
Genera 8.1 Release Notes

Genera 8.1: Introduction and Highlights

Genera 8.1 includes several new features as well as a number of bug fixes and

performance improvements. Genera 8.1 is a unified release for all Symbolics plat-

forms, including the new MacIvory nodel 3. 

The new features are as follows:

• Common Lisp Interface Manager (CLIM). CLIM provides a high-level language

for defining presentation-based user interfaces that run under Genera and

CLOE, on UNIX-based workstations, and on PCs that support Common Lisp. The

important features of CLIM are:

° CLIM provides a portable user interface.

CLIM fits into an existing host system. With CLIM you can achieve the look

and feel of the target host system without implementing it directly, and with-

out using the low-level implementation language of the host system.

° CLIM is based on a presentation model. 

The CLIM presentation model provides the advantages of having the visual

representation of an object linked directly to its semantics. CLIM’s presenta-

tion model is similar to that used in Dynamic Windows.

° CLIM supports high-level programming techniques.

Using CLIM capabilities you can develop a user interface conveniently, includ-

ing formatted output, graphics, windowing, and commands that are invoked by

typing text or clicking a mouse, among other techniques.

• Some features from the X3J13 Common Lisp, including Conditions and the

LOOP Facility See the section "X3J13 Common Lisp Features". See the section

"Documentation Update: future-common-lisp:loop". See the section "Documenta-

tion Update: X3J13 Conditions".

• Netbooting for Ivory machines. In Genera 8.1, netbooting Ivory machines works

exactly the same as netbooting 3600-family machines. See the section "Netboot-

ing". You should note, however, that you cannot netboot pre-Genera 8.1 worlds

from Ivory machines.

• Significant performance improvement of Tables. The external interface is un-

changed, but the underlying implementation has been redesigned and reimple-

mented for speed.



Page 62

• Optical and SCSI disk drive support on XL machines. On XL machines, Genera

8.1 supports the Storage Dimensions MacinStor Erasable Optical 1000 erasable

optical disk drive. You can create a FEP file system on an optical disk, and ac-

cess the FEP file system in the usual ways. You can use the optical disk to

store large files such as image files, world loads, and Statice databases. For

more information,

see the section "SCSI Device Support for XL Machines in Genera 8.1".

• Bundling of some software which was previously sold separately as layered

products, including IP-TCP, Statice Runtime, and several others. 

Genera 8.1 bundles (includes without extra cost) some software which was previ-

ously sold separately as layered products. Sources and binaries for the following

bundled software are now part of the regular Genera 8.1 Sources: IP-TCP, NFS,

X-Windows, DMP1, LGP2/3, Delivery DocEx, and Statice Runtime. See the sec-

tion "Documentation Update: Statice Runtime". NFS Supplemental sources are

also now part of the regular Genera 8.1 Sources. Concordia Supplemental

Sources are now part of the Concordia layered product.

• QIC-11 and 6250 bpi tape support on XL machines

• The X server now conforms to MIT X11 R4 (the X client already conformed to

R4).

• Optional distribution on CD-ROM. Customers who receive distribution on CD-

ROM will receive C, Fortran, and Pascal (including sources). 

• Support for the MacIvory model 3.

• New virus protection software for MacIvories, Symantec AntiVirus for Macin-

tosh (SAM), which provides an Automatic Scan feature to continously monitor

your system as you work. See the section "Symantec AntiVirus for Macintosh".

• There is a new recommended format for boot files for Ivory machines, see the

section "Changes to Boot Files for Ivory Machines".

Genera 8.1 includes all the improvements and modifications in Genera 8.0 XL,

Genera 8.0 ECO #1, and Genera 8.0 ECO #2, as well as additional improvements.

Therefore, this document includes documentation of improvements made in all

three previous ECO releases. See the section "Documentation of Genera 8.0 ECO

#1". See the section "Documentation of Genera 8.0 ECO #2". See the section "Gen-

era 8.0 XL Documentation Update".

CLIM in Genera 8.1



Page 63

Overview of CLIM

CLIM, the Common Lisp Interface Manager, is a portable high-level object-oriented

user-interface management system. It provides a full spectrum of capabilities for

describing the user interface of an application and implementing that user inter-

face on a variety of computers and window systems.

CLIM is portable in several respects. It is written in a standard dialect of Common

Lisp and CLOS, and is therefore executable by numerous computers provided by

various vendors. Also, user interfaces described by CLIM are independent of any

particular window system or output device, so that CLIM applications are readily

portable to different hardware and software platforms.

CLIM provides high level facilities for describing a user interface. Complex user

interface behaviors such as incremental redisplay, formatting textual and graphical

output, context sensitive documentation, direct manipulation, and mixed keyboard-

mouse interaction are easily described with a minimum of specialized code.

CLIM is object-oriented in several respects. It is implemented in Common Lisp Ob-

ject System (CLOS), and uses object-oriented techniques to great advantage inter-

nally. More importantly, CLIM provides an object-oriented model for integrating an

application with its user interface. This presentation model associates user inter-

face behavior directly with application objects, which allows an application to de-

scribe its user interface in terms of its own semantics.

CLIM provides the following facilities:

• Windows  Convenient facilities for creating, placing, and manipulating win-

dows, including managing margins and scroll bars.

• Streams  Stream-oriented, device-independent input and output of arbitrarily

mixed text, graphics, and presentations.

• Graphics  A rich graphics model which includes a variety of common geomet-

ric shapes (such as lines, rectangles, polygons, and ellipses), drawing options

(such as line thickness and joint shape), a sophisticated inking model for de-

scribing patterns and color, and full affine coordinate transformations (transla-

tion, rotation, scaling).

• Styled text output  The appearance of textual output (font family, typeface, and

size) is specified with an abstract, device independent mechanism called text

style.

• Output recording  A facility for capturing all output done to a window, which

provides the basis for arbitrarily scrollable and redisplayable windows.

• Presentations  Presentations associate user interface behavior with application

objects, using object-oriented programming technniques. The user interface of an

application may be described in terms of its own semantics, using the high level

language of presentation types, instead of the lower level language of

keystrokes, mouse events, and widgets.



Page 64

• Menus and Dialogs  Many types of menus and dialogs may be automatically

generated, using the presentation type facility to describe the desired appear-

ance and behavior.

• Context-sensitive input  An application accepts direction from the user by es-

tablishing a context in which certain classes of operations and operands are

valid, using presentation types. The user interface system uses this context to

provide appropriate documentation and feedback to assist the user, and assures

the application that user-supplied values are appropriate.

• Commands  The user interface operations of an application are described by

commands, which operate on presentation types. This uniform mechanism is

used for all interaction styles, including direct manipulation, menus, dialogs,

keystroke accelerators, and command lines.

• Formatted output  High-level macros allow applications to produce neatly for-

matted tabular and graphical displays with little additional programming.

• Incremental Redisplay  Recorded output may be changed and the display incre-

mentally and efficiently updated, without extensive programming.

• Application frames  The screen layout and top level behavior of an application

are described by application frames.�

For detailed user and reference documentation about CLIM, see the section "Com-

mon Lisp Interface Manager (CLIM): Release 1.0".

CLIM incorporates refined versions of many features and concepts from Symbolics

Dynamic Windows. See the section "Comparing and Contrasting DW and CLIM" for

a description of their similarities and differences. There is a facility to assist in

the task of converting Dynamic Windows software to CLIM, see the section "Con-

verting from DW to CLIM". Note that conversion of existing Genera software to

CLIM is wholly optional, and that Dynamic Windows will continue to be supported.

The CLIM Standard

The Common Lisp Interface Manager was defined and developed by a consortium

of cooperating Lisp vendors, including Franz, International Lisp Associates, Lucid,

Symbolics, and Xerox PARC. We consider CLIM a de facto standard, though it may

be proposed for official standardization after the community has gained experience

using it.

Symbolics provides versions of CLIM for Symbolics computers running Genera and

IBM-compatible personal computers running CLOE. For other platforms, compati-

ble versions of CLIM are available from the vendors listed above among others.

Contact your Lisp vendor for availability information, or International Lisp Asso-

ciates if your vendor has no current plans to offer CLIM.



Page 65

Symbolics CLIM 1.0, and the CLIM implementations available in 1991 from other

vendors, are based on a reference implementation of CLIM called CLIM Version 1.

Throughout 1991, the CLIM consortium will be working on a new reference imple-

mentation which will incorporate the Silica technology developed at Xerox PARC.

Implementations derived from CLIM Version 2 will be compatible with CLIM Ver-

sion 1, but will provide additional functionality and better performance by integrat-

ing directly with popular window toolkits such as OSF/Motif, Open Look, and Mi-

crosoft Windows. 

CLIM 1.0 Implementation Notes

This section summarizes some known limitations of the Symbolics implementation

of CLIM 1.0, particularly with regard to rendering of graphic designs. Note that

other implementations of CLIM 1.0 may have different limitations.

• The Genera debugger does not work on CLIM streams. If a CLIM application

gets an error of any sort, the debugger will be invoked in a background window,

and a notification issued to that effect. You may find it useful to tailor the be-

havior of these notifications, see the section "Pop-up notifications".

• clim::make-contrasting-inks provides up to 8 different colors or patterns of ink.

• clim::make-contrasting-dash-patterns provides up to 16 different dash patterns.

• CLIM 1.0 does not support composite designs. Also, CLIM 1.0 provides very lim-

ited support for opacity: opacity inks are supported, but are interpreted for ren-

dering as either fully transparent or fully opaque.

• CLIM 1.0 contains limited support for patterned designs. The elements of a pat-

terned design (whether a pattern, stencil, or tile) must be a color or opacity,

and not a general design (a shape). Some previous versions of the documentation

have referred to more stringent limitations; these limitations are no longer

present.

• CLIM 1.0 does not support nonrectangular clipping regions. A clipping region is

interpreted as the bounding rectangle of the region supplied.

• Some CLIM 1.0 implementations may not support tilted ellipses (ellipses not

aligned with the X or Y axis). The Genera implementation does, but at some

performance penalty when using a window system such as X or Macintosh which

doesn’t support tilted ellipses directly.

• PostScript streams do not yet create Encapsulated PostScript files. Their output

can be printed on an Apple Laser Writer.

• For PostScript streams, line styles which specify :line-unit :normal and a :line-

thickness other than 1 may not produce the desired effect.



Page 66

• filling-output doesn’t work very well in the face of nontextual output (presenta-

tions and graphics).

• In Genera, there is no global user interface for changing the foreground and

background colors of a CLIM application, they are under program control only.

Using the Window Attributes menu to change the drawing and erasing alu

functions, or FUNCTION C to change to inverse video, will not affect the fore-

ground and background colors of a CLIM window. (At present, you must refresh

the CLIM window to restore proper appearance after such a change.)�

Installing CLIM in Genera 8.1

For Genera 8.1, CLIM is distributed as a loadable system on the Genera distribu-

tion tapes, which contains loadable binaries for all 3600 and Ivory computers, and

all online CLIM documentation. Most CLIM source code is optional, and is avail-

able with the Genera supplemental sources. CLIM may be loaded on any Symbolics

computer running Genera 8.1, using the following procedure.

1. Confirm that Genera 8.1 is installed.

Show Herald�

2. Load the CLIM system.

Load System (a system [default System]) CLIM�

3. Load the CLIM online documentation.

Load System (a system [default CLIM]) CLIM-Doc�

Compatibility Issues for Genera 8.1 and Prior Releases

Compatibility Issues for MacIvory

The MacIvory Life Support shipped with Genera 8.1 requires Macintosh System

Software 6.0.7 (or later) and 32-bit QuickDraw. Note that 32-bit QuickDraw is in-

compatible with old versions of the Radius Two Page Display’s video card, where

an "old version" is any TPD card earlier than rev 2.1. 

The following information is useful for MacIvory sites that need to use both Gen-

era 7.4 Ivory and Genera 8.0, 8.0.1, 8.0.2, or 8.1.

For a MacIvory to boot and operate successfully, the MacIvory Life Support version

must be compatible with the Genera and IFEP versions. Note that MacIvory model

3 requires Genera 8.1 and the version of MacIvory Life Support shipped with Gen-

era 8.1; the hardware cannot run on earlier software.



Page 67

MacIvory Life Support and Genera and IFEP are completely interoperable within

minor releases of Genera 8, including Genera 8.0, 8.0.1, 8.0.2, and 8.1. Thus, all

versions of Genera 8 interoperate with all versions of MacIvory Life Support

shipped with Genera 8.

However, note that there are incompatibilities between Genera 8 and 7.4. That is,

if you are running Genera 7.4, you must use the FEP and MacIvory Life Support

versions that were shipped with Genera 7.4. And if you are running Genera 8.0,

8.0.1, 8.0.2, or 8.1, you must use the FEP and MacIvory Life Support versions that

were shipped with any of those versions of Genera 8.

Running Two Genera Releases on a Single MacIvory

It is possible, although tricky, to allow two different major releases to coexist on

the same MacIvory system. This section describes how to prepare for running two

Genera releases (what you need to keep, and how to organize the files), and how

to switch from one release to the other.

For the purpose of a specific example, we assume you are running the Genera 7.4

and Genera 8.1 releases.

Preparation for Running Two Genera Releases�

For each Genera release, you need to keep the Genera world, the corresponding

FEP (kernel and flod files), and all Macintosh software (the three folders:

MacIvory Applications, MacIvory System, and MacIvory Development).

For safety’s sake, you should keep the floppies or CD-ROM distributed from Sym-

bolics in a safe place, in case any of these files are deleted accidentally.

You should rename the folders so that they clearly represent the software in them:

• The Genera 7.4 versions of the folders should be named: 7.4 MacIvory Applica-

tions, 7.4 MacIvory System, and 7.4 MacIvory Development.

• The Genera 8.1 versions of the folders should be named: 8.1 MacIvory Applica-

tions, 8.1 MacIvory System, and 8.1 MacIvory Development.�

You need to have three sets of HELLO.BOOT and BOOT.BOOT files, one for Genera 7.4,

one for Genera 8.1, and one to identify which release to run:

• The 7-4-HELLO.BOOT file should load the FEP version for Genera 7.4. The 7-4-

BOOT.BOOT file should load the Genera 7.4 world.

• The 8-1-HELLO.BOOT file should load the FEP version for Genera 8.1. The 8-1-

BOOT.BOOT file should load the Genera 8.1 world.

• The HELLO.BOOT file should contain "Hello 8-1" or "Hello 7-4"; this indicates

which of the two above HELLO.BOOT files to use. The BOOT.BOOT file should con-

tain "Boot 8-1" or "Boot 7-4"; this indicates which of the two above BOOT.BOOT

files to use.



Page 68

Switching From One Genera Release to the Other�

Assume you are running Genera 8.1 and want to switch to running Genera 7.4.

Follow these steps:

1. Before shutting down Genera 8.1, edit the HELLO.BOOT file to contain "Hello

7-4". Edit the BOOT.BOOT file to contain "Boot 7-4".

2. Before shutting down Genera 8.1, you need to switch FEP kernels. When you

are running Genera 8.1, you can do this by using the Edit Disk Label com-

mand. When switching from Genera 8.1 to Genera 7.4, you would indicate the

I311 FEP (which was the 7.4 FEP).

Note, however, when you are running Genera 7.4, the Edit Disk Label com-

mand is not defined. Thus, to switch from Genera 7.4 to Genera 8.1, you need

to use si:install-fep-kernel. For example, to switch to the I325 FEP which is

the 8.1 FEP, you would evaluate the following form:

(si:install-fep-kernel "I325-kernel")�

3. Shutdown Lisp, by choosing "Shut Down" from the Ivory pulldown menu. This

quits the Genera application.

4. Copy the contents of the 7.4 MacIvory System folder to the System folder. Be

sure to hold down the Option key while dragging to copy, not move the

contents of the folder; you should always keep the contents of the 7.4

MacIvory System folder so you can copy it again later. The system asks if you

want to replace the files with the same names; you should answer Yes.

5. Restart the Macintosh. 

6. When the Macintosh is running again, open the 7.4 MacIvory Applications

folder and run the Genera application. If you are asked whether you want to

cold boot, answer Yes. (If you are not asked, then the system cold booted au-

tomatically.)

To switch from Genera 7.4 to Genera 8.1, use the same process, but switch "8-1"

and "7-4". 

Compatibility Issues for Symbolics UX400S

Symbolics UX400S Life Support and FEP/Genera are completely interoperable

within minor releases of Genera 8.0. Thus, all versions of Genera 8.0 interoperate

with all versions of Life Support shipped with 8.0.

However, note that you cannot mix Genera 8. and 7.4. That is, if you are running

Genera 7.4, you must use the FEP and Life Support versions that were shipped

with Genera 7.4. And if you are running Genera 8.0, 8.0.1, 8.0.2, or 8.1 you must



Page 69

use the FEP and Life Support versions that were shipped with any of those ver-

sions of Genera 8. (Note that UNIX software shipped with Genera 8.1 is compati-

ble with SunOS 4.1 only.) 

Changes to the Lisp Language in Genera 8.1

X3J13 Common Lisp Features

The term "ANSI Common Lisp" has been used in many places in anticipation of a

standard, but it is a misnomer. There is not yet such a standard, nor even a draft

standard. An ANSI subcommittee, X3J13, is tasked with the creation of such a

standard, and Symbolics is participating in that effort.

Since no public draft has been produced yet, and since there is an immediate need

for the language which X3J13 has been working on, we have implemented some

parts of the emerging standard which seem to be relatively stable. Several parts of

that implementation are referred to within this documentation, and we have cho-

sen the term "X3J13 Common Lisp" as a way of referring to those parts in order

to emphasize the fact that this conforms only to our best estimate about the cur-

rent state of the working drafts used by X3J13.

In all cases where "X3J13 Common Lisp" is referred to, please be aware that there

might yet be changes to the X3J13 working documents which could necessitate cor-

responding changes in our implementation. Any mention of ANSI in this document

or in the software it describes should not be taken to imply an endorsement by

ANSI or any of its affiliated agencies.

The important pieces of X3J13 Common Lisp which Symbolics has implemented in-

clude:

• CLOS, which has been available and documented since Genera 8.0

• The Loop Facility

• Conditions�

For documentation on the Loop Facility,see the section "Documentation Update:

future-common-lisp:loop".

For documentation on Conditions,

Changes to CLOS in Genera 8.1

In Genera 8.1, clos:describe-object takes two arguments, an object and a stream,

as specified by X3J13, and as documented in the Genera documentation. Previously,

clos:describe-object took only one argument, the object.

Genera 8.1 improves the performance of CLOS programs by precompiling construc-

tors, when possible. CLOS automatically makes a function to handle the specific



Page 70

case when a compiler optimizer sees clos:make-instance with a constant class and

constant set of keywords (but not necessarily constant values for the keyword ar-

guments). These functions are compiled automatically the first time they are

called, when the world is saved, and after Load System or Load Patches.

In Genera 8.1, clos:symbol-macrolet accepts declarations and adds type declara-

tions to its macro expansions.

Genera 8.1 fixes a bug in which the compiler would get an error if it encountered

an :after method for clos:initialize-instance with 45 keyword arguments on an

Ivory machine, or 64 keyword arguments on an 3600-family machine. 

The commands Show CLOS Generic Function and Show Effective Method now

work correctly for encapsulated generic functions, such as occur when trace is

used. 

Changes to the Compiler in Genera 8.1

• The compiler was improved by adding error checking to be sure that the lamb-

da-list keywords &optional, &rest, &key, &allow-other-keys, and &aux always

occur in the correct order. Previously, an incorrect order was silently tolerated,

sometimes having mysterious effects.

• In Genera 8.1, the compiler gives a warning if &whole appears anywhere other

than at the front of the top-level destructuring pattern of a defmacro. Common

Lisp: the Language does not allow this, hence the warning.

• The compiler now checks keyword arguments supplied in a function call against

the keyword parameters accepted by the called function. This helps users who

check programs for portability by compiling in the Common Lisp Developer and

looking for warnings. As with checking the number of arguments in a function

call, this checking does not work if the function call is earlier in the file or

group of files than the definition of the called function. If there is an arglist

declaration, it is used in place of the actual lambda-list to determine what key-

words are accepted, since often the declared lambda-list contains &key but the

actual lambda-list contains just &rest. The variable compiler:*inhibit-keyword-

argument-warnings* can be set to t to disable this checking, for example if you

have a lot of declared arglists that are malformed.

• Compiling a buffer or a form in the editor now produces the same behavior as

loading the source of the file or form, except that optimizations are run and

code is compiled in the process.

• Inline functions that did a throw were not always expanded correctly; this bug

has been fixed. 

• A bug in the compiler for 3600-family machines was fixed, in which certain uses

of rplaca and rplacd gave spurious results. These cases involved using rplaca



Page 71

and rplacd with a locative to a local lexical variable (to give a value to that

variable) and then trying to get the value of the variable. For example:

(let ((location nil)

      (list nil))

  (setq location (locf list))

  (setf (location-contents location) ’a)

  list)�

Although this example might seem obscure, similar code which triggers the bug

is generated by the collect option to loop.

• Previously, recompiling or reloading a self-recursive function left the new func-

tion indirecting through the old one, thus degrading performance. This bug has

been fixed. 

• Previously, the compiler and interpreter would have differed in their interpreta-

tions of the following forms. Now they agree, and the use of subst in use-of-

subst is not inlined:

(proclaim ’(inline subst))

(defun subst (x)

  (+ x y))

�

(defun use-of-subst (a)

  (let ((y 3))

    (subst a)))�

• The compiler is now able to expand local functions (flet and labels) inline. The

default is not to inline local functions. Of course expanding recursive functions

inline is not a good idea.

• The protection against recursive inline functions has been removed. This protec-

tion made the expanded code too complicated for setf and the compiler to com-

pile properly. User code with recursive inline functions will loop in the compiler

rather than working.

• A bug has been fixed in which recompiling future-common-lisp:defstruct and

macroexpanding a simple structure definition would cause the machine to crash

to the FEP.

• The bin file dumper can now dump objects with circular definitions.

• Warnings are now issued for duplicate declarations for variables. A new vari-

able, si:*duplicate-declarations-warnings*, default t, controls this behavior. If

you are not interested in seeing duplicate declarations warnings, set this vari-

able to nil.�



Page 72

Miscellaneous Changes to the Lisp Language in Genera 8.1

• The performance of Table handling has been significantly improved.

• open now works on user-defined types such as:

(deftype application-db-stream-element-type ‘(unsigned-byte 8))

(open "foo" :element-type ’application-db-stream-element-type)�

This allows you to specify file-storage interfaces more abstractly, for example.

• special declarations are no longer pervasive. In the following example, the inner

binding of a would have been special before and will now be lexical.

(let ((a 1))

  (declare (special a))

  (let ((a 2))

     (print (list a (symbol-value ’a)))))�

• The &key default values for macros are now evaluated only when they are used.

Previously, the &key default values were always evaluated, which was a bug.

• Some bugs in :location function specs have been fixed, in which infinite print

loops could happen, as could problems with block reads of structures containing

such functions. Also, the printed representation of certain locatives changed af-

ter being used in :location function specs. 

• The Zetalisp lambda variant subst, which has not worked in compiled code

since Genera 7.0, has been removed for Genera 8.0. A form such as

(subst (x) ...) �

can be replaced with the following form: 

(lambda (x) ...)�

• The Lisp printer behaves differently when printing a function which is not cur-

rent; in other words, a function which is not the same as what you would get if

you did (fdefinition ’function-name).

Previously, such a function was printed as:

#<DTP-COMPILED-FUNCTION FGH (Superseded) 21000742330>�

Consider the following example, which shows one of many ways to get a func-

tion which is not current:



Page 73

(defun my-interpreted-function (x)

  (print (+ x 2)))

�

(disassemble ’my-interpreted-function) => 

  0  ENTRY: 1 REQUIRED, 0 OPTIONAL      ;Creating X

  2  START-CALL-INDIRECT-PREFETCH #’PRINT

  4  PUSH FP|2                          ;X 

  5  ADD 2

  6  FINISH-CALL-1-RETURN

�

#<Compiled function MY-INTERPRETED-FUNCTION (Not the current definition) 21000704545>�

Note that the current definition is still the interpreted one, since disassemble

compiles the function if it isn’t already, but does not install the compiled ver-

sion. Also note that the printer now says "Not the current definition" instead of

"Superseded".

This Lisp printer change also removed the functions si:print-random-object and

flavor::print-generic-function.

• There have been some additions to the system-type argument to the Ivory-only

macro sys:system-case. The currently recognized system-types are:

System-Type System

Native A standalone Symbolics computer. Examples are XL400 and

XL1200 systems.

MacIvory A Symbolics processor embedded in a Macintosh modular

computer. Examples are MacIvory model 1, MacIvory model

2, and MacIvory model 3.

UX A Symbolics processor embedded in a Sun-3 or Sun-4 system.

Examples are Symbolics UX400S and Symbolics UX1200S.

VME A Symbolics processor in a VME-based system. This could be

a standalone Symbolics computer such as the XL1200, or an

embedded processor such as the UX1200S.

Embedded Any Symbolics processor embedded in a host computer. Ex-

amples are any of the MacIvory models or the UX models.�

• Nested uses of sys:system-case are now optimized.

• The sys:system-case clause (otherwise (error ...)) is now equivalent to omitting

an otherwise clause. The one difference is that this clause, in effect, states that

you are aware that all other system types should signal an error and you will

not be warned about missing required system types at compile time.



Page 74

• A sys:system-case clause of the form (never keylist) is now accepted and is

equivalent to the clause (keylist (error)). Clauses of this form may be used only

if no otherwise clause is specified.

• destructuring-bind now handles &optional defaults correctly when quote or

list forms are used.

• Processes that are about to go into "output hold" wait signal the condition

tv:output-on-deexposed-sheet. Clients who want to intercept and avoid the out-

put-hold can do so by binding a handler (using condition-case or

condition-bind) and using sys:proceed with proceed-type :retry when the out-

put-hold condition has been corrected. For compatibility, this occurs after the

defined output-hold actions have already occurred, so in effect users get control

only if they would have been stuck in a process-wait.

• The variable cltl:*features*, used by the Common Lisp Developer, used to con-

tain (:SYMBOLICS 3600 :CLTL :IEEE-FLOATING-POINT) regardless of the machine

type, which was a bug. It now correctly contains :IMACH instead of 3600 on

Ivory-based machines.

• The format directives ~\\date\\, ~\\time\\, ~\\datime\\ and ~\\time-interval\\ were

changed to present dates, times, and time intervals using the appropriate pre-

sentation types. Previously, the output of format for these directives was not

presented using presentation types.

• The presentation type type-or-string now accepts a presentation-type keyword

:string-if-quoted: 

:string-if-quoted

Takes a boolean value, which controls whether the following is parsed

as a type or as a string when explicit quotes are present.

((type-or-string type) :string-if-quoted string-if-quoted)�

The default, if :string-if-quoted is not supplied, or is nil, is to always

try to parse it first as a type and then as a string if that fails. How-

ever, if :string-if-quoted is t, then explicit quoting (with doublequotes)

will force the object to be parsed as a string.�

Here is an example of :string-if-quoted:

;;; the following treats "3" as an integer

(accept ’(type-or-string integer))

�

;;; the following treats "3" as a string

(accept ’((type-or-string integer) :string-if-quoted t) �

• reduce now accepts the :key keyword which enables you to extract the values to

reduce. The :key function will be applied exactly once to each element of the se-



Page 75

quence in the order implied by the reduction order, but not to the value of the

:initial-value argument, if any.

• Support for the conditions:abort restart, part of the compatibility support for

the new Common Lisp condition system, was faulty in that pressing c-ABORT did

not return you to Common Lisp restarts named conditions:abort, nor did the

debugger offer to take you to such a restart if you were to press ABORT. In Gen-

era 8.1, these two problems have been corrected.

• In a prior release, when cltl:truename was called on an open stream, it coerced

that stream to a pathname and then looked for it in the directory  finding an

older file or none at all. In this release, it has been fixed to correctly return the

name of the file to which the stream is really open.

• |3600| is now equivalent to 3600 after the #+ or #- reader macros.�

Changes to the User Interface in Genera 8.1

Changes in the Global Command Table in Genera 8.1

The commands in the Global command table have been reorganized in a hierarchi-

cal fashion into a number of subtables. The Global command table continues to in-

herit from these other command tables, so there are no user-visible effect of the

change. However, the additional structure imposed has several good effects:

• It enables people to write tools which browse the set of commands in an orga-

nized way. 

• It allows users to more easily customize the set of operations they want, by al-

lowing them to add/remove not only individual commands, but whole classes of

commands. 

• It encourages discussion about how command sets are grouped and organized.

The current command set is so large and undifferentiated, that it is difficult to

take inventory of the whole thing. �

In the new scheme, the intent is that no one should ever add commands to "Glob-

al" (although no harm will occur if they do). The main reason for not adding

something to Global is only to force at least one level of categorization on the tree

of commands, breaking it up at least somewhat. When in doubt, the new "Utilities"

command table is a better catch-all.

Users and system maintainers who want to add just one or two commands should

find an appropriate command table and add it/them there. If there are several re-

lated commands in a new domain, it’s appropriate to make a separate command ta-

ble for that purpose.



Page 76

Users who add custom commands of their own (e.g., in their init file), but for

which there is no suitable command table, can add them to "User" avoid using

"Global". (This has always been true, but not widely publicized.)

It might be appropriate for a command to appear in more than one command ta-

ble. Right now, none do, but that is only an artifact of the initial break-up. In the

future, certain commands might appear in more than one place. 

 Global

  Communication - Communication with other users.

    Conversation - Interactive communication (converse messages)

    Mail Reading/Sending - Non-interactive communication (mail messages)

  Demonstration - Tools for demonstrating the system to others

  Documentation - Tools for finding out about the system

  Editing - General commands related to editing

  File System - Manipulating the file system

    Directory - Commands operating on directories

    File - Commands operating on files

      FEP - FEP file commands

      NFS - NFS file commands

      Statice - Statice file commands

  Printer - User interface to submitting hardcopy requests and checking queue

  Programming Tools - Commands related to using the Lispm for programming 

    Debugging - Commands specifically related to debugging programs

      Breakpoint - Setting and checking breakpoints

      Presentation - Debugging the presentation system

      Process - Manipulating processes

      Timer Queue - Commands related to Timer Queues (this will probably go away soon) 

      Tracing - Trace, trace-conditions, etc.

    Lisp - Lisp-related commands

      CLOS - CLOS-related commands

      Evaluation Context - Manipulating evaluation environment (package, base, ...)

      Flavors - Flavors-related commands

      Inspection - Commands for inspecting the environment 

        Callers - The ‘Who Calls’ facility

    System Maintenance - SCT-related commands

    Tape Administration - Tape tools (distribution and carry)

  Session - Commands that only affect the current session

    Activities - Manipulating activities

    Garbage Collection - Manipulating the GC

    Networks - Manipulating the networks

    Window - Manipulating windows

  Site Administration - Tools for site administrators

    Access Control - Access control lists

    Mailer - Tools for controlling the mailer

    Namespace - Tools for manipulating the namespace

    Printer Maintenance - Tools for starting/stopping print spooler, etc.

    Spelling - Tools for manipulating the Spell dictionary



Page 77

    World Building - Tools for creating and installing worlds

  Utilities - Interesting things with no other obvious home

    Document Formatting - Tools for document processing

    Fonts - Tools for manipulating fonts

    Images - Tools for manipulating images�

Changes to the Command Processor in Genera 8.1

• Genera 8.1 includes a convenient and extensible demonstrations facility. See the

section "The Demonstrations Facility".

• The CP command Show Directory has been been changed slightly to make cer-

tain common cases of large directory listings faster.

• The CP command Show System Plan now longer gets an error if you specify

:Machine Types All.

• The CP command Show Object now enables you to specify a double-colon for a

symbol name that is an internal symbol. Thus you can now enter colon combina-

tions that are consistent with what the Lisp reader would expect. Within a re-

stricted context (such as CLtL-Only), you can use the triple colon notation to

escape.

• The CP command Show Keyboard Layout now displays additional IBM PC key-

board layouts.

• For more user interface uniformity, Clean File and Clean Directory are now

available as both CP and Zmacs commands (that is, the Clean Directory CP

command, and the (m-X) Clean File Zmacs command have been added).

• The pathnames which appear as output of the Clean File CP command are now

mouse sensitive.

• In a previous release, the Boot Machine command would call the Logout com-

mand implicitly. In some cases, the Logout command would ask if you were real-

ly sure you wanted to Logout. If you answered No, it would suppress the Logout

action, but not cancel the rest of the Boot Machine action. The code modularity

has been improved so that the behavior is now more predictable.

• The CP command Show FEP Directory previously did not provide a way to list

just those files that were not one of the defined FEP file types. A new option to

the :Type keyword, Other, has been added to do this.

• A bug affecting 3600-family users was fixed, in which the CP command Show

FEP Directory, when used to show the FEP directory on the local host, opened

access paths to nonexistent FEP units. In Genera 8.1, Show Fep Directory works

correctly on 3600-family machines.



Page 78

• The meaning of the :Detailed argument to the Show Herald CP command has

changed slightly. Previously, the possible values were Yes and No. In Genera

8.1, the possible values are Yes, Normal, and No. The new value Normal means

what No used to mean (to display the systems which are usually of interest to

users). In Genera 8.1, No shows only machine information and release level, and

no information about system versions. The default if this argument is not sup-

plied has been changed from No to Normal, so that the effect of using Show

Herald with no keyword arguments is the same as it used to be.

• More parts of the Show Herald output are mouse-sensitive, such as the world

name, memory usage, machine and site names; consult the mouse documentation

line.

• The CP command Show Herald has been made faster.

The :Name argument to the CP command Show Processes has been expanded to

enable you to specify an existing process name, a process name substring, or a

combination of the two. If you specify substrings only, the processes named by

those substrings are considered for viewing (subject to the other options). If you

specify process names only, only those processes are considered. If you specify a

mix, then processes named exactly and processes named by substrings are both

considered. When specifying substrings, it is recommended that you use string

quotes to avoid unintentional completion. 

• The Show Directory CP command has a new keyword, :Excluding:

:Excluding {file1, file2 ...} Exclude files that do match the indicated

wildcard filenames from the directory listing. Logical path-

names and pathnames having versions specifiers of "oldest"

and "newest" are not permitted as excluded files because the

exclusion test will be done against the truename of the phys-

ical pathname, and such pathnames would never match.�

• The Show Notifications CP command also has an :Excluding keyword. It accepts

a string or a sequence of strings and does not show notifications that contain

that string or strings.

• A new keyword, :More Processing, has been added to all commands which use

:Output Destination. The purpose of the new keyword is to provide control over

**More** processing for commands that do substantial amounts of non-

interactive output. Since the criterion for when to include this keyword is very

similar to the criterion for when to include the :Output Destination keyword, we

chose to make both of these options be controlled by the :provide-output-

destination-keyword option to cp:define-command, rather than making a new

option which would need to be supplied in nearly all cases where :provide-

output-destination-keyword nil is now provided.



Page 79

:More Processing

{Default, Yes, No} Controls whether **More** processing at end of page is enabled

during output to interactive streams. The default is Default. If No, output from

this command is not subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** processing for the win-

dow. If Yes, output from this command is subject to **More** processing unless it

was disabled globally (see the section "FUNCTION M"). 

New Command Processor Commands in Genera 8.1

There is a new Command Processor command for remote debugging: 

Monitor Screen Command

Monitor Screen host�

Allows viewing the actual contents of some other lisp machine screen. It is useful

for observing the state of file servers from afar, and for helping debug someone

else’s machine when it is not practical to get to the machine itself.

host The name of a cooperating host. Note: The person whose

screen is being monitored must explicitly turn on the server to

allow someone else to see their screen. �

Monitoring is turned off by default. The person whose screen is being monitored

must explicitly turn on the server to allow someone else to see their screen. They

can choose to disallow remote viewing, allow remote viewing with a warning noti-

fication, or allow remote viewing with no warning. They may also choose to make

the operation of the server visible in the wholine, or to make it invisible. (The lat-

ter is useful for watching file servers, when it is important to see something in

the wholine area such as open files, or some other progress indication that appears

there. See also the "Show Open Files Command".)

If the machine is not logged in, you can always monitor its screen. If the machine

is logged in, however, monitoring is disallowed by default. You enable monitoring

with the function chaos:enable-monitor-screen-server.

chaos:enable-monitor-screen-server &key (:server-enabled :no) (:wholine-appearance

:visible) Function

Allows someone else to monitor your screen using the Monitor Screen CP com-

mand. Calling this function without any arguments disables monitoring your screen

(the default). Note that, if your screen is already being monitored, the current

monitoring session will not be terminated.

:server-enabled One of :yes, :no, or :notify. The default is :no. :no means no

one can monitor your screen. :yes means anyone can monitor

your screen, and you will not see a notification that they are



Page 80

doing so. :notify means that anyone can monitor your screen,

but you will see a notification first when they start.

:wholine-appearance

One of :visible or :invisible. The default is :visible. When

:server-enabled is :yes or :notify, :visible means that the

wholine area will display the fact that the server is operating

if someone is monitoring your screen. :invisible means that the

wholine area will not note whether anyone is monitoring your

screen.

Note that the server side of this capability has existed for many releases, though

no easily-accessible user side existed. Even then, the default for the server was to

disallow access.

Site administrators, and others who build worlds, should not enable this facility in

their world-building scripts, since allowing arbitrary monitoring of others’ screens

is generally considered a serious invasion of privacy. Users may wish to ensure

that the worlds they run do not have this turned on by default.

This is a Chaos-only protocol, meaning that only Chaosnet users can monitor

screens. This means that sites which communicate with the outside world via

TCP/IP, rather than Chaos (that is essentially all sites) do not have to worry about

users elsewhere on the Internet monitoring any screens at their site, regardless of

whether individual users enable monitoring.

Many of these capabilities are not necessary if the machine(s) of interest run some

remote window system, such as the X Window System.

Screen monitoring only works if both machines are not embedded machines (for

example, they are not UX-family or MacIvories). Both machines must have screens

which are only one bit deep, that is, color or gray scale screens cannot be used.

To monitor a screen, you do something like the following:

Monitor Screen (of cooperating host [default CARDINAL]) NUTHATCH�

To stop monitoring a screen, type any character. 

There is a new Command Processor command for getting information about memo-

ry errors: 

Show Memory Error Corrections Command

Note: This command is implemented only on Ivory machines.

Show Memory Error Corrections keywords�

With no keyword arguments, displays the number of memory errors that have oc-

curred. 

keywords: :Detailed, :More Processing, :Newest, :Output Destination



Page 81

:Detailed {Yes, No} List the logged error correction codes. The default is

No, the mentioned default is Yes.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M"). 

:Newest {a number} The number of items to be output. The default is

20.

:Output Destination{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.�

With the :Detailed keyword, displays the newest 20 error corrections, for example:

There have been 38 memory error corrections.

The newest 20 error corrections are listed.

The most recent memory error correction is listed first.

�

Memory Address   Check Bit   ECC Syndrome   Disposition

       2040256      11           145        Soft (corrected) error, physical access

           ...      ...          ...        Soft (corrected) error(s), unlogged

       1532420      11           145        Soft (corrected) error, virtual access

           ...      ...          ...        Soft (corrected) error(s), unlogged

       5646204      11           145        Soft (corrected) error, virtual access

           .

           .

           .�

For each error listed, it also lists the kind of error and its disposition. The kind of

error is either Uncorrectable error or Soft (corrected) error.

(The former appears only if you successfully used Continue in the FEP when the

uncorrectable error occurred).

The disposition is one of:

repaired by scrubber

meaning there was an error that could be fixed by rewriting

the data.

stuck (call field service)

meaning there is an error that cannot be fixed by rewriting,

but if it is a soft error, the correct data is being returned.

However, it cannot be fixed to give no errors; hence you proba-

bly have a stuck bit in your memory.



Page 82

ignored (corrected data written to disk)

meaning there was an error that was not worth fixing (the

good data went to the disk already).

virtual access meaning an error that has not (yet) been fixed in virtual mem-

ory by the error scrubber.

physical access meaning an error that has not (yet) been fixed in physical

memory by the error scrubber.

unknown access meaning either a virtual or a physical access error, but we

cannot figure out which. Most likely this is due to an error

that occurred in the FEP.

There is a new Command Processor command for showing the table of contents of

a documentation topic: 

Show Table of Contents Command

Show Table of Contents topic keywords�

Shows the table of contents of the documentation topic. 

topic A topic which is documented and accessible in Document Ex-

aminer.

keywords :Crossreferences, :Depth, :More Processing, :Output Destina-

tion, :Sources�

:Crossreferences {Yes, No} Whether to display crossreferenced topics. The de-

fault is No.

:Depth {integer} How many levels deep to display. The default is to

show all levels.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M"). 

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Sources {Yes, No} Whether to display associated source files. The de-

fault is No. Note that in a world with a compressed documen-

tation database, the source file information is not available.



Page 83

There is a new Command Processor command for showing the structure of a com-

mand table: 

Show Command Table Command

Show Command Table command-table keywords�

Shows the structure of a command table. 

command-table

keywords :Locally, :More Processing, :Multiple Columns, :Output Desti-

nation, :Show Commands

:Locally {Yes, No} Whether to suppress recursive display of information

about inherited command tables. The default is No, and the

mentioned default is Yes. 

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M"). 

:Multiple Columns

{Yes, No, integer} Whether to use multiple columns in the dis-

play. The default is No, and the mentioned default is Yes. An

integer number of columns is also permitted. This is especially

useful for command tables such as Global which inherit from a

large number of other command tables.

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window} En-

ables you to direct your output. The default is the stream

*standard-output*. Note that redirecting output to a printer

can be particularly useful. 

:Show Commands{Yes, No} Whether to show the commands in the command ta-

ble. The default is Yes. If No is specified, then only command

table names are shown, and but not the individual commands.

The name of the command table is presented with descriptive information present-

ed indented beneath it. Names shown in bold are command tables from which the

command table inherits. Names shown in italics are commands in that command

table. For example:



Page 84

Show Command Table (named) News

  News

   Monitor AP Newswire

   Sports

     Show Scores

     Record Bet

   Weather

     Show Weather Report

     Show Wind Chill Table�

This means that the command table News has one command of its own, Monitor

AP Newswire, and inherits from two other command tables, Sports and Weather,

each of which has two commands of its own. 

T 

New FUNCTION Key to Control End of Page Action

New FUNCTION key assignments FUNCTION E and FUNCTION c-E have been added to

control what happens at the end of a screen. The possibilities are as follows:

FUNCTION E Sets the global default end of page mode. With no argument, it

prompts with a menu for a new end of page mode. If an argu-

ment is supplied, it selects one of these possible modes: 

Argument Value and Meaning

1 Scroll. Scroll text on the viewport upward

to show the next line.

2 Truncate. Continue with output beyond the

end of page, but do not automatically scroll

up.

3 Wrap. Continue with output from the top

of the viewport, without moving text al-

ready displayed on the viewport.�

FUNCTION c-E Sets the end of page mode for the selected window. With no

argument, it prompts with a menu for a new end of page

mode. If an argument is supplied, it selects one of these possi-

ble modes: 

Argument Value and Meaning

0 Default. When an end of page occurs, use

whatever action is globally selected at that

time. The global action is controlled by

FUNCTION E or Set Screen Options.

1 Scroll. Scroll text on the viewport upward

to show the next line.



Page 85

2 Truncate. Continue with output beyond the

end of page, but do not automatically scroll

up.

3 Wrap. Continue with output from the top

of the viewport, without moving text al-

ready displayed on the viewport.�

If the window does not support an end of page mode, FUNCTION

c-E just beeps. 

Miscellaneous Improvements to the User Interface in Genera 8.1

• Genera 8.1 now protects users at mixed-architecture sites from copying a .ilod

file to a 3600-family machine, or copying a .load file to an Ivory machine. The

Copy World command now warns you if you try to copy the wrong type of world

file for your machine.

• In Genera 8.0 (and before), if you used Show Directory to show a directory on a

host which had no namespace information (for example, by naming the host us-

ing the "CHAOS|nnnnn" notation) and then waved the mouse over a subdirecto-

ry name which appeared in the resulting output, you were sometimes thrown in-

to the debugger. In Genera 8.1, mouse motion over a directory name on a host

of unknown type will no longer cause entry to the debugger.

• Genera 8.1 fixes a bug in the menu interface to reordering sequences (used in

Symbolics Concordia’s Reorder Records command, for example) which caused the

menu to pop up on the wrong console, for example, when multiple X consoles

were in use to the same machine.

• The "Quantum" field displayed by the Monitor System Status CP command was

not really useful, and has been removed to conserve space in the overall presen-

tation of process information. This change has the beneficial side-effect of re-

ducing the likelihood of line wraparound problems on remote terminals.

• The output of step has been improved. At deep levels of recursion, the indenta-

tion of the step output is reset to column 0, so the output will be more readable

to the user, instead of running into the right margin of the screen. The variable

si:*step-indentation-restart-fraction* controls when the indentation is set back

to 0; its value is a non-zero fraction of the screen size after which the stepper

should go back to column 0 for its indentation, or nil to prevent the stepper

from ever resetting to column 0.

• Some bugs have been fixed in FSM Search that prevented it from finding some

matches it should have found for complex patterns involving <or>, and that

caused it to signal an array out of bounds error when the search pattern was



Page 86

too complicated. FSM Search is accessible through Extended String Search and

Tags Search in Zmacs, Find String in Zmail, and numerous similar commands

that prompt "(Extended search characters)" and is used internally in the Conver-

sion Tools.

• A bug has been fixed in which the CP commands Show Timer Queue and Delete

Timer Queue Entry and the underlying (si:print-timer-queue) get an error if

nothing has ever added an old-style timer queue entry (because si:*timer-queue*

is unbound in that case). The two CP commands remain in the system, but are

normally inaccessible from the CP, because they are not in any command table.

These commands are a remnant of the previous timer queue implementation,

which has been replaced.

• The method for computing the presentation subtype relationship between two

cp:command-name and two cp:command presentation types used to ignore the

:command-table argument but no longer does. A presentation type (CP:COMMAND-

NAME :COMMAND-TABLE a) is now correctly considered a presentation subtype of a

presentation type (CP:COMMAND-NAME :COMMAND-TABLE b) if either a and b are the

same command table or b inherits from a. (Note also that if the :command-

table argument is unsupplied, it defaults to cp:*command-table*, so the same

rule can be applied to the atomic cases of these presentation type specifiers.)

• The presentation type token-or-type now interactively describes its tokens as

"special tokens" rather than "tokens".

• There is a variable to control the message explaining the ellipsis in Help dis-

plays: 

dw:*display-ellipsis-help* Variable

Controls the presentation of a help message explaining the meaning of a nota-

tion such as "Foo ... (7)" to indicate 7 possibilities beginning with "Foo". By

default, the value is t which means that this help message continues to be pre-

sented every time such a notation is used until the first time such an item is

clicked on, at which point the value becomes nil and the message is no longer

presented. The value may be set to nil before this in order to suppress the mes-

sage at an earlier point (in an init file, for example) or it may be set to :always

in order to keep it from ever becoming nil, regardless of whether such an item

is clicked on or not. 

• A bug in dw:accept-variable-values which caused a default not to be provided

when the variable’s current value was nil has been fixed. A number of programs

which use this utility will see an improvement due to this fix.

• The initial window and the Show Herald command now display the size of physi-

cal memory and swapping space in megawords rather than kilowords.



Page 87

• Genera 8.1 improves the CP command Help. The Help command now has new

options and also correctly compresses command tables. 

Help command Displays a list of Command Processor commands.

keyboard Specifies the keyboard help category.

commands Specifies the commands help category.

keywords :Format, :Command Table�

:Format {Brief, Full, Detailed} The level of detail to show

in the list. The default is Brief. This is the same

as pressing the HELP key.

Brief means that only unique command names are

shown in full; for the rest, the verb is shown with

the number of commands that start with that

verb.

Full shows all commands in abbreviated form.

Detailed displays the entire list of available com-

mands.

:Command Table The command table to show.

• Genera 8.1 improves the appearance of the pop-up debugger menu. The new

variable dbg:*menu-proceed-style* controls the presentation style used for the

pop-up menu:

:simple Shows only the proceed options Resume, Abort, Sus-

pend, c-M.

:novice Shows the same as :simple, but also shows debugger

special commands (for example, when there’s a non-

existent directory, the option to create the directory

will appear.)

:expert Shows all proceed options, restarts, and special com-

mands. This is the default.

:simple-icon Like :simple, but uses a more simple presentation for-

mat. 

:novice-icon Like :novice, but uses a more simple presentation for-

mat.



Page 88

:expert-icon Like :expert, but uses a simpler presentation format.

:classic For those who want to continue to use the existing pre-

sentation format. �

The Demonstrations Facility

The demonstrations facility is an extensible facility for using and writing programs

that demonstrate or highlight interesting aspects of a system-defined or user-

defined program or application.

Using the Demonstrations Facility

To use the demonstration facility, use these CP commands:

Show Demonstration Names Command

Show Demonstration Names�

Shows the names of demonstrations which are available in the demonstrations fa-

cility. 

The output is mouse sensitive. Consult the mouse documentation line for informa-

tion on the available options.

The output is partitioned into "loaded" and "unloaded". The demonstration defini-

tion resides in the file system and is not loaded until it is first referred to. Load-

ing a demonstration loads only its definition, not its supporting code, and is there-

fore always fast. When a demonstration is first run, it is initialized, which may

take longer. 

Run Demonstration Command

Run Demonstration name keyword�

Runs a demonstration. If the demonstration has not been initialized, it will be ini-

tialized automatically before it is first run.

name The name of a demonstration.

keywords :More Processing, :Output Destination, :Show Instructions,

:Specify Options�

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this



Page 89

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M"). 

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Show Instructions

{Yes, No, Ask} Specifies whether to show instructions. The de-

fault is Yes.

:Specify Options {Yes, No} Specifies whether to interactively prompt for option

values (if any) to control the demonstration.�

Initialize Demonstration Command

Initialize Demonstration name keyword�

Does any pre-loading specified in the demonstration definition, such as loading any

required systems and running the initializer function. This command is not func-

tionally necessary (because when a demonstration is first run, it is initialized au-

tomatically, if it has not been initialized yet), but it can save time in situations

when you want to have the first run of a demonstration be fast. 

name The name of a demonstration.

keywords :Force

:Force {Yes, No} Specifies whether to force initialization even if it

has already been done. (Even when this is Yes, required sys-

tems are not re-loadedonly the initializer action is re-run).�

Show Demonstration Summary Command

Show Demonstration Summary name keyword�

Shows a brief summary of what the demonstration does.

name The name of a demonstration.

keywords :More Processing, :Output Destination

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not



Page 90

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M"). 

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

Show Demonstration Instructions Command

Show Demonstration Instructions name keyword�

Shows the essential instructions on how to use the demonstration.

name The name of a demonstration.

keywords :More Processing, :Output Destination

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M"). 

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

Show Demonstration Legal Notice Command

Show Demonstration Legal Notice name keyword�

Shows any copyright notices related to the demonstration.

name The name of a demonstration.

keywords :More Processing, :Output Destination

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-



Page 91

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M"). 

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

Show Demonstration Background Information Command

Show Demonstration Background Information name keyword�

Displays background information about the demo which might help you understand

where the demo came from or what it is trying to show, but which is not essential

to actually running the demo. For example, if the demonstration is the Life game,

this Show Demonstration Background Information might give information about

who invented the Life game, the rules of the game, and other interesting informa-

tion. 

name The name of a demonstration.

keywords :More Processing, :Output Destination

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M"). 

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

Extending the Demonstrations Facility

The package demonstration, whose short name is demo, supports the demonstra-

tions facility. 

This section documents a variable and a function that are central to the demon-

strations facility, and then describes how to install a new demo.

demo:*demonstration-pathnames* Variable



Page 92

A list of the (possibly wildcarded) pathnames which are searched by the demon-

strations facility (Show Demonstration Names, Run Demonstration, and so on.)

The default is ("SYS:SITE;*.DEMO.NEWEST"). This means that demonstration defini-

tions can be installed by creating a file in SYS:SITE;demonstration-name.DEMO with

the appropriate contents. However, since the files in this directory might change

when new system versions are installed, maintainers of site systems might wish to

create an alternate directory for the purpose of holding site-specific demonstration

definitions. If this is done, an appropriate wildcard should be added to this list by

the site system. For example:

(pushnew "acme:>corporate-demos>*.demo.newest" 

          demonstration:*demonstration-pathnames*

          :test #’string-equal)�

demo:define-demonstration name options (&key :pretty-name :required-systems :re-

strictions :initializer :instructions :background-information :legal-notice :initialize)

summary &body forms Function

Defines a demonstration called name.

options are formal parameters to the forms in the body. Each option has the form:

(var init type key1 val1 key2 val2...) where var names a variable, init is var’s initial

value, type is var’s type (must be a valid type argument for accept), and the re-

maining keys and vals are other arguments to accept.

The keyword arguments to demo:define-demonstration are described below. All

keyword values are evaluated normally (so some values may require quoting).

:pretty-name A string that must be string-equal to the given name, but can

be used to change the case to something prettier. The default

is (string-capitalize name).

:required-systems A list of systems which must be loaded when this system is

initialized. The default is ’().

:restrictions A list of restriction keywords for this demonstration. Possible

keywords include:

:large-screen-only

Does not work with a small screen.

:local-screen-only

Does not work with a remote screen.

:local-terminal-only

Does not work with a remote terminal. The default is ’().�

:initializer A function which is run once (the first time the demonstration

is about to be run, or the first time Initialize System is used)

to initialize the demonstration.



Page 93

:instructions A string containing instructions for using the demonstration,

or a function of one argument (a stream) which will display

the instructions.

:background-information

Like :instructions, but contains additional interesting informa-

tion not essential to actually running the demonstration.

:legal-notice Like :instructions, but contains any legal information associat-

ed with the demonstration.

:initialize A boolean value indicating whether to initialize the demonstra-

tion as soon as it is loaded. The default is nil.�

For some important information about the order of loading the demonstration defi-

nition and the demonstration’s system, See the section "Installing a

Demonstration".

summary is a short string which describes the action of the demonstration for

menu purposes; this is used by the Show Demonstrations command.

forms are the forms to be executed when the demonstration is actually run. They

may refer to variables named in options.

Installing a Demonstration

To install a demonstration, create a file in one of the files on the list

demo:*demonstration-pathnames*. For example, the default value of this variable

is "SYS:SITE;*.DEMO.NEWEST"; you might create a definition file named "SYS:SITE;MY-

TOYS.DEMO".

The file can contain any Lisp forms, but somewhere they must include either di-

rectly (in the text) or indirectly (by using load) a definition for a demo:define-

demonstration form for a demonstration whose name is string-equal to the file’s

name. For example, in the file "SYS:SITE;MY-TOYS.DEMO" we would expect to find

something like:

;-*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

   

(DEMO:DEFINE-DEMONSTRATION MY-TOYS ((SOME-PARAMETER 64. ’(INTEGER 0 100)))

     (:REQUIRED-SYSTEMS ’("MY-TOYS-SUPPORT")

      :RESTRICTIONS ’(:LOCAL-TERMINAL-ONLY)

      :INSTRUCTIONS "Sit back, relax, and enjoy the ride."

      :LEGAL-NOTICE "Copyright (c) 1990 J. Doe.  All Rights Reserved.")

     "Show off my skills as a toymaker."

   (MY-TOYS-DEMO-DRIVER SOME-PARAMETER))�

Note that this file might be loaded before MY-TOYS-SUPPORT is loaded, so you must

be careful to either define functions it needs (such as MY-TOYS-DEMO-DRIVER, in the

above example) in a package that will exist (such as user), or else you should be

careful to not assume that the package exists. For example:



Page 94

;-*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

�

(DEMO:DEFINE-DEMONSTRATION MY-TOYS ((SOME-PARAMETER 64. ’(INTEGER 0 100)))

     (:REQUIRED-SYSTEMS ’("MY-TOYS-SUPPORT")

      :RESTRICTIONS ’(:LOCAL-TERMINAL-ONLY)

      :INSTRUCTIONS "Sit back, relax, and enjoy the ride."

      :LEGAL-NOTICE "Copyright (c) 1990 J. Doe.  All Rights Reserved.")

     "Show off my skills as a toymaker."

   (FUNCALL (INTERN "MY-TOYS-DEMO-DRIVER" "TOYS-INTERNAL") SOME-PARAMETER))�

Changes to User Interface Programming in Genera 8.1

The sequence presentation type has a new presentation argument: 

:element-default object

Specifies that object is to be used as the default when doing a re-

cursive accept of the first element of the sequence. This is differ-

ent than specifying the default for the sequence, since you might

want the sequence default to be empty, and yet you might want to

specify that if the user decides to type an element, that element

should be parsed against a particular default. For example: 

(accept ’((sequence pathname)) :default ’())

Enter pathnames of files: tennis

  ;completes to "ACME:tennis"

=> (#P"ACME:tennis")

   ((SEQUENCE-ENUMERATED FS:LMFS-PATHNAME))

  

(accept ’((sequence pathname)

  :element-default #P"S:>Joe>bowling.text")

:default ’())

Enter pathnames of files: golf

  ;completes to "ACME:>Joe>golf.text.newest"

=> (#P"ACME:>Joe>golf.text.newest")

   ((SEQUENCE-ENUMERATED FS:LMFS-PATHNAME))�

The sequence-enumerated presentation type has a new presentation argument: 

:element-defaults ’(object1 object2 ...)

Specifies an enumerated sequence of objects to be used one by one

as the default for each recursive accept involved in accepting ele-

ments of the enumerated sequence. This is different than specifying

the default for the sequence, since you might want the sequence de-

fault to be empty, and yet you might want to specify that if the

user decides to type an element, that element should be parsed

against a particular default. For example:



Page 95

(accept ’((sequence-enumerated pathname pathname)

  :element-defaults (#P"ACME:>JDoe>file.text"

     #P"ACME:>Fred>file.text"))

:provide-default nil)

�

Enter the pathnames of two files: a, b  

  ;completes to "ACME:>JDoe>a.text.newest, ACME:>Fred>b.text.newest"

=> (#P"ACME:>JDoe>a.text.newest" #P"ACME:>Fred>b.text.newest")

   ((SEQUENCE-ENUMERATED FS:LMFS-PATHNAME FS:LMFS-PATHNAME))�

Changes to Networks in Genera 8.1

Remote Login in Genera 8.1

• neti:enable-serial-terminal now takes two additional keywords, :status-line-p

and :status-line-update-frequency. These allow you to specify that the remote

terminal has a status line at startup time. The argument to :status-line-update-

frequency is in sixtieths of a second, default 300 (5 seconds).

• Genera 8.1 fixes some bugs in the status line for remote terminals. Previously

the status line did not handle incremental redisplay well, occasionally left blots

on the status line, and displayed strange-looking progress notes.

• When you login to a Symbolics host remotely, the display has been changed

from the full herald to a brief herald containing the information as in this ex-

ample:

Symbolics System, MAMA-CASS|FEP0:>Genera-8-1.load.1

3640 Processor, 2048K words Physical memory, 29396K words Swapping space.

Genera  8.1

Symbolics Junco�

You can use the Show Herald CP command if you need the full herald.�

Set Remote Terminal Options Command

Set Remote Terminal Options�

Prompts for the options to set up a remote terminal. On a serial terminal, keyword

arguments to neti:enable-serial-terminal are used to determine reasonable de-

faults. 

Set Remote Terminal Options is only available from a remote terminal. 

Changes to NFS in Genera 8.1



Page 96

• Genera 8.1 fixes a bug in NFS related to listing files in a directory. Because

NFS has no way to list just one file in a directory, you have to list the whole

directory each time. When saving a file in ZMACS, NFS would read the entire

directory to find the newest version of the file, save the file and then read the

entire directory again to see if excess versions had to be deleted. A caching

scheme makes this operation faster.

• The NFS LMFS longname problem has been fixed. NFS was using only the di-

rectory-entry portion of a potentially much longer LMFS filename, and therefore

would get file-not-found errors when it should not have.

• Some NFS servers (not Sun and Ultrix) object to the root directory mounting

string of "/." that is provided by fap-nfs-mount-string-for-host, and prefer "/"

instead. The NFS Client has been changed accordingly, giving it broader com-

patibility.

Miscellaneous Improvements to Networks in Genera 8.1

• Previously, the Network RPC system, which implements RPC services over TCP

and UDP agents, plus a fair amount of substrate for using RPC to UNIX hosts,

was bundled with the NFS product. Genera 8.1 makes these useful RPC capabili-

ties more widely available by making Network RPC a component of RPC. Net-

work RPC is autoloaded when IP-TCP is loaded. Network RPC is no longer a

stand-alone system.

• Genera 8.1 implements the Van Jacobson TCP performance modifications, in-

cluding slow-start and congestion avoidance. This improves the performance on

slow links.

• Directory handling has been made more robust, for TCP-FTP to a UNIX host.

The directory output now correctly handles pathnames and link targets with

spaces in them, and pathnames with the token "->" in them

• Genera 8.1 improves the reliability of IP gateways after warm-booting.

• IP routing initialization reliability is improved. IP packets are no longer accept-

ed until routing initialization is complete.

• Genera 8.1 fixes a bug in which if you were not using the main console (for ex-

ample, you were connected via an X Window) and you used the Namespace Edi-

tor commands Edit Namespace Object or Create Namespace Object, the name-

space editor would expose on the main console and not the remote console.

• Genera 8.1 includes an improvement to UDP. Previously, each UDP broadcast

would start a new server process because UDP doesn’t allow "connections" to be

made for broadcasts. Now UDP accepts "broadcast connections" instead of mak-

ing multiple processes.



Page 97

• IP-TCP performance has been improved on Ivory-based machines (those with

Rev4 Ivory chips or higher), by using Ivory subprimitives for checksumming. 

• The serial protocol used on embedded machines (MacIvories and UX machines)

now implements send-break.

• Performance of the Ethernet interface on embedded machines has been im-

proved.�

Changes to Garbage Collection in Genera 8.1

New Function: si:ephemeral-gc-flip-area

si:ephemeral-gc-flip-area area &key :all-levels (:mode si:*ephemeral-migration-

mode*) Function

Immediately performs an ephemeral garbage collection of the specified area.

The :all-levels keyword controls which levels to collect. t means all levels of the

area should be collected. nil means just the first level. nil is the default.

The :mode keyword allows the user to specify the migration mode. Possible values

are :normal, :dynamic, :keep, :collect, and :extra. The default is the current dy-

namic value of si:*ephemeral-migration-mode*.

This function is rarely needed by most users. 

Miscellaneous Changes to Garbage Collection in Genera 8.1

Genera 8.1 fixes a bug in using a form such as the following to increase the num-

ber of ephemeral levels:

(make-area :name ’sys:working-storage-area :n-levels 4)�

Prior to this bug-fix, the newly created levels never had any objects created in

them.

When gc flips are inhibited, the notification you get complaining that things are

bogged down did not tell you what process is responsible. In Genera 8.1, the notifi-

cation does tell you which process is slowing things down. 

A bug in the ephemeral garbage collector on Ivory machines has been fixed. This

bug could cause an Ivory machine to halt with the error "pointer to unallocated

level". 

Changes to Converson Tools in Genera 8.1



Page 98

New Conversion Tools in Genera 8.1

Genera 8.1 offers two new conversion tools:

• Symbolics Common Lisp to portable Common Lisp, for assistance in converting

Symbolics Common Lisp programs to more portable programs that will run in a

variety of Common Lisp implementations, including Genera and Cloe as well as

other vendors’ Common Lisps. See the section "Symbolics Common Lisp to

Portable Common Lisp Conversion".

• Package Conversion, for moving a program to a different package. See the sec-

tion "Package Conversion".�

Symbolics Common Lisp to Portable Common Lisp Conversion

The Symbolics Common Lisp to portable Common Lisp conversion tool assists in

converting Symbolics Common Lisp programs to more portable programs that will

run in a variety of Common Lisp implementations, including Genera and Cloe as

well as other vendors’ Common Lisps.

In general, the strategy is to convert to "CLtL" Common Lisp (as defined by the

book Common Lisp: the Language, first edition, by Guy L. Steele, Jr.) when that is

possible and otherwise leave things unconverted. However, if the program is in a

package from the Common-Lisp, CLtL, or CLtL-Only universe, the resulting prefix

is future-common-lisp:.

A possible alternative strategy, which we did not adopt, would have been to take

advantage of extensions present in particular Common Lisp implementations such

as Symbolics Cloe, creating a conversion tool targeted to one particular Common

Lisp implementation rather than to the common subset of most implementations.

You can convert the remaining portions of your program to use extensions provid-

ed by particular implementations, if you so choose, after performing the automatic

conversions to the common subset; perhaps inserting #+/#- conditionalization.

The program output by the Symbolics Common Lisp to portable Common Lisp con-

version tool should be run in the Common Lisp Developer to help verify the cor-

rectness of the conversion, before porting it to another implementation.

See the section "Developing Portable Common Lisp Programs".

The Symbolics Common Lisp to portable Common Lisp conversion tool converts a

subset of Symbolics Common Lisp constructs to portable Common Lisp. Constructs

that can be locally converted into portable constructs are converted. Constructs

that have no portable equivalent, or that would require nonlocal changes to the

program, are not converted. Examples of this include locatives and array leaders.

Constructs such as who-calls that are only intended to be called interactively, not

incorporated into programs, are not converted.

Certain large facilities such as Flavors and Dynamic Windows are not converted by

this tool (to CLOS and CLIM, respectively), because there are separate tools just

for them.



Page 99

Several facilities from the future X3J13 Common Lisp are widely available now and

thus are assumed to be present in the target implementation. These include loop,

defpackage, destructuring-bind, the Condition system, and the dynamic-extent

declaration.

A number of Symbolics Common Lisp facilities such as resources, initializations,

SCT, and many others have no counterpart in X3J13 Common Lisp, so no conver-

sion is attempted. You should convert uses of these facilities by hand or obtain an

implementation of the facility in each target environment of interest.

Some extensions to standard constructs, such as the :area and :displaced-

conformally arguments to make-array, are discarded during the conversion; this

might not produce the desired behavior. In general the program output by the con-

version tool will require some testing and additional manual changes before the

conversion process is complete. Compiling the program in the Common Lisp Devel-

oper and checking the compiler warnings is the first step in this process. The sec-

ond step is to run the Symbolics Common Lisp version (in regular Genera) and the

converted version (in the Common Lisp Developer) simultaneously and compare

their behavior for a set of test cases.

To run the Symbolics Common Lisp to portable Common Lisp conversion tool, is-

sue one of the following commands and specify "Symbolics Common Lisp to

portable Common Lisp" in response to the "Conversion to use" query. Completion

and help are available when entering the name of a conversion, so you do not need

to type the entire name. 

Commands: m-X Convert Functions of Region

m-X Convert Functions of Buffer

m-X Convert Functions of Tag Table�

When converting to the Common Lisp Developer (the CLtL or CLtL-Only package

universe), superfluous package prefixes such as cl: will frequently be left in the

program. This occurs because the Common Lisp Developer uses alternative ver-

sions of many Common Lisp symbols that disable Symbolics extensions or perform

extra error checking. These package prefixes should be removed using one of the

commands listed above, specifying "Common Lisp to Common Lisp Developer" in

response to the "Conversion to use" query. This removes the prefixes only from

symbols that are essentially equivalent; using m-X Replace String would be danger-

ous as it might also remove package prefixes that indicate constructs that have

not yet been converted. 

Package Conversion

Commands: m-X Convert Package of Region

m-X Convert Package of Buffer

m-X Convert Package of Tag Table

The Package Conversion tool modifies a program so that it can be read in a differ-

ent package but still get the same symbols. This tool is typically used as one step



Page 100

in converting a program from one Lisp dialect to another. Once the program has

been moved to a package that inherits the symbols of the target dialect, all sym-

bols inherited from the original dialect are tagged with package prefixes and can

easily be found so that they can be converted to constructs of the new dialect.

For example, one step of converting from Zetalisp to Common Lisp is to move the

program from a package that uses Zetalisp to a package that uses Common Lisp.

At each place where a symbol inherited from Zetalisp is referenced, if the same

symbol does not occur in Common Lisp a zl: package prefix is inserted in front of

the symbol. This affects inherited symbols only. Symbols that are directly present

in the old package are replaced by symbols with the same names directly present

in the new package.

No symbol substitution is done; the file is just changed to read the same global

symbols into the new package. For instance, memq is converted to read zl:memq,

not to the corresponding Common Lisp function name, member (that translation

occurs later).

In some cases there can be name conflicts between local symbols of the program

and defined symbols of the target dialect. This occurs most often when converting

from Zetalisp to Common Lisp. If name conflicts are possible, you should check for

them before converting the package. See the section "Step Three: Name Conflict

Resolution".

Procedure for Package Conversion

The Conversion Tools ask you for a package to replace each of the packages in the

program. When converting a region or a buffer, this is just one package, the buf-

fer’s package. When converting a Tag Table, this is the set of packages of all the

files in the Tag Table. You have three choices: 

• Choose a package that is already defined.

• Create a new package. This is the default.

• Don’t convert this package, just keep on using it.�

If you convert a package more than once in the same session, after the first time

the default is to do the same conversion that you did last time, but all three choic-

es are still available.

When you choose to create a new package, you must specify its name and the

package it uses (inherits from). This is normally done by specifying a package uni-

verse (such as Zetalisp, Common-Lisp, or CLtL-Only) and letting the name and the

used package default according to the selected package universe. For example,

when converting from Zetalisp to Common-Lisp, the original package might be

named foo and inherit from global. If you specify the Common-Lisp package uni-

verse for the new package, it would be named common-lisp-foo and would inherit

from symbolics-common-lisp or common-lisp (your choice).



Page 101

If you have complex package declarations, you might prefer to create a new pack-

age with a different name by editing your defpackage form, before doing the

package conversion. Then specify that new package when the Conversion Tools ask

what your old package becomes.

If you don’t care about keeping your old package name, you can simply convert to

a new package name and you’re done. If instead you want to keep your old pack-

age name and redefine it as a new package, you must follow a more complex pro-

cedure so that the old and new packages can coexist in the same world temporarily

during the conversion process. The procedure is as follows: 

1. Suppose you are converting from Zetalisp to Symbolics Common Lisp and you

have an old package, called my-package, that uses Zetalisp. During conver-

sion you replace this with a new package called common-lisp-my-package,

which uses Symbolics Common Lisp. This new package name will only be

used temporarily during the conversion process. The Conversion Tools convert

all your symbols from my-package to common-lisp-my-package.

2. If the Conversion Tools changed the file attribute lines at the front of your

files to refer to common-lisp-my-package, change them back to my-package.

3. Now save your files.

4. Edit the :use option of the defpackage form for my-package to specify

symbolics-common-lisp. Save the file containing this definition.

5. Reboot into a fresh world, without loading your system. Evaluate your

defpackage form to create a new version of my-package that uses Symbolics

Common Lisp instead of Zetalisp.

6. Now read the source files of your system into the editor and use m-X Query

Replace to convert any occurrences of common-lisp-my-package to my-

package. (There will probably not be any unless your system is written in

multiple packages.)

7. Recompile the system, and everything in this world should work.�

Package Prefix Conversion of a Buffer

The output buffer produced by the Name Conflict Resolution step is our input buf-

fer for this next step. Type:

m-X Convert Package of Buffer�

After verifying the file name as usual, the conversion command asks for the names

of the new packages to use, and shows the list of symbols to bypass. To change

any of these values, click Middle on them. Confirm the values as they stand by

pressing END.



Page 102

The Conversion Tools then proceed with the package conversion. Note the large

number of package prefixes (for example, zl:) that now appear in your program. 

Package Prefix Conversion of a Region

Command: m-X Convert Package of Region�

This works analogously to the Buffer version of the command, except that it oper-

ates only on the region you have marked. 

Package Prefix Conversion of a Tag Table

Command: m-X Convert Package of Tag Table�

Converting files in a Tag Table works in similar fashion to buffer conversion: first

you see a list of all the packages used by files in the Tag Table and you select

those you want to convert and what package to convert them to. Next you are

asked about bypassing the conversion of symbols that are more often used as vari-

ables than as functions. Finally, you are asked to confirm the list of files to be

converted (all files that are in the Tag Table and in a package that is being con-

verted).

Next you are asked whether the file attribute lists should be set to the new pack-

age, and from that point on, the package conversion proceeds automatically until

done. 

Miscellaneous Changes to Conversion Tools in Genera 8.1

In Genera 8.0, the conversion tools were not converting sys:print-self methods to

clos:print-object methods. They only converted :print-self methods. In Genera 8.1,

sys:print-self methods are treated the same as :print-self methods and are con-

verted properly. 

Changes to the FEP in Genera 8.1

For information about other changes to the FEP, see the section "Changes to the

FEP in Genera 8.0.2".

Change to FEP-Tape Activity in Genera 8.1

Previously, when you used FEP-Tape to restore kernel and flods to the FEP file

system of an Ivory machine, it did not install the kernel. In Genera 8.1, the Read

Tape command of the FEP-Tape activity automatically installs any newly restored

installable files (FEP kernel, color sync file) at the earliest time that is prudent.

Note that the other two methods of installing new flods in a FEP file system

(Copy Flod Files and restoration from the IFEP) already installed the FEP kernel



Page 103

automatically, so this change makes the FEP-Tape activity consistent with those

methods. 

New FEP Feature: Using a Serial Terminal to Communicate with the FEP

This new FEP feature was made available in Genera 8.0.2 and is therefore also

available in Genera 8.1. However, this feature only applies to Ivory machines, and

excludes Ivory embedded machines (i.e. XL400, XL1200).

Using a Serial Terminal to Communicate with the FEP

You can use a serial terminal to communicate with the FEP. One case in which

this can be particularly useful is in troubleshooting an XL1200 single-monitor color

station. For example, if the color monitor cannot come up, you can connect a serial

terminal to the serial port on the color console unit, and use that terminal to give

FEP commands such as Show Disk Label, or Set FEP Options.

In addition to connecting the serial terminal physically, you need to give the Set

Console FEP command to tell the FEP to use the serial console. You might need

to also use the Set Monitor Type FEP command to tell the FEP whether the serial

console is ASCII (a dumb terminal) or X3.64 (such as a VT100).

You need to set the serial terminal’s parameters for 9600 baud, 8 bits, and no

parity.

Keep in mind that serial terminals don’t have all the special keys of the Symbolics

keyboard. If you need to transmit special Symbolics characters, such as Meta or

Super characters, you need to understand how serial terminal keys are mapped to

the Symbolics keys.

Mapping of Serial Terminal Keys to Symbolics Keys

The keyboard of a serial terminal does not have the same set of keys as does the

Symbolics keyboard. For example, such a keyboard typically lacks a Meta key, Su-

per key, Hyper key, and Symbol key. These keyboards do, however, have a Control

key, however, most such keyboards can handle only Control-A, Control-Z, and a few

other characters, most of which are reserved for escapes.

Accessing the Symbolics Character Set�

The following characters may be used to access the Symbolics character set:

    c-^ = Toggles the Control bit   c-] = Toggles the Super bit

    ESC = Toggles the Meta bit      c-\ = Toggles the Hyper bit

    c-@ = Toggles the Shift bit�

For example, to enter c-m-C, you need to set both the Control bit and the Meta

bit, by entering c-^ and ESC; you can then press C to enter c-m-C.



Page 104

Similarly, you might need to enter c-sh-C. The serial keyboard has both a Control

key and a Shift key, but you cannot press them both at once to enter c-sh-C. You

can enter c-^ to set the Control bit, then press the Shift key while typing C. Or,

you can enter c-@ to set the Shift bit, and then press the Control key while typing

C.

Entering Special Symbolics Keys�

The character c-_ (that is, the Control key and the underscore _ key) is used as a

prefix to enter special characters as follows:

    H = <Help>                     L = <Line>

    E = <End>                      P = <Page>

    A = <Abort>                    F = <Refresh>

    S = <Suspend>                  B = <Back-Space>

    R = <Resume>                   N = <Network>

    C = <Complete>                 1 = <Square>

    I = <Clear-Input>              2 = <Circle>

    X = <Escape>                   3 = <Triangle>�

For example, if you press c-_ followed by H (that is, two keystrokes) on the key-

board of a serial terminal, you get the effect of the HELP key on a Symbolics key-

board.

Entering Symbol Characters�

c-_ _ is the prefix for Symbol characters. (That is, Control Underscore followed by

Underscore, two keystrokes.)

For example, you can enter c-_ _ P (that is, three keystrokes) to get the effect of

SYMBOL-P.

c-_ ? displays the c-_ dispatch table.

Saving Previous FEP Kernels and FLOD Files

Some users like to "houseclean" their FEP-related files, and delete all but the most

recent version. This is a dangerous habit, and we recommend against it. Backup

versions of FEP files are necessary in some debugging situations. Since FEP files

(both the kernel and flod files) do not require much disk space, we recommend

that you save the previous versions of these files.

Ivory users in particular should save the previous version of the FEP kernel and

flod files. Note that on Ivory machines, there is no FEP in PROM as there is on

3600-family machines, so your options are very limited if you depend on a single

copy on disk and it goes bad. 

The system attempts to prevent you from deleting the previous kernel, but it does

not keep you from deleting the previous flods. The kernel is not much use without

its flod files. 



Page 105

Test Memory FEP Commands Now Available on Ivory

Four FEP commands that in previous releases were 3600-family commands only,

now work on Ivory machines:

Test All FEP Command

Test All

Runs all FEP tests on a 3600-family machine. On an Ivory machine, it runs only

Test Main Memory. For information about each FEP test:

See the section "Test Main Memory FEP Command".

See the section "Test Simple Main Memory FEP Command".

See the section "Test A Memory FEP Command".

See the section "Test Disks FEP Command".

You can load the Test All FEP command by scanning the overlay (flod) file

*-tests.flod. 

Test Location FEP Command

Test location on a 3600-family machine:

Test Location

Tests a single location in main memory.

On an Ivory machine:

Test Location address keywords�

address {octal-number} The location to test, in octal.

keywords :Base, :Hard ECC Error Action, :Passes, :Test Pattern�

:Base {2, 8, 10, 16} The base in which to display the errors. The de-

fault is 8.

:Hard ECC Error Action

{Halt, Report, Clear} The action to take when a hard ECC er-

ror is encountered. The default is halt, so that the error can

be fixed. Report means just report the error. Clear means clear

the location. Clearing the location can damage a running

world. This action should be used with caution.

:Passes {integer} The number of times to run each test pattern over

the location.

:Test Pattern {Quick, Checkerboard, Walking-bit, All} The pattern to use to

test. The default is Checkerboard. All uses each pattern in

turn.�



Page 106

You can load the Test Location FEP command by scanning the overlay (flod) file

*-tests.flod. 

Test Main Memory FEP Command

Test main memory on a 3600-family machine:

Test Main Memory

Tests some locations in main memory. It runs more slowly (and less thoroughly)

than Test Simple Main Memory.

See the section "Test Simple Main Memory FEP Command".

On an Ivory machine:

Test Main Memory keywords�

keywords :Base, :Hard ECC Error Action, :Passes, :Test Pattern�

:Base {2, 8, 10, 16} The base in which to display the errors. The de-

fault is 8.

:Hard ECC Error Action

{Halt, Report, Clear} The action to take when a hard ECC er-

ror is encountered. The default is halt, so that the error can

be fixed. Report means just report the error. Clear means clear

the location. Clearing the location can damage a running

world. This action should be used with caution.

:Passes {integer} The number of times to run each test pattern over

the memory.

:Start {location} The address at which to start the test. There is a

lower limit of 1011015 (octal) to protect the FEP itself, which

on an Ivory machine resides in main memory.

:Test Pattern {Quick, Checkerboard, Walking-bit} The pattern to use to test.

The default is Checkerboard.

You can load the Test Main Memory FEP command by scanning the overlay (flod)

file *-tests.flod. 

Test Simple Main Memory FEP Command

Test simple main memory on 3600-family and Ivory machines:

Test Simple Main Memory

Runs a memory test. It runs faster (and more thoroughly) than Test Main Memo-

ry.



Page 107

See the section "Test Main Memory FEP Command".

Load the Test Simple Main Memory FEP command by scanning the overlay (flod)

file *-tests.flod. 

Changes to Boot Files for Ivory Machines

For Genera 8.1, we recommend a change in how boot files for Ivory machines are

set up. 

Hello Innn

Hello Local (or hostname)�

Innn and Local represent two .boot files. Their contents should be as follows:

Hello Innn Boot File

The Innn.boot file (where nnn is the IFep version number, which is 328 for Gen-

era 8.3) should contain the commands to scan the flod files and initialize things.

Scan I328-lisp.flod

Scan I328-loaders.flod

Scan I328-info.flod

Scan I328-debug.flod

Initialize Hardware Tables

Hello Local Boot File

The local.boot file should contain those commands that set up this specific ma-

chine, declaring paging files, setting the network address, and any other boot op-

tions.

Declare Paging Files FEP0:>Paging-1.page

Declare More Paging Files FEP0:>Paging-2.page,Paging-3.page

Set Boot Options :Network Address Chaos|52525 :IDS Enable

�

Here is the recommended sequence of commands for a Symbolics Ivory-based ma-

chine that is cold booting a world from the local disk:

Load World

Start

This loads the most recent world on your local disk, which is usually the one you

want to boot.

For a netbooted machine, the recommended sequence is:

Netboot inc-site-genera-8-3

Start�

If you update to Genera 8.1 using Disk Restore, these boot files get created for

you.



Page 108

Note: Copy World and Copy Flod Files do not yet understand this form for boot

files. Therefore, if you use Copy World or Copy Flod Files, do not accept the op-

tion to have them update your boot files. Update your boot files by hand. 

Miscellaneous Changes to the Fep in Genera 8.1

• There was a bug in the NFEP overlays shipped with Genera 8.0.1 which caused

bus errors when the Clear Machine FEP command was issued on some ma-

chines. Regrettably, the bug is extremely elusive and could not be diagnosed in

time for Genera 8.1. In order to correct this, we are reverting to the NFEP

overlay versions which were shipped with Genera 8.0, which did not exhibit this

problem. To keep NFEP overlay installation simple, we have increased the ver-

sion numbers on the Genera 8.0 overlays before releasing them for Genera 8.1.

Other than the changed version numbers, the Genera 8.1 NFEP overlays are

identical to the Genera 8.0 overlays.

• A bug was fixed that affects 3600-family users, in which the Show Fep Directory

CP commnd, when used to show the FEP directory on the local host, opened ac-

cess paths to nonexistent FEP units. In Genera 8.1, Show Fep Directory works

correctly on 3600-family machines.

• The CP command Show Fep Directory previously did not provide a way to list

just those files that were not one of the defined FEP file types. A new option to

the :Type keyword Other has been added to do this.

• The Netboot Fep command is now offered on Ivory machines.

Changes to Streams in Genera 8.1

• Genera 8.1 fixes a bug in which serial streams did not signal end of file if asked

for input after they were closed. This bug manifested itself as remote terminal

input processes hanging around doing operations on closed streams after the ter-

minal had been disabled.

• Another serial bug was fixed, in which a machine could hang when closing em-

bedded serial channels.

• Genera 8.1 fixes a bug in pipe streams; when you tried to close both sides of a

pipe stream cleanly, the second one closed got an error. This bug could cause

the X server to crash. 

Changes to the Window System in Genera 8.1



Page 109

• Genera 8.1 fixes a bug in multiple line drawing and multiple rectangle drawing

on 3600-family machines. This bug was introduced in Genera 8.0.1, so it affected

only those users who received and installed either Genera 8.0.1 or 8.0.2.

• In Genera 8.1, it is now easier to mark text in a Dynamic Window that is bigger

than the size of the screen. The marking and yanking menu (which you can get

to by clicking Right in a Dynamic Window) has a new command Extend Marked

Text, which extends the nearest piece of marked text to include all the text be-

tween it and the cursor.

• A new variable, tv:*who-line-function-hook*, allows users to insert their own

information into the status line. This variable can be set to a symbol with a

function definition to display things in the progress note area of the status line.

Changes to Zmail in Genera 8.1

• Genera 8.1 fixes the interaction between the Logout CP command and expunge

queries in Zmail. Specifically, if your Zmail was set to query before expunging

mail files, and you gave the Logout CP command, answered "Yes" to a query to

expunge and save a Zmail mail file, but then answered "No" to the query to con-

firm expunging the mail file, Zmail tried to abort the command but blew up in-

stead.

This fix changes the semantics of answering "No" to the query to confirm ex-

punging a mail file. In the past, a negative response would abort the command

being executed. Now, a negative response simply aborts the attempt to expunge.

For example, if you had five mail files and type "S" to save them all in Zmail:

In the past, answering "No" when asked to expunge the third mail file would

abort the save command and the third, fourth, and fifth files wouldn’t be saved.

In Genera 8.1, answering "No" will abort only the expunge operation for the

third file. Zmail will proceed to save the third file without expunging it and will

then expunge and save the fourth and fifth files.

• The L command, which adds keywords to messages from the keyboard, has been

extended to allow you to click on a message in the summary window and add

that message’s keywords to the current message.

• The variable zwei:*default-reply-to-list* defines a new profile option which is

the initial contents of outgoing mail’s Reply-To field.

• Several message reference formats generated by popular Unix mailers are now

recognized by Zmail. Zmail uses the message references which appear in In-

Reply-To and Message-ID header fields to link messages together into conversa-

tions.



Page 110

• An improved subject search algorithm provides better subject matching.

• You can use the new Zmail command Set Key (m-X) to customize the user inter-

face by interactively establishing a binding from a Zmail command name to a

keystroke.

• There is a new command, Add Message References, to make re-assembling con-

versations easier:

Add Message References (m-X)

Add references to the current message. Prompts for a refer-

ence or references. Terminate by pressing END. Normally,

typing a message reference is too cumbersome, however, so

you can click Left on a message in the summary area to use

its Message-ID immediately, or you can click Middle on a

message in the summary area to have its Message-ID insert-

ed into the minibuffer. Using Mouse Middle is especially

useful if you mean to add several message references at

once because you do not have to reissue this command sev-

eral times  you can just accumulate all of the references

in the minibuffer at once and then finally press END.�

If you wish to place this command on a key, you can do

(zwei:set-comtab zwei:*zmail-comtab* 

’(#\Super-R zwei:com-add-message-references))

�

• Genera 8.1 offers improved Unix RMAIL compatiblity; per-message labels are

now handled without leading spaces.

• A bug that could cause Zmail background processing to get stuck probing for

new mail has been fixed.

• A bug which caused SELECT M to hang with the SELECT Key process in "Buffer

Full" state when creating a new Zmail frame has been fixed.

• There is a new command, Merge Keywords In Conversation (m-X) to add any

keywords on any message in a conversation to all the messages in the conversa-

tion.

Zmail Commands to Create or Receive ECOs 

There are several Zmail commands for handling ECOs. The intent of these com-

mands is to make it possible to distribute patches through electronic mail. The as-

sumption is that you write a distribution to disk, and then using the Mail ECO,

encode that distribution in an ascii representation and insert it in a mail buffer. If

you have a very large distribution to send, and are afraid that there may be prob-



Page 111

lems with encoding, you can split the process into two stages by encoding first

with Make Encoded ECO File.

In actual fact, you can encode any kind of file as an ECO file, but non-distribution

files cannot be loaded with Decode ECO.

Decode ECO (m-X) Zmail Command

Decode ECO (m-X)�

Turns an ascii encoded ECO message back into a temporary file and then offers to

load that file. You get an error if the file is not a distribution file. 

Mail ECO (m-X) Zmail Command

Mail ECO (m-X)�

Sends an ECO as a mail message. It prompts for a file containing an encoded

ECO. If the file is not yet encoded for mailing, Mail ECO offers to encode it

(prompting for a pathname to use to hold the encoded ECO). The encoded ECO is

then placed in a message buffer. You can add any comments and terminate the

message with END as for any other mail message. 

Make Encoded ECO File (m-X) Zmail Command

Make Encoded ECO File (m-X)�

Encodes a file for distributing as an ECO. It prompts for a source file and an out-

put pathname to hold the encoded result. 

There is also a CP command, Show ECOs, that allows you to see your ECO level: 

Show ECOs Command

Show ECOs keywords�

Shows any ECOs (Engineering Change Orders) loaded into your world.

keywords :More Processing, :Output Destination�

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is



Page 112

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M"). 

:Output Destination{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*. 

Changes to the Mailer in Genera 8.1

• In Genera 8.1, the SMTP protocol is preferred over the older CHAOS-MAIL pro-

tocol. 

• In Genera 8.1, the mailer has greater compliance with the Host Requirements

RFC 1123, specifially section 5.2.14, which states that mailers should use four-

digit years in date fields and also use numeric timezone offsets instead of the

timezone names listed in RFC 822. 

• Genera 8.1 fixes a bug in the mailer, which occurred when a series of Lisp ma-

chines exchanged mail using the SMTP protocol, causing several problems with

the Return-Path field of the delivered message. First, the original workstation,

which normally doesn’t support mail service, was listed in the Return-Path. As a

result, if the mail couldn’t be delivered and a rejection notice was mailed back,

it would sit in a mailer’s queue as that mailer tried in vain to deliver it to the

workstation. Second, if the mail passed among several mailers at a site, each

mailer would add its name to the Return-Path. Consequently, the Return-Path

could quickly exceed 255 characters in length which would cause it to be reject-

ed by some Unix mailers.

• According to section 5.3.1.1 of the Host Requirements RFC, RFC 1123, the mini-

mum interval before giving up on delivering a message should be 4-5 days. The

Symbolics mailer previously defaulted to 3 days, but in Genera 8.1 the limit has

been increased to one week. The following two mailer options that control the

timeout are now documented:

mailer:unresolvable-host-interval Variable

The minimum interval before the mailer gives up on delivering a message when

mail cannot be delivered to a given host because domain information on it can-

not be resolved. The default is one week. 

mailer:undeliverable-host-interval Variable

The minimum interval before the mailer gives up on delivering a message when

mail cannot be delivered to a given host. The default is one week. 



Page 113

• If two or more domain names were resolved to the same host, the Mailer would

try to add any message queued for those domains to the host’s queue once for

each original domain. This behavior resulted in notifications of the form:

DATE TIME from Mailer-Server@HOST: + Background: Attempt to add

     MESSAGE to the queue for SOME-HOST but MESSAGE is already queued

     for SOME-HOST.�

This bug has been fixed.

• Previously, if you had mail queued for an unresolved domain and you cold boot-

ed the mailer, the mailer could fail to boot if, when restoring its work files, the

mailer could now definitely determine that the previously unresolved domain

does not exist. This bug has been fixed.

Documentation Updates Related to the Mailer�

Note that changes to the mailer:forwarding-table-hosts variable don’t take effect

until the following form is evaluated:

(mailer:clear-parsed-forwarding-table-hosts)�

If you put the above form into the Options.lisp file after the form which sets

mailer:forwarding-table-hosts, then whenever the Mailer reads Options.lisp (e.g.,

because you clicked on "Update Options" in the Mailer log window), the new list of

hosts will take effect.

The following mailer options are now documented:

mailer:logs-directory Variable

The pathname of the directory where the Mailer will store its log files. The de-

fault is #P"LOCAL:>Mail>Dynamic>". 

mailer:probe-interval Variable

The minimum time to wait before retrying a host that was down when delivering

outgoing mail. If this value is 10 minutes, the first probe will occur after 10 min-

utes, the second 20 minutes after the first, the third 30 minutes after the second,

etc. The default is 10 minutes. 

mailer:mailbox-deletion-threshold Variable

If the number of entries in the mailbox table decreases by more than the threshold

amount specified by this option, the mailer will refuse to perform any background

updates on the theory that a major editing mistake has taken place. This option is

interpreted as follows:

nil Don’t check for shrinkage.



Page 114

0 < threshold < 1 Refuse if more than this percentage of entries would be delet-

ed.

threshold ≥ 10 Refuse if more than this number of entries would be deleted.�

The default is 100. 

Changes to Zmacs in Genera 8.1

• The Zmacs command "Set Export For Buffer" is now available as a m-X com-

mand when in C Mode. Previously, it was only available as a c-m-X command.

This command used to prompt for a setting in the minibuffer. It now uses a

y-or-n-p style to just prompt for a single character.

• For command name consistency with the CP, the Zmacs command Set File Prop-

erties (m-X) has been added as a synonym for Change File Properties (m-X). (The

old name is retained temporarily for compatibility, but might go away in a fu-

ture release.)

• For more user interface uniformity, Clean File and Clean Directory are now

available as both CP and Zmacs commands (that is, the Clean Directory CP

command, and the (m-X) Clean File Zmacs command have been added).

• The first line of a buffer listing resulting from List Buffers, which says "Buffers

in Zmacs", is mouse sensitive. You can click on this line to execute Edit Buffers

on the same set of buffers. This is especially useful when you have done c-U

c-X c-B and then realize you wanted to do c-U c-X c-sh-B instead.

• A new option, T, has been added to the set of choices available when you press

HELP while in Zmacs. Pressing T will attempt to autoload and run the Zmacs tu-

torial from SYS:EXAMPLES;TEACH-ZMACS.LISP. The tutorial itself is not new, only its

accessibility from the HELP key is new.

• Select All Buffers As Tag Table (m-X) now permits a numeric argument. If sup-

plied, it prompts for a string and only buffers whose name contains that string

are considered.

• In previous releases, if you used m-. in Zmacs to edit the definition of a func-

tion specification that was defined as a readable instance variable of a compo-

nent flavor of tv:window, you were asked if you really wanted to edit

flavor:read-instance-variable. In Genera 8.1, you are first asked if you want to

edit the flavor which declared that readable instance variable. For example,

m-. (FLAVOR:METHOD :BORDERS TV:WINDOW)�

asks:

Do you mean instance variable TV:BORDERS of flavor TV:BORDERS-MIXIN? (Y or N) �



Page 115

• FEP command files are now automatically edited in a new "FEP-Command"

mode. 

FEP-Command Mode

� Sets up the buffer for editing FEP command files. This

mode is automatically entered when you read in a FEP .boot

file. Use c-m-X FEP Command Mode to enter this mode

manually. Comment delimiters are "(" and ")". TAB is Indent

Relative. All tabbing is done by inserting spaces, not tabs. 

• If List Callers (m-X) or any of the other Zmacs commands in the same family

(Edit Callers, Multiple List Callers, List Callers in Package, List Callers in Sys-

tem to name a few) is invoked while the cursor is in a method definition, the

default is now the name of the generic function rather than the name of the

method.

• When a private patch buffer is selected in Zmacs, the site system is no longer

offered as a default system upon which to operate when any of these commands

was issued: Recompile Patch (m-X), Reload Patch (m-X), Resume Patch (m-X), or

Revoke Patch (m-X). Instead, the default system offered is now "Private" in these

cases.

• Start Private Patch (m-X) prompts for a patch note to be saved with the patch.

The default for this private patch note is the same as the name component of

the private patch pathname, except that spaces are converted to hyphens. This

patch note is also offered as the subject line of a mail message if you select yes�

for Send mail about this patch in the Finish Patch menu.

Changes to Utilities in Genera 8.1

SCSI Device Support for XL Machines in Genera 8.1

Installing a SCSI Device

This section describes how to physically connect a SCSI device to the XL machine,

how to configure the device with an appropriate SCSI address.

Connecting the Device�

1. Find an appropriate cable. You need a cable that has a standard SCSI connec-

tor (a 50-pin D connector) on each end. Note that you cannot use the cable

provided by Storage Dimensions with the MacinStor SCSI disk, because one

end of that cable does not have a standard SCSI connector.



Page 116

2. Connect the SCSI cable to the SCSI connector in the back of the optical disk

drive. Connect the other end of the SCSI cable to the SCSI connector in the

back of the XL machine.

3. Be sure that the SCSI bus is terminated properly. Whatever SCSI device is at

the end of the SCSI bus must have a SCSI terminator on it. If you need more

information about how to connect SCSI devices, see the section "Attaching a

SCSI Device".

Choosing the SCSI Address for the Device�

1. Choose an unused SCSI address for the device.

Each SCSI device on the SCSI bus must have a unique SCSI address between

0 and 7 (inclusive). SCSI address 0 is used by the Ivory processor board, so

that is unavailable. 

If you have other SCSI devices attached, you need to find out what SCSI ad-

dresses they use. The Show Machine Configuration command gives the SCSI

addresses of any devices attatched to your XL machine.

2. When you have chosen a SCSI address, configure the device by setting theSC-

SI address according to the device manufacturer’s instructions.�

Using SCSI Optical Disk Drives

On XL machines, Genera supports the Storage Dimensions MacinStor Erasable Op-

tical 1000 disk drive. You can create a FEP file system on an optical disk, and ac-

cess the FEP file system in the usual ways. You can use the optical disk to store

large files such as image files, world loads, and Statice databases. (You cannot

boot locally off a world load stored on an optical disk, but you can store the world

load there for archival purposes and for netbooting from other machines.)

Cartridges formatted for use on XL machines are not compatible with MacIvory

and vice-versa. On MacIvory, the MacinStor is treated like any other disk drive.

MacIvory cartridges contain a standard Macintosh file system, and within that file

system you may create one or more Ivory partitions. When using a MacinStor on a

MacIvory, the procedures and commands described in the following sections do not

apply. See the section "Using the MacIvory Control Panel".

Normal Use of an Optical Disk�

The initial installation instructions are described in the section "Installing a SCSI

Device". Once the disk drive is installed, and an optical disk has been initialized

with a FEP filesystem, the normal use is as follows: 

1. Insert the optical disk into the drive.



Page 117

2. Mount the optical disk using the Mount Optical Disk CP command.

3. Use the optical disk by giving Genera commands in the same way that you

would access any FEP filesystem. You can write files to the FEP filesystem

and read them back. You can do Show FEP Directory on the FEP filesystem.

(Note the restrictions below on using the optical disk for paging, or with

LMFS, or with worlds.)

4. Dismount the optical disk using the Dismount Optical Disk CP command.

5. Eject the optical disk from the drive by pressing the button on the front of

the drive.�

Guidelines for Use of Optical Disks�

It is important to understand that you cannot dismount the optical disk while any

application is accessing it (for example, when there is an open stream to the opti-

cal disk). Also, you cannot eject the optical disk until it has been dismounted. The

software prevents you from doing these things, in order to protect the integrity of

the data on the FEP filesystem on the optical disk. This has the following impli-

cations: 

Using the optical disk for paging is not recommended.

Once you have added a paging file that is stored on an optical disk, you

cannot dismount (or eject) the disk until you next cold-boot Genera. It

might be useful in an emergency to set up a paging file on the optical

disk and use it long enough to save your files, knowing that you will

cold boot soon anyway.

Putting a LMFS on an optical disk is not recommended.

Once you have activated a LMFS that is stored on an optical disk (which

happens the first time you try to access any file from that LMFS), you

cannot dismount (or eject) the disk until you next cold-boot Genera. This

is because LMFS has no concept of a dismountable disk, and the integri-

ty of the data must be protected by preventing the disk from being dis-

mounted while LMFS is active. It might be useful in some emergency

situations to create a single-partition LMFS on an optical disk and use it

briefly, knowing that you will cold boot soon anyway. On the other hand,

you can store any file in the FEP filesystem of the optical disk, so there

seems little point in creating a LMFS on the optical disk.

Do not write protect erasable optical disks that you use as FEP filesystems. The soft-

ware for accessing the FEP from Lisp cannot read from write-protected

disks.�

There is an additional restriction: 

Using the optical disk for booting a world is not possible.

The optical disk drive is not recognized by the FEP until Genera is up

and the Mount Optical Disk command has been given. Therefore, you



Page 118

cannot boot from a world stored on an optical disk. You can, however,

store worlds on an optical disk for archival purposes or to use the optical

disk host as a Netboot server.�

Setting up a Blank Optical Cartridge

1. When preparing to use a blank optical cartridge, insert it into the drive. Note

that each cartridge has two sides which must be prepared separately. Only

one side is accessible at any time. In Genera, the first thing to do is give the

Write Partition Map CP command, and give the appropriate SCSI address as

an argument. There are keyword arguments as well, but the defaults are usu-

ally appropropriate. 

Write Partition Map SCSI-address�

Note that this command will erase any data on the disk, and create a new

partition map on it.

2. Mount the optical disk by using the Mount Optical Disk CP command. 

Mount Optical Disk SCSI-address�

This command makes the optical disk accessible to Genera. 

3. Create a FEP filesystem by giving the Create Initial FEP Filesystem com-

mand.

Create Initial FEP Filesystem FEP-unit-number�

Note: Create Initial FEP Filesystem differs from the other commands used

here in that it takes a FEP unit number, not a SCSI address.

The convention is that the FEP unit number is 7 greater than the SCSI ad-

dress. For example, if you set up the optical disk drive at SCSI address 4, the

FEP unit is FEP 11. (Note that if you have multiple I/O boards, and the opti-

cal disk drive is attached to the second I/O board, then the FEP unit is 23

plus the SCSI address.)

Now the optical disk has a FEP Filesystem on it, which you can access from

Genera. Once the FEP filesystem has been created, you refer to it by the

FEP unit number, not the SCSI address.

4. Show the FEP directory, as a test, by using the Genera CP Command:

Command: Show FEP Directory�

You should see the new FEP unit appear along with the other FEP units.

Commands for Using Optical Disks



Page 119

Write Partition Map Command

Write Partition Map SCSI-address keywords�

Writes a new partition map on an optical disk. This command erases any data or

partitions already on the disk.

SCSI-address The SCSI address of the optical disk drive.

keywords :Partition Map Size, :Apple Driver Size, :Apple Hfs Size,

:FEPFS Size�

The keywords enable you to control the size of four partitions. The values are in

number of blocks, or Rest. If you supply keywords, three of the partitions should

be specified as integers, and one should be Rest (indicating that the remaining

space should be used for that partition).

:Partition Map Size

The default is 40 blocks.

:Apple Driver Size

The default is 30 blocks.

:Apple Hfs Size The default is 0 blocks.

:FEPFS Size The default is Rest. �

Create Initial FEP Filesystem Command

Create Initial FEP Filesystem FEP-unit�

Creates an initial FEP filesystem on the given FEP-unit. This command is used

for initializing an optical disk or a SCSI disk. 

FEP-unit The number of the FEP unit. �

The convention for mapping SCSI addresses to FEP unit number is that the FEP

unit number is 7 greater than the SCSI address. For example, if you set up the

SCSI disk drive at SCSI address 4, the FEP unit is FEP 11. (Note that if you have

multiple I/O boards, and the SCSI disk drive is attached to the second I/O board,

then the FEP unit is 23 plus the SCSI address.) 

Mount Optical Disk Command

Mount Optical Disk SCSI-address�

Mounts the optical disk indicated by SCSI-address. Once the disk is mounted, if it

has a FEP filesystem on it, you can access it by using its FEP unit number. Oth-

erwise, you should use the Create Initial FEP Filesystem command.



Page 120

SCSI-address The SCSI address of the optical disk drive.�

The convention for mapping SCSI addresses to FEP unit number is that the FEP

unit number is 7 greater than the SCSI address. For example, if you set up the

optical disk drive at SCSI address 4, the FEP unit is FEP 11. (Note that if you

have multiple I/O boards, and the optical disk drive is attached to the second I/O

board, then the FEP unit is 23 plus the SCSI address.)

Dismount Optical Disk Command

Dismount Optical Disk SCSI-address keywords�

Dismounts the optical disk indicated by SCSI-address. Once the disk is dismount-

ed, you cannot access it again until you mount it. 

SCSI-address The SCSI address of the optical disk drive.

keywords :Eject 

:Eject {Yes, No} Whether to eject the optical disk after it is dis-

mounted. The default is No. The mentioned default is Yes.�

Using Magnetic SCSI Disk Drives

On XL machines, Genera 8.1 supports the Storage Dimensions MacinStor SCSI disk

drive series. Currently, only the MacinStor 320 and the MacinStor 650 have been

qualified for use with XL machines. However, other SCSI disk models may also

work properly.

Setting up a Blank SCSI Magnetic Disk

Note that new SCSI disks cannot be initialized from the FEP. You need an XL

running Lisp to set up a new disk. 

1. Connect the SCSI disk to the XL and power up the disk. Use the Format SC-

SI Disk command to format the disk. Provide the appropriate SCSI address as

an argument.

Format SCSI Disk SCSI-address :Sector Size 1280�

Note that this command will erase any data on the disk.

2. Warm boot Lisp so Genera will recognize the formatted drive.

3. Create a FEP filesystem by giving the Create Initial FEP Filesystem com-

mand. Provide the appropriate FEP unit as an argument.

Create Initial FEP Filesystem FEP-unit�



Page 121

The convention for mapping SCSI addresses to FEP unit numbers is that the

FEP unit number is 7 greater than the SCSI address. For example, if you set

up the SCSI disk drive at SCSI address 4, the FEP unit is FEP 11. (Note that

if you have multiple I/O boards, and the SCSI disk drive is attached to the

second I/O board, then the FEP unit is 23 plus the SCSI address.)

Now the SCSI disk has a FEP Filesystem on it, which you can access from

Genera. Once the FEP filesystem has been created, you refer to the disk by

the FEP unit number, not the SCSI address.

4. Show the FEP directory, as a test, by using the Genera CP Command:

Command: Show FEP Directory�

You should see the new FEP unit appear along with the other FEP units.

Commands for Using SCSI Magnetic Disks

Format SCSI Disk Command

Format SCSI Disk SCSI-address�

Formats the SCSI disk indicated by SCSI-address.

SCSI-address The SCSI address of the SCSI disk drive.

keywords :Controller, :Sector Size

:Controller No documentation supplied

:Sector Size The default is 1280 bytes

Create Initial FEP Filesystem Command

Create Initial FEP Filesystem FEP-unit�

Creates an initial FEP filesystem on the given FEP-unit. This command is used

for initializing an optical disk or a SCSI disk. 

FEP-unit The number of the FEP unit. �

The convention for mapping SCSI addresses to FEP unit number is that the FEP

unit number is 7 greater than the SCSI address. For example, if you set up the

SCSI disk drive at SCSI address 4, the FEP unit is FEP 11. (Note that if you have

multiple I/O boards, and the SCSI disk drive is attached to the second I/O board,

then the FEP unit is 23 plus the SCSI address.) 

Using SCSI Tape Drives



Page 122

SCSIQIC-11 tapes and 6250 bpi tape drives now work on XL machines. The initial

installation instructions are described in the section "Installing a SCSI Device".

Once the tape drive is installed, you can access it in the same way you access oth-

er supported tape devices. Note that if your XL is already running Lisp when you

connect the new tape drive, you have to warm boot before the new tape drive is

recognized.

Some XL and MacIvory machines use the Emulex MT02 controller, a QIC-11 SCSI

tape drive. You need to add a PERIPHERAL entry to the namespace object of any host

that uses the Emulex MT02 controller. If this entry is not present, only four of

the nine tracks will be used. For example, for a controller at SCSI address 1, the

entry should look like this:

Peripheral: TAPE UNIT SCSI1 MODEL EMULEX-MT02�

Changes to the Data Compression Facilities in Genera 8.1

The Compression Facility now has a user interface. In addition, many small

changes to the substrate have been made.

In Genera 8.0, the only interface to the compression facilities was in the Distribu-

tion System. Now it is possible for you to make use of data compression to store

files in any file system, and to read and write compressed files from UNIX hosts. 

The interface consists of two commands, Compress File and Decompress File:

Compress File Command

Compress File input-files output-files keywords�

Compresses the data in input-files and produces output-files. Wildcards are allowed.

If input-files and output-files are the same files, the input files are replaced by the

output files.

input-files {pathname(s)} One or more files to compress.

output-files {pathname(s)} One or more files to contain the compressed da-

ta.

keywords :Copy Properties, :Create Directories, :More Processing, :Out-

put Destination :Preamble Type, :Query, :Translation Strategy

:Copy Properties {list of file properties} The properties you want duplicated in

the new files. The default is author and creation date.

:Create Directories

{Yes, Error, Query} What to do if the destination directory

does not exist. The default is Query.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.



Page 123

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M"). 

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Preamble Type {Symbolics, UNIX} Type of preamble to use.

:Query {Yes, No, Ask} Whether to ask before compressing each file.

:Translation Strategy

{Text, Binary, Query, Heuristicate} Whether or not to perform

character set translation. Text means to do ASCII character set

translation, reading each input file as a text file. Binary means

not to do ASCII character set translation, reading each input

file as a binary file. Query asks, for each file, whether to treat

the file as text or binary. Heuristicate attempts to guess

whether the file is text or binary based on its name, as fol-

lows: The filename is broken up into words, where each word

is separated by a non-alphanumeric character. A rightmost

word of "Z" is removed (if present). Then the current right-

most word is checked against compression::*likely-unix-

binary-formats* If a match is found, the file is assumed to be

binary, otherwise it is assumed to be text.

:Translation Strategy is only useful if you are reading or writ-

ing a file with a UNIX-style compression preamble, because

Symbolics-style compression preambles record the element type

and character set of the compressed data. Using :Translation

Strategy with a file having a Symbolics-style compression

preamble is ignored with a warning.

Decompress File Command

Decompress File input-files output-files keywords�

Decompresses the data in input-files and produces output-files. Wildcards are al-

lowed. If input-files and output-files are the same files, the input files are replaced

by the output files.

input-files {pathname(s)} One or more files to decompress.

output-files {pathname(s)} One or more files to contain the decompressed

data.



Page 124

keywords :Copy Properties, :Create Directories, :More Processing, :Out-

put Destination :Preamble Type, :Query, :Translation Strategy�

:Copy Properties {list of file properties} The properties you want duplicated in

the new files. The default is author and creation-date.

:Create Directories

{Yes, Error, Query} What to do if the destination directory

does not exist. The default is Query.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M"). 

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Query {Yes, No, Ask} Whether to ask before decompressing each file.

:Translation Strategy

{Text, Binary, Query, Heuristicate} Whether or not to perform

character set translation. Text means to do ASCII character set

translation, writing each resulting file as a text file. Binary

means not to do ASCII character set translation, writing each

resulting file as a binary file. Query asks, for each file,

whether to treat the file as text or binary. Heuristicate at-

tempts to guess whether the file is text or binary based on its

name, as follows: The filename is broken up into words, where

each word is separated by a non-alphanumeric character. A

rightmost word of "Z" is removed (if present). Then the cur-

rent rightmost word is checked against compression::*likely-

unix-binary-formats*, and if a match is found, the file is as-

sumed to be binary, else it is assumed to be text.

:Translation Strategy is only useful if you are reading or writ-

ing a file with a UNIX-style compression preamble, because

Symbolics-style compression preambles record the element type

and character set of the compressed data. Using :Translation

Strategy with a file having a Symbolics-style compression

preamble is ignored with a warning.�

These two commands make use of the variable compression::*likely-unix-binary-

formats*:



Page 125

compression::*likely-unix-binary-formats* Variable

A list of the file types that Compress File and Decompress File assume are binary

files and do not need character set translation. This is only important if you are

reading or writing a file with a UNIX-style compression preamble and are using

:Translation Strategy Heuristicate. Users are encouraged to add or remove items

from this list.

The current value of this variable is:

"TAR" "ARC" "ZOO" "LZH" "ZIP" "MID"

"GIF" "IFF" "TIF" "TIFF" "GEM" "NEO"

"SPC" "LIB" "OLB" "GL"

�

Changes to Tape in Genera 8.1

• Verifying a Carry Tape now works.

• Previously, when you booted a machine with its (external) SCSI tape turned off,

you had to warm boot in order to make the machine notice the tape drive when

you turned it on. In Genera 8.1, a proceed option offers to look again for tape

drives on the local host. This is useful for SCSI-supporting systems, where tape

drives can appear and disappear dynamically.

• Previously, the SCSI tape code did not work for tape controllers which do not

support the CCS (Common Command Set); this is now fixed. Also, Show Machine

Configuration now prints readable output for non-CCS devices.

• Another bug in SCSI tapes has been fixed, in which only one EOF was written

at the end of a tape. This bug affected Exabyte drives.

• Finding SCSI tape drives now works on UX systems.

• There was a bug in the 8.0 SCSI tape formatter which caused "Medium

Changed" errors in Format Local SCSI Tape. This bug has been fixed.

• The Distribution Dumper has been changed to dump the version of the system

declaration that is appropriate to the system being dumped.�

New TAR Tape Commands

The commands to read and write TAR tapes have been improved and new com-

mands have been added to read, write, and show the contents of TAR tapes and

files.



Page 126

Read TAR Tape Command

Read TAR Tape root-directory-for-relative-pathnames keywords�

Reads a tape in TAR format. It prompts for the tape specification.

root-directory-for-relative-pathnames

{a directory} The directory in which to put the files read from

the tape.

keywords :Mode, :More Processing, :Output Destination, :Reroot Absolute

Pathnames�

:Mode {Binary, Query, Text} The mode in which to perform the copy.

The default is Query, ask about each file. Binary means binary

bytes with no character set translation. Text means text char-

acters with UNIX character set translation.

:More Processing

{Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M"). 

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Reroot Absolute Pathnames

{Yes, No} Uses the specified root directory as the "root" for

absolute pathnames. The default is No. The mentioned default

is Yes.�

Write TAR Tape Command

Write TAR Tape pathnames�

Writes a tape in TAR format. It prompts for the tape specification.

pathnames The pathnames of the files to write on the tape.

keywords :More Processing, :Output Destination, :Relativize, :Since�

:Mode {Binary, Heuristicate, Query, Text} Mode in which to perform

the copy. Binary means binary bytes with no character set



Page 127

translation. Heuristicate means try to determine automatically

per file. Query, the default, means ask for each file. Text

manes text characters with UNIX character set translation.

:More Processing

{Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M"). 

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Relativize {Yes, No} Whether to try to write the pathname as a relative

UNIX pathname, that is relative to the current UNIX directory

instead of starting at root. The default is No. The mentioned

default is Yes.

:Since {universal-time-in-the-past} Writes only files later than the

specified date.

Show TAR Tape Command

Show TAR Tape keywords�

Shows the contents of a TAR tape. It prompts for the tape specification.

keywords :More Processing, :Output Destination

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M"). 

:Output Destination{Buffer, File, Kill Ring, None, Printer, Stream, Window} En-

ables you to direct your output. The default is the stream

*standard-output*. Note that redirecting output to a printer

can be particularly useful. 

Read TAR File Command



Page 128

Read TAR File tarfile  root-directory-for-relative-pathnames keywords�

Reads a file in TAR format. 

tarfile {a pathname} The TAR file to read.

root-directory-for-relative-pathnames

{a directory} The directory in which to put the files read.

keywords :Mode, :More Processing, :Output Destination, :Reroot Absolute

Pathnames�

:Mode {Binary, Query, Text} The mode in which to perform the copy.

The default is Query, ask about each file. Binary means binary

bytes with no character set translation. Text means text char-

acters with UNIX character set translation. 

:More Processing

{Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M"). 

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Reroot Absolute Pathnames

{Yes, No} Uses the specified root directory as the "root" for

absolute pathnames. The default is No. The mentioned default

is Yes.�

Write TAR File Command

Write TAR File pathnames�

Writes a File in TAR format. 

pathnames The pathnames of the file(s) to write.

keywords :More Processing, :Output Destination, :Relativize, :Since�

:Mode {Binary, Heuristicate, Query, Text} Mode in which to perform

the copy. Binary means binary bytes with no character set

translation. Heuristicate means try to determine automatically



Page 129

per file. Query, the default, means ask for each file. Text

manes text characters with UNIX character set translation.

:More Processing

{Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M"). 

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Relativize {Yes, No} Whether to try to write the pathname as a relative

UNIX pathname, that is relative to the current UNIX directory

instead of starting at root. The default is No. The mentioned

default is Yes.

:Since {universal-time-in-the-past} Writes only files later than the

specified date.�

Show TAR File Command

Show TAR File tarfile keywords�

Shows the contents of a TAR tape. 

tarfile {a pathname} The file to be read.

keywords :More Processing, :Output Destination

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M"). 

:Output Destination{Buffer, File, Kill Ring, None, Printer, Stream, Window} En-

ables you to direct your output. The default is the stream

*standard-output*. Note that redirecting output to a printer

can be particularly useful. 



Page 130

Changes to SCSI and ESDI in Genera 8.1

• The SCSI code now handles SAVE DATA POINTERS properly.

• Although not a standard option, the SCSI and ESDI drivers now support multi-

ple I/O boards (#0 and #1).

• scsi:with-scsi-port and scsi:scsi-port-open now accept a :controller argument.

nil means the default controller. 0 and 1 indicate which I/O board.

• There are two new SCSI functions:�

scsi:map-over-scsi-ports function Function

Calls the given function (which must accept one argument) for each possible SCSI

port on the system. 

scsi:scsi-port-address port Function

Returns three values: the controller, the bus address, and the logical unit (always

0). 

Changes to Enable CD-ROM Distribution

Genera 8.1 lays the foundation for distributing software on CD-ROMs. One aspect

of this is a new kind of pathname:

ISO 9660 Pathnames

An ISO 9660 pathname looks like:

host|CDROMn:>dir1>dir2>...>file.type;version�

Directory names can be up to 31 characters long. The file name and type together

may be up to 30 characters long. If the CD-ROM drive is attached to the local

machine, "hostl" is optional. The version is an integer between 1 and 32767, or

"NEWEST", or "OLDEST". You can use "*" in any position for a wild card. All

names must consist entirely of digits, upper-case letters, and underscore "_" char-

acters.

CD-ROM character files are expected to be in "Unix ASCII" format with NL char-

acters separating the lines of text. 

New Memory Error Correction Process for Ivory Machines

There is a memory error scrubber process for memory error correction on Ivory

machines. It runs in the background, consuming less than 0.1% of CPU looking for

soft errors in memory that can be repaired by reading the corrected data and re-



Page 131

writing it so that there are no further errors. (A soft error that goes uncorrected

would otherwise risk becoming a hard error by a second bit degrading.)

The scrubber can also discover uncorrectable errors in memory, before you get bit-

ten by them. It sends a notification every time it hits an uncorrectable error, on

the assumption you do not really want to be running with broken memory.

If some memory errors put you into the debugger while some uncorrectable errors

put you into the FEP, you only go to the FEP if the uncorrectable error happens

at a "bad time." If you are in the debugger, it provides the usual resume options.

In this case, you should save your work and cold boot in order to reset your world.

You can run memory tests in the FEP to determine whether or not the memory is

actually broken, or that the error is just a temporary glitch.

See the section "FEP Commands for Systems Experts".

There is a CP command to display the error corrections, see the section "Show

Memory Error Corrections Command". 

Miscellaneous Changes to Utilities in Genera 8.1

• The Distribute Systems command and Distribute Systems activity have been

modified to make it more convenient to distribute to disk. The distribution plan

is not divided into parts according to any size limit, when written to disk.

• Genera 8.1 fixes a bug in which the disk driver could hang when saving a

world.

• metering:define-metering-function and related functions now allow declara-

tions. It is useful to be able to insert inline and notinline declarations and see

the effects.

• There is a new function, si:show-callers, which does the same thing as the

Show Callers CP command:

si:show-callers symbol &key :called-how :package :system (:printer t) Function

Tries to find all the functions in the Lisp world that call symbol. This is the

function underlying the Show Callers CP command. 

symbol The name of a defined function whose callers to locate.

:called-how Lists only those callers that refer to symbol as a particular

type of Lisp Object. The possible types are:

Condition Flavor-Component Macro

Constant Function Microcoded-Function

Defined-Constant Generic-Function Unbound-Function

Flavor Instance-Variable Variable�



Page 132

:package Lists only those callers in the specified package.

:system Lists only those callers from the specified system.�

See the function who-calls. 

• The argument to the CP command Show Expanded Lisp Code is now optional.

Both the CP command Show Expanded Lisp Code and the mexp function used to

complain if you typed the name of an unbound variable to be expanded, or if you

typed a form the car of which was the name of an undefined function. Such

forms are no longer screened out by the reader in this context.

• If a postscript file being read using the Read Image CP Command contains some

text, you could end up in the debugger. This bug has been fixed.

• A bug on Ivory machines in the Metering section of Peek that caused you to go

into the debugger if you clicked on Storage Meters has been fixed.

• In a previous release, when the host for a print spooler was not available, you

were forced to enter the main debugger. In this release, the behavior has been

changed so that you enter the pop-up debugger, since it’s rare that the error

was due to a program bug and probably you just want to select an alternate

printer from the pop-up menu and let the hardcopying continue.

• In the File System Editor (FSMaint), the default for Repatriation of orphans

during a Salvage operation has been changed to No. This is considered safer

than automatically trying to repatriate orphans.

• In previous versions of Genera, if you used ACLs and got a LMFS capability er-

ror, you would end up in the debugger. In Genera 8.1 you can proceed from the

error.�

Changes to System Construction Tool in Genera 8.1

Change to sct:copy-system in Genera 8.1

The :destination keyword argument to the function sct:copy-system is required.

Failing to supply it previously resulted in an error, but the error message was not

very intelligible. This argument is now checked for right away and a better error

message is signalled if it is missing.

The :destination keyword argument to the function sct:copy-system has been en-

hanced to permit general kinds of values. Previously, the only documented possibil-

ity was a single non-wild filename (pathname or string) with host, device and di-

rectory. The updated documentation for the :destination keyword to sct:copy-

system follows:



Page 133

:destination

Specifies where to copy the system files. The :destination keyword is re-

quired. It can take one of the following values: 

• A non-wild filename (host, device, and directory only)

Copies all files in the given system into this directory. In this case, the

source directory structure is flattened so that all files appear in the same

result directory regardless of the shape of the directory structure in

which they originally resided. (Note that in this case, if files with the

same name exist in two different source directories, name collisions can

occur.)

For example:

(sct:copy-system "Physics" :destination "Cobalt:>Marie>physics>")�

If the Physics system contained these files:

Hydrogen:>Albert>toys>macros.lisp

Helium:>Isaac>general>utilities.lisp�

they would be copied to:

Cobalt:>Marie>physics>macros.lisp

Cobalt:>Marie>physics>utilities.lisp�

• A wild filename (host, device, and directory only)

Constructs a matching set of wildcards to match against the directory

structure in the source, and copies all files in the source into the speci-

fied pathname.

It is an error if the wildcards in the destination do not match the shape

of the source structure. For example, in the example shown below,

"Cobalt:>Marie>physics>*>*>" would be an appropriate alternative for this

input data, but "Cobalt:>Marie>physics>*>" would not (because there are

two levels of directory structure in the source files). In general, it is best

to use a :wild-inferiors designator, such as the "**" notation for LMFS

pathnames, if at all possible.

For example:

(sct:copy-system "Physics" :destination "Cobalt:>Marie>physics>**>")�

If the Physics system contained these files:

Hydrogen:>Albert>toys>macros.lisp

Helium:>Isaac>general>utilities.lisp�

they would be copied to:



Page 134

Cobalt:>Marie>physics>Albert>toys>macros.lisp

Cobalt:>Marie>physics>Isaac>general>utilities.lisp�

• A translation alist

This translation alist has the same format as the :translations argument

to fs:set-logical-pathname-host. Entries are tried in succession until the

first match. When an entry matches an element in the car of some entry,

the destination pathname is the cadr of that entry.

For example:

(SCT:COPY-SYSTEM 

  "Physics"

  :DESTINATION ’(("Hydrogen:>**>*.*.*" 

  "Cobalt:>Marie>Hydrogen>**>*.*.*")

 ("Helium:>Isaac>**>*.*.*"

  "Cobalt:>Marie>Isaac>**>*.*.*")

 ("Helium:>**>*.*.*"

  "Cobalt:>Marie>Helium-Other>**>*.*.*")))�

If the Physics system contained these files:

Hydrogen:>Albert>toys>macros.lisp

Helium:>Isaac>general>utilities.lisp�

they would be copied to:

Cobalt:>Marie>Hydrogen>Albert>toys>macros.lisp

Cobalt:>Marie>Isaac>general>utilities.lisp�

Change to Compile System for Concordia

Genera 8.1 provides a convenient way to compile a documentation-only system for

both Symbolics architectures (Ivory and 3600-family).

Compiling a system consists of compiling (when necessary) its component files,

loading them, and recording the exact version of sources and products (if any) for

the newly compiled version. If a system consists solely of documentation, the step

of compiling the component files is not necessary; compiling the system simply

loads the files and records the version information. The loading step can be time-

consuming. 

In Genera 8.1, you can compile a documentation-only system on one architecture,

and automatically "copy compile" it for the other architecture. The Compile System

command takes the new keyword argument :Copy Compile, which does the follow-

ing:

:Copy Compile {Yes, No, Query} For those systems where the product of the

compilation is not a true binary file (notably documentation



Page 135

systems) and is usable on both Ivory and 3600 architectures,

:Copy Compile Yes has the effect of compiling it for the other

architecture. For example, if you compile a documentation sys-

tem on a 3600-family machine, to "copy compile" it would have

the effect of compiling it for the Ivory architecture as well.

Yes does the copy compile. No does not. Query prints an expla-

nation of what is being offered, and queries about whether to

do it.

Similarly, compile-system now takes a new keyword argument: 

:copy-compile-p Takes t, nil, or :query, which is the default. For those systems

where the product of the compilation is not a true binary file

(notably documentation systems) and is usable on both Ivory

and 3600 architectures, :copy-compile-p allows "compilation"

for the other machine type by copying the form in the compo-

nent-dir. This saves the necessity of doing the compilation

over for the other machine type. See the section "Compiling a

System for Multiple Machine Types".�

Miscellaneous Changes to System Construction Tool in Genera 8.1

• Genera 8.1 fixes a bug in which sct:reap-obsolete-system-versions would get an

error when it was about to delete all the files in the directory that contains a

certain component dir but then it discovers that the directory itself does not ex-

ist. sct:reap-obsolete-system-versions now warns the user if the directory was

not found, instead of putting the user into the Debugger.

• A change has been made which affects only those users who still need to con-

vert old-style code using make-system to System Construction Tool. When you

try to recompile code using make-system, you get an error which suggests that

you use sct:convert-system-directory. This conversion tool was last shipped in

Genera 7.2, and was unavailable thereafter. In Genera 8.1, it is again made

available, and is now in the file SYS:UNSUPPORTED; convert-journals.*.�

Changes to the X Window System in Genera 8.1

The X server now conforms to MIT X11 R4 (the X client already conformed to R4).

Previously, the Symbolics X client (X-Remote-Screen) didn’t recognize the Symbol-

ics X server when using a Symbolics keyboard. It claimed that the keyboard type

was the machine type and that there was no defined layout for the keyboard. This

bug has been fixed.

Genera 8.1 fixes a bug in which if you were not using the main console (for exam-

ple, you were connected via an X Window) and you used the Namespace Editor



Page 136

commands Edit Namespace Object or Create Namespace Object, the namespace ed-

itor would expose on the main console and not the remote console. (This is not a

change to the X Window system itself, but it affects X Window system users.)

Previously, when a local X Window system "connection" timed out, an error would

happen, causing entry to the Debugger. This bug has been fixed.

Changes to MacIvory in Genera 8.1

Changes and Improvements in Accessing the Macintosh File System

• The performance of Macintosh file system operations has been improved.

• It is now possible to quote asterisks (and other special characters) in Macintosh

filenames when they are typed from Genera. See the section "Macintosh Path-

name Quoting".

• The prohibition against renaming across directories (folders) on a Macintosh vol-

ume has been lifted in this release. Renaming across volumes is still prohibited

since the Macintosh does not natively implement that capability.

• The state of the Finder’s bundle bit is now returned as the :bundle property of

any Macintosh file.

• A number of problems with accessing a Macintosh file system have been fixed.

These problems were:

• ° (directory #p"HOST:Volume:No Such File") signaled a "File not found" error

rather than returning nil.

° (directory #p"HOST:Volume:No Such Folder:*") signaled "File not found" in-

stead of "Directory not found". Consequently, the proceed option to create the

directory and any missing superiors was not offered.

° (directory #p"HOST:Volume:Existing File:*") did not signal "Not a directo-

ry".

° (probe-file #p"HOST:Volume:Existing Folder") returned nil.�

• Closing a Macintosh FS stream with :abort t sometimes signaled errors.

• Unknown properties for files on a Macintosh file system are now handled prop-

erly. Specifically, the system now signals an error properly built on fs:change-

property-failure if you attempt to change any property of a Macintosh file other

than :creation-date, :backup-date, :file-type, :creator-signature, or :bundle.



Page 137

• When listing the contents of a Macintosh directory, the block count reported for

a file was not the actual number of blocks occupied by the file on disk. The re-

ported block count was based on a 1024 byte block size rather than the actual

block size reported in the directory listing header. This bug has been fixed.�

Changes to Booting Genera on MacIvory

• Booting Genera on the MacIvory is more robust, especially in the case where

the date and time cannot be obtained from the toolbox server, for example be-

cause the wrong file is present or because the folder has been renamed.

• Warm-booting Genera on the MacIvory is more robust. Previously, if a MacIvory

had an active serial channel and you warm booted the Ivory without restarting

the Macintosh, the Macintosh would crash a short time later. �

Bugs in Interaction of Symbolics Keyboard with Macintosh Software Fixed

Several bugs in the interaction of the Symbolics keyboard with non-Symbolics Mac-

intosh software have been fixed. These bugs include the following: 

• The right-hand modifier keys (SHIFT, COMMAND (SUPER), OPTION (META), and CON-

TROL) were not always recognized by Macintosh software. Note that, while most

software now recognizes these keys, some software (such as Pyro!) still does not.

Perhaps the most important piece of Macintosh software which now recognizes

these keys is Apple’s Finder. In particular, you can now use the right-hand

SHIFT key to perform a multiple selection within the Finder.

• You can now map Apple key functions to keys not directly on the Symbolics key-

board when CloseView is installed using the techniques described in "Mapping

of Apple Key Functions to the Symbolics Keyboard". Note that there is still

some incompatibility between CloseView and the Symbolics keyboard. See the

section "Interoperability of the Symbolics Keyboard and Popular Macintosh Soft-

ware".

• QuickKeys 2 now reliably interprets the keys typed on a Symbolics keyboard. See

the section "Interoperability of the Symbolics Keyboard and Popular Macintosh

Software".

Changes to the Genera Application and Other Applications Created on

MacIvory

The following bug fixes apply to the Genera, Unassigned, and Mac Dex applica-

tions. In addition, they also apply to any applications you create from the afore-

mentioned applications using the Configure MacIvory Application CP command.

For simplicitly, the bug fix descriptions only mention the Genera application.



Page 138

• The bug which prevented the Genera application from passing COMMAND-Shift-n,

where n is any digit, to Lisp has been fixed. On a Symbolics keyboard, the COM-

MAND modifier is entered by pressing the SUPER key which meant it was impossi-

ble to enter SUPER-!, etc. While on an Apple keyboard, the COMMAND modifier is

normally interpreted as the SUPER key, this assignment could be changed. (See

the section "Changing the Keyboard Mappings on a MacIvory".) In particular, if

you changed the COMMAND modifier to map to the META key, it became impossible

to type META-!, etc., including META-$ which is the Zmacs Spell Word command.

• The bug which prevented Pyro! from running your selected screen savers while

the Genera application was the active application has been fixed.

• The Genera application now recognizes that the Apple ISO Extended Keyboard

is functionally equivalent to the Apple Extended Keyboard II and treats both

keyboards identically.

• When you exit the Genera application or switch to another application under

MultiFinder, the Genera application now properly resets the state of the Apple

Extended Keyboard II. Consequently, the Finder and other Macintosh applica-

tions now recognizes the righthand SHIFT, OPTION, and CONTROL keys as being

equivalent to their lefthanded counterparts.�

Symantec AntiVirus for Macintosh

Symantec AntiVirus for Macintosh (SAM) is being distributed with Genera 8.1. It

is contained on how many floppy diskettes labelled something-or-other.

You should be sure to install it and run it to protect your system against viruses.

We think that SAM offers an advantage over most other anti-virus software in

that it offers an Automatic Scan feature (SAM Intercept) that continually monitors

all system activity and warns you of suspicious activity that could be the result of

a virus. (Of course, if you regularly perform certain actions that trigger SAM In-

tercept warnings, it has a Learn feature that allows you to teach it to ignore those

actions.)

In addition, Symantec offers a Virus Hotline so that you can keep informed of new

viruses as they appear. 

SAM also includes a facility to repair files damaged by viruses, SAM Virus Clinic.

This facility can repair known viruses. It is extensible, so that if you learn about a

new virus from the Virus Hotline, you can add information about that virus to the

Clinic.

Your SAM software contains: 

• floppies with the software

• documentation



Page 139

• registration card �

We urge you to be sure to install SAM on your MacIvory. 

Miscellaneous Changes to MacIvory in Genera 8.1

• In the past, MacIvory has been used as both a generic term referring to all

models of MacIvory and as a specific term referring to the original model

MacIvory. As of Genera 8.1, MacIvory is now used only as a generic term. The

original model MacIvory is now referred to as a "MacIvory model 1".

• All relevant software in Lisp, the IFEP, and the Macintosh has been changed to

use the term "MacIvory model 1". Of particular note, si:machine-model now re-

turns :|MacIvory model 1| instead of :|MacIvory|.

• A bug in the Configure MacIvory Application command which caused the com-

mand to reject any attempts to enter an Initial Application Command unless the

selected remote program was also running at the time has been fixed.

• The disk throttling mechanism of MacIvory life support can now be completely

disabled by setting the value of its "Idle" parameter to zero in the MacIvory

control panel file.

• MacIvory life support now maintains more accurate Ethernet meters. In particu-

lar, any incoming packets which are discarded because Lisp is unable to accept

them are counted as part of the other_receive_errors meter.

• MacIvory now displays its run lights at the bottom of its cold load window

whenever the cold load window is exposed. When netbooting, MacIvory also dis-

plays a progress bar at the bottom of its cold load window.

• The bug which caused a MacIvory without an Ethernet card to hang during

booting if not configured as a standalone machine has been fixed.

• The bug in the Disk Copy option of the MacIvory control panel which caused

copying of Macintosh disks to always fail with the error code -55 has been fixed.

As part of this fix, however, the MacIvory control panel now restarts the Macin-

tosh after successfully copying Macintosh disks.

• The Ivory Breath of Life application has been extended to allow the selection of

a source medium if multiple media (i.e., tape and CD-ROM) are present. The ap-

plication has also been extended to optionally allow the restoration of tape or

CD-ROM contents without destroying the existing files on the FEP filesystem.

Documentation Update for MacIvory



Page 140

Routines for RPC Error Handling in RPC.lib

RPCRemoteError Routine

RPCRemoteError (long *error-number)

Returns the remote error number of the last RPC call that failed. This routine is

useful with the individual functions that access remote-error values to allow error

handling. 

ReportRPCOpenFailure Routine

Boolean ReportRPCOpenFailure (OSErr error, Boolean embeddedP, char* host)�

Reports a failure when opening an agent (that is, when calling emb_agent_open).

The argument error is the return code from the call. For now, embeddedP should

be TRUE and host should be 0L. Returns TRUE if unable to recover from the error;

returns FALSE if able to recover from the error and if the agent is open.

ReportRPCCallFailure Routine

Boolean     ReportRPCCallFailure (Boolean fatalP, OSErr error, 

                Boolean embeddedP, char *host)

Reports a failure from an RPC call. The argument error is the return code from

the call. The argument fatalP should be TRUE or FALSE based on whether the error

can be recovered from. For now, embeddedP should be TRUE and host should be 0L.

If fatalP is FALSE, this routine returns TRUE if the user decides to give up and re-

turns FALSE if he wants to try again. If fatalP is TRUE, the routine always returns

TRUE. 

Installing and Using Printers with MacIvory

Using an Appletalk Printer From the Macintosh and Genera

• Printing via AppleTalk is supported only for Postscript printers.

• Printing via AppleTalk can not be used with our Print Spooler.�

To use an AppleTalk printer do the following:

1. Select your target printer on the Macintosh side through the Chooser.

2. Create a printer object in the namespace that identifies your MacIvory as the

host to which the printer is connected. 



Page 141

3. Set the default printer for your MacIvory to the printer object you just creat-

ed. You can do this either in the namespace to make the effect permanent or

with the Set Printer CP command.�

You can now use the printer from Lisp using the normal hardcopy facilities of

Genera.

The use of separate printer objects is required even if several MacIvories are us-

ing the same AppleTalk printer. Of course, each printer object in the namespace

must have a unique name and pretty name. Therefore it is a good idea to include

the name of the MacIvory in the printer’s names.

For example,

  Showing PRINTER SOUR-CREAM-LOS-ANGELES-TIMES in namespace SCRC:

  Type: LGP2

  Site: SCRC

  Pretty Name: The Los Angeles Times for Sour Cream

  Interface: AppleTalk

  Host: SOUR-CREAM

  Printer Location: SCRC 2 Outside KMP’s office�

The Type attribute should be LGP2, LGP3, or POSTSCRIPT depending on the type

of printer. LGP2 corresponds to the old LaserWriter and LaserWriter Plus. LGP3

corresponds to the newer LaserWriter IINT and LaserWriter IINTX. LGP3 also

works for Apple’s latest printer, the Personal LaserWriter NT. Use POSTSCRIPT

for non-Apple Postscript printers (for example, HP).

In the namespace object for the MacIvory, make sure that the BITMAP-PRINTER at-

tribute is empty. Otherwise, Lisp tries to invoke the Print Spooler, which does not

work.

If your Macintosh is running MultiFinder, it’s a good idea to enable background

printing in the Chooser when you select your AppleTalk printer. Otherwise, when-

ever you print something in Lisp, Genera stops while printing takes place. (You

see the familiar Macintosh modal dialog boxes describing the print process appear

in front of the Genera screen.) 

Using the Print Spooler with Genera

To spool an LGP2/LGP3 printer from a MacIvory machine, you need one 8-pin-

male-to-25-pin-male cable with a null modem in it. Alternatively, you can use any

combination of cables that provides you with this configuration.

1. Plug the printer into one of the serial ports on the back of the Macintosh

computer. You can run the printer from the modem port (UNIT 0) or the print-

er port (Unit 1).

2. Edit the printer’s Namespace Object as follows: 



Page 142

Interface: SERIAL 

Interface Options: UNIT n BAUD 9600 PARITY :none NUMBER-OF-DATA-BITS 8

XON-XOFF-PROTOCOL yes

User Property: DTR-VALID nil�

More information is available about editing the printer’s namespace object.

See the section "Attributes for Objects of Class "Printer"". See the section

"Using the Namespace Editor".

3. Set the baud rate to 9600 on the LGP2/LGP3 printer.

Note: If you need more information about Macintosh serial ports, check the Unit

specification conventions in the MacIvory User’s Guide. 

For additional information about setting up the print spooler and the LGP2/LGP3

printer,see the section "Installing a Printer".

See the section "Uncrating the Printer".

See the section "Specifying the Switch Settings".

See the section "Loading the Hardcopy and Printer Support Tape".

See the section "Registering a Printer".

Note: If you boot the MacIvory while the print spooler is running, you must then

restart the Macintosh computer. Otherwise, the serial stream is left open (and at-

tempts to restart the print spooler will fail with an "unable to access the serial

stream" error). 

Using the Symbolics Keyboard with Native Macintosh Applications

Use of the Symbolics keyboard with the MacIvory is provided primarily for compat-

ibility with Genera applications. In addition, Symbolics supports the use of the

Symbolics keyboard with native Macintosh applications. 

Mapping of Apple Key Functions to the Symbolics Keyboard

• All "ordinary" characters (printing graphics, TAB, SPACE, RETURN) work normal-

ly.

• Apple’s ESC key is entered using our ESCAPE key.

• Apple’s COMMAND key is entered using either of our SUPER keys.

• Apple’s OPTION key is entered using either of our META keys.

• Apple’s CONTROL key is entered using either of our CONTROL keys.

• Apple’s ENTER key is entered using our SCROLL key.



Page 143

• Apple’s CLEAR key is entered using our CLEAR INPUT key.

• Apple’s HELP key is entered using our HELP key.

• Apple’s END key is entered using our END key.

• Function keys (F1 - F15) are entered using the FUNCTION key as a shift key as

follows:

Apple Symbolics  Apple Symbolics  Apple Symbolics

F1 FUNCTION-1  F6 FUNCTION-6  F11 FUNCTION--

F2 FUNCTION-2  F7 FUNCTION-7  F12 FUNCTION-=

F3 FUNCTION-3  F8 FUNCTION-8  F13 FUNCTION-‘

F4 FUNCTION-4  F9 FUNCTION-9  F14 FUNCTION-\

F5 FUNCTION-5  F10 FUNCTION-0  F15 FUNCTION-| 

• The numeric keypad keys are entered using the SYMBOL key as a shift key as

follows:�

Apple Symbolics  Apple Symbolics  Apple Symbolics

0 SYMBOL-0  6 SYMBOL-6  * see note.

1 SYMBOL-1  7 SYMBOL-7  - SYMBOL--

2 SYMBOL-2  8 see note  + see note

3 SYMBOL-3  9 SYMBOL-9  . SYMBOL-.

4 SYMBOL-4  = see note

5 SYMBOL-5  / SYMBOL-/

Note: In the table above, no mappings are provided for numeric 8, numeric =,

numeric *, and numeric +. These four characters require special treatment be-

cause * is SHIFT 8 and + is SHIFT =. Symbolics distinguishes NUMERIC SHIFT 8

from NUMERIC * by enabling you to use the SHIFT key on the same side as the

SYMBOL for producing the unshifted key with a SHIFT modifier, and using the

SHIFT and SYMBOL keys on opposite sides for producing the shifted key without a

modifier. Note that both SHIFT keys are required to produce a shifted key with a

SHIFT modifier. For example:

    LEFT SYMBOL 8 produces NUMERIC 8

    LEFT SYMBOL LEFT SHIFT 8 produces NUMERIC SHIFT 8

    LEFT SYMBOL RIGHT SHIFT 8 produces NUMERIC *

    LEFT SYMBOL LEFT SHIFT RIGHT SHIFT 8 produces NUMERIC SHIFT *

    LEFT SYMBOL = produces NUMERIC =

    LEFT SYMBOL LEFT SHIFT = produces NUMERIC SHIFT =

    LEFT SYMBOL RIGHT SHIFT = produces NUMERIC +

    LEFT SYMBOL LEFT SHIFT RIGHT SHIFT = produces NUMERIC SHIFT +�

The remaining keys on the extended keyboard are entered using the SYMBOL key as

a shift key as follows:



Page 144

Apple Symbolics  Apple Symbolics 

‡ SYMBOL-i  HOME SYMBOL-k

↓ SYMBOL-,  PAGE UP SYMBOL-PAGE

» SYMBOL-j  PAGE DOWN PAGE

‰ SYMBOL-l  DEL FWD SYMBOL-RUBOUT

Interoperability of the Symbolics Keyboard and Popular Macintosh Software

Certain popular Macintosh software does not interoperate fully with the Symbolics

keyboard. In some cases, a simple workaround (for example, renaming a file) exists

which enables full function. In other cases, there is no workaround but the limita-

tions are well known and are presented here for your convenience. 

The Symbolics Keyboard and CloseView�

CloseView, from Apple, allows the visually handicapped to magnify portions of

their screen to make reading the screen easier. When using a Symbolics keyboard,

however, the keystrokes used to raise and lower the magnification factor, Com-

mand-Option-↑ and Command-Option-↓, respectively, can not be entered using the

techniques described in "Mapping of Apple Key Functions to the Symbolics Key-

board". Instead, you must disable magnification using Command-Option-X, open the

CloseView control panel, change the magnification factor by clicking on the arrow

buttons, close the CloseView control panel, and re-enable magnification using Com-

mand-Option-X. 

The Symbolics Keyboard and Pyro!�

Pyro!, from Fifth Generation Systems, is one of the most popular screen saver fa-

cilities for the Macintosh. Once running, Pyro! waits for you to press any key or

move the mouse as an indication that you wish to restore the normal screen con-

tents. However, when using a Symbolics keyboard, Pyro! will not deactivate itself if

you press any of the righthand modifier keys (that is, SHIFT, CONTROL, META, and

SUPER). Just use the lefhand modifier keys instead and Pyro! will deactivate.

The Symbolics Keyboard and QuickKeys 2�

QuickKeys 2, from CE Software, is one of the most popular keyboard macro facili-

ties for the Macintosh. For proper operation, the Symbolics keyboard software must

load after MacIvory’s support software but before QuickKeys 2. If you have INIT-

Picker, or similar software for controlling the order in which INITs are loaded, see

the documentation on said software for details on how to arrange the proper load-

ing order. If you do not have such software, you can use the fact that the Macin-

tosh System Software loads INITs in alphabetical order to get the desired effect.

In particular, you can rename either the Symbolics Keyboard INIT or the Quick-

Keys 2 INIT to obtain the proper loading order. (We recommend that you rename

Symbolics Keyboard to MSymbolics Keyboard.) 



Page 145

Macintosh Pathname Quoting

To the Macintosh, all characters are legal in pathnames and only colons delimit

directories. This means, for example, that asterisks may appear as a component of

a Macintosh pathname. Since Genera considers asterisk to be a wildcard, you can-

not type a Macintosh pathname containing an asterisk without quoting it. There-

fore, when typing a pathname such as

HOST:volume:*Graphics:picture�

you need to quote the asterisk to indicate to Genera that it is not a wildcard. Cir-

cle-Plus (⊕, sy-sh-+) is the quote character. So you would actually type:

Host:volume:⊕*Graphics:picture�

This also means that when Genera prints a Macintosh pathname that has an aster-

isk as part of its name, it quotes the asterisk using the Circle-Plus character. 

Changes to UX in Genera 8.1

• Previously, if the user’s keyboard had no META key, life support did not provide

an alternate. In Genera 8.1, if the keyboard has no META key, and two ALT keys

(one on the left, one on the right), then the left ALT key is mapped to META, and

the right ALT key is mapped to SYMBOL. If there is only one ALT key, it is

mapped to SYMBOL.

• UX400S and UX1200S machines now display their run lights at the bottom of

their cold load window whenever the cold load window is exposed. When net-

booting, UX400S and UX1200S machines also display a progress bar at the bot-

tom of their cold load windows.

• In the configuration file for a UX, the interface command is no longer required.

If no interface command is present, then the UX is only able to communicate

with the host Sun, and any other UXes embedded in the same Sun.

• The ivory-life UNIX program uses the UNIX syslog() facility (as well as

printing out the message on the console), so that users who are having problems

can log any errors for later examination. By default, ivory-life uses the

LOG_LOCAL0 facility, which normally causes error messages to be logged in the

file /var/adm/messages. Use the -F flag to ivory-life to specify a different facil-

ity; the argument to -F is a facility number, or -1 to disable use of syslog().

• The UX Installer program used to automatically re-read the FEP tape (prompt-

ing you to change tapes several times) when creating multiple FEP partition

files. In Genera 8.1 it quietly and quickly copies world load and FEP files from

the first FEP partition file it creates into any subsequently created partitions.

• The UNIX Talk protocol now works with UX-family machines.�



Page 146

Changes to Concordia in Genera 8.1

When the default text printer for a host was an LGP3, Format Pages would get an

error because it couldn’t get the book design information correctly. Format Pages

now works for both LGP2 and LGP3 printers.

Previously, when a picture extended below the bottom of a Document Examiner

window, and there was a documentation topic already following the topic being

displayed, the Document Examiner did not create enough room for the whole pic-

ture to displayed, so part of the picture was displayed over the following topic.

This bug has been fixed. 

Change to Compile System for Concordia

Genera 8.1 provides a convenient way to compile a documentation-only system for

both Symbolics architectures (Ivory and 3600-family).

Compiling a system consists of compiling (when necessary) its component files,

loading them, and recording the exact version of sources and products (if any) for

the newly compiled version. If a system consists solely of documentation, the step

of compiling the component files is not necessary; compiling the system simply

loads the files and records the version information. The loading step can be time-

consuming. 

In Genera 8.1, you can compile a documentation-only system on one architecture,

and automatically "copy compile" it for the other architecture. The Compile System

command takes the new keyword argument :Copy Compile, which does the follow-

ing:

:Copy Compile {Yes, No, Query} For those systems where the product of the

compilation is not a true binary file (notably documentation

systems) and is usable on both Ivory and 3600 architectures,

:Copy Compile Yes has the effect of compiling it for the other

architecture. For example, if you compile a documentation sys-

tem on a 3600-family machine, to "copy compile" it would have

the effect of compiling it for the Ivory architecture as well.

Yes does the copy compile. No does not. Query prints an expla-

nation of what is being offered, and queries about whether to

do it.

Similarly, compile-system now takes a new keyword argument: 

:copy-compile-p Takes t, nil, or :query, which is the default. For those systems

where the product of the compilation is not a true binary file

(notably documentation systems) and is usable on both Ivory

and 3600 architectures, :copy-compile-p allows "compilation"

for the other machine type by copying the form in the compo-

nent-dir. This saves the necessity of doing the compilation

over for the other machine type. See the section "Compiling a

System for Multiple Machine Types".�



Page 147

Changes to Statice in Genera 8.1

The Statice released with Genera 8.1 includes some bug fixes and improvements

documented below. More important though is that Genera 8.1 includes Statice

Runtime, the portion of Statice which allows you to use, access, and operate a

Statice database. Statice Runtime is a generous subset of Statice Developer; Statice

Runtime does not enable you to develop Statice applications, but it does allow you

to use them. See the section "Documentation Update: Statice Runtime".

Miscellaneous Changes to Statice in Genera 8.1

Statice used to have its own locking substrate. That has been replaced with the

System’s locking substrate. This results in greater reliability and somewhat better

performance. 

The implementation of finishing transactions (whether committing or aborting

them) has been changed. Previously, large amounts of code were surrounded by

without-interrupts. This implementation was particularly burdensome on UX ma-

chines, because while the code within without-interrupts was running, no other

process could interrupt, which could cause network connections to break. The net-

work is important for UX users, becuase it keeps the console alive. The without-

interrupts implementation has been replaced with a locking scheme. This results

in greater robustness. 

Changes to DNA in Genera 8.1

This is not a change to DNA, but an explanatory note about VAX/VMS V5.2.

VAX/VMS V5.2 uses CHECK INPUT messages more frequently than in previous re-

leases. This means that you are likely to encounter this error while you are re-

motely logged in to a VAX/VMS host via CTERM:

Error: Don’t know how to handle CTERM CHECK INPUT messages

�

(DEFUN-IN-FLAVOR TELNET:CTERM-CHECK-INPUT-MESSAGE

TELNET:CTERM-TYPEOUT-FILTER)

   Arg 0 (SELF): #<TELNET:CTERM-TYPEOUT-FILTER 334035224>

   Arg 1 (SYS:SELF-MAPPING-TABLE):

#<Map to flavor TELNET:CTERM-TYPEOUT-FILTER 114050751>

s-A, �:    Restart process Terminal 1 Typeout�

One example of where this can happen is when you are running NCP, type SHOW

LINK, and press RETURN, as follows:

VMS> MC NCP

NCP> SHOW LINK

<error occurs here>�

To recover from this particular error, you can specify a link number on the com-

mand line. For example:



Page 148

VMS> MC NCP

NCP> SHOW LINK 666

<output>

NCP>�

Changes to FORTRAN in Genera 8.1

A bug was fixed which affected Fortran users. Some large Fortran programs could

not be compiled because of a "too many constants" error in the Lisp compiler. 

Notes and Clarifications in Genera 8.1

For important advice on "housecleaning" FEP files, see the section "Saving Previ-

ous FEP Kernels and FLOD Files".

Clarification on Installing NFS

In Genera 8.1, the NFS system is obsolete and should not be loaded.

Instead, users should load NFS Client, NFS Documentation, and/or NFS Server as

needed. 

Clarifications on Printers

If you are using a 3600-family machine, you must have the systems RPC, Embed-

ding-Support, and UX-Support loaded before you can use a printer spooled from a

UNIX machine.

When installing an LGP2 or LGP3, the Other Options field in Interface Options

should include the following:

NUMBER-OF-DATA-BITS 8 PARITY :NONE XON-XOFF-PROTOCOL YES�

This is particularly important for printers connected to XL-family machines. This

setting must be overridden if you are not using an Apple LaserWriter or Laser-

Writer II.

Clarification on Installing the X Windows Client Facility

The X Windows client includes the systems CLX and X-Remote-Screen. To load the

client facility, load the system X-Remote-Screen.

Note also that before you load X-Remote-Screen, it is necessary that RPC, Embed-

ding-Support, and IP-TCP are loaded in your world. To check, use the Show Herald

command.If any of those systems are not loaded in your world, load them before

loading X-Remote-Screen. 

Clarification on RPC Examples



Page 149

In Genera 8.0, we distributed an example in the file

SYS:EMBEDDING;RPC;EXAMPLES;UNIX-APPLICATION-EXAMPLE.C. That example had one error

in it. The file distributed in Genera 8.1 is corrected.

In the file SYS:EMBEDDING;RPC;EXAMPLES;UNIX-APPLICATION-EXAMPLE.C the following line:

 if (tcp_agent_open(host) < 0) {�

was changed to:

  if (tcp_agent_open(host, IPPORT_RPC) != 0) {�

Clarification on Life Examples in Program Development Tutorial

The Genera 8.0 documentation included an example of the Life program, which

was first done in Common Lisp, and then extended in various ways. See the sec-

tion "Developing a Simple Common Lisp Program: Life".

The documentation stated that the code was available in the file

SYS:EXAMPLES;COMMON-LISP-LIFE.LISP. Unfortunately, in Genera 8.0 the example file

was not distributed.

In Genera 8.1, that file and some related files are distributed. The related files

contain code that extends the original example, as described in the documentation.

The pathnames are:

SYS:EXAMPLES;COMMON-LISP-LIFE.LISP

SYS:EXAMPLES;COMMON-LISP-LIFE-WITH-GRAPHICS.LISP

SYS:EXAMPLES;COMMON-LISP-LIFE-WITH-COMMANDS.LISP

SYS:EXAMPLES;COMMON-LISP-LIFE-WITH-PROGRAM-FRAMEWORK.LISP�

Note on the Amount of Available Memory Reported by MacIvory

On all MacIvory models, the amount of memory displayed is less than the amount

based on available physical memory. Some of this discrepancy is attributable to the

boot ROM, some to the communications area, and some to the memory architec-

ture of the MacIvory model involved.

If you compute how much memory should be available on a MacIvory model 1 or

MacIvory model 2 with 16MB of memory, your answer will be 2730K words. When

you actually look at this configuration, however, you find that it only has 2688K

words or 16128K bytes. When you add the size of the boot ROM (64K bytes) and

communications area (128K bytes), you end up with 16320K bytes which is 64K

bytes short of what’s actually available in 16MB. The missing 64K bytes simply is

not usable due the memory system architecture on these machines.

A MacIvory model 3 has 2MW (2048KW), 4MW (4096KW), 6MW (6144KW), or

8MW (8192KW) of physical memory. In all cases, 98K words of physical memory

will be dedicated to the boot ROM and communications area. Consequently, the ac-

tual memory size will display as 1.9MW (1950KW), 3.9MW (3998KW), 5.9MW

(6046KW), or 7.9MW (8094KW).



Page 150

Documentation Update: Statice Runtime

Overview of Statice Runtime

Statice is an object-oriented database system for the Genera programming environ-

ment. Statice provides client programs with persistent, shared storage of informa-

tion. Persistent information stored in Statice exists outside and beyond the bound-

aries of the Lisp world that created it, and is protected against failure. Shared in-

formation is shared by distinct Lisp worlds on different workstations, for writing

as well as reading.

The tools to develop Statice applications are available in the Statice Developer

product, which is a layered product. The Statice Developer product includes docu-

mentation of how to develop Statice applications.

Statice Runtime is a separately loadable system. To load Static Runtime, type

:Load System Statice-Runtime. Statice Runtime enables Genera users to use, ac-

cess, and maintain a Statice database. The benefit of making Statice Runtime

available to Genera users is to make it easier and more practical to deliver Stat-

ice-based applications; customers of Statice-based applications do not need to buy

Statice Developer.

Statice Runtime is a subset of Statice Developer. The functions and macros which

enable programmers to develop Statice applications are not present in Statice

Runtime. Statice Runtime is documented here. 

Operations and Maintenance of Statice Databases

The Architecture of Statice

Using Statice Locally or Remotely

Statice can be used on a single host, or between many hosts across the network.

This section describes how this works, and explains the terminology used for the

participants and the roles they play.

A host is a computer, a workstation. A site is a collection of hosts (and other

things, such as users), all at more or less the same physical place. Every host is at

one particular site. We assume that every host at a site is connected to a network,

so that each host can communicate with every other host. Hosts, sites, and net-

works are all described by the namespace database. For more information about

the namespace database and the things it describes: See the section "Concepts of

Symbolics Networks". See the section "Setting Up and Maintaining the Namespace

Database".

A Statice File System is a file system that holds Statice databases. Every Statice

File System is at one particular site. Every Statice File System resides on one par-

ticular host at that site. Each Statice File System is described in the namespace



Page 151

database by a File System namespace object: See the section "How a Statice File

System is Described in the Namespace". See the section "Attributes for Objects of

Type "File System"".

Suppose that at some site there are two hosts named Mars and Venus, and there

are two Statice File Systems named Rose and Iris. Rose resides on host Mars, and

Iris resides on host Venus. Fig. ! shows hosts represented as rectangles, and Stat-

ice File Systems represented as circles.

Mars Venus

Rose Iris

Figure 1.  Hosts Mars and Venus, with File Systems Rose and Iris�

Now, suppose a process running on host Mars begins using Statice, doing

statice:with-database and statice:with-transaction, calling accessor functions, and

so forth. This process might be a Dynamic Lisp Listener, a process associated with

some program defined by dw:define-program-framework, or any process at all. A

process that calls Statice functions and special forms is a client process.

If the client process uses a database that resides in the Statice File System named

Rose, Statice notices that Rose is on the same host as the client process itself. We

say that the client process is using Statice locally, or that the client is accessing a

local database. When a client is using Statice locally, the client manipulates the

database directly, invoking the disk driver to access the host’s disks, etc.

If the client process uses a database that resides in the Statice File System named

Iris, Statice notices that the Iris is on some other host than the client process. We

say that the client process is using Statice remotely, or that the client process is

accessing a remote database. When a client uses Statice remotely, a server process

is created on the remote host, and a network connection is created to allow the

client process and the server process to communicate. The client process cannot di-

rectly access the disks of another host, and so it delegates this work to the server

process. 

If a second client process, running on host Venus, accesses the same database on

Iris, this second client is using Statice locally. In Fig 2, we have two client pro-

cesses, both using the same database, one locally and one remotely. In general,

there might be any number of client processes accessing a database, many locally

and many remotely. 



Page 152

Mars Venus

Rose Iris

Figure 2.  Local and Remote Use of Statice�

�

� How a Statice File System is Described in the Namespace

Every Statice File System is described by an object in the namespace database. For

more information about the namespace database and the things it describes: See

the section "Concepts of Symbolics Networks". See the section "Setting Up and

Maintaining the Namespace Database".

The namespace object for a Statice File System is of type File-System (as opposed

to Host, Network, User, et. al.), and would typically look similar to this:

Host: CHICOPEE

Type: DBFS

Root Directory: FEP1:>Statice>iris.UFD

Pretty Name: IRIS

User Property: PARTITION0 FEP1:>Statice>iris-part0.file.newest

User Property: PARTITION1 FEP1:>Statice>iris-part1.file.newest

User Property: PARTITION2 FEP1:>Statice>iris-part2.file.newest

User Property: LOG-DESCRIPTOR-FILE-ID 1015371-1311996-1048993

User Property: DBFS-DIR-ROOT-FILE-ID 1014172-1311996-1048993�

When you use the Create Statice File System command, Statice automatically cre-

ates a file-system object. See the section "Create Statice File System Command".

The most important attribute is the Host, which says where this file system lives.

In this example, Iris lives on host Mars. 

The Type field always has the value DBFS. Any other values for this field are re-

served for future expansion.

The Root Directory field contains a pathname of a FEP FS file. That file contains

the directory of the Statice File System. The pathname should always start with

FEPn: and end with the .UFD file extension. 

The Pretty Name and Short Name mean the same thing as they do in other name-

space objects. The Short Name can be used on input as an abbreviation; in partic-

ular, you can use it in pathnames. The pretty name is used to display the name of

the file system.



Page 153

The User Properties named PARTITION have values that are pathnames of the

FEP files which are the partitions that make up the file system. The database is

stored in a number of partitions. For more information on partitions: See the sec-

tion "Create Statice File System Command".

The User Property named LOG-DESCRIPTOR-FILE-ID is the unique ID of Stat-

ice’s "log descriptor" file, an internal file used to store various per-file-system in-

formation. 

The User Property named DBFS-DIR-ROOT-FILE-ID contains, in the form of a

string, the internal unique ID of the special database in the file system that stores

the hierarchical directory structure of the file system. This is established when the

Statice File System is created, and you should never change it.

For reference documentation on the File-System object and its attributes: See the

section "Attributes for Objects of Type "File System"".

Why is there a separate File-System namespace object? Why doesn’t Statice use

the host object, as LMFS does? There are three reasons: 

• Pathnames starting with "MARS:" already mean "the LMFS found on host

MARS". They can’t also mean a Statice File System. We must have a different

name in order to specify the Statice File System, because the name "MARS" has

already been taken. This is the most compelling reason.

• It’s possible to have more than one Statice File System on the same host, each

with its own name, using different areas of the host’s disks. Such a configura-

tion might be desirable for various administrative reasons.

• You can move a Statice File System from one host to another, using removable

disk packs, magnetic tape copies, or moving disks. If you do this, you need to

change the file-system namespace object for the Statice File System to refer to

the new host. All software that refers to the Statice File System by name con-

tinues to work, because the file-system namespace object provides the link to the

new location of the Statice File System. 

� Statice Database Pathnames

Many Statice commands take a pathname as an argument, indicating a database.

This should be a database pathname. The most striking difference between a

database pathname and an ordinary pathname is the first component: for a

database pathname, this is a Statice File System; for an ordinary pathname, this is

a host. 

Every Statice File System contains a set of files. Each file contains a Statice

database, and is named by a database pathname.

Database pathnames resemble LMFS pathnames. The "host name" part is the name

of the Statice File System, followed by a colon. After that are the names of the di-

rectories, separated by greater-than characters. The last part of the pathname is

the name of the file. For example, the pathname Iris:>george>financial>ledger



Page 154

names a file in the Statice File System named Iris. The root directory on Iris con-

tains a directory named george, which in turn contains a directory named

financial, which in turn contains a file named ledger.

There are some important differences between database pathnames and LMFS

pathnames. Database pathnames have a name, but no type or version. Statice File

System directories store fewer properties than LMFS directories; there is no modi-

fication date, reference date, do-not-reap flag, and so on. There are also no links,

only files and directories. Statice File System directories support the following

properties, which can be examined with directory listings (see fs:directory-list or

fs:file-properties). 

:author The user ID of the creator of the file.

:creation-date The date and time at which the file was created, expressed as

a universal time.

:comment An arbitrary string that appears in directory listings.

:directory t if this is a directory, nil if this is a file.

:length-in-blocks The length of the file, in blocks. A block is 1152 (decimal)

bytes, the size of a FEP file system block. (FEP blocks are

1152 bytes on 3600-family machines, and 1280 bytes on Ivory

machines.)�

The :author, :creation-date, and :comment properties can be set using fs:change-

file-properties. :comment can be set for files but not directories. The other prop-

erties cannot be set.

Database pathnames are case-insensitive for lookup, like those of LMFS. When you

make a new file, the Statice File System directory remembers the case you used

and stores this in the directory. To look up a file that already exists, you can use

either case for any character. A directory cannot have one file named Foo and an-

other named foo; these are considered to be the same name.

Database pathnames support relative pathname syntax, wildcard syntax, and com-

pletion, just like LMFS pathnames. <foo>bar means the file named bar in the di-

rectory named foo in the directory that is the parent of the default pathname’s di-

rectory. >foo>* means all the files in the directory named foo. >foo>**>* means all

the files in the directory named foo and its descendants. >foo>b* means all the

files whose names start with b in the directory named foo.

There is no undeletion, and no expunging. When you delete a file, it is immediate-

ly and permanently removed. 

Files cannot be opened by the Lisp open function because they are not really files

in the sense of the Lisp stream system. The contents of files are accessed only via

Statice operations, never by streams. The only exception is if they are opened with

a :direction of :probe, :probe-directory, or :probe-link. This lets programs use

probe-file to check for the existence of files in a Statice File System.

Database pathnames work correctly with the Genera directory manipulation tools,

such as DIRED, FSEdit (the File System Editor), and commands such as Show Di-



Page 155

rectory, Create Directory, Delete File, and Rename File. However, they do not

work with commands that attempt to open files, such as Copy File and Show File.

The root directory of every Statice File System directory contains an entry named

Directory, which refers to the directory itself. This gives you a way to name the

root directory as a file, in order to perform operations on it. This is rarely neces-

sary, and you can usually just ignore the Directory entry. 

� Dealing with Databases by Their Pathnames

Many operations on databases can be done by using normal file commands on the

database pathname. See the section "Statice Database Pathnames".

• What databases are stored in a directory of a given Statice file system? Use the

Show Directory command:

Show Directory beet:>fred>*�

• What are all the databases stored an entire Statice file system? Use the Show

Directory command:

Show Directory beet:>**>*

• How can I rename a database? Use the Rename File command.

Rename File beet:>university beet:>harvard�

• How can I remove a database? Use the Delete File command on a database

pathname. 

Delete File beet:>university�

Although this method permanently removes the file, you can restore the file

from backup tapes (if you have any). See the section "Selective Restore Com-

mand".

Services and Protocols Used by Statice

Statice uses several network services and protocols. The commands that install

Statice at your site add new information to your namespace host objects, indicating

that these services and protocols are supported. In this section, we briefly describe

the new namespace information; this information is not required in order to write

Statice programs, but it might be useful to help you debug any unusual name-

space-related problems.

DBFS-PAGE Service

DBFS-PAGE is the network service provided by a Statice server for the benefit of

Statice clients. When a Statice client first accesses a particular Statice server host,

it invokes the DBFS-PAGE service on that host. From then on, this client uses



Page 156

this connection to communicate with that host, even if it accesses more than one

Statice File System on that host.

When the transaction ends, the connection is returned to a free pool, so subse-

quent transactions can use that connection. This helps reduce the amount of time

spent opening network connections.

Statice servers use the same connection scavenger mechanism used by Genera file

servers, so that if a connection hasn’t been used for a long time, the server pro-

cess is killed and the connection goes away. See the section "The File Control Life-

time Host Attribute".

The namespace entries for the DBFS-PAGE service should be present in the host

object of every host used as a Statice File System server. The Add DBFS Page

Service command sets up this service entry in the namespace database. See the

section "Add DBFS PAGE Service Command".

See the section "Using Statice for the First Time".

DBFS-Page Protocol

DBFS-PAGE is the name of a network protocol that implements the DBFS-PAGE

service. This protocol is built on top of the byte-stream-with-mark network medi-

um. See the section "BYTE-STREAM-WITH-MARK Network Medium". It can be

used with Chaosnet or TCP/IP networks. For Chaosnet, the contact name is

"DBFS-PAGE"; for TCP/IP, the port number is 569. 

ASYNCH-DBFS-PAGE Service

ASYNCH-DBFS-PAGE works in the reverse direction: the Statice server uses this

service to form a connection back to Statice File System client hosts. The server

uses this connection to notify the user when pages have been modified by another

client; the client acts on this information by invalidating its cache.

The service that ASYNCH-DBFS-PAGE provides is not necessary for correct opera-

tion of Statice. If the server finds that it cannot form a connection to the client, it

simply gives up and tries again later. The cache coherency protocol within Statice

makes sure that invalid data is never used. However, Statice will be more efficient

if ASYNCH-DBFS-PAGE is working properly. You should try to make sure that all

hosts that use Statice as a client have the proper namespace entries for ASYNCH-

DBFS-PAGE in the namespace database. The command Add ASYNCH DBFS PAGE

Service should be run on each client host: See the section "Using Statice for the

First Time".

ASYNCH-DBFS-PAGE Protocol

ASYNCH-DBFS-PAGE is the name of the network protocol that implements the

ASYNCH-DBFS-PAGE service. This protocol is built on top of the byte-stream-

with-mark network medium. See the section "BYTE-STREAM-WITH-MARK Net-

work Medium". It can be used with Chaosnet or TCP/IP networks. For Chaosnet,

the contact name is "ASYNCH-DBFS-PAGE"; for TCP/IP, the port number is 568. 



Page 157

� Attributes for Objects of Type "File System"

Host

Specifies the host that the file system resides on; a host object

(required).

Host: MARS

� Type

Must always be DBFS (required). Other values are reserved for

future expansion.

Type: DBFS

� Root Directory

Specifies a pathname of a FEPFS file. That file contains the

directory of the Statice File System. The pathname should al-

ways start with FEPn: and end with the .UFD file extension.

Root Directory: FEP1:>Iris.UFD

� Pretty Name

Specifies a name for the file-system to use when showing the

name; a token (required).

Pretty Name: Iris�

� Nickname

Specifies alternate names for the network; a set of names. The

file system may be found by these names.

Nickname: IRE

� Short Name

Specifies additional nicknames; a set of names. A short-name is

used when a program wants to display a host’s name without



Page 158

using up too much space. A short-name is used for both input

and output. This is also used in the printed representation of

pathnames.

Short Name: I

� User Property

User-Property All objects contained within the namespace (hosts, sites,

namespaces, printers, and users) are eligible to have a User-

Property attribute. It consists of a pair whose first element is

an indicator (like that of a property list) and whose second ele-

ment is a token. The User-Property attribute holds any infor-

mation that users choose to associate with an object. For ex-

ample:

User-Property: ID-number 123-45-6789�

Statice automatically places several user properties into file-

system objects. The User Properties named PARTITION have

values that are pathnames of the FEP files which are the par-

titions that make up the file system. The database is stored in

a number of partitions. For more information on partitions: See

the section "Create Statice File System Command".

The User Property named LOG-DESCRIPTOR-FILE-ID is the

unique ID of Statice’s "log descriptor" file, an internal file used

to store various per-file-system information. 

The User Property named DBFS-DIR-ROOT-FILE-ID contains,

in the form of a string, the internal unique ID of the special

database in the file system that stores the hierarchical directo-

ry structure of the file system. This is established when the

Statice File System is created, and you should never change it.

FEP File for Generating Statice Unique IDs

When you first run Statice on a machine, it automatically creates a small file (2

blocks) in the FEP file system, whose name is:

FEPn:>UNIQUE-ID.FEP.1�

where n is the lowest fixed-medium disk unit, or the lowest disk unit if all units

are removable-medium. (In almost all configurations, n is zero.)

This file is used internally by Statice to generate unique IDs. We recommend that

you leave it there, and don’t delete it. If you do delete it, Statice will re-create it

next time Statice is run. 



Page 159

Statice File System Operations Program

The Statice File System Operations program is an interactive utility for maintain-

ing and manipulating Statice File Systems. It serves primarily as the user inter-

face to the backup system. It also provides commands for enabling and shutting

down a Statice File System, and other functions.

We first present several sections that give background information, and then de-

scribe how to use the program itself, in the section "Using the Statice File System

Operations Program".

Some operations on databases can be done by using normal file commands on the

database pathname. For details: See the section "Dealing with Databases by Their

Pathnames".

Overview of the Statice Backup Facilities

The Statice File System backup facilities let you make backup copies of the

databases stored in a Statice File System, onto another medium. If the disk hold-

ing the Statice File System is damaged or destroyed, the copy of the Statice File

System can be restored onto a fresh disk.

It is very important to back up your Statice File System on a regular basis. Disks

are fragile and subject to failure. Doing backups is the only way to protect your

data against disk failures.

The backup facilities copy database information to tertiary storage media. Current-

ly, industry-standard magnetic tape and cartridge tapes are supported. The soft-

ware names and catalogs the media into groups called volume sets.

Two forms of backup are provided: complete backups, and continuous archive

backup. (Currently only complete backup is supported.) Complete backup makes a

complete copy of a database file system onto tertiary storage, and assures the copy

is transaction-consistent. If the database file system is destroyed, you can restore

the copy, losing only changes made since the latest backup copy was produced.

Archive logging continuously copies all database changes to tertiary storage. If the

database file system is destroyed, you can restore the latest complete backup copy,

and then replay the archive changes, so that no information is lost.

A backup tape from a Statice File System stored on a 3600-family Statice server

cannot be reloaded into an Ivory Statice File System, and vice versa. Also, if you

want to move whole databases between file systems of different block size, you

have to use the high-level dumper (the Dump Database and Load Database com-

mands) to convert the data into a text file, and then move the text file.

See the section "High-level Dumper/Loader of Statice Databases".

� Kinds of Tertiary Storage

Backup copies are kept on tertiary storage. (Primary storage is main memory, and

secondary storage is disk.) The Statice File System backup facilities back up to

and restore using a generic tertiary storage protocol, so that different kinds of ter-



Page 160

tiary storage can be used interchangably, and new kinds can be added in the fu-

ture.

With Symbolics 36xx systems, two kinds of tertiary storage are currently support-

ed: 1/4-inch cartridge tapes, and 1/2-inch industry-standard reel-to-reel magnetic

tapes. (The fraction of an inch refers to the width of the tape itself.) Both kinds of

tapes can be used either locally or remotely. In local usage, the tape drive hard-

ware is physically connected to the workstation doing the backup or restore. In re-

mote usage, the tape drive hardware is connected to some other computer, which

communicates with the workstation over the network.

In future releases, we we plan to support write-once optical disks as another ter-

tiary storage medium. We also intend to support other formats of magnetic tape as

hardware support becomes available.

The physical integrity of backup copies is very important. If it’s necessary to re-

store a file system from a backup copy, it is imperative that the data be readable

from the copy. Unfortunately, magnetic tapes are an imperfect physical medium.

Periodically, tapes are found to be unreadable, or to contain data errors.

To protect against problems with tapes, the backup system always writes data us-

ing a powerful error-correcting coding technique, a simple version of Youngquist’s

algorithm. The technique is effective at recovering from large damage spots on

tape; this is important, since it is not uncommon for 100 sequential bits to "drop

out". The cost of the algorithm is that approximately 3/2 as much tape is required

to store the same amount of information. We believe that the protection is worth

the cost of the extra tape. We tested this coding technique by scratching a tape

with a razor, and the data were still recovered.

If you have a choice between industry-standard and cartridge tape, industry-

standard tape is preferable, because: 

• Industry-standard tape runs faster than cartridge tape.

• More data fits on a single industry-standard tape than on a cartridge tape, so

you don’t have to change tapes as often.

The primary advantage of cartridge tape is its lower cost. Every Symbolics site has

at least one cartridge tape drive, because cartridge tape is used for distributing

software. 

The benefits of using an industry-standard tape drive increase if you have large

Statice File Systems, or if you write new data frequently. 

� Choosing the Kind of Tertiary Storage to Use

If you have a choice between local and remote usage, local usage is preferable, be-

cause: 

• Network connections are inherently unreliable. It is inconvenient to have a net-

work connection fail during a backup or restore operation.



Page 161

• Local usage runs faster than remote usage.

Therefore, we recommend that you put your Statice File System on a workstation

that has its own tape drive, if possible.

When a command of the Statice File System Operations program prompts for a

"device specification", it wants to know which tape drive to use. (The prompt

doesn’t say "tape drive" because there will be other kinds of tertiary storage in the

future.) The default is to use the cartridge tape drive on the local workstation.

You can change the host, to use a tape drive on another computer, and you can

change the device type to industry-standard tape.

If you select industry-standard tape, the prompt expands to let you specify a unit

number and a density. The unit number parameter is provided because it is possi-

ble to attach more than one industry standard tape drive to a computer; the unit

number distinguishes which one you want. The default value is zero, and if there

is only one tape drive, it should be unit zero. 

Industry standard tapes can be written at several different densities, measured in

bits per inch. We support 1600, 3200, and 6250 bits per inch, defaulting to 3200.

Not every tape drive can read and write at every density! You must check the

hardware you intend to use, and determine what densities it supports. 

� Volume Capacity

When you make a backup copy, you don’t need to know in advance how many vol-

umes will be needed to hold the copy. Whenever the dumper reaches the end of

one volume, it asks you to mount another volume, until the copy is completed.

However, you might want to be able to estimate, in advance, how many tapes will

be needed to hold a copy. Here is some information to help you make such an es-

timate. (There is no requirement that you make such an estimate, but it is some-

times desirable.)

It’s difficult to make an accurate estimate of how many volumes are needed for a

backup copy, because the number depends on many factors. More volumes are

needed if there are many small files than one large file. Different tape drives have

different characteristics; industry-standard tape drives don’t all write interrecord

gaps the same way, and cartridge tape drives are affected by the quality of the

tape medium and the cleanliness of the heads. So the following numbers should be

treated as approximate figures.

The numbers below show the actual data capacity for several different kinds of

tape. The actual data capacity is smaller than the raw capacity primarily because

of the overhead of the error-correcting coding used in Statice File System backup

tapes. Capacities are given in megabytes.



Page 162

DC300XL/P cartridge tape: 30 MB

DC600A or DC600XTD cartridge tape: 40 MB

600-foot industry standard tape at 3200 bpi: 14 MB

2400-foot industry standard tape at 3200 bpi: 60 MB

Industry-standard tapes can be written at different densities; the numbers above

assume a density of 3200 bpi. If you are using 1600 bpi, divide the numbers by

two; if you are using 6250 bpi, double the numbers. Similarly, if you use a reel of

tape with some other length, apply the appropriate ratio.

The sizes of the databases in a Statice File System are shown in Statice File Sys-

tem directory listings, in blocks. A block is 1152 bytes. So, for example, if you had

a Statice File System containing four databases, two 1000 blocks long and two

2000 blocks long, the total amount of data is about 6 MB, which will easily fit on

one tape of any kind. 

� Tertiary Volumes and Volume Sets

A volume means one physical tertiary storage medium, such as one reel or one car-

tridge of tape. (In future releases, a single write-once optical disk will also be re-

ferred to as a volume.)

A volume set is a set of one or more volumes. Volumes are grouped into sets be-

cause each volume is of a fixed size, whereas you can keep expanding the size of a

volume set by adding more volumes.

Each complete dump of a database file system is put on its own volume set. The

number of volumes in the volume set depends on the size of the database file sys-

tem. If the Statice File System is not very large, a complete dump fits on a single

volume, which constitutes a single volume set.

Each volume set has a name, and each volume within the volume set has a se-

quence number. The name is a character string. No two volume sets can have the

same name. Names are compared ignoring case, so you must not have one volume

named "Foo" and another named "foo". Volume set names may not use character

styles or non-standard character sets. The first volume of a volume set should be

numbered 1, and each sequential volume is assigned the next number.

When you’re using the backup system and a tape is being mounted, you are

prompted for a "mount specification". This consists of a volume set name, a se-

quence number, and a device specification. It means that you are mounting a par-

ticular volume on a particular device. To specify the device, you are prompted for

a host name, a device type, and further parameters depending on the type of the

device. For details of device specs: See the section "Choosing the Kind of Tertiary

Storage to Use". 

� Labels on Volumes



Page 163

When a volume is being used by the Statice File System backup system, some spe-

cial identification information is written at the front of the volume, called the

label. The label includes the volume set name and the sequence number, which

uniquely identify the volume. The backup software uses the label to help assure

that you have mounted the tape you intended to mount, in order to guard against

mistakes.

When you first use a brand-new tape for Statice File System backup, you should

write a label on it, by using the Initialize Backup Volume command in the Statice

File System Operations program. Be careful to only use this command on fresh,

unused tapes, because it will destroy any information already on the tape.

When the backup system is making a backup copy, and it is ready to write onto a

new tape, it first reads the label of the tape, to make sure that this tape is the

right one. For example, suppose you are making a backup copy to a volume set

named FULL0013, and the backup system just finished writing volume number 2

of the volume. It prompts you with the message:

End of volume FULL0013/2.  Enter mount specifications for the next volume:

You enter a mount specifiction, in which you enter a volume set name and se-

quence number. The default is volume set FULL0013, sequence number 3. You also

physically mount the correponding tape on the device that you specify in the

mount specifiction. After you click on Done or press End, the backup system reads

the volume label, to make sure that this volume is really volume number 3 of vol-

ume set FULL0013. If the label is present and contains what backup expects, the

backup copy continues. Otherwise, you are given several options: 

Accept the information on the volume

(You believe you entered the wrong thing, and you want to use

what the tape says.) This choice tells the backup system to use

the volume set name and sequence number that were found in

the label on the tape, even though they aren’t what we origi-

nally expected. This sets the backup system’s concept of "cur-

rent volume", so the backup system will expect the next vol-

ume to follow this one.

Remount a different volume

(You believe you mounted the wrong tape, and wish to try

mounting a different one.) This choice lets you remove this vol-

ume from the drive and try another one. The backup system

prompts you with "Is the desired volume mounted?" When you

answer "y", it proceeds to read the label of the new tape and

check it.

Reenter different volume specifications

(You believe you entered the wrong thing, and you want to try to

enter it again.) This choice makes the backup system return to

the point where you were prompted for mount specifications

for this tape; you are prompted again. Use this if the reason

for the problem is that you didn’t provide the right mount

specification.



Page 164

Overwrite the volume with the specified information

(You believe that what the tape says is wrong, and you want to

use what you entered.) This choice tells the backup system to

ignore what the label says, and write the tape using the mount

specification that you provided. This overwrites the label and

can change the volume set name and sequence number in the

label.

Abort the current operation

(You don’t want to proceed further.) This choice returns you to

the Statice File System Operations program.

If the tape you mount is a fresh, unused tape, you’ll get this list of choices, and

you can select [Overwrite] to write a new label on the tape. So it is not actually

necessary to use the Initialize Backup Volume command to write an initial label;

[Overwrite] also does it for you. However, there’s a drawback to relying on

[Overwrite]. When the backup system tries to read the label of the blank tape, the

tape drive attempts to read data from the tape, but cannot find any. Some drives

react to this lack of data by reading further and further down the tape, hoping to

find data eventually, which can take a long time. So if you don’t run Initialize

Backup Volume on new tapes, backup copying might be substantially slower.

This behavior is part of the tape drive and tape controller, and cannot be modified

by software. Currently, all industry-standard tape drives sold by Symbolics exhibit

this behavior, but the cartridge tape drives do not. Therefore, it is particularly

time-saving to use Initialize Backup Volume on industry-standard tapes. 

Volume Libraries

When you do Statice File System operations, Statice maintains a database called

the volume library. This database is stored within the file system. The volume li-

brary stores the following information:

For every backup volume that holds information from this file system: 

• Volume name and sequence number 

• Completion date, which is the date and time this tape was last written 

• Type, which is either "Industry Standard Tape" or "Cartridge Tape"

• The tape spec that was used when the tape was last written, which includes the

host, and also unit and density for industry-standard tapes �

For every backup run (that is, for every time that a dump as made):

• Completion date, which is the date and time this run was performed

• The set of volumes that were written.

• Whether the run is "valid", or whether something went wrong during the dump�

For every file that has been dumped:



Page 165

• Name of the file

• The set of backup-notes (see below)�

For every copy of a file that exists on tape, a "backup note", consisting of: 

• The file attributes (length, creation-date, author, comment)

• Which volume the copy resides on

• Which backup run this copy was part of�

Using the Statice File System Operations Program

Before using the Statice File System Operations program, you must load it by en-

tering:

Load System DBFS-Utilities�

You enter the Statice File System Operations program by entering:

SELECT symbol-sh-D

The commands appear a menu in the top pane. You can click on them, or type the

names of the commands. Typically, an AVV menu will be displayed, prompting you

for several fields. When you finish entering the information and press END, the

command is executed.

We summarize the commands here. For complete documentation on each command:

See the section "Dictionary of Statice File System Operations Commands".

Backing Up and Restoring a File System�

The most common operations are Complete Backup and Complete Restore. Selec-

tive Restore can also be used, to restore one or more databases from tape to the

file system.

Complete Backup Command

Copies a Statice File System (and all databases in it) to tape.

Complete Restore Command

Copies a file system (and all databases in it) from a tape to a Statice

File System.

Selective Restore Command

Copies selected databases from a tape to a Statice File System.

Initialize Backup Volume Command

Writes the volume number on the tape label itself.

Getting Information�

Describe Statice File System Command

Displays information about a file system.



Page 166

Describe Backup Volume Command

Displays information about a backup volume stored on a tape.

Show Backup History Command

Displays information about all backup runs done on a file system.

Compare Backup Volume Set Command

Compares a file system stored on tape with a file system stored on the

local machine.

Enabling and Disabling a File System or All of Statice�

Enable Statice File System Command

Enables a file system: allows transactions to be started.

Disable Statice File System Command

Disables a file system: aborts any transactions in progress and disallows

any transactions to occur until the file system is enabled again.

Enable Statice Command

Re-enables Statice activities.

Disable Statice Command

Entirely disables all Statice activities.

File System Manipulation�

Create Statice File System Command

Creates a new Statice File System on the local host.

Delete Statice File System Command

Expunges an entire Statice file system, and removes all traces of it, in-

cluding every database in it; this is a very dangerous command.

Show All Statice File Systems Command

Lists all the file system objects and the host that they reside on in a

namespace. 

Add Statice Partition Command

Adds a new partition to an existing Statice file system.

Show Statice Partitions Command

Lists the partitions of a Statice file system, and shows the amount of

free space remaining in each partition.

Dictionary of Statice File System Operations Commands

This section documents the commands that are available only in the Statice File

System Operations program.

The following commands are available from the Statice File System Operations

program, but are described elsewhere because they are also available at top level.



Page 167

• "Add Statice Partition Command"

• "Create Statice File System Command"

• "Delete Statice File System Command"

• "Show All Statice File Systems Command"

• "Show Statice Partitions Command"�

For documentation on the other Statice commands that can be used at top level:

See the section "Dictionary of Statice Commands".

Complete Backup Command

Complete Backup�

Copies all databases in a Statice File System to tape. This command is available in

the Statice File System Operations Program.

The AVV menu looks like this: 

�

Enter complete backup parameters (volume name required):

�

File system to backup: DLW-UFS-3

Volume set name: abc

Volume sequence number: 1

Device: Industry-Standard-Tape  Cartridge-Tape

Volume host: ALDERAAN

Show Detailed Progress: Yes  No

�

The file system to backup must be stored on the local host. We discuss volume set

names and sequence numbers elsewhere: See the section "Labels on Volumes".

The volume host is the host that will write the data to tape; it need not be the lo-

cal host. If that host does not have TAPE service in its namespace object, you will

get this error:

Error:  Host does not support TAPE service.�

You can use one of the proceed options to try TAPE service on various mediums

such as TCP or CHAOS. You can also edit the host’s namespace object to add that

service entry, so the error won’t happen again. 

Symbolics recommends RTAPE via TCP rather than RTAPE via ChAOS (TCP is

more reliable). Add the service TAPE TCP RTAPE to the host’s namespace object.

If you are writing to a blank tape, you will get an error stating that the volume

set name does not match that of the tape itself. This is to be expected (because

the tape doesn’t have a volume set name at all yet). One way to prevent this error



Page 168

is to use the Initialize Backup Volume command before doing Complete Backup, to

write the volume set name on the tape. In any case, one of the choices is to Over-

write the tape, which is the correct choice for a blank tape. 

Compare Backup Volume Set Command

Compare Backup Volume Set�

Compares a file system stored on tape with a file system stored on the local ma-

chine. This command is available in the Statice File System Operations Program.

The AVV menu looks like this:

Enter specifications for compare: 

�

File system to compare: DLW-UFS-3

Volume set name: abc

Volume sequence number: 1

Device: Industry-Standard-Tape  Cartridge-Tape

Volume host: ALDERAAN

Show Detailed Progress: Yes  No�

If anyone has made changes to a database in the file system since the backup was

done, Statice will report how many pages are different. The output looks like this:

File SCRC|DLW-UFS-3:>Volume-Library>%volume-library has 21 pages

different from the tertiary image.

These differences could be caused by updates which occured

between the time the backup volume finished writing and the time

the comparison finished.�

Complete Restore Command

Complete Restore�

Copies all databases from a tape to a Statice File System. This command is avail-

able in the Statice File System Operations Program.

The AVV menu looks like this:

Enter specifications for restore:

�

File system to restore: DLW-UFS-3

Volume set name: abc

Volume sequence number: 1

Device: Industry-Standard-Tape  Cartridge-Tape

Volume host: ALDERAAN

Show Detailed Progress: Yes  No�



Page 169

The choices are the same as for the Complete Backup command: See the section

"Complete Backup Command".

The first thing that a Complete Restore does is delete all databases in the file

system. It then copies the databases from tape to the file system. Note that if you

are writing to a file system that already exists, you will get this message:

Before a file system can be restored, the existing files must be

destroyed.  All the files in file system SCRC|DLW-UFS-3 are

about to be destroyed.  Are you sure you want to continue? (Yes

or No) �

If you want to keep the existing file system, choose No. If you want to restore the

file system from tape, choose Yes. 

Describe Backup Volume Command

Describe Backup Volume�

Displays information about a backup volume stored on a tape. This command is

available in the Statice File System Operations Program.

This command gets its information from the tape itself.

The AVV menu requests the type of tape (whether cartridge or industry standard),

and the volume host (the host where the tape is mounted). 

Describe Statice File System Command

Describe Statice File System file-system-name�

Displays information about a file system. This command is available in the Statice

File System Operations Program.

This command gets information from the file-system namespace object. If the file

system is local, it also displays information about how much data is stored in each

partition. 

Disable Statice Command

Disable Statice�

Entirely disables all Statice activities: 

• Every currently-running transaction is aborted, signalling the error

dbfs::system-shutdown-transaction-abort, whose error message is "Transaction

aborted due to a system shutdown."

• All server processes executing on the local host are killed.



Page 170

• All local file systems are shut down. See the section "Disable Statice File Sys-

tem Command".

• The local host is marked as disabled, so that any new file systems created on

the host are automatically disabled.

• All network connections associated with Statice services are killed.

Any attempts to start a transaction while Statice is disabled signal an error. Any

attempts by a remote host to connect to this host are rejected. This command is

available in the Statice File System Operations Program. 

Disable Statice File System Command

Disable Statice File System file-system-name�

Disables a file system: aborts any transaction in progress that owns a lock on any

page of any file in the file system. Disallows any transactions to occur until the

file system is enabled again. If any transaction attempts to use a database in the

file system, the error dbfs::file-system-disabled is signalled. This command is use-

ful if you want to perform administrative activities on a database, and want to

make sure nobody else accesses the database. Note that it is not necessary to dis-

able a Statice file system to do a backup dump.

file-system-name must be the name of a Statice file system on the local host. This

command is available in the Statice File System Operations Program. 

Enable Statice Command

Enable Statice�

Re-enables Statice activities. Undoes the effect of Disable Statice, returning Statice

to normal. This command is available in the Statice File System Operations Pro-

gram. 

Enable Statice File System Command

Enable Statice File System file-system-name�

Enables a file system: allows transactions to be started. Undoes the effects of Dis-

able Statice File System, returning the file system to normal. This command is

available in the Statice File System Operations Program. 

Initialize Backup Volume Command

Initialize Backup Volume�



Page 171

Writes the volume number on the tape label itself. This command is available in

the Statice File System Operations Program.

This command is not a necessary step, because Complete Backup will also write

the information on the tape, but it prevents the mismatch that can occur when

writing a blank tape: the volume number you specify won’t match that of the tape

(because a blank tape won’t have any volume number on it).

Selective Restore Command

Selective Restore�

Copies selected databases from a tape to a Statice File System. This command is

available in the Statice File System Operations Program.

The AVV menu looks like this:

Enter specifications for selective restore:

 

File system: DLW-UFS-3

Disable file system: Yes  No

Paths to restore: >test2, >test7, and >test8

Repatriate action: Yes  No  Query

Name conflict resolution action: Leave

                                 Rename Existing File

                                 Replace Existing File

                                 Load Into Unique File

                                 Query

Volume selection mode: Automatic  Manual

Device: Industry-Standard-Tape  Cartridge-Tape

Volume host: ALDERAAN

Show Detailed Progress: Yes  No

�

If you choose Yes for "Disable file system", Statice does a Disable Statice File Sys-

tem before doing the Selective Restore, and an Enable Statice File System after-

wards. This option is useful if you are performing some kind of delicate operation

on the file system, such as recovering from a problem, and you want to make sure

that no other users make any changes in the file system while the Selective Re-

store is in progress. In the general case, it is not necessary to do this.

The "Paths to restore" are pathnames of databases within the file system. They

should start with the greater-than sign, >. They are separated by commas. These

pathnames can contain wildcards. 

Once you press END, Statice searches the volume libary to figure out which volume

the file is on. You will then be prompted to mount that volume:

Is volume abc/1 mounted for restoring? (Y or N) �

When Selective Restore is searching the volume library to figure out which volume

to retrieve a file from, there might be more than one volume that has this file on



Page 172

it. In such a case, it chooses the volume with the most recent completion date (the

date and time at which the dump was completed); that is, it uses the most recent

backed-up copy.

The repatriation action should never be needed by applications programmers, so

you should use the default (no) for this choice. 

Show Backup History Command

Show Backup History file-system-name�

Displays information about all backup runs done on a file system. This command is

available in the Statice File System Operations Program.

This command gets its information from the volume library: 

Volume Libraries

When you do Statice File System operations, Statice maintains a database called

the volume library. This database is stored within the file system. The volume li-

brary stores the following information:

For every backup volume that holds information from this file system: 

• Volume name and sequence number 

• Completion date, which is the date and time this tape was last written 

• Type, which is either "Industry Standard Tape" or "Cartridge Tape"

• The tape spec that was used when the tape was last written, which includes the

host, and also unit and density for industry-standard tapes �

For every backup run (that is, for every time that a dump as made):

• Completion date, which is the date and time this run was performed

• The set of volumes that were written.

• Whether the run is "valid", or whether something went wrong during the dump�

For every file that has been dumped:

• Name of the file

• The set of backup-notes (see below)�

For every copy of a file that exists on tape, a "backup note", consisting of: 

• The file attributes (length, creation-date, author, comment)

• Which volume the copy resides on

• Which backup run this copy was part of�



Page 173

This command first iterates over all the backup runs, in order of completion date

(most recent first). For each run, it tells you whether the run is valid, and what

the completion date is. Then it iterates over all the volumes in that backup run,

sorted by completion date. For each volume, it prints out the name/sequence-

number, the type, the completion date, the host, the unit (if any), and the density

(if any). 

High-level Dumper/Loader of Statice Databases

The Dump Database and Load Database commands invoke a "high-level" database

dump/load tool. High level means that it dumps and restores the data in a "source"

format, rather than in a binary page format as does the dump/restore tool avail-

able from the Statice Operations Menu. The high-level dump/load tool can used for

certain types of database reorganization operations.

Dump Database always dumps the databse in a transaction-consistent state, be-

cause it uses one long transaction to do its job.

The high-level dumper/loader is useful for several purposes. It enables you to:

• Move a database from one place to another, over a channel that can handle only

ordinary text.

• Store the contents of a database on some kind of storage medium (e.g. a partic-

ular tape format) that can handle only ordinary text.

• Edit the text file to reorganize the database. �

Limitations of the High-level Dumper/Loader

• It does not dump to tape, so the size of the dump is limited to the amount of

available file server disk space. Further, since the format is "source" level, it

may actually take more disk space to dump a database using the Dump

Database command than it does to store it.

• You shouldn’t do dumping while other users are operating on the database, since

it dumps everything in one large transaction (which will lock them out, or else

cause the dump/restore facility to abort a transaction). Loading data back into a

database can be rather slow since it does many small transactions (to avoid

growing the log).

• Because of LMFS file size limitations, it may not be appropriate to dump a

database to a LMFS file. This size limitation is approximately 15MB. Instead,

you may have to dump to a UNIX or VMS machine with enough disk space.�



Page 174

Clustering is Maintained�

Clustering is maintained across dumps. The actual entities may be grouped differ-

ently within the clusters, but they will all be in the same cluster that they were

before.

Format of the Dump File

The dump file consists of lists which contain information about the contents of the

database. At the beginning of the file is information about the real schema, and

following that is information about the actual contents of the database. The format

of each list is that the first element of it is a keyword symbol specifying what the

list is about and the rest of the list is information specific to that type of list.

Schema information is contained in lists which begin with the :DOMAIN, :RELA-

TION, :COMMIT-DOMAINS, and :INDEX keywords. For the most part, users

should not modify these lines unless it is obvious what they mean. For example,

consider the following definition, which is taken from the file

SYS:STATICE;EXAMPLES;BOOKS.LISP:

(define-entity-type account ()

  ((name string :unique t :cached t :inverse account-named)

   (balance single-float :cached t)

   (type (member checking owner) :cached t))) 

The corresponding information in the dump file looks like this:

(:RELATION "ACCOUNT" 1 NIL (("%$OF" "ACCOUNT" T T NIL NIL NIL) ("TYPE"

 (CL:MEMBER BOOKS:CHECKING BOOKS:OWNER) NIL NIL NIL NIL NIL) ("BALANCE"

 CL:SINGLE-FLOAT NIL NIL NIL NIL NIL) ("NAME" STRING T NIL NIL NIL NIL)))

This information appears on one line in the dump file. If we wanted to change the

balance attribute’s data type from single-float to double-float, then we’d edit the

"CL:SINGLE-FLOAT" piece of text above. Of course if you change the data type of

an element like this, you’d also have to change all the data in the file, too.

After the schema information, the actual data in the file is dumped to the file us-

ing :ENTITY and :RELATION-DATA entries. The format of an :ENTITY entry is:

(:ENTITY ("ENTRY" 14352 3388287 7463818 3147232 NIL))

This is a list of an entity’s type name (ENTRY), its internal record ID (14352), its

unique ID (three 32-bit fixnums), and its cluster ID. For the most part, these

should be of little interest to the users.

Users are more likely to be interested in the :RELATION-DATA entries. An ac-

count entity might look like this:

(:RELATION-DATA "ACCOUNT" NIL (17441 BOOKS:OWNER 200.53 "Lane")) 

To change the value of the balance for the "Lane" account, you’d change the value

200.53 to another value. You can find out the order of the attributes of this by

looking at the real-schema data at the beginning of the file. The attribute order

information will be embodied in the :RELATION entry. For example, the :RELA-

TION line above shows that the order of the attributes in the above :RELATION-



Page 175

DATA entry are %$OF (an internal attribute), the type attribute, the balance at-

tribute, and the name attribute.

For more detailed information, you can read the comments in the code in the file

SYS:STATICE;UTILITIES;MODEL-DUMPER.LISP.

Dictionary of Statice Commands

This section documents the commands that are available in the command proces-

sor. Statice also offers a set of commands that are available only in the Statice file

System Operations menu. For documentation on those commands: See the section

"Dictionary of Statice File System Operations Commands".

Add ASYNCH DBFS PAGE Service Command

Add ASYNCH DBFS PAGE Service host-name keywords�

Updates a host’s namespace object to contain the ASYNCH-DBFS-PAGE service. 

keywords :TCP Not Present

:TCP Not Present

{Yes No} If yes, no service entry is added for the TCP medium�

Statice uses the ASYNCH-DBFS-PAGE service for communicating various signals

and commands back to each of the client hosts, and hence should be present on all

Statice clients. It need not be present on Statice servers however, unless they are

clients to some other server.

This command adds the service-medium-protocol triplet for both the TCP and

CHAOS mediums to the namespace object for the host. You should only need to

perform this command once, when the file system is installed on a server. If the

host does not support TCP, supply Yes to the :TCP Not Present keyword option. 

Add DBFS PAGE Service Command

Add DBFS PAGE Servicehost-name keywords�

Updates a host’s namespace object to contain the DBFS-PAGE service.

keywords :TCP Not Present

:TCP Not Present

{Yes No} If yes, no service entry is added for the TCP medi-

um.

Statice uses the DBFS-PAGE service uses for communicating database pages and

requests over the network, and hence should be present on all Statice File System

server hosts. It need not be present on client hosts, however.



Page 176

This command adds the service-medium-protocol triplet for both the TCP and

CHAOS mediums to the namespace object for the host. You should only need to

perform this command once, when the file system is installed on a server. If the

host does not support TCP, supply Yes to the :TCP Not Present keyword option. 

Add Statice Partition Command

Add Statice Partition file-system-name partition-pathname size�

Enables you to add partitions dynamically to a Statice file system (e.g. when it is

running out of space). 

file-system-name Name of a Statice file system that is stored on the local host.

partition-pathname Pathname of a partition; this pathname must name a FEPFS

file on the local host (although the file need not exist).

size The size of the new partition, in blocks.�

This command creates the new partition, allocates the space from the size given,

and makes the new partition available to Statice for allocating.

This command may be given when a Statice server process receives a file system

full error. For example, if a server process signals the following error, you can add

a new partition and resume the operation: 

Error: The File System "Squash" is full. 

 

(FLAVOR:METHOD UFS::FIND-FREE-BLOCKS UFS:UFS-FILE-SYSTEM-MIXIN)

 proceed options...

�

 :Add Statice Partition (a file-system) SQUASH 

 (the pathname of a file) FEP2:>Statice>SQUASH-part2.file.newest 

 (Size in blocks [default 1000]) 1000  

�

Updating file-system object SCRC|SQUASH in namespace... Done

�

After adding the partition, select the proceed option that resumes the operation. 

Copy Statice Database Command

Copy Statice Database from-database to-database keywords�

Copies all the pages of one database to the other (possibly new database) inside a

transaction. 

from-database Pathname of the database to copy. 

to-database Pathname of the destination, where the database should be

copied. 



Page 177

keywords :Copy Properties, :Create Directories, :Query�

:Copy Properties {any combination of: Author, Comments, Creation Date} This

indicates which properties should be copied to the new

database(s). The default is Author and Creation Date.

:Create Directories

{Yes, Error, Query} Yes means that directories that do not ex-

ist should be created silently, Query will ask, and Error will

cause an error if they do not exist.

:Query {Yes, No, Ask} Whether to ask before copying each file. �

Create Statice File System Command

Create Statice File System file-system-name keywords

Creates a new Statice File System on the local host. You cannot use this command

to create a file system on a remote host.

file-system-name A symbol naming the new file system.

keywords :Locally

:Locally {Yes, No} Whether to update only local namespace information

(Yes), or to update the namespace database server as well (No).

The default is No. See the section "The Locally Namespace Ed-

itor Command".�

The command displays an AVV menu in which you specify the names of various

parameters. Above the menu, you will see a list of all the disk drives on the local

host and the amount of free space available on each of them. The AVV menu asks

for the following items: 

Directory Partition: This entry specifies the FEPFS file in which the internal file

system directory resides. Its size is determined by the number

of directory entries which you specify in the Maximum Directo-

ry Entries field. The default file name for the directory parti-

tion is FEPn:>Statice>fs-name-partm.UFD. n is the highest

mounted disk on the system, fs-name is the file-system name

specified for the command, and m is the number of the parti-

tion.

Maximum Directory Entries:

This entry specifies the maximum number of databases which

may reside in the file system at any time. Note that Statice al-

ways takes two of these entries for itselfone for the log file,

and one for the Directory database. These entries are reusable,

so if a database is deleted, using the Delete File command (in



Page 178

conjunction with a database pathname, not a FEPFS path-

name), that entry in the file system directory is reusable for

another database. On the Symbolics 36xx, there are 71 directo-

ry entries in each FEPFS block. The directory is organized as

a hash file, so it’s desirable to make the directory large

enough that it’s not densely filled.

Partition: These entries specify the partitions to be used for the file sys-

tem. There may be as many partitions as you want, and they

can live on any of the disks. In general, there should be as few

partitions as possible in order to avoid disk fragmentation. The

default pathname for a partition is

FEPm:>Statice>fs-name-partn.file, where m is the highest

mounted unit number, fs-name is the name of the file system,

and n is the partition number in the ordering of all the parti-

tions entered in the AVV menu.

Blocks: This entry specifies the number of blocks to allocate for the

partition. When you enter a value for this field, the values in

the available disk space headings will change accordingly to

take into account how much of the free space you have allo-

cated. You may click on None in this field to remove the parti-

tion the menu (and hence not include it as part of the file sys-

tem when it is created). �

When all the parameters have been entered, pressing END will cause the file sys-

tem to be created. First, the file system object will be created in the namespace

database (permanently, unless :Locally Yes was specified). Note that the messages

printed by the command do not indicate whether the namespace was updated local-

ly or globally. Second, all of the partitions are created in the FEPFS, and their

:DONT-DELETE properties are set. You don’t need to create any of the partitions

yourselfthis is done automatically for you, including the proper allocation of

space. Third, the log file in the file system is initialized. Finally, the directory

database is created.

Here’s a sample run:

Command: Create Statice File System SQUASH  

FEP0: 21464 Available (Originally: 21464 free, 88696/110160 used (81%))

FEP1:   137 Available (Originally: 137 free, 146743/146880 used (100%))

FEP2: 70727 Available (Originally: 71742 free, 38418/110160 used (35%))

Directory Partition: FEP2:>Statice>SQUASH.UFD

Maximum Directory Entries: 1000

Initial Log Size in Blocks: 500

Partition: FEP2:>Statice>part0.file.newest

  Blocks (None to remove): None  1000

Partition: FEP2:>Statice>part1.file.newest

  Blocks (None to remove): None  an integer



Page 179

Creating file-system object SCRC|SQUASH in namespace... Done.

Initializing local UFS with associated directory structure... Done.

Creating local DBFS with associated directory structure... Done.

Initializing DBFS Directory database... Done.

Delete Statice File System Command

Delete Statice File System file-system-name keyword�

Expunges an entire Statice file system, and removes all traces of it, including ev-

ery database in it; this is a very dangerous command. 

file-system-name A symbol naming a file system that is resident on the local

host.

keywords :Locally

:Locally {Yes, No} Whether to update only local namespace information

(Yes), or to update the namespace database server as well (No).

The default is No. See the section "The Locally Namespace Ed-

itor Command".�

Because this command permanently removes the Statice File System, and all

databases in it, it is a dangerous command and it asks for confirmation. If you an-

swer Yes, the file system and all the databases in it are destroyed by removing the

file system partitions from the FEP directory in which they were placed by the

Create Statice File System command. The command destroys the file system parti-

tions, even though they may have the :DONT-DELETE flag set for them in the

FEPFS (the Create Statice File System command sets the :DONT-DELETE proper-

ty for each of the partitions in a file system).

If you have done a complete backup dump, you can restore the contents of a delet-

ed file system by using the Complete Restore command of the Statice File System

Operations activity. If you have not done a complete backup, the data cannot be

restored. 

Dump Database Command

Dump Database database-pathname destination-pathname�

Writes all the information in the database into a text file.

database-pathname A pathname indicating the location of a Statice database.

destination-pathname

A pathname of a file on any file system; this need not be

stored on a Symbolics machine.�



Page 180

This command is useful for several purposes. It enables you to: 

• Move a database from one place to another, over a channel that can handle only

ordinary text.

• Store the contents of a database on some kind of storage medium (e.g. a partic-

ular tape format) that can handle only ordinary text.

• Edit the text file to reorganize the database. �

We discuss the details of the Dump Database and Load Database commands else-

where: See the section "High-level Dumper/Loader of Statice Databases".

Load Database Command

Load Database database-pathname destination-pathname keywords�

Takes a text file produced by Dump Database, and makes a new database contain-

ing the same information. 

database-pathname A pathname indicating the location of a Statice database.

destination-pathname

A pathname of a file on any file system; this need not be

stored on a Symbolics machine.

keywords :If Exists�

:If Exists {Error, Create} Specifies the action to be taken if the database

specified by the database-pathname already exists. Error signals

an error, and Create causes the old database to be erased and

replaced by the database being loaded.�

Unless you have edited the text file, Load Database makes an exact copy of the

original database that was dumped, including keeping the unique ids the same.

We discuss the details of the Dump Database and Load Database commands else-

where: See the section "High-level Dumper/Loader of Statice Databases". 

Set Database Schema Name Command

Set Database Schema Name pathname new-schema-name�

Informs the database that its schema name is now the given new-schema-name.

pathname A pathname indicating the location of a Statice database.

new-schema-name A symbol.�



Page 181

If you move a Statice program from one package to another, and the database al-

ready exists, it is necessary to use this command to update the database to inform

it of the new schema name.

See the section "Warning About Changing the Package of a Statice Program".

Show All Statice File Systems Command

Show All Statice File Systems namespace�

Lists all the file system objects in the namespace, and the host on which each one

resides. 

namespace A symbol that specifies a namespace in which to search. By

default, all namespaces in the namespace search path are

searched�

Show Database Schema Command

Show Database Schema pathname�

Prints the definition of the schema of the database specified by pathname. This

command is useful if you see a database in a Statice file system and don’t know

what it is. It’s also useful for seeing what indexes currently exist in a database.

Not all of the information from the template schema is stored in the database it-

self, so when Show Database Schema reconstructs the schema definition from the

database, not all of the original information is recovered. Specifically:

The following attribute options are reconstructed: :unique, :index, :index-average-

size, :inverse-index, :inverse-index-average-size, :inverse-index-exact, :inverse-

cached, :area, :attribute-set, and :no-nulls.

The following attribute options are not reconstructed: :cached, :initform, :inverse,

:inverse-exact, :cluster, :accessor, :reader, :writer, and :read-only.

The following entity-type options are reconstructed: :area, :type-set, :multiple-

index, and :multiple-index-exact.

The following entity-type options are not reconstructed: :conc-name, :constructor,

:default-init-plist, :documentation, :init-keywords, :instance-variables, and :own-

cluster.

See the section "Examining the Schema of a Statice Database". 

Show Statice Partitions Command



Page 182

Show Statice Partitions file-system-name�

Shows the amount of free space remaining in a file system’s partition(s). 

file-system-name Name of a Statice file system which resides on the local host. �

This command may be done only for a file system stored on the local host.

For example:

Show Statice Partitions (a file-system) SQUASH

�

Partition                                      Free Space

FEP1:>squash>squash.file.newest        0/1056

FEP0:>squash>squash.file.newest        0/3000

FEP2:>Statice>SQUASH-part2.file.newest 54/1000�

Update Database Schema Command

Update Database Schema database-pathname�

Used when you have modified a schema; this command compares the template

schema to the real schema in the database, and updates the real schema to match

the template schema. 

database-pathname A pathname indicating the location of a Statice database.�

We discuss this subject in detail elsewhere: See the section "Modifying a Statice

Schema".

Documentation Update: future-common-lisp:loop

Using future-common-lisp:loop

What is future-common-lisp:loop?

The macro future-common-lisp:loop performs iteration by executing a series of

forms one or more times. Loop keywords are symbols recognized by future-

common-lisp:loop. The provide such capabilites as control of direction of iteration,

accumulation of values inside the loop body, and evaluation of expressions that pre-

cede or follow the loop body.

For future-common-lisp:loop without clauses, each form is evaluated in turn from

left to right. When the last form has been evaluated, then the first form is evalu-

ated again, and so on, in a never-ending cycle. future-common-lisp:loop establish-

es an implicit block named nil. The execution of future-common-lisp:loop can be

terminated explicitly, by using return, throw or return-from, for example.



Page 183

How future-common-lisp:loop Works

Expansion of the future-common-lisp:loop macro produces an implicit block

named nil unless named is supplied. Thus, return and return-from can be used to

return values from future-common-lisp:loop or to exit future-common-lisp:loop.

Within the executable parts of loop clauses and around the entire future-common-

lisp:loop form, variables can be bound by using regular lisp mechanisms, such as

let.

When Lisp encounters a future-common-lisp:loop form, it invokes the loop facili-

ty, which expands the loop expression into simpler, less abstract code that imple-

ments the loop. The loop facility defines clauses that are introduced by loop key-

words. The loop clauses contain forms and loop keywords.

Loop keywords are not true keywords; they are ordinary symbols, recognized by

print name, that are meaningful only to the future-common-lisp:loop facility. Be-

cause loop keywords are recognized by their names, they may be in any package. If

no loop keywords are supplied, the loop facility repeatedly executes the loop body.

The future-common-lisp:loop macro translates the given form into code and re-

turns the expanded form. The expanded form is one or more lambda expressions

for the local binding of loop variables and a block and a tagbody that express a

looping control structure. The variables established in future-common-lisp:loop

are bound as if by let or lambda. The assignment of the initial values is always

calculated in the order specified by the user. (A variable is sometimes bound to a

meaningless value of the correct type, and then later in the prologue it is set to

the true initial value by using setq.)

After the form is expanded, it consists of three basic parts in the tagbody:

prologue

The loop prologue contains forms that are executed before iteration be-

gins, such as any automatic variable initializations prescribed by the

variable clauses, along with any initially clauses in the order they ap-

pear in the source.

body

The loop body contains those forms that are executed during iteration,

including application-specific calculations, termination tests, and variable

stepping. 

epilogue

The loop epilogue contains forms that are executed after iteration termi-

nates, such as finally clauses, if any, along with any implicit return val-

ue from an accumulation clause or an end-test clause.

Some clauses from the source form contribute code only to the loop prologue; these

clauses must come before other clauses that are in the main body of the future-

common-lisp:loop form. Others contribute code only to the loop epilogue. All other

clauses contribute to the final translated form in the same order given in the orig-

inal source form of the future-common-lisp:loop. 



Page 184

Syntax of future-common-lisp:loop

Notational Conventions and Syntax for future-common-lisp:loop�

The syntax for loop constructs is represented as follows: 

• Loop keyword names are in boldface.

• Symbols are enclosed by braces { }. Braces followed by an asterix (*) indicate

that the contents enclosed by the braces can appear any number of times or not

at all.

{z}* zero or one occurrences of z�

A plus sign (+) indicates that the contents enclosed by the braces must appear

at least once.

{z}+ one or more occurrences of z�

• Brackets [ ] indicate that the contents enclosed by the brackets is optional and

can appear only once.

[z] zero or more occurrences of z�

• Elements separated by a vertical bar | indicate that either of the elements can

appear, but not both.�

{for | as} var [type-spec] [{from | downfrom | upfrom} form1]

 [{to | downto | upto | below | above} form2]

 [by form3]�

An overview of loop syntax is provided in the following paragraphs. More detailed

syntax descriptions of individual clauses are provided in the section "Constructs in

future-common-lisp:loop ". Syntax for future-common-lisp:loop with keyed claus-

es:

future-common-lisp:loop [named name] [variables]* [main]

variables::= with | initial-final | for | as

initial-final::= initially | finally

main::= unconditional | accumulation | conditional | end-test | initial-final

unconditional::= do | doing | return

accumulation::= collect | collecting | append | appending 

| nconc | nconcing | count | counting | sum | summing

| maximize | maximizing | minimize | minimizing

conditional::= when | if | unless



Page 185

end-test::= while | until | always | never | thereis | repeat�

Syntax for future-common-lisp:loop without clauses:

future-common-lisp:loop [tag | form}*

�

Syntax for future-common-lisp:loop-finish:

(future-common-lisp:loop-finish)�

Parsing future-common-lisp:loop Clauses

The syntactic parts of the future-common-lisp:loop construct are called clauses.

The parsing of keywords determines the scope of clause. The following example

shows a future-common-lisp:loop construct with six clauses:

 

�

 (loop for i from 1 to (compute-top-value)       ; first clause

       while (not (unacceptable i))              ; second clause

       collect (square i)                        ; third clause

       do (format t "Working on ~D now" i)       ; fourth clause

       when (evenp i)                            ; fifth clause

         do (format t "~D is an even number" i)

       finally (format t "About to exit!"))      ; sixth clause�

Each loop keyword introduces either a compound or a simple loop clause that can

consist of a loop keyword followed by a single form. The number of forms in a

clause is determined by the loop keyword that begins the clause and by the auxil-

iary keywords in the clause. The keywords do, initially, and finally are the only

loop keywords that can take any number of forms and group them as if in a single

progn form.

Loop clauses can contain auxiliary keywords, sometimes called prepositions. For

example, the first clause in the code above includes the prepositions from and to,

which mark the value from which stepping begins and the value at which stepping

ends. 

Order of Execution in future-common-lisp:loop 

With the exceptions listed below, clauses are executed in the loop body in the or-

der in which they appear in the source. Execution is repeated until a clause termi-

nates the future-common-lisp:loop or until a return, go, or throw form is en-

countered. The following actions are exceptions to the linear order of execution:

• All variables are initialized first, regardless of where the establishing clauses

appear in the source. The order of initialization follows the order of these

clauses.



Page 186

• The code for any initially clauses is collected into one progn in the order in

which the clauses appear in the source. The collected code is executed once in

the loop prologue after any implicit variable initializations.

• The code for any finally clauses is collected into one progn in the order in

which the clauses appear in the source. The collected code is executed once in

the loop epilogue before any implicit values from the accumulation clauses are

returned. Explicit returns anywhere in the source, however, will exit the future-

common-lisp:loop without executing the epilogue code.

• A with clause introduces a variable binding and an optional initial value. The

initial values are calculated in the order in which the with clauses occur.

• Iteration control clauses implicitly initialize variables, step variables (generally

between each execution of the loop body), and perform termination tests (gener-

ally just before the execution of the loop body).

Kinds of future-common-lisp:loop Clauses

Loop clauses fall into one of the following six categories:

Variable initialization and stepping�

for, as The for and as constructs provide iteration control clauses

that establish a variable to be initialized. for and as clauses

can be combined with the loop keyword and to get parallel ini-

tialization and stepping. Otherwise, the initialization and step-

ping are sequential. The for and as constructs provide a termi-

nation test that is determined by the iteration control clause.

with The with construct is similar to a single let clause. with

clauses can be combined using the loop keyword and to get

parallel initialization.

repeat The repeat construct causes iteration to terminate after a

specified number of times. It uses an internal variable to keep

track of the number of iterations.

Value accumulation�

collect The collect construct takes one form in its clause and adds the

value of that form to the end of a list of values. By default,

the list of values is returned when the future-common-

lisp:loop finishes.



Page 187

;; Collect all the symbols in a list.

 (loop for i in ’(bird 3 4 turtle (1 . 4) horse cat)

       when (symbolp i) collect i)

=> (BIRD TURTLE HORSE CAT)

 

;; Collect and return odd numbers.

 (loop for i from 1 to 10

       if (oddp i) collect i)

=> (1 3 5 7 9)

 

;; Collect items into local variable, 

;; but don’t return them.

 (loop for i in ’(a b c d) by #’cddr

       collect i into my-list

       finally (print my-list))

(A C) 

=> NIL�

append The append construct takes one form in its clause and ap-

pends the value of that form to the end of a list of values. By

default, the list of values is returned when the future-

common-lisp:loop finishes.

;; Use APPEND to concatenate some sublists.

  (loop for x in ’((a) (b) ((c)))

        append x)

=> (A B (C))

 �

nconc The nconc construct is similar to the append construct, but

its list values are concatenated as if by the function nconc. By

default, the list of values is returned when the future-

common-lisp:loop finishes.

 

;; NCONC some sublists together.  Note that only lists 

;; made by the call to LIST are modified.

  (loop for i upfrom 0 

        as x in ’(a b (c))

        nconc (if (evenp i) (list x) nil))

=> (A (C))�

sum The sum construct takes one form in its clause that must eval-

uate to a number and accumulates the sum of all these

numbers. By default, the cumulative sum is returned when the

future-common-lisp:loop finishes.



Page 188

(loop for i fixnum in ’(1 2 3 4 5)

       sum i)

=> 15

 (setq series ’(1.2 4.3 5.7))

=> (1.2 4.3 5.7)

 (loop for v in series 

       sum (* 2.0 v))

=> 22.4�

count The count construct takes one form in its clause and counts

the number of times that the form evaluates to a non-nil value.

By default, the count is returned when the future-common-

lisp:loop finishes.

 (loop for i in ’(a b nil c nil d e)

       count i)

=> 5�

minimize The minimize construct takes one form in its clause and deter-

mines the minimum value obtained by evaluating that form. By

default, the minimum value is returned when the future-

common-lisp:loop finishes.

(loop for i in ’(2 1 5 3 4)

       minimize i)

=> 1

;; In this example, FIXNUM applies to the variable RESULT.

(loop for v float in series

minimize (round v) into result fixnum

finally (return result))

=> 1

(loop for i in ’(2 1 5 3 4)

minimize i)

=> 1�

maximize The maximize construct takes one form in its clause and de-

termines the maximum value obtained by evaluating that form.

By default, the maximum value is returned when the future-

common-lisp:loop finishes. 

 (loop for i in ’(2 1 5 3 4)

       maximize i)

 => 5

�

;; In this example, FIXNUM applies to the internal 

;; variable that holds the maximum value.

 (setq series ’(1.2 4.3 5.7))

=> (1.2 4.3 5.7)

 (loop for v in series 

       maximize (round v) fixnum)

=> 6�



Page 189

Termination conditions�

while The while construct takes one form, a condition, and termi-

nates the iteration if the condition evaluates to nil. A while

clause is equivalent to the expression (if (not condition)

(future-common-lisp:loop-finish)).

until The until construct is the inverse of while; it terminates the

iteration if the condition evaluates to any non-nil value. An

until clause is equivalent to the expression (if condition�

(future-common-lisp:loop-finish)). 

always The always construct takes one form and terminates the

future-common-lisp:loop if the form ever evaluates to nil; in

this case, it returns nil. Otherwise, it provides a default return

value of t.

never The never construct takes one form and terminates the future-

common-lisp:loop if the form ever evaluates to non-nil; in this

case, it returns nil. Otherwise, it provides a default return val-

ue of t.

thereis The thereis construct takes one form and terminates the

future-common-lisp:loop if the form ever evaluates to non-nil;

in this case, it returns that value. 

future-common:loop-finish

The future-common-lisp:loop-finish macro terminates iteration

and returns any accumulated result. Any finally clauses that

are supplied are evaluated.

Unconditional execution�

do The do construct evaluates all forms in its clause.

return The return construct takes one form and returns its value. It

is equivalent to the clause do (return it value).

;; Print numbers and their squares.

;; The DO construct applies to multiple forms.

 (loop for i from 1 to 3

       do (print i)

          (print (* i i)))

1 

1 

2 

4 

3 

9 

=> NIL�



Page 190

Conditional execution�

if The if construct takes one form as a predicate and a clause

that is executed when the predicate is true. The clause can be

a value accumulation, unconditional, or another conditional

clause; it can also be any combination of such clauses connect-

ed by the loop keyword and.

when The when construct is a synonym for the if construct.

;; Signal an exceptional condition.

 (loop for item in ’(1 2 3 a 4 5)

       when (not (numberp item))

        return (cerror "Enter a new value" "Non-numeric value: ~s" item))

Error: Non-numeric value: A

 

;; The previous example is equivalent to the following one.

 (loop for item in ’(1 2 3 a 4 5)

       when (not (numberp item))

        do (return 

            (cerror "Enter a new value" "Non-numeric value: ~s" item)))

Error: Non-numeric value: A

�

;; This example parses a simple printed string representation from 

;; BUFFER (which is itself a string) and returns the index of the

;; closing double-quote character.

(let ((buffer "\"foo\" \"bar\""))

  (loop initially (unless (char= (char buffer 0) #\")

                    (loop-finish))

        for i fixnum from 1 below (string-length buffer)

        when (char= (char buffer i) #\")

 return i))

=> 4

�

;; The FINALLY clause prints the last value of I.

;; The collected value is returned.

 (loop for i from 1 to 10

       when (> i 5)

         collect i

       finally (print i))

=> 4

(6 7 8 9 10) 



Page 191

�

;; Return both the count of collected numbers and the numbers.

 (loop for i from 1 to 10

       when (> i 5)

         collect i into number-list

         and count i into number-count

       finally (return (values number-count number-list)))

=> 5

(6 7 8 9 10)

�

 �

unless The unless construct is similar to when except that it comple-

ments the predicate.

else The else construct provides an optional component of if, when,

and unless clauses that is executed when the predicate is

false. The component is one of the clauses described under if.

end The end construct provides an optional component to mark the

end of a conditional clause.

Miscellaneous operations�

named The named construct gives a name for the block of the loop.

;; Just name and return.

 (loop named max

       for i from 1 to 10

       do (print i)

       do (return-from max ’done))

1 

=> DONE�

initially The initially construct causes its forms to be evaluated in the

loop prologue, which precedes all future-common-lisp:loop

code except for initial settings supplied by the constructs with,

for, or as.

finally The finally construct causes its forms to be evaluated in the

loop epilogue after normal iteration terminates. An uncondi-

tional clause can also follow the loop keyword finally.

Constructs in future-common-lisp:loop 

This section describes the constructs provided by future-common-lisp:loop. The

constructs are grouped according to function into the following categories:

• Iteration Control

• End-Test Control



Page 192

• Value Accumulation

• Variable Initializations

• Conditional Execution

• Unconditional Execution

• Miscellaneous Features�

Iteration Control in future-common-lisp:loop

Iteration control clauses allow direction of future-common-lisp:loop iteration. The

loop keywords for, as, and repeat designate iteration control clauses. Iteration con-

trol clauses differ with respect to the specification of termination conditions and to

the initialization and stepping of loop variables. Iteration clauses by themselves do

not cause the loop facility to return values, but they can be used in conjunction

with value-accumulation clauses to return values.

All variables are initialized in the loop prologue. The scope of the variable binding

is lexical unless it is proclaimed special; thus, the variable can be accessed only

by forms that lie textually within the future-common-lisp:loop. Stepping assign-

ments are made in the loop body before any other forms are evaluated in the body.

The variable argument in iteration control clauses can be a destructuring list. A

destructuring list is a tree whose non-null atoms are symbols that can be as-

signed a value. See the section "Destructuring in future-common-lisp:loop".

The iteration control clauses for, as, and repeat must precede any other loop

clauses, except initially, with, and named, since they establish variable bindings.

When iteration control clauses are used in a future-common-lisp:loop, termination

tests in the loop body are evaluated before any other loop body code is executed.

If multiple iteration clauses are used to control iteration, variable initialization and

stepping occur sequentially by default. The and construct can be used to connect

two or more iteration clauses when sequential binding and stepping are not neces-

sary. The iteration behavior of clauses joined by and is analogous to the behavior

of the macro do with respect to do*.

for and as Constructs

The for and as clauses iterate by using one or more local loop variables that are

initialized to some value and that can be modified or stepped after each iteration.

For these clauses, iteration terminates when a local variable reaches some supplied

value or when some other loop clause terminates iteration. At each iteration, vari-

ables can be word stepped by an increment or a decrement or can be assigned a

new value by the evaluation of a form. Destructuring can be used to assign initial

values to variables during iteration.



Page 193

The for and as keywords are synonyms; they can be used interchangeably. There

are seven syntactic formats for these constructs. In each syntactic format, the type

of var can be supplied by the optional type-spec argument. If var is a destructuring

list, the type supplied by the type-spec argument must appropriately match the ele-

ments of the list.

Syntax 1:�

{for | as} var [type-spec] [{from | downfrom | upfrom} form1]

[{to | downto | upto | below | above} form2] [by form3]�

The for or as construct iterates from the value supplied by form1 to the value

supplied by form2 in increments or decrements denoted by form3. Each expression

is evaluated only once and must evaluate to a number.

The variable var is bound to the value of form1 in the first iteration and is

stepped by the value of form3 in each succeeding iteration, or by 1 if form3 is not

provided.

The following loop keywords serve as valid prepositions within this syntax, and at

least one must be used in any for or as construct:

from form1 The loop keyword from marks the value from which stepping

begins, as supplied by form1. Stepping is incremental by de-

fault. If decremental stepping is desired, the preposition

downto or above must be used with form2. For incremental

stepping, the default from value is 0.

downfrom, upfrom form1 

The loop keyword downfrom indicates that the variable var is

decreased in decrements supplied by form3; the loop keyword

upfrom indicates that var is increased in increments supplied

by form3.

to form2 The loop keyword to marks the end value for stepping supplied

in form2. Stepping is incremental by default. If decremental

stepping is desired, the preposition downto, downfrom, or

above must be used with form2.

downto, upto form2 

The loop keyword downto allows iteration to proceed from a

larger number to a smaller number by the decrement form3.

The loop keyword upto allows iteration to proceed from a

smaller number to a larger number by the increment form3.

Since there is no default for form1 in decremental stepping, a

value must be supplied with downto.

below, above form2 

The loop keywords below and above are analogous to upto and

downto respectively. These keywords stop iteration just before

the value of the variable var reaches the value supplied by

form2; the end value of form2 is not included. Since there is



Page 194

no default for form1 in decremental stepping, a value must be

supplied with above.

by form3 The loop keyword by marks the increment or decrement sup-

plied by form3. The value of form3 can be any positive number.

The default value is 1.�

In an iteration control clause, the for or as construct causes termination when the

supplied limit is reached. That is, iteration continues until the value var is stepped

to the exclusive or inclusive limit supplied by form2. The range is exclusive if

form3 increases or decreases var to the value of form2 without reaching that val-

ue; the loop keywords below and above provide exclusive limits. An inclusive limit

allows var to attain the value of form2; to, downto, and upto provide inclusive

limits.

By convention, for introduces new iterations and as introduces iterations that de-

pend on a previous iteration specification. 

;; Print some numbers.

 (loop as i from 1 to 3

       do (print i))

1

2

3

=> NIL

 

;; Print every third number.

 (loop for i from 10 downto 1 by 3

       do (print i))

10

7 

4 

1 

=> NIL

 

;; Step incrementally from the default starting value.

 (loop as i below 3

       do (print i))

0

1

2

=> NIL�

Syntax 2:�

{for | as} var [type-spec] in form1 [by step-fun]�

The for or as construct iterates over the contents of a list. It checks for the end

of the list as if by using endp. The variable var is bound to the successive ele-

ments of the list in form1 before each iteration. At the end of each iteration, the



Page 195

function step-fun is applied to then list; the default value for step-fun is cdr. The

loop keywords in and by serve as valid prepositions in this syntax. The for or as

construct causes termination when the end of the list is reached. For example:

;; Print every item in a list.

 (loop for item in ’(1 2 3) do (print item))

1

2

3

=> NIL

 

;; Print every other item in a list.

 (loop for item in ’(1 2 3 4 5) by #’cddr

       do (print item))

1

3

5

=> NIL

 

;; Destructure a list, and sum the x values using fixnum arithmetic.

(loop for (item . x) (t . fixnum) in ’((A . 1) (B . 2) (C . 3))

unless (eq item ’B) sum x)

=> 4�

Syntax 3:�

{for | as} var [type-spec] on form1 [by step-fun]�

The for or as construct iterates over the contents of a list. It checks for the end

of the list as if by using endp. The variable var is bound to the successive tails of

the list in form1. At the end of each iteration, the function step-fun is applied to

the list; the default value for step-fun is cdr. The loop keywords on and by serve

as valid prepositions in this syntax. The for or as construct causes termination

when the end of the list is reached. The following example demonstrates the for-

as-on-list subclause:

;; Collect successive tails of a list.

 (loop for sublist on ’(a b c d)

       collect sublist)

=>((A B C D) (B C D) (C D) (D))

 

;; Print a list by using destructuring with the loop keyword ON.

 (loop for (item) on ’(1 2 3)

       do (print item))

1 

2 

3 

=> NIL�



Page 196

Syntax 4:�

{for | as} var [type-spec] = form1 [then form2]�

The for or as construct initializes the variable var by setting it to the result of

evaluating form1 on the first iteration, then setting it to the result of evaluating

form2 on the second and subsequent iterations. If form2 is omitted, the construct

uses form1 on the second and subsequent iterations. The loop keywords = and then

serve as valid prepositions in this syntax. This construct does not provide any ter-

mination conditions. For example:

;; Collect some numbers.

 (loop for item = 1 then (+ item 10)

       for iteration from 1 to 5

       collect item)

=> (1 11 21 31 41)�

Syntax 5:�

{for | as} var [type-spec] across vector�

The for or as construct binds the variable var to the value of each element in the

array vector. The loop keyword across marks the array vector; across is used as a

preposition in this syntax. Iteration stops when there are no more elements in the

supplied array that can be referenced. Some implementations might recognize a

the special form in the vector form to produce more efficient code. For example:

(loop initially (terpri) "foo"

       do (write-char char stream))

foo

=> NIL�

Syntax 6:�

{for | as} var [type-spec] being {each | the}

{hash-key[s] | hash-value[s]}

{in | of} hash-table [using ({hash-key | hash-value}

other-var)]�

The for or as construct iterates over the elements, keys, and values of a hash ta-

ble. In this syntax, a compound preposition is used to designate access to a hash

table. The variable var takes on the value of each hash key or hash value in the

supplied hash table. The following loop keywords serve as valid prepositions within

this syntax:

being The keyword being introduces either the loop method hash-

key or hash-value.

each, the The loop keyword each follows the loop keyword being when

hash-key or hash-value is used. The loop keyword the is used

with hash-keys and hash-values only for ease of reading. This

agreement isn’t required.



Page 197

hash-key, hash-keys

These loop keywords access each key entry of the hash-table. If

the name hash-value is supplied in a using construct with one

of these loop methods, the iteration can optionally access the

keyed value. The order in which the keys are accessed is un-

defined; empty slots in the hash-table are ignored.

hash-value, hash-values

These loop keywords access each value entry of a hash-table.

If the name hash-key is supplied in a using construct with

one of these loop methods, the iteration can optionally access

the key that corresponds to the value. The order in which the

keys are accessed is undefined; empty slots in the hash-table

are ignored.

using The loop keyword using introduces the optional key or the

keyed value to be accessed. It allows access to the hash key if

iteration is over the hash values, and the hash value if itera-

tion is over the hash keys

in, of These loop prepositions introduce hash-table.�

In effect the following expression is a compound preposition:

�

being [each | the] [hash-value | hash-values | hash-key |

hash-key] [in | of ]

�

Iteration stops when there are no more hash keys or hash values to be referenced

in the supplied hash table.

Syntax 7:�

{for | as} var [type-spec] being {each | the}

{symbol[s] | present-symbol[s] | external-symbol[s]}

[{in | of} package]�

The for or as construct iterates over the symbols in a package. In this syntax, a

compound preposition is used to designate access to a package. The variable var�

takes on the value of each symbol in the supplied package. The following loop key-

words serve as valid prepositions within this syntax:

being The keyword being introduces either the loop method

symbol[s], present-symbol[s], or external-symbol[s].

each, the The loop keyword each follows the loop keyword being when

symbol, present-symbol, or external-symbol is used. The loop

keyword the is used with symbols, present-symbols, and

external-symbols only for ease of reading. This agreement

isn’t required.



Page 198

present-symbol, present-symbols

These loop methods iterate over the symbols that are present

but not external in a given package. The package to be iterated

over is supplied in the same way that package arguments to

find-package are supplied. If the package for the iteration is

not supplied, the current package is used. If a package that

does not exist is supplied, an error of type package-error is

signalled.

symbol, symbols These loop methods iterate over symbols that are accessible

from a given package. The package to be iterated over is sup-

plied in the same way package arguments to find-package are

supplied. If the package for the iteration is not supplied, the

current package is used. If a package that does not exist is

supplied, an error of type conditions:package-error is sig-

nalled.

external-symbol, external-symbols

These loop methods iterate over the external symbols of the

given package. The package to be iterated over is supplied in

the same way package arguments to find-package are sup-

plied. If the package for the iteration is not supplied, the cur-

rent package is used. If a package that does not exist is sup-

plied, an error of type package-error is signalled.

in, of These loop prepositions mark the package package.�

In effect 

[being] [each | the] [[[present | external] symbol] |

[[present | external] symbols]] [in | of]

�

is a compound preposition. Iteration stops when there are no more symbols to be

referenced in the supplied package.

The repeat Construct in future-common-lisp:loop

repeat form 

The repeat construct causes iteration to terminate after a specified number of

times. The loop body executes n times, where n is the value of the expression

form. The form argument is evaluated once in the loop prologue. If the expression

evaluates to 0 or to a negative number, the loop body is not evaluated. The follow-

ing example demonstrates the repeat construct:



Page 199

(loop repeat 3

       do (format t "~&What I say three times is true.~%"))

   What I say three times is true

   What I say three times is true

   What I say three times is true

=> NIL

 

�

(loop repeat -15

   do (format t "~&What you see is what you expect.~%"))

=> NIL�

End-Test Control in future-common-lisp:loop 

The following loop keywords designate constructs that use a single test condition

to determine when loop iteration should terminate:

always, never, thereis

while, until�

The constructs always, never, and thereis provide specific values to be returned

when a looop terminates. Using always, never, or thereis in a loop with value-

returning accumulation clauses that are not into causes an error of type

conditions:program-error to be signalled. Since always, never, and thereis use

the macro return to terminate iteration, any finally clause that is supplied is not

evaluated. In all other respects these constructs behave like the while and until�

constructs.

The macro future-common-lisp:loop-finish can be used at any time to cause regu-

lar termination. In regular termination, finally clauses are executed and default

return values are returned.

always, never, thereis�

always form The always construct takes one form and terminates the

future-common-lisp:loop if the form ever evaluates to nil; in

this case, it returns nil. Otherwise, it provides a default return

value of t. If the value of the supplied form is never nil, some

other construct can terminate the iteration. Otherwise, it pro-

vides a default return value of t.

;; Make sure I is always less than 11 (two ways).

;; The FOR construct terminates these loops.

 (loop for i from 0 to 10

       always (< i 11))

=> T�



Page 200

never form The never construct terminates iteration the first time that

the value of the supplied form is non-nil; the future-common-

lisp:loop returns nil. If the value of the supplied form is al-

ways nil, some other construct can terminate the iteration. Un-

less some other clause contributes a return value, the default

value returned is t.

(loop for i from 0 to 10

       never (> i 11))

=>T�

thereis form The thereis construct takes one form and terminates the loop

if the form ever evaluates to non-nil; in this case, it returns

that value. The thereis construct terminates iteration the first

time that the value of the supplied form is non-nil; the future-

common-lisp:loop returns the value of the supplied form. If

the value of the supplied form is always nil, some other con-

struct can terminate the iteration. Unless some other clause

contributes a return value, the default value returned is nil.

 

;; If I exceeds 10 return I; otherwise, return NIL.

;; The THEREIS construct terminates this loop.

 (loop for i from 0

       thereis (when (> i 10) i) ) => 11�

There are two differences between the thereis and until constructs:

• The until construct does not contribute a return value based on the value of the

supplied form.

• The until construct executes any finally clause. Since thereis uses the macro

return to terminate iteration, any finally clause that is supplied is not evaluat-

ed.



Page 201

�

;;; The FINALLY clause is not evaluated in these examples.

 (loop for i from 0 to 10

       always (< i 9)

       finally (print "you won’t see this"))

=> NIL

 (loop never t

       finally (print "you won’t see this"))

=> NIL

 (loop thereis "Here is my value"

       finally (print "you won’t see this"))

=> "Here is my value"

  

;; The FOR construct terminates this loop, so the FINALLY clause 

;; is evaluated.

 (loop for i from 1 to 10

       thereis (> i 11)

       finally (print i))

   11

=> NIL

 

;; If this code could be used to find a counterexample to Fermat’s

;; last theorem, it would still not return the value of the

;; counterexample because all of the THEREIS clauses in this example

;; only return T.  Of course, this code does not terminate.

 

 (loop for z upfrom 2

       thereis

         (loop for n upfrom 3 below (log z 2)

               thereis

                 (loop for x below z

                       thereis

                         (loop for y below z

                               thereis (= (+ (expt x n) (expt y n))

                                          (expt z n))))))

 

; The finally clause is not evaluated.

 

 (loop never t

       finally (print "You won’t see this."))

=> NIL

 �

while, until�

while form The while construct allows iteration to continue until the sup-

plied form evaluates to nil. The supplied form is reevaluated at

the location of the while clause.



Page 202

(loop while (hungry-p) do (eat))

 

;; UNTIL (NOT...) is equivalent to WHILE.

 (loop until (not (hungry-p)) do (eat))

 

;; Collect the length and the items of STACK.

 (let ((stack ’(a b c d e f)))

   (loop while stack

         for item = (length stack) then (pop stack)

         collect item))

=> (6 A B C D E F)

 �

until form The until construct is equivalent to while (not form) dots. If

the value of the supplied form is non-nil, iteration terminates.

�

;; Use WHILE to terminate a loop that otherwise 

;; wouldn’t terminate.

;; Note that WHILE occurs after the WHEN.

 (loop for i fixnum from 3

       when (oddp i) collect i

       while (< i 5))

=> (3 5)�

The while and until constructs can be used at any point in a

future-common-lisp:loop. If an until or while clause causes

termination, any clauses that precede it in the source are still

evaluated. If the until and while constructs cause termination,

control is passed to the loop epilogue, where any finally claus-

es will be executed. �

There are two differences between the never and until constructs: 

• The until construct does not contribute a return value based on the value of the

supplied form.

• The until construct executes a finally clause. Since never uses the macro

return to terminate iteration, any finally clause that is supplied is not evaluat-

ed.

In most cases it is not necessary to use future-common-lisp:loop-finish because

other loop control clauses terminate the future-common-lisp:loop. The macro

future-common-lisp:loop-finish is used to provide a normal exit from a nested

condition inside a future-common-lisp:loop.

In normal termination, finally clauses are executed and default return values are

returned. Since future-common-lisp:loop-finish transfers control to the loop epi-

logue, using future-common-lisp:loop-finish within a finally expression can cause

infinite looping. It is implementation dependent whether or not, in a particular



Page 203

future-common-lisp:loop invocation, future-common-lisp:loop-finish is a global

macro or a local one (created as if by macrolet).

End-test control constructs can be used anywhere within the loop body. The termi-

nation conditions are tested in the order in which they appear. 

Value Accumulation in future-common-lisp:loop 

Accumulating values during iteration and returning them from a loop is often use-

ful. Some of these accumulations occur so frequently that special loop clauses have

been developed to handle them.

The following loop keywords designate clauses that accumulate values in lists and

return them: 

• append, appending 

• collect, collecting

• nconc, nconcing�

The following loop keywords designate clauses that accumulate and return numeri-

cal values: 

• count, counting

• maximize, maximizing

• minimize, minimizing 

• sum, summing�

Value-returning accumulation clauses can be combined in a loop if all the clauses

accumulate the same type of object. By default, the loop facility returns only one

value; thus, the objects collected by multiple accumulation clauses as return values

must have compatible types. For example, since both the collect and append con-

structs accumulate objects into a list that is returned from a future-common-

lisp:loop, they can be combined safely.

�

;; Collect every name and the kids in one list by using 

;; COLLECT and APPEND.

 (loop for name in ’(fred sue alice joe june)

       for kids in ’((bob ken) () () (kris sunshine) ())

       collect name

       append kids)

=> (FRED BOB KEN SUE ALICE JOE KRIS SUNSHINE JUNE)�

Multiple clauses that do not accumulate the same type of object can coexist in a

future-common-lisp:loop only if each clause accumulates its values into a differ-

ent user-specified variable.



Page 204

collect, collecting�

collect[ing] form During each iteration, the constructs collect and collecting

collect the value of the supplied form into a list. When itera-

tion terminates, the list is returned. The argument var is set

to the list of collected values; if var is supplied, the future-

common-lisp:loop does not return the final list automatically.

If var is not supplied, it is equivalent to supplying an internal

name for var and returning its value in a finally clause. The

var argument is bound as if by the construct with. A type can-

not be supplied for var; it must be of type list.

append, appending, nconc, nconcing�

append[ing] form [into var], nconc[ing] form [into var]

The constructs append, appending, nconc, and nconcing are

similar to collect except that the values of the supplied form

must be lists.

• The append keyword causes its list values to be concatenat-

ed into a single list, as if they were arguments to the func-

tion append.

• The nconc keyword causes its list values to be concatenated

into a single list, as if they were arguments to the function

nconc.�

The argument var is set to the list of concatenated values; if

var is supplied, future-common-lisp:loop does not return the

final list automatically. The var argument is bound as if by the

construct with. A type cannot be supplied for var; it must be

of type list. The construct nconc destructively modifies its ar-

gument lists. The append construct is similar to collect except

the values of the supplied form must be lists. These lists are

not modified but are concatenated together into a single list,

as if they were arguments to append. The argument var is

bound to the list of concatenated values; if var is supplied, the

loop does not return the final list automatically. The var argu-

ment is bound as if by the construct with. A type cannot be

supplied for var; it must be of type list.�

count, counting�

count[ing] form [into var] [type-spec]

The count construct counts the number of times that the sup-

plied form has a non-nil value. The argument var accumulates

the number of occurrences; if var is supplied, future-common-

lisp:loop does not return the final count automatically. The var

argument is bound as if by the construct with. If into var is



Page 205

used, a type can be supplied for var with the type-spec argu-

ment; the consequences are unspecified if a nonnumeric type is

supplied. If there is no into variable, the optional type-spec ar-

gument applies to the internal variable that is keeping the

count. The default type is implementation-dependent; but it

must be a subtype of (or integer float).

maximize, maximizing, minimize, minimizing�

maximize | maximizing form [into var] [type-spec]

The maximize construct compares the value of the supplied

form obtained during the first iteration with values obtained in

successive iterations. The maximum value encountered is deter-

mined and returned. If future-common-lisp:loop never exe-

cutes the body, the returned value is unspecified. The argu-

ment var accumulates the maximum or minimum value; if var

is supplied, future-common-lisp:loop does not return the maxi-

mum or minimum automatically. The var argument is bound as

if by the construct with. If into var is used, a type can be sup-

plied for var with the type-spec argument; the consequences are

unspecified if a nonnumeric type is supplied. If there is no

into variable, the optional type-spec argument applies to the in-

ternal variable that is keeping the count. The default type

must be a subtype of (or integer float).

minimize | minimizing form [into var] [type-spec]

The minimize construct is similar to maximize; it determines

and returns the minimum value. The minimize construct com-

pares the value of the supplied form obtained during the first

iteration with values obtained in successive iterations. The

minimum value encountered is determined and returned. If

future-common-lisp:loop never iterates, the returned value is

not meaningful. The argument var is bound to the minimum

value; if var is supplied, the future-common-lisp:loop does not

return the minimum automatically. The var argument is bound

as if by the construct with. The type-spec argument supplies

the type for var; the default type is fixnum. The consequences

are unspecified if a nonnumeric type is supplied for var.

sum, summing�

sum[ing] form [into var] [type-spec]

The sum construct forms a cumulative sum of the values of

the supplied form at each iteration. The argument var is used

to accumulate the sum; if var is supplied, future-common-

lisp:loop does not return the final sum automatically. The var

argument is bound as if by the construct with. If into var is

used, a type can be supplied for var with the type-spec argu-



Page 206

ment; the consequences are unspecified if a nonnumeric type is

supplied. If there is no into variable, the optional type-spec ar-

gument applies to the internal variable that is keeping the

count. The default type must be a subtype of number.

The loop preposition into can be used to name the variable used to hold partial

accumulations. The variable is bound as if by the loop construct with. If into is

used, the construct does not provide a default return value; however, the variable

is available for use in any finally clause. 

Local Variable Initializations in future-common-lisp:loop 

At the time when the loop facility is invoked, the local variables are bound and are

initialized to some value. These local variables exist until future-common-lisp:loop

iteration terminates, at which point they cease to exist. Implicitly, variables are al-

so established by iteration control clauses and the into preposition of accumula-

tion.

with�

with var1 [type-spec] [= form1] [and var2 [type-spec] [= form2]

The with construct initializes variables that are local to a loop.

The variables are initialized one time only. If the optional type-

spec argument is supplied for the variable var, but there is no

related expression to be evaluated, var is initialized to an ap-

propriate default value for its type. For example, for the types

t, number, and float, the default values are nil, 0, and 0.0 re-

spectively. The consequences are unspecified if a type-spec ar-

gument is supplied for var if the related expression returns a

value that is not of the supplied type. �

Sequential and Parallel Initialization�

By default, the with construct initializes variables sequentially; that is, one vari-

able is assigned a value before the next expression is evaluated. However, by using

the loop keyword and to join several with clauses, initializations can be forced to

occur in parallel; that is, all of the supplied forms are evaluated, and the results

are bound to the respective variables simultaneously.

Sequential binding is used when it is desirable for the initialization of some vari-

ables to depend on the values of previously bound variables. For example, suppose

the variables a, b, and c are to be bound in sequence:



Page 207

;; These bindings occur in sequence.

 (loop with a = 1 

       with b = (+ a 2) 

       with c = (+ b 3)

       return (list a b c))

=> (1 3 6)

�

 

;; These bindings occur in parallel.

 (setq a 5 b 10)

=> 10

 (loop with a = 1

       and b = (+ a 2)

       and c = (+ b 3)

       return (list a b c))

=> (1 7 13)

�

�

The execution of the previous example of future-common-lisp:loop is equivalent to

the execution of the following code:

�

 (let* ((a 1)

        (b (+ a 2))

        (c (+ b 3)))

   (block nil

     (tagbody

         (next-loop (return (list a b c))

                    (go next-loop)

                    end-loop))))�

;; This example shows a shorthand way to declare local variables 

;; that are of different types.

 (loop with (a b c) (float integer float)

       return (format nil "~A ~A ~A" a b c))

=> "0.0 0 0.0"

 

;; This example shows a shorthand way to declare local variables 

;; that are the same type.

 (loop with (a b c) float 

       return (format nil "~A ~A ~A" a b c))

=> "0.0 0.0 0.0"

�

If the values of previously bound variables are not needed for the initialization of

other local variables, an and clause can be used to force the bindings to occur in

parallel:



Page 208

 

�

(loop with a = 1 

       and b = 2 

       and c = 3

       return (list a b c))

(1 2 3)

�

The execution of the above loop is equivalent to the execution of the following

code:

 (let ((a 1)

       (b 2)

       (c 3))

   (block nil

     (tagbody

         (next-loop (return (list a b c))

                    (go next-loop)

                    end-loop))))�

Conditional Execution in future-common-lisp:loop 

If the supplied condition is true, the succeeding loop clause is executed. If the sup-

plied condition is not true, the succeeding clause is skipped, and program control

moves to the clause that follows the loop keyword else. If the supplied condition is

not true and no else clause is supplied, control is transferred to the clause or con-

struct following the supplied condition. The following keywords designate con-

structs that are useful when you want loop clauses to operate under a specified

condition:

when, if, unless�

{if | when | unless} form clause1 [and clause]* [end]

{if | when | unless} form clause1 [and clause]* 

else clause2 [and clause]* [end]

�

The constructs if and when allow execution of loop clauses

conditionally. These constructs are synonyms and can be used

interchangeably. If the value of the test expression form is

non-nil, the expression clause1 is evaluated. If the test expres-

sion evaluates to nil and an elsne construct is supplied, the

statements that follow the else are evaluated; otherwise, con-

trol passes to the next clause. If if or when clauses are nested,

each else is paired with the closest preceding if or when con-

struct that has no associated else.



Page 209

The unless construct is equivalent to when (not form) and if (not form). If the

value of the test expression form is nil, the expression clause1�

is evaluated. If the test expression evaluates to non-nil and an

else construct is supplied, the statements that follow the else

are evaluated; otherwise, no conditional statement is evaluated.

The clause arguments must be either accumulation, uncondi-

tional, or conditional clauses.

Clauses that follow the test expression can be grouped by using the loop keyword

and to produce a conditional block consisting of a compound

clause.

The loop keyword it can be used to refer to the result of the test expression in a

clause. If multiple clauses are connected with and, the it con-

struct must be the first clause in the block. Since it is a loop

keyword, it cannot be used as a local variable within future-

common-lisp:loop.

The optional loop keyword end marks the end of the clause. If this keyword is not

supplied, the next loop keyword marks the end. The construct

end can be used to distinguish the scoping of compound claus-

es.

Unconditional Execution in future-common-lisp:loop 

The following loop construct evaluates its specified expression wherever it occurs

in the expanded form of loop: 

do, doing�

The following loop construct takes one form and returns its

value. It is equivalent to the clause (do (return value)).

return�

do, doing�

do[ing] [form]*�

The form argument can be an nonatomic Common Lisp form Each form is evaluat-

ed in every iteration. The constructs do, initially, and finally

are the only loop keywords that take an arbitrary number of

forms and group them as if by using an implicity progn. 

Miscellaneous Features in future-common-lisp:loop 

future-common-lisp:loop provides the name construct to name a loop so that spe-

cial form return-from can be used.



Page 210

The loop keywords initially and finally designate loop constructs that cause ex-

pressions to be evaluated before and after the loop body, respectively. 

The code for any initially clauses is collected into one progn in the order in

which the clauses appeared in the loop. The collected code is executed once in the

loop prologue after any implicit variable initializations.

The code for any finally clauses is collected into one progn in the order in which

the clauses appeared in the loop. The collected code is executed once in the loop

epilogue before any implicit values are returned from the accumulation clauses.

Explicit returns in the loop body, however, will exit the loop without executing the

epilogue code.

Data Types in future-common-lisp:loop

Many loop constructs take a type-spec argument that allows you to specify certain

data types for loop variables. While it is not necessary to specify a data type for

any variable, by doing so you ensure that the variable has a correctly typed initial

value. The type declaration is made available to the compiler for more efficient

future-common-lisp:loop expansion. The type-spec argument has the following

syntax:

type-spec::= of-type d-type-spec

d-type-spec::= type-specifier | d-type-spec . d-type-spec�

The type-specifier argument can be any Common Lisp type specifier. The d-type-

spec argument is used for destructuring, as described in the section "Destructuring

in future-common-lisp:loop". If the d-type-spec argument consists solely of the

types fixnum, float, t, or nil, the of-type is optional.

The of-type construct is optional in these cases to provide backwards compatibili-

ty; thus, the following two expressions are the same:

�

;;; This expression uses the old syntax for type specifiers.

 (loop for i fixnum upfrom 3 ...)

 

;;; This expression uses the new syntax for type specifiers.

 (loop for i of-type fixnum upfrom 3 ...)

�

;; Declare X and Y to be of type VECTOR and FIXNUM respectively.

 (loop for (x y) of-type (vector fixnum) 

       in l do ...)

 �

Destructuring in future-common-lisp:loop



Page 211

Destructuring allows binding of a set of variables to a corresponding set of values

anywhere that a value can normally be bound to a single variable. During future-

common-lisp:loop expansion, each variable in the variable list is matched with the

values in the values list. If there are more variables in the variable list than there

are values in the values list, the remaining variables are given a value of nil. If

there are more values than variables listed, the extra values are discarded.

To assign values from a list to the variables a, b, and c, the for clause could be

used to bind the variable numlist to the car of the supplied form, and then anoth-

er for clause could be used to bind the variables a, b, and c sequentially.

�

;; Collect values by using FOR constructs.

 (loop for numlist in ’((1 2 4.0) (5 6 8.3) (8 9 10.4))

       for a integer = (first numlist)

       and b integer = (second numlist)

       and c float = (third numlist)

       collect (list c b a))

=> ((4.0 2 1) (8.3 6 5) (10.4 9 8))�

Destructuring makes this process easier by allowing the variables to be bound in

each loop iteration. Types can be declared by using a list of type-spec arguments. If

all the types are the same, a shorthand destructuring syntax can be used, as the

second example illustrates.

;; Destructuring simplifies the process.

 (loop for (a b c) (integer integer float) in

       ’((1 2 4.0) (5 6 8.3) (8 9 10.4))

       collect (list c b a)))

=> ((4.0 2 1) (8.3 6 5) (10.4 9 8))

 

�

;; If all the types are the same, this way is even simpler.

 (loop for (a b c) float in

       ’((1.0 2.0 4.0) (5.0 6.0 8.3) (8.0 9.0 10.4))

       collect (list c b a))

=> ((4.0 2.0 1.0) (8.3 6.0 5.0) (10.4 9.0 8.0))�

If destructuring is used to declare or initialize a number of groups of variables in-

to types, the loop keyword and can be used to simplify the process further.

;; Initialize and declare variables in parallel by using the AND construct.

(loop with (a b) float = ’(1.0 2.0)

and (c d) integer = ’(3 4)

 and (e f)

 return (list a b c d e f))

=> (1.0 2.0 3 4 NIL NIL)�

A type specifier for a destructuring pattern is a tree of type specifierswith the

same shape as the tree of variables, with the following exceptions: 



Page 212

• When aligning the trees, an atom in the type specifier tree that matches a cons

in the variable tree declares the same type for each variable.

• A cons in the type specifier tree that matches an atom in the variable tree is a

nonatomic type-specifer.�

If nil is used in a destructuring list, no variable is provided for its place.

(loop for (a nil b) = ’(1 2 3)

       do (return (list a b)))

=> (1 3)�

Note that nonstandard lists can specify destructuring.

�

 (loop for (x . y) = ’(1 . 2)

       do (return y))

�

 (loop for ((a . b) (c . d)) ((float . float) (integer . integer)) in

       ’(((1.2 . 2.4) (3 . 4)) ((3.4 . 4.6) (5 . 6)))

       collect (list a b c d))

=> ((1.2 2.4 3 4) (3.4 4.6 5 6))�

An error of type conditions:program-error is signalled if the same variable is

bound twice in any variable-binding clause of a single future-common-lisp:loop

expression. Such variables include local variables, iteration control variables, and

variables found by destructuring. 

Documentation Update: X3J13 Conditions

Genera 8.1 provides support for the Common Lisp Condition System, as specified

by the X3J13 Committee. These functions and macros are not documented in the

Symbolics documentation set. They behave as documented in version 18 of the

Common Lisp Condition System, and as modified by some "cleanup" issues, includ-

ing CONDITION-RESTARTS, CLOS-CONDITIONS, and BREAK-ON-WARNINGS-

OBSOLETE.

Symbolics dpANS Conditions

Genera 8.3 supports the Common Lisp Condition System. The following functions

and macros behave as documented in Version 18 of the Common Lisp Condition

System and as modified by some "cleanup" issues, including CONDITION-RESTARTS,

CLOS-CONDITIONS, and BREAK-ON-WARNINGS-OBSOLETE.

future-common-lisp:with-condition-restarts condition restarts &body forms Macro

conditions:compute-restarts Function



Page 213

Uses the dynamic state of the program to compute a list of the restarts which are

currently active. See the macro conditions:restart-bind.

Each restart represents a function which can be called to perform some form of

recovery action, usually a transfer of control to an outer point in the running pro-

gram. Implementations are free to implement these objects in whatever manner is

most convenient; the objects need have only dynamic extent (relative to the scope

of the binding form which instantiates them).

The list which results from a call to conditions:compute-restarts is ordered so

that the innermost (i.e., more-recently established) restarts are nearer the head of

the list.

Note, too, that conditions:compute-restarts returns all valid restarts, including

anonymous ones, even if some of them have the same name as others and would

therefore not be found by conditions:find-restart when given a symbol argument.

Implementations are permitted, but not required, to return different (i.e., non-eq)

lists from repeated calls to conditions:compute-restarts while in the same dynam-

ic environment. It is an error to modify the list which is returned by

conditions:compute-restarts.

conditions:restart-bind ({(name function {keyword value}*)}*) {form}* Macro

Executes a body of forms in a dynamic context where the given restart bindings

are in effect.

name may be nil to indicate an anonymous restart, or some other symbol to indi-

cate a named restart.

Function should evaluate to a function to be used to perform the restart. If in-

voked, this function may either perform a non-local transfer of control or it may

return normally. The function may take whatever arguments you feel are appro-

priate; it will be invoked only if conditions:invoke-restart is used from a program,

or if a user interactively asks the debugger to invoke it. In the case of interactive

invocation, the :interactive-function option comes into play; see below.

The valid keyword/value pairs are the following: 

:interactive-function form

The form will be evaluated in the current lexical environment

and should return a function of no arguments which constructs

a list of arguments to be used by conditions:invoke-restart-

interactively when invoking this restart. The function may

prompt interactively using *query-io* if necessary.

:report-function form

The form will be evaluated in the current lexical environment

and should return a function of one argument, a stream, which

prints on the stream a summary of the action that this restart

will take. This function is called whenever the restart is print-

ed while *print-escape* is nil.�



Page 214

conditions:find-restart identifier Function

Searches for a particular restart in the current dynamic environment. 

If identifier is a symbol, then the innermost (i.e., most recently established) restart

with that name is returned. nil is returned if no such restart is found.

If identifier is a restart object, then it is simply returned -- unless it is not cur-

rently active, in which case nil is returned.

Although anonymous restarts have a name of nil, it is an error for the symbol nil

to be given as an identifier. Applications which would seem to require this should

be rewritten to make appropriate use of conditions:compute-restarts instead. 

conditions:invoke-restart restart &rest arguments Function

Calls the function associated with the given restart, passing any given arguments.

The restart must be a restart or the non-null name of a restart which is valid in

the current dynamic context. If the argument is not valid, an error of type

conditions:control-error will be signalled. Note that restart functions call this

function, not vice versa. 

conditions:invoke-restart-interactively restart Function

Calls the function associated with the given restart, prompting for any necessary

arguments. The restart must be a restart or the non-null name of a restart which

is valid in the current dynamic context. If the argument is not valid, an error of

type control-error will be signalled.

conditions:invoke-restart-interactively will prompt for arguments by executing

the code provided in the :interactive keyword to conditions:restart-case or

:interactive-function keyword to conditions:restart-bind.

If no :interactive option has been supplied in the corresponding

conditions:restart-bind or conditions:restart-case, then it is an error if the

restart takes required arguments. If the arguments are optional, an argument list

of nil will be used in this case.

Once the arguments have been determined, conditions:invoke-restart-

interactively will simply do:

 (APPLY #’INVOKE-RESTART restart arguments)�

This operation is used internally by the debugger and may also be useful in imple-

menting other portable, interactive debugging tools. 

conditions:handler-case expression {(type ([var]) {keyword value}* {form}*)}* Macro

Executes the given expression in a context where various handlers are active:

The type may be any type specifier. If during the execution of the expression a con-

dition is signalled for which there is an appropriate clause, i.e. one for which

(typep condition ’type) is true. If there are no intervening handler for conditions



Page 215

of that type, then control is transferred to the body of the relevant clause (unwind-

ing the dynamic state appropriately in the process) and the given var is bound to

the condition which was signalled. If no such condition is signalled and the compu-

tation runs to completion, then the values resulting from the expression are re-

turned by the conditions:handler-case.

If more than one case is provided, those cases are made accessible in parallel.

That is, in

 (HANDLER-CASE form

   (type1 (var1) form1)

   (type2 (var2) form2))�

if the first clause (containing form1) has been selected, the handler for the second

is no longer visible (or vice versa).

The cases are searched sequentially from top to bottom. If there is type overlap

between the cases, the earlier of the two cases will be selected.

If var is not needed, it may be omitted. That is, a clause such as:

 (type (var) (DECLARE (IGNORE var)) form)�

may be written using the following shorthand notation:

 (type () form)�

If there are no forms in a selected case, the case returns nil. Note that

 (HANDLER-CASE form

   (type1 (var1) . body1)

   (type2 (var2) . body2) ...)�

is approximately equivalent to:

 (BLOCK #:G0001

   (LET ((#:G0002 NIL))

     (TAGBODY

       (HANDLER-BIND ((type1 #’(LAMBDA (TEMP)

 (SETQ #:G0002 TEMP)

 (GO #:G0003)))

      (type2 #’(LAMBDA (TEMP)

 (SETQ #:G0002 TEMP)

 (GO #:G0004))) ...)

 (RETURN-FROM #:G0001 form))

       #:G0003 (RETURN-FROM #:G0001 (LET ((var1 #:G0002)) . body1))

       #:G0004 (RETURN-FROM #:G0001 (LET ((var2 #:G0002)) . body2)) ...)))�

Examples:



Page 216

 (HANDLER-CASE (/ X Y)

   (DIVISION-BY-ZERO () NIL))

 

 (HANDLER-CASE (OPEN *THE-FILE* :DIRECTION :INPUT)

   (FILE-ERROR (CONDITION) (FORMAT T "~&Fooey: ~A~%" CONDITION)))

 

 (HANDLER-CASE (SOME-USER-FUNCTION)

   (FILE-ERROR (CONDITION) CONDITION)

   (DIVISION-BY-ZERO () 0)

   ((OR UNBOUND-VARIABLE UNDEFINED-FUNCTION) () ’UNBOUND))�

As a special case, the type can also be the symbol :no-error in the last clause. If it

is, it designates a clause which will take control if the initial expression returns

normally. In that case, the arguments to the function are like those for multiple-

value-call on the return value of the form.

 (HANDLER-CASE form

   (type1 (var1) . body1)

     ...

   (:NO-ERROR (varN-1 varN-2 ...) . bodyN))�

is approximately equivalent to:

 (BLOCK #1=#:ERROR-RETURN

   (MULTIPLE-VALUE-CALL #’(LAMBDA (varN-1 varN-2 ...) . bodyN)

     (BLOCK #2=#:NORMAL-RETURN

       (RETURN-FROM #1#

 (HANDLER-CASE (RETURN-FROM #2# form)

   (type1 (var1) . body1) ...)))))�

conditions:restart-case expression {(case-name arglist {keyword value}* {form}*)}* 

Macro

The expression is evaluated in a dynamic context where the clauses have special

meanings as points to which control may be transferred. If expression finishes exe-

cuting and returns any values, all values returned are simply returned by the

conditions:restart-case form. While expression is running, any code may transfer

control to one of the clauses. See the function conditions:invoke-restart.If a

transfer occurs, the forms in the body of that clause will be evaluated and any val-

ues returned by the last such form will be returned by the conditions:restart-case

form.

If there are no forms in a selected clause, conditions:restart-case returns nil.

The case-name may be nil or a symbol naming this restart. It is possible to have

more than one clause use the same case-name. In this case, the first clause with

that name will be found by conditions:find-restart. The other clauses are accessi-

ble using conditions:compute-restarts.

Each arglist is a normal lambda list to be bound during the execution of its corre-

sponding forms. These arguments are used to pass any necessary data from a call

to conditions:invoke-restart to the conditions:restart-case clause.



Page 217

By default, conditions:invoke-restart-interactively will pass no arguments and all

arguments must be optional in order to accomodate interactive restarting. Howev-

er, the arguments need not be optional if the :interactive keyword has been used

to inform conditions:invoke-restart-interactively about how to compute a proper

argument list.

The valid keyword/value pairs are as follows: 

:interactive exp Exp must be a suitable argument to the function special form.

The expression (FUNCTION exp) will be evaluated in the current

lexical environment. It should return a function of no argu-

ments which returns arguments to be used by cloe::invoke-

escape-interactively when invoking this function. This func-

tion will be called in the dynamic environment available prior

to any restart attempt. It may do user interaction on the

stream in *query-io*. If a restart is invoked interactively but

no :interactive option was supplied, the argument list used in

the invocation is the empty list.

:report exp If exp is not a literal string, it must be a suitable argument to

the function special form. The expression (FUNCTION exp) will

be evaluated in the current lexical environment. It should re-

turn a function of one argument, a stream, which prints on the

stream a description of the restart. This function is called

whenever the restart is printed while *print-escape* is nil. If

exp is a literal string, it is a shorthand for

(LAMBDA (STREAM) (WRITE-STRING exp STREAM)).�

If a named restart is asked to report but no report information has been supplied,

the name of the restart is used in generating default report text. It is an error if

an unnamed restart is used and no report information is provided since unnamed

restarts are generally only useful interactively and an interactive option which has

no description is of little value. Implementations are encouraged to warn about

this error at compilation time. 

When *print-escape* is nil, the printer will use the report information for a

restart. For example, in CLOE, a debugger might announce the action of typing

:continue by doing:

 (FORMAT T "~&~S -- ~A~%" ’:CONTINUE SOME-RESTART)�

which might then display as something like:

 :CONTINUE -- Return to command level.�

Note that 

   (RESTART-CASE expression

     (name1 arglist1 ...options1... . body1)

     (name2 arglist2 ...options2... . body2))�

is essentially equivalent to



Page 218

 (BLOCK #:G0001

   (LET ((#:G0002 NIL))

     (TAGBODY

       (RESTART-BIND ((name1 #’(LAMBDA (&REST TEMP)

 (SETQ #:G0002 TEMP)

 (GO #:G0003))

     ...slightly-transformed-options1...)

      (name2 #’(LAMBDA (&REST TEMP)

 (SETQ #:G0002 TEMP)

 (GO #:G0004))

     ...slightly-transformed-options2...))

 (RETURN-FROM #:G0001 expression))

       #:G0003 (RETURN-FROM #:G0001

 (APPLY #’(LAMBDA arglist1 . body1) #:G0002))

       #:G0004 (RETURN-FROM #:G0001

 (APPLY #’(LAMBDA arglist2 . body2) #:G0002)))))�

 (LOOP

   (RESTART-CASE (RETURN (APPLY FUNCTION SOME-ARGS))

     (NEW-FUNCTION (NEW-FUNCTION)

 :REPORT "Use a different function."

 :INTERACTIVE (LAMBDA ()

(LIST (PROMPT-FOR ’FUNCTION "Function: ")))

       (SETQ FUNCTION NEW-FUNCTION))))

�

 (LOOP

   (RESTART-CASE (RETURN (APPLY FUNCTION SOME-ARGS))

     (NIL (NEW-FUNCTION)

 :REPORT "Use a different function."

 :INTERACTIVE (LAMBDA ()

(LIST (PROMPT-FOR ’FUNCTION "Function: ")))

       (SETQ FUNCTION NEW-FUNCTION))))

�

 (RESTART-CASE (A-COMMAND-LOOP)

   (RETURN-FROM-COMMAND-LEVEL ()

       :REPORT (LAMBDA (STREAM)

 (FORMAT STREAM "Return from command level ~D." LEVEL))

     NIL))

�

 (LOOP 

   (RESTART-CASE (ANOTHER-RANDOM-COMPUTATION)

     (CONTINUE ()

       NIL)))�

The first and second example are equivalent from the point of view of someone us-

ing the interactive debugger, but differ in one important aspect for non-interactive

handling. If a handler knows about named restarts, as in:



Page 219

 (IF (FIND-RESTART ’NEW-FUNCTION)

     (INVOKE-RESTART ’NEW-FUNCTION THE-REPLACEMENT))�

then only the first example, and not the second, will have control transferred to its

correction clause since only the first example uses a restart named NEW-FUNCTION.

Here’s a more complete example:

 (LET ((MY-FOOD ’MILK)

       (MY-COLOR ’GREENISH-BLUE))

   (DO ()

       ((NOT (BAD-FOOD-COLOR-P MY-FOOD MY-COLOR)))

     (RESTART-CASE (ERROR ’BAD-FOOD-COLOR :FOOD MY-FOOD :COLOR MY-COLOR)

       (USE-FOOD  (NEW-FOOD)

   :REPORT "Use another food."

 (SETQ MY-FOOD  NEW-FOOD))

       (USE-COLOR (NEW-COLOR)

   :REPORT "Use another color."

 (SETQ MY-COLOR NEW-COLOR))))

   ;; We won’t get to here until MY-FOOD and MY-COLOR are compatible.

   (LIST MY-FOOD MY-COLOR))�

Assuming that USE-FOOD and USE-COLOR have been defined as 

 (DEFUN USE-FOOD  (NEW-FOOD)  (INVOKE-RESTART ’USE-FOOD  NEW-FOOD))

 (DEFUN USE-COLOR (NEW-COLOR) (INVOKE-RESTART ’USE-COLOR NEW-COLOR))�

then a handler can then restart from the error in either of two ways. It may cor-

rect the color or correct the food. For example:

     #’(LAMBDA (CONDITION) ... (USE-COLOR ’WHITE)  ...) ;Corrects color

 or  #’(LAMBDA (CONDITION) ... (USE-FOOD  ’CHEESE) ...) ;Corrects food�

Here is an example using conditions:handler-bind and conditions:restart-case

which refers to a condition type FOO-ERROR which was presumably defined else-

where:

 (HANDLER-BIND ((FOO-ERROR #’(LAMBDA (IGNORE) (USE-VALUE 7))))

   (RESTART-CASE (ERROR ’FOO-ERROR)

     (USE-VALUE (X) (* X X))))

 → 49�

conditions:with-simple-restart (name format-string {format-argument}*) {form}* 

Macro

This is shorthand for one of the most common uses of restart-case. If the restart

designated by name is not invoked while executing forms, all values returned by

the last form in forms are returned. If that restart is invoked, control is trans-

ferred to the conditions:with-simple-restart form, which immediately returns two

values nil and t.

It is permissible for name to be nil. In that case, an anonymous restart is estab-

lished.



Page 220

conditions:with-simple-restart could be defined by:

 (DEFMACRO WITH-SIMPLE-RESTART ((RESTART-NAME FORMAT-STRING

      &REST FORMAT-ARGUMENTS)

&BODY FORMS)

   ‘(RESTART-CASE (PROGN ,@FORMS)

      (,RESTART-NAME ()

  :REPORT (LAMBDA (STREAM)

    (FORMAT STREAM ,FORMAT-STRING ,@FORMAT-ARGUMENTS))

(VALUES NIL T))))�

 Lisp> (DEFUN READ-EVAL-PRINT-LOOP (LEVEL)

 (WITH-SIMPLE-RESTART (ABORT "Exit command level ~D." LEVEL)

   (LOOP

     (WITH-SIMPLE-RESTART (ABORT "Return to command level ~D." LEVEL)

       (LET ((FORM (PROG2 (FRESH-LINE) (READ) (FRESH-LINE))))

 (PRIN1 (EVAL FORM)))))))

 → READ-EVAL-PRINT-LOOP

 Lisp> (READ-EVAL-PRINT-LOOP 1)

 (+ ’a 3)

 Error: The argument, A, to the function + was of the wrong type.

The function expected a number.

  1: Specify a value to use this time.

  2: Return to command level 1.

  3: Exit command level 1.

  4: Return to Lisp Toplevel.

 Debug> �

Compatibility Note: In contrast to the way that Zetalisp has traditionally defined

sys:abort as a kind of condition to be handled, we define conditions:abort as a

way to restart.

The lowest level form which creates restart points is called conditions:restart-

bind. conditions:restart-case is an abstraction which addresses many common

needs for conditions:restart-bind while offering a more palatable syntax. 

conditions:abort Function

This function transfers control to the restart named conditions:abort. If no such

restart exists, conditions:abort signals an error of type control-error.

The purpose of the conditions:abort restart is generally to allow the return to the

innermost command level. 

conditions:continue Function

This function transfers control to the restart named continue. If no such restart

exists, conditions:continue returns nil.

The conditions:continue restart is generally part of simple protocols where there

is a single obvious way to continue, such as in conditions:break and



Page 221

conditions:cerror. Some user-defined protocols may also wish to incorporate it for

similar reasons. In general, however, it is more reliable to design a special purpose

restart with a name that more directly suits the particular application. 

conditions:muffle-warning Function

This function transfers control to the restart named conditions:muffle-warning. If

no such restart exists, conditions:muffle-warning signals an error of type

conditions:control-error.

conditions:warn sets up this restart so that handlers of warning conditions have a

way to tell conditions:warn that a warning has already been dealt with and that

no further action is warranted. 

conditions:store-value value Function

This function transfers control (and one value) to the restart named

conditions:store-value. If no such restart exists, conditions:store-value returns

nil.

The conditions:store-value restart is generally used by handlers trying to recover

from errors of types such as conditions:cell-error or conditions:type-error, where

the handler may wish to supply a replacement datum to be stored permanently. 

conditions:use-value value Function

This function transfers control (and one value) to the restart named

conditions:use-value. If no such restart exists, conditions:use-value returns nil.

The conditions:use-value restart is generally used by handlers trying to recover

from errors of types such as cell-error, where the handler may wish to supply a

replacement datum for one-time use. 

conditions:make-condition name &rest init-keywords Function

This function behaves like make-condition except that it is intended to be used in

conjunction with conditions:signal and conditions:error instead of signal and

error.

See the function make-condition. 

conditions:break &optional format-string &rest format-arguments Function

Prints the message described by format-string and format-arguments and then goes

directly into the debugger without allowing any possibility of interception by pro-

grammed error-handling facilities.

If no format-string is supplied, a suitable default will be generated.

If continued, conditions:break returns nil.



Page 222

Note that conditions:break is presumed to be used as a way of inserting tempo-

rary debugging breakpoints in a program, not as a way of signalling errors; it is

expected that continuing from a conditions:break will not trigger any unusual re-

covery action. For this reason, conditions:break does not take the additional for-

mat control string that cerror takes as its first argument. This and the lack of

any possibility of interception by programmed error-handling are the only program-

visible differences between conditions:break and cerror. The user interface as-

pects of these functions are permitted to vary more widely; for example, it is per-

missible for a read-eval-print loop to be entered by conditions:break rather than

the conventional debugger.

conditions:break could be defined by:

 (DEFUN BREAK (&OPTIONAL (FORMAT-STRING "Break") &REST FORMAT-ARGUMENTS)

   (WITH-SIMPLE-RESTART (CONTINUE "Return from BREAK.")

     (INVOKE-DEBUGGER

       (MAKE-CONDITION ’SIMPLE-CONDITION

       :FORMAT-STRING    FORMAT-STRING

       :FORMAT-ARGUMENTS FORMAT-ARGUMENTS)))

     NIL)�

conditions:error datum &rest arguments Function

This function behaves like error except that the condition it signals by default

when no specific condition is provided (i.e. when given a format string and format

arguments) is of type conditions:simple-error. See the function error. 

conditions:signal condition &rest arguments Function

This function behaves like signal except that nil is returned regardless of the type

of the condition. By contrast, signal would attempt interactive handling (usually by

entering the debugger) if the condition signalled was of type dbg:debugger-

condition. The argument conventions of conditions:signal permit a format string

and format arguments. The condition it signals by default in that case is of type

conditions:simple-condition. See the function signal. 

conditions:cerror continue-string datum &rest arguments Function

This function sets up a restart named conditions:continue, which can be used to

continue from the error. The condition it signals by default when no specific condi-

tion is provided (i.e. when given a format string and format arguments) is of type

conditions:simple-error.

The protocol for specifying its arguments is different, in order to be consistent

with the argument conventions for conditions:signal, conditions:error, and

conditions:warn. The following examples illustrate the use of correct calls to

conditions:cerror:



Page 223

�

     (let ((x 5) (y 4))

       (conditions:cerror "Use ~S." 

  "Wouldn’t ~S be better than ~S?"

  x y)

       x)

�

     (let ((x 5) (y 4))

       (conditions:cerror "Use ~3*~1{~S~}."

  ’conditions:simple-error

  :format-string 

  "Wouldn’t ~S be better than ~S?"

  :format-arguments (list x y))

       x)

�

     (let ((x 5) (y 4))

       (let ((condition (make-condition ’conditions:simple-error

:format-string

"Wouldn’t ~S be better than ~S?"

:format-arguments

(list x y))))

 (conditions:cerror (format nil "Use ~D." x)

    condition)

 x))�

See the function cerror. 

conditions:warn datum &rest arguments Function

This function behaves like warn except that it sets up a restart named

conditions:muffle-warning which can be invoked by a handler in order to sup-

press presentation of the warning. This function does not permit the optional-

options argument, and the condition it signals by default when no specific condi-

tion is provided (i.e. when given a format string and format arguments) is of type

conditions:simple-warning.

See the function warn. 

conditions:invoke-debugger condition Function

Attempts interactive handling of its argument, which must be a condition. 

If the variable conditions:*debugger-hook* is not nil, will be funcalled on two ar-

guments: the condition is being handled and the value of conditions:*debugger-

hook*. If a hook function returns normally, the standard debugger will be tried.

The standard debugger will never directly return. Return can occur only by a spe-

cial transfer of control, such as the use of a restart. 



Page 224

conditions:ignore-errors {form}* Macro

Executes its body in a context which handles conditions of type error by returning

control to this form. If no such condition is signalled, any values returned by the

last form are returned by futre-common-lisp:ignore-errors. Otherwise, two values

are returned, nil and the condition which was signalled.

Synonym for 

 (HANDLER-CASE (PROGN . forms) 

   (ERROR (CONDITION) (VALUES NIL CONDITION))).�

conditions:define-condition name (parent-type) [({slot}*) {option}*] Macro

Defines a new condition type called name, which is a subtype of the given parent-

type. Except as otherwise noted, the arguments are not evaluated.

Objects of this condition type will have all of the indicated slots, plus any addition-

al slots that would be available in objects of type parent-type. If the slots list is

omitted, the empty list is assumed. 

A slot must have the form:

 { slot-name | (slot-name) | (slot-name {slot-option value}* }�

You can use these slot opti’ons: 

• :initform

• :initarg

• :reader

• :type�

When you use one of these options, the option you choose has the same meaning

as the corresponding slot-option for clos:defclass. Note that if you are using a slot

specifier in one of the forms without slot-options, no :initarg or :reader is provid-

ed.

The default-value is a form which can be evaluated by conditions:make-condition

to produce a default value when an explicit value is not provided. If no slot default

is specified, the contents of the slot will be initialized in an implementation-

dependent way. It is an error to attempt to access a slot which has not been ex-

plicitly initialized and which has not been given a default value.

If the type being defined and some other type from which it inherits have a slot

by the same name, only one slot is allocated in the condition object, but the speci-

fied default overrides any default which might otherwise have been inherited from

a parent type. If no default value is given, the inherited default (if any) is still

visible.



Page 225

conditions:make-condition will accept keywords (in the keyword package) with the

printname of any of the designated slots, and will initialize the corresponding slots

in conditions it creates.

Accessors are created according to the same rules as used by defstruct.

The valid options are: 

(:documentation doc-string)

doc-string should be a string which describes the purpose of

the condition type or nil. If this option is omitted, nil is as-

sumed. The information is retrieved by (documentation name

’type). As with defstruct, this sets up automatic prefixing of

the names of slot accessors. Also as in defstruct, the default

behavior is to use the name of the new type, name, followed by

a hyphen. (interned in the package which is current at the

time that the conditions:define-condition is processed).

(:report exp) If exp is not a literal string, it must be a suitable argument to

the function special form. The expression (FUNCTION exp) will

be evaluated in the current lexical environment. It should re-

turn a function of two arguments, a condition and a stream,

which prints on the stream a description of the condition. This

function is called whenever the condition is printed while

*print-escape* is nil.

If exp is a literal string, it is a shorthand for

 (LAMBDA (CONDITION STREAM)

   (DECLARE (IGNORE CONDITION))

   (WRITE-STRING exp STREAM))�

This option is processed after the new condition type has been

defined, so use of the slot accessors within the report function

is permitted. If this option is not specified, information about

how to report this type of condition will be inherited from the

parent-type.

The following form defines a condition of type PEG/HOLE-MISMATCH which inherits

from a condition type called BLOCKS-WORLD-ERROR:

 (DEFINE-CONDITION PEG/HOLE-MISMATCH (BLOCKS-WORLD-ERROR)

   (PEG-SHAPE :INITARG :PEG-SHAPE :READER

(PEG/HOLE-MISMATCH-PEG-SHAPE))

   (HOLE-SHAPE :INITARG :HOLE-SHAPE :READER

(PEG/HOLE-MISMATCH-HOLE-SHAPE))

   (:REPORT (LAMBDA (CONDITION STREAM)

      (FORMAT STREAM "A ~A peg cannot go in a ~A hole."

      (PEG/HOLE-MISMATCH-PEG-SHAPE  CONDITION)

      (PEG/HOLE-MISMATCH-HOLE-SHAPE CONDITION)))))�

The new type has slots PEG-SHAPE and HOLE-SHAPE, so conditions:make-condition

will accept :PEG-SHAPE and :HOLE-SHAPE keywords. The accessors PEG/HOLE-MISMATCH-

PEG-SHAPE and PEG/HOLE-MISMATCH-HOLE-SHAPE will apply



Page 226

Here is another example. This defines a condition called MACHINE-ERROR that inher-

its from error: 

�

 (DEFINE-CONDITION MACHINE-ERROR (ERROR) 

(MACHINE-NAME

:INIT-ARG :MACHINE-NAME

:READER   MACHINE-ERROR-MACHINE-NAME))

(:REPORT (LAMBDA (CONDITION STREAM)

(FORMAT STREAM "There is a problem with ~A."

(MACHINE-ERROR-MACHINE-NAME CONDITION)))))�

Building on this definition, we can define a new error condition which is a subtype

of MACHINE-ERROR for use when machines are not available: 

�

 (DEFINE-CONDITION MACHINE-NOT-AVAILABLE-ERROR (MACHINE-ERROR) ()

   (:REPORT (LAMBDA (CONDITION STREAM)

      (FORMAT STREAM "The machine ~A is not available."

      (MACHINE-ERROR-MACHINE-NAME CONDITION)))))�

This defines a still more specific condition, built upon

MACHINE-NOT-AVAILABLE-ERROR, which provides a default for MACHINE-NAME but which

does not provide any new slots or report information. It just gives the MACHINE-

NAME slot a default initialization:

(DEFINE-CONDITION MY-FAVORITE-MACHINE-NOT-AVAILABLE-ERROR

  (MACHINE-NOT-AVAILABLE-ERROR)

  ((MACHINE-NAME 

     :INIT-ARG :"MC.LCS.MIT.EDU"))

     :READER MY-FAVORITE-MACHINE-NOT-AVAILABLE-ERROR MACHINE NAME     

     ))�

Note that since no :REPORT clause was given, the information inherited from MA-

CHINE-NOT-AVAILABLE-ERROR will be used to report this type of condition.

conditions:ecase keyform {({({key}*) | key} {form}*)}* Macro

This control construct is similar to case, but no explicit otherwise or t clause is

permitted. If no clause is satisfied, conditions:ecase signals an error (of type

type-error) with a message constructed from the clauses. It is not permissible to

continue from this error. To supply an error message, the user should use case

with an otherwise clause containing a call to error. The name of this function

stands for exhaustive case or error-checking case.



Page 227

 Lisp> (SETQ X 1/3)

 → 1/3

 Lisp> (ECASE X

 (ALPHA (FOO))

 (OMEGA (BAR))

 ((ZETA PHI) (BAZ)))

 Error: The value of X, 1/3, is not ALPHA, OMEGA, ZETA, or PHI.

  1: Return to Lisp Toplevel.

 Debug>�

conditions:ccase keyplace {({({key}*) | key} {form}*)}* Macro

This control construct is similar to case, but no explicit otherwise or t clause is

permitted.

The keyplace must be a generalized variable reference acceptable to setf. If no

clause is satisfied, conditions:ccase signals an error (of type conditions:type-

error) with a message constructed from the clauses. This error may be continued

using the conditions:store-value restart. The argument to conditions:store-value

is stored in keyplace and then ccase starts over, making the type tests again. Sub-

forms of keyplace may be evaluated multiple times. If the conditions:store-value

restart is invoked interactively, the user will be prompted for the value to be used.

The name of this function is mnemonic for continuable (exhaustive) case.

conditions:etypecase keyform {(type {form}*)}* Macro

This control construct is similar to typecase, but no explicit otherwise or t clause

is permitted. If no clause is satisfied, conditions:etypecase signals an error (of

type conditions:type-error) with a message constructed from the clauses. It is not

permissible to continue from this error. To supply his own error message, the user

should use typecase with an otherwise clause containing a call to

conditions:error. The name of this function stands for exhaustive type case or er-

ror-checking type case.

 Lisp> (SETQ X 1/3)

 → 1/3

 Lisp> (ETYPECASE X

 (INTEGER (* X 4))

 (SYMBOL  (SYMBOL-VALUE X)))

 Error: The value of X, 1/3, is neither an integer nor a symbol.

  1: Return to Lisp Toplevel.

 Debug>�

conditions:ctypecase keyplace {(type {form}*)}* Macro

This control construct is similar to typecase, but no explicit otherwise or t clause

is permitted.



Page 228

The keyplace must be a generalized variable reference acceptable to setf. If no

clause is satisfied, conditions:ctypecase signals an error (of type type-error) with

a message constructed from the clauses. This error may be continued using the

conditions:store-value restart. The argument to conditions:store-value is stored

in keyplace and then ctypecase starts over, making the type tests again. Subforms

of keyplace may be evaluated multiple times. If the conditions:store-value restart

is invoked interactively, the user will be prompted for the value to be used.

The name of this function is mnemonic for continuable (exhaustive) type case.

 Lisp> (SETQ X 1/3)

 → 1/3

 Lisp> (CTYPECASE X

 (INTEGER (* X 4))

 (SYMBOL  (SYMBOL-VALUE X)))

 Error: The value of X, 1/3, is neither an integer nor a symbol.

  1: Specify a value to use instead.

  2: Return to Lisp Toplevel.

 Debug> :1

 Use value: 3.7

 Error: The value of X, 3.7, is neither an integer nor a symbol.

  1: Specify a value to use instead.

  2: Return to Lisp Toplevel.

 Debug> :1

 Use value: 12

 → 48�

conditions:check-type place type &optional type-string Macro

This macro behaves like check-type except that is sets up a restart named

conditions:store-value which can be invoked by a handler in order to suppress

presentation of the warning. See the macro check-type. 

conditions:assert test-form &optional places datum &rest arguments Macro

This macro behaves like assert except that conditions:assert sets up a restart

named conditions:continue which can be used to continue form the error. Instead

of a format-string and format-args, it is also permissible to pass a condition argu-

ment, or a condition type and initialization arguments. For example,

 (let ((x 1) (y 2))

      (conditions:assert (= x y) (x y)

’conditions:simple-error

:format-string "~S does not equal ~S."

:format-arguments (list x y)) (list x y))�

See the macro assert. 



Page 229

Documentation of Genera 8.0 ECO #1

Overview of Genera 8.0 ECO #1

This is the first ECO to Genera 8.0 and Genera 8.0XL. The purpose of this ECO

is to make the following improvements to Genera:

• Provide patches which lay the groundwork for supporting CLIM.

• Improve the integration of CLOS with Flavors.

• Include patches which support the Symbolics XL1200. These changes affect the

VME interface on the XL1200 and the XL400. The revised VME documentation

is included in this document. See the section "Genera 8.0 XL Documentation Up-

date".

• Provide support for those UX400S customers who want to upgrade to SunOS 4.1.

The UNIX software provided with ECO #1 supports SunOS 4.1 and does not run

with SunOS 4.0. If you have a UX400S and are still running SunOS 4.0 on the

Sun, do not load the UNIX software provided with this ECO on your UX400S.

Genera and the UNIX software are completely intercompatible between 8.0 and

8.0 ECO #1: you may run Genera 8.0 ECO#1 with the Genera 8.0 UNIX soft-

ware.

• Fix the problem with MacIvory Ethernet packet transmission that was corrupt-

ing packets, causing problems copying worlds and loading files via CHAOSNET.

• Fix the problem with 3600-family cart tape that caused tapes which were not re-

wound to give hard tape errors.

• Speed up access to the Macintosh file system from MacIvory.

• Fix an IFEP problem with the XL1200 in Genera 8.0XL where certain errors

that should have printed in the cold load stream were causing the processor to

reset, forcing a warm boot.

• Fix a bug in Statice that could cause databases to become corrupted.

• Fix some other significant bugs in Genera 8.0.�

Improvements and Bug Fixes in Genera 8.0 ECO #1

Improved Integration Between CLOS and Flavors



Page 230

ECO #1 provides a new capability, in which CLOS generic functions can be invoked

on Flavors instances. A parameter specializer name in a CLOS method can be the

name of a flavor as well as the name of a class. In fact every flavor is now also a

class, of metaclass clos-internals::flavor-class. This capability is required for

CLIM. It also lays the groundwork for better integration between Statice and

CLOS, in that CLOS methods can specialize on Statice entity handles, which are

Flavors instances.

A number of small improvements in the performance and integration of CLOS

have been made:

• The Inspector now works on CLOS instances.

• DW and CLOS interact better.

• Zmacs m-. and CLOS interact better.

• trace, breakon, and advise now work on CLOS generic functions and methods.

• The Find Symbol command can find symbols that are defined as CLOS classes.

Show Callers, List Callers (m-X), who-calls and what-files-call can locate callers

that instantiate CLOS classes and that are methods.

• There are many improvements to CLOS performance and correctness, especially

for relatively obscure corners of the language used by CLIM.

• Method combination has been completely reimplemented and now supports

:arguments and gives names to the functions that it generates.

• A function name or function spec for a method is now a method object. Old-style

(method ...) function specs still work.�

Users who wish to take advantage of all of these performance improvements

should recompile their code.

New FEP for ECO #1

Changes to the FEP flods include:

• A bug in the the NFEP disk flod has been fixed. The bug was in the disk type

specification for the XT8760 disk. If a disk was formatted twice, it usually

would fail within a few weeks. The XT8760 disk type has been removed, and

two new disk types have been added (XT8760-24 and XT8760-25), to support the

old and new configurations of this drive.

• The Set Network-Address command has been moved from the Rel-7 flod to the

Lisp flod, and the Rel-7 flod has been deleted.



Page 231

• Some improvements have been made in the FEP debugger.

• The default world load is now found by searching for the world with latest

timestamp.

• The default microcode is that required by the default world.

• The Load World command will print the contents of sys:*lisp-release-string* if

it is of type array. If not, the release is calculated as was done previously. 

• The IFU decode rams are loaded from data in the microcode file if the associat-

ed microcode block type is present. If not, they are loaded from FEP generated

data as before.

Miscellaneous Improvements and Bug Fixes in ECO #1

• The :Before keyword argument to the Show System Modifications command now

assumes that the value you specify is a time in the past. This means that a

specification like :Before "Tuesday" will now be correctly interpreted as last

Tuesday rather than next Tuesday. The new behavior is consistent with the

:Since keyword.

• The undo functions for si:delete-ie-commands and si:add-ie-command have been

fixed.

• In Genera 8.0, package-name would sometimes return one of the package nick-

names rather than the primary name of the package. This bug has been fixed.

• A patch to the Serial system has improved the performance over sync-link gate-

ways. The performance of interactive traffic over a busy gateway has been

greatly improved. Larger packets of information are automatically queued to a

pending queue enabling smaller packets to be queued immediately.

• MacIvory serial I/O works much more reliably.

• A bug in the UX400S serial interface has been fixed. The bug caused UNIX au-

thentication credentials to be held across logins. 

• RPC Authentication now includes checking UNIX passwords.

• Support for SunOS 4.1 NFS automount features has been added to NFS Client.

• TCP performance has been improved by enabling adaptive TCP retransmission.

The default for tcp::*enable-tcp-adaptive-retransmission* is now t.



Page 232

• Dialnet has been made more robust in cases where two systems get out of syn-

chronization while exchanging characters. This situation is now detected and the

connection is aborted. Previously, the two systems exchanged useless data forev-

er, never timing out because there were always characters available, but never

making any progress because because they were out of synchronization.

• Some peculiarities with incorrectly interning certain Dialnet host objects in the

wrong namespace have been corrected.

• Graphics line drawing has been improved for XL machines.

• Some storage system bugs that manifest themselves as garbage collection bugs

have been fixed. 

• Another bug in the storage system has also been fixed. This bug could cause the

system to waste some paging space. The amount of lost paging space without

this ECO varies, but is larger when Dynamic or In-Place Garbage collection is

used, particularly on Ivory systems. On Ivory systems which heavily use Dynam-

ic GC, loading this ECO before the first Dynamic GC avoids wasting as much as

3000 pages of paging space.

• The use of Laserwriter functionality via Appletalk has been enhanced somewhat.

• A new function, si:fix-fep-dpn for fixing ECC errors on Ivory FEPs has been

provided. Its behavior is exactly like si:fix-fep-block except that its arguments

are unit and page (Disk Page Number).

• The mailer no longer blows out while trying to issue a warning if dialnet reg-

istries (obsolete in 8.0) exist. Instead, it successfully issues the warning.

• Dumping a LMFS to a cart tape on a UX400S now works correctly. Tapes writ-

ten before loading this ECO, while they may show correct output when using

the [List Backup Tape], were written incorrectly and cannot be restored. Note

that this was only a problem if a UX400S cart tape was being used to back up

the LMFS partition.

• Bugs involving unreliable operation of cart tapes on NBS machines, particularly

timeouts during rewind, have been fixed.

• Support has been added for the MacinStor version 2.1 (Storage Dimensions) disk

driver. Ivory disk partitions are now discovered when the Ivory is started, not

when the Macintosh is started. This means that you can use the partition editor

or reconfigure your disks while the Ivory is shut down and have the changes

take effect without restarting the Macintosh.

• The bug that permitted you to delete a MacIvory disk partition that was in ac-

tive use by the Ivory has been fixed.



Page 233

• The ethernet performance problem with MacIvory IIci/IIfx has been fixed.

• The bug that caused the partition editor to give the wrong information about

the amount of free space on a Macintosh volume has been fixed.

• The bug that caused :draw-multiple-lines on MacIvory to report errors has been

fixed.

Documentation of Genera 8.0 ECO #2

Overview of Genera 8.0 ECO #2

This is the second ECO to Genera 8.0, and is also called Genera 8.0.2. Genera

8.0.2 includes Genera 8.0 ECO #1, so this documentation includes the documenta-

tion of ECO #1 changes.

Genera 8.0.2 offers two new areas of functionality:

• Software support for the UX1200S.

The UX1200S is a more powerful, higher-performance version of the UX400S.

The UX1200S has the same processor architecture as the XL1200, whereas the

UX400S has the same processor architecture as the XL400. See the section

"Overview of the Symbolics UX1200S".

• Software support for XL1200 Single-Monitor Color Stations.

XL1200 single-monitor color stations include an XL1200 with a FrameThrower

color board and a color console. This station requires only a color console, un-

like other Symbolics Ivory-based color stations, which require both a color and a

black-and-white console. See the section "XL1200 Single-Monitor Color Stations".

Overview of the Symbolics UX1200S

The UX1200S is a more powerful, higher-performance version of the UX400S. The

UX1200S has the same processor architecture as the XL1200, whereas the UX400S

has the same processor architecture as the XL400.

UX1200S Software Requirements�

The UX1200S requires Genera 8.0.2. Note that the UNIX software shipped with

Genera 8.0.2 to UX1200S customers is compatible with SunOS 4.1 only.

In a configuration where multiple UX boards are installed in a single Sun, each

UX board runs its own copy of Genera. In a configuration that includes mixed

UX400S and UX1200S boards in a single Sun, you can run the Genera 8.0.2 soft-

ware on the UX1200S boards and run the Genera 8.0 or 8.0.1 software on the

UX400S boards; the Genera versions are compatible.



Page 234

Note that Genera 8.0.2 can also be run on UX400S boards, but Genera 8.0.1 and

Genera 8.0 cannot be run on UX1200S boards.

UX1200S Documentation Update �

The documentation on the UX400S pertains to the UX1200S, except as noted in

this section. 

On the UNIX side, /dev/ivory0 is the device for the first UX400S board. Any addi-

tional UX400S boards are in /dev/ivory1, /dev/ivory2, and so on. Similarly,

/dev/ivory16 is the device for the first UX1200S board. Any additional UX1200S

boards are in /dev/ivory17, /dev/ivory18, and so on. 

Changes to the FEP in Genera 8.0.2

On Ivory machines with more than one console attached, the FEP now prints a

greeting on each console. (This was already done for 3600-family machines.) In

Genera 8.0.2, the FEP on Ivory machines prints the greeting, all delayed errors,

and all warnings on all consoles. On each non-selected console, the FEP prints the

command you can type to select that particular console.

In Genera 8.0.2, some FEP commands which were previously available only for

3600-family machines are now available for Ivory machines. These commands are

the Set Console FEP command and the Set Monitor Type FEP command.

Genera 8.0.2 includes some new FEP commands: Set Disk Label and Set FEP Op-

tions. See the section "Set Disk Label FEP Command". See the section "Set FEP

Options FEP Command".

In Genera 8.0.2, you can use a serial terminal to communicate with the FEP. See

the section "Using a Serial Terminal to Communicate with the FEP".

XL1200 Single-Monitor Color Stations

Overview of XL1200 Single-Monitor Color Stations

XL1200 single-monitor color stations include an XL1200 with a FrameThrower

color board and a color console. This station requires a color console only, unlike

other Symbolics Ivory-based color stations, which require both a color and a black-

and-white console. The color console includes a Sony monitor and a color console

unit which typically is placed under the monitor. Three cables attach the monitor

to the FrameThrower color board in the XL1200. The color console unit is connect-

ed via the normal black-and-white cable and supports the mouse, keyboard, and

console serial port.

The color screen is used for all displays: device PROM, FEP, Genera, and Color.

Because the FrameThrower is completely programmable, there are additional files

and commands that support configuring the FrameThrower to a particular color

monitor.



Page 235

The device PROM and FEP use the FrameThrower in a "reduced capability" mode

to simulate a black-and-white monitor. Once Genera is running, the full power of

the FrameThrower is available. 

Notes About Using an XL1200 Single-Monitor Color Station

This section mentions explains some things you will notice when first using an

XL1200 single-monitor color station.

• Booting is slower than on non-color stations.

It takes longer to boot a color world because it is a larger world, and because it

takes time for Genera to fully initialize the FrameThrower. 

• Memory is used up more quickly than in a non-color station. 

Think about what happens when you switch windows, by using the SELECT key.

For example, you are in the Lisp Listener and you enter SELECT E to go into

the Zmacs editor. Genera saves a copy of the Lisp Listener window; this is

called a bit-save array. Genera draws a saved copy (or creates and draws a new

copy) of the Zmacs window, another bit-save array. In a color station, a bit-save

array is eight times larger than in non-color stations, because one of the dimen-

sions (call it depth) of the array is 1 in non-color and 8 in a color station.

Therefore, switching windows uses up a lot of virtual memory.

Some suggestions for coping with this problem are to keep the Dynamic

Garbage Collector turned on, and to run a nightly GC with GC cleanups. 

Note that the color software makes more intelligent use of the FrameThrower

than does Genera, so using the color software features does not use up memory

as much as using Genera does.

• Background greying is disabled.

In a non-color station, when you switch from the Lisp Listener window to a

Zmacs window, the Zmacs window appears and the portion of the screen which

is not covered by the Zmacs window (the right-hand margin of the screen) is

greyed. This background greying does not happen on an XL1200 single-monitor

color station, because it would be expensive in terms of using up memory. Gen-

era performs background greying by saving a copy of the window and then sav-

ing another copy which is a greyed version of the former copy. For reasons dis-

cussed above, these bit-save arrays would use up a lot of memory on a color

station.

• Flashing the screen takes a long time the first time.



Page 236

When a beep causes the screen to flash, for example when you receive a Notifi-

cation or a Converse message, you will notice a very long beep and the screen

going completely blank for a noticeable period of time. Just be patient and wait,

and the screen will be repainted normally. Subsequent beeps and screen flashes

do not last as long.

Editing the Disk Label

Edit Disk Label Command

Edit Disk Label unit-number�

Edits the disk label of the disk identified by unit-number. Brings up a menu of

choices, which you can click on to change aspects of the disk label, such as the

FEP kernel, backup FEP kernel, and the color system startup file (used for color

systems). You can also click on choices to deinstall the current FEP kernel, dein-

stall the FEP backup kernel, and deinstall the color system startup file.

Just as the device PROM finds the FEP kernel by reading the disk label, it also

needs to find the file where the FrameThrower color system startup programs are

stored. Note that the device PROM does not understand the FEP file system; it

just reads the disk label, which points to the correct file.

unit-number{integer, All} The number identifying the FEP disk whose disk label

you want to edit. All allows you to edit the labels of all the

disks attached to the machine.�

Normally, the FEP kernel and FEP backup kernels are installed automatically,

when you use the Copy Flod Files command. Copy Flod Files installs the new FEP

kernel and installs the previous FEP kernel as the backup FEP kernel. Only in un-

usual debugging circumstances do you need to deinstall the FEP kernel or FEP

backup kernel by using Edit Disk Label. When you deinstall the FEP kernel, the

FEP backup kernel is installed as the FEP kernel. When you deinstall the FEP

backup kernel, the FEP kernel is installed as the FEP backup kernel. (Note that

the FEP kernel and FEP backup kernel must always be present, in order for this

to work properly.) Thus, when you deinstall either the FEP kernel or FEP backup

kernel, the result is that a single FEP kernel is installed as the FEP kernel and

the FEP backup kernel; in other words, there is no separate FEP backup kernel.

When you next use Copy Flod Files, the new kernel will be installed as the FEP

kernel, which means you will again have a different FEP kernel and FEP backup

kernel.

FEP Commands Useful for XL1200 Single-Monitor Color Stations

The following FEP commands are particularly useful for XL1200 single-monitor

color stations:



Page 237

• Set Disk Label

• Show Disk Label

• Set Console

• Set Monitor Type

• Set FEP Options�

Set Disk Label FEP Command

Set Disk Label unit-number keywords�

unit-number A disk unit (must be a number in base 10).

keywords :Color System Startup File, :FEP Kernel, :Query�

:Color System Startup File

Pathname of the file where the color system startup programs

are stored.

:FEP Kernel Pathname of the file where the FEP kernel is stored. 

:Query {Yes, No} Whether the system should ask for confirmation be-

fore setting the disk label. The default is No.�

The Set Disk Label command is resident in the FEP, so it needn’t be loaded from

an overlay (flod) file. 

Show Disk Label FEP Command

Show Disk Label unit-number

Displays the information in the disk label.

unit-number A disk unit (must be a number in base 10).�

The Show Disk Label FEP command is resident in the FEP, so it needn’t be load-

ed from an overlay (flod) file. 

Set Console FEP Command

Set Console console keywords

Allows you to select between the available consoles. For 3600-family machines with

CadBuffer2 hardware, this command also switches input from the console’s display

hardware to the CadBuffer2 keyboard. To make Lisp notice that the console has

been changed, you need to reload microcode (on 3600-family machines) and warm

or cold boot (on both 3600-family and Ivory machines) after using the Set Console

FEP command.



Page 238

console On 3600-family machines, the console is Color or Monochrome.

On Ivory-based machines, the console can be any of the avail-

able and enabled consoles; press HELP for a list of choices.

keywords :Clear Screen, :Cold Load Too�

:Clear Screen {Yes, No} Whether to clear the screen before selecting it. The

default is No.

:Cold Load Too {Yes, No} Whether Lisp’s cold-load stream (and Main console if

you warm boot) should be redirected there also. The default is

Yes.�

The Set Console FEP command is resident in G208 and greater versions of the

FEP EPROM, and in I322 or greater versions of the IFEP kernel, so it needn’t be

loaded from an overlay (flod) file. 

Set Monitor Type FEP Command 

Set Monitor Type console type (for 3600-family machines with G208

or greater FEP EPROMs, and for Ivory machines with I322 or greater

FEP kernels)

Set Monitor-Type console-name (for machines with V127 and G206

FEP EPROMs, and for Ivory machines with I321 or less FEP kernels)�

Users of 3600-family machines should use the Set Monitor Type FEP command

when installing a monitor that differs from the one specified by the machine’s

hardware.

On 3600-family machines with G208 or greater FEP EPROMs, sets the console

type and name. On 3600-family machines with V127 and G206 FEP EPROMs, sets

the console name. This command also loads the appropriate sync program into the

machine’s display controller, CadBuffer, or CadBuffer2 hardware. 

Users of Ivory-based machines should use the Set Monitor Type FEP command if

the FEP options installed by the Set FEP Options FEP command are incorrect. At

your first opportunity after using the Set Monitor Type command, you should use

Set FEP Options to correct the FEP options, and reset the FEP to make the new

FEP options take effect. 

console A particular console; this argument defaults to the current

console. Use HELP to find out which consoles are applicable. On

Ivory machines, a console is specified by three elements: the

console type, the sync program, and the unit number. On 3600-

family machines, a console is specifed as being color or

monochrome

console-name The list of choices depends on the console. Use HELP to find

out which choices are applicable. �



Page 239

The Set Monitor Type FEP command is resident in the FEP, so it needn’t be load-

ed from an overlay (flod) file. 

Set FEP Options FEP Command

Set FEP Options keywords

Sets options which are used by the FEP. 

keywords :Color System Number, :Color System Startup Program, :Color

System Type, :Serial Console Type�

The Color System keywords are used only when you are using a custom color mon-

itor (other than the default Sony monitor).

:Color System Type

{None, FrameThrower} FrameThrower enables the FEP to use

the color monitor. None disables the use of the color monitor.

:Color System Number

The number of the color system, a decimal integer between 0

and 255. (You can have more than one FrameThrower, and the

color system number enables you to distinguish among them.)

:Color System Startup Program

Which color system startup program in the color system start-

up file for the color system to use.

:Serial Console Type

{None, ASCII, or X3.64} None prevents the FEP from ever us-

ing the serial console; this is appropriate if you have a serial

device other than a console connected to the serial port, and

know you won’t use the serial device as a console. ASCII indi-

cates that the serial console is a dumb terminal. X3.64 indi-

cates that the serial console is an ANSI-standard X3.64 termi-

nal, such as a VT100.

The new options you specify in Set FEP Options take effect when you next reset

the FEP with the Reset FEP FEP command.

The Set FEP Options FEP command is resident in the FEP, so it needn’t be load-

ed from an overlay (flod) file. 

Troubleshooting an XL1200 Single-Monitor Color Station

Because the XL1200 single-monitor color station uses the FrameThrower as its on-

ly display, and because the FrameThrower is both very flexible and complex, there

is a greater possibility of problems in using these stations than in monochrome

systems or color stations with two monitors. This section describes some common

problems, and steps you can take to solve them before calling Customer Service.



Page 240

Troubleshooting the Power-up and Initialization of an XL1200 Single-Monitor

Color Station

Below, we describe the expected steps that would result in successfully powering

on and initializing an XL2100 single-monitor color station to familiarize you with

what could go wrong at each step: 

1. When power is applied by depressing the on/off button on the front panel, the

green POWER light in the on/off button should illuminate and the yellow FAULT

light in the reset button should illuminate.

You should hear the disks spin up; usually there is a "click" (about two sec-

onds after power is applied) followed by a "whirr" that increases in pitch

(lasting for about 10 seconds), and finally a "clunk" as the heads are loaded.

The FAULT light indicates that the processor is uninitialized at this point. (If

the FAULT light comes on later in the process, it indicates that there has been

a fatal error. The processor will attempt to re-initialize itself and restart.)

What can go wrong: If neither the POWER nor FAULT light is illuminated, or

you don’t hear the disks spin up, you should suspect your power connections.

What to do: Turn off the system, recheck your power connection, and retry.

Note that there is a master power switch on the back of the chassis. This

switch must be in the 1 position and should be illuminated (indicating power

is available).

2. The booting process is a three-stage process. First, the "Boot" program (in

ROM on the processor board) initializes the processor and searches for a

"Device" program (in ROM on the I/O board) that can load the "FEP" pro-

gram from one of the attached peripherals. Second, the Device program exam-

ines the attached peripherals looking for a console and a device from which to

load the color startup program for the FrameThrower (if the console is a

FrameThrower console). Finally, the Device program loads the FEP program

from disk or tape and the FEP program will start.

In the second stage, the Device program must go through a number of steps

to determine how to initialize the console:

a. First it reads the "Switchpack" from the color console unit. This switch-

pack has two relevant settings (these should be checked by your Cus-

tomer Service Engineer on installation and rechecked if the system ap-

pears to operate incorrectly). 



Page 241

Switch # Function

1 If on, use the color console.

 If off, the color console is ignored.

 Normally, it should be on; off

 is used for diagnostic purposes only

5 If on, use the default monitor type and number:  

 Sony (1024x1280 CADBuffer) 0

 If off, a custom monitor type and number is

 determined by the setting of the FEP Options

 (as registered by the Set FEP Options FEP command)

(The remaining switches control the operation of the console unit, set-

ting various diagnostic modes; these should be left as they are.)

What can go wrong: If the console-unit is not plugged in properly or

the switchpack is set improperly, the Device program will not attempt to

use the color console.

What you should do: In early models of the XL1200 single-monitor color

station, the console switches are occasionally mis-read. You can try press-

ing the RESET button or power-cycling the machine, which will cause the

Device program to be restarted and the switches to be re-read. You

should also check that your console unit is properly plugged in. If it is

not plugged in, the Device program will not be able to read the switches;

by default it assumes that it should not use the color console if it cannot

read the switches (this is because using a console with an incorrectly

guessed monitor type can physically damage the monitor).

b. If the switchpack setting indicates that the color console is to be used,

the Device program will probe the VMEbus looking for the FrameThrow-

er hardware. (It does not automatically scan the VMEbus, as there may

be some other peripheral board in the address space normally occupied

by the FrameThrower that should not be randomly written or read.)

What can go wrong: The FrameThrower system may not be found at

the expected VME address. The Device program can’t use the Fram-

eThrower if it can’t find it. The XL1200 processor may not be in VME

slot 1. The processor may hang during VME operations if it is not in slot

1.

What you should do: You can power down your system and attempt to

re-seat the FrameThrower, XL1200 Processor, and other boards. Note

that the XL1200 processor board must be in VME slot 1 (the left-most

slot as you face the back of the chassis) for it to be able to detect the

FrameThrower board. Your Customer Service Engineer can verify the

settings of all jumpers and switches on the FrameThower, XL1200 pro-

cessor, and other boards.



Page 242

c. If the switchpack setting indicates that the color console is to be used

and the FrameThrower hardware is located by the peripherals search,

the Device program then looks for the startup program file in the disk

label. (Shortly after the "clunk" of the disk heads loading, the Device

program is able to use the disk. You should hear a "rattle" or "buzz" as

it accesses the disk looking for and loading the startup program. This oc-

curs from 12 to 20 seconds after power-on. Note that if you press the

RESET button rather than power-cycling, the disks do not have to spin up

or load, hence you may not hear any disk noises.)

If the switchpack indicates the default monitor type is to be used, any

startup program found on disk will be accepted and the default monitor

type parameters extracted from it and loaded. If the switchpack indicates

a custom monitor type, the FEP Options are read from NVRAM and the

Device program searches the startup program for the matching type.

When an appropriate program is found, default or otherwise, the Fram-

ethrower console is initialized (you may see it flash as the sync is load-

ed) and the Device program greeting is displayed:

"Autoloading the IFEP Kernel -- type any character to abort"�

It takes approximately 21 seconds from the time power is applied until

the display is initialized, under normal conditions. If you press the RESET

button, the display should initialize in approximately 8 seconds, since the

disks are already spun up.

What can go wrong: If the disk label is unreadable, does not have a

startup program, or (for custom monitor types) does not have a matching

entry, the Device program will not be able to initialize the console.

What you should do: The Device program will look for and load a start-

up file from the tape drive if there is a tape in the unit. If you suspect

the disk label or a corrupted disk, you can try inserting your IFS tape

and pressing the RESET button on the front panel. The tape will spin be-

cause of the reset, but it should spin a second time when the Device pro-

gram searches it for the startup program.

NOTE: In a correctly configured station, the Device program does not

need to use the console and will automatically load the FEP from the de-

fault disk unit. Thus, you need not consider it a problem if the console

appears uninitialized at this point, unless you need to interact with the

Device program to request loading of a different FEP or loading from

tape. See the section "Using a Spare Monitor to Troubleshoot an XL1200

Single-Monitor Color Station".

You can verify the settings in the disk label by using the Show Disk La-

bel FEP command, and change them by using the Set Disk Label FEP

command.



Page 243

3. If the console has been properly initialized by the Device program, you will

see the standard Device program dialog as it initializes the disks and looks

for the FEP kernel on one of the disks to load. If the Device program was un-

able to initialize the console, it will still look for and load the FEP kernel. In

either case, you should hear the "rattle" or "buzz" of the disk again as the

FEP kernel is loaded. The FEP kernel will go through approximately the

same procedures as the Device program in attempting to initialize the con-

sole, with the exception that it will attempt to initialize all consoles it can

find and then choose one console as the default console.

When the FEP succeeds in initializing any console it will print out its stan-

dard greeting on that console:

Type "Hello" to initialize the FEP’s command databases, etc.�

If the console is not the default FEP console, you will see a message to the

effect:

Type "Set Console FrameThrower Sony console 0" to select this console�

What can go wrong: As with the Device program, the switches on the con-

sole unit may be wrong or mis-read. In this case the FEP may not choose it

as the default console, however, unlike the Device program, the FEP initial-

izes all the consoles it can find, so you do have a chance to manually tell it

to use a particular console, even if the switches are wrong or mis-read.

What you should do: If you see the message about "Set Console" on your

color monitor, which indicates the FEP decided not to use the color monitor

as the default console, you can simply type the suggested command on the

color monitor to get the FEP to use it. Note that because the FEP supports

command completion, unless you have more than one of a particular type of

console it is usually sufficient to only type the first few letters of a console

type to select it. For instance, typing "Se C F" and pressing Return is usually

sufficient to select the FrameThrower console.

4. Following the standard FEP greeting will be any errors that occurred during

initialization and any warnings about boards or peripherals that are not up to

date.

What can go wrong: If you see a message starting "** WARNING **" the

FEP has determined that some component of your system is out of date and

must be upgraded to work properly. This is unlikely to occur if you have a

new system, but if you have had your system upgraded, it may be that some

component was missed. 

What you should do: It is important that you have all components updated

to the proper revision level for reliable operation. You should contact Symbol-

ics Customer Service to have any components that are out of date upgraded

as soon as possible. You run the risk of faulty operation of the system if you

proceed with out-of-date components.



Page 244

5. When the FEP program has been successfully loaded and started and is ready

to accept commands from the keyboard, the yellow FAULT light will go out.

This takes approximately 37 seconds from the time the system was powered

on, or about 24 seconds from the time the system was reset. 

What can go wrong: You might see the yellow FAULT light go off but still

have no display on the color monitor. This can be for the same reasons that

the Device program could not initialize the console. 

What you should do: If neither the Device program nor the FEP can initial-

ize the console, you should go back and check the suggestions under #2. If

none of those suggestions are helpful, it might be that the FEP is unable to

determine the type of monitor that is connected to the FrameThrower, either

because the switches could not be read or because the switches are set incor-

rectly. In this case, you can type "blind" to the FEP to tell it the type of

monitor. 

NOTE: the Set Monitor Type FEP command is different in the I322 FEP

from previous Ivory FEP versions. It takes two arguments now, a console

whose type to set and a type. The first argument defaults to the current con-

sole, so if you are typing blind you need to type the following commands. 

Whenever you are typing "blind", it is useful to press CLEAR-INPUT and RE-

TURN before you type any commands. Since you cannot see whether there was

already some input, this clears any that might be there, so the commands

that follow are interpreted from scratch.

Press CLEAR-INPUT

Press RETURN�

Now give a command to ensure that the FrameThrower is selected as the

current console. To give the FEP command "Set Console FrameThrower", type

the following characters, including pressing the SPACE key and RETURN key

where indicated:

se SPACE c SPACE f RETURN

To give the FEP command "Set Monitor Type this-console Sony", type the fol-

lowing characters, including pressing the SPACE key and RETURN key where

indicated:

s SPACE m SPACE t SPACE SPACE sony RETURN�

In the command above, note the two SPACES after the letter "T": the first

SPACE causes T to be completed to "Type" while giving the Set Monitor Type

command. The second SPACE causes the default to be used for the first argu-

ment, which is the current console.

What can go wrong: The Device Program makes some simplifying assump-

tions that may allow it to choose and initialize the color console, but when



Page 245

the FEP is loaded you may find the color console is not initialized. This is

due to a mis-setting of NVRAM options on the processor board.

What you should do: The command to enable the color console is:

Set FEP Options :Color System Type FrameThrower�

The minimum you can type (for typing blind) is:

s SPACE f SPACE o SPACE :c SPACE s SPACE t SPACE f RETURN�

After typing this command, either power-cycle or reset the system and the

FEP should now initialize the color monitor.

Boot Procedure for XL1200 Single-Monitor Color Stations

When an XL1200 single-monitor color station boots, the following steps happen:

1. Determining which console should be active

The device PROM queries the hardware to determine which consoles are at-

tached. The possibilities include: a color console, serial console, and a black-

and-white console. If more than one console is attached, the device PROM

makes a decision about which console should be active. The active console

will have the FEP Command: prompt. Other attached consoles will display a

message about what to type (the Set Console command) to make that console

active.

The color console is active if the FEP notices that the FrameThrower board

and the color console unit are present. If the color console is not active, then

the black-and-white console is active. If the black-and-white console is not at-

tached, then you won’t see the FEP Command: prompt on any of the attached

consoles.

2. Loading the color system startup file for the color console

The color system startup file contains a set of color system startup programs.

A color system startup program is necessary for initializing the color system.

If a color console is attached, the device PROM looks at the disk label to find

out where the color system startup file is stored. (The information in the disk

label is updated by the Edit Disk Label command, and is also updated by the

Copy Flod Files command.)

2A. If the color system startup file is found, it is loaded, and the monitor will

be activated. In this case, the next step is 3A.

2B. If the color system startup file is not found, the XL1200 can still boot,

but the monitor will not show any display at this point. In this case, the next

step is 3B.



Page 246

3. Loading the FEP

3A. The FEP is loaded and it comes up on the color monitor. In this case, the

next step is 4A.

3B. The FEP is loaded, but because the color system startup file was not

found, the monitor cannot show any display. In this case, the next step is 4B.

4. Booting Genera

4A. If the XL1200 is set up to autoboot, it will boot itself. Otherwise, you can

give the FEP commands to boot the machine.

4B. If the XL1200 is set up to autoboot, the machine will boot even though

you cannot see anything on the monitor. You can also give FEP commands

from the keyboard, and they will work, even though you cannot see them on

the monitor.

Using a Spare Monitor to Troubleshoot an XL1200 Single-Monitor Color Sta-

tion

If you are able to plug a spare black-and-white monitor into your system in place

of the color console unit, you may be able to discover what is preventing the color

console from being used. Both the device program and the FEP will print out diag-

nostic information on the black-and-white monitor when searching for and attempt-

ing to initialize the color monitor (if the black-and-white monitor is connected in

place of the color console unit).

You can then use the FEP to fix the disk label to point to a valid color startup

file, you can set the NVRAM options to enable the color console, and you can ex-

periment switching back and forth between the black-and-white and color consoles.

Note that both consoles will use the keyboard attached to the black-and-white

monitor.

If you are not able to plug in a spare black-and-white monitor, it is still possible

you can type "blind" to the FEP to enable the color console, by typing carefully

and using command completion. You will know that the FEP is ready to accept

commands when the yellow FAULT light on the front panel goes out.

After verifying that the color monitor is enabled (Set FEP Options :Color System

Type FrameThrower) and that the proper color startup file is installed in the disk

label, you can RESET or power-cycle the system. Note that if you connected a black-

and-white monitor, and leave it connected, the FEP will still not initialize the

color monitor, because it cannot read the switches from the color console unit. You

can cause the FEP to initialize the color monitor anyway, even with the black-and-

white monitor by using another NVRAM setting:

Set FEP Options :Color System Startup Program Sony :Color System Number 0�



Page 247

The FEP will still not choose the color console as the default console, as long as

the black-and-white monitor is connected, but you can use the black-and-white

monitor to debug your setup and then use the Set Console FEP command to

switch to the color console before you start Lisp.

When you are satisfied that everything is working, disconnect the black-and-white

monitor, reconnect the color monitor, and reset the system. (If Lisp is running,

you can Halt Machine and then use the RESET button to re-initialize the FEP. You

can then warm-boot Lisp and it will use the color console).

Using a Serial Terminal to Communicate with the FEP

You can use a serial terminal to communicate with the FEP. One case in which

this can be particularly useful is in troubleshooting an XL1200 single-monitor color

station. For example, if the color monitor cannot come up, you can connect a serial

terminal to the serial port on the color console unit, and use that terminal to give

FEP commands such as Show Disk Label, or Set FEP Options.

In addition to connecting the serial terminal physically, you need to give the Set

Console FEP command to tell the FEP to use the serial console. You might need

to also use the Set Monitor Type FEP command to tell the FEP whether the serial

console is ASCII (a dumb terminal) or X3.64 (such as a VT100).

You need to set the serial terminal’s parameters for 9600 baud, 8 bits, and no

parity.

Keep in mind that serial terminals don’t have all the special keys of the Symbolics

keyboard. If you need to transmit special Symbolics characters, such as Meta or

Super characters, you need to understand how serial terminal keys are mapped to

the Symbolics keys.

Mapping of Serial Terminal Keys to Symbolics Keys

The keyboard of a serial terminal does not have the same set of keys as does the

Symbolics keyboard. For example, such a keyboard typically lacks a Meta key, Su-

per key, Hyper key, and Symbol key. These keyboards do, however, have a Control

key, however, most such keyboards can handle only Control-A, Control-Z, and a few

other characters, most of which are reserved for escapes.

Accessing the Symbolics Character Set�

The following characters may be used to access the Symbolics character set:

    c-^ = Toggles the Control bit   c-] = Toggles the Super bit

    ESC = Toggles the Meta bit      c-\ = Toggles the Hyper bit

    c-@ = Toggles the Shift bit�

For example, to enter c-m-C, you need to set both the Control bit and the Meta

bit, by entering c-^ and ESC; you can then press C to enter c-m-C.



Page 248

Similarly, you might need to enter c-sh-C. The serial keyboard has both a Control

key and a Shift key, but you cannot press them both at once to enter c-sh-C. You

can enter c-^ to set the Control bit, then press the Shift key while typing C. Or,

you can enter c-@ to set the Shift bit, and then press the Control key while typing

C.

Entering Special Symbolics Keys�

The character c-_ (that is, the Control key and the underscore _ key) is used as a

prefix to enter special characters as follows:

    H = <Help>                     L = <Line>

    E = <End>                      P = <Page>

    A = <Abort>                    F = <Refresh>

    S = <Suspend>                  B = <Back-Space>

    R = <Resume>                   N = <Network>

    C = <Complete>                 1 = <Square>

    I = <Clear-Input>              2 = <Circle>

    X = <Escape>                   3 = <Triangle>�

For example, if you press c-_ followed by H (that is, two keystrokes) on the key-

board of a serial terminal, you get the effect of the HELP key on a Symbolics key-

board.

Entering Symbol Characters�

c-_ _ is the prefix for Symbol characters. (That is, Control Underscore followed by

Underscore, two keystrokes.)

For example, you can enter c-_ _ P (that is, three keystrokes) to get the effect of

SYMBOL-P.

c-_ ? displays the c-_ dispatch table.

Genera 8.0 XL Documentation Update

This section pertains to XL-family machines only.

Changes to the VMEbus Interface in Genera 8.0 XL�

• There are two new slave buffer variables, sys:*vme-slave-buffer-base* and

sys:*vme-slave-buffer-end*. They are the starting and ending addresses of the

slave buffer in words, not bytes.

• The slave buffer base address is now settable in the FEP via the :Slave-Buffer

Base keyword to the Set Boot Options command. This address is in bytes. The

system defaults are correct unless the jumpers on the processor board have been

moved.



Page 249

• To let an application allocate a portion of the slave buffer, use (sys:allocate-

slave-buffer-memory :name :words &key from-end). The function returns a

starting and ending address in words. There is no enforcement, but this a sim-

ple check-out scheme for slave buffer memory so you do not accidentally use

memory allocated by the system (as on the UX400) or by another application

(like FrameThrower). Specific allocations can be added to an initialization list.

System allocations take place on the system initialization list.

• Flonum data tagging is not supported on the XL1200.

• There are two new functions to enable and disable bus interrupts: sys:enable-

bus-interrupt and sys:disable-bus-interrupt. They take a bus interrupt level

from 1 to 7. They are somewhat easier to use than sys:logior-bus-interrupt-

mask and sys:logand-bus-interrupt-mask.

• sys:install-bus-interrupt has been changed. It now takes a status ID rather

than a level. Interrupt functions are dispatched by the status ID rather than the

interrupt level. This change is incompatible with Genera 8.0.

• The default slave buffer address for the XL1200 is #xFAC00000.

• sys:make-bus-address of an address within the range of the slave buffer ad-

dresses will create the appropriate Ivory address to access the slave buffer. This

is based on the variables sys:*vme-slave-buffer-base* and sys:*vme-slave-

buffer-end*.

• You can initiate VME SYSReset by calling the function cli::merlin-ii-sysreset.

Warning: The effect of using this function is the same as pressing the RESET

button on the machine.

• sys:bus-read and sys:bus-write now update the system bus parameters such as

address-modifier and release-mode.

• The slave buffer on the XL1200 processor is 256K words long. Reservations of

slave buffer memory are handled by sys:allocate-slave-buffer-memory.

• VMEbus errors on the XL1200 are not signalled on writes. Reads receive errors,

as do polled reads using bus-read.

• The VMEbus interrupt handler does not disable the interrupt level for an in-

coming interrupt. The user process must disable and reenable the interrupt, if

necessary.

• VMEbus interrupt status-ID #x5F on the XL1200 is reserved for Symbolics use.

The Slave Trigger Interrupt uses this vector.



Page 250

VMEbus Interface�

Introduction to the XL-Family VMEbus Interface

The XL-family system is based on a 7-slot, 9U form factor VMEbus backplane and

card cage. The VMEbus is a versatile, standard 32-bit bus which provides power

and clock distribution, asynchronous data transfer, and interrupt delivery and ac-

knowledgment. Although the performance requirements of modern proces-

sor/memory interconnects have exceeded the design range of the VMEbus, it re-

mains popular as a peripheral I/O bus, and is often used in tandem with a sepa-

rate high-speed memory bus. This is the strategy used in the XL: a private 48-bit

bus connects the processor with its memory and I/O board, and the VMEbus inter-

face is used to communicate with optional I/O peripherals and other 32-bit wide

devices.

The XL processor is a VMEbus master, meaning that it can issue requests to read

and write locations in other VMEbus cards, and can deliver interrupts. The inter-

face provides a flexible polled access facility with which nearly all possible data

transfer operations may be performed. It also provides a direct-access facility with

which a portion of the VMEbus address space may be mapped into the XL’s physi-

cal address space, for high-speed access to 32-bit slaves.

The XL processor is also a VMEbus slave, meaning that other bus masters can is-

sue requests to read and write locations in it, and that it can receive interrupts is-

sued by other bus masters. However, other bus masters may not directly access

the XL processor’s main memory; they may access only a dedicated memory in the

XL VMEbus interface called the slave buffer. This design eliminates the hardware

complication of arbitration deadlock between the VMEbus and the XL private bus,

and eliminates the software complication of negotiating with the Genera virtual

memory system to reserve contiguous portions of main memory.

The VMEbus is a flexible bus with many options and modes. In the design of the

XL VMEbus interface, particular attention was paid to optimizing both the master

and slave for high speed 32-bit data transfer, but the interface supports nearly all

possible modes and can accommodate virtually any VMEbus device. The interface

hardware includes the following features:

• On the XL400, the slave appears on the VMEbus as a 32K by 32-bit memory.

On the XL1200, the slave is one megabyte in size. 

• The master can transparently map up to 267 megawords of VMEbus address

space into the Ivory physical address space (for 32-bit transfers only).

• Both the master and slave implement 8, 16, 24, and 32-bit data transfers, includ-

ing transfers not aligned on an address boundary.

• Both the master and slave may specify that data be shuffled to compensate for

differences in system bit, nibble, or byte ordering.



Page 251

• Both the master and slave may request that data returned to Ivory be tagged as

either integers or IEEE 32-bit floating-point numbers on the XL400. (On the

XL1200, data returned can only be tagged as integers.)

• The master may specify an arbitrary address modifier for a data transfer.

• The arbitration parameters (arbitration level, bus release behavior) of the mas-

ter are programmable.

• The interface can issue and receive all seven interrupt levels, and supports 8-bit

interrupters.

• The slave implements the VMEbus block transfer protocol.

• The interface includes a system controller (containing VMEbus arbiter, clock

drivers, and so on), which may be disabled by a jumper.�

The interface hardware does not support the following features:

• The master does not implement the VMEbus block transfer protocol, but uses

address pipelining to achieve equivalent performance.

• The master cannot issue ADDRESS-ONLY data transfer requests.

• The master cannot issue READ-MODIFY-WRITE data transfer requests, but

atomic operations are supported by inhibiting bus release.

Software provided with Genera supports efficient access to all interface features,

while shielding the client software from irrelevant hardware details. Data transfers

may be performed in isolation via function calls that read or write specified bus

locations, or by obtaining a physical address that the interface will map to a range

of VMEbus addresses, or by using a Lisp indirect array which may be manipulated

by normal array operations and facilities such as BITBLT. Full support for deliver-

ing and handling interrupts is provided.

For more information about the VMEbus hardware specification, see "The VMEbus

Specification", Revision C.1, published by Printex. For more information about the

electrical and mechanical characteristics of the XL VMEbus card cage, contact

your Symbolics sales representative. 

VMEbus Data Transfers

There are four basic techniques for performing VMEbus data transfers:

• Isolated transfers may be performed by calling the functions sys:bus-read and

sys:bus-write, specifying the desired VMEbus address (and perhaps data) and

any optional parameters. This technique is the most flexible, since it uses the

polled access hardware in the interface which supports non-32-bit transfers.



Page 252

However, it incurs some overhead programming the hardware and is therefore

not very efficient.

• The function sys:make-bus-address may be called to map a portion of the

VMEbus into the Ivory address space, and return a physical address pointing to

it. That address may be manipulated using subprimitives such as sys:%pointer-

plus, sys:%p-ldb, sys:%p-dpb, sys:%block-read, and sys:%block-write. This

technique is very efficient, but is rather cumbersome. It also works for 32-bit

slaves only.

• The function sys:make-bus-array may be called to map a portion of the VME-

bus into the Ivory address space, and return an indirect array pointing to it.

This allows high-level, bounds-checked access to array elements of any type, and

the array may also be passed to Lisp facilities such as bitblt. This technique al-

so works for 32-bit slaves only.

• Atomic operations may be performed by calling sys:bus-store-conditional, which

works for VMEbus locations the same way store-conditional works for virtual

memory locations.�

All these techniques provide some way to configure the interface hardware to en-

able options such as bit shuffling, nonstandard address modifiers, and arbitration

parameters. For polled transfers (via sys:bus-read and sys:bus-write), the options

are specified as simple keyword arguments. For direct transfers (via sys:make-

bus-address and sys:make-bus-array), most of the options are specified by the

sys:with-bus-mode macro, which must surround any use of VMEbus addresses.

See the section "Summary of VMEbus Transfer Options" for a description of the

available options.

In general, clients should use polled transfers to refer to isolated registers on the

VMEbus, and direct transfers to map memories, frame buffers, large register

banks, etc., into the Ivory physical address space. See the section "VMEbus Direct

Data Transfers".

VMEbus Direct Data Transfers

The VMEbus master can perform direct data transfers, in which a portion (called

a window) of the VMEbus address space is mapped into the Ivory physical address

space, and accessed as though it were (32-bit wide) Ivory memory. For direct

transfers, some of the data transfer options, such as the arbitration parameters,

are controlled by hardware registers that must be set up prior to the data trans-

fer. Others, such as data shuffling, are controlled by fields within the Ivory physi-

cal address decoded by the VMEbus interface. sys:with-bus-mode and the address-

generating functions sys:make-bus-address and sys:make-bus-array conspire to

keep the hardware parameters consistent with the client’s intent.

sys:with-bus-mode establishes a context within which VMEbus addresses may be

generated and used; it is illegal to use a VMEbus address returned by sys:make-

bus-address or sys:make-bus-array outside the dynamic scope of the sys:with-



Page 253

bus-mode in which it was created. sys:with-bus-mode programs the VMEbus in-

terface according to the specified options, and guarantees that those parameters

will be maintained throughout the dynamic extent of the macro, even if some other

process is trying to use the VMEbus simultaneously in a completely different

manner.

The first time an address is generated (that is, sys:make-bus-address or

sys:make-bus-array is called) within a given sys:with-bus-mode, the direct access

window in the VMEbus interface is programmed to encompass the specified ad-

dresses. A subsequent attempt to generate an address that doesn’t lie within the

same 267-megaword window will signal an error. If this restriction causes prob-

lems, they can often be resolved by using polled transfers to refer to some of the

disparate locations.

Note that sys:bus-read, sys:bus-write, and sys:bus-store-conditional are polled

transfers and are therefore not affected by sys:with-bus-mode; they may be used

at any time. 

Summary of VMEbus Transfer Options

The following options may be specified to sys:bus-read, sys:bus-write, sys:make-

bus-address, sys:make-bus-array, and sys:with-bus-mode:

:shuffle

One of :none, :byte, :nibble, or :bit, this specifies the permutation to

be applied to the data words received or transmitted by Ivory. :bit

shuffling reverses the order of all 32 bits. :byte shuffling reverses the

order of the four 8-bit bytes in a word, but preserves the order within

each byte. :nibble does the same for 4-bit groups. The default is

:none.

:data-type

One of :fixnum or :single-float, this specifies the tag to be appended

to data received by Ivory. :fixnum is the default, :single-float might

be useful when communicating with an array processor or similar de-

vice. This is meaningful only for the XL400.

The following options may be specified to sys:bus-read, sys:bus-write, and

sys:with-bus-mode:

:address-modifier

The 6-bit numeric VMEbus address modifier code to be driven onto

the bus during a data transfer cycle. The default is #x09, indicating

that the address is 32 bits wide, for a data cycle.

:ownership

One of :release-when-done, :release-on-request, or :bus-hog, this

specifies the condition under which the VMEbus interface will relin-

quish ownership of the bus once it has control. The default is :re-

lease-on-request.



Page 254

:arbitration-priority

An integer from 0 to 3, indicating the priority the VMEbus interface

will assert when requesting access to the bus. The default is 3.

The following options may be specified to sys:bus-read and sys:bus-write:

:byte-size

One of 1, 2, 3, or 4, this specifies the number of bytes of VMEbus da-

ta. The VMEbus interface will issue an 8, 16, 24, or 32 bit operation

as necessary to perform the transfer.

:byte-offset

One of 0, 1, 2, or 3, this specifies the first significant byte of the

VMEbus data.�

When using the :byte-size and :byte-offset options, note that all the specified

bytes must be contained within an aligned 32-bit word. That is, the size plus the

offset must be greater than zero and less than five. 

VMEbus Interrupts

Interrupts may be posted on the VMEbus using the function sys:post-bus-

interrupt, which issues an interrupt at a specified level, waits for the receiver to

acknowledge, then delivers the specified status byte to the interrupt handler. Note

that the VMEbus interface cannot deliver an interrupt to itself.

The VMEbus interface will interrupt the Ivory processor upon receipt of any VME-

bus interrupt for an enabled level. Which levels are enabled is controlled by a

mask in the interface hardware, which may be examined and altered using

sys:logior-bus-interrupt-mask and sys:logand-bus-interrupt-mask. The mask con-

tains a 1 in each bit for which an interrupt is enabled; for example, if the mask

were #b00001010, interrupts at levels 1 and 3 would be received, and all others

would be ignored. Upon receipt of an interrupt request, the VME software issues

an interrupt acknowledge cycle to retrieve the status byte, and calls the appropri-

ate client interrupt handler in a Genera simple process.

You can also use sys:enable-bus-interrupt and sys:disable-bus-interrupt to enable

interrupts. Both functions take a level as an argument.

Client software may supply a handler function for a specific status/ID using

sys:install-bus-interrupt-handler. An interrupt handler function is a normal Lisp

function that takes one argument: the status/id byte received during the interrupt

acknowledge cycle. The interrupt level is not disabled when the interrupt is re-

ceived; the programmer must manage this. 

VMEbus Slave Interface

The VMEbus interface for the XL400 and Symbolics UX-family contains a 32K by

32 bit memory that appears on the VMEbus as a slave device. The slave supports

A24 and A32 address modes, and D08(EO), D16, and D32 data transfers.



Page 255

The VMEbus interface for the XL1200 has a 256K by 32 bit buffer that supports

the same modes.

The XL slave buffer responds to the following VMEbus address modifiers:

Modifier Description

#x39 Standard normal data access

#x3A Standard normal program access

#x3B Standard normal block transfer

#x3D Standard supervisor data access

#x3E Standard supervisor program access

#x3F Standard supervisor block transfer

#x09 Extended normal data access

#x0A Extended normal program access

#x0B Extended normal block transfer

#x0D Extended supervisor data access

#x0E Extended supervisor program access

#x0F Extended supervisor block transfer�

The XL400 slave buffer responds to VMEbus address #xFADC0000 (extended) and

#xDC0000 (standard). The XL1200 slave buffer responds to VMEbus address

#xFAC00000 (extended) and #xC00000 (standard).

The UX-family machine slave buffer responds to the following VMEbus addresses:

UX400S Board Extended Address

0 #xFADC0000

1 #xFAEC0000

2 #xFAF40000

3 #xFAF80000

4 #xFABC0000

5 #xFA9C0000

6 #xFAAC0000

7 #xFAB40000

8 #xFAB80000�

UX1200S Board Extended Address

1 #xFD000000

2 #xFD200000

3 #xFD400000

4 #xFD600000

5 #xFD800000

6 #xFDA00000



Page 256

7 #xFDC00000

8 #xFDE00000�

The slave buffer may be accessed from Ivory using sys:make-bus-address or

sys:make-bus-array, simply by specifying a VMEbus address that falls within the

range of the slave buffer. Note that data transfers to such an address don’t actual-

ly incur any VMEbus traffic; internal data paths are used. The :shuffle and :data-

type options are supported for slave buffer transfers, and work just as they do for

normal VMEbus transfers. See the section "Summary of VMEbus Transfer

Options".

• The slave buffer address on XL1200 boards can be set via jumpers on the pro-

cessor board. They are set at the factory to #xFAC00000.

• The mailbox address for each board is at #x100000 beyond the slave-buffer. For

example, for UX1200S #1, (+ #xFD000000 #x100000) → #xFD100000

• Lisp keeps track of the location of the slave buffer in the variables sys:*vme-

slave-buffer-base* and sys:*vme-slave-buffer-end*. These addresses are in

words, so use (lsh sys:*vme-slave-buffer-base* 2) to get the VME address of

the slave buffer. �

If a different VME address is used for the slave buffer, you can inform Lisp of the

change by using the keyword :Slave Buffer Address to the Set Boot Options FEP

command.

Note: Sections of slave buffer memory are reserved for use by Symbolics for

certain hardware configurations. For more information, see the function

sys:allocate-slave-buffer-memory. 

Resetting the XL-Family and Symbolics UX400S VMEbus

The VMEbus SYSreset signal is asserted on the XL backplane shortly after initial

powerup, and whenever the RESET button on the front panel is pressed. The XL

processor board responds to SYSreset by initializing the Ivory processor and the

I/O board, and cold-booting the FEP. The contents of the XL main memory are

preserved, and the FEP software should be able to warm boot Genera if it was

running prior to the SYSreset.

The XL400 does not generate or respond to the VMEbus SYSfail signal; the

XL1200 does generate SYSfail.

Sun systems also assert SYSreset on powerup. The UX-family machine’s processor

board responds to SYSreset by initializing the Ivory processor and sending a signal

to the machine’s life support. When the UX-family machine’s life support becomes

available, it will cooperate with the UX-family machine’s processor board in cold-

booting the FEP. The contents of UX-family machine’s main memory are pre-

served, and the FEP software should be able to warm boot Genera if it was run-

ning prior to SYSreset.



Page 257

You can initiate SYSreset on an XL1200 by using the function cli::merlin-ii-

sysreset. This is equivalent to pressing the RESET button on the front panel. 

Examples of Using the VMEbus Interface

This section shows several different ways to perform a simple VMEbus data trans-

fer operation in which the goal is to copy a contiguous block of 32-bit words from

one VMEbus address to another, reversing the 4 8-bit bytes with each word.

;;; Given an A32 D32 slave, use polled transfers to copy each

;;; word.  The bytes are shuffled by the interface hardware as

;;; each word is read from the source.  Simple but slow.

(defun copy-VME-memory-shuffling (source-bus-address 

                                  destination-bus-address words)

  (loop repeat words

for s from source-bus-address

for d from destination-bus-address

do

    (sys:bus-write d (sys:bus-read s :shuffle :byte))))

�

;;; Given an A32 D16 slave, use polled transfers to copy each

;;; 32-bit word in two halves.  The bytes within each 16-bit word

;;; are shuffled by the interface hardware as each word is read

;;; from the source, but we have to manually interchange the two

;;; halves of each 32-bit word.

(defun copy-VME-memory-shuffling (source-bus-address 

                                  destination-bus-address words)

  (loop repeat words

for s from source-bus-address

for d from destination-bus-address

do

    (let ((v (sys:bus-read s :shuffle :byte :byte-size 2 

                             :byte-offset 0)))

      (sys:bus-write d v :byte-size 2 :byte-offset 2))

    (let ((v (sys:bus-read s :shuffle :byte :byte-size 2 

                             :byte-offset 2)))

      (sys:bus-write d v :byte-size 2 :byte-offset 0)))) 



Page 258

�

;;; Given an A16 D8 slave, use polled transfers to copy each

;;; 32-bit word in four separate bytes.  We have to do the byte

;;; swapping manually.  We have to use the :address-modifier

;;; option to specify short (A16) addresses.

(defun copy-VME-memory-shuffling (source-bus-address 

                                  destination-bus-address words)

  ;; This with-bus-mode isn’t actually required, we could instead

  ;; specify an :address-modifier option to every bus-read and

  ;; bus-write.  But the options for those operations take their

  ;; defaults from the ambient with-bus-mode, so this is

  ;; syntactically cleaner.

  (sys:with-bus-mode (:address-modifier #x29)

    (loop repeat words

  for s from source-bus-address

  for d from destination-bus-address

  do

      (let ((v (sys:bus-read s :byte-size 1 :byte-offset 0)))

(sys:bus-write d v :byte-size 1 :byte-offset 3))

      (let ((v (sys:bus-read s :byte-size 1 :byte-offset 1)))

(sys:bus-write d v :byte-size 1 :byte-offset 2))

      (let ((v (sys:bus-read s :byte-size 1 :byte-offset 2)))

(sys:bus-write d v :byte-size 1 :byte-offset 1))

      (let ((v (sys:bus-read s :byte-size 1 :byte-offset 3)))

(sys:bus-write d v :byte-size 1 :byte-offset 0)))))

�

The remaining examples use direct transfers to perform this same operation, and

therefore work for D32 slaves only.

;;; Map the VMEbus addresses into Lisp arrays, then use a Common

;;; Lisp sequence operator to do the copying. The bytes are

;;; shuffled by the interface hardware as each word is read from  

;;; the source. Simple and reasonably efficient for large

;;; transfers, although the setup overhead is fairly high.

�

(defun copy-VME-memory-shuffling (source-bus-address 

  destination-bus-address words)

  ;; with-bus-mode must be wrapped around all uses of

  ;; direct-transfer addresses.

  (sys:with-bus-mode ()

    (stack-let ((s (sys:make-bus-array source-bus-address words 

       :shuffle :byte))

(d (sys:make-bus-array destination-bus-address words)))

      (replace d s))))



Page 259

�

;;; Map the VMEbus addresses into physical addresses and use

;;; simple memory subprimitives to do the copying.  Efficient for

;;; short transfers because of the low setup overhead, but low

;;; level and error prone.

(defun copy-VME-memory-shuffling (source-bus-address 

  destination-bus-address words)

  ;; with-bus-mode must be wrapped around all uses of

  ;; direct-transfer addresses.

  (sys:with-bus-mode ()

    (loop repeat words

  for s first (sys:make-bus-address source-bus-address words 

    :shuffle :byte)

then (sys:%pointer-plus s 1)

  for d first (sys:make-bus-address destination-bus-address words)

then (sys:%pointer-plus d 1)

  do

      (sys:%memory-write d (sys:%memory-read s)))))

�

;;; Map the VMEbus addresses into physical addresses and use

;;; block memory operations to do the copying.  This is the most

;;; efficient way to do bulk transfers.

(defun copy-VME-memory-shuffling (source-bus-address 

  destination-bus-address words)

  ;; with-bus-mode must be wrapped around all uses of

  ;; direct-transfer addresses.  Direct transfers will work for

  ;; A24 and A16 slaves, using the :address-modifier option to

  ;; with-bus-modes as follows.  If we’re really trying to be fast

  ;; and don’t mind being nasty, we can do the entire transfer

  ;; without ever relinquishing the bus to another master, using

  ;; the :ownership option.

  (sys:with-bus-mode (:address-modifier #x39 :ownership :bus-hog)

    ;; with-block-registers must be wrapped around all uses of

    ;; block registers.

    (sys:with-block-registers (1 2)

      ;; Use block register 1 to address the source

      (setf (sys:%block-register 1)

    (sys:make-bus-address source-bus-address words 

  :shuffle :byte))

      ;; Use block register 2 to address the destination

      (setf (sys:%block-register 2)

    (sys:make-bus-address destination-bus-address words))

      ;; Use an unrolled loop to copy the words, which makes the

      ;; memory pipeline operate most efficiently.

      (sys:unroll-block-forms (words 4)

(sys:%block-write 2 (sys:%block-read 1)))))) 

�



Page 260

Dictionary of VMEbus Functions

sys:allocate-slave-buffer-memory name words &key :from-end Function

Returns a starting and ending address in words. There is no enforcement, but this

a simple check-out scheme for slave buffer memory so you do not accidentally use

memory allocated by the system (as on the UX-family machine or by another appli-

cation (like FrameThrower). Specific allocations can be added to an initialization

list. System allocations take place on the system initialization list. 

sys:bus-error Flavor

This condition is signalled if there is a VMEbus error such as a request timeout.

Errors are signalled only on read operations; the XL400 processor stores errors

that occur on write operations to be signalled by a future read operation. 

sys:bus-read bus-address &rest options Function

Reads the location specified by bus-address using a polled transfer. All options de-

fault to those specified by the ambient bus mode. 

See the section "Summary of VMEbus Transfer Options" for a description of the

applicable bus options. 

sys:bus-store-conditional bus-address old new &rest options Function

Checks to see whether the specified bus location contains old, and, if so, stores

new in that location. The test and set are done as a single atomic operation; no

other bus operations are allowed between the two. Both the read and the write are

performed using the specified bus options, if any, which default to those specified

by the ambient bus mode, if any. sys:bus-store-conditional returns t if the test

succeeded and nil if the test failed. See the function store-conditional.

See the section "Summary of VMEbus Transfer Options" for a description of the

applicable bus options. 

sys:bus-write bus-address value &rest options Function

Stores the specified value into the location specified by bus-address using a polled

transfer. All options default to those specified by the ambient bus mode. 

See the section "Summary of VMEbus Transfer Options" for a description of the

applicable bus options. 

sys:deallocate-slave-buffer-memory name Function

name represents the portion of the slave buffer that was allocated by sys:allocate-

slave-buffer-memory. 



Page 261

sys:disable-bus-interrupt level Function

Disables VMEbus interrupts at level. level can be between 1 and 7. 

sys:enable-bus-interrupt level Function

Enables VMEbus interrupts at level. level can be between 1 and 7. 

sys:install-bus-interrupt-handler function status-id Function

Installs function as the interrupt handler for interrupts within the specified status-

id. When an interrupt is detected at that interrupt level, and that interrupt level

is enabled in the interrupt mask, function will be called with one argument, the

status/id byte supplied by the interrupter. The handler will be called in a simple

process, and therefore must not depend on the dynamic environment (special vari-

able bindings, catch tags, and so on.

Note that if function is redefined, the handler must be installed again for the new

definition to take effect. 

sys:logand-bus-interrupt-mask mask Function

Atomically reads the VMEbus interrupt enable mask register, logands it with the

mask argument, and stores the result back in the register. This function is useful

for disabling particular interrupts. It returns the new value, so the current state

of the interrupt mask can be read as follows:

(sys:logand-bus-interrupt-mask -1) �

sys:logior-bus-interrupt-mask mask Function

Atomically reads the VMEbus interrupt enable mask register, logiors it with the

mask argument, and stores the result back in the register. This function is useful

for enabling particular interrupts. It returns the new value, so the current state of

the interrupt mask can be read as follows:

(sys:logior-bus-interrupt-mask 0) �

sys:make-bus-address bus-address size &rest options Function

Returns an Ivory physical address usable to access the specified location on the

VMEbus. This address is usable within only the ambient sys:with-bus-mode. All

options default to those specified by the ambient bus mode. An error is signalled if

there are any conflicts between the specified options and the hardware configura-

tion specified by the ambient bus mode, or if the desired address range is not sup-

ported by the hardware. The first call to sys:make-bus-address or sys:make-bus-

array within a sys:with-bus-mode will set up any necessary address window; if a

subsequent call specifies an address range outside that window an error will be

signalled.



Page 262

See the section "Summary of VMEbus Transfer Options" for a description of the

applicable bus options. 

sys:make-bus-array bus-address dimensions &rest options Function

Returns an indirect array pointing to the specified VMEbus address, using the di-

rect transfer facility. This array is usable only within the ambient sys:with-bus-

mode. The options include all the make-array options, but note that the array

cannot contain arbitrary Lisp objects, only integers and single-precision floating

point numbers; see the section "Keyword Options for make-array". The options

may also include any applicable bus options, which default to those specified by the

ambient bus mode. An error is signalled if there are any conflicts between the

specified options and the hardware configuration specified by the ambient bus

mode, or if the desired address range is not supported by the hardware. The first

call to sys:make-bus-address or sys:make-bus-array within a sys:with-bus-mode

will set up any necessary address window; if a subsequent call specifies an address

range outside that window an error will be signalled.

See the section "Summary of VMEbus Transfer Options" for a description of the

applicable bus options.

sys:post-bus-interrupt &optional (level 0) (status 0) Function

Issues an interrupt request for the specified level on the bus, waits for the inter-

rupt acknowledge cycle, then transmits the specified status/id byte to the interrupt

handler. 

sys:*vme-slave-buffer-base* Variable

The starting address for the slave buffer, in words. 

sys:*vme-slave-buffer-end* Variable

The ending address for the slave buffer, in words. 

sys:with-bus-mode (&rest options) &body body Macro

Establishes a context within which VMEbus addresses may be generated and used;

it is illegal to use a VMEbus address returned by sys:make-bus-address or

sys:make-bus-array outside the dynamic scope of the sys:with-bus-mode in which

it was created. sys:with-bus-mode programs the VMEbus interface according to

the specified options, and guarantees that those parameters will be maintained

throughout the dynamic extent of the macro, even if some other process is trying

to use the VMEbus simultaneously in a completely different manner.

See the section "Summary of VMEbus Transfer Options" for a description of the

applicable bus options. 




