

symbolicsT
..

4 Program Development
Utilities

Cambridge, Massachusetts

Program Development Utilities
999021

August 1986

This document corresponds to Genera 7.0 and later releases.

The software, data, and information contained herein are proprietary to, and comprise
valuable trade secrets of, Symbolics, Inc. They are given in confidence by Symbolics
pursuant to a written license agreement, and may be used, copied, transmitted, and
stored only in accordance with the terms of such license. This document may not be
reproduced in whole or in part without the prior written consent of Symbolics, Inc.

Copyright © 1986,1985,1984,1983,1982,1981,1980 Symbolics, Inc. All Rights
Reserved.
Portions of font library Copyright © 1984 Bitstream Inc. All Rights Reserved.
Portions Copyright © 1980 Massachusetts Institute of Technology. All Rights Reserved.

Symbollcs, Symbollcs 3600, Symbollcs 3670, Symbollcs 3675, Symbolics 3640,
Symbollcs 3645, Symbollcs 3610, Symbollcs 3620, Symbollcs 3650, Genera,
Symbollcs-L1sp®, Wheels, Symbollcs Common LIsp, Zetallsp®, Dynamic Windows,
Document Examiner, Showcase, SmartStore, SemantiCue, Frame-Up, Firewall,

, S-DYNAMICS®, S-GEOMETRY, S-PAINT, S-RENDER®, MACSYMA, COMMON LISP
MACSYMA, CL-MACSYMA, LISP MACHINE MACSYMA, MACSYMA Newsletter and
Your Next Step In Computing are trademarks of Symbolics, Inc.

Restricted Rights Legend
Use, duplication, and disclosure by the Government are subject to restrictions as set
forth in subdivision (b)(3)(ii) of the Rights in Technical Data and Computer Software
Clause at FAR 52.227-7013.

Symbolics, Inc.
4 New England Tech Center
555 Virginia Road
Concord, MA 01742

Text written and produced on Symbolics 3600-family computers by the Documentation
Group of Symbolics, Inc.
Text masters produced on Symbolics 3600-family computers and printed on Symbolics
LGP2 Laser Graphics Printers.
Cover Design: SchaferlLaCasse
Printer: CSA Press
Printed in the United States of America.

Printing year and number: 88 87 86 9 8 7 6 5 4 3 2 1

iii

August 1986 Program Development Utilities

Table of Contents

Page

I. Debugger 3

1. Overview of the Debugger 5

1.1 Overview of Debugger Commands 7
1.2 Overview of Debugger Evaluation Environment 9
1.3 Overview of Debugger Mouse Capabilities 10
1.4 Overview of Debugger Help Facilities 10

2. Entering and Exiting the Debugger II

2.1 Entering the Debugger 11
2.1.1 Entering the Debugger by Causing an Error 11
2.1.2 Entering the Debugger With M-SUSPEND, C-M-SUSPEND 13
2.1.3 Entering the Debugger With break And zl:dbg Functions 14

2.2 Exiting the Debugger 15

3. Using the Debugger 17

3.1 Entering a Debugger Command 17
3.1.1 Debugger Command Accelerators 18
3.1.2 ~diting a Debugger Command 19
3.1.3 Entering a Debugger Command with the Mouse 19

3.2 Getting Help for Debugger Commands 19
3.3 Proceeding and Restarting in the Debugger 20

3.3.1 Using Debugger Proceed and Restart Options 20
3.4 Evaluating a Form in the Debugger 22

3.4.1 Editing a Form in the Debugger 23
3.4.2 Rebound Variable Bindings During Evaluation 24

3.5 Using Recursive Debugger Invocations 25
3.6 Using the Mouse in the Debugger 27
3.7 Debugger Command Descriptions 29

3.7.1 Debugger Commands for Viewing a Stack Frame 31
3.7.2 Debugger Commands for Stack Motion 37
3.7.3 Debugger Commands for General Information Display 41
3.7.4 Debugger Commands to Continue Execution 50
3.7.5 Debugger Trap Commands 52
3.7.6 Debugger Commands for Breakpoints and Single Stepping 57

iv

Program Development Utilities August 1986

3.7.7 Debugger Commands for System Transfer 61
3.7.8 Miscellaneous Debugger Commands 63

3.8 Debugger Functions 63
3.9 Debugger Variables 66

4. Summary of Debugger Commands 67

5. Tracing Function Execution 73

5.1 Options To trace 74
5.2 Controlling the Format Of trace Output 77
5.3 Untracing Function Execution 78

6. Advising a Function 79

6.1 Designing the Advice 82
6.2 :around Advice 82
6.3 Advising One Function Within Another 83

7. Stepping Through an Evaluation 85

8. evalhook 87

8.1 applyhook 88

ll. Miscellaneous Debugging Aids 91

9. The Inspector 93

9.1 How the Inspector Works 93
9.2 Entering and Leaving the Inspector 93
9.3 The Inspector Interaction Pane 95
9.4 The Inspector History Pane 95
9.5 The Inspector Menu Pane 95
9.6 The Inspector Inspection Pane 96

9.6.1 Inspection Pane Display 97
9.7 Special Characters Recognized by the Inspector 97
9.8 Examining a Compiled Code File 98

10. The Peek Program 99

10.1 Overview of Peek 99
10.2 Peek Modes 101

III. The Compiler 105

August 1986

11. Introduction to the Compiler

11.1 How to Invoke the Compiler

12. Structure of the Compiler

v

Program Development Utilities

107

107

109

12.1 How the Stream Compiler Handles Top-level Forms 111
12.1.1 Controlling the Evaluation of Top-level Forms 115

12.2 Function Compiler 116
12.3 Bin File Dumper 117
12.4 Compiler Tools and Their Differences 117

12.4.1 Tools for Compiling Code From the Editor Into Your World 117
12.4.2 Tools for Compiling Files 118
12.4.3 Tools for Compiling Single Functions 120

13. Compiler Warnings Database 123

14. Controlling Compiler Warnings 127

14.1 Compiler Style Warnings 127
14.2 Function-referenced-but-never-defined Warnings 130

14.2.1 Overriding Variable-defined-but-never-referenced Warnings 131

15. Compiler Switches 133

16. Compiler Source-Level Optimizers 135

17. Files That Maclisp Must Compile 137

18. Putting Data in Compiled Code Files 139

IV. Maintaining Large Programs 141

19. Introduction to the System Construction Tool 143

20. Defining a System

20.0.1 defsystem Options
20.0.2 defsystem Modules

20.1 defsystem Operations
20.1.1 Table of Module Types and Operations
20.1.2 System Plan

20.2 User-defined Module Types
20.3 User-defined Operations on Systems

145

146
153
168
169
171
171
172

vi

Program Development Utilities August 1986

21. Loading and Compiling Systems 175
21.0.1 load-system Keywords 176
21.0.2 compile-system Keywords 179

21.1 Loading System Definitions That Use Logical Pathnames 180
21.1.1 Sys:site;System-name.System File 181
21.1.2 Sys:site;Logical-host. Translations File 182
21.1.3 System Declaration File 183

21.2 Loading System Definitions That Use Physical Pathnames 185

22. Other Operations on Systems 187

22.1 Editing, Hardcopying, Reap-Protecting, and Releasing Systems 187

23. Directories Associated with a System 191

23.1 Component Directory File 193
23.2 Contents of the Patch Directory Files 194

24. Patch Facility 197

24.1 Types of Patch Files 199
24.1.1 Patch Directory File 200
24.1.2 Individual Patch Files 200
24.1.3 Organization of Patch Files 200
24.1.4 Names of Patch Files 201

24.2 Making Patches 203
24.2.1 Start Patch (M-H) 205
24.2.2 Start Private Patch (M-H) 205
24.2.3 Add Patch (M-H) 206
24.2.4 Add Patch Changed Definitions of Buffer (1'1->0 206
24.2.5 Add Patch Changed Definitions (M-H) 207
24.2.6 Select Patch (M-X) 207
24.2.7 Show Patches (M-X) 207
24.2.8 Finish Patch (M-X) 208
24.2.9 Abort Patch (M-H) 209
24.2.10 Resume Patch (M-H) 209
24.2.11 Recompile Patch (M-X) 209
24.2.12 Reload Patch (!'I-H) 209

24.3 Loading Patches 210

25. Obtaining Information About a System 213

25.1 Obtaining Information on System Versions 215

vii

August 1986 Program Development Utilities

v. Program Counter Metering 219

26. PC Metering 221

VI. Program Development Tools and Techniques 225

27. Introduction 227

27.1 Purpose 227
27.2 Prerequisites 227
27.3 Scope 227
27.4 Method 227
27.5 Features 228
27.6 Organization 228

28. Writing and Editing Code 231

28.1 Using Zmacs 231
28.1.1 Using The HELP Key in Zmacs 231
28.1.2 Zmacs Command Completion 232

28.2 Preparing to Write Code 233
28.2.1 Entering the Editor 233
28.2.2 Creating aNew File 234
28.2.3 Creating a File Attribute List 234
28.2.4 Major and Minor Modes 236

28.3 Program Development: Design and Figure Outline 238
28.3.1 Program Strategy 238
28.3.2 Simple Screen Output 239
28.3.3 Outlining the Figure 240

28.4 Keeping Track of Lisp Syntax 247
28.4.1 Comments 249
28.4.2 Aligning Code 251
28.4.3 Balancing Parentheses 252

28.5 Program Development: Drawing Stripes 252
28.6 Finding Out About Existing Code 260

28.6.1 Finding Out About Objects 260
28.6.2 Finding Out About Symbols 263
28.6.3 Finding Out About Variables 265
28.6.4 Finding Out About Functions 265
28.6.5 Finding Out About Pathnames 271

28.7 Program Development: Refining Stripe Density and Spacing 272
28.8 Editing Code 282

28.8.1 Identifying Changed Code 282
28.8.2 Searching and Replacing 284
28.8.3 Moving Text 286
28.8.4 Keyboard Macros 292

viii

Program Development Utilities

28.8.5 Using Multiple Windows

29. Compiling and Evaluating Lisp

29.1 Compiling Lisp Code
29.1.1 Compiling Code in a Zmacs Buffer
29.1.2 Compiling and Loading a File

29.2 Evaluating Lisp Code
29.2.1 Evalu[·tion and the Editor
29.2.2 Lisp Input Editing

30. Debugging Lisp Programs

30.1 Using the Compiler Warnings Database
30.2 Using the Debugger
30.3 Commenting Out Code
30.4 Tracing and Stepping

30.4.1 Tracing
30.4.2 Stepping

30.5 Using Breakpoints
30.6 Expanding Macros
30.7 Using the Inspector

31. Using Flavors and Windows

31.1 Program Development: Modifying the Output Module
31.1.1 A Mixin to Position the Figure
31.1.2 The Basic Arrow Window

August 1986

293

297

298
299
301
303
303
306

309

309
310
314
323
323
325
329
332
335

343

344
345
349

31.1.3 Converting LGP to Screen Coordinates 354
31.1.4 Flavors for LGP Output 357
31.1.5 The Top-Level Function 359
31.1.6 The Arrow Window: Interaction, Processes, and the Mouse 364
31.1. 7 Defining Flavors to Signal Conditions 369

31.2 Programming Aids for Flavors and Windows 377
31.2.1 General Information on Flavors 377
31.2.2 Methods 378
31.2.3 Init Keywords 381

32. Calculation Module for the Sample Program 383

33. Output Module for the Sample Program 403

34. Graphic Output of the Sample Program 425

Index 427

ix

August 1986 Program Development Utilities

List of Figures

Figure 1.
Figure 2.

Figure 3.
Figure 4.
Figure 5.

Figure 6.

Figure 7.

Figure 8.
Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.
Figure 14.

The Inspector 94
Program output with only the outlines of the arrows in the 248
figure.
Program output with stripes of even spacing and density. 261
Program output with stripes of varying spacing and density. 283
U sing multiple windows to test the program while viewing the 296
source code.
Edit Compiler Warnings (M-X) splits the screen. The upper 311
window contains compiler warnings. The lower window contains
the source code.
The Window Debugger: inspecting the stack frame containing a 315
call to compute-dens.
The Window Debugger: inspecting the variable *x2*. 316
Output resulting from a faulty attempt to outline the small 320
arrows recursively.
Output resulting from a faulty attempt to outline the small 321
arrows recursively, with the second function call commented
out.
Output resulting from a corrected attempt to outline the small 322
arrows recursively, with the second function call commented
out.
Output from the program with a bug in the function 333
draw-arrow-shaft-stripes.
The Inspector window: inspecting an instance of a structure. 338
The Inspector window: inspecting an instance of a flavor. 339

List of Tables

Table 1. Trace Menu I terns and trace Options 326

x

Program Development Utilities August 1986

August 1986

Introduction to Program Development Utilities

This document describes program development utilities available to you in Genera,
the Symbolics software environment. These utilities include:

• The Genera interactive Debugger. See the section "Debugger", page 3.

• Debugging utilities: Trace, Advise, Step, and Evalhook. See the section
"Debugger", page 3.

• The Inspector and Peek utilities. See the section "Miscellaneous Debugging
Aids", page 91.

• The compiler. See the section "The Compiler", page 105.

• Utilities for maintaining large programs. See the section "Maintaining
Large Programs", page 141.

• Metering utilities. See the section "Program Counter Metering", page 219.

This document also suggests some programming style and techniques for
developing programs in the Genera software environment. It describes ways of
using Genera features that might help you through various stages of the program
development process. See the section "Program Development Tools and
Techniques", page 225.

2

Program Development Utilities August 1986

3

August 1986 Debugger

PART I.

Debugger

4

Program Development Utilities August 1986

5

August 1986 Debugger

1. Overview of the Debugger

Genera, the Symbolics software environment offers you a host of powerful
debugging tools. The most comprehensive of these tools is the Symbolics
interactive Debugger and its window-oriented counterpart, the Window Debugger.

Other debugging tools are:

o The Trace facility, which performs certain debugging actions when a
function is called or when a function returns. See the section "Tracing
Function Execution", page 73.

o The Advise facility, which modifies the behavior of a function. See the
section "Advising a Function", page 79.

o The Step facility, which allows you to execute forms in your program, one at
a time, so that you can examine what is happening when execution suspends
at every "step." See the section "Stepping Through an Evaluation", page 85.
The Debugger's :Single Step command also performs stepping. See the
section "Single Step Command", page 61.

o The evalhook facility, which allows you to get a particular Lisp form
whenever the evaluator is called. The Step facility also uses evalhook. See
the section "evalhook", page 87.

Two other tools related to debugging are the Inspector and Peek. The Inspector is
a window-oriented program that lets you inspect data objects and their
components. Peek is a program that gives a dynamic display of various kinds of
system status. For information about the Inspector: See the section "The
Inspector", page 93. For information about Peek: See the section "The Peek
Program", page 99.

For information on the Window Debugger: See the section "Debugging Lisp
Programs", page 309.

In the Genera software environment, unlike more traditional programming
environments, you do not have to include the Debugger explicitly when you
compile your programs. Generally, you can debug your code as you write it
without having to perform a series of complicated compiling, loading, and
executing procedures between source code development and debugging.

Because Symbolics user-interface features allow you to perform many Symbolics
activities simultaneously - Zmacs, Zmail, the file system, a Dynamic Lisp Listener,
and so on - debugging becomes an easy task, regardless of how many system
activities you are using. You can move in and out of the Debugger as easily as
you can move in and out of any other activity in Genera.

6

Program Development Utilities August 1986

For example, the Debugger command, :Edit Function, brings up a specified
function for you to edit in a Zmacs editor window. This is useful when you have
found the function that caused the error and want to edit that function
immediately. Another command, :Mail Bug Report, creates a bug report message
in a mail window and puts a backtrace into it. While composing the bug report,
you can switch back and forth between the Debugger and the mail window.

The Symbolics Debugger is there whenever you need it. The Debugger is invoked
whenever an error occurs in your program's execution or the execution of a
system function. That is, your machine brings you into the Debugger whenever it
encounters an error that is not handled by a condition handler, for example, when
you reference an unbound variable. See the section "Entering and Exiting the
Debugger", page 11. Once in the Debugger, you are given a choice of actions that
can correct the error. These actions are called proceed and restart options. See
the section "Proceeding and Restarting in the Debugger", page 20.

You can also enter the Debugger explicitly, at any time, by pressing M-SUSPEND or
C-M-SUSPEND. Or you can make your program enter the Debugger by inserting the
break or zl:dbg function into your program code. See the section "Entering and
Exiting the Debugger", page 11.

Upon Debugger entry, besides selecting one of the proceed and restart options, you
can enter any of the Debugger's commands. These commands are full-form
English commands, built on the normal Command Processor (CP) substrate. In
fact, several Debugger commands are in the global command table. For more
information on Debugger commands: See the section "Entering a Debugger
Command", page 17. Also: See the section "Debugger Command Descriptions",
page 29.

In the Debugger you can also evaluate a form in the lexical (user-program)
context of the current frame. This context is referred to as the Debugger's
evaluation environment. You can think of the Debugger's evaluation environment
as a special read-eval-print loop that not only evaluates forms but also evaluates
them in the context of the suspended function, where the lexically appare~t values
of all the local variables are accessible. For more information on the evaluation
environment: See the section "Evaluating a Form in the Debugger", page 22.

Like other output in the Genera software environment, Debugger outputis mouse
sensitive, so you can perform many useful Debugger operations using the mouse.
For more information on mouse capabilities: See the section "Using the Mouse in
the Debugger", page 27.

The Debugger also provides some online help facilities. For more information on
help facilities: See the section "Getting Help for Debugger Commands", page 19.

For complete information on the uses of these features and other Debugger
features - plus a list of descriptions for all Debugger commands: See the section
"Using the Debugger", page 17.

7

August 1986 Debugger

In general, you would use the Debugger when:

o Your program triggers the Debugger because garbage - an unbound variable
or too many arguments perhaps - was passed to a function, and you want to
find out where the garbage came from. See the section "Analyze Frame
Command", page 43.

o You want to see what's happening in the sequence of function calls just
executed, including a history of these function calls, the argument values
passed, the local-variable values, the source code, and the compiled code.
See the section "Show Backtrace Command", page 45. Also: See the section
"Debugger Commands for Viewing a Stack Frame II , page 31.

o You want to find out who or what is referencing a special variable or any
other location in memory. See the section "Monitor Variable Command",
page 54.

o You want to perform debugging operations using the mouse. See the section
"Using the Mouse in the Debugger", page 27.

o You want to continue program execution, proceed from an error, restart a
function, return from a function, or throw through a function. See the
section "Debugger Commands to Continue Execution", page 50.

o Your condition handler does not work properly, and you want to debug this
handler when it is encountered. See the section II Enable Condition Tracing
Command", page 54.

o You want to edit your function's source code in Zmacs immediately after you
have found the error. See the section "Edit Function Command", page 61.

o You want to put a Debugger backtrace into a mail message and send this
message as a bug report. See the section "Mail Bug Report Command",
page 62.

o You want to use Debugger breakpoint commands, instead of using the Trace
facility or inserting a function in your code, to set Debugger breakpoints.
See the section "Commands for Breakpoints and Single Stepping".

1.1 Overview of Debugger Commands

The Debugger comprises more than 50 full-form English commands, which are
implemented as CP commands. Debugger commands are entered inside the

8

Program Development Utilities August 1986

Debugger at the Debugger's command prompt, a right arrow (~). Commands fall
into eight general categories:

Commands for viewing a stack frame

Commands for stack motion

Commands for general information display

Commands to continue execution

Trap commands

Commands for breakpoints and single stepping

Commands for system transfer

Miscellaneous commands

Most Debugger commands have corresponding key-binding accelerators, which
means you can press a combination of one or more keys in place of the command.
For example, you can press the accelerator c-E instead of the command :Edit
Function.

Most Debugger commands also have keywords you can use to modify the
command's behavior.

Many Debugger commands share the global command table. Therefore, you can
enter these commands while you are in a CP command loop. You do not have to
be in the Debugger. These commands are:

9

August 1986 Debugger

:Clear All Breakpoints

:Clear Breakpoint

:Disable Condition Tracing

:Edit Function

: Enable Condition Tracing

:Monitor Variable

:Set Breakpoint

:Set Stack Size

:Show Breakpoints

:Show Compiled Code

:Show Monitored Locations

:Show Source Code

: U nmonitor Variable

Note, however, that you must type a preceding colon with every command entered
in the Debugger; for example, you must type :Set Breakpoint in the Debugger.

For complete information on Debugger commands: See the section II Entering a
Debugger Command", page 17.

1.2 Overview of Debugger Evaluation Environment

In the Debugger, you can evaluate a form as easily as you can in a Dynamic Lisp
Listener read-eval-print loop. Evaluating a form in the Debugger, however, is
particularly useful because you are evaluating the form in the context of a user
program and the current stack frame. This means you can~see the value of Lisp
objects at the point in program execution where an error dccu.rred or at the
precise place in your program where you explicitly suspend execution and invoke
the Debugger. You can even reference lexical (local) variables at the point where
execution suspends.

Evaluating a form in the Debugger is a simple task. If you type a character other

10

Program Development Utilities August 1986

than the first character in a Debugger command - a colon or accelerator key - the
Debugger immediately brings you into its evaluation environment. In other words,
just type the form. Evaluation happens automatically.

For complete information on how to evaluate a form in the Debugger: See the
section "Evaluating a Form in the Debugger", page 22.

1.3 Overview of Debugger Mouse Capabilities

When the output generated by Debugger commands is displayed in a Dynamic
Window, it is mouse sensitive. You can perform several useful debugging
operations simply by using the mouse to click on something. Some of these
operations include: setting a breakpoint, monitoring a variable or another location
in memory, evaluating a form, editing a function, setting the current frame, and
choosing a proceed or restart option. The mouse documentation line at the bottom
of the screen tells you what actions are available for the currently highlighted
output item.

Besides performing certain mouse operations by clicking directly on displayed
Debugger output, you can use menus to perform the usual large variety of other
types of operations on Debugger output, just as you can with other kinds of output
generated in the Genera software environment.

For more information on using the mouse in the Debugger: See the section
"Using the Mouse in the Debugger", page 27.

1.4 Overview of Debugger Help Facilities

The Debugger provides online help for Debugger commands and their components,
such as keywords. You can get help for all Debugger commands by typing c-HELP,
which displays brief command descriptions and available key-binding accelerators.
For more information about Debugger help: See the section "Getting Help for
Debugger Commands", page 19.

11

August 1986 Debugger

2. Entering and Exiting the Deb~gger

Virtually anywhere in Genera, the Debugger is invoked during the signalling of an
error to which no condition handlers are bound. The Debugger is invoked not
only when errors occur during program execution, but also when errors occur in
relation to functions that control various system operations, such as loading
patches and executing commands in the Dynamic Lisp Listener.

The Debugger is invoked within the process that signalled the error. Since the
Debugger is not a separate process, several distinct processes can all be in the
Debugger at the same time, independently.

Usually, entry to the Debugger is triggered by an error. However, you can also
enter the Debugger explicitly at any time. You exit the Debugger via the ABORT
key, the :Abort command, or by invoking a proceed or restart handler.

This chapter describes various ways to enter and exit the Debugger.

2.1 Entering the Debugger

Enter the Debugger in one of three ways:

• Automatically, by causing an error.

• Explicitly, by pressing n-SUSPEND or c-n-SUSPEND.

• Through your program execution, by inserting and calling the break
function or the zl:dbg function.

2.1.1 Entering the Debugger by Causing an Error

The Debugger is invoked automatically when errors occur during your program
execution, or during the execution of system functions, or when you explicitly
cause an error.

2.1.1.1 Error Display

Upon entering the Debugger via an error, you receive an error message and a
choice of actions to take. Errors are signalled by the microcode and by Lisp
programs by error or related functions.

For example, suppose you trigger an error by using an unbound variable, foo.
The Debugger error display might look like this:

12

Program Development Utilities August 1986

Trap: The variable FOO is unbound.

SI:*EVAL:

Arg 0 (SYS:FDRM): FDD
Arg 1 (SYS:ENV): NIL
--Defaulted args:--
Arg 2 (SI:HDDK): NIL

s-A, RESUME:
s-B, s-sh-C:
s-C:
s-D, ABORT:
-7

Supply a value to use this time as the value of FDD
Supply a value to store permanently as the value of FDD
Retry the SYMEVAL instruction
Return to Lisp Top Level in Dynamic Lisp Listener 1

The word Trap, Error, or Break followed by a boldface message, such as the line at
the top of this display, indicates you have entered the Debugger. Trap, Error, and
Break are the most common causes, although there are others. Trap, Error, and
Break have the following meanings:

o T rap indicates an error signalled by the microcode.

o Error indicates an error signalled by a program.

o Break indicates entry to the Debugger by keystroke (M-SUSPEND or
c-M-SUSPEND), the break function, or the zl:dbg function.

The message that follows describes the error in English - in this example, an
unbound variable. The next five lines in the example show the stack frame in
which the error occurred, the function that was being called, and the current
values of arguments. The next six lines are available proceed and restart options,
which are discussed in the next section.

The right-facing arrow at the end of the display (-7) is the Debugger's command
prompt, which waits for you to enter a command. Multiple arrow prompts indicate
recursive invocations of the Debugger. For more information on recursive
Debugger invocations: See the section "Using Recursive Debugger Invocations",
page 25.

2.1.1.2 Debugger Proceed and Restart Options

Whenever you enter the Debugger, either for the first time or recursively, it
displays a list of possible actions for you to take. These actions, called proceed
and restart options, allow you to proceed (continue program execution) from the
error, leave the Debugger, restart (return to) a previous activity, or take some
other action.

13

August 1986 Debugger

A list of proceed and restart options might look like this:

s-A, RESUME: Supply a value to use this time as the value of FDD
s-B, s-sh-C: Supply a value to store permanently as the value of FDD
s-C: Retry the SYMEVAL instruction
s-D, ABORT: Debugger command level 1
s-E: Return to Lisp Top Level in Dynamic Lisp Listener 1

You can select one of these options by pressing the keys that appear in the left
hand column or by clicking on an option with the mouse. All of these options are
bound to the SUPER key.

For more information on proceed and restart options: See the section "Proceeding
and Restarting in the Debugger", page 20.

2.1.2 Entering the Debugger With M-SUSPEND, C-M-SUSPEND

When you want to enter the Debugger explicitly, without waiting for an error to
occur, you can do so in one of two ways:

Press M-SUSPEND

Press C-M-SUSPEND

If the program you are running is waiting for keyboard input, use M-SUSPEND.

If you want to enter the Debugger while your program is actually running, use
c-M-SUSPEND, which calls the Debugger immediately, at any time, regardless of
your program's state.

2.1.2.1 Entering a Break Loop With SUSPEND, c-SUSPEND

Using SUSPEND or c-SUSPEND, without the META key modifier, causes entry to a
break loop. A break loop, also called a breakpoint loop, is a Dynamic Lisp Listener
read-eval-print loop that comes up on your screen in a special small "breakpoint"
window whenever you temporarily suspend an activity, such as Zmacs or Zmail.
This allows you to suspend into a Dynamic Lisp Listener instead of typing
SELECT -L to actually change activities.

Do not confuse this break loop with a Debugger breakpoint. A break loop is a
Dynamic Lisp Listener read-eval-print loop, which is activated when you suspend
your current activity. A Debugger breakpoint, which you set via the Set
Breakpoint command, the break function, the zl:dbg function, M-SUSPEND, or
c-M-SUSPEND, suspends into the Debugger, usually for the purpose of debugging a
program. Once in the Debugger, you can evaluate forms using the Debugger's
read-eval-print loop (evaluation environment).

14

Program Development Utilities August 1986

When you want to enter a break loop, you can do so in one of two ways:

Press SUSPEND

Press c-SUSPEND

If the program you are running is waiting for keyboard input, use SUSPEND.

If you want to enter a break loop while your program is actually running, use
c-SUSPEND, which brings up the break loop immediately, at any time, regardless of
your program's state.

To leave the break loop and return to your previous activity, press the RESUf1E key.

2.1.3 Entering the Debugger With break And zl:dbg Functions

A third way of entering the Debugger is by inserting the break or the zl:dbg
function into your program's source code. These functions can help you detect
errors when you place one of them at strategic points in your program - places
where you can examine the stack and pinpoint probable causes of errors.

The following paragraphs provide more information on the break and the zl:dbg
functions.

break &optional format-string &rest format-args Function
The break function is similar to zl:dbg. Both functions, when evaluated,
cause entry to the Debugger (a Debugger Break). However, break takes a
format-string and format-args instead of a process.

The format-string is a user-written error message that is printed in the
Debugger's Break message whenever break is encountered and you enter
the Debugger. format-args are the FORMAT-style arguments to FORMAT
directives in format-string.

break is a temporary way to insert Debugger breakpoints into your
program while you are debugging it. It is not designed for permanent use
in your program as a way of signalling errors. Therefore, you would use
this function only for the duration of your debugging session. Continuing
from break will not trigger any unusual recovery action.

zI:dbg &optional process Function
Forces process into the Debugger so that you can look at its current state.
zl:dbg sets up a restart handler for ABORT and RESUME that exits from the
zl:dbg function back to the original process. The message for this restart
handler is "Allow process to continue". You can use :Throw, :Return,
: Reinvoke, and other similar Debugger commands when you enter the
Debugger via zl:dbg .

• With no argument, it enters the Debugger as if an error had occurred
for the current process. It is not an error; in particular, catch-error

15

August 1986 Debugger

does not handle it. You can include this form in program source code
as a means of entering the Debugger. This is useful for breakpoints
and causes a special compiler warning.

• With an argument of t, rather than a process, window, or stack
group, it finds a process that has sent an error notification.

Suppose you are running iJ? process x and you use zl:dbg on some process
y. Process y is forced into the Debugger, no matter ~hat it is doing.
Technically, it is "interrupted", similar to how c-SUSPEND and C-M-SUSPEND

work. Process y starts running the Debugger, using the stream
debug-io, which gets the same stream as was bound to *terminal-io* in
process x. At this time, process x waits in a state called DBG until process
y leaves the Debugger, and so process x does not contend for the stream.

2.2 Exiting the Debugger

To exit the Debugger, use the ABORT key, the :Abort command, or invoke a restart
option. ABORT, which is a very powerful command, takes you out of the process
that received the error.

If an error brings you into the Debugger, and you don't want to use the Debugger,
you can get back to the top command level in which your program is running by
simply pressing ABORT. In this case, the top command level is the level in which
you were working prior to the Debugger call - the first and only invocation of the
Debugger.

If you have made a number of errors, or if you have called the Debugger explicitly
several times, then you probably are in the middle of a series of recursive
Debugger invocations. In this case, ABORT returns you to the previous invocation.
If you keep pressing ABORT, the invocations unwind until you actually leave the
Debugger and return to top level.

If you find yourself in the middle of many recursive Debugger invocations, or if
you are in the Debugger's evaluation environment, and you want to leave the
Debugger immediately: Press M-ABORT, which brings you back to top level
immediately.

16

Program Development Utilities August 1986

August 1986

3. Using the Debugger

This chapter offers some general instructions for using the Debugger.
Specifically, it covers the following topics:

Entering a Debugger command

Getting help for Debugger commands

Proceeding and restarting in the Debugger

Evaluating a form in the Debugger

Using recursive Debugger invocations

U sing the mouse in the Debugger

Descriptions of Debugger commands appear at the end of this chapter.

3.1 Entering a Debugger Command

17

Debugger

Entering a Debugger command is almost identical to entering a command in the
Command Processor (CP) to a Dynamic Lisp Listener. In fact, you can enter
many Debugger commands in both the Debugger and the CP because these
commands share the same command table. If you have not done so already, read
the information in Book 1 on entering commands in the CPo Specifically: See the
section "Communicating with Genera" in User's Guide to Symbolics Computers.

When an error brings you into the Debugger, or when you enter the Debugger
through r'l-SUSPEND, c-r'l-SUSPEtlD, break, or zl:dbg, the Debugger prompts you for
commands. The Debugger's command prompt is a right arrow (-7). Recursive
Debugger invocations prompt you with two or more arrows. For example, the
third Debugger invocation prompts you with -7-7-7. See the section "Using
Recursive Debugger Invocations", page 25.

At its command prompt, the Debugger expects a full-form command, such as :Show
Backtrace, or a command accelerator, such as c-B. When giving a full-form
command in the Debugger, you must precede the command with a colon. For
example:

:Show Backtrace

18

Program Development Utilities August 1986

If you enter anything other than a colon or an accelerator - anything that is not a
Debugger command - the Debugger brings you into its evaluation environment,
where you can evaluate Lisp expressions. See the section "Evaluating a Form in
the Debugger", page 22.

Because they are implemented as CP commands, Debugger commands have
positional arguments, keywords, and command completion, which allows you to
enter a command without typing the whole command name. You can also edit a
Debugger command with the input editor. For more information on positional
arguments, keywords, and command completion: See the section "Communicating
with Genera" in User's Guide to Symbolics Computers.

3.1.1 Debugger Command Accelerators

Most Debugger commands have key-binding accelerators. You can enter a
command's accelerator instead of its full-form command name. Some commands
have only one corresponding accelerator. For example, the accelerator c-M-F
stands for:

:Show Function

Other commands, however, have two or more accelerators that correspond to
different variations of the command. For example, the :Previous Frame conlmand
has five accelerators:

RETURN J c-P J M-P J C-M-P J C-M-U

In this case, each accelerator corresponds to a commandlkeyword combination. For
example, M-P stands for:

:Previous Frame :Detailed Yes

and C-M-P stands for:

:Previous Frame :Internal Yes

Where applicable, accelerators take a numeric argument to complete the command
successfully. For example, if you type the :Show Backtrace command, you can
specify how many stack frames to display with the :Nframes keyword - :Nframes
2, 3, 4, and so on. However, if you enter the command accelerator, c-B, you can
specify how many frames to display by giving a numeric argument. For example,
c-9 c-B would display nine frames. Likewise, c-l c-5 c-B would display 15
frames.

When you press an accelerator, the Debugger displays an italic message that
defines what the accelerator stands for. It then executes the command. For
example, when you press the c-B accelerator, you get this message:

-7 Contro 1-B Show Backtrace :Nframes 10000 :Internal No :Detailed No

19

August 1986 Debugger

3.1.2 Editing a Debugger Command

When you make a mistake while typing a Debugger command or change your mind
about entering the command, you have two choices:

Press ABORT and begin again.

Edit your input.

The input editor allows you to type, display, and edit a Debugger command. With
the input editor, you can edit all Debugger command components - command
name, positional arguments, and keywords - before entering the command.

For more information on the input editor: See the section "The Input Editor
Program Interface" in Reference Guide to Streams, Files, and I/O.

The input editor is also used to edit a form in the Debugger's evaluation
environment. For more information on the Debugger's evaluation environment:
See the section "Evaluating a Form in the Debugger", page 22.

3.1.3 Entering a Debugger Command with the Mouse

You can use the mouse to enter a Debugger command. This is accomplished by
simply pointing the mouse at a Debugger command previously displayed in the
screen output and clicking on that command. See the section " Using the Mouse
in the Debugger", page 27.

3.2 Getting Help for Debugger Commands

The Debugger offers you online help. When you press the HELP key inside the
Debugger, the system displays several help options for you to choose. These
options include:

• Pressing c-HELP, which displays documentation about all Debugger
commands. This documentation consists of brief command descriptions and
available key-binding accelerators.

• Pressing the ABORT key, which takes you out of the Debugger. (You can
enter the :Abort command or press c-Z instead of pressing ABORT.)

• Pressing C-M-~J, which brings you into the Window Debugger. (You can
enter the :Window Debugger command instead of pressing C-M-W.)

The REFRESH key, the :Show Frame command, or the :Show Frame command
accelerator c-L clears the screen then redisplays the error message for the current
stack frame.

20

Program Development Utilities August 1986

You can also ask for help with keywords. If you do not remember what keywords
are available for the command you are entering, press the HELP key after you
receive the keywords prompt. The Debugger displays a list of keywords for that
command. For example:

-7 :Previous Frame (keywords) HELP
You are being asked to enter a keyword argument

These are the possible keyword arguments:
:Detailed Show locals and disassembled code
: Internal
:Nframes
:To Interesting

Show internal interpreter frames
Move this many frames
Move out to an interesting frame

3.3 Proceeding and Restarting in the Debugger

Upon entering the Debugger, you might not want to use Debugger commands.
Instead, you might want, for example, to continue program execution, leave the
Debugger, or return to a previous activity. These alternatives are called
proceeding and restarting in the Debugger. Proceeding means to continue
execution from the point where the error occurred. Restarting means to return to
a prior activity, such as the Dynamic Lisp Listener or Zmail.

Proceeding and restarting are implemented through a displayed list of possible
actions for you to take. These actions are called proceed and restart options.

3.3.1 Using Debugger Proceed and Restart Options

Whenever you enter the Debugger, either for the first time or recursively, the
Debugger displays a list of possible actions for you to take. These actions, called
proceed and restart' options, allow you to proceed from the error (continue program
execution), leave the Debugger, restart (return to) a previous activity, or take
some other action.

A list of proceed and restart options might look like this:

s-A,
s-B,
s-C:
s-D,
s-E:

RESUME:
s-sh-C:

ABORT:

Supply a value to use this time as the value of FDa
Supply a value to store permanently as the value of FDD
Retry the SYMEVAL instruction
Debugger command level 1
Return to Lisp Top Level in Dynamic Lisp Listener 1

You can select one of these actions by pressing the keys that appear in the left
hand margin or by selecting an option with the mouse. All of these options are
bound to the SUPER key.

21

August 1986 Debugger

Proceed and restart options are assigned to internal proceed handlers or restart
handlers respectively. A proceed handler allows you to proceed from the error -
continuing execution from the point where the error occurred. For example, you
can assign a correct value to an unbound variable then continue execution. A
restart handler allows you to unwind the stack - the series of calls that led to the
error - and return to a previous system level prior to the error. For example, you
can return to a previous Debugger invocation, Zmail, or Zmacs, or you can leave
the Debugger and return to the top level activity, such as the Dynamic Lisp
Listener, as shown above.

3.3.1.1 Using ABORT And REsur1E in the Debugger

Debugger proceed and restart options are listed in order from the most recent
handler that was called to the least recent, oldest handler that was called. The
REsur·1E key is always assigned to the innermost proceed handler or the innermost
restart handler if there are no proceed handlers. The ABORT key is always
assigned to the innermost restart handler. Pressing the ABORT key usually brings
you back to the next previous top-level process in which you were working before
the error occurred.

In general, therefore, whenever you want to proceed from the error, press REsur·1E.
Whenever you want to restart the previous activity, press ABORT.

The exact way REsur·1E works depends on the kind of error that happened. For
some errors, there is no standard way to proceed, and the REsur·1E option just tells
you so and returns tp the Debugger's command level. For the very common
"unbound variable" error, it requests that you supply the Lisp object that should
be used in place of the (nonexistent) value of the symbol. For unbound-variable or
undefined-function errors, you can also just type Lisp forms to set the variable or
define the function, and then press RESUME; execution proceeds after the Debugger
asks you to confirm that the new value is acceptable.

The ABORT key, of course, is used in general to exit from the Debugger. See the
section "Exiting the Debugger", page 15.

3.3.1.2 Supplying a Value to Store Permanently

The value you supply with the REsur·1E proceed option provides a replacement value
but does not change the value of the Lisp object permanently. If you want to
change the value permanently, use the proceed option s-sh-C, which instructs you
to supply a value to store permanently. This option is similar to REsur·1E, except
s-sh-C actually sets a variable or defines a function and stores the new value so
that the error does not happen again.

3.3.1.3 Supplying a Missing Package Prefix

The proceed option c-sh-P is only available for such errors as an unbound
variable or undefined function when there is a variable or function in another
package that has the same name. It permits easy recovery when you forget to
supply a package prefix.

22

Program Development Utilities August 1986

3.4 Evaluating a Form in the Debugger

You can evaluate a form in the Debugger as easily as you can evaluate a form in
a Dynamic Lisp Listener. Evaluation in the Debugger is useful because the
Debugger evaluates a form in the context of the function that got the error. All
bindings that were in effect at the time the error occurred are in effect when your
form is evaluated. You can also evaluate a form using the lexical context of the
current frame. For example, you can see the values of lexical variables within
LET and LOOP operations. Lexical variables are local variables created
temporarily; they exist only for the duration of the lexical operation.

To evaluate a form in the Debugger, simply press a key that is not a command -
a character other than a colon or command accelerator key. (As you recall, a full
form Debugger command must begin with a colon.) To evaluate a form, you can
type, for example, an open parenthesis. The Debugger gives you the following
evaluation prompt:

Eval (program):

This Eval (program): prompt indicates you are evaluating a form using the lexical,
user-program context of the current frame. This means you can see the values of
Lisp objects, including local variables, at the place where your program execution
suspends.

The evaluation prompt comes up the moment you type a non-command character.
Your character is immediately placed to the right of the prompt. For example,
suppose you type an open parenthesis at the Debugger's right-arrow prompt. This
is what happens the moment you type the character:

--} Eval (program): (

Mter it evaluates a form, the Debugger prompts again with the right arrow. If,
while typing the form, you change your mind and want to get back to the
Debugger's right-arrow prompt, press ABORT. Deleting all the characters in the
form also brings you back to the Debugger prompt.

The Debugger's evaluation environment is actually a read-eval-print loop that uses
the context of the function that received the error. Like a Dynamic Lisp Listener
read-eval-print loop, the Debugger's evaluation environment maintains the values
of +, *, and related variables.

If a complex error occurs in the evaluation of the Lisp expression, you are brought
into a second Debugger looking at the new error, unless you have specified that
your program handle that error. The Debugger prompts with two arrows (--)--}) to
show that you are inside two Debuggers. You can get back to the first Debugger
by pressing the ABORT key. However, if the error is not complex, the abort is done
automatically and the original error message is reprinted. See the section "Using
Recursive Debugger Invocations", page 25.

23

August 1986 Debugger

Various Debugger commands ask for Lisp objects, such as an object to return or
the name of a catch-tag. Whenever it requests a Lisp object, it expects you to
type in a form; it will evaluate what you type in. This provides greater
generality, since there are objects to which you might want to refer that cannot be
typed, such as arrays. If the form you type is not complex (not just a constant
form), the Debugger shows you the result of the evaluation and asks you if it is
what you intended. It expects a Y or N answer. (See the function zl:y-or-n-p in
Programming the User Interface, Volume B.) If you answer negatively it asks you
for another form. To exit the command, just press ABORT.

Besides the Debugger's lexical, user-program evaluation environment, the
Debugger also has a dynamic evaluation environment, created specifically for the
task of debugging the debugger. Unless you have to redesign or debug the
Symbolics Debugger - an extremely unlikely prospect - do not use this evaluation
environment. It is used exclusively by Symbolics software development personnel.
The prompt for the dynamic evaluation environment is:

Eval (debugger):

If you accidentally bring up this prompt, you can change the environment and
bring up the Eval (program): prompt by entering the : Use Lexical Environment
command or by pressing c-H I, which toggles between the two environments.

The current evaluation environment is established by the previous environment
you chose. Therefore, once you're in the lexical program environment, you will
stay there until you explicitly enter the : User Dynamic Environment command or
press c-H I.

For more information: See the section "Use Lexical Environment Command",
page 50. Also: See the section "Use Dynamic Environment Command", page 49.

3.4.1 Editing a Form in the Debugger

When you make a mistake while typing a form in the Debugger or change your
mind about entering the form, you can do one of two things:

Press ABORT and begin again.

Edit your input.

The input editor allows you to type, display, and edit a form in the Debugger's
evaluation environment. The input editor is also used for input in Debugger
commands and a Dynamic Lisp Listener command processor and read-eval-print
loop. For information about editing a Debugger command: See the section
"Editing a Debugger Command", page 19. For more information on the input
editor: See the section "The Input Editor Program Interface" in Reference Guide
to Streams, Files, and I/O.

24

Program Development Utilities August 1986

3.4.2 Rebound Variable Bindings During Evaluation

When the Debugger evaluates a form, the variable bindings at the point of error
are in effect with the following exceptions:

• *terminal-io* is rebound to the stream the Debugger is using.
dbg:old-terminal-io is bound to the value that *terminal-io* had at the
point of error.

• *standard-input* and *standard-output* are rebound to be synonymous
with *terminal-io*; their old bindings are saved in dbg:old-standard-input
and dbg:old-standard-output.

• *query-io*, *debug-io*, and *error-output* are rebound to be synonymous
with ·terminal-io*; their old bindings are not directly accessible.

• + and • are rebound to the Debugger's previous form and previous value.
When the Debugger is first entered, + is the last form typed, which is
typically the one that caused error, and 11& is the value of the previous form.
++, -H+, **, ***, -, and zl:/ are treated in an analogous fashion. See the
section "The Lisp Top Level" in User's Guide to Symbolics Computers.
When the Debugger is exited, all of these variables are restored to their
original values; the interactions with the Debugger's read-eval-print loop do
not affect the interactions with the top-level Lisp read-eval-print loop.

• sys:rubout-handler and zl:read-preserve-delimiters are rebound to nil, in
case the error occurred while in the input editor or the reader.

• evalhook is rebound to nil, turning off the zl:step facility if it was in use
when the error occurred. See the section "evalhook", page 87.

• dbg:*bound-handlers* and dbg:*default-handlers* are rebound to nil,
preventing conditions signalled by the form the Debugger is evaluating from
reaching condition handlers in the program being debugged. This prevents
you from accidentally being thrown out of the Debugger.

• *print-base*, zl:ibase, and *package* are checked to insure that they
contain legal values. If not, they are set to 10, 10, and si:pkg-user-package
respectively.

Note that the variable bindings are those in effect in the current frame being
examined, unless you are not inheriting the lexical environment, in which case the
bindings are those in effect at the point of error.

25

August 1986 Debugger

3.5 Using Recursive Debugger Invocations

Whenever you cause an error from within the Debugger, or call the Debugger
explicitly from within the Debugger, you are brought into another Debugger.

For example, suppose you used an unbound variable in the Dynamic Lisp Listener.
The Debugger is invoked. Then suppose, inside this first Debugger, you reference
an undefined function. You are brought into a second Debugger. Then suppose
you reference a function that contains a zl:dbg function. You are brought into a
third Debugger.

In the scenario described above, the three Debugger calls are recursive Debugger
invocations, where the Debugger causes itself to be called. Each Debugger call is
known as a Debugger command level. The first call is the first level, the second
call is the second level, and the third call is the third level. You can simply refer
to the first Debugger, second Debugger, and third Debugger.

If you were to get a backtrace at the third Debugger, you would see that each call
to the Debugger appears as a separate stack frame. Like other stack frames, you
can unwind the stack - usually with the ABORT key - and thereby have each
Debugger return to the previous Debugger. The term unwind means to return
the function in the current frame to the function in the previous frame.
Remember: In the third Debugger, you have three active Debuggers. They have
been called but have not yet returned.

The Debugger command prompt lets you know which Debugger you are in at any
given time. For example, three right arrows (~~~) indicate you are in the third
Debugger. Two right arrows (~~) indicate you. are in the second. One arrow, of
course, indicates you are at the first.

U sing the same example, suppose, in a Dynamic Lisp Listener, you reference an
unbound variable, foo:

Trap: The variable Faa is unbound.

SI:*EVAL:
Arg 0 (SYS:FDRM): FDD
Arg 1 (SI:ENV): NIL
--Defaulted args:--
Arg 2 (SI:HDDK): NIL

s-A, RESUME: Supply a value to use this time as the value of FDD
s-B, s-sh-C: Supply a value to store permanently as the value of FDD
s-C: Retry the SYMEVAL instruction
s-D, ABORT: Return to Lisp Top Level in Dynamic Lisp Listener 1
s-E: Restart process Dynamic Lisp Listener 1
~

26

Program Development Utilities August 1986

Then suppose, within the Debugger, you reference an undefined function, glitch:

Trap: The function GLITCH is undefined.

SI:*EVAL:
Arg 0 (SYS:FORM): (GLITCH)
Arg 1 (SI:ENV): NIL
--Defaulted args:--
Arg 2 (SI:HOOK): NIL

Debugger was entered because an error occurred while evaluating a form in the debugger
s-A, RESUME: Supply a value to use this time as the definition of GLITCH
s-8, s-sh-C: Supply a value to store permanently as the definition of GLITCH
s-C: Retry the FSYMEVAL instruction
s-D, ABORT:
s-E:
s-F:
~~

Debugger command level 1
Return to Lisp Top Level in Dynamic Lisp Listener 1

Restart process Dynamic Lisp Listener 1

In the example shown above, notice the two right arrows, which indicate entry to
the second Debugger. Notice also the restart option, ABORT, which allows you to
return to the first Debugger. Suppose now, within the second Debugger, you
reference zl:dbg:

Break:

SI:*EVAL:
Arg 0 (SYS:FORM): (ZL:DBG)
Arg 1 (SI:ENV): NIL
--Defaulted args:--
Arg 2 (SI:HOOK): NIL

s-A, RESUME: Proceed without any special action
s-8, ABORT: Debugger level 2
s-C: Debugger command level 1
s-D, Return to Lisp Top level in Dynamic Lisp Listener 1
s-E: Restart process Dynamic Lisp Listener 1
~~~ 

Now notice the three right arrows, which indicate entry to the third Debugger. 
Notice also the two restart options, ABORT and s-c, which allow you to return to 
the second Debugger and the first Debugger respectively. 

Pressing the ABORT key is the fundamental way of leaving the current Debugger 
and returning to the previous Debugger level. If you have amassed many 
Debugger invocations and want to leave the Debugger entirely and return to top 
level immediately - in this case Dynamic Lisp Listener 1 - press l'l-ABORT, which 



27 

August 1986 Debugger 

keeps unwinding the stack until you reach top level. M-ABORT always gets you 
back to top level. 

The following example shows what happens when you keep pressing ABORT, 
beginning at the third Debugger: 

~~~ Abort Abort 
Debugger command level 2
Back to Trap: The function GLITCH is undefined.
~~ Abo rt Abort
Debugger command level 1
Back to Trap: The variable Faa is unbound.
~ Abort Abort
Return to Lisp Top Level in Dynamic Lisp Listener 1
Back to Lisp Top Level in Dynamic Lisp Listener 1.

Command:

3.6 Using the Mouse in the Debugger

Like most other screen output generated in the Genera software environment,
Debugger output is mouse sensitive. You can perform some useful debugging
operations simply by clicking on output produced by Debugger commands. For
example, you can perform the following operations:

• Execute a Debugger command by clicking on any command name that is
already displayed on the screen as a result of the command's prior use.

• Set the current stack frame by clicking on a frame's function name displayed
in backtrace output.

• Evaluate a form by entering the :Show Source Code command, pointing the
mouse at a code fragment in the source code output, and pressing
1'l-t'louse-t'l; dd 1 e.

• Set a Debugger breakpoint on a compiled function by entering the :Show
Compiled Code command, pointing the mouse at a PC (program counter) line
in the disassembled code output, and pressing C-I'l-t'louse-Left.

• Set a Debugger breakpoint on a form in the source code by entering the
:Show Source Code command, pointing the mouse at a code fragment in the
source code output, and pressing c-M-Mouse-Left .

• Clear a Debugger breakpoint on a compiled function by entering the :Show

28

Program Development Utilities August 1986

Compiled Code command, pointing the mouse at a PC line in the
disassembled code output, and pressing c-M-r1ouse-r1i ddl e.

• Clear a Debugger breakpoint on a form in the source code by entering the
:Show Source Code command, pointing the mouse at a code fragment in the
source code output, and pressing c-M-Mouse-M; dd 1 e.

• Monitor the access of a variable or other location by pointing the mouse at a
locative, structure slot, or instance variable and pressing
c-M-sh-Mouse-Left. (When a program or process accesses the monitored
location, a Debugger trap is signalled.)

• Unmonitor a variable or other location by pointing the mouse at a locative,
structure slot, or instance variable and pressing c-r'l-sh-Mouse-r'li ddl e.

(When you stop monitoring the access of a location, the Debugger trap is no
longer signalled.)

• Edit a function in a Zmacs editor window by pointing the mouse at a
function's stack frame and pressing M-Mouse-Left.

• Activate a proceed or restart option by clicking on one.

• Perform a describe function on a Lisp object by pointing the mouse at any
object and pressing Mouse-Mi ddl e.

Suggested mouse operations are listed in the individual descriptions of some
Debugger commands later in this chapter. See the section "Debugger Command
Descriptions", page 29. Since so much of the Debugger output is mouse sensitive,
the documentation lists only the most useful mouse operations. However, you are
encouraged to experiment with the mouse while using the Debugger. You most
likely will discover some other mouse or mouse/keyboard capabilities that are
particularly suited to your personal debugging style.

Of course, you can perform virtually all of the suggested mouse operations listed
in the documentation via momentary menus. As with all other screen output in
Genera software environment, you can also use menus and submenus to perform a
huge variety of system operations on Debugger output. To perform system or
Debugger operations via menus, just point the mouse at the desired piece of
Debugger output - a form, function, argument, flavor, instance, locative, or
whatever - and click r'louse-R i ght.

29

August 1986 Debugger

3.7 Debugger Command Descriptions

This section provides descriptions for all Debugger commands. These commands
fall into eight categories according to their functions:

Commands for viewing a stack frame

Commands for stack motion

Commands for general information display

Commands to continue execution

Trap commands

Commands for breakpoints and single stepping

Commands for system transfer

Miscellaneous commands

Debugger commands are implemented as Command Processor (CP) commands.
There are many Debugger commands that share the global command table with
CP commands. Therefore, you can enter these commands in the CP as well as the
Debugger. They are:

30

Program Development Utilities August 1986

:Clear All Breakpoints

:Clear Breakpoint

:Disable Condition Tracing

:Edit Function

:Enable Condition Tracing

:Monitor Variable

:Set Breakpoint

:Set Stack Size

:Show Breakpoints

:Show Compiled Code

:Show Monitored Locations

:Show Source Code

:Unmonitor Variable

Note, however, that you must precede every command entered in the Debugger
with a colon; for example, you must type :Set Breakpoint in the Debugger.

In the sections that follow, Debugger commands are presented in alphabetical
order within their logical groups. Each command presentation contains a
command format line, a brief command description, and lists of positional
arguments, keywords, and useful mouse operations, if any. Key-binding
accelerators, if any, appear against the right margin on the command format line.
If a command has two or more accelerators, then its accelerators are listed
separately with corresponding commandlkeyword definitions.

Command descriptions use the terms default and mentioned default. A default is
the result of entering a Debugger command without a keyword and/or positional
argument. A default also means the result of entering a positional argument
without a modifier. A mentioned default is the result of entering a keyword
without a keyword modifier, such as Yes or No. In other words, once you type in
the keyword, the Debugger mentions the consequences of pressing RET URn without
a keyword modifier.

31

August 1986 Debugger

3.7.1 Debugger Commands for Viewing a Stack Frame

The Debugger provides commands for displaying information about the current
stack frame. Information that you can display includes, for example, argument
values, local variable values, disassembled code, source code, and &rest arguments.
These commands, in alphabetical order, are:

:Show Arglist

:Show Argument (c-M-A)

:Show Compiled Code (c-X D)

:Show Frame (REFRESH, c-L, M-L)

:Show Function (c-M-F)

:Show Local (c-r'l-L)

:Show Rest Argument

:Show Source Code (c-X c-D)

:Show Stack

:Show Value (C-M-V)

All of these commands operate in the context of the current stack frame. The
Debugger knows about the current frame at any given time, and it uses the
current frame environment to perform operations according to the suspended state
of your program. For example, it evaluates forms in the lexical context of the
function suspended in the current frame.

Initially, the current stack frame is the one that signalled the error - either the
one that got the microcode-detected error or the one that called ferror, error, or a
related function. The current frame can change, depending on which Debugger
operations you perform.

When the Debugger is invoked, it shows you the current frame in the following
format:

Faa:
Arg 0 (X): 13

Arg 1 (Y): 1

The Debugger displays the name of the function in the current frame, then lists
the numbers, names, and values of all arguments in the current frame. In the

32

Program Development Utilities August 1986

case shown above, foo was called with two arguments, whose numbers are 0 and 1
and whose names in the Lisp source code are x and y. The current values of x
and yare 13 and 1-respectively. Numbering of arguments begins with O.
Therefore, argument 0 refers to the first argument, argument 1 refers to the
second argument, and so on.

Show Arglist Command

:Show Arglist c-X c-R

Displays the argument list for the function in the current frame. When you enter
this command, the Debugger replies:

The argument ,; st for (function-name) ; s (argument-names)

The function-name is the name of the function in the current frame - the name of
the function that appears when the Debugger is invoked. I t is also the name of
the function that would appear at the top of the stack if you were to perform a
backtrace.

Show Argument Command

:Show Argument argument c-r'l-R

Displays the value of one or all arguments in the current frame. You can also use
the Lisp function (dbg:arg number) where number specifies the number of the
argument you want to display. Numbering begins with O. For example,
(dbg:arg 3) displays the fourth argument. A numeric argument given with this
command's accelerator also specifies the number of the argument you want to
display; for example, c-n-3 c-n-R displays the fourth argument. To change the
value of an argument, setf on (dbg:arg number).

When you ask to see all arguments - the default for this command - the
Debugger displays the arguments in the same way it would display them upon
entry to the Debugger. It displays the name of the function in the current frame,
then lists the numbers, names, and values of all arguments in that function.
When you specify an argument number, the Debugger displays only the value of
that argument.

When you are using the lexical context of the current frame, you can evaluate an
argument by typing in its name (or clicking on its name using the mouse) in the
Debugger's evaluation environment.

The :Show Argument command leaves * set to the value of the argument so you
can use the read-eval-print loop to examine it. It also leaves + set to a locative
pointing to the argument on the stack so you can change that argument by calling
setf on the locative.

August 1986

argument

33

Debugger

{number, All} The number is an integer that specifies which
argument you want to display in the current frame. All displays
all arguments in the current frame. (Default is All.)

Show Complied Code Command

:Show Compiled Code compiled-function-spec from-pc to-pc c->{ D

Displays the disassembled code for a function. When you enter this command and
specify a compiled-function-spec, the Debugger displays this message:

Disassembled code for (function):

where function is the name of the compiled function for which you want to see
disassembled code. Immediately under this message, the Debugger lists the
disassembled code instructions for this function. Each instruction - PUSH, CALL,
BRANCH, and so on - is listed on its own line, numbered by the PC (program
counter). PCs are numbered in octal (base 8), and numbering begins with O.

compiled-function-spec

from-pc

to-pc

The name of a compiled function for which you want to see
disassembled code. (Default is the function in the current
frame.)

The number of the PC at which you want to begin seeing
disassembled code. (Default displays all disassembled code.)

The number of the PC at which you want to stop seeing
disassembled code. (Default displays disassembled code from PC
0, or from the number specified in from-pc, to the last PC in the
disassembled code.)

Suggested mouse operations

• To use this command with the mouse: Type in the :Show Compiled Code
command. When the Debugger asks you for a compiled-function-spec, point
the mouse at the name of a compiled function previously displayed in the
output of another command, such as :Show Backtrace or :Next Frame, and
click ~louse-Left. (You can do this only when your previous command
output includes the name of a compiled function.)

• To set a breakpoint: Point the mouse at a PC in the disassembled code and
press c-M-Mouse-Left.

• To clear a breakpoint: Point the mouse at a PC in the disassembled code
and press c-M-Mouse-~li ddl e.

34

Program Development Utilities August 1986

Show Frame Command

:Show Frame keywords REFRESH J c-L J M-L

Displays information about the current frame. (Default redisplays the error
message for the current frame then lists the name of the function and its
arguments in the current frame.)

keywords :Clear Window, :Detailed

:Clear Window {Yes, No} Clears the screen and redisplays at the top of the
screen the error message for the current frame. The name of
the function and its arguments in the current frame are also
displayed. (Default is No. Mentioned default is Yes.)

:Detailed {Yes, No} Redisplays the error message for the current frame
then displays detailed information, including: Arguments and
their values, local variables and their values, and disassembled
code with an arrow pointing to the next instruction to be
executed.· If a function sets one of the frame's arguments, then
both the original argument supplied by the caller and the
current value of the variable are displayed. (Default is No.
Mentioned default is Yes.)

Key-binding accelerators

REFRESH J c-L :Show Frame :Clear Window Yes

M-L :Show Frame :Clear Window Yes :Detailed Yes

Show Function Command

:Show Function

Displays the name of the function in the current frame. You can also use the
Lisp function (dbg:fun). The Show Function command leaves * set to the value of
the function so that you can use the read-eval-print loop to examine it. It also
leaves + set to a locative pointing to the function so that you can change it by
calling setf on the locative.

Show Local Command

:Show Local local-variable

Displays the value of one or all local variables for the function in the current
frame. When you enter this command, the names of local variables and their

35

August 1986 Debugger

values are listed in a sequence: Local 0, Local 1, Local 2, and so on. In this list,
locals are numbered in decimal (base 10), and numbering begins with 0.

You can also use the Lisp function (dbg:loc number) where number specifies which
local variable you want to display. For example, (dbg:loc 3) displays the fourth
local variable. A numeric argument given with this command's accelerator also
specifies which local variable you want to display; for example, c-M-3 c-M-L

displays the fourth local variable. To change the value of a local variable, use the
setf function with (dbg:loc number).

When you are using the lexical context of the current frame, you can evaluate a
local variable by typing its name (or clicking on its name using the mouse) in the
Debugger's evaluation environment.

The :Show Local command leaves * set to the value of the local variable so you
can use the read-eval-print loop to examine it. It also leaves + set to a locative
pointing to the local variable on the stack so you can change that argument by
calling setf on the locative.

local-variable {number, All} The number is an integer that specifies which
local variable you want to see in the current frame. All displays
all local variables in the current frame. (Default is All.)

Show Rest Argument Command

:Show Rest Argument

Displays the &rest argument, if there is one, and formats it neatly. :Show Rest
Argument sets the value of *.

Show Source Code Command

:Show Source Code compiled-function-spec C-x c-D

Displays the source code for a function. This command works only when your
code resides in an editor buffer. The output is mouse sensitive only when the
function is compiled with source locators. When you specify a compiled function
for which you want to see source code - for example, myfunction - the Debugger
displays the source code for myfunction beneath the following message:

Source code for MYFUNCT I ON:

If myfunction were not compiled with source locators, the Debugger would still
display the source code, but the output would not be mouse sensitive. The
Debugger would display the source code only after giving you this message:

36

Program Development Utilities August 1986

Function MYFUNCTION has no source locators; the code will not be sensitive.

compiled-function-spec
The name of a compiled function for which you want to see
source code. (Default is the function in the current frame.)

Suggested mouse operations

When a function has been compiled using source locators - mapping source code
to PCs via the editor's c-M-sh-C command - you can perform the following mouse
operations:

• To use this command with the mouse: Type in the :Show Source Code
command. When the Debugger asks you for a compiled-function-spec, point
the mouse at the name of a compiled function previously displayed in the
output of another command, such as :Show Backtrace, and click Mouse-Left.

• To set a breakpoint: Point the mouse at a form (a code fragment) in the
displayed source code and press c-M-Mouse-Left.

• To clear a breakpoint: Point the mouse at a form (a code fragment) in the
displayed source code and press c-M-~louse-M i dd 1 e.

• To evaluate a code fragment: Point the mouse at a form in the displayed
source code and press M-Mouse-t1 i dd 1 e.

Show Stack Command

:Show Stack

Displays all of the local-variable and temporary stack slots in the current frame.
This command is very similar to :Show Local, except that in addition to local
variable slots, :Show Stack displays stack slots that do not necessarily correspond
to named local variables. Therefore, :Show Stack gives you more information than
does :Show Local. The output for this command is displayed the way :Show Local
output is displayed; that is, locals and their values are listed in sequence: Local
0, Local 1, Local 2, and so on. In this list, stack slots are numbered in decimal
(base 10), and numbering begins with o.

Show Value Command

:Show Value value c-r'l-V

Displays one or all values being returned from the function that is being returned.
If the frame is not in the process of returning values, the Debugger tells you:

37

August 1986 Debugger

No values are being returned now

:Show Value is useful only when you are using a trap on exit or looking at a
frame that is about to return. See the section "Set Trap on Exit Command", page
56.

You can also use the Lisp function (dbg:val number) where number specifies
which value to display. Numbering begins with o. For example, (dbg:val 3)
displays the fourth value. A numeric value used with this command's accelerator
also specifies which value to display; for example, c-r'l-3 C-M-V displays the fourth
value. To change a particular value being returned from a frame, use setf on
(dbg:val number).

The :Show Value command leaves * set to the value of the argument, so you can
use the read-eval-print loop to examine it. It also leaves + set to a locative
pointing to the argument on the stack so you can change that argument by calling
setf on the locative.

value {number} The number is an integer that specifies which value to
display.

3.7.2 Debugger Commands for Stack Motion

The Debugger provides commands that allow you to move up and down the stack.
The term move in the context of these commands means to make another frame
the current frame. For example, moving to the top of the stack makes the most
recent frame - the frame where the error occurred - the current frame.

Moving down the stack takes you back in time toward the oldest, least-recent
frame. Moving up the stack takes you forward in time toward the newest, most
recent frame, which is usually the call to the Debugger itself.

Stack motion commands not only traverse the stack, but they also display
information about the frame to which you move. Most of these commands can
optionally display local variables, disassembled code, and internal interpreter
frames.

The motion commands, in alphabetical order, are:

38

Program Development Utilities August 1986

:Bottom Of Stack (M- >)

:Find Frame (c-S)

:Next Frame (LINE, c-N, M-N, c-M-N)

:Previous Frame (RET URN, c-P, M-P, C-M-P, C-M-U)

:Set Current Frame

:Top Of Stack (M-<)

Bottom of Stack Command

:Bottom Of Stack keyword

Moves to the bottom of the stack, displays the least recent frame, and makes that
frame current. When you enter this command, the Debugger displays the name of
the function at the bottom of the stack, followed by its arguments.

keyword

:Detailed

:Detailed

{Yes, No} Displays detailed information about the frame at the
bottom of the stack, including: Arguments and their values,
local variables and their values, and disassembled code with an
arrow pointing to the next instruction to be executed. If a
function sets one of the frame's arguments, then both the
original argument supplied by the caller and the current value
of the variable are displayed. (Default is No. Mentioned default
is Yes.)

Find Frame Command

:Find Frame string keywords

Searches the stack for a frame's function name that contains a specified string
and makes that frame current. When you enter this command, the Debugger
displays the name of the function in the specified frame, followed by its
arguments.

string

keywords

:Detailed

A string that can be part or all of a function name.

:Detailed, :Reverse

{Yes, No} Displays detailed information about the specified

C-s

August 1986

:Reverse

39

Debugger

frame, including: Arguments and their values, local variables
and their values, and disassembled code with an arrow pointing
to the next instruction to be executed. If a function sets one of
the frame's arguments, then both the original argument supplied
by the caller and the current value of the variable are displayed.
(Default is No. Mentioned default is Yes.)

{Yes, No} Searches backwards, toward the most recent frame,
for the specified frame. (Default is No. Mentioned default is
Yes.)

Next Frame Command

:Next Frame keywords LINEJ c-NJ n-NJ c-n-N'

Moves down one frame, to the next less-recent frame - the calling frame -
displays information about that frame, and makes it current. When you enter this
command, the Debugger displays the name of the function in the next frame,
followed by its arguments. A numeric argument given with this command's
accelerators, as well as the :Nframes keyword, specifies how many frames to move
down; for example, c-3 c-N moves down three frames.

keywords

:Detailed

:Internal

: Nframes

:Detailed, :Internal, :Nframes

{Yes, No} Displays detailed information about the next frame,
including: Arguments and their values, local variables and their
values, and disassembled code with an arrow pointing to the
next instruction to be executed. If a function sets one of the
frame's arguments, then both the original argument supplied by
the caller and the current value of the variable are displayed.
(Default is No. Mentioned default is Yes.)

{Yes, No} Displays internal interpreter frames in the next
frame. Ordinarily, when running interpreted code, the
Debugger tries to skip over frames that belong to functions of
the interpreter, such as si:*eval, prog, and cond, and only show
"interesting" functions. (Default is No. Mentioned default is
Yes.)

{number} Specifies how many frames you want to move down.
The number signifies that you want to move down to the nth
frame from the current frame. (Default is 1.)

Key-binding accelerators

LINEJ c-N :Next Frame :Nframes 1

40

Program Development Utilities August 1986

:Next Frame :Detailed Yes :Nframes 1

:Next Frame :Internal Yes :Nframes 1

Previous Frame Command

:Previous Frame keywords

Moves up one frame, to the next most-recent frame - the frame that the current
frame called - displays information about that frame, and makes it current. When
you enter this command, the Debugger displays the name of the function in the
previous frame, followed by its arguments. A numeric argument given with this
command's accelerators, as well as the :Nframes keyword, specifies how many
frames to move up; for example, c-3 c-P moves up three frames.

keywords

:Detailed

: Internal

:Nframes

:Detailed, : Internal, : Nframes, :To Interesting

{Yes, No} Displays detailed information about the previous
frame, including: Arguments and their values, local variables
and their values, and disassembled code with an arrow pointing
to the next instruction to be executed. If a function sets one of
the frame's arguments, then both the original argument supplied
by the caller and the current value of the variable are displayed.
(Default is No. Mentioned default is Yes.)

{Yes, No} Displays internal interpreter frames in the previous
frame. Ordinarily, when running interpreted code the Debugger
tries to skip over frames that belong to functions of the
interpreter, such as si:*eval, prog, and cond, and only show
"interesting" functions. (Default is No. Mentioned default is
Yes.)

{number} Specifies how many frames you want to move up. The
number signifies that you want to move up to the nth frame
from the current frame. (Default is 1.)

:To Interesting {Yes, No} Moves to the next previous frame that is interesting
(non-interpreter), skipping over interpreter frames. (Default is
No. Mentioned default is Yes.)

Key-binding accelerators

RETURN J c-P

r'l-P

:Previous Frame :Nframes 1

:Previous Frame :Detailed Yes :Nframes 1

:Previous Frame :Internal Yes :Nframes 1

41

August 1986 Debugger

:Previous Frame :To Interesting Yes

Set Current Frame Command

:Set Current Frame stack-frame

Makes the stack frame that you specify with the mouse become the current frame.

stack-frame A stack frame that you select with the mouse.

Suggested mouse operations

o To set the current frame: Display the stack with the :Show Backtrace
command, point the mouse at the stack frame you want to make current, and
click I·louse-Left.

Top of Stack Command

:Top Of Stack keyword

Moves to the top of the stack - the frame where the error occurred - displays the
most recent frame, and makes it current. When you enter this command, the
Debugger displays the name of the function in the frame at the top stack, followed
by its arguments.

keyword

:Detailed

: Detailed

{Yes, No} Displays detailed information about the frame at the
top of the stack, including: Arguments and their values, local
variables and their values, and disassembled code with an arrow
pointing to the next instruction to be executed. If a function
sets one of the frame's arguments, then both the original
argument supplied by the caller and the current value of the
variable are displayed. (Default is No. Mentioned default is
Yes.)

3.7.3 Debugger Commands for General Information Display

The Debugger provides commands that allow you to examine the Lisp control stack
and display general information about your program's execution as it relates to the
error that triggered entry to the Debugger. Information that you display, for
example, can be the value of *, special variable bindings, catch blocks, condition
handlers, instructions, standard value warnings, proceed options, and so on.

The most powerful information-display command is :Show Backtrace, which
displays the Lisp control stack. The stack keeps a record of all active functions.

42

Program Development Utilities August 1986

The term active refers to a function that has been called but has not yet returned.
For example, if you call foo at Lisp's top level, and it calls bar, which in turn
calls baz, and baz gets an error, then a back trace displays this call history.
Functions foo, bar, and baz appear on the stack because they have been called
but have not yet returned. A backtrace, therefore, traces the execution of
program functions and system functions back in time, and the Debugger displays
the sequence of calls that led to the error.

The :Show Backtrace command can display a brief backtrace with only function
names in a call history sequence, or it can display backtraces with more detailed
information, such as arguments, local variables, disassembled code, and internal
interpreter frames. Using the the foolbarlbaz example mentioned above, a brief
backtrace of that call history might look like this:

BAZ ~ BAR ~ FDD ~ EVAL ~ SI:LISP-TDP-LEVEL1 ~ SI:LISP-TDP-LEVEL

In the example shown above, the arrows indicate the direction of calling. See the
section "Show Backtrace Command", page 45.

The general information display commands, in alphabetical order, are:

43

August 1986 Debugger

:Analyze Frame (c-n-2)

:Describe Last (c-n-D)

:Show Backtrace (c-8J n-8 J c-n-8)

:Show Bindings (c-X 8)

:Show Catch Blocks

:Show Condition Handlers

:Show Instruction (c-n-I)

:Show Lexical Environment

:Show Proceed Options

:Show Special

:Show Standard Value Warnings

:Symeval In Last Instance (c-X c-I)

:Use Dynamic Environment (c-X I)

:Use Lexical Environment (c-X I)

Analyze Frame Command

:Analyze Frame c-n-2

Analyzes the erroneous frame and locates the source code of the current error.
Whenever your program blows up unexpectedly, for example, due to an incorrect
argument value or undefined function, you can use the :Analyze Frame command
to walk back up the stack and locate the origin of the error.

Specifically, the :Analyze Frame command can locate the source-code origin of
these type of errors:

44

Program Development Utilities August 1986

Incorrect argument values

Invalid or undefined functions

Unclaimed messages

Wrong number of arguments

If :Analyze Frame does not operate on a particular kind of error, the Debugger
tells you:

There is nothing to analyze in this frame.

:Analyze Frame tells you the name of the function where the error occurred,
moves to the previous frame, and examines the code in the previous frame. If it
does not find the origin of the error in that frame, it keeps moving up the stack,
examining code frame by frame. For each frame, the Debugger displays the name
of the "bad argument" that received the error as well as the name of the function
that passed the error - the calling function. It also highlights the bad argument
and calling function in boldface type and displays the source code.

The last frame the Debugger displays is the frame that caused the error.

Suppose a bad argument, foo, was passed to a function, myfunction - the place
where the error occurred - and foo originated from another function, glitch. The
Debugger would display the source code of myfunction beneath the following
message:

Error occurred in MYFUNCTION:

Then the Debugger would tell you:

Probably bad argument FOO

followed by this message:

Called from GLITCH:

The Debugger would then display the source code for glitch. If the bad argument,
foo, had not originated from glitch, the Debugger would have kept crawling up
the stack, and, for each frame, would have displayed the probable bad argument
and the source code of the calling function.

Suppose you execute a function, test, without arguments, and test calls another
function, number-test, which expects one argument, n. Via the :Analyze Frame
command, the Debugger would display the following information:

Bad call occurred in:

(DEFUN TEST 0
(NUMBER-TEST))

Correct arguments to NUMBER-TEST are (N)

45

August 1986 Debugger

Correct arguments to NUMBER-TEST are (N)

Describe Last Command

:Describe Last

Executes the Lisp describe function on the most recently displayed value and
leaves II: set to that value.

Suggested mouse operations

• To perform a describe function on any Lisp object: Point the mouse at any
object in the output and click Mouse-Mi ddl e.

Show Bacldrace Command

:Show Backtrace keywords

Displays a backtrace of the stack. The cfefault displays a brief backtrace of the
stack.

A brief backtrace displays just the names of active function calls in the sequence
in which they were called. In the display, each function points to the function it
calls. For example:

BAZ ~ BAR ~ FDD ~ EVAL ~ SI:LISP-TDP-LEVEL1 ~ SI:LISP-TDP-LEVEL

If you want a backtrace with more detailed information and/or with internal
interpreter frames, use the :Detailed and :Internal keywords described below. See
also the definitions of command accelerators below.

A numeric argument given with this command's accelerators, as well as the
:Nframes keyword, specifies how many frames to display in the stack; for example,
c-9 c-B displays nine frames.

keywords

:Detailed

:Internal

:Detailed, :Internal, :Nframes

{Yes, No} Displays a detailed backtrace of the stack, with
arguments and their values. If a function sets one of the
frame's arguments, then both the original argument supplied by
the caller and the current value of the variable are displayed.
(Default is No. Mentioned default is Yes.)

{Yes, No} Displays internal interpreter frames in the backtrace.
Ordinarily, when running interpreted code the Debugger tries to
skip over frames that belong to functions of the interpreter,
such as si:*eval, prog, and cond, and only show "interesting"
functions. (Default is No. Mentioned default is Yes.)

46

Program Development Utilities August 1986

: Nframes {number} Designates how many frames to display in the
backtrace. Enter a number to specify the number of frames to
display. (Default is 10000.)

Key-binding accelerators

c-B :Show Backtrace :Nframes 10000 (brief backtrace)

:Show Backtrace :Detailed Yes :Nframes 10000

:Show Backtrace :Internal Yes :Nframes 10000

Show Bindings Command

:Show Bindings keywords c-H B

Displays the special variable bindings for one or more frames. When you enter
this command, the Debugger displays special variable bindings beneath this
message:

Names and values of specials bound in this frame:

keywords

:All

: Matching

:AlI, :Matching

{Yes, No} Displays bindings for all frames in the stack.
(Default is No. Mentioned default is Yes.)

{string} Displays only the bindings for special variables whose
symbol names contain a string that you specify. (Default is the
current frame.)

Show Catch Blocks Command

:Show Catch Blocks keyword

Displays the active catch blocks for the current frame or for all frames. When
you enter this command, the Debugger displays information in this format:

Open catch blocks and unwind-protects in this frame:
Throwi ng to tag tag-name returns to frame at location
with value(s)

The tag-name is the name of the symbol that is catching the form. The frame is
the name of the frame's function to which a throw operation returns. The
location is a PC (program counter) line number in disassembled code.

47

August 1986 Debugger

:All keyword

:All {Yes, No} Displays active catch blocks for all frames in the
stack. (Default is No. Mentioned default is Yes.)

Show Condition Handlers Command

:Show Condition Handlers keyword

Displays the condition handlers for the current frame or for all frames. Here is
an example of what the Debugger displays when you enter this command for the
current frame:

~ :Show Condition Handlers
Bound Handlers established in this frame:

CONDITION-CASE handler for SYS:PARSE-ERROR

If the frame shown in the example above were not the current frame, and you
used the :All keyword, the De bugger would display the name of the frame along
with the condition handler information. For example:

~ :Show Condition Handlers (keywords) :All
For frame (DEFUN-IN-FLA VOR SI:INPUT-EDITOR-READ •••):

Bound Handlers established in this frame:
CONDITION-CASE handler for SYS:PARSE-ERROR

keyword : All

: All {Yes, No} Displays condition handlers for all frames in the
stack. (Default is No. Mentioned default is Yes.)

Show Instruction Command

:Show Instruction c-n-I

Displays the instruction that was just trapped in the Debugger or the instruction
that would be executed next if you were to perform a single step operation. Here
is an example of what the Debugger displays when you enter this command:

~ :Show Instruction
In (FLAVOR:METHOD : INPUT-EDITOR SI:INTERACTIVE-STREAM) at PC 160:

PUSH-NIL

48

Program Development Utilities August 1986

Show Lexical Environment Command

:Show Lexical Environment

Displays the lexical (local program) environment of the current frame, as
established by the lexical ancestors of the frame. When you enter this command,
the Debugger displays lexical (local) variables beneath this message:

Lexically inherited variables:

If the current frame has no lexical environment, the Debugger tells you:

This frame was not lexically called.

Show Proceed Options Command

:Show Proceed Options

Displays all of the currently available proceed and restart options. Here is an
example of what the Debugger displays when you enter this command:

-7 :Show Proceed Options
s-A, RESUME: Supply a value to use this time as the value of FDD
s-8, s-sh-C: Supply a value to store permanently as the value of FDD
s-C: Retry the SYMEVAL instruction
s-D, ABORT:
-7

Return to Lisp Top Level in Dynamic Lisp Listener 1

Suggested mouse operations

• To activate a proceed handler with the mouse: Display the proceed options
with the :Show Proceed Options command, point the mouse at a proceed
option, and click Mouse-Left.

Show Special Command

:Show Special symbol keyword

Displays the special variable binding of a symbol in the context of the current
frame's environment.

symbol A symbol whose special variable binding you want to see.

keyword : Environment

: Environment {Program, Debugger, Streams} Evaluates and displays the
symbol in the environment that you specify. Program specifies
a program you are debugging. Debugger and Streams specify

49

August 1986 Debugger

that you are debugging the Debugger. (Default is the
environment of the current frame. Mentioned default is
Program.)

Show Standard Value Warnings Command

:Show Standard Value Warnings

Displays more detailed information about standard variables that have been re
bound. Here is an example of what the Debugger displays when you enter this
command:

~ :Show Standard Value Warnings
The following standard values were bound:

Rebinding CP:*COMMAND-TABLE* to #<COMMAND-TABLE User #0260252757>
(old value was #<COMMAND-TABLE Debugger #0261747137»

If no standard variables have been re-bound, the Debugger tells you:

There were no standard values which required binding

Symeval in Last Instance Command

:Symeval In Last Instance symbol c-X c-I

Evaluates a symbol as an instance variable in the context of the last instance to
have been typed out.

symbol A symbol to be evaluated.

Use Dynamic Environment Command

: Use Dynamic Environment c-X I

Changes the current evaluation mode from the lexical (local program) environment
to the dynamic (global debugger) environment. Unless you debug your own
Debugger, do not use this command. The: Use Dynamic Environment command is
used by Symbolics development personnel who debug the Debugger. If you have
entered the dynamic evaluation environment accidentally, you can get back to the
lexical evaluation environment by entering the :Use Lexical Environment command
or by pressing c-X I, which toggles between the two evaluation environments.
The dynamic evaluation prompt is:

Eval (debugger):

50

Program Development Utilities August 1986

Use Lexical Environment Command

: Use Lexical Environment c-x I

Changes the current evaluation mode from the dynamic (global debugger)
environment to the lexical (local program) environment. When the Debugger is in
this evaluation environment, you can examine local variables and arguments by
simply typing their names, and you can use internal functions by name - functions
defined with flet or labels. See the section "Evaluating a Form in the Debugger",
page 22. The lexical evaluation prompt is:

Eval (program):

The c-X I accelerator toggles between the lexical evaluation environment and the
dynamic evaluation environment.

3.7.4 Debugger Commands to Continue Execution

The Debugger provides commands that continue or restart execution. These
commands, in alphabetical order, are:

:Abort (ABORT J c-2)

:Disable Aborts

:Enable Aborts

:Proceed (RESUME)

:Reinvoke (c-M-R)

:Return (c-R)

:Throw (c-T)

Abort Command

:Abort ABORT J c-Z

Depending on the context of its use: Returns to either top level or the previously
invoked Debugger. Executes the abort instruction that appears in the list of
proceed and restart options. :Abort is used to exit the Debugger. See the section
"Exiting the Debugger", page 15. You can use the ABORT key in place of this
command.

51

August 1986 Debugger

Disable Aborts Command

:Disable Aborts

Disables the use of the :Abort command. :Disable Aborts is useful for making
sure you do not abort something accidentally.

Enable Aborts Command

:Enable Aborts

Enables the use of the :Abort command.

Proceed Command

:Proceed RESUME

Depending on the context of its use: Continues the execution of the program or
process that has been suspended, executes the proceed-handler instruction that
appears in the list of proceed and restart options, or returns to the previously
invoked Debugger. You can use the RESUME key in place of this command.

Relnvoke Command

:Reinvoke keyword

Restarts execution of the function in the current frame. Any numeric argument
given with this command's accelerator, as well as the :New Args keyword, prompts
you for new argument values. If the function has been redefined - perhaps you
edited the function to fix a bug - the new definition is used. The :Reinvoke
command asks for confirmation before restarting the frame.

keyword

:New Args

Return Command

: Return

:New Args

{Yes, No} Prompts you to supply new argument values for the
reinvoked frame. (Default is No, which reinvokes the frame
using current argument values. Mentioned default is Yes.)

c-R

Returns from the current frame. This command prompts for as many values as
the caller needs. You must enter values acceptable to the current frame's caller.
For each value, the Debugger prompts you for a form, which it evaluates. It
returns the' resulting values, possibly after confirming them with you. If no

52

Program Development Utilities August 1986

values are expected, it requests confirmation before returning. The :Return
command is useful when you want to simulate the return of a frame's execution,
which was halted for some reason.

Throw Command

:Throw symbol form

Executes a Lisp throw function and throws the result of evaluating form to the
tag named by symbol. You can also use the Lisp function throw.

A catch tag.

c-T

symbol

form A form to evaluate. The returned values from this evaluation
are thrown to symbol.

3.7.5 Debugger Trap Commands

The Debugger provides commands associated with Debugger traps. These
commands, in alphabetical order, are:

:Clear Trap On Call (c-H c-C)

:Clear Trap On Exit (c-H c-E)

:Disable Condition Tracing (c-H T)

:Enable Condition Tracing (c-H T)

:Monitor Variable

:Proceed Trap On Call (c-H M-C)

:Restart Trap On Call (c-H C-M-C)

:Set Trap On Call (c-H C)

:Set Trap On Exit (c-H E)

:Show Monitored Locations

:Unmonitor Variable

A trap suspends a function's execution and, if there is no condition handler, causes
entry to the Debugger. For example, a trap might be signalled when your
program executes an illegal instruction, such as division by o. Unless your
program is prepared to handle the trap, the Debugger is entered.

53

August 1986 Debugger

The :Monitor Variable command also causes a trap and Debugger entry. This
command triggers a monitor trap whenever a process accesses a special variable.
If you have many different processes accessing a special variable, and you want to
identify them all, you can simply specify the variable to be monitored. The trap
occurs when that variable is referenced. You can also monitor instance variables
and structure slots by clicking on them with the mouse. :Monitor Variable is
useful if you want to keep track of and debug the interactions between the
accessing processes. See the section "Monitor Variable Command", page 54.

The :Enable Condition Tracing command also signals a trap when you suspect a
condition handler is broken and want to debug that handler. If you receive
recursive error messages due to a defective handler, use :Enable Condition Tracing
to cause a trap and enter the Debugger before the condition is signalled. See the
section "Enable Condition Tracing Command", page 54.

Once in the Debugger, you can explicitly set traps by using the :Set Trap On Call
and :Set Trap On Exit commands. A trap on exit suspends execution outside the
called function, immediately after the function has returned. A trap on call
suspends execution inside the called function, immediately before the first
instruction.

The RESUNE key can be used to continue returning or throwing whenever execution
is suspended in a trap. When a trap on exit is set for a frame, throwing through
that frame still signals the trap.

The ABORT key can be used to bypass the trap on exit.

The :Set Trap On Call, :Proceed Trap On Call, and :Restart Trap On Call
commands have the following restriction: If you are metering all functions in a
particular process, you cannot use trap on call in that process while metering is
enabled.

Clear Trap on Call Command

:Clear Trap On Call c-x c-C

Clears trap on call for the current frame.

Clear Trap on Exit Command

:Clear Trap On Exit keyword c-X c-E

Clears trap on exit for the current frame or for all frames. Any numeric
argument given with this command's accelerator clears trap on exit for all frames.

keyword

:All

:All

{Yes, No} Clears traps on exit for all frames in the stack.
(Default is No. Mentioned default is Yes.)

54

Program Development Utilities August 1986

Disable Condition Tracing Command

:Disable Condition Tracing c-X T

Disables condition tracing. The c-X T accelerator toggles between :Disable
Condition Tracing and :Enable Condition Tracing.

Enable Condition Tracing Command

:Enable Condition Tracing condition keyword c-X T

Enables condition tracing. That is, this command allows you to debug an error
handler when it does not work properly. For example, when you receive
continuous, recursive error messages due to a defective error handler, you can use
:Enable Condition Tracing to cause a trap and enter the Debugger before the
condition is signalled. Once in the Debugger, you can debug and IlX the handler.

You should use this command only if you code your own error handlers. If you do
not code your own handlers, and suspect there is a bug in a handler, send a bug
report to your Symbolics customer representative.

Any numeric argument given with this command's accelerator sets
trace-conditions to t. The c-X T accelerator toggles between :Enable Condition
Tracing and :Disable Condition Tracing.

condition

keyword

: Conditional

{t, nil, condition} t enters the Debugger when any condition is
signalled. nil turns off condition tracing previously specified by
t. condition is a condition flavor, which causes entry to the
Debugger when any flavor built on condition is signalled.

: Conditional

{Always, Mode-Lock, Never, Once} Enables condition tracing
according to certain conditions. Always: enables condition
tracing in all cases. Mode-Lock: enables condition tracing only
when the MODE LOCK key is depressed. Never: has the effect of
disabling condition tracing. Once: enables condition tracing only
for the first time a condition is raised. (Default is Always.)

Monitor Variable Command

:Monitor Variable symbol keywords

Monitors the access of a special variable. This command arranges for a trap to be
signalled when any process accesses the monitored location. This command is
used to answer the question: "What program or process is reading or writing this
location in memory?". This is particularly useful when there are several processes

55

August 1986 Debugger

sharing some data structures, and you want to debug the interactions between the
processes.

symbol The name of a symbol whose location in memory you want to
monitor. Enter the name of a symbol and, optionally, its Value
Cell or Function-Cell. (See the :Cell keyword description below.)

keywords :Boundp, :Cell, :Locf, :Makunbound, :Read, :Write

:Boundp {Yes, No} Monitors the location for boundp operations.
(Default is No.)

:Cell {Value-Cell, Function-Cell} Specifies the cell that you want to
monitor within the location. The Debugger gives you two
choices: Value-Cell or Function-Cell. (Default is Value-Cell.)

:Locf {Yes, No} Monitors the location for locf operations. (Default is
No.)

:Makunbound {Yes, No} Monitors the location for makunbound operations.
(Default is No.)

:Read {Yes, No} Monitors the location for reads. (Default is No.)

: Write {Yes, No} Monitors the location for writes. (Default is Yes.)

Suggested mouse operations

• To monitor a location: Point the mouse at a locative, structure slot, or
instance variable and press c-M-sh-Mouse-Left .

• To unmonitor a location: Point the mouse at a locative, structure slot, or
instance variable that was previously monitored and press
c-M-sh-Mouse-Middle.

Proceed Trap on Call Command

:Proceed Trap On Call C-x M-C

Resumes execution of the function in the current frame after setting trap on call.
Use this command when you want to suspend execution at the entry to the next
called function immediately. The :Restart Trap On Call command is similar,
except that it restarts execution from the beginning of the current function before
it suspends execution at the next called function. See the section "Restart Trap
on Call Command", page 56. Using the :Proceed Trap On Call command is
identical to using the :Set Trap On Call and :Proceed commands successively. The
trap on call suspends execution inside the called function, immediately before the
first instruction. See the section "Set Trap on Call Command", page 56.

56

Program Development Utilities August 1986

Note: The Debugger might mistake this command for the :Proceed command if you
attempt to type in the full command name. To avoid this problem, use the c-H
M-C accelerator, surround the command name in quotes (excluding the colon), or
type in:

:p t COMPLET E

to complete the command properly.

Restart Trap on Call Command

:Restart Trap On Call

Restarts execution of the function in the current frame, but first sets trap on call.
Use this command when you want to restart execution of the current frame then
immediately suspend execution at the entry to the next called function. The
:Proceed Trap On Call command is similar, except that it resumes execution from
wherever execution is suspended within the function instead of restarting
execution from the beginning of the function. See the section "Proceed Trap on
Call Command", page 55. Using the :Restart Trap On Call command is identical to
using the :Set Trap On Call and :Reinvoke commands successively. The trap on
call suspends execution inside the called function, immediately before the first
instruction. See the section "Set Trap on Call Command", page 56.

Set Trap on Call Command

:Set Trap On Call c-H C

Sets trap on call for the next function called in the current frame. Use this
command when· you want to suspend execution at the entry of the next called
function. (This command also sets trap on exit for the next called function.) The
trap occurs only for the first time your program execution encounters the called
function. A trap on call suspends execution inside the called function, immediately
before the first instruction.

Set Trap on Exit Command

:Set Trap On Exit keyword c-H E

Sets trap on exit for the current frame or for all frames. The trap on exit occurs
only for the first time your program execution returns the called function. Any
numeric argument given with this command's accelerator sets traps on exit for all
frames. When a trap on exit is set for a frame, throwing through that frame, via
a Lisp throw function, still signals the trap.

57

August 1986 Debugger

keyword
: All

:All
{Yes, No} Sets traps on exit for all frames in the stack.
(Default is No. Mentioned default is Yes.)

Show Monitored Locations Command

:Show Monitored Locations

Displays all variables and other locations in memory that you are monitoring via
the :Monitor Variable command, the dbg:monitor-location function, and so on.

Unmonitor Variable Command

:Unmonitor Variable symbol keyword

Stops monitoring one or all special variables in memory.

symbol

keyword

:Cell

{location, RETUR~t} A location specifies one location that you want
to stop monitoring. Enter the name of a symbol and, optionally,
its Value-Cell or Function-Cell. (See the :Cell keyword
description below.) Press the RET URN key if you want to stop
monitoring all locations.

:Cell

{Value-Cell, Function-Cell} Specifies which cell within the
location you want to stop monitoring. The Debugger gives you
two choices: Value-Cell or Function-Cell. (Default is Value
Cell.)

Suggested mouse operations

o To unmonitor a location: Point the mouse at a locative, structure slot, or
instance variable that was previously monitored and press
c-M-sh-Mouse-Middle.

3.7.6 Debugger Commands for Breakpoints and Single Stepping

The Debugger provides breakpoint and single-step commands.

Like a trap, a Debugger breakpoint is also a suspension of a function's execution.
Unlike a trap on call or trap on exit, any breakpoint that you set suspends
execution every time your program encounters the breakpoint. You can set a
breakpoint with the :Set Breakpoint command as well as other ways, listed below.
Breakpoints are useful for examining data at strategic points in your program
while your execution is frozen.

58

Program Development Utilities August 1986

When you enter the Debugger via breakpoint, the Debugger displays the word
Break in the top line of the error display. A Debugger breakpoint can be signalled
by:

• Using the :Set Breakpoint command. See the section "Set Breakpoint
Command", page 60.

• Performing mouse operations on the code fragments and disassembled code
instructions output by the :Show Source Code and :Show Compiled Code
commands respectively. See the section "Show Source Code Command", page
35. Also: See the section "Show Compiled Code Command", page 33.

• Pressing n-SUSPEND or c-n-SUSPEND. See the section "Entering the
Debugger With n-SUSPEND, c-n-SUSPEND", page 13.

• Inserting the break or zl:dbg function into your program's source code. See
the section "Entering the Debugger With break And zl:dbg Functions", page
14.

Do not confuse a Debugger breakpoint with a break loop. A break loop is a
Dynamic Lisp Listener read-eval-print loop, which is activated when you suspend
your current activity, via SUSPEND or c-SUSPEND. A Debugger breakpoint suspends
into the Debugger, usually for the purpose of debugging a program.

You should set breakpoints only in your program's source code. Do not set a
breakpoint in a system function - any code that the system depends on for its
operations. Placing a breakpoint in a system function can produce dangerous
results because your breakpoint may be encountered by other system functions. A
breakpoint in the following types of functions can be particularly dangerous:

Input/Output functions

Input Editor functions

Storage system functions

Hardware I/O functions

Garbage collecting functions

The term single stepping refers to the process of executing instructions, one
instruction at a time. That is, the :Single Step command executes the next
instruction, then suspends execution. The pattern becomes execute-suspend,
execute-suspend, execute-suspend, and so on. The :Single Step command only
operates on compiled code. To single step through interpreted code, use the Step
facility or the :step option in the Trace facility. See the section "Stepping

59

August 1986 Debugger

Through an Evaluation", page 85. Also: See the section "Tracing Function
Execution", page 73. The :Single Step command steps over compiled functions. To
step into a compiled function, use the :Set Trap On Call command on the function
in which you want to step, then use the :Single Step .command.

Commands for breakpoints and single stepping, in alphabetical order, are:

:Clear All Breakpoints

:Clear Breakpoint

:Set Breakpoint

:Show Breakpoints

:Single Step (c-sh-S)

Clear All Breakpoints Command

:Clear All Breakpoints compiled-function-spec

Clears all breakpoints in the current frame's function or in any other compiled
function.

compiled-function-spec
The name of a compiled function in which you want to clear
breakpoints. (Default clears all breakpoints in the current
frame's function.)

Clear Breakpoint Command

:Clear Breakpoint compiled-function pc

Clears a breakpoint.

compiled-function The name of a compiled function in which you want to clear a
breakpoint.

pc The PC (program counter) at which you want to clear a
breakpoint.

Suggested mouse operations

• To clear a breakpoint in a compiled function: Display disassembled code
with the :Show Compiled Code command, point the mouse at a PC, and press
c-M-Mouse-Middle.

60

Program Development Utilities August 1986

• To clear a breakpoint in a code fragment: Display the code with the :Show
Source Code command, point the mouse at a code fragment, and press
c-M-Mouse-Middle.

Set Breakpoint Command

:Set Breakpoint compiled-function pc

Sets a breakpoint.

compiled-function The name of a compiled-function in which you want to set a
breakpoint.

pc The PC (program counter) at which you want to set a
breakpoint.

keywords :Action, :Conditional

:Action

:Conditional

{Show-All, Show-Args, Show-Locals, expression} Specifies an
action to take when the breakpoint is encountered. Show-All:
Displays arguments and local variables. Show-Args: Displays
arguments and no local variables. Show-Locals: Displays only
local variables. Give an expression if you want it to be
evaluated in the lexical context of the frame. (Default is no
action. Mentioned default is Show-All.)

{Always, Mode-Lock, Never, Once, expression} Executes the
breakpoint trap according to certain conditions. Always: The
breakpoint is always taken. Mode-Lock: The breakpoint is taken
only when the MODE LOCK key is depressed. Never: The
breakpoint is never taken. Once: The breakpoint is taken only
for the first time it is encountered. Give an expression if you
want it to be evaluated in the lexical context of the frame.
(Default is Always.)

Suggested mouse operations

• To set a breakpoint in a compiled function: Display disassembled code with
the :Show Compiled Code command, point the mouse at a PC, and press
c-M-~louse-Left.

• To set a breakpoint in a code fragment: Display the code with the :Show
Source Code command, point the mouse at a code fragment, and press
c-M-Mouse-Left.

61

August 1986 Debugger

Show Breakpoints Command

:Show Breakpoints

Displays all of the currently set breakpoints.

Single Step Command

:Single Step c-sh-S

Executes one instruction at a time and steps over function calls. This command
works only on compiled code. For interpreted code, use the Step facility or the
:step option in the Trace facility. For stepping into a compiled function, use the
:Set Trap On Call command on the function in which you want to step, then use
the :Single Step command.

3.7.7 Debugger Commands for System Transfer

The Debugger provides commands that allow you to enter other systems while
debugging. These systems are:

Zmacs, which allows you to edit your function

A mail message window, which allows you to mail a bug report

The Window Debugger

The Debugger commands that transfer you to these other systems are:

:Edit Function (c-E)

:Mail Bug. Report (c-M)

:Window Debugger (c-r'l-~J)

Edit Function Command

:Edit Function function c-E

Enters the Zmacs editor to bring up the current function or any other function for
editing. This command lets you look at the function's source code. This is useful
when you have found the function that caused the error and want to fix the code
right away. The editor command c-Z returns to the Debugger, if it is still there.

function A stack frame that you select with the mouse or a function spec
that specifies which function you want to edit. (Default edits
the current function.)

62

Program Development Utilities August 1986

Suggested mouse operations

To edit a function: Point the mouse at the function's stack frame and press
M-t1ouse-Left.

Mail Bug Report Command

:Mail Bug Report keyword c-t1

Brings up a mail message window and puts a backtrace into a mail message to be
mailed as a bug report.

This command creates a new process and runs the bug function in that process.
It starts up a mail-sending window that contains a copy of the error message and
a detailed backtrace of the stack. You are expected to report information
explaining what you were doing when the problem occurred, preferably including a
way for the person reading the bug report to make the problem happen again.
The stack trace by itself is not adequate information for debugging. When you
type the END key, the bug report is sent as mail, and you are brought back into
the Debugger.

While composing the bug report, you can use normal window-switching commands
such as FUNCT I ON S to switch back and forth between the Debugger and the mail
sending window.

A numeric argument given with this command's accelerator, c-t1, as well as the
:Nframes keyword, specifies the number of stack frames to put in your bug report;
for example, c-5 c-M puts five frames into your report. The current stack frame
begins the backtrace, so you might want to enter the :Top Of Stack command
before you use :Mail Bug Report, if you have been examining frames other than
the one that got the error. :Top Of Stack makes sure the error frame begins the
backtrace.

keyword

: Nframes

:Nframes

{stack-frame, number} Specifies the number of stack frames to
put into your bug report. Select a stack-frame with the mouse,
or enter the number of most recent stack frames you want to
send in your bug report. Frames that you specify show detailed
information in the mail message. (Default places eight most
recent frames into the mail message.)

Suggested mouse operations

• To put a backtrace in a mail message: Display the backtrace with the :Show
Backtrace command, point the mouse at the last frame you want included in

63

August 1986 Debugger

your backtrace, and click Mouse-Left. All frames up to and including the
frame you clicked on are put into the mail message.

Window Debugger Command

:Window Debugger

Enters the Window Debugger.

3.7.8 Miscellaneous Debugger Commands

There are a few miscellaneous Debugger commands that do not fit into any logical
category. These commands are:

:Help (c-HELP)

:Set Stack Size

Help Command

:Help c-HELP

Displays a list of all available Debugger commands with brief descriptions and key
binding accelerators.

Set Stack Size Command

:Set Stack Size stack-type stack-size

Sets the size of a stack.

stack-type

stack-size

The type of the stack. Enter Control, Binding, or Data.
(Default is Control.)

The size of the stack. Enter a number of machine words that
represents the stack size.

3.8 Debugger Functions

The Debugger's evaluation environment lets you type in Lisp forms, which it reads
and evaluates in the lexical context of the current frame, and then prints. When
you are typing these forms, you can use the following functions to examine or
modify the arguments, local variables, function object, and values being returned
in the current frame.

64

Program Development Utilities August 1986

dbg:arg name-or-number Function
Returns the value of argument name-or-number in the current stack frame.
(setf (dbg:arg n) x) sets the value of the argument n in the current frame
to the value of x. name-or-number can be the number of the argument (for
example, 0 to specify the first argument) or the name of the argument.
This function can be called only from the Debugger's evaluation
environment.

dbg:loc name-or-number Function
Returns the value of the local variable name-or-number in the current stack
frame. (setf (dbg:loc n) x) sets the value of the local variable n in the
current frame to the value of x. name-or-number can be the number of the
local variable (for example, 0 to specify the first local variable) or the name
of the local variable. This function can be called only from the Debugger's
evaluation environment.

dbg:fun Function
Returns the function object of the current stack frame.
(setf (dbg:fun) x) sets the function object of the current frame to the
value of x. This function can be called only from the Debugger's
evaluation environment.

dbg:val &optional val-no 0 Function
Returns the value of the val-noth value to be returned from the current
stack frame. (setf (dbg:val val-no) x) sets the value of the val-noth value
to be returned from the current frame to the value of x. val-no must be a
fixnum (since values do not have names) and defaults to o. (dbg:val)
without a value number gives the first value. This function can be called
only from the Debugger's evaluation environment.

dbg:monitor-Iocation (location &key (read nil) (write t) Function
(makunbound (eq write t»
(boundp (eq read t» locate name)

Monitors a location; that is, causes entry to the Debugger whenever
location is accessed by a process. location is a locative to the location to be
monitored; for example, (zl:value-cell-Iocation 'foo). Descriptions of other
arguments follow:

65

August 1986 Debugger

read {t, nil} monitors the location for reads. (Default
is nil.)

write {t, nil} monitors the location for writes. (Default
is t.)

makunbound {t, nil} monitors the location for makunbound
operations. (Default is the value of write)

boundp {t, nil} monitors the location for boundp
operations. (Default is the value of read.)

locate {t, nil} monitors the location for locf operations.
(Default is nil.)

dbg:monitor-instance-variable instance instance-variable-name &key Function
(read nil) (write t) makunbound boundp locate

Monitors an instance variable; that is, causes entry to the Debugger
whenever the instance variable is accessed by a process. instance is the
name of an instance containing an instance-variable you want to monitor.
Descriptions of other arguments follow:

read {t, nil} monitors the instance variable for reads. (Default
is nil.)

write {t, nil} monitors the instance . variable for writes. (Default
is t.)

makunbound {t, nil} monitors the instance variable for makunbound
operations. (Default is nil.)

boundp {t, nil} monitors the instance variable for boundp
operations. (Default is nil.)

locate {t, nil} monitors the instance variable for locf operations.
(Default is nil.)

dbg:unmonitor-Iocation location Function
Unmonitors a location. location is a locative to the location you want to
stop monitoring.

66

Program Development Utilities August 1986

3.9 Debugger Variables

The Debugger uses the following variables:

dbg:*frame* Variable
Inside the Debugger's evaluation environment, the value of dbg:*frame* is
the location of the current frame.

dbg:*defer-package-dwim* Variable
When this is nil (the default), the Debugger searches over all packages to
find any look-alike symbols when errors concerning unbound variables
occur.

When the option is not nil, the search does not occur until you press
c-sh-P. In this case, the Debugger offers c-sh-P in the list of commands
even if the search would find no look-alike symbols.

dbg:*debug-io-overri.de* Variable
This is used during debugging to divert the Debugger to a stream that is
known to work. If the value of this variable is nil (the default), the
Debugger uses the stream that is the value of zl:debug-io. But if the
value of dbg:*debug-io-override* is not nil, the Debugger uses the stream
that is the value of this variable instead. This variable should always be
set (using setq), not bound, so all processes and stack groups can see it.

dbg:*show-backtrace* Variable
Backtrace information appears when you enter the Debugger. The default
is nil.

Value

nil

t

Meaning

The Debugger startup message does not include any
backtrace information.

The Debugger startup message includes a three-element
backtrace.

67

August 1986 Debugger

4. Summary of Debugger Commands

The following table summarizes all Debugger commands in alphabetical order.
For each command, the table lists the command name, accelerators, positional
arguments, keywords, and useful mouse operations.

This table appears only in the printed book. It does not appear online, in the
Document Examiner. In the Document Examiner, you will see just an alphabetical
list of all commands and their accelerators. To view a full command description
for any command, simply point the mouse at the desired command in this list, and
click Mouse-Left.

See the section "Debugger Command Descriptions", page 29. See also the online
help file by pressing c-HELP.

COMMAND

:Abort
ABORT, c-Z

:Analyze Frame
c-m-Z

:Bottom Of Stack
m->

:Clear All Breakpoints

:Clear Breakpoint

:Clear Trap On Call
coX c-C

:Clear Trap On Exit
coX c-E

:Describe Last
c-m-D

ARGUMENTS

compiled-fun ction-sp ec

compiled-function
pc

KEYWORDS

:Detailed {Yes, No}

:AII {Yes, No}

MOUSE

On a code fragment
or PC instruction:

c-m-Mouse-Middle

On any object:
Mouse-Middle

68

Program Development Utilities August 1986

COMMAND ARGUMENTS KEYWORDS MOUSE

:Disable Aborts

:Disable Condition Tracing
c-XT

:Edit Function function On a function spec:
c-E m-Mouse-Left

:Enable Aborts

:Enable Condition Tracing condition :Conditional
c-XT {t, nil, condition} {Always,

Mode-Lock,
Never, Once}

:Find Frame string :Detailed {Yes, No}
coS :Reverse {Yes, No}

:Help
c-HELP

:Mail Bug Report :Nframes
coM { stack-frame,

number}

:Monitor Variable variable :Boundp {Yes, No} On a structure slot
:Cell or instance variable:
{Value-Cell, c-m-sh-Mouse-Left
Function-Cell}

:Locf {Yes, No}
:Makunbound
{Yes, No}

:Read {Yes, No}
:Write {Yes, No}

:Next Frame :Detailed {Yes, No}
LINE, coN, m-N, c-m-N :Internal {Yes, No}

:Nframes {number}

69

August 1986 Debugger

COMMAND ARGUMENTS KEYWORDS MOUSE

:Previous Frame :Detailed {Yes, No}
RETURN, c-P, m-P, :Internal {Yes, No}
c-m-P, c-m-U :Nframes {number}

:To Interesting
{Yes, No}

:Proceed
RESUME

:Proceed Trap On Call
c-X m-C

:Reinvoke :New Args
c-m-R {Yes, No}

:Restart Trap On Call
C-X c-m-C

:Return
c-R

:Set Breakpoint compiled-function :Action On a code fragment
pc {Show-All, or PC:

Show-Args, c-m-Mouse-Left
Show-Locals,
expression}

:Conditional
{Always,
Mode-Lock,
Never, Once,
expression}

:Set Current Frame stack-frame On a stack frame:
Mouse-Left

:Set Stack Size stack-type
stack-size

70

Program Development Utilities August 1986

COMMAND ARGUMENTS KEYWORDS MOUSE

:Set Trap On Call
coX C

:Set Trap On Exit :AII {Yes, No}
coX E

:Show Arglist
coX c-A

:Show Argument argument
c-m-A {number, All}

:Show Backtrace :Detailed {Yes, No}
coB, moB, c-m-B :Internal {Yes, No}

:Nframes {number}

:Show Bindings :AII {Yes, No}
COX B :Matching {string}

:Show Breakpoints

:Show Catch Blocks :AII {Yes, No}

:Show Compiled Code compiled-function-spec Set a breakpoint
coX D from-pc on a PC:

to-pc c-m-Mouse-left

Clear a breakpoint
on a PC:

c-m-Mouse-Middle

:Show Condition Handlers :AII {Yes, No}

:Show Frame :Clear Window
REFRESH, col, mol {Yes, No}

:Detailed
{Yes, No}

71

August 1986 Debugger

COMMAND ARGUMENTS KEYWORDS MOUSE

:Show Function
c-m-F

:Show Instruction
c-m-I

:Show Lexical Environment

:Show Local local-variable
c-m-L {number, All}

:Show Monitored Locations

:Show Proceed Options On an option:
Mouse-Left

:Show Rest Argument

:Show Source Code compiled-function-spec Set a breakpoint
c-X c-D on a code fragment:

c-m-Mouse-Left

Clear a breakpoint
on a code fragment:

c-m-Mouse-Middle

Evaluate a form:
m-Mouse-Middle

:Show Special symbol :Environment
{Program,
Debugger,
Streams}

:Show Stack

:Show Standard Value Warnings

72

Program Development Utilities

COMMAND

:Show Value
c-m-V

:Single Step
c-sh-S

:Symeval In Last Instance
COX c-I

:Throw
coT

:Top Of Stack
m-<

:Unmonitor Variable

:Use Dynamic Environment
COX I

:Use Lexical Environment
coX I

:Window Debugger
c-m-W

August 1986

ARGUMENTS KEYWORDS MOUSE

value {number}

symbol

symbol
form

:Detailed {Yes, No}

symbol :Cell On a structure slot
{location, RETURN} {Value-Cell or instance variable:

Function-Cell} c-m-sh-
Mouse-Middle

73

August 1986 Debugger

5. Tracing Function Execution

The trace facility allows you to trace some functions. Tracing is useful when you
need to find out why a program behaves in an unexpected manner, particularly
when you suspect that arguments are being passed incorrectly or functions are
being called in the wrong sequence. The Trace facility is closely compatible with
Maclisp.

Certain special actions are taken when a traced function is called and when it
returns. The default tracing action prints a message when the function is called,
showing its name and arguments, and another message when the function returns,
showing its name and values.

You invoke the trace facility in several ways:

o Use the trace and untrace special forms.

o Click on [Trace] in the System menu. Enter or point to the function to be
traced; a menu of options pops up.

o Invoke the Trace (M-H) command in the editor. Enter the function to be
traced; a menu of options pops up.

The menu options are also available with trace; however, the syntax is complex.

trace
A trace form looks like:

(trace spec-l spec-2 ...)

Each spec can take any of the following forms:

a symbol

Special Form

This is a function name, with no options. The function is traced in
the default way, printing a message each time it is called and each
time it returns.

a list (function-name option-l option-2 •••)
function-name is a symbol and the options control how it is to be
traced. For a list of the various options: See the section "Options
To trace", page 74. Some options take arguments, which should be
given immediately following the option name.

a list (:function function-spec option-l option-2 ...)
This option is like the previous form except that function-spec need
not be a symbol. (See the section "Function Specs" in Symbolics
Common Lisp: Language Concepts.) It exists because if

74

Program Development Utilities August 1986

function-name were a list in the previous form, it would instead be
interpreted as the following form:

a list «function-l function-2 •••) option-l option-2 •••)
All of the functions are traced with the same options. Each function
can be either a symbol or a general function-spec.

trace returns as its value a list of names of all functions it traced. If
called with no arguments, as just (trace), it returns a list of all the
functions currently being traced.

If you attempt to trace a function already being traced, trace calls untrace
before setting up the new trace.

Tracing is implemented with encapsulation, so if the function is redefined
(for example, with defun or by loading it from a compiled code file) the
tracing is transferred from the old definition to the new definition.

It is recommended that you trace only user-defined functions and avoid
tracing the system functions. Although some of the background processes
use th~se functions, they never expect to have to type out anything. If
they do have to type out something, the process will hang until you let it
type out.

See the section "Encapsulations" in Symbolics Common Lisp: Language
Concepts.

See the section "Options To trace", page 74.

5.1 Options To trace

The following trace options exist:

:break pred
Enters a Dynamic Lisp Listener break loop after printing the entry trace
information but before applying the traced function to its arguments, if and
only if pred evaluates to non-nil. During the break, the symbol arglist is
bound to a list of the arguments of the function.

:exitbreak pred
This is just like : break except that the break loop is entered after the
function has been executed and the exit trace information has been printed,
but before control returns. During the break, the symbol arglist is bound
to a list of the arguments of the function, and the symbol values is bound
to a list of the values that the function is returning.

:error Calls the Debugger when the function is entered. Use RESUME to continue

75

August 1986 Debugger

execution of the function. If this option is specified, no printed trace
output appears other than the error message displayed by the Debugger.
(Note: If you also want to call the Debugger when the function returns, use
the Debugger's :Set Trap On Exit (c-X E) command.)

:step Steps through interpreted code of a function whenever the function is
called. For compiled code, use the Debugger's :Single Step command. See
the section "Single Step Command", page 61.

See the section "Stepping Through an Evaluation", page 85.

:entrycond pred
Prints trace information on function entry only if pred evaluates to non-nil.

:exitcond pred
Prints trace information on function exit only if pred evaluates to non-nil.

:cond pred
Prints trace information on function entry and exit only if pred evaluates to
non-nil.

:wherein function
Traces the function only when it is called, directly or indirectly, from the
specified function function. You can give several trace specs to trace, all
specifying the same function but with different :wherein options, so that
the function is traced in different ways when called from different
functions.

This is different from advise-within, which only affects the function being
advised when it is called directly from the other function. The
trace :wherein option means that when the traced function is called, the
special tracing actions occur if the other function is the caller of this
function, or its caller's caller, or its caller's caller's caller, and so on.

:per-process process
Traces the function in the specified process only. It pops up a menu of
processes and you choose the one in which to trace the function.

:argpdl pdZ
Specifies a symbol pdZ, whose value is initially set to nil by trace. When
the function is traced, a list of the current recursion level for the function,
the function's name, and a list of arguments are pushed onto the pdZ when
the function is entered, and then popped when the function is exited. The
pdZ can be inspected from within a breakpoint, for example, and used to
determine the very recent history of the function. This option can be used
with or without printed trace output. Each function can be given its own
pdl, or one pdl can serve several functions.

76

Program Development Utilities August 1986

:entryprint form

form is evaluated and the value is included in the trace message for calls
to the function. You can give this option more than once, and all the
values will appear, preceded by \\.

:exitprint form
form is evaluated and the value is included in the trace message for
returns from the function. You can give this option more than once, and
all the values will appear, preceded by \\.

:print form
form is evaluated and the value is included in the trace messages for both
calls to and returns from the function. You can give this option more than
once, and all the values will appear, preceded by \\.

:entry list
Specifies a list of arbitrary forms whose values are printed along with the
usual entry-trace. The list of resultant values, when printed, is preceded
by \\ to separate it from the other information.

:exit list
Similar to : entry, but specifies expressions whose values are printed with
the exit-trace. The list of values printed is preceded by \\.

:arg :value :both nil
Specifies which of the usual trace printouts should be enabled.

If you specify

:arg

: value

:both

nil

None

Then

On function entry prints the name of the function and
the values of its arguments.

On function exit prints the returned value(s) of the
function.

Same as if both :value and :arg were specified.

Same as if neither :value or :arg was specified.

The default is to : both.

If any further options appear after one of these, they are not treated as
options. Rather, they are considered to be arbitrary forms whose values
are to be printed on entry andlor exit to the function, along with the
normal trace information. The values printed are preceded by a II, and
follow any values specified by :entry or : exit. Note that since these
options "swallow" all following options, if one is given it should be the last
option specified.

77

August 1986 Debugger

If the variable arglist is used in any of the expressions given for the :cond,
: break, : entry, or :exit options, or after the :arg, :value, : both, or nil option,
when those expressions are evaluated the value of arglist will be bound to a list of
the arguments given to the traced function. Thus the following form would cause
a break in foo if and only if the first argument to foo is nil.

(trace (faa :break (null (car arglist»»

If the :break or :error option is used, the variable arglist will be valid inside the
break-loop. If you setq arglist, the arguments seen by the function will change.

Similarly, the variable values will be a list of the resulting values of the traced
function. For obvious reasons, this should only be used with the :exit option. If
the :exitbreak option is used, the variables values and arglist are valid inside the
break-loop. If you setq values, the values returned by the function will change.

You can "factor" the trace specifications, as explained earlier. For example,

(trace ((faa bar) : break (bad-p argl i st) : val ue»

is equivalent to

(trace (faa :break (bad-p arglist) :value)
(bar : break (bad-p argl i st) : val ue»

Since a list as a function name is interpreted as a list of functions, nonatomic
function names are specified as follows:

(trace (:function (:method flavor :message) :break t»

(See the section "Function Specs" in Symbolics Common Lisp: Language Concepts.)

sys:trace-compile-flag Variable
If the value of trace-compile-flag is non-nil, the functions created by trace
will get compiled, allowing you to trace special forms such as cond without
interfering with the execution of the tracing functions. The default value
of this flag is nil.

5.2 Controlling the Format Of trace Output

Tracing output is printed on the stream that is the value of trace-output. This is
synonymous with terminal-io unless you change it. Following is an example of
the default form of trace output:

78

Program Development Utilities August 1986

Enter FACT 4.
2 Enter FACT 3.

3 Enter FACT 2.
I 4 Enter FACT 1.
I 5 Enter FACT 0.
I 5 Exit FACT 1.
I 4 Exit FACT 1.
3 Exit FACT 2.

2 Exit FACT 6.
Exit FACT 24.

You can use the variables si:*trace-columns-per-Ievel*, si:*trace-bar-p*,
si:*trace-bar-rate*, and si:*trace-old-style* to control the format of trace output.

si:*trace-columns-per-Ievel* Variable
For trace output, controls the number of columns of indentation that are
added for each level of function call. The value must be an integer. The
default is 2.

si:*trace-bar-p* Variable
For trace output, controls whether columns of vertical bars are printed. If
the value is not nil, they are printed; otherwise, spaces are printed instead
of the vertical bars. The default is t (print the bars).

si: *trace-bar-ra te* Variable
When si:*trace-bar-p* is not nil, columns of vertical bars are printed in
trace output for every n levels of function call, where n is the value. The
value must be an integer. The default is 2.

si:*trace-old-style* Variable
If not nil, the old, Maclisp-compatible form of printing trace output is
used. The default is nil (use the new style).

5.3 Untracing Function Execution

untrace "e &rest fns Special Form
Use untrace to undo the effects of trace and restore functions fns to their
normal, untraced state. untrace takes multiple specifications, for example,
(untrace foo bar baz). Calling untrace with no arguments untraces all
functions currently being traced.

79

August 1986 Debugger

6. Advising a Function

To advise a function is to tell a function to do something extra in addition to its
actual definition. Advising is achieved by means of the function advise. The
something extra is called a piece of advice, and it can be done before, after, or
around the definition itself. The advice and the definition are independent, in that
changing either one does not interfere with the other. Each function can be given
any number of pieces of advice.

Advising is fairly similar to tracing, but its purpose is different. Tracing is
intended for temporary changes to a function to give the user information about
when and how the function is called and when and with what value it returns.
Advising is intended for semipermanent changes to what a function actually does.
The differences between tracing and advising are motivated by this difference in
goals.

Advice can be used for testing out a change to a function in a way that is easy to
retract. In this case, you would call advise from the console. It can also be used
for customizing a function that is part of a program written by someone else. In
this case you would be likely to put a call to advise in one of your source files or
your login init file rather than modifying the other person's source code. See the
section "Logging In" in User's Guide to Symbolics Computers.

Advising is implemented with encapsulation, so if the function is redefined (for
example, with defun or by loading it from a compiled code file), the advice will be
transferred from the old definition to the new definition. See the section
"Encapsulations" in Symbolics Common Lisp: Language Concepts.

advise function class name position &body forms
A function is advised by the special form

(advi se function class name position
forml form2 . ..)

None of this is evaluated.

Special Form

function Specifies the function to put the advice on. It is usually a
symbol, but any function spec is allowed. (See the section
"Function Specs" in Symbolics Common Lisp: Language
Concepts.)

class Specifies either : before, : after, or :around, and says when to
execute the advice (before, after, or around the execution of the
definition of the function). For more information about the
meaning of :around, :before, and :after advice: See the section
":around Advice", page 82.

80

Program Development Utilities August 1986

name Specifies an arbitrary symbol that is remembered as the name of
this particular piece of advice. It is used to keep track of
multiple pieces of advice on the same function. If you have no
name in mind, use nil; then we say the piece of advice is
anonymous.

A given function and class can have any number of pieces of
anonymous advice, but it can have only one piece of named
advice for anyone name. If you try to define a second one, it
replaces the first.

Advice for testing purposes is usually anonymous. Advice used
for customizing someone else's program should usually be named
so that multiple customizations to one function have separate
names. Then, if you reload a customization that is already
loaded, it does not get put on twice.

position Specifies where to put this piece of advice in relation to others
of the same class already present on the same function.

forms

Position can have these values:

• position can be nil. The new advice goes in the default
position: it usually goes at the beginning (where it is
executed before the other advice), but if it is replacing
another piece of advice with the same name, it goes in the
same place that the old piece of advice was in.

• position can be a number, which is the number of pieces of
advice of the same class to precede this one. For example,
o means at the beginning; a very large number means at
the end.

• position can have the name of an existing piece of advice
of the same class on the same function; the new advice is
inserted before that one.

Specifies the advice; they get evaluated when the function is
called.

Example: The following form modifies the factorial function so
that if it is called with a negative argument it signals an error
instead of running forever.
(advise factorial :before negative-arg-check nil

(if (minusp (first arglist))
(ferror "factorial of negative argument")))

81

August 1986 Debugger

unadvise &optional function class position Special Form
Removes pieces of advice. None of its subforms are evaluated. function
and class have the same meaning as they do in the function advise.
position specifies which piece of advice to remove. It can be the numeric
index (0 means the first one) or it can be the name of the piece of advice.

unadvise can remove more than one piece of advice if some of its
arguments are missing or nil. The arguments function, class, and position
all act independently. A missing value or nil means all possibilities for
that aspect of advice. For example, the following form removes all : before,
: after, and :around advice named negative-arg-check on the factorial
function:

(unadvise factorial nil negative-arg-check)

In this example unadvise removes all :around advice on all functions in all
positions with all names:

(unadvi se ni 1 : around)

In this example unadvise removes all classes of advice named
my-personal-advice on all functions:

(unadvise nil nil my-personal-advice)

(unadvise) removes all advice on all functions, since function, class, and
position take on all possible values.

The following are the primitive functions for adding and removing advice. Unlike
the special forms advise and unadvise, the following are functions and can be
conveniently used by programs. advise and unadvise are actually macros that
expand into calls to these two.

si:advise-l function class name position forms Function
Adds advice. The arguments have the same meaning as in advise. Note
that the forms argument is not a &rest argument.

si:unadvise-l function &optional class position Function
Removes advice. function, class, and position are independent. If function,
class, or position is nil, or if class or position is unspecified, all classes of
advice or advice for all functions, at all positions, or with all names is
removed.

You can find out manually what advice a function has with grindef, which grinds
the advice on the function as forms that are calls to advise. These are in
addition to the definition of the function.

To poke around in the advice structure with a program, you must work with the
encapsulation mechanism's primitives. See the section "Encapsulations" In
Symbolics Common Lisp: Language Concepts.

82

Program Development Utilities August 1986

si:advised-functions Variable
A list of all functions that have been advised.

6.1 Designing the Advice

For advice to interact usefully with the definition and intended purpose of the
function, it must be able to interface to the data flow and control flow through the
function. The system provides conventions for doing this.

The list of the arguments to the function can be found in the variable arglist.
: before advice can replace this list, or an element of it, to change the arguments
passed to the definition itself. If you replace an element, it is wise to copy the
whole list first with:

(setq arglist (copylist arglist»

After the function's definition has been executed, the list of the values it returned
can be found in the variable values. :after advice can set this variable or replace
its elements to cause different values to be returned.

All the advice is executed within a prog, so any piece of advice can exit the entire
function and return some values with return. No further advice will be executed.
If a piece of :before advice does this, then the function's definition will not even
be called.

6.2 :around Advice

A piece of : before or :after advice is executed entirely before or entirely after the
definition of the function. :around advice is wrapped around the definition; that
is, the call to the original definition of the function is done at a specified place
inside the piece of :around advice. You specify where by putting the symbol
:do-it in that place.

For example, (+ 5 :do-it) as a piece of :around advice would add 5 to the value
returned by the function. This could also be done by the following:

(setq values (list (+ 5 (car values»»

as :after advice.

When there is more than one piece of :around advice, they are stored in a
sequence just like : before and :after advice. Then, the first piece of advice in the
sequence is the one started first. The second piece is substituted for :do-it in the
first one. The third one is substituted for :do-it in the second one. The original
definition is substituted for :do-it in the last piece of advice.

83

August 1986 Debugger

:around advice can access arglist, but values is not set up until the outermost
:around advice returns. At that time, it is set to the value returned by the
:around advice. It is reasonable for the advice to receive the values of the :do-it
(for example, with multiple-value-list) and play with them before returning them
(for example, with values-list).

:around advice can return from the prog at any time, whether the original
definition has been executed yet or not. It can also override the original definition
by failing to contain :do-it. Containing two instances of :do-it can be useful under
peculiar circumstances. If you are careless, however, the original definition might
be called twice, but something like the following certainly works reasonably:

(if (faa) (+ 5 :do-it) (* 2 :do-it))

6.3 Advising One Function Within Another

I t is possible to advise the function foo only when it is called directly from a
specific other function bar. You do this by advising the function specifier
(:within bar foo). That works by finding all occurrences of foo in the definition
of bar and replacing them with altered-foo-within-bar. This can be done even if
bar's definition is compiled code. The symbol altered-foo-within-bar starts off
with the symbol foo as its definition; then the symbol altered-foo-within-bar,
rather than foo itself, is advised. The system remembers that foo has been
replaced inside bar, so that if you change the definition of bar, or advise it, then
the replacement is propagated to the new definition or to the advice. If you
remove all the advice on (:within bar foo), so that its definition becomes the
symbol foo again, then the replacement is unmade and everything returns to its
original state.

(grindef bar) prints foo where it originally appeared, rather than
altered-foo-within-bar, so the replacement will not be seen. Instead, grindef
prints calls to advise to describe all the advice that has been put on foo or
anything else within bar.

An alternate way of putting on this sort of advice is to use advise-within.

advise-within within-function function-to-advise class name position
&body forms

An advise-within form looks like this:
(advi se-wi thi n within-function function-to-advise

class name position
forms ...)

Special Form

It advises function-to-advise only when called directly from the function
within-function. The other arguments mean the same thing as with advise.
None of them is evaluated.

84

Program Development Utilities August 1986

To remove advice from (:within bar foo), you can use unadvise on that function
specifier. Alternatively, you can use unadvise-within.

unadvise-within within-function &optional advised-function class
position

An unadvise-within form looks like this:

Special Form

(unadvi 5e-wi thi n within-function function-to-advise class position)

It removes advice that has been placed on (: wi thi n within-function
function-to-advise). The arguments class and position are interpreted as for
unadvise.

For example, if those two arguments are omitted, then all advice placed on
function-to-advise within within-function is removed. Additionally, if
function-to-advise is omitted, all advice on any function within
within-function is removed. If there are no arguments, than all advice on
one function within another is removed. Other pieces of advice, which
have been placed on one function and not limited to within another, are not
removed.

(unadvise) removes absolutely all advice, including advice for one function
within another.

The function versions of advise-within and unadvise-within are called
si:advise-within-l and si:unadvise-within-l respectively. advise-within and
unadvise-within are macros that expand into calls to the other two.

85

August 1986 Debugger

7. Stepping Through an Evaluation

The step facility gives you the ability to follow every step of the evaluation of an
interpreted form and examine what is going on. It is analogous to a single-step
proceed facility often found in machine-language debuggers. Use the step facility
if your program is behaving strangely, and it is not obvious how it is getting into
this strange state.

You can enter the stepper in two ways:

• Use the zl:step function .

• Use the :step option of trace.

zI:step form Function
zI:step evaluates form with single stepping. It returns the value of form.

For example, if you have a function named foo, and typical arguments to it
might be t and 3, you could say

(step '(foo t 3»

If a function is traced with the :step option, then whenever that function is called
it will be single stepped. See the section "Options To trace", page 74. Note that
any function to be stepped must be interpreted; that is, it must be a lambda
expression. Compiled code cannot be handled by zl:step.

When evaluation is proceeding with single stepping, before any form is evaluated,
it is (partially) printed out, preceded by a right-facing arrow (~) character. When
a macro is expanded, the expansion is printed out preceded by a double arrow (H)

character. When a form returns a value, the form and the values are printed out
preceded by a left-facing arrow (f-) character; if more than one value is being
returned, an and-sign (1\) character is printed between the values.

Since the forms can be very long, the stepper does not print all of a form; it
truncates the printed representation after a certain number of characters. Also, to
show the recursion pattern of who calls whom in a graphic fashion, it indents each
form proportionally to its level of recursion.

Mter the stepper prints any of these things, it waits for a command from you. A
variety of commands exist to tell the stepper how to proceed, or to look at what is
happening.

c-~l (Next)

SPACE

Steps to the next thing. The stepper continues until the next
thing to print out, and it accepts another command.

Goes to the next thing at this level. In other words, it continues

86

Program Development Utilities August 1986

c-u (Up)

c-X (Exit)

c-T (Type)

c-G (Grind)

c-E (Editor)

to evaluate at this level, but does not step anything at lower
levels. In this way you can skip over parts of the evaluation that
do not interest you.

Continues evaluating until we go up one level. Similar to the
SPACE command; it skips over anything on the current level as well
as lower levels.

Exits; finishes evaluating without any more stepping.

Retypes the current form in full (without truncation).

Grinds (that is, pretty-prints) the current form.

Enters the editor.

c-B (Breakpoint)

c-L

M-L

c-M-L

? or HELP

This command puts you into a breakpoint (that is, a read-eval-print
loop) from which you can examine the values of variables and
other aspects of the current environment. From within this loop,
the following variables are available:

step-form The current form.

step-values The list of returned values.

step-value The first returned value.

You can change the values of these variables within the current
environment.

You can also refer to local variables and arguments in the
function.

Clears the screen and redisplays the last ten pending forms (forms
being evaluated).

Like c-L, but does not clear the screen.

Like c-L, but redisplays all pending forms.

Prints documentation on these commands.

I t is strongly suggested that you write a little function and try the stepper on it.
If you get a feel for what the stepper does and how it works, you will be able to
tell when it is the right thing to use to find bugs.

87

August 1986 Debugger

8. evalhook

The evalhook facility provides a "hook" into the evaluator; it is a way you can get
a Lisp form of your choice to be executed whenever the evaluator is called. The
stepper uses evalhook; however, if you want to write your own stepper or
something similar, then use this primitive albeit complex facility to do so.

evalhook Variable
If the value of evalhook is non-nil, then special things happen in the
evaluator. When a form (any form, even a number or a symbol) is to be
evaluated, evalhook is bound to nil and the function that was evalhook's
value is applied to one argument - the form that was trying to be
evaluated. The value it returns is then returned from the evaluator.

evalhook is bound to nil by zl:break and by the Debugger, and setqed to
nil when errors are dismissed by throwing to the Lisp top-level loop. This
provides the ability to escape from this mode if something bad happens.

In order not to impair the efficiency of the Lisp interpreter, several
restrictions are imposed on evalhook. It applies only to evaluation -
whether in a read-eval-print loop, internally in evaluating arguments in
forms, or by explicit use of the function eva!. It does not have any effect
on compiled function references, on use of the function zI:apply, or on the
"mapping" functions. (In Zetalisp, as opposed to Maclisp, it is not
necessary to do (zl:*rset t) nor (zl:sstatus evalhook t). Also, Maclisp's
special-case check for zI:store is not implemented.)

evalhook form evalhook &optional applyhook env Function
evalhook is a function that helps exploit the evalhook feature. The form
is evaluated with evalhook lambda-bound to the function evalhook. The
checking of evalhook is bypassed in the evaluation of form itself, but not
in any subsidiary evaluations, for instance of arguments in the form. This
is like a "one-instruction proceed" in a machine-language debugger. env is
used as the lexical environment for the operation. env defaults to the null
environment.

Example:
;; This function evaluates a form while printing debugging
;; information.
(defun hook (x)

(terpri)
(evalhook x 'hook-function»

88

Program Development Utilities August 1986

;; Notice how this function calls evalhook to evaluate the
" form f, so as to hook the subforms.
(defun hook-function (f)

(let «v (evalhook f 'hook-function)))
(format t "form: -s-%value: -s-%" f v)
v))

" This isn't a very good program, since if f returns multiple
values, it will not work.

The following output might be seen from (hook '(cons (car '(a. b» 'e»:

form: (quote (a . b))
value: (a . b)
form: (car (quote (a . b)))
value: a
form: (quote c)
value: c
(a . c)

Normally after eval has evaluated the arguments to a function, it calls the
function. If applyhook exists, however, eval calls the hook with two
arguments: the function and its list of arguments. The values returned by
the hook constitute the values for the form. The hook could use zl:apply
on its arguments to do what eval would have done normally. This hook is
active for special forms as well as for real functions.

Whenever either an evalhook or applyhook is called, both hooks are bound
off. The evalhook itself can be nil if only an applyhook is needed.

applyhook catches only zl:apply operations done by eva!. It does not catch
zl:apply called in other parts of the interpreter or zl:apply or funcall
operations done by other functions such as mapear. In general, such uses
of zl:apply can be dealt with by intercepting the call to mapear, using the
applyhook, and substituting a different first argument.

The argument list is like an &rest argument: it might be stack-allocated
but is not guaranteed to be. Hence you cannot perform side-effects on it
and you cannot store it in any place that does not have the same dynamic
extent as the call to applyhook.

8.1 applyhook

applyhook provides a hook into zl:apply, much as evalhook provides.a hook into
eva!.

89

August 1986 Debugger

applyhook Variable
When the value of this variable is not nil and eval calls zl:apply,
applyhook is bound to nil and the function that was its value is applied to
two arguments: the function that eval gave to zl:apply and the list of
arguments to that function. The value it returns is returned from the
evaluator.

applyhook function args evalhook applyhook &optional env Function
function is applied to args with evalhook lambda-bound to the function
evalhook and with applyhook lambda-bound to the function applyhook.
Like the evalhook function, this bypasses the first place where the relevant
hook would normally be triggered. env is used as the lexical environment
for the operation. env defaults to the null environment. evalhook or
applyhook can be nil.

90

Program Development Utilities August 1986

91

August 1986 Miscellaneous Debugging Aids

PART II.

Miscellaneous Debugging Aids

92

Program Development Utilities August 1986

93

August 1986 Miscellaneous Debugging Aids

9. The Inspector

9.1 How the Inspector Works

The Inspector is a window-oriented program for inspecting data structures. When
you ask to inspect a particular object, its components are displayed. The
particular components depend on the type of object; for example, the components
of a list are its elements, and those of a symbol are its value binding, function
definition, and property list.

The component objects displayed on the screen by the Inspector are mouse
sensitive, allowing you to do something to that object, such as inspect it, modify it,
or give it as the argument to a function. Choose these operations from the menu
pane at the top-right part of the screen.

When you click on a component object itself, that component object gets inspected.
It expands to fill the window and its components are shown. In this way, you can
explore a complex data structure, looking into the relationships between objects
and the values of their components.

The Inspector can be part of another program or it can be used standalone; for
example, the Window Debugger can utilize some of the panes of the Inspector.
Note, however, that although the display looks the same as that of the standalone
Inspector, the handling of the mouse buttons depends upon the particular program
being run.

Figure 1 shows the standalone Inspector window. The display consists of the
following panes, from top to bottom:

• A small interaction pane
• A history pane and menu pane
• Some number of inspection panes (three by default)

9.2 Entering and Leaving the Inspector

You can enter the standalone Inspector via:

• Select Activity Inspector

o SELECT I

• [Inspect] in the System menu

94

Program Development Utilities

Figure 1. The Inspector

• The Inspect command, which inspects its argument, if any

• The inspect function, which inspects its argument, if any

August 1986

Cleer
Set'

Warning: If you enter with the Inspect command or the inspect function, the
Inspector is not a separate activity from the Lisp Listener in which you invoke it.
In this case you cannot use SELECT L to return to the Lisp Listener; you should
always exit via the [Exit] or [Return] option in the Inspector menu. If you forget
and exit the Inspector by selecting another activity, you might need to use
c-M-ABORT to return the Lisp Listener to its normal state.

95

August 1986 Miscellaneous Debugging Aids

9.3 The Inspector Interaction Pane

The interaction pane has two functions: to prompt you and to receive input. If
you are not being asked a question, then a read-eval-inspect loop is active. Any
forms you type are echoed in the interaction pane and evaluated. The result is
not printed, but rather inspected. When you are prompted for input, usually due
to having invoked a menu operation, any input you type at the read-eval-inspect
loop is saved away and erased from the interaction pane. When the interaction is
finished, the input is re-echoed and you can continue to type the form.

9.4 The Inspector History Pane

The history pane maintains a list of all objects that you have inspected, allowing
you to back up and continue down another path. The last recently displayed object
is at the top of the list, and the most recently displayed object is at the bottom.

You can inspect any mouse-sensitive object in the history pane by clicking on it.
In addition, you can perform other operations by placing the mouse cursor in the
line region, which is the left-hand side of the history pane, the area bounded by
the margin on one side and the list of objects on the other. In the line region the
shape of the mouse cursor changes to a rightward-pointing arrow .

• Clicking left in the line region inspects the object. This is sometimes useful
when the object is a list and it is inconvenient to position the mouse at the
open parenthesis .

• Clicking middle deletes the object from the history.

The history pane also maintains a cache allowing quick redisplay of previously
displayed objects. This means that merely reinspecting an object does not reflect
any changes in its state. Clicking middle in the line region deletes the object
from the cache as well as deleting it from the history pane. Use [DeCache] in the
menu pane to clear everything from the cache.

The history pane has a scroll bar at the far left, as well as scrolling zones in the
middle of its top and bottom edges. The last three lines of the history are always
the objects being inspected in the inspection panes.

9.5 The Inspector Menu Pane

The menu pane (to the right of the history pane) displays these infrequently used
but useful commands:

96

Program Development Utilities August 1986

[Exit]

[Return]

[Modify]

[DeCache]

[Clear]

[Set] \

Equivalent to c-Z. Exits the Inspector and deactivates the frame.

Similar to [Exit], but allows selection of an object to be returned as
the value of the call to inspect.

Allows simple editing of objects. Selecting [Modify] changes the
mouse sensitivity of items on the screen to only include fields that
are modifiable. In the typical case of named slots, the names are
the mouse-sensitive parts. When the field to modify has been
selected, a new value can be specified either by typing a form to be
evaluated or by using the mouse to select any normally mouse
sensitive object. The object being modified is redisplayed. Clicking
right at any time aborts the modification.

Flushes all knowledge about the insides of previously displayed
objects and redisplays the currently displayed objects.

Clears out the history, the cache, and all the inspection panes.

Sets the value of the symbol \ by choosing an object.

9.6 The Inspector Inspection Pane

Each inspection pane can inspect a different object. When you inspect an object it
appears in the large inspection pane at the bottom, and the previously inspected
objects shift upward.

At the top of an inspection pane is either a label, which is the printed
representation of the object being inspected in that window, or the words "a list",
which means a list is being inspected. The main body of an inspection pane is a
display of the components of the object, labelled with their names, if any. You can
scroll this display using the scroll bar on the left or the "more above" and "more
below" scrolling zones at the top and bottom.

Clicking on any mouse-sensitive object in an inspection pane inspects that object.
The three mouse buttons have distinct meanings, however.

• Clicking left inspects the object in the bottom pane, pushing the previous
objects up.

• Clicking middle inspects the object but leaves the source (namely, the object
being inspected in the window in which the mouse was clicked) in the second
pane from the bottom.

• Clicking right tries to find and inspect the function associated with the
selected object (for example, the function binding if a symbol was selected).

97

August 1986 Miscellaneous Debugging Aids

9.6.1 Inspection Pane Display

The information that the Inspector displays depends upon the type of the object:

Symbol

List

Instance

Hash Table

Closure

The name, value, function, property list, and package of the
symbol are displayed. All but the name and the package are
modifiable.

The list is displayed ground by the system grinder. Any piece of
substructure is selectable, and any car or atom in the list can be
modified.

The flavor of the instance, the method table, and the names and
values of the instance-variable slots are displayed. The instance
variables are modifiable.

The flavor of the hash table, the method table, and the names
and values of the instance-variable slots of the hash table are
displayed, followed by the key/value pairs for the entries of the
hash table. The value for a given key is modifiable.

The function, and the names and values of the closed variables
are displayed. The values of the closed variables are modifiable.

Named structure The names and values of the slots are displayed. The values are

Array

modifiable.

The leader of the array is displayed if present. For one
dimensional arrays, the elements of the array are also displayed.
The elements are modifiable.

Compiled code object
The disassembled code is displayed.

Select Method The keyword/function pairs are shown, in alphabetical order by
keyword. The function associated with a keyword is settable via
the keyword.

Stack Frame This is a special internal type used by the Display Debugger. It
is displayed as either interpreted code (a list) or as a compiled
code object with an arrow pointing to the next instruction to be
executed.

9.7 Special Characters Recognized by the Inspector

Some special keyboard characters are recognized when not in the middle of typing
in a form.

98

Program Development Utilities August 1986

c-z
BREAK

ESCAPE

Exits and deactivates the Inspector.

Runs a break loop in the typeout window of the bottom-most inspection
pane.

Reads a form, evaluates it, and prints the result instead of inspecting
it.

9.8 Examining a Compiled Code File

To examine a compiled code file, use si:unbin-file. The output format from
unbin-file includes disassembled code for any compiled functions in the compiled
code file.

si:unbin-file file &optional outfile Function
Converts the compiled code file file to a human-readable file, which you can
optionally specify. It includes disassembled code for any compiled functions
in the compiled code file.

99

August 1986 Miscellaneous Debugging Aids

10. The Peek Program

10.1 Overview of Peek

You start up Peek by pressing SELECT P, by using the Select Activity Peek
command, or by evaluating (zl:peek).

The Peek program gives a dynamic display of various kinds of system status.
When you start up Peek, a menu is displayed at the top, with one item for each
system-status mode. The item for the currently selected mode is highlighted in
reverse video. If you click on one of the items with the mouse, Peek switches to
that mode. Pressing one of the keyboard keys as listed in the Help message also
switches Peek to the mode associated with that key. The Help message is a Peek
mode; Peek starts out in this mode.

Pressing the HELP key displays the Help message.

The Q command exits Peek and returns you to the window from which Peek was
invoked.

Most of the modes are dynamic: they update some part of the displayed status
periodically. The time interval between updates can be set using the :2: command.
Pressing n:2:, where n is some number, sets the time interval between updates to n
seconds. Using the :2: command does not otherwise affect the mode that is
running.

Some of the items displayed in the modes are mouse sensitive. These items, and
the operations that can be performed by clicking the mouse on them, vary from
mode to mode. Often clicking the mouse on an item gives you a menu of things
to do to that object.

The Peek window has scrolling capabilities, for use when the status display is
longer than the available display area. SCROLL or c-V scrolls the window forward
(towards the bottom), £"I-SCROLL or £"I-V scrolls it backward (towards the top).

As long as the Peek window is exposed, it continues to update its display. Thus a
Peek window can be used to examine things being done in other windows in real
time.

zl:peek &optional (character (quote tv:p» Function
zl:peek displays various information about the system, periodically updating
it. It has several modes, which are entered by pressing a single key that is
the name of the mode. The initial mode is selected by the argument,
character. If no argument is given, zl:peek starts out by explaining what
its modes are.

100

Program Development Utilities August 1986

The Help message consists of the following:

This is the Peek utility program. It shows a continually updating
display of status about some aspect of the system, depending on what
mode it is in. The available modes are listed below. Each has a name,
followed by a single character in parentheses, followed by a description.
To put Peek into a given mode, click on the name of the mode, in the command
menu above. Alternatively, type the single character shown below.

Processes (P):
Show all active processes, their states, priorities, quanta, idle times, etc.

Areas (A):
Show all the areas in virtual memory, their types, allocation, etc.

File System (F):
Show all of our connections to various file servers.

Windows (W):
Show all the active windows and their hierarchical relationships.

Servers (5):
Show all active network servers and what they are doing.

Network (N):
Show all local networks, their state and active connections, and network interfaces.

Help «HELP»:
Explain how this program works.

Quit (Q):
Bury PEEK window, exiting PEEK

Hostat (H):
Show the status of all hosts on the Chaosnet

There are also the following single-character commands:
Z (preceded by a number): Set the amount of time between updates, in seconds.

By default, the display is updated every two seconds.
<SPACE>: Immediately update the display.

The commands P, A, F, W, S, H, and N each place you in a different Peek mode, to
examine the status of different aspects of the Lisp Machine system.

101

August 1986 Miscellaneous Debugging Aids

10.2 Peek Modes

Processes {p}

In Processes mode, invoked by pressing P or by clicking on the [Processes] menu
item, you see all the processes running in your environment, one line for each.
The process names are mouse sensitive; clicking on one of them pops up a menu
of operations that can be performed:

Arrest (or Un-Arrest)

Flush

Reset

Kill

Debugger

Describe

Inspect

Arrest causes the process to stop immediately. Unarrest causes
it to pick up where it left off and continue.

Causes the process to go into the state Wait Forever. This is
one way to stop a runaway process that is monopolizing your
machine and not responding to any other commands. A process
that has been flushed can be looked at with the debugger or
inspector and can be reset.

Causes the process to start over in its initialized state. This is
one way to get out of stuck states when other commands do not
work.

Causes the process to go a way completely.

Enters the Debugger to look at the process.

Displays information about the process.

Enters the Inspector to look at the process.

See the section "Introduction to Processes" in Internals, Processes, and Storage
Management.

Areas {A}

Areas mode, invoked by pressing A or by clicking on [Areas], shows you
information about your machine's memory. The first line is hardware information:
the amount of physical memory on the machine, the amount of swapping space
remaining in virtual memory, and how many wired pages of memory the machine
has. The following lines show all the areas in virtual memory, one line for each.
For each area you are shown how many regions it contains, what percentage of it
is free, and the number of words (of the total) in use. Clicking on an area inserts
detailed information about each region: its number, its starting address, its
length, how many words are used, its type, and its GC status. See the section
"Areas" in Internals, Processes, and Storage Management.

102

Program Development Utilities August 1986

Meters (M)

Meters mode, invoked by pressing M or by clicking on [Meters], shows you a list of
all the metering variables for storage, the garbage collector, and the disk. There
are two types of storage and disk meters:

Timers

Counts

Timers have names that start with zl-user:*ms-time- and keep a
total of the mille seconds spent in some activity.

Counts have names that start with zl-user:*count- and keep a
running total of the number of times some event has occurred.

The garbage collector meters fall into two groups according to which part of the
garbage collector they pertain to: the scavenger or the transporter. See the
section "Operation of the Garbage Collector".

File System (F)

File System mode, invoked by pressing F or by clicking on [File System], provides
you information about your network connections for file operations. For each host
the access path, protocol, user-id, host or server unit number, and connection state
are listed. For active connections information about the actual packet flow is also
given. The various items are mouse sensitive. For hosts, you can get hostat
information, do a file reset, log in remotely, find out who is on the remote
machine, and send a message to the machine. You can reset, describe, or inspect
data channels, and close streams.

Resetting an access path makes the server on a foreign host go away, which might
be useful to free resources on that host or if you suspect that the server is not
working correctly.

Windows (w)

Windows mode, invoked by pressing w or clicking on [Windows], shows you all the
active windows in your environment with the panes they contain. This allows you
to see the hierarchical structure of your environment. The items are mouse
sensitive. Clicking on a window name pops up a menu of operations that you can
perform on the window.

Servers (8)

Clicking on [Servers] or pressing 8 puts Peek in Servers mode. If your machine is
a server (for example, a file server), Servers mode shows the status of each active
server.

103

August 1986 Miscellaneous Debugging Aids

Network (N)

Network mode, invoked by pressing N or by clicking on [Network], shows
information about the networks connected to your machine. For each network
there are three headings for information:

Active connections

Meters

Routing table

The data channels that your machine has opened to another
machine or machines on the network.

Information about the data flow (packets) between your machine
and other machines on the network.

A list of all the subnets and for each the route to take to send
packets to a host on that subnet.

To view the information under one of these headings, you click on the heading.
The hosts and data channels in the list of active connections are mouse sensitive.
For hosts, you can get hostat information, do a file reset, login remotely, find out
who is on the remote machine, and send a message to the machine. You can
reset, describe, or inspect data channels.

Information about the hardware network interface is also displayed, as well as
metering variables for the networks.

Hostat (H)

Clicking on [Hostat] or pressing H starts polling all the machines connected to the
local network. For each host on the network a line of information is displayed.
Those machines that do not respond to the poll are marked as "Host not
responding". You terminate the display by pressing c-ABORT.

Help and Quit

Clicking on the [Help] menu item or pressing HELP displays the help information
that is displayed when Peek is selected the first time.

Clicking on [Quit] or pressing Q buries the Peek window and returns you to the
window from which you invoked Peek.

104

Program Development Utilities August 1986

105

August 1986 The Compiler

PART III.

The Compiler

106

Program Development Utilities August 1986

107

August 1986 The Compiler

11. Introduction to the Compiler

The purpose of the Symbolics Lisp compiler is to convert Lisp functions into
programs in the Symbolics computer's instruction set. Compiled functions run
more quickly and take up less storage than interpreted code. They are executed
directly by the machine. The compiler checks for errors and issues warnings
regarding faulty syntax, typographical errors, and undeclared variables. Because
the compiler does all this checking, as well as the fact that compiling code does
not lose any run-time checking, most users debug their programs in compiled form
rather than debugging them in interpreted form and compiling them after they
work.

11.1 How to Invoke the Compiler

You can invoke the compiler in several ways.

o Use one of several Zmacs commands to compile regions of Lisp code in an
editor buffer to your Lisp environment. Some of the most common
commands are Compile Region (M->O (c-sh-C), Compile Changed Definitions
of Buffer (M-X), and Compile Buffer (M-X). See the section "Compiling Lisp
Programs in Zmacs" in Text Editing and Processing.

o Call the function compile to compile an interpreted function· in the Lisp
environment. Compiling an interpreted function in a Dynamic Lisp Listener
converts the function into a compiled code· object in memory. Programmers
occasionally compile interpreted functions to examine the code generated by
the compiler. To examine a compiled function in symbolic form, use the
disassemble function .

• Use compile-file and related functions, Compile File (M-X), or Compile File
at the Command Processor prompt to translate source files into compiled
code files.

• Invoke compile-system or type Compile System at the Command Processor
prompt to compile and load large programs, usually consisting of many files.

108

Program Development Utilities August 1986

109

August 1986 The Compiler

12. Structure of the Compiler

The Lisp compiler is actually composed of three distinct pieces of software:

• The stream compiler

• The function compiler

• The bin (binary) file dumper

The stream compiler accepts a stream of top-level Lisp forms and processes them.
These forms are usually read from a stream of characters, which can be either a
file or part or all of an editor buffer. The stream compiler passes forms
recognized as function definitions through the function compiler. Certain other
forms are also processed specially: See the section "How the Stream Compiler
Handles Top-level Forms", page 111. Stream compiler output can be sent either to
the Symbolics computer's virtual memory or to a file (via the bin file dumper) for
later loading.

The function compiler takes a Lisp function and translates it from Lisp
expressions into machine instructions. Its job includes expanding macros,
performing optimizations, recognizing special forms, and recognizing calls to
functions that have corresponding machine instructions. The function compiler is
available to use by itself as the compile function; it is also called by the stream
compiler.

The bin file dumper accepts a stream of Lisp forms and machine-instruction
function definitions (compiled function objects) and writes them into a file in a
compact form understood by the loading function (zl:load). The bin file dumper is
available for use by itself as the sys:dump-forms-to-file function; it is also called
by the stream compiler.

Different combinations of these compilers are available:

• The function compiler can be used by itself (via the compile function).

• The bin file dumper can be used by itself (via the sys:dump-forms-to-file
function).

• The stream compiler can be used with the function compiler (c-sh-C or
related Zmacs commands).

o All three compilers can be used (via compile-file, compile-system, or the
Command Processor's Compile System command).

110

Program Development Utilities August 1986

The following diagram shows the relationship of the different compilers to one
another.

a stream
J.

STREAM COMPILER
J. J.

function definitions
(such as defuns)

J.
FUNCTION COMPILER

J.
compiled function
objects

other forms
(such as defvars)

----->----\ /----<-------
1

1

1

1

BIN FILE DUMPER
J.

compiled code file
J.

LOAD

---------_1---------------
1

EVAL
J.

virtual memory

The Symbolics computer tools you use to invoke compilation determine the path
through the diagram. For example, suppose you run the compile-file function on
a Lisp source file. The function calls the stream compiler, which in turn calls the
function compiler on any function definitions in the file. The function compiler
passes the resulting compiled function objects to the bin file dumper. Some forms
are passed directly to the bin file dumper (middle of the diagram) without being
processed through the function compiler. All output from the bin file dumper is
sent to a compiled code file. Loading that file creates the effect of compiling the
source code directly to virtual memory.

For example, rather than compiling the source file, read it into an editor buffer
and compile the entire buffer via the Zmacs command Compile Buffer (M-X); the

111

August 1986 The Compiler

output from the stream compiler and function compiler is evaluated immediately.
The point is that while these two methods of compilation operate completely
differently, the effect is the same once the results are in virtual memory.

12.1 How the Stream Compiler Handles Top-level Forms

The stream compiler accepts a stream of top-level Lisp forms and processes them.
These forms are usually read from a stream of characters, which can be either a
file or part or all of an editor buffer. The stream compiler categorizes these
forms according to the table below and processes each according to its category.
I t calls the function compiler to translate a form that defines a function into a
compiled function object containing compiled instructions. Certain other
categories of forms are also processed specially, as documented in Table 1.

The stream compiler remembers certain "declarations" for the duration of the
compilation. For example, when it compiles a macro definition, it saves the macro
definition for use in processing subsequent top-level forms and function bodies.
This permits a macro definition different from the one installed in the Symbolics
computer's virtual memory to be used during compilation. Other kinds of
"declarations" are also saved; most ru these are documented in Table 1.' The
duration of the compilation during which these "declarations" are saved is usually
a single invocation of the stream compiler, but when a system is being compiled (a
program declared via defsystem) the declarations are in effect for the entire
compilation, regardless of how many files in the system are compiled.

Stream compiler output can be sent either to the Symbolics computer virtual
memory or to a file (via the bin file dumper) for later loading. This output can
be regarded as a stream of forms that are evaluated either immediately, during
the compilation, or later, when the bin file is loaded, depending on the type of
compilation.

Table 1. Lisp Forms that Require Special Processing by the Compiler.

1. DEFINITIONS

Function Definitions, such as (defun function-spec arguments body ...), (defselect .. .),
and (defmethod ...)

The stream compiler calls the function compiler to translate the function
definition into a compiled function object. The result is to define the
function-spec to be the compiled function object. See the function fdefine in
Symbolics Common Lisp: Language Dictionary.

112

Program Development Utilities August 1986

Macro Definitions, such as (defmacro •••)

The stream compiler saves the definition of the macro for the duration of
the compilation, and calls the function compiler to translate the function
definition into a compiled function object. The result is to define the
function-spec to be a macro whose expander function is the compiled function
object. See the function fdefine in Symbolics Common Lisp: Language
Dictionary .

Substitutable Function Definitions, such as (defsubst ..•)

The stream compiler saves the definition of the substitutable function for the
duration of the compilation, and calls the function compiler to translate the
function definition into a compiled function object. The result is to define
the function-spec to be the compiled function object. See the function fdefine
in Symbolics Common Lisp: Language Dictionary.

Variable Definitions, such as (defvar •••), (defparameter •••), (zl:defconst .•.),
(defconstant •••), and (defvar-standard •••)

The stream compiler saves the declaration of the variable as a special
variable for the duration of the compilation. It passes the form through as
the compiler's output.

Generalized Function Definitions: (def •••) and (deff .•.)

The stream compiler processes each subform of def after the initial function
spec as a top-level form.

The stream compiler passes a deff form through as its output and
remembers that it defines a function.

Other Definitions, such as (defstruct .•.), (defflavor •••), (defpackage ...), and
(defsystem •••)

The processing of each type of definition is idiosyncratic. The behavior of
the stream compiler for these definition types is defined using the extension
mechanisms discussed in this table, principally macro expansion.

2. COMPILER-SPECIFIC FORMS

(progn form form •••)

Each form is processed as a top-level form. Any macro that expands into
multiple top-level forms uses progn to arrange for the stream compiler to
process all of the forms. See the section "Macros Expanding Into Many
Forms" in Symbolics Common Lisp: Language Concepts.

(eval-when (time time •••) form form •••)

Each form is processed under the control of the list of times. If load is one
of the times, the stream compiler processes each form as a top-level form. If
compile is one of the times, each form is evaluated during the compilation.

113

August 1986 The Compiler

(compiler-let «var val) •••) form •••)

Each form is processed as a top-level form, with the specified bindings of
special variables in effect.

(function args •••) where the symbol function has a compiler:top-Ievel-form
property.

The value of the property must be a function of one argument. This
function controls the behavior of the stream compiler.

3. DECLARATIONS

(declare form form •••)

The stream compiler considers each form. If it invokes special or unspecial,
the compiler handles it as if it had appeared at top level. Otherwise, the
compiler simply evaluates form.

Use of declare in this way is considered to be an obsolete Maclisp
compatibility feature. Declaring special variables in a top-level declare form
is not advisable because this hides the variables from interpreter, which uses
special declarations in the same way as the compiler. It is preferable to
declare special variables with an appropriate special form (such as defvar)
that is understood by both the compiler and the interpreter, or by using
special as a top-level form without enclosing it in declare, or by including a
(declare (special ...)) form inside the body of each function that uses the
variable.

Forms to be evaluated at compile time should be specified with eval-when
rather than declare. The stream compiler recognizes a top-level (declare
forml form2 ...) as equivalent to (eval-when (compile) forml form2 ...) and
evaluates forml, form2, and so on; if the car of form is special or unspecial,
then that form is equivalent to (eval-when (compile load) form). Forms
appearing within a top-level declare should be valid top-level forms. Typical
special forms that might appear are special, unspecial, *expr, *lexpr, and
* fexp r.

(zl:local-declare (declaration declaration •••) form form •••)

The stream compiler processes the forms as top-level forms, with the
specified declarations in effect. zl:local-declare is considered to be an
obsolete feature; use declare inside function bodies instead.

(zl:special variable variable •••) and (zl:unspecial variable variable •••)

The stream compiler saves the declaration for the duration of the
compilation and outputs the form unchanged.

114

Program Development Utilities August 1986

4. OTHER FORMS

Macro Invocations

The stream compiler expands each top-level form that invokes a macro before
further considering that form. Thus macro expansion can be used to extend
the behavior of the stream compiler. Many definition forms are implemented
by macros that expand into simpler definitions and other forms. For
example, the expansion of such a macro might look like

(progn
(record-source-file-name Jnar.ne Jtype)
(eval-when (compile)

things to do at cor.npile tir.ne)
(defun ...))

For additional examples, use mexp to examine the expansion of defvar,
defsubst, and defstruct forms.

Ordinary Forms

If the stream compiler does not recognize a form, it simply outputs the form
unchanged.

Forms Protected From the Compiler

To prevent the stream compiler from recognizing a form, if for some reason
it is necessary to pass the form unchanged through the compiler, the safest
way is to conceal it inside an eval form. For example, the following form
prevents the faa function from being converted into a compiled function
object.

(eval (quote (de fun faa (x) ...)))

Ignored Forms

The stream compiler ignores atoms (both variables and constants), (quote x),
and (zl:comment •••). It outputs no form when one of these appears in its
input.

For Maclisp compatibility a number of top-level declaration forms are provided,
including zl:special, zl:unspecial, zl:*expr, zl:*lexpr, and zl:*fexpr.

special &rest syr.nbols Special Forr.n
Declares each of the syr.nbols to be "special" for the Lisp system (for
example, the interpreter and the compiler). Provided for Maclisp
compatibility. Note: defvar is usually preferred over special.

115

August 1986 The Complier

zl:unspecial &rest symbols Special Form
Removes any "special" declarations of the symbols for the Lisp system (for
example, the interpreter and the compiler). Provided for Maclisp
compatibility.

12.1.1 Controlling the Evaluation of Top-level Forms

Sometimes you want to override the stream compiler's default behavior. For
example, you might want a form to be put into the compiled code file (compiled, of
course), or not; evaluated within the compiler, or not; or evaluated if the file is
read directly into Lisp, or not. To tell the stream compiler exactly what to do
with a form, use the general eval-when special form.

eval-when times-list &body forms Special Form
eval-when allows you to tell the compiler exactly when the body forms
should be evaluated. times-list can contain one or more of the symbols
load, compile, or eval, or can be nil.

The interpreter evaluates the body forms only if the times-list contains the
symbol eval; otherwise eval-when has no effect in the interpreter.

If symbol is present

load

compile

eval

Then forms are

Written into the compiled code file to be evaluated
when the compiled code file is loaded, with the
exception that defun forms put the compiled
definition into the compiled code file.

Evaluated in the compiler.

Ignored by the compiler, but evaluated when read
into the interpreter (because eval-when is defined
as a special form there).

Example 1: Normally, top-level special forms such as defprop are evaluated
at load time. If some macro expansion depends on the existence of some
property, for example, constant-value, the definition of that property must
be wrapped inside an (eval-when (compile) •••) so that the property is
available at compile (macro expansion) time.

(eval-when (compile load eval)
(defprop three 3 constant-value»

Example 2: eval-when should be used around defconstants of complex
expressions. This is because the compiler does not maintain an environment
acceptable to eval containing defconstants

116

Program Development Utilities August 1986

(eval-when (compile load eval)
(defconstant nar.ne expr))

In other words, if you are sure that (1) evaluating the expr in the global
environment gives the correct results, and (2) that no harm is done by
changing the current environment to have the (possibly new) value of
nar.ne, then you can use the global environment as a substitute for the
compilation environment.

In addition to eval-when, the compiler:top-Ievel-form property provides another
means for overriding the default behavior of the stream compiler.

compiler: top-level-form Property
The compiler:top-Ievel-form property provides a way to extend the
behavior of the stream compiler when it encounters a top-level form that
looks like (function args •••) and the symbol function has a
compiler:top-Ievel-form property. The value of the property must be a
function of one argument. The compiler, rather than behaving in its
normal fashion, calls the function with the original form as its argument.
Whatever the function returns is dumped as the form to be evaluated at
load time. You can have the function evaluate the form at compile time
simply by calling eva!. Note that the form returned by the function does
not go back through the compiler's top-level form processing. This means
that the returned form, which has been dumped to a compiled code file,
cannot contain function definitions that you expect to be compiled.

12.2 Function Compiler

The function compiler takes a Lisp function and translates it from Lisp
expressions into compiled functions. Compiled functions are represented in Lisp
by compiled function objects, which contain machine code as well as various other
information. The printed representation of the object is as follows:

#<DTP-COMPILED-FUNCTION nar.ne address>

When dealing with function bodies the function compiler performs the following
operations on a form in this order:

1. Looks for compiler declarations (expands macros far enough to determine if
they are declarations or not)

2. Performs style checking, unless you explicitly inhibit it.

3. Performs optimizations, if so requested, trying to optimize body forms from
the inside out.

4. Runs transformations.

5. Expands macros.

117

August 1986 The Compiler

If the case of a regular function, the entire process is repeated on the function's
arguments. A special form, on the other hand, compiles its subforms, or not,
depending on the syntax of the particular special form. When all the processing is
done, the function compiler generates machine instructions.

12.3 Bin File Dumper

The bin (binary) file dumper accepts a stream of Lisp forms and/or machine
instruction function definitions from the function compiler and writes them in a
compact form into a compiled code file.

I t is also possible to make a compiled code file containing data, rather than a
compiled program. Call the bin file dumper by itself via the
sys:dump-forms-to-file function. See the section "Putting Data in Compiled Code
Files", page 139.

By loading the compiled code file (using the function load, the Command
Processor command Load File, or the Zmacs command Load File [n-X]) the
objects represented in the file are created in your Lisp world.

12.4 Compiler Tools and Their Differences

12.4.1 Tools for Compiling Code From the Editor Into Your World

You can use several Zmacs commands to compile code in an editor buffer to your
world. Users generally compile routines to memory as soon as they write them,
debugging them before proceeding with more complex routines. The most common
command for incremental compiling is Compile Region (M-X), or c-sh-C.

c-sh-C Compile Region
Compile Region (n-X)

Compiles the region, or if no region is defined, the current definition.
Because recompiling routines as you edit them can be quite time-consuming,
Zmacs provides two commands for compiling only those routines that have changed
since they were last compiled: Compile Changed Definitions (n-X) and Compile
Changed Definitions of Buffer (n-X). These commands obviate the need to
remember which routines have changed in your buffer or buffers. Alternatively,
you can recompile the entire buffer.

118

Program Development Utilities August 1986

Compile Changed Definitions (M-H)

Compiles any definitions that have changed in any of the current buffers. With a
numeric argument, it prompts individually about whether to compile particular
changed definitions (the default compiles all changed definitions).

Compile Changed Definitions of Buffer (M-H)
M-sh-C

Compiles any definitions that have changed in the current buffer. With a numeric
argument, it prompts individually about whether to compile particular changed
definitions. The default is to compile all changed definitions.

Compile Buffer (M-H)

Compiles the entire buffer. With a numeric argument, it compiles from point to
the end of the buffer. (This is useful for resuming compilation after a prior
Compile Buffer has failed.)

12.4.2 Tools for Compiling Files

Compiling a source file, using the Zmacs command Compile File (M-H), the
Command Processor command Compile File, or the function cl:compile-file, saves
the output in a binary file (called a compiled code file). You can compile a file
and also load the resulting file by using compile-file with the :load keyword set to
t, or you can load the file separately into your Lisp world by using load or Load
File (M-H).

Compile File Command

Compile File file-spec keywords

Compile the file designated in file-spec.

file-spec

keywords

: Compiler

:Load

:Query

The pathname of the file to compile. The default is the usual
file default.

: Compiler, :Load, :Query

{Lisp, use-canonical-type} The compiler to use. The default is
use-canonical-type.

{yes, no, ask} Whether to load the file after compiling. The
default is yes.

{yes, no, ask} Whether to ask for confirmation before compiling.
The default is no.

119

August 1986 The Compiler

compile-file input-file &key output-file package load Function
(set-default-pathname
compile-file-set-default-pathname)

The file input-file is given to the compiler, and the output of the compiler
is written to a file whose name is input-file with a canonical file type of
:bin. :output-file, if supplied, lets you specify where the output is written.
:package indicates the package with respect to which the input-file is
compiled. If t, :load means to load the file after compiling it.

The purpose of compile-file is to take a file and produce a translated
version that does the same thing as the original except that the functions
are compiled. compile-file reads through the input file, processing the
forms in it one by one. For each form, suitable binary output is sent to
the compiled code file, which when loaded reproduces the effect of that
source form.

Thus, if the source contains a (defun •••) form at top level, when the
compiled code file is loaded, the function is defined as a compiled function.
If, on the other hand, the source file contains a form that is not of a type
known specially to the stream compiler, then that form (encoded in binary
format) is output "directly" into the compiled code file, so that when that
file is loaded that form is evaluated. For example, if the source file
contains (setq x 3), then the compiler places in the compiled code file
instructions to set x to 3 at load time. (For a more general form, the
compiled code file would contain instructions to recreate the list structure
of a form and then call eval on it.)

compile-file returns the pathname of the output-file, which you can pass to
load to load the compiled code file.

Compile File (M-X)

Compiles a file, offering to save it first (if it has an associated buffer that has
been modified). It prompts for a file name in the minibuffer, using the file
associated with the current buffer as the default. It does not load the file.

12.4.2.1 File Types of Lisp Source and Compiled Code Flies

The results of compilation are written to a file of canonical type : bin. The actual
file types for compiled code files are host-dependent, as are those of the Lisp
source files. The following table shows the file types of both input and output
files for various hosts.

Host type

Symbolics computer

File type of
source file

lisp

File type of
compiled code file

bin

120

Program Development Utilities August 1986

Multics
TOPS-20
UNIX
VAXNMS

lisp
LISP, LSP
1, lisp
LSP

12.4.3 Tools for Compiling Single Functions

bin
BIN
bn, bin
BIN

Compiled functions are Lisp objects that contain programs in the machine
instruction set. Compiling an interpreted function by calling the function compiler
on a function spec, converts it into a compiled function and changes the definition
of the function spec to be that compiled function. Most users do not compile
functions directly, but rather compile files or regions of code in a Zmacs buffer.

compile function-spec &optional lambda-exp Function
compile gets the function definition from either of its arguments. If the
lambda expression lambda-exp is supplied, compile uses lambda-exp and
converts it into a compiled function object. If, on the other hand,
lambda-exp is nil, compile gets the function definition of function-spec,
which is either a function specification or nil. If nil, compile returns the
compiled function object without storing it anywhere. If function-spec is
not nil, compile changes function-spec's definition to be the compiled
function object; the returned value is function-spec.

See the function fdefine in Symbolics Common Lisp: Language Dictionary.

uncompile function-spec Function
If function-spec is not defined as an interpreted function and it has a
:previous-expr-definition property, then uncompile restores the function
cell from the value of the property. (Otherwise, uncompile does nothing
and returns "Not compiled".) This "undoes" the effect of compile. See
the function undefun in Symbolics Common Lisp: Language Dictionary.

Although all these methods call the compiler and produce compiled function
objects, they are not equivalent. For example, using compile-file to compile a
source file of canonical type :lisp converts it into a binary file, with a canonical
file type of : bin. Compiling the source file has no effect on your Lisp
environment. Compiling a top-level form in an editor buffer, using a command
like Compile Region (c-sh-C) or Compile Buffer (M-X), creates a compiled function
object in memory but does not write an object code file on disk. Compiling a top
level form in an editor buffer does cause some side effects on the Lisp
environment.

The most essential difference, however, between compiling a source file and
compiling the same code in an editor buffer is this: When you compile a file,
most function specs are not defined and most forms (except those within
eval-when (compile) forms) are not evaluated at compile time. Instead the

121

August 1986 The Compiler

compiler puts instructions into the binary file that causes evaluation to occur at
load time.

Loading a compiled code file does not differ substantially from loading its
associated source file, except that the functions defined in the binary file are
defined as compiled functions instead of interpreted functions. When you load a
source file that contains defun forms, you define the function specs named in the
forms to be those functions.

Sometimes you might want to put things in the compiled code file that are not
meant merely to be translated into binary form. Top-level macro definitions fall
into this category. The macros must actually get defined within the compiler in
order for the compiler to be able to expand them at compile time. Compiler
declarations also fall into this category.

122

Program Development Utilities August 1986

123

August 1986 The Compiler

13. Compiler Warnings Database

Compiler warnings are kept in an internal database. Several functions, Command
Processor commands, and Zmacs commands allow you to inspect and' manipulate
this database in various ways.

The database of compiler warnings is organized by pathname; warnings that were
generated during the compilation of a particular file are kept together, and this
body of warnings is identified by the generic pathname of the file being compiled.
Any warnings that were generated while compiling some function not in any file
(for example, by using the compile function on some interpreted code) are stored
under the pathname nil. For each pathname, the database has entries, each of
which associates the name of a function (or a flavor) with the warnings generated
during its compilation.

The database starts out empty when you cold boot. Whenever you compile a file,
buffer, or function, the warnings generated during its compilation are entered into
the database. If you recompile a function, the old warnings are removed, and any
new warnings are inserted. If you get some warnings, fix the mistakes, and
recompile everything, the database becomes empty again.

Warnings can also be saved to a file or printed out as well as stored in the
database. If the value of the special variable
compiler:suppress-compiler-warnings is not nil, warnings are not printed,
although they are still stored in the database.

Save Complier Warnings Command

Save Compiler Warnings pathname files-whose-warnings-to-save

Save compiler warnings of the files files-whose-warnings-to-save to the specified
pathname. files-whose-warnings-to-save can be All to save all warnings, or it can
be a list of one or more pathnames. Among the pathnames can be the special
token No File to catch warnings for no particular file.

The database has a printed representation. The command Show Compiler
Warnings or the function print-compiler-warnings produces this printed
representation from the database, and compiler:load-compile-warnings updates
the database from a saved printed representation.

Show Compiler Warnings Command

Show Compiler Warnings pathname(s-or-special-tokens) keyword

Display compiler warnings of the files specified by pathnames or use the special

124

Program Development Utilities August 1986

tokens All (to show all compiler warnings) or No File to show the warnings for no
particular file. The only valid keyword is Output Destination, which is a stream to
which to direct the output.

print-compiler-warnings &optional files (stream zl:standard-output) Function
file-node-message function-node-message
anonymous-function-node-message

Prints out the compiler warnings database. If files is nil (the default), it
prints the entire database. Otherwise, files should be a list of generic
pathnames, and only the warnings for the specified files are printed. (nil
can be a member of the list, too, in which case warnings for functions not
associated with any file are also printed.) The output is sent to stream,
which you can use to send the results to a file.

compiler:load-compiler-warnings file &optional (flush-old-warnings Function
t)

Updates the compiler warnings database. file should be the pathname of a
file containing the printed representation of the compiler warnings related
to the compilation of one or more files. If flush-old-warnings is t (the
default), any existing warnings in the database for the files in question are
completely replaced by the warnings in file. If flush-old-warnings is nil,
the warnings in file are added to those already in the database.

The printed representation of a set of compiler warnings is sometimes stored in a
file. You can create such a file using print-compiler-warnings, but it is usually
created by invoking compile-system with the :batch option. The default type for
such files is CWARNS. For example, FOO.CWARNS.

Several Zmacs commands manipulate the compiler warnings database.
Compiler Warnings (M-X)

Creates the compiler warnings buffer (called *Compi' er-Warni ngs-1 *) if it does not
exist, puts all outstanding compiler warnings in that buffer, and switches to that
buffer. You can view the compiler warnings by scrolling around and doing text
searches through them using Edit Compiler Warnings (M-X).

Edit Compiler Warnings (M-X)

Prompts you with the name of each file mentioned in the database, allowing you
to edit the warnings for that file. It then splits the Zmacs frame into two
windows: the upper window displays a warning message and the lower one
displays the source code whose compilation caused the warning. After you have
finished editing each function, c-. gets you to the next warning: the top window
scrolls to show the next warning and the bottom window displays the function
associated with this warning. Successive c-. s take you through all of the warning
messages for all of the files you specified. When you are done, the last c-. puts
the frame back into its previous configuration.

125

August 1986 The Compiler

Edit File Warnings (M-X)

Asks you for the name of the file whose warnings you want to edit. You can give
either the source file or the compiled file. Only warnings for this file are edited.
If the database does not have any entries for the file you specify, the command
prompts you for the name of a file that contains the warnings, in case you know
that the warnings are stored in another file.

Load Compiler Warnings (M-X)

Loads a file containing compiler warning messages into the warnings database. It
prompts for the name of a file that contains the printed representation of compiler
warnings. It always replaces any warnings already in the database.

126

Program Development Utilities August 1986

127

August 1986 The Compiler

14. Controlling Compiler Warnings

14.1 Compiler Style Warnings

The compiler performs style checking on all forms. This means that the Lisp
compiler produces compiler warnings when it sees programs that are invalid Lisp
or that may produce errors at runtime. You can add to the checks that the
compiler makes in several ways.

• Your macros can call the warn function to warn of problematic usage.

• You can use compiler:make-obsolete to declare something obsolete.

• You can define style checkers by means of the function-spec
compiler: style-checker. A style checker is a Lisp function associated with a
symbol. When the compiler compiles an s-expression with that symbol in the
functional position car, it calls all of the style checkers for the symbol with
an argument of the form. These style checkers can examine the form and
call warn if they detect something wrong.

compiler:style-checker checker-name symbol &optional form Function
Define a style checker. Note: compiler:style-checker is not a function but
rather, a function-spec. A style checker is a Lisp function associated with
a symbol. When the compiler compiles an s-expression with that symbol in
the functional position car, it calls all of the style checkers for the symbol
with an argument of the form. These style checkers can examine the form
and call warn if they detect something wrong. checker-name is the name
of your style checker function, and symbol is the symbol that you want to
check. argl and arg2 are optional arguments to your style checker
function. For example:

(compiler:style-checker fs:obsolete-arguments open)

detects old unsupported calls to open at compile time.

You define a style checker as follows:

(defun (compiler:style-checker style-checker-name function-symbol)
(form)

... body that looks at the form ...

You can have multiple style checkers on a single function symbol. For example,
assume that you define function to take a first argument that must be a number,
and which is often a constant.

128

Program Development Utilities August 1986

(defun stylish-function (number &rest other-args)
)

You might write:

I.defun (compiler:style-checker first-arg-must-be-numeric stylish-function) (form)
(destructuring-bind (ignore number &rest ignore) form

(when (and (compiler:constant-form-p number)
(not (numberp (compiler:constant-evaluator number»»

(warn "The first argument -5 to -5 is not a number." number 'stylish-function»);

In the example, the function compiler:constant-form-p simply checks if the form
is treated as a constant by the compiler; the function compiler:constant-evaluator
returns the value of a constant. You have to be very careful about how you
examine arguments. The form in the example code is un-compiled list structure.
If the caller is passing a variable as an argument

(stylish-function faa)

then the form will contain the symbol foo as the second element. foo is not a
constant, so you cannot tell what its runtime value is at compile time.

The pre-Genera 7.0 way of style checking using property lists is also supported,
but you cannot use both the new and the old technology on the same checked
function. In the old way, style checking is implemented by the
compiler:style-checker property on a symbol; the value of the property is called
on all forms whose car is that symbol, except those immediately enclosed in
inhibit-style-warnings. Obsolete function warnings are also performed by means
of the style-checking mechanism.

inhibit-style-warnings form Macro
Prevents the compiler from performing style-checking on the top level of
form; style-checking will still be done on the arguments of form.

The following code warns you about the obsolete function zl:explode, since
inhibit-style-warnings applies only to the top level of the form inside it, in
this case, to the setq.
Generate warning:

(inhibit-style-warnings (setq bar (explode faa»)

The following code, on the other hand, does not warn that explode is an
obsolete function:
Do not generate warning:

(setq bar (inhibit-style-warnings (explode faa»)

If an optimizer needs to return a form with nested "bad-style" forms, there
should be an explicit inhibit-style-warnings wrapped around the nested
forms.

129

August 1986 The Compiler

By setting the compile-time value of inhibit-style-warning-switch you can enable
or disable some of the warning messages of the compiler. The compile-time value
of obsolete-function-warning-switch enables or disables obsolete-function
warnings in particular.

compiler:make-obsolete spec reason &optional (type 'type-arg) Special Form
compiler:make-obsolete is a special form that declares a function, flavor,
or structure to be obsolete; code that calls an obsolete definition generates
a compiler warning. It is useful for marking as obsolete some Maclisp
functions that exist in Zetalisp but should not be used in new programs, or
for reminding users that some function is being phased out.

spec is the definition to be made obsolete and is not evaluated. reason is
evaluated and is the warning or explanation to be printed when the
obsolete definition is called. type-arg, the optional third argument, is the
definition-type of the object declared obsolete and is not evaluated. Its
default value is defun when no type is specified. compiler:make-obsolete
recognizes four definition-types: defun, defflavor, defstruct, and defvar.

compiler:make-obsolete with a third argument of defstruct makes the
structure obsolete as well as all of its accessor functions.
compiler:make-obsolete with a third argument of defflavor makes obsolete
both the flavor and its outside accessible instance variables.

An attempt to create a new flavor with an obsolete flavor as an included or
component flavor generates a compiler warning. Likewise, creating a new
structure with an obsolete structure as an included structure also generates
a warning.

compiler:make-message-obsolete message-name format-string Special Form
Allows you to generate compiler warnings about obsolete message names.
The first argument, message-name, is the obsolete message name. The
second argument, format-string, is the warning to be printed. If the string
contains the -S format directive, it will be replaced by the object that was
sent the message.

Example:

(compiler:make-message-obsolete :clear-screen
"You have sent the message :CLEAR-SCREEN to the object -So
This name is obsolete. The new name for this message is
:CLEAR-WINDOW. Please update your code.")

130

Program Development Utilities August 1986

14.2 Function-referenced-but-never-defined Warnings

Normally, the compiler notices whenever any function x calls any other function y;
it takes note of all these uses, and then warns you at the end of the compilation if
function y was called but was neither defined nor declared (by
compiler:function-defined).

The compiler uses a set of variables and functions to keep track of which
functions have been defined and which have been referenced. These are the basis
for the messages "FOO was defined but never referenced" that occur during
compiling.

sys:file-local-declarations Variable
sys:file-Iocal-declarations stores global declarations valid for the entire
compilation. Since it can become fairly large, it is implemented as a hash
table (or nil). The symbol being declared is the key, and the value is a
property list of declarations and values. The default value is nil.

compiler:functions-defined Variable
compiler:functions-defined is a hash table of all functions defined or nil,
if none has been defined yet.

compiler:functions-referenced Variable
compiler:functions-referenced is a hash table of functions referenced but
not defined. Each entry is an alist of «generic-pathname> . <by-whom».
In this way warnings can be put into the appropriate file when this
variable is processed at the end of a compilation.

compiler:function-defined {spec Function
compiler:function-defined tells the compiler that the function {spec has
been defined (by putting it into the hash table in
compiler:functions-defined).

zl:*expr, zl:*lexpr, and zl:*fexpr are the Maclisp equivalents of
compiler:function-defined.

zl:*expr &rest {unctions Special Form
Declares each function spec in the list of {unctions to be the name of a
function. In addition it prevents these functions from appearing in the list
of functions referenced but not defined, which appears at the end of the
compilation. Provided for Maclisp compatibility.

zl:*lexpr &rest {unctions Special Form
Declares each function spec in the list of {unctions to be the name of a
function. In addition it prevents these functions from appearing in the list

131

August 1986 The Compiler

of functions referenced but not defined that is printed at the end of the
compilation. Provided for Maclisp compatibility.

zl:*fexpr &rest functions Special Form
Declares each function spec in the list of functions to be the name of a
special form. In addition it prevents these names from appearing in the
list of functions referenced but not defined that is printed at the end of the
compilation. Provided for Maclisp compatibility.

compiler:file-declare thing declaration value Function
compiler:file-declare enters a declaration in the table
sys:file-Iocal-declarations for the remaining extent of the compilation
environment.

(compiler:file-declare 'foo 'special t)

compiler:file-declaration thing declaration Function
compiler:file-declaration looks up a declaration in the table
sys:file-Iocal-declarations. It returns the declaration when thing is a
declaration of type declaration and nil otherwise.

compiler:function-referenced what &optional (by Function
compiler:default-warning-function)

compiler:function-referenced is useful for requesting compiler warnings in
certain esoteric cases. For example, sometimes the compiler has no way of
telling that a certain function is being used. Suppose that instead of x's
containing any forms that call y, x simply stores y away in a data structure
somewhere, and someplace else in the program that data structure is
accessed and funcall is done on it. In this case the compiler cannot see
that this is going to happen; the result is that it cannot note the function
usage and hence cannot create a warning message. In order to make such
warnings happen, you can explicitly call the function
compiler:function-referenced at compile-time.

what is a symbol that is being used as a function. by can be any function
spec. compiler:function-referenced must be called at compile time while a
compilation is in progress. It tells the compiler that the function what is
referenced by by. When the compilation is finished, if the function what
has not been defined, the compiler issues a warning to the effect that by
referred to the function what, which was never defined.

14.2.1 Overriding Variable-defined-but-never-referenced Warnings

Sometimes functions take arguments that they deliberately do not use. Normally
the compiler warns you if your program binds a variable that it never references.
In order to disable this warning for variables that you know you are not going to
use, you can do one of several things.

132

Program Development Utilities August 1986

• You can declare the variable to be ignored:

(declare (ignore fraz-size»

• You can name the variables ignore or ignored. The compiler does not
complain if a variable of one of these names is not used. Furthermore, you
can have more than one variable in a lambda-list that has one of these
names.

• You can simply use the variable for effect (ignoring its value) at the front of
the function. This has the advantage that arglist will return a more
meaningful argument list for the function, rather than returning somett-· l.g
with ignores in it. Example:

(defun the-function (list fraz-name fraz-size)
fraz-size ; This argument is not used.
...)

• You can use the variable as an argument to the ignore function.

(defun the-function (list fraz-name fraz-size)
(ignore fraz-size)
...)

133

August 1986 The Compiler

15. Compiler Switches

The compile-time values of the following variables, so-called "compiler switches",
affect the operation of the compiler. Use compiler-let to bind compiler switches.

compiler:obsolete-function-warning-switch Variable
The compile-time value of this variable affects the operation of the
compiler. If this variable is non-nil, the compiler tries to warn you
whenever an obsolete function, such as zl:maknam or zl:samepnamep, is
used. The default value is t.

compiler:open-code-map-switch Variable
The compile-time value of this variable affects the operation of the
compiler. If this variable is non-nil, the compiler attempts to produce
inline code for the mapping functions (mapc, mapcar, and so on, but not
zl:mapatoms) if the function being mapped is an anonymous lambda
expression. Setting this switch to nil makes the compiled code smaller.
Setting this switch to t makes the compiled code larger but faster. The
default value is t.

zl:all-special-switch Variable
The compile-time values of this variable affects the operation of the
compiler. If this variable is non-nil, the compiler regards all variables as
special, regardless of how they were declared. The default is nil.

compiler:inhibit-style-warnings-switch Variable
The compile-time values of this variable affects the operation of the
compiler. If this variable is non-nil, all compiler style-checking is turned
off. Style checking is used to issue obsolete function warnings and other
sorts of warnings. The default value is nil.

compiler: compiler-verbose Variable
The compile-time values of this variable affects the operation of the
compiler. The compiler displays a message (using zl:standard-output)
each time it starts compiling a function when the value of
compiler:compiler-verbose is t. The default value is nil.

134

Program Development Utilities August 1986

135

August 1986 The Compiler

16. Compiler Source-Level Optimizers

An optimizer is a function that converts a form into another form that is more
efficiently executed. An optimizer can be used to transform code into an
equivalent but more efficient form that can be compiled better. For example, (eq
obj nil) is transformed into (null obj), which can be compiled better.

Do not use optimizers to define new language features, because they take effect
only in the compiler; the interpreter (that is, the evaluator) does not know about
optimizers. So an optimizer should not change the effect of a form; it should
produce another form that does the same thing, possibly faster or with less
memory. If you want to actually change the form to do something else, you
should use macros.

The compiler treats (optimized or transformed) forms returned by compiler
optimizers as if they were wrapped in an inhibit-style-warnings form. For
example, the expression:

(eq' x 3)

is optimized into the expression:

(eq x 3)

In general, it is a bad idea to compare numbers with eq, since the implementation
of numbers is such that some numbers can be compared with eq and some can't.
A style checker keeps the user from writing (eq x 3). The optimizer is allowed to
do this without warning on the assumption that the optimizer always generates
"correct" code.

Note: inhibit-style-warnings only affects the top-level form inside it. If an
optimizer needs to return a form with nested "bad-style" forms, there should be an
explicit inhibit-style-warnings wrapped around the nested forms.

compiler:add-optimizer target-function optimizer-name &rest Special Form
optimized-into

Puts optimizer-name on target-function's optimizers list if it is not there
already. optimizer-name is the name of an optimization function, and
target-function is the name of the function calls that are to be processed.
Neither is evaluated.

(compiler:add-optimizer target-function optimizer-name optimize-into-l
optimize-into-2 ...) also remembers optimize-into-l, and so on, as names of
functions that can be called in place of target-function as a result of the
optimization.

136

Program Development Utilities August 1986

137

August 1986 The Compiler

17. Files That Maclisp Must Compile

Certain programs are intended to be run both in Maclisp and in Symbolics-Lisp.
Their source files need some special conventions. For example, all special
declarations must be enclosed in top-level declare forms, so that the Maclisp
compiler sees them. The main issue is that many Symbolics-Lisp functions and
special forms do not exist in Maclisp.

The "#q" sharp-sign reader macro causes the object that follows it to be visible
only when compiling for Symbolics-Lisp. The sharp-sign reader macro #m causes
the following object to be visible only when compiling for Maclisp. These work
both on subexpressions of the objects in the file, and at top level in the file. To
conditionalize top-level objects, however, it is better to put the macros
zl:if-for-lispm and zl:if-for-maclisp around them. (You can only put these around
a single object.) The #q sharp-sign reader macro cannot do this, since it can be
used to conditionalize any Lisp object, not just a top-level form.

To allow a file to detect what environment it is being compiled in, the following
macros are provided:

zl:if-for-lispm &rest forms Macro
Seen at the top level of the compiler, forms is passed to the compiler top
level if the output of the compiler is a compiled code file intended for
Symbolics-Lisp. If the Symbolics-Lisp interpreter sees this it evaluates
forms (the macro expands into forms).

zl:if-for-maclisp &rest forms Macro
Seen at the top level of the compiler, forms is passed to the compiler top
level if the output of the compiler is a compiled code file intended for
Maclisp (for example, if the compiler is COMPLR). If the Symbolics-Lisp
interpreter sees this it ignores it (the macro expands into nil).

zl:if-for-maclisp-else-lispm maclisp-form lispm-form Macro
When (if-for-maclisp-else-lispm forml form2) is seen at the top level of the
compiler, forml is passed to the compiler top level if the output of the
compiler is a compiled code file intended for Maclisp; otherwise form2 is
passed to the compiler top level.

zl:if-in-lispm &rest forms Macro
In Symbolics-Lisp, (if-in-lispm forms) causes forms to be evaluated; in
Maclisp, forms is ignored.

138

Program Development Utilities August 1986

zl:if-in-maclisp &rest forms Macro
In Maclisp, (if-in-maclisp forms) causes forms to be evaluated; in
Symbolics-Lisp, forms is ignored.

When you have two definitions of one function, one conditionalized for one
machine and one for the other, put them next to each other in the source file with
the second "(defun)" indented by one space, and the editor will put both function
definitions on the screen when you ask to edit that function.

In order to make sure that those macros are defined when reading the file into
the Maclisp compiler, you must make sure the file starts with a prelude, which
should look like:

(declare (cond «not (status feature lispm»
(load 'IAI: LISPM2; CONDITI»»

This does nothing when you compile the program on Symbolics computers. If you
compile it with the Maclisp compiler, it loads definitions of the above macros, so
that they will be available' to your program. The form (status feature lispm) is
generally useful in other ways; it evaluates to t when evaluated on Symbolics
computers and to nil when evaluated in Maclisp.

139

August 1986 The Compiler

18. Putting Data in Compiled Code Files

A compiled code file can contain data rather than a compiled program. This can
be useful to speed up loading of a data structure into the machine, as compared
with reading in a printed representation of that same data structure. Also, certain
data structures, such as arrays, do not have a convenient printed representation as
text, but can be saved in compiled code files.

In compiled programs, the constants are saved in the compiled code file in this
way. The compiler optimizes by making constants that are zl:equal become eq
when the file is loaded. This does not happen when you make a data file yourself;
identity of objects is preserved. Note that when a compiled code file is loaded,
objects that were eq when the file was written are still eq; this does not normally
happen with text files.

The following types of objects can be represented in compiled code files:

Symbols
Numbers of all kinds
Lists
Strings
Arrays of all kinds
Instances (for example, hash tables)
Compiled function objects

When an instance is put (dumped) into a compiled code file, it is sent a
:fasd-form message, which must return a Lisp form that, when evaluated, will
recreate the equivalent of that instance. This is because instances are often part
of a large data structure, and simply dumping all of the instance variables and
making a new instance with those same values is unlikely to work. Instances
remain eq; the :fasd-form message is sent only the first time a particular
instance is encountered during writing of a compiled code file. If the instance
does not accept the :fasd-form message, it cannot be dumped.

sys:dump-forms-to-file filename forms &optional file-attribute-list Function
sys:dump-forms-to-file writes data to a file in binary form. forms-list is a
list of Lisp forms, each of which is dumped in sequence. It dumps the
forms, not their results. The forms are evaluated when you load the file.

For example, suppose a is a variable bound to any Lisp object, such as a
list or array. The following example creates a compiled code file that
recreates the variable a with the same value:

140

Program Development Utilities August 1986

(sys:dump-forms-to-file "f:>foo>aval"
(list '(setq a ',a)))

For the purposes of understanding what this function does, you can
consider that it is the same as the following:

(defun sys:dump-forms-to-file (file forms)
(with-open-file (s file ':direction ':output)

(dolist (f forms)
(print f s))))

The actual definition (which is more complicated) writes a binary file in a
more easily parsed format so it will load faster. It can also dump arrays,
which you cannot write to a Lisp source file.

attribute-list supplies an optional attribute list for the resulting compiled
code file. It has basically the same result when loading the binary file as
the file attribute list does for compiler: compile-file. Its most important
application is for controlling the package that the file is loaded into.

(sys:dump-forms-to-file "foo" forms-list '(:package "user"))

sys:dump-forms-to-file always puts a package attribute into the binary file
it writes. If you do not specify the attribute-list argument, or if
attribute-list does not contain a :package attribute, the function uses the
cl-user or zl-user package, depending on the context. This is to ensure
that package prefixes on symbols are always interpreted when they are
loaded as they were intended when the file was dumped.

The file-attribute-list argument can be used to store useful information
(such as "headers" for special data structures) in the file's attribute list.
The information can then be retrieved from the attribute list with
fs:pathname-attribute-list, without reading the rest of the file.

141

August 1986 Maintaining Large Programs

PART IV.

Maintaining Large Programs

142

Program Development Utilities August 1986

143

August 1986 Maintaining Large Programs

19. Introduction to the System Construction Tool

The Need to Maintain Programs as Systems of Files

When a program becomes large, it is often desirable to split it up into several
files. One reason is to help keep the parts of the program organized, to make
things easier to find. Another is that programs broken into small pieces are more
convenient to edit and compile. It is particularly important to avoid the need to
recompile all of a large program every time any piece of it changes; if the
program is broken up into many files, only the files that have changes in them
need to be recompiled.

The apparent drawback to splitting up a program is that more mechanism is
needed to manipulate it. To load the program, you now have to load several files
separately, instead of just loading one file. To compile it, you have to figure out
which files need compilation, by seeing which have been edited since they were
last compiled, and then you have to compile those files.

An even more complicated factor is that files can have interdependencies. You
might have a Lisp file called "defs" that contains macro definitions (or flavor
definitions), and functions in other files might use those macros. This means that
in order to compile any of those other files, you must first load the file "defs" into
the Lisp environment, so that the macros will be defined and can be expanded at
compile time. You would have to remember this whenever you compile any of
those files. Furthermore, if "defs" has changed, other files of the program might
need to be recompiled because the macros might have changed and need to be
reexpanded.

Finally, you might want to generate multiple versions of the program - a stable
version for general users to run, another for development purposes; source control
for the various versions would be nearly impossible to maintain manually.

The Symbolics System Construction Tool

This chapter describes the System Construction Tool (SeT), which addresses these
difficulties. A system is a set of files and a set of rules and procedures that
define the relations among these files; together these files, rules, and procedures
constitute a complete program.

SCT examines the creation times of the source files to determine which ones must
be recompiled to produce "clean" and "coherent" object files. It can also be used
to merge patches to a system. By tracking all dependencies, SCT ensures that
each released system is consistent. See the section "Directories Associated with a
System", page 191.

144

Program Development Utilities August 1986

A system can be constructed out of Lisp source files or files written in other
languages. Systems can also be constructed out of text files (for example, the
documentation system) or other types of files specified by users.

• You define the system, using SCT's defsystem special form. The definition,
called a system declaration, specifies such information as the names of the
source files (or modules) in your system and what operations should be
performed on each file in what order (for example, which files should be
compiled, loaded, or both, and which should be loaded first). See the section
"Defining a System", page 145.

• The body of a defsystem declaration names the files that compose the
system and consists of one or more module specifications. A module is one or
more files or modules that should be treated as a unit. Operations
compiling, loading, editing, hardcopying, and the like - are applied to the
module as a whole. See the section "defsystem Modules", page 153.

• If the system is to be made generally available to other users, you should
place the system definition in its own file. (This file should contain no more
than one defsystem form, but there can be any number of defsubsystems
and other forms.) You also must create two other files that make your
system site-independent. The goal is to make your system run at any site,
not just the one on which it physically resides. (Imagine the problems that
would occur if you moved your program to another host machine, and you
had to update every single pathname listed in your system definition!)

• You can perform operations on your system (for example, compile, edit, load,
reap-protect, distribute, release, or hardcopy) by using the appropriate
Command Processor commands (e.g., Load System and Compile System) or
Lisp functions. See the section "Loading and Compiling Systems", page 175.
See the section "Other Operations on Systems", page 187. You can also
define your own operations to perform on systems. See the section "User
defined Operations on Systems", page 172.

• The patch facility lets you make and distribute incremental fixes and
improvements to your system, called patches, thereby avoiding recompilation
or reloading of the entire system. By maintaining a patch registry, a
detailed record keeping system, the patch facility allows developers to
maintain multiple versions of the same system. See the section "Patch
Facility", page 197.

• Various functions exist to help you find information about existing systems.
See the section "Obtaining Information About a System", page 213.

145

August 1986 Maintaining Large Programs

20. Defining a System

A system is a set of files and a set of rules and procedures that defines the
relations among these files; together these files, rules, and procedures constitute a
complete program. The definition of a system (called the system declaration)
describes these relationships and rules. Some -useful, general guidelines are:

1. Use Zmacs to enter the system declaration in its own file, with a canonical
type of :lisp. The system declaration file also contains a package declaration
for the system (if necessary), which must precede the system declaration in
the file. For an example of a system declaration file: See the section
"System Declaration File", page 183.

2. Create a defsystem form. Wherever a pathname is required in your system
declaration use logical pathnames, not physical pathnames. Logical
pathnames provide a way of referring to files in a site-independent way.
They also make it possible to move the sources from one machine to another
within a site.

3. Assuming that you have used logical pathnames, you need to prepare two
other files:

• The system file

• The translations file

The system file defines a logical host, specifies the location of the system
declaration file, and loads the translations file. The translations file defines
the translation from logical directories on the logical host to physical
directories on a physical host. See the section "Loading System Definitions
That Use Logical Pathnames", page 180.

4. Invoke a Lisp function or Command Processor (CP) command to compile,
load, or perform some other operation on your system, as in

Load System Fortran :Version Latest

The command uses the information in the translations file to load the system
declaration file, compiling this declaration file first if necessary.

146

Program Development Utilities August 1986

defsystem system-name options &body body Special Form
Defines a system called system-name. This name is used for all operations
on the system.

The definition of a system (called the system declaration) describes a group
of relations among a group of files that constitute at least one complete
program. The declaration provides information on (1) the files that make
up the system, (2) which files depend on previous operations, and (3) the
characteristics of the system, for example, the package in which the source
code should be read. Note: system-name is not package-dependent. It is
only used as a string.

Interpreting or compiling the system declaration brings your system into
existence for the purposes of applying operations to it. After your system
declaration is loaded into the Lisp environment, Command Processor
commands (like Load System and Compile System) and corresponding Lisp
functions construct a plan of operations in accordance with the properties
specified in your system declaration. The system is operated on according
to this plan.

options is a list of keyword and value pairs that specify global attributes of
the system being defined. body contains the detailed specification of the
parts of the system. body can be written using a long-form syntax or an
abbreviated short-form syntax.

20.0.1 defsystem Options

options is a list of keyword and value pairs that specify global attributes of
the system being defined.

:pretty-name

: short-name

:pretty-name specifies the name of the system for use in
printing. This is the user-visible name appearing in
heralds and so on. If :pretty-name is not specified, the
default is the name of the system: SYSTEM NAME.

Example: Based on the following declaration, the herald
displays the name of the registrar system as Automatic
Registration System.

(defsystem registrar
(:pretty-name "Automatic Registration System"

:short-name "Registration"
:default-pathname "reg:reg;") ...)

:short-name specifies an abbreviated name used in
constructing disk label comments and patch file names for
some file systems. See the section " Names of Patch

August 1986

147

Maintaining Large Programs

Files", page 201. If the :short-name is not supplied,
system-name is used.

: default-package
:default-package specifies the name of an existing
package into which each file in the system will be loaded
or compiled. This is only useful if the file has no package
attribute in its mode line. (Typically, the package
declaration for a system is placed in the same file as the
system declaration.) (See the section "Defining a
Package" in Symbolics Common Lisp: Language Concepts.)

It is sometimes necessary to selectively override the
system's default-package, for example, when a particular
system module needs to read a file into a particular.
package. In this case specify a different package for a
particular module. See the section ":module Keyword
Options", page 159.

On other occasions you might want to compile or load
your system in a package other than the default package
for purposes of debugging new versions of the system.
See the section "defsystem Options", page 146.

Example: All the modules in mailer, except for macros,
are compiledlloaded into the mail package.
(defpackagemail (:size 4e96.»

(defsystem mailer
(...
:default-package mail
...)

(:module defs "defs")
(:module macros "macros" (:package special)

(:in-order-to :compile (:load defs»)
...)

Note: Your system should be compiled and loaded in its
own unique package. If your system and someone else's
system both define a function called foo, but with
different package names, the package specification will
prevent name conflicts. Avoid affecting symbols in the
standard Genera packages. See the section "Packages" in
Symbolics Common Lisp: Language Concepts.

148

Program Development Utilities August 1986

:package-override
The :package-override option overrides all other explicit
package declarations - the system default package, a
package declaration for a particular module, as well as a
package specified in the attribute lists of constituent files.

Commonly, this option is used when debugging a new
version of a system. For example, temporarily insert the
option in your defsystem form, reevaluate the form, and
compile and test your experimental version. Do not save
the system declaration file with the :package-override
option. When you're finished debugging the new version,
delete the option from the defsystem form and reevaluate
it.

:default-pathname
:default-pathname specifies a default pathname against
which all other pathnames in the system are merged.
Specify that part of the pathname for which you want to
establish a default. You are urged to supply a logical, not
a physical, pathname. See the section "Logical
Pathnames" in Reference Guide to Streams, Files, and I/O.

Here is an example.

:default-pathname "sys:zwei;"

This eliminates the need to enter the full pathname of
each of the system's files. If the system's files reside in
more than one directory, furnish a pathname default for
the directory storing the largest number of files. Where
the pathname differs from the default, specify the full
pathname.

Example: "pres-type-macro" and "pres-type-fspec" are
merged here into "sys:dyno-windows;pres-type-macro" and
"sys:dyno-windows;pres-type-fspec" respectively. Because
"character-style-pres" resides in "sys:sys2;" a full
pathname specification is given.

(defsystem dyno-windows
(:pretty-name "Dynamic Windows"
:default-pathname "sys:dyno-windows;")

(:serial (:parallel "pres-type-macro" "pres-type-fspec")
(:parallel "sys:sys2;character-style-pres")))

: default-module-type
Specifies a keyword, which is the default type for each

August 1986

149

Maintaining Large Programs

module. If not furnished, the default value is :lisp. The
type specifies the nature of the inputs to the system and
determines the details of what is done for each generic
operation (load, edit, hardcopy) performed on the system.

Some commonly used predefined types are: :lisp, :fortran,
:pascal, : text, : font, : lisp-example, and : system. (The
:fortran and :pascal types are supplied by the
corresponding optional products.) For a complete list of
predefined types and operations: See the section "Table of
Module Types and Operations", page 169.

You can also define your own types. See the section "User
defined Module Types", page 171.

It is possible to selectively override the system's default
type by specifying another type for a particular module.
See the section ":module Keyword Options", page 159.

Example: The action system consists of one anonymous
(unnamed) module of type :fortran.

(defsystem action
(:short-name "act"
:default-pathname "quark: code;"
:default-package quark
:default-module-type :fortran)

(:serial "defs" "macros" (:parallel "things" "rooms") "parser"»

:journal-directory

:patchable

Specifies the location of the journal directory, which
contains: the system-directory file and all of the journal
subdirectories. See the section "Directories Associated
with a System", page 191.

By default, the journal directory of a system is called the
subdirectory "patch" under the default pathname. For
example if the default directory is

sys: quux;

then the journal directory defaults to

sys: quux; patch;

Note: In order to convert pre-Genera 7.0 journal files into
Genera 7.0 form: See the function si:convert-journals in
Converting to Genera 7.0.

:patchable specifies whether you want the system to be

150

Program Development Utilities August 1986

:parameters

patchable or not. It takes one argument, either t or nil.
The default is t, meaning that the system is patchable.
(See the section "Patch Facility", page 197.)

Specifies an "argument list" for the system. When you
perform some operation on a system (compile or load it,
for example), you can include extra keyword arguments
that will be passed on to the methods that implement
operations on the modules in the system. The value of
:parameters is a list that reads like a keyword argument
list.

Example: The :parameters option creates the keyword
:force-package that can be passed on to system foo when
it is compiled.

(defsystem faa
(...
:parameters (force-package»

...)

(compile-system 'faa :force-package 'faa-package)

In this example, the user-defined parameter
:force-package keyword is not used by compile-system
and is passed to the lower-level callee. In this example it
could be the underlying compiler appropriate to the system
being defined, like the Pascal compiler.

:initializations Creates a list of initializations to be run immediately after
the last file in the system has been loaded. The format is
:initializations argument. If argument is a symbol, it is
interpreted as an initialization list. If it is an arbitrary
form, it is evaluated.

This example specifies an initialization list:

:initializations *foo-init-list*

One of the files in your system, preferably the first one,
should create the initialization list: (defvar symbol nil).
For example:

(defvar *foo-init-list* nil)

You can add initializations to the list in your code. For
example:

August 1986

151

Maintaining Large Programs

(add-initialization "init storage"
'(setq *storage* nil) () '*foo-init-list*)

See the section "Introduction to Initializations" in
Internals, Processes, and Storage Management.

:initial-status :initial-status status sets the initial status of the system
when a new major version is created. The system's
system-directory file records the status. The valid status
keywords are :experimental (the default), :broken,
:obsolete, and :released.

: bug-reports

: experimental

:released

:obsolete

:broken

The system has been built but has not
yet been fully debugged and released to
users. The software is not stable.

The system is deemed stable and is
released for general use.

The system is no longer supported.

The system does not work properly.

Specifies a list of two strings - (list-name
mouse-line-doc-string). The first is the name of the bug
mailing list to which bug reports are routed. Zmail uses
this name in its Bug Mail menu. The second is a
documentation string describing the purpose of the bug
mail; the string appears in the mouse documentation line.

Example: The following specification sends mail to Bug
Zmail.

:bug-reports ("8ug-Zmail" "Report problems with Zmail.")

: advertised-in Specifies a list of zero or more keywords indicating the
contexts in which the system name and version number
should be displayed. Valid keywords are:

Keyword

:herald

:finger

:disk-Iabel

Meaning

The system name and version number
are displayed in the herald.

The system name and version number
are displayed in the Show Users listing.

The system name and version number
are displayed in world load comments.

152

Program Development Utilities August 1986

The default is : herald. Note that for a system not to
appear in the herald, you must specify :advertised-in O.

: maintaining-sites
:maintaining-sites (site-list) specifies the list of sites that
maintain the system. :maintaining-sites declares the
sites that can patch a system. It helps you to monitor
versions in order to ensure that no changes are made an
"unauthorized" sites. When you attempt to patch a
system that is not maintained at your site, you receive a
warning.

For example:

(defsystem experimental-file-system
(...
:maintaining-sites (:sgd :scrc)) ...)

The default for :maintaining-sites when it is undeclared
is nil. This has the effect of allowing any site to patch the
system without a warning.

:source-categoryThe :source-category option is used for writing software
distribution tapes. Its valid values are :basic (the
default), : optional, and :restricted. These categories
relate to distribution dumper categories. The distribution
dumper writes out the sources for a system based on
whether the system fits into the specified source-category.
: basic is less restricted than : optional, which is less
restricted than :restricted.

This option can also be specified as an alist, for example:

(:basic
(:restricted "secrets" "more-secrets")
(:optional "not-quite-as-secret"))

This says that all files are in the : basic category, except
"secrets," "more-secrets," and "not-quite-as-secret."

:distribute-sources
The :distribute-sources option is used by the distribution
dumper to decide whether or not to write sources to the
distribution tape. It takes the values t or nil, and its
default value is t.

: distribute-binaries
The :distribute-binaries option is used by the distribution
dumper to decide whether or not to write binaries to the

August 1986

153

Maintaining Large Programs

distribution tape. It takes the values t or nil, and its
default value is nil.

20.0.2 defsystem Modules

The body of a defsystem declaration names the files that compose the
system and consists of one or more module specifications. A module is one
or more files or modules that should be treated as a unit. Operations
compiling, loading, editing, hardcopying, and the like - are applied to the
module as a whole.

Modules can be explicitly named or unnamed (anonymous). For example, in
the long-form syntax,

(:module faa ("bar" "baz"»

is a named module called foo and contains two files - bar and baz. All
operations are applied to the aggregate foo. The :module form names the
aggregate (which the short-form :parallel would not do) and allows keyword
modifiers to be associated with the module.

On the other hand, the following clause treats the files bar and baz as two
separate but unnamed modules:

(: ser; al "faa" "bar")

A restriction on the construction of modules is that anyone file in a
module cannot depend on the operations performed on another file in that
same module. If the compilation of file ,"bar" depends on file "baz" having
been loaded, then these files cannot be placed in the same module.

A common organizing principle for grouping files into modules is to collect
together those files that perform a similar function, with the restriction
that the files within the module must not depend on one another. For
example, all low-level definitions (variables and macros) might be placed in
the same module.

Module specifications can be expressed using a long-form syntax, a simpler
short-form syntax, or a hybrid of both formulations .

• Use the short form exclusively when your system uses only default
types and packages and has straightforward dependency relationships .

• Use the long form as needed when your system contains component
systems (i.e., when a module represents another system), non-default
type modules, explicit package specifications other than the system
default package, or complicated dependency relationships.

154

Program Development Utilities August 1986

20.0.2.1 Module Dependencies

Dependencies describe relationships among operations on modules. That is,
they describe which modules depend on one another and for which
operations they depend on one another. For example, modules often depend
on the previous loading of other modules. The main program module in a
system presumably depends on the previous loading of the low-level module
definitions. Thus, the relationship of one defsystem module to another can
be described as a hierarchy of dependencies. Within a module, however, no
file can depend on any other file, but all files share the same dependencies
vis-a-vis other modules.

Dependencies, which are described in the defsystem form, impose an order
in which operations are performed on a module. The long-form module
specification is needed to specify complicated dependencies among modules
and operations. Note that a dependency does not guarantee that the
operation will be performed, only that if the operation is requested (by the
user), it will be performed in a certain order relative to other operations.

Formally defined, a module dependency states that under certain conditions,
all specified operations must be performed on the indicated modules before
the operation on the current module can take place.

Dependency Example 1

The following module specifications (assume they are Lisp modules) declare
that:

• In order to load main, defs must be loaded first.

(defsystem faa

(:module defs ("defs1"»
(:module main ("main")

(:in-order-to :load (:load defs»»

The dependency in the example applies only when foo is loaded, and so is
called a load-time dependency.

Compile-time dependencies, which apply only when a compile operation is
performed, are slightly more complicated.

Dependency Example 2

Assuming that the bar system consists of Lisp-type modules, consider the
:in-order-to clause below. This says that macros depends on the
compilation and loading of defs whenever the bar system is compiled. At
first glance, the compilation requirement is surprising because (:load defs)

155

August 1986 Maintaining Large Programs

does not mention anything about compilation. However, the system facility
considers source files that can be compiled (such as Lisp or Pascal files) to
have an implicit compile-time dependency on themselves: in order to load
the files you must compile them first (if they are not already compiled).

Note: In order to prevent a Lisp file from being compiled at all, the two
predefined module types :lisp-read-only and :lisp-Ioad-only do not permit
Lisp compilation.

(defsystem bar

(:module defs ("defs"»
(:module macros ("macros")

(:in-order-to :compile (:load defs»)
...)

Dependencies can be expressed in different ways. Examples 1 and 2
declare the presence of a dependency relationship explicitly. A module can
also describe a dependency implicitly using a short-form syntax.

Dependency Example 3

The :serial clause implies that main depends on defs and that defs does
not depend on any other module. It also implies that operations on "defs"
and "main" be performed separately and in order, even though it does not
explicitly state these operations. So, if a compile operation were performed
on system foo, first defs would be compiled and loaded, then main would
be compiled and loaded.

(defsystem faa

In Examples 1 and 2, defs contains only one file, "defs", but if defs
consisted of two files, "defsl" and "defs2", then the examples would have to
be rewritten. This is relatively straightforward for Example 1; the single
module specification would be edited as follows:

(:module defs ("defs1" "defs2"»

All operations would be applied to the aggregate defs.

Changing Example 3 requires altering the dependency to say that "defsl"
and "defs2" do not depend on one another. However, main still depends on
the prior compilation/loading of "defsl" and "defs2" but in no particular
order. This dependency would be written like so:

156

Program Development Utilities August 1986

(:serial (:parallel "defs1" "defs2") "main")

The embedded :paralleI clause declares that the files that follow have no
dependency relationship; they are operated on as a unit. The :serial clause
still states that any operations are applied first to the :parallel clause, then
to main.

Once you correctly determine (1) which files should compose a module and
(2) which and how modules depend on one another, you will never have to
figure out these relationships again. By constructing a plan based on the
modules and their dependencies, you have finished your part of the job.
Commands that operate on systems, like Load System, will work correctly.

20.0.2.2 Short-form Module Specifications

Short-form specifications provide an abbreviated syntax for defining groups
of unnamed (anonymous) modules that have a straightforward dependency
relationship. All the system's files must be of the default type (defined by
the :default-module-type option) if they are named explicitly in the short
form specification.

A short-form specification consists of a keyword, followed by one or more
elements: (keyword elementl element2 ...)

An element can be another short-form or a primary. A primary is either a
symbol, which is interpreted to be the name of a named module, or a
string, which is a file spec.

The keyword describes the dependency relationship among the modules and
can be any of the following: :serial, :parallel, : definitions , or
:module-group.

Short forms can be embedded in short forms.

The meanings of the keywords are explained here.

• :serial means that each of the specified elements depends in some
way on the preceding one. The order of specification is therefore
essentia1.

Example: If the compile operation is performed on the system, each
Lisp module in the clause shown below is compiled and then loaded in
turn before the next one is compiled and loaded. The compilation and
loading of glub depends on the previous compilation and loading of
bar. In order to compile and load bar, the computer must have
already compiled and loaded foo.

157

August 1986 Maintaining Large Programs

(:serial "faa" "bar" "glub")

• :parallel means that the specified elements do not depend on one
another in any way; they are operated on as a group. The order of
specification is therefore not important.

\

Example: If the compile operation is performed, all the Lisp modules
in the following clause are compiled, then all are loaded.

(:parallel "faa" "bar" "glub")

• The syntax of the :definitions clause is
(:definitions primary element). :definitions means that the element
has a serial dependency on the primary and, in addition, it has a
compile-dependency. This means that if the primary is compiled, the
element must be compiled. The :definitions clause is useful when the
primary contains macros that are used in the definition of the
element.

• :module-group is an additional short-form syntax keyword. It
provides a way to name the aggregate result of a short-form
specification, so that other specifications can refer to this result. The
format is: (:module-group name short-form options).

The structure is analogous to, and the options are the same as for,
the long-form specification. See the section "Long-form Module
Specifications", page 158.

Short Form Syntax Examples

The following short-form syntax defsystem illustrates serial dependency
with an embedded parallel dependency.

(defsystem adventure
(:default-pathname "quark: code;"
:default-package quark
:default-module-type :fortran)

(:serial "defs" "macros" (:parallel "things" "rooms") "parser"»

The adventure system consists of a sequence of modules of the type
:fortran, compiled in the quark package. In the event that the system is
compiled, then operations occur as follows:

1. Compile defs, then load it
2. Con1pile macros, then load it
3. Compile things and rooms, then load both of them
4. Compile and load parser

158

Program Development Utilities August 1986

The following diagram illustrates the above dependency relationship.

DEFS
I

MACROS
/ \

THINGS ROOMS
\ /

PARSER

Both "things" and "rooms" depend on "defs" and "macros" to have been
compiled and loaded, but "things" and "rooms" do not depend on each other
with respect to compilation. "Parser" depends on "things" and "rooms"
having been compiled and loaded but in no particular order.

The next example shows how the :module-group keyword is used. The
:module-group names the result of the included short-form specification
bigs tuff, so that the main module can refer to it as a dependency: in order
to compile main, first compile and load bigstuff.

(:module-group bigstuff
(:definitions "macros" (~parallel "faa" "bar" "blech"»)

(:serial bigstuff (:parallel "a" "b" "c"»

20.0.2.3 Long-form Module Specifications

Use the long-form module specification when your system contains
component systems, non-default-type modules, explicit package specifications
other than the system default package, or complicated system dependencies.

The general format of a long-form specification is:

(: modul e name inputs
(keyword-option-i)
(keyword-option-2)
...)

The :module keyword defines the module called name. name must be a
symbol or nil; nil means that the module is anonymous.

inputs can be nil or a list of one or more of the following:

• Strings representing a file name

• Symbols representing the name of another system defined by
defsystem

When a module consists of more than one input, the inputs must be
specified as a list.

159

August 1986 Maintaining Large Programs

The ordering of inputs within a module specification is not significant.
Dependencies are determined by explicit keyword directives in :module
clauses or, failing that, by the order of the modules in the system
declaration.

:module Keyword Options

:package and :type override the system defaults for package and types,
respectively.

:package

:type

The :package option takes one argument, a string, and
causes operations on a module to be performed in the
specified package. It overrides both the system default
(specified by the :default-package option to defsystem)
and any package named in the attribute lists of the
system's files. It does not override the :package-override
option to defsystem.

Example: The macros module is compiled and loaded into
the special package. All other modules are compiled and
loaded into the system default, mail.
(defsystem mailer

(...
:default-package mail
...)

(:module defs "defs")
(:module macros "macros" (:package special)

(:in-order-to :compile (:load defs)))
...)

The :type option in a module specification overrides the
default module type for the system. The type specifies the
nature of the inputs to that module, for example, whether
it's composed of Pascal files, Lisp files, or ordinary text
files, and determines the details of what is done for each
generic operation (for example, load, edit, hardcopy)
performed on that module. Each type has certain valid
operations. You can use any of the predefined types,
including :lisp, : text, :font, :lisp-example, :system, and so
on. See the section "Table of Module Types and
Operations", page 169. You can also define your own
module types. See the section " User-defined Module
Types", page 171.

Example 1: The inputs to adventure! are all Fortran files;

160

Program Development Utilities August 1986

however, if the parser had been written in Lisp, then the
defsystem form should be rewritten as shown in
adventure2. parser is explicitly declared to be a module
of type :lisp.

;;; Example 1
(defsystem adventure1

(:short-name "advent1"
:default-pathname "quark: code;"
:default-package quark
:default-module-type :fortran)

(:serial "defs" "macros" (:parallel "things" "rooms") "parser"))

(defsystem adventure2
(:short-name "advent2"
:default-package quark
:default-pathname "quark: code;"
:default-module-type :fortran)

(:module parser ("parser") (:type :lisp))
(:serial "defs" "macros" (:parallel "things" "rooms") parser))

The :system type specifies the names of component
systems, which are other systems (defined by a defsystem
or defsubsystem form) that are to be included in this
system. System operations are performed recursively. In
the usual case, performing an operation on a system with
component systems is equivalent to performing the same
operation on all the individual systems.

Example 2: The moderately complicated definition of
common-lisp-internals falls rather gracefully and readably
into the serial-parallel abbreviated form. Then
common-lisp-internals is easily made a component system
of common-lisp by designating it as module cl of type
:system. Note how neatly a compile and load dependency
on cl is specified in the :serial clause.

August 1986

161

Maintaining Large Programs

iii Example 2
(defsubsystem common-lisp-internals

(:default-pathname "sys:clcPi"
:default-package cli)

(:serial "functions" "sequence-macros" "numerics"
(:parallel "listfns" "seqfns" "hashfns")
"type-infra" "type-supra" "type-supra2" "Type-supra3"
"Hare-functions" "Stringfns" "Charfns" "Arrayfns" "Error"
(:parallel "Iofns" "Read-print"»)

(defsubsystem common-lisp
(:default-pathname "sys:clcPi")

(:module cl common-lisp-internals (:type :system»
(:serial cl "Permanent-links"»

:in-order-to and :uses-definitions-from are the two main options for
controlling the dependency relationships among modules.

:in-order-to :in-order-to is the basic keyword that expresses
dependency relationships among modules. The general
format is
(:in-order-to (:operation-l :operation-2 ...) (:operation module» Note
that the first argument to :in-order-to can be either a
symbol or a list.

Example: The following code fragment illustrates a
compile-time and a load-time dependency.

(:module main ("main")
(:in-order-to :compile (:load defs»
(:in-order-to :load (:load utils»)

It directs that:

• If the compile operation is performed on the present
module, main, then the defs module must be loaded
first .

• If main is loaded, then the module utils must be
loaded first.

:uses-definitions-from
:uses-definitions-from is similar to the :in-order-to
option. The general format is
(:uses-definitions-from module).

162

Program Development Utilities August 1986

Writing (:uses-definitions-from foo) implies the
dependency relation:

(:in-order-to (:compile :load) (:load foo»

To state it another way, :uses-definitions-from means
that the module has a serial dependency on the depended
upon module. In addition, it requires that if the
depended-upon module needs to be recompiled, then all of
its dependents will be recompiled as well. Note that
dependencies are transitive.

Example: Consider the following fragment, assuming that
the macros module has been defined in the defsystem
form.

(defsystem jonathan
(:default-pathname "sys:jonathan;"
:default-package cl)

(:module macros ("bim" "bam" "boom"»
(:module A ("a" "b" "c")

(:uses-definitions-from macros»

The :uses-definition-from clause affects module A in the
following ways:

• If macros is being compiled, then compile A
whether or not it is otherwise necessary.

• If A is being compiled, then compile macros, if it
needs to be compiled, first.

• If A is being loaded, then load macros, if it needs to
be loaded, first.

:root-module and :compile-satisfies-load also control the order in which
operations are performed but are far less commonly used than :in-order-to
and :uses-definitions-from.

:root-module The :root-module option is useful for controlling the
loading and compilation of macro definitions. It has the
effect of altering the normal rules of dependency. Its
valid values are:

Value

t

Meaning

Designates the indicated module as a
root module - a module that is always
processed. t is the default.

August 1986

163

Maintaining Large Programs

nil Indicates that the module is not a root
module.

This attribute affects system building as follows: when a
command or function that operates on a system (like
Compile System) constructs a step-by-step plan to operate
on a system (compiling, loading, as necessary) it will not
include a step for a non-root-module unless it is explicitly
depended upon by another module. That is, compilation
(or loading, and so on) of this module occurs only if a
dependency exists.

Example: In the following example, the macros module
specifies that it should not be considered a root module.

(defsystem rm-example
(:default-pathname "example: code;")

(:module defs ("defs"»
(:module macros ("macros")

(:in-order-to :compile (:load defs»
(:root-module nil»

(:module utils ("utils")
(:uses-definitions-from macros)
(:in-order-to :compile (:load macros»
(:in-order-to :load (:load defs»)

(:module main ("main")
(:uses-definitions-from macros)
(:in-order-to :compile (:load macros»
(:in-order-to :load (:load utils»»

Assuming that the user has requested a system load,
examine the load-time dependencies and note that, for
purposes of loading, macros is not depended upon by any
other module:

• defs does not depend on any other module

• macros depends on defs being loaded

• utils depends on defs being loaded

• main depends on utils being loaded

Thus, macros is ignored during the preparation of the
system construction plan for loading rm-example:

1. Load defs

164

Program Development Utilities August 1986

2. Load utils
3. Load main

If :root-module had not been specified or had been given
a value of t, macros would have been loaded, according to
the normal dependency rules. Since macro definitions
need not be installed when a system is being loaded to be
used, (:root-module nil) gives exactly the desired result.

When the same system is compiled, however, a load of
macros is included in the system construction plan
because macros is depended upon at compile-time by two
modules.

• defs does not depend on any other module

• macros depends on defs being compiled, if
necessary, and loaded

• utils depends on macros being compiled, if
necessary, and loaded .

• main depends on macros being compiled, if
necessary, and loaded

Since macro definitions need only be loaded at compile
time, (:root-module nil) again gives exactly the desired
result.

Note: for specifications in the old style (pre-Genera 7.0)
that included the :skip directive, use the new directive
(:root-module nil) inside the module declaration.

:compile-sa tisfies-Ioad
The :compile-satisfies-Ioad option, like :root-module, is
useful for controlling the compilation and loading of macro
definitions and alters the normal rules of dependency.

It has two valid values: t and nil. When set to t, the
option declares that when a module is compiled in the
current compiler environment, it should not be loaded -
even if a load dependency exists, because the loading the
module could destroy the current environment. The load
dependency is satisfied by compiling the module.

When set to nil, :compile-satisfies-Ioad specifies that
when a module is compiled in the current compiler .
environment, load it if necessary. nil is the default.

August 1986

165

Maintaining Large Programs

This feature is useful because the compiler will notice
entities like defmacro, defsubst, zl:defstruct, and
defflavor and use them for the compilation of subsequent
files without having to load them. However, if the bodies
of macros (not the code produced by their expansion) call
subroutines (defuns) in the file, then the file must be
loaded in order to define those subroutines.

Example of :compile-satisfies-Ioad: Assume that the user
has requested a compile of the csl-example system.

(defsystem csl-example
(:default-pathname "example: code;")

(:module defs ("defs"»
(:module macros ("macros")

(:in-order-to :compile (:load defs»
(:root-module nil)
(:compile-satisfies-load t»

(:module utils ("utils")
(:uses-definitions-from macros)
(:in-order-to :compile (:load macros»
(:in-order-to :load (:load defs»)

(:module main ("main")
(:uses-definitions-from macros)
(:in-order-to :compile (:load macros»
(:in-order-to :load (:load utils»»

The compile-time dependencies expressed above indicate
that:

• defs does not depend on any other module

• macros depends on defs being compiled, if
necessary, and loaded

• utils depends on macros being compiled, if
necessary, and loaded

• main depends on macros being compiled, if
necessary, and loaded

If the :compile-satisfies-load attribute were absent or set
to nil the system construction plan would look like this:

1. Compile defs
2. Load defs
3. Compile macros

166

Program Development Utilities August 1986

4. Load macros
5. Compile utils
6. Compile main
7. Load utils
8. Load main

Note that because the :compile-satisfies-Ioad attribute is
present, the plan is amended to delete step 4.

The : source-category, : distribute-sources, and :distribute-binaries options
supply values that override within the module the corresponding default
values for the system.

:source-categoryThe :source-category option is used for writing software
distribution tapes. Its valid values are :basic (the
default), :optional, and :restricted. These categories
relate to distribution dumper categories. See the section
"Distribution Dumper". The distribution dumper writes
out the sources for a system based on whether the system
fits into the specified source-category. : basic is less
restricted than :optional, which is less restricted than
:restricted.

This module option can also be specified as an alist. See
the :source-category option to defsystem.

: distribute-sources
The :distribute-sources option is used by the distribution
dumper to decide whether or not to write sources to the
distribution tape. It takes the value t or nil, and its
default value is t.

: distribute-binaries
The :distribute-binaries option is used by the distribution
dumper to decide whether or not to write binaries to the
distribution tape. It takes the values t or nil, with a
default value of nil.

sct:undefsystem system-name Function
Removes all record of the system called system-name from sct:*all-systems*
and removes all the source file name properties from the system. The
effect is to make it look like a defsystem wasn't even done. Note: This
does not undefine functions, flavors, etc., created by loading the system.

167

August 1986 Maintaining Large Programs

defsubsystem system-name options &body body Special Form
Defines a system that has no autonomous existence and is not patchable. It
can only be compiled and loaded by compiling or loading its parent system.
It can, however, be treated independently for some operations, like edit or
hardcopy.

In a defsystem form, a subsystem is specified as a :module and is flagged
with the keyword pair (:type system) (see the example). Subsystems are
provided as a convenience for specifying groups of modules that are all in
one package or directory. Subsystems have no associated component
directory. Their files are journaled in the parent system's component
directory.

Subsystems retain identity as systems on which you can select as a tag
table in Zmacs.

In the following example of defsubsystem, we have not listed all the file
names for each system and subsystem. The places where these names
normally go are marked by ellipses.

(defsystem fortran
(:default-pathname "sys: fortran;"
:journal-directory "sys: fortran;"
:patchable t)

(:module macros ("macros") (:root-module nil»
(:module language-tools (language-tools) (:type :system»
(:module front-end (fortran-front-end) (:type :system»
(:module back-end (fortran-back-end) (:type :system»
(:serial macros language-tools front-end back-end»

;;; Component system definition
(defsystem language-tools

(:default-pathname "sys: language-tools;"
:patchable t)

(:serial ... »

;;; Subsystem definition (non-patchable)
(defsubsystem fortran-front-end

(:default-pathname "sys: fortran;")
(:serial "tokenizer" "grammar" ... »

;;; Subsystem definition (non-patchable)
(defsubsystem fortran-back-end

(:default-pathname "sys: fortr~n;")

(:serial "code-generator" "optimizer" ... »

168

Program Development Utilities August 1986

In the example, language-tools is a patchable component system, and
fortran-front-end and fortran-back-end are both subsystems.

20.1 defsystem Operations

With the Genera 7.0 defsystem, specifications of modules are intermingled with
operations on modules. This stands in contrast to the syntax of defsystem in
earlier releases in which module clauses and "transformation" clauses were
separate.

This section gives a brief overview of the kinds of operations that can be applied
to systems. For more details on these operations, see the referenced sections.

Seven types of predefined operations are available:

Load

Compile

Edit

Hardcopy

Reap-protect

Distribute

Release

Load the system into the current environment. Invoked by the
Command Processor command Load System and the function
load-system. See the section "Loading and Compiling Systems",
page 175.

Compile the system, create journal files, and optionally load it
into the current environment. Invoked by the Command
Processor command Compile System and the function
compile-system See the section "Loading and Compiling
Systems", page 175.

Read all the files of the system into editor buffers. Invoked by
the Command Processor command and the function
sct:edit-system See the section "Other Operations on Systems",
page 187.

Hardcopy all the files in the system. Invoked by the function
sct:hardcopy-system. See the section "Other Operations on
Systems", page 187.

Reap-protect the system. This marks all source and product files
as protected from deletion. Invoked by the Command Processor
command and the function sct:reap-protect-system See the
section "Other Operations on Systems", page 187.

Write the system on tape. Invoked by the Command Processor
command Distribute Systems (note the plural form, since one or
more systems can be written to tape at a time). See the section
"Other Operations on Systems", page 187.

Puts the :released keyword in the system's patch directory, and

August 1986

169

Maintaining Large Programs

inserts a :released designation in the system directory file. For
most operations on a system, the :released designator is used as
the default version. Failing this, the :latest version is used.
Invoked by the function sct:release-system; no corresponding
Command Processor command. See the section "Other
Operations on Systems", page 187.

20.1.1 Table of Module Types and Operations

This is a table of system module types and their behavior under standard
operations. Note: The operation sct:reap-protect applies to all types of systems
and so is not listed here. See the legend below the table to find the meaning of
the various abbreviations used.

170

Program Development Utilities

Module
Type

Default
file type

August 1986

Compile Load Hard- Edit Distribute
copy (source/product)

===
Lisp : 1 i sp L-comp BL T T

Prolog :prolog P-comp BL T T

Ada :ada A-camp BL T T

Fortran :fortran F-comp BL T T

Pascal :pascal Pa-comp BL T T

Text :text T T

Font :bfd FL N N

System *** Operate recursively ***

Lisp
example

Readtable

Lisp
read-only

Lisp
load-only

: 1 isp

: 1 isp

: 1 isp

: 1 isp

Logical
translations :lisp

Binary-data :bin

Text-data :text

T

R-comp BL T

Read- T
file

BL T

Read- T
file

N

T

T

T

T

T

T

N

T

TIT

TIT

TIT

TIT

TIT

T/--

T/--

TIT

TIT

T/--

--IT

T/--

--IT

T/--

Legend: "i-comp" means the appropriate compiler is used, e.g., "L-comp" means
the Lisp compiler is invoked. "--" means this operation is meaningless on this file
type. "BL" means the binary loader is invoked. "FL" refers to the font loader.

171

August 1986 Maintaining Large Programs

Besides the standard, predefined operations, you can define your own operations on
modules. See the section " User-defined Operations on Systems", page 172.

20.1.2 System Plan

The order in which operations are performed on the modules in a system is called
the system plan. By default, operations occur in the order that they are defined or
they are shuffled the minimum amount necessary to realize the specified
constraints. These constraints are in the form of dependencies (i.e., module X must
be loaded before module Y is loaded).

In order to see in advance the system plan for a given system with a given
operation, type the Command Processor command: Show System Plan
name-ot-system (operation). Two factors determine the system plan:

1. The order in which the modules are defined

2. The ordering constraints that derive from the dependencies that are specific
to that operation

Show System Plan Command

Show System Plan system operation

Show the system plan (i.e., the order of operations) for the specified system under
the specified operation. operation can be All, Compile, Load, Edit, Hardcopy, Reap
protect, or Distribute.

20.2 User-defined Module Types

You can define your own module types using the function set: define-module-type.

sct:define-module-type type source-default product-default &body Function
base-flavors

Defines a new module type called type with a source-default module type
and a product-default module type.

The base-flavors are the previously defined module type upon which this
type is built. The new type inherits the properties of the base-flavors and
interprets operations like the base-flavors do, except in the case that special
methods are defined for the type that override the base-flavors operations.

One you have defined a module type, you define methods with defmethod
that implement the special behavior of the new module type for the
standard operations: compile, load, and so on.

172

Program Development Utilities August 1986

The purpose of this example is to define a module type called lisp-read-only
whose sources are Lisp code but which is meant to be read and not compiled.
According to the definition of lisp-read-only in the example, a module of this type
will respond according to the definition of its base flavor lisp-module for all
operations except loading and compiling.

(define-module-type :lisp-read-only :lisp nil
1 i sp-modul e)

(defmethod (:compile lisp-read-only-module) (system-op &rest keys)
(ignore system-op keys)
nil)

(defmethod (:load lisp-read-only-module) (system-op &rest keys)
(lexpr-send self :read system-op keys»

20.3 User-defined Operations on Systems

It is usually more useful to define your own type of system module than it is to
define your own operation. However, SCT provides a facility for defining your own
operations, should you need it. The macro sct:define-system-operation is the
primary tool for this purpose.

sct:define-system-operation operation driving-function documentation Macro
&key (arglist '(system-name &key
query :confirm silent batch (version :latest)
(include-components t) &rest keys
&allow-other-keys» (class :normal)
(subsystems-ok t) body-wrapper (encache : both)

Defines a manipulation called operation to be applied to a system, creating
a function called operation-system. The driving-function is a closure - the
operation itself at the level of what is done to a single file. Higher-level
mechanisms take care of applying this operation to each file in a system.
The documentation is another closure - an operation that prints what will
be done to the file. The arglist specifies the arguments that are accepted by
the operation. The operation can also process the keyword arguments
: query, : batch, :version, and : include-components. For the meaning of
these keywords: See the function load-system, page 176.

The encache argument is used by SCT to optimize calls to
fs:multiple-file-plists. Typically, you should use :both if the operation
needs to look at any file properties (e.g., compile) or nil if the operation
does not need to look at any properties (e.g., edit or hardcopy). class should

173

August 1986 Maintaining Large Programs

be :normal for operations that construct a plan according to dependencies
(e.g., compile, load, edit) or should be :simple for operations that work on
everything in the system (e.g., reap-protect).

The definition of the standard hardcopy operation is shown next as an
example of the use of the sct:define-system-operation macro.

;;; -*- Mode: LISP; Syntax: Zetalisp; Package: SeT; Base: 19 -*-

(define-system-operation :hardcopy
input output module keywords

(lambda (source ignore ignore &rest ignore)
(declare (special hardcopy:*default-text-printer*»
(hardcopy:hardcopy-file source hardcopy:*default-text-printer*»

input output module keywords
(lambda (source ignore ignore &rest ignore)

(format standard-output U-&Hardcop-[y-;ying-;ied-] file -AU
system-pass source})

:arglist
(system-name &key (query :confirm) silent batch

(include-components t) (version :newest)
&rest keys &allow-other-keys)

:encache nil
:class :normal)

174

Program Development Utilities August 1986

175

August 1986 Maintaining Large Programs

21. Loading and Compiling Systems

The load-system and compile-system forms, with their Command Processor
equivalents Load System and Compile System, are the means of loading and
compiling systems. These functions replace the function make-system that was
used for these purposes in Symbolics Release 6.1 and earlier releases.

Load System Command

Load System system keywords

Loads a system into the current world.

system

keywords

: Condition

Name of the system to load. The default is the last system
loaded.

:Condition :Load Patches :Query :Redefinitions Ok :Silent
:Simulate :Version

{always, never, newly-compiled} Under what conditions to load
each file in the system. Always means load each file. Newly
compiled means load a file only if it has been compiled since the
last load. The default is newly-compiled.

:Load Patches {yes, no} Whether to load patches after loading the system.

: Query

The default is yes.

{Everything, Confirm-only, No} Whether to query before loading.
Everything means query before loading each file. Confirm-only
means create a list of all the files to be loaded and then ask for
confirmation before proceeding. No means just go ahead and
load the system without asking any questions. The default is
No. The mentioned default is Everything.

:Redefinitions Ok
{yes, no} Controls what happens if the system asks for
confirmation of any redefinition warnings during the loading
process. Yes means assume that all requests for confirmation
are answered yes and proceed. No means pause at each
redefinition and await confirmation. The default is No. The
mentioned default is Yes. This allows you to start loading a
system that you know will take a long time to load and leave it
to finish by itself without interruption for questions such as
"Warning: function-name being redefined, ok? (Y or N)".

176

Program Development Utilities August 1986

: Silent

: Simulate

:Version

{yes, no} Whether to turn off output to the console while the
load is going on. The default is no. Adding this keyword to
your Load System command string is the same as :silent yes.

{yes, no} Print a simulation of what compiling and loading
would do. The default is no. Adding this keyword to your Load
System command string is the same as :simulate yes.

{released, latest, newest, version-number, version-name} Which
version number to load. The default is released.

Note: This command only loads a system. If you want to compile and load a
system: See the section "Compile System Command", page 177.

load-system system-name &key (query :confirm) (silent nil) (batch Function
nil) (no-warn nil) (reload nil) (no-load nil)
(never-load nil) (dont-set-version nil)
(include-components t) (load-patches t) (version
:released) &allow-other-keys

Loads the system named by system-name into the current environment,
according to the specified keyword options.

21.0.1 load-system Keywords

These are the predefined keyword options to load-system. Note that the
allowable keywords can include those declared in the :parameters part of
the defsystem.

: query

:silent

: no-warn

:batch

Takes t, nil, : confirm, or :no-confirm. If t, ask for
approval of each and every operation. If nil or
: no-confirm, don't ask about anything. If :confirm, list
all the operations and then ask for confirmation. Default
value: : confirm.

Takes t or nil. If t, perform all operations without
printing anything. If :query is non-nil, :silent t is
overridden. Default value: nil.

Takes t or nil. If t, don't bother to print a redefinition
warning when a function is redefined. Default value: nil.

Takes t, nil, or pathname. Simulate
:query :confirm :silent t :no-warn t and collect the
compiler warnings and write them to system-name.cwarns.
If pathname, do the same as t but write compiler warnings
to pathname. Default value: nil.

August 1986

:reload

:no-Ioad

:never-Ioad

177

Maintaining Large Programs

Takes t or nil. If t, reload all the product (. bin) files, even
if the version in the environment is the most recent
version. Default value: nil.

Takes t or nil. If t, do not load .bin files unless they are
required by a specific dependency in the defsystem.
Default value: nil.

Takes t or nil. If t, never load any . bin files, no matter
what dependencies say. Default value: nil.

:include-components
Takes t or nil. If t, perform the requested system
operation on component systems. Default value: t.

:load-patches Takes t or nil. After the system has been loaded,
implicitly perform a load-patches operation. Default
value: t.

:version Takes :latest, : newest, :released, a number, or another
designator. :latest means the latest major version recorded
in the journal directory. :newest means ignore the journal
directory and find the newest version of the files.

:dont-set-versionTakes t or nil. If t, do not worry about setting the version
number of the system in the running world. This is an
optimization used to speed up the loading of some systems
such as the Logical Pathname Translations Files system.
Default-value: nil.

Compile System Command

Compile System system keywords

Compile the files that make up system.

system-spec

keywords

:Batch

:Condition

name of the system to compile. The default is the last system
loaded.

:Batch, :Condition, :Load, :New Major Version, : Query,
:Redefinitions Ok : Silent, :Simulate, :Update Directory

{yes, no} Whether to save the compiler warnings in a file
instead of printing them on the console. The default is no, to
just print them on the console. Adding the keyword : batch to
your Compile System command is the same as : batch yes.

{always, new-source} Under what conditions to compile each file

178

Program Development Utilities August 1986

:Load

in the system. Always means compile each file. New-source
means compile a file only if it has been changed since the last
compilation. The default is new-source.

{Everything, Newly-Compiled, Only-For-Dependencies, Nothing}
Whether to load the system you have just compiled into the
world. The default is Newly-Compiled.

:New Major Version

: Query

{yes, no, ask} Whether to give your newly compiled version of
the system the next higher version number. The default is yes.
Giving the choice no will ask you to confirm that you really
want to "prevent incrementing system major version number".

{Everything, Confirm-only, No} Whether to query before
compiling. Everything means query before compiling each file.
Confirm-only means create a list of all the files to be compiled
and then ask for confirmation before proceeding. No means just
go ahead and compile the system without asking any questions.
The default is No. The mentioned default is Everything.

:Redefinitions Ok

:Silent

: Simulate

{yes, no} Controls what happens if the system asks for
confirmation of any redefinition warnings during the
compilation. Yes means assume that all requests for
confirmation are answered yes and proceed. No means pause at
each redefinition and await confirmation. The default is No.
The mentioned default is Yes. This allows you to start a
compilation that you know will take a long time and leave it to
finish by itself without interruption for questions such as
"Warning: function-name being redefined, ok? (Y or N)".

{yes, no} Whether to suppress output to the console. The
default is no, to allow output. Adding the :silent keyword to
your Compile System is the same as :silent yes.

{yes no} Print a simulation of what compiling would do. The
default is no. Adding this keyword to your Compile System
command string is the same as :simulate yes.

: Update Directory
{yes, no} Whether to update the directory of the system's
components. The default is yes.

compile-system system-name &key (query :confirm) (silent nil)
(batch nil) (no-warn nil) (recompile nil)
(no-compile nil) (reload nil) (no-load nil)

Function

August 1986

179

Maintaining Large Programs

(never-load nil) (increment-version t)
(update-directory t) (initial-status nil)
(include-components t) (load-patches t) (version
:newest) &allow-other-keys

Compiles the system named by system-name with the specified keyword
options.

21.0.2 compile-system Keywords

These are the predefined keyword options to compile-system. Note that
the allowable keywords can include those declared in the :parameters part
of the defsystem.

: recompile

:no-compile

Takes t or nil. If t, recompile all the source files, even if
the .bin file is newer than the source file. Default value:
nil.

Takes t or nil. If t, do not compile any source files, no
matter what anyone else says. This is useful in
conjunction with :update-directory t and
:increment-version nil, since it buys the ability to fix up
the journal files after 'you have hand-compiled some source
files. Default value: nil.

: increment-version
Takes t or nil. If t, create a new major version number.
Default value: t.

:update-directory
Takes t, nil, or keyword. If t, update the journal files. If
keyword, update the journal files and add a designator of
keyword for the newly created version. Furthermore, if
keyword is :released, then declare the status of the
system to be released. Default value: t.

:initial-status Takes keyword. Declare the initial status of the system to
be keyword. Default value: :experimental.

: query Takes t, nil, : confirm, or :no-confirm. If t, ask for
approval of each and every operation. If nil or
:no-confirm, don't ask about anything. If :confirm, list
all the operations and then ask for confirmation. Default
value: : confirm.

:silent Takes t or nil. If t, perform all operations without
printing anything. If :query is non-nil, :silent t is
overridden. Default value: nil.

180

Program Development Utilities August 1986

: no-warn Takes t or nil. If t, don't bother to print a redefinition
warning when a function is redefined. Default value: nil.

: batch Takes t, nil, or pathname. Simulate
:query :confirm :silent t :no-warn t and collect the
compiler warnings and write them to system-name.cwarns.
If pathname, do the same as t but write compiler warnings
to pathname. Default value: nil.

:reload Takes t or nil. If t, reload all the product (. bin) files, even
if the version in the environment is the most recent
version. Default value: nil.

:no-Ioad Takes t or nil. If t, do not load .bin files unless they are
required by a specific dependency in the defsystem.
Default value: nil.

: never-load Takes t or nil. If t, never load any .bin files, no matter
what dependencies specify. Default value: nil.

: include-components
Takes t or nil. If t, perform the requested system
operation on component systems. Default value: t.

: load-patches Takes t or nil. After the system has been loaded,
implicitly perform a load-patches operation. Default
value: t.

21.1 Loading System Definitions That Use Logical Pathnames

Once you have written a large program and defined it as a system, you want
load-system (or the Command Processor commands Load System and Compile
System) to compile and load the system and any patches. Assuming that your
system definition uses logical pathnames, you must write these three files for
load-system to be able to find and load your system:

• System file, named sys:site;system-name.system file Note: This is useful for
systems that are meant to be generally available to others at your site.
Experimental or private systems need not be defined in a separate system
file. You can compile the defsystem in an editor buffer or put a form that
loads the system declaration in your initialization file.

• Translations file, named sys:site;logical-host. translations file. This is only
necessary in the special case in which a logical host has been specifically
defined for this system. .

• System declaration file, commonly named

181

August 1986 Maintaining Large Programs

logical-host:logical-directory;system-name.lisp or
logical-host: logical-directory; sysdcl.lisp

The sys:site; logical directory is the repository for all systems, those you define
and those distributed by Symbolics. When a world load is transported to a new
site, the translation file for each logical host that is defined in the current world
is reloaded from the new site's sys:site; directory. In this way, all logical
pathnames are mapped into the set of physical pathnames defined at the new site.

21.1.1 Sys:slte;System-name.System File

load-system looks in the sys:site; logical directory for the system-name. system file
(the system file) when given a system name that is undefined in your
environment. For example, if you type (load-system I graphi c-l i sp) it looks for
the file sys:site;graphic-lisp.system.

The system file contains the form:

(sct:set-system-source file "system-name"
"logical-host:logical-directory; system-name")

sct:set-system-source-file system-name source-file Function
sct:set-system-source-file specifies source-file, the pathname of the source
file that contains the definition of a system called system-name.

sct:set-system-source-file can be used in one of two ways. The first is
recommended.

• When your system is defined with logical pathnames, include the
sct:set-system-source-file form in the file sys: site;system-name. system.
load-system loads this file the first time you try to load your system.
For example, when you type (load-system 'graphic-lisp), load-system
loads the file sys: site; graphic-lisp. system, whose contents are as
follows.

;;; -*- Mode: LISP; Package: USER -*-

(fs:make-logical-pathname-host "graphic-lisp")
(sct:set-system-source-file "graphic-lisp"

"graphic-lisp: graphic-lisp; glisp-sys")

Note that the sct:set-system-source-file form must be the second
(and last) form in the file, because the logical pathname of the
system declaration file (" graphic-lisp: graphic-lisp; glisp-sys") depends
on the previous definition of the logical host (" graphic-lisp") in the
first form. It is common for the name of the logical host to be the
same as the name of the system, as in this example.

182

Program Development Utilities August 1986

• Alternatively, when your system is defined with physical pathnames,
you can have your init file evaluate the sct:set-system-source-file
form (or type the form at a Lisp Listener) prior to calling
load-system or using one of the relevant Command Processor
commands. source-file is loaded the first time you compile or load
your system.

If a logical host is needed, use the additional form:

(fs:make-Iogical-pathname-host "logical-host")

For example, for the system graphic-lisp the file sys: site; graphic-lisp. system
contains the following:

;;; -*- Mode: LISP; Package: USER -*-

(fs:make-logical-pathname-host "graphic-lisp")
(sct:set-system-source-file "graphic-lisp"

"graphic-lisp: graphic-lisp; glisp-sys")

The first form, a call to fs:make-Iogical-pathname-host, defines a logical host.
Commonly, the "logical-host" is the same name as "system-name". Make sure that
the fs:make-Iogical-pathname-host form is the first form in the file, as the
second form, (sct:set-system-source-file ...), depends on having the logical host
defined already. fs:make-Iogical-pathname-host also loads the translations file,
which defines the translation from logical pathnames to physical pathnames.

The second form in the system-name. file is a call to sct:set-system-source-file,
which specifies the logical pathname of the system declaration file. load-system,
after referring to the translation definitions, loads the system declaration file.
Note: si:set-system-source-file is provided for compatibility with Release 6.1.

21.1.2 Sys:site;Loglcal-host.Translations File

The translations file defines the translation from logical directories on the logical
host to physical directories on a physical host. These definitions determine how
logical pathnames are translated to physical pathnames. The file contains only
one form, a call to fs:set-Iogical-pathname-host, and looks like this.

(fs: set-l ogi cal-pathname-host " logical-host"
: physi cal-host " host-name"
: transl at ions '((" logical-directory;" "physical-directory"»

For example, for the system graphic-lisp the file graphic-lisp. translations contains
the following:

183

August 1986 Maintaining Large Programs

;;; -*- Hade: LISP; Package: USER -*-

(fs:set-logical-pathname-host "graphic-lisp"
:physical-host "waikato"
:translations '«"graphic-lisp;" ">sys>graphic-lisp>"»)

To specify a hierarchy of directories instead of a one-to-one translation, you would
change the translations list as follows:

:translations '«"graphic-lisp;**" ">sys>graphic-lisp>**"»)

** means include all subdirectories of "graphic-lisp;".

The translations list consists of two-element lists of strings that represent the
logical directories specified in the system declaration and their associated physical
directories. This list is the only place where your system should refer to a
physical host or directory. In simple applications, where all system files are stored
in one directory, it is common for the logical directory name (for example,
"graphic-lisp;") to be the same as the system name ("graphic-lisp").

This file is loaded in the file-system package by the system file, in which the
logical host is defined by the function fs:make-Iogical-pathname-host.

21.1.3 System Declaration File

This system declaration file contains the defsystem form defining your system
and, if you need one, the defpackage form, which must precede the system
declaration. Also this file should contain any user-defined defsystem
transformations, which must precede the actual system declaration.

Currently, a system declaration file can contain no more than one defsystem form,
although any number of defsubsystem can appear in the file. This is the case
because the system declaration can be potentially reloaded for each defsystem in
the file, causing SCT to become confused.

A sample system declaration file might look like the following:

;;; -*- Hade: LISP; Package: CL-USER; -*-
iii Fortran package specifications
(defpackage fortran-global

(: use)
(:nicknames fortran for)
(:prefix-name "FORTRAN")
(:colon-mode :external)
(:size 2(0»

184

Program Development Utilities

(defpackage fortran-system
(: use)
(:nicknames for-sys)
(:prefix-name "FOR-SYS")
(:colon-mode :external)
(: si ze 200»

(defpackage fortran-compiler
(:use fortran-system fortran-global symbolics-common-lisp)
(:nicknames for-compiler)
(:prefix-name "FOR-COMPILER")
(:colon-mode :external)
(:size 1500»

(defpackage fortran-user
(:use fortran-global symbolics-common-lisp)
(:nicknames for-user)
(:prefix-name "FOR-USER")
(:relative-names-for-me (fortran-global user»
(:size 2000»

;;; System definition using SCT
(defsystem fortran

(:default-pathname "sys: fortran;"
:journal-directory "sys: fortran;"
:patchable t)

(:module macros ("macros") (:root-module nil»
(:module language-tools (language-tools) (:type :system»
(:module front-end (fortran-front-end) (:type :system»
(:module back-end (fortran-back-end) (:type :system»
(:serial macros language-tools front-end back-end»

;;; Component system definition
(defsubsystem language-tools

(:default-pathname "sys: language-tools;")
(:serial ... »

;;; Subsystem definition (non-patchable)
(defsubsystem fortran-front-end

(:default-pathname "sys: fortran;")
(:serial "tokenizer" "grammar" ... »

August 1986

August 1986

jjj Subsystem definition (non-patchable)
(defsubsystem fortran-back-end

(:default-pathname "sys: fortranj")
(:serial "code-generator" "optimizer" ... »

185

Maintaining Large Programs

Note the attribute list. The system declaration file is always a Lisp-mode file and
is compiled into the cl-user package.

The name of the system declaration file does not require an exact format, since
you explicitly specify the pathname in the sct:set-system-source-file form in the
system file. Typically, though, the logical pathname is given as
logical-host:logical-directory;system-name. The source file should have a canonical
file type of :lisp. When you call load-system the sct:set-system-source-file form
loads the system declaration file, specifically the .newest version.

21.2 Loading System Definitions That Use Physical Pathnames

To load system definitions that use physical pathnames, specify the name of the
system and the pathname of the system declaration source file in a
sct:set-system-source-file form. Have your init file evaluate the form (or type the
form at a Dynamic Lisp Listener) prior to calling load-system.

Note: You are urged to use logical pathnames to ensure that your system is site
independent. A logical pathname has a single translation to a physical pathname.
To move your program to another host machine (one perhaps with a different
operating system) entails changing only the translation rather than editing all
your files to refer to the new file names.

186

Program Development Utilities August 1986

187

August 1986 Maintaining Large Programs

22. Other Operations on Systems

Besides being loaded and compiled, systems can be edited, hardcopied, reap
protected, released, and distributed. You can also set the system status and
designate a system version. This section describes those operations.

Distribute Systems can be invoked only by a Command Processor command.
Setting the system status and version can only be invoked by functions. The other
operations can be invoked by either functions or Command Processor commands.

One operation, si:convert-system-directory, is needed only for conversion of pre
Genera 7.0 journal files into Genera 7.0 form. See the function
si:convert-system-directory.

22.1 Editing, Hardcopying, Reap-Protecting, and Releasing Systems

sct:edit-system system-name &key (query :confirm) (silent nil) Function
(batch nil) (include-components t) (version
: newest) &allow-other-keys

Edit all the source files of the system called system-name according to the
specified keyword options. This can also be accomplished with the
Command Processor command Edit System or the Zmacs command (n-X)

Edit System Files.

These are the keyword options to set: edit-system.

: query

: silent

Takes t, nil, : confirm, or : no-confirm. If t, ask for
approval of each suboperation, such as whether to load the
system declaration file. If nil or : no-confirm, don't ask
about anything. If :confirm, list all the suboperations and
then ask for confirmation. Default-value: : confirm.

Takes t or nil. If t, perform all suboperations without
printing anything. If :query is non-nil, :silent t is
overridden. Default value: nil.

: include-components
Takes t or nil. If t, perform the requested system
operation on component systems. Default value: t.

sct:hardcopy-system system-name &key (query :confirm) (silent
nil) (batch nil) (include-components t)

(version :newest) &allow-other-keys

Function

188

Program Development Utilities August 1986

Hardcopies the source files of the system specified by system-name
according to the specified keyword options.

These are the keyword options to sct:hardcopy-system.

: query

: silent

Takes t, nil, : confirm, or :no-confirm. If t, ask for
approval of each suboperation. If nil or : no-confirm,
don't ask about anything. If :confirm, list all the
operations and then ask for confirmation. Default-value:
: confirm.

Takes t or nil. If t, perform all operations without
printing anything. If :query is non-nil, :silent t is
overridden. Default value: nil.

:include-components
Takes t or nil. If t, perform the requested system
operation on component systems. Default value: t.

sct:reap-protect-system system-name &key (query :confirm) (silent Function
nil) (batch nil) (reap-protect t)
(include-components t) (version :latest)
& allow-ather-keys

Reap-protects all the files in the system specified by system-name according
to the specified options.

These are the keyword options to sct:reap-protect-system.

: query

: silent

: reap-protect

Takes t, nil, : confirm, or : no-confirm. If t, ask for
approval of each suboperation. If nil or :no-confirm,
don't ask about anything. If :confirm, list all the
operations and then ask for confirmation. Default-value:
: confirm.

Takes t or nil. If t, perform all operations without
printing anything. If :query is non-nil, :silent t is
overridden. Default value: nil.

Takes t or nil. If t, reap-protect the files. If nil un-reap
protect them. Default value: t.

:include-components
Takes t or nil. If t, perform the requested system
operation on component systems. Default value: t.

sct:set-system-status system new-status &optional major-version Function
only-update-on-disk

Change the status of the specified system to new-status. Valid values of

189

August 1986 Maintaining Large Programs

new-status are: : experimental, :released, :frozen, :obsolete, and :broken.
Note that declaring a system to have a status of :released is not the same
as designating a system as being the :released version. When
only-update-on-disk is t, this does not update in-core datastructures if the
system has not been loaded.

sct:designate-system-version system designator major-version Function
&optional only-update-on-disk

Add a version designator of designator to the specified major-version of the
system. For example, if you want to claim that version 29 of the Tools
system is to be called the in-house version:

(sct:designate-system-version 'Tools :in-house 29.)

When only-update-on-disk is t, this does not update in-core datastructures if
the system has not been loaded.

sct:release-system system major-version &optional Function
only-update-on-disk

Puts the :released keyword in the system's patch directory, inserts a
:released designation in the system directory. Invoked by the function
sct:release-system; no corresponding Command Processor command.
Releases the system specified by system-name with the specified
major-version number. When only-update-on-disk is t, this does not update
in-core datastructures if the system has not been loaded.

Note: This operation is equivalent to a sct:set-system-status operation
followed by a sct:designate-system-version.

Distribute Systems Command

Distribute Systems systems keywords

Writes systems to tape for distribution. Expects the input to be one or more
systems. The default is the first system loaded into the current world. After you
confirm the command, the Distribute Systems command lists the systems to write
to tape, and asks if you want to perform the operation. Your choices are Y, N, Q,
or S. Type Y for Yes, N for No, Q for Quit, or S for Selective. If you choose
Selective, each file is listed, and you are asked if you want to load that particular
file. You can select as many or as few files as you want. Mter you enter this
information, you are prompted for the name of a tape spec.

systems is a list consisting of items separated by commas, each item being either
(1) a system name or (2) a system name followed by a space and a version
number.

keywords :File Types :Include Component Systems :Output Destination
:Source Category, :US8 Disk, :,Tcrsi()p

190

Program Development Utilities August 1986

:File Types {Sources, Binaries, Both, Patches-Only} What file types to
distribute. The default is sources.

:Include Component Systems
Whether to include the component systems of the systems to be
distributed. The default is Yes.

:Output Destination
{Buffer, File, Printer, Stream} Redirects the output of this
command to specified streams.

:Source Category

:Use Disk

:Version

{Basic, Optional, Restricted} Indicates which source category or
categories to write to tape for distribution. Basic is the default.

{Yes, No} Reads the input from disk (test mode), rather than
from tape. Test mode writes a special file which is an image of
what would be written to tape. Use this when you are
preparing a distribution and want to see what files would be
written to tape. The default is No.

{Latest, Newest, Released} Indicates which version of the
system to write to tape for distribution. The type of input
expected is: Latest, Newest, or Released. Released is the
default.

191

August 1986 Maintaining Large Programs

23. Directories Associated with a System

Each system is associated with a set of directories and files. This section explains
the directory structure associated with a system called zoo. Under a single logical
directory, zoo; reside these files:

1. System declaration file (contains the defsystem form for this system)

2. Multiple versions of source and product files that co~prise the system

3. A journal directory, by default called patch;

The purpose of (1) and (2) should be clear. The journal directory (3), contains a
complicated subhierarchy of files. In particular, it contains the system-directory
file and all of the journal subdirectories.

journal-directory (200;patch;)
I
I

system-directory-file 200-1; 200-2; 200-n; (journal subdirectories)

The system-directory file is a registry of the location of the component-directory
file for a given version of a system for a given machine. Here is an example of
the system-directory file for the ip-tcp system.

192

Program Development Utilities

" , -*- Mode: LISP; Base: 10 -*-
I"~ Written 7/05/86 23:01:41 by Zippy,
I"~ while running on Brown Creeper from FEP1:>349-1-No-Doc.load.1
J J J

«"IP-TCP" :LATEST 51 :SYSTEM-349 51 :SYSTEM-347 49
:RELEASE-6-G 29 :RELEASE-6-129 :RELEASE-6-0 29
:RELEASE-5-2 23 :RELEASE-5-1 12)

;; System versions:
(51
(: 136001

(:COMPONENT-DIRECTORY
("SYS:IP-TCP;PATCH;IP-TCP-51.COMPONENT-DIR" :NEWEST NIL))))

(50
(:136001

(:COMPONENT-DIRECTORY
("SYS:IP-TCP;PATCH;IP-TCP-50.COMPONENT-DIR" :NEWEST NIL))))

(49
(: 136001

(:COMPONENT-DIRECTORY
("SYS:IP-TCP;PATCH;IP-TCP-49.COMPONENT-DIR" :NEWEST NIL))))

(23
(: 136001

(:COMPONENT-DIRECTORY
("SYS:IP-TCP;PATCH;IP-TCP-23.COMPONENT-DIR" :NEWEST NIL))))

(12
(: 136001

(:COMPONENT-DIRECTORY
("SYS:IP-TCP;PATCH;IP-TCP-12.COMPONENT-DIR" :NEWEST NIL)))))

August 1986

Each journal subdirectory is associated with a particular version of a system. Here
is a diagram of the structure of a journal subdirectory for version 29 of a system.

journal-subdirectory-29
1

1

component-directory-file patch-directory-file patch-1 patch-n

193

August 1986 Maintaining Large Programs

23.1 Component Directory File

The component directory file is not an actual directory in the file system, but is
rather a registry of the source and product version numbers for a major version of
a system. Whenever you perform an operation on a system, that operation uses
this file to determine the versions of the system files to operate on.

Here is an example of the contents of a component-directory-file.

J J J -*- Mode: LISP; Base: 19 -*-
JJJ Written 7/95/86 23:91:37 by ZipPYJ

while running on Brown Creeper from FEP1:>System-349-1.load.1
J J J
«"IP-TCP" 51)
;; Files for version 51:
(: 136991

(:DEFSYSTEM
("SYS:IP-TCP;SYSTEM" 84 NIL))

(:INPUTS-AND-OUTPUTS
("SYS:IP-TCP;TCP-STRUCTURE.TEXT" 19 NIL)
("SYS:IP-TCP;TCP-DEFS" 141 92)
("SYS:IP-TCP;TCP-ERROR" 34 66)
("SYS:IP-TCP;TCP" 265 194)
("SYS:IP-TCP;TCP-USER" 119 84)
("SYS:IP-TCP;TCP-DEBUG" 57 77)
("SYS:IP-TCP;DISTRIBUTION" 66 47)

("SYS:IP-TCP;EGP" 83 58))))

When you compile a system a new component directory file is created. The major
benefit of this detailed record keeping is that your site can support multiple
versions of the same system. General users and system developers can load
specific versions of systems and specific versions of system files, even when newer
and possibly incompatible versions have been made. Some examples:

• System developers can work on the latest versions of systems, editing and
recompiling some files, without forcing the average user to contend with new
and experimental changes to the system.

• General users, on the other hand, can load the stable, released versions.

• Symbolics can more easily distribute versions of the system other than the
newest version.

• You can use old versions of systems after recompiled versions have been
made for the latest system software.

194

Program Development Utilities August 1986

In addition, you can load a system in several different ways:

• by version number
• by version name
• by designation as released, latest, or newest

To load a specific system, use the :version option for load-system.

The released version is the fully debugged version intended for general use. To
designate a system as the released version use either sct:release-system or
compile-system with the :update-directory option to make the change in the
component directory file.

The latest version is the most recently compiled version of the system. The
component directory file is automatically updated whenever you compile or
recompile the system; compile-system assigns the :latest keyword to this system.

The newest version of a system consists of the most recently compiled version of
each file of a system. The newest version differs from the latest version when
individual files have been compiled by hand. The newest version of a system has
no version number. Note that you cannot define patches for the newest system.

23.2 Contents of the Patch Directory Files

Two patch-directory files are created for each patch (one when the patch is begun
and another when the patch is finished). The patch-directory file is not a
directory; it is a registry of minimum information about a patch including the
number of the patch, a comment, the author, and a timestamp. A new patch
directory file is created automatically when you recompile a system.

Here is an example of the contents of a patch-directory file.

195

August 1986 Maintaining Large Programs

" , -*- Hade: Lisp; Package: ZL-User; Base: 19.; Patch-File: T -*
'" Patch directory for IP-TCP version 51
, , , Written 7/17/86 12:25:42 by Hornig,

" , while running on Winter from FEP1:>349-19-sc-etc.load.1

" ,
(:EXPERIHENTAL
((9 "IP-TCP version 51 loaded." "SWH" 2729958587)

(1
"Hake TFTP work again.

Function TCP::IP-STORE-16: Needs ONCE-ONLY.
Function TCP::IP-STORE-32: ditto
Function (OEFUN-IN-FLAVOR TCP::TFTP-FLUSH-BUFFER
TCP: :TFTP-OUTPUT-STREAH):
Recompile caller."

"Hornig" 2730718516)
(2

"Function (DEFUN-IN-FLAVOR TCP::IP-RETRANSHIT-PACKET
TCP::IP-PROTOCOL):
Don't ever forward or redirect broad~ast packets."

"Hornig" 2730990265)
))

The patch files themselves are found in both source and product form, with one
source and one product associated with each patch.

Note: In order to convert pre-Genera 7.0 journal files into Genera 7.0 form: See
the function si:convert-journals in Converting to Genera 7.0.

196

Program Development Utilities August 1986

197

August 1986 Maintaining Large Programs

24. Patch Facility

Software development is usually a process of incremental changes to many large
programs. Many developers can be involved, and the changes can be distributed to
any number of users, including the same developers. (Note: the term large
program refers to one defined by defsystem. Only these programs can make use
of the patch facility.)

Briefly, developers fix or improve existing functional and other definitions (or
write new ones), and then, after thorough testing, decide to issue their changes to
the users at their site. They effect release in two ways: (1) they write new
versions of the source files containing the edited or new definitions, and (2) they
create patch files, which contain only the new or changed definitions. Every time
a patch is created (written to disk), the patch facility automatically records the
event in a sort of "patch registry", noting the number of the patch, the system
being patched, and a brief summary of the patch, as described by the developer.
Zmacs, the Symbolics editor, provides special tools that make this process
relatively easy for the developer.

The patch facility creates a patch file. Saving your buffer after you make a change
creates a new version of your source file. When the system is recompiled, your
source file, and not the patch file, will be used to construct the new system. The
important point is that the patch files - and not the newly written source files -
allow the changes to be put into widespread use immediately. The patch facility
allows users to obtain all the incremental changes to a system simply by loading
its associated patch files.

Basically what occurs during the loading of patches is this: the current state of
the patch registry is compared to the registry as last loaded by the user. If
patches have been written since that time, just the new patches are loaded, and
their summary descriptions are displayed. At that point, the state of the given
system in the user's machine is presumably the same as in the developer's
machine when the patch was finished.

Genera provides a number of convenient tools and several interfaces for loading
patches. For example, users can load patches by calling one of several Lisp
functions or alternatively using Command Processor commands. Users also have
the choice of loading patches to virtual memory (which means they disappear when
the machine is booted) or of saving the patches to disk. (Of course, new patches
can be made later, and then these will have to be loaded to get the very latest
version of a system.) In the case where users load a particular system whenever
they want to use it, the system-loading facility automatically loads all the patches
for that system.

Inevitably, a developer or system maintainer must stop accumulating patches and

198

Program Development Utilities August 1986

recompile all the source files in a large program, for example, when a system is
changed in a far-reaching way that cannot be accomplished with a patch. Only at
this point do the source files become important to system maintenance and
distribution. After a complete recompilation, the old patch files are useless and
should not be loaded.

To keep track of all the changing number of files in a large program, the patch
facility labels each version of a system with a two-part number. The two parts
are called the major version number and the minor version number. The minor
version number is increased every time a new patch is made; the patch is
identified by the major and minor version number together. The major version
number is increased when the program is completely recompiled, and at that time
the minor version number is reset to zero. A complete system version is identified
by the major version number, followed by a dot, followed by the minor version
number.

The following typical scenario should clarify this scheme.

1. A new system is created; its initial version number is 1.0.

2. Then a patch file is created; the version of the program that results from
loading the first patch file into version 1.0 is called 1.1.

3. Then another patch file might be created, and loading that patch file into
system 1.1 creates version 1.2.

4. Then the entire system is recompiled, creating version 2.0 from scratch.

5. Now the two patch files are irrelevant, because they fix old software; the
changes that they reflect are integrated into system 2.0.

Note that the second patch file should only be loaded into system 1.1 in order to
create system 1.2; you should not load it into 1.0 or any other system besides 1.1.
lt is important that all the patch files be loaded in the proper order, for two
reasons.

• First, it is very useful that any system numbered 1.1 be exactly the same
software as any other system numbered 1.1, so that if somebody reports a
bug in version 1.1, it is clear just which software is being cited .

• Secondly, one patch might patch another patch; loading them in some other
order might have the wrong effect.

In addition to enabling users to have the most up-to-date programs available, the
patch facility performs another important function. Via the patch registry, it
allows a site to support multiple versions of the same system. Thus, general users
can load a stable, debugged version, while system developers can run the latest
version of the same system, editing and recompiling files, without forcing the

199

August 1986 Maintaining Large Programs

general user to deal with experimental changes. The detailed record keeping that
this capability requires is maintained in a hierarchy of files that is created
automatically and updated whenever a system is compiled.

The patch registry also keeps track of all the individual patch files that exist,
remembering which version each one creates. A separate numbered sequence of
patch files exists for each major version of each system, for example,
Imfs-37-15.lisp, lmfs-37-16.1isp, and so forth. All patches for each major version
are stored in the journal subdirectory associated with that version of the system.
See the section "Directories Associated with a System", page 191.

In addition to the patch files themselves, the patch-directory file keeps track of
what minor versions exist for a major version. For example, Imfs-37.patch-dir
contains a listing of the patches made for major version 37, their author, a
timestamp, and a comment on why each patch was made.

In order to use the patch facility, you must define your system with defsystem
and declare it as patchable with the :patchable option. (:patchable is the default.)
When you load your system, it is added to the list of all systems present in the
world. Whenever you compile your patchable system, its major version in the file
system is incremented; thus a major version is associated with a set of compiled
code files.

The patch facility keeps track of which version of each patchable system is
present, and where the data about that system reside in the file system. This
information can be used to update the Genera world automatically to the latest
versions of all the systems it contains. Once a system is present, you can ask for
the latest patches to be loaded, ask which patches are already loaded, and add new
patches. You can also load patches or whole new systems and then save the entire
Genera environment away in a FEP file. See the function
zl:load-and-save-patches, page 212.

24.1 Types of Patch Files

The patch facility maintains several different types of files in the journal
subdirectory associated with a major version of your system:

• The patch directory files (two versions for each patch)

• Individual patch files (both source and product versions)

The patch directory file constitutes a sort of "patch registry", recording the
number of the patch, the name and version of the system being patched, and a
brief description of the patch. One version of the patch directory file is created
when starting a patch, and another is created when finishing a patch. (Of course,
old versions can be deleted and expunged.) See the section "Component Directory
File", page 193.

200

Program Development Utilities August 1986

24.1.1 Patch Directory File

The patch directory file in the journal subdirectory keeps a listing of the patches
(minor versions) that exist for a major version. Each major version of the system
has its own patch directory file, which lists the minor version number, any
comments about the patch, and the patch author. A new patch directory file is
created automatically when you recompile a system.

See the section "Directories Associated with a System", page 191. See the section
"Component Directory File", page 193. See the section "Contents of the Patch
Directory Files", page 194.

24.1.2 Individual Patch Files

Each minor version of the system has a patch source file and a corresponding
compiled code file. The individual patch files for a major system version reside in
the subdirectory for that major version. (The patch directory file also resides in
this subdirectory.) Each patch file is uniquely identified by the major and minor
version numbers of the system. For example, Imfs-37 -3.lisp would be the name of
the patch source file for major version #37 and minor version #3 of lmfs.

24.1.3 Organization of Patch Flies

The component directory file, the patch directory file, and the individual patch
files are created and maintained automatically, but you will need to know where
the patch facility stores these patch files and how to find them on your host.

The patch facility knows which directories to associate with your system by
looking at how you specified the :patchable option and the :default-pathname
option in your system declaration. For example, the following defsystem
declaration will cause the patches to be stored in the logical directory "george:
patch;" rather than in the directory that holds the other files of the system, the
pathname default.

:default-pathname "george: george;"
:patchable t
:journal-directory "george: patch;"

When you do not supply the journal-directory then the patches are stored in the
directory specified by :default-pathname; plus patch;. In the following example
this is the logical directory "george: george; patch;".

:default-pathname "george: george;"
:patchable t

The source and compiled code patch files for a major system version are kept in
the component directory, along with the component directory file. The patch
directory file for a major version resides in this same directory.

201

August 1986 Maintaining Large Programs

24.1.4 Names of Patch Flies

The patch facility chooses names for your patch files based on your system
definition and on the host.

The host determines the file type and the number of characters in the file name.
For example, VMS, UNIX 4.1, and ITS use a computer-generated contraction of
the file name. A system directory file name like charlie.system-dir on LMFS
would be CHARLI (SDIR) on ITS. Similarly, a patch directory file name like
charlie-1.patch-dir on LMFS would be CHAOOI (PDIR) on ITS.

The following tables show the physical file types of the system directory file, the
patch directory file, and the component directory file for various hosts.

Host

TOPS-20
UNIX 4.1
UNIX 4.2
VMS
ITS
LMFS
Multics

Host

TOPS-20
UNIX 4.1
UNIX 4.2
VMS
ITS
LMFS
Multics

Host

TOPS-20
UNIX 4.1
UNIX 4.2
VMS
ITS
LMFS
Multics

File type of the system directory file

SYSTEM-DIR
sd
system-dir (also sd for compatibility)
SPD
(SDIR)
system-dh
system-dir

File type of the patch directory file

PATCH-DIR
pd
patch-dir (also pd for compatibility)
VPD
(PDIR)
patch-dir
patch-dir

File type of the component directory file

COMPONENT-DIR
cd
component-dir (also cd for compatibility)
CPD
(CDIR)
component-dir
component-dir

The format of patch file names varies with the type of file.

202

Program Development Utilities August 1986

• The format of the system directory file is some name chosen by the patch
facility followed by the appropriate file type and file version number. For
example, the system directory file on LMFS for the george system might be:

q:>sys>george>patch>george.system-dir.1

• The format of the patch directory file name is some name followed by the
major version number and the appropriate file type and file version number.
For example, the patch directory file on LMFS for major version #38 of
george might be:

q:>sys>george>patch>george-38>george-38.patch-dir.44

Note that the file resides in a subdirectory of the same name.

• The format of the individual patch file is some name chosen by the patch
facility followed by the major version number, the minor version number,
and the appropriate file type and file version number. For example, source
patch file #1 for major version #38 of george might be:

q:>sys>george>patch>george-38>george-38-1.1isp

Because the translation rules for generating patch file pathnames are fairly
complicated, they are not given here. Instead use the sct:patch-system-pathname
function to determine the' names of your patch files.

sct:patch-system-pathname system type &rest args Function
Given a system name and the type (:component-directory,
:system-directory, :patch-directory, :patch-file) and additional args
required by that type, return the pathname for the file in question.
Additional args are, in order, system-major-version, system-minor-version,
and file-canonical-type. :system-directory requires none of these,
:component-directoryand :patch-directory require one, and :patch-file all
three.

Returns the logical pathname of a patch file. system is the name of the
system. type is :patch-file, :system-directory, : component-directory,
:patch-directory, or :patch-file. Specify also any additional args required
by the type.

: component-directory
Returns the logical pathname of the component directory file for
the system specified by a major version number, for example:

(sct:patch-system-pathname "LMFS"
:component-directory 37)

The form returns #P"SYS: LMFS; PATCH;
LMFS-37 .COMPONENT-DIR.NEWEST".

203

August 1986 Maintaining Large Programs

:system-directory
Returns the logical pathname of the system directory file for
the specified system, for example:

(set:pateh-system-pathname "LMFS"
:system-direetory)

The form returns #P"SYS: LMFS; PATCH; LMFS.SYSTEM
DIR.NEWEST" .

:patch-directory
Supplied with a major-version-number argument, it returns the
logical pathname of that patch directory file for the given
system, for example:

(set:pateh-system-pathname "LMFS"
:pateh-direetory 51.)

The form returns #P"SYS: LMFS; PATCH; LMFS-51.PATCH
DIR.NEWEST" .

:patch-file Supplied with the major-version-number, minor-version-number,
and canonical-type arguments, it returns the logical pathname of
the patch file.

(set:pateh-system-pathname "LMFS"
:pateh-file 51. 2.
: 1 i sp)

The form returns #P"SYS: LMFS; PATCH;
LMFS-51-2. LISP. NEWEST " .

To find the physical pathname translation of any of these, send the
returned value the :translated-pathname message. For example, send the
:translated-pathname message to the returned value of (set: pateh-system
pathname "LMFS" :system-direetory). The form would return
#P" q:>sys>lmfs>patch>lmfs. system-dir" >.

24.2 Making Patches

During a typical maintenance session you might make several changes to existing
definitions or write new ones. Rather than recompiling the entire system every
time you change a source file, you can copy only the new or revised code into a
patch file and write the file ("finish" the patch). Whenever you finish a patch, the
patch facility automatically compiles the file and records the event in a "patch
registry" for the system, noting the number of the patch, the system being patch,

204

Program Development Utilities August 1986

and a brief user-supplied description. As soon as a user loads the patch file (after
the system is loaded), the state of the given system in his or her machine is
presumably the same as in the developer's machine when the patch was finished.

The patch facility allows you to have several patches in progress at once. Thus
you can patch several different systems or several different minor versions of the
same system during one work session. The patch facility manages this potentially
dangerous situation in the following way. Every time you start a patch, a number
and a place in the patch registry is reserved for the patch in production. The
patch is marked in-progress. When the patch is finished, the entry is completed
and the in-progress mark removed. If you decide to abort the patch, the registry
entry is automatically deleted.

The ability to have more than one patch in-progress to more than one system
makes it imperative that you keep track of the state of your various patches. If a
patch is left unfinished (unwritten), the load-patches function will load neither
the in-progress patch or any subsequent finished patches.

The patch facility considers patches to be active or inactive and in one of the
following states: initial, in-progress, aborted, or finished. Show Patches (M-X)
displays the state of all patches started in this work session. If more than one
patch is in progress, one of them is known as the current patch. The commands
that add patches, like Add Patch (M-X), add only to the patch considered by the
patch facility to be the current patch. The command Select Patch (M-X) displays a
menu of active patches and allows you to make another patch the current one.

In general you should adhere to the following steps in making a patch. It is
assumed that your system is patchable; that is, the :patchable option appears in
the system declaration.

1. You must load (via load-system) the major version of the system that you
want to patch.

2. Read in the source files you want to edit into a Zmacs buffer. Make all
changes and test them thoroughly. Write the source file.

3. Use the appropriate Zmacs commands to make your patch. Begin the patch,
using Start Patch (M-X).

4. Add the changed code to the patch buffer by using Add Patch (M-X), Add
Patch Changed Definitions of Buffer (M-X), or Add Patch Changed Definitions
(M-X).

5. Finish the patch, using Finish Patch (M-X), or abort the patch, using Abort
Patch (M->O.

Commands provided for initiating a patch are Start Patch (M-X), Start Private
Patch (M-X), and Add Patch (M-X).

205

August 1986 Maintaining Large Programs

24.2.1 Start Patch (n-H)

Starts a new patch, prompting you for the name of the system to be patched; it
must be a system currently loaded. It assigns a new minor version number for
that particular system by writing a new version of the patch directory file with an
entry for that minor version number. The patch is marked as in-progress. It
starts constructing the patch file in an editor buffer, but does not select the
buffer.

While you are making your patch file, the minor version number that has been
allocated for you is reserved so that nobody else can use it. Thus, if two people
are patching the same system at the same time, they cannot be assigned the same
minor version number.

The command does not actually move any definitions into the patch file. You
must explicitly do so with Add Patch Changed Definitions of Buffer (n-H), Add
Patch Changed Definitions (n-H), or Add Patch (n-H).

The patch facility permits you to start another patch before finishing the current
one. However, if your new patch is to the same system, the patch facility warns
you that you already have a patch in progress and allows you to take one of four
actions:

• Abort the in-progress patch and start a new patch.
• Finish the in-progress patch and start a new patch .
• Proceed with the second patch (initial patch) for this system and leave the

in-progress patch intact.
• Use the existing buffer and do not start a new patch.

24.2.2 Start Private Patch (n-H)

Although similar to Start Patch (n-H), Start Private Patch (n-H) does not have any
relationship to systems, major and minor version numbers, and official patch
directories. Rather it allows you to make a private patch file that you can load,
test, and share with other users before you install a numbered patch that is
automatically available to all users.

Prompts for a patch note to be saved with the patch. Instead of prompting for a
system name, the command prompts for a file name. Start Private Patch does not
actually move any definitions into the patch file. Use Add Patch Changed
Definitions of Buffer (n-H), Add Patch Changed Definitions (n-H), or Add Patch
(n-H) to insert the code. Finishing the patch (using Finish Patch (n-H» writes it
out to the specified file.

Note: Use the Load File command or Load File (n-H) to load a private patch; the
Load Patches command and the load-patches function do not load private patches.

206

Program Development Utilities August 1986

24.2.3 Add Patch (M-H)

Starts a new patch if none is underway, prompts you for a system name, and
inserts the region or current definition into the patch buffer. If a patch was in
progress, Add Patch (M-H) just adds the region or current definition to the current
patch file.

Warns you if your editor buffer conflicts with the system being patched. If you
mistakenly use Add Patch on code that does not work, select the buffer containing
the patch file and delete it. Then later you can use Add Patch (M-X) on the
corrected version. For each patch you add, it queries for a patch comment, which
it then inserts in the patch file. Just pressing END means "no comment".

Add Patch (M-X), Add Patch Changed Definitions (M-H), or Add Patch Changed
Definitions of Buffer (M-X) insert code into the patch file. If the patch is being
made to the system the current buffer's file came from, the commands proceed.

If there is a current patch, and it is not appropriate for the system that the
buffer's file came from, you see a menu showing all of the current patches, plus
an option to create a new patch appropriate for the buffer, plus an option to abort.

24.2.4 Add Patch Changed Definitions of Buffer (M-X)

Add Patch Changed Definitions of Buffer (M-X) selects each definition that was
changed in the buffer and asks you whether or not you want the definition
patched.

For each definition, you can respond as follows:

Response

y

N

P

Action

Patches the definition.

Skips the definition.

Patches the definition and any additional modified definitions in the
same buffer without asking any more questions.

A definition needs to be patched if it has been changed since it was last patched
or if it has not been patched since the file was read into the buffer.

For each patch you add, it queries for a patch comment, which it then inserts in
the patch file. Just pressing END means "no comment".

207

August 1986 Maintaining Large Programs

24.2.5 Add Patch Changed Definitions (M-X)

Add Patch Changed Definitions (M-X) selects a buffer in which definitions were
changed and asks whether or not you want to patch the changed definitions.
Answering N skips the buffer and proceeds to the next buffer, if any. Answering
Y selects each definition that has changed in that buffer and asks you whether or
not you want the definition patched. For each definition, you can respond as
follows:

Response

Y

N

P

Action

Patches the definition.

Skips the definition.

Patches the definition and any additional modified definitions in the
same buffer without asking any more questions; when done, it
proceeds to the next buffer.

If there are more buffers containing definitions to be patched, it asks questions
again when it gets to the next buffer.

A definition needs to be patched if it has been changed since it was last patched
or if it has not been patched since the file was read into the buffer.

For each patch you add, it queries for a patch comment, which it then inserts in
the patch file. Just pressing END means "no comment".

When making mUltiple patches during one work session use the Select Patch and
Show Patches commands to keep track of patches.

24.2.6 Select Patch (M-X)

When you are making more than one patch during a work session, Select Patch
(M-X) allows you to choose a different patch as the current patch from a menu of
active patches. The patching commands (like Add Patch and Add Patch Changed
Definitions of Buffer) insert definitions into the patch file that you have selected
as the current patch. To insert patch definitions into another buffer, use Select
Patch to choose that buffer as the current patch.

24.2.7 Show Patches (M-X)

Show Patches (M-X) displays the state of all patches started in this session.
Patches are either active or inactive and can be in one of the following states:
initial, in-progress, aborted, or finished. Inactive patches are in an aborted or
finished state. Active patches are in an initial or in-progress state. Initial means

208

Program Development Utilities August 1986

that the patch buffer has been initialized but as yet no definitions have been
added to the buffer. In-progress means that the patch buffer has been initialized
and definitions have been added to the buffer.

Show Patches groups the active and inactive patches and identifies the current
patch.

Mter making and testing all of your patches, use the Finish Patch command to
install the patch in the system.

24.2.8 Finish Patch (M-X)

Finish Patch (M-X) installs the patch file so that other users can load it. This
command saves and compiles the patch file (patches are always compiled). If the
compilation produces compiler warnings, the command asks whether or not you
want to finish the patch anyway. If you do, or if no warnings are produced, a new
version of the patch directory file is written. The in-progress mark is removed
from the entry in the patch registry.

The command allows you to edit the patch comments, which are written to the
patch directory file. (load-patches and zl:print-system-modifications print these
comments.) It then asks you whether you want to send mail about the patch. If
you say "yes", it opens a mail buffer and inserts initial contents, including the
name of the patch file and your patch comment.

Note: By default the Finish Patch command queries you about sending mail. You
can alter this behavior by changing the value of the variable
zwei:*send-mail-about-patch*. Its valid values are :ask, the default value, which
queries the user; t, which opens a Zmacs mail buffer without querying; and nil,
which takes no action regarding the sending of patch mail.

Sometimes you start making a patch file and for a variety of reasons do not finish
it - for example, you decide to abort the patch, you need to end your work session
at this machine, or your machine crashes. In each of these situations it is of the
utmost importance that you leave the patch directory file in a clean state; that is,
either go back and finish the patch (as soon as possible!) or deallocate the patch
number reserved to you. Failure to do so has unfortunate consequences: users at
your site will not be able to load patches.

In your machine has crashed, use Resume Patch (M-X) to reclaim access to the
patch number previously assigned to you. You can continue with the patch
(assuming you saved the source files just prior to the crash) or use Abort Patch
(M-X) to deallocate the patch number. Begin the patch again if you wish. If you
simply decide to abandon the patch file, then just use Abort Patch. If you must

209

August 1986 Maintaining Large Programs

boot your machine before finishing the patch, then save the patch buffer and as
soon as possible use Resume Patch to read in the relevant patch file; finish the
patch or abort it, as you wish.

24.2.9 Abort Patch (M-X)

Abort Patch (M-X) deallocates the minor version number that was assigned by the
Start Patch or Add Patch commands. It tells Zmacs that you are no longer
interested in making the current patch and offers to kill the patch buffer. The
next time you do Add Patch (M-X), Zmacs starts a new patch instead of appending
to the one in progress.

24.2.10 Resume Patch (M-X)

Resume Patch (M-X) allows you to return to a patch that you were not able to
finish in the same boot session in which you started it; for example, your machine
might have crashed or you had to boot your machine suddenly. It reads in the
relevant patch file if it was previously saved; otherwise it just reclaims your
access to the minor version number allocated to you when you started the patch.
Abort or finish the patch.

Under certain circumstances you might find it necessary to recompile and reload a
patch file.

24.2.11 Recompile Patch (M-X)

Recompile Patch (M-X) recompiles an existing patch file. This command is useful
when, for example, an existing patch needs to be edited or a compiled patch file
becomes damaged in some way. Never recompile a patch manually or in any way
other than using the Recompile Patch command. This command ensures that
source and object files are stored where the patch system can find them.

Use Recompile Patch with caution! Recompiling a patch that has already been
loaded by other users can cause divergent world loads.

24.2.12 Reload Patch (M-H)

Reload Patch (M-X) reloads an existing patch file. This command makes it easy to
reload a patch file without having to know its pathname.

You might want to have your herald announce private patches that you make.
note-private-patch adds a private patch to the database in your world and
includes the name of the patch in the herald.

210

Program Development Utilities August 1986

note-private-patch string Function
Adds a private patch to the database in your world. note-private-patch
takes a string argument. For example, the following adds the private patch
called patch.lisp:

(note-private-patch "s:>smiller>patch.lisp")

Subsequent displays of your herald show the inclusion of that patch in your
world.

You create private patches using the Start Private Patch (M-X) command
and then the standard patch commands for adding to and finishing the
patch. Use the Load File command or Load File (M-X) to load a private
patch; the load patches command and the load-patches function do not load
private patches.

24.3 Loading Patches

When you command the loading of patches for a software system the current state
of the patch registry is compared to the registry as last loaded by the user. If
patches have been written since that time, just the new patches are loaded, and
their summary descriptions are displayed. As each patch is loaded, the state of
the given system in your machine is at the same level as in the developer's
machine when he or she finished that partiCUlar patch.

The patch registry manages the appropriate loading of patches for a particular
system. New patches for a system (since the last loading, if any) are installed
until no more remain or until an in-progress patch is encountered. In this last
case, loading is halted before the patch in-progress is installed, because the
consistency of patches that might follow cannot be guaranteed. The system
displays a message indicating the presence of unfinished patches.

Genera provides a number of convenient tools and several interfaces for loading
patches. For example, you can load patches by calling one of several Lisp
functions - load-patches or zl:load-and-save-patches - or alternatively, by
issuing the Load Patches command in the Command Processor. The effect of
these tools differs: load-patches and its Command Processor equivalent loads
patches to virtual memory, which means they disappear when the machine is
booted; zl:load-and-save-patches writes the patches to disk. (Of course, new
patches can be made later, and then these will have to be loaded to get the very
latest version of a system.)

When you call load-system, the System Construction Tool automatically loads all
the patches for that system, using the same options specified in the call to
load-system.

211

August 1986 Maintaining Large Programs

Load Patches Command

Load Patches system keywords

Loads patches into the current world for the indicated systems or for all systems.
See the function load-patches, page 211.

system

keywords

: Query

: Save

:Show

{All system-namel, system-name2... } The default is All.

: Query, : Save, :Show

{yes no ask} Whether to ask for confirmation before loading
each patch. The default is no.

{file-spec, Prompt, No-Save} The file in which to save the world
with all patches loaded. Omitting this keyword means do not
save the world. The default when this keyword is added to your
command is Prompt which means save the world and then
prompt for a pathname.

{yes no ask} Whether to print the patch comments as each
patch is loaded. The default is yes.

load-patches &optional systems &key (query tj silent no-warn Function
Brings the current world up to the latest minor version of whichever major
version it is, for all systems present, or for certain specified systems. If
there are any patches available, load-patches offers to read them.
load-patches also loads the translations file (sys:site;logical-host. translations
file) if it has changed. load-patches returns t if any patches were loaded,
and nil otherwise.

Note: When you do a load-system of a patchable system, load-system
calls load-patches after loading the system. If load-system is silent,
load-patches is silent; if load-system asks for confirmation, load-patches
asks for confirmation.

With no arguments, load-patches assumes you want to update all the
systems present in this world and asks you whether you want to load each
patch.

: query

: silent

Takes t, nil, : confirm, or : no-confirm. If t, ask for
approval of each and every operation. If nil or
: no-confirm, don't ask about anything. If :confirm, list
all the operations and then ask for confirmation. Default
value: : confirm.

Takes t or nil. If t, perform all operations without
printing anything. If :query is non-nil, :silent t is
overridden. Default value: nil.

212

Program Development Utilities August 1986

: no-warn Takes t or nil. If t, don't bother to print a redefinition
warning. Default value: nil.

zl:load-and-save-patches &rest keyword-args Function
zl:load-and-save-patches first disables network services and MORE
processing and then loads any patches that need to be loaded and any new
versions of the site files, calling load-patches with arguments of
:query nil.

If no one is logged in, it logs in anonymously. If any patches have been
loaded, zl:load-and-save-patches prompts for the name of a FEP file in
which to save the world load and then calls zl:disk-save to actually save
the resulting world load. If no patches have been loaded, it restores
network services to their state before zl:load-and-save-patches was called,
and logs out if it has logged in anonymously.

Call zl:load-and-save-patches before you log in in order to avoid putting
the contents of your init file into the saved world load.

Note that loading files asynchronously - particularly patch files - is neither
guaranteed to work nor an efficient use of resources. The main process and the
background process would compete for resources, and you would lose a lot of time
to paging and the scheduler. Furthermore, you cannot expect the correct results
from loading patch files in a background process for the following reasons:

• load-patches can reset and rebuild the site information.

• When a foreground bug occurs while patches are loading, you cannot
determine what system the bug occurred in.

• When you are using a subsystem in the foreground while it is being patched
in the background, unexpected problems could arise.

• The file could be doing something that maps over all pathnames, expecting
that pathnames would not change while it was running.

• defflavor has no locking at load time. Thus, the flavor data structures can
be damaged if two processes evaluate defflavor simultaneously.

213

August 1986 Maintaining Large Programs

25. Obtaining Information About a System

The Command Processor command Show System Definition and the Lisp function
describe-system are useful means of finding information about a system.

Show System Definition Command

Show System Definition system keywords

Displays a the system definition of system including its current patch level, status
(experimental or released), and the files that make up the system.

system

keywords

:Detailed

A loaded system.

:Detailed

{Yes,No} Whether to list all the component systems of the
system or not. The default is no, the mentioned default is yes.

describe-system system-name &key (show-files t) system-op (reload Function
nil) (recompile nil) (version :latest) detailed
&rest keys &allow-other-keys

Displays useful information about the system named system-name. This
includes the name of the system source file, the system package default if
any, and component systems. For a patchable system, describe-system
displays the system version and status, a typical patch file name, the sites
maintaining the system, and, if the user wants, a listing of patches.

If :show-files is t (the default), it displays the history of the files in the
system. Other possible values are nil (do not show file history) and :ask
(ask the user).

If :system-op is t (the default), it displays the operations required to load
the system. Other possible values are nil (do not display operations) and
:ask (ask the user).

If :reload is t (the default is nil) the files are reloaded.

If :recompile is t (the default is nil) the files are recompiled.

The default version of the system is :latest.

The detailed argument (t or nil) indicates whether to display the plans for
the component systems.

Other useful commands include Show System Modifications and Show System Plan.

214

Program Development Utilities August 1986

Show System Modifications Command

Show System Modifications system-name keywords

With no arguments, Show System Modifications lists all the systems present in
this world and, for each system, all the modifications that have been loaded into
this world. For each modification it shows the major version number (which will
always be the same since a world can only contain one major version), the minor
version number, and an explanation of what the modification does, as entered by
the person who made it.

If Show System Modifications is called with an argument, only the modifications to
system-name are listed.

system-name

keywords

:Author

:Before

:From

:Matching

:Newest

: Number

:Oldest

The system for which to show modifications. The default is All.

:Author, :Before, :From, :Matching, :Newest, : Number, :Oldest,
:Since, :Through

A name. Show modifications by a particular person. For
example:

:show modifications system :author kjones

would only show those modifications made by the person whose
user ID is kjones.

A date to serve as one limit for modifications to show:

:before 11/1/84

A number to use as the first modification to show.

A string to search for in the comments and only show
modifications whose comment contain that string:

:matching namespace

A number of modifications to show, for instance the ten most
recent ones:

:newest 10

Using this keyword without a number is the same as : newest 1.

A number. Show only this particular modification. For
example:

Show Modifications :number 6

would show modification number 6.

A number of modifications to show, for instance the ten earliest
ones:

August 1986

:Since

:Through

215

Maintaining Large Programs

:oldest 19

Using this keyword without a number is the same as : 01 dest 1.

A date to serve as one limit for modifications to show.

A number to use as the last modification to show:

:through 17

Show System Plan Command

Show System Plan system operation

Show the system plan (i.e., the order of operations) for the specified system under
the specified operation. operation can be All, Compile, Load, Edit, Hardcopy, Reap
protect, or Distribute.

25.1 Obtaining Information on System Versions

When a Symbolics computer is booted, it displays a line of information telling you
what systems are present, and which version of each system is loaded. This
information is returned by the function sct:system-version-info. It is followed by
a text string containing any additional information that was specified by whoever
created the current world load. See the function zl:disk-save.

sct:system-version-info &optional (brief-p nil) Function
Returns a string giving information about which systems and what versions
of the systems are loaded into the machine (for systems that differ from
the released versions) and what microcode version is running. A typical
string for it to produce is:

"System 242.264, Zmai1 83.42, LMFS 37.31, Vision 19.23, Tape 21.9,
microcode TMC5-MIC 264, FEP 17"

If brief-p is t, it uses short names, suppresses the microcode version, any
systems that should not appear in the disk label comment, the name
System, and the commas:

"242.264 Vis 19.23"

sct:get-system-version &optional (system "system") Function
Returns three values. The first two are the major and minor version
numbers of the version of system currently loaded into the machine. The
third is the status of the system, as a keyword symbol: : experimental,
:released, :obsolete, or : broken. system defaults to system. This returns
nil if that system is not present at all.

216

Program Development Utilities August 1986

Releases have version numbers and status associated with them, just as systems
do. Symbolics staff assign the release number.

sct:get-release-version Function
sct:get-release-version returns three values, the release numbers and the
status of the current world load:

Major version number
Patch version number or string describing minor patch level
Status of the world load as a keyword symbol:

: experimental
:released
:obsolete
:broken
nil (when status cannot be determined)

zl:print-system-modifications &rest system-names Function
With no arguments, zl:print-system-modifications lists all the systems
present in this world and, for each system, all the patches that have been
loaded into this world. For each patch it shows the major version number
(which will always be the same since a world can only contain one major
version), the minor version number, and an explanation of what the patch
does, as entered by the person who made the patch.

If zl:print-system-modifications is called with arguments, only the
modifications to system-names are listed.

sct:patch-Ioaded-p major-version minor-version &optional (system
"system")

Function

A predicate that tells whether the loaded version of system is past (or at)
the specified. patch level. Returns t if:

• the major version loaded is major-version and the minor version
loaded is greater than or equal to minor-version

• the major version loaded is greater than major-version
Otherwise, the function returns nil.

sct:get-system-input-and-output-source-files system &optional
version

Function

Returns a list of pairs of the form (input-file output-file) for a specified
version of the specified system. If version is not specified, returns the
:newest version of the files.

217

August 1986 Maintaining Large Programs

sct:get-system-input-and-output-defsystem-files system &optional Function
(version nil)

Returns the system declaration file for a specified version of the specified
system. If version is not specified, returns the :newest version of the files.

sct:get-all-system-input-files system &key (version nil) Function
(include-components nil)

Return a list of three things: (1) pairs of source and product files, (2) the
system declaration files, (3) the input files, for a specified version of the
specified system. With no version returns the :newest version of all the
files.

set:eheek-system-pateh-file-version &key (system "system") Function
(major-version
(set: get-system-version set:system»)
minor-version file-version

Checks to see if the patch file to the system, with the specified major
version and minor-version, of file-version has been loaded into the world. If
file-version is :none, checks to see that the patch file has never been
loaded. If the check fails, it causes an error. Typically, this form is used
in a patch file to ensure that a patch to another system has (or has not)
been made.

218

Program Development.Utilities August 1986

':'-

219

August 1986 Program Counter Metering

PARTV.

Program Counter Metering

220

Program Development Utilities August 1986

221

August 1986 Program Counter Metering

26. PC Metering

Program counter (PC) metering is a tool to allow the user to determine where
time is being spent in a given program. PC metering produces a histogram that
you can interpret to improve the performance of your program.

The mechanism of PC metering is as follows. At regular intervals, the front-end
processor (FEP) causes the main processor to task switch to special microcode.
This microcode looks up the macro PC that contains the virtual address of the
macroinstruction that the processor is currently executing. If this virtual address
falls outside the monitored range, the microcode increments a count of the number .
of PCs that missed the monitored range. If the address is within the monitored
range, the microcode subtracts the bottom of the monitored range from the PC,
leaving a word offset. It then divides the word offset by the number of words per
bucket and uses that as an index into the monitor array. Next, it increments that
indexed element of the monitor array. This can only measure statistically where
the macro PC is pointing; for the results to be valid, a relatively large number of
samples per bucket must be available.

For Symbolics 367X, 365X, 364X, and 363X machines with Rev. 4 of the
input/output board (this denotes machines with digital audio), PC metering is
performed in the audio micro task and samples at a rate of 50,000 samples per
second. This is useful for metering almost all code.

For Symbolics 3600 computers with Rev. 2 of the input/output board, the FEP
samples at about 170 samples per second, so PC monitoring is probably valid only
for sessions that take longer than five to ten seconds.

You specify a range of the program to be monitored. The range is specified by
lower and upper bounding addresses, and compiled functions that lie between those
addresses are monitored. The range is divided into some number of buckets. The
relative amount of time that the program spends executing in each bucket is
measured.

The parameters you specify are the range of addresses to be monitored, the
number of buckets, and an array with one word for each bucket.

Some of the metering functions deal with compiled functions. In this context a
compiled function is either a compiled code object or an sys:art-16b array, into
which escape functions (small, internal operations used by the microcode) compile.

meter:make-pc-array size Function
Makes a PC array with size number of buckets. This storage is wired, so
you probably do not want this to be more than about 64. pages, or
(* 64. sys:page-size) words.

222

Program Development Utilities August 1986

meter: monitor-aIl-functions Function
Changes the microcode parameters so that the monitor array refers to
every possible function in the Lisp world at the time of the execution of
meter: monitor-aIl-functions. This usually causes many functions to map
into a single bucket, and is therefore useful in obtaining a first estimate of
which functions are using a significant portion of the execution time.

meter:setup-monitor &optional (range-start 0) (range-end
268435456)

Monitors the region between range-start and range-end.

Function

meter:monitor-between-functions lower-function upper-function Function
Monitors all functions between lower-function and upper-function. This does
not work in some situations, such as:

• You compile a function from a buffer, which puts its definition
outside the range

• A previous region is extended, and new functions go there instead of
in monotonically increasing virtual addresses.

Example:

(defun start-of-library ()(»

... code ...
(defun end-of-library ()(»

(meter:monitor-between-functions #'start-of-library #'end-of-library)

meter:expand-range start-bucket &optional (end-bucket start-bucket) Function
Changes the microcode parameters so that the entire monitor array refers
only to the functions previously contained within the range specified by
start-bucket and end-bucket. start-bucket and end-bucket are inclusive
bounds.

meter:report &optional function-list Function
Prints a summary of the data collected into the monitor array. You should
not have to supply the function-list argument.

meter:start-monitor &optional (clear t) Function
Enables collection of PC data. If clear is not nil, the contents of the
monitor array are cleared. If clear is nil, the array is not modified, so that
the new samples are simply added to the old.

meter:stop-monitor Function
Disables further collection of PC data.

223

August 1986 Program Counter Metering

meter:print-functions-in-bucket bucket Function
Prints all the compiled functions that map into the specified bucket.

meter:list-functions-in-bucket bucket Function
Returns a list of all the compiled functions that map into the specified
bucket.

meter:range-of-bucket bucket Function
Returns the virtual address range that maps into the specified bucket.

meter:with-monitoring clear body... Macro
Enables monitoring around the execution of body. If clear is not nil, clears
the monitor array first. See the function meter:start-monitor, page 222.

meter:map-over-functions-in-bucket bucket function &rest args Function
Calls function for every compiled function in the specified bucket. The first
argument to function should be the compiled function, and any remaining
arguments are args.

meter:function-range function Function
Returns two values, the buckets that contain the first and last instructions
of function.

meter:function-name-with-escapes object Function
If object is a compiled function, returns the function spec of the compiled
function. Otherwise, returns nil.

224

Program Development Utilities August 1986

225

August 1986 Program D9v91opm9nt Tools and T9chnlqu9s

PART VI.

Program Development Tools and Techniques

Caveat to Program Development Tools and Techniques

The chapters contained in Program Development Tools and Techniques should be
read only as a tutorial in work styles for the Genera software environment. The
program that is used to illustrate the various tools and techniques presented has
not been updated and is not guaranteed to run. The code for the program is in
the directory sys:examples;.

226

Program Development Utilities August 1986

227

August 1986 Program Development Tools and Techniques

27. Introduction

27.1 Purpose

In this chapter we introduce the Symbolics Genera software environment. Using a
single example program, we present one style of interacting with that environment
in developing Lisp programs. We do not prescribe a "best" style of programming
in Genera. Rather, we suggest some techniques and combinations of features that
expert Lisp machine programmers advocate. You might find these techniques
useful in developing a comfortable and efficient programming style of your own.

27.2 Prerequisites

This chapter and the chapters that follow are for you if you will be writing or
maintaining Lisp programs and have recently begun to use the Genera software
environment on your Symbolics computer. These chapters will be most useful if
you have some experience writing Lisp programs and are familiar with basic
features of Genera. These chapters are not a survey of Genera facilities, a
reference manual, or a Lisp primer. You might find the following Symbolics
publications especially helpful:

27.3 Scope

• See the document User's Guide to Symbolics Computers.

• See the section "Getting Help" in User's Guide to Symbolics
Computers.

We focus on interaction between programmers and Genera. We present some
ways of using Genera features that you might find helpful at each stage of
program development. We mention some broad issues of style in designing
programs, including modularity and efficiency, but we do not explore program
structure in any depth. We do not discuss matters of style in using Lisp, such as
appropriate uses for structures and flavors.

This documentation corresponds to the Symbolics 3600-family computers.

27.4 Method

We derived the methods we describe here by working with programmers at
Symbolics. Some of these programmers were early developers of the Symbolics
Lisp Machine itself. Their styles vary. Like most programmers, they generally do
not follow a simple textbook sequence of designing, coding, compiling, debugging,
recompiling, testing, and debugging again. Instead, they develop programs in
repeated cycles, each a sequence of editing, compiling, testing, and debugging.
These cycles are often nested. For example, an error in testing a program invokes
the Debugger; from the Debugger the programmer types Lisp forms or calls the
editor to change and recompile code; an error in retesting code from the Debugger
invokes the Debugger again.

228

Program Development Utilities August 1986

27.5 Features

Symbolics developers have designed the Genera software environment to
accommodate a relatively spontaneous and incremental programming style. Five
features make up the integrated programming environment described here.

• The Zetalisp environment. The Lisp system code allows you to
write programs that are extensions of the environment itself. You
can often produce complex programs with comparatively little new
code. Zetalisp flavors let you build data structures with complex
modular combinations of associated procedures and state
information.

• The window system. Windows permit you to shift rapidly among
such activities as editing, evaluating Lisp, and debugging. You
can suspend an activity in one window, switch to another, and
return to the first without losing its state. You can display
several activities on the same screen. Because the window system
is itself implemented with Zetalisp flavors, you can modify or
create windows for special displays.

• The Zmacs text editor. Zmacs has sophisticated means of keeping
track of Lisp syntax. It interacts with the Zetalisp environment,
letting you find out about existing code and incorporate it into
your programs. Unlike some structure editors, Zmacs allows you
to leave definitions incomplete until you are ready to evaluate or
compile them.

• Dynamic compiling, linking, and loading. The compiler is always
loaded. You can use single-keystroke commands to compile and
load source code from a Zmacs buffer. You can write, compile,
test, edit, and recompile code in sections. When you recompile a
function definition, the function's callers use the new definition.

• Interactive debugging. Errors invoke the Debugger in their
dynamic environments. From the Debugger you can examine the
stack, change values of variables and arguments, call the editor to
change and recompile source code, and reinvoke functions.

27.6 Organization

The sequence of steps in developing a program in Genera is too complex to mirror
in the linear organization this documentation. We emphasize the cyclical course
of program development, but we have organized this documentation in a simple
way. We present the main programming sequence in the next three chapters.
These deal simply with writing and editing, evaluating and compiling, and
debugging code. We discuss particular Zetalisp functions, Zmacs commands, and

229

August 1986 Program Development Tools and Techniques

other features where they appear most useful or where they present alternatives
to common techniques.

The next three chapters require virtually no knowledge of flavors or the window
system. But knowing about flavors and windows is essential to advanced use of
Genera. For some simple uses of flavors and windows and some programming
aids for working with them: See the section " Using Flavors and Windows", page
343.

Throughout, we use as an example the development of a single program that
draws the recursive arrows in the cover design for this document. Sandy Schafer
and Bernard LaCasse of SchaferlLaCasse created the original design. Richard
Bryan of Symbolics wrote and we revised a Lisp program that simulates it. For
the complete code: See the section "Calculation Module for the Sample Program",
page 383. See the section "Output Module for the Sample Program", page 403.

The code is also in the files SYS: EXAMPLES; ARROW-CALC LISP and
SYS: EXAMPLES; ARROW-OUT LISP. (To run the program, load
SYS: EXAMPLES; ARROW.) For a reproduction of the design produced on a
Symbolics LGP-l Laser Graphics Printer: See the section "Graphic Output of the
Sample Program", page 425.

Many of the techniques and facilities we mention are helpful at more than one
stage of program development. Conversely, Genera provides many paths for
accomplishing tasks at each stage. As programmers at Symbolics gladly
acknowled,ge, there is more than one way to do almost anything in Genera.

In the chapters that develop the Lisp code for the example program, we use
change bars to distinguish new or changed code from code that we have already
presented. Whenever we display a line of code that has not appeared before, and
whenever we change a line of code that has already appeared, we place a vertical
bar (I) next to that line in the left margin. This bar is not part of the code itself.
In the following example, we change two lines of the definition of draw-big-arrow:

(defun draw-big-arrow ()
;; Determine coordinates of arrowhead vertexes
(multiple-value-bind

(*p1x* *p1y* *p2x* *p2y* *p5x* *p5y* *p6x* *p6y*)
(compute-arrowhead-points)

;; Determine coordinates of shaft vertexes
(multiple-value-bind (*p3x* *p3y* *p4x* *p4y*)

(compute-arrow-shaft-points)
(draw-big-outline)
(when *do-the-stripes*

(stripe-arrowhead»»)

;Outline arrow

;Stripe head

230

Program Development Utilities August 1986

231

August 1986 Program Development Tools and Techniques

28. Writing and Editing Code

Programmers who work the Genera software environment seldom write programs
in sequence, from beginning to end, before testing them. They often leave
definitions incomplete, skip to other definitions, and then return to finish the
incomplete forms. They search for existing code to incorporate into new
programs. They edit their work frequently, changing code while writing, testing,
and maintaining programs.

In this chapter we discuss Genera features, particularly Zmacs commands and
Zetalisp functions, that make this style natural. Many of these features are useful
at other stages of programming as well: Editing techniques are important in
program maintenance, and methods of learning about existing code are helpful in
debugging.

To illustrate programming methods, we develop a program tha.t draws the
recursive arrow design that appears on the cover of this book. (The program does
not draw the horizontal stripes outside the large arrow.) We produce the figure
on a Symbolics LGP-l Laser Graphics Printer, a Symbolics computer screen, or a
file. We develop the program in four stages, beginning with simple procedures to
outline the arrows and progressively modifying the code to refine the figure:

1. Drawing the borders of the large arrow and of the smaller
recursively drawn arrows that it encloses

2. Drawing the diagonal stripes within the figure, but with uniform
thickness and spacing

3. Changing the stripes to vary in thickness and spacing

4. Writing the routines that control the output destination

For the code for the sample program and a reproduction of the LGP image the
program produces: See the section "Calculation Module for the Sample Program",
page 383. See the section "Output Module for the Sample Program", page 403.
See the section "Graphic Output of the Sample Program", page 425.

28.1 Using Zmacs

Use the Zmacs text editor to write and edit programs. Zmacs has many features
that provide information about Zmacs commands, existing code, buffers, and files.
Two features are generally useful: the HELP key and completion. For details: See
the section "Getting Help" in User's Guide to Symbolics Computers.

28.1.1 Using The HELP Key In Zmacs
Pressing the HELP key in a Zmacs editing window gives
information about Zmacs commands and variables. The kind of
information it displays depends on the key you press after HELP.

232

Program Development Utilities August 1986

Reference
HELP ? or HELP HELP Displays a summary of HELP options.

HELP A Displays names, key bindings, and brief
descriptions of commands whose names or
descriptions contain a string you specify.
(The A refers to "apropos".)

HELP C Displays the name and a description of the
action of a key you specify by pressing it.
(The C refers to "command key".)

HELP D Displays documentation for a command
you specify.

HELP L Displays a listing of the last 60 keys you
pressed.

HELP U Offers to "undo" the last major Zmacs
operation, such as sorting or filling, when
possible.

HELP V Display's the names and values of Zmacs
variables whose names contain a string
you specify.

HELP W Displays the key binding for a command
you specify. (The W refers to "where".)

HELP SPACE Repeats the last HELP command.

28.1.2 Zmacs Command Completion
Some Zmacs operations require you 'to provide names - for
example, names of extended commands, Lisp objects, buffers, or
files. You usually supply names by typing characters into a
minibuffer that appears near the bottom of the screen. Often you
do not have to type all the characters of a name; Zmacs offers
completion over some name spaces. When completion is available,
you'll see

Mouse-R Menu of completions

in the mouse documentation line.

You can request completion when you have typed enough
characters to specify a unique word or name. For extended
commands and most other names, completion works on initial

August 1986

233

Program Development Tools and Techniques

substrings of each word. For example, m-X com b is sufficient to
specify the extended command Compile Buffer. SPACE, COMPLET E,
RET URN, and END complete names in different ways. HELP and
[Zmacs Window (R)] list possible completions for the characters
you have typed.

Reference
SPACE

HELP or c-?

Mouse-R

COMPLETE

RET URN or END

Completes words up to the
current word.

Displays possible completions in
the typeout area. You can click
with the mouse to select a
completion. Where a possible
completion includes ellipsis (. . .
) you can click either R or L for
further expansion.

Pops up a menu of possible
completions. Select a completion
with the mouse.

Displays the full name if
possible.

Confirms the name if possible,
whether or not you have seen
the full name.

28.2 Preparing to Write Code

When Symbolics programmers begin to write new Lisp programs, they often follow
these steps:

1. Enter the Zmacs editor.

2. Create a buffer for a new file for the program.

3. Set the attributes of the buffer and file, including major and
minor modes.

28.2.1 Entering the Editor
Use SELECT E, [Edit] from the System menu, or the Select
Activity command to enter Zmacs.

234

Program Development Utilities August 1986

Reference
SELECT E Selects a Zmacs frame.

[Edit] (from the System menu) Selects a Zmacs frame.

Select Activity command Selects a Zmacs frame.

28.2.2 Creating a New File
To store program code in a new file, use Find File (c-H c-F) to
create a buffer for the file at the beginning of the editing session.
You can then edit the file's attributes or create an attribute list
that appears in the text. See the section "Creating a File
Attribute List", page 234. You will not have to interrupt later
work to name the file or check its attributes before you save it.

Reference
Find File (c-H c-F)

28.2.3 Creating a File Attribute List

Creates and names a buffer for
the file, reading in the file if it
already exists.

Each buffer and generic pathname has attributes, such as
Package and Base, which can also be displayed in the text of the
buffer or file as an attribute list. An attribute list must be the
first nonblank line of a file, and it must set off the listing of
attributes on each side with the characters "-*-". If this line
appears in a file, the attributes it specifies are bound to the
values in the attribute list when you read or load the file.

Suppose you want the new program to be part of a package
named graphics that contains graphics programs. In this case,
you want to set the Package attribute to graphics in three places:
the generic pathname's property list; the buffer data structure;
and the buffer text. You can make the change in two ways:

• If the package already exists in your Lisp environment, use Set
Package (M-H) to set the package for the buffer. The command
asks you whether or not to set the package for the file and
attribute list as well. You cannot use this command to create a
new package .

• Use Update Attribute List (M-H) to transfer the current buffer
attributes to the file and create a text attribute list. Edit the
attribute list, changing the package. Use Reparse Attribute List
(M-H) to transfer the attributes in the attribute list to the file and

August 1986

235

Program Development Tools and Techniques

the buffer data structure. If the package you specify by editing
the attribute list does not exist in your Lisp environment, Reparse
Attribute List asks you whether or not to create it under global.

The default value of zl: base and zl:ibase is 10. If you have been
writing code that has a Base attribute in the mode line, you
should not experience any difficulties. However, in order to help
avoid problems in general, changes have also been made to the
editor and compiler:

• In the mode line (the -*- line in Lisp source files) are the Base
and Syntax attributes. The base can be either 8 or 10 (default).
The syntax of a program can be either Zetalisp or Common-Lisp.

• If there is a Base attribute, but no Syntax attribute, the syntax
defaults to Common-Lisp.

• If there is a Syntax attribute of Common-Lisp, and no Base
attribute, the base is assumed to be 10.

• If there is neither a Base nor a Syntax attribute, Base is assumed
to be the default base (10) and the syntax is assumed to be
Common-Lisp. Furthermore, a warning is issued to the effect
that there is neither a Syntax nor a Base attribute. You should
edit your program accordingly. With most programs, the Zmacs
command Update Attribute List (M-X) will add the appropriate
attributes to the mode line, following the above defaults.

When you specify a package by editing the attribute list, you can
explicitly name the package's superpackage and, if you want, give
an initial estimate of the number of symbols in the package. (If
the number of symbols exceeds this estimate, the name space
expands automatically.) Instead of typing the name of the
package, type a representation of a list of the form (package
super package symbol-count). To indicate that the graphics
package is inferior to global and might contain 1000 symbols,
type into the attribute list:

Package: (GRAPHICS GLOBAL 1000)

For more on file and buffer attributes: See the section "File
Attribute Lists" in Reference Guide to Streams, Files, and I/O.

Example
Suppose the package for the current buffer is user and the base

236

Program Development Utilities August 1986

is 8. We want to create a package called graphics for the buffer
and associated file. We also want to set the base to 10. If no
attribute list exists, we use Update Attribute List (n-X) to create
one using the attributes of the current buffer. An attribute list
appears as the first line of the buffer:

;;; -*- Hade: LISP; Package: USER; Base: 8 -*-

Now we edit the buffer attribute list to change the package
specification from USER to (GRAPHI CS GLOBAL 1(00) and to change
the base specification from 8 to 10. The text attribute list now
appears as follows:

;;; -*- Hade: LISP; Package: (GRAPHICS GLOBAL 1(00); Base: 10 -*-

Finally, we use Reparse Attribute List (n-X). The package
becomes graphics and the base 10 for the buffer and the file.

Reference
Set attribute (n-X)

Update Attribute List (n-X)

Reparse Attribute List (n-X)

28.2.4 Major and Minor Modes

Sets attribute for the current
buffer. Queries whether or not
to set attribute for the file and in
the text attribute list. attribute
is one of the following:
Backspace, Base, Fonts,
Lowercase, No fill, Package,
Patch File, Syntax, Tab Width,
or Vsp.

Assigns attributes of the current
buffer to the associated file and
the text attribute list.

Transfers attributes from the
text attribute list to the buffer
data structure and the associated
file.

Each Zmacs buffer has a major mode that determines how Zmacs
parses the buffer and how some commands operate. Lisp Mode is

August 1986

237

Program Development Tools and Techniques

best suited to writing and editing Lisp code. In this major mode,
Zmacs parses buffers so that commands to find, compile, and
evaluate Lisp code can operate on definitions and other Lisp
expressions. Other Zmacs commands, including LI NE, T A8, and
comment handlers, treat text according to Lisp syntax rules. See
the section "Keeping Track of Lisp Syntax", page 247.

If you name a file with one of the types associated with the
canonical type :lisp, its buffer automatically enters Lisp Mode.
Following are some examples of names of files of canonical type
:lisp:

Host system
Lisp Machine
TOPS-20
UNIX

File name
acme-blue:>symbolics>examples>arrow.lisp
acme-20:<symbolics.examples>arrow.lisp
acme-vax:/symbolics/examples/arrow.l

You can also specify minor modes, including Electric Shift Lock
Mode and Atom Word Mode, that affect alphabetic case and
cursor movement. Whether or not you use th~e modes is a
matter of personal preference. If you want Lisp Mode to include
these minor modes by default, you can set a special variable in an
init file. If you want to exit one of these modes, simply repeat
the extended command. The command acts as a toggle switch for
the mode.

Example
The following code in an init file makes Lisp Mode include
Electric Shift Lock Mode if the buffer's Lowercase attribute is nil,
as it is by default:

(login-forms
(setf zwei:lisp-mode-hook

'zwei:electric-shift-lock-if-appropriate»

Reference
Lisp Mode (M-H)

Electric Shift Lock Mode (M-H)

Atom Word Mode (M-H)

Treats text as Lisp code in
parsing buffers and executing
some Zmacs commands.

Places all text except comments
and strings in uppercase.

Makes Zmacs word-manipulation

238

Program Development Utilities August 1986

Auto Fill Mode (n-H)

Set Fill Column (c-H F)

commands (such as n-F) operate
on Lisp symbol names.

Automatically breaks lines that
extend beyond a preset fill
column.

Sets the fill column to be the
column that represents the
current cursor position. With a
numeric argument less than 200,
sets the fill column to that many
characters. With a larger
numeric argument, sets the fill
column to that many pixels.

28.3 Program Development: Design and Figure Outline

28.3.1 Program Strategy
Our goal in developing the sample program is to reproduce the
pattern of striped arrows on the cover of this document. The
pattern consists of one large arrow enclosing many small arrows
that are similar to each other. Each arrow is a series of line
segments that form either its outline or its stripes.

We have two general problems in writing the program. We must
calculate the position of each line segment we want to draw. We
must also convert these positions into a form that will produce
line segments on the output device we choose.

In solving these problems, we want to adhere to two principles:

• We want the program to be as modular as possible. The routines
that calculate line positions should not depend on the output
device we choose. The routines that translate positions for the
output device should not depend on any particular method of
calculating those positions. If we want to change the internal
operation of either set of routines, we should not have to change
the other .

• We want to write the program in an incremental style. We write
the program in stages, producing a working version at each stage.
We start with simple tasks and gradually add refinements until
we are satisfied with what the program accomplishes.

We write the program in two modules, one to calculate line

August 1986

239

Program Development Tools and Techniques

positions and the other to translate positions for the output
streams. We put these modules in separate files. For the first
file: See the section "Calculation Module for the Sample
Program", page 383. For the second file: See the section
"Output Module for the Sample Program", page 403.

How do we send line positions from the module that calculates
them to the module that transmits them to output? The output
module consists of definitions of flavors and methods to transfer
information to the appropriate output stream: See the section
"Using Flavors and Windows", page 343. Streams for LGP and
screen output can both produce lines using the coordinates of the
endpoints. Our module that calculates line positions needs to
compute the coordinates of the endpoints of the lines to be drawn.
In the output module, we define a generic operation called
:show-lines to receive the coordinates from the calculation module
and translate them for the appropriate output stream. The
calculation module sends :show-lines messages to the output
module. We can decide at run time which output stream to use.

Now that we have defined the interface between the two modules,
we could in principle write either module first. Although we
want the position-calculating routines to be independent of the
output device, we have to choose a coordinate system for the
calculations. For ease of interpretation, we place the origin at
bottom left. This is the convention that the system LGP routines
use, but the origin for screen coordinates is at top left. For the
sake of convenience, we calculate positions in units of LGP pixels.

28.3.2 Simple Screen Output
For a discussion of the output routines: See the section " Using
Flavors and Windows", page 343. Eventually, we want to produce
output on the screen, an LGP, or a file. To develop the program,
we need a routine for simple screen display so that we can check
the results of our calculation routines. We can use the stream
that is the value of zl:terminal-io. This stream handles
:draw-line messages whose arguments include the coordinates of
the endpoints of the lines to be drawn. For more on : draw-line:
See the method (flavor:method :draw-line tv:graphics-mixin) in
Programming the User Interface, Volume B.

We first create a source file for the output routine. We define a
flavor, screen-arrow-output, and a method to handle :show-lines
messages from the calculation routines. The arguments to
:show-lines are the coordinates of the endpoints of one or more
lines to be drawn. If the message has more than four arguments

240

Program Development Utilities August 1986

- the coordinates of two endpoints - we assume that we are to
draw more than one line, each starting at the endpoint of the
last. The :show-lines method must iterate over the arguments of
the message and send zl:terminal-io a :draw-line message for
each line to be drawn.

We must remember to transform the y-coordinate to take account
of the screen's origin at the top. We must also scale both
coordinates to take account of the LGP's higher resolution:
Screen pixels are about 2.5 times as large as LGP pixels.

The following code provides this simple output module:

(defflavor screen-arrow-output
«scale-factor 2.5»
0)

(defmethod (screen-arrow-output :show-lines)
(x y &rest x-y-pairs)

(loop for x0 = (send self ':compute-x x) then x1
for y0 = (send self ':compute-y y) then y1
for (x1 y1) on x-y-pairs by #'cddr
do (setq x1 (send self ':compute-x x1)

y1 (send self ':compute-y y1»
(send terminal-io ':draw-line

x0 y0 x1 y1 tv:alu-ior t»)

(defmethod (screen-arrow-output :compute-x) (x)
(fixr (II x scale-factor»)

(defmethod (screen-arrow-output :compute-y) (y)
(fixr (- see (II y scale-factor»»

28.3.3 Outlining the Figure
We now begin to write the module that calculates the coordinates
of the lines that make up the figure. First we must decide how
to represent the large arrow that encloses the figure and the
smaller arrows inside it. Seven points define each arrow: See
the section "Calculation Module for the Sample Program", page
383.

Each arrow has a head, bounded by points 0, 1, and 6, and a
shaft, bounded by points 2, 3, 4, and 5. The large outer arrow

August 1986

241

Program Development Tools and Techniques

and the smaller inner arrows differ in their shafts. Each inner
arrow has two yet smaller arrows beneath it. The inferior arrows
overlap the shafts of the superior arrows and turn each shaft into
a series of descending triangles.

We have two kinds of arrow, represented by the large outer arrow
and the small inner ones. We can treat these differences in
several ways:

• We can define two structures, make each arrow an instance of
one of the structures, and store information about each arrow in
the structure's slots. See the section "Structure Macros" in
Symbolics Common Lisp: Language Concepts .

• We can define two flavors, make each arrow an instance of one of
the flavors, and store information about each arrow in the flavor's
instance variables. See the section "Flavors" in Symbolics
Common Lisp: Language Concepts.

• We can simply define global variables to represent the state of
the current arrow.

Whichever method we choose, some operations, such as striping
the arrowheads, will be the same for both kinds of arrows. Other
operations, such as striping the shafts, will depend on the kind of
arrow we are drawing.

For simplicity, we use global variables to hold information about
the arrows, and we use functions to define procedures for
calculating coordinates. Note that we bind the global variables
rather than set them. We do this because we might eventually
have two or more arrow programs running at the same time in
separate processes. If we set global variables, one program might
incorrectly use a value set by another. See the section "The
Arrow Window: Interaction, Processes, and the Mouse", page 364.

Our first task in writing the calculation module is to outline the
arrows. After creating a file for the module, we write the code
for this task in six steps:

1. Define variables to hold information about the arrow we are
drawing. For the :show-lines message we need the x- and y
coordinates of the seven points that define the arrow. We also
need the length of the top edge of the arrow, which we use as a
base length. In calculating coordinates, we also need the values
of one-half and one-fourth the length of the top edge.

We use defvar to declare global variables near the beginning of

242

Program Development Utilities August 1986

the file. This special form declares variables special for the
compiler and lets us supply default initial values and
documentation strings. By convention, we surround the names of
global variables with asterisks to distinguish them from names of
local variables.

(defvar *top-edge* nil
"Length of the top edge of the arrow")

(defvar *top-edge-2* nil
"Half the length of the top edge")

(defvar *top-edge-4* nil
"One-fourth the length of the top edge")

(defvar *p0x* nil
"X-coordinate of point 0~)

(defvar *p0y* nil
nY-coordinate of point 0")

(defvar *p1x* nil
"X-coordinate of point 1")

(defvar *p1y* nil
nY-coordinate of point 1")

(defvar *p2x* nil
"X-coordinate of point 2")

(defvar *p2y* nil
nY-coordinate of point 2")

(defvar *p3x* nil
"X-coordinate of point 3")

(defvar *p3y* nil
nY-coordinate of point 3")

(defvar *p4x* nil
"X-coordinate of point 4")

August 1986

243

Program Development Tools and Techniques

(defvar *p4y* nil
nY-coordinate of point 4")

(defvar *p5x* nil
"X-coordinate of point 5")

(defvar *p5y* nil
nY-coordinate of point 5")

(defvar *p6x* nil
"X-coordinate of point 6")

(defvar *p6y* nil
nY-coordinate of point 6")

2. Define an initial function, draw-arrow-graphic, for the
calculation module. We will call this function from the one we
invoke to start the program. We pass draw-arrow-graphic the
length of the top edge of the large arrow and the coordinates of
its top right point (point 0). These arguments determine the
position and size of the arrow. The function also calculates the
half and quarter lengths of the top edge.

(defun draw-arrow-graphic (*top-edge* *p0x* *p0y*)
(let «*top-edge-2* (II *top-edge* 2»

(*top-edge-4* (II *top-edge* 4»»)

3. Outline the large arrow. We compute the coordinates of the
other six points of the arrow, then send a :show-lines message to
draw the lines. We can calculate the coordinates of points 1, 2, 5,
and 6 the same way for both the large and small arrows. We put
these calculations in a separate function so that we can use the
same code for both kinds of arrow. We need a constant to hold
the destination of the :show-lines messages. We must add to
draw-arrow-graphic a call to draw-big-arrow.

(defconst *dest* nil
"Destination of :SHOW-LINES messages to output")

244

Program Development Utilities August 1986

(defun draw-arrow-graphic (*top-edge* *p0x* *p0y*)
(let ((*top-edge-2* (II *top-edge* 2»

(*top-edge-4* (II *top-edge* 4»)
(draw-big-arrow»)

(defun draw-big-arrow ()
(multiple-value-bind

(*p1x* *p1y* *p2x* *p2y* *p5x* *p5y* *p6x* *p6y*)
(compute-arrowhead-points) .

(multiple-value-bind (*p3x* *p3y* *p4x* *p4y*)
(compute-arrow-shaft-points)

(draw-big-outline»»

(defun compute-arrowhead-points ()
(let* ((p1x (- *p0x* *top-edge*»

(p1y *p0y*)
(p2x (+ p1x *top-edge-4*»
(p2y (- *p0y* *top-edge-4*»
(p6x *p0x*)
(p6y (- *p0y* *top-edge*»
(p5x (- *p0x* *top-edge-4*»
(p5y (+ p6y *top-edge-4*»)

(values p1x p1y p2x p2y p5x p5y p6x p6y»)

(defun compute-arrow-shaft-points ()
(values (- *p1x* *top-edge-4*)

(- *p2y* *top-edge-2*)
p2x
(- *p2y* *top-edge*»)

(de fun draw-big-outline ()
(send *dest* ':show-lines

p0x *p0y* *p1x* *p1y* *p2x* *p2y* *p3x* *p3y*
p4x *p4y* *p5x* *p5y* *p6x* *p6y* *p0x* *p0y*»

4. Outline the largest of the small arrowheads. We can generate all
the interior outlines in the figure by outlining only the heads of
the small arrows. We first draw the largest of these arrowheads
by analogy with our drawing the large arrow. We can use our
function compute-arrowhead-points to calculate the coordinates
of the vertexes. First we need to halve the value of *top-edge*
and bind new values for the coordinates of the top right point of
the arrow.

August 1986

245

Program Development Tools and Techniques

(defun draw-arrow-graphic (*top-edge* *p8x* *p8y*)
(let «*top-edge-2* (II *top-edge* 2))

(*top-edge-4* (II *top-edge* 4)))
(draw-big-arrow)
(let «*top-edge* *top-edge-2*)

(*p8x* (- *p8x* *top-edge-2*))
(*p0y* (- *p0y* *top-edge-2*)))

(do-arrows))))

(defun do-arrows ()
(let «*top-edge-2* (II *top-edge* 2))

(*top-edge-4* (II *top-edge* 4)))
(draw-arrow)))

(defun draw-arrow ()
(multiple-value-bind

(*p1x* *p1y* *p2x* *p2y* *p5x* *p5y* *p6x* *p6y*)
(compute-arrowhead-points)

(draw-outline)))

(defun draw-outline ()
(send *dest* ':show-lines *p2x* *p2y* *p1x* *p1y*

p0x *p0y* *p6x* *p6y* *p5x* *p5y*))

5. Outline the rest of the small arrows. Each small arrow has two
inferior arrows beneath it. We modify our function do-arrows by
adding two recursive function calls: one to draw the left-hand
inferior of each superior arrow, and one to draw the right-hand
inferior. We limit the levels of recursion by defining a constant,
max-depth, and incrementing the variable *depth* on each call
to do-arrows until *depth* equals *max-depth*.

(defvar *depth* 0
"Level of recursion for the current arrow")

(defconst *max-depth* 7
"Number of levels of recursion")

246

Program Development Utilities August 1986

(defun draw-arrow-graphic (*top-edge* *p0x* *p0y*)
(let «*top-edge-2* (// *top-edge* 2»

(*top-edge-4* (// *top-edge* 4»)
(draw-big-arrow)
(let «*top-edge* *top-edge-2*)

(*p0x* (- *p0x* *top-edge-2*»
(*p0y* (- *p0y* *top-edge-2*»
(*depth* 0»

(do-arrows»»

(defun do-arrows ()
(when, « *depth* *max-depth*)

(let «*top-edge-2* (// *top-edge* 2»
(*top-edge-4* (// *top-edge* 4»)

(draw-arrow)
(let «*depth* (1+ *depth*»

(*top-edge* *top-edge-2*)
(*p0x* (+ *top-edge-4* (- *p0x* *top-edge*»)
(*p0y* (- *p0y* *top-edge-4*»)

(do-arrows))
(let «*depth* (1+ *depth*»

(*top-edge* *top-edge-2*)
(*p0x* (- *p0x* *top-edge-4*»
(*p0y* (+ *top-edge-4* (- *p0y* *top-edge*»»

(do-arrows»»)

6. Define a function we can call to produce the graphic. This
function has to make an instance of screen-arrow-output, clear
the screen, and call draw-arrow-graphic. The arguments to '
draw-arrow-graphic determine the size and placement of the
figure. For now, we use estimates based on the dimensions, in
pixels, of an LG P page.

(defun do-arrow ()
(let «*dest* (make-instance Jscreen-arrow-output»)

(send terminal-io J:clear-screen)
(draw-arrow-graphic 1280 1800 1800»)

We now have a simple working version of our program. We first
compile our code: See the section "Compiling Lisp Code", page

August 1986

247

Program Development Tools and Techniques

298. We then use SELECT L to select a Lisp Listener. There we
can evaluate (graphi cs: do-arrow) to run the program. We can
avoid typing the package preflx by flrst using zl:pkg-goto to
make the current package graphics:

(pkg-goto 'graphics)

When we run the program, we generate a screen image of the
arrow outlines. Figure 2 shows the output of the program at this
stage.

These six steps illustrate a pattern of incremental program
development:

• We make each function initially simple. We add new functions
and edit old ones as tasks become more complex or reflned.
Facilities for keeping track of Lisp syntax and for editing code
encourage this incremental style. See the section "Keeping Track
of Lisp Syntax", page 247. See the section "Editing Code", page
282.

• We compile, test, and debug code in sections as we write it.
Many Symbolics programm~rs, for example, would test
draw-arrow both before and after adding the recursive function
calls.

To support this incremental style, we must be able to check the
syntax of our code, edit it, and compile it in sections. See the
section "Keeping Track of Lisp Syntax", page 247. See the
section "Editing Code", page 282. See the section "Compiling and
Evaluating Lisp", page 297.

28.4 Keeping Track of Lisp Syntax

Zmacs allows you to move easily through Lisp code and format it in a readable
style. Commands for aligning code and features for checking for unbalanced
parentheses can help you detect simple syntax errors before compiling.

Zmacs facilities for moving through Lisp code are typically single-keystroke
commands with C-M- modiflers. For example, Forward Sexp (c-M-F) moves
forward to the end of a Lisp expression; End Of Deflnition (c-M-E) moves forward
to the end of a top-level definition. Most of these commands take arguments
specifying the number of Lisp expressions to be manipulated. In Atom Word Mode
word-manipulating commands operate on Lisp symbol names; when executed before
a name with hyphens, for example, Forward Word (M-F) places the cursor at the
end of the name rather than before the flrst hyphen. See the section "Major and
Minor Modes", page 236.

248

Program Development Utilities August 1986

Figure 2. Program output with only the outlines of the arrows
in the figure.

249

August 1986 Program Development Tools and Techniques

For a list of common Zmacs commands for operating on Lisp expressions: See the
section IIEditing Lisp Programs in Zmacs" in Text Editing and Processing.

28.4.1 Comments
You can document code in two ways. You can supply
documentation strings for functions, variables, and constants: See
the section "Finding Out About Existing Code", page 260. You
can also insert comments in the source code. You can retrieve
documentation strings with Zmacs commands and Lisp functions:
See the section "Finding Out About Existing Code", page 260.
The Lisp reader ignores source-code comments. Although you
cannot retrieve them in the same ways as documentation strings,
they are essential to maintaining programs and useful in testing
and debugging. See the section "Compiling and Evaluating Lisp",
page 297. See the section "Debugging Lisp Programs", page 309.

Most source-code comments begin with one or more semicolons.
Symbolics programmers follow conventions for aligning comments
and determining the number of semicolons that begin them:

• Top-level comments, starting at the left margin, begin with three
semicolons .

• Long comments about code within Lisp expressions begin with
two semicolons and have the same indentation as the code to
which they refer.

• Comments at the ends of lines of code start in a preset column
and begin with one semicolon.

#\ begins a comment for the Lisp reader. The reader ignores
everything until the next \#, which closes the comment. #\ and \#
can be on different lines, and #\ ••• \# pairs can be nested.

Use of #\ ••• \# always works for the Lisp reader. The editor,
however, currently does not understand the reader's interpretation
of #\ ••• \#. Instead, the editor retains its knowledge of Lisp
expressions. Symbols can be named with vertical bars, so the
editor (not the reader) behaves as if #\ ••• \# is the name of a
symbol surrounded by pound signs, instead of a comment.

Now consider #1\ ••• 1\#. The reader views this as a comment: the
comment prologue is #\, the comment body is \ ••. \. and the
comment epilogue is \#. The editor, however, interprets this as a
pound sign (#), a symbol with a zero length print name (\I), lisp
code (•.•), another symbol with a zero length print name (\I), and a
stray pound sign (#). Therefore, inside a #1\ ••• 1\#, the editor

250

Program Development Utilities August 1986

commands which operate on Lisp code, such as balancing
parentheses and indenting code, work correctly.

Example
Let's add some comments to draw-arrow-graphic. We can write
a top-level comment without regard for line breaks and then use
Fill Long Comment (M-H) to fill it. We use c-; to insert a
comment on the current line. We use M-LINE to continue a long
comment on the next line.

" ,
" ,
, , ,

" ,

This function controls the calculation of the coordinates of the
endpoints of the lines that make up the figure. The three arguments
are the length of the top edge and the coordinates of the top right
point of the large arrow. DRAW-ARROW-GRAPHIC calls DRAW-BIG-ARROW
to draw the large arrow and then calls DO-ARROWS to draw the smaller

'" ones.
(defun draw-arrow-graphic (*top-edge* *p0x* *p0y*)

(let «*top-edge-2* (II *top-edge* 2»
(*top-edge-4* (II *top-edge* 4»)

(draw-big-arrow) ;Draw large arrow
" Length of the top-edge for the first small arrow is half the
;; length for the large arrow. Bind new coordinates for the top
;; right point of the small arrow.
(let «*top-edge* *top-edge-2*)

(*p0x* (- *p0x* *top-edge-2*»
(*p0y* (- *p0y* *top-edge-2*»
(*depth* 0»

(do-arrows»»

Reference

;Draw small arrows

Indent For Comment (c-; or M-;)

Inserts or aligns a comment on
the current line, beginning in
the preset comment column.

Kill Comment (C-M-;) Removes a comment from the
current line.

Down Comment Line (M-N)

Up Comment Line (M-P)

Moves to the comment column
on the next line. Starts a
comment if none is there.

Moves to the comment column

August 1986

251

Program Development Tools and Techniques

on the previous line. Starts a
comment if none is there.

Indent New Comment Line (M-LINE)

Fill Long Comment (M-H)

Set Comment Column (c-H j)

VVhen executed within a
comment, inserts a newline and
starts a comment on the next
line with the same indentation
as the previous line.

VVhen executed within a
comment that begins at the left
margin, fills the comment.

Sets the column in which
comments begin to be the
column that represents the
current cursor position. With an
argument, sets the comment
column to the position of the
previous comment and then
creates or aligns a comment on
the current line.

28.4.2 Aligning Code
Code that you write sequentially will remain properly aligned if
you consistently press LI NE (instead of RET URN) to add new lines.
VVhen you edit code, you might need to realign it. C-M-Q and
C-M-' are useful for aligning definitions and other Lisp
expressions.

Reference
Indent New Line (LINE) Adds a newline and indents as

appropriate for the current level
of Lisp structure.

Indent For Lisp (TA8 or C-M-T A8)Aligns the current line. If the
line is blank, indents as
appropriate for the current level
of Lisp structure.

Indent Sexp (C-M-Q) Aligns the Lisp expression
following the cursor.

Aligns the current region.

252

Program Development Utilities August 1986

28.4.3 Balancing Parentheses
When the cursor is to the right of a close parenthesis, Zmacs
flashes the corresponding open parenthesis. The flashing open
parentheses, along with proper indentation, can indicate whether
or not parentheses are balanced. Improperly aligned code (after
you use a C-M-Q command, for instance) is often a sign of
unbalanced parentheses.

To check for unbalanced parentheses in an entire buffer, use Find
Unbalanced Parentheses (M->O. Zmacs can check source files for
unbalanced parentheses when you save the files. If a file contains
unbalanced parentheses, Zmacs can notify you and ask whether or
not to save the file anyway. To put this feature into effect, place
the following code in an init file:

(login-forms
(setf zwei:*check-unbalanced-parentheses-when-saving* t»

Reference
Find Unbalanced Parentheses (M->O

Searches the buffer for
unbalanced parentheses. Ignores
parentheses in comments and
strings.

28.5 Program Development: Drawing Stripes

So far the sample program outlines all the arrows in. the figure. The next task is
to draw the diagonal stripes. To keep this stage as simple as possible, we ignore
the differences in spacing and thickness of lines in the figure. We draw each
stripe from upper left to lower right. We draw the stripes in five steps:

1. Determine the distance between stripes. We first define a
constant, *do-the-stripes*, that we bind to t when we want to
draw stripes and nil when we want only outlines. We define
another constant, *stripe-distance*, to contain the horizontal
distance between stripes. Let's assume we want 64 stripes in the
large arrowhead. We divide the initial *top-edge* by 64 to obtain
stripe-distance .

August 1986

253

Program Development Tools and Techniques

(defconst *do-the-stripes* t
"When t, permits striping of the figure")

(defconst *stripe-distance* nil
"Horizontal distance between stripes in the large arrow")

(defun draw-arrow-graphic (*top-edge* *p0x* *p0y*)
(let «*top-edge-2* (II *top-edge* 2»

(*top-edge-4* (II *top-edge* 4»
" Compute horizontal distance between stripes in the
;; large arrow, assuming 64 stripes in the large
;; arrowhead.
(*stripe-distance* (II *top-edge* 64»)

(draw-big-arrow) jDraw large arrow
" Length of the top-edge for the first small arrow is half the
jj length for the large arrow. Bind new coordinates for the top
jj right point of the small arrow.
(let «*top-edge* *top-edge-2*)

(*p0x* (- *p0x* *top-edge-2*»
(*p0y* (- *p0y* *top-edge-2*»
(*depth* 0»

(do-arrows»» j Draw small arrows

2. Stripe the head of the large arrow. We define a function,
stripe-arrowhead, and call it from draw-big-arrow. The function
loops to calculate the coordinates of the endpoints of the stripes,
starting in the upper right corner and decrementing x and y by
stripe-distance .

(defun draw-big-arrow ()
;; Determine coordinates of arrowhead vertexes
(multiple-value-bind

(*p1x* *p1y* *p2x* *p2y* *p5x* *p5y* *p6x* *p6y*)
(compute-arrowhead-points)

;; Determine coordinates of shaft vertexes
(multiple-value-bind (*p3x* *p3y* *p4x* *p4y*)

(compute-arrow-shaft-points)
(draw-big-outline) ;Outline arrow
(when *do-the-stripes*

(stripe-arrowhead»») ;Stripe head

254

Program Development Utilities August 1986

'"
Function to control striping the head of each arrow.

'" Determines coordinates of starting and ending points for each
stripe. Calls DRAW-ARROWHEAD-LINES to draw each stripe.

(defun stripe-arrowhead ()
;; Find x-coord of top of last stripe to be drawn
(loop with last-x = (- *p0x* *top-edge*)

;; Find starting x-coord for each stripe, decrementing
;; by distance between stripes. Stop at last x-coord.
for start-x from *p0x* by *stripe-distance* above last-x
;; Find ending y-coord for each stripe, decrementing by
;; distance between stripes.
for end-y downfrom *p0y* by *stripe-distance*
" Draw a stripe
do (draw-arrowhead-lines start-x end-y)))

;;; Draws a stripe in an arrowhead. Arguments are the x-coord
of the starting point and the y-coord of the ending point " ,

'"
of a stripe.

(defun draw-arrowhead-lines (start-x end-y)
(send *dest* ':show-lines start-x *p0y* *p0x* end-y))

3. Stripe the exposed portions of the shaft of the large arrow. The
shaft consists of a series of descending triangles along the left
and right sides. We define a function, stripe-big-arrow-shaft, to
control the striping. We then define six functions, three to stripe
the left side and three to stripe the right. The first function for
each side iterates through the triangles that make up the shaft.
The second function stripes one triangle. The third function
draws one stripe.

August 1986

255

Program Development Tools and Techniques

(defun draw-big-arrow ()

'"
'"
'"

;; Determine coordinates of arrowhead vertexes
(mu1tip1e-va1ue-bind

(*p1x* *p1y* *p2x* *p2y* *p5x* *p5y* *p6x* *p6y*)
(compute-arrowhead-points)

;; Determine coordinates of shaft vertexes
(mu1tip1e-va1ue-bind (*p3x* *p3y* *p4x* *p4y*)

(compute-arrow-shaft-points)
(draw-big-out1ine)
(when *do-the-stripes*

(stripe-arrowhead)
(stripe-big-arrow-shaft)))))

;Out1ine arrow

;Stripe head
;Stripe shaft

Function to control striping the shaft of the large arrow.
Just calls STRIPE-BIG-ARROW-SHAFT-LEFT to stripe the left side
and STRIPE-BIG-ARROW-SHAFT-RIGHT to stripe the right side.

(defun stripe-big-arrow-shaft ()
(stripe-big-arrow-shaft-1eft)
(stripe-big-arrow-shaft-right))

'" Function to control striping left side of big arrow's shaft.
'" Iterates over the triangles that make up the shaft. Determines
'" coordinates of the apex and bottom right point of each triangle.
'" Calls DRAW-BIG-ARROW-SHAFT-STRIPES-LEFT to stripe each triangle.
(defun stripe-big-arrow-shaft-left ()

;; Set up a counter for depth. Don't exceed maximum recursion
;; 1 eve1 .
(loop for shaft-depth from 0 below *max-depth*

;; Find current top edge and its fractions
for top-edge = *top-edge* then (II top-edge 2)
for top-edge-2 = (II top-edge 2)
for top-edge-4 = (II top-edge 4)
;; Find coordinates of apex of triangle
for apex-x = *p2x* then (- apex-x top-edge-2)
for apex-y = *p2y* then (- apex-y top-edge-2)
;; Find x-coord of bottom right vertex
for right-x = (+ apex-x top-edge-4)
;; Find y-coord of bottom edge of triangle
for bottom-y = (- apex-y top-edge-4)
" Stripe each triangle
do (draw-big-arrow-shaft-stripes-1eft

top-edge-4 apex-x apex-y right-x bottom-y)))

256

Program Development Utilities August 1986

" ,
" ,
, , ,

" ,
" ,

Stripes each triangle in left side of big arrow's shaft.
Arguments are one-fourth current top edge, x- and y-coords
of apex of triangle, x- and y-coords of bottom right vertex.
Determines coordinates of starting and ending points for
each stripe. Calls DRAW-8IG-ARROW-SHAFT-LINES-LEFT to
draw the lines that make up each stripe.

(defun draw-big-arrow-shaft-s~ripes-1eft
(top-edge-4 apex-x apex-y right-x bottom-y)

(loop with half-distance = (II *stripe-distance* 2)
;; Find x-coord of last stripe in triangle
with last-x = (- apex-x top-edge-4)
" Find x-coord of top of each stripe, decrementing
;; from the apex by HALF the horizontal distance
;; between stripes. Stop at last stripe.
for start-x from apex-x by half-distance above 1ast-x
;; Find y-coord of top of stripe
for start-y down from apex-y by half-distance
;; Find x-coord of endpoint of stripe
for end~x downfrom right-x by *stripe-distance*
" Draw a stripe
do (draw-big-arrow-shaft-1ines-1eft

start-x start-y end-x bottom-y»)

'" Draws a stripe on the left side of the big arrow's shaft.
'" Arguments are the coordinates of the starting and ending
'" points of each stripe.
(de fun draw-big-arrow-shaft-1ines-left

(start-x start-y end-x end-y)
(send *dest* ':show-lines

start-x start-y end-x end-y»

August 1986

257

Program Development Tools and Techniques

'" Function to control striping right side of big arrow's shaft.
Iterates over the triangles that make up the shaft. Determines

'" coordinates of the top point of each triangle. Calls
'" DRAW-BIG-ARROW-SHAFT-STRIPES-RIGHT to stripe each triangle.
(defun stripe-big-arrow-shaft-right ()

;; Set up a counter for depth. Don't exceed maximum recursion
;; 1 evel .
(loop for shaft-depth from 0 below *max-depth*

;; Find new top edge and its fractions
for top-edge = *top-edge* then (II top-edge 2)
for top-edge-2 = (II top-edge 2)
for top-edge-4 = (II top-edge 4)
;; Find coords of top point of triangle
for start-x = (+ *p2x* top-edge-4)
for top-y = (- *p2y* *top-edge-4*)
then (- top-y top-edge-2 top-edge-4)
" Stripe the triangle
do (draw-big-arrow-shaft-stripes-right

top-edge-2 top-edge-4 start-x top-y))

Stripes each triangle in right side of big arrow's shaft.
Arguments are one-half and one-fourth of current top edge, and
coords of top point of the triangle. Determines coordinates of
starting and ending points for each stripe. Calls
DRAW-BIG-ARROW-SHAFT-LINES-RIGHT to draw a stripe.

(de fun draw-big-arrow-shaft-stripes-right
(top-edge-2 top-edge-4 start-x top-y)

(loop with half-distance = (II *stripe-distance* 2)
;; Find y-coord of last stripe in triangle
with last-y = (- top-y top-edge-2)
;; Find y-coord of starting point of stripe. Don't go
;; past the end of the triangle.
for start-y from top-y by *stripe-distance* above last-y
;; Find coords of ending point of the stripe, decrementing
;; by HALF the horizontal distance between stripes
for end-x downfrom (+ start-x top-edge-4) by half-distance
for end-y downfrom (- top-y top-edge-4) by half-distance

Draw a stripe
do (draw-big-arrow-shaft-lines-right

start-x start-y end-x end-y»)

258

Program Development Utilities August 1986

'" Draws a stripe on the right side of the big arrow's shaft.
Arguments are the coordinates of the starting and ending points

'" of the stripe.
(defun draw-big-arrow-shaft-lines-right

(start-x start-y end-x end-y)
(send *dest* ':show-lines

start-x start-y end-x end-y))

4. Stripe the heads of the small arrows. We call stripe-arrowhead
from draw-arrow.

(defun draw-arrow ()
;; Calculate coordinates of arrowhead vertexes
(multiple-value-bind

(*p1x* ~p1y* *p2x* *p2y* *p5x* *p5y* *p6x* *p6y*)
(compute-arrowhead-points)

(draw-outline)
(when *do-the-stripes*

(stripe-arrowhead))))

;Outline arrowhead

;Stripe head

5. Stripe the exposed shafts of the small arrows. Like the shaft of
the large arrow, these shafts are composed of a series of
descending triangles. We define three functions:
stripe-arrow-shaft iterates through the triangles that make up a
shaft; draw-arrow-shaft-stripes stripes one triangle; and
draw-arrow-shaft-lines draws one stripe. We call
stripe-arrow-shaft from draw-arrow.

(defun draw-arrow ()
;; Calculate coordinates of arrowhead vertexes
(multiple-value-bind

(*p1x* *p1y* *p2x* *p2y* *p5x* *p5y* *p6x* *p6y*)
(compute-arrowhead-points)

(draw-outline)
(when *do-the-stripes*

(stripe-arrowhead)
(stripe-arrow-shaft))))

;Outline arrowhead

;Stripe head
;Stripe shaft

August 1986

" ,
, , ,
" ,
" ,

259

Program Development Tools and Techniques

Function to control striping the shaft of a small arrow.
Iterates over the descending triangles that make up the shaft.
Calculates the coordinates of the top left and bottom right
vertexes of each triangle. Calls DRAW-ARROW-SHAFT-STRIPES to

'" stripe each triangle.
(de fun stripe-arrow-shaft ()

;; Set up a counter for depth. Don't exceed maximum
;; recursion level.
(loop for shaft-depth from *depth* below *max-depth*

;; Calculate fractions of new top edge

" ,
, , ,

" ,
" ,
" ,
" ,

for top-edge-2 = *top-edge-2* then (II top-edge-2 2)
for top-edge-4 = (II top-edge-2 2)
;; Find coords of top left point of triangle
for left-x = *p2x* then (- left-x top-edge-4)
for top-y = *p2y* then (- top-y top-edge-2 top-edge-4)
;; Find coords of bottom right point of triangle
for right-x = (+ left-x top-edge-2)
for bottom-y = (- top-y top-edge-2)

Stripe the triangle
do (draw-arrow-shaft-stripes

left-x top-y right-x bottom-y)))

Stripes each triangle in the shaft of a small arrow.
Arguments are coordinates of the top left and bottom
right points of the triangle. Calculates the y-coord
of the starting point and the x-coord of the ending point
of each stripe. Calls DRAW-ARROW-SHAFT-LINES to draw the
stripe.

(defun draw-arrow-shaft-stripes
(left-x top-y right-x bottom-y)

;; Find y-coord of starting point of stripe. Don't go
;; below the bottom of the triangle.
(loop for start-y from top-y by *stripe-distance* above bottom-y

;; Find x-coord of ending point of the stripe
for end-x downfrom right-x by *stripe-distance*
" Draw a stripe
do (draw-arrow-shaft-lines

left-x start-y end-x bottom-y)))

260

Program Development Utilities August 1986

'"
Draws a stripe in the shaft of a small arrow. Arguments are

'"
the coordinates of the starting and ending points of the
stripe.

(defun draw-arrow-shaft-lines
(left-x start-y end-x bottom-y)

(send *dest* ':show-lines
left-x start-y end-x bottom-y»

Figure 3 shows the output of the program, with stripes of even spacing and
thickness.

This stage in program development differs from the beginning of the program in
two ways:

• As we add new functions, we need to refer to existing code for
such information as the order of arguments in argument lists and
the values of variables and constants. See the section "Finding
Out About Existing Code", page 260.

• We must start to change existing code, adding function calls and
new arguments. These changes require increasing use of
facilities for editing code. See the section "Editing Code", page
282.

28.6 Finding Out About Existing Code

When you write or edit programs, you often need to find characteristics of existing
code. If you write programs incrementally, you need to find existing definitions,
argument lists, and values. To maintain modularity, you must know how new code
should interact with previously written modules. If you want to incorporate parts
of the Symbolics system in your programs, you often have to refer to system
source code.

Zmacs and Zetalisp have many facilities for retrieving information about Lisp
objects and for displaying and editing source code. This section describes features
especially useful for writing and editing code. We discuss facilities for learning
about Lisp objects, symbols, variables, functions, and pathnames.

28.6.1 Finding Out About Objects
describe displays information about a Lisp object in a form that
depends on the object's type. For example, for a special variable,
describe displays the value, package, and properties, including
documentation, pathname of the source file, and Zmacs buffer
sectioning node.

261

August 1986 Program Development Tools and Techniques

Figure 3. Program output with stripes of even spacing and density.

262

Program Development Utilities August 1986

An interactive, window-oriented version of describe is the
Inspector. See the section " Using the Inspector", page 335.

describe does not display array elements. For that you can use
the Inspector or zl:listarray.

Example

(describe '*top-edge*)

The value of *TOP-EDGE* is NIL
TOP-EDGE ;5 ;n the GRAPHICS package.
TOP-EDGE has property DOCUMENTATION:

"Length of the top edge of the arrow"
TOP-EDGE has property SPECIAL:

#<UNIX-PATHNAME "VIXEN: //dess//doc//workstyles//pcodex.H">
#<UNIX-PATHNAME "VIXEN: //dess//doc//workstyles//pcodex.H">,

an object of flavor FS:UNIX-PATHNAHE,
has instance variable values:
FS:HOST: #<UNIX-CHAOS-HOST SCRC-VIXEN>
FS:DEVICE: :UNSPECIFIC
FS:DIRECTORV:
FS:NAHE:
FS:TVPE:
FS:VERSION:

("des~" "doc" "workstyles")
"pcodex"
NIL
:UNSPECIFIC

SI:PROPERTV-LIST: (BASE 10 :MODE ...)
FS:STRING-FOR-PRINTING: "VIXEN: //dess//doc//workstyles//pcodex.H"
FS:STRING-FOR-HOST: "//dess//doc//workstyles//pcodex.H"
FS:STRING-FOR-EDITOR: NIL
FS:STRING-FOR-DIRED: NIL
FS:STRING-FOR-DIRECTORV: NIL

TOP-EDGE has property SOURCE-FILE-NAME:
«DEFVAR #<UNIX-PATHNAME

"VIXEN: //dess//doc//workstyles//pcodex.H"»)
«DEFVAR #<UNIX-PATHNAME

"VIXEN: //dess//doc//workstyles//pcodex.H"») is a list

TOP-EDGE has property ZWEI:ZHACS-BUFFERS:
«DEFVAR #<SECTION-NODE Variable *TOP-EDGE* 27316607»)
«DEFVAR #<SECTION-NODE Variable *TOP-EDGE* 27316607») is a list

August 1986

Reference
(describe object)

(listarray array)

263

Program Development Tools and Techniques

Displays information about object
in a form that depends on the
object's type. For named
structures, displays the symbolic
names and contents of the
entries in the structure.

Returns a list whose elements
are the elements of array.

28.6.2 Finding Out About Symbols
Several Zmacs commands and Lisp functions find the name of a
symbol or retrieve information about it. Unless you specify a
package, most of these commands search the global package and
its inferiors. It now takes several minutes to search all these
packages; if you don't know which one the symbol is in, you
might want to use functions like zl:apropos and who-calls only
as a last resort. For more on the meanings and default values of
arguments to these functions: See the section "Getting Help" in
User IS Guide to Symbolics Computers.

Example
In defining the function stripe-big-arrow-shaft-Ieft, we need to
use the constant *max-depth*, but we remember only that its
name contains "depth". We use either £"I-ESCAPE (to evaluate a
form in the editor minibuffer) or SELECT L (to select a Lisp
Listener) and then evaluate:

(apropos "depth" 'graphics)

GRAPHICS:DEPTH
GRAPHICS:*MAX-DEPTH* - Bound
GRAPHICS: SHAFT-DEPTH
GRAPHICS:*DEPTH* - Bound
(*DEPTH* SHAFT-DEPTH *MAX-DEPTH* DEPTH)

Example
After compiling stripe-arrowhead we want to test the program as

264

Program Development Utilities August 1986

written so far, but we forget which function calls
draw-arrow-graphic:

(who-calls 'draw-arrow-graphic 'graphics)

DO-ARROW calls DRAW-ARROW-GRAPHIC as a function.
(DO-ARROW)

You can also find the callers of a function with List Callers (M-H).
See the section "Finding Out About Functions", page 265.

Reference
(zl:apropos string package inferiors superiors)

Where Is Symbol (M-H)

(where-is string package)

Displays the names of all
symbols whose names contain
string. Indicates whether or not
the symbol is bound. Displays
argument lists of functions.

Displays the names of packages
that contain the specified
symbol.

Displays the names of packages
that contain a symbol whose
print name is string.

(who-calls symbol package inferiors superiors)
Displays information about uses
of symbol as function, variable,
or constant. Returns a list of
the names of callers of symbol.

(what-files-call symbol package) Displays names of files that
contain uses of symbol as
function, variable, or constant.

(zl:plist symbol)

List Matching Symbols (M-H)

Returns the list representing the
property list of symbol.

Displays the names of symbols
for which a predicate lambda
expression returns something
other than nil. Prompts for a
predicate for the expression

August 1986

265

Program Development Tools and Techniques

(lambda (symbol) predicate).
By default, searches the current
package; with an argument of
c-U, searches all packages; with
an argument of c-U c-U,
prompts for the name of a
package. Press c-. to edit
definitions of symbols that
satisfy the predicate.

28.6.3 Finding Out About Variables
Describe Variable At Point (c-sh-V) is a useful command to
display information about a variable. It tells you whether or not
the variable is bound, whether it has been declared special, and
the file, if any, that contains the declaration. You can find the
value of a variable by evaluating it in a Lisp Listener. If you
have added a documentation string to the variable declaration,
you can retrieve the string with c-sh-V or with c-sh-D, M-sh-D,
or documentation. See the section "Finding Out About
Functions", page 265.

Example
In writing stripe-arrow-shaft we want to find out whether or not
max-depth is bound. c-sh-V displays the following information:

MAX-DEPTH has a value and is declared special by file
VIXEN: /dess/doc/workstyles/pcodex.l
Number of levels of recursion

Reference
Describe Variable At Point (c-sh-V)

28.6.4 Finding Out About Functions

Indicates whether or not the
variable is declared special, is
bound, or is documented by
defvar or zl:defconst.

Many Zmacs and Zetalisp facilities for finding out about functions
apply both to functions defined by defun and to objects defined by
other special forms and macros that begin with "def'.

266

Program Development Utilities August 1986

28.6.4.1 Definitions

Edit Definition (M-.) is a powerful command to find and edit
definitions of functions and other objects. It is particularly
valuable for finding source code, including system code, that is
stored in a file other than that associated with the current buffer.
It finds multiple definitions when, for example, a symbol is
defined as a function, a variable, and a flavor. It maintains a list
of these definitions in a support buffer, where you can use M-. to
return to the definitions even when you are finished editing.

For a description of how to use Edit Definition (M-.) to edit
definitions of flavor methods: See the section "Methods", page
378.

Example
We have written stripe-arrowhead and want to call it from
draw-big-arrow. We use M-. to position the cursor at the
definition of draw-big-arrow.

Reference
Edit Definition (M-.)

28.6.4.2 Names

Selects a buffer containing a
function definition, reading in
the source file if necessary. You
can specify a definition by typing
the name into the minibuffer or
clicking on a name already in
the buffer. Offers name
completion for definitions already
in buffers. With a numeric
argument, selects the next
definition satisfying the most
recently specified name.

Often you know only part of a function name and need to find the
complete name. Use Function Apropos (M-H).

Example
We want to call stripe-arrowhead from draw-arrow, but we
remember only that draw-arrow contains the string "arrow". We
use Function Apropos (M-H) to display the names of functions that
contain "arrow". We click left on the name draw-arrow to edit
its definition.

August 1986

267

Program Development Tools and Techniques

m-X Function Apropos arrow

Functions matching arrow:
DO-ARROW
DO-ARROWS
DRAW-ARROW
DRAW-ARROW-GRAPHIC
DRAW-ARROWHEAD-LINES
DRAW-BIG-ARROW
DRAW-BIG-ARROW-SHAFT-LINES-LEFT
DRAW-BIG-ARROW-SHAFT-LINES-RIGHT
DRAW-BIG-ARROW-SHAFT-STRIPES-LEFT
DRAW-BIG-ARROW-SHAFT-STRIPES-RIGHT
STRIPE-ARROWHEAD
STRIPE-BIG-ARROW-SHAFT
STRIPE-BIG-ARROW-SHAFT-LEFT
STRIPE-BIG-ARROW-SHAFT-RIGHT

Reference
Function Apropos (n-X)

28.6.4.3 Documentation Strings

Displays the names of functions
that contain a string. Press c-.
or click left on names in the

. display to edit the definitions of
the functions listed.

Function definitions can include documentation strings. When
you need to know the purpose of the function, you can retrieve
the documentation with c-sh-D, n-sh-D, or documentation.

Example
We wrote a long source-code comment at the beginning of the
definition of draw-arrow-graphic. We could have made this
comment a documentation string:

268

Program Development Utilities August 1986

(defun draw-arrow-graphic (*top-edge* *p0x* *p0y*)
"Function controlling the calculation module.

Controls calculation of the coordinates of the endpoints of the lines
that make up the figure. The three arguments are the length of the top
edge and the coordinates of the top right point of the large arrow.
DRAW-ARROW-GRAPHIC calls DRAW-BIG-ARROW to draw the large arrow and then
calls DO-ARROWS to draw the smaller ones."

(let «*top-edge-2* (II *top-edge* 2))
(*top-edge-4* (II *top-edge* 4))
" Compute horizontal distance between stripes in the
;; large arrow, assuming 64 stripes in the large
;; arrowhead.
(*stripe-distance* (II *top-edge* 64)))

(draw-bi g-arrow) ; Draw 1 arge arrow
" Length of the top-edge for the first small arrow is half the
;; length for the large arrow. Bind new coordinates for the top
;; right point of the small arrow.
(let «*top-edge* *top-edge-2*)

(*p0x* (- *p0x* *top-edge-2*))
(*p0y* (- *p0y* *top-edge-2*))
(*depth* 0))

(do-arrows)))) ; Draw small arrows

Later, when defining do-arrow, we add a call to
draw-arrow-graphic. We want to be sure that this is the control
function for the calculation module. We position the cursor at
the name draw-arrow-graphic inside the definition of do-arrow
and use M-sh-D to display the documentation for
draw-arrow-graphic:

DRAW-ARROW-GRAPHIC: (*TOP-EDGE* *P0X* *P0Y*)
Function controlling the calculation module.
Controls calculation of the coordinates of the endpoints of the lines
that make up the figure. The three arguments are the length of the top
edge and the coordinates of the top right point of the large arrow.
DRAW-ARROW-GRAPHIC calls DRAW-BIG-ARROW to draw the large arrow and then
calls DO-ARROWS to draw the smaller ones.

c-sh-D displays the summary documentation:

August 1986

269

Program Development Tools and Techniques

DRAW-ARROW-GRAPHIC: Function controlling the calculation module.

Reference
Show Documentation (M-sh-D) Displays the function's

documentation.

Long Documentation (c-sh-D) Displays the function's
documentation string.

<documentation function> Displays the function's
documentation string.

28.6.4.4 Argument Lists

Quick Arglist (c-sh-A) and arglist retrieve the argument list for
an ordinary function, a generic function, or a send form with a
constant message name. What these facilities display depends on
the nature of the function, whether or not it has been compiled,
and what options the function includes. For details: See the
function arglist in Symbolics Common Lisp: Language Dictionary.
See the section "Getting Help" in User's Guide to Symbolics
Computers.

Example
We are editing the definition of do-arrow to add a call to
draw-arrow-graphic. We want to see the argument list for
draw-arrow-graphic. We position the cursor at the name
draw-arrow-graphic in the definition of do-arrow and use
c-sh-A:

Reference
Quick Arglist (c-sh-A) Displays a representation of the

argument list of the current
function. With a numeric
argument, you can type the
name of the function into the
minibuffer or click on a function
name in the buffer.

270

Program Development Utilities August 1986

(arglist function)

28.6.4.5 Callers

Displays a representation of the
function's argument list.

When you change a function definition, you sometimes need to
make complementary changes in the function's callers. Four
Zmacs commands find the callers of a function. These commands,
like who-calls, now take several minutes to search all packages
for callers. (For the example program, we need to search only
the graphics package.) By default, these commands search the
current package. With an argument of c-U, they search all
packages. You can specify the packages to be searched by giving
the commands an argument of c-U c-U.

Example
We decide to change the order of the arguments to
draw-arrow-graphic. We want to be sure to change all the
callers of draw-arrow-graphic to call the function with
arguments in the correct order. We use Edit Callers (M-H).

Reference
List Callers (M-H)

Multiple List Callers (M-H)

Edit Callers (M-H)

MUltiple Edit Callers (M-H)

Lists functions that call the
specified function. Press c-. to
edit the definitions of the
functions listed.

Lists functions that call the
specified functions. Continues
prompting for function names
until you press only RET URN.
Press c-. to edit the definitions
of the functions listed.

Prepares for editing the
definitions of functions that call
the specified function. Press
c-. to edit subsequent
definitions.

Prepares for editing the
definitions of functions that call
the specified functions.
Continues prompting for function
names until you press only

August 1986

271

Program Development Tools and Techniques

RET URN. Press c-. to edit
subsequent definitions.

28.6.5 Finding Out About Path names
Zmacs provides several ways of finding the name of a file. If you
just need the name of a file and have some idea what directory it
is in, you can use c-X c-D with an argument of c-U or View
Directory (n-X) to display a directory. If you want to operate on
files in a directory, you can use c-X D with an argument of c-U
or Dired (n-X) to edit a directory. If you want to find a source
file but don't know what directory it is in, you might remember
the name of a function defined in the file. In that case, you
might be able to use n-. to find the file.

Example
Mter editing the definitions in the calculation module, we want to
find the output module to edit the definition of do-arrow. We
forget the name of the file, but we remember the name of the
directory. We can use c-U c-X c-D to display the directory. If
we have interned do-arrow or read its file into a buffer, we can
use n-. to find do-arrow directly.

Reference
Display Directory (c-X c-D)

View Directory (n-X)

REFRESHr Dired (c-X D)

Dired (n-X)

Displays the current buffer's
file's directory. With an
argument of c-U, prompts for a
directory to display.

Lists a directory.

Edits the current buffer's file's
directory. With an argument of
c-U, prompts for a directory to
edit. Displays the files in the
directory. You can use single
character commands to operate
on the files.

Edits a directory. Displays the
files in the directory. You can
use single-character commands
to operate on the files.

272

Program Development Utilities August 1986

28.7 Program Development: Refining Stripe Density and Spacing

At this stage of development, the program outlines the arrows in the figure and
fills them with stripes of uniform thickness and spacing. In the finished figure,
stripe thickness or density increases from upper right to lower left within each
arrow, and stripe spacing varies among the levels of the figure. We adjust the
stripe spacing by replacing the constant distance between stripes by a variable.
We correct the stripe density by drawing mUltiple adjacent lines for each stripe.

We adjust the stripe spacing in three steps:

1. Define a variable, *stripe-d*, to represent the distance between
stripes for each arrow.

(defvar *stripe-d* nil
"Horizontal distance between stripes for each arrow")

2. Calculate the value of *stripe-d* for each arrow. For the large
arrow, this is just *stripe-distance*. For the small arrows, we
need to call a new function, compute-stripe-d, from draw-arrow.
compute-stripe-d calculates *stripe-d* as a fraction of
stripe-distance that depends on the level of recursion. It
ensures that *stripe-d* divides *top-edge* evenly and that
stripe-d is never less than 3.

(defun draw-big-arrow ()
;; Determine coordinates of arrowhead vertexes
(multiple-value-bind

(*p1x* *p1y* *p2x* *p2y* *p5x* *p5y* *p6x* *p6y*)
(compute-arrowhead-points)

;; Determine coordinates of shaft vertexes
(multiple-value-bind (*p3x* *p3y* *p4x* *p4y*)

(compute-arrow-shaft-points)
(draw-big-outline)
(when *do-the-stripes*

;; Bind distance between stripes
(let «*stripe-d* *stripe-distance*»

(stripe-arrowhead)
(stripe-big-arrow-shaft»»»

;Outline arrow

;Stripe head
;Stripe shaft

August 1986

273

Program Development Tools and Techniques

(defun draw-arrow ()
;; Calculate coordinates of arrowhead vertexes
(multiple-value-bind

" ,
" ,

(*p1x* *p1y* *p2x* *p2y* *p5x* *p5y* *p6x* *p6y*)
(compute-arrowhead-points)

(draw-outline)
(when *do-the-stripes*

;; Calculate distance between stripes
(let «*stripe-d* (compute-stripe-d»)

(stripe-arrowhead)
(stripe-arrow-shaft»»)

;Outline arrowhead

;Stripe head
;Stripe shaft

Calculates horizontal distance between stripes.
Distance is a fraction of the distance between stripes for the

'" large arrow. The divisor depends on the level of recursion.
Distance divides length of top edge evenly when possible to

'" maintain continuity between head and shaft of arrow.
(de fun compute-stripe-d ()

;; Distance should be at least 3 pixels so that there is some
;; white space between lines.
(if (~ *stripe-distance* 3)

3

;; First find a fraction of *STRIPE-DISTANCE* that depends
;; on recursion level
(loop for dist = (fixr (II *stripe-distance*

(selectq *depth*
(0 2)

(1 4)

(2 2)

(3 1.5)
(4 1.5)
(otherwise 2»»

;; Increment if it doesn't divide *TOP-EDGE* evenly
then (1+ dist)
when (= 0 (\ *top-edge* dist»
" Stop when no remainder. Don't return a value

less than 3.
do (return (if (~ dist 3) 3 dist»»)

3. Replace *stripe-distance* with *stripe-d* in the functions
stripe-arrowhead and draw-arrow-shaft-stripes.

. ... ,.,

274

Program Development Utilities August 1986

(defun stripe-arrowhead ()
;; Find x-coord of top of last stripe to be drawn
(loop with last-x = (- *pBx* *top-edge*)

;; Find starting x-coord for each stripe, decrementing
;; by distance between stripes. Stop at last x-coord.
for start-x from *pBx* by *stripe-d* above last-x
;; Find ending y-coord for each stripe, decrementing by
;; distance between stripes.
for end-y down from *pBy* by *stripe-d*
" Draw a stripe
do (draw-arrowhead-lines start-x end-y»)

(defun draw-arrow-shaft-stripes
(left-x top-y right-x bottom-y)

;; Find y-coord of starting point of stripe. Don't go
;; below the bottom of the triangle.
(loop for start-y from top-y by *stripe-d* above bottom-y

;; Find x-coord of ending point of the stripe
for end-x downfrom right-x by *stripe-d*
" Draw a stripe
do (draw-arrow-shaft-lines

left-x start-y end-x bottom-y»)

We adjust the stripe density in three steps:

1. Define two new constants for each arrow, *dl* and *d2*. *dl *
represents the stripe density, or the proportion of the distance
between stripes that is black, at the upper right of each arrow.
d2 represents the density at lower left for each arrow. We
estimate *dl* to be 0.15 and *d2* to be 0.75.

(defconst *d1* B.15
"Proportion of distance between upper right stripes that is black")

(defconst *d2* B.75
"Proportion of distance between lower left stripes that is black")

2. Define a function, compute-nlines, that returns the number of
adjacent lines that make up a stripe to be drawn. This function
calls another, compute-dens, to calculate the proportion of the
distance between stripes that is black. This proportion is a

August 1986

275

Program Development Tools and Techniques

function of the position of the stripe between the upper right and
lower left of the arrow. compute-nlines multiplies this
proportion by *stripe-d* to determine the number of lines that
make up the stripe. This number must be at least one and less
than *stripe-d* minus one.

The argument to compute-nlines represents the horizontal
position of the stripe to be drawn between the upper right and
lower left of the arrow. Imagine the top edge of each arrow
projected to the left beyond the arrowhead. Imagine each stripe
projected to the upper left until it intersects with the extended
top edge. The argument to compute-nlines is the x-coordinate of
this intersection. *pOx* is the x-coordinate of this intersection for
the top right corner of each arrow, where the stripe density is
dl. *x2* is the x-coordinate of this intersection for the lower
left stripe in each arrow, where the density is *d2*. The x
coordinate for each stripe must be between *pOx* and *x2*, and
the density must be between *dl* and *d2*.

(defvar *x2l1C ni 1
HX-coordinate of projection of lower left stripe on top edge H

)

(defun draw-big-arrow ()
;; Determine coordinates of arrowhead vertexes
(multiple-value-bind

(lICp1xllC lICp1yllC lICp2xllC *p2yllC *p5xllC lICp5yllC *p6xllC lICp6yllC)
(compute-arrowhead-points)

;; Determine coordinates of shaft vertexes
(multiple-value-bind (lICp3xllC lICp3yllC *p4xllC *p4yllC)

(compute-arrow-shaft-points)
(draw-big-outline) ;Outline arrow
(when lICdo-the-stripesllC

;; Bind distance between stripes and x-coord of
;; projection of last stripe onto top edge
(let «lICstripe-dllC lICstripe-distance*)

(lICx2* (- lICp9x* lICtop-edgellC *top-edgellC»)
(stripe-arrowhead) ;Stripe head
(stripe-big-arrow-shaft»»» ;Stripe sh~ft

276

Program Development Utilities August 1986

(de fun draw-arrow ()
;; Calculate coordinates of arrowhead vertexes
(multiple-value-bind

(*p1x* *p1y* *p2x* *p2y* *p5x* *p5y* *p6x* *p6y*)
(compute-arrowhead-points)

(draw-outline)
(when *do-the-stripes*

;Outline arrowhead

;; Calculate distance between stripes and x-coord of
;; projection of last stripe onto top edge
(let «*stripe-d* (compute-stripe-d»

(*x2* (- *p9x* *top-edge* *top-edge*»)
(stripe-arrowhead) ;Stripe head
(stripe-arrow-shaft»») ;Stripe shaft

Calculates the number of lines that compose each stripe.
Calls COMPUTE-DENS to calculate the proportion of distance
between stripes to be filled, then multiplies by the actual
distance between stripes. Makes sure that there is at least
one line and that there aren't too many lines to leave some

", white space.
(defun compute-nlines (x)

;; Call COMPUTE-DENS and multiply result by *stripe-d*
(let «nl (fix (* *stripe-d* (compute-dens x»»)

" ,
" ,

;; Supply at least one line
(cond «~ nl 1) 1)

;; But leave some white space between lines
«~ nl (- *stripe-d* 1» (- *stripe-d* 2»
(t nl»»

Calculates proportion of distance filled in between each stripe.
The argument is the x-coordinate of the projection of the current
stripe onto the line formed by the top edge. Determines where the
projection of the current stripe is on this line in r~lation to the
distance from first to last stripes in the arrow. Multiplies this

'" fraction by the difference between densities of first and last
", stripes. Finally, adds the density of the first stripe.
(defun compute-dens (x)

(+ *d1* (* (- *d2* *d1*)
(II (- x *p9x*) (float (- *x2* *p9x*»»»

3. For each function that draws a stripe, replace the sending of one
:show-lines message by a loop that might send several.

August 1986

277

Program Development Tools and Techniques

Determine the number of messages each function should send by
calling compute-nlines.

(defun stripe-arrowhead ()
ii Find x-coord of top of last stripe to be drawn
(loop with last-x = (- *p8x* *top-edge*)

ii Find starting x-coord for each stripe, decrementing
ii by distance between stripes. Stop at last x-coord.
for start-x from *p8x* by *stripe-d* above last-x
ii Find ending y-coord for each stripe, decrementing by
ii distance between stripes.
for end-y down from *p8y* by *stripe-d*
ii Find number of lines in the stripe
for nlines = (compute-nlines start-x)
" Draw the lines that make up the stripe
do (draw-arrowhead-lines nlines start-x end-y last-x»)

(defun draw-arrowhead-lines (nlines start-x end-y last-x)
ii Set up a counter
(loop for i from 8 below nlines

ii Find starting x-coord, subtracting counter from first
i ix-coord
for first-x = (- start-x i)
ij Make sure we don't go past the end of the arrowhead
while « last-x first-x)
" Draw a line
do (send *dest* ':show-lines

first-x *p8y* *p8x* (- end-y i»»

278

Program Development Utilities August 1986

(defun stripe-big-arrow-shaft-left ()
;; Set up a counter for depth. Don't exceed maximum recursion
;; 1 evel .
(loop for shaft-depth from B below *max-depth*

;; Find current top edge and its fractions
for top-edge = *top-edge* then (II top-edge 2)
for top-edge-2 = (II top-edge 2)
for top-edge-4 = (II top-edge 4)
;; Find coordinates of apex of triangle
for apex-x = *p2x* then (- apex-x top-edge-2)
for apex-y = *p2y* then (- apex-y top-edge-2)
;; Find x-coord of bottom right vertex
for right-x = (+ apex-x top-edge-4)
;; Find y-coord of bottom edge of triangle
for bottom-y = (- apex-y top-edge-4)
;; Find the x-coord of the projection of the first
;; stripe onto top edge

-for xoff = (- *pBx* *top-edge*) then (- xoff top-edge)
" Stripe each triangle
do (draw-big-arrow-shaft-stripes-left

top-edge-4 apex-x apex-y right-x bottom-y xoff»)

(defun draw-big-arrow-shaft-stripes-left
(top-edge-4 apex-x apex-y right-x bottom-y xoff)

(loop with half-distance = (II *stripe-distance* 2)
;; Find x-coord of last stripe in triangle
with last-x = (- apex-x top-edge-4)
" Find x-coord of top of each stripe, decrementing
;; from the apex by HALF the horizontal distance
;; between stripes. Stop at last stripe.
for start-x from apex-x by half-distance above last-x
;; Find y-coord of top of stripe
for start-y downfrom apex-y by half-distance
;; Find x-coord of endpoint of stripe
for end-x downfrom right-x by *stripe-distance*
;; Find number of lines in the stripe
for nlines = (compute-nlines (- xoff (- right-x end-x»)
" Draw a stripe
do (draw-big-arrow-shaft-lines-left

nlines start-x start-y end-x bottom-y last-x»)

August 1986

279

Program Development Tools and Techniques

(defun draw-big-arrow-shaft-lines-left
(nlines start-x start-y end-x end-y last-x)

;; Set up two counters -- we need to draw two lines at once
(loop for i from 8

for i2 from 8 by 2
;; Find x-coord of top of first line in stripe
for first-x = (- start-x i)
;; Don't exceed number of lines in stripe
while « i2 nlines)
;; Don't go past the end of the triangle
while « last-x first-x)
;; Draw a line
do (send *dest* ':show-lines first-x (- start-y i)

(- end-x i2) end-y)
Draw a second line. The two lines are a refinement

" to stagger the endpoints of the lines so the diagonal
edge looks neat.

(send *dest* ':show-lines first-x (- start-y i 1)
(- end-x i2 1) end-y»)

(defun stripe-big-arrow-shaft-right ()
;; Set up a counter for depth. Don't exceed maximum recursion
;; 1 evel .
(loop for shaft-depth from 8 below *max-depth*

;; Find new top edge and its fractions
for top-edge = *top-edge* then (II top-edge 2)
for top-edge-2 = (II top-edge 2)
for top-edge-4 = (II top-edge 4)
;; Find coords of top point of triangle
for start-x = (+ *p2x* top-edge-4)
for top-y = (- *p2y* *top-edge-4*)
then (- top-y top-edge-2 top-edge-4)
;; Find x-coord of projection of first stripe onto
;; top-edge
for xoff = (- *p8x* *top-edge*) then (- xoff top-edge)
;; Stripe the triangle
do (draw-big-arrow-shaft-stripes-right

top-edge-2 top-edge-4 start-x top-y xoff»)

280

Program Development Utilities August 1986

(defun draw-big-arrow-shaft-stripes-right
(top-edge-2 top-edge-4 start-x top-y xoff)

(loop with half-distance = (II *stripe-distance* 2)
;; Find y-coord of last stripe in triangle
with last-y = (- top-y top-edge-2)
;; Find y-coord of starting point of stripe. Don't go
;; past the end of the triangle.
for start-y from top-y by *stripe-distance* above last-y
;; Find coords of ending point of the stripe, decrementing
;; by HALF the horizontal distance between stripes
for end-x downfrom (+ start-x top-edge-4) by half-distance
for end-y downfrom (- top-y top-edge-4) by half-distance
;; Find number of lines that make up the stripe
for nlines = (compute-nlines (- xoff (- top-y start-y»)
" Draw a stripe
do (draw-big-arrow-shaft-lines-right

nlines start-x start-y end-x end-y last-y»)

(de fun draw-big-arrow-shaft-lines-right
(nlines start-x start-y end-x end-y last-y)

;; Set up two counters -- we need to draw two lines at once
(loop for i from B

for i2 from B by 2
;; Find y-coord of ending point of line
for stop-y = (- end-y i)
;; Don't exceed number of lines in the stripe
while « i2 nlines)
;; Don't go past the bottom of the triangle
while « last-y stop-y)
" Draw a line
do (send *dest* ':show-lines start-x (- start-y ;2)

(- end-x i) stop-y)
" Draw a second line. The two lines are a refinement
" to stagger the endpoints of the lines so the diagonal
" edge looks neat.
(send *dest* ':show-lines start-x (- start-y i2 1)

(- end-x; 1) stop-y»)

August 1986

281

Program Development Tools and Techniques

(defun stripe-arrow-shaft ()
;; Set up a counter for depth. Don't exceed maximum
;; recursion level.
(loop for shaft-depth from *depth* below *max-depth*

;; Calculate fractions of new top edge
for top-edge-2 = *top-edge-2* then (II top-edge-2 2)
for top-edge-4 = (II top-edge-2 2)
;; Find coords of top left point of triangle
for left-x = *p2x* then (- left-x top-edge-4)
for top-y = *p2y* then (- top-y top-edge-2 top-edge-4)
;; Find coords of bottom right point of triangle
for right-x = (+ left-x top-edge-2)
for bottom-y = (- top-y top-edge-2)
;; Find x-coord of projection of first stripe onto top edge
for xoff = (- *p9x* *top-edge*)
then (- xoff top-edge-2 top-edge-2)

Stripe the triangle
do (draw-arrow-shaft-stripes

left-x top-y right-x bottom-y xoff»)

(defun draw-arrow-shaft-stripes
(left-x top-y right-x bottom-y xoff)

;; Find y-coord of starting point of stripe. Don't go
;; below the bottom of the triangle.
(loop for start-y from top-y by *stripe-distance* above bottom-y

;; Find x-coord of ending point of the stripe
for end-x downfrom right-x by *stripe-d*
j; Find number of lines in the stripe
for nlines = (compute-nlines (- xoff (- right-x end-x»)
" Draw a stripe
do (draw-arrow-shaft-lines

nlines left-x start-y end-x bottom-y»)

282

Program Development Utilities August 1986

(defun draw-arrow-shaft-lines
(nlines left-x start-y end-x bottom-y)

jj Set up a counter. Don't exceed number of lines in the stripe.
(loop for i from e below nlines

jj Find x-coord of ending point of the line
for last-x = (- end-x i)
jj Don't go past the left edge of the triangle
while « left-x last-x)

Draw a line
do (send *dest* ':show-lines left-x (- start-y i)

last-x bottom-y»)

Figure 4 shows the output of the program with stripes of varying spacing and
thickness.

At this stage in developing the program we define new functions, constants, and
variables. But most of the work consists of changing existing code. Often you
need to make similar changes to several functions: you add an argument or
replace sending one message by a loop that sends several. In this case we are
refining a new program, but when maintaining existing code you must also make
selective or global changes. The most helpful facilities are those for finding out
about existing code and for editing code. See the section "Finding Out About
Existing Code", page 260. See the section "Editing Code", page 282.

28.8 Editing Code

Some features are useful mainly in composing new code. See the section
"Preparing to Write Code", page 233. See the section "Keeping Track of Lisp
Syntax", page 247. Other features are helpful in both writing and editing code.
See the section "Finding Out About Existing Code", page 260. In this section we
discuss features that are likely to be most useful in editing existing code.

28.8.1 Identifying Changed Code
Two pairs of List and Edit commands find or edit changed
definitions in buffers or files. By default, the commands find
changes made since the file was read; use numeric arguments to
find definitions that have changed since they were last compiled
or saved.

Example
Mter defining the routine that calculates the number of lines that
compose each stripe, we changed many functions to call that
routine and draw the appropriate number of lines. We want to

283

August 1986 Program Development Tools and Techniques

Figure 4. Program output with stripes of varying spacing and density.

284

Program Development Utilities August 1986

look over the changes before recompiling the edited definitions.
We use Edit Changed Definitions Of Buffer (n-X).

Reference
List Changed Definitions Of Buffer (n-X)

Lists definitions in the buffer
that have changed since the file
was read. Press c-. to edit the
definitions listed.

Edit Changed Definitions Of Buffer (n-X)

Prepares for editing definitions
in the buffer that have changed.
Press c-. to edit subsequent
definitions.

List Changed Definitions (n-X) Lists definitions in any buffer
that have changed since the files
were read. Press c-. to edit the
definitions listed.

Edit Changed Definitions (n-X) Prepares for editing definitions
in any buffer that have changed.
Press c-. to edit subsequent
definitions.

Print Modifications (n-X) Displays lines in the current
buffer that have changed since
the file was read.

Source Compare (n-X) Compares two buffers or files,
listing differences.

Source Compare Merge (n-X) Compares two buffers or files
and merges differences into a
buffer.

28.8.2 Searching and Replacing
Some facilities discussed elsewhere, particularly the series of List
and Edit commands, are useful for displaying and moving to code
you wish to edit. See the section "Finding Out About Existing
Code", page 260. The commands we discuss here find and replace
strings. Tag tables offer a convenient means of making global
changes to programs stored in more than one file. Use Select All
Buffers As Tag Table (n-X) to create a tag table for all buffers

"'Jgust 1986

285

Program Development Tools and Techniques

read in. Use Select System As Tag Table (M-H) to create a tag
table for all files in a system. For information on systems: See
the section "Maintaining Large Programs", page 141.

Example
We have defined *stripe-d*, and we want to replace some
occurrences of the constant *stripe-distance* by the variable
stripe-d. We use Query Replace (M-?') to find each occurrence
of *stripe-distance*. By pressing SPACE, we replace
stripe-distance by *stripe-d * in functions like
stripe-arrowhead. By pressing RUBOUT, we leave
stripe-distance in place in functions like
draw-big-arrow-shaft-stripes-left.

Reference
List Matching Lines (M-X)

Incremental Search (c-S)

Reverse Search (c-R)

Tags Search (M-H)

. :.

Displays the lines (following
point) in the current buffer that
contain a string.

Prompts for a string and moves
forward to its first occurrence in
the buffer. Press c-S to repeat
the search with the same string.
Press c-R to search backward
with the same string. Mter you
invoke the command, if c-S is
the first character you type
(instead of a string), uses the
string specified in the previous
search.

Prompts for a string and moves
backward to its last occurrence
in the buffer. Press c-R to
repeat the search with the same
string. Press c-S to search
forward with the same string.
Mter you invoke the command,
if c-R is the first character you
type (instead of a string), uses
the string specified in the
previous search.

Searches for a string in all files
listed in a tag tnble .

286

Program Development Utilities August 1986

Replace String (c-7o) In the buffer, replaces all
occurrences (following point) of
one string by another.

Query Replace (M-7o) In the buffer, replaces
occurrences (following point) of
one string by another, querying
before each replacement. Press
HELP for possible responses.

Tags Query Replace (M-H) In files listed in a tag table,
replaces occurrences of one
string by another, querying
before each replacement.

Select All Buffers A!3 Tag Table (M-H)

Creates a tag table for all
buffers in Zmacs.

Select System As Tag Table (M-H)

28.8.3 Moving Text

28.8.3.1 Moving Through Text

Creates a tag table for files in a
system defined by defsystem.

To move short distances through text, you can use the Zmacs
commands for moving by lines, sentences, paragraphs, Lisp forms,
and screens, or you can click left to move point to the mouse
cursor. To move longer distances, you can move to the beginning
or end of the buffer or use the scroll bar. To go to another
buffer, use Select Buffer (c-H B). To switch back and forth
between two buffers, use Select Previous Buffer (c-M-L).

Suppose you want to record a location of point so that you can
return to that location later. Two techniques are particularly
useful:

• Store the location of point in a register. Use Save Position (c-H
S) to store point in a register. Use Jump to Saved Position (c-H

J) to return to that location .

• Use M-SPACE to push the location of point onto the mark stack.
Later, you can use c-M-SPACE to exchange point and the top of
the mark stack. c-U c-SPACE pops the mark stack; repeated
execution moves to previous marks. Note: Some Zmacs

August 1986

287

Program Development Tools and Techniques

commands other than c-SPACE push point onto the mark stack.
When point is pushed onto the mark stack, the notification "Point
pushed" appears below the mode line.

Reference
Select Buffer (c-H B) Moves to another buffer, reading

the buffer name from the
minibuffer. With a numeric
argument, creates a new buffer.

Select Previous Buffer (c-M-L) Moves to the previously selected
buffer.

Save Position (c-H S) Stores the position of point in a
register. Prompts for a register
name.

Jump To Saved Position (c-H J) Moves point to a position stored
in a register. Prompts for a
register name.

Set Pop Mark (c-SPACE) With no argument, sets the
mark at point and pushes point
onto the mark stack. With an
argument of c-U, pops the mark
stack.

Push Pop Point Explicit (M-SPACE)
With no argument, pushes point
onto the mark stack without
setting the mark. With an
argument n, exchanges point
with the nth position on the
mark stack.

Move To Previous Point (c-M-SPACE)
Exchanges point and the top of
the mark stack.

Swap Point And Mark (c-H c-H) Exchanges point· and mark.
Activates the region between
point and mark. Use Beep (c-G)
to turn off the region.

288

Program Development Utilities August 1986

28.8.3.2 Killing and Yanking

When you need to repeat text, you usually want to copy it rather
than type it again. The most common facilities for copying text
are the commands for killing and yanking. Commands that kill
more than one character of text push the text onto the kill ring.
e-Y yanks the last kill into the buffer. After a e-Y command, M-Y

deletes the text just inserted, yanks the previous kill, and rotates
the kill ring.

Example
In the function draw-big-arr·ow-shaft-lines-Ieft, we send two
:show-lines messages on each iteration. The purpose is to
arrange the starting points of the lines along the diagonal edge so
that they lie as closely as possible on a 45-degree line. The
second send expression is nearly identical to the first. Instead of
typing a new expression, we copy and edit the first one. We
follow these steps:

1. Position the cursor after the close parenthesis that ends the first
send expression.

(defun draw-big-arrow-shaft-lines-left
(nlines start-x start-y end-x end-y last-x)

do (send *dest* ':show-lines first-x (- start-y i)
(- end-x i2) end-y)

2. Use e-M-RUBOUT to kill the send expression and push it onto the
kill ring.

(defun draw-big-arrow-shaft-lines-left
(nlines start-x start-y end-x end-y last-x)

do

3. Use c-y to restore the expression.

August 1986

289

Program Development Tools and Techniques

(defun draw-big-arrow-shaft-lines-left
(nlines start-x start-y end-x end-y last-x)

do (send *dest* J:show-lines first-x (- start-y i)
(- end-x i2) end-y)

4. Use LINE to move to the next line and indent.

5. Use c-y to insert a copy of the send expression.

(defun draw-big-arrow-shaft-lines-left
(nlines start-x start-y end-x end-y last-x)

do (send *dest* J:show-lines first-x (- start-y i)
(- end-x i2) end-y)

(send *dest* J:show-lines first-x (- start-y i)
(- end-x i2) end-y)

6. Edit the second send expression.

(defun draw-big-arrow-shaft-lines-left
(nlines start-x start-y end-x end-y last-x)

do (send *dest* J:show-lines first-x (- start-y i)
(- end-x i2) end-y)

Example

(send *dest* J:show-lines first-x (- start-y i 1)
(- end-x i2 1) end-y»)

Suppose we have an existing program in which we have already
defined the function compute-nlines. We can copy the function
in three ways:

• Use c-M-K or c-M-RUBDUT to kill the definition. Use c-y to
restore it. Go to the new buffer. Use c-y to insert a copy of the
definition.

290

Program Development Utilities August 1986

• Use c-M-H to mark the definition. Use M-W to push it onto the
kill ring. Go to the new buffer. Use c-V to insert a copy of the
definition .

• Click middle on the first or last parenthesis of the definition to
mark the definition. Click sh-middle to push it onto the kill ring.
Move to the new buffer. Click sh-middle to insert a copy of the
definition.

Reference
Kill Sexp (c-M-K) Kills forward one or more Lisp

expressions.

Backward Kill Sexp (c-M-RUBOUT)Kills backward one or more Lisp

Mark Definition (c-M-H)

Save Region (M-W)

Yank (c-V)

Yank Pop (M-V)

[Region (M2)]

expressions.

Puts point and mark around the
current definition.

Pushes the text of the region
onto the kill ring without killing
the text.

Pops the last killed text from
the kill ring, inserting the text
into the buffer at point. With
an argument n, yanks the nth
entry in the kill ring. Does not
rotate the kill ring.

Mter a c-V command, deletes
the text just inserted, yanks
previously killed text from the
kill ring, and rotates the kill
ring. Repeated execution yanks
previous kills and rotates the kill
ring.

When region is defined, pushes
the text of region onto the kill
ring without killing the text
(like M-W). Repeated execution
has the following effects:

• First repetition: kills the text of
region, pushing the text onto the
kill ring (like c-W)

August 1986

28.8.3.3 Using Registers

291

Program Development Tools and Techniques

• Second repetition: pops the text
of region from the kill ring,
inserting the text into the buffer
at point (like c-V)

• Third and subsequent
repetitions: delete the text just
inserted, yank previously killed
text from the kill ring, and
rotate the kill ring (like M-V)

If no region is defined, pops the
last killed text from the kill
ring, inserting the text into the
buffer at point (like c-V).

Repeated execution deletes the
text just inserted, yanks
previously killed text from the
kill ring, and rotates the kill
ring (like M-V).

Using c-V and M-V to copy text can become tedious when you
have to rotate through a long kill ring to find the text you need.
Another method, especially useful when you want to copy a piece
of text more than once, is to save and restore the text using
registers.

Reference
Put Register (c-X X)

Open Get Register (c-X G)

Copies contents of the region to
a register. Prompts for a
register name.

Inserts contents of a register
into the current buffer at point.
Prompts for a register name.

28.8.3.4 Copying Buffers and Flies

Use Insert File (M-X) to place the contents of an entire file in
your buffer.

You can copy the contents of a buffer in two ways:

• Use Insert Buffer (M-X), naming the buffer you want to copy.

292

Program Development Utilities August 1986

• Use c-X H to mark the buffer you want to copy. Use M-W to push
its text onto the kill ring. Move to the new buffer. Use c-y to
insert a copy of the text.

Reference
Mark Whole (c-X H)

Insert Buffer (M-X)

Insert File (M-X)

28.8.4 Keyboard Macros

Marks an entire buffer.

Inserts contents of the specified
buffer into the current buffer at
point.

Inserts contents of the specified
file into the current buffer at
point.

Sometimes you need to perform a uniform sequence of commands
on several pieces of text. You can save keystrokes by converting
the sequence to a keyboard macro and installing it on a single
key. If you anticipate using a macro often, you can write Lisp
code to define it in an init file. If you frequently use particular
extended commands, install them on single keys with Set Key
(M-X).

Reference
Start Kbd Macro (c-X ()

End Kbd Macro (c-X »

Call Last Kbd Macro (c-X E)

Name Last Kbd Macro (M-X)

Install Macro (M-X)

Install Mouse Macro (M-X)

Begins recording keystrokes as a
keyboard macro .

. Stops recording keystrokes as a
keyboard macro.

Executes the last keyboard
macro.

Gives the last keyboard macro a
name.

Installs on a key the last
keyboard macro or a named
macro.

Installs a keyboard macro on a
mouse click (such as L2). When
you click to call the macro, point
moves to the position of the

August 1986

Deinstall Macro (n-X)

Set Key (n-X)

293

Program Development Tools and Techniques

mouse cursor before the macro
is executed.

Deinstalls a keyboard macro
from a key or a mouse click.

Installs an extended command on
a single key. Use HELP C to look
for unassigned keys.

28.8.5 Using Multiple Windows

28.8.5.1 Multiple Buffers

Sometimes when editing you move often between two buffers.
You might want to see the two buffers at the same time rather
than switch between them. A common use of multiple-window
display is to edit source code while viewing compiler warnings.
See the section "Using the Compiler Warnings Database", page
309.

Example
We add a new :show-lines message to the program but forget
what arguments the message takes. We want to display the
source code for the message handler on the same screen as our
program code. We use c-X 2 to create another window and move
to it. We use Edit Methods (n-X) to find the source code for the
method that handles :show-lines. See the section "Methods",
page 378.

Example
After finishing the program, we collect a file of bug reports from
users. We want to use these reports in correcting our program
code. We create two windows, one displaying the program code
and the other the bug-report file. We edit the program code,
using c-n-V to scroll the bug-report window as we correct each
bug.

Reference
Split Screen (n-X)

Two Windows (c-X 2)

Pops up a menu of buffers and
splits the screen to display the
buffers you select.

Creates a second window, with
the current buffer on top and

294

Program Development Utilities August 1986

View Two Windows (c->< 8)

the previous buffer on the
bottom. Puts the cursor in the
bottom window.

Creates a second window, with
the current buffer on top and
the previous buffer on the
bottom. Puts the cursor in the
top window.

Modified Two Windows (c-X 4) Creates a second window and
visits a buffer, file, or tag there.
Displays the current buffer in
the top window.

Other Window (c-X 0) Moves to the other of two
windows.

Scroll Other Window (C-M-V)

One Window (c-X 1)

Scrolls the other of two windows.

Returns to one-window display,
selecting the buffer the cursor is
in.

28.8.5.2 Displaying Zmacs a,nd Other Windows

Use [Split Screen] or [Edit Screen] from the System menu to
display an editor window on the screen with other kinds of
windows.

Example
In testing new program functions, we want to have the current
version of the figure on the same screen as the program code.
We use [Split Screen] from the System menu to add a Lisp
Listener to the screen. We move between windows by clicking
left on the window to which we want to move.

We evaluate (pkg-goto ' graph; cs) and then (do-arrow), in the
Lisp Listener. We adjust the arguments to draw-arrow-graphic
so that the arrow fits neatly into the Lisp Listener window.

(defun do-arrow ()
(let «*dest* (make-instance 'screen-arrow-output»)

(send terminal-io ':clear-screen)
(draw-arrow-graphic 649 1399 1859»)

Figure 5 shows the appearance of the screen with graphic output
in a Lisp Listener and source code in a Zmacs buffer.

August 1986

295

Program Development Tools and Techniques

To return to displaying only the Zmacs window, we use [Split
Screen] with the existing Zmacs buffer as the only element.

Reference
[Split Screen / Lisp / Existing Window / Existing Zmacs Buffer /

Do It] (from the System menu)
Adds a Lisp Listener to a screen
displaying an existing Zmacs
buffer.

[Split Screen / Existing Window / Existing Zmacs Buffer / Do It]
(from the System menu)
Resumes one-window display of
an existing Zmacs buffer.

28.8.5.3 Other Displays

The window system allows you to use menus, choose-variable
values windows, and other multiple-window displays in executing
programs. For details: See the section " Using the Window
System" in Programming the User Interface, Volume B. See the
section "Window System Choice Facilities" in Programming the
User Interface, Volume B. For examples of simple uses of
windows, including choose-variable-values windows: See the
section " Using Flavors and Windows", page 343.

296

Program Development Utilities

NIL
I

L1 sp L1etener 2
•• , Calculetes the nu"ber of lines that co"poee each stripe.
'" Calls COMPUTE-DENS to calculate the proportion of distance
'" between etripes to be filled. then "ultiplies by the actual
;;; dietence between stripee. Mekes sure that there is at least
". one line and thet there aren't too "any lines to leave so"e
,., white spece.
{defun co"pute-nlines (x)

;; Cell COMPUTE-DENS and "ultiply result by 'STRIPE-D'
(let «nl (fix (a astripe-d* (co"pute-dens x»»)

;; Supply at leaet one line
(cond «S n1 1) 1)

;; But leave so"e white space between lines
«~ n1 (- 'stripe-da 1» (- 'stripe-da 2»
(t nl»»

;;; Calculates proportion of distance filled in between each stripe.
'" The ergu"ent is the x-coordinate of the projection of the current
;;; stripe onto the line for"ed by the top edge. Deter"ines where the
'" projection of the current stripe is on this line in reletion to the
'" distence fro" first to last stripes in the arrow. Multiplies this
'" frection by the difference between densities of first end lest
'" stripes. Finally. adds the density of the first stripe.
{defun co"pute-dens (x)

(+ adla (a (- *d2a 'dia)
(~~ (- x apBxa) (floet (- ax2' 'pBxa»»»

ZMACS pcodex.l ~deee~doc~worketylee~ VIHEN: a More above and below

August 1986

n9~-"2:Seve~Ktll~Yenk. R:Menu. R2:Syste" "enu.
Tyi_

Figure 5. Using multiple windows to test the program while viewing the source
code.

297

August 1986 Program Development Tools and Techniques

29. Compiling and Evaluating Lisp

When should you compile code, and when evaluate it?

The main job of the compiler is to convert interpreted functions into compiled
functions. An interpreted function is a list whose first element is lambda,
zl:named-Iambda, zl:subst, or zl:named-subst. These functions are executed by
the Lisp evaluator. The most common interpreted functions you define are
zl:named-Iambdas. When you load a source file that contains defun forms or
when you otherwise evaluate these forms, you create zl:named-Iambda functions
and define the function specs named in the forms to be those functions.

Compiled functions are Lisp objects that contain programs in the instruction set
(the machine language). They are executed directly by the microcode. Compiling
an interpreted function (by calling the compiler on a function spec) converts it
into a compiled function and changes the definition of the function spec to be that
compiled function.

You seldom compile functions directly. Instead, you compile either regions of
Zmacs buffers or source files.

o Compiling a region of a Zmacs buffer (or the whole buffer) causes
the compiler to process the forms in the region, one by one. This
processing has side effects on the Lisp environment. For a
summary of the compiler's ~ctions: See the section "Compiling
Code in a Zmacs Buffer", page 299.

• Compiling a source file translates it into a binary file. With some
exceptions, this processing does not have side effects on the Lisp
environment at compile time. When you load a compiled file that
defines functions, you create compiled rather than interpreted
functions and define function specs to be those compiled
functions. In other respects, loading a compiled file has
essentially the same effects as loading a source file (evaluating
the forms in the file). For a discussion of compiling files: See
the section "Compiling and Loading a File", page 301.

Most Symbolics programmers compile all their program code. The compiler checks
extensively for errors and issues warnings that help detect bugs like typographical
errors, unbound symbols, and faulty Lisp syntax. Compiled code runs faster and
takes up less storage than interpreted code. You can compile code in portions and
decide at compile time whether or not to save the compiler output in a binary file.

The most common use for interpreted functions is stepping through their
execution. You cannot step through the execution of a compiled function. If a
function is compiled, you can read its definition into a Zmacs buffer, evaluate the
definition, and then step through a function call.

In addition to evaluating definitions to create interpreted functions, you might
need to evaluate forms to test a program or find information about a Lisp object.

298

Program Development Utilities August 1986

(Unless you are using the Stepper, functions that you call during these evaluations
are usually compiled.) You can evaluate a form in a Lisp Listener, a breakpoint
loop, or the minibuffer.

For more information on functions: See the section "Functions" in Symbolics
Common Lisp: Language Concepts.

29.1 Compiling Lisp Code

You can use Zmacs commands to compile code in a file or Zmacs buffer. Most
Symbolics programmers compile code as soon as they have written enough to test.
This practice lets them correct errors quickly and produce simple working versions
of programs before adding more complex operations. A common command for
incremental compiling from a Zmacs buffer is Compile Region (c-sh-C). If no
region is defined, this command compiles the current definition.

In addition to compiling definitions as they write them, Symbolics programmers
consider it good practice to recompile a function soon after effecting a change.
Because recompiling a series of functions or an entire program can be time
consuming, it is easier and faster to make changes and then use a single
command to recompile only the changed functions. Using Compile Changed
Definitions Of Buffer (M-sh-C) or Compile Changed Definitions (M-X) is easier in
this case than recompiling each function separately or recompiling the entire
buffer.

The order in which you compile definitions can be important. For example,
suppose you have a function that binds a variable you want to be treated as
special. If you compile the function definition before compiling the variable
declaration, the compiler treats the variable as local and generates incorrect
output. For this reason you should usually put defvar and zl:defconst forms at
the beginning of a file or into a separate file to be compiled and loaded before
function definitions.

When editing a program, it is a good idea to load the entire program before you
start work on it. When you compile new definitions or recompile edited ones, the
compiler will have access to variable declarations, macros, functions, and other
information. You will also be able to use Zmacs commands and Lisp functions for
finding information about other parts of the program. See the section "Finding
Out About Existing Code", page 260.

Sometimes when you compile a file, write large sections of code at once, or make
many changes to a large program, compiling the code produces many warning
messages. For a description of how Edit Compiler Warnings (M-X) lets you use
the compiler warnings as a reference source for debugging: See the section
"Debugging Lisp Programs", page 309.

For more information on the compiler: See the section "The Compiler", page 105.

299

August 1986 Program Development Tools and Techniques

29.1.1 Compiling Code In a Zmacs Buffer
Compiling a top-level form in a Zmacs buffer - using a command
like Compile Region (c-sh-C) or Compile Buffer (M-H) - has side
effects on the Lisp environment. Following is a summary of the
compiler's actions:

Form

Macro form

Function definition

Macro definition

Special case

Atom, zl:comment form

Other

Action

If the form is a list whose first
element is a macro, the compiler
expands the form and processes this
expanded form instead of the original.

If the form is a list whose first
element is defun, the compiler
constructs a lambda-expression from
the definition, converts the lambda
expression into a compiled function,
and defines the function spec named
in the definition to be that compiled
function.

If the form is a list whose first
element is macro, the compiler
constructs a lambda-expression as the
macro's expander function, converts
the lambda-expression into a compiled
function, and defines the function
spec named in the definition to be the
macro. A defmacro form expands
into this kind of form.

Some forms, like eval-when, declare,
and progn 'compile forms, have
special meaning for the compiler. It
handles each of these in a different
way. For details: See the section
"How the Stream Compiler Handles
Top-level Forms", page 111.

The form is ignored.

The form is evaluated.

300

Program Development Utilities August 1986

Example
We have written some initial code for the controlling function of
the calculation module:

(deJvar *top-edge* nil
"Length of the top edge of the arrow")

(defvar *pBx* nil
"X-coordinate of point B")

(defvar *pBy* nil
nY-coordinate of point B")

(defun draw-arrow-graphic (*top-edge* *pBx *pBy*)
(let «*top-edge-2* (II *top-edge* 2»

(*top-edge-4* (II *top-edge* 4»)
(draw-big-arrow»)

Because we have no other code in the buffer, we can compile
these definitions using Compile Buffer (M-~). If we had more
code in the buffer, we could compile these definitions by setting
the mark at one end and point at the other and using Compile
Region (c-sh-C).

The compiler displays the following warnings:

For Function DRAW-ARROW-GRAPHIC
The variable *TOP-EDGE-4* was never used.
The variable *TOP-EDGE-2* was never used.
The variable *PBX was never used.

The following functions were referenced but don't seem defined:
DRAW-BIG-ARROW referenced by DRAW-ARROW-GRAPHIC

The first set of warnings indicates that the compiler is treating
top-edge-2, *top-edge-4*, and *pOx as local variables. We
neglected to declare *top-edge-2* and *top-edge-4* special with
defvar; *pOx is of course a misspelling. The lack of a definition
for draw-big-arrow is not surprising; we have yet to write that
definition.

We add the two defvars and correct the spelling of *pOx*. We
compile the changes using Compile Changed Definitions Of Buffer
(M-sh-C). The compiler now displays only one warning:

August 1986

301

Program Development Tools and Techniques

The following functions were referenced but don't seem defined:
DRAW-BIG-ARROW referenced by DRAW-ARROW-GRAPHIC

We continue writing the program by defining draw-big-arrow.

Reference
Compile Region (c-sh-C) Compiles the region. If no

region is marked, compiles the
current definition.

[Zmacs Window / Compile Region]
Compiles the region. If no
region is marked, compiles the
current definition.

Compile Changed Definitions Of Buffer (M-sh-C)

Compiles all the definitions in
the current Zmacs buffer that
have changed since the
definitions were last compiled.

Compile Changed Definitions (M-X)

Compile Buffer (M-X)

Compiles all the definitions in
any Zmacs buffer that have
changed since the definitions
were last compiled.

Compiles the current Zmacs
buffer.

Compile (M-H) [Zmacs Window (R)]
Pops up a menu of options for
compiling code in the current
context.

29.1.2 Compiling and Loading a File
Compiling a file, using Compile File (M-X) or
compiler: compile-file, saves the compiler output in a binary file
of canonical type : bin. For the most part, compiling a file does
not have side effects on the Lisp environment. The basic
difference between compiling a source file and compiling the same
forms in a buffer is this: When you compile a file, most function
specs are not defined and most forms (except those within

302

Program Development Utilities August 1986

eval-when (compile) forms) are not evaluated at compile time.
Instead, the compiler puts instructions into the binary file that
cause these things to happen at load time. You can load a source
or binary file into the Lisp environment by using Load File (M-H)
or zl:load. You can compile a file and then load the resulting
binary file by using compiler: compile-file-load.

Example
In a previous session, we wrote the output routines for the
program, saved them in a file, and compiled that file. Now we
are writing the first calculation routines, and we want to test
them. We need to load the file that contains the compiled code
for the output routines. We use Load File (M-H).

Suppose our two files are in the directory >Symbo 1 i cs>examp 1 es> on
Lisp Machine acme-bl ue. The file containing the output routines
is arrow-out. The current Zmacs buffer, and the file containing
the calculation module, is arrow-cal c. When we type m-X load
fi 1 e (or m-X 10 f, using completion), Zmacs prompts for a file
name:

Load File: (Default is ACME-BLUE:>Symbolics>examples>arrow-calc)

We type arrow-out, without a file type. The latest version of
arrow-out. bi n is loaded. If no compiled version exists or if the
latest compiled file is older than the latest source file, Zmacs
offers to compile the source file and then load the compiled
version .

. Reference
Compile File (M-X) Prompts for the name of a file

and compiles that file, placing
the compiled code in a file of
canonical type : bin.

(compiler:compile-file file-name) Compiles a file, placing the

Load File (M-X)

compiled code in a file of
canonical type : bin.

Prompts for a file name, taking
the default from the current
buffer. Offers to save the buffer
if it has changed since the file
was last read or saved. Offers

August 1986

(load file-name)

303

Program Development Tools and Techniques

to compile the source file if no
compiled version exists or if the
source file was created after the
latest compiled version. If you
specify a file type, loads the
latest version of the file of that
type. If you don't specify a file
type, loads the latest version of
the binary file (even if older
than the latest source file); if no
binary file exists, loads the latest
source file.

Loads a file into the Lisp
environment. If you specify a
file type, loads the latest version
of the file of that type. If you
don't specify a file type, loads
the latest version of the binary
file (even if older than the latest
source file); if no binary file
exists, loads the latest source
file.

(compiler: compile-file-load file-name)
Compiles a file, placing the
compiled code in a file of
canonical type : bin. Loads the
resulting binary file.

29.2 Evaluating Lisp Code

29.2.1 Evaluation and the Editor
The most common reason for evaluating definitions in a Zmacs
buffer is to step through the execution of the functions they
define. Sometimes in debugging you want to proceed step by step
through a function call, using zl:step or the :step option for
trace. See the section "Tracing and Stepping", page 323. You
can do this only with interpreted functions. If a function is
compiled, you can use Edit Definition (M-.) to read its definition
into a Zmacs buffer. You can then evaluate the definition using
Evaluate Region (c-sh-E). When you have finished stepping, you
can recompile the definition.

304

Program Development Utilities August 1986

The evaluation of Lisp forms in the editing buffer or the
minibuffer normally displays the returned values in the echo area
(beneath the mode line near the bottom of the screen). Any
output to zl:standard-output during the evaluation appears in the
editor typeout window. Two commands, Evaluate Into Buffer
(M-H) and Evaluate And Replace Into Buffer (M-H), print the
returned values in the Zmacs buffer at point. With a numeric
argument, these commands also insert any typeout from the
evaluation into the Zmacs buffer.

Often while editing you need to evaluate forms other than
definitions in a buffer. You need to call a function to test your
program, or you need to call a function like describe to find
information about a Lisp object. (Of course, these functions need
not be interpreted.) You can type forms to be evaluated in three
ways:

• Use M-ESCAPE to evaluate a form in the minibuffer.

• Use SUSPEND to enter a Lisp breakpoint loop. You type forms that
are read in the buffer's package and evaluated. Use RESUME to
return to the editor.

• Use SELECT L or [Lisp] from the System menu to select a Lisp
Listener and evaluate forms there. Use SELECT E or [Edit] from
the System menu to return to the editor.

Example
We have found a bug in the program and suspect that it lies in
the function do-arrows. We want to step through a call to that
function, but it is compiled. We use Edit Definition (M-.) to find
the definition of do-arrows and Evaluate Region (c-sh-E) to
evaluate the definition. We then step through a function call.
See the section "Stepping", page 325.

Example
We have written and compiled the output routines and the initial
code for the calculation module. We want to test the program as
written so far. The top-level function to call is do-arrow. We
can test the program in three ways:

• Press M-ESCAPE and evaluate (do-arrow). The graphic output
appears in a typeout window. We press SPACE to restore the
editing buffer to the screen.

• Press SUSPEND to enter a Lisp breakpoint loop and evaluate (do
arrow) there. We press RESUME to return to the editor.

August 1986

305

Program Development Tools and Techniques

• Press SELECT L to select a Lisp Listener. If the current package
is not graphics, we first evaluate (pkg-goto J graph; cs) and then
(do-arrow). We press SELECT E to return to the editor.

Example
We want to be sure that new function names do not conflict with
other symbol names in the graphics package. Most of our
function names contain the string "arrow". We want to find the
symbol names that contain that string. We use n-ESCAPE,
SUSPEND, or SELECT L and evaluate:

(apropos "arrow" Jgraph;cs)

Reference
Evaluate Region (c-sh-E) Evaluates the region. If no

region is marked, evaluates the
current definition.

Evaluate Changed Definitions Of Buffer (n-sh-E)

Evaluates all the definitions in
the current Zmacs buffer that
have changed since the
definitions were last evaluated.

Evaluate Changed Definitions (n-H)

Evaluate Buffer (n-H)

Evaluate Into Buffer (n-H)

Evaluates all the dermitions in
any Zmacs buffer that have
changed since the definitions
were last evaluated.

Evaluates the current Zmacs
buffer.

Prompts for a Lisp form to
evaluate and prints the returned
values in the Zmacs buffer at
point.

Evaluate And Replace Into Buffer (n-H)
Evaluates the Lisp form
following point and replaces it
with the printed representation
of the values it returns.

306

Program Development Utilities August 1986

Evaluate Minibuffer (M-ESCAPE) Prompts for a Lisp form to
evaluate in the minibuffer and
displays the returned values in
the echo area.

Evaluate (M-X) [Zmacs Window (R)]

SUSPEND

29.2.2 Lisp Input Editing

Pops up a menu of options for
evaluating code in the current
context.

Enters a Lisp breakpoint loop,
where you can evaluate forms.
The current package in the
breakpoint loop is the same as in
the previous context. Use
RESUME to return to the previous
context.

When typing to a Lisp Listener you can use many editing
commands to modify a form before you evaluate it. You often
repeat the same function calls or variations of similar function
calls when testing code. Instead of retyping these forms, you can
use the Lisp input editor's ring of input entries to retrieve them
within the same Lisp Listener. When you yank a previous form,
the Lisp input editor places the cursor at the end of the form but
omits the final close parenthesis or carriage return. You can
then edit the form before typing the final delimiter to evaluate it.

Example
We execute our program by calling the function do-arrow. We
evaluate (do-arrow) once and would like to evaluate it again
within the same Lisp Listener. We press C-M-V to yank the last
form we typed. If that is not (do-arrow), we press M-V until (do
arrow appears, without the close parenthesis. We type a close
parenthesis to begin the evaluation.

Reference
C-M-V Yanks the last form typed to the

Lisp Listener. It waits after the
final delimiter for you to press
END, allowing you to edit the
form before evaluating it. With

August 1986

307

Program Development Tools and Techniques

an argument n, yanks the nth
form in the input ring. In
Zmacs, this command performs a
different action: it repeats the
last minibuffer command typed.

After a C-M-V command, deletes
the form just inserted, yanks the
previous form from the input
ring, and rotates the input ring.
Repeated execution yanks
previous forms and rotates the
input ring. In Zmacs, this
command rotates either the
minibuffer command history or
the text kill history, (depending
on which yanking command it
follows) and yanks elements from
that history. See the section
"Retrieving History Elements" in
Text Editing and Processing.

308

Program Development Utilities August 1986

309

August 1986 Program Development Tools and Techniques

30. Debugging Lisp Programs

The General software environment offers you a powerful interactive Debugger and
a variety of other tools for debugging Lisp programs. The kind of debugging tool
you use depends on the application of the program. Bugs might be more obvious
in a graphics programs than in a minor modification of some internal system
function. Problems with a graphics programs are sometimes evident from the
program's output. On the other hand, programs with a complex window system
application might have bugs that are difficult to identify.

Debugging tools are more appropriate for some kinds of bugs than for others. You
commonly encounter three sorts of problems with a program:

• The program does not compile correctly. You can use the
compiler warnings database to edit code before recompiling .

• The program compiles, but running it signals an error. Usually
errors invoke the Debugger, where you can examine stack frames,
return values, disassemble code, call the editor, and perform other
tasks.

• The program runs but does not behave as it should. You can use
many techniques for finding the problem, including commenting
out sections of code, tracing, stepping, setting breakpoints,
disassembling, and inspecting. Often the most effective method is
simply studying the source code.

For complete information on the Debugger: See the section "Debugger", page 3.
Also: See the section "Miscellaneous Debugging Aids", page 91.

30.1 Using the Compiler Warnings Database

The compiler sometimes produces many warning messages. The compiler
maintains a database of these messages, organized by file. Each time you compile
or recompile code, the compiler adds or removes warnings from the database, so
that the database reflects the state of your program as of the last time you
compiled it.

If you want to save warnings in a file, you can use Compiler Warnings (M-H) to
put them in a buffer and then write them to a file. When you make a system
using make-system, you can use the :batch option to save compiler warnings in a
file: See the section "Make-system Keywords". Use Load Compiler Warnings
(M-H) to load compiler warnings into the database from a file.

If compiler warnings exist in the database, Edit Compiler Warnings (M-H) lets you
edit source code while consulting the corresponding warnings. The command
splits the screen, with compiler warnings in one window ,and the source code to
which the warnings apply in the other. As you finish editing each section of code,
you press c-.. This displays the next warning in one window and the source code
to which the next warning applies in the other window. When you reach the last
compiler warning, pressing c-. returns the screen to its previous configuration.

310

Program Development Utilities August 1986

Example
Elsewhere we discuss compiling the initial code for the calculation
module of the sample program: See the section "Compiling Code
in a Zmacs Buffer", page 299. Figure 6 shows the result of using
Edit Compiler Warnings (M-H) after compiling the buffer with the
initial code. The compiler warnings are in the upper window and
the source code in the lower window.

Reference
Edit Compiler Warnings (M-H) Prepares to edit all source code

that has produced compiler
warnings. Lists each file whose
code produced warnings and asks
whether you want to edit that
file. Splits the screen, with
compiler warnings in the upper
window and source code that
produced those warnings in the
lower window. Use c-. to
display subsequent warnings and
edit the applicable code.

Compiler Warnings (M-H) Puts compiler warning messages
into a buffer and selects that
buffer.

Load Compiler Warnings (M-H) Loads a file containing compiler
warning messages into the
compiler warnings database.

30.2 Using the Debugger

Some errors during execution automatically invoke the Genera Debugger. You can
also enter the Debugger explicitly by pressing M-SUSPEND or C-M-SUSPEND. You
can also enter the Debugger from within a program by inserting a call to break
or zl:dbg with no arguments into the code and recompiling. You can force a
process into the Debugger by calling zl:dbg with an argument of process. See the
section "Using Breakpoints", page 329.

The Debugger is useful for examining stack frames. With Debugger commands,
you can see the arguments for the current stack frame, disassemble its code,
return a value from it, go up and down the stack, and invoke the editor to edit
function definitions. A common Debugger sequence is to disassemble code for the
current frame, call the editor to edit and recompile the function, and test the
changed function.

311

August 1986 Program Development Tools and Techniques

~arnlngs for file VIXEN: 'dess'doc'workstyles'pcodex.:

I For Function DRA~-ARRO~-GRAPHIC
The variable -TOP-EDGE-4- was never used.
The variable *TOP-EDGE-2* was never used.
The variable 'P9X was never used.
DRA~-BIG-ARROU was referenced but not defined.

I(defun draw-arrow-graphlc (-top-edge' ap9x ap9ya)
(let «atop-edge-2' (" .top-edge' 2»

(atop-edge-4' (" atop-edge' 4»)
(drow-blg-arrow»)

pcodex.1 'dess'doc'works~~les' VIHEN:
ZMACS (LISP) pcodex.1 'dess'doc'works1:yles' VIXEN:'
Control-. Is now Edit warnings (or next function.
1 ~ore definition as well
Point pushed

:nove pol nt, L2:Move to pol nt. M:Marl< thGI nRgI.HMI~C?S!~.,ave'''1 !T~'I'vanl<. R:Menu, R2:Syste~ Menu.
98'29'83 16:49:52 ro~ A~ T

Figure 6. Edit Compiler Warnings (M-X) splits the screen. The upper window
contains compiler warnings. The lower window contains the source
code.

312

Program Development Utilities August 1986

A window-oriented version of the Debugger is the Window Debugger. Invoke it
from within the Debugger by entering the :Window Debugger command or by
pressing c-M-I.J.

We use the variable *x2* in computing the thickness of each stripe. *x2* is the x
coordinate of the projection of the last stripe in each arrow onto the top edge. We
must bind it for each arrow to the difference between the value of *pOx* and
twice the value of *top-edge*.

Suppose that we forget to bind *x2* for the' big arrow in the function
draw-big-arrow. The initial value of *x2* is nil. In the function compute-dens,
we subtract *pOx* from *x2*. Because the value of *x2* is not a number, we
generate an error when we first call the function. The error invokes the
Debugger with the name of the function in which the error occurred, the value of
the function's arguments, and the following error message:

>Trap: The first argument given to SYS:--INTERNAL, NIL, was not a number.

The Debugger also displays a listing of proceed types, special commands, and
restart handlers, along with their key bindings: See the section "Special Keys" in
Symbolics Common Lisp: Language Concepts. We can use one of these options, or
we can use other Debugger commands to examine or manipulate the stack. Let's
use the :Window Debugger (c-M-l.J) command to invoke the Window Debugger.

Figure 7 shows the Window Debugger frame as it looks when we invoke it. The
top window, an inspect pane, shows disassembled code for compute-dens with an
arrow at the instruction that produced the error. The next window is an inspect
history pane. The two windows side by side show the function's arguments and
local variables and their values. The next window is a backtrace of the stack with
an arrow at the frame that produced the error. The next window is a mouse
sensitive listing of options for proceeding or restarting. Next is a command menu.
The bottom window is a Dynamic Lisp Listener with the error message displayed.

The disassembled code for compute-dens shows ~hat the first argument to the
subtraction that caused the error was the value of *x2*. We can inspect *x2*
simply by clicking on its printed representation in the disassembled code.
Figure 8 shows the Window Debugger after we inspect *x2*. The value of *x2* is
nil. We could have confirmed this by evaluating *x2* in the Lisp Listener pane.

Now, if we remember what the value of *x2* is supposed to be, we can set *x2* to
that value by typing to the Lisp Listener pane:

We can then click on [Retry] to reinvoke the stack frame and continue the
program.

If we forget the value of *x2*, we might want to look at the source code. We can

313

August 1986 Program Development Tools and Techniques

invoke the editor by clicking on [Edit] and then on the name of the function we
want to edit. Inside the editor, we can change and recompile code. We can edit
draw-big-arrow to bind *x2* and then recompile that function. If we entered the
Debugger from the editor, we cannot return to the Debugger, but we can run the
program again. Otherwise, we can return to the Window Debugger by pressing
c-z or ABORT. We can then set the value of *x2* and reinvoke the frame.

In the Debugger, c-HELP displays information on all Debugger commands.
Following are some of the most useful commands:

Reference
:Show Argument (c-A)

:Edit Function (c-E)

:Show Frame (c-L)

:Bottom Of Stack (M-»

:Next Frame (c-N)

:Previous Frame (c-P)

:Top Of Stack (M-<)

:Return (c-R)

:Show Backtrace (M-B)

:Show Local (c-M-L)

:Reinvoke (c-M-R)

:Window Debugger (C-M-W)

:Show Compiled Code (c-H D)

Shows arguments for the current
stack frame.

Calls the editor to edit the
function from the current frame.

Clears the screen and redisplays
the original error message.

Moves to the bottom of the stack
and displays the least-recent
frame.

Moves down the stack by one
frame.

Moves up the stack by one
frame.

Moves to the bottom of the stack
and displays the most recent
frame.

Returns a value from the
current frame.

Shows a backtrace of function
names with arguments.

Shows local variables and
disassembled code for the
current frame.

Reinvokes the current frame.

Invokes the Window Debugger.

Displays the disassembled code
for a function.

314

Program Development Utilities

:Show Source Code (0->< o-D)

:Analyze Frame (0-M-2)

:Describe Last (o-M-D)

:Show Special

30.3 Commenting Out Code

August 1986

Displays the source code for a
function.

Analyzes the erroneous frame
and locates the source code of
the current error.

executes the Lisp describe
function on the most recently
displayed value and leaves * set
to that value.

Displays the special-variable
binding of a symbol in the
context of the current frame.

Sometimes a program runs but behaves in an unexpected way. In looking for the
source of the problem, you might want to execute some portions of the program
and disable others. An easy way to disable code without destroying it is to make a
comment of it. You can comment out code by preceding it with a semicolon or
surrounding it with #11 ••• 11#: See the section "Comments", page 249.

315

August 1986 Program Development Tools and Techniques

COMPUTE-DENS
3 PUSH-INDIRECT 'Dl'
4 BUILTIN --INTERNAL STACK
5 PUSH-LOCAL FPIO :M
6 PUSH-INDIRECT ,peM'
7 BUILTIN --INTERNAL STACK

10 PUSH-INDIRECT ~
11 PUSH-INDIRECT iPOXl

=> 12 BUILTIN --INTERNAL STACK
13 BUILTIN FLOAT STACK
14 BUILTIN ~-INTERNAL STACK

I<Stack-Frafte COnpUTE-DENS PC=12>

Arg5:
Arg 0 (M): Iseo

(DO-ARROLol)
(DRAU-ARROU-GRAPHIC 12Se ISeO ISeB)
(DRALoI-BIG-ARROU)
(STRIPE-ARROUHEAD)
(COMPUTE-NLINES lSBO)

.(COMPUTE-DENS lSeO)

Locaisl

More 4boN

More below

Return to norftal debugger, 5taylng In error context.
Supply replaceftent arguftent
Return a value froft the --INTERNAL Instruction
Retry the --INTERNAL In5tructlon
LI5p Top Level In LI5p Listener I

Inspect
Edit

Return
Throw

Set arg
Search

Retry

»Trap: The flr5t arguftent given to SYS:--INTERNAL, NIL, was not a nuftber.

:;hoose a value by pointing at the value. GRRAI9hH·tICge:ts ObJeTcyt
l

Irlto error handler.
e8~29~83 17:91:23 rOft P 5

Figure 7. The Window Debugger: inspecting the stack frame containing a call
to compute-dens.

316

Program Development Utilities August 1986

)(2
Value Is NIL
Function 15 unbound
Property list: (DOCUMENTRTION ••••• SPECIAL I<UNIX-PRTHNRME ·VIXEN: "dess"yorkstyles •.
Package: I<Package GRRPHICS 36635277)

U<Stack-Frafte COMPUTE-DENS PC=12)
)(2

Args:
Rrg 9 (X): 1899

(DO-ARRO~)
(DRA~-ARRO~-GRAPHIC 1289 1899 18(9)
(DRA~-8IG-ARRO~)
(STRIPE-ARRO~HEAD)
(COMPUTE-NLINES 18(9)

+(COMPUTE-DENS 18(9)

Locals:

Return to norftal debugger. staying In error context.
Supply replace"ent arguftent
Return a value fro" the --INTERNAL Instruction
Retry the --INTERNAL Instruction
Lisp Top Level In Lisp Listener 1

What Error
Rrslist

Inspect
Edit

Return
Throw

Set ers
Search

Retry

»Trap: The first arguftent given to SYS:--INTERNAL. NIL. yas not a nu"ber.

~hoose a value b~ pOinting at the value. GRRAI9hH'ItC9~.ts object Into error handler.
98'29'83 17:92:95 roft P 5 Tyl

Figure 8. The Window Debugger: inspecting the variable *x2*.

August 1986

317

Program Development Tools and Techniques

Example
We have outlined the large arrow and the largest of the small
arrows. We try to outline the rest of the small arrows by adding
two recursive function calls to do-arrows:

(defun do-arrows ()
ii Don't exceed maximum recursion level
(when « *depth* *max-depth*)

ii Bind values for half and one-fourth of top edge
(let «*top-edge-2* (II *top-edge* 2»

(*top-edge-4* (II *top-edge* 4»)
(draw-arrow) iDraw a small arrow
ii Increment depth. Divide top edge in half. Bind new
ii coordinates for top right point of next arrow.
(let «*depth* (1+ *depth*»

(*top-edge* *top-edge-2*)
(*pBx* (+ *top-edge-4* (- *pBx* *top-edge*»)
(*pBy* (- *pBy* *top-edge-2*»)

Draw a left-hand child arrow
(do-arrows»

ii Increment depth. Divide top edge in half. Bind new
ii coordinates for top right point of next arrow.
(let «*depth* (1+ *depth*»

(*top-edge* *top-edge-2*)
(*pBx* (- *pBx* *top-edge-2*»
(*pBy* (+ *top-edge-4* (- *pBy* *top-edge*»»

" Draw a right-hand child arrow
(do-arrows»»)

This code produces the result shown in figure 9. Something is
clearly wrong with at least one of the function calls, but the
complexity of the figure makes it difficult to see the source of the
error. We simplify the figure by making a comment of the second
recursive function call:

318

Program Development Utilities August 1986

(defun do-arrows ()
;; Don't exceed maximum recursion level
(when « *depth* *max-depth*)

#11

11#
»)

;; Bind values for half and one-fourth of top edge
(let «*top-edge-2* (II *top-edge* 2»

(*top-edge-4* (II *top-edge* 4»)
(draw-arrow) ;Draw a small arrow
;; Increment depth. Divide top edge in half. Bind new
;; coordinates for top right point of next arrow.
(let «*depth* (1+ *depth*»

(*top-edge* *top-edge-2*)
(*pBx* (+ *top-edge-4* (- *pBx* *top-edge*»)
(*pBy* (- *pBy* *top-edge-2*»)

II Draw a left-hand child arrow
(do-arrows»

II Increment depth. Divide top edge in half. Bind new
;; coordinates for top right point of next arrow.

(let «*depth* (1+ *depth*»
(*top-edge* *top-edge-2*)
(*pBx* (- *pBx* *top-edge-2*»
(*pBy* (+ *top-edge-4* (- *pBy* *top-edge*»»

II Draw a right-hand child arrow
(do-arrows»»)

We recompile do-arrows (using c-sh-C), run the program again,
and obtain the results shown in figure 10. The small arrows now
appear to be the right size, and the number of recursion levels is
correct. The problem seems to lie in the positioning of the
arrows, or the calculation of the new values for *pOx* and *pOy*.
On close inspection, we see that the x-coordinates look correct,
but the yo,coordinates are wrong. Instead of obtaining the new
value of *pOy* by subtracting *top-edge-2* from the old *pOy*,
we should subtract *top-edge-4* from *pOy*. We change the
definition of do-arrows:

August 1986

319

Program Development Tools and Techniques

(defun do-arrows ()

#11

11#
»)

(let «*depth* (1+ *depth*»
(*top-edge* *top-edge-2*)
(*p9x* (+ *top-edge-4* (- *p9x* *top-edge*»)
(*p9y* (- *p9y* *top-edge-4*»)

II Draw a left-hand child arrow
(do-arrows»

II Increment depth. Divide top edge in half. Bind new
;; coordinates for top right point of next arrow.

(let «*depth* (1+ *depth*»
(*top-edge* *top-edge-2*)
(*p9x* (- *p9x* *top-edge-2*»
(*p9y* (+ *top-edge-4* (- *p9y* *top-edge*»»

II Draw a right-hand child arrow
(do-arrows»»)

When we recompile do-arrows and run the program again, we
obtain the results shown in figure 11. The first recursive
function call is now correct. Looking at the arguments in the
second function call, we see that the same error exists in the
calculation of the new *pOx*: We should subtract *top-edge-4*,
not *top-edge-2*, from the old *pOx*. We make the change,
remove the #11 and 11#, and recompile do-arrows. We obtain the
results shown in figure 2.

Example
Figure 5 shows a split screen, with graphic output in the upper
window and source code in the lower. To adjust the size of the
graphic for the smaller window, we have to change the arguments
to draw-arrow-graphic when we call that function from
do-arrow. We want to keep a record of the arguments we use to
produce a full-screen figure. We can make a comment of the call
to draw-arrow-graphic that uses full-screen arguments:

320

Program Development Utilities August 1986

Figure 9. Output resulting from a faulty attempt to outline the small arrows
recursively.

321

August 1986 Program Development Tools and Techniques

Figure 10. Output resulting from a faulty attempt to outline the small arrows
recursively, with the second function call commented out.

322

Program Development Utilities August 1986

Figure 11. Output resulting from a corrected attempt to outline the small arrows
recursively, with the second function call commented out.

August 1986

323

Program Development Tools and Techniques

(defun do-arrow ()
(setq *dest* (make-instance 'screen-arrow-output»
(send terminal-io ':clear-screen)
(draw-arrow-graphic 1289 1899 1899»
(draw-arrow-graphic 649 1399 1899»

30.4 Tracing and Stepping

30.4.1 Tracing
When a program runs but behaves unexpectedly, you might be
calling functions in the wrong sequence or passing incorrect
arguments. Tracing function calls can help detect this sort of
problem. By default, tracing prints a message, indented according
to the level of recursion, on entering and leaving a function. It
also prints the arguments passed and the values returned.

You can invoke tracing in three ways:

• Use [Trace] in the System menu

• Use Trace (M-H) in Zmacs

• Use the trace special form

[Trace] and Trace (M-H) pop up a menu of options, including
stepping and inserting breakpoints. You can use these options
with trace, too, but the syntax is complex. Table 1 summarizes
the correspondence between trace menu items and trace options.
For a description of the options: See the section "Options To
trace", page 74.

Example
Suppose that we had begun writing the recursive function calls in
do-arrows with the following code, passing arguments to
do-arrows instead of binding the special variables:

(defun draw-arrow-graphic (*top-edge* *p9x* *p9y*)

(draw-big-arrow)
(do-arrows 9 *top-edge-2* (- *p9x* *top-edge-2*) (- *pBy* *top-edge-2*»)

324

Program Development Utilities August 1986

(defun do-arrows (*depth* *top-edge* *p0x* *p0y*)
;; Don't exceed maximum recursion level
(when « *depth* *max-depth*)

;; Bind new values for half and one-fourth of top edge
(let ((*top-edge-2* (II *top-edge* 2))

(*top-edge-4* (II *top-edge* 4)))
;; Draw a small arrow
(draw-arrow)
" Draw a left-hand child arrow, dividing top edge in half,
;; incrementing depth, and passing new coordinates for top
;; right point
(do-arrows *top-edge-2* (1+ *depth*)

(+ *top-edge-4* (- *p0x* *top-edge*))
(- *p0y* *top-edge-4*))

" Draw a right-hand child arrow, dividing top edge in half,
incrementing depth, and passing new coordinates for top

" right point
(do-arrows *top-edge-2* (1+ *depth*) (- *p0x* *top-edge-4*)

(+ *top-edge-4* (- *p0y* *top-edge*))))))

This code produces only the first of the small arrows. Again,
something appears to be wrong with the recursive function calls.
Using Trace (n-X), we trace calls to do-arrows. We run the
program again, and the following trace output appears:

(1 ENTER DO-ARROWS (0 640 1160 1160))
(2 ENTER DO-ARROWS (320 1 680 1000))
(2 EXIT DO-ARROWS NIL)
(2 ENTER DO-ARROWS (320 1000 680))
(2 EXIT DO-ARROWS NIL)

(1 EXIT DO-ARROWS NIL)
NIL

The problem here is immediately apparent: The order of the first
two arguments in the recursive function calls is reversed. We are
passing the new value of *top-edge* as the new value of *depth*.
Because this value exceeds that of *max-depth*, the function
returns after the first recursive call.

Reference
Trace (n-X) Traces or untraces a specified

August 1986

30.4.2 Stepping

325

Program Development Tools and Techniques

function. Prompts for the name
of a function to trace and pops
up a menu of trace options.

[Trace] (from the System menu) Traces or untraces a specified
function. Prompts for the name
of a function to trace and pops
up a menu of trace options.

(trace (:function function-spec-l option-l option-2 d ~
Enables tracing of one or more
functions. If function-spec is a
symbol, the keyword :function is
unnecessary. An argument can
also be a list whose car is a list
of function names and whose cdr
is one or more options. In this
case, all functions in the list are
traced with the same options.
With no arguments, returns a
list of functions being traced.

(untrace (:function function-spec-12 ~
Disables tracing of one or more
functions. If function-spec is a
symbol, the keyword :function is
unnecessary. With no
arguments, untraces all functions
being traced.

When a program behaves unexpectedly and tracing doesn't reveal
the problem, you might step through the evaluation of a function
call. You can step through function execution by using zl:step,
[Step] from a trace menu, or the :step option for trace.

You can step through the execution of a function only if it is
interpreted, not compiled. If you want to step through execution
of a compiled function, read the definition into a Zmacs buffer
and use a Zmacs command (such as c-sh-E) to evaluate it. See
the section "Evaluation and the Editor", page 303.

The Stepper prints a partial representation of each form evaluated
and the values returned. A back arrow (~) precedes the
representation of each form being evaluated. A double arrow (H)

326

Program Development Utilities

Table 1. Trace Menu Items and trace Options

Trace menu item trace option

[Cond break before] : break predicate

[Break before] :break t

[Cond break after] :exitbreak predicate

[Break after] :exitbreak t

[Error] : error

[Step] :step

[Cond before] :entrycond predicate

[Cond after] :exitcond predicate

[Conditional] :cond predicate

[Print before] :entryprint form

[Print after] :exitprint form

[Print] :print form

[ARGPDL] :argpdl pdl

[Wherein] :wherein function

[Per Process] :per-process process

[Untrace]

:entry list

:exit list

:arg :value : both :nil

August 1986

Description

Enters breakpoint on function entry
if predicate not nil

Enters breakpoint on function entry

Enters breakpoint on function exit
if predicate not nil

Enters breakpoint on function exit

Enters Debugger on function entry

Steps through (interpreted) function
execution

Prints trace output on function
entry if predicate not nil

Prints trace output on function
exit if predicate not nil

Prints trace output on function
entry and exit if predicate not nil

Prints value of form
in trace entry output

Prints value of form
in trace exit output

Prints value of form in
trace entry and exit output

On function entry, pushes list
of function name and args onto
pdl; pops list on function exit

Traces function only when
called within function

Traces function only in
process

Calls untrace on function

Prints values of forms in
list on function entry

Prints values of forms in
list on function exit

Controls printing of args
on function entry and values
on function exit

August 1986

327

Program Development Tools and Techniques

precedes macro forms. A forward arrow (~) precedes returned
values.

After printing, the Stepper waits for a command before
proceeding to the next step. Stepper commands allow you to
specify the level of evaluation to be stepped, escape to the editor,
or enter a Lisp breakpoint loop. For a list of commands, press
HELP inside the Stepper, or: See the section "Stepping Through
an Evaluation", page 85. Following are some basic Stepper
commands:

Command

c-N

SPACE

c-U

c-B

c-E

c-H

Example

Action

Evaluate until next thing to print

Evaluate until next thing to print at this level
(don't step at lower levels)

Evaluate until next thing to print at next level
up (don't step at current and lower levels)

Enter breakpoint loop

Enter Zmacs

Evaluate until finished (exit from stepping)

We have the same problem with the function do-arrows as we
described elsewhere: See the section "Tracing", page 323. The
program outlines only the largest of the small arrows, indicating
a problem with the recursive function calls. Instead of just
tracing do-arrows, we step through its evaluation. We first use
c-sh-E to evaluate the definition of do-arrows. We then use
[Step] in the menu that Trace (M-H) pops up to trace and step
through do-arrows. We run the program. The Stepper waits for
a command before evaluating each form in do-arrows. We press
SPACE to skip to the next form at the same level. When we come
to the comparison of *depth* and *max-depth* in the recursive
calls, we want to see each level of evaluation. We press c-N at
each of these steps. The tracing and stepping output looks as
follows:

328

Program Development Utilities August 1986

(1 ENTER DO-ARROWS (B 64B 116B 116B»
~ (WHEN « *DEPTH* *HAX-DEPTH*) (LET «*TOP-EDGE-2* (II *TOP-EDGE*
f- (COND «< *DEPTH* *HAX-DEPTH*) (PROGN (LET «*TOP-EDGE-2* (II *T

(2 ENTER DO-ARROWS (32B 1 68B 1BBB»
~ (WHEN « *DEPTH* *HAX-DEPTH*) (LET «*TOP-EDGE-2* (II *TOP-EDGE*
f- (COND «< *DEPTH* *HAX-DEPTH*) (PROGN (LET «*TOP-EDGE-2* (II *T

f- « *DEPTH* *HAX-DEPTH*)
f- *DEPTH* ~ 32B
f- *HAX-DEPTH* ~ 7

f- « *DEPTH* *HAX-DEPTH*) ~ NIL
f- (COND «< *DEPTH* *HAX-DEPTH*) (PROGN (LET «*TOP-EDGE-2* (II *T ~ NIL

(2 EXIT DO-ARROWS NIL)
(2 ENTER DO-ARROWS (32B 1 1BBB 68B»

~ (WHEN « *DEPTH* *HAX-DEPTH*) (LET «*TOP-EDGE-2* (II *TOP-EDGE*
f- (COND «< *DEPTH* *HAX-DEPTH*) (PROGN (LET «*TOP-EDGE-2* (II *T

f- « *DEPTH* *HAX-DEPTH*)
f- *DEPTH* ~ 32B
f- *HAX-DEPTH* ~ 7

f- « *DEPTH* *HAX-DEPTH*) ~ NIL
f- (COND «< *DEPTH* *HAX-DE?TH*) (PROGN (LET «*TOP-EDGE-2* (II *T ~ NIL

(2 EXIT DO-ARROWS NIL)
(1 EXIT DO-ARROWS NIL)
NIL

In this example, stepping shows even more clearly than tracing
that the value of *depth * is wrong in the recursive function calls.

Reference
(zl:step form)

Trace (M-X) [Step]

Steps through the evaluation of
form

Steps through the execution of a
function being traced.

[Trace / Step] (from the System menu)
Steps through the execution of a
function being traced.

(trace (:function function-spec :step»
Steps through the execution of a
function being traced. If
function-spec is a symbol, the
keyword :function is
unnecessary.

329

August 1986 Program Development Tools and Techniques

30.5 Using Breakpoints

In debugging a program, you might want to interrupt function execution to enter
a Lisp breakpoint loop or the Debugger. Entering the Debugger is usually more
useful, for there you can examine the stack, return values, and take other steps in
addition to evaluating forms.

You can use two general kinds of breakpoints:

• You can edit into a definition a call to zl:dbg (with no
arguments) or to zl: break. The advantage of this kind of
breakpoint is that, as with stepping, you can interrupt executi,on
within the function. The disadvantage is that you have to edit
and recompile the definition to insert and remove the breakpoint.
If you redefine the function after inserting the breakpoint, the
breakpoint might be lost .

• You can use breakon or one of the error or break options to
trace. These features create encapsulations, functions that
contain the basic definitions of the functions to which you want to
add breakpoints. For more on encapsulations: See the section
"Encapsulations" in Symbolics Common Lisp: Language Concepts.
The advantage of this kind of breakpoint is that when you
recompile or otherwise redefine the function, only the basic
definition is replaced, and the breakpoints remain. The
disadvantage is that you can interrupt function execution only on
entry or exit, not within the function.

You insert these breakpoints by calling breakon or trace from a
Lisp Listener or by using the trace menu; you remove them by
calling unbreakon or untrace. When you break on entering
function execution, just before applying the function to its
arguments, the variable arglist is bound to a list of the
arguments. When you break on exiting from function execution,
just before the function returns, the variable values is bound to a
list of the returned values.

From either a breakpoint loop or the Debugger, RESUME allows the program to
continue, and ABORT returns control to the previous break or, if none exists, to top
level.

Example
We decide to break on entry to do-arrows and enter the
Debugger while tracing the function. We use Trace (M-X) and
then [Error] from the trace menu. We select a Lisp Listener and
run the program. On the first entry to do-arrows we enter the
Debugger, with the following message:

330

Program Development Utilities August 1986

» TRACE Break: DO-ARROWS entered.

DO-ARROWS: (encapsulated for TRACE)
Rest arg (ARGLIST): (9 649 1169 1169)

s-A, RESUME: Proceed without any special action
s-B, ABORT: Lisp Top Level in Lisp Listener 1
~

Reference
(zl:dbg process) Enters the Debugger in process.

With an argument of t, finds a
process that has sent an error
notification. With no argument,
enters the Debugger as if an
error had occurred in the
current process.

(zl:break t!!JI. conditional-form) Enters a Lisp breakpoint loop
(identified as "breakpoint tag") if
conditional-form is not nil or is
not supplied.

(breakon function-spec conditional-form)
Passes control to the Debugger
on entering function-spec if
conditional-form is not nil or is
not supplied. With no
arguments, returns a list of
functions with breakpoints
specified by breakon.

(unbreakon function-spec conditional-form)
Turns off the breakpoint
condition specified by
conditional-form for function-spec.
If conditional-form is not
supplied, turns off all
breakpoints specified by breakon
for function-spec. With no
arguments, turns off all
breakpoints specified by breakon
for all functions.

August 1986

[Error] (from a trace menu)

331

Program Development Tools and Techniques

Passes control to the Debugger
on entering a function being
traced.

[Cond break before] (from a trace menu)
Prompts for a predicate.
Displays trace entry information
and enters a Lisp breakpoint
loop on entering a function being
traced if the predicate is not nil.

[Cond break after] (from a trace menu)
Prompts for a predicate.
Displays trace exit information
and enters a Lisp breakpoint
loop on exiting from a function
being traced if the predicate is
not nil.

(trace (:function function-spec :error»
Passes control to the Debugger
on entering a function being
traced. If function-spec is a
symbol, the keyword :function is
unnecessary.

(trace (:function function-spec :break predicate»
Prints trace entry information
and, if the value of predicate is
not nil, enters a Lisp break loop
on entering the function. If
function-spec is a symbol, the
keyword :function is
unnecessary.

(trace (:function function-spec :exitbreak predicate»
Prints trace exit information
and, if the value of predicate is
not nil, enters a Lisp break loop
on exiting from the function. If
function-spec is a symbol, the
keyword :function is
unnecessary.

332

Program Development Utilities August 1986

30.6 Expanding Macros

Sometimes a program bug appears to stem from unexpected behavior by a macro.
Seeing how a macro form expands can help find the bug. To be sure that a macro
does what you want it to, you might also want to create and expand a macro form
soon after defining the macro and compiling the definition.

You can expand a macro form in a Zmacs buffer using Macro Expand Expression
(c-sh-M). This command expands the form following point, but not any macro
forms within it. To expand all subforms, use Macro Expand Expression All
(M-sh-M). You can also expand macro forms with mexp, which enters a loop to
read and expand one form after another.

Example
We have just written code to stripe the shafts of the small
arrows, drawing stripes with uniform spacing and density. We
produce the results shown in figure 12. We evidently have a
problem with the function draw-arrow-shaft-stripes. The code
for this function is as follows:

(defun draw-arrow-shaft-stripes
(left-x top-y right-x bottom-y)

;; Find y-coord of starting point of stripe. Don't go
;; below the bottom of the triangle.
(loop for start-y from top-y by *stripe-distance* above bottom-y

;; Find x-coord of ending point of the stripe
for end-x from right-x by *stripe-distance*
" Draw a stripe
do (draw-arrow-shaft-lines

left-x start-y end-x bottom-y»)

The bug stems from incorrect coordinates for the endpoints of the
shaft stripes. The beginning coordinates (left-x and start-y) are
correct. The ending y-coordinate (bottom-y) looks right, but the
ending x-coordinate (end-x) is wrong. The problem might not be
evident from looking at the code, which consists entirely of a
zl:loop form. We move to the beginning of the zl:loop form and
expand it, using c-sh-M:

333

August 1986 Program Development Tools and Techniques

Figure 12. Output from the program with a bug in the function
draw-arrow-shaft-stripes.

334

Program Development Utilities August 1986

«LAMBDA (START-Y G1049 G1050)
«LAMBDA (END-X G1051)

(PROG NIL
(AND (NOT (GREATERP START-Y G1050)) (GO SI:END-LOOP))

SI:NEXT-LOOP
(DRAW-ARROW-SHAFT-LINES LEFT-X START-Y END-X BOTTOM-Y)

. (SETQ START-Y (DIFFERENCE START-Y G1049))
(AND (NOT (GREATERP START-Y G1050)) (GO SI:END-LOOP))
(SETQ END-X (PLUS END-X G1051))
(GO SI:NEXT-LOOP)

SI:END-LOOP
))

RIGHT-X
STRIPE-DISTANCE))

TOP-Y
STRIPE-DISTANCE
BOTTOM-Y)

The expansion shows the lambda-bindings and prog form that the
zl:loop macro creates. We can see that the error is in the
setting of end-x within· the prog form: We are incrementing
end-x by *stripe-distance*, when we should be decrementing it.
The problem is in our use of a zl:loop keyword. Instead of
writing

for end-x from right-x by *stripe-distance*

we should have written

for end-x downfrom right-x by *stripe-distance*

We make the change and recompile draw-arrow-shaft-stripes.
Now if we expand the zl:loop form, we see that we are
decrementing end-x:

August 1986

«LAMBDA (START-Y G1062 G1063)
«LAMBDA (END-X G1064)

(PROG NIL

335

Program Development Tools and Techniques

(AND (NOT (GREATERP START-Y G1063)) (GO SI:END-LOOP))
SI:NEXT-LOOP

(DRAW-ARROW-SHAFT-LINES LEFT-X START-Y END-X BOTTOM-V)
(SETQ START-Y (DIFFERENCE START-Y G1062))
(AND (NOT (GREATERP START-Y G1063)) (GO SI:END-LOOP))
(SETQ END-X (DIFFERENCE END-X G1064))
(GO SI:NEXT-LOOP)

SI:END-LOOP
))

RIGHT-X
STRIPE-DISTANCE))

TOP-Y
STRIPE-DISTANCE
BOTTOM-Y)

Reference
Macro Expand Expression (c-sh-M)

Expands the macro form
following point. Does not expand
subforms within the form.

Macro Expand Expression All (n-sh-M)

(mexp)

Expands the macro form
following point and all subforms
within the form.

Enters a loop: prompts for a ,
macro form to expand, expands
it, and prompts for another
macro form. Exits from the loop
on nil.

30.7 Using the Inspector

The Inspector is a window-based tool that combines the describe and disassemble
functions. Invoke it with inspect, SELECT I, or [Inspect] from the System menu.
If you use inspect, the Inspector is not a separate activity from the Lisp Listener
in which you invoke it. In that case you cannot use SELECT L to return to the
Lisp Listener; you must click on [Exit] or [Return] in the Inspector menu.

336

Program Development Utilities August 1986

The Inspector displays information about an object and lets you modify the object.
It displays information for the last object inspected in the bottom window. It
displays information for the two previous objects in the windows above the bottom
one. It maintains a mouse-sensitive listing of all inspected objects in the history
window. These are some of its useful features:

• The information the Inspector displays depends on the object's
type. For a symbol, it displays a representation of the value,
function, property list, and package. For a symbol's flavor
property, it displays information about instance variables,
component and dependent flavors, the message handler, init
keywords, and the flavor property list. For a compiled function, it
displays the disassembled assembly-language code that represents
the compiler output.

• The Inspector is especially useful for examining data structures.
It displays the names and values of the slots of structures and,
unlike describe, the elements of (one-dimensional) arrays. For
instances of flavors, the Inspector displays the names and values
of instance variables.

• Within each display, most representations of objects are mouse
sensitive. If you click on an object representation, you inspect
that object. For example, you can inspect elements of lists. If an
element of an array is itself an array, you can inspect the second
array. In this way you can follow long paths in data structures.

• You can change a value by using the [Modify] option in the
Inspector's menu. You can return a value when you exit the
Inspector by clicking on [Return].

For more on the Inspector: See the section "The Inspector", page 93.

Example
Suppose we had represented each arrow as an instance of a
structure (defined with zl:defstruct) instead of a collection of
special-variable values. We could have called the structure
representing the small arrows arrow and set the value of a
special variable, *arr*, to each instance of the structure as we
created it.

Figure 13 shows an Inspector window for the last arrow in the
figure. We first run the program in a Lisp Listener, then invoke
the Inspector using SELECT 1. Because we typed (pkg-goto
I graph; cs) in the Lisp Listener, the Inspector's package is
graphics. We type *arr* to the interaction pane at the top of the

August 1986

337

Program Development Tools and Techniques

frame. The window at the bottom of the frame displays the
names and values of the structure slots. We can change these
values by using the [Modify] menu option.

Example
Suppose we had represented each arrow as an instance of a flavor
and defined most of our computation functions as flavor methods
instead of simple functions. We could have called the flavor
representing the small arrows arrow and set the value of *arr* to
each instance of the flavor as we created it.

Figure 14 shows an Inspector window for the last arrow in the
figure. As with our structure example, we first run the program
and then invoke the Inspector to evaluate *arr* and inspect the
flavor instance that is its value. The Inspector displays the
names and values of instance variables and a representation of
the flavor's message handler.

We next click on the mouse-sensitive representation of the
message handler. The Inspector displays a representation of the
function spec for the method that handles each message. If we
click on the function spec for the :compute-dens method of flavor
basic-arrow, the Inspector displays the method's disassembled
code.

Reference
(inspect object)

SELECT I

Selects an Inspector window in
which to inspect object.

Selects an Inspector window.

[Inspect] (from the System menu)

(disassemble function)

Disassemble (M-X)

Selects an Inspector window.

Prints a representation of the
assembly-language instructions
for a compiled function.

Prompts for the name of a
compiled function and displays a
representation of the function's
assembly-language instructions.

338

Program Development Utilities August 1986

arr •
Top Of Him1Y Exit

I<ARROW -33247e21> Return
Modify
DeCache
Clear
Set ,

6ot1tRft of Bim1Y
Top of obiect

Empty

6ot1tRft 01 obJect
Top of object

Empty

60tt0M of object
Top of object

#(AAAOW -33247021)
NaMed structure of type ARROW

DEPTH: 6
TOP-EDGE: Ie
TOP-EDGE-2: 5
TOP-EDGE-4: 2
X2: 825
STRIPE-D: Ie
pex: 845
PBV: 215
PIX: 835
P1V: 215
P2X: 837
P2V: 213
P5X: 843
P5V: 2B7
P6X: 845
P6V: 2B5

\

60tt0M of object
Choose a value by pointlng at
B8~17~83 18:23:32 rOM

the value. Right finds function definition.
GRAPHICS: Tyi_

Figure 13. The Inspector window: inspecting an instance of a structure.

339

August 1986 Program Development Tools and Techniques

'arr' •
Top of History Exit

U<ARROU 19929942> Return
t10dlfy
DeCache
Clear
Set ,

80ttmt of History
Top of obllCt

~ty

80ttmt of objlCt

Top of object

~ty

80tt0m of object
Top of object

#<AfflOW 10020042)
handlcr for ARR~H An Instance of ARROU. m<HcssoQc

DEPTH: 6
TOP-EDGE: 19
TOP-EDGE-2: 5
TOP-EDGE-4: 2
X2: 825
STRIPE-D: 19
P9X: 845
P9V: 215
PIX: 835
P1V: 215
P2X: 837
P2V: 213
P5X: 843
P5V: 297
P6X: 845
P6V: 295

Bottom of object

Choose a value by pOinting at the value. _~i ht _!inds function definition.
Tyl

Figure 14. The Inspector window: inspecting an instance of a flavor.

340

Program Development Utilities August 1986

Top of History
U<ARRO~ 10020042>
U<Messoge hondler for ARRO~>

Bottom of History

Top of objt:ct
Empty

Bottom of object

Top of obiect
#<AAAOW 10020042)
An instance of ARRO~. U<Message handler for ARRG~>

DEPTH: 6
TOP-EDGE: 1 0
TOP-EDGE-2: 5

More below

Exit
Return
Modify
DeCache
Clear
Set ,

~------------------.-. --------------~--~~~----------------------------------~ Top of objt:ct
#<Message handler for ARROW)
: COMP UT E - DEtiS : 11ll':t • T"(-:: M~E T..,..H:,.;O~D......,B=A=, S"""I,..."C -"""'A=R7':'R~O ~~:..,.Co:?lO:-:::MrJO:P~U....,T E _ b"""Ert"N:,.;S"r.) ~

:COMPUTE-NLINES: U'(:METHOD BASIC-ARRO~ :COMPUTE-NLINES)
:COMPUTE-POINTS: U'(:METHOD BASIC-ARRO~ :COMPUTE-POINTS)
:COMPUTE-STRIPE-D: ~'(:METHOD BASIC-ARRO~ :COMPUTE-STRIPE-D)
:COMPUTE-TOP-EDGES: ~'(:METHOD BASIC-ARROW :COMPUTE-TOP-EDGES)
DESCRIBE: U'(:METHOD SI:VANILLA-FLAVOR DESCRIBE)
:DRA~-ARRO~: ~'(:METHOD BASIC-ARROW :DRA~-ARRO~)
:DRA~-ARRO~-SHAFT-LINES: #'(:METHOD ARROW-MIXIN :DRAW-ARROW-SHAFT-LINES)
:DRAW-ARROW-SHAFT-STRIPES: U'(:METHOD ARROW-MIXIN :DRAW-ARROW-SHAFT-STRIPES)
:DRA~-ARROWHEAD-lINES: U'(:METHOD BASIC-ARROW :DRAW-ARRO~HEAD-L!NES)
:DRAW-OUTLINE: U'(:METHOD ARROW-MIXIN :DRA~-OUTLINE)
:EVAL-INSIDE-YOURSELF: U'(:METHOD S!:VANILLA-FLAVOR :EVAl-INSIDE-YOURSELF)
:FUNCALL-!NSIDE-YOURSELF: U'(:METHOD S!:VANILLA-FLAVOR :FUNCALL-INSIDE-YOURSELF)
GET-HANDLER-FOR: ~'(:METHOD SI:VANILLA-FLAVOR GET-HANDLER-FOR)
:OPERATION-HANDLED-P: U'(:METHOD SI:VANILLA-FLAVOR :OPERATION-HANDLED-P)
:POX: U'(:METHOD BASIC-ARROW :P0X)
:POY: U'(:METHOD BASIC-ARRO~ :POY)
:PRINT-SELF: U'(:METHOD SI:VANIlLA-FLAVOR :PRINT-SELF)
:SEND-IF-HRNDLES: U'(:METHOD SI:VANILLA-FLAVOR :SEND-IF-HANDLES)
:SET-STRIPE-D: U'(:METHOD BASIC-ARROW :SET-STRIPE-D)
:STRIPE-ARROW-SHAFT: U'(:METHOD ARRO~-MIXIN :STRIPE-ARROW-SHAFT)
:STRIPE-ARROWHEAD: U'(:METHOD BASIC-ARROW :STRIPE-ARRO~HEAD)

More below
~hoose a value by pointing at the volue. Right finds function definition.
081'201'83 17: 09 : 42 rol'l GRAPHI CS: T y i

Figure 14, continued.

341

August 1986 Program Development Tools and Techniques

Top of Himry
~<ARRO~ 10020042>
~<Me55~ge h~ndler for ARRO~>
~'(:METHOD BASIC-ARRO~ :COMPUTE-DENS)

BottQm of History

Top of object
#<AJFlJW 10020042)
An In5t~nce of ARRO~. ~<Me55~ge h~ndler for ARRO~>

DEPTH: 6
TOP-EDGE: 10
TOP-EDGE-2~ 5

Mor. below
Top of object

#<Message handler for AAAOW)
:COMPUT~-DENS: "'(:METHOD BASIC-ARRO~ COMPUTE-DENS)
:COMPUTE-NLINES: "'(:METHOD BASIC-ARRO~ COMPUTE-NLINES)
:COMPUTE-POINTS: ~'(:METHOD BASIC-ARRO~ COMPUTE-POINTS)
:COMPUTE-STRIPE-D: "'(:METHOD BASIC-ARRO~ COMPUTE-STRIPE-D)
:COMPUTE-TOP-EDGES: "'(:METHOD BASIC-ARRO~ COMPUTE-TOP-EDGES)

Top of object
#<DTP-GOMPIlED-FUNCTION (:METHOD BASIC-ARROW :COMlUTE-DENS) 46660073)

o ENTRY: 4 REQUIRED, 0 OPTIONAL
1 PUSH-INDIRECT *Dl*
2 PUSH-INDIRECT *D2*
3 PUSH-INDIRECT *Dl*
4 BUILTIN --INTERNAL STACK
5 PUSH-LOCAL FPI3 ;X
6 PUSH-INSTANCE-VARIABLE 2 ;P0X
7 BUILTIN --INTERNAL STACK

10 PUSH-INSTANCE-VARIABLE 15 ;X2
11 PUSH-INSTANCE-VARIABLE 2 ;P0X
12 BUILTIN --INTERNAL STACK
13 BUILTIN FLOAT STACK
14 BUILTIN ~-INTERNAL STACK
15 BUILTIN *-INTERNAL STACK
16 BUILTIN +-INTERNAL STACK
17 RETURN-STACK

Bottom of object
.. hoo5e ~ v~lue by pOinting ~t the v~lue. Right flnd5 function definition.
08~20~83 17: 10: 06 ro" GRAPHICS: Ty I

Figure 14, concluded.

Exit
Return
Modify
DeC~che
Cle~r
Set ,

342

Program Development Utilities August 1986

343

August 1986 Program Development Tools and Techniques

31. Using Flavors and Windows

All Genera programmers must know how to use flavors and the window system in
at least an elementary way. Flavors are the basis of a powerful, nonhierarchical
kind of object-oriented programming. Even if you don't use them extensively, the
system code does. Applications that include screen display or user interaction
must deal with the window system, which is itself built on flavors.

In this chapter we present a brief introduction to using flavors and windows. We
do not discuss the concepts and organization of flavors and the window system in
any detail. Instead, we modify the output module of our example program to show
some simple uses of flavors, windows, and menus. We show basic examples of the
following features:

• Using base, mixin, and instantiable flavors and :daemon method
combination

o Creating a simple window and associating it with a process

• Producing LG P output

• Altering values using a choose-variable-values window

o Signalling a condition and proceeding

We also present some editor commands and Lisp functions for finding information
about flavors and windows. Among the issues we do not discuss in any detail are
the following:

• Using types of method combination other than :daemon

• Interacting with the mouse process

• Creating frames

• Specifying fonts

• Using menus

For more information on flavors and windows, read the following:

o On flavors: See the section "Flavors" in Symbolics Common Lisp:
Language Concepts.

• On windows: See the section "Using the Window System" in
Programming the User Interface, Volume B.

• On menus: See the section "Window System Choice Facilities" in
Programming the User Interface, Volume B.

• On conditions and errors: See the section "Conditions" in
Symbolics Common Lisp: Language Concepts.

344

Program Development Utilities August 1986

31.1 Program Development: Modifying the Output Module

As now written, the output routines of our example program consist of a flavor
and methods that produce lines on the stream to which zl:terminal-io is bound:

(defflavor screen-arrow-output
((scale-factor 2.5))
0)

(defmethod (screen-arrow-output :show-lines)
(x y &rest x-y-pa;rs)

(loop for xa = (send self ':compute-x x) then x1
for ya = (send self ':compute-y y) then y1
for (x1 y1) on x-y-pairs by #'cddr
do (setq x1 (send self ':compute-x x1)

y1 (send self ':compute-y y1))
(send terminal-io ':draw-line

x9 ya x1 y1 tv:alu-ior t)))

(defmethod (screen-arrow-output :compute-x) (x)
(fixr (II x scale-factor)))

(defmethod (screen-arrow-output :compute-y) (y)
(fixr (- saa (II y scale-factor))))

We want to be able to produce output on the screen, an LGP, or a file. For this
we need a simple device-independent graphics system that uses generic operations.
The central operation is : show-lines, which receives endpoint coordinates from the
calculation module and produces lines on the appropriate output stream. Our
general strategy for creating the output options is as follows:

1. Define a flavor and methods to calculate the position of the arrow
figure on the screen or page. We can use this moon with flavors
that produce any kind of output.

2. Define flavors and methods to produce screen output. We build
the instantiable flavors on tv:window and instantiate them with
tv: make-window. We define two kinds of arrow window flavors:

• A basic flavor that performs output and redisplays the window
after changes .

• A flavor, which we instantiate, that is built on the basic window
and includes a moon to convert LGP coordinates to screen
coordinates.

August 1986

345

Program Development Tools and Techniques

3. Define a flavor and methods to produce LGP or file output.

4. Define a top-level function that uses a choose-variable-values
window to select the type of output and alter some variables. The
function calls tv:make-window or makes an instance of the LGP
flavor, depending on the output type.

5. Change the arrow-window flavors to allow multiple windows,
associate each window with its own process, and allow the user to
modify the characteristics of the figure in each window.

6. Define a function to check for mistakes when the user changes
the values of variables. We define condition flavors for the
incorrect choices. We define handlers for the conditions and use
signal to signal them. We allow the user to proceed by supplying
new values for the variables.

We want to preserve modularity in writ~ng these new routines. We define the
flavor that positions the arrow figure so that we can use it with any sort of
output. We keep the operations that transform LGP to screen coordinates
separate from the basic window operations. We define the routines that handle
bad variable values as separate flavors and functions. These precautions make it
easy to define new kinds of windows or to check for errors in other variable values
in the future.

31.1.1 A Mixin to Position the Figure
No matter what the output device, we wantto be sure that the
figure fits within the bounds of the page or window and is
centered within the page or window. We define a moon flavor,
arrow-parameter:"mixin, with methods to perform these
calculations. We include this flavor in all flavors that produce
output for the figure.

We define five instance variables to hold the parameters. Three
of these, top-edge, right-x, and top-y, are the arguments we must
pass to the calculation module. We make these three instance
variables gettable so that we can retrieve them by sending
messages to an instance of the dependent flavor. The other two
instance variables are the width and height of the page or window
in the appropriate- units, either LGP or screen pixels.

346

Program Development Utilities . August 1986

(defflavor arrow-parameter-mixin
(width height top-edge right-x top-y)
o

(:gettable-instance-variables top-edge right-x top-y)
(:documentation :mixin
"Provides parameters for size and position of figure.

Instance variables hold width and height of page or window;
length of top edge of figure; coordinates of top right point
of figure."))

The task of this flavor is to perform a generic operation, which
we call :compute-parameters. This operation consists of separate
computations for top-edge, right-x, and top-yo We define primary
methods for these operations here, using coordinates with the
origin at bottom left. Flavors that mix in this one can add
daemons, whoppers, or their own primary methods to
accommodate other coordinate systems and scale factors.

We perform these operations as follows:

1. Determine the width and height of the page or window. The
details of this operation are the business of other flavors. We
specify a required method, :compute-width-and-height, for any
flavor that mixes in this one. We send self a
:compute-width-and-height message to set the instance variables.

2. Calculate a provisional value for top-edge so that the figure fits
within the smaller dimension of the page or window. We allow
the user to specify, by setting the global variable
fill-proportion, what fraction of this dimension the figure
should fill.

3. Adjust the top edge so that its value is at least 128 and is a
multiple of 128 if larger. This adjustment ensures that stripe
spacing is continuous throughout the levels of the figure.

4. Calculate right-x and top-y so that we center the figure within
the page or window.

The complete code for this flavor and its methods is as follows:

(defvar *fill-proportion* 0.9
"Proportion of smaller dimension to be filled by figure")

August 1986

347

Program Development Tools and Techniques

(defflavor arrow-parameter-mixin
(width height top-edge right-x top-y)
o

(:gettable-instance-variables top-edge right-x top-y)
(:required-methods :compute-width-and-height)
(:documentation :mixin
"Provides parameters for size and position of figure.

Instance variables hold width and height of page or window;
length of top edge of figure; coordinates of top right point
of figure. Methods calculate size and position of figure by
centering it within the page or window and making it fill no
more than the specified proportion of the smaller dimension.
The methods use a coordinate system with origin at bottom left;
other mixins must correct for this if output is going to a
window. Other flavors must also provide a method for calculating
width and height of the page or window. This flavor should be
mixed into any instantiable flavor that produces output for the
arrow graphic."»

J J J
J J J
J J J
J J J
J J J
J J J
J J J

Method controlling calculation of size and position of figure.
Sends messages to self to calculate width and height of page
or windowJ length of top edge of figure J and coordinates of
figureJs top right point. These are separate methods so that
other flavors can shadow them or add daemons. Another flavor
must provide a method to compute width and heightJ because
this is specific to the output device.

(defmethod (arrow-parameter-mixin : compute-parameters) ()
;; Another flavor must supply method for width and height
(send self J:compute-width-and-height)
;; Make a preliminary estimate of length of top edge
(send self J:compute-top-edge)
;; Adjust top edge to make it a multiple of 128
(send self J:adjust-top-edge)
;; Calculate coordinates of top right point of figure.
;; We canJt do this until we know how long top edge is.
(send self J:compute-right-x)
(send self J:compute-top-y»

348

Program Development Utilities August 1986

" ,

Makes a preliminary estimate of length of top edge.
The top edge of the arrow is 80 percent of the horizontal
or vertical length of the whole figure. First finds the
smaller of the length or width of the page or window.

'" Multiplies this by the proportion of this dimension that
is to be filled by the figure. The result is the
horizontal or vertical length of the figure. Multiplies

'" this by 0.8 to get the length of the top edge.
(defmethod (arrow-parameter-mixin :compute-top-edge) ()

(setq top-edge

" ,
" ,
" ,

" ,

(fixr (* 0.8 *fill-proportion* (min width height)))))

Adjusts length of top edge so it is a multiple of 128.
There are 64 stripes in the head of the large arrow. The
calculation module divides the length of top edge by two
each time it goes down another recursion level. By making
the original top edge a multiple of 128, we maximize
continuity in striping between arrowheads and shafts and

'" among the first several levels of recursion.
(defmethod (arrow-parameter-mixin :adjust-top-edge) ()

(setq top-edge

" ,
" ,

;; Minimum length of top edge is 128
(if « top-edge 256) 128

Otherwise set to next lower multiple of 128
(* 128 (fix (II top-edge 128))))))

Calculates x-coordinate of top right point of figure.
Finds horizontal length of figure by dividing length of
top edge by 0.8. Centers the figure horizontally within
the page or window.

(defmethod (arrow-parameter-mixin :compute-right-x) ()
(setq right-x

" ,

(fixr (* 0.5 (+ width (II top-edge 0.8))))))

Calculates y-coordinate of top right point of figure.
Assumes that the origin ;s at bottom. Finds vertical
length of figure by dividing length of top edge by 0.8.
Centers the figure vertically within the page or window.

(defmethod (arrow-parameter-mixin :compute-top-y) ()
(setq top-y

(fixr (* 0.5 (+ height (II top-edge 0.8))))))

349

August 1986 Program Development Tools and Techniques

31.1.2 The Basic Arrow Wi ndow
We want to build our window on tv: window, a flavor that
produces a simple window with borders, a label, and graphics.
Any arrow window we use must provide for initialization and
redisplay, determine its width and height, and supply a
:show-lines method to draw our figure.

We define a mixin flavor, basic-arrow-window-mOOn, with
methods to do these things. We require that this flavor be used
with arrow-parameter-mOOn and tv: window. For the basic
window, we assume that the coordinates supplied to :show-lines
are screen coordinates, with origin at top left.

We write basic-arrow-window-mOOn as follows:

1. Define the flavor. The :required-flavors option ensures that we
have access to the flavors' instance variables and that an error
will be signalled if someone makes an instance of a flavor that
includes basic-arrow-window-mixin but not the required flavors.
The :default-init-plist option provides values for some elements of
the initialization property list in case no one else specifies them.
The :edges-from option with an argument of ':mouse allows the
user to specify the initial size and position of the window by
using mouse corners. We give an initial minimum width and
height for the window because the length of top-edge must be at
least 128, and we want the entire figure to fit inside the window.

(defflavor basic-arrow-window~mixin () ()
(:required-flavors arrow-parameter-mixin tv:window)
(:default-init-plist

:edges-from ':mouse :minimum-width 200 :minimum-height 200
:blinker-p nil :expose-p t)

(:documentation :mixin
"Provides for a basic window to display the arrow graphic.

ARROW-PARAHETER-HIXIN is needed to position the figure within
the window. This flavor assumes window coordinates, with origin
at top left."))

2. Provide a :show-lines method to draw lines on the screen. We
use essentially the same methods as in our original output
module, but now we assume that the arguments are screen
coordinates. We define separate :compute-x and :compute-y
methods to transform the coordinates so that we can shadow

350

Program Development Utilities August 1986

these methods when we define another flavor to handle LGP
coordinates. To produce the lines we use the :draw-line method
defined for tv:graphics-mixin, a component of tv:window. (In
:daemon method combination, when two component flavors have
primary methods for the same message, the method of the flavor
listed earlier in the component ordering shadows, or replaces, the
method of the flavor listed later. For more on method
combination: See the section "Method Combination" in Symbolics
Common Lisp: Language Concepts.)

, , ,
I I I

" I

I I I

I I I

" ,

Receives endpoint coordinates and draws lines on a window.
Arguments are alternating x- and y-coordinates of the end
points of lines to be drawn. If there are more than two pairs
of coordinates, assumes that the endpoint of one line is the
starting point of the next. Sends messages for separate methods
to determine the actual coordinates. This is so that other
flavors can modify the coordinates. Draws a line by sending self
a :DRAW-LINE message, and so assumes that TV:GRAPHICS-MIXIN is

", included somewhere to provide this method.
(defmethod (basic-arrow-window-mixin :show-lines)

(x y &rest x-y-pairs)
First determine the starting point of the line. On
subsequent trips through the loop, the last endpoint

" becomes the next starting point.
(loop for x0 = (send self ':compute-x x) then x1

for y0 = (send self ':compute-y y) then y1
;; "Cddr" down the list created by making all but the
;; first pair of coordinates an &rest argument
for (x1 y1) on x-y-pairs by #'cddr
" Determine the endpoint of the line
do (setq x1 (send self ':compute-x x1)

y1 (sene self ':compute-y y1»
II Draw the line
(send self I:draw-line

x0 y0 x1 y1 tv:alu-ior t»)

III Determines the x-coordinate of an endpoint of a line.
'" This is a separate method so that other flavors can shadow
'" it or add daemons to manipulate the coordinate.
(defmethod (basic-arrow-window-mixin :compute-x) (x)

(fixr x»

August 1986

351

Program Development Tools and Techniques

'"
, , ,

'"
, , ,

'"

Determines the y-coordinate of an endpoint of a line.
Assumes that the argument already uses window coordinates,
with origin at top left. This is a separate method so that
other flavors can shadow it or add daemons to manipulate
the coordinate.

(defmethod (basic-arrow-window-mixin :compute-y) (y)
(fixr y»

3. Supply the :compute-width-and-height method required by
arrow-parameter-mixin. We use the :inside-size message to
tv:sheet, a component of tv:window. We use zl:multiple-value to
set the instance variables width and height.

'"
" ,

'"
" ,

Finds the inside width and height of the window.
Sends self an :INSIDE-SIZE message, and so assumes that
TV:SHEET is included somewhere to provide this
method.

(defmethod (basic-arrow-window-mixin
:compute-width-and-height) ()

(multiple-value (width height)
(send self ':inside-size»)

4. Alter the computation of top-y to take account of the screen's
origin at top left. We can do this in three ways:

• Define a new primary method for :compute-top-y to shadow the
method we defined for arrow-parameter-mixin. We would have
to be careful to place basic-arrow-window-mixin before
arrow-parameter-mixin in the list of component flavors for any
flavor we wanted to instantiate .

• Define :before and :after daemons for :compute-top-y. The
:before daemon would make top-edge negative and the :after
daemon would make it positive again. (In :daemon method
combination, : before methods for a message run before the
primary method, and :after methods run after the primary
method. If two component flavors have daemons for the same
message, the : before method of the flavor listed earlier in the
component ordering runs before the : before method of the flavor
listed later, and the :after method of the flavor listed earlier runs
after the :after method of the flavor listed later. For more on
method combination: See the section "Method Combination" in
Symbolics Common Lisp: Language Concepts.

352

Program Development Utilities August 1986

• Define a whopper for :compute-top-y. This would do the same
thing as the two daemons, except that when all the
:compute-top-y methods were combined it would run outside any
daemons. (A whopper wraps the execution of some code around
the execution of a method, running before all : before daemons
and after all :after daemons. For more on whoppers: See the
special form defwhopper in Symbolics Common Lisp: Language
Dictionary .

We define a new primary method in this case because it repeats
relatively little code and makes the operation of the method
clearer. If we used a whopper here, someone might mix in
another flavor with daemons that would unexpectedly run inside
our whopper.

'" Calculates y-coordinate of top right point of figure.
'" Finds vertical length of the figure by dividing the length
'" of top edge by 8.8. Centers the figure vertically within
'" the window. Gives the result in window coordinates, with
'" origin at top left. This method shadows that in
'" ARROW-PARAMETER-MIXIN.
(defmethod (basic-arrow-window-mixin :compute-top-y) ()

(setq top-y
(fixr (~ 8.5 (- height (II top-edge 8.8))))))

5. Calculate the figure's size and position and redisplay the window
at appropriate times. We have to recompute the figure's size and
position after the window is initialized and after its size or
margins change. We have to redisplay the figure when the
window is refreshed, but only if the window has no bit-save array
or its size has changed. Before redisplaying, we have to clear the
screen if the window has a bit-save array.

We perform these tasks by defining :after daemons for three
messages that the system can send to a window: :init,
:change-of-size-or-margins, and : refresh. You need daemons like
these for most window-system applications.

iii Calculates size and position of figure after initialization.
(defmethod (basic-arrow-window-mixin :after :init) (ignore)

(send self ':compute-parameters))

August 1986

353

Program Development Tools and Techniques

;;; Calculates size and position of figure after window change.
(defmethod (basic-arrow-window-mixin

:after :change-of-size-or-margins) (&rest ignore)
(send self J:compute-parameters))

;;; Draws the figure when necessary after window is refreshed.
(defmethod (basic-arrow-window-mixin :after :refresh)

(&optional type)
;; Draw figure if not restored from a bit-save array
(when (or (not tv:restored-bits-p)

;; ... or size has changed.
(eq type J:size-changed))

;; If restored from a bit-save arraYJ clear screen first
(when tv:restored-bits-p

(send self J:clear-screen))
;; Bind *DEST* to self
(let «*dest* self))

;; Draw the figure
(draw-arrow-graphic top-edge right-x top-y))))

We can now define a flavor of window, basic-arrow-window, built
on our two moon flavors and on tv:window. The order of
combination of flavors is important. We need to include
basic-arrow-window-mixin before arrow-parameter-mOOn so that
the :compute-top-y method for basic-arrow-window-mOOn
shadows that for arrow-parameter-mOOn. We must also put
basic-arrow-window-mOOn before tv:window so that our :after
daemons will run after any that tv:window or its components
might provide.

354

Program Development Utilities August 1986

(defflavor basic-arrow-window ()
(basic-arrow-window-mixin
arrow-parameter-mixin
tv:window)

(:documentation :combination
"Instantiable flavor providing a basic window for output.

Though this flavor is instantiable, its methods assume that
point coordinates use the window coordinate system, with
origin at top left. To work with the current calculation
module it needs another mixin to convert LGP to screen
coordinates. In the component flavors, BASIC-ARROW-WINDOW-MIXIN
must come before ARROW-PARAMETER-MIXIN and TV:WINDOW for
shadowing and daemons to work correctly."»

We can actually make an instance of this flavor. We define no
new methods for it, leaving all methods to component flavors. If
we had a calculation module that used screen coordinates,
basic-arrow-window would· be the right flavor to use for screen
output.

31.1.3 Converting LGP to Screen Coordinates
Because our calculation module uses LG P coordinates, we need
another flavor of window to produce output. We define a flavor,
19p-window-mixin, to be mixed in with basic-arrow-window. We
need a new instance variable, scale-factor, whose value is the
ratio of LGP to screen pixel densities.

August 1986

355

Program Development Tools and Techniques

(defflavor 19p-window-mixin
((scale-factor 2.5))
o

(:required-flavors basic-arrow-window)
(:documentation :mixin
"Converts LGP to screen coordinates and vice versa.

When mixed in with BASIC-ARROW-WINDOW, this flavor allows
window output with a calculation module that uses LGP
coordinates. The instance variable SCALE-FACTOR is the
ratio of LGP to screen pixel density. The methods take
the height and width of the window in screen pixels and
calculate the length of. the top edge and the coordinates
of the top right point of the figure in LGP pixels. In
drawing lines on the window, the methods convert LGP to
window coordinates. These methods shadow those in
ARROW-PARAMETER-MIXIN and BASIC-ARROW-WINDOW-MIXIN."))

We next define new primary methods to incorporate the scale
factor into the calculation of top-edge, right-x, and top-yo These
methods shadow those defined for arrow-parameter-mixin and
basic-arrow-window-mixin.

" ,
" ,
" ,
" ,
" ,
" ,

Calculates top edge in LGP pixels from screen proportions.
Multiplies length of smaller dimension, in screen pixels, by
proportion of this dimension to be filled by the figure.
Multiplies this by 0.8 to find top edge in screen pixels.
Corrects for higher density of LGP pixels. This method
shadows that of ARROW-PARAMETER-MIXIN.

(defmethod (lgp-window-mixin :compute-top-edge) ()
(setq top-edge

(fixr (* scale-factor B.8 *fill-proportion*
(~in width height)))))

356

Program Development Utilities August 1986

III Calculates x-coord of top right point in LGP pixels.
III Finds horizontal length of figure in screen pixels by
III dividing top edge by 0.8. Centers figure horizontally
III in window, correcting for higher density of LGP pixels.
III This method shadows that of ARROW-PARAMETER-MIXIN.
(defmethod (lgp-window-mixin :compute-right-x) ()

(setq right-x
(fixr (* 0.5 (+ (* width scale-factor)

·(11 top-edge 0.8»»)

III Calculates y-coord of top right point in LGP pixels.
III Finds vertical length of figure in screen pixels by
III dividing top edge by 0.8. Centers figure vertically
III in window, correcting for higher density of LGP pixels.
III This method shadows those of ARROW-PARAMETER-MIXIN and
III BASIC-ARROW-WINDOW-MIXIN.
(defmethod (lgp-window-mixin :compute-top-y) ()

(setq top-y
(fixr (* 0.5 (+ (* height scale-factor)

(II top-edge 0.8»»»

Finally, we need to modify the coordinates used in the :show-lines
method to take account of the scale factor and the difference in
origins for LGP and screen coordinates. We define new methods
for :compute-x and :compute-y to shadow the methods we defined
for basic-arrow-window-mixin.

Converts x-coord of line endpoint from LGP to screen pixels.
III Corrects for higher density of LGP pixels. This method shadows

that of BASIC-ARROW-WINDOW-MIXIN.
(defmethod (lgp-window-mixin :compute-x) (x)

(fixr (II x scale-factor»)

III Converts y-coord of line endpoint from LGP to screen pixels.
III Corrects for higher density of LGP pixels and for screen origin
'" at top left. This method shadows that of BASIC-ARROW-WINDOW-MIXIN.
(defmethod (lgp-window-mixin :compute-y) (y)

(fixr (- height (II y scale-factor»»

We can now define the flavor we will actually instantiate with
tv: make-window. This flavor, arrow-window, is just a
combination of Igp-window-mixin and basic-arrow-window.

August 1986

357

Program Development Tools and Techniques

(defflavor arrow-window ()
(lgp-window-mixin basic-arrow-window)

(:documentation :combination
"Instantiable flavor for window output from LGP coordinates.

This flavor has all the features of BASIC-ARROW-WINDOW but
assumes that the calculation module uses LGP coordinates. This
is the flavor to instantiate for window output using the
current calculation module."))

31.1.4 Flavors for LGP Output
We want to be able to direct output to an LGP or an LGP record
file as well as to a window. We define another flavor,
19p-pixel-mixin, to be mixed in with arrow-parameter-mixin. We
can set an instance variable to the output stream and make it
initable so that we can specify the output stream when we make
an instance of the flavor we build on 19p-pixel-mixin. The output
stream will itself be an instance of a flavor.

(defflavor 19p-pixel-mixin
(output-stream)
o

:initable-instance-variables
(:required-flavors arrow-parameter-mixin)
(:documentation :mixin
"Provides methods for arrow graphic output on an LGP stream.

ARROW-PARAMETER-MIXIN is required to calculate the size of the
figure and position it in the center of the page. The method
assumes that coordinates are in LGP pixels. This flavor
should be mixed J along with ARROW-PARAMETER-MIXIN J into an
instantiable flavor for LGP output. When that flavor is
instantiated J the instance variable output-stream should be
initialized."))

The methods for this flavor need to do two things: determine the
width and height of a page and handle :show-Iines messages. We
get the width and height from the values of instance variables for
the flavor 19p::basic-lgp-stream. This flavor will be a component
of the flavor we instantiate as the output stream.

358

Program Development Utilities August 1986

, , ,

, , ,
" ,
" ,

Finds width and height of a page for LGP output.
This flavor is required by ARROW-PARAMETER-MIXIN. Finds the
values of two instance variables of LGP:BASIC-LGP-STREAM:
SI:PAGE-WIDTH and SI:PAGE-HEIGHT. Assumes that
LGP:BASIC-LGP-STREAM is included in output stream to provide

", these instance variables.
(defmethod (lgp-pixel-mixin :compute-width-and-height) ()

(setq width (symeval-in-instance output-stream 'si:page-width)
height (symeval-in-instance output-stream 'si:page-height)))

The :show-lines method is similar to that for windows. Instead
of using the :draw-line message to produce lines, we use two
messages to 19p:: basic-lgp-stream: :send-command and
:send-coordinates.

" ,

" ,
" ,
" ,
" ,
" ,

Receives endpoint coordinates and draws lines on LGP stream.
Arguments are alternating x- and y-coordinates of endpoints of
lines to be drawn. If there are more than two pairs of
coordinates, assumes that the endpoint of one line is the
starting point of the next. Draws a line by sending output
stream :SEND-COMMAND messages for LGP commands and
:SEND-COORDINATE messages for LGP coordinates. Assumes that
flavor LGP:BASIC-LGP-STREAM is included in output stream to

", provide these methods.
(defmethod (lgp-pixel-mixin :show-lines)

(x0 y0 &rest x-y-pairs)
;; Send command and coordinates to start drawing lines
(send self ':send-command-and-coordinates #/m x0 y0)
;; "Cddr" down the list created by making all but the first
;; pair of coordinates an &rest argument
(loop for (x y) on x-y-pairs by #'cddr

" Send command and coordinates to draw a line
do (send self ':send-command-and-coordinates #/v x y)))

August 1986

359

Program Development Tools and Techniques

, , ,

" ,
" ,
" ,

Sends line-drawing commands to LGP output stream.
:SEND-COMMAND transmits an LGP command. :SEND-COORDINATES
transmits coordinates of an endpoint of a line to be drawn.
Assumes that LGP:BASIC-LGP-STREAM is included in output stream

", to provide these methods.
(defmethod (lgp-pixel-mixin :send-command-and-coordinates) (cmd x y)

(send output-stream ':send-command cmd)
(send output-stream ':send-coordinates (fixr x) (fixr y)))

We can now define an instantiable flavor for the LGP stream that
combines Igp-pixel-mOOn and arrow-parameter-mOOn.

(defflavor 19p-pixel-stream ()
(lgp-pixel-mixin arrow-parameter-mixin)

(:documentation :combination
"Instantiable flavor for arrow output on LGP stream.

Assumes that the calculation module uses LGP coordinates.
When this flavor is instantiated, the LGP-PIXEL-MIXIN
instance variable OUTPUT~STREAM should be initialized.
The output stream can be directed to an LGP or a file,
but it must include flavor LGP:BASIC-LGP-STREAM for
output to work correctly."))

31.1.5 The Top-Level Function
We are ready to define a top-level function we can call to produce
the graphic. We start by popping up a choose-variable-values
window. We allow the user to specify screen, LG P, or file output.
We also allow the user to choose values for the number of
recursion levels and the proportion of the page or window to be
filled. We let the user decide whether or not to stripe the
arrows.

(defvar *dest-string* "Screen"
"Destination of program output [Screen, LGP, or File]")

(defvar *output-file* nil
"Pathname for LGP-record-file output")

360

Program Development Utilities August 1986

" , Top-level function to call to produce arrow graphic.
'" Pops up.a choose-variable-values window to let user specify

output destination, number of recursion levels, proportion
'" of smaller dimension of page or window to be filled, and

whether or not to stripe figure.
(defun do-arrow ()

;; Pop up a choose-variable-values window
(tv: choose-variabl e-values

'«*do-the-stripes* "Stripe the arrows?" :boolean)
(*max-depth* "Number of recursion levels" :number)
(*fill-proportion*

"Fraction of page or window to be filled" :number)
(*dest-string* "Output ~estination"

:choose ("Screen" "LGP" "File"»
(*output-file* "Pathname for file output" :PATHNAHE»

;; Hake window wide enough to accommodate long pathnames
;; and error messages
':extra-width 2B.
;; Give user a chance to abort
':margin-choices '("Do It" ("Abort" (signal 'sys:abort»)
':label "Choose Options for Graphic"»

Next we need to take action depending on the output destination
the user has chosen. If the variable *fill-proportion* is zero, we
just return nil no matter what the output destination. If the
destination is "Screen", we make an instance of arrow-window.
We use tv: make-window, which creates a new window each time
we call do-arrow. We could also have defined a resource of
arrow windows (using defwindow-resource), but we might want
more than one selectable arrow window at a time.

If we have more than one arrow window, we want each to retain
its own values for number of recursion levels, proportion of the
window to be filled, and presence or absence of striping. We
define three instance variables for basic-arrow-window-mixin and
make them initable. We initialize them when we call
tv:make-window from do-arrow. We change the :after daemons
for basic-arrow-window-miXin to bind the special variables to the
instance-variable values.

August 1986

361

Program Development Tools and Techniques

(defflavor basic-arrow-window-mixin
(do-stripes max-dep fill-prop)
o

:initable-instance-variables
(:required-flavors arrow-parameter-mixin tv:window)
(:default-init-plist
:edges-from I:mouse :minimum-width 200 :minimum-height 200
:blinker-p nil :expose-p t)

(:documentation :mixin ...))

(defmethod (basic-arrow-window-mixin :after :init) (ignore)
(let ((*fill-proportion* fill-prop))

(send self ':compute-parameters)))

(defmethod (basic-arrow-window-mixin
:after :change-of-size-or-margins) (&rest ignore)

(let ((*fill-proportion* fill-prop))
(send self ':compute-parameters)))

(defmethod (basic-arrow-window-mixin :after :refresh)
(&optional type)

;; Draw figure if not restored from a bit-save array
(when (or (not tv:restored-bits-p)

;; ... or size has changed.
(eq type I:size-changed))

;; If restored from a bit-save array, clear screen first
(when tv:restored-bits-p

(send self I:clear-screen))
;; Bind global variables to self and instance variables
(let ((*dest* self)

(*do-the-stripes* do-stripes)
(*max-depth* max-dep))

II Draw the figure
(draw-arrow-graphic top-edge right-x top-y))))

362

Program Development Utilities August 1986

(defun do-arrow ()
(tv:choose-variable-values

;; If figure is infinitely small, just return nil
(cond ((= *fill-proportion* 9) nil)

;; If screen output, make a window
((equal *dest-string* "screen")
(tv:make-window 'arrow-window

;; Initialize instance variables to
;; values set by the user
':do-stripes *do-the-stripes*
':max-dep *max-depth*
':fill-prop *fill-proportion*»»

If the output destination is "LGP" or "File", we want to make an
instance of 19p-pixel-stream with the instance variable stream
initialized to an appropriate stream. We construct this stream by
calling si:make-hardcopy-stream with an argument that depends
on the output destination. We use with-open-stream to produce
the output on the stream and close it when we finish.

August 1986

363

Program Development Tools and Techniques

(defun do-arrow ()
(tv:choose-variable-values

(cond «= *fill-proportion* 8) nil)
;; If screen output, make a window
«equal *dest-string* "screen")
(tv:make-window 'arrow-window

;; Initialize instance variables to
;; values set by the user
':do-stripes *do-the-stripes*
':max-dep *max-depth*
':fill-prop *fi11-proportion*»

" If LGP or file output, use an appropriate stream
(t (with-open-stream

(stream
;; This function returns a stream suitable for
;; LGP output
(si:make-hardcopy-stream

;; Argument is the output device. For LGP,
;; use the default hardcopy device.
(if (equal *dest-string* "lgp")

si:*default-hardcopy-device*
" For file output, use the correct format
;; for the hardcopy device and direct
;; output to the file specified by the user
(lgp:get-lgp-record-file-hardcopy-device

output-fi1e»»
;; Hake an instance of our LGP output flavor
(1 et «*dest*

(make-instance 'lgp-pixe1-stream
;; Initialize instance
;; variable to output stream
':output-stream stream»)

;; Position the figure on the page
(send *dest* ':compute-parameters)
;; Draw the figure, using instance-variable values
;; as arguments
(draw-arrow-graphic (send *dest* ':top-edge)

(send *dest* ':right-x)
(send *dest* ':top-y»»»)

364

Program Development Utilities August 1986

31.1.6 The Arrow Window: Interaction, Processes, and the Mouse
Suppose we want to let the user modify the characteristics of the
graphic for each window. The user might want to change the
presence or absence of striping, the number of recursion levels, or
the proportion of the window to be filled.

One way to install this option is to associate each window with its
own process and let the process run in a loop. If the user clicks
right on the window, we pop up a choose-variable-values window.
When the user is finished, we refresh the window and wait for
the next mouse click.

We can associate a window with a process by including the flavor
tv:process-mixin in basic-arrow-window. When we make the
window (using tv:make-window), we specify a :process init option
whose argument is the name of the top-level function for the
process. When the window is created, a new process is created as
well. When the window is exposed, the process's top-level
function is called with one argument, the window.

(defflavor basic-arrow-window ()
(basic-arrow-window-mixin
arrow-parameter-mixin
tv:process-mixin
tv:window)

(:documentation :combination ... »

August 1986

365

Program Development Tools and Techniques

(defun do-arrow ()
(tv:choose-variable-values

(cond ((= *fill-proportion* B) nil)
;; If screen output, make a window
((equal *dest-string* "screen")
(tv:make-window 'arrow-window

;; Initialize instance variables to
;; values set by the user
':do-stripes *do-the-stripes*
':max-dep *max-depth*
~:fill-prop *fill-proportion*
;; Specify top-level function for the
;; process associated with the window
':process '(window-loop)))

We next want to be able to handle mouse clicks. We include the
flavors tv:any-tyi-mixin and tv:list-mouse-buttons-mixin in
basic-arrow-window. When a window is waiting for input and
the mouse is clicked while over the window, a blip enters the
window's input buffer. A blip is a list whose form, with
tv:list-mouse-buttons-mixin, is as follows:

(:mouse-button encoded-click window x y)

Encoded-click is a fumum that represents the button clicked.

(defflavor basic-arrow-window ()
(basic-arr-ow-window-mixin
arrow-parameter-mixin
tv:any-tyi-mixin
tv:list-mouse-buttons-mixin
tv:process-mixin
tv:w;ndow)

(:documentation :combination ...))

We also want a mouse documentation string to appear when the
mouse is over the window:

366

Program Development Utilities August 1986

(defmethod (basic-arrow-window-mixin
:who-line-documentation-string) ()

"Provides a mouse documentation line for the window.
The only option is to click right and pop up a
choose-variable-values window of options for changing
the graphic on this window."

"R: Choose-variable-values options for changing figure on this window")

We can now write the process function window-loop. This
function just sends a :main-Ioop message to the window. We
define :main-Ioop as a method of basic-arrow-window-mixin.
The method consists of an error-restart-Ioop so that we can
return to top level if sys:abort or an error is signalled. We send
the window an :any-tyi message. If the user clicks right, we pop
up a choose-variable-values window with the window's current
value of the variables. When the user exits, we refresh the
window and wait for another click. If the user aborts, sys:abort
is signalled, and we restart the loop.

III
III
I J J

II J

Top-level function for process associated with arrow window.
The function is called when the window is created. Argument is
the window. The function sends the window a :HAIN-LOOP message.
This method should be the actual command loop for the process.

(defun window-loop (window)
(send window I:main-loop))

August 1986

'"
'"
'"
'"
'"

367

Program Development Tools and Techniques

Command loop for window associated with a separate process.
Consists of an error-restart-loop that handles restarts from errors
and sys:abort. Waits for mouse input. If a right click, pops up a
choose-variable-values window to change characteristics of the
figure. On exit, sets instance variables to the new values and

'" refreshes the window, then waits for another mouse click. Assumes
'" blips are lists of the form provided by TV:LIST-HOUSE-BUTTONS-HIXIN.
(defmethod (basic-arrow-window-mixin :main-loop) ()

;; Run forever in a loop. Offer a restart handler if an error
;; or SYS:ABORT is signalled.
(error-restart-loop «error sys:abort) "Arrow Window Top Level")

;; Wait for input
(let «char (send self ':any-tyi»)

;; Pop up window if input is a list
(when (and (listp char)

;; ... and a mouse click
(eq (first char) ':mouse-button)
;; ... and a single click on the right button.
(eq (second char) #\mouse-r-1»

;; Bind global variables to instance-variable values
(let «*do-the-stripes* do-stripes)

(*max-depth* max-dep)
(*fill-proportion* fill-prop»

" Pop up a choose-variable-values window
(tv:choose-variable-values

'«*do-the-stripes* "Stripe the arrows?" :boolean)
(*max-depth* "Number of recursion levels" :number)
(*fill-proportion*

"Fraction of window to be filled" :number»
;; Hake the window wide to provide enough room for error
;; messages.
':extra-width 20
;; Give the user a chance to abort
':margin-choices '("Do It" ("Abort" (signal 'sys:abort»)
':label "Choose Options For Graphic")

;; Set instance variables to the new values
(setq do-stripes *do-the-stripes*

max-dep *max-depth*
fill-prop *fill-proportion*)

" Recompute size and position of the figure
(send self ':compute-parameters)
;; Send :REFRESH message with argument of ':new-vals to make

368

Program Development Utilities August 1986

;; sure the figure is redrawn if there is a bit-save array
(send self ':refresh ':new-vals))))))

We need to change the :after :refresh method of
basic-arrow-window-mixin so that it redraws the figure when the
values are changed even if the window has a bit-save array.

(defmethod (basic-arrow-window-mixin :after :refresh)
(&optional type)

;; Draw figure if not restored from a bit-save array
(when (or (not tv:restored-bits-p)

;; ... or size has changed ...
(eq type ':size-changed)
;; ... or new values for figure parameters.
(eq type ':new-vals))

;; If restored from a bit-save array, clear screen first
(when tv:restored-bits-p

(send self ':clear-screen))
;; Bind global variables to self and instance variables
(let «*dest* self)

(*do-the-stripes* do-stripes)
(*max-depth* max-dep))

" Draw the figure
(draw-arrow-graphic top-edge right-x top-y))))

Note that we can also manipulate the windows we create by using
the [Split Screen] and [Edit Screen] options from the System
menu. We might have more than one arrow window on the
screen at the same time. We might redisplay the figures on
these windows at the same time. In this case, the scheduler
might switch between the arrow window processes, allowing each
to run for a time until all redisplays are complete.

Remember that we took care to bind rather than set the global
variables in the calculation module that hold the state of each
arrow. We want the values of some variables to be different in
each window. Each process maintains its own bindings for
variables. When the scheduler switches processes, bindings in the
old process are undone and saved. They are restored when the
old process resumes. But if we had set the variables, the
program would not have run correctly when the scheduler
switched processes. The new process might have used variable
values set in the old process.

369

August 1986 Program Development Tools and Techniques

31.1.7 Defining Flavors to Signal Conditions
We want to add one more refinement to the output module. In
our choose-variable-values windows, the variable type keywords,
such as :number and :pathname, provide for some error checking
when users choose new values. But two of our numeric variables
have further restrictions: *max-depth* must be a nonnegative
integer, and *fill-proportion* must be a fraction between 0 and 1.

The function tv:choose-variable-values has a :function option
that lets us name a function to be called whenever an item is to
be changed. We can use this function to check the values of our
two variables and signal a condition if the values are bad. We
then print a message on the window and ask the user to proceed
by supplying a new value.

We start by defining flavors for the conditions we signal. We
define a general class of error conditions called
bad-arrow-variable. We then define two flavors built on
bad-arrow-variable: bad-arrow-depth for improper values of
max-depth and bad-arrow-fill-proportion for improper values
of *fill-proportion*. For each of these instantiable flavors we
define a :report method and a :proceed method. The :report
method prints a string identifying the condition. The :proceed
method allows the user to proceed from the condition, in this case
by supplying a new value. We could have more than one
:proceed method if we had other ways of proceeding. :proceed
methods are combined using :case method combination.

If we want to create conditions for bad values of other variables
in the future, we can simply define new flavors built on
bad-arrow-variable.

(defflavor bad-arrow-variable () (error)
(:documentation
"Noninstantiable class of bad-variable conditions.

The user might set some variables to impermissible values.
These conditions are to permit checking for bad values
beyond the system's error checking. Instantiable condition
flavors for specific variables should be built on this
flavor."))

370

Program Development Utilities August 1986

(defflavor bad-arrow-depth () (bad-arrow-variable)
(:documentation
"Proceedable condition: bad value for *MAX-DEPTH*.

An instantiable condition flavor for impermissible values
of *MAX-DEPTH*, the number of recursion levels in the
figure."))

;;; Prints string on stream to report bad *MAX-DEPTH* value
(defmethod (bad-arrow-depth :report) (stream)

(format stream "No. of levels was not a -
nonnegative fixnum."))

I ;;; Proceed type method for supplying new value of *MAX-DEPTH*
I (defmethod (bad-arrow-depth ":case :proceed :new-depth)
I (&optional (dep (prompt-and-read
I ':number
I "Supply new value for -
I no. of recursion levels: H)))
I "Supply a new value for number of recursion levels."
I (values ':new-depth dep))

(defflavor bad-arrow-fill-proportion () (bad-arrow-variable)
(:documentation
"Proceedable condition: bad value for *FILL-PROPORTION*.

An instantiable condition flavor for impermissible values of
FILL-PROPORTION, the fraction of the smaller dimension of
the page or window that the figure is to fill."))

'" Prints string on stream to report bad *FILL-PROPORTION* value
(defmethod (bad-arrow-fill-proportion :report) (stream)

(format stream "Proportion was not a fraction between -
e and 1."))

August 1986

371

Program Development Tools and Techniques

;;; Proceed type method for new value of *FILL-PROPORTION*
(defmethod (bad-arrow-fill-proportion :case :proceed

:new-proportion)
(&optional (prop (prompt-and-read

': number
"Supply new fraction of bounds -

be fi 11 ed: ")))
"Supply a new fraction of page or window to be filled."
(values ':new-proportion prop))

Next we write the function, check-item, to be called when a
variable value is changed. The function is called with four
arguments: the choose-variable-values window, the variable, and
the variable's old and new values. We use condition-bind to bind
a handler for our two conditions. This handler will be called if
we signal the conditions from within the condition-bind. If we
do find a bad variable value, we we expect the call to signal to
return the two values from the :proceed method: the proceed
type and the new variable value. We then check the new value
and, if it is good, set the variable to the new value. Finally, we
refresh the window and return t.

372

Program Development Utilities August 1986

" ,
" ,
" ,
" ,
" ,
" ,
" ,
" ,

Called when a value changes in choose-variable-values window.
Arguments are the window, the variable, and its old and new values.
Binds handlers for conditions for impermissible values. If new
value is OK, sets variable to the new value, refreshes window, and
returns t. If value is not OK, signals the appropriate condition.
When SIGNAL returns, presumably with a new variable value, checks
the new value in the same way it checks a new value that comes
from the window.

(defun check-item (cvv-window var old-val new-val)
" We don't use the old value. To avoid a compiler complaint,
" just evaluate it and ignore it. We could also use IGNORE
" instead of OLD-VAL in the arglist, but then the arglist
" would be less meaningful.
01 d-val
;; Bind handlers for the conditions we might signal
(condition-bind «bad-arrow-depth 'bad-arrow-var-handler)

(bad-arrow-fill-proportion
'bad-arrow-var-handler»

(when (eq var '*max-depth*)
;; *HAX-DEPTH* must be nonnegative fixnum
(loop until (and (fixp new-val) (~new-val B»

" If it's not, bind QUERY-IO to the window and
" signal a condition. SIGNAL should return
" two values, the proceed type and the new
" value from the proceed method. Ignore the
" proceed type and set NEW-VAL to the new
" value.
do (let «query-io cvv-window»

(multiple-value (nil new-val)
(si gnal 'bad-arrow-depth»»)

(when (eq var '*fill-proportion*)
;; *FILL-PROPORTION* must be between Band
(loop until (and (~ new-val B) (~new-val 1»

" If it's not, bind QUERY-IO to the window and
" signal a condition. SIGNAL should return
" two values, the proceed type and the new
" value from the proceed method. Ignore the
" proceed type and set NEW-VAL to the new
JJ value.
do (let «query-io cvv-window»

(multiple-value (nil new-val)
(si gnal 'bad-arrow-fi ll-proport ion»»)

August 1986

373

Program Development Tools and Techniques

;; Variable value is now OK. Set variable to the new value.
;; Note that we DO want to evaluate VAR.
(set var new-val)
;; Refresh the window
(send cvv-window ':refresh)
;; Return t
t»

Next we need to add the :function option to our calls to
tv:choose-variable-values in the function do-arrows and the
:main-loop method of basic-arrow-window-mixin:

(defun do-arrow ()
;; Pop up a choose-variable-values window
(tv:choose-var;able-values

'«*do-the-stripes* "Stripe the arrows?" :boolean)
(*max-depth* "Number of recursion levels" :number)
(*fill-proportion*

"Fraction of page or window to be filled" :number)
(*dest-string* "Output destination"

:choose ("Screen" "LGP" "File"»
(*output-file* "Pathname for file output" :pathname»

;; Make window wide enough to accommodate long pathnames
;; and error messages
':extra-width 2B.
;; Call this function when a value is changed
':function 'check-item
;; Give user a chance to abort
':margin-choices '("Do It" ("Abort" (signal 'sys:abort»)
':label "Choose Options for Graphic")

374

Program Development Utilities August 1986

(defmethod (basic-arrow-window-mixin :main-loop) ()
;; Run forever in a loop. Offer a restart handler if an error
j; or sys:abort is signalled.
(error-restart-loop «error sys:abort) "Arrow Window Top Level")

;; Wait for input
(let «char (send self ':any-tyi»)

;; Pop up window if input is a list
(when (and (listp char)

;; ... and a mouse click
(eq (first char) ':mouse-button)
;; ... and a single click on the right button.
(eq (second char) #\mouse-r-1»

;; Bind global variables to instance-variable values
(let «*do-the-stripes* do-stripes)

(*max-depth* max-dep)
(*fill-proportion* fill-prop»

" Pop up a choose-variable-values window
(tv:choose-variable-values

'«*do-the-stripes* "Stripe the arrows?" :boolean)
(*max-depth* "Number of recursion levels" :number)
(*fill-proportion*

"Fraction of window to be filled" :number»
;; Make the window wide to provide enough room for error
;; messages.
':extra-width 20
;; Call a function to check for errors when values change
':function 'check-item
;; Give the user a chance to abort
':margin-choices '("Do It" ("Abort" (signal 'sys:abort»)
':label "Choose Options for Graphic")

;; Set instance variables to the new values
(setq do-stripes *do-the-stripes*

max-dep *max-depth*
fill-prop *fill-proportion*)

" Recompute size and position of the figure
(send self ':compute-parameters)
;; Send :REFRESH message with argument of ':new-vals to make
;; sure the figure is redrawn if there is a bit-save array
(send self ':refresh ':new-vals»»»

Finally, we need to write a handler for the two conditions. When
a condition is signalled, the handler is called with one argument,

August 1986

375

Program Development Tools and Techniques

the object of the flavor of condition that is signalled. In
check-item, we call signal with zl:query-io bound to the choose
variable-values window. The handler checks to be sure there is a
proceed type for the object. If so, the handler turns on a blinker
on the window and sends the :report and :proceed messages to
the condition object. Finally, it turns off the blinker and passes
back to its caller the two values that the :proceed method
returns.

Actually, the handler we define doesn't depend on the binding of
zl:query-io to the window. If zl:query-io is not bound to a
window - that is, to an instance of a flavor built on tv:sheet -
the handler won't try to turn on a blinker. If zl:query-io is
bound to a window, the handler first looks (using
tv:sheet-following-blinker) for an existing blinker that follows
the cursor. If it doesn't find one, it makes a new blinker (using
tv:make-blinker). It encloses the handling operation in an
unwind-protect to be sure that the blinker is turned off in case
of a nonlocal exit.

376

Program Development Utilities August 1986

'" Handler for bad value of *MAX-DEPTH* or *FILL-PROPORTION*.
'" Argument is the condition object created by SIGNAL. Uses QUERY-IO
'" stream to report condition. Sends the condition object a :PROCEED
'" message and passes back the values it returns.
(defun bad-arrow-var-handler (cond-obj &aux bl)

;; Find out whether this object has the right proceed type.
;; If not, return nil.
(if (send cond-obj ':proceed-type-p

(cond «typep cond-obj 'bad-arrow-depth) ':new-depth)
«typep cond-obj 'bad-arrow-fill-proportion)
':new-proportion)))

" Enclose the handling operation in an UNWIND-PROTECT so that
" if we use a blinker we are sure to turn it off
(unwind-protect

(progn
;; Use a blinker if the QUERY-IO stream is a window
(setq bl (if (typep query-io 'tv:sheet)

;; If a cursor-following blinker exists, use it
(or (tv:sheet-following-blinker query-io)

;; Otherwise, make a new blinker
,(tv:make-blinker query-io

'tv: rectangular-bl inker
':follow-p t»))

;; If a blinker, make it blink
(if bl (send bl ':set-visibility ':blink))
;; Alert the user
(tv:beep)
;; Send a report, presumably describing the condition
(send cond-obj ':report query-io)
;; Send object a :PROCEED message and return the values
;; that the method returns
(send cond-obj ':proceed

(cond «typep cond-obj 'bad-arrow-depth) ':new-depth)
«typep cond-obj 'bad-arrow-fill-proportion)
':new-proportion»)))

;; If a blinker, turn it off
(if bl (send bl ':set-visibility nil»))))

Mter we have defined all the flavors and methods for the output
module, we insert a compile-flavor-methods form in the file.
Without this macro, combined methods are compiled and flavor

. data structures generated when we make the first instance of a

August 1986

377

Program Development Tools and Techniques

flavor - that is, at run time. compile-flavor-methods speeds run
time operation by causing combined methods to be compiled at
compile time and data structures to be generated at load time. It
is useful only for flavors that will be instantiated, not for flavors
that are only components of instantiated flavors.

(compile-flavor-methods arrow-window 19p-pixel-stream
bad-arrow-depth bad-arrow-fill-proportion)

31.2 Programm ing Aids for Flavors and Windows

Some editor commands and Lisp functions provide information about flavors. You
can find out about component flavors, methods, instance variables, init keywords,
and documentation. Using the Inspector, you can examine instance variables and
methods for instances of flavors: See the section "Using the Inspector", page 335.
If a flavor has gettable instance variables, you can obtain their values by sending
messages to instances of the flavor.

These commands and functions are useful for finding information about windows
as well. Because windows are instances of flavors, you can retrieve characteristics
that are stored in gettable instance variables by sending messages to the windows.
See the section "Using the Window System" in Programming the User Interface,
Volume B. If a window is exposed, you can examine and alter some characteristics
by clicking on the [Attributes] item in the System menu. Clicking on [Attributes]
pops up a choose-variable-values window for such characteristics as font, label,
margins, and vertical spacing between lines.

As with other definitions, Edit Definition (M-.) prepares to edit definitions of
flavors and methods. For a description of how to use this command to edit
method definitions: See the section "Methods", page 378.

31.2.1 General Information on Flavors
The facilities that display general information about a flavor are
Describe Flavor (M-X) and describe-flavor. These display
somewhat different descriptions of a flavor.

A useful predicate for instances of flavors is zl:typep. Given an
instance and a flavor name, zl:typep returns t if the instance
includes the flavor as a component.

Example
In handling bad values for the variables *max-depth* and
fill-proportion, we want to be sure that zl:query-io is bound to
a window before turning on a blinker. We find out whether the
object bound to zl:query-io is built on tv:sheet by using zl:typep:

378

Program Development Utilities August 1986

31.2.2 Methods

(typep query-io 'tv:sheet)

Reference
Describe Flavor (M-X)

(describe-flavor flavor-name>

(typep arg IDl.f:)

Displays a description of a flavor
that includes the names of
instance variables and component
flavors and any documentation
added by the :documentation
option for defflavor. Also
displays init keywords and
inherited methods and instance
variables. Names of flavors and
methods in the display are
mouse sensitive.

Prints a description of a flavor
that includes the names of
instance variables and component
flavors and any documentation
added by the :documentation
option for defflavor.

When arg is an instance of a
flavor and type is a flavor name,
returns t if the instance includes
the flavor as a component or nil
if it does not. If type is omitted,
returns a symbol representing
the flavor of the instance.

Four Zmacs commands display information about the methods that
handle messages to instances of flavors. For instances of flavors
built on si:vanilla-flavor - that is, for nearly all flavors - you
can send messages to find out which messages the object handles
and whether or not it handles a specific message.

You can use the Zmacs command Edit Definition (M-.) to edit the
definition of a method. Specify a method by typing a
representation of its function spec. This is a list of the following
form:

August 1986

379

Program Development Tools and Techniques

(:method flavor type message)

When typing this representation for Edit Definition (M- .), type is
optional. If the method has a type, Zmacs will try to find the
definition and ask you whether or not that definition is the one
you want.

You might know the name of a method but not the name of its
flavor. Use List Methods (M-H) to find methods for all flavors
that handle a message. You can click on one of the method
names displayed to edit its definition.

Example
We want to edit the definition of the :main-Ioop method of
basic-arrow-window-mixin. We use Edit Definition (M-.) and
type:

(:method basic-arrow-window-mixin :main-loop)

Example
We want to find out which methods handle :show-lines messages
and how the methods handle the messages. List Methods (M-H)
displays the following methods:

Methods for :SHOW-LINES
(:METHOD BASIC-ARROW-WINDOW-MIXIN :SHOW-LINES)
(:METHOD LGP-PIXEL-MIXIN :SHOW-LINES)

We can click on one of the method names or press c-. to edit the
definition. We also could have found the source code directly by
using Edit Methods (M-H).

Example
We want to find out which methods are called when the system
sends an :init message to arrow-window. List Combined Methods
(M-H) prompts for message and flavor names and displays the
following methods, in the order in which they are called:

380

Program Development Utilities August 1986

Combined method for :INIT message to ARROW-WINDOW flavor
(:METHOD TV:SHEET :WRAPPER :INIT)
(:METHOD TV:STREAM-MIXIN :BEFORE :INIT)
(:METHOD TV:BORDERS-MIXIN :BEFORE :INIT)
(:METHOD TV:ESSENTIAL-LABEL-MIXIN :BEFORE :INIT)
(:METHOD TV:ESSENTIAL-WINDOW :BEFORE :INIT)
(:METHOD TV:SHEET :INIT)
(:METHOD TV:ESSENTIAL-SET-EDGES :AFTER :INIT)
(:METHOD TV:LABEL-MIXIN :AFTER :INIT)
(:METHOD TV:PROCESS-MIXIN :AFTER :INIT)
(:METHOD BASIC-ARROW-WINDOW-MIXIN :AFTER :INIT)

Reference
List Methods (M-X)

Edit Methods (M-X)

List Combined Methods (M-X)

Edit Combined Methods (M-X)

Lists methods for all flavors that
handle a specified message.
Press c-. to edit the definitions
of the methods listed.

. Prepares to edit definitions of
methods for all flavors that
handle a specified message.
Press c-. to edit subsequent
definitions.

Lists all the methods that would
be called if a specified message
were sent to an instance of a
specified flavor. Press c-. to
edit the definitions of the
methods listed.

Prepares to edit definitions of
methods that would be called if
a specified message were sent to
an instance of a specified flavor.
Press c-. to edit subsequent
definitions.

(send instance ':which-operations)
Returns a list of messages that
instance can handle.

August 1986

381

Program Development Tools and Techniques

(send instance ':operation-handled-p message)
Returns t if instance has a
handler for message or nil if it
does not.

(get-handler-for object message) Returns the method that handles
message to object, or nil if object
has no handler for message.

31.2.3 Inlt Keywords
si:flavor-allowed-init-keywords retrieves the init keywords
allowed for a flavor.

Example
We want to find the allowed init keywords for Igp-pixel-stream.
si:flavor-allowed-init-keywords returns the following list:

(:DO-STRIPES :FILL-PROP :MAX-DEP :OUTPUT-STREAM)

These are all keywords for initable instance variables, the first
three from arrow-parameter-mixin and the last from
Igp-pixel-mixin.

Reference
(si:flavor-allowed-init-keywords flavor-name)

Returns a list of any init
keywords a flavor can take.

382

Program Development Utilities August 1986

383

August 1986 Program Development Tools and Techniques

32. Calculation Module for the Sample Program

The program used as an example in this document draws the recursive arrow
graphic on the document's cover. This section contains Lisp code that calculates
coordinates for the endpoints of the lines that compose the figure. The code
produces output by sending messages to instances of flavors defined in another
file. For the code for the flavors and methods that mediate between the program
and the system output operations: See the section "Output Module for the Sample
Program", page 403. For a reproduction of the LGP graphic the program
produces: See the section "Graphic Output of the Sample Program", page 425.

, , ,

'"

#11

-*- Mode: LISP; Package: (GRAPHICS GLOBAL 1000); Base: 10 -*
Copyright (c) 1983 Symbolics, Inc.

This file contains the calculation module for a program that
reproduces the recursive arrow graphic printed on the covers
of most Symbolics documents. The module calculates the
coordinates of the endpoints of line segments to be drawn.
It transmits these coordinates to a separate output module,
which contains the code needed to produce the figure on an
appropriate output device.

We use paper coordinates, origin at bottom left.

Each arrow in the figure can be seen as inscribed in a square
whose apex is at (apex-x, apex-y). Each arrow has a head and
a shaft. Top-edge is the top edge of each arrow, one of the
sides of the arrowhead. There are two classes of arrow in
the figure: The small arrows are the general case, and the
large, outer arrow is unique. The differences are the
structures of the shafts and the recursive appearance of
the small arrows.

The module uses special variables to store information about
the current arrow, including the length of the top edge and
the coordinates of the vertexes.

The module first calculates coordinates for the vertexes of
the large, outer arrow. If the arrows are to be striped, it
determines the endpoints of the lines that make up the large
arrow's stripes, first in the head and then in the shaft.

384

Program Development Utilities

The module then recursively calculates coordinates for each of
the small arrows inside the figure. It outlines and stripes
one arrow at a time. For each arrow, the module first
calculates the coordinates of the vertexes of the head. If the
arrows are to be striped, it then determines the coordinates of
the endpoints of the lines that make up the current arrow's
stripes, first in the head and then in the shaft.

The output module initiates the calculation module by calling
DRAW-ARROW-GRAPHIC with three arguments: the length of the
figure's top edge and the coordinates of the top right point
(pa in the large arrow). This module transmits coordinates to
the output module by sending :SHOW-LINES messages to instances
of output flavors. The arguments to :SHOW-LINES are the
coordinates of the endpoints of lines to be drawn. The current
instance of the output flavor is the value of the special variable
DEST.

(apex-x, apex-y)

August 1986

385

August 1986 Program Development Tools and Techniques

/ \
/ \

/ \

/ \
/ \

/ \

/ top-edge \

p1 / -----------------------------\ p0
/ \ \

/ \ \

/ \ \

/ \ \
/ \ p2 \

/ / \
/ / \

\ / /
\ / /

\ / p5 /
\ / / \ /

\ / / \ /

\ / .\ /

p3 \ / \ /

\ / \ /

\ / / p6
\ / /

\ /

p4 \ /

\ /

\ /

\ /

\/

Points 3 and 4 are obscured, except in the case of the big arrow.
11#

;;; Following are declarations for special variables and constants

(defconst *d1* 0.15
"Proportion of distance filled in between upper right stripes")

386

Program Development Utilities

(defconst *d2* 0.75
"Proportion of distance filled in between lower left stripes")

(defconst *stripe-distance* 20
"Horizontal distance in pixels between stripes of large arrow")

(defconst *max-depth* 7
"Number of levels of recursion")

(defconst *do-the-stripes* t
"If T, permits striping")

(defconst *dest* nil
"Object to which output is sent")

(defvar *depth* 0
"Current level of recursion")

(defvar *top-edge* nil
"Length of the top edge of the arrow")

(defvar *top-edge-2* nil
"Half the length of the top edge of the arrow")

(defvar *top-edge-4* nil
"One-fourth the length of the top edge of the arrow")

(defvar *x2* nil
"X-coord of projection of lower left stripe on top edge")

(defvar *stripe-d* nil
"Horizontal distance in pixels between stripes")

(defvar *p0x* nil
"X-coordinate of the tip of the arrow")

(defvar *p0y* nil
nY-coordinate of the tip of the arrow")

(defvar *p1x* nil
"X-coordinate of point p1 in the arrow")

August 1986

387

August 1986 Program Development Tools and Techniques

(defvar *p1y* nil
"V-coordinate of point p1 in the arrow")

(defvar *p2x* nil
"X-coordinate of point p2 in the arrow")

(defvar *p2y* nil
"V-coordinate of point p2 in the arrow")

(defvar *p3x* nil
"X-coordinate of point p3 in the arrow")

(defvar *p3y* nil
"V-coordinate of point p3 in the arrow")

(defvar *p4x* nil
"X-coordinate of point p4 in the arrow")

(defvar *p4y* nil
"V-coordinate of point p4 in the arrow")

(defvar *p5x* nil
"X-coordinate of point p5 in the arrow")

(defvar *p5y* nil
"V-coordinate of point p5 in the arrow")

(defvar *p6x* nil
"X-coordinate of point p6 in the arrow")

(defvar *p6y* nil
"V-coordinate of point p6 in the arrow")

J J J Following are the controlling functions for this module

388

Program Development Utilities August 1986

III Function controlling the calculation module.
Controls the calculation of the coordinates of the endpoints of the

III lines that make up the figure. The three arguments are the length of
the top edge and the coordinates of the top right point of the large

III arrow. DRAW-ARROW-GRAPHIC calls DRAW-BIG-ARROW to draw the large arrow
and then calls DO-ARROWS to draw the smaller ones.

(defun draw-arrow-graphic (*top-edge* *p8x* *p8y*)
;; Bind global variables
(let «*top-edge-2* (II *top-edge* 2))

(*top-edge-4* (II *top-edge* 4))
;; Compute horizontal distance between stripes in the large
;; arrow , assuming 64 stripes in the large arrowhead.
(*stripe-distance* (II *top-edge* 64)))

(draw-bi g-arrow) ; Draw 1 arge arrow
II Length of the top-edge for the first small arrow is half the
;; length for the large arrow. Bind new coordinates for the top
;; right point of the small arrow.
(let «*top-edge* *top-edge-2*)

(*p8x* (- *p8x* *top-edge-2*))
(*p8y* (- *p8y* *top-edge-2*))
(*depth* 8))

(do-arrows)))) ;Draw small arrows

·389

August 1986 Program Development Tools and Techniques

" ,
" ,
" ,
" ,
" ,
" ,

Recursive function controlling drawing of the small arrows.
If below the maximum recursion level, draws a small arrow. Binds
new values for depth, top edge, and coordinates of top right point,
and calls self recursively to draw a left-hand child arrow. Binds
special variables again and calls self to draw a right-hand child
arrow.

(de fun do-arrows ()
;; Don't exceed maximum recursion level
(when « *depth* *max-depth*)

" ,

;; Bind values for half and one-fourth of top edge
(let «*top-edge-2* (II *top-edge* 2»

(*top-edge-4* (II *top-edge* 4»)
(draw-arrow) ;Draw a small arrow
;; Increment depth. Divide top edge in half. Bind new
;; coordinates for top right point of next arrow.
(let «*depth* (1+ *depth*»

(*top-edge* *top-edge-2*)
(*pBx* (+ *top-edge-4* (- *pBx* *top-edge*»)
(*pBy* (- *pBy* *top-edge-4*»)

" Draw a left-hand child arrow
(do-arrows»

;; Increment depth. Divide top edge in half. Bind new
;; coordinates for top right point of next arrow.
(let «*depth* (1+ *depth*»

(*top-edge* *top-edge-2*)
(*pBx* (- *pBx* *top-edge-4*»
(*pBy* (+ *top-edge-4* (- *pBy* *top-edge*»»

" Draw a right-hand child arrow
(do-arrows»»)

The following functions are common to the large and small arrows

390

Program Development Utilities August 1986

", Calculates coordinates of points visible in large and small arrows.
", The four points that bound the head of each arrow are the only ones
", visible in the small arrows. Points 3 and 4 -- the base of the arrow

-- are obscured, except in the large arrow. We calculate these in
", compute-arrow-shaft-points.
(defun compute-arrowhead-points ()

(let* «p1x (- *p9x* *top-edge*»
(p1y *p9y*)
(p2x (+ p1x *top-edge-4*»
(p2y (- *p9y* *top-edge-4*»
(p6x *p9x*)
(p6y (- *p9y* *top-edge*»
(p5x (- *p9x* *top-edge-4*»
(p5y (+ p6y *top-edge-4*»)

(values p1x p1y p2x p2y p5x p5y p6x p6y»)

iX-coord,
iV-coord,
iX-coord,
iV-coord,
iX-coord,
iV-coord,
iX-coord,
iV-coord,

" , Calculates horizontal distance between stripes.

point 1
point 1
point 2
point 2
point 6
point 6
point 5
point 5

" ,
" ,

Distance is a fraction of the distance between stripes for the
large arrow. The divisor depends on the level of recursion.
Distance divides length of top edge evenly when possible to

", maintain continuity between head and shaft of arrow.
(defun compute-stripe-d ()

;; Distance should be at least 3 pixels so that there is some
;; white space between lines.
(if (~ *stripe-distance* 3) 3

;; First find a fraction of *STRIPE-DISTANCE* that depends
;; on recursion level
(loop for dist = (fixr (II *stripe-distance*

(selectq *depth*
(9 2)

(1 4)

(2 2)

(3 1.5)
(4 1.5)
(otherwise 2»»

;; Increment if it doesn't divide *TOP-EDGE* evenly
then (1+ dist)
when (= 9 (\ *top-edge* dist»
" Stop when no remainder. Don't return a value
, J 1 ess than 3.
do (return (if (~ dist 3) 3 dist»»)

391

August 1986 Program Development Tools and Techniques

" ,
" ,
" ,
" ,
" ,

Calculates the number of lines that compose each stripe.
Calls COMPUTE-DENS to calculate the proportion of distance
between stripes to be filled, then multiplies by the actual
distance between stripes. Makes sure that there is at least
one line and that there aren't too many lines to leave some
white space.

(defun compute-nlines (x)
;; Call COMPUTE-DENS and multiply result by *STRIPE-D*
(let «nl (fix (* *stripe-d* (compute-dens x)))))

" ,
" ,
" ,
" ,
" J

;; Supply at least one line
(cond «~ nl 1) 1)

;; But leave some white space between lines
«~ nl (- *stri pe-d* 1)) (- *stri pe-d* 2))
(t nl))))

Calculates proportion of distance filled in between each stripe.
The argument is the x-coordinate of the projection of the current
stripe onto the line formed by the top edge. Determines where the
projection of the current stripe is on this line in relation to the
distance from first to last stripes in the arrow. Multiplies this

'" fraction by the difference between densities of first and last
stripes. Finally, adds the density of the first stripe.

(defun compute-dens (x)
(+ *d1* (* (- *d2* *d1*)

" ,
" ,
" ,

(II (- x *p0x*) (float (- *x2* *p0x*))))))

The following two functions stripe the arrowheads. The
heads of the large and small arrows are identical, so we
use the same functions to stripe both.

392

Program Development Utilities

" ,

" ,
" ,

Function controlling striping of the head of each arrow.
Determines coordinates of starting and ending points for each
stripe. Calls COMPUTE-NLINES to determine number of lines for
the stripe. Calls DRAW-ARROWHEAD-LINES to draw the lines that

", make up each stripe.
(defun stripe-arrowhead ()

;; Find x-coord of top of last stripe to be drawn
(loop with last-x = (- *p0x* *top-edge*)

" ,
" ,
" ,
" ,

;; Find starting x-coord for each stripe, decrementing
;; by distance between stripes. Stop at last x-coord.
for start-x from *p0x* by *stripe-d* above last-x
;; Find ending y-coord for each stripe, decrementing by
;; distance between stripes.
for end-y downfrom *p0y* by *stripe-d*
;; Find number of lines in the stripe
for nlines = (compute-nlines start-x)
" Draw the lines that make up the stripe
do (draw-arrowhead-lines nlines start-x end-y last-x)))

Draws the lines that make up each stripe in an arrowhead.
Arguments are number of lines in the stripe, starting x-coord
and ending y-coord of first line, and x-coord of top of last
stripe to be drawn. Decrements by one pixel when drawing each

, "line.
(defun draw-arrowhead-lines (nlines start-x end-y last-x)

;; Set up a counter
(loop for i from 0 below nlines

;; Find starting x-coord, subtracting counter from first
;; x-coord
for first-x = (- start-x i)
;; Make sure we don't go past the end of the arrowhead
while « last-x first-x)

Draw a line
do (send *dest* ':show-lines

first-x *p0y* *p0x* (- end-y i))))

The following functions draw and stripe the large arrow

August 1986

393

August 1986 Program Development Tools and Techniques

" , Function controlling drawing of the large arrow.

" ,
" ,

Calls functions to find coordinates of vertexes of the arrow.
Outlines the arrow. Binds distance between stripes and x-coord
of projection of last stripe onto top edge. Finally, stripes

'" head and shaft of arrow when required.
(defun draw-big-arrow ()

;; Determine coordinates of arrowhead vertexes
(multiple-value-bind

(*p1x* *p1y* *p2x* *p2y* *p5x* *p5y* *p6x* *p6y*)
(compute-arrowhead-points)

;; Determine coordinates of shaft vertexes
(multiple-value-bind

(*p3x* *p3y* *p4x* *p4y*)
(compute-arrow-shaft-points)

(draw-big-outline) ;Outline arrow

" ,

(when *do-the-stripes*
;; Bind distance between stripes and x-coord of projection
;; of last stripe onto top edge
(let «*stripe-d* *stripe-distance*)

(*x2* (- *p0x* *top-edge* *top-edge*)))
(stripe-arrowhead)
(stripe-big-arrow-shaft))))))

;Stripe head
;Stripe shaft

Calculates coordinates for vertexes of shaft of large arrow.
'" These points are obscured and not drawn for the small arrows.
(defun compute-arrow-shaft-points ()

(val ues (- *p1x* *top-edge-4*)
(- *p2y* *top-edge-2*)
p2x
(- *p2y* *top-edge*)))

;;; Draws the outline of the large arrow.
(defun draw-big-outline ()

(send *dest* ':show-lines

;X-coord
;Y-coord
;X-coord
;Y-coord

p0x *p0y* *p1x* *p1y* *p2x* *p2y* *p3x* *p3y*
p4x *p4y* *p5x* *p5y* *p6x* *p6y* *p0x* *p0y*))

of point
of point
of point
of point

3

3
4
4

" ,

" ,

The next seven functions stripe the shaft of the large arrow.
First is a controlling function, then three functions to stripe
the left side and three more to stripe the right.

394

Program Development Utilities

" ,
" ,
" ,

Function controlling striping of the shaft of the large arrow.
Just calls STRIPE-BIG-ARROW-SHAFT-LEFT to stripe the left side
and STRIPE-BIG-ARROW-SHAFT-RIGHT to stripe the right side.

(defun stripe-big-arrow-shaft ()
(stripe-big-arrow-shaft-left)
(stripe-big-arrow-shaft-right»

Function controlling striping of left side of big arrow's shaft.
Iterates over the triangles that make up the shaft. Determines
coordinates of the apex and bottom right point of each triangle.
Calls DRAW-BIG-ARROW-SHAFT-STRIPES-LEFT to stripe each triangle.

(defun stripe-big-arrow-shaft-left ()
;; Set up a counter for depth. Don't exceed maximum recursion
;; 1 evel .
(loop for shaft-depth from 0 below *max-depth*

;; Find current top edge and its fractions
for top-edge = *top-edge* then (II top-edge 2)
for top-edge-2 = (II top-edge 2)
for top-edge-4 = (II top-edge 4)
;; Find coordinates of apex of triangle
for apex-x = *p2x* then (- apex-x top-edge-2)
for apex-y = *p2y* then (- apex-y top-edge-2)
;; Find x-coord of bottom right vertex
for right-x = (+ apex-x top-edge-4)
;; Find y-coord of bottom edge of triangle
for bottom-y = (- apex-y top-edge-4)
;; Find the x-coord of the projection of the first
;; stripe onto top edge
for xoff = (- *p0x* *top-edge*) then (- xoff top-edge)

Stripe each triangle
do (draw-big-arrow-shaft-stripes-left

top-edge-4 apex-x apex-y right-x bottom-y xoff»)

August 1986

395

August 1986 Program Development Tools and Techniques

'"
'"
'"

'"

Stripes each triangle in left side of big arrow's shaft.
Arguments are one-fourth current top edge, x- and y-coords
of apex of triangle, x- and y-coords of bottom right vertex,
and x-coord of projection of first stripe onto top edge.
Determines coordinates of starting and ending points for
each stripe. Finds number of lines in the stripe. Calls
DRAW-BIG-ARROW-SHAFT-LINES-LEFT to draw the lines that

'" make up each stripe.
(de fun draw-big-arrow-shaft-stripes-left

(top-edge-4 apex-x apex-y right-x bottom-y xoff)
(loop with half-distance = (II *stripe-distance* 2)

;; Find x-coord of last stripe in triangle
with last-x = (- apex-x top-edge-4)
" Find x-coord of top of each stripe, decrementing
;; from the apex by HALF the horizontal distance
;; between stripes. Stop at last stripe.
for start-x from apex-x by half-distance above last-x
;; Find y-coord of top of stripe
for start-y downfrom apex-y by half-distance
;; Find x-coord of endpoint of stripe
for end-x downfrom right-x by *stripe-distance*
;; Find number of lines in the stripe
for nlines = (compute-nlines (- xoff (- right-x end-x)))
" Draw a stripe
do (draw-big-arrow-shaft-lines-left

nlines start-x start-y end-x bottom-y last-x)))

396

Program Development Utilities

" , Draws the lines for a stripe on left side of big arrow's shaft.
'" Arguments are number of lines in the stripe, coords of starting
'" and ending points for first line, and x-coord of last stripe to
'" be drawn.
(defun draw-big-arrow-shaft-lines-left

(nlines start-x start-y end-x end-y last-x)
;; Set up two counters we need to draw two lines at once
(loop for i from B

for i2 from B by 2
;; Find x-coord of top of first line in stripe
for first-x = (- start-x i)
;; Don't exceed number of lines in stripe
while « i2 nlines)
;; Don't go past the end of the triangle
while « last-x first-x)
II Draw a line
do (send *dest* ':show-lines first-x (- start-y i)

(- end-x i2) end-y)
Draw a second line. The two lines are a refinement

" to stagger the endpoints of the lines so the diagonal
" edge looks neat.
(send *dest* ':show-lines first-x (- start-y i 1)

(- end-x ;2 1) end-y)))

August 1986

397

August 1986 Program Development Tools and Techniques

'"

'"
III

Function controlling striping of right side of big arrow's shaft.
Iterates over the triangles that make up the shaft. Determines
coordinates of the top point of each triangle. Calls
DRAW-BIG-ARROW-SHAFT-STRIPES-RIGHT to stripe each triangle.

(de fun stripe-big-arrow-shaft-right ()
;; Set up a counter for depth. Don't exceed maximum recursion
;; 1 evel .
(loop for shaft-depth from B below *max-depth*

;; Find new top edge and its fractions
for top-edge = *top-edge* then (II top-edge 2)
for top-edge-2 = (II top-edge 2)
for top-edge-4 = (II top-edge 4)
;; Find coords of top point of triangle
for start-x = (+ *p2x* top-edge-4)
for top-y = (- *p2y* *top-edge-4*)
then (- top-y top-edge-2 top-edge-4)
;; Find x-coord of projection of first stripe onto
;; top-edge
for xoff = (- *pBx* *top-edge*) then (- xoff top-edge)
II Stripe the triangle
do (draw-big-arrow-shaft-stripes-right

top-edge-2 top-edge-4 start-x top-y xoff)))

398

Program Development Utilities

'"
'"
'"
'"
'"
'"

Stripes each triangle in right side of big arrow's shaft.
Arguments are one-half and one-fourth of current top edge,
coords of top point of the triangle, and x-coord of projection
of first stripe onto top edge. Determines coordinates of
starting and ending points for each stripe. Finds number of
lines that make up the stripe. Calls
DRAW-BIG-ARROW-SHAFT-LINES-RIGHT to draw a stripe.

(defun draw-big-arrow-shaft-stripes-right
(top-edge-2 top-edge-4 start-x top-y xoff)

(loop with half-distance = (II *stripe-distance* 2)
jj Find y-coord of last stripe in triangle
with last-y = (- top-y top-edge-2)
jj Find y-coord of starting point of stripe. Don't go
jj past the end of the triangle.
for start-y from top-y by *stripe-distance* above last-y
jj Find coords of ending point of the stripe, decrementing
jj by HALF the horizontal distance between stripes
for end-x downfrom (+ start-x top-edge-4) by half-distance
for end-y downfrom (- top-y top-edge-4) by half-distance
jj Find number of lines that make up the stripe
for nlines = (compute-nline$ (- xoff (- top-y start-y)))
" Draw a stripe
do (draw-big-arrow-shaft-lines-right

nlines start-x start-y end-x end-y last-y)))

August 1986

399

August 1986 Program Development Tools and Techniques

, , , Draws the lines for a stripe on right side of big arrow's shaft.
Arguments are number of lines in the stripe, coordinates of starting

'"
'" and ending points for the first line, and y-coord of last stripe in
'" the triangle.
(defun draw-big-arrow-shaft-lines-right

'"

(nlines start-x start-y end-x end-y last-y)
;; Set up two counters
(loop for i from B

for i2 from B by 2

we need to draw two lines at once

;; Find y-coord of ending point of line
for stop-y = (- end-y i)
;; Don't exceed number of lines in the stripe
while « i2 nlines)
;; Don't go past the bottom of the triangle
while « last-y stop-y)
" Draw a line
do (send *dest* ':show-lines start-x (- start-y i2)

(- end-x i) stop-y)
" Draw a second line. The two lines are a refinement
" to stagger the endpoints of the lines so the diagonal
" edge looks neat.
(send *dest* ':show-lines start-x (- start-y i2 1)

(- end-x; 1) stop-y»)

The remaining functions draw and stripe one of the small arrows

400

Program Development Utilities

" ,
" ,
" ,

Function controlling drawing of a small arrow.
Calculates coordinates of the arrowhead and outlines it.
of the projection of the last stripe onto the top edge.

August 1986

Binds x-coord
Calculates

" , the horizontal distance between stripes.
head and shaft of the arrow.

When necessary, stripes the

" ,
(defun draw-arrow ()

;; Calculate coordinates of arrowhead vertexes
(multiple-value-bind

(*p1x* *p1y* *p2x* *p2y* *p5x* *p5y* *p6x* *p6y*)
(compute-arrowhead-points)

;; Outline the arrowhead
(draw-outline)
(when *do-the-stripes*

;; Bind x-coord of projection of last stripe onto top edge
(let «(*x2* (- *pBx* *top-edge* *top-edge*»

;; Calculate distance between stripes
(*stripe-d* (compute-stripe-d»)

(stripe-arrowhead)
(stripe-arrow-shaft»»)

;Stripe head
;Stripe shaft

", Draws the outline of the head of a small arrow.
(defun draw-outline ()

(send *dest* ':show-lines *p2x* *p2y* *p1x* *p1y*
pBx *pBy* *p6x* *p6y* *p5x* *p5y*»

401

August 1986 Program Development Tools and Techniques

" , Function controlling striping of the shaft of a small arrow.
Iterates over the descending triangles that make up the shaft.

'" Calculates the coordinates of the top left and bottom right
vertexes of each triangle. Finds the x-coord of the

'" projection of the first stripe onto top edge. Calls
'" DRAW-ARROW-SHAFT-STRIPES to stripe each triangle.
(defun stripe-arrow-shaft ()

;; Set up a counter for depth. Don't exceed maximum
;; recursion level.
(loop for shaft-depth from *depth* below *max-depth*

;; Calculate fractions of new top edge
for top-edge-2 = *top-edge-2* then (II top-edge-2 2)
for top-edge-4 = (II top-edge-2 2)
;; Find coords of top left point of triangle
for 1eft-x = *p2x* then (- 1eft-x top-edge-4)
for top-y = *p2y* then (- top-y top-edge-2 top-edge-4)
;; Find coords of bottom right point of triangle
for right-x = (+ 1eft-x top-edge-2)
for bottom-y = (- top-y top-edge-2)
;; Find x-coord of projection of first stripe onto top edge
for xoff = (- *p0x* *top-edge*)
then (- xoff top-edge-2 top-edge-2)
" Stripe the triangle
do (draw-arrow-shaft-stripes

1eft-x top-y right-x bottom-y xoff)))

402

Program Development Utilities

" ,
" ,
" ,
" ,
" ,
" ,

Stripes each triangle in the shaft of a small arrow.
Arguments are coordinates of the top left and bottom right
points of the triangle, and the x-coord of the projection
of the first stripe onto top edge. Calculates the y-coord
of the starting point and the x-coord of the ending point
of each stripe. Finds number of lines in the stripe. Calls
DRAW-ARROW-SHAFT-LINES to draw the lines in the stripe.

(defun draw-arrow-shaft-stripes
(left-x top-y right-x bottom-y xoff)

;; Find y-coord of starting point of stripe. Don't go
;; below the bottom of the triangle.
(loop for start-y from top-y by *stripe-d* above bottom-y

;; Find x-coord of ending point of the stripe

" ,
, , ,

for end-x downfrom right-x by *stripe-d*
;; Find number of lines in the stripe
for n1ines = (compute-n1ines (- xoff (- right-x end-x)))
" Draw a stripe
do (draw-arrow-shaft-lines

n1ines 1eft-x start-y end-x bottom-y)))

Draws the lines in a stripe in the shaft of a small arrow.
Arguments are the number of lines in the stripe and the

'" coordinates of the starting and ending points of the first line.
(de fun draw-arrow-shaft-1ines

(nlines left-x start-y end-x bottom-y)
;; Set up a counter. Don't exceed number of lines in the stripe.
(loop for i from e below n1ines

;; Find x-coord of ending point of the line
for last-x = (- end-x i)
;; Don't go past the left edge of the triangle
while « left-x last-x)
" Draw a line
do (send *dest* ':show-1ines 1eft-x (- start-y i)

last-x bottom-y)))

August 1986

403

August 1986 Program Development Tools and Techniques

33. Output Module for the Sample Program

The program used as an example in this document draws the recursive arrow
graphic on the document's cover. This section contains Lisp code that defines the
flavors and methods that mediate between the program and the system output
operations. For the code that calculates coordinates for the endpoints of the lines
that compose the figure: See the section "Calculation Module for the Sample
Program", page 383. For a reproduction of the LGP graphic the program
produces: See the section "Graphic Output of the Sample Program", page 425.

#11

-*- Mode: LISP; Package: (GRAPHICS GLOBAL 1000); Base: 10 -*
Copyright (c) 1983 Symbolics J Inc.

This file contains the output module for a program that
reproduces the recursive arrow graphic printed on the covers
of most Symbolics documents. The module allows the graphic
to be produced on a Lisp Machine screen J a Laser Graphics
Printer J or an LGP record file. For each of these devices J
the module produces output by sending appropriate messages
with the coordinates of the endpoints of line segments to
be drawn. This module receives these coordinates from a
separate calculation module.

For screen output J the module creates its own windows. It
defines a basic flavor of window that accepts point
coordinates in the screen coordinate system J with origin
at top left. It defines a more specialized windowJ built
on the basic windowJ for use with a calculation module that
uses LGP coordinates J with origin at bottom left. It
allows a process to be associated with each window and
lets users modify the characteristics of the figure.

For LGP output J the module makes an instance of a flavor
with the output stream as an instance variable. Output is
directed to either a hardcopy device or a record file.

This module defines the top-level function J DO-ARROW J that
is called to produce the graphic. This function pops up
a choose-variable-values window to allow users to select the
output device and the characteristics of the figure. The
module defines conditions and handlers for attempts to give
variables impermissible values.

404

Program Development Utilities

This module determines the size of the figure and its
position within the page or window. It then calls the
function DRAW-ARROW-GRAPHIC in the calculation module.
It passes as arguments the length of the top edge of the
figure and the coordinates of the top right point. The
calculation module sends :SHOW-LINES messages to instances
of output flavors. The arguments to :SHOW-LINES are the
coordinates of the endpoints of lines to be drawn. The
current instance of the output flavor is the value of the
special variable *DEST*.
11#

;;; Following are declarations for special variables

(defvar *dest-string* "Screen"
"Destination of program output [Screen, LGP, or File]")

(defvar *output-file* nil
"Pathname for LGP-record-file output")

(defvar *fill-proportion* 0.9
"Proportion of smaller dimension to be filled by figure")

The following flavor and its methods are common to both
screen and LGP output

August 1986

405

August 1986 Program Development Tools and Techniques

(defflavor arrow-parameter-mixin
(width height top-edge right-x top-y)
o

(:gettable-instance-variables top-edge right-x top-y)
(:required-methods :compute-width-and-height)
(:documentation :mixin
"Provides parameters for size and position of figure.

Instance variables hold width and height of page or window;
length of top edge of figure; and coordinates of top right point
of figure. Methods calculate size and position of figure by
centering it within the page or window and making it fill no
more than the specified proportion of the smaller dimension.
The methods use a coordinate system with origin at bottom left;
other mixins must correct for this if output is going to a
window. Other flavors must also provide a method for calculating
width and height of the page or window. This flavor should be
mixed into any instantiable flavor that produces output for the
arrow graphic."))

'"
'"
'"
'"
'"
'"
'"

Method controlling calculation of size and position of figure.
Sends messages to self to calculate width and height of page
or window, length of top edge of figure, and coordinates of
figure's top right point. These are separate methods so that
other flavors can shadow them or add daemons. Another flavor
must provide a method to compute width and height, because
this is specific to the output device.

(defmethod (arrow-parameter-mixin :compute-parameters) ()
;; Another flavor must supply method for width and height
(send self ':compute-width-and-height)
;; Make a preliminary estimate of length of top edge
(send self ':compute-top-edge)
;; Adjust top edge to make it a multiple of 128
(send self ':adjust-top-edge)
;; Calculate coordinates of top right point of figure.
;; We can't do this until we know how long top edge is.
(send self ':compute-right-x)
(send self ':compute-top-y))

406

Program Development Utilities

" ,

" ,

Makes a preliminary estimate of length of top edge.
The top edge of the arrow is 8B percent of the horizontal
or vertical length of the whole figure. First finds the
smaller of the length or width of the page or window.
Multiplies this by the proportion of this dimension that
is to be filled by the figure. The result is the

'" horizontal or vertical length of the figure. Multiplies
this by B.8 to get the length of the top edge.

(defmethod (arrow-parameter-mixin :compute-top-edge) ()
(setq top-edge

" ,

(fixr (* B.8 *fill-proportion* (min width height)))))

Adjusts length of top edge so it is a multiple of 128.
There are 64 stripes in the head of the large arrow. The
calculation module divides the length of top edge by two
each time it goes down another recursion level. By making
the original top edge a multiple of 128, we maximize
continuity in striping between arrowheads and shafts and
among the first several levels of recursion.

(defmethod (arrow-parameter-mixin :adjust-top-edge) ()
(setq top-edge

;; Minimum length of top edge is 128
(if « top-edge 256) 128

Otherwise set to next lower multiple of 128
(* 128 (fix (II top-edge 128))))))

Calculates x-coordinate of top right point of figure.
Finds horizontal length of figure by dividing length of
top edge by B.8. Centers the figure horizontally within
the page or window.

(defmethod (arrow-parameter-mixin :compute-right-x) ()
(setq right-x

(fixr (* B.5 (+ width (II top-edge B.8))))))

Calculates y-coordinate of top right point of figure.
Assumes that the origin is at bottom. Finds vertical
length of figure by dividing length of top edge by B.8.
Centers the figure vertically within the page or window.

(defmethod (arrow-parameter-mixin :compute-top-y) ()
(setq top-y

(fixr (* B.5 (+ height (II top-edge B.8))))))

August 1986

407

August 1986 Program Development Tools and Techniques

;;; Following are flavors and methods for screen output

(defflavor basic-arrow-window-mixin
(do-stripes max-dep fill-prop)
o

:initable-instance-variables
(:required-flavors arrow-parameter-mixin tv:window)
(:default-init-plist
:edges-from ':mouse :minimum-width 200 :minimum-height 200
: bl i nker-p ni 1 : expose-p t)

(:documentation :mixin
"Provides for a basic window to display the arrow graphic.

ARROW-PARAMETER-MIXIN is needed to position the figure within
the window. Instance variables hold values for maximum
recursion level, proportion of window to be filled, and
whether or not to stripe the figure. This flavor assumes
window coordinates, with origin at top left. It provides its
own :COMPUTE-TOP-Y method to use that origin. It provides a
method to find the width and height of the window, as
ARROW-PARAMETER-MIXIN requires. This flavor has a :SHOW-LINES
method to receive point coordinates from the calculation
module and draw lines on the window. It provides a :MAIN-LOOP
method so that the window can run in its own process and let
the user modify the graphic. TV:LIST-MOUSE-8UTTONS-MIXIN is
needed to handle mouse clicks if this method is used. This
flavor provides standard :AFTER daemons for the window-system
:INIT, :REFRESH, and :CHANGE-OF-SIZE-OR-MARGINS messages. This
flavor should be mixed in with ARROW-PARAMETER-MIXIN and
TV:WINDOW for any window that produces the graphic. It
should be included before ARROW-PARAMETER-MIXIN so that the
:COMPUTE-TOP-Y method shadows correctly."»

408

Program Development Utilities

" ,
" ,

" ,

" ,

Receives endpoint coordinates and draws lines on a window.
Arguments are alternating x- and y-coordinates of the end-
points of lines to be drawn. If there are more than two pairs
of coordinates, assumes that the endpoint of one line is the
starting point of the next. Sends messages for separate methods
to determine the actual coordinates. This is so that other
flavors can modify the coordinates. Draws a line by sending self
a :DRAW-LINE message, and so assumes that TV:GRAPHICS-MIXIN is

", included somewhere to provide this method.
(defmethod (basic-arrow-window-mixin :show-1ines)

(x y &rest x-y-pairs)
First determine the starting point of the line. On
subsequent trips through the loop, the last endpoint
becomes the next starting point.

(loop for x0 = (send self ':compute-x x) then x1
for y0 = (send self ':compute-y y) then y1

" ,

;; "Cddr" down the list created by making all but the
;; first pair of coordinates an &rest argument
for (x1 y1) on x-y-pairs by #'cddr
" Determine the endpoint of the line
do (setq x1 (send self' :compute-x x1)

y1 (send self ':compute-y y1))
" Draw the line
(send self' :draw-line

x0 y0 x1 y1 tv:alu-ior t)))

Determines the x-coordinate of an endpoint of a line.
This is a separate method so that other flavors can shadow
it or add daemons to manipulate the coordinate.

(defmethod (basic-arrow-window-mixin :compute-x) (x)
(fixr x))

" , Determines the y-coordinate of an endpoint of a line.
Assumes that the argument already uses window coordinates,
with origin at top left. This is a separate method so that
other flavors can shadow it or add daemons to manipulate
the coordinate.

(defmethod (basic-arrow-window-mixin :compute-y) (y)
(fixr y))

August 1986

409

August 1986 Program Development Tools and Techniques

Finds the inside width and height of the window.
Sends self an :INSIDE-SIZE message, and so assumes that
TV:SHEET is included somewhere to provide this
method.

(defmethod (basic-arrow-window-mixin
:compute-width-and-height) ()

(multiple-value (width height)
(send self' :inside-size)))

Calculates y-coordinate of top right point of figure.
Finds vertical length of the figure by dividing the length
of top edge by 0.8. Centers the figure vertically within
the window. Gives the result in window coordinates, with
origin at top left. This method shadows that in
ARROW-PARAMETER-MIXIN.

(defmethod (basic-arrow-window-mixin :compute-top-y) ()
(setq top-y

(fixr (* 0.5 (- height (II top-edge 0.8))))))

Calculates size and position of figure after initialization.
Binds the global variable *fill-proportion* to the value of
the corresponding instance variable so that the figure will
be drawn correctly if the value of *fill-proportion* has
changed.

(defmethod (basic-arrow-window-mixin :after :init) (ignore)
(let «*fill-proportion* fill-prop))

(send self ':compute-parameters)))

Calculates size and position of figure after window change.
Binds the global variable *fill-proportion* to the value of
the corresponding instance variable so that the figure will
be drawn correctly if the value of *fill-proportion* has
changed.

(defmethod (basic-arrow-window-mixin
:after :change-of-size-or-margins) (&rest ignore)

(let «*fill-proportion* fill-prop))
(send self ':compute-parameters)))

410

Program Development Utilities

" ,
" ,
" ,
" ,
" ,

Draws the figure when necessary after window is refreshed.
Binds the global variable *dest* to self and the variables
do-the-stripes and *max-depth* to the corresponding instance
variables so the figure will be drawn correctly if the values
of the global variables have changed.

(defmethod (basic-arrow-window-mixin :after :refresh)
(&optional type)

;; Draw figure if not restored from a bit-save array
(when (or (not tv:restored-bits-p)

" ,

;; ... or size has changed ...
(eq type ':size-changed)
;; ... or new values for figure parameters.
(eq type ':new-vals»

;; If restored from a bit-save array, clear screen first
(when tv:restored-bits-p

(send self' :clear-screen»
;; Bind global variables to self and instance variables
(let ((*dest* self)

(*do-the-stripes* do-stripes)
(*max-depth* max-dep»

Draw the figure
(draw-arrow-graphic top-edge right-x top-y»»

Provides a mouse documentation line for the window.
The only option is to click right and pop up a
choose-variable-values window of options for changing
the graphic on this. window.

(defmethod (basic-arrow-window-mixin
:who-line-documentation-string) ()

August 1986

"R: Choose-variable-values options for changing figure on this window")

411

August 1986 Program Development Tools and Techniques

" ,
" ,
" ,
" ,
" ,

" ,

Command loop for window associated with a separate process.
Consists of an error-restart-loop that handles restarts from
errors and sys:abort. Waits for mouse input. If a right
click, pops up a choose-variable-values window to change
characteristics of the figure. On exit, sets instance variables
to the new values and refreshes the window, then ,waits for another
mouse click. Assumes blips are lists of the form provided
by TV:LIST-MOUSE-BUTTONS-MIXIN.

(defmethod (basic-arrow-window-mixin :main-loop) ()
;; Run forever in a loop. Offer a restart handler if an error
;; or sys:abort is signalled.
(error-restart-loop «error sys:abort) "Arrow Window Top Level")

;; Wait for input
(let «char (send self ':any-tyi)))

;; Pop up window if input is a list
(when (and (listp char)

;; ... and a mouse cl ick
(eq (first char) ':mouse-button)
;; ... and a single click on the right button.
(eq (second char) #\mouse-r-1))

;; Bind global variables to instance-variable values
(let «*do-the-stripes* do-stripes)

(*max-depth* max-dep)
(*fill-proportion* fill-prop))

Pop up a choose-variable-values window
(tv:choose-variable-values

, «*do-the-stripes* "Stripe the arrows?" :boolean)
(*max-depth* "Number of recursion levels" :number)
(*fill-proportion*

"Fraction of window to be filled" :number))
;; Hake the window wide to provide enough room for error
;; messages.
, :extra-width 20
;; Call a function to check for errors when values change
, :function 'check-item
;; Give the user a chance to abort
':margin-choices '("00 It" ("Abort" (signal 'sys:abort)))
':label "Choose Options for Graphic")

;; Set instance variables to the new values
(setq do-stripes *do-the-stripes*

max-dep *max-depth*
fill-prop *fill-proportion*)

412

Program Development Utilities

;; Recompute size and position of the figure
(send self J:compute-parameters)
;; Send :REFRESH message with argument of J:new-vals to make
;; sure the figure is redrawn if there is a bit-save array
(send self J:refresh J:new-vals))))))

(defflavor basic-arrow-window ()
(basic-arrow-window-mixin
arrow-parameter-mixin
tv:any-tyi-mixin
tv: 1 ist-mouse-buttons-mixin
tv:process-mixin
tv:window)

(:documentation :combination
"Instantiable flavor providing a basic window for output.

Though this flavor is instantiable J its methods assume that
point coordinates use the window coordinate system J with
origin at top left. To work with the current calculation
module it needs another mixin to convert LGP to screen
coordinates. In the component flavors J BASIC-ARROW-WINDOW-MIXIN
must come before ARROW-PARAMETER-MIXIN and TV:WINDOW for
shadowing and daemons to work correctly. TV:PROCESS-MIXIN
and TV:LIST-MOUSE-BUTTONS-MIXIN are not necessary unless the
window is associated with a separate process and the :MAIN-LOOP
method of BASIC-ARROW-WINDOW-MIXIN is the command loop."))

August 1986

413

August 1986 Program Development Tools and Techniques

(defflavor 19p-window-mixin
«scale-factor 2.5))
o

(:required-flavors basic-arrow-window)
(:documentation :mixin
"Converts LGP to screen coordinates and vice versa.

When mixed in with BASIC-ARROW-WINDOW, this flavor allows
window output with a calculation module that uses LGP
coordinates. The instance variable SCALE-FACTOR is the
ratio of LGP to screen pixel density. The methods take
the height and width of the window in screen pixels and
calculate the length of the top edge and the coordinates
of the top right point of the figure in LGP pixels. In
drawing lines on the window, the methods convert LGP to
window coordinates. These methods shadow those in
ARROW-PARAMETER-MIXIN and BASIC-ARROW-WINDOW-MIXIN."))

" ,
" ,

Converts x-coord of line endpoint from LGP to screen pixels.
Corrects for higher density of LGP pixels. This method shadows
that of BASIC-ARROW-WINDOW-MIXIN.

(defmethod (lgp-window-mixin :compute-x) (x)
(fixr (II x scale-factor)))

", Converts y-coord of line endpoint from LGP to screen pixels.
", Corrects for higher density of LGP pixels and for screen origin
,,, at top left. This method shadows that of BASIC-ARROW-WINDOW-MIXIN.
(defmethod (lgp-window-mixin :compute-y) (y)

(fixr (- height (II y scale-factor))))

" ,
" ,

Calculates top edge in LGP pixels from screen proportions.
Multiplies length of smaller dimension, in screen pixels, by
proportion of this dimension to be filled by the figure.
Multiplies this by 0.8 to find top edge in screen pixels.
Corrects for higher density of LGP pixels. This method
shadows that of ARROW-PARAMETER-MIXIN.

(defmethod (lgp-window-mixin :compute-top-edge) ()
(setq top-edge

(fixr (* scale-factor 0.8 *fill-proportion*
(min width height)))))

414

Program Development Utilities

III

III

III

Calculates x-coord of top right point in LGP pixels.
Finds horizontal length of figure in screen pixels by
dividing top edge by 9.8. Centers figure horizontally

III in window, correcting for higher density of LGP pixels.
III This method shadows that of ARROW-PARAMETER-MIXIN.
(defmethod (lgp-window-mixin :compute-right-x) ()

(setq right-x

III

III

III

III

III

(fixr (* 9.5 (+ (* width scale-factor)
(II top-edge 9.8))))))

Calculates y-coord of top right point in LGP pixels.
Finds vertical length of figure in screen pixels by
dividing top edge by 9.8. Centers figure vertically
in window, correcting for higher density of LGP pixels.
This method shadows those of ARROW-PARAMETER-MIXIN and
BASIC-ARROW-WINDOW-MIXIN.

(defmethod (lgp-window-mixin :compute-top-y) ()
(setq top-y

(fixr (* 9.5 (+ (* height scale-factor)
(II top-edge 0.8))))))

(defflavor arrow-window ()
(lgp-window-mixin basic-arrow-window)

(:documentation :combination
"Instantiable flavor for window output from LGP coordinates.

This flavor has all the features of BASIC-ARROW-WINDOW but
assumes that the calculation module uses LGP coordinates. This
is the flavor to instantiate for window output using the
current calculation module."))

III The following flavor and methods are for LGP output

August 1986

415

August 1986 Program Development Tools and Techniques

(defflavor 19p-pixel-mixin
(output-stream)
o

:initable-instance-variables
(:required-flavors arrow-parameter-mixin)
(:documentation :mixin
"Provides methods for arrow graphic output on an LGP stream.

ARROW-PARAMETER-MIXIN is required to calculate the size of the
figure and position it in the center of the page. This flavor
has a method to calculate the width and height of the page, as
ARROW-PARAMETER-MIXIN requires. It has a :SHOW-LINES method to
receive point coordinates from the calculation module and draw
lines on the output stream. The method assumes that coordinates
are in LGP pixels. The method also assumes that flavor
LGP:BASIC-LGP-STREAH is included in output stream to provide
:SEND-COHHAND and :SEND-COORDINATES messages. This flavor
should be mixed, along with ARROW-PARAHETER-HIXIN, into an
instantiable flavor for LGP output. When that flavor is
instantiated, the instance variable output-stream should be
initialized."»

" ,
" ,
" ,
" ,

, , ,
" ,
, , ,

Receives endpoint coordinates and draws lines on LGP stream.
Arguments are alternating x- and y-coordinates of endpoints of
lines to be drawn. If there are more than two pairs of
coordinates, assumes that the endpoint of one line is the
starting point of the next. Draws a line by sending output
stream :SEND-COHHAND messages for LGP commands and
:SEND-COORDINATE messages for LGP coordinates. Assumes that
flavor LGP:BASIC-LGP-STREAH is included in output stream to

", provide these methods.
(defmethod (lgp-pixel-mixin :show-lines)

(x0 y0 &rest x-y-pairs)
;; Send command and coordinates to start drawing lines
(send self ':send-command-and-coordinates #/m x0 y0)
;; "Cddr" down the list created by making all but the first
;; pair of coordinates an &rest argument
(loop for (x y) on x-y-pairs by #'cddr

" Send command and coordinates to draw a line
do (send self ':send-command-and-coordinates #/v x y»)

416

Program Development Utilities

J J J
I J I

J J I

J J J

Sends line-drawing commands to LGP output stream.
:SEND-COMMAND transmits an LGP command. :SEND-COORDINATES
transmits coordinates of an endpoint of a line to be drawn.
Assumes that LGP:BASIC-LGP-STREAM is included in output stream

JIJ to provide these methods.
(defmethod (lgp-pixel-mixin :send-command-and-coordinates) (cmd x y)

(send output-stream J:send-command cmd)
(send output-stream I : send-coordinates (fixr x) (fixr y)))

J J J
I I J

J I J

J J J
I I J

Finds width and height of a page for LGP output.
This flavor is required by ARROW-PARAMETER-MIXIN. Finds the
values of two instance variables of LGP:BASIC-LGP-STREAM:
SI:PAGE-WIDTH and SI:PAGE-HEIGHT. Assumes that
LGP:BASIC-LGP-STREAM is included in output stream to provide
these instance variables.

(defmethod (lgp-pixel-mixin :compute-width-and-height) ()
(setq width (symeval-in-instance output-stream Jsi:page-width)

height (symeval-in-instance output-stream Jsi:page-height)))

(defflavor 19p-pixel-stream ()
(lgp-pixel-mixin arrow-parameter-mixin)

(:documentation :combination
"Instantiable flavor for arrow output on LGP stream.

Assumes that the calculation module uses LGP coordinates.
When this flavor is instantiated J the LGP-PIXEL-MIXIN
instance variable OUTPUT-STREAM should be initialized.
The output stream can be directed to an LGP or a file J
but it must include flavor LGP:BASIC-LGP-STREAM for
output to work correctly."))

J J I Following are condition flavors for bad variable values

August 1986

417

August 1986 Program Development Tools and Techniques

(defflavor bad-arrow-variable () (error)
(:documentation
"Noninstantiable class of bad-variable conditions.

The user might set some variables to impermissible values.
These conditions are to permit checking for bad values
beyond the systemJs error checking. Instantiable condition
flavors for specific variables should be built on this
flavor."))

(defflavor bad-arrow-depth () (bad-arrow-variable)
(:documentation
"Proceedable condition: bad value for *MAX-DEPTH*.

An instantiable condition flavor for impermissible values
of *MAX-DEPTH*J the number of recursion levels in the
figure."))

;;; Prints string on stream to report bad *MAX-DEPTH* value
(defmethod (bad-arrow-depth :report) (stream)

(format stream "No. of levels was not a -
nonnegative fixnum."))

j;j Proceed type method for supplying new value of *MAX-DEPTH*
(defmethod (bad-arrow-depth :case :proceed : new-depth)

(&optional (dep (prompt-and-read
J : number
"Supply new value for -

no. of recursion levels: H)))
"Supply a new value for number of recursion levels."
(values J:new-depth dep))

(defflavor bad-arrow-fill-proportion () (bad-arrow-variable)
(:documentation
"Proceedable condition: bad value for *FILL-PROPORTION*.

An instantiable condition flavor for impermissible values of
*FILL-PROPORTION*J the fraction of the smaller dimension of
the page or window that the figure is to fill."))

418

Program Development Utilities

;;; Prints string on stream to report bad *FILL-PROPORTION* value.
(defmethod (bad-arrow-fill-proportion :report) (stream)

(format stream "Proportion was not a fraction between -
fI and 1."»

;;; Proceed type method for new value of *FILL-PROPORTION*
(defmethod (bad-arrow-fill-proportion :case :proceed

:new-proportion)
(&optional (prop (prompt-and-read

J : number
"Supply new fraction of bounds -

be filled: H»~)

"Supply a new fraction of page or window to be filled."
(values J:new-proportion prop»

J J J Top-level function

August 1986

419

August 1986 Program Development Tools and Techniques

, , ,
" ,
" ,
" ,
" ,

Top-level function to call to produce arrow graphic.
Pops up a choose-variable-values window to let user specify
output destination, number of recursion levels, proportion
of smaller dimension of page or window to be filled, and
whether or not to stripe figure. If screen output, makes a
window. If LGP output, makes an LGP stream and calls
ORAW-ARROW-GRAPHIC to draw the figure.

(defun do-arrow ()
;; Pop up a choose-variable-values window
(tv:choose-variable-values

, ((*do-the-stripes* "Stripe the arrows?" :boolean)
(*max-depth* "Number of recursion levels" :number)
(*fill-proportion*

"Fraction of page or window to be filled" :number)
(*dest-string* "Output destination"

:choose ("Screen" "LGP" "File"))
(*output-file* "Pathname for file output" :pathname))

;; Hake window wide enough to accommodate long pathnames
;; and error messages
':extra-width 28.
;; Call this function when a value is changed
':function 'check-item
;; Give user a chance to abort
':margin-choices '("00 It" ("Abort" (signal 'sys:abort)))
':label "Choose Options for Graphic")

420

Program Development Utilities

;; If figure is infinitely small, just return nil
(cond «= *fi11-proportion* B) nil)

;; If screen output, make a window
«equal *dest-string* "Screen")

(tv:make-window 'arrow-window
;; Initialize instance variables to
;; values set by the user
':do-stripes *do-the-stripes*
':max-dep *max-depth*
':fi11-prop *fi11-proportion*
;; Specify top-level function for the
;; process associated with the window
':process '(window-loop)))

" If LGP or file output, use an appropriate stream
(t (with-open-stream

(stream
;; This function returns a stream suitable for
;; LGP output
(si:make-hardcopy-stream

;; Argument is the output device. For LGP,
;; use the default hardcopy device.
(if (equal *dest-string* "lgp")

si:*defau1t-hardcopy-device*
" For file output, use the correct format
;; for the hardcopy device and direct
;; output to the file specified by the user
(lgp:get-1gp-record-fi1e-hardcopy-device

output-fi1e))))
;; Make an instance of our LGP output flavor
(1 et «*dest*

(make-instance 'lgp-pixe1-stream
;; Initialize instance
;; variable to output stream
':output-stream stream)))

;; Position the figure on the page
(send *dest* ':compute-parameters)
;; Draw the figure, using instance-variable values
;; as arguments
(draw-arrow-graphic (send *dest* ':top-edge)

(send *dest* ':right-x)
(send *dest* ':top-y)))))))

August 1986

421

August 1986 Program Development Tools and Techniques

" ,
" ,
" ,
" ,

Top-level function for process associated with arrow window.
The function is called when the window is created. Argument is
the window. The function sends the window a :MAIN-LOOP message.
This method should be the actual command loop for the process.

(defun window-loop (window)
(send window ':main-loop))

" ,

" ,
" ,
" ,
" ,
" ,
" ,
" ,

Function to check variable values

Called when a value changes in choose-variable-values window.
Arguments are the window, the variable, and its old and new values.
Binds handlers for conditions for impermissible values. If new
value is OK, sets variable to the new value, refreshes window, and
returns t. If value is not OK, signals the appropriate condition.
When SIGNAL returns, presumably with a new variable value, checks
the new value in the same way it checks a new value that comes

'" from the window.
(defun check-item (cvv-window var old-val new-val)

" We don't use the old value. To avoid a compiler complaint,
" just evaluate it and ignore it. We could also use IGNORE
" instead of OLD-VAL in the arglist, but then the arglist
" would be less meaningful.
old-val
;; Bind handlers for the conditions we might signal
(condition-bind «bad-arrow-depth 'bad-arrow-var-hand1er)

(bad-arrow-fi11-proportion
'bad-arrow-var-hand1er))

(when (eq var '*max-depth*)
;; *MAX-DEPTH* must be nonnegative fixnum
(loop until (and (fixp new-val) (~new-va1 0))

" If it's not, bind QUERY-IO to the window and
" signal a condition. SIGNAL should return
" two values, the proceed type and the new
" value from the proceed method. Ignore the
" proceed type and set NEW-VAL to the new
" value.
do (let «query-io cvv-window))

(multiple-value (nil new-val)
(signal 'bad-arrow-depth)))))

422

Program Development Utilities

J J J

(when (eq var J*fill-proportion*)
jj *FILL-PROPORTION* must be between 8 and 1
(loop until (and (~ new-val 8) (~new-val 1))

JJ If itJs not J bind QUERY-IO to the window and
JJ signal a condition. SIGNAL should return

two values J the proceed type and the new
JJ value from the proceed method. Ignore the
JJ proceed type and set NEW-VAL to the new
JJ value.
do (let «query-io cvv-window))

(multiple-value (nil new-val)
(si gnal J bad-arrow-fi ll-proport ion)))))

JJ Variable value is now OK. Set variable to the new value.
JJ Note that we DO want to evaluate VAR.
(set var new-val)
jj Refresh the window
(send cvv-window J:refresh)
j j Return t
t)

Handler for bad-variable-value conditions

August 1986

423

August 1986 Program Development Tools and Techniques

" ,
, , ,
, , ,

Handler for bad value of *MAX-DEPTH* or *FILL-PROPORTION*.
Argument is the condition object created by SIGNAL. Uses QUERY-IO
stream to report condition. Sends the condition object a :PROCEED

", message and passes back the values it returns.
(defun bad-arrow-var-handler (cond-obj &aux bl)

ii Find out whether this object has the right proceed type.
ii If not, return nil.
(if (send cond-obj ':proceed-type-p

(cond «typep cond-obj 'bad-arrow-depth) ':new-depth)
«typep cond-obj 'bad-arrow-fill-proportion)
':new-proportion»)

" Enclose the handling operation in an UNWIND-PROTECT so that
" if we use a blinker we are sure to turn it off
(unwind-protect

(progn
ii Use a blinker if the QUERY-IO stream is a window
(setq bl (if (typep query-io 'tv:sheet)

ii If a cursor-following blinker exists, use it
(or (tv:sheet-following-blinker query-io)

ii Otherwise, make a new blinker
(tv:make-blinker query-io

'tv: rectangular-bl inker
':follow-p t»»

ii If a blinker, make it blink
(if bl (send bl ':set-visibility ':blink»
ii Alert the user
(tv:beep)
;; Send a report, presumably describing the condition
(send cond-obj ':report query-io)
i.i Send object a : PROCEED message and return the val ues
;; that the method returns
(send cond-obj ':proceed

(cond «typep cond-obj 'bad-arrow-depth) ':new-depth)
«typep cond-obj 'bad-arrow-fill-proportion)
':new-proportion»»

ii If a blinker, turn it off
(if bl (send bl ':set-visibility nil»»)

424

Program Development Utilities

III This macro expression causes combined methods to be compiled at
III compile time and data structures to be generated at load time.
III Otherwise , these things happen at run time , when the first
III instance of a flavor is made.
(compile-flavor-methods arrow-window 19p-pixel-stream

bad-arrow-depth bad-arrow-fill-proportion)

August 1986

425

August 1986 Program Development Tools and Techniques

34. Graphic Output of the Sample Program

The program used as an example in this document draws the recursive arrow
graphic on the document's cover. This section contains a reproduction of the LGP
graphic the program produces. For the Lisp code that calculates coordinates for
the endpoints of the lines that compose the figure: See the section "Calculation
Module for the Sample Program", page 383. For the code that defines the flavors
and methods that mediate between the program and the system output operations:
See the section "Output Module for the Sample Program", page 403.

426

Program Development Utilities August 1986

August 1986

(

)

*

+

1

2

Index

#m sharp-sign reader macro 137
#q sharp-sign reader macro 137

(
(dbg:arg) 32

Start Kbd Macro (c-X o Zmacs command 292

End Kbd Macro (c-X
)

)) Zmacs command 292

*
* 24
debug-Io 24
error-output 24
package 24
prlnt-basa 24
query-Io 24
standard-Input 24
standard-output 24
termlnal-Io 24

+
+ 24

Sys:site;system-name .system 181
Sys:site;System-name .System File 181, 183

Sys:site;Logical-host .Translations File 182

1
One Window (c-X 1) Zmacs command 293

2
Two Windows (c-X 2) Zmacs command 293

427

Index

(

)

*

+

1

2

428

Program Development Utilities August 1986

3

4

A

3 3
View Two Windows (c-X 3) Zmacs command 293

4 4
Modified Two Windows (c-X 4) Zmacs command 293

,
Set Comment Column (c-X ;) Zmacs command 249

,

A A
Areas (A) 101

ABORT 329
Using ABORT And RESUME in the Debugger 21
sys: abort flavor 364

ABORT key 11, 12, 15, 20, 25, 50
ABORT key and traps 52
:Abort command 50
Abort Command 50
Abort Patch (m-X) 209

Disable Aborts Command 51
Enable Aborts Command 51

Obtaining Information About a System 213
Finding Out About Existing Code 260
Finding Out About Functions 265
Finding Out About Objects 260

Send mail about patch 208
Finding Out About Path names 271
Finding Out About Symbols 263
Finding Out About Variables 265

Debugger Command Accelerators 18
Numeric arguments in accelerators 18
Summary of Compiler Actions on Code in a Zmacs Buffer 299

Active functions 41
Active patches 203, 207

Display status of active processes 99
Select Activity command 233

complier: add-optimizer special form 135
Add Patch Changed Definitions (m-X) 207
Add Patch Changed Definitions of Buffer (m-X) 206
Add Patch (m-X) 206
Add region to patch file 203
:advertlsed-In Option For defsystem 151

:after advice 82
:around Advice 82
:before advice 82

Designing the Advice 82
Advice to functions 79
advise special form 79

sl: advlse-1 function 81
sl: advised-functions variable 82

Advise facility 5
advise-within special form 83
Advising a Function 79
Advising One Function Within Another 83
:after advice 82

429

August 1986 Index

[Break after] trace menu item 323
[Cond after] trace menu item 323

[Cond break after] trace menu item 323, 329
[Print after] trace menu item 323

Debugging aids 5
Miscellaneous Debugging Aids 91

Programming Aids for Flavors and Windows 377
Aligning Code 251

Clear All Breakpoints Command 59
Select All Buffers As Tag Table (m-X) Zmacs command 284

Macro Expand Expression All (m-sh-H) Zmacs command 332
zl: all-speclal-swltch variable 133

Dependencies among modules 154
Analyze Frame Command 43
Anonymous module 153, 156, 159

Advising One Function Within Another 83
:any-tyl method of tv:any-tyl-mlxln 364

:any-tyl method of tv: any-tyl-mlxln 364
tv: any-tyl-mlxln flavor 364

applyhook 88
applyhook function 89
applyhook variable 89

zl: apropos function 263
Function Apropos (m-X) Zmacs command 266

Display status of window area 99
Display status of areas 99

Areas (A) 101
dbg: arg function 64

:arg option for trace 323
:arg option for trace 76
argUst function 269
argUst variable 74
argUst variable 329

Quick Arglist (c-sh-A) Zmacs command 269
Show Arglist Command 32

:argpdl option for trace 323
:argpdl option to trace 75
[ARGPDL] trace menu item 323
:argpdl trace Option 75

Show Argument Command 32
Show Rest Argument Command 35

Argument Lists 269
Ignored arguments 130

Numeric arguments in accelerators 18
patch-atom argument to :patchable option for defsystem 201

:arg :value :both nil trace Options 76
:around Advice 82

Moving around in the stack 37
Bit-save array 349, 364

Inspecting an array 97
Arrays in compiled code files 139

Mouse cursor as an arrow 95
The Basic Arrow Window 349

The Arrow Window: Interaction, Processes, and the
Mouse 364

Directories Associated with a System 191
Atom Word Mode (m-X) Zmacs command 236

Base attribute 235
Syntax attribute 235

Creating a File Attribute Ust 234
Reparse Attribute Ust (m-X) Zmacs command 234

430

Program Development Utilities August 1986

B

Update Attribute Ust (m-X) Zmacs command 234
Buffer attributes 234

[Attributes] System menu item 377
Auto Fill Mode (m-X) Zmacs command 236

B
Set Backspace (m-X) Zmacs command 234

Brief backtrace 41
Detailed backtrace 41

Show Backtrace Command 45
Backtrace information 66
Backtrace of the call stack 66
Backtraces 41, 45
Backward Kill Sexp (c-m-RUBOUT) Zmacs

command 288
Balancing Parentheses 252
Base 234
Base attribute 235

Set Base (m-X) Zmacs command 234
The Basic Arrow Window 349

:send-command method of Igp:: baslc-Igp-stream 357
:send-coordlnates method of Igp:: baslc-Igp-stream 357

Igp:: baslc-Igp-stream flavor 357
:batch option for make-system 309
Beep (c-G) Zmacs command 286
:before advice 82

[Break before] trace menu item 323
[Cond before] trace menu item 323

[Cond break before] trace menu item 323, 329
[Print before] trace menu item 323

bin file dumper 109, 117
bin file type 119

SUPER key bindings 12, 20
Show Bindings Command 46

Rebound Variable Bindings During Evaluation 24
Bit-save array 349, 364
:blinker-p init option for tv:sheet 349
Blinkers 369

Show Catch Blocks Command 46
defsystem body 153

:both option for trace 323
:both option for trace 76

:arg :value :both nil trace. Options 76
Bottom of Stack Command 38

Debugger break 11
Entering the Debugger With break And zl:dbg Functions 14

break function 14
BREAK Inspector command 97
:break option for trace 323, 329
:break option to trace 74

zl: break special form 329
[Break after] trace menu item 323

[Cond break after] trace menu item 323, 329
[Break before] trace menu item 323

[Cond break before] trace menu item 323,329
Debugger breakpoints vs. break loops 57

Break loops vs. Debugger breakpoints 13
Entering a Break Loop With SUSPEND, c-SUSPEND 13

breakon function 329
Debugger breakpoint 13

B

431

August 1986 Index

c

Clear Breakpoint Command 59
Set Breakpoint Command 60

Break loops vs. Debugger breakpoints 13
Setting Debugger breakpoints 57

Using Breakpoints 329
Debugger Commands for Breakpoints and Single Stepping 57

Clear All Breakpoints Command 59
Show Breakpoints Command 61

Debugger breakpoints vs. break loops 57
:break trace Option 74
Brief backtrace 41
Brief Documentation (c-sh-D) Zmacs

command 265, 267
Compiling Code in a Zmacs Buffer 299

Summary of Compiler Actions on Code in a Zmacs Buffer 299
Buffer attributes 234

Select Previous Buffer (c-m-L) Zmacs command 286
Select Buffer (c-X 8) Zmacs command 286

Compile Changed Definitions Of Buffer (m-sh-C) Zmacs command 299
Evaluate Changed Definitions Of Buffer (m-sh-E) Zmacs command 303

Add Patch Changed Definitions of Buffer (m-X) 206
Compile Buffer (m-X) Zmacs command 299

Edit Changed Definitions Of Buffer (m-X) Zmacs command 282
Evaluate Buffer (m-X) Zmacs command 303

Evaluate And Replace Into Buffer (m-X) Zmacs command 303
Evaluate Into Buffer (m-X) Zmacs command 303

Insert Buffer (m-X) Zmacs command 291
List Changed Definitions Of Buffer (m-X) Zmacs command 282

Multiple Buffers 293
Copying Buffers and Files 291

Select All Buffers As Tag Table (m-X) Zmacs command 284
Mailing a bug report 61

Mail Bug Report Command 62
:bug-reports Option For defsystem 151

Select Buffer (c-X 8) Zmacs command 286

c
c-X C 56

Replace (c-I) Zmacs command 284
Indent For Comment (c-; or m- ;) Zmacs command 249

c-? Zmacs mini buffer command 232
c-X c-A 32

c-8 45
c-8 Stepper command 325

c-X c-C 53
c-X c-D 35

Display Directory (c-X c-D) Zmacs command 271
c-E 61

c-X c-E 53
c-E Stepper command 325

Find File (c-X c-F) Zmacs command 234
Beep (c-G) Zmacs command 286

c-HELP 10,19,63
c-HELP Debugger command 310

c-X c-I 49
c-L 34

:Show Frame (c-L) 19
c-M 62

Kill Comment (c-m- ;) Zmacs command 249
c-m-A 32

c

432

Program Development Utilities August 1986

c-m-S45
c-X c-m-C 56

c-m-D 45
c-m-F 34

Mark Definition (c-m-H) Zmacs command 288
c-m-I 47

Kill Sexp (c-m-K) Zmacs command 288
c-m-L 34

Select Previous Buffer (c-m-L) Zmacs command 286
c-m-N 39
c-m-P 40

Indent Sexp (c-m-Q) Zmacs command 251
c-m-R 51

Backward Kill Sexp (c-m-RUSOUT) Zmacs command 288
Move To Previous Point (c-m-SPACE) Zmacs command 286

c-m-SUSPEND 310
Entering the Debugger With m-SUSPEND, c-m-SUSPEND 13

Indent For Lisp (T AS or c-m-T AS) Zmacs command 251
c-m-U 40
c-m-V 36

Scroll Other Window (c-m-V) Zmacs command 293
c-m-W 63

:Window Debugger (c-m-W) command 19
c-m-Y input editor command 306
c-m-Z 43

Indent Region (c-m-\) Zmacs command 251
c-N 39
c-N Stepper command 325
c-P 40
c-R 51

Reverse Search (c-R) Zmacs command 284
c-S 38

Quick Arglist (c-sh-A) Zmacs command 269
c-sh-C Zmacs command 117

Compile Region (c-sh-C) Zmacs command 299
Brief Documentation (c-sh-D) Zmacs command 265, 267

Evaluate Region (c-sh-E) Zmacs command 303
Macro Expand Expression (c-sh-M) Zmacs command 332

c-sh-P proceed option 21
c-sh-S 61

Describe Variable At Point (c-sh-V) Zmacs command 265
Set Pop Mark (c-SPACE) Zmacs command 286

Entering a Break Loop With SUSPEND, c-SUSPEND 13
Incremental Search (c-S) Zmacs command 284

c-T 52
c-U Stepper command 325

Start Kbd Macro (c-X () Zmacs command 292
End Kbd Macro (c-X») Zmacs command 292

One Window (c-X 1) Zmacs command 293
Two Windows (c-X 2) Zmacs command 293

View Two Windows (c-X 3) Zmacs command 293
Modified Two Windows (c-X 4) Zmacs command 293
Set Comment Column (c-X ;) Zmacs command 249

Select Buffer (c-X S) Zmacs command 286
c-X C 56
c-X c-A 32
c-X c-C 53
c-X c-D 35

Display Directory (c-X c-D) Zmacs command 271
c-X c-E 53

Find File (c-X c-F) Zmacs command 234

August 1986

Swap Point And Mark (
REFRESHr Dired (

Call Last Kbd Macro (
Set Fill Column (

Open Get Register (
Mark Whole (

Jump To Saved Position (

Other Window (

Save Position (

Put Register (

Swap Point And Mark (c-X
Yank (

Quit (

Clear Trap on
Proceed Trap on
Restart Trap on

Set Trap on

Edit
List

Multiple Edit
Multiple List

Backtrace of the
Overview of Debugger Mouse

Show
Entering the Debugger by

Identifying
Add Patch

Compile
Edit

Evaluate
List

Compile

Evaluate

Add Patch
Edit

List

Special
sct:

:functlon option for tv:

c-X c-I 49
c-X c-m-C 56
c-X c-X) Zmacs command 286
c-X D) Zmacs command 271
c-X E 56
c-X E) Zmacs command 292
c-X F) Zmacs command 236
c-X G) Zmacs command 291
c-X H) Zmacs command 291
c-X I 49,50
c-X J) Zmacs command 286
c-X m-C 55
c-X 0) Zmacs command 293
c-X Stepper command 325
c-X S) Zmacs command 286
c-X T 54
c-X X) Zmacs command 291
c-x-8 46
c-X) Zmacs command 286
c-Y) Zmacs command 288
c-z 50
c-Z Inspector command 97
c-Z) Zmacs command 310

433

Index

Calculation Module for the Sample Program 383
Call Command 53
Call Command 55
Call Command 56
Call Command 56
Callers 270
Callers (m-X) Zmacs command 270
Callers (m-X) Zmacs command 263,270
Callers (m-X) Zmacs command 270
Callers (m-X) Zmacs command 270
Calling the Window Debugger 61, 63
Call Last Kbd Macro (c-X E) Zmacs command 292
call stack 66
Capabilities 10
:case method combination 369
Catch Blocks Command 46
Causing an Error 11
Caveat to Program Development Tools and

Techniques 225
Changed Code 282
Changed Definitions (m-X) 207
Changed Definitions (m-X) Zmacs command 299
Changed Definitions (m-X) Zmacs command 282
Changed Definitions (m-X) Zmacs command 303
Changed Definitions (m-X) Zmacs command 282
Changed Definitions Of Buffer (m-sh-C) Zmacs

command 299
Changed Definitions Of Buffer (m-sh-E) Zmacs

command 303
Changed Definitions of Buffer (m-X) 206
Changed Definitions Of Buffer (m-X) Zmacs

command 282
Changed Definitions Of Buffer (m-X) Zmacs

command 282
:change-of-slze-or-marglns method of tv:sheet 349
Characters Recognized by the Inspector 97
check-system-patch-flle-version function 217
choose-variable-values 369

434

Program Development Utilities August 1986

tv: choose-variable-values function 359, 369
Choose-variable-values window 359, 364

:deflnltlons dause 156
:module-group dause 156

:parallel dause 153, 156
:serlal dause 153, 156

Clear All Breakpoints Command 59
Clear Breakpoint Command 59
[Clear] Inspector menu item 95
Clear Trap on Call Command 53
Clear Trap on Exit Command 53

Mouse dicks 364
Inspecting a dosure 97

Aligning Code 251
Commenting Out Code 314

Compiling Lisp Code 298
Editing Code 282

Evaluating code 303, 325
Evaluating Lisp Code 303

Finding Out About Existing Code 260
Identifying Changed Code 282

Preparing to Write Code 233
Stepping through compiled code 57, 61

Writing and Editing Code 231
Show Compiled Code Command 33

Show Source Code Command 35
Examining a Compiled Code File 98

Arrays in compiled code files 139
Compiled code objects in compiled code files 139

File Types of Lisp Source and Compiled Code Files 119
Instances in compiled code files 139

Lists in compiled code files 139
Numbers in compiled code files 139

Putting Data in Compiled Code Files 139
Symbols in compiled code files 139
Tools for Compiling Code From the Editor Into Your World 117

Compiling Code in a Zmacs Buffer 299
Summary of Compiler Actions on Code in a Zmacs Buffer 299

Inspecting a compiled code object 97
Compiled code objects in compiled code files 139

Colons in Debugger commands 7,17
Set Comment Column (c-X j) Zmacs command 249

Set Fill Column (c-X F) Zmacs command 236
:case method combination 369

:daemon method combination 345, 349, 354
Edit Combined Methods (m-X) Zmacs command 378
List Combined Methods (m-X) Zmacs command 378

Abort Command 50
:Abort command 50

Analyze Frame Command 43
Atom Word Mode (m-X) Zmacs command 236

Auto Fill Mode (m-X) Zmacs command 236
Backward Kill Sexp (c-m-RUBOUT) Zmacs command 288

Beep (c-G) Zmacs command 286
Bottom of Stack Command 38

BREAK Inspector command 97
Brief Documentation (c-sh-D) Zmacs command 265, 267

c-? Zmacs minibuffer command 232
c-B Stepper command 325
c-E Stepper command 325

c-HELP Debugger command 310

August 1986

c-m-Y Input editor command 306
c-N Stepper command 325

c-sh-C Zmacs command 117
c-U Stepper command 325
c-X Stepper command 325

c-Z Inspector command 97
Call Last Kbd Macro (c-X E) Zmacs command 292

Clear All Breakpoints Command 59
Clear Breakpoint Command 59

Clear Trap on Call Command 53
Clear Trap on Exit Command 53

Compile Buffer (m-X) Zmacs command 299
Compile Changed Definitions (m-X) Zmacs command 299

435

Index

Compile Changed Definitions Of Buffer (m-sh-C) Zmacs
command 299

Compile File Command 118
Compile File (m-X) Zmacs command 301

Compile Region (c-sh-C) Zmacs command 299
Compile Region (m-X) Zmacs command 117

Compiler Warnings (m-X) Zmacs command 123, 309
Compile System command 180
Compile System Command 177

COMPLETE Zmacs minibuffer command 232
Deinstall Macro (m-X) Zmacs command 292
Describe Flavor (m-X) Zmacs command 377

Describe Last Command 45
Describe Variable At Point (c-sh-V) Zmacs command 265

Dired (m-X) Zmacs command 271
Disable Aborts Command 51

Disable Condition Tracing Command 54
Disassemble (m-X) Zmacs command 335

Display Directory (c-X c-D) Zmacs command 271
Distribute Systems Command 189

Down Comment Line (m-N) Zmacs command 249
Edit Callers (m-X) Zmacs command 270

Edit Changed Definitions (m-X) Zmacs command 282
Edit Changed Definitions Of Buffer (m-X) Zmacs command 282

Edit Combined Methods (m-X) Zmacs command 378
Edit Compiler Warnings (m-X) Zmacs command 123, 309

Edit Definition (m-.) Zmacs command 266,377,378
Edit File Warnings (m-X) Zmacs command 123

Edit Function Command 61
Editing a Debugger Command 19

Edit Methods (m-X) Zmacs command 293,378
Electric Shift Lock Mode (m-X) Zmacs command 236

Enable Aborts Command 51
Enable Condition Tracing Command 54

END Zmacs minibuffer command 232
End Kbd Macro (c-X)) Zmacs command 292

Entering a Debugger Command 17
ESCAPE Inspector command 97

Evaluate And Replace Into Buffer (m-X) Zmacs command 303
Evaluate Buffer (m-X) Zmacs command 303

Evaluate Changed Definitions (m-X) Zmacs command 303
Evaluate Changed Definitions Of Buffer (m-sh-E) Zmacs

command 303
Evaluate Into Buffer (m-X) Zmacs command 303

Evaluate Minibuffer (m-ESCAPE) Zmacs command 303
Evaluate Region (c-sh-E) Zmacs command 303

Fill Long Comment (m-X) Zmacs command 249
Find File (c-X c-F) Zmacs command 234

436

Program Development Utilities August 1986

Find Frame Command 38
Find Unbalanced Parentheses (m-X) Zmacs command 252

Function Apropos (m-X) Zmacs command 266
HELP Stepper command 325
HELP Zmacs command 292

HELP Zmacs minibuffer command 232
Help (Debugger) Command 63

Incremental Search (c-S) Zmacs command 284
Indent For Comment (c-; or m- ;) Zmacs command 249
Indent For Lisp (T AS or c-m-T AS) Zmacs command 251

Indent New Comment Line (m-L I NE) Zmacs command 249
Indent New Line (L INE) Zmacs command 251
Indent Region (c-m-\) Zmacs command 251

Indent Sexp (c-m-Q) Zmacs command 251
Insert Buffer (m-X) Zmacs command 291

Insert File (m-X) Zmacs command 291
Inspect command 93

Install Macro (m-X) Zmacs command 292
Install Mouse Macro (m-X) Zmacs command 292

Jump To Saved Position (c-X J) Zmacs command 286
Kill Comment (c-m- ;) Zmacs command 249

Kill Sexp (c-m-K) Zmacs command 288
Lisp Mode (m-X) Zmacs command 236

List Callers (m-X) Zmacs command 263, 270
List Changed Definitions (m-X) Zmacs command 282

List Changed Definitions Of Buffer (m-X) Zmacs command 282
List Combined Methods (m-X) Zmacs command 378

List Matching Lines (m-X) Zmacs command 284
List Matching Symbols (m-X) Zmacs command 263

List Methods (m-X) Zmacs command 378
Load Compiler Warnings (m-X) Zmacs command 123, 309

Load File (m-X) Zmacs command 301
Load Patches Command 211
Load System command 180
Load System Command 175

Long Documentation (m-sh-D) Zmacs command 265, 267
m- I Debugger command 63

m-Y input editor command 306
Macro Expand Expression All (m-sh-H) Zmacs command 332

Macro Expand Expression (c-sh-H) Zmacs command 332
Mail Bug Report Command 62

Mark Definition (c-m-H) Zmacs command 288
Mark Whole (c-X H) Zmacs command 291

Modified Two Windows (c-X 4) Zmacs command 293
Monitor Variable Command 54

Move To Previous Point (c-m-SPACE) Zmacs command 286
Multiple Edit Callers (m-X) Zmacs command 270
Multiple List Callers (m-X) Zmacs command 270

Name Last Kbd Macro (m-X) Zmacs command 292
Next Frame Command 39

One Window (c-X 1) Zmacs command 293
Open Get Register (c-X G) Zmacs command 291

Other Window (c-X 0) Zmacs command 293
Previous Frame Command 40

Print Modifications (m-X) Zmacs command 282
Proceed Command 51

Proceed Trap on Call Command 55
Push Pop Point Explicit (m-SPACE) Zmacs command 286

Put Register (c-X X) Zmacs command 291
Query Replace (m-%) Zmacs command 284

Quick Arglist (c-sh-A) Zmacs command 269

437

August 1986 Index

Quit (c-Z) Zmacs command 310
REFRESHr Dired (c-X D) Zmacs command 271

Reinvoke Command 51
Reparse Attribute List (m-X) Zmacs command 234

Replace (c-%) Zmacs command 284
Restart Trap on Call Command 56

Return Command 51
RETURN Zmacs minibuffer command 232

Reverse Search (c-R) Zmacs command 284
Save Compiler Warnings Command 123

Save Position (c-X S) Zmacs command 286
Save Region (m-W) Zmacs command 288

Scroll Other Window (c-m-V) Zmacs command 293
Select Activity command 233

Select All Buffers As Tag Table (m-X) Zmacs command 284
Select Buffer (c-X 8) Zmacs command 286

Select Previous Buffer (c-m-L) Zmacs command 286
Select System As Tag Table (m-X) Zmacs command 284

Set Backspace (m-X) Zmacs command 234
Set Base (m-X) Zmacs command 234

Set Breakpoint Command 60
Set Comment Column (c-X ;) Zmacs command 249

Set Current Frame Command 41
Set Fill Column (c-X F) Zmacs command 236

Set Fonts (m-X) Zmacs command 234
Set Key (m-X) Zmacs command 292

Set Lowercase (m-X) Zmacs command 234
Set Nofill (m-X) Zmacs command 234

Set Package (m-X) Zmacs command 234
Set Patch File (m-X) Zmacs command 234

Set Pop Mark (c-SPACE) Zmacs command 286
Set sleep time between updates Peek command 99

Set Stack Size Command 63
Set Tab Width (m-X) Zmacs command 234

Set Trap on Call Command 56
Set Trap on Exit Command 56

Set Vsp (m-X) Zmacs command 234
Show Arglist Command 32

Show Argument Command 32
Show Backtrace Command 45

Show Bindings Command 46
Show Breakpoints Command 61

Show Catch Blocks Command 46
Show Compiled Code Command 33

Show Compiler Warnings Command 123
Show Condition Handlers Command 47

Show Frame Command 34
Show Function Command 34

Show Instruction Command 47
Show Lexical Environment Command 48

Show Local Command 34
Show Monitored Locations Command 57

Show Proceed Options Command 48
Show Rest Argument Command 35

Show Source Code Command 35
Show Special Command 48

Show Stack Command 36
Show Standard Value Warnings Command 49

Show System Definition Command 213
Show System Modifications Command 214

Show System Plan Command 171, 215

438

Program Development Utilities August 1986

Show Value Command 36
Single Step Command 61

Source Compare (m-X) Zmacs command 282
Source Compare Merge (m-X) Zmacs command 282

SPACE Stepper command 325
SPACE Zmacs minibuffer command 232

Split Screen (m-X) Zmacs command 293
Start Kbd Macro (c-X () Zmacs command 292

Swap Point And Mark (c-X c-X) Zmacs command 286
Symeval in Last Instance Command 49

Tags Query Replace (m-X) Zmacs command 284
Tags Search (m-X) Zmacs command 284

Throw Command 52
Top of Stack Command 41

Trace (m-X) Zmacs command 323, 325
Two Windows (c-X 2) Zmacs command 293

Unmonitor Variable Command 57
Up Comment Line (m-P) Zmacs command 249

Update Attribute List (m-X) Zmacs command 234
Use Dynamic Environment Command 49
:Use Dynamic Environment command 22

Use Lexical Environment Command 50
:Use Lexical Environment command 22

View Directory (m-X) Zmacs command 271
View Two Windows (c-X 3) Zmacs command 293

Where Is Symbol (m-X) Zmacs command 263
Window Debugger Command 63

:Window Debugger (c-m-W) command 19
Yank (c-Y) Zmacs command 288

Yank Pop (m-Y) Zmacs command 288
Debugger Command Accelerators 18

Zmacs Command Completion 232
Debugger Command Descriptions 29
Debugger command level 25
Debugger command prompt 7, 11, 17

Evaluation environment command prompts 22
Colons in Debugger commands 7, 17

Debugger commands vs. CP commands 7,17,29
Debugger special commands 310

Debugger Trap Commands 52
Fundamental Zmacs editing commands 23

Getting Help for Debugger Commands 19
Inspector commands 95

Miscellaneous Debugger Commands 63
Overview of Debugger Commands 7
Summary of Debugger Commands 67

Debugger Commands for Breakpoints and Single Stepping 57
Debugger Commands for General Information Display 41
Debugger Commands for Stack Motion 37
Debugger Commands for System Transfer 61
Debugger Commands for Viewing a Stack Frame 31
Debugger Commands to Continue Execution 50
Debugger commands vs. CP commands 7,17,29

Command table 17,29
Global command table 7

Entering a Debugger Command with the Mouse 19
Indent For Comment (c-; or m- ;) Zmacs command 249

Kill Comment (c-m- ;) Zmacs command 249
Set Comment Column (c-X ;) Zmacs command 249

Commenting Out Code 314
Indent New Comment Line (m-L I NE) Zmacs command 249

439

August 1986 Index

Down Comment Line (m-N) Zmacs command 249
Up Comment Line (m-P) Zmacs command 249

Fill Long Comment (m-X) Zmacs command 249
Comments 249

Source Compare (m-X) Zmacs command 282
Source Compare Merge (m-X) Zmacs command 282

Files That Maclisp Must Compile 137
compile function 107
compile function 120
Compile Buffer (m-X) Zmacs command 299
Compile Changed Definitions (m-X) Zmacs

command 299
Compile Changed Definitions Of Buffer (m-sh-C)

Zmacs command 299
Stepping through compiled code 57, 61

Show Compiled Code Command 33
Examining a Compiled Code File 98

Arrays in compiled code files 139
Compiled code objects in compiled code files 139

File Types of Lisp Source and Compiled Code Files 119
Instances in compiled code files 139

Lists in compiled code files 139
Numbers in compiled code files 139

Putting Data in Compiled Code Files 139
Symbols in compiled code files 139

Inspecting a compiled code object 97
Compiled code objects in compiled code files 139
Compiled function object 109
Compiled functions 297
Compile file 118
compile-file function 107, 119

compiler: compile-file function 301
Compile File Command 118

compiler: compile-fIle-load function 301
Compile File (m-X) Zmacs command 301
compile-flavor-methods macro 369

Function compiler 109, 116
How to Invoke the Compiler 107
Introduction to the Compiler 107

Optimizer feature of the compiler 135
Stream compiler 109

Structure of the Compiler 109
The Compiler 105

compller:add-optlmlzer special form 135
compller:complle-flle function 301
compller:complle-file-Ioad function 301
compiler:compller-verbose variable 133
compiler:fIIe-declaration function 131
compiler:fiIe-declare function 131
compiler:function-defined function 130
compiler:function-referenced function 131
compiler:functions-defined variable 130
compiler:functions-referenced variable 130
compiler:lnhibit-style-warnings-switch

variable 133
compiler:load-compiler-warnlngs function 124
compller:make-message-obsolete special

form 129
compiler:make-obsolete special form 129
compller:obsolete-function-warning-switch

variable 133

440

Program Development Utilities August 1986

compller:open-code-map-swltch variable 133
compller:style-checker function 127
compiler:top-Ievel-form property 116

Summary of Compiler Actions on Code in a Zmacs Buffer 299
Compile Region (c-sh-C) Zmacs command 299
Compile Region (m-X) Zmacs command 117

Specifying compiler environments 137
How the Stream Compiler Handles Top-level Forms 111

compiler-let 111
Compiler Source-Level Optimizers 135
Compiler Style Warnings 127
Compiler Switches 133
Compiler Tools and Their Differences 117
Compiler variables 130

complier: complier-verbose variable 133
Compiler warnings 293, 299

Controlling Compiler Warnings 127
Save Compiler Warnings Command 123
Show Compiler Warnings Command 123

Compiler Warnings Database 123
Print compiler warnings database 123

Update compiler warnings database 123
Using the Compiler Warnings Database 309

Compiler Warnings (m-X) Zmacs command 123,309
Edit Compiler Warnings (m-X) Zmacs command 123,309

Load Compiler Warnings (m-X) Zmacs command 123,309
:complle-satisfles-Ioad Option For :module 164
compile-system function 179
compile-system Keywords 179
Compile System Command 177
Compile System command 180
Compile-time dependency 161
Compiling and Evaluating Lisp 297
Compiling and Loading a File 301

Tools for Compiling Code From the Editor Into Your World 117
Compiling Code in a Zmacs Buffer 299

Tools for Compiling Files 118
Compiling Lisp Code 298

Tools for Compiling Single Functions 120
Loading and Compiling Systems 175

COMPLETE Zmacs minibuffer command 232
Zmacs Command Completion 232

Complex operations 172
Component-directory 191
Component directory 149, 167, 197, 200
Component-directory-file 191
Component Directory File 193
Component systems 159
:cond option for trace 323
:cond option to trace 75
[Cond after] trace menu item 323
[Cond before] trace menu item 323
[Cond break after] trace menu item 323, 329
[Cond break before] trace menu item 323,329
condition flavor 369
[Conditional] trace menu item 323
condition-bind special form 369

Debugging condition handlers 52
Show Condition Handlers Command 47

Defining Flavors to Signal Conditions 369
Disable Condition Tracing Command 54

August 1986

D

441

Index

Enable Condition Tracing Command 54
:cond trace Option 75

Introduction to the System Construction Tool 143
System Construction Tool 143

Contents of the Patch Directory Files 194
Debugger Commands to Continue Execution 50

Controlling Compiler Warnings 127
Controlling the Evaluation of Top-level Forms 115
Controlling the Format Of trace Output 77
Converting LGP to Screen Coordinates 354

Converting LGP to Screen Coordinates 354
Copying Buffers and Files 291

Program Counter Metering 219
Debugger commands vs. CP commands 7,17,29

Creating a File Attribute List 234
Creating a logical host 181
Creating a New File 234

Set Current Frame Command 41
Current patch 207
Current stack frame 31

Debugger functions to return values in current stack frame 63
Mouse cursor as an arrow 95

o
:daemon method combination 345, 349, 354
Daemon methods 349

Compiler Warnings Database 123
Print compiler warnings database 123

Update compiler warnings database 123
Using the Compiler Warnings Database 309

Putting Data in Compiled Code Files 139
zl: dbg function 14, 329

dbg:*bound-handlers* 24
dbg:*default-handlers* 24
dbg:*show-backtrace* variable 66
dbg:arg function 64
dbg:*debug-Io-overrlde* variable 66
dbg:*defer-package-dwim* variable 66
dbg:*frame* variable 66
dbg:fun function 64
dbg:loc function 64
dbg:monltor-instance-varlable function 65
dbg:monitor-Iocatlon function 64
dbg:*show-backtrace* variable 66
dbg:unmonitor-Iocation function 65
dbg :val function 64
(dbg:fun) 34
(dbg:loc) 34
dbg:old-standard-Input 24
dbg :old-standard-output 24
dbg :old-termlnal-Io 24
(dbg:val) 36
Debugger 3,309,329

Calling the Window Debugger 61, 63
Editing a Form in the Debugger 23

Entering and Exiting the Debugger 11
Entering the Debugger 11

Evaluating a Form in the Debugger 22
Exiting the Debugger 15

Functions used inside the Debugger 63

o

442

Program Development Utilities

General uses of
Overview of the

Proceeding and Restarting in the
Tools: Using the

Using ABORT And RESUME in the
Using the

Using the Mouse in the
Window

Break loops vs.
Setting

Entering the
:Window
c-HELP
Editing a

Entering a
Help
m-I

Window

Colons in
Getting Help for

Miscellaneous
Overview of
Summary of

Entering a

Overview of

Overview of
Using Recursive

[Edit] Window
[Retry] Window

Overview of
Mouse-sensitive

Using

Entering the
Entering the

Debugger 5
Debugger 5
Debugger 20
Debugger 310
Debugger 21
Debugger 17
Debugger 27
Debugger 5, 310
Debuggerbreak 11
Debugger breakpoint 13
Debugger breakpoints 13
Debugger breakpoints 57

August 1986

Debugger breakpoints vs. break loops 57
Debugger by Causing an Error 11
Debugger (c-m-W) command 19
Debugger command 310
Debugger Command 19
Debugger Command 17
(Debugger) Command 63
Debugger command 63
Debugger Command 63
Debugger Command Accelerators 18
Debugger Command Descriptions 29
Debugger command level 25
Debugger command prompt 7, 11, 17
Debugger commands 7, 17
Debugger Commands 19
Debugger Commands 63
Debugger Commands 7
Debugger Commands 67
Debugger Commands for Breakpoints and Single

Stepping 57
Debugger Commands for General Information

Display 41
Debugger Commands for Stack Motion 37
Debugger Commands for System Transfer 61
Debugger Commands for Viewing a Stack Frame 31
Debugger Commands to Continue Execution 50
Debugger commands vs. CP commands 7, 17, 29
Debugger Command with the Mouse 19
Debuggererror 11
Debugger Evaluation Environment 9
Debugger Functions 63
Debugger functions to return values in current stack

frame 63
Debugger Help Facilities 10
Debugger Invocations 25
Debugger menu item 310
Debugger menu item 310
Debugger Mouse Capabilities 10
Debugger output 10, 19, 27
Debugger Proceed and Restart Options 12
Debugger Proceed and Restart Options 20

. Debugger read-eval-print loop 9, 13
Debugger special commands 310
Debugger trap 11
Debugger Trap Commands 52
Debugger Variables 66
Debugger With break And zl :dbg Functions 14
Debugger With m-SUSPEND, c-m-SUSPEND 13
Debugging aids 5

August 1986

443

Index

Miscellaneous Debugging Aids 91
Debugging condition handlers 52
Debugging Lisp Programs 309
Debugging tools 5

dbg: *debug-Io-overrlde* variable 66
[DeCache] Inspector menu item 95

System Declaration File 183, 191
declare 116
def 111
:default-init-pJist option for defflavor 349
:default-module-type Option For defsystem 148
:default-package Option For defsystem 147
:default-pathname Option For defsystem 148
Defaults 29

Mentioned defaults 29
defconst 111

zl: defconst special form 298
defconstant 111

dbg: *defer-package-dwim* variable 66
deff 111
defflavor 111

:default-init-pJist option for defflavor 349
:documentatlon option for defflavor 377

:gettable-Instance-variables option for defflavor 345
:Initable-Instance-varlables option for defflavor 357, 359

:requlred-flavors option for defflavor 349
:requlred-methods option for defflavor 345

defflavor macro 345, 349
sct: define-module-type function 171
sct: define-system-operation macro 172

Defining a System 145
Defining Flavors to Signal Conditions 369

Mark Definition (c-m-H) Zmacs command 288
Show System Definition Command 213

Edit Definition (m-.) Zmacs command 266,377,378
Definitions 266
:definitions clause 156

Add Patch Changed Definitions (m-X) 207
Compile Changed Definitions (m-X) Zmacs command 299

Edit Changed Definitions (m-X) Zmacs command 282
Evaluate Changed Definitions (m-X) Zmacs command 303

List Changed Definitions (m-X) Zmacs command 282
Compile Changed Definitions Of Buffer (m-sh-C) Zmacs command 299
Evaluate Changed Definitions Of Buffer (m-sh-E) Zmacs command 303

Add Patch Changed Definitions of Buffer (m-X) 206
Edit Changed Definitions Of Buffer (m-X) Zmacs command 282
List Changed Definitions Of Buffer (m-X) Zmacs command 282

Definitions of functions 137
Loading System Definitions That Use Logical Pathnames 180
Loading System Definitions That Use Physical Pathnames 185

defmacro 111
defmethod 111
defpackage 111
defselect 111
defstruct 111
defsubst 111
defsubsystem special form 167
defsystem 111

:advertised-in Option For defsystem 151
:bug-reports Option For defsystem 151

:default-module-type Option For defsystem 148

444

Program Development Utilities August 1986

:default-package Option For defsystem 147
:default-pathname Option For defsystem 148

:distribute-binaries Option For defsystem 152
:distrlbute-sources Option For defsystem 152

:Inltiallzations Option For defsystem 150
:Initial-status Option For defsystem 151

:Journal-dlrectory Option For defsystem 149
:malntalnlng-sites Option For defsystem 152

:module option for defsystem 158
:package-overrlde Option For defsystem 147

:parameters Option For defsystem 150
:patchable Option For defsystem 149, 197,200

patch-atom argument to :patchable option for defsystem 201
:pathname-default option for defsystem 197,200

:pretty-name Option For defsystem 146
:short-name Option For defsystem 146

:source-category Option For defsystem 152
defsystem body 153
defsystem Modules 153
defsystem Operations 168
defsystem Options 146
defsystem special form 146,197,284
defun 111
defvar 111
defvar special form 240, 298
defvar-standard 111

zl-user: defwindow-resource special form 359
Deinstall Macro (m-X) Zmacs command 292

Program Development: Refining Stripe Density and Spacing 272
Module Dependencies 154

Dependencies among modules 154
Dependency 153

Compile-time dependency 161
Load-time dependency 161

Deriving Methods for Tools and Techniques 227
describe function 45
describe function 260, 335

Features Described in Tools and Techniques 228
zl-user: describe-flavor function 377

Describe Flavor (m-X) Zmacs command 377
Describe Last Command 45
describe-system function 213
Describe Variable At Point (c-sh-V) Zmacs

command 265
Debugger Command Descriptions 29

Program Development: Design and Figure Outline 238
sct: designate-system-version function 189

Designing the Advice 82
Detailed backtrace 41

Program Development: Design and Figure Outline 238
Program Development: Drawing Stripes 252
Program Development: Modifying the Output Module 344
Program Development: Refining Stripe Density and

Spacing 272
Caveat to Program Development Tools and Techniques 225

Program Development Tools and Techniques 225
Introduction to Program Development Utilities 1

Compiler Tools and Their Differences 117
Directories 271
Directories Associated with a System 191

Component directory 149,167,197,200

445

August 1986 Index

E

Journal directory 149, 191
Patch directory 149, 197, 200

System directory 149
Display Directory (c-X c-D) Zmacs command 271

Component Directory File 193
File types of the patch directory file 201

Patch Directory File 200
Contents of the Patch Directory Files 194

View Directory (m-X) Zmacs command 271
REFRESHr Dired (c-X D) Zmacs command 271

Dired (m-X) Zmacs command 271
Disable Aborts Command 51
Disable Condition Tracing Command 54
disassemble function 335
Disassemble (m-X) Zmacs command 335

Debugger Commands for General Information Display 41
Display status of file system display 99

Error Display 11
Inspection Pane Display 97

Display Directory (c-X c-D) Zmacs command 271
Displaying Zmacs and Other Windows 294

Other Displays 295
Display status of active processes 99
Display status of areas 99
Display status of file system display 99
Display status of hostat 99
Display status of window area 99
Display system information 99
:dlstribute-binaries Option For defsystem 152
:distribute-binaries Option For :module 166
:distribute-sources Option For defsystem 152
:dlstribute-sources Option For :module 166
Distribute Systems Command 189
Distribution dumper 152
documentation function 265, 267
:documentation option for defflavor 377

Brief Documentation (c-sh-D) Zmacs command 265, 267
Long Documentation (m-sh-D) Zmacs command 265, 267

Mouse documentation string 364
Documentation strings 265, 267
Down Comment Line (m-N) Zmacs command 249

Program Development: Drawing Stripes 252
:draw-line method of tv:graphlcs-mlxln 239, 349

bin file dumper 109, 117
Distribution dumper 152

sys: dump-forms-to-file function 139
Rebound Variable Bindings During Evaluation 24

Use Dynamic Environment Command 49
:Use Dynamic Environment command 22

Dynamic evaluation environment 22
REFRESHr Dired (c-X D) Zmacs command 271

E E
c-X E 56

SELECT E 233
:edges-from init option for tv:essentlal-wlndow 349
Edit Callers (m-X) Zmacs command 270

Multiple Edit Callers (m-X) Zmacs command 270
Edit Changed Definitions (m-X) Zmacs command 282
Edit Changed Definitions Of Buffer (m-X) Zmacs

446

Program Development Utilities August 1986

command 282
Edit Combined Methods (m-X) Zmacs command 378
Edit Compiler Warnings (m-X) Zmacs command 123,

309
Edit Definition (m- .) Zmacs command 266, 377, 378
Edit File Warnings (m-X) Zmacs command 123
Edit Function Command 61

Lisp Input Editing 306
Editing a Debugger Command 19
Editing a Form in the Debugger 23
Editing a function 61
Editing Code 282

Writing and Editing Code 231
Fundamental Zmacs editing commands 23

Editing, Hardcopying, Reap·Protecting, and Releasing
Systems 187

Edit Methods (m-X) Zmacs command 293,378
Entering the Editor 233

Evaluation and the Editor 303
Input Editor 19, 23

c-m-Y input editor command 306
m-Y input editor command 306

Tools for Compiling Code From the Editor Into Your World 117
[Edit Screen] System menu item 294, 364

sct: edit-system function 187
[Edit] System menu item 233
[Edit] Window Debugger menu item 310
Electric Shift Lock Mode (m-X) Zmacs command 236
Enable Aborts Command 51
Enable Condition Tracing Command 54
END Zmacs minibuffer command 232
End Kbd Macro (c-X)) Zmacs command 292
Entering a Break Loop With SUSPEND,

c-SUSPEND 13
Entering a Debugger Command 17
Entering a Debugger Command with the Mouse 19
Entering and Exiting the Debugger 11
Entering and Leaving the Inspector 93
Entering the Debugger 11
Entering the Debugger by Causing an Error 11
Entering the Debugger With break And zl :dbg

Functions 14
Entering the Debugger With m-SUSPEND,

c-m-SUSPEND 13
Entering the Editor 233
:entry option for trace 323
:entry option to trace 76
:entrycond option for trace 323
:entrycond option to trace 75
:entrycond trace Option 75
:entryprint option for trace 323
:entryprint option to trace 75
:entryprint trace Option 75
:entry trace Option 76

Dynamic evaluation environment 22
Lexical evaluation environment 9, 22

Overview of Debugger Evaluation Environment 9
Show Lexical Environment Command 48
Use Dynamic Environment Command 49
:Use Dynamic Environment command 22

Use Lexical Environment Command 50

447

August 1986 Index

:Use Lexical Environment command 22
Evaluation environment command prompts 22

Specifying compiler environments 137
Debugger error 11

Entering the Debugger by Causing an Error 11
error flavor 369
:error option for trace 323, 329

. :error option to trace 74
Error Display 11
error-restart-Ioop special form 364
[Error] trace menu item 323, 329
:error trace Option 74
ESCAPE Inspector command 97

:edges-from init option for tv: essential-window 349
:expose-p init option for tv: essential-window 349

:mlnimum-helght init option for tv: essential-window 349
:mlnimum-width in it option for tv: essential-window 349

evalhook 24
evalhook 87
evalhook function 87
evalhook variable 87
Evalhook facility 5
Evaluate And Replace Into Buffer (m-X) Zmacs

command 303
Evaluate Buffer (m-X) Zmacs command 303
Evaluate Changed Definitions (m-X) Zmacs

command 303
Evaluate Changed Definitions Of Buffer (m-sh-E)

Zmacs command 303
Evaluate Into Buffer (m-X) Zmacs command 303
Evaluate Minibuffer (m-ESCAPE) Zmacs

command 303
Evaluate Region (c-sh-E) Zmacs command 303
Evaluating a Form in the Debugger 22
Evaluating code 303, 325

Compiling and Evaluating Lisp 297
Evaluating Lisp Code 303

Rebound Variable Bindings During Evaluation 24
Stepping Through an Evaluation 85

Evaluation and the Editor 303
Dynamic evaluation environment 22

Lexical evaluation environment 9, 22
Overview of Debugger Evaluation Environment 9

Evaluation environment command prompts 22
Controlling the Evaluation of Top-level Forms 115

eval-when 111
eval-when special form 115
Examining a Compiled Code File 98
Examining values of instance variables 63

Debugger Commands to Continue Execution 50
Tracing Function Execution 73

Untracing Function Execution 78
Finding Out About Existing Code 260

:exit option for trace 76
:exit option for trace 323
:exltbreak option for trace 323, 329
:exltbreak option to trace 74
:exitbreak trace Option 74

Clear Trap on Exit Command 53
Set Trap on Exit Command 56

:exitcond option for trace 323

448

Program Development Utilities August 1986

F

Entering and

Macro

Macro

meter:
Push Pop Point

zl:
Macro Expand
Macro Expand

Call Last Kbd Macro (c-X

:exltcond option to trace 75
:exitcond trace Option 75
Exiting the Debugger 15
Exiting the Debugger 11
Exiting the Inspector 93
[Exit) Inspector menu item 95, 335
:exitprlnt option for trace 323
:exltprlnt option to trace 76
:exltprlnt trace Option 76
:exit trace Option 76
Expand Expression All (m-sh-M) Zmacs

command 332
Expand Expression (c-sh-M) Zmacs command 332
Expanding Macros 332
expand-range function 222
Explicit (m-SPACE) Zmacs command 286
:expose-p init option for tv:essentlal-window 349
*expr special form 130
Expression All (m-sh-H) Zmacs command 332
Expression (c-sh-M) Zmacs command 332
E) Zmacs command 292

F F
File System (F) 102

Overview of Debugger Help Facilities 10
Advise facility 5

Evalhook facility 5
Patch Facility 197
Step facility 5

System facility 143
Trace facility 5

Monitor facility functions 63
:fasd-form message 139
Fasdump 139

Optimizer feature of the compiler 135
Features Described in Tools and Techniques 228

zl: *fexpr special form 131
A Mixin to Position the Figure 345

Outlining the Figure 240
Program Development: Design and Figure Outline 238

Add region to patch file 203
Compile file 118

Compiling and Loading a File 301
Component Directory File 193

Creating a New File 234
Examining a Compiled Code File 98

File types of the patch directory file 201
File types of the system version-directory file 201

Install patch file 208
Patch file 191, 197

Patch Directory File 200
Sys:site;Logical-host.Translations File 182

Sys:site;System-name.System File 181,183
System file 181

System Declaration File 183, 191
Translations file 182

Creating a File Attribute List 234
Find File (c-X c-F) Zmacs command 234

Compile File Command 118
complier: file-declaration function 131

449

August 1986 Index

complier: file-declare function 131
bin file dumper 109, 117

sys: file-local-declarations variable 130
Compile File (m-X) Zmacs command 301

Insert File (m-X) Zmacs command 291
Load File (m-X) Zmacs command 301

Set Patch File (m-X) Zmacs command 234
Format of patch file names 201

Arrays in compiled code files 139
Compiled code objects in compiled code files 139

Contents of the Patch Directory Files 194
Copying Buffers and Files 291

File Types of Lisp Source and Compiled Code Files 119
Individual Patch Files 200

Init files 236,292
Instances in compiled code files 139

Journal files 149
Lists in compiled code files 139

Names of Patch Files 201
Numbers in compiled code files 139

Organization of Patch Files 200
Putting Data in Compiled Code Files 139

Symbols in compiled code files 139
System source files 197

Tools for Compiling Files 118
Types of Patch Files 199

Files That Maclisp Must Compile 137
Display status of file system display 99

File System (F) 102
bin file type 119

File Types of Lisp Source and Compiled Code
Files 119

File types of the patch directory file 201
File types of the system version-directory file 201

Edit File Warnings (m-X) Zmacs command 123
Set Fill Column (c-X F) Zmacs command 236

Fill Long Comment (m-X) Zmacs command 249
Auto Fill Mode (m-X) Zmacs command 236

Find File (c-X c-F) Zmacs command 234
Find Frame Command 38
Finding Out About Existing Code 260
Finding Out About Functions 265
Finding Out About Objects 260
Finding Out About Pathnames 271
Finding Out About Symbols 263
Finding Out About Variables 265
Find Unbalanced Parentheses (m-X) Zmacs

command 252
Finish Patch (m-X) 208

condition flavor 369
error flavor 369

Igp::baslc-Igp-stream flavor 357
sl:vanilla-f1avor flavor 378

sys:abort flavor 364
tv:any-tyi-mixin flavor 364

tv:graphlcs-mlxin flavor 349
tv:lIst-mouse-buttons-mixln flavor 364

tv:process-mlxin flavor 364
tv:sheet flavor 349, 369

tv:window flavor 344, 349
sl: flavor-allowed-Init-keywords function 381

450

Program Development Utilities August 1986

Describe Flavor (m-X) Zmacs command 377
Flavors 381

General Information on Flavors 377
Programming Aids for Flavors and Windows 377

Using Flavors and Windows 343
Flavors for LGP Output 357

Defining Flavors to Signal Conditions 369
Set Fonts (m-X) Zmacs command 234

advise special form 79
advise-within special form 83

compiler:add-optimlzer special form 135
compiler:make-message-obsolete special form 129

compiler:make-obsolete special form 129
condition-bind special form 369
defsubsystem special form 167

defsystem special form 146, 197, 284
defvar special form 240, 298

error-restart-Ioop special form 364
eval-when special form 115

special special form 114
trace special form 73, 323, 325, 329

unadvise special form 81
unadvise-withln special form 84

untrace special form 78, 323
unwind-protect special form 369

with-open-stream special form 359
zl :break special form 329

zl:defconst special form 298
zl :*expr special form 130

zl:*fexpr special form 131
zl :*Iexpr special form 130

zl:multiple-value special form 349
zl:unspecial special form 115

zl-user:defwindow-resource special form 359
Format of patch file names 201

Controlling the Format Of trace Output 77
Editing a Form in the Debugger 23·

Evaluating a Form in the Debugger 22
Controlling the Evaluation of Top-level Forms 115

How the Stream Compiler Handles Top-level Forms 111
Current stack frame 31

Debugger Commands for Viewing a Stack Frame 31
Debugger functions to return values in current stack frame 63

Inspecting a stack frame 97
dbg: *frame* variable 66

:Show Frame (c-L) 19
Analyze Frame Command 43

Find Frame Command 38
Next Frame Command 39

Previous Frame Command 40
Set Current Frame Command 41

Show Frame Command 34
Tools for Compiling Code From the Editor Into Your World 117

fs:make-Iogical-pathname-host 181
fs:set-Iogical-pathname-host 182

dbg: fun function 64
Advising a Function 79

applyhook function 89
arglist function 269
break function 14

breakon function 329

August 1986

compile function 120
compile function 107

compile-file function 107, 119
compller:complle-file function 301

compiler:compile-file-Ioad function 301
compiler:file-declaration function 131

compiler:flle-declare function 131
compiler:function-defined function 130

compiler:function-referenced function 131
compiler:load-compiler-warnings function 124

compiler:style-checker function 127
compile-system function 179

dbg :arg function 64
dbg:fun function 64
dbg:loc function 64

dbg:monitor-instance-variable function 65
dbg:monitor-Iocation function 64

dbg:unmonitor-Iocation function 65
dbg :val function 64

describe function 260, 335
describe function 45

describe-system function 213
disassemble function 335

documentation function 265, 267
Editing a function 61

evalhook function 87
get-handler-for function 378

inspect function 93, 335
load-patches function 211
load-system function 176

make-system function 309
meter:expand-range function 222

meter:functlon-name-with-escapes function 223
meter:function-range function 223

meter:list-functions-in-bucket function 223
meter:make-pc-array function 221

meter:map-over-functlons-in-bucket function 223
meter:monitor-all-functions function 222

meter:monitor-between-functions function 222
meter:print-functions-in-bucket function 223

meter:range-of-bucket function 223
meter:report function 222

meter:setup-monitor function 222
meter:start-monltor function 222
meter:stop-monitor function 222

mexp function 332
note-private-patch function 210

print-compiler-warnings function 124
prompt-and-read function 369

sct:check-system-patch-file-verslon function 217
sct:define-module-type function 171

sct:designate-system-version function 189
sct:edit-system function 187

sct:get-all-system-input-files function 217
sct:get-release-version function 216

sct:get-system-input-and-output-defsystem-fIIes function 216
sct:get-system-input-and-output-source-files function 216

sct:get-system-verslon function 215
sct:hardcopy-system function 187

sct:patch-Ioaded-p function 216
sct:patch-system-pathname function 202

451

Index

452

Program Development Utilities August 1986

sct:reap:-protect-system function 188
sct:release-system function 189

sct:set-system-source-file function 181
sct:set-system-status function 188

sct:system-verslon-Info function 215
sl:advlse-1 function 81

sl:flavor-allowed-Inlt-keywords function 381
si:make-hardcopy-stream function 359

si:unadvise-1 function 81
si:unbin-file function 98

signal function 344, 369
sys:dump-forms-to-file function 139

The Top-Level Function 359
throw function 52

tv:choose-variable-values function 359,369
tv:make-blinker function 369

tv:make-window function 344, 354, 359, 364
tv:sheet-following-blinker function 369

unbreakon function 329
uncompile function 120

what-files-call function 263
where-Is function 263

who-calls function 263
zl:apropos function 263

zl:dbg function 14,329
zl :listarray function 260

zl:load function 301
zl:load-and-save-patches function 212

zl:peek function 99
zl:pkg-goto function 240

zl :plist function 263
zl :print-system-modifications function 216

zl:step function 85,325
zl:typep fUnction 377

zl-user:describe-flavor function 377
zl-user:undefsystem function 166

:functlon option for tv:choose-varlable-values 369
Function Apropos (m-X) Zmacs command 266

Edit Function Command 61
Show Function Command 34

Function compiler 109, 116
complier: function-defined function 130

Tracing Function Execution 73
Untracing Function Execution 78

meter: functlon-name-wlth-escapes function 223
Compiled function object 109

meter: function-range function 223
compiler: function-referenced function 131

Function-referenced-but-never-defined Warnings 130
Active functions 41

Advice to functions 79
Compiled functions 297
Debugger Functions 63

Definitions of functions 137
Entering the Debugger With break And zl:dbg Functions 14

Finding Out About Functions 265
Interpreted functions 297

Monitor facility functions 63
Tools for Compiling Single Functions 120

complier: functions-defined variable 130
complier: functions-referenced variable 130

453

August 1986 Index

G

H

Debugger functions to return values in current stack frame 63
Functions used inside the Debugger 63

Advising One Function Within Another 83
Fundamental Zmacs editing commands 23

Set Fill Column (c-X F) Zmacs command 236

G
Debugger Commands for

sct:

Open
set:
sct:

sct:

sct:

:draw-Ilne method of tv:
tv:

Module
Open Get Register (c-X

H

General Information Display 41
General Information on Flavors 377
General uses of Debugger 5
Generic operations 344
get-ail-system-Input-files function 217
get-handler-for function 378
Get Register (c-X G) Zmacs command 291
get-release-version function 216
get-system-Input-and-output-defsystem-files

function 216
get-system-in put-and -output-so u rce-til es

function 216
get-system-version function 215
:gettable-instance-variables option for

defflavor 345
Getting Help for Debugger Commands 19
Global command table 7
Graphic Output of the Sample Program 425
graphlcs-mlxln 239, 349
graphics-mlxln flavor 349
group 156
G) Zmacs command 291

Hostat (H) 103
Debugging condition handlers 52

Proceed handlers 12, 20
Restart handlers 12, 20, 310

Show Condition Handlers Command 47
How the Stream Compiler Handles Top-level Forms 111

Editing, Hardcopying, Reap-Protecting, and Releasing
Systems 187

sct: hardcopy-system function 187
HELP key 19

Using The HELP Key in Zmacs 231
\ HELP Stepper command 325

HELP Zmacs command 292
HELP Zmacs mini buffer command 232
Help and Quit 103
Help (Debugger) Command 63

Overview of Debugger Help Facilities 10
Getting Help for Debugger Commands 19

Help for keywords 19
Peek Help Message 99

The Inspector History Pane 95
Creating a logical host 181
Display status of hostat 99

Hostat (H) 103
How the Inspector Works 93
How the Stream Compiler Handles Top-level

Forms 111

G

H

454

Program Development Utilities August 1986

How to Invoke the Compiler 107
Mark Whole (c-X H) Zmacs command 291

c-X I 49,50
SELECT I 93,335

Identifying Changed Code 282
zl: If-for-lispm macro 137
zl: If-for-macllsp macro 137
zl: If-for-macllsp-else-lIspm macro 137
zl: if-In-Ilspm macro 137
zl: If-in-macllsp macro 138

Ignore variable 130
Ignored arguments 130
Inactive patches 207
Incremental Search (c-S) Zmacs command 284
Indent For Comment (c-; or m- ;) Zmacs

command 249
Indent For Lisp (T AB or c-m-TAB) Zmacs

command 251
Indent New Comment Line (m-LINE) Zmacs

command 249
Indent New Line (L I NE) Zmacs command 251
Indent Region (c-m-\) Zmacs command 251
Indent Sexp (c-m-Q) Zmacs command 251
Individual Patch Files 200

Backtrace information 66
Display system information 99

Obtaining Information About a System 213
Debugger Commands for General Information Display 41

General Information on Flavors 377
Obtaining Information on System Versions 215

Inhlblt-style-warnlngs macro 128
compiler: inhiblt-style-wm-nlngs-swltch variable 133

:Init method of tv:sheet 349
:Inltable-instance-varlables option for

defflavor 357, 359
Init files 236, 292
:Initializations Option For defsystem 150
Initial patch state 207
:initial-status Option For defsystem 151
Init Keywords 381

:edges-from init option for tv:essentlal-window 349
:expose-p init option for tv:essentlal-wlndow 349

:minimum-helght init option for tv:essential-window 349
:minimum-width init option for tv:essential-window 349

:process init option for tv:process-mixln 364
:blinker-p init option for tv:sheet 349

:In-order-to Option For :module 161
In-progress patch 207
In-progress patch state 207

Lisp Input Editing 306
Input Editor 19, 23

c-m-Y input editor command 306
m-Y input editor command 306

Insert Buffer (m-X) Zmacs command 291
Insert File (m-X) Zmacs command 291
:Inside-slze method of tv:sheet 349

Functions used inside the Debugger 63
Inspect function 93, 335

I

August 1986

The Inspector

Entering and Leaving the
Exiting the

Special Characters Recognized by the
The

Using the
Using the mouse in the

BREAK
c-z

ESCAPE

The
The
The

[Clear]
[DeCache]

[Exit]
[Modify]
[Return]

[Set \]
The

How the

Inspecting an
Symeval in Last

Examining values of
Show

The Inspector
The Arrow Window:

Using Recursive Debugger
How to
Where

455

Index

Inspect command 93
Inspecting a closure 97
Inspecting a compiled code object 97
Inspecting a list 97
Inspecting a named structure 97
Inspecting an array 97
Inspecting an instance 97
Inspecting a select method 97
Inspecting a stack frame 97
Inspecting a symbol 97
Inspecting objects 96
[Inspect] in System menu 93
Inspection Pane 96
Inspection Pane Display 97
Inspector 5, 91, 377
Inspector 93
Inspector 93
Inspector 97
Inspector 93
Inspector 335
Inspector 95, 96
Inspector command 97
Inspector command 97
Inspector command 97
Inspector commands 95
Inspector History Pane 95
Inspector Inspection Pane 96
Inspector Interaction Pane 95
Inspector menu item 95
Inspector menu item 95
Inspector menu item 95, 335
Inspector menu item 95, 335
Inspector menu item 95, 335
Inspector menu item 95
Inspector Menu Pane 95
Inspector Works 93
[Inspect] System menu item 335
Install Macro (m-X) Zmacs command 292
Install Mouse Macro (m-X) Zmacs command 292
Install patch file 208
instance 97
Instance Command 49
Instances in compiled code files 139
Instance variables 345,357,359
instance variables 63
Instruction Command 47
Interaction Pane 95
Interaction, Processes, and the Mouse 364
Interpreted functions 297
Introduction to Program Development Utilities
Introduction to the Compiler 107
Introduction to the System Construction Tool 143
Introduction to Tools and Techniques 227
Invocations 25
Invoke the Compiler 107
Is Symbol (m-X) Zmacs command 263

456

Program Development Utilities August 1986

J J J

K

L

Journal directory 149, 191
:journal-dlrectory Option For defsystem 149
Journal files 149
Journal subdirectory 191, 197
Jump To Saved Position (c-X J) Zmacs

command 286
Jump To Saved Position (c-X J) Zmacs command 286

K K
Start Kbd Macro (c-X () Zmacs command 292
End Kbd Macro (c-X)) Zmacs command 292

Call Last Kbd Macro (c-X E) Zmacs command 292
Name Last Kbd Macro (m-X) Zmacs command 292

Keeping Track of Lisp Syntax 247
ABORT key 11,12,15,20,25,50

HELP key 19
LI NE key 39

REFRESH key 19,34
RESUME key 12,20,51
RETURN key 40

ABORT key and traps 52
RESUME key and traps 52

SUPER key bindings 12, 20
Keyboard Macros 292

Using The HELP Key in Zmacs 231
Set Key (m-X) Zmacs command 292

:module Keyword Options 159
compile-system Keywords 179

Help for keywords 19
Init Keywords 381

load-system Keywords 176
Kill Comment (c-m- ;) Zmacs command 249
Killing and Yanking 288
Kill Sexp (c-m-K) Zmacs command 288

Backward Kill Sexp (c-m-RUBOUT) Zmacs command 288

L L
Maintaining Large Programs 141

Describe Last Command 45
Symeval in Last Instance Command 49

Call Last Kbd Macro (c-X E) Zmacs command 292
Name Last Kbd Macro (m-X) Zmacs command 292

Entering and Leaving the Inspector 93
Debugger command level 25

Patch level 216
Show Lexical Environment Command 48

Use Lexical Environment Command 50
:Use Lexical Environment command 22

Lexical evaluation environment 9, 22
zl: *Iexpr special form 130

:send-command method of Igp::baslc-Igp-stream 357
:send-coordinates method of Igp::baslc-Igp-stream 357

Igp::baslc-Igp-stream flavor 357
Flavors for LGP Output 357
Converting LGP to Screen Coordinates 354

LINE key 39

457

August 1986 Index

Indent New Line (L I NE) Zmacs command 251
Indent New Comment Line (m-L I NE) Zmacs command 249

Down Comment Line (m-N) Zmacs command 249
Up Comment Line (m-P) Zmacs command 249

Line region 95
List Matching Lines (m-X) Zmacs command 284

Indent New Line (LINE) Zmacs command 251
Compiling and Evaluating Lisp 297

Compiling Lisp Code 298
Evaluating Lisp Code 303

Lisp~putEdmng 306
Lisp Mode (m-X) Zmacs command 236

Debugging Lisp Programs 309
Lisp read-eval-print loop 13

File Types of Lisp Source and Compiled Code Files 119
Keeping Track of Lisp Syntax 247

Indent For Lisp (T AS or c-m-T AS) Zmacs command 251
Creating a File Attribute List 234

Inspecting a list 97
zl: IIstarray function 260

List Callers (m-X) Zmacs command 263,270
Multiple List Callers (m-X) Zmacs command 270

List Changed Definitions (m-X) Zmacs command 282
List Changed Definitions Of Buffer (m-X) Zmacs

command 282
List Combined Methods (m-X) Zmacs command 378

meter: list-functions-in-bucket function 223
Reparse Attribute List (m-X) Zmacs command 234
Update Attribute List (m-X) Zmacs command 234

List Matching Lines (m-X) Zmacs command 284
List Matching Symbols (m-X) Zmacs command 263
List Methods (m-X) Zmacs command 378

tv: IIst-mouse-buttons-mixin flavor 364
Argument Lists 269

Lists in compiled code files 139
zl: load function 301
zl: load-and-save-patches function 212

compiler: load-compiler-warnings function 124
Load Compiler Warnings (m-X) Zmacs

command 123, 309
Load File (m-X) Zmacs command 301

Compiling and Loading a File 301
Loading and Compiling Systems 175
Loading patches 197, 210
Loading System Definitions That Use Logical

Pathnames 180
Loading System Definitions That Use Physical

Path names 185
load-patches function 211
Load Patches Command 211
load-system function 176
load-system Keywords 176
Load System Command 175
Load System command 180
Load-time dependency 161

dbg: loc function 64
Show Local Command 34

Show Monitored Locations Command 57
Electric Shift Lock Mode (m-X) Zmacs command 236

Creating a logical host 181
Sys:site; Logical-host.Translations File 182

458

Program Development Utilities August 1986

M

Loading System Definitions That Use Logical Pathnames 180
Fill Long Comment (m-X) Zmacs command 249

Long Documentation (m-sh-D) Zmacs
command 265, 267

Long-form Module Specifications 158
Debugger read-eval-print loop 9, 13

Lisp read-eval-print loop 13
Debugger breakpoints vs. break loops 57

Break loops vs. Debugger breakpoints 13
Entering a Break Loop With SUSPEND, c-SUSPEND 13

Set Lowercase (m-X) Zmacs command 234

M
Meters (H) 102

Query Replace (m-%) Zmacs command 284
Edit Definition (m-.) Zmacs command 266,377,378

Indent For Comment (c-; or m- ;) Zmacs command 249
m-< 41
m-> 38
m-845

c-X m-C 55
Evaluate Minibuffer (m-ESCAPE) Zmacs command 303

m- I Debugger command 63
m-L 34

Indent New Comment Line (m-L I NE) Zmacs command 249
m-N 39

Down Comment Line (m-N) Zmacs command 249
m-P 40

Up Comment Line (m-P) Zmacs command 249
Compile Changed Definitions Of Buffer (m-sh-C) Zmacs command 299

Long Documentation (m-sh-D) Zmacs command 265, 267
Evaluate Changed Definitions Of Buffer (m-sh-E) Zmacs command 303

Macro Expand Expression All (m-sh-M) Zmacs command 332
Push Pop Point Explicit (m-SPACE) Zmacs command 286

Entering the Debugger With m-SUSPEND, c-m-SUSPEND 13
Save Region (m-W) Zmacs command 288
Abort Patch (m-X) 209

Add Patch (m-X) 206
Add Patch Changed Definitions (m-X) 207

Add Patch Changed Definitions of Buffer (m-X) 206
Finish Patch (m-X) 208

Recompile Patch (m-X) 209
Reload Patch (m-X) 209

Resume Patch (m-X) 209
Select Patch (m-X) 207

Show Patches (m-X) 207
Start Patch (m-X) 205

Start Private Patch (m-X) 205
Atom Word Mode (m-X) Zmacs command 236

Auto Fill Mode (m-X) Zmacs command 236
Compile Buffer (m-X) Zmacs command 299

Compile Changed Definitions (m-X) Zmacs command 299
Compile File (m-X) Zmacs command 301

Compile Region (m-X) Zmacs command 117
Compiler Warnings (m-X) Zmacs command 123,309

Deinstall Macro (m-X) Zmacs command 292
Describe Flavor (m-X) Zmacs command 377

Dired (m-X) Zmacs command 271
Disassemble (m-X) Zmacs command 335

Edit Callers (m-X) Zmacs command 270

M

459

August 1986 Index

Edit Changed Definitions (m-X) Zmacs command 282
Edit Changed Definitions Of Buffer (m-X) Zmacs command 282

Edit Combined Methods (m-X) Zmacs command 378
Edit Compiler Warnings (m-X) Zmacs command 123,309

Edit File Warnings (m-X) Zmacs command 123
Edit Methods (m-X) Zmacs command 293,378

Electric Shift Lock Mode (m-X) Zmacs command 236
Evaluate And Replace Into Buffer (m-X) Zmacs command 303

Evaluate Buffer (m-X) Zmacs command 303
Evaluate Changed Definitions (m-X) Zmacs command 303

Evaluate Into Buffer (m-X) Zmacs command 303
Fill Long Comment (m-X) Zmacs command 249

Find Unbalanced Parentheses (m-X) Zmacs command 252
Function Apropos (m-X) Zmacs command 266

Insert Buffer (m-X) Zmacs command 291
Insert File (m-X) Zmacs command 291

Install Macro (m-X) Zmacs command 292
Install Mouse Macro (m-X) Zmacs command 292

Lisp Mode (m-X) Zmacs command 236
List Callers (m-X) Zmacs command 263,270

List Changed Definitions (m-X) Zmacs command 282
List Changed Definitions Of Buffer (m-X) Zmacs command 282

List Combined Methods (m-X) Zmacs command 378
List Matching Lines (m-X) Zmacs command 284

List Matching Symbols (m-X) Zmacs command 263
List Methods (m-X) Zmacs command 378

Load Compiler Warnings (m-X) Zmacs command 123,309
Load File (m-X) Zmacs command 301

Multiple Edit Callers (m-X) Zmacs command 270
Multiple List Callers (m-X) Zmacs command 270

Name Last Kbd Macro (m-X) Zmacs command 292
Print Modifications (m-X) Zmacs command 282

Reparse Attribute List (m-X) Zmacs command 234
Select All Buffers As Tag Table (m-X) Zmacs command 284

Select System As Tag Table (m-X) Zma9s command 284
Set Backspace (m-X) Zmacs command 234

Set Base (m-X) Zmacs command 234
Set Fonts (m-X) Zmacs command 234

Set Key (m-X) Zmacs command 292
Set Lowercase (m-X) Zmacs command 234

Set Nofill (m-X) Zmacs command 234
Set Package (m-X) Zmacs command 234

Set Patch File (m-X) Zmacs command 234
Set Tab Width (m-X) Zmacs command 234

Set Vsp (m-X) Zmacs command 234
Source Compare (m-X) Zmacs command 282

Source Compare Merge (m-X) Zmacs command 282
Split Screen (m-X) Zmacs command 293

Tags Query Replace (m-X) Zmacs command 284
Tags Search (m-X) Zmacs command 284

Trace (m-X) Zmacs command 323,325
Update Attribute List (m-X) Zmacs command 234

View Directory (m-X) Zmacs command 271
Where Is Symbol (m-X) Zmacs command 263

m-Y input editor command 306
Yank Pop (m-Y) Zmacs command 288

Files That Maclisp Must Compile 137
macro 111

#m sharp-sign reader macro 137
#q sharp-sign reader macro 137

compile-flavor-methods macro 369

460

Program Development Utilities August 1986

defflavor macro 345, 349
Inhlblt-style-warnlngs macro 128
meter:wlth-monltorlng macro 223

sct:deflne-system-operation macro 172
zl:lf-for-lIspm macro 137

zl:lf-for-maclisp macro 137
zl :If-for-macllsp-else-lIspm macro 137

zl:lf-ln-lIspm macro 137
zl:if-in-maclisp macro 138

Start Kbd Macro (c-X 0 Zmacs command 292
End Kbd Macro (c-X)) Zmacs command 292

Call Last Kbd Macro (c-X E) Zmacs command 292
Macro Expand Expression All (m-sh-M) Zmacs

command 332
Macro Expand Expression (c-sh-M) Zmacs

command 332
Deinstall Macro (m-X) Zmacs command 292

Install Macro (m-X) Zmacs command 292
Install Mouse Macro (m-X) Zmacs command 292

Name Last Kbd Macro (m-X) Zmacs command 292
Expanding Macros 332
Keyboard Macros 292

Send mail about patch 208
Mail Bug Report Command 62
Mailing a bug report 61
Maintaining Large Programs 141
:maintaining-sites Option For defsystem 152

System maintenance 197
Major and Minor Modes 236
Major version 201
Major version number 197

tv: make-blinker function 369
sl: make-hard copy-stream function 359
fs: make-Ioglcal-pathname-host 181

compiler: make-message-obsolete special form 129
compiler: make-obsolete special form 129

meter: make-pc-array function 221
:batch option for make-system 309

make-system function 309
tv: make-window function 344, 354, 359, 364

Making Patches 203
meter: map-over-functlons-in-bucket function 223

Set Pop Mark (c-SPACE) Zmacs command 286
Swap Point And Mark (c-X c-X) Zmacs command 286

Mark Definition (c-m-H) Zmacs command 288
Mark Whole (c-X H) Zmacs command 291

List Matching Lines (m-X) Zmacs command 284
List Matching Symbols (m-X) Zmacs command 263

Mentioned defaults 29
[Inspect] in System menu 93

[ARGPDL] trace menu item 323
[Attributes] System menu item 377
[Break after] trace menu item 323

[Break before] trace menu item 323
[Clear] Inspector menu item 95

[Cond after] trace menu item 323
[Cond before] trace menu item 323

[Cond break after] trace menu item 323, 329
[Cond break before] trace menu item 323, 329

[Conditional] trace menu item 323
[OeCache] Inspector menu item 95

461

August 1986 Index

[Edit Screen] System menu item 294,364
[Edit] System menu item 233

[Edit] Window Debugger menu item 310
[Error] trace menu item 323, 329

[Exit] Inspector menu item 95, 335
[Inspect] System menu item 335

[Modify] Inspector menu item 95, 335
[Per Process] trace menu item 323

[Print after] trace menu item 323
[Print before] trace menu item 323

[Print] trace menu item 323
[Retry] Window Debugger menu item 310

[Return] Inspector menu item 95, 335
[Set \] Inspector menu item 95

[Split Screen] System menu item 294, 364
[Step] trace menu item 323, 325

[Trace] System menu item 323, 325
[Untrace] trace menu item 323
[Wherein] trace menu item 323

The Inspector Menu Pane 95
Source Compare Merge (m-X) Zmacs command 282

:fasd-form message 139
Peek Help Message 99

meter:expand-range function 222
meter:functlon-name-with-ascapes function 223
meter:function-range function 223
meter:lIst-functions-ln-bucket function 223
meter:make-pc-array function 221
meter:map-over-functlons-in-bucket function 223
meter:monltor-all-functions function 222
meter:monltor-between-functlons function 222
meter:print-functions-in-bucket function 223
meter:range-of-bucket function 223
meter:report function 222
meter:setup-monitor function 222
meter:start-monltor function 222
meter:stop-monltor function 222
meter:with-monltoring macro 223

PC Metering 221
Program Counter Metering 219

Meters (M) 102
Inspecting a select method 97

:proceed method 369
:report method 369

:who-line-documentation-string method 364
:case method combination 369

:daemon method combination 345, 349, 354
:send-command method of Igp::baslc-Igp-stream 357

:send-coordlnates method of Igp::baslc-Igp-stream 357
:operation-handled-p method of sl:vanllla-fiavor 378

:whlch-operations method of sl:vanllla-fiavor 378
:any-tyl method of tv:any-tyl-mlxln 364

:draw-ilne method of tv:graphlcs-mixln 239, 349
:change-of-slze-or-marglns method of tv:sheet 349

:Inlt method of tv:sheet 349
:Inside-slze method of tv:sheet 349

:refresh method of tv:sheet 349, 364
Methods 378

Daemon methods 349
Primary methods 345,349,354
Deriving Methods for Tools and Techniques 227

462

PrDgram DevelDpment Utilities August 1986

Edit Methods (m-X) Zmacs command 293,378
Edit Combined Methods (m-X) Zmacs command 378

List Methods (m-X) Zmacs command 378
List Combined Methods (m-X) Zmacs command 378

mexp function 332
Minibuffer 232

c-? Zmacs minibuffer command 232
COMPLETE Zmacs minibuffer command 232

END Zmacs minibuffer command 232
HELP Zmacs minibuffer command 232

RETURN Zmacs minibuffer command 232
SPACE Zmacs minibuffer command 232

Evaluate Minibuffer (m-ESCAPE) Zmacs command 303
:mlnimum-helght init option for

tv:essential-window 349
:minimum-width init option for

tv:essential-window 349
Major and Minor Modes 236

Minor version 201
Minor version number 197,203
Miscellaneous Debugger Commands 63
Miscellaneous Debugging Aids 91

Supplying a Missing Package Prefix 21
A Mixin to Position the Figure 345

Atom Word Mode (m-X) Zmacs command 236
Auto Fill Mode (m-X) Zmacs command 236

Electric Shift Lock Mode (m-X) Zmacs command 236
Lisp Mode (m-X) Zmacs command 236

Major and Minor Modes 236
Peek Modes 101

Show System Modifications Command 214
Print Modifications (m-X) Zmacs command 282

Modified Two Windows (c-X 4) Zmacs
command 293

Program Development: Modifying the Output Module 344
[Modify] Inspector menu item 95, 335
Modularity 344
Module 145

Anonymous module 153, 156, 159
:compile-satlsfies-Ioad Option For :module 164

:distribute-binaries Option For :module 166
:distribute-sources Option For :module 166

:in-order-to Option For :module 161
:package Option For :module 159

Program Development: Modifying the Output Module 344
Root module 162

:root-module Option For :module 162
:source-category Option For :module 166

:type Option For :module 159
:uses-definitions-from Option For :module 161

:module Keyword Options 159
:module option for defsystem 158
Module Dependencies 154

Calculation Module for the Sample Program 383
Output Module for the Sample Program 403

Module group 156
:module-group clause 156

defsystem Modules 153
Dependencies among modules 154

Module specification 159
Long-form Module Specifications 158

463

August 1986 Index

N

Short-form Module Specifications 156
User-defined Module Types 171

Table of Module Types and Operations 169
meter: monltor-all-functlons function 222
meter: monltor-between-functlons function 222

Show Monitored Locations Command 57
Monitor facility functions 63

dbg: monitor-instance-variable function 65
dbg: monitor-location function 64

Monitor traps 52
Monitor Variable Command 54

Debugger Commands for Stack Motion 37
Entering a Debugger Command with the Mouse 19

The Arrow Window: Interaction, Processes, and the Mouse 364
Overview of Debugger Mouse Capabilities 10

Mouse clicks 364
Mouse cursor as an arrow 95
Mouse documentation string 364

Using the Mouse in the Debugger 27
Using the mouse in the Inspector 95, 96

Install Mouse Macro (m-X) Zmacs command 292
Mouse-sensitive Debugger output 10, 19, 27
Move To Previous Point (c-m-SPACE) Zmacs

command 286
Moving around in the stack 37
Moving Text 286
Moving Through Text 286
Multiple Buffers 293
Multiple Edit Callers (m-X) Zmacs command 270
Multiple List Callers (m-X) Zmacs command 270

zl: multiple-value special form 349
Using Multiple Windows 293

Files That Maclisp Must Compile 137

N N
Network (N) 103

Inspecting a named structure 97
Name Last Kbd Macro (m-X) Zmacs command 292
Names 266

Format of patch file names 201
Names of Patch Files 201
Network (N) 103

Indent New Comment Line (m-LINE) Zmacs command 249
Creating a New File 234

Indent New Line (L I NE) Zmacs command 251
Next Frame Command 39
:nll option for trace 323

:arg :value :both nil trace Options 76
Set Nofill (m-X) Zmacs command 234

note-private-patch function 21 0
Major version number 197
Minor version number 197,203

Numbers in compiled code files 139
Numeric arguments in accelerators 18

464

Program Development Utilities August 1986

o o
Compiled function object 109

Inspecting a compiled code object 97
Finding Out About Objects 260

Inspecting objects 96
Compiled code objects in compiled code files 139

complier: obsolete-functlon-warnlng-swltch variable 133
Obtaining Information About a System 213
Obtaining Information on System Versions 215

Advising One Function Within Another 83
One Window (c-X 1) Zmacs command 293

complier: open-code-map-swltch variable 133
Open Get Register (c-X G) Zmacs command 291
:operation-handled-p method of

si:vanilla-flavor 378
Complex operations 172

defsystem Operations 168
Generic operations 344

Table of Module Types and Operations 169
Other Operations on Systems 187

User-defined Operations on Systems 172
Optimizer feature of the compiler 135

Compiler Source-Level Optimizers 135
:argpdl trace Option 75
:break trace Option 74

c-sh-P proceed option 21
:cond trace Option 75

:entrycond trace Option 75
:entryprint trace Option 75

:entry trace Option 76
:error trace Option 74

:exitbreak trace Option 74
:exitcond trace Option 75
:exitprint trace Option 76

:exit trace Option 76
:per-process trace Option 75

:prlnt trace Option 76
s-sh-C proceed option 21

:step trace Option 75
:whereln trace Option 75

:default-Inlt-pllst option for defflavor 349
:documentation option for defflavor 377

:geUable-lnstance-variables option for defflavor 345
:Inltable-Instance-varlables option for defflavor 357, 359

:requlred-flavors option for defflavor 349
:requlred-methods option for defflavor 345

:advertlsed-In Option For defsystem 151
:bug-reports Option For defsystem 151

:default-module-type Option For defsystem 148
:default-package Option For defsystem 147

:default-pathname Option For defsystem 148
:distribute-binarles Option For defsystem 152
:distribute-sources Option For defsystem 152

:Inltlallzatlons Option For defsystem 150
:initlal-status Option For defsystem 151

:journal-directory Option For defsystem 149
:maintainlng-sltes Option For defsystem 152

:module option for defsystem 158
:package-overrlde Option For defsystem 147

:parameters Option For defsystem 150
:patchable Option For defsystem 149,197,200

o

465

August 1986 Index

patch-atom argument to :patchable option for defsystem 201
:pathname-default option for defsystem 197, 200

:pretty-name Option For defsystem 146
:short-name Option For defsystem 146

:source-category Option For defsystem 152
:batch option for make-system 309

:compile-satisfies-ioad Option For :module 164
:distrlbute-blnarles Option For :module 166
:distrlbute-sources Option For :module 166

:In-order-to Option For :module 161
:package Option For :module 159

:root-module Option For :module 162
:source-category Option For :module 166

:type Option For :module 159
:uses-definitions-from Option For :module 161

:arg option for trace 76
:arg option for trace 323

:argpdl option for trace 323
:both option for trace 76
:both option for trace 323

:break option for trace 323, 329
:cond option for trace 323
:entry option for trace 323

:entrycond option for trace 323
:entryprlnt option for trace 323

:error option for trace 323, 329
:exit option for trace 323
:exit option for trace 76

:exitbreak option for trace 323, 329
:exitcond option for trace 323
:exitprint option for trace 323

:nil option for trace 323
:per-process option for trace 323

:print option for trace 323
:step option for trace 323, 325

:value option for trace 76
:value option for trace 323

:whereln option for trace 323
:function option for tv:choose-varlable-values 369

:edges-from init option for tv:essentlal-window 349
:expose-p init option for tv:essential-window 349

:mlnimum-height init option for tv:essential-window 349
:minimum-width init option for tv:essential-window 349

:process init option for tv:process-mixln 364
:blinker-p init option for tv:sheet 349

:ar9 :value :both nil trace Options 76
Debugger Proceed and Restart Options 12

defsystem Options 146
:module Keyword Options 159

Using Debugger Proceed and Restart Options 20
Show Proceed Options Command 48

Options To trace 74
:argpdl option to trace 75
:break option to trace 74
:cond option to trace 75
:entry option to trace 76

:entrycond option to trace 75
:entryprlnt option to trace 75

:error option to trace 74
:exitbreak option to trace 74
:exitcond option to trace 75

466

Program Development Utilities August 1986

p

:exltprlnt option to trace 76
:prlnt option to trace 76
:step option to trace 75

:whereln option to trace 75
Organization of Patch Files 200
Organization of Tools and Techniques 228
Other Displays 295
Other Operations on Systems 187

Scroll Other Window (c-m-V) Zmacs command 293
Other Window (c-X 0) Zmacs command 293

Displaying Zmacs and Other Windows 294
Finding Out About Existing Code 260
Finding Out About Functions 265
Finding Out About Objects 260
Finding Out About Pathnames 271
Finding Out About Symbols 263
Finding Out About Variables 265

Commenting Out Code 314
Program Development: Design and Figure Outline 238

Outlining the Figure 240
Controlling the Format Of trace Output 77

Flavors for LGP Output 357
Mouse-sensitive Debugger output 10, 19, 27

Simple Screen Output 239
trace output 77

Program Development: Modifying the Output Module 344
Output Module for the Sample Program 403

Graphic Output of the Sample Program 425
Overriding Variable-defined-but-never-referenced

Warnings 131
Overview of Debugger Commands 7
Overview of Debugger Evaluation Environment 9
Overview of Debugger Help Facilities 10
Overview of Debugger Mouse Capabilities 10
Overview of Peek 99
Overview of the Debugger 5

Other Window (c-X 0) Zmacs command 293

p p
Processes (P) 101

:package Option For :module 159
Set Package (m-X) Zmacs command 234

:package-overrlde Option For defsystem 147
Supplying a Missing Package Prefix 21

Packages 234,240,263,270
The Inspector History Pane 95

The Inspector Inspection Pane 96
The Inspector Interaction Pane 95

The Inspector Menu Pane 95
Inspection Pane Display 97

:parallel clause 153, 156
:parameters Option For defsystem 150

Balancing Parentheses 252
Find Unbalanced Parentheses (m-X) Zmacs command 252

Patch 197
Current patch 207

In-progress patch 207
Send mail about patch 208

:patchable Option For defsystem 149,197,200
patch-atom argument to :patchable option for defsystem 201

467

August 1986 Index

patch-atom argument to :patchable option for
defsystem 201

Add Patch Changed Definitions (m-X) 207
Add Patch Changed Definitions of Buffer (m-X) 206

Patch directory 149, 197, 200
Patch-directory-file 191
Patch Directory File 200

File types of the patch directory file 201
Contents of the Patch Directory Files 194

Active patches 203, 207
Inactive patches 207
Loading patches 197, 210
Making Patches 203

Load Patches Command 211
Show Patches (m-X) 207

Patch Facility 197
Patch file 191, 197

Add region to patch file 203
Install patch file 208

Set Patch File (m-X) Zmacs command 234
Format of patch file names 201
Individual Patch Files 200
Names of Patch Files 201

Organization of Patch Files 200
Types of Patch Files 199

Patch level 216
sct: patch-Ioaded-p function 216

Abort Patch (m-X) 209
Add Patch (m-X) 206

Finish Patch (m-X) 208
Recompile Patch (m-X) 209

Reload Patch (m-X) 209
Resume Patch (m-X) 209

Select Patch (m-X) 207
Start Patch (m-X) 205

Start Private Patch (m-X) 205
Initial patch state 207

In-progress patch state 207
sct: patch-system-pathname function 202

:pathname-default option for defsystem 197, 200
Finding Out About Path names 271

Loading System Definitions That Use Logical Pathnames 180
Loading System Definitions That Use Physical Pathnames 185

PC Metering 221
Overview of Peek 99

zl: peek function 99
Set sleep time between updates Peek command 99

Peek Help Message 99
Peek Modes 101

The Peek Program 99
Supplying a Value to Store Permanently 21

:per-process option for trace 323
[Per Process] trace menu item 323
:per-process trace Option 75

Loading System Definitions That Use Physical Pathnames 185
zl: pkg-goto function 240

System Plan 171
Show System Plan Command 171, 215

zl: pllst function 263
Swap Point And Mark (c-X c-X) Zmacs command 286

Move To Previous Point (c-m-SPACE) Zmacs command 286

468

Program Development Utilities August 1986

Describe Variable At Point (c-sh-V) Zmacs command 265
Push Pop Point Explicit (m-SPACE) Zmacs command 286

Yank Pop (m-Y) Zmacs command 288
Set Pop Mark (c-SPACE) Zmacs command 286

Push Pop Point Explicit (m-SPACE) Zmacs command 286
Jump To Saved Position (c-X J) Zmacs command 286

Save Position (c-X S) Zmacs command 286
A Mixin to Position the Figure 345

Supplying a Missing Package Prefix 21
Preparing to Write Code 233
Prerequisites to Tools and Techniques 227
:pretty-name Option For defsystem 146

Select Previous Buffer (c-m-L) Zmacs command 286
Previous Frame Command 40

Move To Previous Point (c-m-SPACE) Zmacs command 286
Primary methods 345,349,354
:print option for trace 323
:print option to trace 76
[Print after] trace menu item 323
[Print before] trace menu item 323
print-complier-warnings function 124
Print compiler warnings database 123

meter: print-functlons-In-bucket function 223
Print Modifications (m-X) Zmacs command 282

zl: print-system-modificatlons function 216
[Print] trace menu item 323
:print trace Option 76

Start Private Patch (m-X) 205
:proceed method 369

Debugger Proceed and Restart Options 12
Using Debugger Proceed and Restart Options 20

Proceed Command 51
Proceed handlers 12, 20
Proceeding 369
Proceeding and Restarting in the Debugger 20

c-sh-P proceed option 21
s-sh-C proceed option 21

Show Proceed Options Command 48
Proceed Trap on Call Command 55
Proceed types 310,369
:process init option for tv:process-mixin 364
Processes 364

Display status of active processes 99
The Arrow Window: Interaction, Processes, and the Mouse 364

Processes (P) 101
:process init option for tv: process-mixin 364

tv: process-mixin flavor 364
[Per Process] trace menu item 323

progn 111
Calculation Module for the Sample Program 383

Graphic Output of the Sample Program 425
Output Module for the Sample Program 403

The Peek Program 99
Program Counter Metering 219
Program Development: Design and Figure

Outline 238
Program Development: Drawing Stripes 252
Program Development: Modifying the Output

Module 344
Program Development: Refining Stripe Density and

Spacing 272

469

August 1986 Index

Q

R

Program Development Tools and Techniques 225
Caveat to Program Development Tools and Techniques 225

Introduction to Program Development Utilities 1
Programming Aids for Flavors and Windows 377

Debugging Lisp Programs 309
Maintaining Large Programs 141

Program Strategy 238
Debugger command prompt 7, 11, 17

prompt-and-read function 369
Evaluation environment command prompts 22

comp"er:top-Ievel-form property 116

Q

Purpose of Tools and Techniques 227
Push Pop Point Explicit (m-SPACE) Zmacs

command 286
Put Register (c-X X) Zmacs command 291
Putting Data in Compiled Code Files 139

zl: query-Io variable 369
Query Replace (m-%) Zmacs command 284

Tags Query Replace (m-X) Zmacs command 284
Quick Arglist (c-sh-A) Zmacs command 269

Help and Quit 103
Quit (c-Z) Zmacs command 310

R
meter: range-of-bucket function 223

REFRESH r Dired (c-X D) Zmacs command 271
#m sharp-sign reader macro 137
#q sharp-sign reader macro 137

Debugger read-eval-print loop 9, 13
Lisp read-eval-print loop 13

Editing, Hardcopying, Reap-Protecting, and Releasing Systems 187
sct: reap-protect-system function 188

Rebound Variable Bindings During Evaluation 24
Special Characters Recognized by the Inspector 97

Recompile Patch (m-X) 209
Using Recursive Debugger Invocations 25

Program Development: Refining Stripe Density and Spacing 272
REFRESH key 19, 34
:refresh method of tv:sheet 349, 364
REFRESHr Dired (c-X D) Zmacs command 271

Line region 95
Indent Region (c-m-\) Zmacs command 251

Compile Region (c-sh-C) Zmacs command 299
Evaluate Region (c-sh-E) Zmacs command 303

Save Region (m-W) Zmacs command 288
Compile Region (m-X) Zmacs command 117

Add region to patch file 203
Open Get Register (c-X G) Zmacs command 291

Put Register (c-X X) Zmacs command 291
Using Registers 291

Reinvoke Command 51
sct: release-system function 189

Editing, Hardcopying, Reap-Protecting, and Releasing Systems 187
Reload Patch (m-X) 209
Reparse Attribute List (m-X) Zmacs command 234
Replace (c-%) Zmacs command 284

Q

R

470

Program Development Utilities August 1986

s

Evaluate And Replace Into Buffer (m-X) Zmacs command 303
Query Replace (m-%) Zmacs command 284

Tags Query Replace (m-X) Zmacs command 284
Searching and Replacing 284
Mailing a bug report 61

meter: report function 222
:report method 369

Mail Bug Report Command 62
:requlred-flavors option for defflavor 349
:requlred-methods option for defflavor 345
Resources 359

Show Rest Argument Command 35
Restart handlers 12, 20, 310

Proceeding and Restarting in the Debugger 20
Debugger Proceed and Restart Options 12

Using Debugger Proceed and Restart Options 20
Restart Trap on Call Command 56
RESUME 303,329

Using ABORT And RESUME in the Debugger 21
RESUME key 12, 20, 51
RESUME key and traps 52
Resume Patch (m-X) 209
[Retry] Window Debugger menu item 310
RETURN key 40
RETURN Zmacs minibuffer command 232
Return Command 51
[Return] Inspector menu item 95, 335

Debugger functions to return values in current stack frame 63
Reverse $earch (c-R) Zmacs command 284
Root module 162
:root-module Option For :module 162
rubout-handler 24

s S
Servers (S) 102

s-sh-C proceed option 21
Calculation Module for the Sample Program 383

Graphic Output of the Sample Program 425
Output Module for the Sample Program 403

Save Compiler Warnings Command 123
Jump To Saved Position (c-X J) Zmacs command 286

Save Position (c-X S) Zmacs command 286
Save Region (m-W) Zmacs command 288
Scope of Tools and Techniques 227

Converting LGP to Screen Coordinates 354
Split Screen (m-X) Zmacs command 293

Simple Screen Output 239
[Edit Screen] System menu item 294, 364
[Split Screen] System menu item 294,364

Scroll Other Window (c-m-V) Zmacs command 293
SCT 143
sct:check-system-patch-file-verslon function 217
sct:define-module-type function 171
sct:define-system-operatlon macro 172
sct:designate-system-verslon function 189
sct:edlt-system function 187
sct:get-all-system-Input-files function 217
sct:get-release-verslon function 216
sct:get-system-input-and-output-defsystem-files

function 216

August 1986

sct:get-system-Input-and-output-source-flles
function 216

sct:get-system-verslon function 215
sct:hardcopy-system function 187
sct:patch-Ioaded-p function 216
sct:patch-system-pathname function 202
set:reap-proteet-system function 188
set:release-system function 189
set:set-system-source-file 181, 183, 185
sct:set-system-source-file function 181
set:set-system-status function 188
sct:system-version-info function 215

Reverse Search (c-R) Zmacs command 284
Incremental Search (c-S) Zmacs command 284

Searching and Replacing 284
Tags Search (m-X) Zmacs command 284

SELECT E 233
SELECT I 93,335
Select Activity command 233
Select All Buffers As Tag Table (m-X) Zmacs

command 284
Select Buffer (c-X B) Zmacs command 286

Inspecting a select method 97
Select Patch (m-X) 207
Select Previous Buffer (c-m-L) Zmacs

command 286
Select System As Tag Table (m-X) Zmacs

command 284
:send-eommand method of

Igp::baslc-Igp-stream 357
:send-coordinates method of

Igp::basic-Igp-stream 357
Send mail about patch 208

zwel: *send-mall-about-patch* 208
:serlal clause 153, 156
Servers (S) 1 02
Set Backspace (m-X) Zmacs command 234
Set Base (m-X) Zmacs command 234
Set Breakpoint Command 60
Set Comment Column (c-X ;) Zmacs

command 249
Set Current Frame Command 41
Set Fill Column (c-X F) Zmacs command 236
Set Fonts (m-X) Zmacs command 234
Set Key (m-X) Zmacs command 292

fs: set-Ioglcal-pathname-host 182
Set Lowercase (m-X) Zmacs command 234
Set Nofill (m-X) Zmacs command 234
Set Package (m-X) Zmacs command 234
Set Patch File (m-X) Zmacs command 234

471

Index

Set Pop Mark (c-SPACE) Zmacs command 286
Set sleep time between updates Peek command 99
Set Stack Size Command 63

set: set-system-souree-flle 181, 183, 185
sl: set-system-souree-flle 181

set: set-system-souree-file function 181
set: set-system-status function 188

Set Tab Width (m-X) Zmacs command 234
Setting Debugger breakpoints 57
Set Trap on Call Command 56
Set Trap on Exit Command 56

472

Program Development Utilities August 1986

meter: setup-monitor function 222
Set Vsp (m-X) Zmacs command 234
[Set \] Inspector menu item 95

Kill Sexp (c-m-K) Zmacs command 288
Indent Sexp (c-m-Q) Zmacs command 251

Backward Kill Sexp (c-m-RUBOUT) Zmacs command 288
1m sharp-sign reader macro 137
#q sharp-sign reader macro 137

:bllnker-p init option for tv: sheet 349
:change-of-slze-or-marglns method of tv: sheet 349

:Inlt method of tv: sheet 349
:Inslde-slze method of tv: sheet 349

:refresh method of tv: sheet 349, 364
tv: sheet flavor 349, 369
tv: sheet-following-blinker function 369

Electric Shift Lock Mode (m-X) Zmacs command 236
Short-form Module Specifications 156
:short-name Option For defsystem 146
Show Arglist Command 32
Show Argument Command 32

dbg: ·show-backtrace* variable 66
Show Backtrace Command 45
Show Bindings Command 46
Show Breakpoints Command 61
Show Catch Blocks Command 46
Show Compiled Code Command 33
Show Compiler Warnings Command 123
Show Condition Handlers Command 47
:Show Frame (c-L) 19
Show Frame Command 34
Show Function Command 34
Show Instruction Command 47
Show Lexical Environment Command 48
Show Local Command 34
Show Monitored Locations Command 57
Show Patches (m-X) 207
Show Proceed Options Command 48
Show Rest Argument Command 35
Show Source Code Command 35
Show Special Command 48
Show Stack Command 36
Show Standard Value Warnings Command 49
Show System Definition Command 213
Show System Modifications Command 214
Show System Plan Command 171, 215
Show Value Command 36
sl:advlse-1 function 81
sl:advlsed-functlons variable 82
sl:flavor-allowed-Inlt-keywords function 381
sl:make-hardcopy-stream function 359
sl :set-system-source-file 181
sl:*trace-bar-p* variable 78
sl :*trace-bar-rate* variable 78
sl:*trace-columns-per-Ievel* variable 78
sl:*trace-old-style* variable 78
sl:unadvlse-1 function 81
sl:unbln-file function 98

:operation-handled-p method of sl:vanllla-fiavor 378
:whlch-operatlons method of sl:vanllla-fiavor 378

sl:vanllla-fiavor flavor 378
signal function 344, 369

473

August 1986 Index

Defining Flavors to Signal Conditions 369
Simple Screen Output 239

Tools for Compiling Single Functions 120
Single Step Command 61

Debugger Commands for Breakpoints and Single Stepping 57
si:pkg-user-package 24

Set Stack Size Command 63
Set sleep time between updates Peek command 99

File Types of Lisp Source and Compiled Code Files 119
:source-category Option For defsystem 152
:source-category Option For :module 166

Show Source Code Command 35
Source Compare (m-X) Zmacs command 282
Source Compare Merge (m-X) Zmacs command 282

System source files 197
Compiler Source-Level Optimizers 135

SPACE Stepper command 325
SPACE Zmacs minibuffer command 232

Program Development: Refining Stripe Density and Spacing 272
special special form 114
Special Characters Recognized by the Inspector 97

Show Special Command 48
Debugger special commands 310

advise special form 79
advise-within special form 83

compiler:add-optimizer special form 135
compiler:make-message-obsolete special form 129

compiler:make-obsolete special form 129
condition-bind special form 369
defsubsystem special form 167

defsystem special form 146, 197, 284
defvar special form 240,298

error-restart-Ioop special form 364
eval-when special form 115

special special form 114
trace special form 73, 323, 325, 329

unadvise special form 81
unadvise-within special form 84

untrace special form 78, 323
unwind-protect special form 369

with-open-stream special form 359
zl :break special form 329

zl :defconst special form 298
zl :*expr special form 130

zl:*fexpr special form 131
zl:*lexpr special form 130

zl:multlple-value special form 349
zl:unspecial special form 115

zl-user:defwindow-resource special form 359
Special variables 133

Module specification 159
Long-form Module Specifications 158
Short-form Module Specifications 156

Specifying compiler environments 137
Split Screen (m-X) Zmacs command 293
[Split Screen] System menu item 294, 364

Backtrace of the call stack 66
Moving around in the stack 37

Bottom of Stack Command 38
Show Stack Command 36

Top of Stack Command 41

474

Program Development Utilities

Current
Debugger Commands for Viewing a

Debugger functions to return values in current
Inspecting a

Debugger Commands for
Set
zl:

Show

meter:

Initial patch
In-progress patch

System
Display
Display
Display
Display
Display

zl:

Single

c-B
c-E
c-N
c-U
c-X

HELP
SPACE

Debugger Commands for Breakpoints and Single
Tracing and

meter:
Supplying a Value to

Program

How the
Mouse documentation

Docu mentation
Program Development: Refining
Program Development: Drawing

Inspecting a named

compiler:
Compiler

Journal

stack frame 31
Stack Frame 31
stack frame 63
stack frame 97
Stack Motion 37
Stack Size Command 63
standard-output variable 303
Standard Value Warnings Command 49

August 1986

Start Kbd Macro (c-X () Zmacs command 292
start-monitor function 222
Start Patch (m-X) 205
Start Private Patch (m-X) 205
state 207
state 207
status 99
status of active processes 99
status of areas 99
status of file system display 99
status of hostat 99
status of window area 99
step function 85, 325
:step option for trace 323, 325
:step option to trace 75
Step Command 61
Step facility 5
step-form variable 85
Stepper 325
Stepper command 325
Stepper command 325
Stepper command 325
Stepper command 325
Stepper command 325
Stepper command 325
Stepper command 325
Stepping 303, 325
Stepping 57
Stepping 323
Stepping Through an Evaluation 85
Stepping through compiled code 57, 61
[Step] trace menu item 323, 325
:step trace Option 75
step-value variable 85
step-values variable 85
stop-monitor function 222
Store Permanently 21
Strategy 238
Stream 66
Stream compiler 109
Stream Compiler Handles Top-level Forms 111
string 364
strings 265, 267
Stripe Density and Spacing 272
Stripes 252
structure 97
Structure of the Compiler 109
style-checker function 127
Style Warnings 127
sUbdirectory 191, 197
Summary of Compiler Actions on Code in a Zmacs

Buffer 299
Summary of Debugger Commands 67

475

August 1986 Index

SUPER key bindings 12, 20
Supplying a Missing Package Prefix 21
Supplying a Value to Store Permanently 21
SUSPEND 303

Entering a Break Loop With SUSPEND, c-SUSPEND 13
Swap Point And Mark (c-X c-X) Zmacs

command 286
Compiler Switches 133

Inspecting a symbol 97
Where Is Symbol (m-X) Zmacs command 263

Finding Out About Symbols 263
Symbols in compiled code files 139

List Matching Symbols (m-X) Zmacs command 263
Symeval in Last Instance Command 49

Keeping Track of Lisp Syntax 247
Syntax attribute 235
sys:abort flavor 364
sys:dump-forms-to-file function 139
sys:file-Iocal-declarations variable 130
sys:trace-compile-flag variable 77
Sys:site;Logical-host.Translations File 182
Sys:site;system-name.system 181
Sys:site;System-name.System File 181,183
System 143

Defining a System 145
Directories Associated with a System 191

Obtaining Information About a System 213
Select System As Tag Table (m-X) Zmacs command 284

Compile System command 180
Compile System Command 177

Load System command 180
Load System Command 175

System Construction Tool 143
Introduction to the System Construction Tool 143

System Declaration File 183, 191
Show System Definition Command 213

Loading System Definitions That Use Logical Pathnames 180
Loading System Definitions That Use Physical

Path names 185
System directory 149
System-directory 149

Display status of file system display 99
File System (F) 102

System facility 143
System file 181

Display system information 99
System maintenance 197

[Inspect] in System menu 93
[Attributes] System menu item 377

[Edit] System menu item 233
[Edit Screen] System menu item 294, 364

[Inspect] System menu item 335
[Split Screen] System menu item 294,364

[Trace] System menu item 323,325
Show System Modifications Command 214

Sys:site; system-name.system 181
Sys:site; System-name.System File 181, 183

System Plan 171
Show System Plan Command 171, 215

Component systems 159
Editing, Hardcopying, Reap-Protecting, and Releasing Systems 187

476

Program Development Utilities August 1986

Loading and Compiling
Other Operations on

Updating
User-defined Operations on

Distribute

Debugger Commands for
File types of the

set:

Obtaining Information on
Save Position (c-X

Systems 175
Systems 187
systems 197
Systems 172
Systems Command 189
System source files 197
System status 99
System Transfer 61
system version-directory file 201
system-version-info function 215
System versions 197
System Versions 215
S) Zmacs command 286

T T T
c-X T 54

Indent For Lisp (T AS or c-m-T AS) Zmacs command 251
Command table 17,29

Global command table 7
Select All Buffers As Tag Table (m-X) Zmacs command 284

Select System As Tag Table (m-X) Zmacs command 284
Table of Module Types and Operations 169

Tag tables 284
Set Tab Width (m-X) Zmacs command 234

Tags Query Replace (m-X) Zmacs command 284
Tags Search (m-X) Zmacs command 284

Select All Buffers As Tag Table (m-X) Zmacs command 284
Sel~ct System As Tag Table (m-X) Zmacs command 284

Tag tables 284
Caveat to Program Developmei1t Tools and Techniques 225

Deriving Methods for Tools and Techniques 227
Features Described in Tools and Techniques 228

Introduction to Tools and Techniques 227
Organization of Tools and Techniques 228
Prerequisites to Tools and Techniques 227

Program Development Tools and Techniques 225
Purpose of Tools and Techniques 227

Scope of Tools and Techniques 227
zl: terminal-io variable 239,344

Moving Text 286
Moving Through Text 286

Files That Maclisp Must Compile 137
Loading System Definitions That Use Logical Pathnames 180
Loading System Definitions That Use Physical Pathnames 185

Compiler Tools and Their Differences 117
throw function 52
Throw Command 52

Set sleep time between updates Peek command 99
Introduction to the System Construction Tool 143

System Construction Tool 143
Debugging tools 5

Caveat to Program Development Tools and Techniques 225
Deriving Methods for Tools and Techniques 227

Features Described in Tools andTechniques 228
Introduction to Tools and Techniques 227

Organization of Tools and Techniques 228
Prerequisites to Tools and Techniques 227

Program Development Tools and Techniques 225
Purpose of Tools a~d Techniques 227

Scope of Tools e.nd Techniques 227

477

August 1986 Index

Compiler Tools and Their Differences 117
Tools for Compiling Code From the Editor Into Your

World 117
Tools for Compiling Files 118
Tools for Compiling Single Functions 120
Tools: Using the Debugger 310

compiler: top-level-form property 116
Controlling the Evaluation of Top-level Forms 115

How the Stream Compiler Handles Top-level Forms 111
The Top-Level Function 359

Top of Stack Command 41
Move To Previous Point (c-m-SPACE) Zmacs

command 286
Jump To Saved Position (c-X J) Zmacs command 286

Options To trace 74
:arg option for trace 76
:arg option for trace 323

:argpdl option for trace 323
:argpdl option to trace 75

:both option for trace 76
:both option for trace 323

:break option for trace 323, 329
:break option to trace 74
:cond option for trace 323
:cond option to trace 75

:entry option for trace 323
:entry option to trace 76

:entrycond option for trace 323
:entrycond option to trace 75
:entryprlnt option for trace 323
:entryprlnt option to trace 75

:error option for trace 323, 329
:error option to trace 74
:exit option for trace 323
:exit option for trace 76

:exitbreak option for trace 323, 329
:exitbreak option to trace 74
:exitcond option for trace 323
:exitcond option to trace 75
:exitprlnt option for trace 323
:exitprlnt option to trace 76

:nil option for trace 323
Options To trace 74

:per-process option for trace 323
:prlnt option for trace 323
:print option to trace 76
:step option for trace 323, 325
:step option to trace 75

:value option for trace 76
:value option for trace 323

:whereln option for trace 323
:wherein option to trace 75

[ARGPDL] trace menu item 323
[Break after] trace menu item 323

[Break before] trace menu item 323
[Cond after] trace menu item 323

[Cond before] trace menu item 323
[Cond break after] trace menu item 323, 329

[Cond break before] trace menu item 323, 329
[Conditional] trace menu item 323

[Error] trace menu item 323, 329

478

Program Development Utilities August 1986

[Per Process]
[Print]

[Print after]
[Print before]

[Step]
[Untrace]
[Wherein]

:argpdl
:break
:cond
:entry

:entrycond
:entryprint

:error
:exit

:exitbreak
:exitcond
:exitprint

:per-process
:print
:step

:whereln
:arg :value :both nil

Controlling the Format Of

trace menu item 323
trace menu item 323
trace menu item 323
trace menu item 323
trace menu item 323, 325
trace menu item 323
trace menu item 323
trace Option 75
trace Option 74
trace Option 75
trace Option 76
trace Option 75
trace Option 75
trace Option 74
trace Option 76
trace Option 74
trace Option 75
trace Option 76
trace Option 75
trace Option 76
trace Option 75
trace Option 75
trace Options 76
trace output 77
trace Output 77
trace special form 73, 323, 325, 329

si: *trace-bar-p* variable 78
si: *trace-bar-rate* variable 78
sl: *trace-columns-per-Ievel* variable 78

trace-compile-flag variable 77 sys:
Trace facility 5
Trace (m-X) Zmacs command 323, 325

sl: *trace-old-style* variable 78

Disable Condition
Enable Condition

Keeping
Debugger Commands for System

Debugger
Debugger

Clear
Proceed
Restart

Set
Clear

Set

ABORT key and
Monitor

RESUME key and
:any-tyl method of

:function option for

:edges-from init option for
:expose-p init option for

:minimum-height init option for

[frace] System menu item 323, 325
Tracing 323
Tracing and Stepping 323
Tracing Command 54
Tracing Command 54
Tracing Function Execution 73
Track of Usp Syntax 247
Transfer 61
Translations file 182
trap 11
Trap Commands 52
Trap on Call Command 53
Trap on Call Command 55
Trap on Call Command 56
Trap on Call Command 56
Trap on Exit Command 53
Trap on Exit Command 56
Traps 52
traps 52
traps 52
traps 52
tv:any-tyl-mlxln 364
tv:any-tyl-mixin flavor 364
tv:choose-varlable-values 369
tv:choose-variable-values function 359, 369
tv:essentlal-wlndow 349
tv:essentlal-window 349
tv:essentlal-window 349

August 1986

u

479

Index

:mlnlmum-wldth init option for tv:essential-wlndow 349
:draw-Ilne method of tv:graphlcs-mlxin 239, 349

tv:graphlcs-mlxln flavor 349
tv:list-mouse-buttons-mlxln flavor 364
tv:make-bllnker function 369
tv:make-wlndow function 344, 354, 359, 364

:process init option for tv:process-mlxin 364
tv:process-mlxin flavor 364

:bllnker-p init option for tv:sheet 349
:change-of-slze-or-marglns method of tv:sheet 349

:Init method of tv:sheet 349
:Inslde-slze method of tv:sheet 349

:refresh method of tv:sheet 349, 364
tv:sheet flavor 349,369
tv:sheet-following-bllnker function 369
tv:window flavor 344, 349
Two Windows (c-X 2) Zmacs command 293

View Two Windows (c-X 3) Zmacs command 293
Modified Two Windows (c-X 4) Zmacs command 293

bin file type 119
:type Option For :module 159

zl: typep function 377
Proceed types 310, 369

User-defined Module Types 171
Table of Module Types and Operations 169

File Types of Lisp Source and Compiled Code Files 119
Types of Patch Files 199

File types of the patch directory file 201
File types of the system version-directory file 201

u
unadvise special form 81

sl: unadvlse-1 function 81
un advise-within special form 84

Find Unbalanced Parentheses (m-X) Zmacs
command 252

sl: unbin-file function 98
unbreakon function 329
uncompile function 120

zl-user: undefsystem function 166
dbg: un monitor-location function 65

Un monitor Variable Command 57
zl: unspeclal special form 115

untrace special form 78, 323
[Untrace] trace menu item 323
Untracing Function Execution 78
unwind-protect special form 369
Up Comment Line (m-P) Zmacs command 249
Update Attribute List (m-X) Zmacs command 234
Update compiler warnings database 123

Set sleep time between updates Peek command 99
Updating systems 197

Functions used inside the Debugger 63
:Use Dynamic Environment command 22
:Use Lexical Environment command 22
User-defined Module Types 171
User-defined Operations on Systems 172
:uses-deflnitions-from Option For :module 161

General uses of Debugger 5
Introduction to Program Development Utilities 1

u

480

Program Development Utilities August 1986

v V
dbg: val function 64

:value option for trace 323
:value option for trace 76

:arg :value :both nil trace Options 76
Show Value Command 36

values variable 74
values variable 329

Debugger functions to return values in current stack frame 63
Examining values of instance variables 63

Supplying a Value to Store Permanently 21
Show Standard Value Warnings Command 49

:operation-handled-p method of si: vanilla-flavor 378
:which-operations method of si: vanilla-flavor 378

si: vanilla-flavor flavor 378
applyhook variable 89

arglist variable 329
arglist variable 74

compiler:compiler-verbose variable 133
compller:functlons-deflned variable 130

compller:functlons-referenced variable 130
compller:lnhibit-style-warnings-switch variable 133

compller:obsolete-function-warning-switch variable 133
compiler:open-code-map-switch variable 133

dbg:*show-backtrace* variable 66
dbg:*debug-Io-overrlde* variable 66

dbg :*defer-package-dwlm* variable 66
dbg :*frame* variable 66

dbg:*show-backtrace* variable 66
evalhook variable 87

Ignore variable 130
si:advised-functions variable 82

sl:*trace-bar-p* variable 78
si:*trace-bar-rate* variable 78

sl:*trace-columns-per-Ievel* variable 78
si:*trace-old-style* variable 78

step-form variable 85
step-value variable 85

step-values variable 85
sys:file-Iocal-declaratlons variable 130

sys:trace-compile-flag variable 77
values variable 329
values variable 74

zl:all-special-switch variable 133
zl:query-io variable 369

zl:standard-output variable 303
zl:terminal-io variable 239,344

Describe Variable At Point (c-sh-V) Zmacs command 265
Rebound Variable Bindings During Evaluation 24

Monitor Variable Command 54
Unmonitor Variable Command 57

v

Overriding Variable-defined-but-never-referenced Warnings 131
Compiler variables 130

Debugger Variables 66
Examining values of instance variables 63

Finding Out About Variables 265
Instance variables 345,357,359
Special variables 133

Major version 201
Minor version 201

File types of the system version-directory file 201

August 1986

Major version number 197
Minor version number 197,203

Obtaining Information on System Versions 215
System versions 197

View Directory (m-X) Zmacs command 271
Debugger Commands for Viewing a Stack Frame 31

481

Index

View Two Windows (c-X 3) Zmacs command 293
Debugger breakpoints vs. break loops 57
Debugger commands vs. CP commands 7,17,29

Break loops vs. Debugger breakpoints 13
Set Vsp (m-X) Zmacs command 234

w w W
Windows (W) 102

Compiler warnings 293, 299
Compiler Style Warnings 127

Controlling Compiler Warnings 127
Function-referenced-but-never-defined Warnings 130

Overriding Variable-defined-but-never-referenced Warnings 131
Save Compiler Warnings Command 123
Show Compiler Warnings Command 123

Show Standard Value Warnings Command 49
Compiler Warnings Database 123

Print compiler warnings database 123
Update compiler warnings database 123

Using the Compiler Warnings Database 309
Compiler Warnings (m-X) Zmacs command 123, 309

Edit Compiler Warnings (m-X) Zmacs command 123, 309
Edit File Warnings (m-X) Zmacs command 123

Load Compiler Warnings (m-X) Zmacs command 123, 309
what-files-call function 263
:wherein option for trace 323
:wherein option to trace 75
[Wherein] trace menu item 323
:wherein trace Option 75
where-Is function 263
Where Is Symbol (m-X) Zmacs command 263
:which-operations method of si:vanllla-fiavor 378
who-calls function 263

Mark Whole (c-X H) Zmacs command 291
:who-line-documentation-string method 364
Whoppers 349

Set Tab Width (m-X) Zmacs command 234
Choose-variable-values window 359, 364

The Basic Arrow Window 349
tv: window flavor 344, 349

Display status of window area 99
Scroll Other Window (c-m-V) Zmacs command 293

One Window (c-X 1) Zmacs command 293
Other Window (c-X 0) Zmacs command 293

Window Debugger 5,310
Calling the Window Debugger 61, 63

:Window Debugger (c-m-W) command 19
Window Debugger Command 63

[Edit] Window Debugger menu item 310
[Retry] Window Debugger menu item 310

The Arrow Window: Interaction, Processes, and the Mouse 364
Displaying Zmacs and Other Windows 294

Programming Aids for Flavors and Windows 377
Using Flavors and Windows 343

482

Program Development Utilities August 1986

x

y

z

Using Multiple Windows 293
Two Windows (c-X 2) Zmacs command 293

View Two Windows (c-X 3) Zmacs command 293
Modified Two Windows (c-X 4) Zmacs command 293

Windows (W) 102
Advising One Function Within Another 83

meter: with-monitoring macro 223
with-open-stream special form 359

Atom Word Mode (m-X) Zmacs command 236
How the Inspector Works 93

Tools for Compiling Code From the Editor Into Your World 117
Preparing to Write Code 233

Writing and Editing Code 231

X
Put Register (c-X X) Zmacs command 291

y
Yank (c-Y) Zmacs command 288

Killing and Yanking 288
Yank Pop (m-Y) Zmacs command 288

Tools for Compiling Code From the Editor Into Your World 117

z
zl:all-special-switch variable 133
zl :apropos function 263
zl:break special form 329
zl:dbg function 14,329
zl:defconst special form 298
zl:*expr special form 130
zl :*fexpr special form 131
zl:if-for-lispm macro 137
zl:if-for-maclisp macro 137
zl:if-for-maclisp-else-lIspm macro 137
zl:if-ln-lIspm macro 137
zl :if-in-macllsp macro 138
zl:*lexpr special form 130
zl:llstarray function 260
zl :Ioad function 301
zl:load-and-save-patches function 212
zl:multlple-value special form 349
zl:peek function 99
zl:pkg-goto function 240
zl:pllst function 263
zl :print-system-modlficatlons function 216
zl:query-Io variable 369
zl :standard-output variable 303
zl :step function 85, 325
zl:termlnal-Io variable 239,344
zl:typep function 377
zl:unspecial special form 115

Entering the Debugger With break And zl:dbg Functions 14
zl:lbase 24
zl :read-preserve-dellmlters 24
zl-user:defwlndow-resource special form 359
zl-user:descrlbe-flavor function 377

x

y

z

483

August 1986 Index

zl-user:undefsystem function 166
Using Zmacs 231

Using The HELP Key in Zmacs 231
Displaying Zmacs and Other Windows 294

Compiling Code in a Zmacs Buffer 299
Summary of Compiler Actions on Code in a Zmacs Buffer 299

Atom Word Mode (m-X) Zmacs command 236
Auto Fill Mode (m-X) Zmacs command 236

Backward Kill Sexp (c-m-RUSOUT) Zmacs command 288
Beep (c-G) Zmacs command 286

Brief Documentation (c-sh-D) Zmacs command 265, 267
c-sh-C Zmacs command 117

Call Last Kbd Macro (c-X E) Zmacs command 292
Compile Buffer (m-X) Zmacs command 299

Compile Changed Definitions (m-X) Zmacs command 299
Compile Changed Definitions Of Buffer (m-sh-C) Zmacs command 299

Compile File (m-X) Zmacs command 301
Compile Region (c-sh-C) Zmacs command 299

Compile Region (m-X) Zmacs command 117
Compiler Warnings (m-X) Zmacs command 123,309

Deinstall Macro (m-X) Zmacs command 292
Describe Flavor (m-X) Zmacs command 377

Describe Variable At Point (c-sh-V) Zmacs command 265
Dired (m-X) Zmacs command 271

. Disassemble (m-X) Zmacs command 335
Display Directory (c-X c-D) Zmacs command 271

Down Comment Line (m-N) Zmacs command 249
Edit Callers (m-X) Zmacs command 270

Edit Changed Definitions (m-X) Zmacs command 282
Edit Changed Definitions Of Buffer (m-X) Zmacs command 282

Edit Combined Methods (m-X) Zmacs command 378
Edit Compiler Warnings (m-X) Zmacs command 123, 309

Edit Definition (m-.) Zmacs command 266,377,378
Edit File Warnings (m-X) Zmacs command 123

Edit Methods (m-X) Zmacs command 293,378
Electric Shift Lock Mode (m-X) Zmacs command 236

End Kbd Macro (c-X)) Zmacs command 292
Evaluate And Replace Into Buffer (m-X) Zmacs command 303

Evaluate Buffer (m-X) Zmacs command 303
Evaluate Changed Definitions (m-X) Zmacs command 303

Evaluate Changed Definitions Of Buffer (m-sh-E) Zmacs command 303
Evaluate Into Buffer (m-X) Zmacs command 303

Evaluate Minibuffer (m-ESCAPE) Zmacs command 303
Evaluate Region (c-sh-E) Zmacs command 303

Fill Long Comment (m-X) Zmacs command 249
Find File (c-X c-F) Zmacs command 234

Find Unbalanced Parentheses (m-X) Zmacs command 252
Function Apropos (m-X) Zmacs command 266

HELP Zmacs command 292
Incremental Search (c-S) Zmacs command 284

Indent For Comment (c-; or m-;) Zmacs command 249
Indent For Lisp (T AS or c-m-T AS) Zmacs command 251

Indent New Comment Line (m-L I NE) Zmacs command 249
Indent New Line (L I NE) Zmacs command 251
Indent Region (c-m-\) Zmacs command 251

Indent Sexp (c-m-Q) Zmacs command 251
Insert Buffer (m-X) Zmacs command 291

Insert File (m-X) Zmacs command 291
Install Macro (m-X) Zmacs command 292

Install Mouse Macro (m-X) Zmacs command 292
Jump To Saved Position (c-X J) Zmacs command 286

484

Program Development Utilities August 1986

Kill Comment (c-m- ;) Zmacs command 249
Kill Sexp (c-m-K) Zmacs command 288
Lisp Mode (m-X) Zmacs command 236

List Callers (m-X) Zmacs command 263, 270
List Changed Definitions (m-X) Zmacs command 282

List Changed Definitions Of Buffer (m-X) Zmacs command 282
List Combined Methods (m-X) Zmacs command 378

List Matching Lines (m-X) Zmacs command 284
List Matching Symbols (m-X) Zmacs command 263

List Methods (m-X) Zmacs command 378
Load Compiler Warnings (m-X) Zmacs command 123,309

Load File (m-X) Zmacs command 301
Long Documentation (m-sh-O) Zmacs command 265,267

Macro Expand Expression All (m-sh-M) Zmacs command 332
Macro Expand Expression (c-sh-M) Zmacs command 332

Mark Definition (c-m-H) Zmacs command 288
Mark Whole (c-X H) Zmacs command 291

Modified Two Windows (c-X 4) Zmacs command 293
Move To Previous Point (c-m-SPACE) Zmacs command 286

Multiple Edit Callers (m-X) Zmacs command 270
Multiple List Callers (m-X) Zmacs command 270

Name Last Kbd Macro (m-X) Zmacs command 292
One Window (c-X 1) Zmacs command 293

Open Get Register (c-X G) Zmacs command 291
Other Window (c-X 0) Zmacs command 293

Print Modifications (m-X) Zmacs command 282
Push Pop Point Explicit (m-SPACE) Zmacs command 286

Put Register (c-X X) Zmacs command 291
Query Replace (m-%) Zmacs command 284

Quick Arglist (c-sh-A) Zmacs command 269
Quit (c-Z) Zmacs command 310

REFRESHr Dired (c-X D) Zmacs command 271
Reparse Attribute List (m-X) Zmacs command 234

Replace (c-%) Zmacs command 284
Reverse Search (c-R) Zmacs command 284
Save Position (c-X S) Zmacs command 286

Save Region (m-W) Zmacs command 288
Scroll Other Window (c-m-V) Zmacs command 293

Select All Buffers As Tag Table (m-X) Zmacs command 284
Select Buffer (c-X B) Zmacs command 286

Select Previous Buffer (c-m-L) Zmacs command 286
Select System As Tag Table (m-X) Zmacs command 284

Set Backspace (m-X) Zmacs command 234
Set Base (m-X) Zmacs command 234

Set Comment Column (c-X ;) Zmacs command 249
Set Fill Column (c-X F) Zmacs command 236

Set Fonts (m-X) Zmacs command 234
Set Key (m-X) Zmacs command 292

Set Lowercase (m-X) Zmacs command 234
Set Nofill (m-X) Zmacs command 234

Set Package (m-X) Zmacs command 234
Set Patch File (m-X) Zmacs command 234

Set Pop Mark (c-SPACE) Zmacs command 286
Set Tab Width (m-X) Zmacs command 234

Set Vsp (m-X) Zmacs command 234
Source Compare (m-X) Zmacs command 282

Source Compare Merge (m-X) Zmacs command 282
Split Screen (m-X) Zmacs command 293

Start Kbd Macro (c-X () Zmacs command 292
Swap Point And Mark (c-X c-X) Zmacs command 286

Tags Query Replace (m-X) Zmacs command 284

485

August 1986 Index

\

Tags Search (m-X) Zmacs command 284
Trace (m-X) Zmacs command 323,325

Two Windows (c-X 2) Zmacs command 293
Up Comment Line (m-P) Zmacs command 249

Update Attribute List (m-X) Zmacs command 234
View Directory (m-X) Zmacs command 271

View Two Windows (c-X 3) Zmacs command 293
Where Is Symbol (m-X) Zmacs command 263

Yank (c-Y) Zmacs command 288
Yank Pop (m-Y) Zmacs command 288

Zmacs Command Completion 232
Fundamental Zmacs editing commands 23

c- ? Zmacs minibuffer command 232
COMPLETE Zmacs minibuffer command 232

END Zmacs minibuffer command 232
HELP Zmacs minibuffer command 232

RETURN Zmacs minibuffer command 232
SPACE Zmacs minibuffer command 232

zwel :*send-mall-about-patch* 208

\
[Set \] Inspector menu item 95

\

