example, if the compiler has a function named pull, and you load a program
that has its own function named pull, the function definition of the symbol pull
gets redefined to be that of the program just loaded, probably breaking the com-
piler. (Of course, Genera displays a warning message when such a redefinition
happens.)

Now, if two programs are to coexist in the Lisp world, each with its own function
pull, then each program must have its own symbol named "pull". The same rea-
soning applies to any other use of symbols to name things. Not only functions but

Page 63

variables, flavors, and many other things are named with symbols, and hence re-
quire that a program have its own collection of these symbols.

Since programs are written by many different people who do not get together to
insure that the names they choose for functions are all unique, programs are iso-
lated from each other by packages.

A package is a mapping from names to symbols. Two programs can use separate
packages to enable each program to have a different mapping from names to sym-
bols. In the example above, the compiler can use a package that maps the name
pull onto a symbol whose function definition is the compiler’s pull function. Your
program can use a different package that maps the name pull onto a different
symbol whose function definition is your function. When your program is loaded,
the compiler’s pull function is not redefined, because it is attached to a symbol
that is not affected by your program. The compiler does not break.

For example, if both your program and the compiler have a function called pull,
the compiler has its symbols in the compiler package, so its pull function would
be compiler:pull. If you have defined a package mypackage for your program,
your pull function is mypackage:pull. Functions within each package can just
refer to pull and get the right function, since the other pull would need its pack-
age prefix.

Two programs that are closely related might need to share some common func-
tions. For example, a robot control program might have a function called arm that
moves the robot arm to a specified location. A second program, a blocks world
program, might want to call arm as part of its clear function that removes blocks
from the top of a block to be picked up. If the robot control program is in the
robot package, and the blocks world program is in the blocks package, the blocks
world program can refer to the arm function by calling it as robot:arm. However,
the blocks world is likely to need arm frequently, and calling it as robot:arm is
tedious for a programmer. The blocks world program really needs to have the
function arm in its own package. In fact, the robot package probably contains
many functions the blocks world program needs, so the blocks world program
wants to have the robot package available in its own blocks package.

The package a symbol is defined in is called its home package. The symbols in a
package can be designated as internal (belonging only to that package) or external
(available to other packages, as in the robot:arm example). External symbols are
said to be exported. Symbols that are exported can be imported by another package.
If a program needs to share most or all of the external symbols in another pack-
age, it can import all the external symbols of that package. This is called using
the package.

Sharing does have some disadvantages, however. To continue with the robot:arm
example, if the blocks world program were to decide to define its own arm func-
tion while it was using the robot package, this would redefine arm in the robot
package as well. This is because sharing symbols means that now the robot pack-
age and the blocks have the same pool of symbols. For more details on sharing
and its consequences: See the section "Qualified Package Names".

Page 64

Genera sets up a package for you called cl-user. This is the default package of
your Lisp Listener. cl-user uses common-lisp-global so all the functions of Com-
mon Lisp are available to your program. When you define your own package for
your program, you can designate, using the use-package function or the import
function, those symbols from other packages that your program needs. For infor-
mation about packages defined in Genera: See the section "System Packages". You
can also declare which symbols in your package are external (can be imported or
used by other packages) and which are internal (for your program alone). For in-
formation about defining your own package: See the function make-package.

Since using another package might possibly result in a name conflict (the package
you are using might have a symbol of the same name as one in your package), the
system checks and warns you of any conflicts. You can select which symbol your
program uses. This process is called shadowing. The shadow or shadowing-import
functions control whether the symbol in your package or the imported symbol is
the one to be used. Shadowing is a complex process. For more information about
it: See the section "Shadowing Symbols".

Overview of the I/O System

Symbolics Common Lisp provides a powerful and flexible system for performing in-
put and output to peripheral devices. To allow device-independent I/O (that is, to
allow programs to be written in a general way so that the program’s input and
output may be connected with any device), the I/O system provides the concept of
an "[/O stream". What streams are, the way they work, and the functions to create
and manipulate streams, are described in this document. This document also de-
scribes the Lisp "I/O" operations zl:read and print.

Data Types

Data Types and Type Specifiers

Symbolics Common Lisp provides a variety of data object types, as well as facilities
for extending the type hierarchy. It is important to note that in Lisp it is data ob-
jects that are typed, not variables: any variable can have any Lisp object as its
value.

Hierarchy of Data Types

In Symbolics Common Lisp, a data type is a (possibly infinite) set of Lisp objects.
The data types defined in Symbolics Common Lisp are arranged into a hierarchy
(actually a partial order) defined by the subset relationship.

A type called common encompasses all the data objects required by the Common
Lisp language. The set of all objects in Symbolics Common Lisp is specified by the
symbol t. The empty data type, which contains no objects, is denoted by nil.

Page 65

The following terminology expresses the defined relationships between data types.

If x is a supertype of y, then any object of type y is also of type x, and y is said to
be a subtype of x. For example, the type integer is a subtype of rational. The type
t is a supertype of every type whatsoever: every object belongs to type t. The type
nil is a subtype of every type whatsoever: no object belongs to type nil.

If type x and y are disjoint, then no object can be both of type x and of type y. For
instance, the types integer and ratio are disjoint subtypes of rational.

Types a, through a, are an exhaustive union of type x if each a; is a subtype of x,
and any object of type x is necessarily of at least one of the types aj ay through
a, are furthermore an exhaustive partition if they are also pairwise disjoint. The
types cons and null form an exhaustive partition of the type list.

Figure ! shows the data type hierarchy for Symbolics Common Lisp as a tree
whose root is the type t. Data types linked by connecting lines are related in a su-
pertype-subtype relationship. Data types with no explicit connecting lines are not
necessarily disjoint.

t
structure instance
locative random state
pathname package
function readtable
| symbol sequence array hash-table character stream
<:> string-char number
I
list standard-cha

keyword null cons vector simple—-array rational float complex

/T

single double

float float
string bit-vector [simple-vecto integer ratio and and

short long

float float

simple-bit-vector ~“fixnum signed-byte bignum

I

simple-string bit compiled-function <:>
generic—function”i;/

dynamic-closure

lexical-closure

Figure 3. Symbolics Common Lisp Data Types

Certain objects such as the set of numbers or the set of strings are identified by
associated symbolic names or lists, called type specifiers. See the section "Type
Specifiers".

Page 66

Since many Lisp objects belong to more than one such set, it doesn’t always make
sense to ask what the zype of an object is; instead, one usually asks only whether
an object belongs to a given type. The predicate typep tests a Lisp object against
one of the standard type specifiers to determine if it belongs to that type.

Some Major Data Types

Here are brief descriptions of the top level and a few lower-level Symbolics Com-
mon Lisp data types. Most of the remainder of this manual covers the complete set
of data types and their operations in detail.

e Numbers are provided in several forms and representations. Symbolics Common
Lisp provides a true integer data type: Any integer, positive or negative, has, in
principle, a representation as a Symbolics Common Lisp data object, subject only
to total memory limitations, rather than to machine word width. A true rational
data type is provided: The quotient of two integers, if not an integer, is a ratio.
Floating-point numbers of single and double precision are also provided, as well
as Cartesian complex numbers.

e Characters represent printed glyphs, such as letters or text, formatting opera-
tions. Strings are one-dimensional arrays of characters. Symbolics Common Lisp
provides for a rich character set, including ways to represent characters of vari-
ous type styles.

e Symbols are named the data objects. Lisp provides machinery for locating a sym-
bol object, given its name (in form of a string). Symbols have property lists,
which in effect, allow them to be treated as record structures with an extensible
set of named components, each of which may be any Lisp object. Symbols also
serve to name functions and variables within programs.

e (Cons is a primitive Lisp data type that consists of a car and a cdr. Linked cons-
es are used to represent a non-empty list.

e Sequences are instances of the sequence type. A sequence is a supertype of the
list and vector (one-dimensional array) types. These types have the common prop-
erty that they are ordered sets of elements. Sequence functions can be used on
either lists or vectors.

e Lists are represented in the form of linked cells called conses. The car of the
list is its first element; the cdr is the remainder of the list. There is a special
object (the symbol nil) that is the empty list. Lists are built up by recursive ap-
plication of their definition.

e Arrays are dimensioned collections of objects. An array can have a non-negative
number of dimensions, up to eight, and is indexed by a sequence of integers. A
general array can have any Lisp object as a component; other types of arrays
are specialized for efficiency and can hold only certain types of Lisp objects. It

Page 67

is possible for two arrays, possibly with differing dimension information, to
share the same set of elements (such that modifying one array modifies the oth-
er also) by causing one to be displaced to the other. One-dimensional arrays of
any kind are called vectors. One-dimensional arrays specialized to hold only
characters are called strings. One-dimensional arrays specialized to hold only
bits (that is, of integers whose values are 0 or 1) are called bit-vectors.

Tables provide an efficient way of associating Lisp objects. This is done by asso-
ciating a key with a value. Some tables are hashed, which is a method for stor-
ing the association between the key and the value; this permits faster associa-
tion in exchange for some storage overhead.

Readtables are data structures used to control the parsing of expressions. This
structure maps characters into syntax types. This is extensively used by macro
characters to read their definitions. You can reprogram the parser to a limited
extent by modifying the readtable.

Packages are collections of symbols that serve as name spaces. The parser rec-
ognizes symbols by looking up character sequences in the current package.

Pathnames represent names of files in a fairly implementation-independent man-
ner. They are used to interface to the external file system. For a discussion of
pathnames, see the section "Naming of Files".

Streams represent sources or sinks of data, typically characters or bytes. They
are used to perform I/O, as well as for internal purposes such as parsing
strings. For a discussion of streams, see the section "Streams".

Random-states are data structures used to encapsulate the state of the built-in
random number generator.

Flavors are user-defined data structures. defflavor is used to define new flavors.
The name of the new flavor becomes a valid type symbol; it is a subtype of
instance. When flavors are built from components, the more specific flavors are
subtypes of their component flavors.

Structures are user-defined record structures, objects that have named compo-
nents. The defstruct facility is used to define new structure types. The name of
the new structure type becomes a valid type symbol.

Functions are objects that can be invoked as procedures; these may take argu-
ments and return values. (All Lisp procedures return values, and therefore every
procedure is a function.) Such objects include compiled-functions (compiled code
objects). Some functions are represented as a list whose car is a particular sym-
bol, such as lambda. Symbols can also be used as functions.

Compiled-functions are the usual form of compiled, executable Lisp code. A com-
piled function contains the code for one function. Compiled functions are pro-

Page 68

duced by the Lisp Compiler and are usually found as the definitions of symbols.
The printed representation of a compiled function includes its name, so that it
can be identified. About the only useful thing to do with compiled functions is
to apply them to arguments. However, some functions are provided for examin-
ing such objects, for user convenience.

e Generic functions are functions that operate on flavor instances. They can be de-
fined explicitly with defgeneric, or implicitly with defmethod.

o Lexical Closure is a functional object that contains a lexical evaluation environ-
ment, for example, an internal lambda in an environment containing lexical
variables. These variables can be accessed by the environment of the internal
lambda; the closure is said to be a closure of the free lexical variables. Invoca-
tion of a lexical closure provides the necessary data linkage for a function to
run in the environment in which the closure was made.

e Dynamic Closure is a functional object that contains a dynamic evaluation envi-
ronment. Dynamic closures are created by the zl:closure function and the zl:let-
closed special form. Dynamic closures are closures over special variables. Invo-
cation of a dynamic closure causes special variables to be bound around the
closed-over function.

e Locative is a Lisp object used as a pointer to a single memory cell in the sys-
tem. Locatives are a low-level construct, and as such, are never used by most
programmers.

These data types are not always mutually exclusive.

Type Specifiers

A type specifier is a symbol or a list naming Lisp objects. Symbols represent prede-
fined classes of objects, whereas lists usually indicate combinations or specializa-
tions of simpler types. Symbols or lists can also be abbreviations for types that
could be specified in other ways. The various type-checking functions can be ap-
plied to type specifiers, regardless of whether they are symbols or lists. See the
section "Determining the Type of an Object".

Note that although type specifiers and functions sometimes share the same name,
they work differently and should not be confused with each other.

Type Specifier Symbols

The predefined Symbolics Common Lisp type symbols include those shown in the
table below. In addition, when a structure type is defined using defstruct, or a fla-
vor is defined using defflavor, the name of the structure type and the flavor name
respectively become valid type symbols. For more on individual symbols, see the
document Symbolics Common Lisp Dictionary.

Page 69

array instance short-float
atom integer simple-array
bignum keyword simple-bit-vector
bit list simple-string
bit-vector sys:lexical-closure simple-vector
character locative single-float
common long-float signed-byte
compiled-function nil standard-char
complex null stream

cons number string
double-float package string-char
sys:dynamic-closure pathname structure
fixnum random-state symbol

float ratio t

function rational unsigned-byte
sys:generic-function readtable vector
hash-table sequence

Type Specifier Lists

Type specifier lists allow further combinations or specializations of existing data

types. For example:

e Denoting a list of objects that satisfy a type-checking predicate.

e Declaring and/or defining specialized forms of data types.

e Constructing abbreviated forms of type specifiers.

Type Specifier List Syntax

If a type specifier is a list, the first element of the list is a symbol, and the rest
of the list is subsidiary type information. The symbol can be one of the standard
type specifier symbols previously listed, but other symbols can also be used: Sym-
bols like mod, or member, for example, work as type specifiers when used in type
specifier lists, even though the symbols themselves are not type specifiers.

In many cases, a subsidiary item can be wunspecified. The unspecified subsidiary
item is indicated by the symbol *. For example, to completely specify a vector type,
one must mention the type of the elements and the length of the vector, as in:

(vector double-float 100)

To leave the length unspecified, you would write:

(vector double-float x)

Page 70

To leave the element type unspecified, you would write:
(vector x 100)

Suppose that two type specifiers are the same, except that the first has an asterisk
(*) where the second has a more explicit specification; then the second denotes a
subtype of the type denoted by the first.

As a convenience, if a list has one or more unspecified items at the end, such
items can simply be dropped, rather than writing an explicit * for each one. If
dropping all occurrences of * results in a singleton list, the parentheses can be
dropped as well (the list can be replaced by the symbol in its ear). For example,
(vector double-float x) can be abbreviated to (vector double-float), and (vector
x x) can be abbreviated to (vector) and then simply to vector.

Predicating Type Specifiers

A type specifier list of the following form lets you define the set of all objects that
satisfy the predicate named by predicate-name:

(satisfies predicate-name)

predicate-name can be a symbol whose global function definition is a one-argument
predicate, or a lambda-expression. (Note: Allowing a lambda-expression for predi-
cate-name is a Symbolics Common Lisp extension to Common Lisp.)

For example, the following type is the same as the type number:

(satisfies numberp)

The call (typep x ’(satisfies p)) results in applying p to x and returning t if the
result is true and nil if the result is false.

As an example, the type string-char could be defined as follows:

(deftype string-char ()
’(and character (satisfies string-char-p)))

Type Specifier Lists That Combine

It is possible to define a data type in terms of other data types or objects. The fol-
lowing functions make up appropriate type specifier lists for this purpose:

(member &rest list) Denotes the objects that are eql to one of the
specified objects in list.

(not type) Denotes objects that are not of the specified
type.

(and &rest types) Denotes the intersection of the specified types.

(or &rest types) Denotes the union of the specified types.

Type Specifier Lists That Specialize

Page 71

You can construct type specifier lists that let you declare specialized forms of data
types named by symbols. Such declarations allow optimization by the system. If the
system actually creates that specialized form, the type specifier declaration results
in further discrimination among existing data types.

Here is an example where the type specifier list serves for both declaration and
discrimination:

(array single-float)

This list format permits the creation of a type of array whose elements are of type
single-float. In other words, it declares to the array-creating function, make-array
that elements will always be of the type single-float. Since Symbolics Common
Lisp does create such specialized arrays, a test (using the predicate typep) of
whether the array is actually of type (array single-float) returns t.

The valid list format names for data types are listed below. Unless annotated to
the contrary, each of the list format names denotes specialized data types that can
be created by Symbolics Common Lisp.

(array element-type dimensions) Denotes specialized arrays of the type element-type,
and whose dimensions match dimensions, a list of

integers.

(sequence type) Denotes the sequences of the type type. This is a
Symbolics Common Lisp extension to Common
Lisp.

(simple-array element-type dimensions)
Similar to (array...), additionally specifying that
objects of the type are simple arrays.

(vector element-type size) Denotes the specialized one-dimensional arrays of
type element-type, and whose lengths match size.

(simple-vector size) The same as (vector ...), additionally specifying
that objects of the type are simple vectors. Declar-
ative use only.

(complex type) Every element of this type is a complex number
whose real part and imaginary part are each of
type type.

(function (argl-type arg2-type ...) value-type)
Use this syntax for declaration. Every element of
this type is a function that accepts arguments at
least of the types specified by the argn-type forms,
and returns a value that is a member of the types
specified by the value-type form.

(values valuel-type value2-type ...)
Use only as the value-type in a function type spec-
ifier or in a the special form. Specifies individual
types when multiple values are involved.

Page 72

Type Specifier Lists That Abbreviate

You can use type specifier list format to construct type specifiers that are abbrevi-
ations for other type specifiers. This is useful when the resulting type specifiers
would be far too verbose to write out explicitly.

For those formats that specify a range such as low and high, each of these limits
can be represented as an integer, a list of integers, or as the symbol * meaning
unspecified. The exact interpretation of the lower and upper limits depends on
their representation: An integer is an inclusive limit; a list of an integer is an ex-
clusive limit; the symbol * means that a limit does not exist and so effectively de-
notes minus or plus infinity, respectively.

Here are the valid formats:

(number low-limit high-limit) Denotes the numbers between low-limit and high-

(integer low high)
(mod n)

(ratio low high)

(signed-byte s)

(unsigned-byte s)

(rational low high)

(float low high)

(string size)
(simple-string size)
(bit-vector size)
(simple-bit-vector size)

(sequence fype)

limit. This is a Symbolics Common Lisp extension
to Common Lisp.

Denotes the integers between high and low.
Denotes the non-negative integers less than n.

Denotes the ratios between low and high. This is a
Symbolics Common Lisp extension to Common
Lisp.

Denotes the integers that can be represented in
two’s-complement form in a byte of s bits. This is
equivalent to (integer -25"1 251 . 1), (signed-byte
*) is the same as integer.

Denotes the set of non-negative integers that can
be represented in a byte of s bits. This is equiva-
lent to (integer 0 25-1). (unsigned-byte *) is the
same as (integer 0 *), the set of non-negative in-
tegers.

Denotes the rational numbers between low and
high, exclusive.

Denotes the floating-point numbers between low
and high exclusive.

Denotes the strings of the indicated size.

Denotes the simple strings of the indicated size.
Denotes the set of bit-vectors of the indicated size.
Denotes the simple-bit-vectors of the indicated size.

Denotes the sequences of the type type. type is a
Symbolics extension to Common Lisp.

(sequence fype)

Page 73

is the same as:

(or vector Tlist)

The following examples, which are equivalent, cre-
ate a vector that contains only string-chars:

(sequence string-char)
and:
(or (declare (vector string-char))
Tist)
The following are subtypes of (sequence string-char):
list
(vector string-char)

(vector character)
(vector t)

Type Modifiers for Vector and Array Types

The type specifier declare indicates a type specifier list used for identifying a spe-
cific kind of array. For example:

(setq array (make-array 5 :element-type ’(integer @ 99)))
(array-element-type array) => (unsigned-byte 8)

(unsigned-byte 8) is the smallest size for an array that can contain integers from
0 to 99. (integer 0 99) is a subtype of (unsigned-byte 8). For example:

(typep array
’(vector (integer @ 99))) =>nil

The vector type, as specified in Common Lisp, indicates an array specialized to
contain only elements of the type (integer 0 99). This is only sometimes what you
want. In this example, array is not specialized to hold only (integer 0 99), it is
specialized to hold (unsigned-byte 8):

(typep array
’(declare (vector (integer @ 99)))) => t

In this example, array is capable of containing (vector (integer 0 99)).

Defining New Type Specifiers

New type specifiers can come into existence in three ways. First, defining a new
structure type with defstruct automatically causes the name of the structure to be
a new type specifier symbol. Second, defining a new flavor with defflavor automat-
ically causes the name of the flavor to be a new type specifier symbol. Third, the
deftype special form can be used to define new type-specifier abbreviations.

Page 74

Type Conversion Function

The function coerce can be used to convert an object to an equivalent object of
another type.

It is not generally possible to convert any object to be of any type whatsoever; only
certain conversions are permitted, as summarized below. The dictionary entry for
this function illustrates its operation more fully.

e Any sequence type can be converted to any other sequence type, provided the
new sequence can contain all actual elements of the old sequence.

e Some strings, symbols, and integers, can be converted to characters.

e Any noncomplex number can be converted to a single- or double-floating-point
number.

e Any number can be converted to a complex number.

e Any object can be coerced to type t.

Determining the Type of an Object

These general type-checking functions make it possible to test relationships be-
tween objects in the type hierarchy, determine if an object belongs to a given data
type, get the type specifier list for standard data types, and identify equivalent da-
ta type descriptions.

Type-checking functions are useful in, among other things, controlling program
flow and error-checking.

There are also numerous specialized predicates for type-checking. See the section
"Predicates". That section contains summary tables for all type-checking predicates.
The individual chapters for each data type further discuss these predicates.

type-of object Returns the most specific type specifier de-
scribing a type of which object is a member.

sys:type-arglist type Returns a lambda-list for specifiers for type, if
type is a defined Common Lisp type; returns a
second boolean value, t, if fype is a defined
Common Lisp type, nil otherwise.

commonp object Returns t if object is an object of a type speci-
fied by a Common Lisp.

typep object type Returns t if object is of type type.
subtypep typel type2 Returns t if zypel is a subtype of fype2.
equal-typep typel type2 Returns t if typel and type2 are equivalent type

specifiers, denoting the same data type.

Page 75

typecase object &body body Selects a clause for evaluation by determining
if the type of an object matches a given data
type. See the section "Conditionals".

ctypecase object &body body "Continuable exhaustive type case." Like
typecase, but signals a proceedable error if no
clause is satisfied. See the section
"Conditionals".

etypecase object &body body "Exhaustive case." Like typecase, but signals a
non-proceedable error if no clause is satisfied.
See the section "Conditionals".

check-type place type &optional type-string
Signals an error if the contents of place are
not of the specified fype. See the section "Con-
ditions".

Type-checking Differences Between Symbolics Common Lisp and Zetalisp

Type-checking in Zetalisp and Symbolics Common Lisp does not completely overlap
for typep and zl:typep, since these two functions differ in their syntax and in the
number of types each recognizes. (typep recognizes a much larger set of data
types than zl:typep.)

typep accepts a type specifier in symbol or list form as its second argument, while
zl:typep (the two-argument version) accepts a keyword symbol denoting a type
specifier as its second argument. Since correspondences between the keyword sym-
bols and the type specifiers are not always obvious, the list below shows the valid
keywords accepted by zl:typep and their equivalent type specifiers accepted by
typep. Note, in particular, the equivalences for :closure, :fix, :list, :list-or-nil, and
:rational.

Zetalisp keyword
(2-argument version
of zl:typep)

:array
:atom

:hbignum

:closure
:compiled-function
:complex
:double-float

fix

fixnum

:float

:instance

dist

:list-or-nil

:locative

:non-complex-number

:null

:number
:rational
:select-method
:single-float
:stack-group
:string
:symbol

Declaring the Type of an Object

Page 76

Corresponds to
type specifier for

typep

array
atom

bignum
dynamic-closure
compiled-function
complex
double-float
integer

fixnum

float

instance

cons

list

locative

(and number (not complex))
null

number

ratio

single-float
sys:stack-group
string

symbol

It is frequently useful to declare that objects should take on values of a specified
type. The declaration specifiers type and ftype allow this for variable bindings and
for functions. This feature is currently ighored, but is useful for programmers de-
veloping portable programs. See the section "Declarations".

Type Specifiers in the CL Package with SCL Extensions

Here are the type specifiers that have Symbolics Common Lisp extensions:

Type specifier

number

Extension(s)

low-limit, high-limit

Page 77

ratio low, high
sequence type
Numbers

This chapter covers three main topics:

e types of numbers
e representation of numbers for printing and reading
e numeric functions

Zetalisp-only features, if any, are pointed out within the discussion of each topic.

Throughout this chapter, digit strings without qualifiers in running text are deci-
mal.

Types of Numbers

Symbolics Common Lisp includes three main types of numbers: rational, floating-
point, and complex. Their characteristics are described below.

Rational Numbers

Rational numbers are used for exact mathematical calculations. These are numbers
like 0, 1, 2, -27, 15/16, -26/3, and 13/100000000000000000000. Rational numbers
with no fractional part are called integers, and those with a non-zero fractional
part are called ratios. There is no restriction on the size of rational numbers, oth-
er than the memory available to represent them, so computations cannot "overflow"
as they do on conventional computers.

Operations with rational numbers follow the normal rules of arithmetic and are al-
ways exact. Hence, when your program uses rational numbers, you do not have to
be concerned with loss of accuracy or precision as would be the case if you used
floating-point numbers.

The system automatically reduces ratios into the lowest terms. If the denominator
evenly divides the numerator, Symbolics Common Lisp converts the result to an
integer. This automatic reduction and conversion of ratios is called rational canoni-
calization.

(+1 1) => 2

(+ 5/6 19/3) => 43/6

(/1 3) =>1/3

(/ 148 -120) => -7/6

(x 12/5 18/3) => 8

(x 1000080000000 1000000000A0AAARAAR) => 1000AAAAAARAARARAARAARARAAREAARE

Programmers familiar with conventional computer systems and languages will no-
tice that integer division in Symbolics Common Lisp is true mathematical division.

Page 78

The truncate function performs Fortran-style integer division. Other functions per-
form related kinds of division. See the section "Functions that Divide and Convert
Quotient to Integer".

Integers

The integer data type represents mathematical integers. Symbolics Common Lisp
imposes no limit on the magnitude of an integer; storage is automatically allocated
as necessary to represent large integers.

Division in Zetalisp is not like mathematical division. See the section "Integer Di-
vision in Zetalisp".

Efficiency of Implementation Note

In general, you need not be concerned with the details of integer representation.
You simply compute in integers. Symbolics Common Lisp does, however, have two
primitive types of integers, fixnums and bignums. Fixnums are a range of integers
that the system can represent efficiently; bignums are integers outside the range
of fixnums.

When you compute with integers, the system represents some as fixnums and the
rest (less efficiently) as bignums. The system automatically converts back and
forth between fixnums and bignums based solely on the size of the integer. This
automatic conversion is referred to as integer canonicalization.

You can ignore distinctions between fixnums and bignums in reading and printing
integers. The reader uses the same syntax for fixnums and bignums, and both
types have the same printed representations.

A few "low-level" functions work only on fixnums, and some built-in system func-
tions require fixnums; we note this requirement in the dictionary entries for these
functions.

The constants most-negative-fixnum and most-positive-fixnum give the range of
fixnums on the machine. In Symbolics Common Lisp the range is from -2147483648
to 2147483647 (-231 to 281-1).

Ratios

Rational numbers that are not integers are represented as the mathematical ratio
of two integers, the numerator and the denominator. The ratio is always "in lowest
terms", meaning that the denominator is as small as possible. If the denominator
evenly divides the numerator, the system applies the rule of rational canonicaliza-
tion, converting the result to an integer.

The denominator is always positive; the sign of the number is carried by the nu-
merator.

Examples:

Page 79

6/7 => 6/7 ;in canonical form

6/8 => 3/4 ;converted to canonical form
-3/9 => -1/3 ;converted to canonical form
6/2 => 3 ;converted to canonical form

(/ 4 -16) => -1/4 ;denominator is always positive

Floating-Point Numbers

Floating-point numbers are used for approximate mathematical calculations. Float-
ing-point numbers use a restricted form of representing numbers, so that they are
more efficient in some cases than rational numbers. Floating point is appropriate
for situations where there is no exact rational answer to a problem (for instance
pi or, (sqrt 2)), or where exact answers are not required. When using floating
point, the approximate nature of the representation must be kept in mind. See the
section "Non-mathematical Behavior of Floating-point Numbers".

The internal representation of floating-point numbers uses a mathematical sign =
€ {+1,-11, a significand (fraction part) ¥, and a signed exponent =. The mathemat-
ical value of the number represented is s #+ & % 2%. The values of f and = are re-
stricted to a certain number of (binary) digits. Symbolics Common Lisp supports
two forms of floating-point numbers, corresponding to particular sizes of f and e.
These are the IEEE standard single- and double-precision formats. See the section
"IEEE Floating-point Representation".

Single-float Single-precision floating-point numbers have a precision of 24
bits, or about 7 decimal digits. They use 8 bits to represent
the exponent. Their range is from 1.0e-45, the smallest positive
denormalized single-precision number, to 3.4028235e38, the
largest positive normalized single-precision number.

Double-float Double-precision floating-point numbers have a precision of 53
bits, or about 16 decimal digits. They use 11 bits to represent
the exponent. Their range is from 5.0d-324, the smallest posi-
tive denormalized double-precision floating-point number, to
1.7976931348623157d308, the largest positive normalized dou-
ble-precision floating-point number.

These two forms subsume the four floating-point forms supported by Common
Lisp: Single-float serves also as short-float and the system treats 1.0s0 and 1.0f0 as
identical single-precision formats. Similarly, double-float serves also as long-float,
with 1.010 and 1.0d0 treated as identical double-precision formats.

See the section "Numeric Type Conversions".

Floating-point Efficiency Note

Single-precision floating-point is significantly more efficient than double-precision
floating-point. In particular, double-precision numbers take up more memory than
single-precision numbers.

Page 80

IEEE Floating-point Representation

Genera uses IEEE-standard formats for single-precision and double-precision float-
ing-point numbers. Number objects exist that are outside the upper and lower lim-
its of the ranges for single and double precision. Larger than the largest number
is +leco (or +1de for doubles). Smaller than the smallest number is -lec (or -lde
for doubles). Smaller than the smallest normalized positive number but larger than
zero are the "denormalized" numbers. Some floating-point objects are Not-a-
Number (NalN); they are the result of (/ 0.0 0.0) (with trapping disabled) and like
operations.

IEEE numbers are symmetric about zero, so the negative of every representable
number is also a representable number. Zeros are signed in IEEE format, but +0.0
and -0.0 act the same arithmetically as 0.0. However, they are distinguishable to
non-numeric functions. For example:

(= +6.0 -0.0) =>T
(minusp -6.8) => NIL
(plusp @.0) => NIL
(pTusp -8.8) => NIL
(zerop -0.8) =>T
(eql 6.6 -08.8) => NIL

See "IEEE Standard for Binary Floating-Point Arithmetic," ANSI/IEEE Standard
754-1985, An American National Standard, August 12, 1985.

The constants below indicate the range for single- and double-floating-point num-
bers. Constants for short- and long-floating-point formats appear in the Dictionary
of Numeric Functions and Variables; these constants have the same values as sin-
gle- and double-floating-point formats, respectively.

Constants Indicating the Range of Floating-point Numbers

Constant Value
least-positive-single-float 1.4e-45
least-positive-normalized-single-float 1.1754944e-38
most-positive-single-float 3.4028235e38
least-negative-single-float -l.4e-45
least-negative-normalized-single-float -1.1754944e-38
most-negative-single-float -3.4028235e38
least-positive-double-float 5.0d-324
least-positive-normalized-double-float 2.2250738585072014d-308
most-positive-double-float 1.7976931348623157d308
least-negative-double-float -5.0d-324
least-negative-normalized-double-float -2.2250738585072014d-308

most-negative-double-float -1.7976931348623157d308

Page 81

Since the exponent in floating-point representation has a fixed length, some num-
bers cannot be represented. Thus floating-point computations can get exponent
overflow or underflow, if the result is too large or small to be represented. Expo-
nent overflow always signals an error. Exponent underflow normally signals an er-
ror, unless the computation is inside the body of a without-floating-underflow-
traps. Any time a floating-point error occurs, you are offered a way to proceed
from it, by substituting the IEEE floating-point standard result for the mathemati-
cal result.

Example:

(x 4e-20 4e-20) ;evaluating this signals an error
(without-floating-underflow-traps (x 4e-20 4e-20)) => 1.6e-39

Non-mathematical Behavior of Floating-point Numbers

The restricted representation of floating-point numbers leads to much behavior
which can be confusing to users unfamiliar with the concept. This behavior is
characteristic of floating-point numbers in general, and not of any particular lan-
guage, machine, or implementation.

Floating-point operations don’t always follow normal mathematical laws. For exam-
ple, floating-point addition is not associative:

(+ (+ 1.8e18 -1.8e10) 1.8) => 1.8
(+ 1.8e18 (+ -1.8e10 1.9)) => 0.8

This follows from the restricted representation of floating-point, since 1.0 is in-
significant relative to 1.0el0.

Much of the confusion surrounding floating-point comes from the problem of con-
verting from decimal to binary and vice versa.

Consider that the binary representation of 1/10 repeats infinitely:
.00011061100116001100110011081100110611001160110011081108 . . .

Since we can’t represent this exact value of 1/10, we would like to find the mathe-
matically closest number which is representable. We do that by rounding to the
appropriate number of binary places:

Single precision: (24 significant bits)

.000110611081100110011001101

(describe (float 1/18 08.8)) =>

0.1 is a single-precision floating-point number.

Sign @, exponent 173, 23-bit fraction 23146315 (not including hidden bit)
Its exact decimal value is 0.100000001496116119384765625

0.1

Double precision: (53 significant bits)
.00011001100110011001100110011001100116011601100110011010

Page 82

(describe (float 1/16 8.8d@)) =>
0.1d0 is a double-precision floating-point number.
Sign B, exponent 1773, 52-bit fraction 114631463146314632 (not including hidden bit)
Its exact decimal value is 0.1000000000000000055511151231257827021181583404541815625d8
0.1de

Already we see some anomalies. The single-precision number closest to 1/10 has a
different mathematical value from the double-precision one. So a decimal number,
when represented in different floating-point precisions, can have different values.
Yet the printer prints both as "0.1".

Why do the printed representations hide the difference in values? Every binary
number has an exact, finite, decimal representation, which can be printed. The
describe function does that, as shown in the example above. From that example,
you can see that printing exact values would be cumbersome without giving useful
information. So the printer prints the shortest decimal number that is properly
rounded (from the actual decimal value), and whose rounded binary value (in that
precision) is identical to the original.

Here is an example of the rule used to derive the shortest decimal number:

(describe 1.17) =>

1.17 1is a single-precision floating-point number.

Sign @, exponent 177, 23-bit fraction 85341217 (not including hidden bit)
Its exact decimal value is 1.16999995708465576171875

1.17

The correctly rounded decimal values for this single-precision number are:
1, 1.2, 1.17, 1.16999996, 1.169999957, 1.1699999571, 1.16999995708, etc.

Rounded to single-precision (binary), the first three printed representations are all
different, but after 1.17, they are all the same. Thus, 1.17 is the "best" representa-
tion to print.

Since the printing rule is sensitive to floating-point precision, it hides the differ-
ence between the exact mathematical values of 1.17 and 1.17d0.

The interactions between the printing rule and the finite representation of num-
bers (both as read in and as computed) can lead to some interesting anomalies:

(- 6 5.9) => 0.899999985

(- 2 1.9) => 0.100000024

(- 2 1.9d0) => 0.10000000000000009d0

(- 1000000.1d0 10006000) => B0.89999999997671694d0
(- 100000.1d0 100000) => 0.10000000000582077d0
(x .801 18) => ©0.010000001

(x .00083de 18) => 0.80829999999999999996d0

(/ 1.8 3) => 08.33333334
(/ 1.8de 3) => 08.3333333333333333d0
(/ 1.8 6) => 0.16666667
(/ 1.08dB 6) => B.16666666666666666d0

These are all "correct", as we can verify by doing the exact (rational) arithmetic.

Page 83

(rational 6) => 6

(rational 5.9) => 12373197/2097152

(- 6 12373197/20897152) => 289715/20897152
(float 209715/2097152 0.0) => 0.0899999905

Complex Numbers

A complex number is a pair of noncomplex numbers, representing the real and
imaginary parts of the number. The real and imaginary parts can be rational, sin-
gle-float, or double-float, but both parts always have the same type. Hence we dis-
tinguish between complex rational and complex floating-point numbers.

In Symbolics Common Lisp a complex rational number can never have a zero
imaginary part. The system matches up the real and imaginary parts of a complex
number operand or result; if the real part is rational and the imaginary part is a
zero integer, the system converts the complex number to a noncomplex rational
number. This matching of types and conversion is called the rule of complex canon-
tecalization.

Conversion does not occur if the result is a complex floating-point number with a
zero imaginary part. For example, #C(5.0 0.0) is not automatically converted to 5.0.
In this case, if you want to convert to a noncomplex number, you must call the ap-
propriate conversion function. See the section "Numeric Type Conversions".

Complex numbers are used when mathematically appropriate.
(sqrt -1) => #C(@ 1)
(Tog -1) => #C(8.8 3.1415927)
(+ #C(4 18) #C(5 -18)) => 9
(+ #C (4.2 18) #C(5.8 -18)) => #C (9.0 8.0)

Zetalisp Note: In Zetalisp, the functions sqrt and log signal an error if given a
negative argument, instead of returning a complex number as they do in Common
Lisp examples.

Type Specifiers and Type Hierarchy for Numbers

The type specifiers relating to numeric data types are:

number
rational
float
complex
bignum

integer

ratio
single-float
double-float
unsigned-byte

Page 84

short-float
long-float
fixnum
signed-byte
bit

Details about each type specifier appear in its dictionary entry.

Figure ! shows the relationships between numeric data types. For more on data
types, type specifiers, and type checking in Symbolics Common Lisp, see the sec-
tion "Data Types and Type Specifiers".

fixnum

rational

integer ratio

signed-byte bignum

unsigned-byte

7

bit

number

float complex

N

single
float
and
short
float

double
float
and
long
float

Figure 4. Symbolics Common Lisp Numeric Data Types

How the Printer Prints Numbers

Numbers can be printed in a variety of ways determined by the values of control

variables.

"Escape" characters, such as the backslash (or slash in Zetalisp), do not affect the
printing of numbers.

Page 85

Printed Representation of Rational Numbers

Rational numbers can print in any radix between 2 and 36 (inclusive), depending
on the value you assign to the control variable *print-base*. The default value is
10. (Zetalisp uses the value of zl:base to control printing.)

When *print-base* has a value over 10, digits greater than 9 are represented by
means of alphabetical characters.

If an integer is negative, a minus sign is printed, followed by the absolute value of
the integer. The integer zero is represented by the single digit 0 and never has a
sign. Integers in base ten print with or without a trailing decimal point, depending
on the value of *print-radix*. See the section "Radix Specifiers for Rational Num-
bers".

To allow printing of integers in other than Arabic notation, *print-base* can be
set to a symbol that has a si:princ-function property (such as :english or
:roman). The value of the property is applied to two arguments:

e - of the number to be printed
e The stream to which to print it

The printer prints ratios in the following sequence:

e A minus sign if the ratio is negative

e The absolute value of the numerator

e A slash (/) character (Zetalisp uses a backslash, \)
e The denominator

Ratios print in canonical form.

Radix Specifiers for Rational Numbers

You can specify that a radix specifier be used to show in what radix a number is
being printed. To do so, set the control variable *print-radix* to t (default value is
nil). The radix specifier is always printed with a lowercase letter.

Radix Specifier Format
The general format of a radix specifier is a sequence of the following characters:

o #
e A non-empty sequence of decimal digits representing an unsigned decimal inte-
ger n (must be in the range 2 - 36 inclusive)

LA

immediately followed by:

e An optional sign
e A sequence of digits in radix n

Page 86

There are special abbreviations for commonly used radices such as binary, octal,

and hexadecimal.

Radix Normal Abbreviated Uppercase Form
Form Form (Reader only)
Binary fter b #t2R or #B
Octal #8r fto #8R or #0O
Hexadecimal #teér tx #16R or #X

For integers in base ten the radix specifier uses a trailing decimal point instead of
a leading radix specifier. When *print-radix* is set to nil, integers in base ten are

printed without a trailing decimal point.

To print a ratio with a radix specifier, the printer uses the same notation as for
integers, except in the case of decimals. Ratios in decimal are printed using the

#10r notation.

Examples (integers):
(+23) =>5
(setq xprint-basex 2) => 1@
(+ 2 3) => 101
(setq xprint-radixx t) => T
(+ 2 3) => f#b101
(setq xprint-basex 16) => {{x10
(x 6 2) => #ixC
(setq xprint-basex 18) => 10.
(x 5 8) => 40.
(setq xprint-radixx nil) => NIL
(x 5 8) => 40
(setq xprint-basex
(x 5 8) =>XL

3

:roman) => :ROMAN

Examples (ratios):

4/5 => 4/5

(setq xprint-radixx t) => T
4/5 => H{1@r4a/5

(setq xprint-basex 8) => #0108
4/12 => fo1/3

5/9 => fo5/11

(setq xprint-basex 5) => #t5r10
7/36 => f#5r12/118

Printed Representation of Floating-point Numbers

Page 87

Floating-point numbers are always printed in decimal. For a single-precision float-
ing-point number, the printer first decides whether to use ordinary notation or ex-
ponential notation. If the magnitude of the number is so large or small that the
ordinary notation would require an unreasonable number of leading or trailing ze-
roes, exponential notation is used. A floating-point number is printed in the follow-
ing sequence:

e An optional leading minus sign
e One or more digits

e A decimal point

¢ One or more digits

e Optionally an exponent marker, described below, an optional minus sign, and the
power of ten

The exponent marker (also referred to as the exponent character or letter) indi-
cates the number’s floating-point format. The printer uses one of the following
characters: s, f, 1, d, or e. These indicate short-, single-, long-, and double-
floating-point numbers respectively. e indicates a number format that corresponds
to the current value of the variable *read-default-float-format®*. This variable
takes a value denoting one of the valid floating-point formats, namely short-float,
single-float, long-float, or double-float.

To decide whether to print an exponent marker, and if so, of which type, the print-
er checks the value of *read-default-float-format* and applies the rules summa-
rized below.

Notation Does number’s format Exponent
used match current value of marker
read-default-float-format?

Ordinary Yes Don’t print
marker
No Print marker
and zero
Exponential Yes Print e
No Print marker

Examples:

Page 88

(setq xread-default-float-formatx ’single-float) => SINGLE-FLOAT
1.0s6 => 1.0

1.8s7 => 1.08e7

1.0d0 => 1.0d0

1.0d7 => 1.0d7

(setq xread-default-float-formatx ’double-float) => DOUBLE-FLOAT
1.08s0 => 1.0f0

1.8s7 => 1.0f7
1.0d8 => 1.0
1.8d7 => 1.8e7

The number of digits printed is the "correct" number; no information present in
the number is lost, and no extra trailing digits are printed that do not represent
information in the number. Feeding the printed representation of a floating-point
number back to the reader should always produce an equal floating-point number.

The printed representation for floating-point "infinity" is in the following sequence:

e A plus or minus sign

e The digit "1"

e The appropriate exponent mark character
e An infinity sign: o

Examples:

(setq xread-default-float-formatx ’double-float) => DOUBLE-FLOAT
+1s00 => +1foo
+1doo => +1goo
(setq xread-default-float-formatx ’single-float) => SINGLE-FLOAT
-1s00 => -Teoo
-1Too => -1doo

Control Variables for Printing Numbers

print-base Specifies radix for printing numbers (range 2-36, default 10).
print-radix Determines the printing or suppression of radix specifier (value
t or nil).

read-default-float-format
Guides the printer in choice of exponent marker for floating-
point number.

Note: The following Zetalisp variable is included to help you read old programs. In
your new programs, use the Common Lisp version of this variable.

zl:base The value of zl:base is a number that is the radix in which in-
tegers and ratios are printed in, or a symbol with a si:princ-
function property. The Common Lisp equivalent of this vari-
able is *print-base*.

Page 89

Printed Representation of Complex Numbers

The printed representation for complex numbers is:
#C (realpart imagpart)

The real and imaginary parts of the complex number are printed in the manner
appropriate to their type.

Examples:

(+ #C(3.4 5) 6) => #L(9.4 5.0)
(x 4 #C(2.8d8 5)) => #C(8.08d0 20.0d0)

(setg xprint-radixx t)
(setq xprint-basex 16)
(+ #C(3 4) #C(8 9)) => HC(#xB #xD)

How the Reader Recognizes Numbers

The Symbolics Common Lisp reader accepts characters, accumulates them into a
token, and then interprets the token as a number or a symbol. In general, the to-
ken is interpreted as a number if it satisfies the syntax for numbers. Often, the
interpretation is determined by the values of control variables, as explained below.

How the Reader Recognizes Rational Numbers

The reader determines the radix in which integers and ratios are to be read in the
following manner:

e If the number is preceded by a radix specifier, the reader interprets the rational
number using the specified radix. The reader accepts radix specifier syntax in
both upper and lowercase characters. See the section "Radix Specifier Format".

e If the number is an integer with a trailing decimal point, the reader uses a
radix of ten.

e In the absence of a radix specifier, or a trailing decimal point for integers, the
reader determines the radix by checking the current value of the control vari-
able *read-base*. (Zetalisp uses the value of zl:ibase.)

Examples:

(+ #2r101 f2r11) => 8

(+ #3r11 #5r181) => 3@

(x #tb10@ #xC) => 48

(x #o15 #8r5) => 65

(x #b11/18 48) => 60 ;xread-basex is 10
(setq xread-basex 2) => 2

(+ 1608 1181) => 17

(x #{x18/a 101) => 8

Page 90

How the Reader Recognizes Integers
The syntax for a simple integer is the following sequence:

e An optional plus or minus sign
e A string of digits
e An optional decimal point

If the trailing decimal point is present, the digits are interpreted in decimal radix.
Otherwise, they are considered as a number whose radix is the value of the vari-
able *read-base* (or zl:ibase in Zetalisp). Valid values are between 2 and 36, in-
clusive; default value is 10.

read understands simple integers, as well as a simple integer followed by an un-
derscore () or a circumflex (*), followed by another simple integer. The two sim-
ple integers are interpreted in the usual way, and the character between them in-
dicates an operation to be performed on the two integers.

e The underscore indicates a binary "left shift"; that is, the integer to its left is
doubled the number of times indicated by the integer to its right. For example,
645_6 means 64500 (in octal).

e The circumflex multiplies the integer to its left by *read-base* the number of
times indicated by the integer to its right. (The second integer is not allowed to
have a leading minus sign.) For example, 645+3 means 645000.

Here are some examples of valid representations of integers to be given to read:
4 =>4
23456. => 23456
-546 => -546
+457+6 => 45000000
2_11 => 4096

Reading Integers in Bases Greater Than 10

The reader uses letters to represent digits greater than 10. Thus, when *read-
base* is greater than 10, some tokens could be read as either integers, floating-
point numbers, or symbols. The reader’s action on such ambiguous tokens is deter-
mined by the value of si:*read-extended-ibase-unsigned-number* and si:*read-
extended-ibase-signed-number*. Setting these variables to t causes the tokens to
be always interpreted as numbers. A nil setting causes the tokens to be interpret-
ed as symbols or floating-point numbers. The above variables can have two other,
intermediate settings, as explained in the Dictionary entry.

Examples:

(setq xread-basex 16) => 16

(+ 18 5) => 21 ;this works as expected

(+ ¢ 2) => signals an error because c is an unbound symbol
(setq si:xread-extended-ibase-signed-numberx t) => T

(+ c2) => 14 ;now ¢ is read as a number
(+ H#xc 2) => 14 ;always safe

Page 91

Compatibility Note: The fact that the reader depends on the value of these vari-
ables to tell it how to interpret tokens when the value of *read-base* is greater
than ten, rather than just automatically interpreting them as numbers, is an in-
compatible difference from the language specification in Common Lisp: The Lan-

guage.

How the Reader Recognizes Ratios
The syntax of a ratio is the following sequence:

e An optional sign

e A string of digits

A / (slash character)
e A string of digits

The Zetalisp syntax is identical, except that a backslash character (\), is used in-
stead of a slash.

A ratio can also be prefixed by a radix specifier. See the section "Radix Specifiers
for Rational Numbers".

Ratios written with a radix specifier are read in the radix specified. Ratios written
without a radix specifier are always read in the current *read-base* (or zl:ibase
in Zetalisp).

Examples:

-14/32 => -7/16

22/7 => 22/7

#o24/17 => 4/3 ;20715 => 4/3
ttx4f/18 => 79/16

(setq xread-basex 2) => 2

181/18 => 5/2

#t10r181/10 => 181/10

How the Reader Recognizes Floating-Point Numbers
Floating-point numbers are always read in decimal radix.
The syntax for floating-point numbers has two possible formats:

e An optional plus or minus sign

e Some optional digits

e A decimal point

e One or more digits

e An optional exponent marker, consisting of an exponent letter, an optional mi-
nus sign, and digits representing the power of ten

or

e An optional sign

Page 92

e A string of digits

e An optional decimal point followed by optional digits

e An exponent marker

Note that in the first format a decimal point is mandatory, but the exponent mark-
er is optional. In the second representation the decimal point can be omitted, but

the exponent marker is always present. Moreover, the optional sign is always fol-
lowed by at least one digit.

Here are some examples of floating-point numbers in both formats:

Format 1 Format 2
20.2e-4 20.2e-4
.202e-2 202.e-5
.80202 202e-5

If no exponent is present, the number is a single-float. If an exponent is present,
the exponent letter determines the type of the number.

Floating-point Exponent Characters

Following is a summary of floating-point exponent characters and the way numbers
containing them are read.

Character Floating-point precision
Dord double-precision
Eore depends on value of

read-default-float-format

Forf single-precision
Lorl double-precision
Sors single-precision

The variable *read-default-float-format* controls how floating-point numbers with

nn

no exponent or an exponent preceded by "E" or "e", are read. Here is a summary
of how different values cause these numbers to be read.

Value Floating-point precision
single-float single-precision

short-float single-precision

Page 93

double-float double-precision

long-float double-precision

The default value is single-float.

As a special case, the reader recognizes IEEE floating-point "infinity". The syntax
for infinity is the following sequence:

e A required plus or minus sign

e The digit "1"

e Any of the exponent mark characters

e The exponent character, which must be an infinity sign: «

Here are some examples of printed representations that read as single-floats:

6.6 => 0.0

1.5 =>1.5

14.8 => 14.40

.01 => 6.01

L7807 => 8.707

-.3 => -8.3

+3.14159 => 3.14159

6.03e23 => 6.03e23 ;only when xread-default-float-formatx
1E-9 => 1.8e-9 ; 1s ’single-float
1.e3 => 1000.8

+1e00 => +1eoo

(setq xread-default-float-formatx ’double-float) => DOUBLE-FLOAT
3.14159s8 => 3.14159
1.65-19 => 1.6e-19

Here are some examples of printed representations that read as double-floats (cur-
rent value of *read-default-float-format* is single-float).

6de => 0.0d0

1.5d9 => 1.5d9

-42D3 => -42000.0d0

1.d5 => 1000060.0d0

-1doo => -1doo

(setq xread-default-float-formatx ’double-float) => DOUBLE-FLOAT
6.6 => 0.0

6.83e23 => 6.03e23

-lgco => -leoo

Control Variables for Reading Numbers

read-base Holds radix for reading of rational numbers (2-36, default 10).

Page 94

read-default-float-format
Controls reading of floating-point number with no exponent or
exponent e (or E).

si:*read-extended-ibase-unsigned-number*
Controls reading of unsigned integers in bases greater than
ten.

si:*read-extended-ibase-signed-number*
Controls reading of signed integers in bases greater than ten.

Note: The following Zetalisp variable is included to help you read old programs. In
your new programs, use the Common Lisp equivalent of this variable.

Zetalisp Common Lisp

zl:ibase The value of zl:ibase is a number that is the radix in
which integers and ratios are read. The Common Lisp
equivalent of this variable is *read-base®.

How the Reader Recognizes Complex Numbers

The reader recognizes #C(numberl number2) as a complex number. numberl and
number2 can be of any noncomplex type (coercion is applied if necessary). numberl
is used as the real part and number2 is used as the imaginary part. The resulting
Lisp object is represented in complex canonical form.

Examples:
#C(3.0 4.8) ==> #C (3.0 4.0)
#C(1 8) ==> 1

#C(1/2 3) ==> #C(1/2 3)
#C(1/2 3.8) ==> #C(8.5 3.0)

Numeric Functions

As stated earlier, most numeric functions in Symbolics Common Lisp are generic,
rather than applicable to a specific number type. Generic functions include:

e Predicates that check numeric type and properties.
e Functions which perform numeric comparison.
e Arithmetic functions allowing numeric data conversions.

e Transcendental functions and a pseudo-random number generator facility.

Page 95

e Functions that do machine-dependent arithmetic.

Two groups of functions work for integers only. One group performs logical opera-
tions on integers, the other is a group of byte-manipulation functions. For purposes
of logical and byte manipulation operations, an integer is treated as a sequence of
bits, with the low bit in the rightmost position. The byte-manipulation functions
let you operate on any number of contiguous bits within the integer.

Coercion Rules for Numbers

When arithmetic and numeric comparison functions of more than one argument re-
ceive arguments of different numeric types, these must be converted to a common
type. Symbolics Common Lisp does the conversion by following uniform coercion
rules. For functions returning a number, the coerced argument type is also the
type of the result. Note: The functions max and min are two notable exceptions
where no conversion is performed.

Here are the coercion rules for the different argument types.

Argument Types Converted to Result Type
Single-float Rational Single-float Single-float
Double-float Rational Double-float Double-float
Single-float Double-float Double-float Double-float
Complex Non-comp1ex Complex Complex

Since rational computations are always exact, you need not be concerned with coer-

cions among rational number types.

Since floating-point computations with different precisions can lead to inefficiency,
inaccuracy, or unexpected results, Symbolics Common Lisp does not automatically
convert between double-floats and single-floats if all the arguments are of the
same floating-point type.

Thus, if the constants in a numerical algorithm are written as single-floats (as-
suming this provides adequate precision), and if the input is a single-float, the
computation is done in single-float mode and the result is a single-float. If the in-
put is a double-float the computations are done in double precision and the result
is a double-float, although the constants still have only single precision. For most
algorithms, it is desirable to have two separate sets of constants to maintain accu-
racy for double precision and speed for single precision.

This means that a single-float computation can get an exponent overflow error
even when the result could have been represented as a double-float. For example,
1.0e18 * 1.0e22 would create an exponent overflow error, even though the result
could be represented by the valid double-float number 1.0d40. You can prevent this
type of error by converting one, or both of the arguments to a larger data type.

In general then, floating-point number computations yield a floating-point result of
the type corresponding to the largest floating-point type in the argument list. Com-
putations with rational numbers yield a rational number result.

Page 96

Examples:

(+ 1 3.9) => 4.0
(+ 2 4d@) => 6.0d0

(+ 358 4d@) => 7.0d0

(+ #C(6 8) 2) => #C(8 8)

(+ #C(4 9) 7.8d1) => #C(74.0d8 9.08d0)

(+ #C(3.4s5 9.253) #C(6.2d4 8.8d4)) => #C(402000.0d0 17200.0d9)
(+ #C(4 -3) H#C(6 3)) => 10

(+ #C(3.8 8.8) H#C(4.5 -8.8)) => #C(7.5 0.0)

Numerie Function Categories

The following groups of numeric functions are available:

e Numeric Predicates

e Numeric Comparisons

e Arithmetic Functions

e Transcendental Functions

e Numeric Type Conversions

e Logical Operations on Numbers

e Byte Manipulation Functions

¢ Random Number Generation

e Machine-dependent Arithmetic Functions

The discussion for each function group is followed by a summary table of the func-
tions in that category. The alphabetized Dictionary provides complete coverage of
each individual function. See the document Symbolics Common Lisp Dictionary.

Numeric Predicates

Numeric predicates test the data types of numbers, as well as some numeric prop-
erties, such as whether the number is odd or even. The summary tables below
group numeric predicates by function.

Numeric Type-checking Predicates

These predicates test a number to see if it belongs to a given type. General type-
checking functions such as typep and subtypep can also be used to determine re-
lationships within the hierarchy of numeric types and for similar purposes. For
more on these functions, see the section "Determining the Type of an Object".
complexp object Tests for complex number.

floatp object Tests for floating-point number of any precision.

integerp object Tests for integer.

Page 97

numberp object Tests for number of any type.
rationalp object Tests for rational number.

sys:double-float-p object
Tests for double-precision floating-point number.

sys:single-float-p object
Tests for single-precision floating-point number.

sys:fixnump object Tests for fixnum.

Note: The following Zetalisp predicates are included to help you read old programs.
In your new programs, where possible, use the Common Lisp equivalents of these
predicates.

zl:bigp object Tests for bignum.
zl:fixp object Tests for integer (same as integerp).

zl:flonump object Tests for single-precision floating-point number (same as
sys:single-float-p).

zl:rationalp object Tests for ratio.

Numeric Property-checking Predicates

evenp integer Tests for even integers.

oddp integer Tests for odd integers.

minusp number Tests if number is less than zero.
plusp number Tests if number is greater than zero.
zerop number Tests if number is zero.

Note: The following Zetalisp predicate is included to help you read old programs. In
your new programs, if possible, use the Common Lisp equivalent of this predicate.

zl:signp test number Tests if the sign of number matches test.

Numeric Comparisons

Symbolics Common Lisp supports eight numeric comparison functions in which the
values of two or more arguments are compared with respect to equality, inequality,
less-than, greater-than, and so on.

All of these functions require that their arguments be numbers, and signal an er-
ror if given a nonnumber. They work on all types of numbers, automatically per-
forming any required coercions. Note that no coercion takes place for functions
max and min.

Page 98

= and # work for complex number comparisons. All other comparison functions re-
quire non-complex numbers as arguments.

Types of Equality

In general we can distinguish two types of equality:

e Equality of two Lisp objects, tested by predicates eq, eql, equal, and equalp.
See the section "Comparison-performing Predicates".

e Numeric equality, tested by =.

Although predicates eq, eql, equal, and equalp can take numbers as arguments,
they cannot be used interchangeably with =, because they don’t work the same
way:

e eq produces unreliable results on numbers.

e eql and equal and are true for numeric arguments of the same numeric value
and type. (No coercion is performed.) In addition, floating-point zeros of differ-
ing signs do not satisfy any of these predicates.

e = takes only numbers as arguments; it is true if its arguments are of the same
numeric value, regardless of type. Floating-point zeros are = to any other zero
values, regardless of sign.

For comparing numeric values, = is therefore the preferred function.

Examples:

(eql 3 3.8) => NIL
(=33.8) =>T

(eq 18.8d8 (x 5.8d@ 2)) => NIL
(= 18.0d8 (x 5.8d8 2)) =>T

(equal #C(5.8 @) 5.8) => NIL
(= #iC(5.8 8) 5.8) =>T

(eql 8.8 -8.8) => NIL
(0.6 -86.8) =>T

(= 3 nil) ;generates an error
(eql 3 nil) => NIL

The following function can return either t or nil.

Page 99

(defun foo ()
(Tet ((x (float 5)))
(eq x (car (cons x nil)))))

Numeric Comparison Functions

Function Synonyms Comparison/Returned Value
number &rest numbers /= Not equal

< number &rest more-numbers zl:lessp Less than

< number &rest more-numbers <= Less than or equal

= number &rest more-numbers Equal

> number &rest more-numbers zl:greaterp Greater than

> number &rest more-numbers >= Greater than or equal
max number &rest more-numbers Greatest of its arguments
min number &rest more-numabers Least of its arguments
Arithmetic

All of these functions require that their arguments be numbers, and signal an er-
ror if given a nonnumber. With a few exceptions that require integer arguments,
arithmetic functions work on all types of numbers, automatically performing any
required coercions. See the section "Coercion Rules for Numbers".

Integer Division in Zetalisp

Integer division in Zetalisp returns an integer rather than the exact rational-
number result. The quotient is truncated toward zero rather than rounded. The ex-
act rule is that if A is divided by B, yielding a quotient of C and a remainder of
D, then A = B * C + D exactly. D is either zero or the same sign as A. Thus the
absolute value of C is less than or equal to the true quotient of the absolute val-
ues of A and B. This is compatible with Maclisp and conventional computer hard-
ware. However, it has the serious problem that it does not obey the rule that if A

Page 100

divided by B yields a quotient of C and a remainder of D, then dividing A + 2 * B
by B yields a quotient of C + & and a remainder of D for all integers k2. The lack
of this property sometimes makes Zetalisp integer division hard to use. For a more
detailed discussion of truncation and rounding off operations: See the section "Nu-
meric Type Conversions".

Arithmetic Functions

Function

+ &rest numbers

- number &rest more-numbers

abs number
conjugate number
* &rest numbers

!/ number &rest more-numbers

1+ number
1- number

ged &rest integers
lem &rest integers

print-exact-float-value

rem number divisor

mod number divisor

expt base-number power-number

sqrt number

isqrt integer

signum number

Page 101

Action

Returns the sum of its arguments.

First argument minus the sum of the rest
of the arguments, or negative of single
argument.

Returns the absolute value of number.
Returns the complex conjugate of number.
Returns the product of its arguments.

Returns the first argument divided by the
product of the rest of the arguments, or
reciprocal of single argument. Returns
integer or ratio, as appropriate, when
arguments are rational.

Adds 1 to number.

Subtracts 1 from number

Returns the greatest common divisor of all its

arguments.

Returns the least common multiple of
all its arguments.

When this variable is set to

t, it prints the exact number
represented by a floating-point
number, not the rounded number,
which is normally printed by the
printer.

Returns remainder of number divided by
divisor.

Performs floor on its arguments (divides
number by divisor, truncating result
toward negative infinity), but only returns
the second result of floor, the remainder.

Returns base-number raised
to the power power-number.

Returns the square root of number.

Returns the greatest integer less than or
equal to the square root of its argument.

If number is rational, returns -1, 0, or 1,
to indicate that the argument is negative,
zero or positive. Floating-point and
complex arguments produce different

Page 102

results.

Note: The following Zetalisp functions are included to help you read
old programs. In your new programs, where possible, use the Common
Lisp equivalents of these functions.

zl:+$ Synonyms for +.
zl:plus
zl:-$ Synonym for -.

zl:difference number &rest more-numabers
Returns the first argument minus the
sum of the rest of the arguments.

zl:minus number Returns the negative of number.
zl:*$ Synonyms for *.
zl:times

zl:/ number &rest more-numbers Returns the first argument

zl:/$ divided by the product of the rest of
the arguments, or reciprocal of single
argument. Truncates results for integer
arguments.

zl:quotient number &rest more-numbers
With more than one argument, same as
zl:/. With single argument, returns the
reciprocal of number; truncates result for
integer arguments.

zl:1+$ Synonyms for 1+.
zl:addl
zl:1-$ Synonyms for 1-.
zl:subl

zl:ged integerl integer2 &rest more-integers
zl:\ Returns greatest common divisor of all its
arguments.

Page 103

z1:\\ Synonyms for rem.
zl:remainder

zl:expt num expt Returns num raised to

zl:» the expt power.

z1:°$

zl:sqrt n Returns the square root of n.

Transcendental Functions

This group includes four subsets of transcendental functions: powers of e (where e
is the base of natural logarithms), logarithmic functions, trigonometric and related
functions, and hyperbolic functions.

These functions are only for floating-point arguments: Given an integer, they con-
vert it to a single-float and return a single-float; Given a double-float, they return
a double-float.

Powers of e and Log Functions

exp number Returns e raised to power number.

log number &optional base
Returns the natural logarithm of number, or optionally, the
logarithm of number in the base base.

Note: The following Zetalisp function is included to help you read old programs. In
your new programs, use the Common Lisp version of this function.

zl:log x Returns the natural logarithm of x.

Trigonometric and Related Functions

sin radians Returns the sine of its argument.
cos radians Returns the cosine of its argument.
tan radians Returns the tangent of its argument.
tand degrees Returns the tangent of degrees.

sind degrees Returns the sine of degrees.

cosd degrees Returns the cosine of degrees.

Page 104

cis radians Returns (complex (cos radians) (sin radians)).
asin number Returns the arc sine of number in radians.
acos number Returns the arc cosine of number in radians.

atan y &optional x Returns the angle between -m and n radians whose tangent is
yix.

phase number Returns the angle part (in radians) of the polar representation
of a complex number. (The function abs returns the radius
part of the complex number.)

Note: The following Zetalisp functions are included to help you read old programs.
In your new programs, where possible, use the Common Lisp equivalents of these
functions.

zl:atan y x Returns angle between 0 and 27 in radians.

zl:atan2 y x Returns angle in radians (same as atan).

Hyperbolic Functions

sinh number Returns the hyperbolic sine of number.

cosh number Returns the hyperbolic cosine of number.
tanh number Returns the hyperbolic tangent of number.
asinh number Returns the hyperbolic arc sine of number.
acosh number Returns the hyperbolic arc cosine of number.
atanh number Returns the hyperbolic arc tangent of number.

Numeric Type Conversions

These functions are provided to allow specific conversions of data types to be
forced when desired. When converting to an integer, you can select any of the fol-
lowing:

e Truncation toward negative infinity (floor, ffloor, zl:fix).

e Truncation toward positive infinity (ceiling, feceiling).

e Truncation toward zero (truncate, ftruncate).

¢ Rounding to the nearest integer (round, fround, zl:fixr).

See the section "Comparison of floor, ceiling, truncate and round".

Page 105

In addition, there are functions that extract specific components of ratios, floating-
point, and complex numbers such as the denominator of a ratio, or the imaginary
part of a complex number.

Functions that Convert Noncomplex to Rational Numbers

rational number Converts a noncomplex number to an equivalent rational num-
ber.

rationalize number Converts a noncomplex number to a rational number in best

available approximation of its format.

Note: The following Zetalisp function is included to help you read old programs. In
your new programs, use the Common Lisp equivalent of this function.

zl:rational x Converts a noncomplex number to an equivalent rational num-
ber. rationalize is the Common Lisp equivalent of this func-
tion.

Functions that Convert Numbers to Floating-point Numbers

float number &optional other
Converts number to floating point with the precision of other;
with single argument, converts number (if non-floating) to sin-
gle-precision floating point, else returns number.

Note: The following Zetalisp functions are included to help you read old programs.
In your new programs, where possible, use the Common Lisp equivalents of these
functions.

zl:dfloat x Converts a number to double-precision floating-point number.

zl:float x Converts a number to a single-precision floating-point number.

Functions that Divide and Convert Quotient to Integer

floor number &optional (divisor 1)
Divides number by divisor, truncates result toward negative
infinity*.

ceiling number &optional (divisor 1)

Divides number by divisor,
truncates result toward positive infinity*.

truncate number &optional (divisor 1)
Divides number by divisor,
truncates result toward zero®.

Page 106

round number &optional (divisor 1)
Divides number by divisor, rounds the result®.

*See the section "Comparison of floor, ceiling, truncate and round". Note: The fol-
lowing Zetalisp functions are included to help you read old programs. In your new
programs, where possible, use the Common Lisp equivalents of these functions.

zl:fix x Converts x from a floating-point number to an integer by trun-
cating (similar to floor).

zl:fixr x Converts x from a floating-point number to an integer by
rounding (similar to round).

Functions that Divide and Return Quotient as Floating-point Number

ffloor number &optional (divisor 1)
Like floor, except result is a floating-point
number instead of an integer.

feeiling number &optional (divisor 1)
Like ceiling, except result is a floating-point
number instead of an integer.

ftruncate number &optional (divisor 1)
Like truncate, except result is floating-point number instead of
an integer.

fround number &optional (divisor 1)
Like round, except result is a floating-point number instead of
an integer.

Functions that Extract Components From a Rational Number

numerator rational If the argument is a ratio, returns the numerator of rational.
For an integer argument, returns rational.

denominator rational
If the argument is a ratio, returns denominator of rational.
For an integer argument, returns 1.

Functions that Decompose and Construct Floating-point Numbers

decode-float float Returns values representing the significand, the exponent, and
the sign of the argument.

integer-decode-float float
Similar to decode-float except it scales the significand so as to
be an integer.

Page 107

float-digits float Returns the number of radix digits used in the representation
of the argument.

float-precision float
Returns the number of significant radix digits in the argu-
ment.

float-radix float Returns integer radix of floating-point argument.

float-sign floatl &optional float2
Returns a floating-point number of the same sign as floatl and
of the same absolute value as float2; float2 defaults to a float-
ing-point of the same precision as floatl.

scale-float float integer .
Returns (float * 2/Mteger),

Functions that Decompose and Construct Complex Numbers

complex realpart &optional imagpart
Builds a complex number from real and imaginary noncomplex
parts.

realpart number If number is complex, returns the real part of number.
If number is noncomplex, returns number.

imagpart number If number is complex, returns its imaginary part.
If number is noncomplex, returns zero of the same type as
number.

Comparison of floor, ceiling, truncate and round

Page 108

floor, ceiling, truncate, and round all produce two values. The second result, the
remainder, is omitted from the table below. Examples:

(floor 1.8) => 1 and 0.79999995
(floor -1.8) => -2 and 0.20000005
(floor 5 3) => 1 and 2

(ceiling 5 3) => 2 and -1
(truncate 5 3) => 1 and 2

(round 5 3) => 2 and -1

(round -5 3) => -2 and 1

(round 5 -3) => -2 and -1

Argument floor ceiling truncate round
1.8 1 2 1 2
1.5 1 2 1 2
1.3 1 2 1 1
0.9 0 1 0 1
0.5 0 1 0 0
0.2 0 1 0 0
-0.2 -1 0 0 0
-0.9 -1 0 0 -1
-1.3 -2 -1 -1 -1
-1.5 -2 -1 -1 -2
-1.8 -2 -1 -1 -2

Logical Operations on Numbers

The logical functions described here are bit-wise operations which require integers
as arguments; a non-integer argument signals an error. Logical operations on inte-
gers operate on the internal binary representation of the integer. Moreover, inte-
gers are treated as though they were "sign-extended". That is, negative integers
have all one-bits on the left, and non-negative integers have all 0-bits on the left.
As described below, this provides a convenient way of representing infinite vectors
of bits, as well as sets.

The functions fall into three main logical groupings: those that perform a specified
bit-wise logical operation on their arguments and return the result, those that re-
turn specific components or characteristics of their argument, and a group of pred-
icates based on bit-testing.

Infinite Bit-vectors and Sets Represented by Integers

It is noteworthy that these logical operations can be applied to infinite bit-vectors,
if these are represented by integers. This applies to infinite bit-vectors in which
only a finite number of bits are one, or only a finite number of bits are zero.

Suppose that the bits in such a vector are indexed by the non-negative integers
j=0,1,..., and that bit j is assigned a "weight" 2). Then, a vector with only a finite

Page 109

number of one-bits is represented by the positive integer corresponding to the sum
of the weights of the one-bits. Similarly, a bit-vector with only a finite number of
zero bits is represented as -1 minus the sum of the weights of the zero-bits, a neg-
ative integer. For example, the infinite bit-vector #*01011... can be represented by
the integer -6. Hence, logical operations on infinite bit-vectors with a finite num-
ber of one-bits or zero-bits can be performed by applying similar logical operations
on their integer representations using the functions described below.

The above method of using integers to represent bit-vectors can also be used to
represent sets. Suppose that set S is a subset of the universal set U. Then set S
can be represented by a bit-vector in which each bit represents an element of U,
and bit j is a one-bit if the corresponding element is also an element of S. In this
way, all finite subsets of U can be represented by positive integers. Similarly, all
sets whose complements are finite can be represented by negative integers. The
functions logior, logand, and logxor can then be used to compute the union, in-
tersection, and symmetric difference operations on sets represented in this way.

Functions Returning Result of Bit-wise Logical Operations

The logical operations performed by sixteen of the functions in this group can also
be performed by the single function boole. This can be useful when it is necessary
to parameterize a procedure so that it can use one of several logical operations.

logior &rest integers
Returns the bit-wise logical inclusive or of its arguments®.

logxor &rest integers
Returns the bit-wise logical exclusive or of its arguments®.

logand &rest integers
Returns bit-wise logical and of its arguments®.

logeqv &rest integers
Returns the bit-wise logical equivalence (exclusive nor) of its
arguments®.

lognand integerl integer2
Returns the logical not-and of its arguments®.

lognor integerl integer2
Returns the logical not-or of its arguments®.

logandcl integerl integer2
Returns the and complement of argument 1 with argument 2%,

logandc2 integer integer2
Returns the and of argument 1 with the complement of ar-
gument2*.

logorel integerl integer2
Returns the or complement of integeri with integer2*.

Page 110

logore2 integerl integer2
Returns the or of integerl with the complement of integer2*.

boole op integerl &rest more-integers
Generalization of other logical operations, such as logand,
logior, and logxor.

lognot integer Returns the logical complement of integer.

ash number count Shifts number count bits left or right depending on sign of
count.

*See the section "Comparison of Bit-wise Logical Operations".

Note: The following Zetalisp functions are included to help you read old programs.
In your new programs, where possible, use the Common Lisp equivalents of these
functions.

zl:logand number &rest more-numbers
Returns the bit-wise logical and of its arguments.

zl:logior number &rest more-numbers
Returns the bit-wise logical inclusive or of its arguments.

zl:logxor number &rest more-numbers
Returns the bit-wise logical exclusive or of its arguments.

Functions Returning Components or Characteristics of Argument

integer-length integer Returns the number of significant bits in
integer
logcount integer Returns the number of one-bits in integer

Note: The following Zetalisp functions are included to help you read old programs.
In your new programs, where possible, use the Common Lisp equivalents of these
functions.

zl:haipart x n Depending on sign of n, returns the high or
the low n bits of x.

zl:haulong x Returns the number of significant bits in x
(similar to integer-length).

Predicates for Testing Bits in Integers

logbitp index integer .
Returns t if index bit in integer (the bit whose weight is 2/19€X)
is a one-bit.

Page 111

logtest integerl integer2
Returns t if any 1-bits in integerl are 1-bits in infeger2.

Note: The following Zetalisp predicate is included to help you read old programs. In
your new programs, use the Common Lisp equivalent of this predicate.

zl:bit-test x y Returns t if any 1 bits in x are 1 bits in y. Use the Common
Lisp function, logtest.

Comparison of Bit-wise Logical Operations

Argumentl 0 0 1 1

Argument2 0 1 0 1 Operation Name

logior 0 1 1 1 inclusive or

logxor 0 1 1 0 exclusive or

logand 0 0 0 1 and

logeqv 1 0 0 1 equivalence (exclusive nor)
lognand 1 1 1 0 nand (complement of and)

lognor 1 0 0 0 nor (complement of inclusive or)
logandcl 0 1 0 0 and complement of argl with arg2
logandc2 0 0 1 0 and argl with complement of arg2
logorel 1 1 0 1 or complement of argl with arg2
logorc2 1 0 1 1 or argl with complement of arg2

Byte Manipulation Functions

Like logical operations, byte-manipulation functions are bit-wise operations that re-
quire integers as arguments. These functions operate on the internal binary repre-
sentation of the integers, which are treated as though they were "sign-extended".

Byte manipulation functions deal with an arbitrary-width field of contiguous bits
appearing anywhere in an integer. Such a contiguous set of bits is called a byte.
Note that we are not using the term byte to mean eight bits, but rather any num-
ber of bits within a number. These functions use byte specifiers to designate a spe-
cific byte position within any word. A byte specifier consists of the size (in bits)
and position of the byte within the number, counting from the right in bits. A po-
sition of zero means that the byte is at the right end of the number. Byte speci-
fiers are built using the byte function.

For example, the byte specifier (byte 8 0) refers to the lowest eight bits of a
word, and the byte specifier (byte 8 8) refers to the next eight bits.

Bytes are extracted from and deposited into 2’s complement signed integers. Treat-
ing the integers as signed means that negative numbers conceptually have infinite-
ly many one-bits on the left. Bytes, being a finite number of bits, are never nega-
tive.

Page 112

Summary of Byte Manipulation Functions

byte size position Creates a byte specifier.

byte-position bytespec
Extracts the position field of its argument.

byte-size bytespec Extracts the size field of its argument.

dpb newbyte bytespec integer
Deposit byte; returns a copy of integer that is the same as inte-
ger, except in the bits specified by bytespec.

deposit-field newbyte bytespec integer
Like dpb, except that newbyte is not taken to be right-justified.

ldb-test bytespec integer
Returns true if the designated field is nonzero.

Idb bytespec integer Load byte; extracts byte of integer as specified by bytespec.

mask-field bytespec integer
Similar to ldb, except for the position of the returned byte.

deposit-byte into-value position size byte-value
Like dpb, except that byte specifier information is passed in
separate arguments.

load-byte from-value position size
Like 1db, except that byte specifier information is passed in
separate arguments.

Random Number Generation

The functions in this section provide a pseudorandom number generator facility.
The basic function is random n &optional state. This function accepts a positive
number n (integer or floating-point), and returns a pseudorandom number of the
same type between zero (inclusive) and n (exclusive). The pseudorandom numbers
generated are nearly uniformly distributed. If n is an integer, each of the possible
results occurs with a probability very close to 1/n.

Between calls, the state of the pseudo random number generator is saved in a data
structure of type random-state, stored in the variable *random-state*. If you call
random without supplying a value for state, random uses the value of *random-
state®.

Usually there is only one random-state, but there are functions that allow manipu-
lation of this object to let you generate a reproducible sequence of random num-
bers within a program. *random-state®* can be bound to any random-state object;
it can also be printed out and successfully read back in.

Function make-random-state creates a new random-state data structure, which
can be used as the value of state. To copy the current random-number state object
rather than create a new one, call make-random-state without an argument.

Page 113

Use the predicate random-state-p to test whether a given object is of type
random-state.

To reproduce sequences of random numbers within a program, you can create a
random-state object and write it to a file with print; before running the program,
read a copy of the random-state object from the printed representation in the file,
then use this object to initialize the random-number generator for the program.
Or, you can copy the random state directly via make-random-state.

Examples:

(random 2) => 0

(random 2) => 1

(random 3.8) => 1.1938573

(random 3.8) => 2.1395636

(random 1.0d08) => 0.5454759425745741d0

(setq base-random-state (make-random-state)) => #.(RANDOM-STATE...)
(setg copyl-base

(make-random-state base-random-state)) => #.(RANDOM-STATE...)
(+ 1 (random 6 copyl-base)) => 3 ;simulate a roll of a die
(+ 1 (random 6 copyl-base)) => 6
(+ 1 (random 6 copyl-base)) => 4
(+ 1 (random 6 copyl-base)) => 2

(setq copy2-base
(make-random-state base-random-state)) => #.(RANDOM-STATE...)
(+ 1 (random 6 copy2-base)) => 3 ;the same results
(+ 1 (random 6 copy2-base)) => 6
(+ 1 (random 6 copy2-base)) => 4
(+ 1 (random 6 copy2-base)) => 2

Random Numbers in Zetalisp

This section describes the pseudorandom number generator facility in Zetalisp. The
function zl:random returns a new pseudorandom number each time it is called
Between calls, its state is saved in a data object called a random-array. Usually
there is only one random-array; however, if you want to create a reproducible
series of pseudorandom numbers, and be able to reset the state to control when
the series starts over, then you need some of the other functions here.

A random-array consists of an array of numbers, and two pointers into the array.
The length of the array is denoted by length and the distance between the pointers
by offset. This algorithm produces well-distributed random numbers if length and
offset are chosen carefully, so that the polynomial x~length+x"offset+1 is irreducible
over the mod-2 integers. The system uses 71 and 35.

The contents of the array of numbers should be initialized to anything moderately
random, to make the algorithm work. The contents get initialized by a simple ran-
dom number generator, based on a number called the seed. The initial value of the

Page 114

seed is set when the random-array is created, and it can be changed via function
si:random-initialize. To have several different controllable resettable sources of
random numbers, you can create your own random-arrays with function si:random-
create-array. If you don’t care about reproducibility of sequences, just use
zl:random without the random-array argument.

Random Number Functions

make-random-state &optional state
Returns a new object of type random-state from the uniform
distribution over [0, number).

random-normal &optional mean standard-deviation state
Returns a random number from the normal distribution with
the specified mean and standard-deviation.

random number &optional state
Returns a noncomplex number of the same kind as number.

random-state-p object
Returns t if object is of type random-state.

si:random-create-array length offset seed &optional (area nil)
Creates, initializes, and returns an object of type random-array.

si:random-initialize array &optional new-seed
Reinitializes the contents of array from seed.

Note: The following Zetalisp function is included to help you read old programs. In
your new programs, where possible, use the Common Lisp equivalent of this
function.

zl:random &optional arg random-array Returns a random integer.

Machine-Dependent Arithmetic

Sometimes it is desirable to have a form of arithmetic that has no overflow check-
ing (which would produce bignums), and truncates results to the word size of the
machine. In Symbolics Common Lisp, this is provided by the following set of func-
tions.

These functions should not be used for "efficiency"; they are probably less efficient
than the functions that do check for overflow. They are intended for algorithms
that require this sort of arithmetic, such as hash functions and pseudo-random
number generation.

Machine-Dependent Arithmetic Functions

Page 115

sys:%32-bit-plus fixnumli fixnum2
Returns the sum of fixnuml and fixnum2 in two’s complement
arithmetic.

sys:%32-bit-difference fixnuml fixnum?2
Returns the difference of fixnuml and fixnum2 in two’s comple-
ment arithmetic.

Ish number count Returns number shifted count bits, left or right, depending on
the sign of count; bits shifted at either end are lost; requires
fixnum arguments.

rot x y Returns x rotated y bits in a 32-bit field.

sys:%logdpb newbyte bytespec integer
Like dpb, except that it returns fixnums, thus reflecting
changes in the sign bit.

sys:%logldb bytespec integer
Like ldb, except that it only loads out of fixnums and allows
up to 32-bit byte size; thus the result can be negative.

Symbols, Keywords, and Variables

Overview of Symbols

A symbol is a Lisp object in the Lisp environment. A symbol has a print name, a
value (or binding), a definition (or the contents of its function cell), a property list,
and a package. It is important to understand that a symbol can be any Lisp object,
for example a variable, a function, or a list. It is also important to keep in mind
that while we sometimes say that a symbol is the name of some object, a name is
actually the printed representation of that object. A symbol is the object itself.

Two kinds of symbols should be mentioned explicitly here: keywords and variables.

Keywords are implemented as symbols whose home package is the keyword pack-
age. (See the section "Package Names".) The only aspects of symbols significant to
keywords are name and property list; otherwise, keywords could just as easily be
some other data type. (Note that keywords are referred to as enumeration types in
some other languages.)

There are three kinds of variables: special (or global), local (or lexical), and in-
stance. A special variable has dynamic scope: any Lisp expression can access it
simply by referring to its name. A local variable has lexical scope: only Lisp ex-
pressions lexically contained in the special form that binds the local variable can
access it. See the section "Overview of Dynamic and Lexical Scoping". An instance
variable has a different kind of lexical scope: only Lisp expressions lexically con-
tained in methods of the appropriate flavor can access it. Instance variables are
explained in another section. See the section "Overview of Flavors".

Page 116

The Print Name of a Symbol

Every symbol has an associated string called the print-name, or pname for short.
This string is used as the external representation of the symbol: if the string is
typed in to read, it is read as a reference to that symbol (if it is interned), and if
the symbol is printed, print displays the print-name.

How the Reader Recognizes Symbols

A string of letters, numbers, and "extended alphabetic" characters is recognized by
the reader as a symbol, provided it cannot be interpreted as a number. See the
section "How the Reader Recognizes Numbers". When a token could be read as ei-
ther a symbol or an integer in a base larger than ten, the reader’s action is deter-
mined by the value of si:*read-extended-ibase-unsigned-number* and si:*read-
extended-ibase-signed-number*.

Alphabetic case is ignored in symbols; lowercase letters are translated to upper-
case. When the reader sees the printed representation of a symbol, it interns it in
a package. See the section "Packages".

Symbols can start with digits; for example, read accepts one named "345T". If you
want to put strange characters (such as lowercase letters, whitespace, parentheses,
or reader macro characters) inside the name of a symbol, put a backslash before
each strange character. If you want to have a symbol whose print-name looks like
a number, put a backslash before some character in the name. You can also en-
close the name of a symbol in vertical bars, which quotes all characters inside, ex-
cept vertical bars and backslashes, which must be quoted with backslash. Examples
of symbols:

foo ab.cd
bar\ (baz\) ab\ cd
34uw23 carb4
\123 123+
[XY-hsiang Kitty| [and\ |or|

Printed Representation of Symbols

If slashification is off, the printed representation of a symbol is simply the succes-
sive characters of the print-name of the symbol. If slashification is on, two changes
must be made.

1. The symbol might require a package prefix for read to work correctly, assum-
ing that the package into which read reads the symbol is the one in which it
is being printed. (See the section "System Packages".)

2. If the printed representation would not read in as a symbol at all (that is, if
the print-name looks like a number, or contains special characters), the print-
ed representation must have one of the following kinds of quoting for those
characters.

Page 117

e Backslashes ("\") before each special character
e Vertical bars ("|") around the whole name

The decision whether quoting is required is made using the readtable, so it is al-
ways accurate provided that *readtable* has the same value when the output is
read back in as when it was printed. See the variable *readtable*.

Uninterned symbols are printed preceded by #:. You can turn this off by evaluating
(setf (si:pttbl-uninterned-prefix *readtable*) '"'').

Functions Relating to the Print Name of a Symbol

symbol-name symbol
Returns the print name of symbol.

string= stringl string2 &key (:startl 0) :endl (:start2 0) :end2
Checks to see if stringl and string2 are the same.
Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp equivalents of these
functions.

zl:get-pname symbol
Returns the print-name of symbol.

zl:samepnamep x y
Returns t if the printed representation of the two symbols x
and y is the same.

The Value Cell of a Symbol

Each symbol has associated with it a value cell, which refers to one Lisp object.
This object is called the symbol’s binding or value, since it is what you get when
you evaluate the symbol. The binding of symbols to values allows symbols to be
used as the implementation of variables in programs.

The value cell can also be empty, referring to no Lisp object, in which case the
symbol is said to be unbound. This is the initial state of a symbol when it is cre-
ated. An attempt to evaluate an unbound symbol causes an error.

Symbols are often used as special variables. See the section "Kinds of Variables".
The symbols nil and t are always bound to themselves; they cannot be assigned,
bound, or otherwise used as variables. Attempting to change the value of nil or t
(usually) causes an error.

The functions described here work only on symbols. Thus they work on special
variables but not on local or instance variables.

Functions for assigning a value to a symbol

Page 118

set symbol value Assign value to symbol
Functions for retrieving the value of a symbol

symbol-value sym Returns the current value of sym.
symbol-value-globally var Returns the value of global variable var re-
gardless of its current binding.

Functions for removing the value of a symbol

makunbound sym Remove the value from sym.
makunbound-globally var Remove the value from global variable var.
variable-makunbound variable Remove the value from variable.

Predicates for checking if a symbol has a value

boundp sym Returns t if the special variable sym has a
value.
variable-boundp variable Returns t if variable has a value. Works on any

kind of variable. Does not evaluate variable.
Functions for locating the value cell of a symbol

sys:variable-location variable Return a locative pointer to the value cell of
variable.

Note: The following Zetalisp functions are included to help you read old programs.
In your new programs, where possible, use the Common Lisp equivalents of these
functions.

zl:set-globally var value Assign value to var as a global variable.

zl:symeval sym Like symbol-value.

zl:symeval-globally var Like symbol-value-globally.

zl:value-cell-location sym Returns a locative pointer to sym’s internal
value cell. Obsolete on local and instance vari-
ables.

The Function Cell of a Symbol

Every symbol has associated with it a function cell. The function cell is similar to
the value cell; it refers to a Lisp object. When a function is referred to by name,
that is, when a symbol is applied or appears as the car of a form to be evaluated,
that symbol’s function cell is used to find its definition, the functional object that
is to be applied. For example, when evaluating (+ 5 6), the evaluator looks in +’s
function cell to find the definition of +, in this case a compiled function, to apply
to 5 and 6.

Like the value cell, a function cell can be empty, and it can be bound or assigned.
(However, to bind a function cell you must use the zl:bind subprimitive.) The fol-

Page 119

lowing functions are analogous to the similar value-cell-related functions. See the
section "The Value Cell of a Symbol".

Functions Relating to the Function Cell of a Symbol

fboundp sym Checks to see if sym is defined.

fmakunbound sym Removes the definition from sym.

symbol-function sym Returns the function definition of sym.

sys:function-cell-location sym Returns a locative pointer to sym’s function
cell.

Note: The following Zetalisp functions are included to help you read old programs.
In your new programs, where possible, use the Common Lisp equivalents of these
functions.

zl:fset sym definition Stores definition in the function cell of sym.
zl:fsymeval sym Zetalisp equivalent of symbol-function.

Since functions are the basic building block of Lisp programs, the system provides
a variety of facilities for dealing with functions. See the section "Functions".

The Property List of a Symbol

Every symbol has an associated property list. See the section "Property Lists".
When a symbol is created, its property list is initially empty.

The Lisp language itself does not use a symbol’s property list for anything. (This
was not true in older Lisp implementations, where the print-name, value-cell, and
function-cell of a symbol were kept on its property list.) However, various system
programs use the property list to associate information with the symbol. For in-
stance, the editor uses the property list of a symbol that is the name of a function
to remember where it has the source code for that function, and the compiler uses
the property list of a symbol which is the name of a special form to remember
how to compile that special form.

Functions Relating to the Property List of a Symbol

symbol-plist symbol
Returns the list that represents the property list of symbol.

getf plist indicator &optional default
Searches for the property indicator on plist.

get-properties plist indicator-list

Searches the property list stored in plist for any of the indica-
tors in indicator-list.

Page 120

remprop symbol indicator
Removes indicator from the property list in symbol.

remf place indicator
Removes indicator from the property list stored in place.

sys:property-cell-location symbol
Returns a locative pointer to symbol’s property list cell.

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp equivalents of these
functions.

zl:plist symbol Returns the property list of symbol.

zl:putprop sym value indicator
Gives sym an indicator-property of value.

zl:setplist symbol list
Sets the property list of symbol to list.

The Package Cell of a Symbol

Every symbol has a package cell that is used, for interned symbols, to point to the
package to which the symbol belongs. For an uninterned symbol, the package cell
contains nil.

Functions That Find the Home Package of a Symbol

symbol-package symbol
Return the package in which symbol resides.

sys:package-cell-location symbol
Return a locative pointer to symbol’s package cell.

keywordp object Check if object is a symbol in the keyword package.

Creating Symbols

The functions in this section are primitives for creating symbols. However, before
discussing them, it is important to point out that most symbols are created by a
higher-level mechanism, namely the reader and the intern function. Nearly all
symbols in Lisp are created by virtue of the reader’s having seen a sequence of in-
put characters that looked like the printed representation of a symbol. When the
reader sees such a printed representation, it calls intern, which looks up the se-
quence of characters in a big table and sees whether any symbol with this print-
name already exists. If it does, read uses the existing symbol. If it does not exist,
then intern creates a new symbol and puts it into the table, and read uses that
new symbol.

Page 121

A symbol that has been put into such a table is called an interned symbol. In-
terned symbols are normally created automatically; the first time someone (such as
the reader) asks for a symbol with a given print-name, that symbol is automatical-
ly created.

These tables are called packages. In Symbolics Common Lisp, interned symbols are
handled by the package system.

An uninterned symbol is a symbol used simply as a data object, with no special
cataloging. An uninterned symbol prints the same as an interned symbol with the
same print-name, but cannot be read back in.

The following functions can be used to create uninterned symbols explicitly.

Functions for Creating Symbols

make-symbol prini-name &optional permanent-p
Creates an uninterned symbol with print-name print-name.

copy-symbol symbol &optional copyprops
Creates an uninterned symbol with the same print-name as
symbol.

gensym &optional arg
Invents a print-name and creates a symbol with that print-
name.

gentemp &optional (prefix "t'") package
Like gensym but also interns the new symbol.

sys:gensymbol &optional (prefix "g") count
Invents a print-name using prefix and creates a symbol with
that print-name.

Note: The following Zetalisp functions are included to help you read old programs.
In your new programs, where possible, use the Common Lisp equivalents of these
functions.

zl:copysymbol symbol &optional copyprops
Like copy-symbol.

zl:gensym &optional arg
Like gensym.

Keywords

Introduction to Keywords

Keywords are disjoint from ordinary symbols. They are implemented as symbols
whose home package is the keyword package, which has the empty string as a

Page 122

nickname. See the section "Package Names". Hence the printed representation of a
keyword, a symbol preceded by a colon, is actually just a qualified name. As a mat-
ter of style, keywords are never imported into other packages and the keyword
package is never inherited (used) by another package.

The only aspects of symbols significant to keywords are name and property list;
otherwise, keywords could just as easily be some other data type. (Note that key-
words are referred to as enumeration types in some other languages.)

The set of keywords is user-extensible; simply reading the printed representation
of a new keyword is enough to create it. As a syntactic convenience, every keyword
is a constant that evaluates to itself (just like numbers and strings). This elimi-
nates the need to write a lot of " > " marks when calling a function that takes
&key arguments, but makes it impossible to have a variable whose name is a key-
word. However, there is no desire to use keywords as names of variables (or of
functions), because the colon would look ugly. In fact, no syntactic words of the
Lisp language are keywords. Names of special forms, the otherwise that can be
used with a case, the lambda that identifies an interpreted function, names of
declarations such as special and arglist, all are not keywords.

Using Keywords

Keywords can be used as symbolic names for elements of a finite set. For example,
when opening a file with the open function you must specify a direction. The vari-
ous directions are named with keywords, such as :input and :output.

One of the most common uses of keywords is to name arguments to functions that
take a large number of optional arguments and therefore are inconvenient to call
with arguments identified positionally. Each argument is preceded by a keyword
that tells the function how to use that argument. When the function is called, it
compares each keyword that was passed to it against each of the keywords it
knows, using eq.

Another common use for keywords is as names for messages that are passed to ac-
tive objects such as instances. When an instance receives a message, it compares
its first argument against all the message names it knows, using eq. The practice
of performing operations on flavor instances by sending messages to them has
been superseded by generic functions. However, sending messages is still supported
for compatibility. See the section "Using Message-Passing Instead of Generic Func-
tions".

Since two distinct keywords cannot have the same name, keywords are not used for
applications in which name conflicts can arise. For example, suppose a program
stores data on the property lists of symbols. The data are internal to the program
but the symbols can be global. An example of this would be a program-
understanding program that puts some information about each Lisp function and
special form on the symbol that names that function or special form. The indicator
used should not be a keyword, because some other program might choose the same
keyword to store its own internal data on the same symbol, causing a name con-
flict.

Page 123

It is permissible, and in fact quite common, to use the same keyword for two dif-
ferent purposes when the two purposes are always separable by context. For in-
stance, the use of keywords to name arguments to functions does not permit the
possibility of a name conflict if you always know what function you are calling.

To see why keywords are used to name &key arguments, consider the function
make-array, which takes one required argument followed by any number of key-
word arguments. For example, the following specifies, after the first required ar-
gument, two options with names :leader-length and :type and values 10 and
sys:art-string.

(make-array 100 :leader-length 10 :type ’sys:art-string)

The file containing make-array’s definition is in the system-internals package,
but the function is accessible to everyone without the use of a qualified name be-
cause the symbol make-array is itself inherited from common-lisp-global. But all
the keyword names, such as type, are short and should not have to exist in
common-lisp-global where they would either cause name conflicts or use up all
the "good" names by turning them into reserved words. However, if all callers of
make-array had to specify the options using long-winded qualified names such as
system-internals:leader-length and system-internals:type (or even si:leader-
length and si:type) the point of making make-array global so that one can write
make-array rather than system-internals:make-array would be lost. Furthermore,
by rights one should not have to know about internal symbols of another package
in order to use its documented external interface. By using keywords to name the
arguments, we avoid this problem while not increasing the number of characters

nen

in the program, since we trade a ™" for a ":".

The data type names used with the typep function and the typecase and zl:check-
arg-type special forms are sometimes keywords and sometimes not keywords. The
names of data types that are built into the machine, such as :symbol, :list,
fixnum, and :compiled-function, are keywords. In some cases, Zetalisp uses key-
words as type specifiers. However, Common Lisp does not use keywords as type
specifiers. For example, when given an array object, zl:typep returns the keyword
:array, whereas type-of returns array. The type specifiers corresponding to fla-
vors and structures are not keywords. In Genera, keywords are used as Zetalisp
type specifiers only for historical reasons. See the section "Type-checking Differ-
ences Between Symbolics Common Lisp and Zetalisp".

When in doubt as to whether or not a symbol of the language is supposed to be a
keyword, check to see whether it is documented with a colon at the front of its
name.

Variables

Changing the Value of a Variable

There are two different ways of changing the value of a variable. One is to sef the
variable. Setting a variable changes its value to a new Lisp object, and the previ-
ous value of the variable is forgotten. Setting of variables is usually done with the
setq special form.

Page 124

The other way to change the value of a variable is with binding (also called "lamb-
da-binding"). When a variable is bound, its old value is first saved away, and then
the value of the variable is made to be the new Lisp object. When the binding is
undone, the saved value is restored to be the value of the variable. Bindings are
always followed by unbindings. This is enforced by having binding done only by
special forms that are defined to bind some variables, then evaluate some sub-
forms, and then unbind those variables. So the variables are all unbound when the
form is finished. This means that the evaluation of the form does not disturb the
values of the variables that are bound; their old value, before the evaluation of the
form, is restored when the evaluation of the form is completed. If such a form is
exited by a nonlocal exit of any kind, such as throw or return, the bindings are
undone whenever the form is exited.

Binding Variables

The simplest construct for binding variables is the let special form. The do and
prog special forms can also bind variables, in the same way let does, but they also
control the flow of the program and so are explained elsewhere. See the section
"Iteration".

let* is just a sequential version of let.

Binding is an important part of the process of applying functions to arguments.
See the section "Evaluating a Function Form".

Kinds of Variables

In Symbolics Common Lisp, there are three kinds of variables: local, special, and
instance. A special variable has dynamic scope: any Lisp expression can access it
simply by mentioning its name. A local variable has lexical scope: only Lisp expres-
sions lexically contained in the special form that binds the local variable can ac-
cess it. An instance variable has a different kind of lexical scope: only Lisp expres-
sions lexically contained in methods of the appropriate flavor can access it. In-
stance variables are explained in another section. See the section "Overview of Fla-
vors".

Variables are assumed to be local unless they have been declared to be special or
they have been implicitly declared to be instance variables by defmethod. Vari-
ables can be declared special by the special forms defvar and defconstant, or by
explicit declarations. See the section "Declarations". The most common use of spe-
cial variables is as "global" variables: variables used by many different functions
throughout a program, that have top-level values. Named constants are considered
to be a kind of special variable whose value is never changed.

When a Lisp function is compiled, the compiler understands the use of symbols as
variables. However, the compiled code generated by the compiler does not actually
use symbols to represent nonspecial variables. Rather, the compiler converts the
references to such variables within the program into more efficient references that
do not involve symbols at all. The interpreter stores the values of variables in the

Page 125

same places as the compiler, but uses less specialized and efficient mechanisms to
access them.

The value of a special variable is stored in the value cell of the associated symbol.
Binding a special variable saves the old value away and then uses the value cell of
the symbol to hold the new value.

When a local variable is bound, a memory cell is allocated in a hidden, internal
place (the Lisp control stack) and the value of the variable is stored in this cell.
You cannot use a local variable without first binding it; you can only use a local
variable inside a special form that binds that variable. Local variables do not have
any "top-level" value; they do not even exist outside the form that binds them.

The value of an instance variable is stored in an instance of the appropriate fla-
vor. Each instance has its own copy of the instance variable. You are not allowed
to bind an instance variable.

Local variables and special variables do not behave quite the same way, because
"binding" means different things for the two of them. Binding a special variable
saves the old value away and then uses the value cell of the symbol to hold the
new value. Binding a local variable, however, does not do anything to the symbol.
In fact, it creates a new memory cell to hold the value, that is, a new local vari-
able.

A reference to a variable that you did not bind yourself is called a free reference.
When one function definition is nested inside another function definition, using
lambda, flet, or labels, the inner function has access to the local variables bound
by the outer function. An access by the inner function to a local variable of the
outer function looks like a free reference when only the inner function is consid-
ered. However, when the entire surrounding context is considered, it is a bound
reference. We call this a captured free reference. When a function definition is nest-
ed inside a method, it can refer to instance variables just as the method can.

You cannot use a local variable without first binding it. Another way to say this is
that you cannot ever have an uncaptured free reference to a local variable. If you
try to do so, the compiler complains and assumes that the variable is special, but
was accidentally not declared. The interpreter also assumes that the variable is
special, but does not print a warning message.

Here is an example of how the compiler and the interpreter produce the same re-
sults, but the compiler prints more warning messages.

(setq a 2) ;Set the special variable a to the value 2.
;But don’t declare a special.

(defun foo () ;Define a function named foo.
(Tet ((a 9)) ;Bind the local variable a to the value 5.
(bar))) ;Call the function bar.
(defun bar () ;Define a function named bar.

a) ;It makes a free reference to the special variable a.

Page 126

(foo) => 2 ;Calling foo returns 2.

(compile ’foo) ;Now compile foo.
;This warns that the local variable a was bound,
;but was never used.

(foo) => 2 ;Calling foo still returns 2.
(compile ’bar) ;This warns about the free reference to a.
(foo) => 2 ;Calling foo still returns 2.

When bar was compiled, the compiler saw the free reference and printed a warn-
ing message: Warning: a declared special. It automatically declared a to be spe-
cial and proceeded with the compilation. It knows that free references mean that
special declarations are needed. But when a function, such as foo in the example,
is compiled that binds a variable that you want to be treated as a special variable
but that you have not explicitly declared, there is, in general, no way for the com-
piler to automatically detect what has happened, and it produces incorrect output.
So you must always provide declarations for all variables that you want to be
treated as special variables.

When you declare a variable to be special using defvar rather than declare inside
the body of a form, the declaration is "global"; that is, it applies wherever that
variable name is seen. After fuzz has been declared special using defvar, all fol-
lowing uses of fuzz are treated as references to the same special variable. Such
variables are called "global variables", because any function can use them; their
scope is not limited to one function. The special forms defvar and defconstant are
useful for creating global variables; not only do they declare the variable special,
but they also provide a place to specify its initial value, and a place to add docu-
mentation. In addition, since the names of these special forms start with "def" and
since they are used at the top level of files, the editor can find them easily.

Standard Variables

Standard variables are special variables that are used to control some aspect of the
Lisp environment. Their initial (standard) values are stored in si:*standard-
bindings*. If something binds one of the standard variables, the binding is stored
in si:*interactive-bindings*. si:*interactive-bindings* is never set, only bound and
si:*standard-bindings* is never bound, only set.

When a breakpoint of some kind is entered, the system finds out the standard val-
ues for all the symbols defined with sys:defvar-standard. It then compares these
values against the current bindings for these symbols. If the current bindings do
not match the standard bindings, you are warned, and the symbols are bound to
the standard values. The standard binding for a variable is gotten by looking on
si:*interactive-bindings®. If no binding is found on si:*interactive-bindings*, then
si:*standard-bindings* is checked. For example, zwei:com-break puts the value of

Page 127

package, *read-base*, and *print-base* from the file attribute list onto
si:*interactive-bindings* so that they become the standard binding for Zmacs.
zl:pkg-goto puts the new value of *package* onto si:*standard-bindings*. Evalua-
tion of forms in Zmacs, for example, Evaluate Into Buffer (m-4), also binds the
symbols to their standard values.

As a result, whenever you enter a breakpoint you are guaranteed predictable, con-
sistent behavior with regard to the bindings of these variables.

Standard variables are reset to their standard values after a warm boot.

These are the currently defined standard variables and their standard values.

symbol standard value
gprint:*inspecting* nil
cp:*command-table* User Command Table
neti:*inhibit-obsolete-information-warning* t

package common-lisp-user
read-suppress nil
read-default-float-format single-float
print-pretty-printer gprint:print-object
print-structure-contents t
print-bit-vector-length nil
print-string-length nil
print-array-length nil
print-readably nil

print-array nil
print-gensym t

print-case :upcase
print-length nil

print-level nil

print-circle nil

print-base 10

print-radix® nil
print-abbreviate-quote nil

print-pretty t

print-escape t
sys:default-cons-area 4

readtable Common-Lisp Readtable
read-base 10

prinl nil

Notes:

1. The value of *package* must be an unlocked package in si:*reasonable-
packages® that uses one of the packages in si:*reasonable-packages®.

2. The *readtable* must be one of the readtables on the list si:*valid-

readtables®.

Page 128

3. The value of sys:default-cons-area must be an allocated area.
The following functions and variables pertain to standard variables:

sys:defvar-standard var initial-value
Defines a standard value that the variable should be
bound to in command and breakpoint loops.

sys:standard-value-p symbol
Returns t if symbol has a standard value.

sys:standard-value symbol Returns the standard value of symbol.

(setf (sys:standard-value symbol))
Changes the standard value of symbol.

zl:setq-standard-value name form
Sets the standard value of name to the value of form.

Standard variables are particularly useful in command loops. The following func-
tions are useful for writing your own Lisp style command loops.

sys:standard-value-let vars-and-vals &body body
Like let except that it pushes the values in vals onto
the si:*interactive-bindings®*, causing them to become
standard values.

sys:standard-value-let* vars-and-vals &body body
Like let* except that it pushes the values in vals onto
the si:*interactive-bindings*.

sys:standard-value-progv vars-and-vals &body body
Causes all of the symbols in vars to have their corre-
sponding value in vals pushed onto the si:*interactive-
bindings*.

si:standard-readtable Variable

The value is that readtable to use when typing forms interactively to the Lisp in-
terpreter. When a distribution world is cold booted, the value of si:standard-
readtable is a copy of si:initial-readtable. If you wish to customize the syntax of
forms typed to the Lisp interpreter, you should make your customizations to
si:standard-readtable. *readtable* is bound to si:standard-readtable whenever a
break loop or debug loop is entered. *readtable* is set to si:standard-readtable
using the standard variable mechanism whenever the machine is warm booted.

If warm booting the machine were impossible, si:standard-readtable would not be
necessary. The top-level value of *readtable* could be used instead. However, if
the machine is warm booted while *readtable* is bound, the top-level value of
*readtable® is lost.

Examples:

Page 129

e This example illustrates the use of binding *readtable* in order to implement a
special syntax. Forms are to be read from a file while preserving the case of
symbols.

(defvar xcase-sensitive-readtablex (copy-readtable))

(loop for code from (char-code #f/a) to (char-code #/2)
as char = (code-char code)
do (setf (si:rdtbl-trans xcase-sensitive-readtablex code) char))

(defun read-case-sensitive-file (file)
(with-open-file (stream file :direction :input)
(Tet ((xreadtablex xcase-sensitive-readtablex))
(loop do (process-form (read stream))))))

In case an error occurs while inside process-form or inside a reader macro in-
voked by read, *readtable* is bound to si:standard-readtable, which is most
useful for debugging.

e This example illustrates the wuse of si:sstandard-readtable and si:initial-
readtable to customize the environment for typing expressions interactively. "@"
is defined as an abbreviation for location-contents, in the same manner that ""
is an abbreviation for quote.

(defun at-sign-macro (ignore stream)
(values (1ist ’location-contents (read stream)) ’list))

(defvar xmy-readtablex (copy-readtable))
(set-syntax-macro-char #/@ ’at-sign-macro xmy-readtablex)

(defun enable-my-readtable ()
(setq si:standard-readtable xmy-readtablex)
(setq xreadtablex xmy-readtablex))

(defun disable-my-readtable ()
(setq si:standard-readtable si:initial-readtable)
(setq xreadtablex si:initial-readtable))

While it is useful for the user to set the values of *readtable* and si:standard-
readtable, the value of si:initial-readtable should never be changed. In addition,
the readtable that is the value of si:initial-readtable should never be modified,
modifications should be made only to the readtable that is the wvalue of
si:standard-readtable. See the function copy-readtable.

See the section "The Readtable".

Special Forms for Setting Variables

Page 130

setf reference value &rest more-pairs

psetf &rest pairs

setq &rest vars-and-vals
psetq &rest pairs

Takes a form that accesses something, and "inverts" it
to produce a corresponding form to update the thing.
When used with aref, stores a value into the specified
array element.

Similar to setf, except that psetf performs all the as-
signments in parallel, that is, simultaneously, instead
of from left to right.

Sets variable(s) to value(s).

Similar to setq, except that psetq performs all the as-
signments in parallel, that is, simultaneously, instead
of from left to right.

multiple-value-setq vars value

For calling a function that is expected to return more
than one value. value is evaluated, and the vars are
set (not lambda-bound) to the values returned by
value.

Note: The following Zetalisp special form is included to help you read old programs.
In your new programs, if possible, use the Common Lisp equivalent of this special

form.

zl:psetq &rest rest

Just like a setq form, except that the variables are
set "in parallel"; first all the value forms are evaluat-
ed, and then the variables are set to the resulting
values.

Special Forms for Binding Variables

let ((var value)...) body

let* ((var value)...) body...
compiler-let bindlist body...

Binds some variables to some objects, and eval-
uates body in the context of those bindings.
Like let, except that the binding is sequential.
Like let with variables declared special when
interpreted. For compiled code, compiles the
body with the bindings specified by bindlist in
effect.

letf places-and-values &body body Like let, except it binds any storage cells not

letf* places-and-values body..

just variables.

. Like let, except that it does the binding se-

quentially.

let-if condition ((var value)...) body...

Like let except the binding of variables is con-
ditional.

let-globally varlist &body body Saves the old values and sets the variables, set-

ting up an unwind-protect.

let-globally-if predicate varlist body...

Binds the variables only if predicate evaluates
to something other than nil.

Page 131

progv vars vals &body body Binds vars to vals and evaluates body. vars and
vals are computed quantities.
progw vars-and-vals &body body Like progv except the evaluation is sequential.
destructuring-bind pattern datum &body body
Binds variables to values, using defmacro’s de-
structuring facilities, and evaluates the body
forms in the context of those bindings.
multiple-value-bind vars value &body body

Note: The following Zetalisp special forms are included to help you read old pro-
grams. In your new programs, where possible, use the Common Lisp equivalents of
these special forms.

zl:desetq Lets you assign values to variables through de-
structuring patterns.
zl:dlet Binds variables to values, using destructuring,

and evaluates the body forms in the context of
those bindings. The bindings happen in paral-
lel.

zl:dlet* Like zl:dlet except the bindings happen se-
quentially.

Special Forms for Defining Special Variables

defvar var initial-value Declares var to be a global variables. defvar
should be used only at top level in a program,
never in a function definition.

sys:defvar-resettable var initial-value warm-boot-value
Like defvar, except that it also accepts a
warm-boot value.

defconstant variable initial-value Declares the use of a named constant in a pro-
gram.

defparameter variable initial-value The same as defvar, except that variable is al-
ways set to initial-value regardless of whether
variable is already bound.

Note: The following Zetalisp special form is included to help you read old programs.
In your new programs, use the Common Lisp equivalent of this special form.

zl:defconst variable initial-value The same as defvar, except that variable is al-
ways set to initial-value regardless of whether
variable is already bound.

Page 132

Lists

Introduction to Lists

The basic concepts and terminology associated with lists are described elsewhere.
See the section "Overview of Lists". In brief, lists and list-like structures exist to
organize data in tabular structures. The basic data type upon which all tabular
structures are based is a structure with two components, called a cons; the head
(car) of the cons can hold any Lisp object, and the tail (cdr) of the cons points to
another Lisp object.

In a list, the car of the cons points to an element in the list and the cdr of the
cons points to a list containing the rest of the list. The cdr of the last cons of the
list points to nil. The car components of the conses in a list are called the ele-
ments of the list. For each element of the list there is a cons. A true list, then, is
a chain of conses linked by their cdr components and terminated by nil. See figure

! for an illustration of the list (a b ¢ d e).

(4 > ? [> ? @ > ? e—T— nil
v v v
C D E

> <o
W -®

Figure 5. A List With Multiple Elements

A list is built recursively by adding a new element to the front of an existing list.
This is done by creating a new cons whose car holds the element being added, and
whose cdr points to the first element of the original list. For example, if you add a
new cons whose car is the symbol f to the list (a b ¢ d e), the new list f a b c d

e) is built. See figure ! for an illustration of the list fa b c d e).

&—T—>nil

-
> -0
W e
Q 1@
U -1—@
M -1T—@

Figure 6. List With An Added Element

The symbol nil is used to represent the empty list, which is a list without any el-
ements. The symbol nil and the list () are equivalent.

Page 133

This chapter surveys the data types associated with lists, then discusses a variety
of lists that can be built out of conses: simple lists, property lists, dotted lists, as-
sociation lists, and trees, and their specialized operations. There is a brief discus-
sion of the way the printer and the reader deal with lists; lastly we present the
concept of cdr-coding, a special internal representation of conses for storage re-
duction.

Type Specifiers and Type Hierarchy for Lists

The data types associated with lists are:
null cons list sequence

Here are descriptions of these Symbolics Common Lisp data types:

null A primitive Lisp data type whose sole object is nil, the empty
list.
cons A primitive Lisp data type that consists of a car and a cdr. If

the car and cdr of the cons are both nil, then the cons is the
representation of the empty list, and can be reduced to a list
with the symbol nil as its only object:

(nil)

For more information about conses: See the section "Overview
of Lists".

list A sequence of linked conses, built by recursively adding new
conses to an existing list. A list can be recursively defined to
be the symbol nil, or a cons whose cdr is a list. There is a
special object (the symbol nil) that is the empty list. Note that
list, which is not a primitive Lisp data type, is taken to mean
the union of the cons and null data types; therefore, it encom-
passes both true lists and dotted lists (described below).

sequence A supertype of the list and vector (one-dimensional array)
types. These types have the common property that they are or-
dered sets of elements. Functions that can be used on se-
quences can also be used on lists.

In summary: Objects of the type list are a subset of objects of the type sequence,
and the subsets of the type list are the types cons and null.

Here are descriptions of other concepts related to lists, either being represented by
them or being part of their structure:

alist An association list, or alist, is a data structure consisting of a
list of conses, where each cons is an association. The car of
the cons is called the key (or indicator), and the cdr is called
the datum (or value). For more information about association
lists, see the section "Association Lists".

car

cdr

circular list

dotted list

plist

set

tree

Page 134

This is the first element of a cons. It can be any Lisp object,
for example, a number, symbol, array, or flavor instance. It is
the item returned when you use the car function on a cons.

This is the second element of a cons. It is the next cons in a
list, or the symbol nil, representing the end of the list. How-
ever, it can also be any other Lisp object, as in the case of a
dotted list such as (a . b). It is also the item returned when
you use the edr function on a cons.

A circular list is like a list, except that the cdr of the last
cons, instead of being nil, is another cons from the list. This
means that the conses are all hooked together in a ring, with
the cdr of each cons being the next cons in the ring. While
these are valid Lisp objects, and there are functions to deal
with them, many other functions have trouble with them.
Functions that expect lists as their arguments often iterate
down the chain of conses, waiting to see a nil; when handed a
circular list, they compute forever. The *print-circle* variable
is useful for printing circular lists. When the value of this
variable is set to nil, the printing process proceeds by recur-
sive descent. When the value is non-nil, the printer uses #n=
and #n# syntax to indicate the circularities.

A dotted list is like a list, except that the last element of the
list does not have to be nil. This name comes from the printed
representation, which includes a "dot" character, such as (a .
b). The car of this dotted list is the symbol a, and the cdr of
the list is the symbol b. In a dotted list such as (a b . ¢), the
car is the symbol a and the cdr is the dotted pair (b . ¢).

A property list, or plist, is a tabular data structure consisting
of a list of alternating keyword symbols (called indicators) and
Lisp objects (called values or properties). For example:

(color red flavor hot container-type bottle)

Indicators cannot be duplicated, since a property list can only
have one property at a time with a given name. A property list
is represented as an even-numbered list of elements. For more
information about plists: See the section "Property Lists".

Set is a logical term that refers to a one-dimensional list with
no repetitions. Therefore, both the lists (a b ¢) and (a (b ¢) d)
are sets. The list (a b a ¢) would not be a set, since one char-
acter is repeated. There are functions that allow a list of items
to be treated as a set, for example, functions to add, remove,
and search for specific items in a list based on various criteria.

A tree is any data structure made up of conses whose cars and
cdrs are other conses. At the bottom of a tree, the cars and
cdrs can be any Lisp object, not only to conses. Another way of

Page 135

looking at a tree is as a list of lists. For example:
((@ . b) . (e . d)

Note that lists, dotted lists, trees, association lists, property lists, and circular lists
are not mutually exclusive data structure types; they are different ways of looking
at structures composed of conses.

Printed Representation of Lists

The printer could print all conses in the dotted form (car . cdr), but since lists are
a common type in Lisp, there is a compact format for printing them. The printed
representation of a cons favors the list representation over the dotted representa-
tion.

When the printer begins to print a list, it first sees a cons. The printer has no
way of telling whether a list or a tree is going to be printed. print starts by print-
ing an open-parenthesis. Then it prints the car of the cons and examines the cdr
of the cons. If the cdr is a cons, the printer prints a space, using this new open-
parenthesis and this new cons. If the cdr is anything other than a cons or nil,
print prints "space dot space", followed by that object, followed by a close-
parenthesis. If the cdr is nil, it prints a close-parenthesis. When the car and cdr
are printed, the printer recurses to the initial cons. Thus, a list is printed as an
open-parenthesis, the printed representations of its elements, separated by spaces,
and a close-parenthesis.

This is how typical printed representations such as (a b (foo bar) e) are produced.

To print or write the printed representation of a list or tree, you can use the func-
tions print and write. print returns a specified object, for example:

(print ’(a b c)) =>

(A B C)

(A B C)

write returns a specified object, for example:

(write (abc)) => (A B OC)
(A B ()

To prevent the printed representation of a cons from growing to an unmanageable
length, or depth of recursion, when printing lists the print function keeps track of
the length and the depth of recursion of a list as it prints it and limits them.

The number of list elements printed is controlled by the value of the variable
print-length. If the list length exceeds the value of *print-length* print termi-
nates the printed representation of the list with an ellipsis (three periods) and a
close-parenthesis. For example:

(setq list "(a b (c) (d (e f) g))) => (A B (C) (D (EF) G))

(let ((xprint-lengthx 2))
(print list) nil) == (A B ...) NIL

Page 136

If the value of the variable *print-length* is nil, or is equal to, or greater than,
the number of elements in the list, *print-length* prints the entire list:

(setq list "(a b (c) (d (e f) g))) => (A B (C) (D (EF) G))

(let ((xprint-lengthx nil))
(print 1ist) nil) => (A B (C) (D (E F) G)) NIL

(setq Tist "(a b (c) (d (e f) g))) => (A B (C) (D (E F) G))

(let ((xprint-lengthx 6))
(print 1ist) nil) => (A B (C) (D (E F) G)) NIL

The depth of recursion printed is controlled by the value of the variable *print-
level*.

If the depth of recursion exceeds the value of *print-level*, the portion of the list
beyond the specified depth is printed as "#". For example:
(setq list (a (b c) (d (e f) g))) => (A (BC) (D (EF) G))

(let ((xprint-levelx 2))
(print list) nil) == (A (B C) (D # G)) NIL

If the value of the variable *print-level* is nil, or is equal to or greater than the
depth of recursion, *print-level* prints the entire list:

(setq 1ist "(a (b c) (d (e f) g))) => (A (B C) (D (EF) G))

(Tet ((xprint-levelx nil))
(print list) nil) == (A (B C) (D (E F) G)) NIL

(setq list "(a (b c) (d (e f) g))) => (A (BC) (D (EF) G))

(let ((xprint-levelx 4))
(print list) nil) => (A (B C) (D (E F) G)) NIL

These two features allow an abbreviated printing, which is more concise and sup-
presses detail. Of course, neither the ellipsis nor the "#" can be interpreted by
read, since the relevant information is lost.

In general, print tries to print conses so that read can read them.

Zetalisp Note: The printing functions no longer use zl:prinlevel and zl:prinlength
to control printing.

How the Reader Recognizes Lists

When the reader sees an open parenthesis, it knows that the printed representa-
tion of a cons is starting. The reader reads the next object as the car. If the next
token is a single dot, the reader reads the token following the dot as a cdr, and
expects it to be followed with a closed parenthesis. If the next token is not a dot,

Page 137

the reader builds a list, making the cdr of this cons the cons it gets by recursing
to the initial cons.

The dot that separates the two elements of a dotted-pair printed representation for
a cons, for example (a . b), is only recognized if it is surrounded by delimiters
(typically spaces). Thus, a dot can be freely used in other contexts, for example
within print-names of symbols and within numbers.

Zetalisp Note:

1. Tokens that consist of more than one dot, but no other characters, are valid
symbols in Zetalisp but errors in Common Lisp.

2. The circle-X (®) character is read as an octal escape: The next three charac-
ters are read and interpreted as an octal number which is, in turn, interpret-
ed as the character whose character code is that number. This character is
always taken to be an alphabetic character, just as if it had been preceded by
a slash. Thus, circle-X can be used to include unusual characters in the input.

Special Types of Lists

Conses are the building blocks for several types of more complex lists. Two of
these are special, in the sense that Lisp contains a number of functions intended
to operate specifically on them. These are property lists and association lists.

Property Lists

Lisp has another kind of tabular data structure called a property list (plist for
short) in which each of the items has some property associated with it. The imple-
mentation of a property list is a memory cell containing a list with an even num-
ber (possibly zero) of elements. Usually this memory cell is the property-list cell of
a symbol, but any memory cell acceptable to setf can be used if getf and remf are
used to manipulate it. (The functions get and remprop provide a shorthand nota-
tion for manipulating a property list referenced by the memory cell of a symbol.)
In each pair of elements, the first of the pair is a keyword symbol called the indi-
cator and the second is a Lisp object called the value (or sometimes the property).
The elements of a property list are always processed pair-wise.

A property list looks like this:

(indicator value indicator value indicator value)

Note that the term "property list" refers to the property list itself, rather than the
list of entries inside the property list.

Here is an example of a property list with actual indicators and values:

(manufacturer vw model gti color black miles 15000)
See figure ! for a cons representation of this list:

Duplication of indicators is not allowed: A property list can have only one indicator

Page 138

r [> [> [> r &—— nil
v v v v
indicator value indicator value

Figure 7. The Cons Representation of a (Property) List

at a time with a given name.

The kinds of operations that might be performed on property lists are adding and
removing properties, and finding a property, given an item. The functions for ma-
nipulating property lists are side-effecting operations that have the result of alter-
ing the property list itself, rather than of creating a new list.

Zetalisp Note:

Symbolics recommends that you avoid the use of disembodied property lists in new
code. The documentation below is provided only to help you read old code.

Symbolics Lisp (Zetalisp, and other older Lisp dialects) do not provide for the rep-
resentation of property lists by ordinary lists. Instead, older Lisp dialects provide
the ability to pass around property lists independent of symbols. In order to delete
elements from property lists with zl:remprop, it is necessary to have not just a
property list, but also an object with a cell pointing to the property list so that the
result, after deletion, can be stored back.

Zetalisp and the Zetalisp property list functions generalize this to allow the proper-
ty list to live in any cell by means of locatives.

A typical way to construct a disembodied property list is to make a list whose first
element is anything and whose cdr is the property list.

(setq a ‘(foo :a b :cd:e f)) => (FOO :AB :C D :E F)

List-style disembodied property lists fit into this model because the functions get,
getl, putprop, and remprop operate on a locative as well as a symbol. Given a
symbol, these functions manipulate the property list stored in a symbol’s property
list cell. Given a locative, they manipulate the property list referenced by
(location-contents locative). This usage is called "disembodied property lists."

To get a locative to a location, use the function locf:
(setq a-plist (locf (cdr a))) => (FO0O:A B :C D :E F)

Note that the result is not a locative. Due to considerations of cdr-coding, there is
no unique location for the cdr of a cons. Instead, all the primitives that manipu-
late locatives treat a cons as a locative to its cdr. Thus, we can use this list as a
locative and write:

(z1:get a-plist :c) => :D

Page 139

When reading old code, then, you may see the code use the list directly, without

bothering with the (loef (edr list)) construct.

To see locatives in active use, consider a property list stored in a defstruect slot:
(defstruct b-struct b) => B-STRUCT

(setq b-1 (make-b-struct :b ’(:a fred :q g? :alfred hitchcock))) =>
#S(B-STRUCT :B NIL)

(setq b-plist (locf (b-struct-b b-1))) => #<DTP-LOCATIVE 60326752>

(z1:get b-plist :q) => Q7

Note that the :init keyword message protocol in the flavor system uses a locative
to a property list to pass the flavor init keywords to the methods. Instead of using
:get though, you can reference the property list with Symbolics Common Lisp func-
tions by using the location-contents function to get an ordinary property list.
Then you can use getf to retrieve individual values.

getf takes a setf’able reference rather than an object. Reference serves as a place
to store back the modified result. Continuing the example above:

(setq b-modern-plist (location-contents b-plist)) =>
(:A FRED :Q Q7 :ALFRED HITCHCOCK)

(getf b-modern-plist :alfred) => HITCHCOCK

Creating and Modifying Property Lists

In general, you can perform the same operations on the property lists of symbols
as on those that are referenced by an arbitrary setf, but the function names differ
depending on the type of property list. Here is a table showing the differences:

Operation on For Property List For Generalized
Property List of Symbol, use Property List, use
Create/expand setf with get setf with getf
Access a value get getf

Remove a value remprop remf

Display symbol-plist symbol-value

You can use any of the property list manipulating functions on property lists creat-
ed with defvar. For a summary of all such functions: See the section "Functions
That Operate on Property Lists".

We use property lists of symbols to illustrate the various creation and manipula-
tion operations.

Page 140

A symbol is an object that has room for five components: a print name, a value
binding, a property list, a function binding, and a package. When a symbol is cre-
ated, its property list is nil. For example:

(defvar xcolorsx) => xCOLORSx

For more information about property lists of symbols: See the section "The Proper-
ty List of a Symbol".

You can also use defvar to create a property list with several indicator and value
pairs.

(defvar xcityx ’(name portland state maine size 100000)) => xCITYx

(symbol-value ’xcityx) => name portland state maine size 100000)) => xCITYx

To associate a property list with a symbol, you can use setf with get. This limits
you to creating an initial property list with only one pair of elements.

(setf (get ’artist ’name) ’monet) => MONET

(symbol-plist ’artist) => (NAME MONET)

You can associate other indicator-value pairs to a symbol’s property list by repeat-
ed use of setf with get.

(symbol-plist ’artist) => (NAME PICASSO)

(setf (get ’artist ’style) ’cubism) => CUBISM
(symbol-plist ’artist) => (NAME PICASSO STYLE CUBISM)
(setf (get ’artist ’nationality) ’nil) => ARTIST

(symbol-pTist ’artist) => (NATIONALITY NIL NAME PICASSO STYLE CUBISM)

As the last example shows, an indictor can have a value of nil. You can also use
setf and get to replace an old indicator-value pair with a new value. Changes to
property values are destructive; once a change is made to the property list it is
permanent, and the former indicator and value pair is gone.

To change the value of the indicator style:
(symbol-plist ’artist) => (NATIONALITY NIL NAME PICASSO STYLE CUBISM)

(setf (get ’artist ’style) ’expressionism)) => EXPRESSIONISM

(symbol-pTlist ’artist) => (NATIONALITY NIL NAME PICASSO STYLE EXPRESSIONISM)

You can remove values from a property list using the function remprop. This
function destructively removes an indicator and its value from the property list:

(symbol-pTlist ’artist) => (NATIONALITY NIL NAME PICASSO STYLE EXPRESSIONISM)

Page 141

(remprop ’artist ’style) => T

(symbol-value ’artist) => (NATIONALITY NIL NAME PICASSO)

You can retrieve values from a property list using get. get searches the property
list for an indicator that is eq to the indicator sought, and returns the value cor-
responding to that indicator. For example:

(symbol-pTlist ’artist) => (NATIONALITY NIL NAME PICASSO)

(get ’artist ’name) => PICASSO

Note: get returns nil if it cannot find the requested indicator, or if the indicator
found has a value of nil.
In the property list artist, the indicator medium does not exist:

(symbol-plist ’artist) => (NATIONALITY NIL NAME PICASSO)

(get ’artist ’medium) => NIL
In the property list artist, the indicator nationality exists, but its value is nil:
(symbol-plist ’artist) => (NATIONALITY NIL NAME PICASSO)

(get ’artist ’nationality) => NIL

Alternately, you can specify a message to be returned instead of nil. For example:
(symbol-plist ’artist) => (NATIONALITY NIL NAME PICASSO)

(get ’artist ’medium "indicator is absent, or has a value of nil") =>
“INDICATOR IS ABSENT, OR HAS A VALUE OF NIL"

You can display the contents of a symbol’s property list with the function symbol-
plist. Note that this function does not return the property list itself; you cannot do
get on it. You must give the symbol itself to get, or use getf.

(symbol-plist ’artist) => (NATIONALITY NIL NAME PICASSO)

Note that if you use symbol-plist with setf you can destructively replace the en-
tire property list of a symbol. This is a dangerous operation that should be used
with care since other applications may be sharing the property list with you.

Here are examples to create and manipulate property lists referenced by an arbi-
trary setf. As already stated, the operations themselves are analogous to those
used to manipulate the property list of symbols, the only difference being in the
function names. The restriction is that the place or property list argument of these
functions be acceptable to setf.

To associate a property list with a symbol, use defvar:
(defvar horse nil) => HORSE

You can associate indicator-value pairs to a property list by repeated use of setf
with getf.

Page 142

(setf (getf horse ’color) ’brown) => BROWN
(symbol-value ’horse) => (COLOR BROWN)
(setf (getf horse ’hair) ’short) => SHORT

(symbol-value ’horse) => (HAIR SHORT COLOR BROWN)

To replace a property in a property list use setf and getf:
(symbol-value ’horse) => (HAIR SHORT COLOR BROWN)

(setf (getf horse ’color) ’black) => BLACK

(symbol-value ’horse) => (HAIR SHORT COLOR BLACK)

To destructively remove a property from a property list use remf:
(symbol-value ’horse) => (HAIR SHORT COLOR BLACK)

(remf horses ’hair) => T

(symbol-value ’horse) => (COLOR BLACK)

To retrieve a value, given an indicator, from a property list, use the function getf:
(symbol-value ’horse) => (COLOR BLACK)

(getf horse ’color) => BLACK

To display a property list, use the function symbol-value, which returns the cur-
rent value of a symbol.

(symbol-value ’horse) => (COLOR BLACK)

Functions That Operate on Property Lists
The following functions add to, modify, or search property lists.

All of these functions use eq as the test.

defprop sym value indicator Gives sym’s property list an indicator-property
corresponding to value. defprop is a special
form.

defprop is a Symbolics extension to Common
Lisp.

get symbol indicator &optional (default nil)
Searches the property list of symbol for an in-
dicator that is eq to indicator. If the search
fails, default is returned.

getf plist indicator

get-properties plist indicator-list

remprop symbol indicator

remf place indicator

symbol-plist sym

Page 143

Searches for the property indicator on plist.

Searches for a property (of indicator-list) on
plist. get-properties returns three values. If
none of the indicators is found, all three values
are nil. If the search is successful, the first
two values are the property found and its value
and the third value is the tail of the property
list whose car is the property found.

Removes symbol’s indicator property, by slicing
it out of the property list. If the property list
is associated with a symbol, use remf.

Removes indicator from the property list stored
in place. If it cannot find indicator, it returns
nil. If the property list is associated with a
symbol, use remprop.

Returns the property list of sym.

Note: The following Zetalisp functions are included to help you read old programs.
In your new programs, where possible, use the Common Lisp versions of these func-

tions.

zl:get symbol indicator

zl:getl symbol indicator-list

zl:plist sym
zl:putprop sym value indicator
zl:setplist sym list

zl:remprop sym indicator

Looks up indicator on symbol’s property list. If
it finds such a property, it returns the value;
otherwise, it returns nil.

Searches down symbol’s property list for any of
the indicators in indicator-list until it finds a
property whose indicator is one of the elements
of indicator-list.

Returns the property of sym.
Gives sym an indicator-property of value.
Sets the property list of sym to list.

Removes sym’s indicator property, by slicing it
out of the property list. It returns that portion
of the list inside sym of which the form indica-
tor-property was the car.

Note: You can do property list operations on flavor instances by including the mix-
in flavor sys:property-list-mixin in the definition of the flavor. For information on
the methods provided by that mixin flavor, see the section "Property List

Methods".

Dotted Lists

Page 144

A dotted list is a special case of a list. It is not a true list, since it does not termi-
nate in nil, but it is more like a list than any other data structure type. A dotted
list is one whose last cons does not have nil for its cdr, but has some other data
object (which is also not a cons) as its cdr. A dotted list looks like this:

((a.b) (c.d)

It is called "dotted" because of its special notation, that is, a left parenthesis, the
printed representation of the car of the cons, a space, a period, a space, the print-

ed representation of the cdr of the cons, and a right parenthesis. See figure ! for
the cons representation of a dotted list.

> —0

Figure 8. A Dotted List

Association Lists

Conses are the building blocks for a more complicated structure called an associa-
tion list or alist.

This structure is a list of pairs (or conses) in which each pair is an association.
The car of each pair is the key (or indicator), and the cdr is the datum (the value
associated with that key).

An association list looks like this:

((indicator . value) (indicator . value) (indicator . value))
Here is an example of an association list with actual indicators and values:
((dog . poodle) (cat . coon) (bird . parrot))
See figure ! for the cons representation of an association list:

It is permissible for nil to be an element of an association list in place of an indi-
cator and value pair.

An indicator or value can appear more than once in an association list. Duplica-
tions are allowable, since the function that adds elements to an association list al-
ways adds to the front of the list, and the function used for searching an associa-
tion list always finds the first instance of a cons whose car matches the indicator.

Creating and Modifying Association Lists

Page 145

® [K J [> @ &> nil

il il il
v o v Y v oV

indicator value indicator value indicator value

Figure 9. The Cons Representation of an Association List

You can create an association list using setq with acons. In this example, the as-
sociation list gems is created with an initial indicator and value pair (jade and
green):

(setq gems (acons ’jade ’green nil))

=> ((JADE . GREEN))

Using defvar, you can create an association list with a number of elements (indi-
cator and value pairs) at one time.

(defvar xflowersx ’((rose . red) (mum . yellow) (lily . white)))
=> ((ROSE . RED) (MUM . YELLOW) (LILY . WHITE))

Sometimes you might want to create an initial association list with all of its ele-
ments in place. At other times you might not know what the elements in the asso-
ciation list will be, so you might initially want to create an empty list. To create
an empty association list, use defvar:

(defvar xflowersx nil)
=> xFLOWERSx

This allows you to create an association list before you put any elements into it.

An advantage of association lists is that they can be expanded simply by adding
new entries to the front; that is, adding new indicator-value pairs is a non-
destructive activity.

To expand the association list gems, for example, we can add one indicator-value
pair at a time, using setq and acons:

(symbol-value ’gems)
=> ((JADE . GREEN))

(setq gems (acons ’onyx ’black gems))
=> ((ONYX . BLACK) (JADE . GREEN))

(setg gems (acons ’ruby ’red gems))
=> ((RUBY . RED) (ONYX . BLACK) (JADE . GREEN))

Page 146

(setq gems (acons ’jade ’black gems))
=> ((JADE . BLACK) (RUBY . RED) (ONYX . BLACK) (JADE . GREEN))

In this last expansion we’ve modified the value of an existing indicator, jade; the
resulting list contains the duplicated indicators.

It is also possible to create or expand an association list by pairing elements from
two lists, using pairlis. For example:

(pairlis ’(one two) ’(1 2))
=> ((ONE . 1) (TWO . 2))

You can use the function assoe to retrieve pairs of indicator and value associations
from a list. assoc searches the association list and returns the value of the first
pair in the association list whose car satisfies the predicate specified by :test, or
nil if no such pair is found. eql is the default value of :test. assoc returns both
the indicator and the value (that is, the entire cons cell). To find the association
between the indicator ruby and its value in the association list called genms:

(symbol-value ’gems)
=> ((JADE . BLACK) (RUBY . RED) (ONYX . BLACK) (JADE . GREEN))

(assoc ’ruby gems))
=> (RUBY . RED)

In some cases, it is desirable to regard an association list as mapping in the re-
verse direction, that is, mapping from a value fo an indicator. The function rassoc
is useful for searching a list using this mapping. It does a reverse association and
gets the indicator given the value. To find the association between the value red
and its indicator in the list called gems:

(symbol-value ’gems)
=> ((JADE . BLACK) (RUBY . RED) (ONYX . BLACK) (JADE . GREEN))

(rassoc ’red gems))
=> (RUBY . RED)

You can use the generalized sequence function remove to remove an indicator and
value pair from an association list. remove finds the first instance of a cons whose
car is eql to the indicator, and removes the pair from the association list. This
function is non-destructive (the removal is not permanent) as the returned se-
quence is a copy of the sequence, save that some elements are not copied. Ele-
ments that are not removed occur in the same order in the result as they did in
the original sequence.

For example, to remove the indicator-value pair ruby and red:

(symbol-value ’gems)
=> ((JADE . BLACK) (RUBY . RED) (ONYX . BLACK) (JADE . GREEN))

(remove ’ruby gems :key ft’car)
=> ((JADE . BLACK) (ONYX . BLACK) (JADE . GREEN))

Page 147

remove takes the keyword :test, which tests the elements according to a specified
criterion. For example, suppose a list contains both an indicator and a value with
the same symbol name. In order to remove the right indictor-value pair from the
list, you can use the :test and :key keywords. :test provides the criterion to test
the element against, and :key specifies the position of the indicator to remove. For
example:

(symbol-value ’letters)
=> ((a .b) (b . d) (c . f))

(remove ’b Tetters :test f’eql :key ft’car)
=> ((c. f) (a . h))

Note that only the indicator-value pair where b is the car is removed.

To make this modification permanent, we must change the value of the symbol
gems, using the functions assoc and setq in addition to remove:

(setq gems (remove (assoc ’ruby gems) gems)
=> ((JADE . BLACK) (ONYX . BLACK) (JADE . GREEN))

Functions that Operate on Association Lists
All of the Common Lisp functions below use eql as the test.

The first two functions are used to construct association lists. The remainder are
used to extract a cons pair, or list of pairs, from an association list, in accordance
with some specified test. The generalized sequence function remove excises indica-
tor and value pairs from the association list.

acons key datum alist
Constructs a new association list by adding the pair (key . da-
tum) onto the front of alist.

pairlis keys data &optional a-list
Takes two lists and associates elements of the first list to cor-
responding elements of the second list, creating an association
list.

assoc item a-list &key (:test #eql) :test-not (:key #identity)
Searches the association list a-list. The value returned is the
first pair in a-list whose car satisfies the predicate specified by
:test, or nil if no such pair is found.

assoc-if predicate a-list &key :key
Searches the association list a-list. Returns the first pair in
a-list whose car satisfies predicate, or nil if there is no such
pair in a-list.

assoc-if-not predicate a-list &key :key
Searches the association list a-list. The value returned is the
first pair in a-list whose car does not satisfy predicate, or nil if
there is no such pair in a-list.

Page 148

rassoc item a-list &key (:test #eql) :test-not (-key #identity)
Searches the association list a-list. Returns the first pair in
a-list whose cdr satisfies the predicate specified by :test.

rassoc-if predicate a-list &key :key
Searches the association list a-list. Returns the first pair in
a-list whose cdr satisfies predicate.

rassoc-if-not predicate a-list &key :key
Searches the association list a-list. The value returned is the
first pair in a-list whose cdr does not satisfy predicate.

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp equivalents of these
functions.

zl:assoc item in-list
Looks up item in the association list in-list.

zl:ass pred item list
Looks up item in the association list list.

zl:assq item list Looks up item in the association list in-list.

zl:memass pred item list
Looks up item in the association list list.

zl:pairlis vars vals Takes two lists and makes an association list which associates
elements of the first list with corresponding elements of the
second list.

zl:rass pred item in-list
Looks up item in the association list in-list.

zl:rassoc item in-list
Looks up item in the association list in-list.

zl:rassq item in-list
Looks up ifem in the association list in-list.

zl:sassoc item in-list else
Looks up item in the association list in-list.

zl:sassq item in-list else
Looks up item in the association list in-list.

Trees

You can build data structures other than lists out of conses. In general, these are
called trees. A tree is a cons and all other conses transitively accessible to that
cons through car and cdr links, going down through the links until non-conses are
reached at the end of the branches. The non-conses so reached are called the

Page 149

leaves of the tree. See figure ! for the cons representation of the tree ((a . b) . (c .

d))

® [> @ &> nil

<
¢
<
¢

> <o
QO +«—0

Figure 10. The Cons Representation of A Tree

See figure ! for a diagram of a tree.

Figure 11. Diagram of a Tree

Operations with Lists

There are many types of list operations. Most of these can be done with special-
ized list functions, while some can be done with more general-purpose sequence
functions. The majority of list functions require true lists as arguments.

The list operations fall logically into nine major groups, as follows:

e Operating on Lists with Predicates

¢ Finding Information about Lists and Conses
e Constructing Lists and Conses

e Copying Lists

e Extracting from Lists

Page 150

Modifying Lists
e Comparing Lists
Searching Lists
Sorting Lists

Controlling List Operations with Keyword Arguments

Some functions that operate on lists let you specify the portion of the list to be op-
erated on. Such functions have keyword arguments :start and :end, which must be
non-negative integers as follows:

:start indicates the position for beginning an operation within the list. It
defaults to zero (the first element in the list). If :start and

:end are both present, :start must be less than or equal to

:end, or an error is signalled.

:end indicates the position of the first element in the list
beyond the end of the operation. It defaults to nil (the end of
the list).

For search operations, you can specify the direction to search through the list by
using the keyword :from-end. Where :from-end is present, the function normally
processes the list in the forward direction, but if a non-nil value is specified for
this keyword, processing is performed in the reverse direction.

In some functions, the keyword :count is used to specify how many occurrences of
an item should be affected. If :count is nil, or not supplied, all matching items are
affected.

Several functions used to create conses or lists use the keyword argument :area.
The value of this keyword specifies which area the object should be created in. See
the section "Areas". :area should be either an area number (an integer), or nil to
mean the default area.

Some functions that create lists allow you to specify the items in the list. The key-
word :initial-element (or in Zetalisp, :initial-value) can be used for this.

Most Common Lisp functions for searching through, or otherwise operating on
lists, allow you to specify the kind of predicate to be used to identify a matching
element. They also allow you to apply a function to an element before the predi-
cate test. The keywords :test, :test-not and :key are used for these purposes.

You can use :test to specify a binary operation to be applied to an argument, and
each of the elements of the target list, in turn. If you do not supply :test, the de-
fault matching operation is eql. For example,

(adjoin item list)

returns a copy of list with item added to it, if list did not already contain an ele-
ment that was eql to item.

(adjoin item list :test equal)

Page 151

returns a copy of list with item added to it, if list did not already contain an ele-
ment that was equal to item.

To reverse the sense of :test you can use :test-not. For example,

(adjoin item list :test-not equal)

returns a copy of list with item added to it, if list did already contain an element
that was equal to item.

If an operation tests elements of a list in any manner, the keyword argument :key
should be one of the following:

e nil

e A function of one argument that extracts from an element the part to be tested
in place of the whole element.

Note that operations that test elements include both those that use the :test and
:test-not keywords and those that have -if and -if-not versions, for example,
nsubst-if and nsubst-if-not.

In the following scenarios, a target element of a list satisfies the test if:

e A basic function was called, test-function was specified by :test, key-function was
specified by :key, and the following is true:

(funcall test-function target (funcall key-function item))

e A basic function was called, fest-function was specified by :test-not, key-function
was specified by :key, and the following is false:

(funcall test-function target (funcall key-function item))

e An -if function was called, and the following is true:

(funcall predicate (funcall key-function item))

e An -if-not function was called, and the following is false:

(funcall predicate (funcall key-function item))

Predicates that Operate on Lists

Two groups of predicate functions operate on lists. The first group test the data
type of their arguments. The first five entries in the following list are in this
group. The remaining predicates test members of lists for some quality (except for
tree-equal) which is used for comparisons.

atom object Returns t if object is not a cons, otherwise nil.

consp object Returns t if object is a cons, otherwise nil.

Page 152

endp object Tests for the end of a list. Returns nil when applied to a cons,
and t when applied to nil.

every predicate &rest sequences
Tests each element in sequences against predicate. Returns nil
as soon as any element fails to satisfy the test of predicate.
Otherwise returns non-nil.

listp object Returns t if object is a cons or the empty list (), otherwise nil.
listp returns nil if object is a dotted list, since it only looks at
the first cons, not the last cons of a list.

nlistp x Returns t if x is not a cons, otherwise nil. Equivalent to atom.
nlistp is a Symbolics extension to Common Lisp.

some predicate &rest sequences
Tests each element in sequences against predicate. Returns
whatever value predicate returns as non-nil, as soon as any ele-
ment satisfies the test of predicate. Otherwise returns nil.

subsetp list] list2 &key (test #’eql) test-not (key #’identity)
Checks if list1 is a subset of [list2. With default test eql,
subsetp returns t if every element of listI appears in list2, oth-
erwise nil.

tailp tail list Returns t if tail is an ending sublist of list, otherwise nil

tree-equal x vy &key test test-not
Compares two trees of conses x and y. With default test eql re-
turns t if x and y are isomorphic trees with identical leaves,
otherwise returns nil.

Note: The following Zetalisp predicates are included to help you read old programs.
In your new programs, where possible, use the Common Lisp versions of these pred-
icates.

zl:listp object Returns t if its argument is a cons or not the empty list (),
otherwise nil. Note that listp and zl:listp are not equivalent.

zl:some list predicate &optional (step #cdr)
Tests each element in list against predicate. Returns the tail of
the list. Otherwise returns nil.

zl:every list pred &optional (step #Each)
Tests each element in list against the pred. Extraction from
the list can be changed by the step function. Returns t if pred
returns non-nil when applied to every element of list, other-
wise nil if predicate returns nil for some element.

Functions for Finding Information About Lists and Conses

These functions return the length of a list, the position of an item in a list, or the
location of a cons’s car.

Page 153

length sequence Returns the number of elements in sequence as a non-negative
integer. sequence can be either a list or a vector (one-
dimensional array).

list-length list Returns, as an integer, the length of list. list-length differs
from length when list is circular.

position ifem sequence &key (:test #eql) :test-not (ckey #identity) :from-end (:start
0) :end
If sequence contains an element satisfying the predicate speci-
fied by the :test keyword, then position returns the index
within the sequence of the leftmost such element as a non-
negative integer; otherwise nil is returned. sequence can be ei-
ther a list or a vector (one-dimensional array).

position-if predicate sequence &key :key :from-end (:start 0) :end
If sequence contains an element satisfying predicate, then
position returns the index within the sequence of the leftmost
such element as a non-negative integer; otherwise nil is re-
turned. sequence can be either a list or a vector (one-
dimensional array).

position-if-not predicate sequence &key :key :from-end (:start 0) :end
If sequence contains an element that does not satisfy predicate,
then position returns the index within the sequence of the
leftmost such element as a non-negative integer; otherwise nil
is returned. sequence can be either a list or a vector (one-
dimensional array).

Note: The following Zetalisp functions are included to help you read old programs.
In your new programs, where possible, use the Common Lisp versions of these func-
tions.

zl:length x Counts the number of elements in x. Returns a non-negative
integer. The Symbolics Common Lisp equivalent of this func-
tion is length.

zl:find-position-in-list item list
Looks down list for an element that is eq to item and returns
the numeric index of the first element that is eq to item. Re-
turns nil if it does not find one.

zl:find-position-in-list-equal item list
Same as zl:find-position-in-list, except that the comparison is
done with equal instead of eq.

zl:car-location cons
Returns a locative pointer to the cell containing the car of
cons.

Page 154

Functions for Constructing Lists and Conses

This group includes functions that construct conses and lists from scratch, as well
as functions that make new lists by adding to, or combining, existing lists.

The functions that create conses, cons, ncons, and xcons, and their in-area vari-
ants can be used to construct normal, that is, not cdr-coded lists. The higher-level
functions, list, make-list, append, and their variants, construct cdr-coded lists
(cdr-coding is the internal data format used to store conses inside a Symbolics
computer.) For more information, see the section "Cdr-Coding".

Whenever you create a new object, you can also specify an area of virtual memory,
with the keyword :area. An area is a location in virtual memory where objects and
their references (or more generally, any pieces of related information), can be lo-
cated near each other, that is, located at nearby addresses in virtual memory.
When this is true, the paging system can avoid thrashing: swapping many pages in
and out of main memory in order to access relatively few data.

For more background information about areas, see the section "Areas".
cons x y Adds a new element to the front of a list. Re-

turns the new cons. It is the primitive function
to create a new cons whose car is x and whose

cdr is y.

ncons x Creates a cons whose car is x and whose cdr is
nil. ncons is a Symbolics extension to Common
Lisp.

xXcons x y Creates an exchanged cons, one whose car is y

and whose cdr is x. Xcons is a Symbolics exten-
sion to Common Lisp.

cons-in-area x y area Creates a cons in a specific area.

ncons-in-area x area Creates a cons with a car of x in a specific
area. ncons-in-area is a Symbolics extension to
Common Lisp.

xcons-in-area x y area Creates an exchanged cons in a specific area.
xcons-in-area is a Symbolics extension to Com-
mon Lisp.

list &rest elements Constructs and returns a list of its arguments.

list* &rest args Constructs a list whose last cons is "dotted."

Takes at least one argument.

list-in-area area &rest elements Same as list, except that it takes an area ar-
gument, and creates the list in that area. list-
in-area is a Symbolics extension to Common
Lisp.

list*-in-area area &rest args Same as list*, except that it takes an area ar-
gument, and creates the list in that area. list*-

make-list size &key :initial-element

circular-list &rest args

nconc &rest arg

nreconc ! tail

append &rest lists

revappend x y

Page 155

in-area is a Symbolics extension to Common
Lisp.

:area

Creates and returns a list containing size ele-
ments. This function has the optional argument
area, which is a Symbolics extension to Com-
mon Lisp.

Constructs a circular list whose elements are
args, repeated infinitely. Often used with map-
ping. circular-list returns a list whose last cdr
is is a list, instead of nil. eircular-list is a
Symbolics extension to Common Lisp.

Takes lists as arguments. Destructively con-
catenates and returns args in a list. See the
function concatenate.

Creates a list that is the first argument re-
versed concatenated with the second argument.

Concatenates the lists, returning the resulting
list.

Concatenates x and y, returning the resulting
list in reverse order.

adjoin item list &key (:test #eql) :test-not (key #identity) (carea sys:default-cons-

area) :localize :replace
Adds item to list, provided that it is not already
on the list. Returns a new list.

push item reference &key :area :localize

With the list held in reference viewed as a
push-down stack, push pushes item onto the
top of the stack. This function has the optional
argument area, which is a Symbolics extension
to Common Lisp.

pushnew item reference &key :test :test-not :key :area :localize :replace

With the list held in reference viewed as a
push-down stack, pushnew pushes item onto
the top of the stack, unless it is already a
member of the list.

Note: The following Zetalisp functions are included to help you read old programs.
In your new programs, where possible, use the Common Lisp versions of these func-

tions.

Page 156

zl:make-list length &key area initial-value

zl:push item list

zl:push-in-area item list area

Functions for Copying Lists

Creates and returns a list containing length el-
ements. Use the Common Lisp function make-
list.

Adds item to the front of list, which should be
stored in a generalized variable. Use the Com-
mon Lisp function push.

Adds item to the front of list, which should be
stored in a generalized variable.

This group includes functions that copy conses, lists, or trees, including some sys-
tem functions that help improve locality of reference.

copy-list list &optional area force-dotted

copy-list* list &optional area

copy-alist al &optional area

copy-tree tree &optional area

Makes a copy of list that is equal to lisf, but
not eq. (Only the top level of list structure is
copied). copy-list can be used to convert a list
into compact, cdr-coded form. This function has
the optional argument area, which is a Symbol-
ics extension to Common Lisp.

Same as copy-list, except that the last cons of
the resulting list is never cdr-coded. copy-list*
is a Symbolics extension to Common Lisp.

Makes a copy of the association list @l that is
equal to al, but not eq (only the two top levels
of list structure are copied). This function has
the optional argument area, which is a Symbol-
ics extension to Common Lisp.

Copies a tree of conses. This function has the
optional argument area, which is a Symbolics
extension to Common Lisp.

sys:copy-if-necessary thing &optional (default-cons-area working-storage-area)

sys:localize-list /ist &optional area

Moves thing from a temporary storage area, or
stack list, to a permanent area. Thing can be a
list. sys:copy-if-necessary checks whether
thing is in a temporary area of some kind, and
moves it if it is. If thing is not in a temporary
area, it is simply returned.

Improves locality of incrementally-constructed
lists and association lists.

Page 157

sys:localize-tree tree &optional (n-levels 100) area
Improves locality of incrementally-constructed
lists and trees.

Note: The following Zetalisp functions are included to help you read old programs.
In your new programs, where possible, use the Common Lisp versions of these func-
tions.

zl:copylist list &optional area force-dotted
Makes a copy of list that is equal to lisf, but
not eq. zl:copylist does not copy any elements
of the list, only the conses of the list.
zl:copylist converts a list into compact, cdr-
coded form. Use the Common Lisp function
copy-list.

zl:copylist* list &optional area Same as zl:copylist, except that the last cons
of the resulting list is never cdr-coded. Use the
Common Lisp function equivalent to copy-list*.

zl:copyalist al &optional area Copies the conses, but not elements, in associa-
tion list al. In addition, each element of al that
is a cons is replaced in the copy by a new cons
with the same car and cdr. You can optionally
specify the area in which to create the new
copy. The default is to copy the new list into
the area occupied by the old list. Returns an
association list that is equal to al, but not eq.
Use the Common Lisp function copy-alist.

zl:copytree tree &optional area Copies a tree of conses. Use the Common Lisp
function copy-tree.

zl:copytree-share tree &optional area (cl:make-hash-table :test #equal :locking
nil :number-of-values 0)) cdr-code
zl:copytree-share is similar to zl:copytree.
However, it also assures that all lists or tails
of lists are optimally shared when equal.

Functions for Extracting from Lists

This group includes functions that return a specified item or items from a list.
The item is specified by its position in the list.

car x Returns the first element of x, called the car.

cdr x Returns the rest of the list after the first ele-
ment, called the cdr.

c{a,d}*r x An abbreviation for sequences of cars and cdrs,
for example, caar and cecaddr. This represents

first list

second list
third list
fourth list
fifth list
sixth list
seventh list
eighth list
ninth list
tenth list
last list

nleft n [&optional tail

nth n object

nthedr n list

rest x

some predicate &rest sequences

pop list

Page 158

the number of levels ears and edrs that are
defined as separate functions. These car and
cdr functions can represent up to four car and
cdr operations.

Returns the first element of list. first is equiv-
alent to car.

Returns the second element of list.
Returns the third element of list.
Returns the fourth element of list.
Returns the fifth element of list.
Returns the sixth element of list.
Returns the seventh element of list.
Returns the eighth element of list.
Returns the ninth element of list.
Returns the tenth element of list.
Returns the last cons of list.

Returns the result of taking the edr of [
enough times so that taking n more cdrs would
yield tail. When tail is nil, nleft simply returns
the last n elements of list. nleft is a Symbolics
extension to Common Lisp.

Returns the nth element of object, where the
zeroth element is the car of the list.

Takes the edr of list n times, and returns the
result.

Returns the cdr of x. rest is the equivalent of
cdr and complements first, as edr complements
car.

Tests eache element in sequences against predi-
cate. Returns whatever value predicate returns
as non-nil, as soon as any element satisfies the
test of predicate. Otherwise returns nil.

Returns the car of the contents of list, and as
a side effect, the cdr of contents is stored back
into list.

Note: The following Zetalisp functions are included to help you read old programs.
In your new programs, where possible, use the Common Lisp versions of these func-

tions.

Page 159

zl:firstn n list Returns a list whose elements are the first n
elements of list.

zl:restl list Returns the rest of the elements of list, start-
ing with element 1 (counting the first element
as the zeroth).

zl:rest2 [ist Returns the rest of the elements of list, start-
ing with element 2 (counting the first element
as the zeroth).

zl:rest3 list Returns the rest of the elements of list, start-
ing with element 3 (counting the first element
as the zeroth).

zl:restd list Returns the rest of the elements of list, start-
ing with element 4 (counting the first element
as the zeroth).

Functions for Modifying Lists

This group contains functions that either modify list structures or return modified
copies of a list structure. Those functions that change the original structure rather
than make copies are referred to as "destructive." Their names begin with the let-
ter n except for delete, which can be considered a destructive version of remove.

rplaca cons x Changes the car of cons to x and returns (the
modified) x.

rplacd cons x Changes the cdr of cons to x and returns (the
modified) x.

pop list Returns the car of list, and as a side effect, the
cdr is stored back into list.

butlast x &optional (n 1) Creates and returns a list with the same ele-
ments as x, excepting the last element.

remove item sequence &key (:test #eql) :test-not (ckey #identity) :from-end (:start
0) :end :count
Non-destructively removes items matching item
from sequence. Returns the new sequence.

delete item sequence &key (test #eql) :test-not (ckey #identity) :from-end (:start 0)
:end :count
Destructively removes items matching item
from sequence. Returns the modified sequence.

sublis alist tree &rest args &key (:test #eql) :test-not (key #identity)
Non-destructively substitutes elements from al-
ist for ojects in tree.

Page 160

nsublis alist tree &rest args &key (:test #eql) :test-not (ckey #identity)
Destructive version of sublis.

subst new old tree &rest args &key (:test #eql) :test-not (key #identity)
Makes a copy of tree, substituting new for ev-
ery subtree or leaf of tree such that old and
the subtree or leaf satisfy the predicate speci-
fied by the :test keyword.

subst-if new predicate tree &rest args &key :key
Makes a copy of tree, substituting new for ev-
ery subtree or leaf of tree such that old and
the subtree or leaf do not satisfy predicate. It
returns the modified copy of tree, and the orig-
inal tree is unchanged, although it can share
with parts of the result tree.

subst-if-not new predicate tree &rest args &key :key
Makes a copy of tree, substituting new for ev-
ery subtree or leaf of tree such that old and
the subtree or leaf do not satisfy the test speci-
fied by predicate.

nsubst new old tree &rest args &key (test #eql) :test-not (-key #identity)
Destructive version of subst.

nsubst-if new predicate tree &rest args &key :key
Destructive version of subst-if.

nsubst-if-not new predicate tree &rest args &key :key
Destructive version of subst-if-not.

reverse sequence Reverses the elements of sequence. Returns a
new, reversed sequence.

nreverse sequence Destructive version of reverse. Returns a modi-
fied sequence.

Note: The following Zetalisp functions are included to help you read old programs.
In your new programs, where possible, use the Common Lisp versions of these func-
tions.

zl:pop list &optional dest Returns the car of the contents of list, and as
a side effect, the cdr of contents is stored back
into list.

nbutlast /ist &optional (n 1) Destructive version of butlast.

zl:remove item list &optional (ntimes most-positive-fixnum)
Non-destructive version of zl:delete. Use the
Common Lisp function remove.

Page 161

zl:rem predicate item list &optional (ntimes most-positive-fixnum)
Non-destructively removes occurrences of item
that satisfy predicate from list.

zl:delete item list &optional (ntimes most-positive-fixnum)
Deletes the first ntimes occurrences of item in
list (equal is used for the comparison). Returns
list with all occurrences of item removed. Use
the Common Lisp function delete.

zl:rem-if pred list &rest extra-lists Means "remove from list if this condition is
true." See zl:subset-not.

zl:del-if pred list Just like zl:rem-if, except that it modifies list,
rather than creating a new list and it does not
take an extra-lists &rest argument.

zl:rem-if-not pred list &rest extra-lists
Means "remove from list if this condition is not
true." See subset.

zl:del-if-not pred list Just like zl:rem-if-not except that it modifies
list rather than creating a new list and it does
not take an extra-lists &rest argument.

zl:del pred item list &optional (ntimes -1)
Returns list with all occurrences of item re-
moved. pred is used for the comparison (pred
should take two arguments).

zl:delq item list &optional (ntimes -1)
Returns list with all occurrences of item re-
moved. eq is used for the comparison.

zl:remq item list &optional (times most-positive-fixnum)
Similar to zl:delq, except that the list is not
altered; rather, a new list is returned.

zl:subset pred list &rest extra-lists Means "remove from list if this condition is not
true." zl:subset refers to the function’s action
if list is considered to represent a mathemati-
cal set. See zl:rem-if-not.

zl:subset-not pred list &rest extra-lists
Means "remove from list if this condition is not
true." zl:subset-not refers to the function’s ac-
tion if list is considered to represent a mathe-
matical set. See zl:rem-if.

zl:sublis alist form Non-destructively substitutes elements from al-
ist for ojects in form.

zl:nsublis alist form Destructive version of zl:sublis.

Page 162

zl:subst new old tree Substitutes new for all occurrences of old in
tree, and returns the modified copy of tree.

zl:nsubst new old s-exp Destructive version of zl:subst.

zl:reverse [ist Reverses the elements of list. Returns a new
reversed list.

zZl:nreverse [Destructive version zl:reverse. Returns a modi-
fied list.

Functions for Comparing Lists

This group contains functions that compare the elements of list structures and re-
turn lists of those elements that are similar, or of those elements that are differ-
ent, according to specified tests. Note that the predicate function tree-equal can
also be used to compare lists. All but the last of these functions perform set opera-
tions on lists.

union list1 list2 &key (test #’eql) test-not (key #’identity)
Takes two lists and returns a new list contain-
ing everything that is an element of either of
the lists.

nunion list] list2 &key (test #’eql) test-not (key #’identity)
Destructive version of union.

intersection list1 list2 &key (test #’eql) test-not (key #’identity)
Takes two lists and returns a new list contain-
ing everything that is an element of both lists.

nintersection listl list2 &key (test #’eql) test-not (key #’identity)
Destructive version of intersection.

set-difference list1 list2 &key (test #’eql) test-not (key #’identity)
Non-destructively returns a list of elements of
list1 that do not appear in [/ist2. You can also
use the sequence function mismatch. For in-
formation, see the section "Searching for Se-
quence Items".

nset-difference list1 list2 &key (test #’eql) test-not (key #’identity)
Destructive version of set-difference.

set-exclusive-or listl list2 &key (test #’eql) test-not (key #’identity)
Non-destructively returns a list of elements
that appear in exactly one of listZ and list2.

nset-exclusive-or list1 list2 &key (test #eql) test-not (key #’identity)
destructive version of set-exclusive-or.

1diff list sublist Returns a new list, whose elements are those
elements of list that appear before sublist.

Page 163

Note: The following Zetalisp functions are included to help you read old programs.
In your new programs, where possible, use the Common Lisp versions of these func-
tions.

zl:union &rest lists Takes two lists and returns a new list contain-
ing everything that is an element of either of
the lists, using eq for comparison.

Zl:nunion &rest lists Destructive version of zl:union.

zl:intersection &rest lists Takes two lists and returns a new list contain-
ing everything that is an element of both lists,
using eq for comparison.

zZl:nintersection &rest lists Destructive version of zl:intersection.

Functions for Searching Lists

Functions in this group search for a specified item within a list.

member ifem list &key (test #eql) test-not (key #’identity)
Searches list for an element that matches ifem
according to the predicate supplied for :test.

member-if predicate list &key key Searches for an element in list that satisfies
predicate.

member-if-not predicate list &key key
Searches for the first element in list that does
not satisfy predicate.

Note: The following Zetalisp functions are included to help you read old programs.
In your new programs, where possible, use the Common Lisp versions of these func-
tions.

zl:member item in-list Searches in-list for an element, using equal for
the comparison.

zl:memq item in-list Returns nil if ifem is not one of the elements
of in-list. Otherwise, it returns the sublist of
list beginning with the first occurrence of item.

zl:mem pred item list Same as zl:memq except that it takes an extra
argument that should be a predicate of two ar-
guments, which is used for the comparison in-
stead of eq.

Functions for Sorting Lists

Page 164

Several functions are provided for sorting arrays and lists. These functions use al-
gorithms that always terminate, no matter what sorting predicate is used, as long
as the predicate is one that terminates. The main sorting functions are not stable;
that is, equal items might not stay in their original order. If you want a stable
sort, use the stable versions. But if you do not care about stability, do not use
them, since stable algorithms are significantly slower.

After sorting, the argument (either list or array) has been rearranged internally to
be completely ordered. In the case of an array argument, this is accomplished by
permuting the elements of the array, while in the list case, the list is reordered by
rplacds in the same manner as nreverse. Thus, if you do not want the argument
affected, you must sort a copy of the argument, obtainable by zl:fillarray or copy-
list, as appropriate. Furthermore, sort of a list is like zl:delq in that it should not
be used for effect; the result is conceptually the same as the argument but, in
fact, is a different Lisp object.

Should the comparison predicate cause an error, such as a wrong type argument
error, the state of the list or array being sorted is undefined. However, if the er-
ror is corrected, the sort proceeds correctly.

The sorting package is smart about compact lists; it sorts compact sublists as if
they were arrays. See the section "Cdr-Coding". An explanation of compact lists is
in that section.

sort sequence predicate &key key Destructively modifies sequence by sorting it
according to an order determined by predicate.

stable-sort sequence predicate &key key
Same as sort, however stable-sort guarantees
that elements considered equal by predicate will
remain in their original order.

Note: The following Zetalisp functions are included to help you read old programs.
In your new programs, where possible, use the Common Lisp versions of these func-
tions.

zl:sort x sort-lessp-predicate Destructively modifies x by sorting it according
to an order determined by sort-lessp-predicate.

zl:stable-sort x sort-lessp-predicate-on-car
Same as zl:sort, however zl:stable-sort guaran-
tees that elements considered equal by sort-
lessp-predicate will remain in their original or-
der.

zl:sortcar x sort-lessp-predicate-on-car
zl:sortcar is the same as zl:sort except that
the predicate is applied to the car of the ele-
ments of x, instead of directly to the elements
of x.

Page 165

zl:stable-sortcar x sort-lessp-predicate-on-car
Like zl:sortcar, but if two elements of x are
equal, then those two elements remain in their
original order.

Cdr-Coding

This section explains the internal data format used to store conses inside the Sym-
bolics machine. It is only important to read this section if you require extra stor-
age ef ficiency in your program.

The usual and obvious internal representation of conses in any implementation of
Lisp is as a pair of pointers, contiguous in memory. If we call the amount of stor-
age that it takes to store a Lisp pointer a "word," then conses normally occupy two
words. One word (say it is the first) holds the car, and the other word (say it is
the second) holds the cdr. To get the car or cdr of a list, you just reference this
memory location, and to change the car or cdr, you just store into this memory lo-
cation.

Very often, conses are used to store lists. If the above representation is used, a
list of n elements requires two times n words of memory: n to hold the pointers to
the elements of the list, and n to point to the next cons or to nil. To optimize this
particular case of using conses, the Symbolics machine uses a storage representa-
tion called cdr-coding to store lists. The basic goal is to allow a list of n elements
to be stored in only n locations, while allowing conses that are not parts of lists to
be stored in the usual way.

The way it works is that there is an extra two-bit field in every word of memory,
called the cdr-code field. This field can have three meaningful values: cdr-normal,
cdr-next, and cdr-nil. The regular, noncompact way to store a cons is by two con-
tiguous words, the first of which holds the car and the second of which holds the
cdr. In this case, the cdr-code of the first word is cdr-normal. (The cdr-code of the
second word does not matter; it is never looked at.) The cons is represented by a
pointer to the first of the two words. When a list of n elements is stored in the
most compact way, pointers to the n elements occupy n contiguous memory loca-
tions. The cdr-codes of all these locations are cdr-next, except the last location
whose cdr-code is cdr-nil. The list is represented as a pointer to the first of the n
words.

Now, how are the basic operations on conses defined to work, based on this data
structure? Finding the car is easy: You just read the contents of the location ad-
dressed by the pointer. Finding the cdr is more complex. First you must read the
contents of the location addressed by the pointer, and inspect the cdr-code you find
there. If the code is cdr-normal, then you add one to the pointer, read the location
it addresses, and return the contents of that location; that is, you read the second
of the two words. If the code is cdr-next, you add one to the pointer, and simply
return that pointer without doing any more reading; that is, you return a pointer
to the next word in the n-word block. If the code is cdr-nil, you simply return nil.

Page 166

If you examine these rules, you find that they work fine even if you mix the two
kinds of storage representation within the same list. There is no problem with do-
ing that.

How about changing the structure? Like car, rplaca is very easy; you just store
into the location addressed by the pointer. To do a rplaed you must read the loca-
tion addressed by the pointer and examine the cdr-code. If the code is cdr-normal,
you just store into the location one greater than that addressed by the pointer;
that is, you store into the second word of the two words. But if the cdr-code is
cdr-next or cdr-nil, a problem arises: No memory cell is storing the cdr of the
cons. That is the cell that has been optimized out; it just does not exist.

This problem is resolved by the use of "invisible pointers". An invisible pointer is a
special kind of pointer, recognized by its data type (Symbolics pointers include a
data type field as well as an address field). The way they work is that when the
Symbolics Lisp Machine reads a word from memory, that word is an invisible
pointer, it proceeds to read the word pointed to by the invisible pointer and use
that word instead of the invisible pointer itself. Similarly, when it writes to a lo-
cation, that contains an invisible pointer, then it writes to the location addressed
by the invisible pointer instead. (This is a somewhat simplified explanation; actual-
ly there are several kinds of invisible pointer that are interpreted in different ways
at different times, used for things other than the cdr-coding scheme.)

Here is how rplacd is done when the cdr-code is cdr-next or cdr-nil. Call the loca-
tion addressed by the first argument to rplaed [. First, you allocate two contiguous
words (in the same area that [points to). Then you store the old contents of [(the
car of the cons) and the second argument to rplacd (the new cdr of the cons) into
these two words. You set the cdr-code of the first of the two words to cdr-normal.
Then you write an invisible pointer, pointing at the first of the two words, into lo-
cation [. (It does not matter what the cdr-code of this word is, since the invisible
pointer data type is checked first.)

Now, whenever any operation is done to the cons (ear, edr, rplaca, or rplacd), the
initial reading of the word pointed to by the Lisp pointer that represents the cons
finds an invisible pointer in the addressed cell. When the invisible pointer is seen,
the address it contains is used in place of the original address. So the newly allo-
cated two-word cons is used for any operation done on the original object.

Why is any of this important to users? In fact, it is all invisible to you; everything
works the same way whether or not compact representation is used, from the point
of view of the semantics of the language. That is, the only difference that any of
this makes is in efficiency. The compact representation is more efficient in most
cases. However, rplacd is used on the conses, then invisible pointers are created,
extra memory is allocated, and use the compact representation is seen to degrade
storage efficiency rather than improve it. Also, accesses that go through invisible
pointers are somewhat slower, since more memory references are needed. So if you
care a lot about storage efficiency, you should be careful about which lists get
stored in which representations.

You should try to use the normal representation for those data structures that are
subject to rplacd operations, including nconc and nreverse, and the compact rep-

Page 167

resentation for other structures. The functions cons, xcons, ncons, and their area
variants make conses in the normal representation. The functions list, list*, list-in-
area, make-list, and append use the compact representation. The other list-
creating functions, including read, currently make normal lists, although this
might get changed. Some functions, such as sort, take special care to operate effi-
ciently on compact lists (sort effectively treats them as arrays). nreverse is rather
slow on compact lists, since it simply uses rplacd.

(copy-list list) is a suitable way to copy a list, converting it into compact form.
See the function copy-list.

List Functions and Macros in the CL Package with SCL Extensions

Here are the list functions and macros that have Symbolics Common Lisp exten-
sions:

Function/Macro Extension(s)
assoc-if :key

assoc-if-not :key

copy-alist area

copy-list area, force-dotted
copy-tree area

make-list :area

push :area, :localize
pushnew :area, :localize, :replace
rassoc-if :key
rassoc-if-not :key

Arrays

The basic concepts and terminology associated with arrays are described elsewhere:
See the section "Overview of Arrays".

In brief, an array is a Lisp object that consists of a group of elements, each of
which is a Lisp object. General arrays allow the elements to be any type of Lisp
object. Specialized arrays place constraints on the type of Lisp objects allowed as
array elements.

The basic array functions enable you to create arrays (make-array), access ele-
ments (aref), and alter elements (setf used with aref).

There are many types of array operations. Most of these can be done with special-
ized array functions, while some can be done with more general-purpose sequence
functions.

Page 168

The individual elements of an array are identified by numerical subscripts. When
accessing an element for reading or writing, you use the subscripts that identify
that element. The number of subscripts used to refer to one of the elements of the
array is the same as the dimensionality of the array. Thus, in a two-dimensional
array, two subscripts are used to refer to an element of the array. The lowest val-
ue for any subscript is 0; the highest value depends on the array.

The number of dimensions of an array is called its dimensionality, or its rank. The
dimensionality can be any integer from zero to seven, inclusive.

Type Specifiers and Type Hierarchy for Arrays

The type specifiers related to arrays include:

array All arrays are of type array.

simple-array An array that is not displaced, has no fill pointer, and is not
adjustable after creation.

simple-string A simple array whose elements are of type character or
string-char.

vector A one-dimensional array.
bit-vector A vector whose elements are bits.
simple-vector A vector that is not displaced, has no fill pointer, and is not

adjustable after creation.

simple-bit-vector A simple vector whose elements are bits.

Figure ! shows the relationships among the various array types.

Basic Array Functions

Symbolics Common Lisp provides the following basic operations for arrays:

make-array dimensions &key (celement-type t) :initial-element :initial-contents :ad-
Jjustable :fill-pointer :displaced-to :displaced-index-offset :dis-
placed-conformally :area :leader-list :leader-length :named-
structure-symbol
Creates and returns a new array.

aref array &rest subscripts
Returns the element of array selected by the subscripts.

setf reference value &rest more-pairs
Takes a form that accesses something, and "inverts" it to pro-
duce a corresponding form to update the thing. When used
with aref, stores a value into the specified array element.

locf reference Converts reference to a new form that creates a locative pointer
to that cell.

Page 169

t

. sequence array
list

/N

null cons vector simple-array

T

string bit-vector simple-vector

simple-string simple-bit-vector

Figure 12. Symbolics Common Lisp Array Types

These constants contain implementation-specific limits on arrays:

array-rank-limit Represents the exclusive upper bound on the rank of an array.

array-dimension-limit
Represents the upper exclusive bound on each individual di-
mension of an array.

array-total-size-limit
Represents the exclusive upper bound on the number of ele-
ments of an array.

array-leader-length-limit
This is the exclusive upper bound of the length of an array
leader.

Note: The following Zetalisp functions are included to help you read old programs.
In your new programs, where possible, use the Common Lisp equivalents of these
functions.

zl:make-array dimensions &key :area :type :displaced-to :displaced-index-offset :dis-
placed-conformally :adjustable :leader-list :leader-length :named-
structure-symbol :initial-value :fill-pointer
Creates and returns a new array.

Page 170

zl:aset element array &rest subscripts
Stores element into the element of array selected by the sub-
scripts.

zl:aloe array &rest subscripts
Returns a locative pointer to the element of array selected by
the subscripts. Note that the Common Lisp combination locf of
aref is preferred.

For summaries of additional array operations: See the section "Common Operations
on Arrays".

Creating Arrays

Use make-array to create new arrays.

make-array dimensions &key (celement-type t) :initial-element :initial-contents :ad-
justable :fill-pointer :displaced-to :displaced-index-offset :displaced-conformally :area
:leader-list :leader-length :named-structure-symbol Function

Creates and returns a new array. dimensions is the only required argument. di-
mensions is a list of integers that are the dimensions of the array; the length of
the list is the dimensionality, or rank of the array.

;; Create a two-dimensional array
(make-array ’(3 4) :element-type ’string-char)

You can use these element types: bit, string-char, (unsigned-byte 8), (unsigned-
byte 16), (signed-byte 8), and (signed-byte 16).

For convenience when making a one-dimensional array, the single dimension can
be provided as an integer rather than a list of one integer.

;; Create a one-dimensional array of five elements.
(make-array 5)

The initialization of the elements of the array depends on the element type. By
default, the array is a general array, the elements can be any type of Lisp object,
and each element of the array is initially nil. However, if the :element-type option
is supplied, and it constrains the array elements to being integers or characters,
the elements of the array are initially 0 or characters whose character code is 0
and style is NIL.NIL.NIL. You can specify initial values for the elements by using
the :initial-contents or :initial-element options.

Compatibility Note: The optional arguments :displaced-conformally, :area,
:leader-list, :leader-length, and :named-structure-symbol are Symbolics exten-
sions to Common Lisp, and are not available in CLOE.

For a table of related items: See the section "Basic Array Functions".
See the section "Examples of make-array".

If you are using CLOE, see the section "Keyword Options for make-array".

Page 171

Keyword Options for make-array

The keyword options for make-array can be any of the following:

:element-type

Enables you to specify the type of Lisp objects allowed as elements of the
array. The value should be a symbolic name of a type. The default type is
t, which yields a general array that can contain elements of any type. For a
list of allowed array types: See the section "Common Lisp Array Element
Types".

The initialization of the elements of the array depends on the element type.
If the array is of a type whose elements can only be integers or characters,
the elements of the array are initially 0, or characters whose character
code is 0 and style is [nil.nil.nil]. Otherwise, every element is initially nil.

To create a string, the :element-type option should be specified as string-
char or character. Alternatively, you could use make-string instead of
make-array.

Note that if :element-type is string, this creates a general array, just as if
:element-type were t. This is because Genera does not have specialized ar-
rays that hold just strings.

Note: The following is not the correct way to make a string:
(make-array 5 :element-type ’string)

This specifies an array whose elements are themselves strings (which is a
generalized array, because Genera does not have specialized arrays that on-
ly hold strings). See the section "Strings".

:initial-element

Initializes each element in the array to the supplied value. The value must
be of the type specified by the :element-type argument, if that keyword
was supplied. Example:

(make-array 5 :element-type ’string-char :initial-element #\a)
=> "aaaaa"

:initial-contents

Initializes the contents of the array. The value is a nested structure of se-
quences with values that correspond to the elements of the array. Exam-
ple:

(make-array ’(2 3 4) :initial-contents
’(((abcd) 1234 (mnop)
(e fgh) (5678) (qr s t))))

Page 172

=> H<ART-Q-2-3-4 341661706>

:adjustable

If not nil, specifies that the array’s size can be altered dynamically after it
has been created. The default is nil. The Genera implementation makes
most arrays adjustable whether or not you use this option.

The following functions can be used to modify the size of an existing array:

adjust-array Changes the size of an array.

Note: The following Zetalisp functions are included to help you read old pro-
grams. In your new programs, where possible, use the
Common Lisp equivalents of these functions.

zl:adjust-array-size
Resizes or reshapes the first dimension of an array. Use
the Common Lisp function adjust-array.

zl:array-grow Creates a new array of the same type as the specified
array, and forwards the old array to the new.

:fill-pointer

Specifies that the array should have a fill pointer and initializes the fill
pointer to the value following the keyword. Note that :fill-pointer can only
be used for one-dimensional arrays. Use this instead of :leader-length or
:leader-list when you are using the leader only for a fill pointer. This argu-
ment defaults to nil. Fill pointers are discussed elsewhere: See the section
"Array Leaders".

:displaced-to

Specifies that the array will be a displaced array, if the value is not nil. If
the value is a fixnum or a locative, make-array creates a regular displaced
array that refers to the specified section of virtual address space. If the val-
ue is an array, make-array creates an indirect array. See the section "Dis-
placed Arrays". See the section "Indirect Arrays".

:displaced-index-offset

If this is present, the value of the :displaced-to option should be an array,
and the value of this should be a non-negative integer; it is made to be the
index-offset of the created indirect or displaced array. See the section "Indi-
rect Arrays".

Page 173

The function array-row-major-index can aid in constructing the desired
value for multidimensional arrays.

:displaced-conformally

Can be used with the :displaced-to option. If the value is t and make-
array is creating an indirect array, the array uses conformal indirection.
See the section "Conformal Indirection".

carea

The value specifies in which area the array should be created. It should be
either an area number (an integer), or nil to mean the default area. This
argument defaults to nil. See the section "Areas".

:leader-length

The value should be an integer. The array has a leader with that many el-
ements. The elements of the leader are initialized to nil unless the :leader-
list, :fill-pointer, or :named-structure-symbol option is given.

The leader-length must be less than array-leader-length-limit, which is
1024 on Symbolics 3600-family computers and 256 on Ivory-based machines.

:leader-list

The value should be a list. Call the number of elements in the list n. The
first n elements of the leader are initialized from successive elements of
this list. If the :leader-length option is not specified, then the length of the
leader is n. If the :leader-length option is given, and its value is greater
than n, the extra leader elements are initialized to nil. If its value is less
than n, an error is signalled. The leader elements are filled in forward or-
der; that is, the car of the list is stored in leader element 0, the cadr in el-
ement 1, and so on. :fill-pointer overrides element 0, and :named-
structure-symbol overrides element 1.

:named-structure-symbol

If this is not nil, it is a symbol to be stored in the named-structure cell of
the array. The array is tagged as a named structure. See the section
"Named Structures". If the array has a leader, this symbol is stored in lead-
er element 1, regardless of the value of the :leader-list option. If the array
does not have a leader, this symbol is stored in array element O.

Common Lisp Array Element Types

This section lists the types that can be given as the :element-type option for
make-array.

Element Type
t
(unsigned-byte n)

fixnum

character

string-char

boolean

Page 174

Contents of Array
Any Lisp object

nis 1, 2, 4, 8 or 16. The array elements are positive integers
limited in size to the number of bits indicated by n. Storing a
larger fixnum, or a negative one, truncates it to the specified
number of bits. Array elements are packed into 32-bit words. If
n is given as 1 and the array is one-dimensional, this is a bit-
vector.

Any fixnum, positive or negative.

Any character. If the array is one-dimensional, it is a fat
string.

Characters in the Symbolics standard character set of charac-
ter style NIL.NIL.NIL and bits field of zero. Array elements
are packed four per word. If the array is one-dimensional, it is
a thin string.

t or nil. Storing anything non-nil converts it to t. Elements are
packed 32 per word.

Examples of make-array

This section presents some examples of using make-array.

;; Create a one-dimensional array of five elements
(make-array H)

;; Create a two-dimensional array
(make-array ’(3 4))

;; Create an array with a three-element leader
(make-array 5 :leader-length 3)

;; Create an array of fixnums with a leader,
;; providing initial values for the leader elements
(setq a (make-array 100 :element-type ’fixnum

:leader-Tist ’(t nil)))

(array-leader a @) => T
(array-leader a 1) => NIL

Page 175

;; Create a named-structure with five leader

;; elements, initializing some of them

(setq b (make-array 20 :leader-length 5
:leader-1ist ’ (@8 nil foo)
:named-structure-symbol ’bar))

(array-leader b 9) => 0@

(array-leader b 1) => BAR

(array-leader b 2) => FOO

(array-leader b 3) => NIL

(array-leader b 4) => NIL

;; Create a string with a fill pointer
(make-array 1@ :element-type ’string-char
:fill-pointer 5) => "eeese”

;; Create a fat-string
(make-array 2 :element-type ’character
:initial-element f#\control-c)

Array Leaders

Any array can have an array leader. An array leader is similar to a one-
dimensional general array that is attached to the main array. An array that has a
leader acts like two arrays joined together. The leader can be stored into and ex-
amined with setf and array-leader. The leader is always one-dimensional and can
always hold any kind of Lisp object, regardless of the type or dimensionality of the
main part of the array. array-leader-length-limit is the exclusive upper bound on
the length of an array leader.

Often, the main part of an array is a homogeneous set of objects, while the leader
is used to remember a few associated nonhomogeneous pieces of data. In this case,
the leader is not used like an array; each slot is used differently from the others.
Explicit numeric subscripts should not be used for the leader elements of such an
array; instead the leader should be described by using the :array-leader option to
defstruct: See the macro defstruct.

By convention, element zero of the array leader of an array is used to hold the
number of elements in the array that are "active" in some sense. When the zeroth
element is used this way, it is called a fill pointer. Many array-processing functions
recognize the fill pointer. For instance, if a string has seven elements, but its fill
pointer contains the value 5, then only elements zero through four of the string
are considered to be "active". This means that the string’s printed representation
is five characters long, string-searching functions stop after the fifth element, and
S0 on.

The system does not provide a way to turn off the fill-pointer convention; any ar-
ray that has a leader must reserve element 0 for the fill pointer or avoid using
many of the array functions. If array leader element 0 contains a non-integer, such
as nil, most functions act as if the array did not have a fill-pointer.

Page 176

Leader element 1 is used in conjunction with the "named structure" feature to as-
sociate a "data type" with the array. See the section "Named Structures". Leader
element 1 is treated specially only if the array is flagged as a named structure.

If there is no leader, and the array is a named structure, the symbol goes in array
element 0.

Operations on Array Leaders

The following functions are available for use with arrays that have leaders:

array-has-leader-p array
Returns t if array has a leader; otherwise it returns nil

array-leader array index
Returns the indexed element of array’s leader. You can use
setf and locf of array-leader.

array-leader-length array
Returns the length of array’s leader if it has one, or nil if it
does not.

Note: The following Zetalisp functions are included to help you read old programs.
In your new programs, where possible, use the Common Lisp equivalents of these
functions.

zl:ap-leader array index
Returns a locative pointer to the indexed element of array’s
leader. Use the Common Lisp combination, loef of array-
leader.

zl:store-array-leader value array index
Stores value in the indexed element of array’s leader. Use the
Common Lisp combination, setf of array-leader.

Displaced Arrays

Normally, an array is represented as a small amount of header information, fol-
lowed by the contents of the array. However, sometimes it is desirable to have the
header information removed from the actual contents. Such an array is known as a
displaced array. One example of the usefulness of displaced arrays is when the
contents of the array must be located in a special part of the Symbolics computer’s
address space, such as the area used for the control of input/output devices, or the
bitmap memory that generates the TV image.

To create a displaced array, give make-array a fixnum or a locative as the value
of the :displaced-to option. make-array creates a displaced array referring to that
location of virtual memory and its successors.

Page 177

References to elements of the displaced array access that part of storage, and re-
turn the contents. The normal array accessor functions (aref, and setf with aref)
are used on displaced arrays.

If the array’s elements are Lisp objects, caution should be used: If the region of
address space does not contain typed Lisp objects, the integrity of the storage sys-
tem and the garbage collector could be damaged. If the array’s elements are bytes,
there is no problem. It is important to know, in this case, that the elements of
such arrays are allocated from right to left within the 32-bit words.

Indirect Arrays

It is possible to have an array whose contents, instead of being located at a fixed
place in virtual memory, are defined to be those of another array. Such an array is
called an indirect array, and is created by giving make-array an array as the val-
ue of the :displaced-to option.

The effects of this are simple if both arrays have the same type; the two arrays
share all elements. An object stored in a certain element of one can be retrieved
from the corresponding element of the other. This, by itself, is not very useful.
However, if the arrays have different dimensionality, the manner of accessing the
elements differs. Thus, by creating a one-dimensional array of nine elements that
is indirected to a second, two-dimensional array of three elements by three, you
make it possible to access elements in two different ways, either using aref on the
one-dimensional array with one subscript, or using aref on the two-dimensional ar-
ray with two subscripts.

To understand how the same element can be accessed two ways it is important to
know that arrays are stored in row-major order in memory.

(setg a (make-array ’(3 3) :initial-contents
’((one two three)
(four five six)

(seven eight nine))))

(setq b (make-array 9 :displaced-to a))

(aref b 8) => ONE
(aref a @ @) => ONE

(aref b 1) => TWO
(aref a @ 1) => TWO

(aref b 6) => SEVEN
(aref a 2 8) => SEVEN

Unexpected effects can be produced if the new array is of a different type than the
old array; this is not generally recommended. Indirecting an (unsigned-byte-m) ar-
ray to an (unsigned-byte-n) array does the "obvious" thing. For instance, if m is 4
and n is 1, each element of the first array contains four bits from the second ar-
ray, in right-to-left order.

Page 178

Displaced and Indirect Arrays with Offsets

It is possible to create an indirect or displaced array in such a way that when an
attempt is made to reference it or store into it, a constant number is added to the
subscript given. This number is called the index offset, and is specified at the time
the indirect array is created, by giving an integer to make-array as the value of
the :displaced-index-offset option. Similarly, the length of the indirect array need
not be the full length of the array it indirects to; it can be smaller. The
nsubstring function creates such arrays. When you use index offsets with multidi-
mensional arrays, there is only one index offset; it is added in to the "linearized"
subscript that is the result of multiplying each subscript by an appropriate coeffi-
cient and adding them together.

(setg a (make-array ’(4 3)))
(setq b (make-array 5 :displaced-to a
:displaced-index-offset 2))

The second array is displaced to the first array. Also, the second array has an in-
dex offset of 2. This affects the mapping of elements, which is illustrated below.

(aref b B8) is the same as (aref a @ 2)
(aref b 1) is the same as (aref a 1 @)
(aref b 2) is the same as (aref a 1 1)
(aref b 3) is the same as (aref a 1 2)
(aref b 4) is the same as (aref a 2 @)

Conformal Indirection

Multidimensional arrays remember their actual dimensions, separately from the co-
efficients by which to multiply the subscripts before adding them together to get
the index into the array.

Multidimensional indirect arrays can have conformal indirection. If A is indirected
to B, and they do not have the same number of columns, then normally the part of
B that is shared with A does not have the same shape as A. If conformal indirec-
tion is used, the shape of array A changes. For example:

(setq b (make-array ’(16@. 20.)))
(setg a (make-array ’(3 5) :displaced-to b
:displaced-index-offset
(array-row-major-index b 1 2)))

Now:
(aref a @ 1) = (aref b 1 3) and (aref a1 1) = (aref b 1 8)
In contrast:

(setq a (make-array ’(3 5) :displaced-to b
:displaced-index-offset
(array-row-major-index b 1 2)
:displaced-conformally t))

Page 179

(aref a B 1) = (aref b 1 3) still, but (aref a 1 1) = (aref b 2 3). Each row of A
corresponds to part of a row of B, always starting at the same column (2).

A graphic illustration:

(setq a (make-array ’(6 20.))
b (make-array ’(3 5) :displaced-to a
:displaced-index-offset
(array-row-major-index a 1 2))
¢ (make-array ’(3 5) :displaced-to a
:displaced-index-offset
(array-row-major-index a 1 2)
:displaced-confaormally t))

Normal case Conformal case

Y] 19 Y] 19
o + o +
0 | aaaaaaaaaaaaaaaaaaaal 0 | aaaaaaaaaaaaaaaaaaaal
| aaBBBBBBBBBBBBBBBaaa | | aaCCCCCaaaaaaaaaaaaal
| aaaaaaaaaaaaaaaaaaaal | aaCCCCCaaaaaaaaaaaaal
| aaaaaaaaaaaaaaaaaaaal | aaCCCCCaaaaaaaaaaaaal
| aaaaaaaaaaaaaaaaaaaal | aaaaaaaaaaaaaaaaaaaal
5| aaaaaaaaaaaaaaaaaaaal 5| aaaaaaaaaaaaaaaaaaaal
o + o +

See the function array-row-major-index. See the section "Rasters".
The meaning of adjust-array for conformal indirect arrays is undefined.

All operations that treat a multidimensional array as if it were one-dimensional do
not work on conformally displaced arrays:

copy-array-contents
copy-array-contents-and-leader
copy-array-portion
math:invert-matrix

zl:fillarray

zl:listarray

Vectors

A one-dimensional array is known as a vector. You can use the :fill-pointer option
to make-array when making a vector, but not when making a multidimensional
array. Several of the functions for vectors enable you to use the fill pointer capa-
bility of vectors.

A general vector allows its elements to be any type of Lisp object.

A simple vector is a general vector that is not displaced, is not adjustable, and has
no fill pointer. In Genera, predicates such as simple-vector-p and simple-bit-
vector-p can return t for adjustable vectors. Genera does not enforce the condition

Page 180

that a simple array must not be adjustable, and, in fact, most Genera arrays are
adjustable.

Bit vectors are vectors that require their elements to be of type bit. SCL provides
functions that operate on arrays of bits (which are not constrained to be vectors):
See the section "Arrays of Bits".

Strings are vectors that require their elements to be of type character or string-
char. Strings and string operations are described elsewhere: See the section
"Strings".

Operations on Vectors

Symbolics Common Lisp provides the following functions for performing operations
on vectors:

vector &rest objects
Creates a simple vector with specified initial contents.

array-has-fill-pointer-p array
Returns t if the array has a fill pointer; otherwise it returns
nil.

fill-pointer array Returns the value of the fill pointer.
sys:vector-bitblt alu size from-array from-index to-array to-index

Copies a linear portion of from-array of length size starting at
from-index into a linear portion of fo-array starting at to-index.

vector-push new-element vector
Stores new-element in the element designated by the fill pointer
and increments the fill pointer by one.

vector-push-extend new-element vector &optional extension
Stores new-element in the element designated by the fill pointer
and increments the fill pointer by one.

vector-push-portion-extend to-array from-array &optional (from-start 0) from-end
Copies a portion of one array to the end of another, updating
the fill pointer of the second to reflect the new contents.

vector-pop array &optional default
Decreases the fill pointer by one and returns the vector ele-
ment designated by the new value of the fill pointer.

Symbolics Common Lisp provides the following predicate functions for determining
if a given object is a vector, or a specialized vector:

vectorp object Tests whether the given object is a vector.

simple-vector-p object
Tests whether the given object is a simple general vector.

Page 181

bit-vector-p object Tests whether the given object is a bit vector.

simple-bit-vector-p object
Tests whether the given object is a simple bit vector.

bit-vector-zero-p bit-vector &key (:start 0) :end
Tests whether the bit vector is a bit vector of zeros in a range
specified by :start and :end.

bit-vector-cardinality bit-vector &key (:start 0) :end
Tests how many of the bits in the range are one’s and returns
the number found.

bit-vector-position bit bit-vector &key (:start 0) :end
If bit-vector contains an element satisfying bitf, returns the in-
dex within the bit vector of the leftmost such element as a
non-negative integer; otherwise nil is returned.

bit-vector-equal bit-vector-1 bit-vector-2 &key (:startl 0) :endl (:start2 0) :end2
Tests if two bit vectors are equal in a range specified by
:startl :endl :start2 :end2.

bit-vector-subset-p bit-vector-1 bit-vector-2 &key (:startl 0) :endl (:start2 0) :end2
Tests if one bit-vector is a subset of another bit-vector in a
range specified by :startl :endl :start2 :end2.

bit-vector-disjoint-p bit-vector-1 bit-vector-2 &key (:startl 0) :endl (:start2 0) :end2
Tests if two bit vectors are disjoint in a range specified by
:startl :endl :start2 :end2.

Rasters

A raster is a two-dimensional array that is conceptually a two-dimensional rectan-
gle of bits, pixels, or display items. Rasters are accessed in (x,y) fashion, rather
than in (row,column) fashion. Rasters conceptually have width and height, while
non-rasters have numbers of columns and rows. In a row-major system, row corre-
sponds to y and column corresponds to x; therefore a row of raster elements repre-
sents a row of the array.

Screen arrays, sheet arrays, bit arrays of the window system, fonts, and BFDs are
rasters. Programs that access these items should use raster primitives rather than
array primitives.

When using rasters, you should use setf to store into a raster element. Use locf to
get a locative when the raster is a general array; locf is not allowed on arrays of
bytes or of characters.

Operations on Rasters

The functions and methods for raster operations should be used only on rasters;
they should not be used on non-rasters. User programs that provide an (x,y) style

Page 182

interface to rasters should use the raster functions to actually operate on the
rasters.

For a table of related low-level raster functions: See the section "The Paging Sys-

tem".

bitblt alu width height from-array from-x from-y to-array to-x to-y
Copies a rectangular portion of from-raster into a rectangular
portion of to-raster.

decode-raster-array raster
Returns the following attributes of the raster as values: width,
height, and spanning width.

make-raster-array width height &key (:element-type t) :initial-element :initial-
contents :adjustable :fill-pointer :displaced-to :displaced-index-
offset :displaced-conformally :area :leader-list :leader-length
:named-structure-symbol
Makes rasters; this should be used instead of make-array
when making arrays that are rasters.

raster-aref raster-array x y
Accesses the (x,y) graphics coordinate of raster.

raster-index-offset raster x y
Returns a linear index of the array element referenced by the
(x,y) coordinate of the raster.

raster-width-and-height-to-make-array-dimensions width height
Creates an argument that can be used to call make-array.

Note: The following Zetalisp function is included to help you read old programs. In
your new programs, use the Common Lisp version of this function.

zl:make-raster-array width height &rest make-array-options
This function is provided for compatibility with previous re-
leases. Use the Common Lisp function, make-raster-array.

Planes

A plane is an array whose bounds, in each dimension, are minus-infinity and plus-
infinity; all integers are valid as indices. Planes are distinguished not by size and
shape, but by number of dimensions alone. When a plane is created, a default val-
ue must be specified. At that moment, every element of the plane has that value.
As you cannot ever change more than a finite number of elements, only a finite
region of the plane need actually be stored.

The regular array accessing functions do not work on planes. You can use make-
plane to create a plane and plane-aref to get the value of an element. setf and
loef work on plane-aref. array-rank works on a plane.

Page 183

A plane is actually stored as an array with a leader. The array corresponds to a
rectangular, aligned region of the plane, containing all the elements in which data
has been stored (and others, in general, that have never been altered). The lowest-
coordinate corner of that rectangular region is given by the zl:plane-origin in the
array leader. The highest coordinate corner can be found by adding the zl:plane-
origin to the array-dimensions of the array. The plane-default is the contents of
all the elements of the plane that are not actually stored in the array. The plane-
extension is the amount to extend a plane by in any direction when the plane
needs to be extended. The default is 32.

If you never use any negative indices, the zl:plane-origin is all zeroes and you can
use regular array functions, such as aref to access the portion of the plane that is
actually stored. This can be useful to speed up certain algorithms. In this case,
you can even use the 2d-array-blt function on a two-dimensional plane of bits or
bytes, provided you don’t change the plane-extension to a number that is not a
multiple of 32.

Operations on Planes

The following functions are available for using with planes:

make-plane rank &key (:type ’sys:art-q) -default-value (:extension 382) :initial-
dimensions :initial-origins
Creates and returns a plane.

plane-aref plane &rest point
Returns the contents of a specified element of a plane.

plane-default plane
Returns the contents of the infinite number of plane elements
that are not actually stored.

plane-extension plane
Returns the amount to extend the plane by in any direction
when zl:plane-store is done outside of the currently stored
portion.

zl:plane-aset datum plane &rest point
Stores datum into the specified element of a plane, extending
it if necessary, and returns datum. Use the Common Lisp
equivalent, setf of plane-aref.

zl:plane-origin plane
Returns a list of numbers, giving the lowest coordinate values
actually stored.

zl:plane-ref plane point
Returns the contents of a specified element of a plane.

zl:plane-store datum plane point
Stores datum into the specified element of a plane, extending
it if necessary, and returns datum.

Page 184

Array Registers

The aref, setf of aref, and zl:aset operations on arrays consist of two parts:

1. They "decode" the array, determining type, rank, length, and the address of
its first data element.

2. They read or write the requested element.

The first part of this operation does not depend on the particular values of the
subscripts; it is a function only of the array itself.

When you write a loop that processes one or more arrays, the first part of each ar-
ray operation is invariant if the arrays are invariant inside the loop. You can im-
prove performance by moving this array-decoding overhead outside the loop, doing
it only once at the beginning of the loop, rather than repeating it on every trip
around the loop.

You can do this by using the sys:array-register and sys:array-register-ld decla-
rations. sys:array-register is used for one-dimensional arrays, and sys:array-
register-1d for multidimensional arrays. See the section "Function-body Declara-
tions".

Array Registers and Performance

The array-register feature makes optimization possible and convenient. Here is an
example:

(defun foo (array-1 array-2 n-elements)
(let ((a array-1)
(b array-2))
(declare (sys:array-register a b))
(dotimes (i n-elements)
(setf (aref b i) (aref a i)))))

This function copies the first n-elements elements of array a into array b. If the
declaration is absent, it does the same thing more slowly. The variables a and b
are compiled into "array register" variables rather than normal, local, variables. At
the time a and b are bound, the arrays to which they are bound are decoded and
the variables are bound to the results of the decoding. The compiler recognizes
aref with a first argument that has been declared to be an array register, and setf
of aref with a first argument that has been declared to be an array register; it
compiles them as special instructions that do only the second part of the operation.
These instructions are fast-aref and fast-aset.

If you want to verify that your array register declarations are working, follow
these steps:

1. Compile the function.

2. Disassemble it: (disassemble ’foo).

Page 185

3. Look for fast-aref and fast-aset instructions. For example, note instructions

11 and 13:
@ ENTRY: 3 REQUIRED, @ OPTIONAL
1 PUSH-LOCAL FPI|@ ; ARRAY -1
2 BUILTIN SETUP-1D-ARRAY TO 4 ;creating A(FP|3)
3 PUSH-LOCAL FPI|1 ; ARRAY-2
4 BUILTIN SETUP-1D-ARRAY TO 4 ;creating B(FP|7)
5 PUSH-LOCAL FP|2 ;N-ELEMENTS creating FP|11 (unnamed)
6 PUSH-IMMED @ ;creating I(FP[12)
7 BRANCH 15

18 PUSH-LOCAL FP|12 i1

11 FAST-AREF FP|4 Ha

12 PUSH-LOCAL FP|12 i1

13 FAST-ASET FPI|8 ;B

14 BUILTIN 1+LOCAL IGNORE FP[12 Hl

15 PUSH-LOCAL FP|12 i1

16 PUSH-LOCAL FP[11

17 BUILTIN INTERNAL-< STACK
20 BRANCH-TRUE 16

21 RETURN-NIL

FOO

The performance advantage of array registers over the simplest types of array (for
example, no leader or no displacement) is fairly small, since the normal aref and
zl:aset operations on those arrays are quite fast. The real advantage of array reg-
isters is that they are equally as fast for the more complicated arrays, such as in-
direct arrays and those with leaders, as they are for simple arrays.

The performance advantage to be gained through the use of array registers de-
pends on the type of the array. Using an array register is never slower, except for
one peculiar case: an indirect byte array with an index offset that is not a multiple
of the number of array elements per word; in other words, an array whose first el-
ement is not alighed on a word boundary. An example of this case is:

(setq a (make-array 100 :element-type ’string-char))

(setq b (make-array 99 :element-type ’string-char
:displaced-to a
:displaced-index-offset 1))

If the :displaced-index-offset had been a multiple of 4, array registers would en-
hance performance.

Hints for Using Array Registers

The expansion of the loop macro’s array-elements path copies the array into a
temporary variable. In order to get the benefits of array registers, you must write
code in the following way:

Right:

Page 186

(defun tst1 (array incr)
(declare (sys:array-register a))
(loop for elt being the array-elements of array
using (sequence a)
sum (x elt incr)))

Wrong:

(defun tst (array incr)
(Tet ((a array)) (declare (sys:array-register a))
(loop for elt being the array-elements of a
sum (x elt incr))))

loop generates a temporary variable; the "using" clause forces the temporary vari-
able to be named a. Since the user gets to control the name of the variable, it is
possible to assign a declaration to the variable.

The other way to do it is to avoid the array-elements path, and instead use:

(defun tst (array incr)
(let ((a array)) (declare (sys:array-register a))
(Toop for i from @ below (array-total-size a)
sum (x (aref a i) incr))))

This is a bit more efficient because it does not have the overhead of setting up
the variable elt.

Array Register Restrictions

It is not valid to declare a variable simultaneously to be special and to be
sys:array-register. You cannot declare a parameter (a variable that appears in the
argument-list of a defun or a lambda) to be an array register; you must bind an-
other variable (perhaps with the same name) to it with let and declare that vari-
able. For example:

(defun tst (x y)
(Tet ((x x) (y y))
(declare (sys:array-register x y))

o))

An array-register variable cannot be a free lexical variable; it must be bound in
the same function that uses it.

Note that the array-register declaration is in the system package (also known as
sys), and therefore the declaration is sys:array-register or sys:array-register-1d.
Be sure to type sys:array-register and not just array-register to gain compile-
time advantages such as checking for misspelled declarations. Also, if you type ar-
ray-register, the code generated by the compiler runs slower. Note that if you
type sys:array-registar instead of the correct spelling, the package system catches
the misspelling because the system package is locked.

If the array decoded into an array register is altered (for example, with adjust-
array) after the array register is created, the next reference through the array
register re-decodes the array.

Page 187

Matrices and Systems of Linear Equations

Matrices are represented as two-dimensional Lisp arrays. These functions that op-
erate on matrices are part of the mathematics package rather than the kernel ar-
ray system, hence the "math:" in the names.

math:decompose and math:solve are used to solve sets of simultaneous linear
equations. math:decompose takes a matrix holding the coefficients of the equa-
tions and produces the LU decomposition; this decomposition can then be passed to
math:solve along with a vector of right-hand sides to get the values of the vari-
ables. If you want to solve the same equations for many different sets of right-
hand side values, you need to call math:decompose only once. In terms of their
argument names, these two functions exist to solve the vector equation A x = b for
x. A is a matrix. b and x are vectors.

Operations on Matrices

The following functions perform some useful matrix operations:

math:decompose ¢ &optional lu ps ignore
Computes the LU decomposition of matrix a.

math:determinant mairix
Returns the determinant of matrix.

math:fill-2d-array array list
The opposite of math:list-2d-array. list should be a list of
lists, with each element being a list corresponding to a row.

math:invert-matrix matrix &optional into-matrix
Computes the inverse of matrix.

math:list-2d-array array
Returns a list of lists containing the values in array, which
must be a two-dimensional array.

math:multiply-matrices matrix-1 matrix-2 &optional matrix-3
Multiplies matrix-1 by matrix-2.

math:solve [u ps b &optional x
Takes the LU decomposition and associated permutation array
produced by math:decompose, and solves the set of simultane-
ous equations defined by the original matrix a and the right-
hand sides in the vector b.

math:transpose-matrix matrix &optional into-matrix
Transposes matrix.

Common Operations on Arrays

Page 188

Getting Information About an Array

The following functions can be used to get information about arrays:

array-dimension array axis-number
Returns the length of the dimension numbered dimension-
number of array.

array-dimensions array
array-dimensions returns a list whose elements are the di-
mensions of array.

array-has-leader-p array
Returns t if array has a leader; otherwise it returns nil

array-in-bounds-p array &rest point
Checks whether subscripts is a valid set of subscripts for array,
and returns t if they are; otherwise it returns nil.

array-leader-length array
Returns the length of array’s leader if it has one, or nil if it
does not.

length sequence Returns the number of elements in sequence as a non-negative
integer. sequence can be either a list or a vector (one-
dimensional array).

array-rank array Returns the number of dimensions of array.

array-row-major-index array &rest subscripts
Takes an array and valid subscripts for the array and returns
a single positive integer, less than the total size of the array,
that identifies the accessed element in the row-major ordering
of the elements.

array-total-size array
Returns the total number of elements in array.

array-element-type array
Returns the type of the elements of array.

adjustable-array-p array
Returns t if array is adjustable, and nil if it is not.

sys:array-row-span array
Returns the number of array elements spanned by one of its

rows, given a two-dimensional array.

sys:array-displaced-p array

Tests whether the array is a displaced array.
sys:array-indexed-p array

Returns t if array is an indirect array with an index-offset.
sys:array-indirect-p array

Returns t if array is an indirect array.

Page 189

Note: The following Zetalisp functions are included to help you read old programs.
In your new programs, where possible, use the Common Lisp equivalents of these
functions.

zl:array-active-length array
Returns the number of active elements in array. Use the Com-
mon Lisp function, length.

zl:array-dimension-n n array
Returns the size for the specified dimension of the array. Use
the Common Lisp equivalent, array-dimension.

zl:array-length array
Returns the number of elements in an array. Use array-total-
size which is the Common Lisp equivalent of zl:array-length.

zl:array-#-dims array
Returns the dimensionality of an array. Use the Common Llsp
function, array-rank.

Changing the Size of an Array

The following function can be used to modify the size of an existing array:

adjust-array array new-dimensions &key :element-type :initial-element :initial-
contents :fill-pointer :displaced-to :displaced-index-offset :dis-
placed-conformally
Changes the dimensions of an array. Returns an array of the
same type and rank as array, but with the new-dimensions. The
number of new-dimensions must equal the rank of the array.

Note: The following Zetalisp functions are included to help you read old programs.
In your new programs, where possible, use the Common Lisp equivalents of these
functions.

zl:adjust-array-size array new-index-length
Resizes or reshapes the first dimension of an array. Use the
Common Lisp function adjust-array.

zl:array-grow array &rest dimensions
Creates a new array of the same type as array, with the speci-
fied dimensions.

Arrays of Bits

The following functions are available for use with arrays of bits:

bit array &rest subscripts
Returns the element of array selected by the subscripts.

Page 190

sbit array &rest subscripts
Returns the element of array selected by the subscripts.

bit-and first second &optional third
Performs logical and operations on bit arrays.

bit-ior first second &optional third
Performs logical inclusive or operations on bit arrays.

bit-xor first second &optional third
Performs logical exclusive or operations on bit arrays.

bit-eqv first second &optional third
Performs logical exclusive nor operations on bit arrays.

bit-nand first second &optional third
Performs logical not and operations on bit arrays.

bit-nor first second &optional third
Performs logical not or operations on bit arrays.

bit-not source &optional destination
Returns a bit-array of the same rank and dimensions that con-
tains a copy of the argument with all the bits inverted.

bit-andcl first second &optional third
Performs logical and operations on the complement of first
with second on bit arrays.

bit-andc2 first second &optional third
Performs logical and operations on first with the complement
of second on bit arrays

bit-orcl first second &optional third
Performs logical or operations on the complement of first with
second on bit arrays.

bit-orc2 first second &optional third
Performs logical or operations on first with the complement of
second on bit arrays.

bit-vector-p object Tests whether the given object is a bit vector.

Adding to the End of an Array

The following functions can be used to add to the end of an array:

vector-pop array &optional default
Decreases the fill pointer by one and returns the vector ele-
ment designated by the new value of the fill pointer.

vector-push new-element vector
Stores new-element in the element designated by the fill pointer
and increments the fill pointer by one.

Page 191

vector-push-extend new-element vector &optional extension
Stores new-element in the element designated by the fill pointer
and increments the fill pointer by one.

vector-push-portion-extend to-array from-array &optional (from-start 0) from-end
Copies a portion of one array to the end of another, updating
the fill pointer of the second to reflect the new contents.

Note: The following Zetalisp functions are included to help you read old programs.
In your new programs, where possible, use the Common Lisp versions of these func-
tions.

zl:array-pop array &optional default
Decreases the fill pointer by one. Use the Common Lisp equiv-
alent, vector-pop. Use the Common Lisp function, vector-pop.

zl:array-push array x
Attempts to store x in the element of the array designated by
the fill pointer and increase the fill pointer by one. Use the
Common Lisp function, vector-push.

zl:array-push-extend array data &optional extension
This function is similar to zl:array-push, except that if the fill
pointer gets too large, the array is grown to fit the new ele-
ment. Use the Common Lisp function, vector-push-extend.

zl:array-push-portion-extend fo-array from-array &optional (from-start 0) from-end
Copies a portion of one array to the end of another, updating
the fill pointer of the other to reflect the new contents. Use
the Common Lisp function, vector-push-portion-extend.

Copying an Array

The following functions can be used to copy the contents of arrays:

2d-array-blt alu nrows ncolumns from-array from-row from-column to-array to-row
to-column
Copies a rectangular portion of from-array into a portion of fo-
array.

bitblt alu width height from-array from-x from-y to-array to-x to-y
Copies a rectangular portion of from-raster into a rectangular
portion of to-raster.

copy-array-contents from-array to-array
Copies the contents of from-array into the contents of to-array,
element by element.

copy-array-contents-and-leader from-array to-array
Copies the contents and leader of from-array into the contents
of to-array, element by element.

Page 192

copy-array-portion from-array from-start from-end to-array to-start to-end
Copies the portion of the array from-array with indices greater
than or equal to from-start and less than from-end into the por-
tion of the array to-array with indices greater than or equal to
to-start and less than to-end, element by element.

list-array-leader array &optional limit
Creates and returns a list whose elements are those of array’s
leader.

replace sequencel sequence2 &Kkey (:startl 0) :endl (:start2 0) :end2
Destructively modifies sequencel by copying into it successive
elements from sequence2.

Converting Between Arrays and Lists

The following functions convert between arrays and lists:

zl:fillarray array source
Fills up array with the elements of source.

zl:listarray array &optional limit
Creates and returns a list whose elements are those of array.

Accessing Multidimensional Arrays as One-dimensional

The sys:array-register-1d declaration is used together with the following functions
to access multidimensional arrays as if they were one-dimensional. See the section
"Function-body Declarations".

This declaration allows loop optimization of multidimensional array subscript cal-
culations. The user must do the reduction from multiple subscripts to a single
subscript.

For an example: See the function sys:%1d-aref.

sys:%ld-aref array 10
Returns the element of array selected by the index.

sys:%ld-aloc array 10
Like zl:aloe except that it ignores the the number of dimen-
sions of the array and acts as if it were a one-dimensional ar-
ray.

sys:array-row-span array
Returns the number of array elements spanned by one of its
rows, given a two-dimensional array.

Accessing Arrays Specially

Page 193

The function sys:array-row-span is for users of sys:%ld-aref and the sys:array-
register-1d declaration is for users who need to perform their own subscript calcu-
lations and do special loop optimizations.

sys:array-row-span array Function

Returns the number of array elements spanned by one of its rows, given a two-
dimensional array. Normally, this is just equal to the length of a row (that is, the
number of columns), but for conformally displaced arrays, the length and the span
are not equal.

(sys:array-row-span (make-array ’(4 5))) => 5
(sys:array-row-span (make-array ’(4 H)
:displaced-to (make-array ’(8 9))
:displaced-conformally t))
=> 9

Note: If the array is conceptually a raster, it is better to use decode-raster-array
than sys:array-row-span.

For a table of related items: See the section "Getting Information About an Array".
See the section "Accessing Multidimensional Arrays as One-dimensional”.

Array Representation Tools

The following functions and variables are primitives.

sys:*array-type-codes*
A variable that is a list of all the array type symbols.

sys:array-bits-per-element
An association list that associates array type and symbols with
size.

sys:array-bits-per-element array-type
A function that returns the number of bits per cell for un-
signed numeric arrays.

sys:array-element-size array
Given an array, returns the number of bits that fit in an ele-
ment of that array.

sys:array-element-byte-size array
Given an array, returns the number of bits that fit into an ele-
ment of that array.

sys:array-elements-per-q
An association list that associates each array type symbol with
the number of array elements stored in one word.

sys:array-elements-per-q array-type
A function that returns the number of array elements stored in
one word.

Page 194

sys:array-types index
Returns the symbolic name of the array type.

Other Array Functions

sys:return-array array
This function attempts to return array to free storage. This is
a subtle and dangerous feature.

sys:with-stack-array (var length &key :type :elemenit-type :initial-element :initial-
contents :displaced-to :displaced-index-offset :displaced-
conformally :leader-list :leader-length :named-structure-symbol
Aanitial-value :fill-pointer) &body body
Like with-stack-list, but makes an array.

Row-major Storage of Arrays

This section describes how arrays are stored in memory. This is an implementation
detail that does not concern most programmers. However, if you use some of the
advanced array practices, such as displaced arrays or adjusting the array size dy-
namically, you need to understand how arrays are stored in memory.

Genera stores multi-dimensional arrays in row-major order. The following 2 by 3
two-dimensional array illustrates row-major order. Two-dimensional arrays have
rows and columns. The number of rows is the span of the first dimension and the
number of columns is the span of the second dimension. When accessing a two-
dimensional array, the row is the first subscript and the column is the second
subscript.

Column
0 1 2
Row
0 0,0 0,1 0,2
1 L0 1,1 1,2

In row-major order, the array elements are arranged in memory in the following
order:

(8,8) (8,1 (8,2) (1,8) (1,1 (1,2)

In other words, the sequence is determined by going across the row from column
to column. Thus, the first, or row, index remains constant while the second, or
column, index changes as you follow the linear sequence in memory.

Compatibility Operations for Arrays

Page 195

Zetalisp Array Types

This section describes the Zetalisp array types. Zetalisp array types are known by
a set of symbols whose names begin with "art-" (for ARray Type). For example, a
general array is called a Zetalisp sys:art-q array. Zetalisp has many types of spe-
cialized arrays, such as sys:art-fixnum and sys:art-boolean. This terminology is
being phased out in favor of Common Lisp terminology.

sys:art-q Array Type

The most commonly used type is sys:art-q. A sys:art-q array simply holds Lisp ob-
jects of any type. This array type can store single-precision floating-point numbers
without any storage overhead.

sys:art-q-list Array Type

Similar to the sys:art-q type is sys:art-q-list. Its elements can be any Lisp object.
The difference is that a sys:art-q-list array "doubles" as a list; the function g-l-p
takes a sys:art-q-list array and returns a list whose elements are those of the ar-
ray, and whose actual substance is that of the array. If you either rplaca the ele-
ments of the list or setf the car of a sublist, the corresponding element of the ar-
ray changes, and if you store into the array, the corresponding element of the list
changes the same way. An attempt to either rplacd the list or setf the edr of a
sublist causes an error, since arrays cannot implement that operation.

The following function manipulates sys:art-q-list arrays:
g-lp Returns a list that stops at the fill pointer.

You cannot use make-array to create a sys:art-q-list array. If you need to create
such an array, use zl:make-array.

sys:art-nb Array Type

There is a set of types called sys:art-lb, sys:art-2b, sys:art-4b, sys:art-8b, and
sys:art-16b. These names are short for "1 bit", "2 bits", and so on. Each element of
a sys:art-nb array is a nonnegative integer, and only the least significant n bits
are remembered in the array; all the others are discarded. Thus sys:art-1b arrays
store only 0 and 1, and if you store a 5 into a sys:art-2b array and look at it later,
you find a 1 rather than a 5.

These arrays are used when you know beforehand that the integers stored are non-
negative and limited to a certain number of bits. They occupy less storage than
sys:artq arrays, because more than one element of the array is kept in a single
machine word. (For example, 32 elements of a sys:art-1b array, or 2 elements of a
sys:art-16b array, fit into one word).

sys:art-string Array Type

Page 196

A sys:art-string array is one whose elements are simple characters. One-
dimensional arrays of this type are character strings.

sys:art-fat-string Array Type

A sys:art-fat-string array is a string whose elements are fat characters. For a de-
scription of fat strings: See the section "Introduction to Strings".

sys:art-boolean Array Type

A sys:art-boolean array is one whose elements can take on the values t and nil. It
uses only one bit of storage per element.

sys:art-fixnum Array Type

A sys:art-fixnum array is one that stores fixnums only. It is similar to the
sys:art-1b, array types, except that sys:art-fixnum arrays can also store negative
fixnums. In contrast, sys:art-nb arrays always store the low n bits and return pos-
itive fixnums when read.

For example, the following example creates a square, 2-dimensional array of
fixnums with 1024 elements on a side:

(make-array ’ (1024 10824) :element-type ’fixnum)

loef and zl:aloc are invalid on sys:art-fixnum arrays, as that would provide a
means to store something other than a fixnum into the array.

sys:art-fixnum arrays are similar to sys:art-q arrays except that storing a non-
fixnum signals an error. sys:art-fixnum arrays can be used as the array argu-
ments to bitblt and 2d-array-blt arrays (as can sys:art-q arrays whose elements
are fixnums), and the error checking ensures all the entries are fixnums. They can
also be used for disk-arrays.

Zetalisp Array-Accessing Primitives

You should use the basic array functions: aref, setf of aref, and loef of aref.
There is no reason for any program to call the array primitives zl:ar-1, zl:as-1,
zl:ar-2, and so forth explicitly. These primitives are documented because many old
programs use them.

The compiler turns aref into zl:ar-1 and zl:ar-2 according to the number of sub-
scripts specified. It also turns zl:aset into zl:as-1 and zl:as-2 and zl:aloec into
zl:ap-1 and zl:ap-2.

Array Functions in the CL Package with SCL Extensions

Here are the array functions that have Symbolics Common Lisp extensions:

Page 197

Function Extension(s)

make-array :displaced-conformally, :area, :leader-list, :leader-length, :named-
structure-symbol

adjust-array :displaced-conformally

Sequences

Introduction to Sequences

A sequence is a data type that contains an ordered set of elements. It embraces
both lists and vectors (one-dimensional arrays).

Depending on your specific application, you might choose to represent ordered sets
as lists or strings. Symbolics Common Lisp provides generic sequence functions
that operate on both lists and vectors. These functions perform basic operations on
sequences of Lisp objects, irrespective of their underlying representation. It makes
sense to reverse a sequence or extract a range of sequence elements, whether the
sequence is implemented as a vector or a list. The following sequence functions
are defined in Symbolics Common Lisp:

concatenate copy-seq count
count-if count-if-not delete
delete-duplicates delete-if delete-if-not
elt every fill

find find-if find-if-not
length make-sequence map

merge mismatch notany
notevery nreverse nsubstitute
nsubstitute-if nsubstitute-if-not position
position-if position-if-not reduce
remove remove-duplicates remove-if
remove-if-not replace reverse
search some sort
stable-sort subseq substitute
substitute-if substitute-if-not

Zetalisp has analogous functions for some of these operations:

zl:delete zl:every zl:length
zl:map zl:nreverse zl:remove
zl:reverse zl:some zl:sort

zl:stable-sort

Some of these functions have variants formed by a prefix or a suffix, for example,
reverse and nreverse, and position, position-if, and position-if-not.

Page 198

In addition, many functions accept keyword arguments that modify the sequence
operations.

How the Reader Recognizes Sequences

The reader does not recognize a sequence as such; it recognizes its component
types, lists and vectors.

See the section "How the Reader Recognizes Lists".

A vector can be denoted by surrounding its components by #(and), as in #(a b c).
The most common kind of vector is a string. A string is a vector whose elements
are characters. The reader knows that a string is being entered when it receives a
sequence of characters enclosed in double quotes ("). See the section "How the
Reader Recognizes Strings".

Printed Representation of Sequences
The printed representation of a list starts with an open parenthesis, as in:
(foo bar baz)

See the section "Printed Representation of Lists".

The printed representation of a vector (a one-dimensional array) is not very mean-
ingful. It describes the symbolic type of the array, the size of the dimension, and
the memory location of the array. The display begins with a pound sign and is en-
closed by angle brackets, as in:

H<ART-Q-10 28423710>

Type Specifiers and Type Hierarchy for Sequences

The type specifiers relating to sequences are:

array vector list symbol
simple-array bit-vector cons null
simple-vector simple-bit-vector keyword structure

Details about each type specifier appear in its dictionary entry.

Figure ! shows the relationships between the various data types relating to se-
quences. For more on data types, type specifiers, and type-checking in Symbolics
Common Lisp: See the section "Data Types and Type Specifiers".

Sequence Operations

The sequence operations fall into six major categories:

e Constructing and accessing
e Predicates

Page 199

t
symbol sequence array
list
keyword null cons vector simple-array

bit-vector simple-vector

simple-bit-vector structure
Figure 13. Symbolics Common Lisp Sequence Data Types

e Mapping

Modifying

° Reducing

° Replacing

e Searching

e Sorting and merging

Whenever a sequence function constructs or returns a new vector, it always re-
turns a simple vector; similarly, any strings constructed are simple strings.

The sequence functions accept a number of keyword arguments. For the sake of
efficiency, some of these arguments delimit and direct sequence operations. These
keywords include the following:

:start

:end

:startl, :start2
:endl, :end2
:from-end
:count

These arguments are explained in the appropriate dictionary entries. Other key-
word arguments, including :test, :test-not, and :key, allow you to selectively per-
form operations on the elements of a sequence according to some stated criterion.

Page 200

Testing Elements of a Sequence

Elements of a sequence can be tested either by using the appropriate keyword
(:test, :test-not, :key) or by using one of the -if or -if-not variants of the basic se-
quence operations (for example, remove, remove-if, remove-if-not).

If an operation requires testing elements of the sequence according to some crite-
rion, the criterion can be specified in one of the following ways:

e The operation accepts an item argument, and sequence elements are tested for
being eql to item. (Note: eql is the default test.) For example, remove returns a
copy of sequence from which all elements eql to item have been removed:

(remove item sequence)

e The variants formed by appending -if and -if-not to the function name accept a
one-argument predicate (not an item), and sequence elements are tested for sat-
isfying and not satisfying the predicate. For example, remove-if returns a copy
of sequence from which all numbers have been removed.

(remove-if ##’numberp sequence)

e The operation accepts the :test or :test-not keywords, which allow you to specify
a test other than the default, eql. (Note: it is not valid to use both :test and
:test-not in the same call.) For example, the remove operation returns a copy of
sequence from which all elements equal to ifem have been removed.

(remove item sequence :test it’equal)

¢ You can modify sequence elements before they are passed to the testing function
by using the :key keyword argument. In this way you can create arbitrarily
complicated tests for operating on sequences. :key takes a function of one argu-
ment that will extract from an element the part to be tested in place of the
whole (original) element. For example, the lambda expression below decrements
each element in the vector before the element is tested for being eql to 0.

(delete @ #(1 2 1) :key #’(lambda (x) (- x 1))) => }#(2)

Another example: find searches for the first element of sequence whose car is eq
to item.

(find item sequence :test #’eq :key #t’car)
In the sequence operations that require a test, an element x of a sequence satisfies

the test if any of the following conditions is true. (keyfn is the value of the :key
keyword argument, whose default is the identity function):

e A basic function is called, testfun is specified by :test, and (funcall testfun item
(keyfn x)) is true.

e A basic function is called, testfun is specified by :test-not, and (funcall testfun
item (keyfn x)) is false.

e An -if function is called, and (funcall predicate (keyfn x)) is true.

Page 201

e An -if-not function is called, and (funcall predicate (keyfn x)) is false.

Similarly, two elements x and y of a sequence match if either of the following is
true.

e testfun is specified by :test, and (funcall testfun (keyfn x) (keyfn y)) is true.

e testfun is specified by :test-not, and (funcall testfun (keyfn x) (keyfn y)) is
false.

The order in which arguments are given to testfun corresponds to the order in
which those arguments (or the sequence containing those arguments) were passed
to the sequence function in question. If a sequence function gives two elements
from the same sequence argument to testfun, the elements are passed in the same
order in which they appear in the sequence.

Sequence Construction and Access

The following functions perform simple operations on sequences. make-sequence,
concatenate, and copy-seq create new sequences. Whenever a sequence function
constructs and returns a new vector, that vector is always a simple vector; any
new strings returned are simple strings.

elt sequence index Extracts an element from sequence at position
index. Returns that element.

subseq sequence start &optional end
Non-destructively creates a subsequence of the
argument sequence. Returns a new sequence.

copy-seq sequence &optional area Non-destructively copies sequence. Returns a
new sequence which is equalp (not eq) to se-
quence.

concatenate result-type &rest sequences
Combines the elements of the sequences in the
order the sequences were given as arguments.
Returns the new, combined sequence.

length sequence Counts the number of elements in sequence.
Returns a non-negative integer.

make-sequence type size &key :initial-element :area
Creates and returns a sequence.

Note: The following Zetalisp function is included to help you read old programs. In
your new programs, use the Common Lisp equivalent of this function.

zl:length x Counts the elements in the list x. Returns a
non-negative integer. Use Common Lisp func-
tion, length.

Page 202

Predicates that Operate on Sequences

The predicates take as many arguments as there are sequences provided. The ar-
gument predicate is first applied to the elements with index 0 in each of the se-
quences, and perhaps then to the elements with index 1, and so on, until a criteri-
on for termination is met, or the end of the shortest sequence is reached.

some predicate &rest sequences

every predicate &rest sequences

notany predicate &rest sequences

notevery predicate &rest sequences

Each element in sequences is tested against
predicate. Returns whatever value predicate re-
turns as non-nil, as soon as any invocation of
predicate returns a non-nil value. Otherwise re-
turns nil.

Each element in sequences is tested against
predicate. Returns nil as soon as any invocation
of predicate returns nil. Otherwise returns
non-nil.

Each element in sequences is tested against
predicate. Returns nil as soon as any invocation
of predicate returns a non-nil value. Otherwise
returns non-nil.

Each element in sequences is tested against
predicate. Returns non-nil as soon as any invo-
cation of predicate returns nil. Otherwise re-
turns nil

Note: The following Zetalisp predicates are included to help you read old programs.
In your new programs, where possible, use the Common Lisp equivalent of these

predicates.

zl:some list pred &optional (step #’cdr)

Each element in list is tested against pred. Re-
turns a tail of list such that the car of the tail
is the first element that pred returns non-nil
when applied to, or nil if pred returns nil for
every element.

zl:every list pred &optional (step #’cdr)

Mapping Sequences

Each element, default step, in list is tested
against pred. Returns t if pred returns non-nil
when applied to every element of list, or nil if
pred returns nil for some element.

Page 203

Mapping is a type of iteration in which a function is successively applied to pieces
of one or more sequences. The result is a sequence containing the respective re-
sults of the function applications. The function map can be applied to any kind of
sequence, but the other map-type functions operate only on lists. The function
reduce is included here because of its conceptual relationship to mapping.

map result-type function &rest sequences
Applies function to sequences. Returns a new
sequence, such that element i of the new se-
quence is the result of applying function to ele-
ment i of each of the argument sequences.

map-into result-sequence function &rest sequences
Destructively modifies the resuli-sequence to
contain the results of applying the function to
each element in the argument sequences in
turn.

reduce function sequence <&key from-end (start 0) end (nitial-value nil initial-
value-p)
Combines the elements of sequence, using a bi-
nary operation. Returns the result of using
function on sequence.

Note: The following Zetalisp function is included to help you read old programs. In
your new programs, use the Common Lisp equivalent of this function.

zl:map fen list &rest more-lists Applies fen to list and to successive sublists of
that list. Returns a new list, such that sublist i
of the new list is the result of applying func-
tion to sublist i of each of more-lists. Use the
Common Lisp function mapl.

Sequence Modification

Each of these modifying operations alters the contents of a sequence or produces
an altered copy of a given sequence. Some of these functions have separate "de-
structive" versions, prefixed by the letter "n", for example, nreverse. Others have
"-if" and "-if-not" variants of the basic sequence operation. Many of the searching
functions accept the testing keywords: :test, :test-not, and :key.

reverse sequence Returns a new sequence of the same type as
sequence,containing the same elements in re-
verse order.

Page 204

nreverse sequence Returns a sequence containing the same ele-
ments as sequence, but in reverse order. This is
a destructive version of reverse.

fill sequence item &key (:start 0) :end
Destructively modifies sequence by replacing
each element of the subsequence specified by
the :start (which defaults to zero) and :end
(which defaults to the length of the sequence)
arguments with item.

replace sequencel sequence2 &Kkey (:startl 0) :endl (:start2 0) :end2
Destructively modifies sequencel by copying in-
to it successive elements from sequence2.

remove-duplicates sequence &key :from-end (:test #eql) :test-not (:start 0) :end :key
Compares the elements of sequence pairwise,
and if any two match, then the one occurring
earlier in the sequence is discarded.

delete-duplicates sequence &key (:test #eql) :test-not (:start 0) :end :from-end :key
:replace
Compares the elements of sequence pairwise,
and if any two match, then the one occurring
earlier in the sequence is discarded. This is a
destructive function.

substitute newitem olditem sequence &key (:test #eql) :test-not (key #’identity)
Afrom-end (:start 0) :end :count
Returns a sequence of the same type as se-
quence that has the same elements, except that
those in the subsequence delimited by :start
and :end and satisfying the predicate specified
by the :test keyword are replaced by newitem.

substitute-if newitem predicate sequence &key :key :from-end (:start 0) :end :count
Returns a sequence of the same type as se-
quence that has the same elements, except that
those in the subsequence delimited by :start
and :end and satisfying predicate arereplaced
by newitem.

substitute-if-not newitem predicate sequence &key :key :from-end (:start 0) :end
:count
Returns a sequence of the same type as se-
quence that has the same elements, except that
those in the subsequence delimited by :start
and :end that do not satisfy predicate are re-
placed by newitem.

nsubstitute newitem olditem sequence &key (:test #eql) :test-not (:key #identity)
Afrom-end (:start 0) :end :count

Page 205

Returns a sequence of the same type as the ar-
gument sequence which has the same elements,
except that those in the subsequence delimited
by :start and :end and satisfying the predicate
specified by the :test keyword have been re-
placed by newitem. This is a destructive ver-
sion of substitute.

nsubstitute-if newitem predicate sequence &key :key :from-end (:start 0) :end :count

Returns a sequence of the same type as the ar-
gument sequence which has the same elements,
except that those in the subsequence delimited
by :start and :end and satisfying predicate
have been replaced by newitem. This is a de-
structive version of nsubstitute.

nsubstitute-if-not newitem predicate sequence &key :key :from-end (:start 0) :end

:count

Returns a sequence of the same type as the ar-
gument sequence which has the same elements,
except that those in the subsequence delimited
by :start and :end which do not satisfy predi-
cate have been replaced by newitem. This is a
destructive version of substitute-if-not.

Note: The following Zetalisp functions are included to help you read old programs.
In your new programs, where possible, use the Common Lisp equivalents of these

functions.

zl:reverse [ist

zl:nreverse [

Reducing Sequences

Creates a new list whose elements are the ele-
ments of list taken in reverse order. Returns a
new list.

Reverses a list [. Returns a reversed list. This
is a destructive version of zl:reverse.

remove item sequence &key (test #eql) :tesi-not (ckey #’identity) :from-end (:start

0) :end :count
Non-destructively removes occurrences of item
in sequence. Returns the new sequence.

remove-if predicate sequence &key :key :from-end (:start 0) :end :count

Non-destructively removes those items from the
sequence that satisfy predicate. Returns the new
sequence.

remove-if-not predicate sequence &key :key :from-end (:start 0) :end :count

Non-destructively removes those items from se-

Page 206

quence that do not satisfy predicate. Returns
the new sequence.

remove-duplicates sequence &key :from-end (:test #eql) :test-not (:start 0) :end :key

Non-destructively removes duplicate elements
from sequence. Returns the new sequence.

delete item sequence &key (test #eql) :test-not (ckey #identity) :from-end (:start 0)
cend :count
Destructive version of remove. Returns the
modified sequence.

delete-if predicate sequence &key :key :from-end (:start 0) :end :count
Destructive version of remove-if. Returns the
modified sequence.

delete-if-not predicate sequence &key :key :from-end (:start 0) :end :count
Destructive version of remove-if-not. Returns
the modified sequence.

delete-duplicates sequence &key (:test #eql) :test-not (:start 0) :end :from-end :key
:replace
Destructive version of remove-duplicates. Re-
turns the modified sequence.

Note: The following Zetalisp functions are included to help you read old programs.
In your new programs, where possible, use the Common Lisp equivalents of these
functions.

zl:remove item list &optional ({imes most-positive-fixnum)
Non-destructive version of zl:delete. Use the
Common Lisp function remove.

zl:delete item list &optional (ntimes -1)
Deletes occurrences of item from list (equal is
used for the comparison). Returns the list with
all occurrences of ifem removed. Use the Com-
mon Lisp function delete.

Replacing Sequences

fill sequence item &key (start 0) :end
Destructively replaces each element of sequence
with item. Returns the modified sequence.

replace sequencel sequence2 &key (:startl 0) :endl (:start2 0) :end2
Destructively modifies sequencel by copying in-
to it successive elements from sequence2.

Page 207

substitute newitem olditem sequence &key (:test #eql) :test-not (-key #’identity)
:from-end (:start 0) :end :count
Non-destructively replaces olditem for newitem
in sequence. Returns the new sequence.

substitute-if newitem predicate sequence &key :key :from-end (:start 0) :end :count
Non-destructively replaces elements in sequence
that satisfy predicate with newitem. Returns the
new sequence.

substitute-if-not newitem predicate sequence &key :key :from-end (start 0) :end
:count
Non-destructively replaces elements in sequence
that do not satisfy predicate with newitem. Re-
turns the new sequence.

nsubstitute newitem olditem sequence &key (test #eql) :test-not (-key #identity)
:from-end (:start 0) :end :count
Destructive version of substitute. Returns the
modified sequence.

nsubstitute-if newitem predicate sequence &key :key :from-end (:start 0) rend :count
Destructive version of substitute-if. Returns
the modified sequence.

nsubstitute-if-not newitem predicate sequence &key :key :from-end (:start 0) :end
:count
Destructive version of substitute-if-not. Re-
turns the modified sequence.

Searching for Sequence Items

Each of the searching functions searches a sequence to locate one or more ele-
ments satisfying some test.

find item sequence &key (itest #eql) :test-not (:key #identity) :from-end (:start 0)
cend
Finds the leftmost item in sequence. Returns
item if found, otherwise nil.

find-if predicate sequence &key :key :from-end (:start 0) :end
Finds the leftmost element in sequence that
satisfies predicate. Returns said element if
found, otherwise nil.

find-if-not predicate sequence &Kkey :key :from-end (:start 0) :end
Finds the leftmost element in sequence that
does not satisfy predicate. Returns said element
if found, otherwise nil.

Page 208

position item sequence &key (:test #eql) :test-not (:key #identity) :from-end (start
0) :end
Finds the leftmost item in sequence. Returns
the index of the item if found, otherwise nil.

position-if predicate sequence &key :key :from-end (:start 0) :end
Finds the leftmost element in sequence that
predicate. Returns the index of the element if
found, otherwise nil.

position-if-not predicate sequence &key :key :from-end (:start 0) :end
Finds the leftmost element in sequence that
does satisfy predicate. Returns the index of the
element if found, otherwise nil.

count item sequence &key (test #eql) :test-not (:key #identity) :from-end (:start 0)
cend
Counts the elements in the specified subse-
quence of sequence that satisfy predicate speci-
fied by :test. Returns the result.

count-if predicate sequence &Kkey :key :from-end (:start 0) :end
Counts the elements in the specified subse-
quence of sequence that satisfy predicate. Re-
turns the result.

count-if-not predicate sequence &key :key :from-end (:start 0) :end
Counts elements in the specified subsequence
of sequence that do not satisfy predicate. Re-
turns a non-negative integer.

mismatch sequencel sequence2 &key :from-end (:test #eql) :test-not :key (:startl 0)
(:start2 0) :endl :end2
Compares the specified subsequences of se-
quencel and sequence2 element-wise. Returns
nil if they are of equal length and match at ev-
ery element. Otherwise, the result is a non-
negative integer representing where the se-
quences failed to match.

search sequencel sequence2 &key :from-end (:test #eql) :test-not :key (:startl 0)
(:start2 0) endl :end2
Looks for a subsequence of sequence2 that ele-
ment-wise matches sequencel. Returns nil if no
such subsequence exists. Otherwise, it returns
the index into sequence2 of the leftmost ele-
ment of the leftmost such matching subse-
quence.

Page 209

Sorting and Merging Sequences

The sorting and merging functions destructively modify argument sequences in or-
der to place a sequence into a sorted order or to merge two previously sorted se-
quences.

sort sequence predicate &key key Destructively modifies sequence by sorting it
according to an order determined by predicate.
Returns a modified sequence.

stable-sort sequence predicate &key key
Same as sort, however stable-sort guarantees
that elements considered equal by predicate will
remain in their original order.

merge result-type sequencel sequence2 predicate &key key
Destructively merges sequencel and sequence2
according to an order determined by predicate.
Returns merged sequences.

Note: The following Zetalisp functions are included to help you read old programs.
In your new programs, where possible, use the Common Lisp equivalents of these
functions.

zl:sort x sort-lessp-predicate Sorts the contents of the array or list x by the
order determined by sort-lessp-predicate. Re-
turns a modified list or array x. Use the Com-
mon Lisp function sort.

zl:stable-sort x lessp-predicate Same as zl:sort, however zl:stable-sort guaran-
tees that elements considered equal by predi-
cate will remain in their original order. Use
the Common Lisp function stable-sort.

Sequence Functions in the CL Package with SCL Extensions

Here are the sequence functions that have Symbolics Common Lisp extensions:

Function Extension(s)
copy-seq area
delete-duplicates :replace

make-sequence area

Characters

Page 210

For an introduction to characters, see the section "Overview of Characters".

How the Reader Recognizes Characters

The reader recognizes characters by the #\ prefix followed by the character’s name.
For example:

#\A 1s read as the character A

#\1 1s read as the character 1
#\Space is read as the character Space
#\control-A is read as the character c-A

The following examples show how to represent the character A with various bits
set:

Meta bit: #\meta-A or #\m-A

Hyper bit: #hyper-A or #h-A

Super bit: #\super-A or #\s-A

Control bit: #\control-A or #\c-A

Control and meta bits: #\c-m-A or #\m-c-A

All bits set: #\h-s-m-c-A (or other combinations)

For more information on bit keys, see the section "Using Modifier Keys".

The reader recognizes characters that are in character sets other than the Symbol-
ics character set by the #\ prefix followed by the name of the character set, a
colon, and the name of the character. For example:

#\mouse:nw-arrow nw-arrow character in mouse character set
#\mouse:scissors scissors character in mouse character set
#arrow:eye eye character in arrow character set

Type Specifiers and Type Hierarchy for Characters

Characters are Lisp objects of type character. character has two subtypes: string-
char and standard-char.

character All characters are of type character.

string-char This is a subtype of character. Characters that are in the
Symbolics standard character set with bits field of zero and
style of NIL.NIL.NIL are of type string-char.

standard-char This is a subtype of string-char. Characters that are in the
Common Lisp standard character set are of type standard-
char.

The Common Lisp standard character set includes:

Page 211

'@ "#$% & ()% +,-./0123456789:;<=>7
ABCDEFGHIJKLMNOPQRSTUVWXYZI[\]"_
‘abecdefghijklmnopgqrstuvwxyz{ |}~

Genera also supports the following semi-standard Common Lisp characters:
#\Backspace #\Tab #\Linefeed #\Page #\Return #\Rubout #\Space #Newline

Genera calls any character that is of type string-char a thin character because it
can be represented with less storage space. A character that is not of type string-
char because it is in a character set other than the Symbolics character set, or be-
cause it contains non-zero bits or style information is called a fat character.

For a complete list of characters supported in the Symbolics standard character
set, see the section "The Character Set".

For a list of character type-checking predicates, see the section "Character Predi-
cates".

Character Objects

A character is a type of Lisp object. A character object is used to represent letters
of the alphabet and numbers, among other things. Characters are the building
blocks of strings; a string is a one-dimensional array of characters.

Each character object has the following attributes: the character code, the charac-
ter set, the bits, and the character style.

Character code Identifies this character, such as "uppercase A".

Character style Specifies how the character should appear. For example:
FIX. ROMAN.NORMAL

Bits Indicates whether any of these bits are set for the character:

Control, Meta, Super, and Hyper.

Fields of a Character

The following diagram depicts the fields of a character:

|<---Bits--->|<--Style--->|<----——- Char code------- > |
|<-Char set->|<-Subindex->|

This diagram makes it clear that a character object is composed of three indepen-
dent attributes: the bits, the character style, and the character code. The character
code can be broken down into the character set and a subindex into that character
set.

Genera provides functions that access the various fields of a character:

Function Field accessed

Page 212

char-int Entire character

char-code Character code field

char-bits Bits field

sys:char-subindex Subindex field

si:char-style Returns the character style object that is associated

with the integer stored in the Style field.

There is a one-to-one correspondence between each character style (such as
NIL.NIL.NIL. and SWISS.BOLD.NORMAL) and the character style index, which is
the integer stored in the style field. This association is maintained in a system ta-
ble, and it is different from one machine to another, and can be different when
you cold boot your machine. Do not write programs that depend on a character
style index representing the same character style from one cold boot to another, or
from one machine to another.

Common Lisp has a font field instead of a character style field. As implemented in
SCL, characters have no font field and the char-font-limit is 1. This is in compli-
ance with Common Lisp.

In Symbolics documentation the word font is used in two contexts: to describe a
font that is specific to a device, for representing characters; to refer to the font of
a character as implemented in releases of Symbolics software prior to Genera 7.0.

Character Sets

The code field of a character can be broken down into a character set and an in-
dex into that character set.

A character set is a set of related characters that are recognizably different from
other characters. Genera supports the standard Symbolics character set, which is
an upward-compatible extension of the 96 Common Lisp standard characters and
the 6 Common Lisp semi-standard characters. It is nearly an upward-compatible
extension of ASCII; it uses a single Newline character and omits the ASCII control
characters. See the section "The Character Set".

Another example of a character set is the Cyrillic alphabet; this is not implement-
ed in Genera.

When comparing characters, there is no intrinsic ordering between characters in
different character sets. Two characters of different character sets are never
equal. Less-than is not well defined between them. Within a single character set,
less-than is defined so that characters (and strings) can be sorted alphabetically.

Genera supports three character sets: the Symbolics standard character set; the

mouse character set, and the arrow character set. Figure ! shows the characters in
the mouse character set. Figure ! shows the characters in the mouse character set.

Characters that are in character sets other than the Symbolics character set are
represented by the #\ prefix followed by the name of the character set, a colon,
and the name of the character. For example:

Page 213

#\mouse:nw-arrow
#\mouse:scissors
#\mouse:trident
#\arrow:center-dot
#\arrow:eye
#\arrow:circle-cross

——mouse-—-
Up-arrow 1 Medium-Triangle
Right—Arrow =+ Small-Triangle »
Down-Arrow Inverse-Up-Arrow Y
Left-Arrow 4= Inverse-Down-Arrow Kd
Wertical-Double-Arrow § Flus +
Horizontal-Double-Arrow Filled-Lozenge -

My -Arrow K Hollow-UP-Arrow T
Times * Hollow-My-Arrow K
Fat-Up-Arrow 4 Hollow-MNE-Arrow #
Fat-Right-Arrcw mp Dot -
Fat-Down-Arrow 4 Fat-Times X
Fat-Left-Arrow 4 Small-Filled-Circle
Fat-Double-Vertical-Arrow $ Filled-Circle @
Fat-Double-Horizontal-Arrow 4 Fat-Circle O
Paragraph 9 Fat-Circle-Minus ©
My -Corner [Fat-Circle-Plus &
SE-Corner Down-Arrow-To-Bar 4
Hourglass X short-Down-Arrow 4
Circle-Plus & Up-Arrow-To-Bar ¥
Paintbrush g Short-Up-Arrow 1
Scissors W Boxed-Up-Triangle [&
Trident ¥ Boxed-Down-Triangle |Z]
MNE-&rrow A Fat-Plus =+
Circle-Times & Maltese-Cross W

Big-Triangle

Figure 14. Mouse Character Set

Character Code, Bits, and Style

Page 214

——arrow-——
Center-Dot Left-Arrowhead-Dot Right-Arrowhead
Circle-Plus B Right-Triangle ™ Right-Open-Arrow =
Circle-Cross & Up-Open-Arrow Baseline-Caret «
Down-Arrowhead ¥ Right-Hand & Right-Short-Open-Arrow #
Up-Arrowhead A Left-Hand =& Open-x #
Right-Fat-Arrow M Eve 4

Right-Arrowhead-Dot ® Left-Arrowhsad <

Figure 15. Arrow Character Set

The character code is a field of the character that identifies that character. Other
systems use an ASCII code to identify a character. Characters that are recogniz-
ably distinct always have different character codes. For example, the Roman a and,

the Greek o have two different character codes.

A character can be modified by the bits field and the character style field. These
two modifications of a character leave it recognizably the same; it does not change
the character code.

The bits field describes whether the hyper, super, control, or meta key is part of
this character. The character #\A has character code 65 and a bits field of 0. The
character #\c-A also has character code 65, but the bits field is set to char-
control-bit, which means that this is a control character. For a list of constants
that represent the control, hyper, super, and meta bits, see the section "Character
Bit Constants".

The character style describes how a character should appear. For example, the Ro-
man a, the bold a, and the italic ¢ all have the same character code. The style
field also expresses such attributes of a character as its displayed size and the
typeface used.

An operational definition of the difference between the code and style fields is pro-
vided by the char-equal function, which compares the character code and bits but
ignores the style.

eq and Character Objects

Instead of using eq on character objects, use char-equal or char=. char= com-
pares characters exactly, according to all fields including code, bits, character
style, and alphabetic case. char-equal compares characters according to their code
and bits, ignoring case and character style.

eq is not well defined on character objects. Changing a field of a character object
gives you a "new copy" of the object; it never modifies somebody else’s "copy" of
"the same" character object. In this way character objects are similar to integers
with fields accessed by ldb and changed by dpb. Because eq is not well defined on
character objects, you should use eql to compare characters for identity, not the eq
function. Currently on the 3600 family of machines, eq and eql are equivalent for

Page 215

characters, just as they are equivalent for integers, but programs should not be
written to depend on this.

Note that eq might not work for characters in other implementations of the Com-
mon Lisp dialect.

Character Styles

What is a Character Style?
A character style is a combination of three characteristics that describe how a

character appears. These characteristics are the family, face, and size.

Family Characters of the same family have a typographic integrity, so
that all characters of the same family resemble one another.
Examples: SWISS, DUTCH, and FIX.

Face A modification of the family, such as BOLD or ITALIC.
Size The size of the character, such as NORMAL or VERY-SMALL.

The character style is the grouping of the family, face, and size fields. A character
style is often represented by the convention:

family.face.size
An example of a fully specified character style is:
SWISS.ITALIC.LARGE

Each element of the character style can be specified or left unspecified. A family,
face, or size of NIL means to use the default value. Most characters have the fol-
lowing character style:

NIL.NIL.NIL

Characters of style NIL.NIL.NIL are displayed in the default character style estab-
lished for the current output device.

Default Character Styles

The appearance of a character depends on two things: the character style of the
character, and the default character style. The default character style is a global
parameter of an output device. It applies for all processes. Windows, buffers, files,
and printers each have default character styles for output. The default character
style specifies the appearance of a character whose character style is NIL.NIL.NIL.
The character’s style is merged against the default character style to produce the
final appearance of the character. A default character style must be fully specified.

Page 216

We recommend that you use character styles by making good use of the default
character styles. You preserve the most flexibility by keeping the character style of
the characters themselves as unspecified as possible. If you want to change the ap-
pearance of all characters in a Zmacs buffer, a Zmail message or a window, you
can change the default character style instead of changing the character style of
each character.

The default character style affects the appearance of a character on output. There
is also a typein character style for each interactive stream, which is normally
NIL.NIL.NIL. The typein character style affects the character style in which char-
acters are entered as input. If the typein character style is NIL.BOLD.NIL, any
characters you enter at the keyboard have the character style NIL.BOLD.NIL. It is
important to be sure that the application program can handle characters whose
character style is something other than NIL.NIL.NIL, if you are going to use a
typein character style other than NIL.NIL.NIL.

If you only want to change the way that characters echo, but not the way they are
entered as input, you can change the echo character style. See the section "Using
Character Styles in the Input Editor".

Merging Character Styles

This section gives some examples of how the character style of a character is
merged against the default character style to produce a final result.

In general, we advise that you specify as little as possible when changing a char-
acter style. That is, if you want the character’s face to be italic, specify only the
face component and let the family and size come from the default character style.

Character Style Default Result of

of a Character Character Style Merging

NIL.NIL.NIL FIX. ROMAN.NORMAL FIX. ROMAN.NORMAL
NIL.ITALIC.LARGE FIX. ROMAN.NORMAL FIX.ITALIC.LLARGE

NIL.ITALIC.SMALLER FIX.ROMAN.NORMAL FIX.ITALIC.SMALL
SWISS.BOLD.LARGER FIX ROMAN.NORMAL SWISS.BOLD.LARGE
SWISS.BOLD.SAME FIX. ROMAN.NORMAL SWISS.BOLD.NORMAL

The family and face components are either NIL or the name of a family or face.

The size component can be NIL, an absolute size (such as LARGE or VERY-
SMALL) or a relative size (such as LARGER or SMALLER). A relative size is
merged against the default size such that when you merge LARGER against NOR-
MAL, the result is the next size larger than NORMAL.

The ordered hierarchy of sizes is:
