

symboliCSTM

3 Text Editing and
Processing

Cambridge I Massachusetts

Text Editing and Processing
999020

July 1986

This document corresponds to Genera 7.0 and later releases.

The software, data, and information contained herein are proprietary to, and comprise
valuable trade secrets of, Symbolics, Inc. They are given in confidence by Symbolics
pursuant to a written license agreement, and may be used, copied, transmitted, and
stored only in accordance with the terms of such license. This document may not be
reproduced in whole or in part without the prior written consent of Symbolics, Inc.

Copyright© 1986,1985,1984,1983,1982,1981,1980 Symbolics,lnc. All Rights
Reserved.
Portions of font library Copyright © 1984 Bitstream Inc. All Rights Reserved.
Portions Copyright © 1980 Massachusetts Institute of Technology. All Rights Reserved.

Symbollcs, Symbollcs 3600, Symbollcs 3670, Symbollcs 3675, Symbollcs 3640,
Symbollcs 3645, Symbollcs 3610, Genera, Symbollcs-L1sp®, Wheels, Symbollcs
Common Lisp, Zetallsp®, Dynamic Windows, Document Examiner, Showcase,
SmartStore, SemantiCue, Frame-Up, Firewall, S-DYNAMICS®, S-GEOMETRY,
S-PAINT, S-RENDER®, MACSYMA, COMMON LISP MACSYMA, CL-MACSYMA,
LISP MACHINE MACSYMA, MACSYMA Newsletter and Your Next Step In
Computing are trademarks of Symbolics, Inc.

Restricted Rights Legend
Use, duplication, and disclosure by the Government are subject to restrictions as set
forth in subdivision (b)(3)(ii) of the Rights in Technical Data and Computer Software
Clause at FAR 52.227-7013.

Symbolics, Inc.
4 New England Tech Center
555 Virginia Road
Concord, MA 01742

Text written and produced on Symbolics 3600-family computers by the Documentation
Group of Symbolics, Inc.
Text masters produced on Symbolics 3600-family computers and printed on Symbolics
LGP2 Laser Graphics Printers.
Cover design: Schafer/LaCasse
Printer: CSA Press
Printed in the United States of America.

Printing year and number: 888786987654321

Iii

July 1986 Text Editing and Processing

Table of Contents

Page

I. Zmacs Manual 1

1. Introduction to the Zmacs Manual 3

Overview of the Zmacs Manual 4
Introduction to Zmacs 6
Zmacs Manual Notation Conventions 9

2. Getting Started in Zmacs 11

Entering Zmacs 12
Zmacs Help 14
Organization of the Screen 18
Inserting Text 24
Numeric Arguments 26
Introduction to Moving the Cursor 28
Introduction to Erasing Text 30
Creating and Saving Buffers and Files 32
Zmacs Commands for Formatting Text 35
Executing CP Commands From Zmacs 43
Leaving Zmacs 44

3. Getting Help in Zmacs 47

Getting Out of Trouble 48
Finding Out About Zmacs Commands 51
The Editor Menu 57
More on the Minibuffer 59
Getting Information About Buffers and Regions 61

4. Moving the Cursor in Zmacs 63

Overview of Moving the Cursor 64
Redisplaying the Window 65
Moving the Cursor with the Mouse 67
Motion Commands 71
Motion by Lisp Expression 76
Motion by Paragraph 79
Motion by Page 80

iv

Text Editing and Processing July 1986

Motion with Respect to the Whole Buffer 81

5. Deleting and Transposing Text in Zmacs 83

Deleting V s. Killing Text 84
Deleting and Transposing Characters 90
Deleting and Transposing Words 92
Deleting and Transposing Lisp Expressions 93
Deleting and Transposing Lines 95
Deleting Sentences 97

6. Working with Regions in Zmacs 99

What is a Zmacs Region? 100
Registers in Zmacs 104
Commands to Mark Regions 106
Region-Manipulating Commands 109

7. Searching, Replacing, and Sorting in Zmacs 113

Searching in Zmacs 114
Locating and Replacing Strings Automatically 118
Tag Tables and Search Domains 122
Sorting 128

8. Manipulating Buffers and Files in Zmacs 129

Working with Buffers and Files 130
Selecting, Listing, and Examining Buffers 132
Buffer Commands 133
Appending, Prepending, and Inserting Text 141
Comparing Files and Buffers 142
Window Commands 146
File Manipulation Commands 148
Buffer and File Attributes 155
Dired Mode 163

9. Setting the Zmacs Major Mode 175

Major Editing Modes 176

10. Zmacs Speller 179

Using the Zmacs Speller 180
Speller Commands for Spelling 184
Speller Dictionaries 187

v

July 1986 Text Editing and Processing

11. Word Abbreviations

Using Word Abbreviations
Word Abbreviation Commands

12. Using Character Styles in Zmacs

Introduction to the Character Style Commands
Character Style Commands in Zmacs

13. Changing Case and Indentation in Zmacs

Changing Case
Indentation

14. Editing Lisp Programs in Zmacs

Introduction
Commenting Lisp Code
Evaluating and Compiling Lisp Programs
Parenthesizing Lisp Expressions
Expanding Lisp Expressions
Locating Source Code to Edit
Patching

15. Customizing the Zmacs Environment

Overview
Built-in Customization Using Zmacs Minor Modes
Major Modes
Creating New Commands with Keyboard Macros
Key Bindings
How to Specify Zmacs Variable Settings
Customizing Zmacs in Init Files

Appendix A. Zmacs Help Command Summary

Zmacs Commands for Finding Out About the State of Buffers
Zmacs Commands for Finding Out About the State of Zmacs
Zmacs Commands for Finding Out About Lisp
Zmacs Com~ands for Finding Out About Flavors
Zmacs Commands for Interacting with Lisp

II. Font Editor

16. Font Basic Concepts

197

198
200

205

206
210

213

214
216

223

224
226
229
233
234
235
242

251

252
253
256
257
267
269
272

277

278
279
280
281
282

283

285

vi

Text Editing and Processing

16.1 Attributes of TV Fonts
16.2 Standard TV Fonts

17. Entering and Leaving FED

18. Font Editor Basic Concepts

18.1 FED, the Subsystem
18.2 Selecting a Font

18.2.1 Creating a New Font
18.2.2 Displaying Characters in the Font

18.3 Selecting a Character
18.3.1 From the Character Select Menu
18.3.2 By Creating a New Character
18.3.3 From the [Show Font] Display
18.3.4 With the C Command
18.3.5 By Renaming Characters

19. Drawing

19.1 Drawing Characters with the Mouse
19.2 The Nonmouse Cursor

20. Viewing and Altering a Character in the Character Box

20.1 What the Lines Mean
20.2 Altering the Character Box

21. The Gray Plane

21.1 Getting Things Into Gray
21.1.1 With [Swap Gray]
21.1.2 With [Gray Char]

21.2 Merging Characters with the Gray Plane

22. Saving Characters and Pieces of Characters in Registers

22.1 Saving a Drawing Into a Register
22.2 Retrieving the Contents of a Register
22.3 Retrieving the Black Plane While Manipulating Registers

23.· Transformations

23.1 Clearing the Drawing
23.2 Rotating Drawings
23.3 Reflecting Drawings
23.4 Moving the Drawing

July 1986

285
287

289

291

291
294
297
297
297
298
298
298
298
298

299

299
300

301

301
302

303

303
303
303
304

307

307
307
307

309

309
309
309
312

July 1986

23.5 Drawing Lines and Curves
23.6 Stretching and Contracting

23.6.1 Stretching a Drawing Horizontally
23.6.2 Contracting a Drawing Horizontally
23.6.3 Stretching a Drawing Vertically
23.6.4 Contracting a Drawing Vertically

24. The Sample String

25. Adjusting the Display

25.1 Positioning the Drawing
25.2 Setting the Box Size in the Drawing Pane
25.3 Setting the Height and Width of the Drawing Pane

26. Reading and Writing Files

26.1 Reading Files
26.2 Writing Files

27. Command List

27.1 Menu and Keyboard Commands
27.1.1 Configuration and Drawing Transformation
27.1.2 Gray Plane Menu Items
27.1.3 Outside World Interface Menu Items
27.1.4 Evaluating Forms From FED

27.2 Keyboard-only Commands
27.3 Mouse Sensitivities

Index

27.3.1 The Drawing Pane
27.3.2 The Draw Mode Menu
27.3.3 The Sample Pane
27.3.4 The Character Select Pane
27.3.5 The Font Parameters Menu
27.3.6 The Register Pane
27.3.7 The List Fonts and Show Font Displays

vii

Text Editing and Processing

312
316
316
316
316
316

321

323

323
324
324

325

325
326

327

327
327
328
329
330
330
330
330
331
331
331
331
331
332

333

viii

Text Editing and Processing July 1986

List of Figures

Figure 1. Initial FED Display 290
Figure 2. Tall Configuration 295
Figure 3. Wide Configuration 296
Figure 4. [Rotate (R)] 310
Figure 5. [Rotate (M)] 311
Figure 6. [Reflect] 313
Figure 7. The X axis (-) 314
Figure 8. Moving the Drawing with [Move Black] 315
Figure 9. Stretching Horizontally 317
Figure 10. Contracting Horizontally 318

July 1986 Zmacs Manual

PART I.

Zmacs Manual

2

Text Editing and Processing July 1986

3

July 1986 Zmacs Manual

1. Introduction to the Zmacs Manual

4

Text Editing and Processing July 1986

Overview of the Zmacs Manual

Scope

Organization

The Zmacs Manual is primarily a reference manual and is
intended for all users of Zmacs on the Lisp Machine. It contains
both conceptual overview and reference material that together
describe the Zmacs editor. We assume that you have already read
the User's Guide to Symbolics Computers.

The first three chapters contain introductory material for users
who are unfamiliar with Zmacs concepts. Experienced users can
skim the remaining chapters, which are organized according to
editing function, and use them as reference material.

"Introduction" gives an overview of Zmacs and describes Zmacs
documentation conventions in this manual.

"Getting Started" introduces basic Zmacs concepts and commands,
such as how to enter text, move the cursor, and make simple
corrections.

"Getting Help" describes ways to get out of trouble and how to
get Zmacs information during editing.

"Moving the Cursor" includes descriptions of both mouse and
keyboard motion commands.

"Deleting and Transposing Text" explains Zmacs deletion and text
retrieval concepts, as well as the ways to delete and transpose
text.

"Working With Regions" tells how to manipulate blocks of text.

"Searching, Replacing, and Sorting" describes the commands for
locating and replacing character strings in one or many files.

"Manipulating Buffers and Files" gives more information on
manipUlating blocks of text, inserting files, keeping track of
everything, and editing your directory.

"Setting the Major Mode" documents the major editing modes and
their characteristics.

"Changing Case and Indentation" includes many commands for
changing code, comments, or text to uppercase or lowercase, as
well as commands for handling white space, indentation, and
formatting.

"Editing Lisp Programs" the ways in which Zmacs is tailored for
use in writing and editing programs in Lisp.

"Customizing the Zmacs Environment" describes how to fine tune

5

July 1986 Zmacs Manual

Overview of the Zmacs Manual, cont'd.

your Zmacs environment using modes to set it up, keyboard
macros to perform special editing tasks, binding keys to the
commands of your choice, setting Zmacs variables to alter your
standard system auIts, and saving the customized environment in
init files.

Appendix A summarizes Zmacs help commands according to the
context in which they are available.

6

Text Editing and Processing July 1986

Introduction to Zmacs

Overview

Commands

Zmacs, the Lisp Machine editor, is built on a large and powerful
system of text-manipulation functions and data structures, called
Zwei.

Zwei is not an editor itself, but rather a system on which other
text editors are implemented. For example, in addition to Zmacs,
the Zmail mail reading system also uses Zwei functions to allow
editing of a mail message as it is being composed or after it has
been received. The subsystems that are established upon Zwei
are:

• Zmacs, the editor that manipulates text in files

• Dired, the editor that manipulates directories represented as
text in fues

• Zmail, the editor that manipulates text in mailboxes

• Converse, the editor that manipulates text in messages

Since these subsystems share Zwei in the dynamically linked Lisp
environment, many of the commands available as Zmacs
commands are available in other editing contexts as well.

In this manual, we discuss Zmacs commands in the context of
Zmacs only. We also describe Dired, the directory editor, since it
is used within Zmacs.

Zmacs commands are Lisp functions that perform the editing
work. Every Zmacs command has a name, and many commands
are bound to keys. When a command is bound to a keystroke
combination, you invoke it by pressing those keys. For example,
the Forward Word command is invoked by typing the keystroke
M-F. When a command is not bound to a set of keystrokes, Zmacs
calls it an extended command and you invoke it using its name
preceded by M-K For example, the command View Mail, an
extended command, is invoked by View Mail M-K

Command tables assign keystrokes and names to commands. Each
time you press a key, Zmacs looks up the function associated with
that key. For ordinary characters, the function com-standard, in
the standard command table, inserts the character once.

7

July 1986 Zmacs Manual

Introduction to Zmacs, cont'd.

Keystrokes
A keystroke has a character component and a modifier component,
and is performed by pressing a primary key (alphanumeric),
possibly while holding down a shift key or a group of shift keys.
The primary key held down with either the SHI FT or SY ~lBOL keys
determines the character part of a keystroke. Whether you hold
down the other shift keys, CONTROL, META, HYPER, and SUPER,
determines the modifier part of the keystroke.

In general, commands that begin with a CONT ROL (c-) key
modifier operate on single characters, commands that begin with
a META (1"1-) key modifier operate on words, sentences, paragraphs,
and regions, and commands that begin with a CONTROL ~lETA
(c-I"I-) modifier operate on Lisp code.

Prefix character commands consist of more than one keystroke per
command. For example, to invoke the command c-H F, you first
type the prefix character c-H and then the primary key F. Prefix
character commands are not case-sensitive - that is, Zmacs
converts a lowercase character following a prefix character
command (like c-H) to uppercase. For example, c-H f is
equivalent to c-H F.

Zmacs commands are self-delimiting. Unless otherwise specified,
you do not need to type a carriage return or other terminating
character to finish typing a command.

Extended Commands
Extended commands extend the range of commands past the one
or-two-keystroke limitation. You invoke Zmacs extended
commands by name using the I"I-H command:

Extended Command

Prompts for the name of a Zmacs command and executes that
command.

Command completion is provided. See the section "Completion for
Extended Commands (I"I-H Commands)" in User's Guide to
Symbolics Computers.

Command Tables
There is always a currently active command table (comtab).
When you invoke a command, Zmacs looks it up in the associated
command table, checks to see if it is valid in the current context,
and performs the function. Zmacs uses many comtabs, including
the standard comtab, a comtab for commands that begin with the
c-H prefix, and a comtab for reading pathnames in the minibuffer.

8

Text Editing and Processing July 1986

Introduction to Zmacs, cont'd.

Many commands have no meaning outside their own limited
context. Sometimes you might get a message or see online
documentation about a command that says
Not avai 1 abl e in current context. Those commands that are not
accessible via a keystroke and not accessible via M-X are likely to
be commands that do not work in the current context. For
example, a command that is part of Dired is only available on a
key when you are in Dired.

You can invoke a command that is not available in the current
comtab with the C-M-X command. C-M-X works like M-X: you
press the keys and then type the command name in the
minibuffer. This is primarily intended for debugging new editor
commands that have not yet been installed on any key. Using
C-M-X to invoke a command that is not in the current comtab
because it works only in some other context is a sure way to get
into trouble.

C-M-X Any Extended Command

Prompts for the name of a Zmacs command and executes that
command.

Command completion is provided.

9

July 1986 Zmacs Manual

Zmacs Manual Notation Conventions

Zmacs Notation
Conventions and Examples

The word current, when describing a word, line, paragraph, page,
or any Zmacs-recognizable piece of text, refers to the text that
currently contains (or immediately follows) the cursor.

The invocation of a command shows exactly what keys you must
press to invoke, or call, a command. We use the following format
to describe Zmacs commands:

invocation
alternate invocation
alternate invocation

Formal description of command

Name

Since each extended (M-X) command contains its name as part of
its invocation, we do not repeat the name again on that line.

Example 1 of Zmacs
Notation Conventions

M->

Moves point to the end of the buffer.

Goto End

With a numeric argument n between 0 and 10, moves point to a
place ni10 of the way from the end of the buffer to the beginning.

(The M- > command goes to the end of the buffer - its name is
Goto End.)

Example 2 of Zmacs
Notation Conventions

Dired (M-X)

Prompts for the name of a directory to edit with Dired.

(The Dired (M-X) command is an extended command that enters
the directory editor.)

10

Text Editing and Processing

Zmacs Manual Notation Conventions, cont'd.

Example 3 of Zmacs
Notation Conventions

n-M
c-n-M
n-RETURN
c-n-RETURN

July 1986

Back To Indentation

Positions point before the first nonblank character on the current
line.

(Back to Indentation has several possible invocations that all move
back to the first nonblank character on the line.)

11

July 1986 Zmacs Manual

2. Getting Started in Zmacs

12

Text Editing and Processing July 1986

Entering Zmacs

Introduction to
Entering Zmacs

Entering Zmacs
with SELECT E

You can enter, or invoke, the editor in several ways: Press
SELECT E, use the mouse, or run either the function ed or the
function zwei:edit-functions. You can also use the command
Select Activity, specifying either Zmacs or Editor as its argument.

You can invoke the editor by pressing the SELECT key and then
the letter E:

Entering Zmacs
with the Mouse

Entering Zmacs
with ed

• If you have already been in the editor since booting the
machine, Zmacs returns you to the same place in the same
buffer that you last used.

• If this is the first time you are entering Zmacs since booting
the machine, Zmacs puts you in an empty buffer named
Buffer-1.

SELECT E enters or returns you to the editor from anyplace in the
system, not just when you are talking to Lisp.

You can invoke the editor using the mouse.

Summon a System menu by clicking right twice [(R2)]. Then
click left on the Edit option [Edit (L)], which puts you into a
Zmacs buffer. As for SELECT E, if you are returning to the editor
Zmacs puts you back at the same place in the same buffer, and if
you are entering Zmacs for the first time it puts you in an empty
buffer.

The Lisp function ed enters Zmacs from a Lisp Listener. See the
function ed in User's Guide to Symbolics Computers.

When reentering Zmacs within a login session, ed enters the
editor, preserving its state as it was when you left. When
entering Zmacs for the first time during a login session, ed
initializes Zmacs and creates an empty buffer.

arg can have these values.

13

July 1986 Zmacs Manual

Entering Zmacs, cant'd.

Value

t

Pathname or string

Defined symbol

The symbol zwei:reload

Entering Zmacs

Description

The ed function enters the editor,
creates an empty buffer, and selects
it.

The ed function enters the editor and
finds or creates a buffer with the
specified file in it.

The editor tries to find the source
definition of that symbol for you to
edit. A defined symbol can be, for
example, a function, macro, variable,
flavor, or system.

The system reinitializes the editor .
. This destroys all existing buffers, so
use this only if you have to.

with zwei:edit-functions
The Lisp function zwei:edit-functions also enters Zmacs from a
Lisp Listener.

zwei:edit-functions Function

zwei:edit-functions is like ed in that inside the editor process it
throws you back into the editor, whereas from another process it
just sends a message to the editor and selects the editor's
window. zwei:edit-functions gives spec-list to the editor in the
same way that Edit Callers and similar editor commands would.
See the section "The Zmacs Edit Callers Commands", page 239.

This command is useful when you have collected the names of
things that you need to change, for example, using some program
to generate the list. spec-list is a list of deimitions; these are
either function specs (if the definitions are functions) or symbols.

Zmacs sorts the list into an appropriate order, putting definitions
from the same file together, and creates a support buffer called
Funct i on-Specs-to-Edi t-n. It selects the editor buffer
containing the first definition in the list.

14

Text Editing and Processing July 1986

Zmacs Help

Introduction to
Zmacs Help

Zmacs has many features that provide information about Zmacs
commands, existing code, buffers, and files. Two features are
generally useful: the HELP key and completion. See the section
"Getting Help in Zmacs", page 47.

Introduction to HELP
Pressing the HELP key in a Zmacs editing window gives
information about Zmacs commands and variables. For
descriptions of Zmacs variables: See the section "How to Specify
Zmacs Variable Settings", page 269. The kind of information it
displays depends on the key you press after HELP.

HELP ?

HELP A

HELP C

HELP D

HELP L

HELP U

HELP V

HELP 1.1

HELP SPACE

Displays a summary of HELP options.

Displays names, key bindings, and brief
descriptions of commands if their names or the
first lines of their help documentation contain a
string you specify. The A refers to M-X
Apropos, the command equivalent. If you enter
the command with a numeric argument, only
the names of the commands are searched for
the string, and not the help documentation.

Displays the name and description of a
command bound to a key you specify.

Displays documentation for a command whose
name you specify.

Displays a listing of the last 60 keys you
pressed.

Offers to undo the last major Zmacs operation,
such as sorting or filling, when possible.

Displays the names and values of Zmacs
variables whose names contain a string you
specify. For descriptions of Zmacs variables:
See the section "How to Specify Zmacs Variable
Settings", page 269.

Displays the key binding for a command you
specify. (The W refers to where.)

Repeats the last HELP command.

15

July 1986 Zmacs Manual

Zmacs Help, cont'd.

Introduction to Completion
Some Zmacs operations require you to provide names - for
example, names of extended commands, Lisp objects, buffers, or
files. Often you do not have to type all the characters of a name;
Zmacs offers completion over some names. When completion is
available, the word Compl eti on appears in parentheses above the
right side of the minibuffer.

You can request completion when you have typed enough
characters to specify a unique word or name. For extended
commands and most other names, completion works on initial
substrings of each word. For example, M-X c SPACE b is
sufficient to specify the extended command Compile Buffer.
SPACE, COMPLET E, RET URN, and END complete names in different
ways. Press HELP or click right once, [(R)], on the editor window
or minibuffer to list possible completions for the characters you
have typed. c-/ displays every command that contains the
substring.

SPACE

HELP or c-?

[(R)]

c-/

COMPLETE

RET URN or END

Introduction to Yanking

Completes words up to the current word.

Displays possible completions in the typeout
area.

Pops up a menu of possible completions.

Runs Apropos for each of the partially typed
words in the name.

Completes as much as possible. -This could be
the full name.

Confirms the name if possible, whether or not
you have seen the full name.

Yanking is getting back previously killed text or previously typed
minibuffer commands. Using a few keystrokes, you can retrieve
editing commands you have previously typed or restore any piece
of text you have previously killed. Popping is moving through the
history of previous' commands or killed text.

To get back the last piece of text killed, press c-Y. To work your
way back through the kill history, press M-Y repeatedly.

To get back the last command typed, press C-M-Y. To work your

'16

Text Editing and Processing July 1986

Zmacs Help, cont'd.

way back through the command history, press M-Y repeatedly.
This technique works only on editor commands that use the
minibuffer in some way. Commands like c-N or c-P are not kept
in the history.

You can also select items from the entire kill history or command
history, or search a part of these histories using string-matching.

Here are the commands for yanking in the kill history:

c-Y

c-0 c-Y

c-sh-Y

c-O c-sh-Y

Yanks the first element in the kill history.

Mter c-Y, M-Y yanks the previous element in
the kill history. Subsequent M-Y s move down
the kill history.

Displays the elements of the kill history. You
can click left on any item in the history to
insert it in your buffer. Only the first 25
elements of the history are shown. Click left
on (N more el ements in hi story.) to display
the rest of the history.

Yanks the first element in the kill history that
matches a string you supply.

Mter c-sh-Y, M-sh-Y yanks a previous element
in the kill history that matches the string you
supplied. Subsequent M-sh-Y s move down the
kill history matching the same string. If
pressed after a c-Y, M-sh-Y prompts for a
string to match.

Displays the elements of the kill history that
match a string you supply. You can click left
on any item in the history to insert it in your
buffer. Only the first 25 matching elements of
the history are shown. Click left on (N more
el ements in hi story.) to display the rest of the
matching history.

Here are the commands for yanking in the command history:

Yanks the first element in the command
history.

Mter C-M-Y, yanks the previous element in the
command history. Subsequent M-Y s move down
the command history.

17

July 1986 Zmacs Manual

Zmacs Help, cont'd.

c-(3 c-n-V

c-n-sh-V

n-sh-V

c-(3 c-n-sh-V

Displays the elements of the command history
You can click left on any item in the history to
execute that command. Only the first 25
elements in the history are shown. Click left
on (]V more elements in history.) to display
the rest of the history.

Yanks the first element in the command history
that matches a string you supply.

After c-n-sh-V, n-sh-Y yanks a previous
element in the command history that matches
the string you supplied. Subsequent n-sh-V s
move down the command history matching the
same string. If pressed after a c-n-V, n-sh-V

prompts for a string to match.

Displays the elements of the command history
that match a string you supply. You can click

I

left on any item in the history to execute that
command. Only the first 25 elements in the
history are shown. Click left on (]V more
el ements in hi story.) to display the rest of the
history.

For complete descriptions of killing and yanking: See the section
"Deleting and Transposing Text in Zmacs", page 83.

18

Text Editing and Processing July 1986

Organ ization of the Screen

Introduction to the
Organization of
the Screen

Zmacs divides its window into several areas: the editor window,
the echo area, and the mode line, each of which contains its own
type of information.

Zmacs Editor Window
The biggest area, the editor window, shows the text you are
editing. You can edit several different items at once with Zmacs;
each item is edited in a separate editing environment called a
buffer.

Editor Window's Buffer
Zmacs gives every buffer a name. At any time you are editing
only one of them, the selected buffer. When we speak of what
some command does to "the buffer", we are talking about the
currently selected buffer. Multiple buffers in Zmacs make it easy
to switch among several files; the mode line tells you which one
you are editing.

Editor Window's
Cursor and Point

The small blinking rectangle, the cursor, usually appears
somewhere within the buffer, showing the position of point, the
location at which editing takes place. Although the cursor covers
a single character, we consider point to be at the left edge of the
cursor, between the character the cursor is blinking on and the
previous character.

Editor Window's Typeout
When you request some other information from Zmacs (for
example, if you ask for help or a listing of a file directory), Zmacs
needs room to display this type of information. I t prints this
typeout in a typeout window (at the top of the editor window),
which temporarily overlays the text in the editor window, using as
much room as it needs.

Since the typeout is not part of the file you are editing, Zmacs
delineates it from the editor buffer by drawing a line across the
window between them (if both are present). The typeout window
goes away if you type any command; if you want to make it go
away immediately but not do anything else, you can press SPACE.

The cursor, which appears at the end of the typeout, then moves
back to its original location in the buffer.

19

July 1986 Zmacs Manual

Organization of the Screen, cont'd.

Zmacs Echo Area
A few lines at the bottom of the screen make up what is called
the echo area. Echoing means displaying the commands that you
type. Zmacs commands are usually not echoed at all, but if you
pause in the middle of a multicharacter command, then all the
characters (including numeric arguments and prefIxes) typed so
far are echoed. This is intended to prompt you for the rest of the
command. The rest of the command is echoed, too, as you type
it. This behavior is designed to give confIdent users optimum
response, while giving hesitant users maximum feedback.

Echo Area's Minibuffer
Many Zmacs commands prompt you for additional information.
This prompting happens in a small window within the echo area
called the minibuffer.

When Zmacs prompts you, the cursor in the main editing window
stops blinking and a blinking cursor appears in the minibuffer.
Over the minibuffer, in the Zmacs mode line, some prompting text
appears, indicating what information Zmacs is prompting you for.

When you type a response to the prompt, that response is inserted
in the minibuffer. You can edit text in the minibuffer using the
same Zmacs commands used in the main Zmacs window.

When you are done typing (and possibly editing) a response to the
prompt, the RET URN key fInishes your response.

Zmacs Mode Line
The line above the echo area is known as the mode line. It is the
line that usually starts with ZMACS (Fundamental). Its purpose is
to display information about the current buffer.

The mode line consists of:

• The name of the major mode
• rhe name of the minor mode(s), if any
• The name of the buffer
• The version number of the fIle
• The status of the buffer
• A message telling whether the buffer contents extend above

and/or below the screen

The mode line has this format:

20

Text Editing and Processing July 1986

Organization of the Screen, cont'd.

ZHACS (major-mode minor-mode(s» buffer (version) buffer-status
[position-flag]

Mode Line's Major-mode
major-mode is always the name of the major mode you are in. At
any time, Zmacs is in one and only one of its possible major
modes. The major modes available include:

• Fundamental mode (which Zmacs starts out in)
• Text mode
• Lisp mode
• MACSYMA mode

For full details about all the major modes, how they differ, and
how to select one: See the section "Setting the Zmacs Major
Mode", page 175.

Mode Line's Minor-mode
minor-mode is a list of the minor modes that are turned on at the
moment. For example:

Fill Auto Fill Mode

Electric Shift-lock Electric Shift Lock Mode

Abbrev Word Abbrev Mode

Overwrite Overwrite Mode

For more information: See the section "Built-in Customization
Using Zmacs Minor Modes", page 253.

Mode Line's Buffer
buffer is the name of the workspace that holds the text you are
editing. A buffer can be named in one of two ways:

• By Zmacs, with a name that corresponds to the existing file
that it contains or with its standard name for an empty buffer

• By you, with any name you like

When a buffer contains a file, the buffer name is the pathname of
that fue, rearranged with the file name first and the host and
directory at the end. For a description of pathname components:
See the section "Pathnames" in Reference Guide to Streams, Files,
and I/O. When a buffer does not contain a file, the buffer name
is a string.

21
July 1986 Zmacs Manual

Organization of the Screen, cont'd.

Buffers that do not contain files are empty, newly created, or
temporary buffers. When Zmacs creates and names a buffer, that
name begins and ends with an asterisk. When you create and
name a buffer, on the other hand, its name is of your choosing.

When you first start up and enter Zmacs, your buffer is either:

• An empty buffer called *Buffer-1 *, which is the only one that
exists when Zmacs starts up

• A buffer containing an existing file, which Zmacs appropriately
calls by its name

For information on multiple buffers: See the section
"ManipUlating Buffers and Files in Zmacs", page 129.

Mode Line's Version
(version) is the version number most recently visited or saved.
The mode line does not display any version number if the file is
on a flie system that does not support version numbers, such as
UNIX.

Mode Line's Buffer-status
If the mode line displays *, then changes have been made in the
buffer that have not been saved in the file. If the buffer has not
been changed since it was read in or saved, the mode line does
not display a asterisk.

Mode Line's Position-flag
When the mode line displays the message [More above], then your
screen shows the end of your buffer contents; when the mode line
shows [More below], then your screen shows the beginning of your
buffer contents. When it says [More above and below], then the
buffer contents extend above and below the part that the screen
displays. When the display shows the entire buffer contents, this
message does not appear at all.

Mode Line Example
ZMACS (Text) text. text /dess/doc/books/ VAX: * [Hare above and
below]

In this sample mode line, we are in Zmacs Text Mode, editing a
file named text. text, which resides in the directory /dess/doc/books
on the host named VAX. The file has been changed since we last
saved it (indicated by the *), and the file contents extend above
and below the portion that Zmacs displays on the screen.

22

Text Editing and Processing July 1986

23

July 1986 Zmacs Manual

24

Text Editing and Processing July 1986

Inserting Text

Introduction to
Inserting Text

To insert new text anywhere in the buffer, position the cursor at
the place you want the new text to go and type the new text.
Zmacs always inserts characters at the cursor. The text to the
right of the cursor is pushed along ahead of the text being
inserted.

Inserting Characters
When you type in new text, you are actually issuing Zmacs
commands. Ordinary printing characters are called self-inserting
because when you type one, it inserts itself into the text in your
buffer.

You can give numeric arguments to the keystrokes that insert
printing characters into the buffer; Zmacs interprets these
arguments as repeat counts. See the section "Numeric
Arguments", page 26.

Example: c-80 * inserts a line of 80 asterisks at the cursor.

Starting a New Line
Newline characters delimit lines of text. They have no visible
printed form, but are present at each line break. You can break
one line into two lines by inserting a newline (pressing RETURN)
where desired. Similarly, you can merge two lines into one by
deleting the intervening newline.

Correcting Typos
To correct text you have just inserted, use the RUBOUT key.
RUBOUT deletes the character before the cursor (not the one over
which the cursor is positioned; that is the character after the
cursor). The cursor and the rest of that line move to the left.

When given a numeric argument, RUBOUT saves the succession of
deleted characters.

Example: c-20 RUBOUT kills the previous 20 characters and saves
them together.

See the section "Deleting Vs. Killing Text", page 84.

When the cursor is positioned on the first character on a line and
you press RUBOUT, the preceding newline character is deleted and
Zmacs appends the text on that line to the end of the previous
line.

25

July 1986 Zmacs Manual

Inserting Text, cont'd.

Wrapping Lines

Inserting

When you add too many characters to one line without breaking it
with a RET URN, the line grows to occupy two (or more) lines on
the screen, with an exclamation point at the extreme right
margin of all but the last of them. The! means that the
following screen line is not really a distinct line in the file, but
just the continuation of a line too long to fit the screen.

Formatting Characters
You can insert most characters directly into the buffer by simply
typing them, but other characters act as editing commands and do
not insert themselves. If you need to insert a character that is
normally a command (for example, TAB or RUBOUT), use the c-Q

(Quoted Insert) command first to tell Zmacs to insert the
following character into the buffer literally. c-Q prompts in the
echo area for the character to be inserted and inserts it into the
text.

26

Text Editing and Processing July 1986

Numeric Arguments

Overview of
Numeric Arguments

Many Zmacs commands take numeric arguments, which you type
before the main command keystroke. Specify a numeric argument
by pressing any combination of any of the modifier keys (c-, M-,
s-, or h-) with the number. This way, you can type sequences of
commands more easily without frequently alternating keys.

Numeric arguments to commands appear in the echo area when
you do not type the command immediately. With no delay, the
argument does not appear.

In general, use negative arguments to tell a command to move or
act backwards. You can specify a negative argument by pressing
any modifier key with the minus sign followed by the number.
Most commands treat a numeric argument consisting of just a
minus sign the same as -1.

Example of
Numeric Arguments

c-F is the command to move the cursor forward one character.
c-3 c-5 c-F moves point forward 35 characters;
c-- c-3 c-5 c-F moves point backward 35 characters.

Throughout this manual, instead of writing out c-4 c-5 c-F or
M-4 M-5 M-B, we usually abbreviate to c-45F or M-45B.

Defaults to
Numeric Arguments

Many commands have default numeric arguments. This means
that in the absence of a numeric argument, the command behaves
as if the default argument were given. Most commands have a
default argument of 1. This includes all the commands that
interpret numeric arguments as repeat counts. Some commands
have a different default and still others have no default: their
behavior in the absence of a numeric argument is different from
their behavior with a numeric argument.

c-U Quadruple Numeric Arg

This special command prefixes other commands, usually
representing a numeric argument of 4. You can repeat c-U; it
multiplies the numeric argument by 4 each time. For example,
c-U c-U c-F moves point forward 16 characters. Sometimes
instead of representing a numeric argument of 4, c-U alters the
action of a command slightly; for example, when used with the

27

July 1986 Zmacs Manual

Numeric Arguments, cont'd.

command Set Pop Mark, c-U takes different actions with the
mark. (For a description of the Set Pop Mark command: See the
section "Working with Regions in Zmacs", page 99.)

28

Text Editing and Processing July 1986

Introduction to Moving the Cursor

Description of
Moving the Cursor

To do more than insert characters, you have to know how to move
the cursor.

For complete descriptions of the commands summarized here and
other cursor-moving commands: See the section "Moving the
Cursor in Zmacs", page 63.

Summary of
Moving the Cursor

c-A
Moves to the beginning of the line.

c-E
Moves to the end of the line.

c-F
Moves forward one character.

c-B
Moves backward one character.

M-F
Moves forward one word.

M-B
Moves backward one word.

Beginning of Line

End of Line

Forward

Backward

Forward Word

Backward Word

M-E Forward Sentence
Moves to the end of the sentence in text mode. .

M-A Backward Sentence
Moves to the beginning of the sentence in text mode.

c-N Down Real Line
Moves down one line.

c-P Up Real Line
Moves up one line.

M-] Forward Paragraph
Moves to the start of the next paragraph.

M- [Backward Paragraph
Moves to the start of the current (or last) paragraph.

c-H] Next Page
Moves to the next page.

c-H [
Moves to the previous page.

Previous Page

29

July 1986 Zmacs Manual

Introduction to Moving the Cursor, cont'd.

c-V, SCROLL Next Screen
Moves down to display the next screenful of text.

M-V, M-SCROLL Previous Screen
Moves up to display the previous screenful of text.

M-< Goto Beginning
Moves to the beginning of the buffer.

M-) Goto End
Moves to the end of the buffer.

30

Text Editing and Processing July 1986

Introduction to Erasing Text

Description of
Erasing Text

Summary of
Erasing Text

Most commands that erase text from the buffer save it so that
you can get it back if you change your mind, or move or copy it
to other parts of the buffer. These commands are known as kill
commands. The rest of the commands that erase text do not save
it; they are known as delete commands. The delete commands
include c-D and RUBOUT, which delete only one character at a
time, and those commands that delete only spaces or line
separators. (However, when given a numeric argument, c-D and
RUBOUT do save that sequence of deleted characters on the kill
ring.) Commands that can destroy significant amounts of
information generally kill. The commands' names and individual
descriptions use the words "kill" and "delete" to say which they
do.

If you issue a kill command by mistake, you can retrieve the text
with c-Y, the Yank command. For details on killing and
retrieving text: See the section "Working with Regions in
Zmacs", page 99.

c-D Delete Forward
Deletes the character after point.

RUBOUT Rubout
Deletes the character before point.

M-D Kill Word
Kills forward one word.

M-RUBOUT Backward Kill Word
Kills backward one word.

M-K Kill Sentence
Kills forward one sentence.

c-H RUBOUT Backward Kill Sentence
Kills backward one sentence.

c-K Kill Line
Kills to the end of the line or kills an end of line.

c-w Kill Region
Kills region (from point to mark).

c-M-K Kill Sexp
Kills forward over exactly one Lisp expression.

31

July 1986 Zmacs Manual

Introduction to Erasing Text, cont'd.

c-M-RUBOUT Backward Kill Sexp
Kills backward over exactly one Lisp expression.

M-' Delete Horizontal Space
Deletes any spaces or tabs around point.

c-H c-o Delete Blank Lines
Deletes any blank lines following the end of the current line.

M- Delete Indentation
Deletes RET URN and any indentation at front of line.

32

Text Editing and Processing July 1986

Creating and Saving Buffers and Files

Description

Summary

You do all your text editing in Zmacs buffers, which are
temporary workspaces that can hold text. To keep any text
permanently you must put it in a file. Files store data for any
length of time.

To edit the contents of a file using Zmacs, you create a buffer
and copy the file contents into it. To add text to the end of the
buffer, move point to the end of the buffer and type the new text.
Editing proceeds in the buffer, not in the file. The file remains
unchanged until you explicitly write the modified buffer contents
to the file.

If you create multiple buffers, Zmacs keeps track of which files
you are editing in which buffers. This association allows you to
use completion to switch among buffers while you are editing
them; you do not have to type the file name more than once.
Zmacs always displays the name of the file you are currently
editing.

The information in this section allows you to find or create and
save a file. For complete information on buffers and riles: See
the section "Manipulating Buffers and Files in Zmacs", page 129.

c-X c-F Find File
Reads the specified file into a buffer.

c-X c-S Save File
Saves out the changes to the current file.

c-X 8 Select Buffer
Selects the specified buffer.

c-X c-W Write File
Writes out the buffer to the specified file.

Creating a Buffer
Zmacs creates your initial buffer when you first enter the editor.
To create other buffers, use c-X 8, Select Buffer, to create an
empty buffer or c-X c-F, Find File, to create either an empty
buffer or a buffer containing a file.

c-X 8 prompts for the name of the buffer to which you want to
go. Type the buffer name and RET URN. If the buffer exists,
Zmacs switches to that buffer and displays it on the screen. If
the buffer does not already exist, Zmacs offers to let you create it
by terminating the buffer name with c-RETURN. When you create
a new (empty) buffer, the display is blank.

33

July 1986 Zmacs Manual

Creating and Saving Buffers and Files, cont'd.

The other way to create another buffer is c-X c-F, Find File.
(c-X c-F) is described in detail in "Editing Existing Files". c-X
c-F prompts for the name of a fue, terminated by RET URN.

When you type c-X c-F for the fIrst time in a Zmacs session,
Zmacs offers you, as a default file name, an empty fue (with the
Lisp suffIX native to your host computer) in your home directory
on your host computer. For example:

System
Lisp Machine
UNIX
VMS

Empty Buffer Name
foo.lisp
foo.l
foo.lsp

Base and Syntax Default Settings for Lisp

When you read a file that has a Lisp file type into the buffer, if
that file does not begin with an attribute line containing Base and
Syntax attributes that the file "has neither a Base nor a Syntax
attribute" and announces that it will use the defaults, Base 10
and Zetalisp. See the section "Buffer and File Attributes in
Zmacs", page 155.

Buffer Contents with c-X c-F

The first time you use c-X c-F, you can create an empty buffer
using the Zmacs default file name, create an empty buffer using a
name that you specify, or create a buffer containing an existing
file:

• To create an empty buffer with the initial default file name as
the one Zmacs associates with your buffer, press RETURN.

• To create a new empty buffer, respond with any name. Zmacs
switches to an empty buffer, gives the buffer the new name,
and displays (New File) in the echo area.

• To create a new buffer containing some file, respond to the
prompt with the name of that fue. Zmacs switches to an empty
buffer, reads that file in, and names the buffer appropriately.

34

Text Editing and Processing July 1986

Creating and Saving Buffers and Files, conf'd.

Saving a File

Creating a File

Once you have the file in your buffer, you can make changes and
then save the file with c-H c-S, the Save File command. This
makes the changes permanent and actually changes the file.
Until then, the changes are only inside your Zmacs buffer and the
file itself is not really changed.

The first time you save or write the buffer, Zmacs creates the
new file. You can create a new file with c-H c-S. Since a new
file does not have a name associated with it yet, Zmacs asks for a
name for the new file. It offers a default pathname, which is the
name of the buffer. If you wish to save the file out to the default
pathname, simply type a RET URN in response to the prompt.

If you wish to save the buffer in another file, provide that name
as your response. Completion is offered to simplify your response.

You can also write the buffer out with c-H c-W, Write File.
Zmacs prompts in the minibuffer 'for the name of the place you
want to write the buffer's contents. c-H c-W also offers a default
pathname, in this case, the name you supplied with c-H c-F.

Editing Existing Files
To tell Zmacs to edit text in a file, use c-H c-F, the Find File
command, and give Zmacs a file name. You can enter the
pathname of any file on any host that is reachable by network
connections from your Lisp Machine. If the file already exists,
Zmacs locates the file and reads it into your buffer.

/!

"

35

July 1986 Zmacs Manual

Zmacs Commands for Formatting Text

Introduction

Producing
Formatted Text

The extended commands Format Region (M-H), Format Buffer
(M-H), and Format File (M-H) display text in a formatted style
using formatting instructions that you embed in the text. You
can send the formatted text to a supported printer (LGP1, LGP2,
or DMP1) by giving the Format command a numeric argument.
This prompts for an output device.

Page numbers are included by default on hardcopy output. You
can turn off page-numbering with a numeric argument of o.
Zmacs also supports a number of commands for using character
styles which allow text formatting of a somewhat different sort.
See the section "Character Styles in Zmacs".

Producing formatted text requires two steps:

1. Entering the text and formatting instructions
2. Formatting that text with one of the Zmacs formatting

commands

First you use the Zmacs editor to enter the text and embed
formatting instructions, which can be environments and
commands. These instructions format the text by, for example,
specifying fonts, creating bulletted lists, and inserting headings.

For example, to specify that you want to italicize a group of
words, like the title of a book, use the italicize environment. To
emphasize a word, you might use the boldface environment.

This text:

@i(Gone With the Wind), by Margaret Mitchell, is a @b(great) book.

produces this, when formatted:

Gone With the Wind, by Margaret Mitchell, is a great book.

Formatting instructions all begin with an @. The "i" tells the
formatter that you want the italicize environment, and the
parentheses (delimiters) enclose the text within that environment.
Other valid delimiters can be 0, [], 0, {}, '''', ", or It.

How to Create an Environment
Environments can be either short form, @i (ital ;c;ze this), or
long form, where the commands @begin(i) and @end(i) act as
delimiters for the text that they enclose. For example, to italicize
an entire passage:

36

Text Editing and Processing July 1986

Zmacs Commands for Formatting Text, cont'd.

Basic Text

@begin(i)
Environments can be either short form or long form. The long
form uses the commands @@begin and @@end to act as delimiters
for the text that they enclose.
@end(i)

produces this:

Environments can be either short form or long form. The long
form uses the commands @begin and @end to act as delimiters for
the text that they enclose.

(The @s inside the environment must be doubled so the formatter
does not interpret them as format commands.)

The following environment enumerates, that is, numbers
sequentially each separate line of text within it:

@begin(enumerate)
Paragraph 1

Paragraph 2

Paragraph 3
@end(enumerate)

produces the following output:

1. Paragraph 1
2. Paragraph 2
3. Paragraph 3

Formatting Environments
Environments can be either filled or unfilled:

Filled

Unfilled

Fills each output line to capacity within the
limits of the display.

Keeps output lines exactly as you entered them,
as in an example.

Basic formatting environments are:

b

c

Displays enclosed text in boldface.

Displays enclosed text in capital letters.

37

July 1986 Zmacs Mariual

Zmacs Commands for Formatting Text, conf'd.

center

description

display

enumerate

equation

example

figure

flushleft

flushright

format

fullpagefigure

fullpagetable

g

heading

Centers each line in an unfilled environment.

Outdents paragraphs with single spacing and
wider margins in a filled environment.

Displays enclosed text in Roman (default)
typeface and widens both margins in an unfilled
environment.

Moves the left margin to the right, displaying a
number in the left margin for each paragraph.

Displays equations in an unfilled environment
using fixed-width typeface. It widens both
margins.

Displays examples in an unfilled environment
using fixed-width typeface. It widens both
margins.

Displays figures in an unfilled environment
using Roman (default) typeface with no changes
to the margins.

Displays unfilled text aligned at the left
margin. It recognizes and includes leading
spaces.

Displays unfilled text aligned at the right
margin. I t ignores trailing spaces.

Displays enclosed text in an unfilled
environment using Roman (default) typeface
with no changes to the margins. Any
horizontal alignment that is needed should be
done with tabbing commands (for example, @\
and @».

Displays figures in an unfilled environment
using Roman (default) typeface with no changes
to the margins.

Displays tables in an unfilled environment using
Roman (default) typeface with no changes to
the margins.

Displays enclosed text in Greek typeface.

Centers each line in boldface type in an unfilled
environment.

38

Text Editing and Processing July 1986

Zmacs Commands for Formatting Text, cont'd.

i

itemize

majorheading

multiple

outputexample

p

quotation

r

subheading

table

text

verbatim

t

How to Use
Formatting Commands

Displays enclosed text in italics.

Moves the left margin to the right, displaying a
bullet in the left margin for each paragraph.

Centers each line in boldface type in an unfilled
environment.

Keeps enclosed text together as a single item
within itemize, enumerate, or description
environments, regardless of intervening
paragraph breaks.

Displays typeout examples in an unfilled
environment using fixed-width typeface. It
widens the right margin.

Displays enclosed text in bold italics.

Displays enclosed text in a filled environment
using Roma~ (default) typeface. It widens both
margins.

Displays enclosed text in Roman typeface. For
example to override the default typeface of the
italicize environment: @I (The 11; ad @r[and]

The Odyssey) produces The Iliad and The
Odyssey.

Displays each line in boldface type in an
unfilled environment flush to the left margin.

Displays tables in an unfilled environment using
Roman (default) typeface with no changes to
the margins.

Displays enclosed text in a filled environment.

Displays enclosed text in an unfilled
environment in fixed-width typeface with no
changes to the margins.

Displays enclosed text in fixed-width typeface.

Formatting commands control the format of the text (such as
blank spaces between lines, tab settings, line breaks) and whether
the formatter centers the text or aligns it against one of the
margins.

39

July 1986 Zmacs Manual

Zmacs Commands for Formatting Text, cont'd.

Basic Text

For example:

@i(Gone With the Wind),@* by Margaret Mitchell @# is a @b(great) book.

produces:

Gone With the Wind,
by Margaret Mitchell is a great book.

The @* command forces a line break and the @# command leaves
a blank em-space for a special character to be drawn in.

Some commands, like the @* in the example, are complete by
themselves. Others accept arguments, which must be enclosed in
delimiters. There is no such thing as a long form for a
command; you cannot say @begin(bl ankspace) for example.

Formatting Commands

@blankspace

@caption

@foot

@note

@tabclear

On paper, leaves the specified amount of blank
space on the page (for example,
@blankspace(lline)). Distance can be specified
with:
in, inch, inches, "
cm, centimeters
mm, millimeters
pt, pts, point, points
pica, picas
em, ems, quad, quads
char, chars, character, characters, en, ens
line, lines

On the screen, display truncates the blank
space to roughly one inch of vertical space.

Creates a figure caption enclosed in square
brackets, for example, use @capt; on [Th is; s the
caption] to produce: [Figure Caption: This is
the caption.]

Puts in a parenthetical note. Does not create
bottom-of-the-page footnotes or numbering.

Puts in a parenthetical note.

Clears all tabs. It takes no arguments: use
@tabclearO.

40

Text Editing and Processing July 1986

Zmacs Commands for Formatting Text, cont'd.

@tabdivide

@tabset

Sets tabs to divide text into the specified
number of columns, for example,
@tabdivide(4) sets tabs to divide the following
text into 4 columns across the page.

Sets one or more tabs at specified positions.
Distance can be specified with:
in, inch, inches, "
cm, centimeters
mm, millimeters
pt, pts, point, points
pica, picas
em, ems, quad, quads
char, chars, character, characters, en, ens
line, lines

These punctuation-character commands consist of an @ followed
by one punctuation character. They take no arguments.

@#

@*

@'

@=

@>

@\

Leaves a blank space (quad space or em-space)
for a special character.

Forces a line break.

Generates a period and forces a single
significant space after it (used for
abbreviations).

Sets a tab at the left side of text to be
centered. Do not use in a filled environment.
Works with the tab commands (@\ @>, or @=).

Sets a tab at the left side of text to be flushed
right. Do not use in a filled environment.
Works with the tab command (@\, @>, or @=).

Moves the cursor to the next tab stop or marks
the end of text being centered or flushed right.
Do not use in a filled environment.

Sets a tab at the current cursor position. Do
not use in a ruled environment.

Inserts an @ in the text.

Ignores all the white space between it and the
next text in the source.

41

July 1986 Zmacs Manual

Zmacs Commands for Formatting Text, conf'd.

Example of Using
Tabs to Format Text

This example shows how to use tab stops to:

• Divide text into four columns
• Center text
• Flush right text
• Reset tabs

@begin(format)
@tabdivide(4)
1.@*@*@*
2.@=a@\@=b@\@=c@\@=d
3.@=e@=f@=g@=h
4.Left@=Center@>right
5.Left@=Center@>right@\
@tabcl earO
6.Left@=Center@>right
@end(format)

produces:

1. *
2. a
3. e
4. LefCenter
5.LefCenter
6.Left

Zmacs Format Commands

*
b
f

right
Center

c
g

*
d
h

right

right

The second (and final) step in formatting is to issue one of the
formatting commands, which interprets the text and formatting
instructions into the formatted text.

You can use the commands to format the text on your screen or
on a printer. Check first on the screen before sending output to
a printer.

Use a numeric argument to send the output to an LGP1, LGP2,
or DMPl. Page numbers are included by default on hardcopy
output. You can turn off page-numbering with a numeric
argument of O.

42

Text Editing and Processing July 1986

Zmacs Commands for Formatting Text, cont'd.

Format Region

Format Buffer

Format File

Format Region (M->O

Displays the contents of the region formatted as a text
environment. With a numeric argument, the command prompts
for an output device. Page numbers are included by default on
hardcopy output. You can turn off page-numbering with a
numeric argument of O.

Format Buffer (M-X)

Displays the contents of the buffer, formatted as a text
environment. With a numeric argument, the command prompts
for an output device. Page numbers are included by default on
hardcopy output. You can turn off page-numbering with a
numeric argument of O.

Format File (M-X)

Displays the contents of the file, formatted as a text environment.
With a numeric argument, the command prompts for an output
device. Page numbers are included by default on hardcopy
output. You can turn off page-numbering with a numeric
argument of O.

43

July 1986 Zmacs Manual

Executing CP Commands From Zmacs

If you wish to execute a CP command while editing, you can press
SUSPEND and issue the command in the typeout window, you can
press SELECT -L and issue the command to a Lisp Listener, or you
can issue the M-X Execute CP Command command.

Execute CP Command
M-X Execute Cp Command

Reads a CP command line from the minibuffer and executes that
command. All output from the command appears in the Zmacs
typeout window.

44

Text Editing and Processing July 1986

Leaving Zmacs

Overview of
Leaving Zmacs

Leaving Zmacs

Use a system-wide cominand to switch programs, such as SELECT,
FUNCT I ON S, the System menu, or, if you have multiple windows
on the screen, position the mouse to another window and click.

with the SELECT Key
A set of windows is always available by pressing the SELECT key
and then one of the following keys:

Key Program
C Converse, for messages to other users
D Document Examiner, for examining documentation
E Editor, the Zmacs text and program editor
F File system editor for access to files and directories
I Inspector, for inspecting and modifying data

structures
L Lisp
M Mail reading and sending system
N Notifications, for rereading system notifications
P Peek, a system status display
T Telnet, a virtual terminal utility for logging in to

other hosts
X Flavor Examiner, for examining the structure of

flavors that are defined in the Lisp environment

Leaving Zmacs Via
the System Menu

The System menu is a momentary menu that lists several choices
for acting upon windows and calling programs (for example, a
Lisp Listener, Zmacs, or the Inspector). You can always call the
System menu by clicking [(R2)] (the right mouse button twice or
holding down the SHIFT key and clicking right once). Use the
System menu to do many things, among them:

• Create new windows.
• Select old windows.
• Change the size and placement of windows on the screen .
• Hardcopy a file.

45

July 1986 Zmacs Manual

Leaving Zmacs, cont'd.

Leaving Zmacs
with c-2

The Zmacs command c-2 returns you to the window in which the
ed function was most recently called, usually the Lisp Listener.

46

Text Editing and Processing July 1986

47
July 1986 Zmacs Manual

3. Getting Help in Zmacs

48
Text Editing and Processing July 1986

Getting Out of Trouble

Overview of
Getting Out of Trouble

Sometimes you type the wrong command. Mostly it is obvious
what you have done wrong, and it is a simple matter to undo it.
There are, however, some kinds of trouble you can get into that
require special remedies. For example, you might accidentally
delete large chunks of text you need or you might begin to type a
command and then change your mind.

This section tells you how to recover from these situations.

Getting Out of
Prefixes and Prompts

Most of the commands we have described are single keystrokes,
but some keystrokes are preflxes that must be completed with a
second keystroke to specify a command. c-X is the most
important of these.

Getting Out of
Keystroke Prefixes

If you press a c-X and don't mean it, you can get out by pressing
either c-G or ABORT. These are general "get me out of here"
commands, which you should use whenever you get yourself into a
confused state. ABORT and c-G are, for the most part, synonymous
in Zmacs.

Getting Out of
Minibuffer Prompts

Sometimes you accidentally type a command that prompts for
some additional information, or you type such a command on
purpose and change your mind afterwards. When Zmacs prompts
and you just want to get out of the minibuffer and back to where
you were, press ABORT. If, instead, you wish to cancel arid reenter
your response, use c-G, which clears any typein but leaves you
still in the minibuffer. When the minibuffer is empty, c-G

cancels the minibuffer command. (With some echo area prompts,
you have to use ABORT.)

ABORT Abort At Top Level

Cancels the last command typed. I t also cancels numeric
arguments and region marking.

49

July 1986 Zmacs Manual

Getting Out of Trouble, cont'd.

Large Deletions

c-G Beep
Cancels the last command. It also cancels numeric arguments
and region marking, except when given an argument. It cancels
one thing at a time, so that if you've typed a number of
commands or responses, you must use use successive c-Gs to
cancel each one and return to top level.

Do not delete large pieces of text by repeatedly pressing RUBOUT
and c-D. Apart from being slow, text deleted character-by
character is gone for good.

Instead, use delete and kill commands that save deleted regions in
the kill history. c-K, M-K, and the commands that deal with
regions easily wipe out and save larger chunks. Also, RUBOUT or
c-D with a numeric argument erases that many characters all at
once and saves them in the kill history. For full descriptions of
these delete and kill commands: See the section "Deleting and
Transposing Text in Zmacs", page 83.

Getting Text Back
The system has different histories for different contexts. One of
these is always the current history. The two histories that you
need to use for yanking in Zmacs are the kill history and the
command history. The kill history remembers pieces of text that
you killed or copied into it. In the context of Zmacs, the
command history remembers all the editor commands that use the
minibuffer in any way.

Additions to the histories are placed at the top of the list, so that
history elements are stored in reverse chronological order - the
newer elements at the top of the history, the older elements
toward the bottom. A history remembers everything that has
been typed to it since the last cold boot - it has no size limit.

Yanking commands pull in the elements of the history. Top-level
commands start a yanking sequence; for example, c-Y yanks back
the last text killed from the kill history, and C-M-Y yanks back
the last command performed in the minibuffer. M-Y performs all
subsequent yanks in the same sequence; for example, pressing M-Y
while the kill history is the current history yanks the next item
from that history.

A yanking sequence ends when you type new text, execute a form
or command, or start another yanking sequence.

For complete descriptions of killing and yanking: See the section
"Working with Regions in Zmacs", page 99.

50

Text Editing and Processing July 1986

51

July 1986 Zmacs Manual

Finding Out About Zmacs Commands

Overview of
Finding Out About
Zmacs Commands

Sometimes you want to know if a Zmacs command exists that
performs a certain function. Or, you might think that you know
what a certain keystroke does, but you still want to make sure, or
refresh your memory about its exact usage. This manual is one
resource you might use in these circumstances. Zmacs itself has
a number of built-in self-documentation facilities. This section
describes some ways to get at this documentation.

Finding Out About
Zmacs Commands
with HELP

The HELP key is a preflx to a useful group of commands giving
various kinds of online help. If you forget what a command does,
which keystrokes perform an action, or have no idea how to
accomplish something, press HELP.

Whenever you have a question of any kind, press HELP. Zmacs
prompts you in the minibuffer for details on what kind of help. If
you don't know, press HELP again and it tells you, in the typeout
window, how to flnd what you're looking for. The typeout window
displays right over the editor window. The actual contents of the
buffer are not affected, and the next command you type restores
the buffer display.

Finding Out What
a Zmacs Command Does

HELP C

Example

The command HELP C displays "Document Command:" below the
mode line and waits for you to type a command. When you do,
Zmacs displays the internal documentation for that command.

If you press HELP-C followed by c-F, the response is:

c-F is Forward, implemented by COM-FORWARD:
Moves forward one character.
With a numeric argument (n), it moves forward n characters.

The first line above tells you the name of the command (in this
case Forward), and the name of the internal Lisp function that
actually does the work (in this case zl-user:com-forward). (You

52

Text Editing and Processing July 1986

Finding Out About Zmacs Commands, cant'd.

don't need to know these internal names for basic editing.) The
COM-xxx name displayed by HELP C is mouse-sensitive: clicking
left on it edits the COM-xxx function, and clicking right displays a
menu with choices of Arglist, Edit, Disassemble, and
Documentation.

The next line is a very short description of what the command
does; it usually tells you what the command does without a
numeric argument and how a numeric argument modifies that
behavior.

Finding Out What a
Prefix Command Does

When you ask (with HELP C) for documentation on a preilX
command like c-X, Zmacs prompts you, in the typeout window, to
complete the command. Zmacs displays the documentation for the
preilX command in the typeout window.

Finding Out What
an Extended
Command Does

Searching for

HELP D

When you want to find out what an extended command does, you
can display the documentation for the command by pressing HELP

D, which prompts in the minibuffer "Describe command:", to
which you type the command's name.

Appropriate Zmacs Commands
HELP A

M-X Apropos

When you can only guess at part of the name or function of a
command by the action it performs, there is a command, HELP A,

to help you scan information about all the available Zmacs
commands to find the one you want. All you have to do is type in
a string, such as "buffer" and all command names plus the first
line of all help documentation are scanned for the string you
specify.

Each Zmacs command has a name. The name is almost always
exactly what you would expect; that is, the name describes the
function of the command in reasonably plain English. If not, the
word you're looking for is almost surely in the first line of the
help documentation.

53

July 1986 Zmacs Manual

Finding Out About Zmacs Commands, cont'd.

Method for
Searching for

With a numeric argument, HELP A searches only the command
names.

The A stands for apropos. The M-H Apropos command works the
same way.

Appropriate Zmacs Commands
To find the command you want, just press HELP A or type M-H
Apropos. Zmacs prompts you for a substring, you enter your
guess, and then Zmacs displays short descriptions of all the
commands whose names contain that substring. If the substring
that you enter contains a space, then Zmacs displays a short
description of all the commands whose names or help
documentation includes a similarly positioned space. Each
description gives the short documentation for the command and
tells what keystrokes invoke it.

Example of a Search
String for HELP A

The command you perform when you use M-Q is called "Fill
Paragraph", so you might expect a command that counts the
number of paragraphs in the buffer to be called something like
"Count Paragraphs" or "Paragraphs Count". No matter what, the
word paragraph is going to be in the name or the first line of the
help documentation.

Finding Out What
You Have Typed

HELP L

As you are editing you might find yourself in a hopelessly
confused state and not know how to recover.

If this happens to you it is often very enlightening to press HELP

L to list the last 60 keystrokes you typed. By examining your own
recent activity, it is often possible to find out where you went
wrong and how to save yourself.

More HELP

Commands for
Finding Out About
Zmacs Commands

54

Text Editing and Processing July 1986

Finding Out About Zmacs Commands, cont'd.

HELP U

Offers to undo the last "major" operation (such as fill or sort).

HELP V

Displays all the Zmacs variables whose names contain a certain
substring. For descriptions of Zmacs variables: See the section
"How to Specify Zmacs Variable Settings", page 269.

HELP W

Finds out whether an extended command is bound to a key.

General
Information-giving
Zmacs Commands

The following commands display:

• Information about the location of point
• Documentation about a specified Lisp function
• Argument list for the specified Lisp function
• Information about the current Lisp variable
• The number of lines in the region or page
• Possible parenthesis mismatches
• Trace information about the specified Lisp function

The word current, when describing a Lisp function or a Lisp
variable, refers to (approximately) the function or variable whose
name is nearest to the cursor.

c-H = Where Am I

Displays various things about the location of point. I t displays
the X and Y positions, the octal code for the following character,
the current line number and its percentage of the total file size.
If there is a region, it displays the number of lines in it. Fast
Where Am I (c-=) displays a subset of this information more
quickly.

c-= Fast Where Am I

Quickly displays various things about where point is. I t displays
the X and Y positions and the octal code for the following
character. If there is a region, it displays the number of lines in
it. Where Am I displays the same things and more.

55

July 1986 Zmacs Manual

Finding Out About Zmacs Commands, cant'd.

M-sh-D Show Documentation

Displays the documentation for the given topic. I t prompts for a
topic name offering completion only on topics in the
documentation database. With a numeric argument, M-sh-D
directs the display to either the screen or paper (hardcopy).

See the section "The Document Examiner" in User's Guide to
Symbolics Computers.

c-sh-D Long Documentation

Displays the documentation string for the specified function. It
prompts for a function name, which you can either type in or
select with the mouse. The default is the current function.

When this command does not find a documentation string, it
suggests you use Show Documentation (M-X) or the Document
Examiner to see the function's online documentation.

c-sh-A Quick Arglist

Displays the argument list for the current function. With a
numeric argument, it reads the function name from the
minibuffer.

Arglist (M-X)

Displays the argument list of the specified function. It reads the
name of the function (from the minibuffer) and displays the
argument list in the echo area.

c-sh-V Describe Variable At Point

Displays information in the echo area about the current Lisp
variable. The information displayed shows whether it is declared
special, whether it has a value, and whether it has documentation
put on by defvar. When nothing is available, it checks for
lookalike symbols in other packages.

Count Lines Region

Displays the number of lines in the region.

c-X L Count Lines Page

Displays the number of lines on the current page (or the buffer,
if there are no page delimiters). In parentheses, it displays the
number of lines up to the line containing point and the number of
lines after the line containing point.

56

Text Editing and Processing July 1986

Finding Out About Zmacs Commands, cont'd.

Find Unbalanced Parentheses (M-X)

Finds any parenthesis mismatch error in the buffer. It reads
through all of the current buffer and tries to find places in which
the parentheses do not balance. It positions point to possible
trouble spots, printing out a message that says what the trouble
appears to be. This command finds only one such error; if you
suspect more errors, run it again.

Trace (M-X)

Traces or untraces a function. It reads the name of the function
from the minibuffer and then it pops up a menu of trace options.
With an argument, it omits the menu step.

See the special form trace in Program Development Utilities.

See the section "Options to trace" in Program Development
Utilities.

57

July 1986 Zmacs Manual

The Editor Menu

Overview of the
Editor Menu

Click right in Zmacs to display the editor menu, a momentary
menu containing editor commands, each of which is a possible
choice. Position the mouse cursor over an item and then click
the appropriate button to make the choice.

For complete descriptions of the editor menu commands: See the
section "Editor Menu Commands", page 57.

Editor Menu Commands
The Editor Menu commands are:

Command

Arglist

Edit Definition

List Callers

List Definitions

List Buffers

Kill Or Save Buffers

Description

Prints the argument list of the
specified function: See the section
"General Information-giving Zmacs
Commands", page 54.

Prepares to edit the definition of a
specified function: See the section
"Editing Lisp Programs in Zmacs",
page 223.

Lists all functions that call the
specified function: See the section
"Editing Lisp Programs in Zmacs",
page 223.

Displays the definitions in a specified
buffer: See the section "Editing Lisp
Programs in Zmacs", page 223.

Prints a list of all the buffers and
their associated files: See the section
"Manipulating Buffers and Files in
Zmacs", page 129.

Offers a menu of modified files with
choices to kill, save, or remove the
modification flag from the file: See
the section "Manipulating Buffers
and Files in Zmacs", page 129.

58

Text Editing and Processing

The Editor Menu, cont'd.

Split Screen

Compile Region

Indent Region

Change Default Font

Change Font Region

Uppercase Region

Lowercase Region

Indent Rigidly

Indent Under

July 1986

Makes several windows split among
the buffers as specified: See the
section "Manipulating Buffers and
Files in Zmacs", page 129.

Compiles the region, or if no region
is defined, the current definition: See
the section "Editing Lisp Programs in
Zmacs", page 223.

Indents each line in the region: See
the section "Changing Case and
Indentation in Zmacs", page 213.

Sets the default font: See the section
"Working with Regions in Zmacs" ,
page 99.

Changes the font for the region: See
the section "Working with Regions in
Zmacs", page 99.

Changes any lowercase characters in
the region to uppercase: See the
section "Working with Regions in
Zmacs", page 99.

Changes any uppercase characters in
the region to lowercase: See the
section "Working with Regions in
Zmacs", page 99.

Shifts text in the region sideways as
a unit: See the section "Changing
Case and Indentation in Zmacs", page
213.

Fixes indentation to align under
either a character that you click on
with the mouse cursor or a string
read from the minibuffer: See the
section "Aligning Indentation in
Zmacs", page 220.

59

July 1986 Zmacs Manual

More on the Minibuffer

Minibuffer
Response Format

Minibuffer
Response Help

More Ways to

Most commands expect only one line of response. In these cases,
the END key has the same meaning as the RET URN key, terminating
the response.

However, for commands that expect one or more lines of response,
RET URN has its usual significance, inserting a newline in the
minibuffer, and END marks the end of the response.

While responding to a prompt, you can press HELP to get
documentation describing the current situation. Zmacs tells you
exactly what input it expects and what the possible responses are.

Enter Minibuffer Responses
Yanking and mousing provide quick and simple ways to enter
minibuffer responses without having to type them out. Both of
these methods are context-sensitive. Yanking works only when
you have previously entered a minibuffer response. Mousing
works when you click on a name that makes sense in the context
of the minibuffer prompt.

Yanking in the Minibuffer
C-M-Y Repeat Last Minibuffer Command

Repeats a recent minibuffer command. It yanks the displayed
default if there is one, otherwise, it yanks the last thing typed in
this context. A numeric argument n yanks the nth previous one.
An argument of 0 lists the history of elements typed in the
minibuffer.

For a similar command with string-matching: See the section
"Retrieving History Elements", page 87.

Mter C-M-Y, M-Y replaces what was yanked with a previous
element of the same history, in this case, another minibuffer
command. For more details: See the section "Retrieving History
Elements", page 87.

Yank Pop

Corrects a yank to use a different element of its history. The

60

Text Editing and Processing July 1986

More on the Minibuffer, cont'd.

most recent command must be a yanking command (c-V, M-V,
c-sh-V, M-sh-V or C-M-V). The retrieved item (text or command)
that was yanked by that command is replaced by the previous
element of the corresponding history. The history is rotated (that
is, the elements remain in the same order, but the pointer to the
current element moves with each successive M-V) to bring this
element to the top.

A numeric argument of zero displays the history. A positive
numeric argument of n moves n elements back in the history. A
negative numeric argument moves to a newer history element;
this only makes sense after you rotate the history.

61

July 1986 Zmacs Manual

Getting Information About Buffers and Regions

Count Chars

Count Words

Count Lines

A good deal of information is available about each Zmacs buffer
or region. You can get a count of characters, words, lines,
paragraphs, or pages, as well as a count of substrings or Lisp
objects.

M-X Count Chars

Counts the characters in the region or in the buffer if there is no
region.

M-X Count Words

Counts the words in the region or in the buffer if there is no
region.

M-X Count Lines

Counts the lines in the region or in the buffer if there is no
region.

Count Paragraphs

Count Pages

M-X Count Paragraphs

Counts the paragraphs in the region or in the buffer if there is
no region.

M-X Count Pages

Counts the pages in the region, or in the buffer if there is no
region.

62

Text Editing and Processing July 1986

Getting Information About Buffers and Regions, cont'd.

Count Occurrences

How Many

£'I-X Count Occurrences

Counts how many times a certain substring occurs in the region
or in the buffer following point if there is no region.

See the section "How Many", page 62.

£'I-X How Many

Counts how many times a certain substring occurs in the buffer
following point. You are prompted for the substring.

See the section "Count Occurrences", page 62.

63

July 1986 Zmacs Manual

4. Moving the Cursor in Zmacs

64

Text Editing and Processing July 1986

Overview of Moving the Cursor

Summary of
Cursor Movement

The Editor

To make changes at a particular place in a Zmacs buffer, you
must move the cursor to that place, since most commands that
modify the buffer do so immediately around the cursor.

The cursor movement or motion commands:

• View the contents of the buffer
• Redisplay the editor window
• Move the cursor around the buffer using mouse commands
• Move the cursor around the buffer using keystroke commands

Window and the Buffer
The editor window displays either a portion of your buffer or the
whole buffer, depending on the size of the buffer and your current
location in it.

When the current buffer is smaller than the exact size of the
editor window, Zmacs displays the contents of the buffer at the
top of the window and leaves the bottom of the window blank.
You cannot tell whether the buffer actually comes to an end
where the text stops, since there could be white space and
newline characters after the last visible piece of text.

When the buffer is too large to fit on the screen, the editor
window shows only a section of the buffer. The part that shows
always contains the cursor, so it never vanishes off the top or
bottom of the editor window. Zmacs changes the position of the
editor window inside the buffer as seldom as possible - usually
only when you try to move the cursor off the top or bottom of the
screen.

Wraparound Lines
in the Editor Window

Lines that are too long to fit across the editor window are
displayed on as many physical lines as are necessary. An
exclamation point 0) in the (normally blank) last column means
that the next physical line is part of the same logical line.

65

July 1986 Zmacs Manual

Redisplaying the Window

Introduction to
Redisplaying the Window

Whenever you modify the buffer's contents or move point or the
mark, Zmacs updates the display to reflect the change. (For a
discussion of the mark: See the section "Working with Regions in
Zmacs", page 99.) This updating can be as simple as moving the
cursor or as involved as figuring out the whole display from
scratch. These operations are called redisplay and Zmacs
performs them automatically.

For example, when you move the cursor off the top or bottom of
the editor window, a complete redisplay is required. The window
has to shift to show a different part of the buffer in order to keep
the cursor visible.

You can explicitly tell Zmacs to do a redisplay with the Recenter
Window command, invoked by c-L. You might want to do this if
the cursor gets too close to the top or the bottom of the editor
window, and you want to redisplay with the cursor closer to the
center so that you can see more context in one direction or the
other.

It is important to remember that redisplay operations change only
the display, not the actual contents of the buffer.

Recentering the Window
c-L Recenter Window

Displaying the
Next Screen

Completely redisplays the screen, leaving the cursor near the
middle of the editor window.

With a numeric argument of n, it leaves the cursor n lines from
the top of the window. With a negative numeric argument of -n,
it leaves the cursor n lines from the bottom of the window.

c-V, SCROLL Next Screen

Moves the cursor to the beginning of the last visible line in the
editor window and redisplays the screen with that line at the top
of the window.

With a numeric argument of n, it moves the text up n lines.
With a negative numeric argument -n, it moves the text down n
lines. The cursor does not move (with respect to the text) unless
the numeric argument is large enough to slide it off the screen.
In that case the cursor remains at the top.

66

Text Editing and Processing July 1986

Red isplaying the Window, cont'd.

Displaying the
. Previous Screen

Positioning the

£"I-V, £"I-SCROLL Previous Screen

Moves the cursor to the beginning of the first visible line in the
editor window and redisplays the screen with that line at the
bottom of the window.

With a numeric argument of n, it moves the text down n lines.
With a negative numeric argument -n, it moves the text up n
lines. The cursor does not move (with respect to the text) unless
the numeric argument is large enough to slide it off the screen.
In that case the cursor remains at the bottom.

Window Around a Definition
c-n-R Reposition Window

Moving to a
Specified Line

Redisplays, trying to get all of the current function definition in
the window. It puts the beginning of the current definition at the
top of the window with the current position of the cursor still
visible. Doing c-n-R twice pushes comments off the top of the
window, making more of the code of a large function visible.

n-R Move To Screen Edge

Moves to the beginning of a specified line on the screen. With no
argument, it moves to the beginning of a line near the middle of
the screen. The exact line is controlled by the Zmacs variable
Center Fraction. A numeric argument specifies a particular line
to move to. Negative arguments count up from the bottom of the
window. (For descriptions of Zmacs variables: See the section
"How to Specify Zmacs Variable Settings", page 269.)

67

July 1986 Zmacs Manual

Moving the Cursor with the Mouse

Introduction to
Using the Mouse

Mouse
Documentation
Line in Zmacs

The easiest way to get the cursor where you want it is with the
mouse. See the section "The Mouse" in User's Guide to Symbolics
Computers.

The mouse documentation line at the bottom of the screen tells
you what will happen when you click the mouse. The small arrow
cursor tells you where the mouse is and what it is over. What
you can do with the mouse depends on what the mouse is over.

There are five sets of possible mouse actions, corresponding to
four things the mouse can be over in a Zmacs buffer:

Text or blank space

Scroll bar

Upper left corner of screen

Upper right corner of screen

The mouse documentation line is two lines high. The top line
tells you what you can do with the three mouse keys. The bottom
line tells you what keyboard keys you can press to change the
action of the mouse keys. When you press one of these keyboard
keys, the top mouse documentation line tells you what you can do
with the three mouse keys while that keyboard key is held down.

The three mouse keys are called L for left, M for middle and R
for right.

The keyboard keys are called c for CONTROL, Sh for SHIFT, s for
SUPER and m-sh for META-SHI FT .

CONT ROL and SHI FT affect editing operations. Their actions are
described in this section.

META-SHIFT with the right mouse button gives you access to the
window operation menu, which allows you to move, reshape,
expand, bury, kill, or hardcopy the window or pane.

SUPER with the right mouse button gives you access to the

68

Text Editing and Processing July 1986

Moving the Cursor with the Mouse, cont'd.

presentation debugging menu.

Mouse Over Text
or Blank Space

Here is a description of what you can do with the mouse when it
is over text or blank space in a Zmacs buffer.

Notation

L:Move point

Description

Performs two separate actions, depending on
whether you click left or hold left down.

• Relocates the cursor: position the mouse
cursor to the desired location and click
left. If the cursor is over blank space,
point is moved to the end of the line.

• Marks a region: position mouse cursor to
desired location, hold left button down,
move mouse cursor to end point of desired
region and release the button .

sh-L:Move to point Relocates the mouse arrow cursor to point
(where the blinking cursor appears).

M:Mark thing Marks (makes into a region) the object on
which you click. Clicking after the end of a
line or before the irrst nonblank character of
a line marks the whole line. Clicking on a
word marks that word.

In Lisp mode, however, if that word is part
of what could be a symbol's printname, it
marks that whole symbol name. Clicking on
an open or close parenthesis marks all the
text between that parenthesis and its
matching parenthesis, including the
parentheses. Clicking on an open or close
quotation mark (") marks the whole quoted
string. Clicking between words marks all
text up to the end of the next word or
possible symbol printname, depending on
mode. For a complete description of
marking regions: See the section "Working
with Regions in Zmacs", page 99.

69

July 1986 Zmacs Manual

Moving the Cursor with the Mouse, cont'd.

c-M:Copy Mouse Inserts the object on which you click, as
though you had typed it. This allows you to
build a program or document by selecting
things already appearing on your screen, in
the manner of a menu. Hold down the
control key and click middle on the object
you want to copy: it is inserted as though
you had just typed it. If you change your
mind, and want to remove what you have
just inserted, type c-W, and it is removed.

The object copied can be a word, a printed
representation of a Lisp symbol, a
parenthesized or quoted group of words, a
printed representation of a lisp list or string,
or a line. What object is picked up by
clicking c- (M) on it is determined by the
same rules as Mark Thing (M) in Lisp
Mode. That is:

• Clicking after the end of a line or before
the first nonblank character of a line
copies the whole line. Clicking on a word
picks up that whole word, or possible Lisp
Symbol printname of which that word
could be part.

• Clicking on an open or close parenthesis
copies the text between that parenthesis
and its matching parenthesis, including
the parentheses. Clicking on an open or
close quotation mark (") copies the whole
quoted string. Clicking between words
copies all text up to the end of the next
word (or possible symbol printname).

Appropriate spaces are placed before the
inserted object.

sh-M:SavelKilllYank Performs one of four related actions:

• If there is a region, it saves the region in
the kill history while leaving it in the
buffer (like M-W)

• If the last command saved the region, it

70

Text Editing and Processing July 1986

Moving the Cursor with the Mouse, cont'd.

wipes it from the buffer (like c-w except
it does not save)

• If the above two conditions do not apply,
it yanks the first element from the kill
history (like c-Y)

• If the last command was a yank command,
it yanks the next item from the kill
history (like M-Y)

For a complete description of saving, killing,
and yanking regions: See the section
"Working with Regions in Zmacs", page 99.

R:Editor menu Displays a Zmacs menu offering mouse
sensitive Zmacs commands.

sh-R:System Menu Displays a System menu.

Mouse Over Scroll Bar
The scroll bar consists of a pair of dotted lines with a shaded
section between them. The shaded section, or elevator, represents
the portion of the buffer visible on the screen and the dotted
lines, or shaft, represent the entire buffer. In general, you see
only the shaft, but not the elevator. Move the mouse cursor over
the shaft and the elevator appears. The elevator remains visible
until the buffer changes in size, whereupon it disappears until
you move the mouse cursor over the shaft again.

71

July 1986 Zmacs Manual

Motion Commands

Introduction to the
Motion Commands

Numeric
Arguments and

Zmacs word, sentence, and paragraph motion commands all have
strict definitions for where words, sentences, and paragraphs
begin and end. You can modify all these definitions.

the Motion Commands
All of the motion commands allow numeric arguments. For the
most part, these numeric arguments are interpreted as repeat
counts.

Example of Numeric
Arguments with
Motion Commands

M-F moves the cursor forward one word, whereas M-13F moves the
cursor forward 13 words.

Negative Numeric
Arguments and
Motion Commands

Most of the motion commands come in pairs, with one command
for forward motion over a particular unit and one command for
backward motion. Both kinds of commands often interpret
negative numeric arguments by reversing the direction of motion.

These conventions - that Zmacs interprets numeric arguments as
repeat counts, and that negative numeric arguments reverse the
direction of motion - together make up the motion convention.

Example of Negative
Numeric Arguments
with Motion Commands

M- -13F moves point backward 13 words. M-138 has exactly the
same effect.

Motion by Character
A Zmacs character can be any letter, number, or punctuation
character.

72

Text Editing and Processing July 1986

Motion Commands, cont'd.

Forward Character
c-F Forward

Moves the cursor forward over one character. c-F interprets
numeric arguments as repeat counts.

Negative numeric arguments reverse the direction of motion. For
example, c-3B and c- -3F both move the cursor backwards three
characters.

Backward Character
c-B Backward

Moves the cursor backward over one character. c-B interprets
numeric arguments as repeat counts.

Negative numeric arguments reverse the direction of motion. For
example, c-3 c-B and c-- c-3 c-F both move the cursor
backwards three characters.

Motion by Word

Forward Word

Backward Word

Zmacs generally considers a word to consist of a sequential string
of alphanumeric characters, that is, any combination of the
characters a-z, A-Z, and 0-9. Different major modes define their
own delimiter characters. For example, in Text Mode an
apostrophe (') is part of a word, but in other modes it is a
delimiter. (For mode descriptions: See the section "Setting the
Zmacs Major Mode", page 175.)

Forward Word

Moves the cursor forward one word. Numeric arguments are
interpreted as repeat counts; negative numeric arguments reverse
the direction of motion.

n-F always places the cursor at the end of a word. If the cursor
is in the middle of a word, n-F moves the cursor to the end of
that word.

Backward Word

Moves the cursor backward one word. Numeric arguments are
interpreted as repeat counts; negative numeric arguments reverse
the direction of motion.

73

July 1986 Zmacs Manual

Motion Commands, cont'd.

M-B always places the cursor at the beginning of a word. If the
cursor is in the middle of a word, M-B moves the cursor to the
beginning of that word.

Motion by Sentence

Description of Zmacs Sentence Delimiters

According to Zmacs, sentences can end with question marks,
periods, and exclamation points. Furthermore, these punctuation
marks only end a sentence when followed by:

• A newline
• A space followed by either a newline or another space.

However, Zmacs allows any number of closing characters, which
are ", "), and], between the sentence-ending punctuation and the
white space that follows it. A sentence also starts after a blank
line.

This corresponds closely to standard typing conventions. Zmacs
does not recognize a period followed by one space as the end of a
sentence, for example, as in "e.g. " or "Dr. ".

Forward Sentence
M-E Forward Sentence

Moves the cursor forward one sentence.

Numeric arguments are interpreted as repeat counts; negative
numeric arguments reverse the direction of motion.

M-E always places the cursor at the end of a sentence. If the
cursor is in the middle of a sentence, M-E moves the cursor to the
end of that sentence.

Backward Sentence
M-A Backward Sentence

Moves the cursor backward one sentence.

Numeric arguments are interpreted as repeat counts; negative
numeric arguments reverse the direction of motion.

M-A always places the cursor at the beginning of a sentence. If
the cursor is in the middle of a sentence, M-A moves the cursor to
the beginning of that sentence.

74

Text Editing and Processing July 1986

Motion Commands, cont'd.

Motion by Line

Down Line

Up Line

Lines are delimited by special characters called new lines.

c-N Down Real Line

Moves the cursor straight down to the corresponding column of
the next line. If the cursor is positioned in the middle of the
line, c-N moves it to the middle of the next one.

With a numeric argument n, it moves the cursor down n lines.
Moving down a negative number of lines is the same as moving
up.

c-P Up Real Line

Moves the cursor straight up to the corresponding column of the
previous line. If the cursor is positioned in the middle of the
line, c-P moves it to the middle of the previous one.

With a numeric argument of n, it moves the cursor up n lines.
Moving up a negative number of lines is the same as moving
down.

Beginning of Line
c-A Beginning of Line

End of Line

Moves the cursor to the beginning of the current line.

With a numeric argument of n, it moves the cursor to the
beginning of the nth line after the current one, where the current
line is numbered 1, the preceding line is numbered 0, and so on.

c-E End Of Line

Moves the cursor to the end of the current line.

With a numeric argument of n, it moves the cursor to the end of
the nth line after the current one, where the current line is
numbered 1, the preceding line is numbered 0, and so on.

Goal Column and
the Motion Commands

75
July 1986 Zmacs Manual

Motion Commands, cont'd.

Set Goal Column
c-X c-N Set Goal Column

Sets the default column position (goal column). The goal column
sets point position for c-N and c-P. It disables the default action
of matching the goal column to point's current column a"nd sets
the goal column to zero instead. With a numeric argument n,
sets the goal column to n. c-u turns it off (sets it back to the
default state of keeping cursor in same horizontal position for c-N
and c-P).

76

Text Editing and Processing July 1986

Motion by Lisp Expression

Description

Motion by Lisp expression repositions the cursor according to Lisp
code delimiters: lists and expressions. A list is something
enclosed in balanced parentheses. A Lisp expression is any
readable printed representation of a Lisp object.

Forward List

Moves forward over one list. It accepts a numeric argument for
repetition count.

Backward List

Moves backward over one list. It accepts a numeric argument for
repetition count.

Motion Along One
Nesting Level

Point always sits either between two expressions or in the middle
of a Lisp object (excluding a list or ni 1).

Forward Sexp

Moves point to the end of a surrounding Lisp object (excluding a
list or nil) if there is one, or past the Lisp expression
immediately to the right if not.

If parentheses are unbalanced to such an extent that it doesn't
make sense to talk about "the expression on the right", this
command gives an error message and does not move point at all.

c-M-F observes the motion convention for numeric arguments.

Backward Sexp

Moves point to the beginning of a surrounding Lisp object
(excluding a list or ni 1) if there is one, or to the beginning of the
Lisp expression immediately to the left if not.

If parentheses are unbalanced to such an extent that it doesn't
make sense to talk about "the expression on the left", this
command gives an error message and does not move point at all.

c-M-8 observes the motion convention for numeric arguments.

77

July 1986 Zmacs Manual

Motion by Lisp Expression, cont'd.

Motion up and
Down Nesting Levels

c-M-D Down List

Moves point forward past any intervening Lisp object (excluding a
list or ni 1) to the level of list structure and leaves point just to
the right of the open parenthesis of that expression.

With a numeric argument of n, it moves down n nesting levels.

C-M-U
C-M-(

Backward Up List

Backs up out of nesting levels. I t moves backward one level of
list structure. It searches for an open parenthesis and leaves
point to the left of that open parenthesis. Also, if called inside of
a string, it moves back up out of that string, leaving point to the
left of its starting quote. It accepts numeric arguments for
repetition count.

With a numeric argument of n, it moves up n nesting levels.

Forward Up List

Moves forward out of nesting levels. It moves forward one level
of list structure. It searches for a close parenthesis and leaves
point to the right of that close parenthesis. Also, if called inside
of a string, it moves up out of that string, leaving point to the
right of its ending quote. It accepts numeric arguments for
repetition count.

With a numeric argument of n, it moves up n nesting levels.

Motion Among
Top-Level Expressions

A Lisp file contains a sequence of expressions that we call
top-level expressions, to distinguish them from their own
sUbexpressions. Zmacs assumes that top-level expressions begin
with an open parenthesis against the left margin. It does not
parse top-level expressions by balancing parentheses, since
parentheses do not always balance while programs are being
written. The indentation represents the programmer's conception
of program structure, and provides a better guide. So by top-level
expression, we mean a section of text delimited by open
parentheses at the beginning of two lines.

In code that includes a string containing a carriage return
followed by an open parenthesis, show that the open parenthesis

78

Text Editing and Processing July 1986

Motion by Lisp Expression, cont'd.

does not start a top-level expression by putting a slash in front of
it.

c-M-A
C-M-[

Beginning Of Definition

Moves point to the beginning of the current top-level expression.

With a positive numeric argument n, it moves back n top-level
expressions. With a negative numeric argument -n, it moves
forward n top-level expressions.

c-M-E
C-M-]

End Of Definition

Moves point to the end of the current top-level expression.

With a positive numeric argument n, it moves forward n top-level
expressions. With a negative numeric argument -n, it moves back
n top-level expressions.

Move Over)

Moves past the next close parenthesis, then does Indent New
Line. It removes any whitespace between point and the close
parenthesis before moving over it. With a positive argument n,
after finding the next close parenthesis and deleting whitespace
before it, it moves past n-l additional close parentheses before
doing Indent New Line. It ignores numeric arguments that are
less than 1.

79

July 1986 Zmacs Manual

Motion by Paragraph

Introduction
A paragraph is delimited by:

• A newline followed by blanks (spaces or tabs)
• A blank line
• A Page character alone on a line
• Various other mode-dependent factors (for example, a line that

does not begin with the fill-prefix). See the section "Filling a
Region", page 109.

Forward Paragraph
1"1-] Forward Paragraph

Moves the cursor forward one paragraph.

Numeric arguments are interpreted as repeat counts; negative
numeric arguments reverse the direction of motion.

1"1-] always places the cursor at the end of a paragraph. If the
cursor is in the middle of a paragraph, 1"1-] moves the cursor to
the end of that paragraph.

Backward Paragraph
1"1-[

Moves the cursor one paragraph backward.

Backward Paragraph

Numeric arguments are interpreted as repeat counts; negative
numeric arguments reverse the direction of motion.

1"1- [always places the cursor at the beginning of a paragraph. If
the cursor is in the middle of a paragraph, 1"1- [moves the cursor
to the beginning of that paragraph.

80

Text Editing and Processing July 1986

Motion by Page

Introduction

Forward Page

Backward Page

Pages are delimited by Page characters. You can insert a Page
character by pressing the PAGE key. The Page delimiter belongs
to the page that precedes it and is therefore the last character on
that page.

c-H] Next Page

Moves the cursor to the beginning of the next page; that is, puts
the cursor immediately after the nearest following Page delimiter.
If the buffer does not contain a Page delimiter, it goes to the end
of the buffer.

With a positive numeric argument n, it repeats this operation n
times to move forward n pages. A negative numeric argument -n
moves the cursor backward instead.

c-H [always places the cursor immediately to the right of the
next Page delimiter. If the cursor is immediately to the left of
the Page delimiter, c-H] goes to the beginning of the page after
next rather than just moving forward one character.

c-H [Previous Page

Moves the cursor to the beginning of the previous page; that is,
puts the cursor immediately after the nearest preceding Page
delimiter. If the buffer does not contain a Page delimiter, it goes
to the beginning of the buffer.

With a positive numeric argument n, it repeats this operation n
times to move backward n pages. A negative numeric argument
-n moves the cursor forward instead.

c-H [always places the cursor at the beginning of a page. If the
cursor is already at the beginning of the page, c-H [moves it to
the beginning of the previous page.

81

July 1986 Zmacs Manual

Motion with Respect to the Whole Buffer

Beginning/End of Buffer
M-<

Moves the cursor to the beginning of the buffer.

Goto Beginning

With a numeric argument n between 0 and 10, it moves the
cursor to a place n/10 of the way (counted in lines) from the
beginning of the buffer towards the end.

M-> Goto End

Moves the cursor to the end of the buffer. You can use M-> if
you are in doubt as to the exact place on the screen where the
buffer stops.

With a numeric argument n between 0 and 10, it moves the
cursor to a place n/IO of the way (counted in lines) from the end
of the buffer towards the beginning.

82

Text Editing and Processing July 1986

83

July 1986 Zmacs Manual

5. Deleting and Transposing Text in Zmacs

84

Text Editing and Processing July 1986

Deleting Vs. Killing Text

Overview
Deleting text merely gets rid of it, but Zmacs deletion commands
not only kill text but also get it back. These commands save
killed text in a history stack. Other commands, called yanking
commands, retrieve elements from the history.

Deletion commands that operate on single characters do not save
what they delete. However, by giving them a numeric argument,
thus telling them to delete several characters, they too save the
deleted text.

The commands that delete only white space do not save it.

What Histories Save
Zmacs uses several histories:

Type

Kill

Replace

Buffer

Pathname

Command

Definition

Description

History of text deleted or saved. The kill
history is shared with the input editor, thus
allowing you to move text between files and the
Lisp Listener.

History of arguments to Query Replace (n-X)

and related commands. See the section
"Searching, Replacing, and Sorting in Zmacs" ,
page 113.

History of editor buffers visited in this window.
See the section "Manipulating Buffers and Files
in Zmacs", page 129.

History of file names that have been typed.

History of editor commands that use the
minibuffer, and their arguments. Commands
that do not use the minibuffer, for example,
n-RUBOUT, are not recorded in the history.

History of names of definitions that have been
typed.

There is no limit to the length of a history, but the typeout
window displays only the first 25 elements of the history. When
the history contains more than 25 elements, the screen displays a
mouse-sensitive line: n more e1 ements ; n hi story. Clicking left
displays the rest of the history.

Only a single instance of each of these histories exists, shared
among all editors, including Zmacs, Zmail, and Dired.

85

July 1986 Zmacs Manual

Deleting Vs. Killing Text, cont'd.

Kill History
The kill history contains deleted text and is the history that saves
the results of the commands described in this chapter. It allows
you to move text from one editor window to another, for example,
from the editor to a Lisp Listener. The yanking commands
described below retrieve elements from the kill history.

Viewing the Kill History

You can view and retrieve either the complete kill history or a
history of all text including a string you specify.
c-0 c-V

Displays the elements of the kill history:

Ki 11 hi story:
1: last piece of killed text
2: next-to-last piece of killed text
3: this one is a very long piece of killed text ...

(End of history.)

Point with the mouse to any element of the history and click left to
insert it into the current buffer. Only the first 25 elements of the
history are shown. Click left on (lV more elements in history.)
to display the rest of the history.

c-0 c-sh-V

Displays the elements of the kill history that match a string you
supply. For example, if you supply "shift", you might see the
following:

Ki 11 hi story:
3: first piece of killed text to click on and shift to someplace else
5: Yon Cassius has a lean and shifty look
9: Using the shift key with yank commands adds string searching

(End of history.)

86

Text Editing and Processing July 1986

Deleting Vs. Killing Text, cont'd.

Point with the mouse to any element of the history and click left
to insert it into the current buffer. Only the fIrst 25 elements of
the history are shown. Click left on (N more el ements in
hi story.) to display the rest of the history.

Viewing the Editor
Command History

You can view and retrieve either the complete command history
or a history of all commands including a string you specify.
c-0 C-M-V

Displays the elements of the editor command history:

Command history:
1: Control-X Control-F last-file-read-in
2: Help A
3: Control-X Control-F other-file-read-in

(End of history.)

This command is context-sensitive. When typed at the Lisp
Listener level, it lists the recent commands typed there. When
typed at the minibuffer, it lists the history appropriate to what is
being read in the minibuffer, for example, a pathname or the
name of a defInition.

The editor history contains only commands that use the
minibuffer. Commands such as c-N and c-P are not in the
history.

Displays the elements of the editor command history that match a
string you supply. For example, if you supply "sh", you might see
the following:

87

July 1986 Zmacs Manual

Deleting Vs. Killing Text, cont'd.

Command history:
3: B Control-Heta-Shift-Y oregano
5: Show Hail
7: Show Spell Dictionaries

112: Heta-X Finish Patch

(End of history.)

This command is context-sensitive. When typed at the Lisp
Listener level, it lists the matching commands typed there. When
typed at the minibuffer, it lists the matching history appropriate
to what is being read in the minibuffer, for example, a pathname
or the name of a definition.

The editor history contains only commands that use the
minibuffer. Commands such as c-N and c-P are not in the
history.

Using the Mouse
on History Elements

History elements are mouse-sensitive. Click on an element of the
kill history to yank it to point. Click on an element of the
command history to reexecute the command.

Retrieving History Elements
c-'(Yank

Yanks back and inserts the last text killed or saved. If you have
moved point since you killed the text, put point where you want
the killed text to go before pressing c-'(. Point ends up after the
text, and mark before the text. An argument of c-U puts point
before the text instead. A numeric argument of zero displays the
kill history and does not yank anything. A nonzero numeric
argument selects an element of the kill history.

c-sh-,(Yank Matching

Yanks back and inserts the last text killed or saved that matches
a string you supply. If you have moved point since you killed the
text, put point where you want the killed text to go before
pressing c-'(. Point ends up after the text, and mark before the
text. An argument of c-U puts point before the text instead. A
numeric argument of zero displays the kill history and does not
yank anything. A nonzero numeric argument selects an element
of the kill history.

88

Text Editing and Processing July 1986

Deleting Vs. Killing Text, cont'd.

Repeat Last Minibuffer Command

Repeats a recent minibuffer command. It yanks the displayed
default if there is one, otherwise, it yanks the last thing typed in
this context. A numeric argument n yanks the nth previous one.
An argument of 0 lists the history of elements typed in the
minibuffer.

For a similar command with string-matching: See the section
"Repeat Last Matching Minibuffer Command" below.

c-M-sh-V Repeat Last Matching Minibuffer Command

Yanks back and repeats the last minibuffer command that
includes a string you specify. M-sh-Y yanks back previous
commands that contain the same string.

Yank Pop

Corrects a yank to use a different element of its history. The
most recent command must be a yanking command (c-Y, M-Y,
c-sh-V, M-sh-Y or c-M-Y). The retrieved item (text or command)
that was yanked by that command is replaced by the previous
element of the corresponding history. The history is rotated (that
is, the elements remain in the same order, but the pointer to the
current element moves with each successive M-V) to bring this
element to the top.

A numeric argument of zero displays the history. A positive
numeric argument of n moves n elements back in the history. A
negative numeric argument moves to a newer history element;
this only makes sense after you rotate the history.

Yank Pop Matching

Corrects a yank to use a different element of its history. The
most recent command must be a yanking command (c-Y, M-Y,
c-sh-Y, M-sh-Y or C-M-Y). If you supplied a matching string in
the previous command, that string is used. Otherwise, M-sh-Y
prompts for a string. The retrieved item (text or command) that
was yanked by that command is replaced by the previous element
of the corresponding history. The history is rotated (that is, the
elements remain in the same order, but the pointer to the current
element moves with each successive M-sh-Y) to bring this element
to the top.

A numeric argument of zero displays the history. A positive

89

July 1986 Zmacs Manual

Deleting Vs. Killing Text, cont'd.

Kill Merging

numeric argument of n moves n elements back in the history. A
negative numeric argument moves to a newer history element;
this only makes sense after you rotate the history.

Normally, each kill command pushes a new block onto the kill
history. However, two or more kill commands in a row combine
their text into a single element on the history, so that a single
c-y command gets it all back as it was before it was killed. This
means that you do not have to kill all the text in one command;
you can keep killing line after line, or word after word, until you
have killed it all, and you can still get it all back at once.

Commands that kill forward from point add onto the end of the
previous killed text. Commands that kill backward from point add
onto the beginning. This way, any sequence of mixed forward and
backward kill commands puts all the killed text into one element
without rearrangement.

If a kill command is separated from the last kill command by
other commands, it sta~ts a new element on the kill history,
unless you tell it not to by saying c-~-w (Append Next Kill) in
front of it. The c-~-w tells the following command, if it is a kill
command, to append the text it kills to the last killed text,
instead of starting a new element. With c-~-W, you can kill
several discrete pieces of text and accumulate them to be yanked
back in one place.

Append Next Kill

Makes the next kill command append text to the newest element
of the kill history.

90

Text Editing and Processing July 1986

Deleting and Transposing Characters

Deleting the Last Character
RUBOUT Rub out

Deletes the character immediately to the left of the cursor.

If the cursor is at the beginning of a line, RUBOUT deletes the
newline character at the end of the previous line, thus appending
the current line to the previous one.

With a positive numeric argument of n, RUBOUT deletes the n
characters immediately to the left of the cursor. With a negative
numeric argument of -n, it deletes the n characters immediately
to the right of the cursor. With any numeric argument, it saves
the deleted characters on the kill history.

Deleting the
Current Character

c-D

Deletes the character at the cursor.

Delete Forward

If the cursor is at the end of a line, c-D deletes the newline
character at the end of the line, thus appending the next line to
the current one.

With a positive numeric argument of n, c-D deletes the n
characters immediately to the right of cursor. With a negative
numeric argument of -n, it deletes the n characters immediately
to the left of cursor. With any numeric argument, it saves the
deleted characters on the kill history.

Transposing Characters
c-T Exchange Characters

Transposes two characters (the ones on each side of the cursor).

If the cursor is not at the end of a line, c-T transposes the
character at the cursor and the character to the left of the cursor
and advances the cursor one character. The result is that the
character to the left of the cursor has been "dragged" one
character position to the right. Repeated use of c-T continues to
pull that character forward. This is useful when you are typing
and enter two characters in the wrong order (for example, teh for
the).

If the cursor is at the end of a line, c-T transposes the two
preceding characters.

With a nonzero numeric argument of n, c-T deletes the character

91

July 1986 Zmacs Manual

Deleting and Transposing Characters, cont'd.

to the left of the cursor, moves forward n characters, and
reinserts the deleted character. When n is negative, the cursor
moves backwards.

c-T can only be given a numeric argument of zero when the mark
is active. In this case, it exchanges the characters at point and
mark.

92

Text Editing and Processing July 1986

Deleting and Transposing Words

Introduction

Deleting the
Current Word

Deleting the
Previous Word

For a complete description of how words are delimited: See the
section "Motion by Word", page 72.

Kill Word

Kills the word after the cursor and saves it on the kill history. If
the cursor is in the middle of a word, M-D kills from the cursor to
the end of that word.

With a numeric argument n, it kills n words forward from the
cursor. If n is negative, it kills backward.

M-RUBOUT Backward Kill Word

Kills the word before the cursor and saves it on the kill history.
If the cursor is in the middle of a word, M-RUBOUT kills from the
cursor to the beginning of that word.

With a numeric argument n, it kills n words backward from the
cursor. If n is negative, it kills forward.

Transposing Words
M-T Exchange Words

Transposes the current word and the previous one. If the cursor
is at the end of a line, M-T transposes the last word on that line
and the first one on the next, regardless of the amount or type of
white space between them.

With a nonzero numeric argument n, M-T goes to the beginning of
the current word, deletes the previous word, goes forward n
words, and reinserts the deleted word. Moving forward a negative
amount is equivalent to moving backward. An argument of zero
transposes the words at point and mark.

93

July 1986 Zmacs Manual

Deleting and Transposing Lisp Expressions

Introduction

Deleting the

Motion by Lisp expression repositions the cursor according to Lisp
code de~imiters: lists and expressions. A list is something
enclosed in balanced parentheses. A Lisp expression is any
readable printed representation of a Lisp object.

Current Lisp Expression
c-M-K Kill Sexp

Deleting the

Kills the Lisp expression immediately to the right of point and
saves it on the kill history.

With a numeric argument of n, it kills the n succeeding
expressions. I t is an error to kill off the end of a containing
expression. When the numeric argument is negative, it kills
backwards from point the same way.

Previous Lisp Expression
c-M-RUBDUT Backward Kill Sexp

Kills the Lisp expression immediately to the left of point and
saves it on the kill history.

With a numeric argument of n, it kills the n preceding
expressions. It is an error to kill off the beginning of a
containing expression. When the numeric argument is negative,
it kills forward from point the same way.

Deleting the List
Containing the
Current Lisp Expression

Kill Backward Up List (c-M-H)

Deletes the list that contains the Lisp expression after point, but
leaves that expression itself.

Transposing Lisp Expressions
c-M-T Exchange Sexps

Point must be between two expressions to use this command.

Exchanges the two expressions on either side of point, preserving
current indentation.

With a numeric argument of n, it deletes the expression to the

94
Text Editing and Processing July 1986

Deleting and Transposing Lisp Expressions, cont'd.

left of point, moves forward n expressions, and reinserts the
deleted expression. With a negative numeric argument, it
exchanges expressions in the opposite direction. An argument of
zero transposes the expressions at point and mark.

95

July 1986 Zmacs Manual

Deleting and Transposing Lines

Introduction

Down Line

Up Line

Lines are delimited by special characters called newlines.

c-N Down Real Line

Moves the cursor straight down to the corresponding column of
the next line. If the cursor is positioned in the middle of the
line, c-N moves it to the middle of the next one.

With a numeric argument n, it moves the cursor down n lines.
Moving down a negative number of lines is the same as moving
up.

c-P Up Real Line

Moves the cursor straight up to the corresponding column of the
previous line. If the cursor is positioned in the middle of the
line, c-P moves it to the middle of the previous one.

With a numeric argument of n, it moves the cursor up n lines.
Moving up a negative number of lines is the same as moving
down.

Beginning of Line
c-A Beginning of Line

End of Line

Deleting the
Current Line

Moves the cursor to the beginning of the current line.

With a numeric argument of n, it moves the cursor to the
beginning of the nth line after the current one, where the current
line is numbered 1, the preceding line is numbered 0, and so on.

c-E End Of Line

Moves the cursor to the end of the current line.

With a numeric argument of n, it moves the cursor to the end of
the nth line after the current one, where the current line is
numbered 1, the preceding line is numbered 0, and so on.

c-K Kill Line

Kills a line at a time and saves it on the kill history.

96

Text Editing and Processing July 1986

Deleting and Transposing Lines, cont'd.

If the cursor is at the end of a line, c-K kills the newline,
merging the current line with the next one. If the cursor is
elsewhere on the line, c-K kills the text between the cursor and
the end of the current line.

With a numeric argument n, c-K kills up to the nth newline
following the cursor. When n is negative or zero, c-K kills back
to the I-nth newline before the cursor. c-0 c-K kills from the
cursor back to the beginning of the line that it is on.

Deleting Backward
on the Line

CLEAR INPUT Clear

Kills backward to the start of the current line and saves it on the
kill history. If point is already at the beginning of the line, it
kills the previous line. With a numeric argument n, it kills
between point and the start of the nth line above the current line.
Use CLEAR INPUT when entering a new line of text, to delete the
whole line.

Transposing Lines
of Text

c-H c-T Exchange Lines

Exchanges the current line with the previous one and leaves the
cursor at the beginning of the next line.

With a nonzero numeric argument n, c-H c-T deletes the previous
line (including the following newline), moves down n lines, and
reinserts the deleted line.

With a numeric argument of zero, c-H c-T exchanges the lines at
point and mark, advancing both point and mark to the beginning
of the next line.

97

July 1986 Zmacs Manual

Deleting Sentences

Introduction
According to Zmacs, sentences can end with question marks,
periods, and exclamation points. Furthermore, these punctuation
marks only end a sentence when followed by:

• A newline
• A space followed by either a newline or another space.

However, Zmacs allows any number of closing characters, which
are ", "), and], between the sentence-ending punctuation and the
white space that follows it. A sentence also starts after a blank
line.

This corresponds closely to standard typing conventions. Zmacs
does riot recognize a period followed by one space as the end of a
sentence, for example, as in "e.g. " or "Dr. ".

Deleting the
Current Sentence

M-K Kill Sentence

Kills the text between the cursor and the end of the current
sentence, and saves it on the kill history.

With a numeric argument of n, M-K kills the text between the
cursor and the end of the nth sentence after the cursor, counting
the current sentence. If the argument is negative, M-K kills -n
sentences before the cursor, counting the current sentence.

Deleting the
Previous Sentence

c-X RUB OUT Backward Kill Sentence

Kills backward one sentence and saves it on the kill history.

With a negative argument, c-X RUB OUT kills forward one sentence
in a similar manner.

98

Text Editing and Processing July 1986

99

July 1986 Zmacs Manual

6. Working with Regions in Zmacs

100

Text Editing and Processing July 1986

What is a Zmacs Region?

Introduction to Regions
Many Zmacs commands deal with the region. A region consists of
a block of information within the buffer that you want to
manipulate as a single entity. You define the area of the region,
which can be any size, from characters or chunks of code to pages
or the entire buffer.

Zmacs keeps track of one or more locations in a buffer using
buffer pointers. This section describes:

• The two buffer pointers named point and mark
• How Zmacs uses them to define the boundaries of a region
• The point-pdl, a ring of pointers to saved locations
• Registers, pointers to locations that you name and save
• The region-manipulating commands

Point and the Region
Point (shown by the cursor) is the most important buffer pointer.
Most editor commands depend on the position of point. Many
editor commands, invoked by either the mouse or the keyboard,
can be used to position point to the desired location in the buffer.
Point points to one end of the region.

Mark and the Region
Mark points to the other end of the region. To mark a piece of
text means to position point and mark on either side of the text,
making it the region. The simplest way to mark some text is to
position point (using either the mouse or keystrokes) to one
boundary (either the beginning or the end) of the text, set the
mark there (using the Set Pop Mark command), and then
reposition point at the other boundary. See the section
"Setting/Popping the Mark", page 102.

Unlike point, the mark can be active or inactive. When mark is
active, the region is shown on the screen by underlining. When
mark is ina~tive, you cannot see it on the screen unless you
reactivate it with c-X c-K Although normally you cannot see an
inactive mark, Zmacs keeps track of mark when it is inactive and
sometimes uses mark in its inactive state. For example, c-V
leaves point and mark surrounding what it yanks, but does not
activate mark. c-W immediately following c-V kills the region
even though it is not active. c-X c-X after c-V activates mark,
making the region visible. However, most commands will not use
mark or the region unless it is active. You can set the mark
three ways: when you create a region using the mouse, explicitly

101

July 1986 Zmacs Manual

What is a Zmacs Region?, cont'd.

with the command Set Pop Mark (c-SPACE), or with one of the
commands to mark regions. See the section "Overview of
Commands to Mark Regions", page 106. When you set the mark,
you activate it and make the region appear.

Creating a Region
You can create a region using either the mouse or keystrokes.

Creating a Region
with the Mouse

The most common way to create a region is with the mouse.
Hold down the left mouse button and drag the cursor. Let up the
button to mark the end of the region.

Holding down the middle mouse button creates a region, too. It
marks the "thing" you point the mouse at, "thing" being mode
dependent (a word or Lisp expression if you point with the mouse
at text, or a line if you point with the mouse at white space
before or after all the text on the line).

Creating a Region
with Keystrokes

The Point-pdl

You can also create a region using keystrokes. After setting the
mark, you can move point either forward or backward to define a
region in either direction; as you do so, Zmacs highlights the
region with underlining.

Typing a self-inserting character or c-G deactivates the mark and
removes the underlining that highlights the region. The mark
does not have an associated cursor like point. When inactive, the
mark is invisible, but you can go to it with c-H c-H, Swap Point
And Mark.

Zmacs maintains a special stack of buffer pointers called the
point-pdl, where pdl stands for push-down list, another name for a
stack.

Zmacs automatically saves point on the point-pdl as it executes
some commands (for example, M- <) that move point great
distances. Whenever Zmacs pushes point onto the point-pdl, it
displays "Point pushed" in the echo area, moves point to its new
location, and pushes the previous point down onto the point-pdl.

By popping the point-pdl, that is, resetting point to its last

102

Text Editing and Processing July 1986

What is a Zmacs Region?, cont'd.

location as recorded on the point-pdl, Zmacs returns point to
where it was when the pdl was last pushed.

Setting/Popping
the Mark

Moving to

c-SPACE Set Pop Mark

With no argument, c-SPACE does three things:

1. Puts mark where point is
2. Makes mark active
3. Pushes point onto the point-pdl

Other commands can do each of these operations separately.
Creating a region with the mouse sets a mark and makes it active
but does not push point.

This command does other things depending on how many c-Us are
typed in front of it:

Argument

one c-U

two c-Us

Action Taken

Pops the location on the top of the point-pdl into
point (typically puts point where it set the last
mark).

Pops the location on the top of the point-pdl and
throws it away.

Previous Points
c-M-SPACE Move to Previous Point

Exchanges point and top of point-pdl. With a numeric argument
n, it rotates a ring consisting of point and the top n-l elements of
point-pdl; thus the default argument is 2. With a numeric
argument of 1, it rotates the entire point-pdl. A negative numeric
argument rotates the ring in the other direction.

c-x c-M-SPACE Move to Default Previous Point

Rotates the point-pdl, the same as c-M-SPACE except that
c-X c-M-SPACE has a default of 3. A numeric argument specifies
the number of entries to rotate and sets the new· default before
rotating the point-pdl.

103

July 1986 Zmacs Manual

What is a Zmacs Region?, cont'd.

Showing the Mark
c-H c-H Swap Point And Mark

Exchanges point and mark. It works even when no region is
active. It highlights the text between point and mark.

With an argument, it does not exchange point and mark, but
instead it highlights the text between point and mark.

104

Text Editing and Processing July 1986

Registers in Zmacs

Saving and
Moving to
Locations in Registers

You can assign one-character "names" to locations in the buffer,
which can be helpful for setting up a series of places in your text
to which you want to return for some reason - to double-check
several items without interrupting your text entry or editing, if
you are considering a format change that will affect several
parallel points, or simply to return quickly and easily to rough
spots that require further work.

c-X S Save Position

Saves the current location in a register. It prompts for a one
character register name.

c-X J Jump to Saved Position

Moves point to a position that was saved in a register. It
prompts for a register name and switches buffers to move to the
saved position, if necessary.

Saving and
Inserting Regions
in Registers

c-X X Put Register

Copies the text of the region into a register. It prompts for a
register name. With a numeric argument, it deletes the region
from the buffer after copying it.

c-X G Open Get Register

Inserts text from a specified register into the buffer. It prompts
for the name of the register. It overwrites blank lines in the
buffer the way RETURN does (using the command Insert Crs). It
leaves the mark before the inserted text and point after it. With
a numeric argument, it puts point before the text and the mark
after.

List Registers (n-X)

Displays names and contents of all defined registers. It shows
the name of the register and whether it contains a position or
text. If the register contains a position, it tells which character
on the line the position is at, and shows the first 50 characters
on that line. If the register contains text, it shows the first 50
characters on the first line of that text.

105

July 1986 Zmacs Manual

Registers in Zmacs, cant'd.

List of all registers:
D (text) This text was marked as a region and saved here
1 (position) Char a. in "another line containing a position"
Done.

Show Register (M-H)

Displays the contents of a register in the typeout window. It
prompts for a register name and then tells whether the register
contains a position or text:

Register A contains a position: Character a in this line:
this is the line
or
Register A contains text:

Kill Register (M-H)

Kills a register.

106

Text Editing and Processing July 1986

Commands to Mark Regions

Overview

Marking Words

To mark a piece of text means activating mark and then
positioning point and mark on either side of the text, making it
the region. The simplest way to mark some text is to go to one
end of the text, set the mark there (using the Set Pop Mark
command), and go to the other end of the text. See the section
"Setting/Popping the Mark", page 102. However, several
convenient commands mark different specific amounts of text:

c-H c-P

c-H H

c-)

c-<

Marks a word.

Marks an expression.

Marks a definition.

Marks a paragraph.

Marks a page.

Marks the whole buffer.

Marks to the end of the buffer.

Marks to the beginning of the buffer.

Mark Word

Puts the mark at the end of the current word. With a numeric
argument of n, M-@ puts the mark n words forward from point.

Marking Lisp Expressions
C-M-@ Mark Sexp

Marks the current expression by putting mark at the end.

With a numeric argument n, it moves forward n expressions and
puts the mark there. For a more detailed description of how to
move forward n expressions: See the section "Motion by Lisp
Expression", page 76.

Mark Definition

Puts point and mark around the current definition.

107

July 1986 Zmacs Manual

Commands to Mark Regions, cont'd.

Marking Paragraphs
M-H Mark Paragraph

Example

Marking Pages

Puts the mark at the end of the current paragraph and moves
point to the beginning, so that the current paragraph becomes the
region. With a numeric argument n, M-H puts point at the
beginning of the current paragraph and marks n paragraphs
forward from there.

M-8H marks the current paragraph and the following two; M- -lH
marks the preceding paragraph. When marking preceding
paragraphs, point is left at the end of the region, and when
marking current and succeeding paragraphs, point is left at the
beginning of the region.

c-H c-P Mark Page

Puts the mark at the end of the current page and moves point to
the beginning, so that the current page becomes the region.

With a numeric argument of n, c-H c-P marks the nth page after
the current one. If n is zero, this is the current page; if n is
negative, this page comes before the current page.

Marking Buffers
c-H H Mark Whole

Marks the whole buffer by putting point at the beginning and the
mark at the end.

With any numeric argument, c-H H puts the mark at the
beginning and point at the end.

Marking to End of Buffer
c-> Mark End

Marks from the cursor to the end of the buffer by putting the
mark at the end of the' buffer.

108

Text Editing and Processing

Commands to Mark Regions, cont'd.

Marking to
Beginning of Buffer

c-<

July 1986

Mark Beginning

Marks from the cursor to the beginning of the buffer by putting
the mark at the beginning of the buffer.

109

July 1986 Zmacs Manual

Region-Manipulating Commands

Saving a Region
M-W Save Region

Puts region on kill history list without deleting it. For
information on kill merging and the Append Next Kill command,
C-M-W: See the section "Kill Merging", page 89.

Deleting a Region
c-W Kill Region

Deletes the region. If there is no region, c-W produces an error.

This command ignores numeric arguments and places the deleted
text on the kill history list. For information on retrieving history
elements and the Yank command, c-V: See the section
"Retrieving History Elements", page 87.

Compiling a Region
c-sh-C
Compile Region (M-H)

Compile Region

Compiles the region, or if no region is defined, the current
definition.

Transposing Regions
c-H T Exchange Regions

Exchanges two regions delimited by point and last three marks.

After transposing regions, you can undo the effect of this
command by invoking it again.

Hardcopying a Region
Hardcopy Region (M-H)

Sends a region's contents to the local hardcopy device for
printing.

For full information on Genera hardcopying: See the section
"How to Get Output to a Printer" in User's Guide to Symbolics
Computers.

Filling a Region
When Zmacs fills text it breaks it up so that it does not extend
past the fill column. The fill column determines the right
margin, and is the first column in which text is not to be placed
by M-Q, M-G, or Auto Fill Mode formatting. In addition, the fill
prefix, if set, is inserted:

110

Text Editing and Processing July 1986

Region-Manipulating Commands, cont'd .

• At the beginning of each new line typed in while in Auto Fill
Mode

• At the beginning of each line in a paragraph for n-Q and each
line in a region for n-G

The fill prefix determines the left margin, and is empty unless set
to contain some combination of spaces and characters. If you do
not set the fill prefix, the left margin is the left edge of your
Zmacs window. For example, to insert five spaces at the
beginning of every line, insert them at the beginning of the
current line, and with point at column six, use c-X •. To turn
this fill preIlX off, put point at the beginning of a line, and use
c-x . again.

Adjusting or justifying text inserts extra spaces between the words
to make the right margin come out exactly even.

Fill Paragraph

Fills the current (or next) paragraph. A positive argument means
to adjust rather than fill.

Fill Region

Fills the current region. A positive argument means to adjust
rather than fill.

c-x • Set Fill PreIlX

Defines Fill PreIlX from the current line. All of the current line
up to point becomes the Fill PreIlX. Fill Region starts each
nonblank line with the prefix (which is ignored for filling
purposes). To stop using a Fill PreIlX, do a Set Fill PreIlX at the
beginning of a line.

Other Region
related Commands

For descriptions of the following commands:

Name and Invocation

Uppercase Region c-x c-u

Lowercase Region c-X c-L

Uppercase Code in Region (n-X)

111

July 1986 Zmacs Manual

Region-Manipulating Commands, cont'd.

Lowercase Code in Region (M-X)

See the section "Changing Case of Regions in Zmacs", page 214.

114

Text Editing and Processing July 1986

112

Text Editing and Processing July 1986

113

July 1986 Zmacs Manual

7. Searching, Replacing, and Sorting in Zmacs

114

Text Editing and Processing July 1986

Searching in Zmacs

Overview
Like other editors, Zmacs has commands for searching for an
occurrence of a string. Zmacs search commands are incremental;
that is, they begin to search as soon as you type the first
character.

This section describes how to search incrementally forward and
backward in the buffer, as well as a method for specifying a
complete search string first and then specifying a direction in
which to search.

Incremental Search
The command to search is c-S (Incremental Search). c-S reads
in characters and positions the cursor at the first occurrence of
the characters that you have typed. If you type c-S and then t,
the cursor moves right after the first t. Type an r, and see the
cursor move to after the first tr. Add a y and the cursor moves
to the first try after the place where you started the search. At
the same time, the try has echoed at the bottom of the screen.
Stop typing when you have typed enough characters to identify
the place you want.

You can rub out any character you type. After the try, pressing
RUBOUT makes the y disappear from the bottom of the screen,
leaving only tr. The cursor moves back to the tr. Rubbing out
the rand t moves the cursor back to where you started the
search. To exit from the search, press END or ESCAPE. You can
also use ABORT to exit from the search. To abort out of the
search and return to the original starting point in the buffer, use
c-G.

If you want to search for something else, press CLEAR INPUT to
erase the current search string. You are still in the search loop,
so type another search string.

If the string cannot be found with c-s, type c-R to search
backward for the default string. Zmacs remembers the default
search string - you can reinvoke the search at any time using
c-S c-S, to search forward for it, or c-R c-R to search backward.

c-S Incremental Search

Searches for a character string while you type it, searching
forward to the end of the buffer. It prompts for a string in the
echo area with I -Search: . As you type characters in, c-S displays
the accumulating string in the echo area and searches for it at
the same time. If no string is found, it displays Fail; ng 1-

115

July 1986 Zmacs Manual

Searching in Zmacs, cent'd.

Search: . When it locates the string, it puts the cursor after it so
that repeated c-Ss locate subsequent occurrences of the default
string in the buffer.

RUB OUT Removes a character and backs up the search to
the last match.

ESCAPE When typed before any search characters,
switches to String Search. See the section
"Zmacs String Search", page 116.

END or ESCAPE Exits the search.

c-G Exits the search and returns to original starting
point in the buffer.

c-Q Quotes the next character, to prevent it from
terminating the search.

c-S Repeats the search.

c-R Reverses the search to search backwards.

If c-S or c-R is the first character typed, the previous search
string is used again as the default. Entering any other command
character terminates the search (and then executes that
command).

Reverse
Incremental Search

c-R, Reverse Incremental Search, works exactly the same way as
c-S, Incremental Search, except that it searches backward towards
the top of the buffer from point, instead of forward.

c-R Reverse Incremental Search

Searches for a character string while you type it, searching
backward to the beginning of the buffer. It prompts for a string
in the echo area with Reverse I -Search:. As you type characters
in, c-R displays the accumulating string in the echo area and
searches for it at the same time. If no string is found, it displays
Fa; 1; ng Reverse I -Search:. When it locates the string, it puts
the cursor in front of it so that repeated c-Rs locate previous
occurrences of the default string in the buffer.

RUBoUT Removes a character and backs up the search to
the last match.

116

Text Editing and Processing July 1986

Searching in Zmacs, cont'd.

String Search

ESCAPE When typed before any search characters,
switches to Reverse String Search. See the
section "Zmacs String Search", page 116.

END or ESCAPE Exits the search.

c-G Exits the search and returns to original starting
point in the buffer.

c-Q Quotes the next character, to prevent it from
terminating the search.

c-S Reverses the search to search forward.

c-R Repeats the search.

If c-S or c-R is the Irrst character typed, the previous search
string is used again as the default. Entering any other command
character terminates the search (and then executes that
command).

The string search command, invoked by c-S ESCAPE, lets you type
in the entire string and specify the direction in which to search
before starting the search.

c-S ESCAPE String Search

Searches for a specified string, according to the arguments given
with the special characters below. Another c-S always begins the
search. It prompts in the echo area Stri ng Search: It saves
previous string search commands on a ring, retrievable with c-D.
The ring contains three elements and can be rotated with
repeated c-Ds. While you are entering the search string, the
following characters have special meanings:

c-B

c-E

c-F

c-G

c-D

Searches forward from the beginning of the
buffer.

Searches backwards from the end of the
buffer.

Leaves point at the top of the window, if the
window must be recentered.

Aborts the search.

Gets a string to search for from the ring of
previous search strings.

117

July 1986 Zmacs Manual

Searching In Zmacs, conrd.

c-L

c-Q

c-R

c-S

Redisplays the typein line.

Quotes the next character.

Reverses the direction of the search.

Does the search, then comes back to the
search command loop.

c-U or CLEAR I NPUT Erases all characters typed so far.

c-V

c-W

c-V

RUBOUT

END or ESCAPE

Delimited Search: Searches for occurrences
of the string surrounded by delimiters.

Word Search: Searches for words in this
sequence regardless of intervening
punctuation, white space, newlines, and
other delimiters.

Appends the string on top of the string ring
to the search string.

Rubs out the previous character typed.

Does the search and exits.

If you search for an empty string, it uses the default. Otherwise,
the string you type becomes the default, and the default is saved
unless it is a single character.

118

Text Editing and Processing July 1986

Locating and Replacing Strings Automatically

Overview of
Locating and
Replacing Strings Automatically

Making Global

c-7o, Replace String, searches forward for a string and replaces
that string with another. c-7o prompts for the string to be
replaced, reads the string from the minibuffer, and then reads the
replacement string. After it goes through the buffer trying to
make the replacements, it tells you how many replacements it
made (1. replacement.), or that it made none.

You can also substitute one string for another selectively
throughout the buffer, with M-7o, Query Replace. M-7. prompts
first for the string to be replaced
(Query-repl ace some occurrences of:), and then for the string to
replace it with
(Query-repl ace some occurrences of "stri ng" wi th:). Terminate
each string you specify with RET URN. M-7o locates each occurrence
and lets you decide what to do about each one.

Replacements in Zmacs
c-7o Replace String

Querying While
Making Global

Replace String (M-H)

Replaces all occurrences of a given string with another, where the
string can be characters, words, or phrases. It prompts first for
the string to remove and second for the string to replace it with.
A numeric argument n means to make n replacements. By
default, it begins at point and replaces all occurrences of the first
string that occur after point in the buffer. Usually it attempts to
match the case of the replacements with the case of the string
being replaced. This behavior is controlled by the Zmacs variable
Case Replace P (default t). When it is null, case matching does
not take place. (For descriptions of· Zmacs variables: See the
section "How to Specify Zmacs Variable Settings", page 269.)

Replacements in Zmacs
M-7o Query Replace
Query Replace (M-H)

Starting at point, replaces a string through the rest of the buffer,
asking about each occurrence, where the string can be characters,
words, or phrases. It prompts for each string. You first give it

119

July 1986 Zmacs Manual

Locating and Replacing Strings Automatically, cont'd.

STRI NG1, then STRI NG2, and it finds the first STRI NG1, displaying it
in context. You respond with one of the following characters:

SPACE

RUBOUT

Period

c-G

ESCAPE

c-W

c-R

c-L

Replaces it with STRING2 and shows next
STRING1.

Leaves this STRING1, but shows next STRING1.

Replaces this STRI NG1 and shows result, waiting
for a SPACE, c-R, or ESCAPE.

Replaces this STRING1 and ends query replace.

Leaves this occurrence of STRING1 unchanged
and terminates the query replace.

Same as c-G.

Returns to site of previous STRING1.

Kills this STRING1 and enters recursive edit.

Enters editing mode recursively. Press END to
return to Query Replace.

Redisplays screen.

Replaces all remaining STRING1s without asking.

Entering any other character terminates the command. Usually
the command attempts to match the case of the replacements
with the case of the string being replaced. This behavior is
controlled by the Zmacs variable Case Replace P (default t).
When it is null, case matching does not take place. (For
descriptions of Zmacs variables: See the section "How to Specify
Zmacs Variable Settings", page 269.)

If you give a numeric argument, it does not consider STRING1s
that are not bounded on both sides by delimiter characters.

Querying While
Making Multiple
Global Replacements

While doing multiple query replacements, you can specify the
replacement strings either from the minibuffer or from another
buffer altogether.

Multiple Query Replace (M-H)

Performs query replace using many pairs of strings at the same

120

Text Editing and Processing July 1986

Locating and Replacing Strings Automatically, cont'd.

time, where the strings can be characters, words, or phrases.
(See the section "Querying While Making Global Replacements in
Zmacs", page 118.) Strings are read in alternate minibuffers; when
you finish entering all strings, press RET URN twice. An argument
means that the strings must be surrounded by delimiter
characters. A negative argument means that the strings must be
delimited Lisp objects (not lists), rather than words.

Multiple Query Replace From Buffer (M-H)

Performs query replace using many pairs of strings supplied from
the specified buffer. (See the section "Querying While Making
Global Replacements in Zmacs", page 118.) The current buffer
should contain a STRING1, a space, and a STRING2. Put quotation
marks around any string that contains a space, tab, backspace,
semicolon, or newline character. Lines in the buffer that begin
with a semicolon or are blank are ignored. In other words, each
string in the buffer is a Lisp string, but quotation marks can be
omitted if the string contains no special characters.

Other Types of
Replacement
Operations in Zmacs

Besides making string replacements in text, Zmacs commands
replace:

• A region into the kill history
• Evaluated code into the buffer
• The value of LET into its variable
• A string for delimited Lisp objects (not lists or nil)

Query Replace Last Kill
Query Replace Last Kill (M-H)

Replaces the first item in the kill history with the region.

Evaluate and
Replace Into Buffer

Evaluate And Replace Into Buffer (M-H)

Evaluates the Lisp object following point in the buffer and
replaces it with its result.

121

July 1986 Zmacs Manual

Locating and Replacing Strings Automatically, cont'd.

Query Replace LET Binding
Query Replace Let Binding (M-H)

Replaces variable of LET with its value. Point must be after or
within the binding to be modified.

Atom Query Replace
Atom Query Replace (M-H)

Performs query replace for delimited Lisp objects (except for lists
or nil). (See the section "Querying While Making Global
Replacements in Zmacs", page 118.)

122

Text Editing and Processing July 1986

Tag Tables and Search Domains

Introduction
Tag tables, a means of global searching and replacing, allow you
to make sweeping changes to groups of files without having to
explicitly locate each file. A tag table is a Zmacs support buffer,
(a temporary buffer), that contains the names of sets of buffers
and files, which you specify. You can edit these specified buffers
and files as a unit, once you have specified them as items in a
tag table. Tag tables remain active for the duration of the Zmacs
session; you cannot permanently save tag tables.

You could use tag tables, for example, to:

• Search for all references to a certain variable and alter them
consistently

• Search for all occurrences of an obsolete term and update it
• Search for all functions that send a certain message

How Tag Tables Work

Example

First, you specify the buffers or files that will make up the tag
table. See the section "Specifying and Listing Tag Tables", page
122. Then you can perform an operation. See the section
"Performing Operations with Tag Tables", page 123. Zmacs
performs the operation on the files within the tag table that you
have specified.

Suppose you want to perform a tag query replace in several files.
Use Tags Query Replace (M-H) to begin: See the section
"Performing Operations with Tag Tables", page 123. The
minibuffer prompts as in Query Replace (M-H) for the string to be
replaced and the replacement string. The operation begins and
Zmacs displays Control-. is now Continue query replacement of
"string-old" with "string-new"; as it displays each occurrence,
you deal with each one using the appropriate response characters.
Tags Query Replace goes through all the files specified in the tag
table, listing their names in the minibuffer and stopping at each
occurrence of "string-old". When it finishes searching all the
files, it displays No more fil es.

Specifying and
Listing Tag Tables

Select All Buffers As Tag Table (M-H)

Selects all buffers currently read in. It creates a support buffer

123

July 1986 Zmacs Manual

Tag Tables and Search Domains, cont'd.

called *Tag-Tabl e-N:t:, which contains a list of the names of all
the buffers. See the section "Support Buffers", page 126.

Select Some Buffers As Tag Table (M-H)

Selects some buffers currently read in, querying about each one.
With a numeric argument, it asks only about buffers whose name
contains a given string.

Select Tag Table (M-H)

Makes a tag table current for commands like tag search. It
prompts in the minibuffer for the name of the tag table to use.

Select System As Tag Table (M-H)

Creates a tag table for all files in a system defined by defsystem.
It prompts in the minibuffer for the name of a system - press
HELP to see a display of system names. It selects the system but
does not read the files in (use Find Files in Tag Table (M-H) to
read them in).

List Tag Tables (M-H)

Lists in the typeout window the names of all the tag tables, and
for each one shows the files it contains.

Performing
Operations with
Tag Tables

Tags Search (M-H)

Searches for the specified string within files of the tag table. It
prompts in the minibuffer for the search string. If there is no
current tag table, it prompts for one.

Zmacs displays in the echo area the name of each of the files in
the tag table as it searches each file for the specified string. As
Zmacs begins the operation and finds the first occurrence, it
displays Poi nt pushed. in the minibuffer and moves the cursor to
the occurrence. After you deal with that occurrence, use c-., the
Next Possibility command, to tell locate the next occurrence. (See
the section "Displaying the Next Possibility", page 126.) Go
through the specified files using c-. to the end.

Tags Query Replace (M-H)

Replaces occurrences of one string with another within the files

124

Text Editing and Processing July 1986

Tag Tables and Search Domains, cont'd.

of the tag table, asking about each occurrence. It prompts first
for the string to remove and second for the string to replace it
with. You first give it STRING1, then STRING2, and it finds the
first STRING1, displaying it in context. You respond with one of
the following characters:

SPACE

RUBOUT

Period

c-G

ESCAPE

c-W

c-R

c-L

Replaces it with STRING2 and shows next
STRING1.

Does not replace this occurrence, but shows
next STRING1.

Replaces this STRING1 and shows result, waiting
for a SPACE, c-R, or ESCAPE.

Replaces this STRING1 and terminates the query
replace.

Leaves this occurrence of STRI NG1 unchanged
and terminates the query replace.

Same as c-G.

Returns to site of previous STRI NG1 (actually,
pops the point-pdl).

Kills this STRING1 and enters recursive edit.

Enters editing mode recursively. Press END to
return to Query Replace.

Redisplays screen.

Replaces all remaining STRING1s without asking.

Entering any other command character terminates the command.
Usually the command attempts to match the case of the
replacements with the case of the string being replaced. This
behavior is controlled by the Zmacs variable Case Replace P
(default t). When it is null, case matching does not take place.
(For descriptions of Zmacs variables: See the section "How to
Specify Zmacs Variable Settings", page 269.)

If you give a numeric argument, it does not consider STRING1s
that are not bounded on both sides by delimiter characters.

Tags Multiple Query Replace (M-H)

Performs tags query replace using many pairs of strings at the
same time, where the strings can be characters, words, or

125

July 1986 Zmacs Manual

Tag Tables and Search Domains, cont'd.

phrases. Strings are read in alternate minibuffers; when you
finish entering all strings, press RET URN twice. An argument
means that the strings must be surrounded by delimiter
characters. A negative argument means that the strings must be
delimited Lisp objects (excluding lists and nil), rather than words.

Tags MUltiple Query Replace From Buffer (n-H)

Replaces occurrences of any number of strings with other strings
within the tag table files, asking about each change. The current
buffer should contain a STRING1, a space, and a STRING2. Put
quotation marks around any string that contains a space, tab,
backspace, semicolon, or newline character. Lines in the buffer
that begin with a semicolon or are blank are ignored. In other
words, each string in the buffer is a Lisp string, but quotation
marks can be omitted if the string contains no special characters.

A positive numeric argument means to consider only the cases
where the strings to replace occur as a word (rather than within
a word). A negative numeric argument means to consider only
delimited Lisp objects (excluding lists and nil), rather than words.

This command has the same options as Tags Query Replace.

Find Files in Tag Table (n-H)

Reads every file in the selected tag table into the editor. If there
is no current tag table, it prompts for the name of one, which you
can specify as a file (F), all editor buffers (8), or a system (8).

Visit Tag Table (n-H)

Creates a tag table by reading in a PDP-10 Emacs tag file. Tag
files provide a list of the names of files that belong together as
part of a system and a list of names and locations of definitions
within the files. The file names are made into a tag table; the
definition names are added to the completion table.

First, it reads in the specified tag file. It prompts for a file name
from the minibuffer. Next, it goes through the tag file and
marks the name of each tag as being a possible section of its file.
The Edit Definition command (n-.) uses these marks to figure
out which file to use.

It uses a support buffer to hold the elements of the tag table and
another support buffer to hold the state of a pending operation
involving all the files in the tag table. See the section "Support
Buffers", page 126. Each contains the names of the riles.

126

Text Editing and Processing July 1986

Tag Tables and Search Domains, cont'd.

Support Buffers
Zmacs creates support buffers to save lists that it creates as part
of the execution of some commands:

• Tag table commands.
• Edit Buffers (rI-X).

• View File (rI-X).
• Lists for Edit Definition (rI- .), when more than one definition

exists.
• Buffers for Dired (rI-X).
o Everything that edits a sequence of definitions, as in List

Callers (rI-X) or List Methods (rI-X).

This means that you can examine the buffers containing the lists
even after you have done some editing.

c-X c-B, the List Buffers command, displays these support buffers
in the listing of buffers. Their names are, for example,
Definitions-1, *Tags-Search-1*, and *Tags-Query-Replace-1*.

To avoid proliferation of editor buffers, Zmacs reuses support
buffers in most cases, so that it usually saves no more than two
of each type of support buffer at a time.

Possibility Buffers
Each time you use a command that generates a set of possibilities
(for example, Tags Search (rI-X) and Tags Query Replace (rI-X», it
creates a possibility buffer for that set and pushes the set of
possibilities onto a stack. c- • , Next Possibility, extracts the next
item from the set at the top of the stack. The set is popped from
the stack when no more items remain in it. Several informational
messages are associated with this facility. When the whole
possibilities stack is empty and you have nothing more pending it
displays:

No more sets of possibilities.

Displaying the Next Possibility
c-. Next Possibility

Selects the next possibility for the current set of possibilities.
With a negative argument, pops off a set of possibilities. An
argument of c-U or any positive number displays the remaining
possibilities in the current set. With an argument of zero, selects
the current buffer of possibilities.

127

July 1986 Zmacs Manual

Tag Tables and Search Domains, cont'd.

Example

For a description of the Edit Definition and Edit Callers
commands: See the section "Editing Lisp Programs in Zmacs" ,
page 223.

Suppose you had been using c-. to move through the set provided
by Tags Search and you then used Tags Query Replace to push a
new set of possibilities onto the stack. When you finished the set
provided by Tags Query Replace, you would see a message like
the following to notify you that the empty set had been popped off
the stack and the set of possibilities for Tags Search had been
reinstated.:

c-. is now Search for next occurrence of "string"

The position of point in the support buffer indicates the next item
for Next Possibility (c- .). You can select the support buffer and
move point manually in order to skip or redo possibilities.

Typing c-. while in a support buffer that is not at the top of the
possibilities stack moves it to the top, prints an appropriate
message, then takes the next possibility from that support buffer.

128

Text Editing and Processing July 1986

Sorting

Overview
The Zmacs sorting commands alphabetically sort a region by line,
paragraph, or whatever sort key you specify.

Zmacs Sorting Commands
Sort Lines (M-H)

Sorts the region alphabetically by lines.

Sort Paragraphs (M-H)

Sorts the region alphabetically by paragraphs.

Sort Via Keyboard Macros (M-H)

Sorts the region, prompting for actions to define the records (the
units of the region to be rearranged) and the sort keys (the fields
in the records that are compared alphabetically to determine the
new order of records). It prompts you to define the records and
sort keys by performing positioning commands. I t prompts for
three actions:

1. Move to the beginning of the sort key (that is, move the cursor
to the beginning of the field upon which to sort).

2. Move to the end of the sort key (that is, move to the end of
the sort field).

3. Move to the end of the sort record (that is, move to the end of
the record containing that field).

For each, it records the keystrokes that you use (as keyboard
macros) and plays those back to find and sort the records in the
region.

129

July 1986 Zmacs Manual

8. Manipulating Buffers and Files in Zmacs

130

Text Editing and Processing July 1986

Working with Buffers and Files

Overview
Files are semipermanent collections of information stored safely
outside the Zmacs environment. Buffers, on the other hand, are
more dynamic, temporary collections of information, used by
Zmacs for manipulating text. Buffers live in the active Zmacs
environment. Each buffer has its own point and mark as well as
other associated information.

We say we use Zmacs to "edit files", but what we really do is
copy a file into a buffer created for the purpose, edit the buffer,
and then write out a new version of the file from the edited
buffer. The old version of the file is retained, to be deleted
explicitly when appropriate. Successive versions of files are
distinguished by version number, a component of the file name
that is incremented with each new revised copy (except on file
server hosts such as UNIX that do not have version numbers).

Zmacs allows multiple buffers, so that you can edit many files
simultaneously. Usually only one buffer is visible on the screen at
a time. You can, however, divide the screen into mUltiple
windows so that you can view the contents of several buffers at
once.

Zmacs keeps track of the association between files and buffers. If
you are editing a file's contents in a buffer, Zmacs gives that
buffer the same name as that of the file being edited.

Buffer and File Names
Both buffers and files have long names that indicate the host
directory as well as the file name (and version, where supported).
Hence completion is a necessary aid and is always provided for
entering buffer and file names.

Buffer Flags for
Existing Files

Each buffer has a modification flag that tells whether the buffer
has been changed to be different from the associated file. You
can see the modification flag by clicking on either the List
Buffers command or the Kill or Save Buffers command in the
editor menu (editor menu is click right once), or by pressing c-x
c-B for List Buffers.

The modification flag is cleared when:

• The file is read into the buffer from the file system .
• The buffer is saved, that is, whenever its contents are written

131

July 1986 Zmacs Manual

Working with Buffers and Files, cont'd.

Buffer Flags for
New Files

out to the associated file. As soon as its contents are modified
thereafter, the modification flag is set and Zmacs displays an
asterisk (*): (1) in the mode line to the right of the buffer
name, and (2) whenever it displays output from the List Buffers
command.

The List Buffers (c-H c-B) command uses the plus sign (+) to
mark new files that have not been saved. In addition, it uses + to
mark new buffers, not associated with files, that have text in
them. This helps when you put text into a new buffer and later
want to be reminded to write that buffer to a file.

132

Text Editing and Processing July 1986

Selecting, Listing, and Examining Buffers

Current Buffer

Buffer History

At all times when using Zmacs, you have one selected buffer,
which is the buffer that you are actively editing. This is the
buffer in which all current activity takes place until you switch
buffers.

With a single Zmacs window on the screen, the editor keeps one
buffer history, the global history list, which remembers the
previous-buffer history (stack history) of that window. The top
buffer in the stack is the currently selected one. Usually, when a
buffer is selected, it is pulled out of the stack and put on top.
The buffers near the top are usually the most recently used.
Each time you change buffers Zmacs offers the name of the most
recently used buffer as the default buffer name.

When we refer to the nth buffer, we mean the nth buffer in
Zmacs's stack of buffers.

Every additional window maintains its own buffer history, but the
global history list continues to display an entry for every buffer in
every window.

When you create a new window, Zmacs initially takes the history
list for the new window from the global history list. From then
on, as you switch from buffer to buffer within that window, the
list for that window reflects the history of those changes in
chronological order. This affects particularly c-M-L (Select
Previous Buffer) and the default for c-H B (Select Buffer).

The global history list still exists and is used for name completion
and c-H c-B (List Buffers).

133

July 1986 Zmacs Manual

Buffer Commands

Changing Buffers
c-H B Select Buffer

Listing Buffers

Prompts for the name of a buffer and selects that buffer,
displaying its contents on the screen. If you press END or RETURN
instead of a name, it reselects the second most recently selected
buffer.

Using completion, it takes the string you enter and tries to
complete it to an existing buffer name:

• When completion is successful, it selects that buffer .
• When completion is unsuccessful, (there is no buffer with the

name given), it either waits for you to type more characters (if
there are multiple possible completions) or it beeps to give you
a chance to correct a typing error (if there is no possible
completion). A subsequent response of c-RET URN creates a new
buffer with the specified name and selects it.

If you precede the c-H B command with a numeric argument,
Zmacs prompts for the name of the buffer and then creates and
selects it.

Select Previous Buffer

Selects a previously selected buffer. With a numeric argument n,
it selects the nth previous buffer. The default argument is 2.
When the argument is 1, it rotates the entire buffer history. A
negative argument means to rotate the other way. An argument
of zero displays the buffer history, which is mouse sensitive.

Select Default Previous Buffer

With a numeric argument n, this is exactly the same as C-M-L.
Without a numeric argument, this command remembers the last
numeric argument it received and uses that as its argument this
time.

This is useful if you happen to be working with the top few
buffers on the buffer stack and want to cycle among them without
having to remember how many there are.

c-H c-B List Buffers

Lists all the currently existing buffers in the typeout window,
along with the editor mode of the buffer and the name of the
associated file, if any. For buffers with associated files, it

134

Text Editing and Processing July 1986

Buffer Commands, cont'd.

Example

Editing Buffers

displays the version number of the file, if any. If there is no
associated file, c-X c-B gives the size of the buffer in lines
instead. For Dired buffers, it displays the pathname used for
creating the buffer. It lists modified buffers with an asterisk. It
lists the buffers sorted in stack order. You can inhibit this
sorting by setting the global variable
zwei:*sort-zmacs-buffer-list* to nil (default is t).

With an argument of c-U, it prompts for a substring and then
lists only buffers whose names contain that substring.

The buffer names are mouse sensitive. Click right on the name
of the buffer for a menu of operations (Ki 11, Not Modi fi ed, Save,
Sel ect) for that buffer. You can select one of the buffers by
clicking left on its name.

Buffers in Zmacs:
Buffer name:

+ file1 /dess/zmacs VIXEN:
= *Dired-1*
* doc.mss /dess/zmacs VIXEN:

Buffer-1

File Version:

VIXEN: /dess/zmacs/*

[1 line]

Major mode:

(Fundamental)
(Dired)
(Text)
(Fundamental)

+ means new file or non-empty non-file buffer. * means modified file.
= means read-only.

c-n-X Edit Buffers is not part of the standard comtab. It is
similar to List Buffers (c-X c-B), except that the buffer listing
that Edit Buffers produces is a buffer in its own right. (For an
example showing how to make c-X c-B call Edit Buffers instead
of List Buffers: See the section "Setting Editor Variables in Init
Files", page 272.) It contains one line for each of the buffers in
the editor.

(c-n-X) Edit Buffers

Displays a list of all buffers, allowing you to save or delete
buffers and to select a new buffer. A set of single character
subcommands lets you specify various operations for the buffers.
For example, you can mark buffers to be deleted, saved, or not

135

July 1986 Zmacs Manual

Buffer Commands, cont'd.

modified. The buffer is read-only; like the Directory editor
(Dired) buffer, you can move around in it by searching and with
commands like c-N and c-P.

The lines in the list are not mouse sensitive. With the cursor on
the line for a buffer, the following sing~e character commands
apply to that buffer:

With an argument of c-U, it prompts for a substring and then
lists only buffers whose names contain that substring.

RUBOUT

SPACE

D

U

S

Showing a Buffer

Undeletes buffer above the cursor.

Selects the specified buffer immediately.

Marks the buffer for deletion (K, c-D, c-K are
synonyms).

Undeletes either the buffer on the current line or
the buffer on the line above.

Marks the buffer for saving.

Marks the buffer for setting not modified.

Executes an extended command (same as n-X).

Use Show Buffer to just look at a buffer without editing it.

c-X V Show Buffer
Show Buffer (n-X)

Prompts for the name of a buffer and prints out the buffer
contents for viewing only in the typeout window. If there is more
than one screenful, it pauses between screensful, displaying a
--MORE-- message at the bottom.

SPACE, c-V, SCROLL

BACKSPACE, n-V

RUBOUT

Displays the next screenful.

Displays the previous screenful.

Exits.

Anything else exits and is executed as a command.

136

Text Editing and Processing July 1986

Buffer Commands, cont'd.

Inserting
Command Output
Into the Buffer

You might want to save some output produced by a command into
the buffer, rather than seeing it displayed on the typeout window
and then erased.

Execute Command
Into Buffer

Execute Command Into Buffer (M-H)

Sends output from a command into the buffer. It prompts you for
a command, either a key or an extended command. It inserts any
typeout produced by the command into the buffer at point, rather
than displaying it on the typeout window. Macro Expand
Expression All (M-X) is a good example of a command whose
output can be usefully saved in this manner.

Hardcopying the Buffer
Hardcopy Buffer (M-X)

Prompts for the name of a buffer and then prints the specified
buffer on the local hardcopy device.

For full information on Genera hardcopying: See the section
"How to Get Output to a Printer" in User's Guide to Symbolics
Computers.

Renaming the Buffer

Saving Buffers

Rename Buffer (M-H)

Prompts for a new name for the current buffer and changes the
name accordingly. This operation removes any file association
that the buffer had.

Save File Buffers (M-H)

Offers to write out each buffer that is associated with a file. It
prompts in the typeout window with the name of each buffer:

Save file cheatin-heart.lisp >hwilliams> L: ? (Y or N) Yes.
Save word abbrevs on file L:>hwilliams>jambalaya.qwabl? (Y or N) Yes.
Save file rooty-tooty.text >hwilliams L: ? (Y or N)

137

July 1986 Zmacs Manual

Buffer Commands, cont'd.

Encrypting and
Decrypting the Buffer

Encrypt Buffer (M-~)

Encrypts the contents of the buffer. It prompts for a key and
does not echo it as you type it. It prompts for the same key
again, just in case you mistyped it because of the lack of echoing,
and makes sure you typed it the same both times. The encryption
algorithm is the same one used by the Hermes mail-reading
system.

Decrypt Buffer (M-~)

Decrypts the contents of an encrypted buffer. It prompts for a
key and does not echo it as you type it. The encryption key given
for decrypting must match the one used for encrypting. The
encryption algorithm is the same one used by the Hermes mail
reading system.

Reading a File
Into a New Buffer

Reading a File

Edit File (M-~)

c-~ c-F Find File

Prompts for the name of a file and looks for a buffer currently
associated with that file. If one is found, it selects it. Otherwise,
it creates a new buffer and reads that file into it.

When you read a file that has a Lisp file type into the buffer, if
that file does not begin with an attribute line containing Base and
Syntax attributes, Zmacs warns that the file "has neither a Base
nor a Syntax attribute" and announces that it will use the
defaults, Base 10 and Zetalisp. See the section "Buffer and File
Attributes in Zmacs", page 155.

Into an Existing Buffer
The c-~ c-v command, Visit File, is primarily useful when you
type in a mistaken file name after c-~ c-F and Zmacs responds
(New Fi 1 e). You can simultaneously read in the correct file and
get rid of the unwanted buffer with Visit File.

c-~ c-v Visit File

Prompts for the name of a file and reads that file into the current

138

Text Editing and Processing July 1986

Buffer Commands, cont'd.

buffer. This action associates the current buffer with the
specified file.

This command can only be used if the current buffer is not
already associated with an existing file.

Writing the Buffer
Contents to a File

c-X c-W Write File

Prompts for the name of a file and writes out the contents of the
current buffer to the specified file. This changes the current
buffer's name and associates it with the specified file.
Subsequent saves using c-X c-S save to the newly specified file.
This operation clears the modification flag.

Saving the Buffer
Contents to the File

c-X c-S Save File

Writes the contents of the current buffer out to the associated
file and clears the modification flag. It does not write the file if
the buffer is unchanged from when the file was last visited or
saved. It reads a file name from the minibuffer if the current
buffer does not have an associated file.

Re-reading a File
Into the Buffer

Revert Buffer (M-X)

Re-reads information into the buffer that it is associated with.
For example, you can revert a Dir~d buffer to see the most
current listing of that directory. You can also read in the most
up-to-date version of a file. The command prompts for a buffer
name, defaulting to the current buffer. The prompt serves as a
confirmation, singe Revert Buffer (M-X) throws away any
modifications made to the buffer since you last saved or read the
file or other information. This command is useful if you have
damaged the buffer and want to start over or if the associated file
is more current than the buffer. This operation clears the
modification flag.

Refind File (M-X)

Re-reads a specified file into its associated buffer only if that file
has changed on disk. The command prompts for a buffer name,

139

July 1986 Zmacs Manual

Buffer Commands, cont'd.

Creating a
Fundamental
Mode Buffer

defaulting to the current buffer. If the associated file on disk has
changed, it re-reads the file into the buffer. If the associated file
on disk has not changed, it tells you that it is not necessary to
refind that file. This command is useful when more than one
person works on the same program.

Refind All Files (M-X)

Re-reads only those files that have changed on disk into their
associated buffers, asking about each one. If the associated file
on disk has not changed, the command tells you that it is not
necessary to refind that file. This command is useful when more
than one person works on the same program.

With a numeric argument, Zmacs asks you for a string, which it
matches with any part of the buffer names and operates only over
buffers whose names contain that string.

Find File In Fundamental Mode (M-X)

Creates a fundamental mode buffer containing the file. This is
useful because Zmacs does not parse the file while reading it in,
thus the names of the functions in the file do not conflict with
those already known to completion in M-. and similar commands.
This command is necessary if the normal parsing of a Lisp Mode
file signals an error, preventing it from being read into the editor
to correct the cause of the error.

Associating a File
with a Buffer

Set Visited File Name (M-X)

Prompts for the name of a file and associates the current buffer
with that file. This command does not read the specified file into
the buffer. Effectively, the current contents of the buffer are
declared to be the new intended contents of the specified file.
This command should be used with caution to avoid
unintentionally destroying the old contents of the specified file.

Destroying Buffers
c-X K Kill Buffer

Prompts for the name of a buffer and destroys that buffer. If you

140

Text Editing and Processing July 1986

Buffer Commands, cont'd.

press END or RET URN instead of a name, c-K destroys the current
buffer and prompts for the name of a buffer to select instead.

Kill Some Buffers (M-X)

For each existing buffer, tells you something about the status of
the buffer and asks whether or not to delete it. If you elect to
delete a buffer that has been modified since it was last saved, the
command offers to save it first.

Kill Or Save Buffers (M-H)

Puts up a multiple-choice menu listing all existing buffers.
Choices are: Save, Kill, Unmodify, and Hardcopy. Specify these
options next to the buffer names in the menu. This command
appears on the editor menu.

141

July 1986 Zmacs Manual

Appending, Prepending, and Inserting Text

Appending a
Region to a Buffer

c-H A Append To Buffer

Prompts for the name of a buffer and appends the contents of the
region onto the end of the specified buffer.

Appending a
Region to a File

Append To File (M-H)

Prompts for the name of a iIle (Append reg; on to end of f;' e:)
and appends the contents of the region onto the end of the
specified file, writing a new version of that file.

Prep ending a
Region to a File

. Prepend To File (M-H)

Prompts for the name of a file ~nd prepends the contents of the
region onto the beginning of the specified file.

Inserting a Buffer
Into Another Buffer

Inserting a File
Into a Buffer

Insert Buffer (M-H)

Prompts for the name of a buffer and inserts the entire contents
of that buffer into the current buffer at the cursor.

Insert File (M-H)

Prompts for the name of a file and inserts the contents of that
file into the current buffer at the cursor.

142

Text Editing and Processing July 1986

Comparing Files and Buffers

Source Compare

Example

Source Compare (M-X)

Compares two files or buffers, prompting for type (F or B) and
name of each, and displays the results of the comparison in the
typeout window. It saves the output in a support buffer named
Source-Compare-N. You can read the comparison while checking
the file, for example, by going into two window mode with the
comparison in one window and the file in the other.

This example shows a comparison between the file new, as it was
read into the buffer, and the buffer new, which contains the
contents of the file new plus changes that have been made:

Source compare made by ESG on 5/21/84 12:39:49 -*-Fundamental-*
of Buffer new /dass/pubs/pgs VIXEN: with File
VIXEN: /dass/pubs/pgs/new

****Buffer new /dass/pubs/pgs VIXEN:, Line #179
Source Compare Merge compares two files or buffers,
prompting for type and name, and merges the differences

****File VIXEN: /dass/pubs/pgs/new, Line #179
Compares two files or buffers, prompting for type and
name, and merges the differences

Done.

lource Compare Merge
Source Compare Merge (M-X)

Compares two files or buffers, prompting for type and name, and
produces a new version that reconciles the differences between
the two. You choose which version (if any) to accept. You can
also manually edit one or both versions.

At each place where the sources differ, the command prompts you
twice. The first time you specify what to do to resolve the
difference (prompts: Speci fy whi ch versi on to keep:). (For
example, you can keep one or the other version, both of them, or
neither.) Respond to the prompt using these subcommands:

143

July 1986 Zmacs Manual

Comparing Files and Buffers, cont'd.

Option

1

2

*

I

SPACE

c-R

RU80UT

Action

Leaves the first alternative in the text, redisplays
the contents, and asks for confirmation of change.

Leaves the second alternative in the text, redisplays
the contents, and asks for confirmation of change.

Leaves both alternatives in the text, redisplays the
contents, and asks for confirmation of change.

Leaves both alternatives in the text, along with the
message lines from the source compare (*** MERGE

LOSSAGE ***), but does not ask for confirmation.

Leaves both alternatives in the text, but does not
redisplay the contents or ask for confirmation.

Disposes of this and all remaining differences the
same way, without confirmation. It asks: What to

do with remaining differences (1, 2, *, I, or

RUBOUT? It uses whichever option you choose for the
rest of the differences.

Exits from the prompt and allows you to edit.
Press END to return to this question.

Leaves nothing in the new buffer and does not
redisplay the contents or ask for confirmation.

The second time you confirm or reject the change that was made.
The screen now shows the change that was made as a result of
your choice and prompts: Pl ease confi rm ,the change that has
been made: (SPACE, RUBOUT, or c-R). Confirming it keeps that
change and moves on to the next difference. Rejecting it returns
to the prior appearance so that you can make a different choice:

Option

SPACE

RU80UT

c-R

Action

Yes, that's right.

No, take that back.

Exits from the prompt and allows you to edit.
Press END to return to this question.

When you finish confirming your decisions, Zmacs incorporates all
changes into the new version in the specified buffer and the
minibuffer displays: Done. Resectionizing the buffer.

144

Text Editing and Processing July 1986

Comparing Files and Buffers, cont'd.

Source Compare Merge also has a mouse interface. You can
answer the first question by clicking left on the text you want to
keep or on the dividing line between them to keep both. You can
answer the second question by clicking left for "yes" (changes
confirmed) or middle for "no" (changes rejected).

Compare/Merge
Commands for Definitions

The compare/merge commands operate on definitions by
comparing, or comparing and merging, the current version with
the newest version, newest version on disk, or installed version.

Comparing/Merging
Current/Newest Versions

Source Compare Newest Definition (n-X)

Compares the current definition with the newest version in the
normal source file for this definition, regardless of patch files.
This command never looks in patch files; it only looks in original
source files. If the definition was added by a patch (so that no
original source file was recorded), the command cannot find the
name of the source file. However, if you read the source file into
the editor, it finds the definition in the editor buffer. You can
use this command for comparing patch files and source files.

Source Compare Merge Newest Definition (n-X)

Compares and merges the current definition with the newest
version in the normal source file. This command never looks in
patch files; it only looks in original source files. If the definition
was added by a patch (so that no original source file was
recorded), the command cannot find the name of the source file.
However, if you read the source file into the editor, it finds the
definition in the editor buffer. You can use this command for
comparing patch files and source files.

Comparing/Merging
Current/Saved Versions

Source Compare Saved Definition (n-X)

Compares the current definition with the source for the newest
version on disk.

Source Compare Merge Saved Definition (n-X)

145

July 1986 Zmacs Manual

Comparing Files and Buffers, cont'd.

Compares and merges the current definition with the source for
the newest version on disk.

Comparing/Merging
CurrentlInstalled Versions

Source Compare Installed Definition (M-H)

Compares the current definition with the source for the installed
version.

Source Compare Merge Installed Definition (M-H)

Compares the current definition with the source for the installed
version, merging the results.

146

Text Editing and Processing July 1986

Window Commands

Using Two
Windows, Select Bottom

c-X 2 Two Windows

Using Two

Shows two windows, selecting the bottom one. It splits the frame
into two editor windows, selects the bottom one, and displays the
next buffer from the global history in it. With a numeric
argument, it displays that same buffer in the second window.

Windows, Select Top
c-X :3 View Two Windows

Creating Two
Windows,

Shows two windows, selecting the top one. It splits the frame
into two editor windows, selects the top one, and displays the next
buffer from the global history in it. With a numeric argument, it
displays that same buffer in the second window.

Specifying Other Contents
c-X 4 Modified Two Windows

Selects a buffer, file, or definition in the other window. c-X 4
combines the functions of splitting the frame and selecting
contents for the second window. It prompts for the type of
contents you want for the second window: 5e' eet what in other
wi ndow? (8, F, 0, or J), for buffer, file, definition, or jump to
register. Then it reads the name of the file, buffer, definition, or
register that you want to select for that window.

Creating Two
Windows with the
Region in Top

c-X 8 Two Windows Showing Region

Makes two windows on the same buffer, with the top one
displaying the current region.

Changing Window Size
c-X ~ Grow Window

Changes the size of the current window by some number of lines.
With a positive numeric argument, it expands the window; with a
negative numeric argument, it shrinks the window.

147

July 1986 Zmacs Manual

Window Commands, cont'd.

Choosing the
Other Window

c-H a

Moves the cursor to the other window.

Other Window

Returning to One Window
c-H 1 One Window

Scrolling the
Other Window

Returns the editor frame to displaying only one window. It
expands the current window to use the whole frame. With a
numeric argument, it expands the other window to use. the whole
frame.

Scroll Other Window

Scrolls the other window up several lines. By default, it scrolls
the same way as c-V. With no argument, it scrolls a full screen.
With just a minus sign as an argument (C-M- -V), it scrolls a
full screen backward. A numeric argument tells it how many
lines to scroll - a positive number scrolls forward, a negative
number scrolls backward.

Splitting the Screen
Split Screen (M-H)

Pops up a menu that offers to create a new buffer or find a file;
makes several windows split among the buffers as specified.

148

Text Editing and Processing July 1986

File Manipulation Commands

Overview
The commands described in this section are unlike most other
Zmacs commands. Their main business is not manipulating
buffers and their contents, but rather files out in a file system.
First we discuss some commands' for dealing with files, then we
describe buffer and file attributes, and finally we explain Dired
Mode, a special Zmacs mode for directory editing.

Creating a Directory

Example

Create Directory (M-H)

Creates a new directory. It prompts for a directory name, using
the standard conventions for defaults. For consistency between
hierarchical and nonhierarchical file systems, you specify the
directory to be created as the directory component of a pathname.
That is, you must end the directory name with whatever delimiter
or separator is appropriate for the host.

Host
TOPS-20
Multics
Lisp Machine
UNIX

Directory string
<A.B.C>
>udd>Sun>Luna>z>
>sun>luna>b>
lusr/jek/newl

Result
Creates directory C
Creates directory z
Creates directory b
Creates directory new

Currently, the file servers for VAXNMS and TOPS-20 can fail to
create directories, due to missing options.

Listing Files in a Directory
List Files (M-H)

Prompts for the name of a directory and displays the names of all
the files in that directory.

The file names are mouse sensitive. Pointing at a file name and
clicking left is the same as doing a c-H c-F (Find File) on that
file. Clicking right pops up a menu with three items:

Load

Find

Compare

Loads the file into the Lisp world. The file must
be either a Lisp source file or a compiled Lisp (bin)
file.

Reads the file into an editor buffer.

Compares the file with its most recent version and
prints the differences.

149

July 1986 Zmacs Manual

File Manipulation Commands, cont'd.

Displaying the
Contents of a Directory

c-H c-D Display Directory

Show Directory

Displays the directory of the file in the current Zmacs buffer.
c-H c-D does not ask for a directory but lists files with the same
host, device, directory, and name as the file in the current buffer.
It lists fues with any type and version. With a numeric
argument, it prompts for a directory to list and lists that
directory.

The heading of the directory listing is mouse sensitive; clicking
left on it selects a Dired buffer containing that directory listing.

c-U c-H c-D does the same thing as List Files, except that it
gives more details about each fue.

Show Directory (M-H)

Prompts for the name of a directory and and displays the
directory contents for viewing only in the typeout window. If
there is more than one oscreenful, it pauses between screensful
displaying a --HORE-- message at the bottom.

SPACE

BACKSPACE

RUBOUT

Displays the next screenful.

Displays the previous screenful.

Exits.

Anything else exits and is executed as a command.

o Show Login Directory
Show Login Directory (M-H)

Displays the directory contents of the user's home directory for
viewing only in the typeout window. If there is more than one
screenful, it pauses between screensful displaying a --HaRE-
message at the bottom.

SPACE

BACKSPACE

RUB OUT

Displays the next screenful.

Displays the previous screenful.

Exits.

Anything else exits and is executed as a command.

150

Text Editing and Processing July 1986

File Manipulation Commands, cont'd.

Showing a File
Use Show File to look at a file without editing it.

Show File (M-H)

Prompts for the name of a file and displays the file contents for
viewing only in the typeout window. If there is more than one
screenful, it pauses between screensful, displaying a --MORE-
message at the bottom.

SPACE, c-V, SCROLL

BACKSPACE, M-V

RUBOUT

Displays the next screenful.

Displays the previous screenful.

Exits.

Anything else exits and is executed as a command.

Showing the
Properties of a File

Show File Properties (M-H)

Prompts for the name of a file and displays all the properties of
the file that are maintained by the file system on which it
resides. These are the properties such as creation date and time,
author, time of last access, and length. For files on a Lisp
Machine file system, it displays user-defined properties as well.

I t prompts for a file specification, which it merges with the
current default to form the pathname. Wildcards are not
accepted; this must correspond to a unique file or directory name.

Changing the
Properties of a File

Change File Properties (M-H)

Edits the properties of a file. Properties are the qualities of the
file that are maintained by the file system on which it resides,
such as creation date and time, author, time of last access, and
length. For files on a Lisp Machine file system, this means user
defined properties as well. I t prompts for the name of a file and
pops up a choose-variable-values window, allowing you to alter
various properties of the file. The exact properties that can be
Q It.p.red depend on the file system, but they might include:

151

July 1986 Zmacs Manual

File Manipulation Commands, cont'd.

• Generation (version) retention count
• Author
• Creation, modification, and reference dates
• Protection flags
• Other file-associated information

Hardcopying a File
Hardcopy File (M-H)

Prompts for the name of a file and then prints the specified file
on the local hardcopy device.

For full information on Genera hardcopying: See the section
"How to Get Output to a Printer" in User's Guide to Symbolics
Computers.

Renaming a File

Copying a File
Into Another

Rename File (M-H)

Renames one or more files. It prompts for the name of a file and
then asks for a new name for that file. It renames the specified
file with that new name.

If the source file specification is wild, the target file specification
must also be wild.

Copy File (M-H)

Copies any type of file to another specified file.

Prompts from the minibuffer for the names of two files and
copies the contents of the first into the second. In file systems
supporting multiple versions, this creates a new version of the
second file whose contents are identical to those of the first.

Copy File determines whether the source file is a character file or
a binary file and copies the file appropriately. Different file
systems sometimes use different character sets, and if the file is
a character file, character translations have to be done (for
example, on some hosts Return characters have to be converted
into a carriage return and a line feed).

The numeric argument controls copying of attributes and
properties. With no numeric argument, it copies creation date
and author and determines the mode (binary or character) of copy
by the file being copied. To force mode, or suppress authoT or

152

Text Editing and Processing July 1986

File Manipulation Commands, cont'd.

Examples

creation date copying, supply a numeric argument created by
adding the values corresponding to the descriptions below:

1 Force copy in l6-bit binary mode.

2 Force copy in character (text) mode.

4 Suppress copy of author.

S Suppress copy of creation date.

For example, to suppress author and creation date for copying:

c-12 Copy File (M-H)

Use wildcard pathnames to specify groups of files for copying.
For example, to copy all files in the subdirectory mi ne:

F:>program>mine>*.*

If the source file specification is wild, the target file specification
must also be wild.

you type:
Zmacs:

you type:

Zmacs:
you type:

Zmacs:

M-H Copy File
Copy Fil e from:
scrc:<lmfs>*.1*sp;0
(Copies all the newest .LISP and .LSPs)
to:
ff:>sys-hold>scrc-sources>old-*.*.*
SCRC:<LMFS>TEST.LSP.3 is copied into
ff:>sys-hold>scrc-sources>old-test.lisp.3

SCRC:<LMFS>FILES.LISP.147 is copied into
ff:>sys-hold>scrc-sources>old-files.lisp.147

Note that .LSP gets mapped into .lisp because Copy File uses
canonical types when the type of the target pattern is :wild.

This command can copy file authors and creation dates, when the
target operating system supports setting these attributes. This
action is not the default. .

Creating Links to Files
Create Link (M-H)

Creates a link to a file. I t prompts in the minibuffer for the
names of two files as arguments; first the name of the link, then
the name of the target pointed to by the link.

153

July 1986 Zmacs Manual

File Manipulation Commands, cont'd.

Deleting Files
Delete File (M-H)

Deletes a file. It prompts in the minibuffer for a file name,
which can be wild. With a wild name as an argument, deletes
multiple files. It lists the files that would be deleted and requires
that you confirm the list. It deletes the files, showing any errors
that occur but continuing rather than halting. Displays a
message in the minibuffer if the specified file does not exist.

Deleting Multiple Versions
Reap File (M-H)

This command works in file systems supporting mUltiple versions.
It prompts for the name of a file (not including version number)
and deletes excess or temporary versions of the specified file,
keeping the most recent n files. Any numeric argument specifies
the number of versions to keep. With no numeric argument, the
default keeps two versions and deletes any excess. It prompts for
confirmation of files being deleted.

Note:

o To specify file types to be automatically marked for deletion,
change the value of the variable zwei:*temp-file-type-list*,
which contains a list of these files. Its default values are:
"memo", "xgp" , "@xgp", "unfasl", "output", "olrec" and
"press". This variable also accepts the value : anything, which
can be any file type.

o To alter the default number (2) of versions to be kept, change
the value of the variable zwei:*file-versions-kept* to any
:ilXllUlD.

Clean Directory (M-H)

Deletes excess· versions or temporary file types in the specified
directory. The default for excess versions is more than two. It
prompts for confirmation of files being deleted. With a numeric
argument n, it deletes excess versions greater than n.

Excess is defined by the value of the Zmacs variable File Versions
Kept or by the numeric argument. The temporary file types are
defined by the Zmacs variable Temp File Type List. It accepts
wildcards in the file name specification. (For descriptions of
Zmacs variables: See the section "How to Specify Zmacs Variable
Settings", page 269.)

154

Text Editing and Processing July 1986

File Manipulation Commands, cont'd.

155

July 1986 Zmacs Manual

Buffer and File Attributes

Attributes

How They Work

Attribute-

Each buffer and generic pathname has attributes, such as Package
and Base, which can also be displayed in the text of the buffer or
file as an attribute list. An attribute list must be the first
nonblank line of a flie, and it must set off the listing of attributes
on each side with the characters -*-. If this line appears in a file,
the attributes it specifies are bound to the values in the attribute
list when you read or load the file.

Suppose you want your new program to be part of a package
named graphics that contains graphics programs. In this case,
you want to set the Package attribute to graphics in three places:
the generic pathname's property list; the buffer data structure;
and the buffer text. Here are two ways to make the change:

o If the package already exists in your Lisp environment, use Set
Package (M-H) to set the package for the buffer. The command
asks you whether or not to set the package for the file and
attribute list as well. You can use this command to create a
new package.

o Use Update Attribute List (M-H) to transfer the current buffer
attributes to the file and create a text attribute list. Edit the
attribute list, changing the package. Use Reparse Attribute
List (M-H) to transfer the attributes in the attribute list to the
file and the buffer data structure. If the package you specify
by editing the attribute list does not exist in your Lisp
environment, Reparse Attribute List asks you whether or not to
create it with default characteristics.

Manipulating Commands
Update Attribute List (M-H)

Updates the attribute list (-*- line) of the buffer. It creates or
updates the attribute list of the flie, using the current set of
parameters. A new attribute list inherits the default base (10)
and the default syntax (Common-Lisp) plus the Package, Mode,
Backspace, and Fonts attributes of the current buffer. It includes
the Backspace and Fonts attributes in the line only if they have
values other than the defaults. It does not change other
attributes in an existing mode line.

156

Text Editing and Processing July 1986

Buffer and File Attributes, cont'd.

Example

Reparse Attribute List (M-H)

Reparses the attribute list (-*- line) of the buffer. It finds the
attribute list for the buffer and processes it to set up the
environment that the line specifies. It changes the major mode,
package, base, and so on, as necessary. When you edit the
attribute list, you should then use this command to make the
changes take effect in Zmacs. The changes take effect both for
the editor buffer and for the file that the buffer is editing.

Suppose the package for the current buffer is user and the base
is 8. You want to create a package called graphics for the buffer
and associated file. You also want to set the base to 10. If no
attribute list exists, use Update Attribute List (M-H) to create one
using the attributes of the current buffer. An attribute list
appears as the first line of the buffer:

;;; -*- Mode: LISP; Package: USER; Base: 8 -*-
Now edit the buffer attribute list to change the package name
from USER to GRAPHICS and to change the base from 8 to 18. Use
Reparse Attribute List (M-H). The command queries:

The file belongs in package GRAPHICS, which does not exist.
Create it with default characteristics,
Try again, or Use another package? (C, T, or U)

Answer C to create the new package. The package becomes
graphics and the base 10 for the buffer and the file.

File Attribute Checking
Zmacs notes errors in file attribute lists and warns you when it
finds an unknown attribute. I t goes ahead and ignores the
unknown attribute in the list. The purpose of the warning is
simply to help you detect misspellings.

Setting the Package
Set Package (M-H)

Changes the package associated with the buffer. It prompts for a
new package, offering to create the package if necessary. Forms
that are read from the buffer are read in that package. (The
default value for this attribute is user.)

You can have any package as the default package by specifying it
as the value of the Zmacs variable Default Package. (For
descriptions of Zmacs variables: See the section "How to Specify
Zmacs Variable Settings", page 269.) You can set the variable in

157

July 1986 Zmacs Manual

Buffer and File Attributes, cont'd.

your init file by using the internal form of its name. (See the
section "Creating an Init File", page 272.)

For example, in your init file:

(login-forms
(setf zwei:*default-package* (pkg-find-package "tv"»)

If you set the variable to nil, it sets the default to the package
from the previous buffer.

Information about the package attribute exists in four places. Set
Package offers to set the package for the generic pathname
attribute list and updates the attribute line in the buffer when
you answer Yes to:

Set it for the file and attribute list too?

Your answer affects the various versions of the package attribute
as follows:

Location "y" "N"
Generic pathname changes same
Buffer property changes changes
Buffer text changes same
Current package changes changes

The system is informed that the file belongs to the specified
package. If you are not sure what to answer, say Yes. The
global variable zwei:*set-attribute-updates-list* controls this
query. Its default value is : ask. Setting the variable to t means
Yes; nil means No.

Base and Syntax Defaults
The default value of zl:base and zl:ibase is 10. If you have been
writing code that has a Base attribute in the mode line, you
should not experience any difficulties. However, in order to help
avoid problems in general, changes have also been made to the
editor and compiler:

• In the mode line (the -*- line in Lisp source files) are the Base
and Syntax attributes. The base can be either 8 or 10 (default).
The syntax of a program can be either Zetalisp or Common
Lisp .

• If there is a Base attribute, but no Syntax attribute, the syntax
defaults to Common-Lisp.

158

Text Editing and Processing July 1986

Buffer and File Attributes, cont'd .

• If there is a Syntax attribute of Common-Lisp, and no Base
attribute, the base is assumed to be 10.

o If there is neither a Base nor a Syntax attribute, Base is
assumed to be the default base (10) and the syntax is assumed
to be Common-Lisp. Furthermore, a warning is issued to the
effect that there is neither a Syntax nor a Base attribute. You
should edit your program accordingly. With most programs, the
Zmacs command Update Attribute List (M-H) will add the
appropriate attributes to the mode line, following the above
defaults.

Setting the Syntax:
for Symbolics
Common Lisp

If you use the new Symbolics Common Lisp (SCL), you must
explicitly set the syntax in the file attribute line (formerly,
Zetalisp was the implicit default). For more information about
SCL: See the section "Introduction to Symbolics Common Lisp"
in Symbolics Common Lisp.

The file attribute line of a Common Lisp file should be used to
tell the editor, the compiler, and other programs that the file
contains a Common Lisp program. The following file attributes
are relevant:

Syntax

Package

The value of this attribute can be Common-Lisp
or Zetalisp. It controls the binding of the
Zetalisp variable zl:readtable, which is known
as *readtable* in Common Lisp. The default
syntax is Common-Lisp.

user is the package most commonly used for
Common Lisp programs. You can also create
your own package. Note that the Package file
attribute accepts relative package names, which
means that you can specify user rather than cl
user.

The following example shows the attributes that should be in an
SCL file's attribute line:

;;; -*- Mode:Lisp; Syntax:Common-Lisp; Package:USER -*-

159

July 1986 Zmacs Manual

Buffer and File Attributes, cont'd.

Other Set

Set Lisp Syntax (M-H)

Changes the buffer into Common-Lisp syntax or Zetalisp syntax.
It asks whether to update the attribute list (-*- line) of the buffer.
If you answer yes, it creates or updates the attribute list of the
file, using the current set of parameters, if any. It does not
change other attributes in an existing mode line.

Commands for File
and Buffer Attributes

Update Attribute
List Query

Each of the file attributes has a Set command associated with it.
You have two choices when you want to change an attribute for a
file:

o Edit the text of the buffer and then use Reparse Attribute List.
o Use the relevant Set command and answer V to its query. The

meanings for V and N are the same as for the Set Package
command (except that only the Set Package command affects
the current package).

The Set commands use the value of the global variable
zwei:*set-attribute-updates-list* to determine whether to query
you about updating the file attribute list. The default value for
the variable is :ask; set to nil to suppress the query.

Value
:ask
nil
t

Meaning
Always asks whether to update the attribute list.
Never updates the attribute list.
Always updates the attribute list.

Set attribute (M-H)

where attribute is one of the following: Backspace, Base, Fonts,
Key, Lowercase, No fill, Package, Patch File, Syntax, Tab Width,
Variable, or Vsp. It sets attribute for the current buffer. It
queries whether or not to set attribute for the file and in the text
attribute list.

Attribute Descriptions
The following table describes some of the attributes, their
associated Set commands, and the default value for the attribute.

160

Text Editing and Processing July 1986

Buffer and File Attributes, cont'd.

Backspace

Base

Fonts

Lowercase

The Set Backspace command (default value nil)
controls whether a backspace character in a file
displays as the word "back-space" with a
lozenge around it or performs the backspace.
The default is the lozenge form.

The Set Base command (default value 10)
specifies the value of zl:ibase that the Lisp
reader uses when reading forms from the file.
Thus, Base controls the zl:ibase used when you
evaluate or compile parts of the buffer, and
controls the value of zl: base for printing during
evaluating all or part of the buffer. This value
does not affect the values of either zl: base or
zl:ibase in the Lisp Listener you get by using
SUSPEND.

The Set Fonts command (default value nil)
changes the set of fonts to use. It reads a
sequence of font names separated by spaces,
commas, or both from the minibuffer.

The Set Lowercase command (default value nil)
means that the file being edited is intended to
contain lowercase code or text. When the
Lowercase attribute is nil (that is, not present),
whatever case handling you specify prevails.
To automatically uppercase code, use the
following in your init file:

«login-forms
(setf zwei:lisp-mode-hook
'zwei:electric-shift-lock-if-appropriate»

(See the section "Creating an Init File", page
272.) When the Lowercase attribute is
anything but nil (you answer y to its query),
the Electric Shift Lock Mode is never turned on
automatically.

161

July 1986 Zmacs Manual

Buffer and File Attributes, cont'd.

No fill

Patch-File

Tab-Width

The Set Nofill command has a default value of
nil, which means. that whatever auto filling
behavior you specify prevails. When Nofill is
anything else (you answer V to its query), it
means that auto filling is not appropriate for
people who specify the mode of "autofilling if
appropriate" .

Use Nofill sparingly. Setting it means that
everyone who edits the file has to be satisfied
with Auto Fill Mode being off by default. In
most cases, it is more reasonable to let an
individual user's preferences prevail. It is
useful for files that are not plain text, such as
mailing lists, where you need to avoid spurious
line breaks.

To have auto filling turned on by default, use
the following in your init file (See the section
"Creating an Init File", page 272.):

(1 09i n-forms
(setf zwei:text-mode-hook
'zwei:auto-fi11-if-appropriate»

People who do not want it never get it by
default.

The Set Patch File command has a default
value of nil, which means that the file does not
contain patches. When a file is classified as
containing patches (you answer V to its query),
fdefine does not warn about functions being
redefined during loading. Classifying something
as a patch file also affects Edit Definition
(which prefers files that are not patches) and
defvar (which becomes zl:setf).

The Set Tab Width command (default 8
characters) specifies how many spaces the
editor uses between "tab stops".

162

Text Editing and Processing July 1986

Buffer and File Attributes, cont'd.

Vsp The Set Vsp command (default 2 pixels)
specifies the vertical spacing (in pixels) between
the text lines of an editor window. It specifies
the distance between the descenders of one line
and the ascenders of the next.

July 1986

Dired Mode

Overview

Entering Dired

163

Zmacs Manual

There is a special Zmacs mode, called Dired, just for doing
housekeeping in a directory. In this mode, you see the names of
all the files in a directory at once, and can manipulate these files
in various ways.

The following commands specify a directory to manipulate and
enter Dired mode.

Dired (M-H)

Edit Directory (M-H)

Prompts for a wildcard file specification for files contained in the
specified directory. The default edits all files in the current
directory by specifying wild name, type, and version. You must
type the pathname in the form acceptable to your host system.

c-H D Dired

Edits the files in the directory that contains the current file.

With a numeric argument of 1, shows files with the same host,
device, directory, and name as the file in the current buffer. It
lists files with any type and version.

With a c-U argument, it prompts for a wildcard file specification
showing the name of a directory to edit.

The Dired Display
When you go into Dired mode, Zmacs creates a special buffer that
contains the names of the files that are under consideration, as
well as some auxiliary information pertaining to those files. In a
typical Dired buffer, each line describes a single file and lists the
following information, from left to right:

• An indicator (D) that shows if the file has been marked for
deletion or is already deleted

• The physical volume of the file (on some hosts)
• The name of the file
o The length of the file in blocks (where the length of a block is

system-dependent)
• The length of the file in bytes, followed by the byte length in

bits, enclosed in parentheses
• ! if the file has not been backed up to tape

164

Text Editing and Processing July 1986

Dired Mode, cont'd.

• $ if the file has been marked against reaping
• @ if the file has been marked against deletion
• The file's creation date
• The file's creation time
• The date the file was last referenced, enclosed in parentheses
• The author of the file
• Optionally, the name of the last user to read the file

If there are too many files to be displayed in one screenful, the
Zmacs window looks only at one section of the directory at a time
(although the buffer does contain the names of all the files).

The files are arranged in alphabetical order by name.

Updating the Display
Use the Revert Buffer (M-H) command to update a Dired display.
(See the section "Re-reading a File Into the Buffer", page 138.)
After using Dired commands (or native host commands) to
perform operations on files in your directory, invoke Revert
Buffer, which reexecutes Dired with the default directory name
and re-reads the updated directory into the buffer.

Dired Commands
Dired mode has its own command table (comtab) for manipulating
the files whose names are displayed. These commands are
described in this section. All invocations given in this section are
with respect to the Dired comtab and do not apply to regular
Zmacs.

You use Dired by moving the cursor around to various lines and
then specifying operations to be performed on the file listed on
that line (the current file, while in Dired Mode).

Most Dired commands schedule some action for the future rather
than performing it instantly. For example, when you want to
delete a file using Dired, you move the cursor to the line
describing that file and type D. Rather than deleting the file
immediately, Dired marks the file for deletion. The deletion
actually happens when you leave Dired mode and confirm your
request. (See the section "Getting Out of Dired", page 166.)

Some of the commands in Dired mode take numeric arguments.
You type numeric arguments in exactly the same way as you do in
Zmacs proper, except that you do not have to hold a modifier key
down while typing the argument - just typing the number
suffices.

165

July 1986 Zmacs Manual

Dlred Mode, cont'd.

Command Summary
The following table summarizes the Dired commands:

Character

RUBOUT

SPACE

$

=

A

C

D

E

G

nH

L

nN

P

Action

Undeletes file above the cursor.

Moves to the next file.

Moves to the next file that is not backed up.

Complements the Don't Reap ($) flag.

Describes the attribute list of this file. In text
files, this is the .*. line of the file. In compiled
Lisp flies, it includes information about the
compilation as well.

Changes properties of current file.

Complements the Don't Delete (@) flag.

Compares this file with the newest version (Source
Compare).

Queues this file for function application.

Copies this file to someplace else.

Marks the file for deletion (K, c-D, c-K are
synonyms).

Edits the file in a buffer, or runs Dired if the line
is a subdirectory name.

Sets and enforces the generation retention count.

Marks excess versions of the file for deletion
(argument means whole directory).

Loads the file into Lisp.

Moves to the next file with more than n versions
(see the Zmacs variable File Versions Kept). (For
descriptions of Zmacs variables: See the section
"How to Specify Zmacs Variable Settings", page
269.)

Prints the file on the standard hardcopy device.

166

Text Editing and Processing July 1986

Dired Mode, cont'd.

Q

R

u

v

Default Pathnames
in Dired

Exits. It shows the files marked for deletion and
prompts for confirmation. The exit display marks
files that have special status, using the following
marks:

a link
> most recent version
$ flie marked for not reaping

file not backed up

Renames this file to something else.

Undeletes either the file on the current line or the
flie on the line above.

Views the file without creating a buffer (using
View File conventions).

Executes an extended command (same as M-H).

When the current buffer is a Dired buffer, and you execute an
editor command that accepts a file name as an argument, the
default flie name is the flie name that appears on the line of the
Dired buffer that point is on.

This makes it easier to do things to the flie that you are
currently operating on in Dired. For example, you can move point
to some line, do Compile File (M-H), and the command defaults to
that fIle name.

Getting Out of Dired
Q

END
Dired Exit

Leaves Dired mode. It prints the names of files marked for
various actions and gets your fmal confirmation that these actions
are really to be performed.

At this point the available options are:

v

N

Delete but do not expunge, also doing any other
marked actions.

Go back to Dired.

167

July 1986 Zmacs Manual

Dired Mode, cant'd.

Online

Q or ~

E

Abort out of Dired.

Delete files and expunge directory. This is meaningful
for file systems in which there is undeletion, such as
TOPS-20, TENEX, and the Lisp Machine file system.
This command is useful if you use Dired to free up
disk space, since the disk space is not deallocated until
the directory is expunged.

Dired Exit performs those actions and returns to the previous
buffer.

ABORT Dired Abort

Leaves Dired mode at once, without performing any actions on
marked files. You can also just switch to another buffer.

Documentation for Dired

Dired Menu

If you do not have a manual and cannot remember what the
commands do, just press HELP.

?
HELP

Displays a short table explaining the Dired commands.

Dired Help

Click right in Dired to display the Dired menu, which offers to
perform the following actions on the listing:

Sort by reference date (up)
Sort by reference date (down)
Sort by creation date (up)
Sort by creation date (down)
Sort by file name (up)
Sort by file name (down)
Sort by file size (up)
Sort by file size (down)
Dired Automatic
Dired Automatic All
Dired Change File Properties
Dired Describe Attribute List

See the section "Deleting Multiple File Versions in Dired", page
170. See the section "Changing File Properties in Dired", page
168. See the section "Viewing File Attributes in Dired", page 168.

168

Text Editing and Processing July 1986

Dired Mode, cont'd.

Loading a File in Dired
L Load File

Loads the current file. It displays a message Loadi ng the
fi' e. .. in a typeout window and finishes with the message
Loading done.

Moving Around in Dired
SPACE
c-N

Down Real Line

Moves point to the next line (same as in regular Zmacs). With a
numeric argument of n, it moves point forward n lines.

c-P Up Real Line

Moves point to the previous line (same as in regular Zmacs).
With a numeric argument of n, it moves point backward n lines.

Viewing File
Attributes in Dired

Dired Describe Attribute List

This command is also available on the pop-up menu that you get
when you click right in Dired. It prints out the contents of the
attribute list of the current file (the one where point is). It
works for character files and compiled files.

Changing File
Properties in Dired

Dired. Change File Properties

This command is also available on the pop-up menu that you get
when you click right in Dired. It edits the properties of the
current file. These properties are the qualities of the file that are
maintained by the file system on which it resides, such as
creation date and time, author, time of last access, and length.
For files on a Lisp Machine file system, this means user-defined
properties as well. It pops up a choose-variable-values window,
allowing you to alter various properties of the file. The exact
properties that can be varied depend on the file system, but they
might include:

• Generation (version) retention count
• Author

169

July 1986 Zmacs Manual

Dired Mode, cont'd.

o Creation, modification, and reference dates
o Protection flags
o Other file-associated information

Viewing and
Editing File
Contents in Dired

You might want to look at the contents of a file before deciding
what to do with it. You might also want to read the file into a
buffer and edit it.

v Dired View File

Displays the contents of the current file on the typeout window.

Use this command when you just want to skim the contents of
the file, not edit it. You can move forward while viewing with
SPACE, c-V, or SCROLL and move backward with BACKSPACE or M-V.

E Dired Edit File

Reads the current file into a Zmacs buffer and selects that buffer.
You are then back in normal Zmacs and can edit the file
normally. When you want to return to Dired mode, just use the
c-M-L command to reselect the Dired buffer.

Comparing Recent
Versions of Files
in Dired

Copying and
Renaming Files

Often before deciding whether or not to delete a file, you want to
find out exactly how extensive the differences are between the file
and its most current version.

= Dired Srccom

Compares the current file with its most recent version and
displays the differences on the typeout window. With an
argument of c-U, it asks what version to compare it to.

C Dired Copy File

Copies the current file. It prompts for the new pathname,
displaying the default pathname.

170

Text Editing and Processing July 1986

Dired Mode, cont'd.

R Dired Rename File

Renames the current fue. It prompts for the new pathname,
displaying the default pathname.

Marking Files for Deletion
D
K
c-D
c-K

Dired Delete

Marks the current fue for deletion. Dired puts a D in the first
column to show that the fue has been so. marked.

With a numeric argument of n, it marks the next n files for
deletion.

Sometimes you mark a fue for deletion by mistake. Here is how
you recover from this error:

u Dired Undelete

u takes one of two actions:

1. If the current file is marked for deletion, printing, or a
function application (with a D, P, or A), reprieves it.

2. In fue systems with soft deletion, U marks a deleted file for
undeletion.

In either case, U removes the D, P, or A next to the file. If the
current file is not marked with D, P, or A, U reprieves the file on
the immediately preceding line, positioning point on that line.

With a numeric argument of n, it reprieves the files on the next
n lines including the current line.

RUB OUT Dired Reverse Undelete

Reprieves the file on the preceding line.

With a numeric argument of n, it reprieves the files on the
previous n lines including the current line.

Deleting Multiple Versions
If you are using Dired for housekeeping purposes, the following
commands are useful:

171

July 1986 Zmacs Manual

Dired Mode, cont'd.

N Dired Next Hog

Moves point to the next file with superfluous versions.
Superfluous is defined by the value of the Zmacs variable File
Versions Kept (whose default is 2) or by a numeric argument.
(For descriptions of Zmacs variables: See the section "How to
Specify Zmacs Variable Settings", page 269.)

H Dired Automatic

This command is also available on the pop-up menu that you get
when you click right in Dired. It marks all the superfluous
versions of the current file for deletion. With an argument of
c-U, it marks superfluous versions of all files in the Dired buffer.

Setting Generation
Retention Count

G Dired Set Generation Retention Count

Sets and enforces the generation retention count on this group of
files, which specifies how many versions to save (that is, deletes
multiple versions).

With a numeric argument n, sets it to n versions. With no
numeric argument, prompts for a number in the minibuffer. An
argument of zero means save all versions. Enforce means mark
for deletion or undeletion.

Protecting Files
From Being Reaped

In addition to keeping other users aware of protected files,
protection features can also inform the system itself. Some file
systems have automatic reaping facilities that go into action when
storage becomes scarce. Most such systems have a don't reap bit
associated with each file; use it to protect only your most vital
files.

$ Dired Complement No Reap Flag

Complements the Don't Reap flag associated with the current file;
Dired displays the flag as $ between the length and date on that
line. With a numeric argument of n, it complements the flag on
the next n files, including the current one.

Protecting Files
From Being Deleted

@ Dired Complement Dont Delete Flag

172

Text Editing and Processing July 1986

Dired Mode, cant'd.

Complements the Don't Delete flag associated with the current
file; Dired displays the flag as @ between the length and date on
that line.

With a numeric argument of n, it complements the flag on the
next n files, including the current one.

Finding Files That
Have Not Been
Backed up

Many file systems have tape backup facilities so that files can be
copied onto tape against the possibility of a file system disaster.
These systems almost always associate a bit with each file that is
set when the file is created or modified and cleared when it is
backed up to tape.

Dired Next Undumped

Moves point forward to the next file that has not yet been backed
up; Dired displays the flag as ! between the length and date on
that line.

Marking Files to
Be Hardcopied

You might want to obtain a hardcopy of a group of related files.
Dired allows you to mark files to be hardcopied as well as to be
deleted.

p Dired Hardcopy File

Marks the current file for printing. Dired puts a P in the first
column to show that the file has been so marked.

With a numeric argument n, marks the next n files for printing.

Applying Arbitrary
Functions to Files

Very occasionally, you want to perform some operation on selected
files in your directory for which there is no Dired command
provided. When this occurs, you can write up the operation that
you want to perform as a Lisp function, whose single argument is
the pathname of the file. The following command is relevant:

A Dired Apply Function

Marks the current file for having an arbitrary function applied to

173

July 1986 Zmacs Manual

Dlred Mode, cont'd.

it. Dired puts a A in the fIrst column to show that the file has
been so marked. With a numeric argument of n, it marks the
next n fIles, including the current one.

174

Text Editing and Processing July 1986

175

July 1986 Zmacs Manual

9. Setting the Zmacs Major Mode

176

Text Editing and Processing July 1986

Major Editing Modes

Overview
Whenever you are editing some text, some set of modes is in
effect. The buffer is always associated with one major mode that
tells the editor what kind of document is being edited. A major
mode has the following characteristics:

• It has its own distinct set of key bindings .
• It affects groups of related language-specific items, such as

delimiter characters and indentation rules.

The major modes are listed below. You can establish the mode:

• By turning it on using the prefix !"I-X followed by the name of
the mode. For example, to invoke Lisp Mode, type: !"I-X L ; sp
Mode.

• By setting it in the attribute list. See the section "Buffer and
File Attributes in Zmacs", page 155.

• By having Zmacs do it for you when you specify a fue with c-X
c-F or the Edit File command. It recognizes the type
component of the pathname of the file (for example, folon.lisp)
and puts the buffer in the corresponding mode.

Fundamental Mode

Lisp Mode

Text Mode

Fundamental Mode enters Zwei's fundamental mode (the default
mode).

Lisp Mode sets things up for editing Lisp code. It puts Indent
For-Lisp on TAB.

When you read a file that has a Lisp file type into the buffer, if
that file does not begin with an attribute line containing Base and
Syntax attributes, Zmacs warns that the file "has neither a Base
nor a Syntax attribute" and announces that it will use the
defaults, Base 10 and Zetalisp. See the section "Buffer and File
Attributes in Zmacs", page 155.

Sets things up for editing English text. It puts Tab-To-Tab-Stop
on TAB.

177

July 1986 Zmacs Manual

Major Editing Modes, cant'd.

Note

Macsyma Mode

Midas Mode

Bolio Mode

Teco Mode

PU Mode

Zmacs supports Fortran Mode as a part of FORTRAN 77, the
separately priced software product. For more information, see the
User's Guide to the FORTRAN 77 Tool Kit.

Macsyma Mode enters a mode for editing Macsyma code. It
modifies the delimiter dispatch tables appropriately for Macsyma
syntax, makes comment delimiters 1* and *1. It puts Indent
Relative on TAB.

Midas Mode sets things up for editing PDP-lO assembly language
code.

Bolio Mode sets things up for editing Bolio source files. It is like
Text Mode, but also makes c-M-N, C-M-:, and C-M-* insert font
characters, and makes word-abbrevs for znil and zt.

Teco Mode sets things up for editing TECO. It makes comment
delimiters be !* and *!. It puts Indent-Nested on TAB, Forward
Teco-Conditional on M-', and Backward-Teco-Conditional on M-].

Pll Mode sets things up for editing PL/l programs. It makes
comment delimiters 1* and *1, and puts Indent-For-PIl on TAB,
Roll-Back-Pll-Indentation on c-M-H, and Plldcl on c-:=.

Underscore is made alphabetic for word commands.

Electric PU Mode
Electric Pll Mode sets things up for editing PL/l programs. It
does everything Pll Mode does: it makes comment delimiters 1*
and *1, puts Indent-for-Pll on TAB, Roll-Back-Pll-Indentation on
c-M-H, , and Plldcl on c-:=. Underscore is made alphabetic for
word commands. In addition, ; is Pll-Electric-Semicolon, : is Pll
Electric-Colon, ** is Rub out, @ is Clear, ' is Quoted Insert.

178

Text Editing and Processing July 1986

179

July 1986 Zmacs Manual

10. Zmacs Speller

180

Text Editing and Processing July 1986

Using the Zmacs Speller

The Zmacs Speller is a small, simple set of tools to help you spell
words right. The Speller can examine a single word, a Zmacs
region or buffer, a ilie, or a group of ilies, for spelling errors.
When it encounters a word not listed in one of its dictionary ilies,
it alerts you with a message and a menu of possible responses. A
large dictionary of common words is included as part of the
Zmacs editor. You can add other dictionaries of special spellings,
as used by individuals or groups of users on your system, to the
list.

The quickest way to see what the Speller can do is to go to a
Zmacs text buffer, type an incorrectly spelled or nonexistent word,
and then press M-$. Say you type "gorax". When you press M-$,

you see in the minibuffer at the bottom of the screen:

"gorax" is unknown and possibly misspelled.

A menu appears offering you a choice of Prompt and Accept and
the word "borax", which is the only word in the basic dictionary
close to the spelling of "gorax". The menu may also contain the
names of one or more dictionaries.

If you meant to type "borax", click on the word on the menu and
the spelling is changed.

If you want to accept the spelling "gorax", click on Accept or
move the mouse cursor off the menu.

If you want some entirely different word, click on Prompt and
you are prompted to type another word. If that word is spelled
correctly, the message

Correcting Hgorax" to "monkey".

appears in the minibuffer. If the word is spelled incorrectly, the
change is made anyway, and the following messages

Warning: HshimbaxH is not in the dictionary.
Correcting ·gorax· to ·shimbax·.

appear in the minibuffer.

If you click on a dictionary name, the spelling is added to that
dictionary for the rest of the session. You can also add the new
words permanently to a dictionary by saving the dictionary to a
file. See the section "M-X Save Spell Dictionary", page 191. See
the section "M-X Save All Spell Dictionaries", page 192.

Once you've tested the M-$ command, read a flie into the buffer.
Enter the command M-X Spell Buffer and watch what happens.
Chances are there is a misspelled word in the buffer, or at least a

181

July 1986 Zmacs Manual

Using the Zmacs Speller, cont'd.

word that is not in the dictionary. The menu produced by this
command has an additional entry, Accept once. Click on Accept
once if you want the Speller to flag the word the next time it
appears. Click on Accept if you want the Speller to ignore the
word for the duration of the spelling check.

NOTE

To the Speller, any word not in the dictionaries is
misspelled by definition. Not all words or alternate
spellings are in the basic dictionary.

Also, for purposes of the Speller, a word in running text
is defined to be a sequence of characters, each of which
must be a letter or an apostrophe. The apostrophe is
allowed so that contractions and possessives are
recognized as words. This definition of a "word" is not
exactly the same as that used by the Zwei "word"
commands (m-F and so forth).

The Zmacs Speller Menu
When the Speller encounters a word not in the dictionary in the
course of a M-$, M-X Spell Buffer, Spell Region, or Spell Word
command, a warning appears in the minibuffer

"rugnue" is unknown and possibly misspelled.

and a menu gives you a series of actions to choose from.

Prompt Prompts in the minibuffer for a
replacement word. The misspelled
word is replaced by the new word.
The replacement word is also checked
against the dictionaries and you are
warned if it isn't found. Any
uppercase letters you type are
included when the word is replaced.
If the questioned word had an initial
capital letter, so will the replacement.
Any other capital letters in the
original word are ignored.

While the menu is showing, pressing
c-p is the same as clicking on
Prompt.

182

Text Editing and Processing

Using the Zmacs Speller, cont'd.

Accept once

Accept

DICTIONARY-NAME

suggestion

July 1986

Accepts this spelling just this once.
That is, the Speller ignores the
spelling this time, but if the same
misspelling is encountered again, it
challenges the spelling again.
Moving the mouse cursor off the
menu is the same as clicking on
Accept once.

While the menu is showing, pressing
c-o is the same as clicking on
Accept once.

Accepts this spelling and considers it
a correct spelling for the duration of
the command. There is no way to
save words permanently using
Accept. To save words permanently,
you must accept them by clicking on
a dictionary name.

While the menu is showing, pressing
c-A is the same as clicking on
Accept.

Accepts the spelling and adds it to
the dictionary for the remainder of
the boot session. You can also add
the spelling to the dictionary file
permanently. To add a dictionary to
the list, use the M-H Read Spell
Dictionary command.

See the section "M-H Read Spell
Dictionary", page 190.

See the section "M-H Save Spell
Dictionary", page 191.

See the section "M-H Save All Spell
Dictionaries", page 192.

Whenever possible, the Speller
suggests words that are close in
spelling to the questioned word. One
or more suggestions may appear on

July 1986

Using the Zmacs Speller, cont'd.

183

Zmacs Manual

the menu. If one of the suggestions
is what you intended, click on it and
the spelling in the text is changed to
the suggested spelling.

184

Text Editing and Processing July 1986

Speller Commands for Spelling

The Zmacs Speller allows you to check spelling by word, region,
buffer, file, or groups of files (including tag tables).

M-$ (Spell This Word)

M-X Spell Word

M-X Spell Word

M-X Spell Region

M-X Spell Region

Checks the spelling of the current
word. If point is just to the right of
a word, that word is checked. This
means you can type a word and then
press M-$ to check the spelling. If
point is on a word, that word is
checked.

Use this command to check the
spelling of individual words in your
current buffer.

Prompts for a word and runs a
spelling check on it. If the word is
spelled according to the dictionaries,
you are informed in the mini-buffer.
If the word is not spelled according
to the dictionaries, you are informed.
If the dictionaries contain any words
similar to your misspelling, they are
listed also.

Use this command to check the
spelling of words before you type
them in your buffer.

Runs a spelling check on the current
region.

Use this command to check spelling
in a region you have marked.

July 1986

Speller Commands for Spelling, cont'd.

M-X Spell Buffer

M-H Spell Buffer

M-H Spell File

M-X Spell File

M-X Tags Spell

M-X Tags Spell

185

Zmacs Manual

Runs a spelling check on the entire
current buffer. It does not matter
where point is when you issue the
command. The entire buffer is
checked.

Runs a batch-mode spelling check
over a file. With wildcards, you can
also specify a group of files.

This command prompts for a
pathname and also for the name of a
buffer where the words not in the
dictionaries are to be written. The
questioned words are written to a
buffer in alphabetical order, but
without identification as to the file
they came from. You can save this
buffer if you wish.

See the section "M-X Tags Spell",
page 185.

Runs a batch-mode spelling check on
all the buffers of the current tags
table and finds all of the words that
aren't in any of the dictionaries and
writes them (in alphabetical order)
into a buffer you specify. You can
save this buffer if you wish.

Bee the section "M-H Spell File", page
185.

186

Text Editing and Processing

Speller Commands for Spelling, cont'd.

July 1986

See the section "Introduction to Tag
Tables and Search Domains", page
122.

187

July 1986 Zmacs Manual

Speller Dictionaries

Introduction to
Speller Dictionaries

The Zmacs Speller considers a word to be spelled correctly if it is
in a dictionary flie and to be misspelled if it is not in a dictionary
file. The Speller always checks against the basic dictionary
provided as part of Zmacs. In addition, the Speller checks against
one or more optional site-specific dictionaries and one or more
user-specific dictionaries.

Here are some basic definitions of dictionary terms:

o A dictionary is an object in the Lisp environment containing a
set of words. It has an associated pathname, and a
modified-p flag. The pathname refers to a dictionary file. The
modified-p flag indicates whether words have been added to the
dictionary since it was read in. If the modified-p flag is on,
the M-X Save Spell Dictionary and M-X Save All Spell
Dictionaries commands saves the dictionary. When a dictionary
is saved, the modified-p flag is turned off.

o A dictionary file is a file that holds a set of words. It can be a
binary (compiled) dictionary or a character (text) dictionary.

o A binary dictionary is compiled and has the canonical file
type "dict" ("dc" on Unix, "dct" on VMS). The binary
dictionary is fast to load or dump.

o A character dictionary can be any file with text in it. There
is no naming restriction, but it is clearer to use the file type
"text". The words in the file are the words of the dictionary
set, minus duplicates. This format can be easily created,
examined and modified by editing.

o There is a special list of dictionaries used by the Zwei
commands. This is the dictionaries currently being used.
Order in the list doesn't matter. Some dictionaries on the list
appear in the correction menu, and some do not. Whether or
not to appear on the menu is a property of a dictionary.

Speller Dictionary Management
Every system includes a basic dictionary, which is in the file
SYS:SPELL;BASIC.DICT. This is a dictionary of about 30,000
common English words. Not all words or alternate spellings are
in the basic dictionary. The dictionary does not include the
names of Lisp language forms.

You can add dictionaries for yourself as an individual user, or for
your site. Any text file can be used as a dictionary. Dictionaries

188

Text Editing and Processing July 1986

Speller Dictionaries, cont'd.

can be in either binary (compiled) format, or character (text)
format.

Adding User-specific
Speller Dictionaries

The Zmacs Speller checks by default for a Speller dictionary in
your home directory. This is a standard dictionary and is always
included on the list of dictionaries if it exists.

The user-specific dictionary is sought in your directory, on your
file server, under your name, with the file name "spell" and the
file type "dict" or "text".

If you wish to add words to a dictionary as you go along, using
the Speller, you must read the dictionary in ahead of time. Then,
any time you click on the dictionary name, the word is added to
the dictionary in memory. If you wish to add the words to the
dictionary file on disk, you can save the dictionary.

See the section "M-H Read Spell Dictionary", page 190.

See the section "M-H Save Spell Dictionary", page 191.

See the section "M-H Save All Spell Dictionaries", page 192.

A dictionary file is just a file of text. Put all the words you want
in your dictionary into a file in your top-level directory and you
have a user-specific dictionary.

To speed loading, you can compile the file. I t is good practice to
use the "text" file type for character (text) dictionary files and
the "dict" file type for binary (compiled) dictionary files. When
loading standard dictionari~s, the Speller looks first in your
directory for the file named spell.dict. If that file is not found,
the Speller looks for spell. text. See the section "M-H Compile
Spell Dictionary", page 190.

If you wish to use other dictionaries besides the basic dictionary,
you can add them to the dictionary list interactively with the M-H
Read Spell Dictionary command. See the section "M-H Read Spell
Dictionary", page 190. You can also include other dictionaries on
your dictionary list using zwei:read-spell-dictionary. Speller
dictionary functions are most effectively used in a lispm-init file
to do automatic dictionary operations when you log in. See the
function zwei:read-spell-dictionary, page 193.

For example, evaluating the following form:

189

July 1986 Zmacs Manual

Speller Dictionaries, cont'd.

(zwei:read-spell-dictionary "f:>skimpy>my-old-list.foo")

reads that file into memory as a dictionary and adds
MY-OLD-LIST to the dictionaries named on the menu. In most
cases, the menu lists just the name of the file and not the rest of
the pathname, but if two dictionary files have the same name,
then the menu lists the pathname for both (name-first, like Zmacs
buffer names).

Conversely, evaluating this form:

(zwei:read-spell-dictionary "f:>skimpy>my-old-list.foo" nil)

reads the file into memory as a dictionary, but does not add it to
the dictionaries named on the menu. See the function zwei:read
spell-dictionary, page 193.

Note: If you use zwei:read-spell-dictionary in your lispm-init file,
you must also use zwei:read-standard-spell-dictionaries if you
want to use the standard dictionaries. zwei:read-spell-dictionary
overrides the auto-loading of the standard dictionaries.

See the section "Adding Site-specific Speller Dictionaries", page
189.

Adding Site-specific
Speller Dictionaries

The Zmacs Speller loads the basic dictionary in
SYS:SPELL;BASIC.DICT when you first use the speller. It is not
loaded until you request it or need it.

You can also have other dictionaries designated as site-specific.
Site-specific dictionaries are always included on the dictionary list
for each user except for those users who override the auto-loading
of standard dictionaries by evaluating zwei:read-spell-dictionary
without also evaluating zwei:read-standard-spell-dictionaries.
See the section " Adding User-specific Speller Dictionaries", page
188.

You can make a dictionary site-specific by adding a USER
PROPERTY item to the SITE object in the namespace with the
keyword SPELL-DICTIONARY and a value that will be parsed as
a pathname. The namespace editor documentation explains how
to do this: See the section "Updating the Namespace Database"
in Networks.

There is a command processor command for creating a Speller
dictionary including all the user names for your site.

190

Text Editing and Processing July 1986

Speller Dictionaries, cont'd.

Create Spell Dictionary From Namespace Command

Create Spell Dictionary From Namespace
namespace pathname

Creates a Speller dictionary with all the user-names, first names,
and last names from the list of USER objects in the namespace.
(For speed, the command works by accessing the files that hold
the namespace database rather than by accessing the actual
namespace servers.)

names pace

pathname

The namespace you wish the dictionary to
represent.

The pathname of the binary dictionary file to be
created.

Once you have created the file, use the namespace editor to make
it a site-specific dictionary. See the section "Adding Site-specific
Speller Dictionaries", page 189.

Speller Dictionary Commands
Here are the commands for manipulating Speller Dictionaries.

M-H Compile Spell Dictionary

M-H Compile Spell Dictionary

M-H Read Spell Dictionary

Compiles a character (text) dictionary
into binary format for quicker
loading. The command prompts for
two filenames. The first is the
pathname of the character dictionary,
which can be any text file. The
second is the pathname of the binary
dictionary. Binary dictionary files
usually have a (canonical) file type of
"dict".

M-H Read Spell Dictionary Reads a dictionary from a file. By
default, the dictionary is added to the

191

July 1986 Zmacs Manual

Speller Dictionaries, cont'd.

M-H Sh9w Spell Dictionaries

menu. When a dictionary is on the
menu you can add words to it as they
are checked. With a numeric
argument, the dictionary is not added
to the menu. You are prompted for
the pathname of the dictionary, which
can be either character (text) or
binary (compiled).

M-H Show Spell Dictionaries

M-H Save Spell Dictionary

Shows the list of dictionaries
currently being used by the Zmacs
Speller.

M-H Save Spell Dictionary Saves an updated copy of a dictionary
with all words added in the current
session. You can save any dictionary
from the list of dictionaries, but it is
only meaningful to save a dictionary
from the displayed list) since those
are the only dictionaries modified.
Pathnames are unchanged. Saving
an unmodified dictionary does
nothing.

Use M-H Show Spell Dictionaries to
see the list of dictionaries.
Completion of dictionary names is
available.

See the section "M-H Save All Spell
Dictionaries") page 192.

192

Text Editing and Processing July 1986

Speller Dictionaries, cont'd.

M-X Save All Spell Dictionaries

M-X Save All Spell Dictionaries

M-X Kill Spell Dictionary

Saves updated copies of all modified
dictionaries on the list of dictionaries.
Dictionary pathnames are unchanged.

Use M-X Show Spell Dictionaries to
see the list of dictionaries.

See the section "M-X Save Spell
Dictionary", page 191.

M-X Kill Spell Dictionary Removes a dictionary from the list of
dictionaries used by the Zmacs
Speller. This command has no effect
on the file on disk. Type in the
pathname of the dictionary in name
first order (like Zmacs buffer names).
Completion of dictionary names is
available.

M-X Add Word to Spell Dictionary

M-X Add Word To Spell Dictionary
Adds a word to a dictionary. The
command prompts for both the word
and the name of the dictionary. The
word remains in the dictionary as
long as the dictionary remains on the
list.

You can also add a word at the time
the Speller challenges it, by clicking
on the dictionary name.

See the function zwei:add-words-to
spell-dictionary, page 194.

193

July 1986 Zmacs Manual

Speller Dictionaries, cont'd.

M-H Delete Word From Spell Dictionary

M-H Delete Word From Spell Dictionary

M-H Show Contents of Spell Dictionary

Deletes a word from a dictionary.
This command prompts for both the
word and the dictionary.

See the function zwei:delete-words
from-spell-dictionary, page 195.

M-H Show Contents Of Spell Dictionary

Speller Dictionary Functions

Shows all the words in a dictionary.
Completion of dictionary names is
available. With a numeric argument,
the command prompts for a pathname
and writes the words to that file. In
this way, you can get a text file of a
binary dictionary.

Use M-H Show Spell Dictionaries to
see the list of dictionaries.

zwei:read-spell-dictionary pathname &optional Function
(menu-p t)

This function is intended primarily for use in lispm-init
files. It reads a dictionary from a file into virtual memory
and adds it to the list of dictionaries used by the Zmacs
Speller.

If the optional menu-p argument is nil, the dictionary is
not added to the dictionaries shown on the menu. The
default is to show the dictionary on the menu.

zwei:read-spell-dictionary overrides the auto-loading of
standard dictionaries. If you use this function in your
lispm-init file, you must also use
zwei:read-standard-spell-dictionaries if you want the
standard dictionaries loaded. See the function zwei:read
standard-spell-dictionaries, page 194.

194

Text Editing and Processing July 1986

Speller Dictionaries, cont'd.

See the section "Speller Dictionary Management", page
187.

zwei:read-standard-spell-dictionaries &key Function
for-general-use

This function reads the basic dictionary, any site-specific
dictionaries, and, optionally, a user-specific dictionary into
memory and makes them a part of the list of dictionaries
used by the Zmacs Speller.

If the optional keyword argument for-general-use is nil,
only the basic dictionary and any site-specific dictionaries
are read in. The default is to read in those dictionaries
plus the user's own user-specific dictionary. Only the
user-specific dictionary appears on the menu.

You do not need to evaluate this function in your lispm-init
file unless you are using zwei:read-spell-dictionary, which
overrides the auto-loading of standard dictionaries, or
unless you wish to set for-general-use to nil.

See the function zwei:read-spell-dictionary, page 193.

See the section "Speller Dictionary Management", page
187.

zwei:add-words-to-spell-dictionary pathname Function
list-of-words &optional
ok-if-dictionary-not-found

This function adds words to a dictionary in virtual
memory. Use it to patch a dictionary in a world load that
already has the dictionary loaded. If the optional
argument okay-if-dictionary-not-found is t and no dictionary
is found, nothing happens. If the argument is nil, which
is the default, the function signals an error.

For example,

(zwei:add-words-to-spell-dictionary "shoebox:>fred>arfnarf.dict"
'("roadhog" "birdbrain") t)

See the function zwei:delete-words-from-spell-dictionary,
page 195.

The dictionary file on disk is not affected. To add a word
to a dictionary file:

195

July 1986 Zmacs Manual

Speller Dictionaries, cont'd.

See the section "M-X Add Word to Spell Dictionary", page
192.

See the section "M-X Save Spell Dictionary", page 191.

See the section "M-X Save All Spell Dictionaries", page 192.

zwei:delete-words-from-spell-dictionary pathname Function
list-of-words &optional
ok-if-dictionary-not-found

This function deletes words from a dictionary in virtual
memory. Use it to patch a dictionary in a world load that
already has the dictionary loaded. If the optional
argument okay-if-dictionary-not-found is t and no dictionary
is found, nothing happens. If the argument is nil, which
is the default, the function signals an error.

For example,

(zwei:delete-words-from-spell-dictionary "bogue:>lorna>snage.dict"
J("wonderissimo" "megastupidity") t)

See the function zwei:add-words-to-spell-dictionary, page
194.

The dictionary file on disk is not affected. To delete a
word from a dictionary file:

See the section "M-X Delete Word From Spell Dictionary",
page 193.

See the section "M-X Save Spell Dictionary", page 191.

See the section" M-X Save All Spell Dictionaries", page 192.

196

Text Editing and Processing July 1986

197

July 1986 Zmacs Manual

11. Word Abbreviations

198

Text Editing and Processing July 1986

Using Word Abbreviations

Using word abbreviation, you can type short abbreviations in an
editing buffer which are expanded into text blocks of any length.
Thus, you can substitute short, easily typed made-up words and
have commonly used words, phrases, paragraphs, or program
elements appear in their place.

Word Abbrev Mode is a Zmacs minor mode. Turn it on with the
M-X Word Abbrev Mode command. Turn it off with another M-X

Word Abbrev Mode command. When Word Abbrev Mode is on,
you will see the word Abbrev in the mode line.

Here is an example of using Word Abbrev Mode. Go to an
editing buffer. For this example, make it a text buffer. Enter
the M-X Word Abbrev Mode command. Type a word into the
buffer, such as "Tex". Press c-X c-A. You are prompted in the
minibuffer Text mode abbrev for "Tex":. Type "tl", in the
minibuffer. Now type "tl" and press the space bar. The word
"Tex" appears in the buffer.

From now on in this session, any time you type "t1", "Tex" will
appear. If you want to have "tl" appear in the buffer instead of
"Tex", type c-X U to Undo the last word abbreviation.

The expansion is triggered by a space, RET URN, or any punctuation
mark, including asterisks, ampersands, and other symbols on the
top row of the keyboard. The trigger is also inserted into the
buffer.

If you want to have an abbreviation expand to more than one
word, you can either select a region before typing c-X c-A or use
a numerical argument with c-X for the number of words you want
to include in the abbreviation.

c-X c-A makes word abbreviations only for the current Zmacs
major mode. Using c-X c-A in a Lisp buffer makes abbreviations
that work in all Lisp mode buffer. c-X c-A in a Text mode buffer
makes abbreviations that work in all Text Mode buffers, and so
forth. These are called mode word abbrevs. You can make global
word abbrevs with c-X +. Global word abbrevs work in any buffer
except those where a mode word abbrev is defined using the same
abbreviation. That is, you could have "tl" with a global definition
of "(FUNCALL STREAM :STRING-OUT STRING)" and still have
"tl" expand to "Tex" in text buffers.

If you want to see a list of word abbreviations, use the M-X List
Word Abbrevs command.

If you want to save a file of word abbreviations, use the M-X

Write Word Abbrev File command. To use the word abbreviations
in a file, use the M-X Read Word Abbrev File command.

199

July 1986 Zmacs Manual

Using Word Abbreviations, cont'd.

You can edit the current word abbreviations with the M-H Edit
Word Abbrevs command. You can put all your word abbreviations
in a buffer with the M-H Insert Word Abbrevs command and then
write out the buffer so you can have all your word abbreviations
in a readable form. Word abbreviation files are written in a
special format with the "qwabl" fue type and are not readable.

To stop using word abbreviations, you can either turn the mode
off with the M-H Word Abbrev Mode command, or use the M-H Kill
All Word Abbrevs command, which eliminates all defined word
abbreviations.

You have some control over capitalization in Word Abbrev Mode.
For instance, with "wabv" as an abbreviation for "word
abbreviation", "Wabv" expands to "Word abbreviation" and
"WABV" expands to "WORD ABBREVIATION". Capitalization is
also controlled by how you enter the word abbreviation in the
first place.

Word abbreviations work in the minibuffer, so you can even
abbreviate commands. If you always type "otehr" when you mean
"other", then make "otehr" the abbreviation for "other". You can
also use word abbreviation in programming, for writing reports,
or in many other editing contexts.

200

Text Editing and Processing July 1986

Word Abbreviation Commands

The word abbreviation commands in this section are listed in
alphabetical order.

c-X p 1 us-SI GN Add Global Word Abbrev

c-X Plus-sign

c-X c-A Add Mode Word Abbrev

c-X c-A

Prompts for agio bal word
abbreviation. The default is to make
a global abbreviation for the word
preceding point. With a numerical
argument, the command makes a
global abbreviation for that many
words before the point. If a region is
defined, the command makes a global
abbreviation for the region.

Global abbreviations work in all
buffers unless a mode word
abbreviation is defined for the
current buffer mode. See the section
"c-X c-A Add Mode Word Abbrev",
page 200.

Prompts for a mode word
abbreviation. The default is to make
a mode abbreviation for the word
preceding point. With a numerical
argument, the command makes a
mode abbreviation for that many
words before the point. If a region is
defined, the command makes a mode
abbreviation for the region.

Mode abbreviations work in all
buffers of the same mode as they
were created in. Lisp mode
abbreviations work in all Lisp Mode
buffers. Text mode abbreviations
work in all Text Mode buffers, and so
forth. Mode word abbreviations
override global word abbreviations for

201

July 1986 Zmacs Manual

Word Abbreviation Commands, conf'd.

Edit Word Abbrevs

buffers of the same mode. That is,
you can have a global abbreviation
that works in all buffers except Text
Mode, and have the same
abbreviation expand differently in
Text Mode buffers. See the section
"c-H plus-SIGN Add Global Word
Abbrev", page 200.

For a prompting form of this
command:See the section "Make Word
Abbrev", page 202.

Edit Word Abbrevs (M-H) Allows you to edit word abbreviations.

Insert Word Abbrevs

Displays word abbreviations in a
Word-Abbrev buffer that you can edit
in the usual fashion.

Insert Word Abbrevs (M-H) Inserts a list of word abbreviations
and their expansions into the buffer.
You can make a file of this buffer so
you will have a readable list of the
word abbreviations you are using.
word abbreviation files are not
readable.

Kill All Word Abbrevs

Kill All Word Abbrevs (M-H)

Eliminates all word abbreviations,
whether read in from a file or
created interactively with c-H c-A.

202

Text Editing and Processing July 1986

Word Abbreviation Commands, cont'd.

List Some Word Abbrevs

List Some Word Abbrevs (M-H)

List Word Abbrevs

Lists word abbreviations or
expansions that contain a given
string. Prompts for the string. If
you have "t1" as an abbreviation for
"Tex", either "1" or "ex" will list the
abbreviation.

The command M-H List Word
Abbrevs, lists all abbreviations and
expansions. See the section "List
Word Abbrevs", page 202.

List Word Abbrevs (M-H) Lists all word abbreviations and
expansions.

Make Word Abbrev

Make Word Abbrev (M-H) Prompts for and creates a new mode
word abbreviation. Note that this
command has the same effect as c-H
c-A Add Mode Word Abbrev. It does
not make a global abbreviation.

Read Word Abbrev File

See the section "c-H c-A Add Mode
Word Abbrev", page 200.

Read Word Abbrev File (M-H)

Reads in a word abbreviation file
created with M-H Write Word Abbrev
File. Abbreviations in the file
override previously abbreviations, but
you can add new abbreviations
interactively.

203

July 1986 Zmacs Manual

Word Abbreviation Commands, cont'd.

c-H U Unexpand Last Word

Word abbreviation files are not in a
readable form. They have the file
type .qwabl.

c-H U Unexpand Last Word

Word Abbrev Mode

Undoes the last expansion of a word
abbreviation, leaving the unexpanded
abbreviation. Thus, if you have "tl"
as an abbreviation for "Tex", but
should, for some reason, want to have
"tl" in your text, you could type "t1"
and then type c-H U, to get rid of
"Tex" and leave "tl" behind.

Word Abbrev Mode (M-H) Turns on Word Abbrev Mode. If
Word Abbrev Mode is already on, this
command turns it off. Word Abbrev
Mode is a Zmacs Minor Mode. The
word Abbrev appears in the mode line
when Word Abbrev Mode is on.

Write Word Abbrev File

Write Word Abbrev File (M-H)

Takes all the current word
abbreviations and puts them in a
word abbreviation file. Word
abbreviation files are not in a
readable form. They have the file
type .qwabl.

Use the M-H Read Word Abbrev File
to read in a previously created file of
abbreviations. See the section "Read
Word Abbrev File", page 202.

204

Text Editing and Processing July 1986

205

July 1986 Zmacs Manual

12. Using Character Styles in Zmacs

206

Text Editing and Processing July 1986

Introduction to the Character Style Commands

A number of Zmacs commands allow you to use different
character styles. Using character styles, you can indicate
program structure with different character styles, or you can do
certain kinds of text formatting.

For another kind of text formatting: See the section "Zmacs
Commands for Formatting Text", page 35.

The information in this chapter deals with these commands only.
For more information on character styles: See the section
"Character Styles" in Converting to Genera 7.0. For more
information on using character styles in programs: See the section
"Overview of Character Environment Facilities" in Programming
the User Interface, Volume A.

A number of choices of character styles are available on the
Genera system. Here are a few examples:

Datci.Aoid-Italic.smaII

Sw i 55. Bo I d-Condensed-Caps. Normal

Eurex./tslic. Hugs
Dutch.Roman.Normal

Zmacs commands allow you to specify the character style for a
character, word, region, or buffer. (Not all character styles work
equally well on all printers.)

Character styles are identified by three characteristics that affect
how the character appears. These are family, face, and size. The
names of character styles jncorporate these three characteristics.
Thus, as in the example, you see the family Eurex, the face
Italic, and the size Huge; this is expressed in commands as
EUREX.ITALIC.HUGE. This is a fully-specified character style.

Where you see a character style named as NIL.NIL.NIL (with nils
in its name), this indicates that the character style is being
merged against a default style. For instance, the default
character style for Zmacs buffers is FIX. ROMAN. NORMAL.
Thus, if you wish a character in a Zmacs buffer to be bold, it can
be entered as NIL. BOLD. NIL. This means that in the Zmacs
buffer, its style is merged against FIX. ROMAN. NORMAL to
produce FIX. BOLD. NORMAL. In some other context,

207

July 1986 Zmacs Manual

Introduction to the Character Style Commands, cont'd.

NIL. BOLD. NIL might be interpreted as SWISS.BOLD.NORMAL
because it was merged against SWISS. ROMAN. NORMAL. A
character style specification in the form NIL.BOLD.NIL is called
a character face specification (in contrast to the fully qualified
specification).

Here is an example of using character styles. In a Zmacs buffer,
type a word. Move the cursor back to the beginning of the word.
Press M-J. You are prompted

Change character style of word to [default nil .nil.nil]:

Type in NIL.BOLD.NIL and press RETURN. The word you have
selected appears in bold.

Now move to the beginning of another word. Press M-J. You see
the same prompt. This time move the mouse over the word you
just made bold. You'll see Mouse-L: NIL.BOLD.NIL in the
mouse documentation line. Click (L). The word you selected is
emboldened.

Now move to the beginning of another word. Press M-J. You see
the same prompt. The arrow cursor points straight up and you'll
see Mouse-R: Character style menu in the mouse documentation
line. (If you don't see it, move the mouse a bit and it will show
up.) Click (R) and a menu appears.

[Character Face Code
---Unspecific (fanily NIL)--
Ronan
Ital ic
Bold
Bold Italic
---Code (fanily Fix)--
Ronan
Ital ic
Bold
Bold Italic

x

---Text (family Swlss)--
Roman
Italic
Bold
Bold Italic;
Other style, by Family/Face/Size ..•

Move the mouse over the first word bold and click any button.
The word you selected appears in bold.

The menu allows you many choices of character styles. If you
click on the item

Other style by Family/Face/Size ...

208

Text Editing and Processing July 1986

Introduction to the Character Style Commands, cont'd.

you get a series of menus that allows you to select the family,
faces within that family, and styles available for that combination
of family and face. Not all families have all faces and sizes
available. Sizes are relative, for example, SMALL or SMALLER,
not absolute.

These are the three ways of selecting a character style. All
commands for changing character styles allow you to use these
three .methods of specifying the character style you want.

A common desire is to include a word or phrase in the same
family, but bold or italic face. If you are typing in a normal
Zmacs buffer (FIX. ROMAN. NORMAL) you can make a word bold
by pressing M-J and then simply entering "bold" or just "b" in
response to the prompt. This is specifying a character face.

There are six commands for changing character styles.

c-J (Change Style Character) changes the style of a character, or
several characters if you use a numeric argument.

M-J (Change Style Word) changes the style of a word, or several
words if you use a numeric argument.

c-H c-J (Change Style Region) changes the style of a region.

M-H Change One Style Region changes one style in a region, but
not any other. Thus, if you had a region with both bold and
italic in it, you could change the italic characters without
affecting the bold ones.

M-H Set Default Character Style sets the default character style
for the whole buffer. The command also prompts to ask if you
want to set the default character style in the attribute list as
well.

C-M-J (Change Typein Style) changes the character style for
newly inserted characters.

There are two commands for getting information about character
styles in a buffer.

M-H Show Character Styles displays all character styles in the
buffer or in the region, if there is one. The display includes the
character style, that is, what you type in to select a character
style; the Lisp name of the character style; the font equivalent;

209

July 1986 Zmacs Manual

Introduction to the Character Style Commands, cont'd.

and samples of the character style. When samples are displayed,
you can click on the samples to select that character style for any
of the commands for changing character styles.

M-H Find Character in Style searches forward for the next
character in a given style. You supply the name of the character
style as in the commands for changing or specifying character
styles.

210

Text Editing and Processing July 1986

Character Style Commands in Zmacs

The character style commands in this section are listed in
alphabetical order.

Change One Style Region

Change One Style Region (M-X)

c-J Change Style Character

Allows you to change one character
style in a region without affecting
other character styles in the region.
This command prompts you for the
style you want to change and the
style to which you want it changed.
You can identify the old and new
styles by typing in the name, by
clicking with the mouse on the style
you wish, or by clicking through the
character styles menu.

To change all the characters in a
region to a single style: See the
section "c-X c-J Change Style
Region", page 210.

c-J Change Style Character

c-X c-J Change Style Region

This command changes the character
style of a single character, or, with a
numeric argument, more than one
character. You can identify the style
you want by typing in the name, by
clicking with the mouse on the style
you wish, or by clicking through the
character styles menu.

c-X c-J Change Style Region
This command allows you to change
the character style of a region to a

211

July 1986 Zmacs Manual

Character Style Commands in Zmacs, cont'd.

M-J Change Style Word

single character style. That is, if
there are two character styles in the
region, both will be changed to the
character style you choose with this
command. You can identify the style
you want by typing in the name, by
clicking with the mouse on the style
you wish, or by clicking through the
character styles menu.

To change only one character style in
a region:See the section "Change One
Style Region", page 210.

M-J Change Style Word This command changes the character
style of a single word, or, with a
numeric argument, more than one
word. You can identify the style you
want by typing in the name, by
clicking with the mouse on the style
you wish, or by clicking through the
character styles menu.

C-M-J Change Typeln Style

C-M-J Change Typein Style
This command sets the character
style for newly inserted characters. It
does not affect the default style for
the buffer. You can identify the style
you want by typing in the name, by
clicking with the mouse on the style
you wish, or by clicking through the
character styles menu.

212

Text Editing and Processing July 1986

Character Style Commands in Zmacs, cant'd.

Find Character In Style

Find Character in Style (M-H)

Set Default Character Style

This command searches forward for
the next character in a given style.
You can identify the style you want
by typing in the name, by clicking
with the mouse on the style you wish,
or by clicking through the character
styles menu.

Set Default Character Style (M-H)

Show Character Styles

This command sets or changes the
character style associated with the
buffer. You can identify the style you
want by typing in the name, by
clicking with the mouse on the style
you wish, or by clicking through the
character styles menu.

Show Character Styles (M-H)

This command displays all the
character styles in a buffer. The
display includes the character style,
that is, what you type in to select a
character style; the Lisp name of the
character style; the font equivalent;
and samples of the character style.
When samples are displayed, you can
click on the samples to select that
character style for any of the
commands for changing character
styles.

213

July 1986 Zmacs Manual

13. Changing Case and Indentation in Zmacs

214

Text Editing and Processing July 1986

Changing Case

Overview
Zmacs offers extended commands that convert the case of the
code for words, regions, and buffers.

Changing Case of Words
M-C Uppercase Initial

Puts next word in lowercase, but capitalizes initial character.
With an argument, it capitalizes that many words.

Lowercase Word

Puts next word in lowercase. With an argument, it puts that
many words in lowercase.

Uppercase Word

Puts next word in uppercase. With an argument, it puts that
many words in uppercase.

Changing Case of Regions
c-X c-U

Uppercases the region.

c-X c-L

Lowercases the region.

Uppercase Code in Region (M-X)

Uppercase Region

Lowercase Region

Converts all code (not comments, strings, or quoted characters) to
uppercase. This gives the same effect as retyping that text while
in Electric Shift Lock Mode. It operates on the region if there is
one, otherwise it operates on the current definition.

Lowercase Code in Region (M-X)

Converts all code (not comments, strings, or quoted characters) to
lowercase. It operates on the region if there is one, otherwise it
operates on the current definition.

Changing Case of Buffers
Uppercase Code in Buffer (M-X)

Converts all code (not comments, strings, or quoted characters) to
uppercase. This gives the same effect as retyping that text while
in Electric Shift Lock Mode. I t queries for a buffer name (the
default is the current buffer) and operates on that buffer.

215

July 1986 Zmacs Manual

Changing Case, cont'd.

Lowercase Code in Buffer (M-H)

Converts all code (not comments, strings, or quoted characters) to
lowercase. It queries for a buffer name (the default is the
current buffer) and operates on that buffer.

216

Text Editing and Processing July 1986

Indentation

Overview
Proper indentation helps make complicated Lisp programs
readable. Indentation should reflect the structure of a program~
An expression should be indented so that its subforms are easily
identifiable, and so that a function can be related to its
arguments by eye, without counting parentheses.

The indentation commands work in any Zmacs major mode; the
TAB key indents differently depending on the mode. When you
give an indent command an argument of n, n equals the number
of Space characters in the default font.

Indenting Current Line
TAB

Indentation in
zl:loop Macros

In Lisp mode, the TAB key indents the current line of Lisp code
correctly with respect to the line above it. (In most other modes,
TAB inserts a Tab character.) Point remains IlXed with respect to
the code.

With a numeric argument n, it indents the next n lines including
the current one, and leaves point at the n+lst line.

c-TAB Indent Differently

Tries to indent this line differently. If called repeatedly, it makes
multiple attempts.

Insert Tab

Inserts a Tab character, even in Lisp Mode, in the buffer at
point.

Indent For Lisp

Indents this line to make ground (indented) LISP code, even in a
mode other than Lisp Mode. A numeric argument specifies the
number of lines to indent.

The zl:loop Indentor
Zwei now indents code within a zl:loop macro in a more
attractive way than it did in the past. The TAB key indents the
code while recognizing and dealing appropriately with zl:loop
keyword clauses. This new indentation style is a change in the

217

July 1986 Zmacs Manual

Indentation, cant'd.

How to Use the
zl:loop Indentor

Zmacs user interface for writing Lisp code. You might want to
know how to turn it off because it indents new code in a style
that is inconsistent with existing code.

To turn off the new zl:loop indentor, include the following flag in
your init file:

(SETF ZWEI:*INHI8IT-FANCY-LOOP-INDENTATION* T)

The initial value for this flag is nil; t reverts to the old-style
indentor.

Use the zl:loop indentor the same way as always: type a token
on a line of code inside a zl:loop and then press TAB, which
correctly indents the code.

The usual sequence:

LINE finally TAB

(substitute any other zl:loop word for fi nall y) reindents based on
the new knowledge that this is a fi nall y line rather than a body
line. The zl:loop indentor always ignores comments.

Loop Indentor Example 1

The right indentation sometimes depends on forms after the line
you are indenting. For example:

(loop for a being the array-elements of b
jj comment
do (frob a»

Press TAB at the end of the comment line and:

(loop for a being the array-elements of b
;; comment

do (frob a»

happens because the zl:loop indentor anticipates that you might
instead be doing this:

(loop for a being the array-elements of b
j; comment

using (sequence b) (index i)
do (frob a»

218

Text Editing and Processing July 1986

Indentation, cont'd.

Loop Indentor Example 2

The zl:loop indentor second guesses on a few things, but gets
them right after you type a token on a line and press TAB. For
example:

(loop when x
do (y)

(z»

is indented correctly; this is how the indentation initially reads.
If (z) had been do, it would have put the do where the (z) is:

(loop when x
do (y)

do (z))

But pressing TAB reindents it correctly:

(loop when x
do (y)

do (z))

The converse can come up, for example:

(loop with x
do (z))

is fIxed with TAB:

(loop with x
do (z)

(loop with x
= (z))

is indented incorrectly until you press TAB, resulting in:

(loop with x
= (z))

219

July 1986 Zmacs Manual

Indentation, cont'd.

Centering the
Current Line

Center Line

Centers the text of the current line within the line. With an
argument n, it centers n lines and moves past them.

Indenting New Line
The keystroke combination RET URN T AS gets you into the right
position to start typing the next line of code. LI NE is the
abbreviation for that combination.

LINE Indent New Line

If the next two lines are blank, goes to the next line; otherwise, it
creates a new blank line following the current one. In any case,
it does a T AS on that blank line.

Reindenting Expression
C-M-Q Indent Sexp

Corrects the indentation of the expression following point by
adjusting the amount of space before each line in the expression.
C-M-Q positions point in front of the incorrectly indented
expression. This does not affect the indentation of the current
line, but only flxes the indentation of following lines with respect
to the current line. Use after modifying an expression.

With a numeric argument of n, it flxes the indentation of the
next n expressions.

Indenting Region
C-M-' Indent Region

Going Back to

Indents each line in the region. With no argument, it calls the
current Tab command to indent. With an argument of n, it
indents each line n spaces in the current font.

First Indented Character
M-M
c-M-M
M-RETURN
c-M-RETURN

Back To Indentation

Positions point before the flrst nonblank character on the curren t;
line.

220

Text Editing and Processing July 1986

Indentation, cont'd.

Indenting Region Uniformly
c-X TAB
c-X c-I

Indent Rigidly

Shifts text in the region sideways as a unit. All lines in the
region have their indentation increased by the numeric argument
of the command (the argument can be negative).

Aligning Indentation
Indent Under (C-M-X)

Fixes indentation to align under string, which you click on with
the mouse cursor or which you specify in the minibuffer.

When you use the mouse to specify the alignment string, begin by
putting the cursor on the line you want to indent, then click
right, click on Indent Under, then either point the cursor (a
down-arrow pointing at a box) at a character that you want to
line up with and click left, or type in a string for which it
searches.

When you type the alignment string in the minibuffer, it searches
back, line by line, forward in each line, for a string that matches
the one read and that is farther to the right than the cursor
already is. It indents to align with the string found, removing
any previous indentation first.

Deleting Indentation
Delete Indentation

Deletes the newline character and any indentation at the
beginning of the current line. It tacks the current line onto the
end of the previous line, leaving one space between them when
appropriate, for example, at the beginning of a sentence.

With any numeric argument, it moves down a line first, thus
killing the end of the current line.

New Line with
This Indentation

M-O This Indentation

Makes a new line after the current one, deducing the new line's
indentation from point's position on the current line. If point is
to the left of the first nonblank character on the current line, it

221

July 1986 Zmacs Manual

Indentation, cont'd.

Moving Rest of
Line Down

indents the new line exactly like the current one. But if point is
to the right of the first nonblank character, it indents the new
line to the current position of point. Regardless, it leaves point
at the end of the newly created line.

With a numeric argument, the new line is always indented like
the current one, no matter where point is. With an argument of
zero, it indents current' line to point.

C-M-O Split Line

Moves rest of current line down one line. It inserts a carriage
return and indents new line directly beneath point. With a
numeric argument n, it moves down n lines.

Inserting Blank Line
c-o Make Room

Inserts a blank line after point. With a numeric argument n, it
inserts n blank lines.

Deleting Blank Line
c-x c-O Delete Blank Lines

Deletes any blank lines around the end of the current line.

222

Text Editing and Processing July 1986

223

July 1986 Zmacs Manual

14. Editing Lisp Programs in Zmacs

224
Text Editing and Processing July 1986

Introduction

Lisp Machine programmers develop programs in repeated cycles,
each a sequence of editing, compiling, testing, and debugging.
These cycles are often nested. Zmacs allows you to edit and test
large programs dynamically, without frequent file system
operations. This manual does not describe any style of
interacting with the environment in developing Lisp programs.
See the section "Program Development Tools and Techniques" in
Program Development Utilities. It focuses on the interaction
between programmers and the Lisp Machine, presenting ways of
using helpful Lisp Machine features and tools during each stage
of program development.

As a programmer on a Lisp Machine you typically read a file
containing Lisp code into an editor buffer, make modifications,
test the results, make more changes, and so on, until satisfied
with the behavior of the program. Only then do you need to
write the buffer back out to the file system. The debugging loop
is much tighter and more responsive than in traditional
programming environments. You can even evaluate Lisp forms
directly from inside the editor, without returning to a Lisp
Listener. Alternatively, you can divide the screen into a Lisp
Listener window and a Zmacs window, so that you can direct your
attention to either without changing the display.

Zmacs provides extensive features for locating source code of
specified functions. If an error occurs, the Debugger can cause
Zmacs to read in the source of the function that got the error.
You can then debug and recompile the function. Similar features
complement the message-passing capabilities of the Zetalisp
language.

When you edit a file with a Lisp type, Zmacs puts that buffer into
Lisp mode. A command exists for explicitly placing a buffer in
Lisp mode:

Lisp Mode (M-H) Lisp Mode

Places the current buffer into Lisp mode.

Base and Syntax Default Settings for Lisp

When you read a file that has a Lisp file type into the buffer, if
that flie does not begin with an attribute line containing Base and
Syntax attributes, Zmacs warns that the file "has neither a Base
nor a Syntax attribute" and announces that it will use the
defaults, Base 10 and Zetalisp. See the section "Buffer and File
Attributes in Zmacs", page 155.

225

July 1986 Zmacs Manual

226
Text Editing and Processing July 1986

Commenting Lisp Code

Overview
Zmacs differentiates between the different comment indicators for
different major modes. Comments in Lisp begin with a semicolon.
The Lisp reader ignores everything between a (significant)
semicolon and the next newline. By convention, there are three
kinds of comments, beginning with one, two, and three
semicolons:

• Comments beginning with a single semicolon are placed to the
right of a line of code, start in a preset column (the comment
column), and describe what is going on in that line.

• A comment with two semicolons is a long comment about code
within a Lisp expression and has the same indentation as the
code to which it refers. It describes the function of a group of
lines.

• A comment headed by three semicolons is normally placed
against the left margin, and describes a large piece of code,
such as a function or group of functions.

This section outlines Lisp commenting conventions and explains
Zmacs commands for manipulating comments.

Indenting for Comment
c-;
M-;

Indent For Comment

If the current line has no comment, moves point out to the
comment column (inserting spaces to get there, if necessary) and
starts a comment by inserting a semicolon there. If the current
line already has a comment, it indents it correctly and leaves
point at the beginning of it. Zmacs positions the various kinds of
comments appropriately. If a comment begins at the left margin,
it leaves it there.

With a numeric argument n, it realigns any comments on the
next n lines, including the current line, but does not create any
new comments.

If a comment cannot be positioned at the comment column
because the associated line of code is too long, comments are
moved to the right until they are clearly separated from the code.

Killing a Comment
Kill Comment

Kills any comments in the region. If no region exists, kills

227

July 1986 Zmacs Manual

Commenting Lisp Code, cont'd.

comments on the current line if no region exists. This command
can be reversed with Undo if no other undo able command has
intervened.

Moving Down to
Comment on Next Line

M-N Down Comment Line

Moving up to
Comment on
Previous Line

Moves point to the beginning of the comment on the next line. If
there is no comment on the next line, it creates one. If the
comment on the current line is empty, it deletes it before going
to the next line.

With a numeric argument n, it moves point to the beginning of
the comment on the nth line after the current one.

M-P Up Comment Line

Moves point to the beginning of the comment on the previous
line. If there is no comment on the previous line, it creates one.
If the comment on the current line is empty, it deletes it before
going on to the previous line.

With a numeric argument n, it moves point to the beginning of
the comment on the nth line before the current one.

Setting the
Comment Column

c-x Set Comment Column

Sets the comment column to be the current horizontal position of
the cursor.

With a numeric argument, it finds the nearest comment above the
current line, sets the comment column to line up with that
comment, and actually puts a comment on the current line at that
column.

Creating a New
Indented Comment Line

M-LINE Indent New Comment Line

Makes a new blank line after the current line and starts a new
comment there, indented properly. If there was already a

228
Text Editing and Processing July 1986

Commenting Lisp Code, cont'd.

Inserting and

comment on the current line, the comment on the new line is of
the same kind. (That is, it has the same number of semicolons
and is indented the same.) If there was no comment on the
starting line, M-LI NE starts a new line, indenting the new line as
appropriate for the major mode.

Removing Lisp
Comments From Regions

c-H C-j Comment Out Region

Comments out each line in the region. When the region ends at
the beginning of a line, it does not comment out that line. If any
part of the line is part of the region, then it does comment out
that line.

With a numeric argument (c-U c-H c- j) the command restores
lines in the region that have been commented out. When any
part of the line is part of the region, comments are removed from
around that line.

The removal works the same as the commenting out. That is, a
single semi-colon (;) in column 1 is removed. Removal of
comments stops at a line without, a semi-colon in column 1, even
if more lines that have been commented out remain in the region.
The rest of the region does remain in this case, so that you can
resume.

229

July 1986 Zmacs Manual

Evaluating and Compiling Lisp Programs

Overview
The commands in this section form a link between the Zmacs
editor and the Lisp language. They allow the evaluation and
compilation of code from Zmacs buffers. These commands are an
important part of the debugging loop.

When a Lisp form is being compiled or evaluated, the editor
displays a message that classifies what is being compiled.

It classifies macros as functions (because these go in the function
cell of a symbol). For example:

Compiling Function SUN
Evaluating Variable MARS
Compiling Flavor STAR

Evaluating Lisp Programs
M-ESCAPE Evaluate Minibuffer

Evaluates expressions from the minibuffer. You enter Lisp
expressions in the minibuffer, which are evaluated when you press
END. The value of the expression itself appears in the echo area.
If the expression displays any output, that appears as a typeout
window.

Evaluate Into Buffer (M-H)

Evaluates an expression read from the minibuffer and inserts the
result into the buffer. You enter a Lisp expression in the
minibuffer, which is evaluated when you press END. The result of
evaluating the expression appears in the buffer before point.
With a numeric argument, it also inserts any typeout that occurs
during the evaluation into the buffer.

Evaluate Buffer (M-H)

Evaluates the entire buffer. The result of evaluating the buffer
appears in the minibuffer. With a numeric argument, it evaluates
from point to the end of the buffer.

Evaluate Region (M-H)
c-sh-E

Evaluates the region. When no region has been defined, it
evaluates the current definition. It shows the results in the echo
area.

230

Text Editing and Processing July 1986

Evaluating and Compiling Lisp Programs, cont'd.

Evaluate Region Verbose

Evaluates the region. When no region has been defined, it
evaluates the current definition. It shows the results in a typeout
window.

Evaluate Region Hack (M-H)

Evaluates the region, ensuring that any Lisp variables appearing
in a defvar have their values set. When no region has been
defined, it evaluates the current definition. It shows the results
in the echo area.

Evaluate Changed Definitions (M-H)

Evaluates any definitions that have changed in any of the current
buffers. With a numeric ,argument, it prompts individually about
whether to evaluate particular changed definitions (the default
evaluates all changed definitions).

Evaluate Changed Definitions of Buffer (M-H)
M-sh-E

Evaluates any definitions that have changed in the current buffer.
With a numeric argument, it prompts individually about whether
to evaluate particular changed definitions (the default evaluates
all changed definitions).

Evaluate And Replace Into Buffer (M-H)

Evaluates the Lisp object following point in the buffer and
replaces it with its result.

Evaluate And Exit

Evaluates the buffer and exits Zmacs. It selects the window from
which the last ed function or the last debugger c-E command was
executed.

Compiling Lisp Programs
Compile Buffer (M-H)

Compiles the entire buffer. With a numeric argument, it
compiles from point to the end of the buffer. (This is useful for
resuming compilation after a prior Compile Buffer has failed.)

231

July 1986 Zmacs Manual

Evaluating and Compiling Lisp Programs, cont'd.

Compile Changed Definitions (M-H)

Compiles any definitions that have changed in any of the current
buffers. With a numeric argument, it prompts individually about
whether to compile particular changed definitions (the default
compiles all changed definitions).

Compile Changed Definitions of Buffer (M-H)
M-sh-C

Compiles any definitions that have changed in the current buffer.
With a numeric argument, it prompts individually about whether
to compile particular changed definitions. The default is to
compile all changed definitions.

Compile Changed
Definitions of Tag Table

Compile Changed Definitions of Tag Table (M-~'O

Compiles any definitions that have changed in any of the buffers
in the current tag table. With a numeric argument, the command
prompts individually about whether to compile particular changed
definitions. The default is to compile all changed definitions.

Compile File (M-H)

Compiles a file, offering to save it first (if it has an associated
buffer that has been modified). It prompts for a file name in the
minibuffer, using the file associated with the current buffer as
the default. It does not load the file.

Load File (M-H)

Loads a file, possibly saving and compiling it first. It prompts for
a file name, taking the default from the current buffer. It checks
to see if the file you are compiling corresponds to a buffer and
offers to save that buffer if it is modified. If the . bin file is older
than the .lisp file, it offers to compile the file first. If the
typeout window displays any compiler warnings, Load File asks if
you really want to load the file despite the compiler warnings.

Compile And Exit

Compiles the buffer and exits Zmacs. It selects the window from
which the last ed function or the last debugger c-E command was
executed.

232

Text Editing and Processing July 1986

Evaluating and Compiling Lisp Programs, conf'd.

Lisp Compiler Warnings
Compiler warnings are kept in an internal database that you can
inspect and manipulate in various ways with several editor
commands.

Compiler Warnings (M-H)

Creates the compiler warnings buffer (called
*Compil er-Warni ngs-1 *) if it does not exist, puts all outstanding
compiler warnings in that buffer, and switches to that buffer.
You can view the compiler warnings by scrolling around and
doing text searches through them using Edit Compiler Warnings
(M-H).

Edit Compiler Warnings (M-H)

Prompts you with the name of each file mentioned in the
database, allowing you to edit the warnings for that file. It then
splits the Zmacs frame into two windows: the upper window
displays a warning message and the lower one displays the source
code whose compilation caused the warning. After you have
finished editing each function, c-. gets you to the next warning:
the top window scrolls to show the next warning and the bottom
window displays the function associated with this warning.
Successive c-. s take you through all of the warning messages for
all of the files you specified. When you are done, the last c-.

puts the frame back into its previous configuration.

Edit File Warnings (M-H)

Asks you for the name of the file whose warnings you want to
edit. You can give either the source file or the compiled file.
Only warnings for this file are edited. If the database does not
have any entries for the file you specify, the command prompts
you for the name of a file that contains the warnings, in case you
know that the warnings are stored in another file.

Load Compiler Warnings (M-H)

Loads a file containing compiler warning messages into the
warnings database. It prompts for the name of a file that
contains the printed representation of compiler warnings. It
always replaces any warnings already in the database.

233

July 1986 Zmacs Manual

Parenthesizing Lisp Expressions

Make 0

Inserts matching parentheses, leaving point between them. With
a numeric argument n, it encloses the next n Lisp expressions in
parentheses. When the number of expressions requested cannot
be satisfied, it beeps and does nothing. With point on the open
parenthesis of a defun, an argument of 1 encloses the whole
defun within a new set of parentheses. Any argument larger
than 1 would have no effect. In Text Mode, a word or a phrase
within parentheses is treated as a Lisp form.

See also the description of the command M-): See the section
"Motion Among Top-Level Expressions", page 77.

Matching parentheses in Zmacs Lisp buffers flash in both
directions.

The matching open parenthesis flashes when the cursor is sitting
just past a close parenthesis and the matching close parenthesis
flashes when the cursor is sitting on an open parenthesis.

234

Text Editing and Processing July 1986

Expanding Lisp Expressions

Two editor commands allow you to expand macros: Macro Expand
Expression and Macro Expand Expression All.

c-sh-M Macro Expand Expression

Reads the Lisp expression following point and expands the form
itself but not any of the subforms within it. It displays the result
in the typeout window. With a numeric argument, it pretty-prints
the result back into the buffer immediately after the expression.

Macro Expand Expression All

Reads the Lisp expression following point, and expands all macros
within it at all levels. It displays the result in the typeout
window. With a numeric argument, it pretty-prints the result
back into the buffer immediately after the expression. It assumes
that every list in the expression is a form, so if car of a list is a
symbol with a macro definition, the purported macro invocation is
expanded.

235

July 1986 Zmacs Manual

Locating Source Code to Edit

Introduction
The functions that make up a program or system can depend on
each other in complicated ways. When you are editing one
function, you sometimes have to go off and look at another
function, and possibly modify that one too.

This section describes the Edit Definition command and other
commands that list and/or edit various sets of defmitions. In
addition, two pairs of List and Edit commands help identify
changed code by finding or editing changed definitions in buffers.
By default, the changed commands find changes made since the
file was read; use numeric arguments to find definitions that have
changed since they were last compiled or saved.

The Zmacs Edit
Definition Commands

Edit Definition (M-.) is a powerful command to fmd and edit
function definitions, macro definitions, global variable definitions,
and flavor definitions. In general, Zmacs treats as a definition
any top-level expression having in functional position a symbol
whose name begins def.

It is particularly valuable for fmding source code, including
system code, that is stored in a file other than that associated
with the current buffer. It finds multiple definitions when, for
example, a symbol is defined as a function, a variable, and
another type of object. It maintains a list of these definitions in
a support buffer.

Zmacs Command: M-.

This command is one of the most valuable tools of the system.
When you are developing or debugging programs, you can use M-.

to find the definition of an ordinary function, generic function,
flavor, method, variable, package, or other type of definition.
Completion is supported on the definition, if it is already in an
editor buffer.

M-. prompts for a definition to find. You can enter a large
variety of representations, and M-. figures out what definition you
are seeking. For example, you can enter symbols with or without
package prefixes.

You can provide any of the following responses to the M-. prompt:

236

Text Editing and Processing July 1986

Locating Source Code to Edit, cont'd.

symbol Finds the definition of symbol, which can be an
ordinary function or generic function. For
generic functions, the defgeneric form is found
if one exists; all existing methods are also
found. symbol can also be one of: variable,
package, defstruct structure, flavor, or other
types of definitions.

(generic-function flavor)
Finds the definitions of one method that
implements generic-function on instances of
flavor and asks if you mean that method. If
not, it proceeds to find other methods, including
special-purpose methods such as :before, : after,
: default, and so on.

(symbol property) Finds the function named by function spec
(:property symbol property). This is a handy
abbreviation.

function-spec Finds the definitions of function-spec. For
example, you could enter (flavor:method
change-status cell) to find the method of that
function spec. Often it is more convenient to
enter the list (change-status cell) instead.

When the requested Lisp object has multiple definitions, one of
them is displayed. You can then use c-U M-. to cycle through
the other definitions. Also, a list of all definitions and the files
they are located in is stored in a buffer called *Definitions-n *.
The position of the cursor in that buffer controls where c-U M-.
will go next.

You can also point at forms with the mouse, in a buffer or in
other windows, and click M-Ieft to edit the definition.

Example of the M-. Command
Suppose you are modifying a function called sun, which was
written by someone else. sun calls the unfamiliar luna, and you
need to find out what luna does before proceeding. Use M-. to
peek at the definition of luna.

When you type M-., Zmacs prompts you for the name of a
definition. If point is in the expression where luna is called, the
default name is luna, and you need only press END. If point is
somewhere else and the default is wrong, you can point at the

237

July 1986 Zmacs Manual

Locating Source Code to Edit, cont'd.

word luna with the mouse or you can type it in. To let you know
that you can define a name with the mouse, the mouse cursor
changes to an arrow pointing straight up. All the symbols that
are names of definitions you could specify become mouse
sensitive.

Edit Installed Definition (M-X)

Edits the installed version of the file that contains the definition
of a specified Lisp object. It prompts for the name of the
definition; if one of your buffers already contains the installed
version of that definition, it selects that buffer. Otherwise, it
reads in the source file that contains the definition. It always
positions the cursor in front of the definition. When the object
has more than one definition, use a numeric argument to edit
another definition of the same object. You can repeat this until
there are no more definitions of that object.

Edit Changed Definitions (M-X)

Determines which definitions in any Lisp Mode buffer have
changed and selects the first one. It makes an internal list of all
the definitions that have changed since the buffer was read in
and selects the first one on the list. Use c-. (Next Possibility) to
move to subsequent definitions. See the section "Displaying the
Next Possibility", page 126.

Edit Changed Definitions accepts a numeric argument to control
the time point for determining what has changed:

Value Meaning

1 For each buffer, since the file was last read (the default).

2 For each buffer, since the buffer was last saved.

3 For each definition in each buffer, since the definition was
last compiled.

Edit Changed Definitions of Buffer (M-X)

Determines which definitions in the current buffer have changed
and selects the first one. It makes an internal list of all the
definitions that have changed since the buffer was read in and
selects the first one on the list. Use c-. (Next Possibility) to
move to subsequent definitions. See the section "Displaying the
Next Possibility", page 126.

238

Text Editing and Processing July 1986

Locating Source Code to Edit, cont'd.

Edit Changed Deimitions of Buffer accepts a numeric argument to
control the time point for determining what has changed:

Value Meaning

1 Since the file was last read (the default).

2 Since the buffer was last saved.

3 Since the definition was last compiled.

Edit Cp Command
Edit CP Command (M-H)

Reads the source of a CP command into an editor buffer. With a
numeric argument, prompts for a comtab. Otherwise it looks for
the command in the global comtab.

Edit System Files
Edit System Files (M-H)

Reads all of the iIles of a system into buffers. With a numeric
argument, the files of the component system are also read into
buffers.

The List Definition Commands
List Definitions (M-H)

Displays the definitions in a specified buffer. It reads the buffer
name from the minibuffer, using the current buffer as the
default. It displays the list as a typeout window. The individual
definition names are mouse sensitive.

List Duplicate Definitions (M-H)

Displays the duplicate definitions in the current buffer, if any.
This is especially useful for checking patch files or files made by
merging several programs together. c-. (Next Possibility) moves
point to duplicate definitions that occur earlier in the file,
beginning with the earliest duplicate and not including the latest
duplicate. See the section "Displaying the Next Possibility", page
126.

List Changed Definitions (M-H)

Displays a list of any definitions that have been edited in any

239

July 1986 Zmacs Manual

Locating Source Code to Edit, cont'd.

buffer. Use c-. (Next Possibility) to start editing the definitions
in the list. See the section "Displaying the Next Possibility",
page 126.

List Changed Definitions accepts a numeric argument to control
the time point for determining what has changed:

Value Meaning

1 For each buffer, since the file was last read (the default).

2 For each buffer, since the buffer was last saved.

3 For each definition in each buffer, since the definition was
last compiled.

List Changed Defmitions of Buffer (n-H)

Displays the names of definitions in the buffer that have changed.
It makes an internal list of the definitions changed since the
buffer was read in and offers to let you edit them. Use c-.
(Next Possibility) to move to subsequent definitions. See the
section "Displaying the Next Possibility", page 126.

List Changed Definitions of Buffer accepts a numeric argument to
control the time point for determining what has changed:

Value Meaning

1 Since the file was last read (the default).

2 Since the buffer was last saved.

3 Since the definition was last compiled.

The Edit Callers Commands
When you are modifying a large system, you often have to make
sure that changing a function does not render unusable other
functions that call the modified one. Zmacs provides facilities for
editing the sources of all the functions defined in the current
world that call a given one. This removes some of the
unpleasantness of making incompatible changes to large programs
and is a good example of how Zmacs interacts with the Lisp
environment to make programming easier.

240

Text Editing and Processing July 1986

Locating Source Code to Edit, cont'd.

Edit Callers (M-X)

Prepares for editing all functions that call the specified one. The
prompt is the same kind that Edit Definition gives you. It reads
a function name via the mouse' or from the minibuffer with
completion.

It selects the first caller; use c-. (Next Possibility) to move to a
subsequent defmition. See the section "Displaying the Next
Possibility", page 126.

Multiple Edit Callers (n-H)

Prompts for the names of a group of functions and edits those
functions in the current package that call any of the specified
ones. It reads a function name from the minibuffer, with
completion, initially offering a default function name. It
continues prompting for more function names until you end the
list with RET URN.

Use n-H MUltiple Edit Callers Intersection when you want to edit
those functions that call all of the specified functions. See the
section "Multiple Edit Callers Int.ersection", page 240.

Multiple Edit
Callers Intersection

Multiple Edit Callers Intersection (n-H)

Prepares for editing all the functions that call all of the specified
functions. It reads a function name from the minibuffer, with
completion. It continues prompting for a function name until you
end it with just a carriage return.

Use n-X Multiple Edit Callers if you want to edit all the functions
that call any of the specified functions. See the section "Multiple
Edit Callers ".

List Callers (n-X)

Prompts for the name of a function exactly the way Edit Callers
does, but instead of editing the callers in the current package of
the specified function, it simply displays their names. The names
are mouse-sensitive. If you point at one and click left, you can
edit the source of that caller. If you click right, a menu pops up
that offers to give the argument list of the selected caller, to
disassemble it, to edit it, or to see its documentation string. In
addition, c-. (Next Possibility) works in this context, offering the
first caller to be edited, and queuing up the other callers to be
edited in sequence.

241

July 1986 Zmacs Manual

Locating Source Code to Edit, cant'd.

Multiple List Callers (M-H)

Lists all the functions that call any of the specified functions. It
reads a function name from the minibuffer, with completion. It
continues prompting for more function names until you end the
list with RET URN.

The list of function names is mouse-sensitive: see List Callers
(M-H). c-. (Next Possibility) edits the callers. See the section
"Displaying the Next Possibility", page 126.

Use M-H Multiple List Callers Intersection when you want only
callers that call all the specified functions. See the section
"Multiple List Callers Intersection", page 241.

MUltiple List Callers Intersection
Multiple List Callers Intersection (M-H)

Lists all the functions that call all of the specified functions. It
reads a function name from the minibuffer, with completion. It
continues prompting for a function name until you end it with
just a carriage return.

Use M-H Multiple List Callers if you want to list functions that
call any of the the specified functions.

See the section "The Zmacs Edit Callers Commands", page 239.

242

Text Editing and Processing July 1986

Patching

For complete information about patching: See the section "Patch
Facility" in Program Development Utilities.

Making Patches
During a typical maintenance session you might make several
changes to existing definitions or write new ones. Rather than
recompiling the entire system every time you change a source file,
you can copy only the new or revised code into a patch file and
write the file ("finish" the patch). Whenever you finish a patch,
the patch facility automatically compiles the file and records the
event in a "patch registry" for the system, noting the number of
the patch, the system being patch, and a brief user-supplied
description. As soon as a user loads the patch file (after the
system is loaded), the state of the given system in his or her
machine is presumably the same as in the developer's machine
when the patch was finished.

The patch facility allows you to have several patches in progress
at once. Thus you can patch several different systems or several
different minor versions of the same system during one work
session. The patch facility manages this potentially dangerous
situation in the following way. Every time you start a patch, a
number and a place in the patch registry is reserved for the
patch in production. The patch is marked in-progress. When the
patch is finished, the entry is completed and the in-progress mark
removed. If you decide to abort the patch, the registry entry is
automatically deleted.

The ability to have more than patch in-progress to more than one
system makes it imperative that you keep track of the state of
your various patches. If a patch is left unfinished (unwritten),
the load-patches function will load neither the in-progress patch
or any subsequent finished patches.

The patch facility considers patches to be active or inactive and
in one of the following states: initial, in-progress, aborted, or
finished. Show Patches (M-H) displays the state of all patches
started in this work session. If more than one patch is in
progress, one of them is known as the current patch. The
commands that add patches, like Add Patch (M-H), add only to the
patch considered by the patch facility to be the current patch.
The command Select Patch (M-H) displays a menu of active
patches and allows y~u to make another patch the current one.

In general you should adhere to the following steps in making a
patch. It is assumed that your system is patchable; that is, the
:patchable option appears in the system declaration.

July 1986

Patching, cont'd.

243

Zmacs Manual

1. You must load (via load-system) the major version of the
system that you want to patch.

2. Read in the source files you want to edit into a Zmacs buffer.
Make all changes and test them thoroughly. Write the source
file.

3. Use the appropriate Zmacs commands to make your patch.
Begin the patch, using Start Patch (M-H).

4. Add the changed code to the patch buffer by using Add Patch
(M-H), Add Patch Changed Definitions of Buffer (M-H), or Add
Patch Changed Definitions (M-H).

. 5. Finish the patch, using Finish Patch (M-H), or abort the patch,
{~ .. \n • Ab t P h () l VfO'\ (.r. usmg or atc M-H.

Commands provided for initiating a patch are Start Patch (M-H),
Start Private Patch (M-H), and Add Patch (M-H).

Start Patch (M-H)
Starts a new patch, prompting you for the name of the system to
be patched; it mu~tJ~e __ ~_~ys~em currently loaded. It assigns a
new minor verSIon number for that particular system by writing a
new version of the patch directory file with an entry for that
minor version number. The patch is marked as in-progress. It
starts constructing the patch file in an editor buffer, but does not
select the buffer.

While you are making your patch file, the minor version number
that has been allocated for you is reserved so that nobody else
can use it. Thus, if two people are patching the same system at
the same time, they cannot be assigned the same minor version
number.

The command does not actually move any definitions into the
patch file. You must explicitly do so with Add Patch Changed
Definitions of Buffer (M-H), Add Patch Changed Definitions (M-H),
or Add Patch (M-H).

The patch facility permits you to start another patch before
finishing the current one. However, if your new patch is to the
same system, the patch facility warns you that you already have a
patch in progress and allows you to take one of four actions:

o Abort the in-progress patch and start a new patch .
• Finish the in-progress patch and start a new patch.
o Proceed with the second patch (initial patch) for this system

and leave the in-progress patch intact.

244

Text Editing and Processing July 1986

Patching, cont'd .

• Use the existing buffer and do not start a new patch.

Start Private Patch (M-H)

Add Patch (M-H)

Although similar to Start Patch (M-H), Start Private Patch (M-H)
does not have any relationship to systems, major and minor
version numbers, and official patch directories. Rather it allows
you to make a private patch file that you can load, test, and share
with other users before you install a numbered patch that is
automatically available to all users.

Instead of prompting for a system name, the command prompts
for a file name. Start Private Patch does not actually move any
definitions into the patch file. Use Add Patch Changed
Definitions of Buffer (M-H), Add Patch Changed Definitions (M-H),
or Add Patch (M-H) to insert the code. Finishing the patch (using
Finish Patch (M-H» writes it out to the specified file.

Note: Use the Load File command or Load File (M-H) to load a
private patch; the Load Patches command and the load-patches
function do not load private patches.

Starts a new patch if none is underway, prompts you for a system
name, and inserts the region or current definition into the patch
buffer. If a patch was in progress, Add Patch (M-H) just adds the
region or current definition to the current patch file.

If you mistakenly use the command on code that does not work,
select the buffer containing the patch file and delete it. Then
later you can use Add Patch (M-H) on the corrected version. For
each patch you add, it queries for a patch comment, which it then
inserts in the patch file. Just pressing END means "no comment".

Add Patch (M-H), Add Patch Changed Definitions (M-H), or Add
Patch Changed Definitions of Buffer (M-H) insert code into the
patch file. If the patch is being made to the system the current
buffer's file came from, the commands proceed.

If there is a current patch, and it is not appropriate for the
system that the buffer's file came from, you see a menu showing
all of the current patches, plus an option to create a new patch
appropriate for the buffer, plus an option to abort.

245

July 1986 Zmacs Manual

Patching, cont'd.

Add Patch Changed
Dt!finitions of Buffer (n-H)

Add Patch Changed Definitions of Buffer (n-H) selects each
definition that was changed in the buffer and asks you whether or
not you want the definition patched.

For each definition, you can respond as follows:

Response

y

N

P

Action

Patches the definition.

Skips the definition.

Patches the definition and any additional modified
definitions in the same buffer without asking any
more questions.

A definition needs to be patched if it has been changed since it
was last patched or if it has not been patched since the file was
read into the buffer.

For each patch you add, it queries for a patch comment, which it
then inserts in the patch file. Just pressing END means "no
comment".

Add Patch Changed
Definitions (n-H)

Add Patch Changed Definitions (n-H) selects a buffer in which
definitions were changed and asks whether or not you want to
patch the changed definitions. Answering N skips the buffer and
proceeds to the next buffer, if any. Answering Y selects each
definition that has changed in that buffer and asks you whether
or not you want the definition patched. For each definition, you
can respond as follows:

Response

Y

N

P

Action

Patches the definition.

Skips the definition.

Patches the definition and any additional modified
definitions in the same buffer without asking any
more questions; when done, it proceeds to the next
buffer.

If there are more buffers containing definitions to be patched, it
asks questions again when it gets to the next buffer.

246

Text Editing and Processing July 1986

Patching, cont'd.

A definition needs to be patched if it has been changed since it
was last patched or if it has not been patched since the rile was
read into the buffer.

For each patch you add, it queries for a patch comment, which it
then inserts in the patch file. Just pressing END means "no
comment".

When making multiple patches during one work session use the
Select Patch and Show Patches commands to keep track of
patches.

Select Patch (M-H)
. When you are making more than one patch during a work session,

Select Patch (M-H) allows you to choose a different patch as the
current patch from a menu of active patches. The patching
commands (like Add Patch and Add Patch Changed Definitions of
Buffer) insert definitions into the patch file that you have selected
as the current patch. To insert patch definitions into another
buffer, use Select Patch to choose that buffer as the current
patch.

Show Patches (M-X)
Show Patches (M-X) displays the state of all patches started in
this session. Patches are either active or inactive and can be in
one of the following states: initial, in-progress, aborted, or
finished. Inactive patches are in an aborted or finished state.
Active patches are in an initial or in-progress state. Initial means
that the patch buffer has been initialized but as yet no definitions
have been added to the buffer. In-progress means that the patch
buffer has been initialized and definitions have been added to the
buffer.

Show Patches groups the active and inactive patches and
identifies the current patch.

After making and testing all of your patches, use the Finish
Patch command to install the patch in the system.

247

July 1986 Zmacs Manual

Patching, cont'd.

Finish Patch (M-X)
Finish Patch (M-X) installs the patch file so that other users can
load it. This command saves and compiles the patch file (patches
are always compiled). If the compilation produces compiler
warnings, the command asks whether or not you want to finish
the patch anyway. If you do, or if no warnings are produced, a
new version of the patch directory file is written. The in-progress
mark is removed from the entry in the patch registry.

The command allows you to edit the patch comments, which are
written to the patch directory file. (load-patches and
zl:print-system-modifications print these comments.) It then asks
you whether you want to send mail about the patch. If you say
"yes", it opens a mail buffer and inserts initial contents, including
the name of the patch file and your patch comment.

Note: By default the Finish Patch command queries you about
sending mail. You can alter this behavior by changing the value
of the variable zwei:*send-mail-about-patch*. Its valid values
are : ask, the default value, which queries the user; t, which opens
a Zmacs mail buffer without querying; and nil, which takes no
action regarding the sending of patch mail.

Sometimes you start making a patch file and for a variety of
reasons do not finish it - for example, you decide to abort the
patch, you need to end your work session at this machine, or your
machine crashes. In each of these situations it is of the utmost
importance that you leave the patch directory file in a clean state;
that is, either go back and finish the patch (as soon as possible!)
or deallocate the patch number reserved to you. Failure to do so
has unfortunate consequences: users at your site will not be able
to load patches.

In your machine has crashed, use Resume Patch (M-X) to reclaim
access to the patch number previously assigned to you. You can
continue with the patch (assuming you saved the source files just
prior to the crash) or use Abort Patch (M-X) to deallocate the
patch number. Begin the patch again if you wish. If you simply
decide to abandon the patch file, then just use Abort Patch. If
you must boot your machine before finishing the patch, then save
the patch buffer and as soon as possible use Resume Patch to
read in the relevant patch file; finish the patch or abort it, as you
wish.

248

Text Editing and Processing July 1986

Patching, cont'd.

Abort Patch (M-H)
Abort Patch (M-H) deallocates the minor version number that was
assigned by the Start Patch or Add Patch commands. It tells
Zmacs that you are no longer interested in making the current
patch and offers to kill the patch buffer. The next time you do
Add Patch (M-H), Zmacs starts a new patch instead of appending
to the one in progress.

Resume Patch (M-H)
Resume Patch (M-H) allows you to return to a patch that you were
not able to finish in the same boot session in which you started
it; for example, your machine might have crashed or you had to
boot your machine suddenly. I t reads in the relevant patch file if
it was previously saved; otherwise it just reclaims your access to
the minor version number allocated to you when you started the
patch. Abort or finish the patch.

Under certain circumstances you might find it necessary to
recompile and reload a patch file.

Recompile Patch (M-H)
Recompile Patch (M-H) recompiles an existing patch file. This
command is useful when, for example, an existing patch needs to
be edited or a compiled patch file becomes damaged in some way.
Never recompile a patch manually or in any way other than using
the Recompile Patch command. This command ensures that
source and object files are stored where the patch system can find
them.

Use Recompile Patch with caution! Recompiling a patch that has
already been loaded by other users can cause divergent world
loads.

Reload Patch (M-H)
Reload Patch (M-H) reloads an existing patch file. This command
makes it easy to reload a patch file without having to know its
pathname.

You might want to have your herald announce private patches

July 1986

Patching, cant'd.

249

Zmacs Manual

that you make. note-private-patch adds a private patch to the
database in your world and includes the name of the patch in the
herald.

note-private-patch string Function
Adds a private patch to the database in your world.
note-private-patch takes a string argument. For example,
the following adds the private patch called patch.1isp:

(note-private-patch "s:>smiller>patch.lisp")

Subsequent displays of your herald show the inclusion of
that patch in your world.

You create private patches using the Start Private Patch
(M-X) command and then the standard patch commands for
adding to and finishing the patch. Use the Load File
command or Load File (M-X) to load a private patch; the
load patches command and the load-patches function do
not load private patches.

250

Text Editing and Processing July 1986

251

July 1986 Zmacs Manual

15. Customizing the Zmacs Environment

252

Text Editing and Processing July 1986

Overview

Introduction
Now that you are familiar with the basic Zmacs concepts and
techniques, you can set up a large set of minor modes, Zmacs and
Lisp variables, and parameters to change the way the editor
works. Zmacs's flexibility allows you to change which keys are
connected to which commands, write your own commands, and
install them in lieu of the standard system commands. A few
users make extremely radical changes to the point where almost
every key has a new meaning.

This section describes:

o Zmacs minor and major modes, and how they provide a degree
of customization

o Creating new commands with keyboard macros
o Saving keyboard macros
o Setting key bindings
o Specifying Zmacs variable settings
o Sample init file forms for automatically reloading your

customized environment

253

July 1986 Zmacs Manual

Built-in Customization Using Zmacs Minor Modes

Definition of
Minor Modes

How It Works

Example

A minor mode:

• Is an option.
• Is independent of other minor modes and of the selected major

mode.

Zmacs has an extended command for each minor mode (M-X) that
turns the mode on or off. With no argument, the command turns
the mode on if it was off and off if it was on. This is known as
toggling. A positive argument always turns the mode on, and a
zero argument or a negative argument always turns it off.

All the minor mode commands are suitable for connecting to
single- or double-character commands if you want to enter and
exit a minor mode frequently. See the section "Zmacs Key
Bindings", page 267.

For information about setting minor modes permanently: See the
section "Setting Mode Hooks in Init Files", page 273.

Auto Fill Mode (M-X)

Turns on Auto Fill Mode, a minor mode that inserts Return
characters automatically to break lines as you type. You can turn
Auto Fill Mode on regardless of your major mode. If the mode
line displays Fi 11, Auto Fill Mode is on. If Auto Fill Mode is
already turned on, this command turns it off.

This mode is useful when you are typing large amounts of text.
It makes it unnecessary to look at the screen or to worry about
line length: you just type in the text without newlines and Zmacs
inserts them whenever they are needed.

Auto Fill Mode works by establishing a hook that runs after you
press one of the activation characters (SPACE, RET URN, ., ?, !, or
]) that activate filling in this mode. When you press one of these
characters in Auto Fill Mode, Zmacs does more than simply insert
it. First it checks to see whether the line exceeds the maximum
allowable line length or fill column (see Set Fill Column below).
If the line is too long, Zmacs finds the last word on the current
line that fits inside the fill column. Zmacs then inserts a newline
right after that word. Extra spaces (if any) are deleted from the
beginning of the newly formed line.

254

Text Editing and Processing July 1986

Built-in Customization Using Zmacs Minor Modes, cont'd.

Because of the way Auto Fill Mode works, you will often find
yourself typing a word out beyond the fill column. The word will
be moved to the next line as soon as you press one of the
activation characters.

The fill column is used by Auto Fill Mode (and by the paragraph
adjusting commands) to decide where to break lines. I t is
measured in pixels, not in characters, so that Auto Fill Mode
works even if characters of different widths appear in a buffer.
(A pixel is a tiny rectangular area on the screen that is either all
white or all black. Pixels are the smallest addressable region of
the display. If you look closely, you can see the separate
rectangular pixels that make up everything on the display.)

You can change the fill column with the following command:

c-X F Set Fill Column

Changes the fill column to match up with the current position of
the cursor. That means that if point is at the end of a line, filled
lines will not be longer than the current one from now on. You
are given a choice of whether to set the fill column for the
buffer, the major Zmacs mode, or globally.

With a positive numeric argument n less than 200, the fill
column is set to be n character-widths, and if n is 200 or greater,
the fill column is set to be n pixels.

In effect, this command sets the right margin. Auto Fill mode
and the M-Q use the fill column setting.

Summary of Minor Modes
Atom Word Mode (M-X)

Makes word-moving commands, in Lisp mode, move over Lisp
objects (other than lists and nil instead of words. This command
does not display anything in the mode line.

Auto Fill Lisp Comments Mode (C-M-X)

Turns on auto filling of comments, but not code. This command
displays Fi ll-Comments in the mode line.

Auto Fill Mode (M-X)

Turns on auto filling. Auto Fill mode allows you to type text
endlessly without worrying about the width of your screen.
Return characters are inserted where needed to prevent lines

255

July 1986 Zmacs Manual

Built-in Customlzation Using Zmacs Minor Modes, conf'd.

from becoming too long. This command displays Fill in the mode
line.

Electric Font Lock Mode (M-H)

Puts comments in font B. This command displays
El ectri c Font-lock in the mode line.

Electric Shift Lock Mode (M-H)

Facilitates typing in programs that are in uppercase. Whenever
you type a character that is part of a Lisp symbol, such as the
name of a function, variable, or special form, Zmacs inserts it in
uppercase, but when you type a character that is part of a
character string or a comment or after a slash, Zmacs inserts it
normally. This command displays El ectri c Shi ft-l ock in the mode
line.

EMACS Mode (M-H)

Provides commands for EMACS users. It puts bit-prefIx
commands on ESCAPE, c-"', and c-C, and Universal argument on
c-U. It also makes c-1 a synonym for TAB, c-H a synonym for
BACKSPACE, and c-] a synonym for ABORT. This command displays
EMACS in the mode line.

Overwrite Mode (M-H)

Turns on overwrite mode. In overwrite mode, ordinary printing
characters replace existing text, instead of inserting themselves
next to it. It is good for editing pictures. This command displays
Overwri te in the mode line.

Word Abbrev Mode (M-H)

Allows you to define word abbreviations that expand as you type
them. This command displays Abbrev in the mode line.

256
Text Editing and Processing July 1986

Major Modes

User-Defined
Major Modes

File Types and
Major Modes

In Zmacs, you can define your own major modes (see
zwei:defmajor in the code).

You can control the default major mode associated with a
particular file type. For example, Zmacs sets the major mode to
Lisp for files with type lisp. The repository for this information
is a list called fs:*file-type-mode-alist*.

For example, suppose you wanted to associate the file type tex
with text mode:

(push '("tex" . :text) fs:*file-type-mode-alist*)

The car of an element should be either a canonical type symbol
or a string when the type is not one of the known canonical
types.

In addition, suppose you have files that would require Scribe
mode, if Zmacs had such a thing. You can define a
correspondence between two major modes, using a global variable
called zwei:*major-mode-translations*. It is an alist of major
mode names, expressed as keyword symbols.

Example:

(push '(:scribe . :text) zwei:*major-mode-translations*)

257

July 1986 Zmacs Manual

Creating New Commands with Keyboard Macros

Definition

How It Works

Procedure

A keyboard macro is a command that you define to abbreviate a
sequence of other commands. If you discover that you are about
to type c-N c-D 40 times, you can define a keyboard macro to do
c-N c-D and call it with a repeat count of 40.

The keyboard macros described here are temporary keyboard
macros; that is, macros that you use for the duration of your
Zmacs session. For information on writing permanent keyboard
macros that you can save and initialize in your init file: See the
section "Writing and Saving Keyboard Macros", page 259.

You define a keyboard macro by telling Zmacs that you are about
to write a macro and then typing the commands that are the
definition. That is, as you are defining a keyboard macro, the
definition is being executed for the first time. When you are
finished, the keyboard macro is defined and also has been, in
effect, executed once. You can then do the whole thing over
again by invoking the macro.

1. To start defining a keyboard macro, type c-X (
(Start Kbd Macro). From then on, your commands continue to
be executed, but also become part of the definition of the
macro. Hac ro-1 eve 1: 1 appears in the mode line.

2. If you want to perform an operation on each line, do one of the
following:

• Start by positioning point on the line above the first one to
be processed and then begin the macro definition with a c-N

• Start on the proper line and end with a c-N.
Either way, repeating the macro operates on successive lines.

3. Mter defining the body of the macro, you can terminate it in
several ways.

• c-X) (End Kbd Macro) terminates the definition.
o An argument of zero to c-X) automatically repeats the

macro (upon termination of the definition) until it gets an
error or reaches the end of the buffer.

o c-X) can be given a repeat count as a numeric argument, in
which case it repeats the macro that many times right after

258

Text Editing and Processing July 1986

Creating New Commands with Keyboard Macros, cont'd.

deflning it, but defIning the macro counts as the flrst
repetition (since it is executed as you defme it). (Subsequent
invocations ignore the numeric argument contained in the
macro.)

Inserting an argument of 5 before ending the macro (••• c-5 c-X
» executes the macro immediately four additional times.

Starting a
Keyboard Macro

c-X Start Kbd Macro

Begins defining a keyboard macro. A numeric argument means
append to the previous keyboard macro.

Ending a
Keyboard Macro

c-X End Kbd Macro

Terminates the definition of a keyboard macro.

Showing a
Keyboard Macro

To see the keyboard macro, use Show Keyboard Macro (M-X),
which prints the macro at the top of your screen.

Show Keyboard Macro (M-X)

Displays the specified keyboard macro. The name of the macro is
read from the minibuffer; just RET URN means the last one defined,
which can also be temporary.

Calling the Last
Keyboard Macro

Example

The macro thus dermed can be invoked again with c-X E (Call
Last Kbd Macro), which can be given a repeat count as a numeric
argument to execute the macro many times.

c-X E Call Last Kbd Macro

Repeats the last keyboard macro.

The example below defines a keyboard macro that goes to the
beginning of a line, inserts a semicolon, and goes to the next line.
I t also executes the macro four times, including once as it is
being deflned.

259

July 1986 Zmacs Manual

Creating New Commands with Keyboard Macros, conf'd.

Writing and

c-x (
c-A

c-N
c-4 C-X)

For information about setting key bindings permanently: See the
section "Zmacs Key Bindings", page 267.

Saving Keyboard Macros
Writing and saving keyboard macros entails:

o Defining the macro with zwei:define-keyboard-macro.
o Installing the macro on a keystroke with

zwei:make-macro-command.
o Storing the macro into a comtab with zwei:command-store.

zwei:define-keyboard-macro takes as its arguments the name of
the macro and the keystrokes specifying what you want it to do.

Optionally, you can install the macro on a keystroke with
zwei:make-macro-command, giving the name of the macro,
which returns a Lisp function.

zwei:command-store takes that Lisp function and stores it into a
comtab, similar to what zwei:set-comtab does.
zwei:command-store, given the key you want to install the macro
on and the com tab in which to put it, stores the command in the
slot of the com tab that you specify. The combination of
zwei:make-macro-command and zwei:command-store does the
same thing as the Install Macro (M-H) command.

Using variations of the following forms you can save the macros
on disk and, if you wish, edit them.

260

Text Editing and Processing July 1986

Creating New Commands with Keyboard Macros, cont'd.

Example 1

Example 2

Suppose you want to have a command that exchanges the first
two words on a line. Put this form in your init file:

(ZWEI:DEFINE-KEYBOARD-MACRO EXCH-FIRST-TWO-WORDS (NIL)
#\C-A #\M-F #\M-T)

The macro cannot be more than 255 keystrokes long. If your
macro gets this long you should be writing in Lisp, since
keyboard macros are not intended to be a programming language.
If necessary, you can get around this restriction by breaking your
macro into parts and having them call each other.

Suppose you want to install the EXCH-FIRST-TWO-WORDS
macro on the keystroke s-Q. Put this form in your init file:

(ZWEI:COMMAND-STORE (ZWEI:MAKE-MACRO-COMMAND ':EXCH-FIRST-TWO-WORD5)
#\S-Q ZWEI:*ZMAC5-COMTAB*)

The following form defines a keyboard macro called repl ace-test,
which replaces the string dog with the string r; ver:

(ZWEI:DEFINE-KEYBOARD-MACRO REPLACE-TEST (NIL)
#\C-5 "dog" #\ESCAPE #\M-RUBOUT "river")

To save the keyboard macro repl ace-test on the keystroke h-S:

(ZWEI:COMMAND-STORE (ZWEI:MAKE-MACRO-COMMAND ':REPLACE-TEST)
#\H-S ZWEI:*ZMACS-COMTAB*)

The h-S command takes a numeric argument as a repeat count.

Defining an
Interactive
Keyboard Macro

Within the keyboard macro definition, you can specify steps at
which you want the macro to query. To define an interactive
keyboard macro, use the Kbd Macro Query command after
beginning the macro definition (with Start Kbd Macro). Invoke
Kbd Macro Query at each spot in the macro where you want the
macro to query. Then close the definition with End Kbd Macro.

261

July 1986 Zmacs Manual

Creating New Commands with Keyboard Macros, cont'd.

c-X Q Kbd Macro Query
Allows user interaction on each iteration of macro, similar to
Query Replace (n-X). While defining a keyboard macro, press c-X
Q at each step where you want a pause to occur. Upon execution
of the macro, it stops and waits at each of those steps for one of
the following characters:

SPACE

RUBOUT

? or HELP

c-R

Naming a
Keyboard Macro

Continues execution of the macro.

Skips rest of keyboard macro (use nested c-X

and c-X) for grouping to control range of
skip).

Displays HELP information.

Continues but does not iterate anymore.

Continues, iterates, but does not ask anymore.

Enters editing mode; c-n-FUNCT I ON R resumes
the keyboard macro.

Having defined a keyboard macro, you can name it with Name
Last Kbd Macro (n-X). A prompt (Name for macro:) appears in
the minibuffer.

Name Last Kbd Macro (n-X)

Assigns a name to the most recent temporary keyboard macro,
making it permanent. The new name for the macro is read from
the minibuffer.

Using Keyboard
Macros to Sort

You can use a keyboard macro to set up a sorting mechanism and
run it on any region of text.

For information about how to sort using keyboard macros, see the
description of Sort Via Keyboard Macros (n-X): See the section
"Overview of Sorting in Zmacs", page 128.

Installing a Macro
on a Key

To bind the macro to the key of your choice, use Install Macro
(n-X). You are asked to identify the macro and specify the key(s)
to which you want it bound.

262

Text Editing and Processing July 1986

Creating New Commands with Keyboard Macros, cont'd.

Install Macro (n-X)

Installs a specified user macro on a specified key. The name of
the macro is read from the minibuffer, and the keystroke on
which to install it is read in the echo area. If the key is
currently holding a command prefix (such as c-X), it asks you for
another character, so that you can redefine c-X commands.
However, with a numeric argument, it assumes you want to
redefine c-X itself, and does not ask for another character.

Installing a Mouse Macro
You can bind the macro to a mouse click instead of a key using
Install Mouse Macro (n-X). This command works similarly to
Install Macro.

Install Mouse Macro (n-X)

Installs a specified user macro on a specified mouse click. The
name of the macro is read from the minibuffer, and the mouse
click on which to install it is read in the echo area. When the
mouse is clicked to invoke this macro, the macro is invoked from
the current location of the mouse cursor.

Deinstalling a Macro

Example

To remove the macro from that key, use Deinstall Macro (n-X).
The key is rebound to the standard system usage, if any.

Deinstall Macro (n-X)

Deinstalls a keyboard macro.

This example shows how to install a macro and deinstall the same
macro:

you type:
mini buffer:
you type:
mini buffer:
you type:

M-X Install Macro
Name of macro to install (CR for last macro defined):
nacro-naMe or CR
Key to get it:
h-T

263

July 1986 Zmacs Manual

Creating New Commands with Keyboard Macros, cont'd.

Making Tables

A menu appears and asks you in which comtab to install the macro:

• Just this editor
• Zmacs
• Zwei

Click on your choice.

minibuffer:

you type:
minibuffer:
you type:

Command #<OTP-CLOSURE 34465726> installed on Hyper-T.
, .f

M-X Deinstall Macro
Key to deinstall:
h-T

The menu appears and asks you to specify in which of the three
comtabs to deinstall the macro. Click on your choice.

mini buffer: Command NIL installed on Hyper-T.

For information about saving keyboard macros permanently: See
the section "Zmacs Key Bindings", page 267.

Using Keyboard Macros
The keyboard macro facility implemented with the c-M-FUNCT I ON
key provides more features, such as an easy way to make tables.

c-M-FUNCTION

Reads a keyboard macro command, consisting of an optional
numeric argument made up of any number of digits (0-9) followed
by a non-numeric character, usually a letter. Each keyboard
macro command must be preceded by the c-M-FUNCT I ON preflx.
After typing the preflx, you may type HELP for a list of available
keyboard macro commands.

Keyboard Macro Commands for c-M-FUNCTION

(3-9 Optional numeric argument.

C Calls a macro by name. Prompts in the minibuffer for the
name of the macro.

P Begins a macro deflnition (same as c-X (- See the
section "Starting a Keyboard Macro", page 258.)

264
Text Editing and Processing July 1986

Creating New Commands with Keyboard Macros, cont'd.

Example 1

R Ends a macro definition (same as c-H) - See the section
"Ending a Keyboard Macro", page 258.)

M Defines a named macro. Prompts for the name of the
macro to define and then enters macro definition mode.

S Stops (aborts) macro definition (also c-G).

D Dermes a named macro but does not execute it while
reading its characters.

SPACE Inserts pauses for user interaction in the macro (same as
c-H Q - See the section "Defining an Interactive Keyboard
Macro", page 260.)

A Steps though characters on successive iterations (for
example, letters and numbers). Asks for starting
character, amount to increase (or decrease if negative) on
each iteration.

U Allows typein terminated by c-M-FUNCT I ON R. This allows
you to stop while in the middle of defining the macro, do
other things in the editor, and then go back and finish
defining the macro.

T Allows typein every iteration.

The difference between c-M-FUNCTION U and c-M-FUNCTION T is
that c-M-FUNCT I ON U allows typein while defining a macro. This
typein does not get stored in the macro, and therefore does not
get executed on subsequent iteration, nor when the macro. is
called again.

c-M-FUNCT I ON Tallows typein on every iteration. As with
c-M-FUNCT I ON U, the type in while defining the macro does not get
stored in the macro. But on each subsequent iteration, new
typein will be requested.

The following example shows how to create a macro that
constructs a table using c-M-FUNCT I ON A.

265

July 1986 Zmacs Manual

Creating New Commands with Keyboard Macros, cont'd.

Example 2

you type:
Minibuffer:

you type:
Minibuffer:

you type:
Minibuffer:

you type:

you type:

c-H (
Macro-level: 1 *
c-M-FUNCTION A
Initial character (type a one-character string):
a RETURN
Amount by which to increase it (type a decimal number):
1 RETURN

(Zmacs inserts the a into the buffer.)
c-2 c-6 c-H)

As you close the macro, Zmacs inserts into the buffer:

abc d e f g h i j k 1 m n 0 p q r stu v w x y z

by executing the macro 26 times, increasing the letter once each
time.

The following example shows how to create a macro that
constructs a table using c-M-FUNCTION A, and this time,
c-M-FUNCT I ON T, which allows typein during every iteration of the
macro:

266

Text Editing and Processing July 1986

Creating New Commands with Keyboard Macros, cont'd.

you type:
Minibuffer:

you type:
you type:

Minibuffer:
you type:

Minibuffer:
you type:
you type:
you type:

Minibuffer:
you type:
you type:

Minibuffer:
you type:
you type:
you type:
you type:
you type:
you type:
you type:
you type:
you type:
you type:

C-x (
Macro-level: 1 *
Item SPACE
c-M-FUNCTION A
Initial character (type a one-character string):
1
Amount by which to increase it (type a decimal number):
1
TAB
c-M-FUNCTION T
Macro-level: 2 *
Rosemary
c-M-FUNCTION R
Macro-level: 1 *
RETURN
c-5 c-X)
Sage
c-M-FUNCTION R
Thyme
c-M-FUNCTION R
Parsley
c-M-FUNCTION R
Pepper
c-M-FUNCTION R

The table looks like this:

Item 1 Rosemary
Item 2 Sage
Item 3 Thyme
Item 4 Parsley
Item 5 Pepper

July 1986

Key Bindings

Definition

267

Zmacs Manual

A key binding is the set of specific keystrokes that invoke a
specific command.

How Key Bindings
Work: the Comtab

A command table, or comtab, assigns a command to each possible
keystroke. While Zmacs is running, there is always a unique
selected com tab, in which Zmacs finds the command that
corresponds to each user keystroke.

When you type a keystroke, Zmacs looks up the keystroke in the
currently selected comtab, finds the appropriate command, and
runs it. Usually the command's side effects all occur within the
buffer: Point might be moved and text might be deleted,
inserted, or rearranged. Sometimes a command has more
extensive side effects. A command can alter or replace the
selected comtab itself, in which case Zmacs looks up the next
keystroke in the new command table.

Zmacs's basic state consists of the standard editor key bindings,
which reside in one special command table, the standard com tab
(Zwei comtab). The standard comtab interacts with the Zmacs
comtab and the various mode-dependent com tabs. The typical
selected comtab when in Zmacs is "unnamed" for mode-specific
key bindings, which indirects to "Zmacs", which indirects to
"Zwei" . Although the standard com tab can be temporarily
replaced, it is always reselected eventually, often after only one
"nonstandard" keystroke.

A keystroke that functions as a prefix actually runs a command .
that replaces the standard com tab for one keystroke. This is the
mechanism by which multikeystroke commands are implemented.
For example, there are many two-stroke commands whose first
keystroke is c-K This keystroke runs a command that brings in
its own comtab before interpreting the next stroke.

Setting the Key
If you want to put a command on the keystroke of your choice,
use Set Key. This command works for any of the already defined
commands.

Set Key (M-X)

Installs a specified command on a specified key. If the key is
currently holding a command prefix (such as c-X), it asks you for

268

Text Editing and Processing July 1986

Key Bindings, cont'd.

another character so that you can redefine c-X commands.
However, with a numeric argument, it assumes you want to
redeime c-X itself and does not ask for another character.

It assigns key bindings in the editor that are active in all buffers,
and takes two arguments: the name of a command, and a
keystroke to invoke it. It reads the name of the command in the
minibuffer, completing any command name in any comtab.

Install Command
If you want to put a function on the keystroke of your choice, use
Install Command. It takes a function, regards it as a command,
and puts it on a key.

Install Command (M-X)

Installs a specified function as a command in the comtab, on a
specified key. It takes two arguments: the name of the function
(the current definition, that is, top-level expression), and a
keystroke to invoke it. (Zmacs treats as a defmition any top-level
expression having in functional position a symbol whose name
begins "def".) If the key is currently holding a command prefIX
(such as c-X), it asks you for another character so that you can
redefine c-X commands. However, with a numeric argument, it
assumes you want to redefine c-X itself and does not ask for
another character.

269

July 1986 Zmacs Manual

How to Specify Zmacs Variable Settings

Definition
A variable is a name that is associated with a value, for example,
a number or a string. Zmacs has editor variables that you can
set for customization. (Variables can also be set automatically by
major modes.)

You can distinguish the names of Zmacs variables from other Lisp
variables by their names - the first letters are capitalized and the
names contain spaces rather than hyphens.

Finding Out About
Zmacs Variables

To examine the value of a single Zmacs variable, use Describe
Variable (M->O. To print a complete list of all variables, use List
Variables (M-X).

Some commands refer to variables that do not exist in the initial
environment. Such commands always use a default value if the
variable does not exist. In these cases you must create the
variable yourself if you wish to use it to alter the behavior of the
command.

Describing Zmacs Variables
Describe Variable (M-X)

Displays the documentation and current value for a single Zmacs
variable. It reads the variable name from the minibuffer, using
completion.

Listing Zmacs Variables
List Variables (M-X)

Lists all Zmacs variables and their values. With a numeric
argument, this command also displays the documentation line for
the variable.

Listing Variables
by Matching a String

HELP V
c-HELP V
C-M-? V

Variable Apropos

Displays the names of all possible Zmacs variables containing a
specific sUbstring. With a numeric argument, this command also
displays the documentation lines for the variables.

270

Text Editing and Processing July 1986

How to Specify Zmacs Variable Settings, cont'd.

Example
One example of such a Zmacs variable is the Fill Column
variable, which specifies the width, in pixels, used in filling text.

For example, c-l HELP V prompts in the minibuffer Vari abl e
Apropos (substri ng): and you type fi 11 col. It does pattern
matching on the variable name and thus matches Fill column,
which displays: Fill col umn: 576. Wi dth in pi xe1 s used ; n
filling text.

Setting Variables

Settable Zmacs Variables
You can view all settable Zmacs variables with the List Variables
command.

The following are some examples of variables that can be set with
Set Variable. In addition, they can be set in init files by using
the internal form of their names. For example, Region Marking
Mode is zwei:*region-marking-mode* internally.

Region Marking Mode
Value: :reverse-video for setting the region to
reverse video. The default is :underline.

Region Right Margin Mode
Value: t. Causes whatever marks the region
(reverse video or underlining) to extend across
unfilled space to the right margin. The default is
nil.

271

July 1986 Zmacs Manual

How to Specify Zmacs Variable Settings, cont'd.

Set Variable

One Window Default
Controls which window remains selected after a
One Window (c-X 1) command when you were
using more than one window. Possible values:
: current
:other
:top
:bottom

This feature operates best when the current layout
has no more than two windows. The value
:current is the only one that is always well defined
with more than two windows on the screen.

Check Unbalanced Parentheses When Saving
Controls whether Zmacs checks a file for
unbalanced parentheses when you are saving the
file. The check is on (t) by default. When it
checks a file that you are saving and finds
unbalanced parentheses, it queries you about
whether to go ahead and save anyway. This applies
to all major modes based on Lisp; it is ignored for
text modes.

Set Variable (M-X)

Sets any existing Zmacs variable. This command reads the name
of a variable (with completion), displays its current value and
documentation, and prompts in the minibuffer for a new value. It
does some checking to see that the new value has the right type.

Although either uppercase or lowercase works, you are encouraged
to capitalize each word of the name for aesthetic reasons, since
Zmacs stores the name as you give it.

272

Text Editing and Processing July 1986

Customizing Zmacs in Init Files

Introduction
As you gain sophistication with the more advanced features, you
will find the settings of parameters that most please you and put
these into a command file (init file) that the system executes
every time you log in.

Creating an Init File
Create a file named lispm-init.lisp (or with the correct Lisp file
type suffix for your host operating system) in your home directory
on your host system and put your Zmacs customizations there.

This section contains examples of forms that you can place inside
a login-forms in your init file to customize the editor.

login-forms is a special form for wrapping around a set of forms
in your init file. I t evaluates the forms and arranges for them to
be undone when you log out.

Setting Editor Variables
The forms described show how to set Zmacs variables (the kind
that Set Variable (M-H) sets).

To set these variables, which are symbol macros, you must use
the zl:setf macro. For a description of symbol macros: See the
section "Symbol Macros" in Symbolics Common Lisp. For a
description of the zl:setf macro: See the macro zl:setf in
Symbolics Common Lisp.

Ordering Buffer Lists

(SETF ZWEI:*SORT-ZHACS-BUFFER-LIST* NIL)

This displays the list of buffers in the order the buffers were
created rather than in the order they were most recently visited.

Putting Buffers Into
Current Package

(SElF ZWEI:*DEFAULT-PACKAGE* NIL)

This puts buffers created with c-H 8 (Select Buffer) into whatever
package is current; the default is to put them in the
user package.

273

July 1986 Zmacs Manual

Customizing Zmacs in Init Files, cont'd.

Setting Default
Major Mode

(SETF ZWEI:*DEFAULT-MAJOR-MODE* ':TEXT)

This sets the default major mode to Text Mode for buffers with
no Mode attribute and no major mode deducible from the file
type; the default is Fundamental Mode.

Setting Find File
Not to Create New Files

Setting Goal
Column for Real
Line Commands

(SETF ZWEI:*FIND-FILE-NOT-FOUND-IS-AN-ERROR* T)

This beeps and prints an error message when you give
c-X c-F (Find File) the name of a nonexistent file. The default
prints (New Fi 1 e) and creates an empty buffer, which when saved
by c-X c-S (Save File) creates the file that was nonexistent.

(SETF ZWEI:*PERMANENT-REAL-LINE-GOAL-XPOS* 8)

This moves subsequent c-N and c-P (Down Real Line and Up
Real Line) commands to the left margin, like doing
c-0 c-X c-N (Set Goal Column to zero).

Fixing White Space
for KillfY ank Commands

(SETF ZWEI:*KILL-INTERVAL-SMARTS* T)

This tells the killing and yanking commands optimize white space
surrounding the killed or yanked text.

Setting Mode Hooks
Each major mode has a mode hook, a variable which, if bound, is
a function that is called with no arguments when that major
mode is turned on.

Electric Shift Lock
in Lisp Mode

(SETF ZWEI:LISP-MODE-HOOK 'ZWEI:ELECTRIC-SHIFT-LOCK-IF-APPROPRIATE)

This tells Lisp major mode to turn on Electric Shift Lock minor

274

Text Editing and Processing July 1986

Customizing Zmacs in Init Files, cont'd.

mode unless the buffer has a Lowercase attribute. The effect is
that by default Lisp code is written in upper case.

Auto Fill in Text Mode

Key Bindings

(SETF ZWEI:TEXT-MODE-HOOK 'ZWEI:AUTO-FILL-IF-APPROPRIATE)

This tells Text major mode to turn on Auto Fill minor mode
unless the buffer has a Nofill attribute. The effect is that by
default lines of text are automatically broken by carriage returns
when they get too wide.

To bind keys, you first define the com tab in which to put the
binding. For example, *standard-comtab* and
standard-control-x-comtab define features of all Zwei-based
editors; *zmacs-comtab* and *zmacs-control-x-comtab* define
features that are Zmacs-specific.

White Space in Lisp Code

c-M-L on the
SQUARE Key

ZWEI:(SET-COMTAB *STANDARD-CONTROL-X-COMTAB*
, (#\SP COM-CANONICALIZE-WHITESPACE»)

This defines c-H SPACE as a command that makes the horizontal
and vertical white space around point (or around mark if given a
numeric argument or immediately after a yank command) conform
to standard style for Lisp code.

ZWEI:(SET-COMTAB *ZMACS-COMTAB*
'(#\SQUARE COM-SELECT-PREVIOUS-BUFFER)

This defines the SQUARE key to do the same thing as c-M-L. This
key binding is placed in *zmacs-comtab* rather than
standard-comtab since buffers are a feature of Zmacs, not of
all Zwei-based editors.

Edit Buffers on c-H c-B

ZWEI:(SET-COMTAB *ZMACS-CONTROL-X-COMTAB*
, (#\c-B COM-EDIT-BUFFERS))

This makes c-H c-B invoke Edit Buffers rather than List Buffers.
This key binding is placed in *zmacs-control-x-comtab* rather

275

July 1986 Zmacs Manual

Customizing Zmacs in Init Files, cont'd.

than *standard-control-x-comtab* since buffers are a feature of
Zmacs, not of all Zwei-based editors.

Edit Buffers on M-H

ZWEI:(SET-COMTAB *ZMACS-COMTAB*
o
(MAKE-COMMAND-ALIST '(COM-EDIT-BUFFERS»)

This makes Edit Buffers available on M-H in Zmacs (by default it
is only available on c-M-H).

ZWEI:(SET-COMTAB *ZMACS-COMTAB*
'(#\m-MOUSE-L COM-EDIT-DEFINITION»

This makes clicking the left mouse button while holding down the
META key do what M-. does. Invoking this command from the
mouse is convenient when you specify the name of the definition
to be edited by pointing at it rather than typing it.

276

Text Editing and Processing July 1986

277

July 1986 Zmacs Manual

Appendix A. Zmacs Help Command Summary

This section lists the names of the available help commands grouped according to
the context in which they are available. The purpose of this section is to
summarize the capabilities and to help you determine both the overall contexts for
which you can find help and a particular function that might be what you are
looking for.

278

Text Editing and Processing

Zmacs Commands for Finding Out About the State of Buffers

Edit Buffers (M-X)

Edit Changed Defmitions (M-X)
Edit Changed Definitions Of Buffer (M-X)

List Buffers (c-X c-B)

List Changed Definitions (M-X)

List Changed Definitions Of Buffer (M-X)
List Definitions (M-X)
List Matching Lines (M-X)

Print Modifications (M-X)

Select System as Tag Table (M-X)
Tags Search (M-X)

July 1986

July 1986

Zmacs Commands for Finding Out About the State of Zmacs

Apropos (M-H), HELP A
Describe Variable (M-H)
Edit Zmacs Command (M-H)
List Commands (M-H)
List Registers (M-H)

List Some Word Abbrevs (M-H)
List Tag Tables (M-H)
List Variables (M-H)

List Word Abbrevs (M-H)

279

Zmacs Manual

280

Text Editing and Processing

Zmacs Commands for Finding Out About Lisp

Describe Variable At Point (c-sh-V)
Edit Callers (M-X)

Edit CP Command M-H
Edit Definition (M- .)

Edit File Warnings (M-H)
Function Apropos (M-H)
List Callers (M-H)
List Matching Symbols (M-H)

Long Documentation (c-sh-D)
MUltiple Edit Callers (M-H)

Multiple List Callers (M-H)
Quick Arglist (c-sh-A)

Show Documentation (M-sh-D)
Show Documentation Function (M-sh-A)

Show Documentation Variable (M-sh-V)
Where Is Symbol (M-H)

July 1986

July 1986

Zmacs Commands for Finding Out About Flavors

Describe Flavor (M-H)

Show Documentation Flavor (M-sh-F)
Edit Combined Methods (M-H)
Edit Methods (M-H)

List Combined Methods (M-H)
List Methods (M-H)

281

Zmacs Manual

282

Text Editing and Processing

Zmacs Commands for Interacting with Lisp

Break (SUSPEND)

Compile And Exit (M-2)
Compile Buffer (M-X)

Compile Changed Defmitions (M-X)

Compile Changed Definitions Of Buffer (M-X), M-sh-C
Compile File (M-X)

Compile Region (M-X), c-sh-C
Compiler Warnings (M-X)

Edit Compiler Warnings (M-X)
Evaluate And Exit (c-M-2)

Evaluate And Replace Into Buffer (M-X)
Evaluate Buffer (M-X)
Evaluate Changed Definitions (M-X)
Evaluate Changed Defmitions Of Buffer (M-X), M-sh-E
Evaluate Into Buffer (M-X)
Evaluate Minibuffer (ESCAPE)
Evaluate Region (M-X), c-sh-E
Evaluate Region Hack (M-X)
Evaluate Region Verbose (c-M-sh-E)
Load Compiler Warnings (M-X)

Macro Expand Expression (M-X), c-sh-M
Trace (M-X)
Quit (c-2)

July 1986

283

July 1986 Font Editor

PART II.

Font Editor

284

Text Editing and Processing July 1986

285

July 1986 Font Editor

16. Font Basic Concepts

On the Symbolics Lisp Machine, characters can be typed out in any of a number
of different typefaces. Some text is printed in characters that are small or large,
boldface or italic, or in different styles altogether. Each such typeface is called a
font. A font is conceptually an array, indexed by character code, of pictures
showing how each character should be drawn on the screen. The Font Editor
(FED) is a program that allows you to create, modify, and extend fonts: See the
section "Font Editor", page 283.

A font is represented inside the Lisp Machine as a Lisp object. Each font has a
name. The name of a font is a symbol, usually in the fonts package, and the
symbol is bound to the font. A typical font name is trS. In the initial Lisp
environment, the symbol fonts:trS is bound to a font object whose printed
representation is something like:

#

The initial Lisp environment includes many fonts. Usually there are more fonts
stored in BFD files in file computers. New fonts can be created, saved in BFD
files, and loaded into the Lisp environment; they can also simply be created inside
the environment.

If you are loading a font contained in a font file in one of the font directories, the
system loads that font the first time you reference it. However, if you are loading
a font contained in a file somewhere else in the file system, load that font using
the function fed:read-font-from-bfd-file pathname, where pathname is the
pathname of the font file. See the section ":Load-bfd Transformation of
Defsys~mn. ---.-_ .. " -... -.- .. -.... - ---.. ----

The zl-user:tv package contains the window system, which includes fonts for
screen display (as opposed to fonts for hardcopying).

16.1 Attributes of TV Fonts

Fonts, and characters in fonts, have several interesting attributes.

Character Height Font Attribute

One attribute of each font is its character height. This is a nonnegative integer
used to figure out how tall to make the lines in a window. Each window has a
certain line height. The line height is computed by examining each font in the
font map, and finding the one with the largest character height. This largest
character height is added to the vertical spacing (in pixels) between the text lines

~ (. (. 1 " ,

F)
!

286

Text Editing and Processing July 1986

(vsp) specified for the window, and the sum is the line height of the window. The
line height, therefore, is recomputed every time the font map is changed or the
vsp is set. This ensures that any line has enough room to display the largest
character of the largest font and still leave the specified vertical spacing between
lines. One effect of this is that if you have a window that has two fonts, one
large and one small, and you do output in only the small font, the lines are still
spaced far enough apart to accommodate characters from the large font. This is
because the window system cannot predict when you might, in the middle of a
line, suddenly switch to the large font.

Baseline Font Attribute

Another attribute of a font is its baseline. The baseline is a nonnegative integer
that is the number of raster lines between the top of each character and the base
of the character. (The base is usually the lowest point in the character, except for
letters that descend below the baseline, such as lowercase p and g.) This number
is stored so that when you are using several different fonts side-by-side, they are
aligned at their bases rather than at their tops or bottoms. So when you output a
character at a certain cursor position, the window system first examines the
baseline of the current font, then draws the character in a position adjusted
vertically to make the bases of the characters all line up.

Character Width Font Attribute

The character width can be an attribute either of the font as a whole, or of each
character separately. If there is a character width for the whole font, it is as if
each character had that character width separately. The character width is the
amount by which the cursor position should be moved to the right when a
character is output on the window. This can be different for different characters
if the font is a variable-width font, in which a W might be much wider than an
i. Note that the character width does not necessarily have anything to do with the
actual width of the bits of the character (although it usually does); it is merely
defined to be the amount by which the cursor should be moved.

Left Kern Font Attribute

The left kern is an attribute of each character separately. Usually it is zero, but
it can also be a positive or negative integer. When the window system draws a
character at a given cursor position, and the left kern is nonzero, the character is
drawn to the left of the cursor position by the amount of the left kern, instead of
being drawn exactly at the cursor position. In other words, the cursor position is
adjusted to the left by the amount of the left kern of a character when that
character is drawn, but only temporarily; the left kern only affects where the
single character is drawn and does not have any cumulative effect on the cursor
position.

287

July 1986 Font Editor

Fixed-width Font Attribute

A font that does not have separate character widths for each character and does
not have any nonzero left kerns is called a fixed-width font. The characters are
all the same width and so they line up in columns, as in typewritten text. Other
fonts are called variable-width because different characters have different widths
and things do not line up in columns. Fixed-width fonts are typically used for
programs, where columnar indentation is used, while variable-width fonts are
typically used for English text, because they tend to be easier to read and to take
less space on the screen.

Blinker Width and Blinker Height Font Attributes

The blinker width and blinker height are two nonnegative integers that tell the
window system an attractive width and height to make a rectangular blinker for
characters in this font. These attributes are completely independent of all other
attributes and are only used for making blinkers. Using a IlXed width blinker for
a variable-width font causes problems; the editor actually readjusts its blinker
width as a function of what character it is on top of, making a wide blinker for
wide characters and a narrow blinker for narrow characters. The easiest thing to
do is to use the blinker width as the width of the blinker. This works well with a
fIxed-width font.

Chars-exist-table Font Attribute

The chars-exist-table is nil if all characters exist in a font, or an sys:art-boolean
array. This table is not used by the character-drawing software; it is for
informational purposes. Characters that do not exist have pictures with no bits
"on" in them, just like the Space character. Most fonts implement most of the
printing characters in the character set, but some are missing some characters.

16.2 Standard TV Fonts

You can use Show Font HELP in the Lisp Listener or the List Fonts (M-H) command
in Zmacs to get a list of all the fonts that are currently loaded into the Lisp
environment. The zl-user:fonts package contains the names of all fonts. Here is
a list of some of the useful fonts:

fonts:cptfont

fonts:jess14

This is the default font, used for almost everything.

This is the default font in menus. I t is a variable
width rounded font, slightly larger and more
attractive than medfnt.

288

Text Editing and Processing

fonts:cptfonti

fonts:cptfontcb

fonts:medfnt

fonts:medfnb

fonts:h1l2i

fonts:trlOi

fonts:hllO

fonts:hllOb

July 1986

This is a iIxed-width italic font of the same width and
shape as fonts:cptfont, the default screen font. It is
most useful for italicizing running text along with
fonts:cptfont.

This is a iIxed-width bold font of the same width and
shape as fonts:cptfont, the default screen font.

This is a IlXed-width font with characters somewhat
larger than those of zl-user:cptfont.

This is a bold version of zl-user:medfnt. When you
use Split Screen, for example, the [Do It] and [Abort]
items are in this font.

This is a variable-width italic font. It is useful for
italic items in menus; Zmail uses it for this in several
menus.

This is a very small italic font. It is the one used by
the Inspector to say "More above" and "More below".

This is a very small font used for nonselected items
in Choose Variable Values windows.

This is a bold version of zl-user:hllO, used for
selected items in Choose Variable Values windows.

289

July 1986 Font Editor

17. Entering and Leaving FED

You can enter FED:

o By using [Font Edit] in the System menu.
o By typing the Edit Font command at any Lisp Listener.
o By typing the zl:fed Lisp form at any Lisp Listener.

The first time you invoke FED in a session, it takes about 15 seconds to start up;
after that, entering FED is very quick. When the startup is complete, you see a
FED Frame, the window configuration used by FED. You are not editing any
particular font: you can experiment with character drawing in this state, but it is
best to select a font first.

If you know which font you wish to edit before entering FED, you can save time
and steps by typing the font-name as an argument to Edit Font or zl:fed:

Ed; t Font font-name

or

(fed font-name)

font-name can be a string, a BFD object, or any atomic symbol (on any package)
whose print name is the name of the font you wish to edit.

You can exit FED either by selecting some other activity (via the System menu,
mouse, the SELECT key, or FUNCTION S), or by using [EXIT] in FED's menu.
Whenever you reinvoke FED in the same session, you return to the editing that
you were doing when you left FED. Thus, only one FED exists per session, and
you do not lose your work by leaving it.

Should FED become unusable because of an error, you can type the following form
. at a Lisp Listener:

(fed :reinitialize)

This creates a completely new FED (although not destroying the old one).

290

Text Editing and Processing July 1986

::h",:,::,:rr:=--f'T':"::-:-?'F~~-.,.,..-~

: : : : : : : : : : : : : : : :: :.: : : : : : : : h:rr;,e.--7i-:-:7:~-;o:--..,......--I

: : : : : : : : : : :: : : : :: :~:

!ll!!l!!!!!!:!!:!!!!l!ll!!!lIT]!:::ll!!!!!!:!!!!!!!ll!:!!1 • m c: :l n 3 • t
~ 9 ~ ~ w # $ % &

() * + B 1 2 3

" 5 6 7 8 9
G H < = > ? • A B C 0 E F I J K L M

N 0 p 2 R 5 T U V W x y z
[\ 1 a b d e f
h i j f r s

..

u v f ..
. Jc:::::7':'::=:,::,:,~~~+-.=---.=....--~
.. ~5T.r=t':~~~~!!!!!!""------1

:: ~~~~~~~

Figure 1. Initial FED Display

291

July 1986 Font Editor

18. Font Editor Basic Concepts

18.1 FED, the Subsystem

FED accepts both menu commands and character (keyboard) commands.

When you enter FED, you see a complex frame of many panes. The following are
descriptions of the panes in the FED frame:

Drawing Pane

Character Box

Sample Pane

The largest pane is the drawing pane, which contains a grid of
dots forming an array of squares, and a box drawn in the
middle. When you edit a character, FED draws the character in
this pane, magnified 12 to 1. (You can choose other
magnifications with the [Configure] and [Grid Size] FED menu
commands.) Each box, delineated by four dots, represents one
pixel (bit-raster dot) of the character being edited.

The basic technique of editing characters is to draw lines,
points, and curves on this pane, using the mouse as a graphic
input device, and thus modify the bit-raster dennition of the
character being edited. Mouse clicks on the drawing pane draw
and clear points. For information on mouse use on the drawing
pane: See the section "Drawing in FED", page 299.

The box drawn in the center of the drawing pane is called the
character box. It shows the font baseline and character height,
as well as the width and kerning of the character being edited.
The box itself shows the right and left margins of the character,
and the top and baseline of the font. The line under the
character box shows the character height of the font, which is
the height that the window system uses to compute line spacing
for windows with the current font in their font map. It
represents, in essence, the maximum height of any character in
the font, although it is a font parameter, not one computed by
inspecting all characters in a font.

You can alter the positioning of the character box, as well the
character width it represents. See the section "Viewing and
Altering a Character in the FED Character Box", page 30l.

The topmost pane of the FED frame is called the sample pane.
It shows what the character being edited looks like in normal
size. That display appears in the leftmost part of the sample
pane. About an inch to the right of that, the sample pane

292

Text Editing and Processing July 1986

Prompt Pane

Menus

shows a life-size sample string in the font being edited. (You
can set this sample string with the [Set Sample] FED menu
command.) The sample string allows you to see what a given
word or phrase, drawn in the font being edited, looks like. This
allows you to see your changes to a given character in context.
Note that the sample pane changes size as you select fonts of
differing character height.

Between the sample pane and the drawing pane is the prompt
pane. This is used whenever keyboard type in is required.
Occasionally, messages and instructions to you (such as how to
use the mouse for curve and line drawing) appear there too.

To the right of the drawing pane is a set of menus and
miscellaneous panes.

Draw Mode Menu

The topmost menu is called the draw mode m~nu; it tells the
default interpretation of mouse clicks on the drawing pane. One
element of the draw mode menu is always highlighted, and
specifies the current interpretation of the mouse on the drawing
pane. Selecting (by mouse click) any item on the draw mode
pane makes the selected mode be the new default, and
highlights that mode. Other ways of changing the draw mode
also update the highlighting in this pane. See the section
"Drawing in FED", page 299.

Under the draw mode menu appear three command menus that
display a repertoire of commands that you can issue at any time
by clicking on their items with the mouse. Many of the items
interpret the different mouse buttons differently. See the
section "FED Command List", page 327. The mouse
documentation line at the bottom of the screen displays the
interpretation of the mouse buttons when the mouse is
positioned over a potential choice.

The three command menus are grouped by related function:

Drawing Pane Menu

The topmost command menu (drawing pane menu) presents a
group of commands allowing you to control how you are looking
at what you see, and commands to perform automatic
transformation and drawing on the character being edited.

July 1986

Status Pane

293

Font Editor

Gray Plane Menu

The second command menu contains commands apropos the gray
plane, which is, in effect, a second pane behind the drawing
pane, whose display is shown in gray instead of black. You can
use the gray plane to see two characters at once, to see one
character as a model while editing another, and so on. The
gray plane can be moved around and manipulated in several
ways. See the section "The FED Gray Plane", page 303.

Outside FED Command Menu

The third command menu contains commands dealing with the
world outside FED: reading and writing files, getting help,
leaving FED, and selecting and saving characters and fonts.

Under the command menus is the status pane, which tells you
what font and what character is being edited. The character is
displayed in the default Lisp Machine font: this is to be
considered an identification of the character you are editing.
For example, if you display the font zl-user:greek9 with [Show
Font], you see that the omega character in zl-user:greek9
occupies the position that corresponds to W in the default Lisp
Machine font. So the status pane identifies that character as
W, but the "real" character (omega) is displayed in the sample
pane. The status pane also shows you the width of the
character being edited. The width is changed by manipulating
the vertical edges of the character box; this action updates the
status pane's display.

Character Select Menu
Under the status pane is the Character Select menu, which is
used to select a character to edit. Simply clicking on an item in
this menu (once a font has been selected) draws that character
in magnification in the drawing pane, so you can begin editing
it. You can also use the Character Select menu to answer any
prompt for a character, such as those issued by the Rename
Character and Gray Character commands. When a prompt is
issued that can be answered by clicking on this menu, it says so
in its text.

Font Parameters Menu
Under the Character Select menu is the Font Parameters menu.
It displays the font-wide parameters, such as blinker height and
width, and baseline and character height. This is a Choose

294

Text Editing and Processing July 1986

Register Pane

Variable Values menu; by clicking on any of the numbers in it,
the menu "opens up" and allows you to type in a new value.
When you change a font parameter in this way, the change
takes effect immediately. The FED frame can even change
shape to accommodate the new parameters. All values in this
menu are displayed and accepted in decimal, regardless of the
setting of zl: base and zl:ibase.

The final pane of the Fed frame is the register pane, which is
labelled Registers. It is divided into as many little boxes
(registers) as fit; the size of the boxes is computed from the
parameters of the current font. Registers can be used to store
characters and pieces of characters being edited, and retrieve
them, without storing them into any font. See the section
"Saving Characters and Pieces of Characters in FED Registers",
page 307.

FED has an alternative configuration, or pane layout, that gives a wide aspect
ratio (screen-wide) to the drawing pane, as opposed to the normal tall aspect ratio.
The [Configure] menu item in the top command menu can be used to switch
configurations. When selected, it pops up a menu of the two possible
configurations.

Many FED commands produce typeout, text and/or drawings that are "written
over" the whole FED frame display. [Show Font] and [List Fonts] are typical of
such commands. When a command produces typeout, the typeout remains until
the next command is typed. Pressing SPACE is a command that does nothing; use
it to erase typeout and do nothing more.

18.2 Selecting a Font

FED edits one font at a time, and one character in that font at a time. You can
make new fonts, and add new characters to fonts. Using FED consists of selecting
a font, then selecting, successively, several characters in that font, editing each
one in turn, and "storing" it back into the font. When this editing is finished, the
font in the Lisp environment reflects all of these changes. At that time, you
usually want to write the font out to a BFD file, to save your work. See the
section "Reading and Writing FED Files", page 325.

FED provides several ways to select a font .

• You can name the font to be edited in the command or Lisp form that invoked
FED. See the section "Entering and Leaving FED", page 289 .

• You can select the [Edit Font] menu item, which prompts for the font name in

295

July 1986 Font Editor

G

.... ".".""".",,.,,""" ." ... """" .. " .. " ,, · -----------..,
............... ~~~~--~~~----~--~--~
"" .. " ""." ... " "."" .. " ,,,.,, .. ,, .
.................... ~~~~~~~~~~--~~

::::::::::::::::::::~~~--~~------------~

::::::::::::::::::::~~~~~~~----------~
.................... ~~~~~~~~--~--~-----I

• CD C ::I n 3 t

~ ~ l:: ~ . v $ % &
() * + 1 2 3

4 5 6 7 8 9
H

< > ? • A B C 0 E f G I J K L M
N 0 p 2 R 5 T U V W x y z
[\)

I
a b c d e f 9

h i j m n p r s t
u v \II " Y z { } I

::::::::::::::::::: ::::::::::::t\::::::: :
·•.........................•........ ~~~::7.":-::-,':>'::";::-:,rr-----"';"'-----I
: ~~~~f::7:~~=""-----------1
...... " " .. "" ... "." """."" .. """ ".""".,, .. ,,.,, " "" " ... "." "." " .. "."".""" .. " " .. " .. ,, "
• ••• .jCl1llsr·~.Ctl!1'" "" ... " """".".""."."""." ... " ... " " ... ,,.,,. " · ... +-------------------------1
........... "" """""""""""""""""""""" .. "."."."".""",, ,, .
"" " " ""." .. " ... " "" ... "" .. "" ... """ .. "" .. ,, ".""" .. """"."."" ... " .. ""."." .. " .. ",,.,,"",, "
."".""""""" ... " "" .. """ " .. " .. " .. "" ... ",, ... ,,"""",, "

Figure 2. Tall Configuration

296

Text Editing and Processing July 1986

G

.................................
: : : : : :: : : : ~: : : : : : : : : : : : :: : : : : : : : :
•••••••••••••••.•.••••••••.•••••• ~--...I --_....I

. v

$)

9
I 2 " < > ?

0 E F G H I j
0 P Q R ~ T U
Z [\]

f h j
u

Figure 3. Wide Configuration

297

July 1986 Font Editor

the prompt pane. Use [Edit Font (M)] to copy an existing font as the first step
of making a new font.
You can list all loaded fonts with the [List Fonts] menu item. The display
produced by [List Fonts] is mouse sensitive: moving the mouse over the name of
any font highlights it, and clicking on it begins editing of that font. Using
[List Fonts (R)] lists all fonts on the file computer as well as loaded ones. This
usually takes a long time to produce. The keyboard command F can also be
used to prompt for the name of a font to edit.

18.2.1 Creating a New Font

If you attempt to edit a font that is not known to the system, FED asks you
whether you wish to create that font. This is the way you create new fonts.
When you create a new font, the first thing you usually want to do is alter the
font parameters (in the font parameters menu) and define the Space character,
from which many facilities in the system (including some in FED) determine the
"usual width" of characters in this font. As a matter of fact, you might want to
reconfigure the FED frame after setting the width of Space, to correctly
recalculate the width of registers in the register pane.

18.2.2 Displaying Characters In the Font

When you start editing a font, you are not editing any character. The drawing
pane displays a typical character box, and no points. The specifications for the
character box reflect the Space character in the font. You must then select a
character to edit. FED then displays all of the characters in the font, using the
display normally obtainable by [Show Font]. You can erase this display by
pressing SPACE or by selecting a character to edit. See the section "Selecting a
Character in FED", page 297.

18.3 Selecting a Character

Once a font has been selected, FED edits one character at a time. You modify the
definition of the character by drawing and clearing points on the drawing plane.
When you are done editing a character, you store it back in the font by using the
[Save Char] menu item. Your changes to the character are not saved until you do
this. Furthermore, none of your changes to a font being edited become permanent
until you write the font out to a file.

Text Editing and Processing July 1986

18.3.1 From the Character Select Menu

The usual way to select the character being edited is by using the mouse to select
a character in the Character Select menu. When you select a character, it is
drawn in magnification in the drawing pane, and the status pane is updated to tell
you what character you are editing.

18.3.2 By Creating a New Character

If you attempt to edit a character that is not in the font being edited, FED creates
a new character. This is the way new characters are created. The new character
is not actually saved in the font until the [Save Char] command is issued.

18.3.3 From the [Show Font] Display

You can also select a character by displaying all of the characters of the font
being edited, via the [Show Font] menu item. The display produced by this
command is mouse sensitive: when you move the mouse over the image of a
character, it is highlighted, and if you click on it, editing of that character begins.
This display is produced automatically when you select a font to be edited.

18.3.4 With the c Command

The keyboard C command can also be used to select a character. Pressing C
prompts for a character, which can be supplied from the keyboard or the
Character Select menu.

18.3.5 By Renaming Characters

Another way to edit a character is to rename the character being edited to some
other character. This is one way to move characters around in a font, and make
characters into other characters. Selecting the [Rename Char] menu item prompts
for a character to call the character being edited. You can answer this prompt
either by typing a character from the keyboard, or from the Character Select
menu. This changes FED's idea of what character you are editing, and the status
pane and sample string (if any) are updated to reflect this fact. Renaming a
character does not store it back in the font; you must do that by yourself, as
usual, with the [Save Char] command when you are done editing it.

299

July 1986 Font Editor

19. Drawing

The most common technique for creating and editing characters is to draw and
clear points on the drawing pane using the mouse.

A nonmouse cursor can be moved around with the keyboard. Sometimes, as when
square-counting is necessary, this is useful. See the section "The FED Nonmouse
Cursor", page 300.

19.1 Drawing Characters with the Mouse

Drawing on the drawing pane is in one of three modes at any time, [Set Points],
[Clear Points], or [Flip Points]. The highlighted item in the draw mode menu
tells which is in effect. When you click left on a box in the drawing pane, that
box is made black (set), or white (clear), or complemented (flip), according to the
current draw mode. If you hold the left button down (that is, you do not release
it after clicking left on a box) and move it around, you set (or clear or
complement) all squares over which you pass. In this way, you can draw curves
or pictures, rill in areas, clear old mistakes, and so forth. This is the most
common operation in FED, and is called drawing with the mouse.

You can change the drawing mode either by selecting another draw mode by
clicking on an item in the draw mode menu, or by clicking middle on the drawing
pane. Clicking middle rotates through the possible draw modes.

When you draw with the mouse, the sample pane is not updated until you release
the left button. (You might want to do this every now and then while drawing
with the mouse, just to observe what you have in life-size, and then press the left
button again, to continue drawing.)

Often, you might want to "temporarily" change the draw mode, either because the
draw mode menu is too distant, or the mouse is not in top shape, or because you
really want to change the draw mode for just one or two squares. You can do this
while drawing by manipulating the CONT ROL and MET A keys on the keyboard. If
you hold down CONT ROL alone while drawing, the temporary draw mode becomes
[Clear Points] for as long as it is held down. Similarly, MET A alone sets up [Set
Points] mode for as long as it is held down. CONT ROL and MET A together
temporarily put the mouse in pass-over mode, in which it makes no change to any
squares it passes over.

Flip mode is useful for final touch-Ups, a click at a time, rather than drawing with
the mouse button down. Since it changes any square you click on, it is most
useful when you fix up single squares in the final stages of editing a character.

300

Text Editing and Processing July 1986

19.2 The Nonmouse Cursor

The nonmouse cursor is an "alternative mouse" that can be used to draw in the
drawing pane. It can be useful when the mouse is not in top shape, or when you
are doing some design that involves counting squares carefully.

This cursor is normally not visible. It starts out in the upper left-hand corner of
the drawing pane. You move it via the ~, " [, and] keys, which tell the
direction in which to move it. See the section "FED Menu and Keyboard
Commands", page 327. When you start moving it, it appears as a smaller, blinking
box inside the grid box over which it sits. When you draw with the real mouse, it
goes away.

The keyboard command "." complements the box over which the nonmouse cursor
sits.

You can also move the nonmouse cursor in numerically specified movements using
specialized commands. See the section "FED Command List", page 327.

301

July 1986 Font Editor

20. Viewing and Altering a Character in the Character
Box

The character box is the mechanism by which you can view and alter the
boundaries of a character being edited. The following is a description of its edges,
and instructions for changing them.

20.1 What the Lines Mean

FED displays a character box in the drawing pane, to indicate the "boundaries" of
the character being edited. These boundaries are not absolute limits outside
which the character cannot extend; rather, they are the positions that are to be
considered the start and end of this character when it is drawn in use.
Characters in italic fonts and foreign scripts often extend into the "territory" of
the previous or next character. Such "incursion" is accomplished by a character's
containing points outside its limits.

Left and right edges
The left edge of the character box represents the cursor position
at the time the character is drawn in real use. Any points to
the left of this are in the "territory" of the previous character.
The right edge represents the start of the next character. The
distance between the left edge and the right edge is called the
character width, and specifies the distance by which the window
system increments its horizontal cursor position after drawing
this character. Points to the right of the right edge of the
character box are an incursion into the territory of the next
character to the right.

Bottom edge The bottom edge of the character box (not the line under it)
represents the baseline of the font. The baselines of all
characters drawn on a line, in any font, form a continuous line,
the normal "bottom" of most characters. Points below the
baseline are "descenders".

Top edge The top edge of the character box represents the top of the
character. You cannot put points above the top, but FED lets
you draw such points, for you might move them and/or the
character box before you save the character. FED warns and
asks you what to do if you attempt to save a character that has
points above its top edge; this is an error. The distance

302

Text Editing and Processing July 1986

between the top edge and the baseline is fIxed for any given
font (although you can use FED to change the value of that
number). If you are making a new font, you should carefully
consider this parameter (the font's baseline) before generating
any characters.

Character height The line below the bottom of the box represents the character
height of the font, which is the distance between the top edge
and this line. This distance, too, is a fIxed parameter for any
font, although you can use FED to alter it for the whole font.
You cannot put points below this line; if you do, they appear in
the territory of the next line when drawn, and are cleared or
overwritten inconsistently. The maximum of the character
heights of all fonts in the font map of a window is used to
compute the line spacing of a window.

20.2 Altering the Character Box

You can move the edges of the character box on the drawing pane by clicking on
them (within one-half box on either side) with the right mouse button. Hold the
button down and move the line to where you want it to be, and then release the
button.

Moving the character box redefInes the orientation of the character, as drawn,
with respect to the other characters in the same font.

If you attempt to move the bottom edge, top edge, or character height line, you
move them all, and thus move the whole character box vertically. You cannot
move them individually because the distances between them are fIxed parameters
for the font. If you alter these parameters by selecting them in the Font
Parameters menu, the character box is altered and redrawn appropriately.

Sometimes, you want to move the whole character box without changing its shape.
The easiest way to do this is to move the data being displayed with the [Move
Black] menu item. See the section "Transformations on Characters in FED", page
309.

303

July 1986 Font Editor

21. The Gray Plane

The gray plane is a "shadow" "behind" the drawing pane that allows you to look
at another character in addition to the one you are editing. The character (or
piece of a character) in the gray plane shows up in light gray in the drawing
pane. Where bits are on in both the gray plane and the character being edited
(the black plane), a dark gray square is shown.

Frequently, the gray plane is used to hold a character that resembles, or has
pieces of, the character being edited, to serve as a guide for drawing the new
character. At other times, . the gray plane is used to hold a piece of a character,
to be merged later into the black plane.

The second of the three command menus is a special menu for commands dealing
with the gray plane. It is also possible to fetch previously created patterns into
the gray plane from the register pane. See the section "Saving Characters and
Pieces of Characters in FED Registers", page 307.

21.1 Getting Things Into Gray

The most common ways of putting drawings into the gray plane are to move the
black plane into it and to fetch characters into it. The [Swap Gray] and
[Gray Char] menu items do this.

21.1.1 With [Swap Gray]

[Swap Gray] exchanges the black and gray planes; what had been black becomes
gray, and what had been gray becomes black. After you use [Swap Gray], you are
editing in the black plane what had been in the gray plane, and what you had
been editing in the black plane (where all editing is done) is now visible in the
gray plane. You can clear the black plane with [Erase All]; [Clear Gray] (in the
gray plane menu) clears the gray plane.

You can swap the gray and black plane to bring the gray plane up for editing, to
move something you have edited into the gray plane, or to do both at once.

21.1.2 With [Gray Char]

You can bring characters directly into the gray plane. Using [Gray Char] prompts
you for a character in the current font to be brought into the gray plane. You
can then type the character, or select it in the Character Select menu. The
keyboard command G does this, too. The character is placed at the character box.

304

Text Editing and Processing July 1986

It does not really matter where the character is placed, though, because before
merging it or using it, you can move it to any place in the gray plane by using
[Move Gray]. See the section "Merging Characters with the FED Gray Plane",
page 304.

You can bring characters from other fonts into the gray plane by using
[Gray Char (R)]. A Choose Variable Values menu is presented, offering choices
not only of character and font, but of scaling as well. Click on values you wish to
change; keep in mind that the [Character] item expects a single character when
you use it. Scaling allows you to grow or shrink the character being fetched
before bringing it into the gray plane. The numerator and denominator of the
scale fraction are displayed and interpreted as decimal numbers. When you are
done choosing values for [Gray Char], use [Do It] to bring in the character.

21.2 Merging Characters with the Gray Plane

The gray plane is the mechanism for adding pieces of characters into characters
being built. You do this in two steps:

1. Put a character or a piece of a character into the gray plane and position it.
You use the [Move Gray] command to reposition a drawing in the gray plane.
It leaves the black plane and the character box unaffected; it moves bits within
the gray plane only. When you use it, you are asked in the prompt pane for
two points, which you indicate by clicking left on them in the drawing pane.
These points indicate where from and where to move the data in the gray plane.
FED temporarily grays (in a distinguishable gray) the points you select so that
you can see them, and then moves all the data in the gray plane so that the
first point is moved to the second. Usually, rather than clicking random points,
you should click a specific point in the gray drawing and the point in the black
drawing with which you wish the gray point to coincide. You might also think
of these points as a point in the gray plane and a point in the black plane to
which the point in the gray plane is to be made to coincide.

2. Merge it into the black plane. The [Add in Gray] command merges the gray
plane into the black plane. Normally, you use [Add in Gray]. This turns on
(makes black) each point in the black plane that is "over" a turned-on (gray)
point in the gray plane, and leaves the gray plane as it was. Thus, the points
that were gray now all appear in dark gray, indicating they are on in both
planes. Using [Add in Gray (M)] is similar, but clears the gray plane
afterwards.

You can also merge the gray plane into the black plane by other logical operations
than the default Inclusive Or: using [Add in Gray (R)] pops up a menu of logical
combination operators. ANDCA (turn off all black points corresponding to "on"

305

July 1986 Font Editor

points in the black plane, that is, punch a hole in the black plane as indicated by
the gray plane) and XOR (flip all points in the black plane that are on in the gray
plane) are offered, as well as the default value, lOR.

306

Text Editing and Processing July 1986

307

July 1986 Font Editor

22. Saving Characters and Pieces of Characters in
Registers

FED's gray plane allows you to edit one character or piece of a character. You
can also save characters and pieces in registers. The register pane shows the
contents of registers that can hold characters and pieces of characters for reuse.

22.1 Saving a Drawing Into a Register

You save a drawing (in the black plane, after editing) by clicking left on one of
the empty registers (little boxes) in the register pane. Do not use the first (upper
left-hand) one. Clicking left on an empty register (one that looks blank) saves the
current black drawing in that register. Registers are mouse-sensitive, and grow a
thick border when you move the mouse over them. Click on an empty register,
and the drawing in the black plane appears in that register, in the register pane,
and remains there. FED makes every effort to show you a visible piece of that
character, so that you know it is there.

22.2 Retrieving the Contents of a Register

To retrieve a register, click left on it, and the contents of the register are
transferred into the black plane. If you click on a register that has a drawing in
it, that drawing goes into the black plane. If it does not have a drawing in it, the
black plane goes into it. Thus, clicking left on registers is usually the only
dealing you have with them.

22.3 Retrieving the Black Plane While Manipulating Registers

You might click on a different register than the one you intended. Or perhaps a
register is not really empty, but has a peculiar drawing in it that has a gigantic
empty middle. In either of these cases, you might lose the very work in the black
plane that you were trying to save. Thus, FED always copies the current black
plane into the upper . left-hand register when fetching the contents of a register, in
case you made a mistake. You can then click on the upper left-hand register to
retrieve its contents.

Drawings saved in registers are saved as bits; the orientation and size of the
character box are not saved.

308

Text Editing and Processing July 1986

It is possible to save the gray plane into a register, or fetch a register into the
gray plane. It is also possible to store into a nonempty register from either plane.
If you want to do any of these operations, click right on a register, and a menu of
possible operations pops up.

309

July 1986 Font Editor

23. Transformations

Although drawing with the mouse is the most common way to create characters
and pieces of characters, FED can provide a good deal of automatic drawing help,
such as drawing lines and curves and performing transformations on the character
being edited. As is true of drawing with the mouse, all of these operations are
applicable only to the black plane. If you want to perform them on the gray
plane, swap planes, perform them, and swap back

23.1 Clearing the Drawing

The simplest operation on a drawing is getting rid of it; [Erase All] clears the
entire (black) drawing. The gray drawing, if any, is left intact. You are queried
to make sure you really want to clear the entire drawing. This function is also
accessible via the keyboard command E.

23.2 Rotating Drawings

FED can rotate characters 90 degrees right or left, or 180 degrees. Rotations are
performed about the center of the square whose top, right, and left edges are the
top, right and left edges of the character box, and thus, whose bottom must be,
and is, a distance below the top of the character box equal to the character width.

Rotation Mouse command
90 degrees right [Rotate (R)]
90 degrees left [Rotate]
180 degrees [Rotate (M)]

Note that rotating the drawing 180 degrees is not the same as turning it upside
down.

23.3 Reflecting Drawings

FED can reflect drawings about any of four lines. Using [Reflect] pops up a menu
of the four lines about which to rotat~ the drawing. Those lines all pass through
the "center" of the character box, the point halfway between the left and right
edges and halfway between the top and the bottom line, not the baseline.

310

Text Editing and Processing July 1986

~----------------~ ::::::::::::::::::::
....................
: : : : : : : : : : :.: : : : : : : : :-:F~~-:.,;;..;...:....:;.:.::.:.:;:...-........ ----1
:::::::::::::::::::: ~~~~~~~~~---~~
....................
::::::::::::::::::::~~~-~~~-----~
.................... ~~~--.~~~-----~
::::::::::::::::::::i~~~~~!!!....--.---.",---I

.....................
....................

•
~
4
A
N
[
h

CD

~
(
5
B
0
\
i

C ;:) n
::t

* +
9 7 8

G 0 E f
~ R 5 T

a
j"

3 t
$ % &

I 1 2 3
< > ? • H I J K L M

U V W x y z
b c d e f 9

p ~ r s t
} f

.................... · ... h:::~===-,..r.b.r--..:~"""::'-----l
· ... ii;fr:r.:~~~~!!!!U"-------1
• ••• .fCh.s,."e,t",. .. · ... 1-------------1

Figure 4. [Rotate (R)]

311

July 1986 Font Editor

.................... ~~~~--~~~~~--~~

.................... ~~~~--~~~~~--~~

.................... ~~~~~~~----------~

:::::::::::::::::::: ~~~--.~~~----------~ ~~~~~~~--~--~----I

• m ::J n 3 • t
~ 9 ~ ~

H # $ '% &
() * + I e 1 2 3

4 5 6 7 8 9 < > ? • II B C D E F G H I J K l M
N 0 P ~ R 5 T U V W x y z
[\]

I
a b c d e f 9

h i j m p ~ r s t
} I

· '------------~
:: ~-:-....:.:....~~...;....,...:...,,.;-...::---..::.---~
• .•.•..•••..•...•....•••..•......•.•.•...••••......••.•....... ~kf~~~~~:!!..!!:!.!'.L----------1

..
• ••• ~Ch'.r""t"r +-----------~ ..

Figure 5. [Rotate (M)]

312

Text Editing and Processing July 1986

These lines are the horizontal and vertical lines through the center point, the
X Axis (I) and the Y Axis (-), and the 45-degree diagonals, the line X=Y (I), and the
line X= .y (\), through it.

Reflection is subtle; it is very different than rotation. Imagine the drawing as
made of sheet metal, lying on the plane. Rotation moves the character around in
the plane, turning it, but never lifting it off the plane. Reflection picks it up, and
puts it back, face down on the plane. The effects of diagonal reflections are
subtle. The best way to understand these commands is to edit an asymmetrical
but simple character (the one of choice is F) in a straightforward font (for
example, HL12B) , and try these various reflections upon it, as well as the
rotations.

23.4 Moving the Drawing

You can move the drawing around with [Move Black]. [Move Black] moves the
drawing with respect to the character box, the drawing pane itself, and the gray
plane. [Move Black] prompts for two points, a point in the black plane and a
point to which to move it. The whole black drawing moves along with it as well.

23.5 Drawing Lines and Curves

FED can draw approximate lines and curves in the drawing. Rather than drawing
actual lines and curves on the drawing, FED manipulates squares along the line or
curve desired. Thus, if you ask to draw a line that is not straight up, down, or
across, FED approximates as well as it can.

To draw a line, use [Draw Line], and select two points between which to draw a
line. As with all commands in which FED prompts for points, the points are
temporarily grayed when you click on them, to verify your choices. The line is
drawn in the current draw mode, which means it clears a line if appropriate, or
even flips all the points along one (which is hardly ever appropriate).

To draw a curve, use [Draw Spline]. Then click left on all the points through
which the curve is to pass. When you are done, use [Draw Spline (R)]. The
spline-drawing package is called to compute the points of an unconstrained cubic
spline through these points, and the approximate curve is drawn in the current
draw mode. See the section "Drawing Splines on Windows" in Programming the
User Interface, Volume B.

313

July 1986 Font Editor

................... , .. ~------------------~ ~~~~~~~~~~~~

................... · ~

••.• , ••.•••• ~~~~~~~~~~~~I

.................... ~~----~~~------------~

.................... ~~~--~~~------------~ ~~~~~~~--~--~~--~
f

I •••••• ••••••••••• • '-----"
....................

____ ...J ••••••••••••••••••••

•
~
4
A
N
[
h

m
~
(
5
B
0
\
i

c: :;) n
~ :t . v

) * +
6 7 8 9
C 0 E f
p 9 R 5
]
j k T m

:I:
u 3 t

$ % &
I 1 2 3
< > ? • G H I J K L M

T U V W x y z
a b c d e f 9

p r s t
} I

:::: :::::::::: :::::: ::: ::: ::::::::::: ::: :::::::: ::::::: :::::::.I-::--,;....-;.;.....;,;.-=-..,...;:......,....;:~~-----:~--~
• ..•.•••.••••••••••••..••..••••••••.••.•••••••••••••.••..•••.• ~~':f'-;'~i+"i--7':-~:r.=~------------1

..
• ••• ~Ch'.r .. c:t .. r

· ... +-----------------~ ..

Figure 6. [Reflect]

314

Text Editing and Processing July 1986

...

:::::::::::::::::::: ::::::::::::::::::::: ::::::::::::::::::::h"=7:-7"i::::--?'T':":~~-...,.....-.,....----I

:::::::::::::::::::: ::::::::::::::::::::: :::::::::::::::::::: h~""l"'::::;--i"!':'::-I"":~--....--~--I

Font: LIIFIX19
Character: G (191)
lIidth: 22
S~l4Ct Charact~r to edit

~ ct fJ "" ~ E n >. y s t :I:

• a c ::l n u V 3 • t

--------------~

~ ~ ~ ~ . .., ! " # $ % &
() * +

9
a 1 2 3

4 5 6 7 8
G H

< > ? • A B C 0 E F I J K L M
N 0 p 2 R 5 T U V W x y z
[\ J b c d e f 9
h i j T m p q r s t
u v \II X Y z } - J
Font rameters d~l.mal
B1 inker Height: 42
Blinker lIidth: 22
Base Line: 29
Character Height: 41

.................... ----~-------
I I I I I I I I I I I I I I I I

............................
, ,•.. R~gl.st'r$

thU 17 Ju1 3:99:26~ .. hit

Clear all dots an reset character width.

CL-U5ER: User Input • '111 .. >t1!cbjO"'?ffftUWj Wtft Em 16?82t)

Figure 7. The X axis (-)

315

July 1986 Font Editor

G
t to ...

· r------------..,

::::::::::: ~~~--~~~-------------~
:: : : ~:: : : : : • Q) c: ::J n 3 • t

~ 9 ~ ~
H # $ % &

() * + a 1 2 3
"1 5 6 7 8 9 < > ? • A B C 0 E F G H I J K L M
N 0 p 2 R 5 T U V W x y z
(\ 1 b c d e f 9
h i j k T m 0 p r s t

...................

} I .. · ... ~~~~~~~=L-------I

41 .. · ... ~--------------------------I
· ------------

lfigure 8. Moving the Drawing with [Move Black]

316

Text Editing and Processing July 1986

23.6 Stretching and Contracting

FED can stretch or contract drawings. This is not the same as growing or
shrinking them. Stretching means inserting duplicate rows or columns at a given
point of the drawing, and contracting means removing rows or columns. Growing
and shrinking, in general, mean scaling the whole drawing up or down. The latter
is done with the options to [Gray Char]. See the section "Getting Things Into the
FED Gray Plane", page 303.

The relative orientation of the first and second points clicked on specifies whether
you want to stretch or to contract.

23.6.1 Stretching a Drawing Horizontally

Stretching a drawing horizontally means making some number of copies of a
column of squares to the right of that column. To stretch a character
horizontally, use [Stretch], and then click left on any square in the column to be
"stretched" . Then click left on any square in the column to the right of that to
which that column is to be stretched (that is, the last column to be a duplicate of
the column being stretched). The entire drawing is stretched, with the required
number of copies of the duplicated column inserted.

23.6.2 Contracting a Drawing Horizontally

Contracting a drawing horizontally means eliminating some number of columns of
squares. To shrink a character horizontally, use [Stretch]. Then click left on any
square in the rightmost column not to be eliminated, at the right edge of the
columns to go, and then on the leftmost column to be eliminated. You should
think of this as clicking on a column to move, and where to move it to.

23.6.3 Stretching a Drawing Vertically

Stretching a drawing vertically means making some number of copies of a row of
squares below that row. To stretch a character vertically, use [Stretch (M)], and
then click left on any square in the row to be "stretched". Then click left on any
square in the row below that to which that row is to be stretched (that is, the last
row to be a duplicate of the row being stretched). The entire drawing is stretched,
with the required number of copies of the duplicated row inserted.

23.6.4 Contracting a Drawing Vertically

Contracting a drawing vertically means eliminating some number of rows of
squares. To shrink a character vertically, use [Stretch (M)]. Then click left on
any square in the topmost row not to be eliminated, at the top edge of the rows to

317

July 1986 Font Editor

G
to:

...................-----~~------::::::::::::::::::::

.........

......... ~~~--~~~----------~

• c :> n 3 • t
~ 9 s: ~ . "

.. # $ % &
() * + a 1 2 3

4 5 6 7 8 9
G H

< > ? • A B C 0 E f I J K L M

................... ~---
N 0 p 2 R 5 T U V W x y z
[\]

T
b c d e f 9

h i j m 0 p r s t ,.
· ... }.;;.......;-~~~~.,....:...~....:......----=------I

} J

· ...•..•...•...••••....••.••..••.••.••..•••••••.•••..•••.••... .J;,..;~~~~~~!!!!i.L-------1
• ••• .fChllrllc:t"r .. · ... +------------------~

Figure 9. Stretching Horizontally

318

Text Editing and Processing July 1986

G

................... · ,..-----------,

::::::::::::::::::::~~~~--~~~--~--~-4

:::::::::::::::::::: hj:.;e--Tr:-~~-~....,.....--I

.................... ~~--~~~~----------~
• JCharacter:
. .ti:7.~~=-::-:~------I
····················~~==~~~~--~--~~--I

• c: j n u 3 t

................... '---_...I
.................... ------'

~ ~ s:; ~ . v $ % &
() * + 1 2 3

4 5 6 7 8 9
G H < = > ? • A 8 C 0 E f I J K L M

N 0 P ~ R 5 T U V W x y z
[\ 1

1
b c d e f 9

h i j m p ~ r 5 t
} J , .. .

· •......................••..••.........•............•..•..•... Ji;:::::-:-:-:::::::7:'::~~~+-~--~----I
·•..••.....•..•........••..•..•..•..•• .fETr=t:~~f.71-~~""------------I

• •• -ICh,!rac:ter

:: t--------------------~

Figure 10. Contracting Horizontally

319

July 1986 Font Editor

go, and then on the topmost row to be eliminated. You should think of this as
clicking on a row to move, and where to move it to.

320

Text Editing and Processing July 1986

321

July 1986 Font Editor

24. The Sample String

When you edit a font, it is usually convenient to maintain a sample string,
displayed in the font, so that you can see how the character you are editing looks
in the context of other characters next to which it might appear.

FED allows you to set a sample string. The straightforward method of setting it
is to select the [Set Sample] menu item: doing so prompts you for the string,
which should be short enough to fit in the sample pane (it is clear if it does not,
as you only see the end of it). End the string by pressing RET URN. The string is
then displayed in the sample pane.

If the sample string contains the character being edited, occurrences of that
character are updated whenever any change is made to the drawing. Thus, the
occurrences of the character being edited in the sample string reflect the state of
the current drawing, not the state of that character stored in the font.

Two other ways to ask FED to prompt you for the sample string are clicking any
button on the sample pane itself, and issuing the V command from the keyboard.
This last is often the most convenient, because you are then going to type the
string itself.

322

Text Editing and Processing July 1986

323

July 1986 Font Editor

25. Adjusting the Display

The commands and facilities described here deal with positioning the drawing
display and modifying its visible characteristics. They do not actually change the
data in the drawing, but rather, the way it is viewed.

25.1 Positioning the Drawing

Both the black and gray drawings can be thought of as being drawn on an infinite
plane. The character box' is in the center of that plane. Although [Move Black]
and [Move Gray] exist to move the drawings, and the character box can be moved
by clicking on it, sometimes you might want to reposition the entire drawing,
character box, black drawing, gray drawing, and all. This can also be viewed as
repositioning the view of the drawing offered by the drawing pane. FED provides
several techniques for repositioning the entire drawing.

[Move View]

[Center View]

Scrolling

The simplest is [Move View]. [Move View] works just like
[Move Gray] and [Move Black]. When you use [Move View], it
prompts you for two points, which you indicate by clicking left
on squares on the drawing pane. The first point is a point on
the drawing; the second is a point in the pane to which to move
it. The whole drawing is moved, perhaps simultaneously
vertically and horizontally, so that the first point is where the
second point had been.

Another common need is to recenter the drawing, that is, put
the character box back in the middle. This is the way the
drawing pane starts out when you begin editing a character.
The [Center View] menu item performs this task. Use [Center
View] to recenter the drawing. The keyboard H (for Home)
command does this too.

Another way to reposition the display is to scroll it up or down
or left or right. In order to scroll the display vertically, a scroll
bar is provided at the left of the drawing pane. When you move
the cursor to the extreme left edge of the drawing pane and
bounce the cursor at that edge, the cursor changes to a double
pointed arrow and the left margin of the drawing pane displays
a graph of the vertical portion of the drawing you are looking
at. The status line documentation reflects the possible options
at this point.

324

Text Editing and Processing July 1986

To scroll the drawing horizontally, a scroll bar is provided at
the bottom of the drawing pane. When you move the cursor to
the extreme bottom edge of the drawing pane and bounce the
cursor at that edge, the cursor changes to a double-pointed
arrow and the bottom edge of the drawing pane displays a full
grid length graph of what horizontal portion of the drawing you
are looking at. The status line documentation reflects the
possible options at this point.

25.2 Setting the Box Size in the Drawing Pane

You can set the size of boxes in the drawing pane. Normally, it is 12, meaning
each box, corresponding to one pixel of the actual character, is represented by a
box 12 pixels wide and high. To set the size of boxes, use [Grid Size]. FED
prompts you for the size of a box, in decimal. This size can not be bigger than 64
pixels. If you type a carriage return without typing any number, the default size
of 12 pixels is reestablished.

25.3 Setting the Height and Width of the Drawing Pane

You can tell the FED frame to show either a wide drawing pane, as wide as the
screen, or a tall drawing pane, almost as tall as the screen. These two
configurations of the frame are chosen from a pop-up menu that is obtained by
using [Configure]. This command can also be used to have FED recompute its
configuration, for example, to reshape its registers after you have edited the Space
character of a font.

325

July 1986 Font Editor

26. Reading and Writing Files

FED can read and write files containing fonts in any of a variety of formats. The
most common format is BFD, the standard font format of the Symbolics Lisp
Machine. If you are making fonts for use by the Symbolics Lisp Machine display
and window system or the LGP.l, this is the only format you should ever have to
deal with.

Most of the other formats are for compatibility with other systems and earlier
releases of the Symbolics Lisp Machine software. Notable among these formats is
PXL format, which is a standard font format with the TEX system on UNIX.
BFD format is the default for all file reading and writing operations.

26.1 Reading Files

Use [Read File] and type in the rile name to read in a font file. The file type
defaults from the (canonical) type of the pathname presented as the default. For
example, if you type fi x9. bfd, or just fi x9, you read a BFD file, whereas if you
type fi x9. bi n, you read a BIN file. FED complains if you supply a file type that
is not a valid font file type for the machine you are using. Pressing R is
equivalent to using [Read File].

From outside of FED you can use Dired to read in any font file. Enter Dired,
move point to the line showing the font file, and press A (which queues a file to
be acted on by a function). Apply the zl:fed function to that file to read it in.

When you read in a font via [Read File], it is actually loaded. It becomes part of
the Lisp environment, and appears in listings of loaded fonts produced by [List
Fonts] as well as by the Show Font command and by Zmacs. After FED loads the
file and looks for the font you specified, you are editing that font.

It is sometimes necessary to read in font files of exotic types, whose file types (as
expressed in the name of the file) are not indicative of the format of the font.
For instance, you might have renamed a BFD or other file to myfont. temp, and
now you want to read it in. Since FED cannot determine the font format from
this file type, you must specify the font format explicitly. This is done by using
[Read File (R)]: FED offers a menu specifying file types. Click on the file type
involved: FED then prompts for a pathname and reads the file. FED interprets
the file, however, according to the format specified by the menu, not by the file
type.

326

Text Editing and Processing July 1986

26.2 Writing Files

FED can also write out font files. Files are written from the description of a font
residing in the Lisp environment, not from any temporary FED image of the font.
Since FED maintains no temporary image of the font, but actually stores edited
characters back in the font when you use· [Save Char], this is not a problem unless
you forget to save your characters.

Use [Write File] to write the font file out. The file type defaults from the
(canonical) type of the pathname presented as the default. For example, if you
type newfnt. bfd, you write a BFD file, whereas if you type newfnt. bi n, you write a
BIN file. FED complains if you supply a file type that is not a valid font file type
for the machine you are using. Using [Write File] writes out a BFD file by
default from a font description in the Symbolics Lisp Machine virtual memory.
The default directory is the system screen fonts directory; the default file name is
font. bfd, where font is the current font being edited. Pressing W is equivalent to
using [Write File].

I t is sometimes necessary to write out font files of exotic types, whose file types
(as expressed in the name of the file) are not indicative of the format of the font.
For instance, you might already have a sfnt. bfd, and want to write your file to
sfnt. temp. Since FED cannot determine the font format from this file type, you
must specify the font format explicitly. This is done by using [Write File (R)]:
FED offers a menu specifying file types. Click on the file type involved: FED
then prompts for a pathname and writes the file. FED writes the file, however,
according to the format specified by the menu, not by the file type.

327

July 1986 Font Editor

27. Command List

The following is a listing of all FED commands. The first part of this listing
describes the commands available via the command menus and the keyboard.
When a keyboard character exists duplicating a menu command, it is given in
addition after the command name. The second part of this section describes the
effect of clicking on various panes and mouse-sensitive areas of the FED frame.

Many of the keyboard commands take numeric arguments to specify some number
or character. Numeric arguments are entered by typing a decimal number before
the command character. The numeric argument is echoed in the prompt window
as you enter it.

27.1 Menu and Keyboard Commands

27.1.1 Configuration and Drawing Transformation

[Configure] Pop up a menu of frame configurations. Two configurations are
offered, giving a tall and wide aspect ratio to the drawing pane.

[Grid Size] @ Set the size of boxes in the draw pane. If a numeric argument
is given, it is used as the size. @ sets grid size to the default if
given no numeric argument, but [Grid Size] prompts.

[Center View] H Reposition the display in the drawing pane so that the character
box is centered in it.

[Move View] Reposition the display in the drawing pane by prompting for two
mouse-specified points: which point to move and to which point
to move it.

[Draw Line] Draw a line in squares in the drawing pane, in the current
drawing mode. Prompt for two endpoints, to be specified with
the mouse.

[Draw Spline] Draw a cubic spline in squares in the drawing pane, in the
current drawing mode. Prompt for curve points, to be specified
by using [Draw Spline]. Using [Draw Spline (R)] ends the
curve.

[Erase All] E

[Stretch] K

Clear all points (black points) in the current drawing.

Stretch or contract a character, horizontally or vertically.
[Stretch] is horizontally, [Stretch (R)] is vertically. FED

328

Text Editing and Processing July 1986

[Rotate] E9

[Reflect] H

[Move Black]

prompts for two points, specifying a row or column to move and
to where to move it. From the keyboard, K means horizontal,
c-K means vertica1. See the section "Stretching and Contracting
Drawings in FED", page 316.

Rotate the drawing in the black plane. [Rotate] is 90 degrees to
the left, [Rotate (R)] 90 degrees to the right, and [Rotate (M)]

180 degrees.

Reflect the drawing in the black plane about a coordinate axis
or diagonal line through the center of the character box. A
menu pops up, asking which.

Move the drawing in the black plane. You are prompted for the
target and destination points, which you specify by clicking left
on the drawing pane.

27.1.2 Gray Plane Menu Items

[Gray Char] G, also M

Place a character into the gray plane. The keyboard commands
accept numeric arguments to specify which character. If none
is given, or if you use [Gray Char], you are prompted for a
character, which you can supply from the keyboard or the
Character Select menu. If you use [Gray Char (R)], you are
offered a Choose Variable Values choice window to select the
character, font, and scaling. For the keyboard commands,
CaNT ROL causes FED to prompt for a font name, and MET A

causes it to prompt for scale factors.

[Clear Gray] Clear the entire gray plane.

[Swap Gray]

[Move Gray]

[Add in Gray]

Exchange the drawings in the gray and black planes.

Move the drawing in the gray plane. You are prompted for two
points, to be specified via the mouse, a point to move and a
point to which to move it.

Combine the drawing in the gray plane into the black plane.
Using [Add in Gray] inclusive-or's the gray drawing into the
black drawing. Using [Add in Gray (M)] inclusive-or's the gray
drawing into the black drawing, and clears the gray drawing.
[Add in Gray (R)] pops up a menu of other combination modes.

329

July 1986 Font Editor

27.1.3 Outside World Interface Menu Items

[Edit Font] F

[List Fonts]

[Save Char] S

Pick a font to edit. You are prompted for the font name. Use
[Edit Font (M)] to copy an existing font as the first step of
making a new font.

[List Fonts] lists all of the loaded fonts. [List Fonts (R)] lists
all of the loaded fonts and fonts on the file computer. The
display is mouse-sensitive; clicking left on any item begins
editing that font.

Store the character being edited back into the font in the Lisp
environment. It is stored as the character that the status pane
indicates it to be.

[Rename Char] c-C

[Show Font] D

[Set Sample] V

[Read File] R

[Write File] W

[EXIT] Q

Rename the current character; make it seem as though you are
now editing a different character, but retain the drawing. You
are prompted for the character, which you can supply from
either the keyboard or the Character Select menu. The
keyboard command accepts a numeric argument to specify the
character.

Display all characters in the font being edited. The display is
mouse-sensitive, and clicking left on a character begins editing
that character.

Prompt for the sample string to be displayed in the font being
edited in the sample pane, and set it.

Read in a file of font definitions. Prompts for a pathname.
[Read File] computes the font file type from the file type of the
pathname given. The default is always BFD. [Read File (R)]

pops up a menu that offers the file types: BFD, KST, BIN, AC,
AL, PXL, or Any. The file specified by the pathname given will
be interpreted according to that format, regardless of file type.

Writes a file of font definitions. Prompts for a pathname.
[Write File] computes the font file type from the file type of the
pathname given. The default is always BFD. [Write File (R)]

pops up a menu that offers the file types: BFD, KST, BIN, AC,
AL, PXL, or Any. The file specified by the pathname given will
be written in that format, regardless of file type.

Bury the Font Editor, and return to whatever you were doing
when you last invoked FED.

[HELP] HELP or ?
Display a long message giving documentation of FED.

330

Text Editing and Processing July 1986

27.1.4 Evaluating Forms From FED

FED uses the ESCAPE key to evaluate a Lisp form.

27.2 Keyboard-only Commands

The following commands are accessible only from the keyboard. They are mainly
concerned with the nonmouse cursor, or general interaction with the subsystem.

,

[

]

REFRESH

c-REFRESH

ABORT

c

Turn the nonmouse cursor on, and move it one position up the
screen. A numeric argument tells to move it other than one
position. c-, and M-' mean 2 and 4 positions, respectively, and
C-M-' means 8.

Same as " but moves the nonmouse cursor down.

Same as " but moves the nonmouse cursor left.

Same as " but moves the nonmouse cursor right.

When the nonmouse cursor is on, complement the black square
under it.

Redraw the drawing pane. Useful in case of perceived problems.

Clear the screen and refresh all panes in the FED frame.

Abort any command while it is prompting, waiting for either
mouse or keyboard input.

Begin editing a character: prompt for the character, and begin
editing it. Normally, you simply select a character from the
Character Select menu or the [Show Font] display. C accepts a
character specification as a numeric argument.

27.3 Mouse Sensitivities

This section describes the result of clicking the mouse on various portions of the
FED frame other than the command menus.

27.3.1 The Drawing Pane

Click left Draw a black square in the current draw mode, which is shown
by the Draw Mode menu. It continues drawing as the mouse is
moved as long as the left button is held down. Pressing

July 1986

Click middle

Click right

331

Font Editor

CONT ROL while drawing means temporarily go into [Clear Points]
mode (META means [Set Points] mode); neither changes any
points.

Change the draw mode, cycling through the three possible draw
modes.

Only meaningful when the mouse is over a boundary of the
character box. "Pick it up" and begin moving it as the mouse
is moved, as the right button is held down.

The drawing pane has a scroll bar at its left edge.

27.3.2 The Draw Mode Menu

Clicking any button on one of the draw modes selects that draw mode until it is
next changed by clicking on this menu, or clicking middle on the drawing pane.

27.3.3 The Sample Pane

Clicking any button on the sample pane prompts for a new sample string.

27.3.4 The Character Select Pane

Clicking left on any character in the character select pane begins editing it. The
character select pane can also be used to answer any command that is prompting
for a character.

27.3.5 The Font Parameters Menu

Clicking left on any item in the Font Parameters menu opens it for editing. You
are expected to type a new decimal number. As soon as you press RETURN, the
altered parameter is stored in the font in the Lisp environment.

27.3.6 The Register Pane

Click left

Click right

On an empty register, store the current black plane drawing in
that register. On a nonempty register, retrieve the drawing in
it into the black plane, and store the current black plane
drawing into the upper-leftmost register.

Pop up a menu allowing the register you clicked on to be loaded
from either plane (regardless of whether or not it is empty) or
retrieved to either plane.

332

Text Editing and Processing July 1986

27.3.7 The List Fonts and Show Font Displays

These displays are mouse-sensitive. Clicking left on a font in the [List Fonts]
display begins editing it; clicking left on a character in the [Show Font] display
begins editing that character.

July 1986

!

$

)

*

+

/

1

Index

! Dlred command 172
Exclamation point (I) line continuation Indicator 25, 64

@ # text formatting command 39

$
$ Dired command 171

c-x
)

) Zmacs command 257

*
*Funct i on-Specs-to-Edi t-n * buffer 13

Funct i on-Specs-to-Edi t-n buffer 13
@ * text formatting command 39

+
+ flag in Zmacs 131

, Dired command 168

. Font Editor drawing command 300
@ . text formatting command 39

/
/ Font Editor command 330

1
c-x 1 Zmacs command 147

333

Index

$

)

*

+

/

1

334

Text Editing and Processing

2

3

4

8

,

>

?

@

2
c-x 2 Zmacs command 146

3
c-x 3 Zmacs command 146

4
c-x 4 Zmacs command 146

8
c-x 8 Zmacs command 146

c-X ; Zmacs command 227

c-X
@

>

= Dired command 169
= Zmacs command 54
= text formatting command 39

@ > text formatting command 39

?
? Dired command 167
? Font Editor command 329

HELP ? Zmacs command 14

@
@ Font Editor command 327
@ text formatting command 39

c-m- @ Zmacs command 106
m- @ Zmacs command 106

@# text formatting command 39
@* text formatting command 39
@' text formatting command 39
@=textformatting command 39
@> text formatting command 39
@blankspace text formatting command 39
@b text environment 36
@caption text formatting command 39
@c text environment 36
@foot text formatting command 39
@g text environment 36
@i text environment 36
@note text formatting command 39

July 1986

2

3

4

8

>

?

@

July 1986

A

@p text environment 36
@r text environment 36
@tabdear text formatting command 39
@tabdivide text formatting command 39
@tabset text formatting command 39
@t text environment 36
@\ text formatting command 39
@" text formatting command 39

335

Index

A A
Example of a Search String for HELP A 53

A Dired command 172
c-X A Zmacs command 141

HELP A Zmacs command 14, 53
c-X c-A Add Mode Word Abbrev 200

c-X pl us-SIGN Add Global Word Abbrev 200
Make Word Abbrev 202

Word abbrev 198
Read Word Abbrev File 202
Write Word Abbrev File 203

Word Abbreviation Commands 200
Using Word Abbreviations 198

Word Abbreviations 197
Word Abbrev Mode 203

Edit Word Abbrevs 201
Insert Word Abbrevs 201
Kill All Word Abbrevs 201

Ust Some Word Abbrevs 202
List Word Abbrevs 202

Word abbrevs 198
Dired Abort 167

ABORT Dired command 167
ABORT Font Editor command 330
ABORT Zmacs command 48
Abort At Top Level 48
Abort Patch (m-X) 248

Getting Information About Buffers and Regions 61
Warnings about file attribute lists 156

Zmacs Commands for Finding Out About Flavors 281
Zmacs Commands for Finding Out About Lisp 280

Send mall about patch 247
Zmacs Commands for Finding Out About the State of Buffers 278
Zmacs Commands for Finding Out About the State of Zmacs 279

Finding Out About Zmacs Commands 51
More HELP Commands for Finding Out About Zmacs Commands 53

Overview of Finding Out About Zmacs Commands 51
Finding Out About Zmacs Commands with HELP 51
Finding Out About Zmacs Variables 269

Zmacs Speller Accept command 181
Zmacs Speller Accept Once command 181

Accidental deletion 49
Active patches 242, 246

c-X p 1 us-S I GN Add Global Word Abbrev 200
[Add in Gray] Font Editor menu item 304, 328
Adding Site-specific Speller Dictionaries 189
Adding User-specific Speller Dictionaries 188

c-X c-A Add Mode Word Abbrev 200
Add Patch Changed Definitions (m-X) 245
Add Patch Changed Definitions of Buffer (m-X) 245
Add Patch (m-X) 244

336

Text Editing and Processing July 1986

Add region to patch file 242
zwel: add-words-to-spell-dlctlonary function 194
m-X Add Word to Spell Dictionary 192

Adjusting the FED Display 323
Aligning Indentation in Zmacs 220

Undo all changes to buffer 138
Save All Files (m-X) 136

[Erase All] Font Editor menu item 303, 309, 327
Clear all points 327

m-X Save All Spell Dictionaries 192
Kill All Word Abbrevs 201

Motion Along One Nesting Level 76
Viewing and Altering a Character in the FED Character Box 301

Altering the FED Character Box 302
Alternative configuration 291

Fast Where Am I 54
Where Am I 54
Motion Among Top-Level Expressions 77

Moving the Drawing Horizontally and/or Vertically in FED 323
Scrolling the Drawing Horizontally and/or Vertically in FED 323

Copying a File Into Another 151
Examples of Copying a File Into Another 152

Inserting a Buffer Into Another Buffer 141
Any Extended Command 7
Appending a Region to a Buffer 141
Appending a Region to a File 141
Appending, Prepending, and Inserting Text in

Zmacs 141
Append Next Kill 89
Append To Buffer 141
Append To File (m-X) Zmacs command 141

Dired Apply Function 172
Applying Arbitrary Functions to Files in Dired 172

Searching for Appropriate Commands 53
Method for Searching for Appropriate Zmacs Commands 53

Searching for Appropriate Zmacs Commands 52
Apropos 14

m-X Apropos 53
Variable Apropos 269

Apropos (m-X) 52
Variable Apropos Zmacs command 269
Applying Arbitrary Functions to Files in Dired 172

Echo Area 20
Zmacs Echo Area 20

Echo Area's Minibuffer 20
Quadruple Numeric Arg 26

Quick Arglist 55
Arglist (m-X) 55
Arglist (m-X) Zmacs command 55

Display argument list 55
Defaults to Numeric Arguments 26

Echoing arguments 26
Example of Numeric Arguments 26

Numeric arguments 24,26,52
Overview of Numeric Arguments 26

Negative Numeric Arguments and Motion Commands 71
Numeric Arguments and the Motion Commands 71

Example of Negative Numeric Arguments with Motion Commands 71
Example of Numeric Arguments with Motion Commands 71

Positioning the Window Around a Definition 66
Moving Around in Dired 168

337

July 1986 Index

Assign key bindings 267
Associating a File with a Buffer 139
Association of buffers with files 32
Association of files with buffers 32
Atom Query Replace 121

Backspace Attribute 159
Backspace file attribute 159

Base attribute 157, 160
Base file attribute 160

Baseline Font Attribute 286
Character Height Font Attribute 285
Character Width Font Attribute 286

Chars-exist-table Font Attribute 287
Fixed-width Font Attribute 287

Fonts Attribute 160
Left Kern Font Attribute 286

Lowercase Attribute 160
Lowercase file attribute 160

Nofill Attribute 160
Nofill file attribute 160

Patch-File Attribute 161
Patch-File file attribute 161

Syntax attribute 157
Tab-Width Attribute 161

Tab-Width file attribute 161
Unknown attribute 156

Vsp Attribute 161
Vsp file attribute 161

File Attribute Checking 156
Buffer and File Attribute Descriptions 159

Attribute list 155
Describe Attribute Ust 168
Reparse Attribute Ust (m-X) Zmacs command 155
Update Attribute Ust (m-X) Zmacs command 156
Update Attribute Ust Query 159

Attribute lists 156
Warnings about file attribute lists 156

Attribute-Manipulating Commands 155
Example of Attribute-Manipulating Commands 156

Attributes 155
Blinker Width and Blinker Height Font Attributes 287

Buffer attributes 155
Character attributes 285

File attributes 155
Font attributes 285

Other Set Commands for File and Buffer Attributes 159
Set commands for file and buffer attributes 159

Setting Buffer Attributes 159
Viewing File Attributes in Dired 168

Buffer and File Attributes in Zmacs 155
Attributes of TV Fonts 285

Init File Form: Auto Fill in Text Mode 274
Example of Filling Text with Auto Fill Minor Mode 253

Auto Fill Mode 160,254
Overview of Locating and Replacing Strings Automatically 118

Locating and Replacing Strings Automatically in Zmacs 118
Automatic drawing help 309

338

Text Editing and Processing July 1986

B B
c-X

Getting Text
Finding Files That Have Not Been

Set
Going

File

Deleting

Erase

B Font Editor command 323
B Zmacs command 32, 33, 133
Back 49
Backed up in Dired 172
Backspace Attribute 159
Backspace file attribute 159
Backspace (m-X) Zmacs command 159
Back to First Indented Character in Zmacs 219
backup flag 172
Backward 28
Backward Character 72
Backward Kill Sentence 30
Backward Kill Sexp 30, 93
Backward Kill Word 30,92
Backward List 76
Backward on the Line 96
Backward Page 80
Backward Paragraph 28, 79
Backward Sentence 28, 73
Backward Sexp 76
backward to start of line 96
Backward up List 77

B

Kill Backward Up List (c-m-X) Zmacs command 93
Backward Word 28, 72

Scroll

Set
Font

Font Editor

Finding Files That Have Not

Goto
Mark

Marking a Region From Here to

Move cursor to
Protecting Files From
Protecting Files From

Query Replace LET
Assign key

Definition of Key
Extended command key

Zmacs Key
Setting Key

How Key
[Move

Retrieving the
Deleting

bar 323
Base 156
Base and Syntax Defaults 157
Base and Syntax Default Settings for Lisp 33, 137,

176,224
Base attribute 157, 160
Base file attribute 160
Baseline 286,302
Baseline Font Attribute 286
Base (m-X) Zmacs command 160
Basic Concepts 285
Basic Concepts 291
Basic Text Formatting Commands 39
Basic Text Formatting Environments 36
Been Backed up in Dired 172
Beep 48
Beginning 28, 81
Beginning 107
Beginning/End of Buffer 81
Beginning of Buffer 107
Beginning of Definition 78
Beginning of Une 28, 74, 95
beginning of line 66
Being Deleted in Dired 171
Being Reaped in Dired 171
Binding 121
bindings 267
Bindings 267
bindings 54
Bindings 267
Bindings in Init Files 274
Bindings Work: the Comtab 267
Black] Font Editor menu item 302, 327
Black pane 303
Black Plane While Manipulating FED Registers 307
Blank Line in Zmacs 221

July 1986

Inserting
Delete

@

Blinker Width and

Zmacs
Using Two Windows, Select

Altering the FED Character
Bottom Edge of the FED Character

Character
Character Height of the FED Character

FED Character
Left and Right Edges of the FED Character

Top Edge of the FED Character
Using the mouse on the character

Viewing and Altering a Character in the FED Character
What the Lines Mean in the FED Character

Size of
Setting the

Function-Specs-to-Edit-n
Appending a Region to a

Append To
Associating a File with a

Beginning/End of
Creating a

Creating a Fundamental Mode
Current

Current Zmacs
Editor Window's

Encrypting and Decrypting the
Evaluate and Replace Into

Execute Command Into
Format

Hardcopying the
Inserting a Buffer Into Another

Inserting a File Into a
Inserting Command Output Into the

Inserting output into the
Insert text from register into

m-X Spell
Marking a Region From Here to Beginning of

Marking a Region From Here to End of
Mode Line's

Motion with Respect to the Whole
Moving to end of

Reading a File Into a New
Reading a File Into an Existing

Renaming the
Re-reading a File Into the

Select
Select Default Previous

Selected
Select Previous

Showing a
The Editor Window and the

Undo all changes to

Blank Line in Zmacs 221
Blank Lines 30
blankspace text formatting command 39
Blinker height 287
Blinker Height Font Attributes 287
Blinker width 287

339

Index

Blinker Width and Blinker Height Font Attributes 287
Boldface text environment 36
Bolla Mode 177
Bottom 146
Bottom Edge of the FED Character Box 301
Box 302
Box 301
box 291,301,302
Box 302
Box 291
Box 301
Box 301
box 302
Box 301
Box 301
boxes in the drawing pane 324, 327
Box Size in the FED Drawing Pane 324
Breaking a line 24
buffer 13
Buffer 141
Buffer 141
Buffer 139
Buffer 81
Buffer 32, 33
Buffer 139
buffer 137
Buffer 132
Buffer 18
Buffer 137
Buffer 120
Buffer 136
Buffer 42
Buffer 136
Buffer 141
Buffer 141
Buffer 136
buffer 136
buffer 105
Buffer 180, 185
Buffer 107
Buffer 107
Buffer 21
Buffer 81
buffer 81
Buffer 137
Buffer 137
Buffer 136
Buffer 138
Buffer 32, 133
Buffer 133
buffer 132
Buffer 133
Buffer 135
Buffer 64
buffer 138

340

Text Editing and Processing July 1986

View Buffer 135
Buffer and File Attribute Descriptions 159
Buffer and File Attributes in Zmacs 155

Zmacs Buffer and File Names 130
Buffer attributes 155

Other Set Commands for File and Buffer Attributes 159
Set commands for file and buffer attributes 159

Setting Buffer Attributes 159
Zmacs Buffer Commands 133

Writing the Buffer Contents to a File 138
Saving the Buffer Contents to the File 138

Buffer Contents with c-X c-F 33
Buffer Flags for Existing Files 130
Buffer Flags for New Files 131
Buffer History 132

Zmacs Buffer History 132
Inserting a Buffer Into Another Buffer 141

Init File Form: Ordering Buffer Lists 272
Add Patch Changed Definitions of Buffer (m-X) 245

Evaluate Buffer (m-X) Zmacs command 230
Evaluate and Replace Into Buffer (m-X) Zmacs command 230

Evaluate Changed Definitions of Buffer (m-X) Zmacs command 230
Evaluate Into Buffer (m-X) Zmacs command 230

Execute Command Into Buffer (m-X) Zmacs command 136
Format Buffer (m-X) Zmacs command 35, 42

Hardcopy Buffer (m-X) Zmacs command 136
Insert Buffer (m-X) Zmacs command 141

List Changed Definitions of Buffer (m-X) Zmacs command 239
Rename Buffer (m-X) Zmacs command 136

Revert Buffer (m-X) Zmacs command 138
Show Buffer (m-X) Zmacs command 135

Buffer pointers 1 00
Buffers 32

Association of files with buffers 32
Changing Buffers 133

Commands to Mark Regions by Buffers 107
Destroying Buffers 139

Editing Buffers 134
Example of Listing Buffers 134

File buffers 139
List Buffers 134

Listing Buffers 133
Multiple buffers 130

Possibility Buffers 126
Reverting buffers 138, 139

Saving Buffers 136
Selecting, Listing, and Examining Zmacs Buffers 132

Support Buffers 126
Zmacs Commands for Finding Out About the State of Buffers 278

Creating and Saving Buffers and Files 32
Description of Creating and Saving Buffers and Files 32

Summary of Creating and Saving Buffers and Files 32
Manipulating Buffers and Files in Zmacs 129

Overview of Working with Buffers and Files in Zmacs 130
Working with Buffers and Files in Zmacs 130

Getting Information About Buffers and Regions 61
Init File Form: Putting Buffers Into Current Package 272

Changing Case of Buffers in Zmacs 214
Comparing Files and Buffers in Zmacs 142

Edit Buffers (m-X) Zmacs command 134
Init File Form: Edit Buffers on c-X c-8 274

July 1986

c

Init File Form: Edit
Mode Line's

Association of
List

C

Buffers on m-X 275
Buffer-status 22
buffers with files 32
Buffers Zmacs command 131
Built-In Customlzation Using Zmacs Minor

Modes 253

HELP C 51
SELECT C 44

Selecting a FED Character with the C Command 298

HELP

c-X

HELP or

c-X

Init File Form: Edit Buffers on c-X

c-X

c-X

Buffer Contents with c-X

c-X

c-X

c-X

c-X

Init File Form:

C Dired command 169
C Font Editor command 298,330
C Zmacs command 14, 52
c-% Zmacs command 118
c-/ completion command 15
c-B c-m-Y 86
c-B c-m-Y yank command 15
c-B c-Y 85
c-; Zmacs command 226
c-; Zmacs command 228
c-= Zmacs command 54
c-? 15
c-? completion command 15
c-A Add Mode Word Abbrev 200
c-A Zmacs command 28,74,95
c-8 274
c-8 Zmacs command 28,72
c-8 Zmacs command 131, 134
c-C Font Editor command 329
c-D Dired command 170
c-D Zmacs command 30, 49, 90
c-D Zmacs command 149
c-E Zmacs command 28,74,95
c-F 33
c-F Zmacs command 28,72
c-F Zmacs command 33,34
c-G Zmacs command 48
c-HELP V Zmacs command 269
c-I Zmacs command 220
c-J Change Style Character 210
c-J Change Style Region 210
c-K Dired command 170
c-K Zmacs command 30, 95
c-L Zmacs command 65
c-L Zmacs command 214
c-m- (Zmacs command 77
c-m-) Zmacs command 77
c-m-; Zmacs command 226
c-m-? V Zmacs command 269
c-m-@ Zmacs command 106
c-m-A Zmacs command 78
c-m-8 Zmacs command 76
c-m-D Zmacs command 77
c-m-E Zmacs command 78
c-m-F Zmacs command 76
c-m-H Zmacs command 106
c-m-J Change· Typein Style 211
c-m-K Zmacs command 30, 93
c-m-L on the SQUARE Key 274

341

Index

c

342

Text Editing and Processing July 1986

c-m-L Zmacs command 133
c-X c-m-L Zmacs command 133

c-m-N Zmacs command 76
c-m-O Zmacs command 221
c-m-P Zmacs command 76
c-m-Q Zmacs command 219
c-m-R Zmacs command 66
c-m-RUBOUT Zmacs command 30, 93
c-m-sh-E Zmacs command 230
c-m-SPACE Zmacs command 102

c-X c-m-SPACE Zmacs command 102
c-m-T Zmacs command 93
c-m-U Zmacs command 77
c-m-V Zmacs command 147
c-m-X 7

Kill Backward Up List (c-m-X) Zmacs command 93
c-B c-m-Y 86

c-m-Y yank command 15
c-B c-m-Y yank command 15

c-m-Z Zmacs command 230
c-m- [Zmacs command 78
c-m- \ Zmacs command 219
c-m-] Zmacs command 78
c-m-'" Zmacs command 220
c-N Dired command 168
c-N Zmacs command 28,74,95,257

c-X c-N Zmacs command 75
c-O c-Y yank command 15
c-O Zmacs command 221

c-X c-O Zmacs command 30, 221
c-P Dired command 168
c-P Zmacs command 28,74,95

c-X c-P Zmacs command 107
c-R Font Editor command 329
c-REFRESH Font Editor command 330

c-X c-S Zmacs command 34, 138
c-sh-A Zmacs command 55
c-sh-C Zmacs command 109
c-sh-O Zmacs command 55
c-sh-E Zmacs command 230
c-sh-V Zmacs command 55
c-sh-Y string-matching yank command 87
c-SPACE Zmacs command 102
c-T Zmacs command 90

c-X c-T Zmacs command 96
c-U Zmacs command 26

c-X c-U Zmacs command 214
c-V Zmacs command 28,65

c-X c-V Zmacs command 137
c-W Font Editor command 329
c-W Zmacs command 30, 109

c-X c-W Zmacs command 34, 138
c-X) Zmacs command 257
c-X 1 Zmacs command 147
c-X 2 Zmacs command 146
c-X 3 Zmacs command 146
c-X 4 Zmacs command 146
c-X 8 Zmacs command 146
c-X ; Zmacs command 227
c-X = Zmacs command 54
c-X A Zmacs command 141

July 1986

343

Index

Init File Form: Edit Buffers on

Buffer Contents with

c-X

c-9

c-O
Leaving Zmacs with

The Zmacs Edit
Multiple Edit
Multiple List

Example of

c-X 8 Zmacs command 32, 33, 133
c-X c-; Zmacs command 228
c-X c-A Add Modo Word Abbrev 200
c-x c-8 274
c-X c-8 Zmacs command 131, 134
c-X c-O Zmacs command 149
c-X c-F 33
c-X c-F Zmacs command 33, 34
c-X c- I Zmacs command 220
c-X c-J Change Style Region 210
c-X c-L Zmacs command 214
c-X c-m-L Zmacs command 133
c-X c-m-SPACE Zmacs command 102
c-X c-N Zmacs command 75
c-X c-O Zmacs command 30, 221
c-X c-P Zmacs command 107
c-X c-S Zmacs command 34, 138
c-X c-T Zmacs command 96
c-X c-U Zmacs command 214
c-X c-V Zmacs command 137
c-X c-W Zmacs command 34, 138
c-X c-X Zmacs command 103
c-X 0 Zmacs command 163
c-X E Zmacs command 258
c-X F Zmacs command 32, 254
c-X L Zmacs command 55
c-X 0 Zmacs command 147
c-X P 1 us-S I GN Add Global Word Abbrev 200
c-X Q Zmacs command 260
c-X RU80UT Zmacs command 30, 97
c-X S Zmacs command 32
c-X T Zmacs command 109
c-X U Unexpand Last Word 203
c-X V Zmacs command 135
c-X W Zmacs command 32
c-X Zmacs command 257
c-X Zmacs command 103
c-X [Zmacs command 28. 80
c-X] Zmacs command 28. 80
c-X - Zmacs command 146
c-Y 85
c-Y yank command 15. 87
c-Y yank command 15
c-Z 45
C-O c-m-sh-Y 86
C-O c-sh-Y 85
Callers Commands 239
Callers Intersection 240
Callers Intersection 241
Calling the Last Keyboard Macro 258
Calling the Last Keyboard Macro 258
Cancel last command 48
Cancel response 48
Canonical types 152

@ caption text formatting command 39
Carriage return 7

Chan~ing
Cha:lging

Overview of Ch'.mging
Changing
Changing

Case and Indentation in Zmacs 213
Case in Zmacs 214
Case in Zmacs 214
Case of Buffers in Zmacs 214
Case of Regions in Zmacs 214

344

Text Editing and Processing July 1986

Changing Case of Words in Zmacs 214
Centering the Current Line in Zmacs 219
Centering the Drawing in FED 323
Center text environment 36
[Center View] Font Editor menu item 323, 327

Add Patch Changed Definitions (m-X) 245
Evaluate Changed Definitions (m-X) Zmacs command 230

Add Patch Changed Definitions of Buffer (m-X) 245
Evaluate Changed Definitions of Buffer (m-X) Zmacs

command 230
List Changed Definitions of Buffer (m-X) Zmacs

command 239
Compile Changed Definitions of Tag Table 231

Change File Properties (m-X) Zmacs command 150
Change One Style Region 210

Undo all changes to buffer 138
c-J Change Style Character 210

c-X c-J Change Style Region 210
m-J Change Style Word 211

c-m-J Change Typein Style 211
Changing Buffers 133
Changing Case and Indentation in Zmacs 213
Changing Case in Zmacs 214

Overview of Changing Case in Zmacs 214
Changing Case of Buffers in Zmacs 214
Changing Case of Regions in Zmacs 214
Changing Case of Words in Zmacs 214
Changing File Properties in Dired 168
Changing the Properties of a File 150
Changing Window Size 146

Getting Things Into Gray with [Gray Char] 303
Backward Character 72

c-J Change Style Character 210
Contracting a character 327

Deleting the Current Character 90
Deleting the Last Character 90

Drawing a character 291
Editing a character 291
Forward Character 72

Motion by Character 71
RU80UT Zmacs character 90

Selecting a FED Character by Creating a New Character 298
Stretching a character 327

Character attributes 285
Character box 291, 301, 302

Altering the FED Character Box 302
Bottom Edge of the FED Character Box 301

Character Height of the FED Character Box 302
FED Character Box 291

Left and Right Edges of the FED Character Box 301
Top Edge of the FED Character Box 301

Using the mouse on the character box 302
Viewing and Altering a Character in the FED Character Box 301

What the Lines Mean in the FED Character Box 301
Selecting a FED Character by Creating a New Character 298
Selecting a FED Character by Renaming Characters 298

Prefix character commands 7
Selecting a FED Character From the Character Select Menu 298
Selecting a FED Character From the [Show Font] Display 298

Character height 285, 291, 302
Character Height Font Attribute 285

345

July 1986 Index

Character Height of the FED Character Box 302
Selecting a Character in FED 297

Find Character In Style 212
Viewing and Altering a Character in the FED Character Box 301

Going Back to First Indented Character in Zmacs 219
Count Characters 61

Creating new characters 298
Deleting and Transposing Characters 90

Inserting Characters 24
Inserting Formatting Characters 25

Mirror Imaging characters 309
Newline characters 24

Selecting a FED Character by Renaming Characters 298
Transposing Characters 90

Using the CONTROL key while drawing characters 299
Using the MET A key while drawing characters 299

Saving Characters and Pieces of Characters in FED
Registers 307

Character Select menu 293
FED Character Select Menu 293

Selecting a FED Character From the Character Select Menu 298
Mousing on the FED Character Select Pane 331

Using the mouse in the character select pane 331
Transformations on Characters in FED 309

Saving Characters and Pieces of Characters in FED Registers 307
Drawing Characters in FED with the Mouse 299

Displaying Characters in the Font in FED 297
Set Default Character Style 212

Introduction to the Character Style Commands 206
Character Style Commands in Zmacs 210
Character style for 206
Character styles 210, 211, 212

Show Character Styles 212
Using Character Styles in Zmacs 205

Merging Characters with the FED Gray Plane 304
Drawing characters with the mouse 299

Character width 286, 302
Character Width Font Attribute 286

Selecting a FED Character with the C Command 298
[Gray Char] Font Editor menu item 303, 328

[Rename Char] Font Editor menu item 298, 329
[Save Char] Font Editor menu item 298, 329
Count Chars 61

Chars-exist-table Font Attribute 287
File Attribute Checking 156

Check Unbalanced Parentheses When Saving
Variable 271

Choosing the Other Window 147
Clean Directory (m-X) Zmacs command 153
CLEAR- INPUT Zmacs command 96
Clear a" points 327
[Clear Gray] Font Editor menu item 303, 328
Clear gray plane 303, 328
Clearing the Drawing in FED 309
[Clear Points] Font Editor draw mode menu item 299

L:Move point mouse click 67
M:Mark thing mouse click 67

R:Menu mouse click 67
Sh-2:Move to point mouse click 67

Sh-M:Save/KiIIlYank mouse click 67
Sh-R :System menu mouse click 67

346

Text Editing and Processing

Current meaning of mouse
C-O

Finding source
Init File Form: White Space in Lisp

Commenting Lisp
Introduction to Locating Source
Overview of Commenting Lisp

Editing the source
Locating Source

Set Fill
Set Goal

Goal
Init File Form: Setting Goal
Setting the Lisp Comment

Default
! Dired
$ Dired
, Dired

. Font Editor drawing
/ Font Editor

= Dired
? Dired

? Font Editor
@ Font Editor

@ text formatting
@# text formatting
@* text formatting
@. text formatting
@= text formatting
@> text formatting

@blankspace text formatting
@caption text formatting

@foot text formatting
@note text formatting

@tabclear text formatting
@tabdivide text formatting

@tabset text formatting
@\ text formatting
@" text formatting

A Dired
ABORT Dired

ABORT Font Editor
ABORT Zmacs
Any Extended

Append To File (m-X) Zmacs
Arglist (m-X) Zmacs

B Font Editor
C Dired

C Font Editor
c-% Zmacs

c-/ completion
c-0 c-m-Y yank

c-; Zmacs
c-= Zmacs

c-? completion
c-A Zmacs
c-B Zmacs

c-C Font Editor
c-D Dired

c-D Zmacs
c-E Zmacs

clicks 67
c-m-sh-Y 86
code 224
Code 274
Code in Zmacs 226
Code in Zmacs 235
Code in Zmacs 226
code of a function 12
Code to Edit in Zmacs 235
Column 254
Column 75
Column and the Motion Commands 74
Column for Real Line Commands 273
Column in Zmacs 227
column position 75
command 172
command 171
command 168
command 300
command 330
command 169
command 167
command 329
command 327
command 39
command 39
command 39
command 39
command 39
command 39
command 39
command 39
command 39
command 39
command 39
command 39
command 39
command 39
command 39
command 172
command 167
command 330
command 48
Command 7
command 141
command 55
command 323
command 169
command 298, 330
command 118
command 15
command 15
command 226
command 54
command 15
command 28,74,95
command 28, 72
command 329
command 170
command 30, 49, 90
command 28, 74,95

July 1986

347

July 1986 Index

c-F Zmacs command 28, 72
c-G Zmacs command 48

c-HELP V Zmacs command 269
c-K Dired command .. 170

c-K Zmacs command 30, 95
c-L Zmacs command 65

c-m- (Zmacs command 77
c-m-) Zmacs command 77
c-m-' Zmacs command 226

c-m-? V Zmacs command 269
c-m-@ Zmacs command 106
c-m-A Zmacs command 78
c-m-B Zmacs command 76
c-m-O Zmacs command 77
c-m-E Zmacs command 78
c-m-F Zmacs command 76
c-m-H Zmacs command 106
c-m-K Zmacs command 30, 93
c-m-L Zmacs command 133
c-m-N Zmacs command 76
c-m-O Zmacs command 221
c-m-P Zmacs command 76
c-m-Q Zmacs command 219
c-m-R Zmacs command 66

c-m-RUBOUT Zmacs command 30, 93
c-m-sh-E Zmacs command 230

c-m-SPACE Zmacs command 102
c-m-T Zmacs command 93
c-m-U Zmacs command 77
c-m-V Zmacs command 147

c-m-Y yank command 15
c-m-Z Zmacs command 230
c-m- [Zmacs command 78
c-m-\ Zmacs command 219
c-m-] Zmacs command 78
c-m-.... Zmacs command 220

c-N Dired command 168
c-N Zmacs command 28, 74, 95, 257

c-O c-Y yank command 15
c-O Zmacs command 221
c-P Dired command 168

c-P Zmacs command 28,74,95
c-R Font Editor command 329

c-REFRESH Font Editor command 330
c-sh-A Zmacs command 55
c-sh-C Zmacs command 109
c-sh-O Zmacs command 55
c-sh-E Zmacs command 230
c-sh-V Zmacs command 55

c-sh-Y string-matching yank command 87
c-SPACE Zmacs command 102

c-T Zmacs command 90
c-U Zmacs command 26
c-V Zmacs command 28,65

c-W Font Editor command 329
c-W Zmacs command 30,109

c-X) Zmacs command 257
c-X 1 Zmacs command 147
c-X 2 Zmacs command 146
c-X 3 Zmacs command 146
c-X 4 Zmacs command 146

348

Text Editing and Processing

c-X 8 Zmacs
c-X ; Zmacs
c-X = Zmacs
c-X A Zmacs
c-X B Zmacs

c-X c-; Zmacs
c-X c-B Zmacs
c-X c-D Zmacs
c-X c-F Zmacs
c-X c- I Zmacs
c-X c-L Zmacs

c-X c-m-L Zmacs
c-X c-m-SPACE Zmacs

c-X c-N Zmacs
c-X c-O Zmacs
c-X c-P Zmacs
c-X c-S Zmacs
c-X c-T Zmacs
c-X c-U Zmacs
c-X c-V Zmacs
c-X c-W Zmacs
c-X c-X Zmacs

c-X 0 Zmacs
c-X E Zmacs
c-X F Zmacs
c-X L Zmacs
c-X 0 Zmacs
c-X Q Zmacs

c-X RUBOUT Zmacs
c-X S Zmacs
c-X T Zmacs
c-X V Zmacs
c-X W Zmacs

c-X Zmacs
c-X [Zmacs
c-X] Zmacs
c-X Zmacs

c-Y yank
Cancel last

Change File Properties (m-X) Zmacs
Clean Directory (m-X) Zmacs

CLEAR- INPUT Zmacs
Compile Region (m-X) Zmacs

COMPLETE completion
Copy File (m-X) Zmacs

Create Directory (m-X) Zmacs
Create Link (m-X) Zmacs

Create Spell Dictionary From Namespace
o Dired

D Font Editor
Deinstall Macro (m-X) Zmacs

Delete File (m-X) Zmacs
Describe Variable (m-X) Zmacs

Dired (m-X) Zmacs
E Dired

E Font Editor
Edit Buffers (m-X) Zmacs

Edit Cp
Edit Definition m-. Zmacs

Edit Directory (m-X) Zmacs
END completion

command 146
command 227
command 54
command 141
command 32, 33, 133
command 228
command 131, 134
command 149
command 33, 34
command 220
command 214
command 133
command 102
command 75
command 30, 221
command 107
command 34, 138
command 96
command 214
command 137
command 34,138
command 103
command 163
command 258
command 32, 254
command 55
command 147
command 260
command 30, 97
command 32
command 109
command 135
command 32
command 257
command 28, 80
command 28, 80
command 146
command 15, 87
command 48
command 150
command 153
command 96
command 109
command 15
command 152
command 148
command 152
Command 190
command 170
command 323, 329
command 262
command 153
command 269
command 163
command 169
command 309, 327
command 134
Command 238
Command 235
command 163
command 15

JUIJf 1986

July 1986

END Dired
End Kbd Macro Zmacs

Evaluate and Replace Into Buffer (m-X) Zmacs
Evaluate Buffer (m-X) Zmacs

Evaluate Changed Definitions (m-X) Zmacs
Evaluate Changed Definitions of Buffer (m-X) Zmacs

Evaluate Into Buffer (m-X) Zmacs
Evaluate Region (m-X) Zmacs

Example of the m- .
Execute Command Into Buffer (m-X) Zmacs

Execute CP
Extended

F Font Editor
(fed) Lisp Listener

Find File In Fundamental Mode (m-X) Zmacs
Find File Zmacs
Finding the right

Find Unbalanced Parentheses (m-X) Zmacs
Format Buffer (m-X) Zmacs

Format File (m-X) Zmacs
Format Region (m-X) Zmacs

G Font Editor
H Font Editor

Hardcopy Buffer (m-X) Zmacs
Hardcopy File (m-X) Zmacs

HELP? Zmacs
HELP A Zmacs
HELP C Zmacs

HELP completion
HELP D Zmacs

HELP Dired
HELP Font Editor

HELP L Zmacs
HELP SPACE Zmacs

HELP U Zmacs
HELP V Zmacs
HELP W Zmacs

HELP W Zmacs
Insert Buffer (m-X) Zmacs

Insert File (m-X) Zmacs
Install

Install Command (m-X) Zmacs
Install Macro (m-X) Zmacs

K Dired
Kill Backward Up List (c-m-X) Zmacs

L Dired
LINE Zmacs

Lisp Mode (m-X) Zmacs
List Buffers Zmacs

List Changed Definitions of Buffer (m-X) Zmacs
List Definitions (m-X) Zmacs

List Files (m-X) Zmacs
List Fonts (m-X) Zmacs

List Variables (m-X) Zmacs
M Font Editor

m-io Zmacs
m-) Zmacs
m-; Zmacs
m-< Zmacs
m-= Zmacs
m-> Zmacs

command 167
command 257
command 230
command 230
command 230
command 230
command 230
command 230
Command 236
command 136
Command 43
Command 7
command 329
command 289
command 139
command 33, 34
command 53
command 56
command 35, 42
command 35, 42
command 35, 42
command 328
command 323, 327
command 136
command 151
command 14
command 14, 53
command 14, 52
command 15
command 14, 52
command 167
command 329
command 14, 53
command 14
command 14, 53
command 14, 54, 269
command 14
command 54
command 141
command 141
Command 268
command 268
command 262
command 170
command 93
command 168
command 219
command 224
command 131
command 239
command 239
command 148
command 287
command 269
command 328
command 118
command 78
command 226
command 28,81
command 55
command 28, 81

349

Index

350

Text Editing and Processing July 1986

m-@ Zmacs command 106
m-A Zmacs command 28
m-8 Zmacs command 28, 72
m-C Zmacs command 214
m-O Zmacs command 30, 92
m-E Zmacs command 73

m-ESCAPE Zmacs command 230
m-F Zmacs command 28, 72
m-H Zmacs command 107
m-K Zmacs command 30, 97
m-L Zmacs command 214

m-L I NE Zmacs command 227
m-N Zmacs command 227
m-O Zmacs command 220
m-P Zmacs command 227
m-R Zmacs command 66

m-RU80UT Zmacs command 30, 92
m-S Zmacs command 219

m-SCROLL Zmacs command 28, 66
m-sh-O Zmacs command 54
m-sh-E Zmacs command 230

m-sh-V yank command 88
m-T Zmacs command 92
m-U Zmacs command 214
m-V Zmacs command 28,66
m-W Zmacs command 109

m-X command 210, 212
m-X Edit CP Command 238

m-V yank command 15,59,88
m-Z Zmacs command 231
m- [Zmacs command 28, 79
m-\ Zmacs command 30
m-] Zmacs command 28, 79
m-.... Zmacs command 30, 220

Name Last Kbd Macro (m-X) Zmacs command 261
P Dired command 172

Prepend To File (m-X) Zmacs command 141
Q Dired command 167

Q Font Editor command 329
Query Replace (m-X) Zmacs command 118

R Dired command 169
Reap File (m-X) Zmacs command 153

REFRESH Font Editor command 330
Rename Buffer (m-X) Zmacs command 136

Rename File (m-X) Zmacs command 151
Reparse Attribute List (m-X) Zmacs command 155

Repeat Last Matching Minibuffer Command 88
Repeat Last Minibuffer Command 59, 88

Replace String (m-X) Zmacs command 118
RETURN completion command 15

Revert Buffer (m-X) Zmacs command 138
RUBOUT Dired command 170

RUBOUT Zmacs command 30, 49
S Font Editor command 329

Save File Zmacs command 34
SCROLL Zmacs command 28

Selecting a FED Character with the C Command 298
Set Backspace (m-X) Zmacs command 159

Set Base (m-X) Zmacs command 160
Set Fonts (m-X) Zmacs command 160

Set Lowercase (m-X) Zmacs command 160

July 1986

Set Nofill (m-X) Zmacs command 160
Set Package (m-X) Zmacs command 156

Set Patch File (m-X) Zmacs command 161
Set Tab Width (m-X) Zmacs command 161

Set Variable (m-X) Zmacs command 271
Set Visited File Name (m-X) Zmacs command 139

Set Vsp (m-X) Zmacs command 161
Show Buffer (m-X) Zmacs command 135

Show Directory (m-X) Zmacs command 149
Show File (m-X) Zmacs . command 150

Show File Properties (m-X) Zmacs command 150
Show Keyboard Macro (m-X) Zmacs command 258

Show Login Directory (m-X) Zmacs command 149
Source Compare (m-X) Zmacs command 142

Source Compare Merge (m-X) Zmacs command 142
SPACE completion command 15

SPACE Dired command 168
Trace (m-X) Zmacs command 56

U Dired command 170
Update Attribute List (m-X) Zmacs command 156

V Dired command 169
V Font Editor command 321, 329

Variable Apropos Zmacs command 269
Write File Zmacs command 34

Zmacs Speller Accept command 181
Zmacs Speller Accept Once command 181

Zmacs Speller Prompt command 181
[Font Editor command 330
\ Font Editor command 330
] Font Editor command 330

Example of Finding Out What a Zmacs Command Does 51
Finding Out What an Extended Command Does 52

Finding Out What a Prefix Command Does 52
Finding Out What a Zmacs Command Does 51

Command history 49
Viewing the Editor Command History 86

Yanking in the command history 15
Execute Command Into Buffer 136

351

Index

Execute Command Into Buffer (m-X) Zmacs command 136
Extended command key bindings 54

FED Command List 327
Zmacs Command: m-. 235
Install Command (m-X) Zmacs command 268

Outside FED Command Menu 293
Command menus 292
Command Names 6

Inserting Command Output Into the Buffer 136
Commands 6

Attribute-Manipulating Commands 155
Basic Text Formatting Commands 39

Cursor movement commands 28, 71
Delete commands 30
Dired Commands 164, 165

Editor Menu Commands 57
Evaluation commands 230

Example of Attribute-Manipulating Commands 156
Example of Negative Numeric Arguments with Motion Commands 71

Example of Numeric Arguments with Motion Commands 71
Extended commands 6, 52

FED Keyboard-only Commands 330
FED Menu and Keyboard Commands 327

352

Text Editing and Processing July 1986

Finding Out About Zmacs Commands 51
General Information-giving Zmacs Commands 54

Goal Column and the Motion Commands 74
How to Use Formatting Commands 38

Init File Form: Fixing White Space for KiIINank Commands 273
Init File Form: Setting Goal Column for Real Line Commands 273

Introduction to the Character Style Commands 206
Introduction to the Motion Commands 71

Introduction to Zmacs Commands 6
Introduction to Zmacs Extended Commands 7

Kill commands 30
Ust the last sixty commands 53

Method for Searching for Appropriate Zmacs Commands 53
More HELP Commands for Finding Out About Zmacs Commands 53

Motion Commands 71
Mouse-sensitive Zmacs commands 67

Names of commands 7, 52
Negative Numeric Arguments and Motion Commands 71

Numeric Arguments and the Motion Commands 71
Online documentation for commands 52

Other Region-related Commands 110
Overview of Finding Out About Zmacs Commands 51
Overview of Zmacs File Manipulation Commands 148

Prefix Commands 52
Prefix character commands 7

Region-Manipulating Commands 109
Searching for Appropriate Commands 53

Searching for Appropriate Zmacs Commands 52
Speller Dictionary Commands 190

String-matching in yank commands 85
The Zmacs Edit Callers Commands 239

The Zmacs Edit Definition Commands 235
The Zmacs List Definition Commands 238

Word Abbreviation Commands 200
Zmacs Buffer Commands 133

Zmacs File Manipulation Commands 148
Zmacs Format Commands 41
Zmacs Sorting Commands 128

Zmacs Window Commands 146
Compare/Merge Commands for Definitions 144

Other Set Commands for File and Buffer Attributes 159
Set commands for file and buffer attributes 159

Zmacs Commands for Finding Out About Flavors 281
Zmacs Commands for Finding Out About Lisp 280
Zmacs Commands for Finding Out About the State of

Buffers 278
Zmacs Commands for Finding Out About the State of

Zmacs 279
More HELP Commands for Finding Out About Zmacs

Commands 53
Zmacs Commands for Formatting Text 35
Zmacs Commands for Interacting with Lisp 282

Commands for manipulating files 148
Speller Commands for Spelling 184

Executing CP Commands From Zmacs 43
Character Style Commands in Zmacs 210

Commands to Mark Regions 106
Overview of Commands to Mark Regions 106

Commands to Mark Regions by Buffers 107
Commands to Mark Regions by Lisp

Expressions 106

353

July 1986 Index

Commands to Mark Regions by Pages 107
Commands to Mark Regions by Paragraphs 107

Example of Commands to Mark Regions by Paragraphs 107
Commands to Mark Regions by Words 106

zwel: command-store 259
Dired Command Summary 165

Zmacs Help Command Summary 277
Finding Out About Zmacs Commands with HELP 51

Creating New Zmacs Commands with Keyboard Macros 257
Procedure for Creating Zmacs Commands with Keyboard Macros 257

Command tables 7,267
Introduction to Zmacs Command Tables 7

Setting the Lisp Comment Column in Zmacs 227
Semicolon (;) comment indicator 226

Semicolon (;) comment indicator 226
Commenting Lisp Code in Zmacs 226

Overview of Commenting Lisp Code in Zmacs 226
Indenting for Lisp Comment in Zmacs 226

Killing a Lisp Comment in Zmacs 226
Creating a New Indented Lisp Comment Line in Zmacs 227

Moving Down to Lisp Comment on Next Line in Zmacs 227
Moving up to Lisp Comment on Previous Line in Zmacs 227

Lisp comments 228
Inserting and Removing Lisp Comments From Regions in Zmacs 228

Setting the Syntax for Symbolics Common Lisp 158
Example of a Source Compare 142

Source Compare 142, 148
Compare/Merge Commands for Definitions 144

Source Compare Installed Definition 145
Source Compare (m-X) Zmacs command 142
Source Compare Merge 142
Source Compare Merge Installed Definition 145
Source Compare Merge (m-X) Zmacs command 142
Source Compare Merge Newest Definition 144
Source Compare Merge Saved Definition 144
Source Compare Newest Definition 144
Source Compare Saved Definition 144

Comparing/Merging Current/Installed Versions 145
Comparing/Merging Current/Newest Versions 144
Comparing/Merging Current/Saved Versions 144
Comparing Files and Buffers in Zmacs 142
Comparing file versions 169
Comparing Recent Versions of Files in Dired 169
Compile Changed Definitions of Tag Table 231
Compile Region (m-X) Zmacs command 109

Lisp Compiler Warnings 232
m-X Compile Spell Dictionary 190

Compiling a Region 109
Compiling Lisp Programs in Zmacs 230

Evaluating and Compiling Lisp Programs in Zmacs 229
Overview of Evaluating and Compiling Lisp Programs in Zmacs 229

Dired Complement No Reap Flag 171
COMPLETE completion command 15
Completion 15

Introduction to Completion 15
c-/ completion command 15
c-? completion command 15

COMPLETE completion command 15
END completion command 15

HELP completion command 15
RETURN completion command 15

354

Text Editing and Processing

SPACE
How Key Bindings Work: the

Standard

Font Basic
Font Editor Basic

Alternative
Wide
FED

Frame

Deleting the List
Creating Two Windows, Specifying Other

Viewing and Editing File
Displaying the

List
Retrieving the

m-X Show
Writing the Buffer
Saving the Buffer

Buffer
Exclamation point (I) line

Stretching and
Using the

Example 1 of Zmacs Notation
Example 2 of Zmacs Notation
Example 3 of Zmacs Notation

Zmacs Manual Notation
Zmacs Notation

Entering

Examples of

Spelling

Setting Generation Retention

Edit
Execute

m-X Edit
Executing

fonts:
How to

completion command 15
Comtab 267
comtab 267
Comtabs 7, 267
Concepts 285
Concepts 291
configuration 291
Configuration 291

July 1986

Configuration and Drawing Transformation 327
configurations 327
[Configure] Font Editor menu item 291, 324, 327
Containing the Current Lisp Expression 93
Contents 146
Contents in Dired 169
Contents of a Directory 149
contents of a directory 148
Contents of a FED Register 307
Contents of Spell Dictionary 193
Contents to a File 138
Contents to the File 138
Contents with c-X c-F 33
continuation indicator 25, 64
Contracting a character 327
Contracting a Drawing Horizontally in FED 316
Contracting a Drawing Vertically in FED 316
Contracting Drawings in FED 316
CONTROL key while drawing characters 299
Conventions 9
Conventions 9
Conventions 9
Conventions 9
Conventions and Examples 9
Converse 44
Copy File 152
Copy File (m-X) Zmacs command 152
Copying a File Into Another 151
Copying a File Into Another 152
Copying and Renaming Files in Dired 169
Copying files 169
Correcting Typos 24
correction 180
Count Characters 61
Count Chars 61
Count Lines 61
Count Lines Page 55
Count Lines Region 55
Count Occurrences 62
Count on Files in Dired 171
Count Pages 61
Count Paragraphs 61
Count Words 61
Cp Command 238
CP Command 43
CP Command 238
CP Commands From Zmacs 43
cptfont font 287
Create an Environment 35
Create Directory 148
Create Directory (m-X) Zmacs command 148
Create Link 152
Create Link (m-X) Zmacs command 152

Inlt File Form: Setting Find File Not to Create New Flies 273
Create Spell Dictionary From Namespace

Command 190
Creating a Buffer 32, 33
Creating a Directory 148

Example of Creating a Directory 148
Creating a File 34
Creating a Fundamental Mode Buffer 139
Creating and Saving Buffers and Files 32

Description of Creating and Saving Buffers and Files 32
Summary of Creating and Saving Buffers and Files 32

Selecting a FED Character by Creating a New Character 298
Creating a New Font in FED 297
Creating a New Indented Lisp Comment Line in

Zmacs 227
Creating an Init File 272
Creating a Region 101
Creating a Region with Keystrokes 101
Creating a Region with the Mouse 1 01
Creating Links to Files 152
Creating new characters 298
Creating new fonts 297
Creating New Zmacs Commands with Keyboard

Macros 257
Creating Two Windows, Specifying Other

Contents 146

355

Creating Two Windows with the Region in Top 146
Procedure for Creating Zmacs Commands with Keyboard

Macros 257
C-O c-sh-Y 85

@ c text environment 36
Draw a cubic spline 327

Comparing/Merging CurrenVlnstalled Versions 145
Comparing/Merging CurrenVNewest Versions 144
Comparing/Merging CurrenVSaved Versions 144

Current buffer 137
Deleting the Current Character 90
Deleting the Current Line 95

Centering the Current Line in Zmacs 219
Indenting Current Une in Zmacs 216

Deleting the Current Lisp Expression 93
Deleting the List Containing the Current Usp Expression 93

Current meaning of mouse clicks 67
Inlt File Form: Putting Buffers Into Current Package 272

Current patch 246
Deleting the Current Sentence 97
Deleting the Current Word 92

Current Zmacs Buffer 132
Description of Moving the Cursor 28
Introduction to Moving the Cursor 28

Moving the cursor 67
Nonmouse cursor 299, 300,330

Overview of Moving the Cursor 64
Relocate cursor 67

Summary of Moving the Cursor 28
The FED Nonmouse Cursor 300

Editor Window's Cursor and Point 18
Moving the Cursor In Zmacs 63

Summary of Cursor Movement 64
Cursor movement commands 28, 71

Move cursor to beginning of line 66

356

Text Editing and Processing July 1986

D

Moving the Cursor with the Mouse 67
Drawing Lines and Curves in FED 312

Built-in Customization Using Zmacs Minor Modes 253
Customizing the Zmacs Environment 251

Overview of Customizing the Zmacs Environment 252
Introduction to Customizing Zmacs 252

Customizing Zmacs in Init Files 272
Introduction to Customizing Zmacs in Init Files 272

D
HELP

SELECT

c-X
HELP

Encrypting and
Set

Init File Form: Setting

Select
Move to

Base and Syntax
Base and Syntax

One Window
zwel:

Beginning of
End of

Mark
Positioning the Window Around a

Source Compare Installed
Source Compare Merge Installed
Source Compare Merge Newest
Source Compare Merge Saved

Source Compare Newest
Source Compare Saved

The Zmacs Edit
The Zmacs List

Edit
Editing the

Compare/Merge Commands for
Add Patch Changed

Evaluate Changed
List

Add Patch Changed
Evaluate Changed

List Changed
Compile Changed

zwel:

D 52
o 44
o Dired command 170
o Font Editor command 323,329
o Zmacs command 163
o Zmacs command 14, 52
Decrypting the Buffer 137
Default Character Style 212
Default column position 75
Default font 287
Default major mode 256
Default Major Mode 273
Default Pathnames in Dired 166
Default Previous Buffer 133
Default Previous Point 102
Defaults 157
Default Settings for Lisp 33, 137, 176, 224
Defaults to Numeric Arguments 26
Default syntax 158
Default Variable 270
deflne-keyboard-macro 259
Defining an Interactive Keyboard Macro 260
Definition 78
Definition 78
Definition 106
Definition 66
Definition 145
Definition 145
Definition 144
Definition 144
Definition 144
Definition 144
Definition Commands 235
Definition Commands 238
Definition m-. Zmacs Command 235
definition of a function 12
Definition of a Zmacs Keyboard Macro 257
Definition of a Zmacs Variable 269
Definition of Key Bindings 267
Definition of Zmacs Minor Modes 253
Definitions 144
Definitions (m-X) 245
Definitions (m-X) Zmacs command 230
Definitions (m-X) Zmacs command 239
Definitions of Buffer (m-X) 245
Definitions of Buffer (m-X) Zmacs command 230
Definitions of Buffer (m-X) Zmacs command 239
Definitions of Tag Table 231
defmajor 256
Deinstalling a Macro 262

D

Example of Installing and Deinstalling a Macro 262
Deinstall Macro (m-X) Zmacs command 262

Dired Delete 170
Delete Blank Lines 30
Delete commands 30

Protecting Files From Being Deleted in Dired 171
Delete File 153
Delete File (m-X) Zmacs command 153
Delete Forward 30, 90
Delete Horizontal Space 30
Delete Indentation 30

m-X Delete Word From Spell Dictionary 193

357

zwel: delete-words-from-spell-dlctionary function 195
Deleting and Transposing Characters 90
Deleting and Transposing Lines 95

Introduction to Deleting and Transposing Lines 95
Deleting and Transposing Lisp Expressions 93

Introduction to Deleting and Transposing Lisp Expressions 93
Deleting and Transposing Text in Zmacs 83
Deleting and Transposing Words 92

Introduction to Deleting and Transposing Words 92
Deleting a Region 109
Deleting Backward on the Line 96
Deleting Blank Line in Zmacs 221
Deleting Files 153
Deleting Indentation in Zmacs 220
Deleting Multiple File Versions in Dired 170
Deleting Multiple Versions 153
Deleting Sentences 97

Introduction to Deleting Sentences 97
Deleting the Current Character 90
Deleting the Current Line 95
Deleting the Current Lisp Expression 93
Deleting the Current Sentence 97
Deleting the Current Word 92
Deleting the Last Character 90
Deleting the List Containing the Current Lisp

Expression 93
Deleting the Previous Lisp Expression 93
Deleting the Previous Sentence 97
Deleting the Previous Word 92
Deleting Vs. Killing Text 84

Overview of Deleting Vs. Killing Text 84
Accidental deletion 49

Marking Files for Deletion in Dired 170
Large Deletions 49

Description of Zmacs Sentence Delimiters 73, 97
Descenders 302
Describe Attribute List 168
Describe Variable 269
Describe Variable At Point 55
Describe Variable (m-X) Zmacs command 269
Describing Zmacs Variables 269
Description of Creating and Saving Buffers and

Files 32
Description of Erasing Text 30
Description of Motion by Lisp Expression 76, 93
Description of Moving the Cursor 28
Description of Zmacs Sentence Delimiters 73, 97

Buffer and File Attribute Descriptions 159
Description text environment 36

358

Text Editing and Processing July 1986

Destroying Buffers 139
Mouse as a graphic input device 291

Adding Site-specific Speller Dictionaries 189
Adding User-specific Speller Dictionaries 188

Introduction to Speller Dictionaries 187
List of dictionaries 193

m-X Save All Spell Dictionaries 192
m-X Show Spell Dictionaries 191

Speller Dictionaries 187
Speller list of dictionaries 187

Dictionary 193
m-X Add Word to Spell Dictionary 192

m-X Compile Spell Dictionary 190
m-X Delete Word From Spell Dictionary 193

m-X Kill Spell Dictionary 192
m-X Read Spell Dictionary 190
m-X Save Spell Dictionary 191

m-X Show Contents of Spell Dictionary 193
Speller dictionary 187
Speller Dictionary Commands 190
Speller dictionary file 187

Create Spell Dictionary From Namespace Command 190
Speller Dictionary Functions 193
Speller dictionary list 187
Speller Dictionary Management 187
Editing directories 163
Create Directory 148

Creating a Directory 148
Display Directory 149

Displaying the Contents of a Directory 149
Example of Creating a Directory 148

List contents of a directory 148
Listing Files in a Directory 148

Show Directory 149
Show Login Directory 149

Clean Directory (m-X) Zmacs command 153
Create Directory (m-X) Zmacs command 148

Edit Directory (m-X) Zmacs command 163
Show Directory (m-X) Zmacs command 149

Show Login Directory (m-X) Zmacs command 149
Applying Arbitrary Functions to Files in Dired 172

Changing File Properties In Dired 168
Comparing Recent Versions of Files In Dired 169

Copying and Renaming Files In Dired 169
Default Pathnames In Dired 166

Deleting Multiple File Versions in Dired 170
Entering Dired 163

Finding Files That Have Not Been Backed up in Dired 172
Getting Out of Dired 166

Loading a File in Dlred 168
Marking Files for Deletion in Dlred 170

Marking Files to Be Hardcopied in Dired 172
Moving Around In Dired 168

Online Documentation for Dired 167
Overview of Dired 163

Protecting Files From Being Deleted in Dired 171
Protecting Files From Being Reaped in Dired 171

Setting Generation Retention Count on Files in Dired 171
Viewing and Editing File Contents in Dired 169

Viewing File Attributes in Dired 168
Dired Abort 167

July 1986

Dlred Apply Function 172
! Dired command 172
$ Dired command 171

Dired command 168
= Dired command 169
? Dired command 167
A Dired command 172

ABORT Dired command 167
C Dired command 169

c-D Dired command 170
c-K Dired command 170
c-N Dired command 168
c-P Dired command 168

D Dired command 170
E Dired command 169

END Dired command 167
HELP Dired command 167

K Dired command 170
L Dired command 168
P Dired command 172
Q Dired command 167
R Dired command 169

RUBOUT Dired command 170
SPACE Dired command 168

U Dired command 170
V Dired command 169

Dired Commands 164, 165
Dired Command Summary 165
Dired Complement No Reap Flag 171
Dired Delete 170

The Dired Display 163
Updating the Dired Display 164

Dired Edit File 169
Dired Exit 167
Dired Hardcopy File 172
Dired Help 167
Dired (m-X) Zmacs command 163
Dired Menu 167,168
Dired Mode in Zmacs 1 63
Dired move point 168
Dired Next Undumped 172
Dired Reverse Undelete 170
Dired Srccom 169
Dired Undelete 170
Dired View File 169

Adjusting the FED Display 323
FED display 289

Selecting a FED Character From the [Show Font] Display 298
The Dired Display 163

Updating the Dired Display 164
Display argument list 55
Display Directory 149
Displaying Characters in the Font in FED 297
Displaying previous keystrokes 53
Displaying the Contents of a Directory 149
Displaying the Next Possibility 126

Example of Displaying the Next Possibility 127
Displaying the Next Screen 65
Displaying the Previous Screen 66

Mousing on the FED List Fonts and Show Font Displays 332
Display text environment 36

359

Index

360

Text Editing and Processing July 1986

Function Documentation 54
Long Documentation 55

Show Documentation 54
Status line documentation 323

Online documentation for commands 52
Online Documentation for Dired 167
Online documentation for prefixes 52
Mouse Documentation Line 67
Mouse Documentation Line in Zmacs 67

Entering Document Examiner 44
Example of Finding Out What a Zmacs Command Does 51

Finding Out What an Extended Command Does 52
Finding Out What a Prefix Command Does 52

Finding Out What a Zmacs Command Does 51
Introduction to Tag Tables and Search Domains 122

Tag Tables and Search Domains in Zmacs 122
Moving Rest of Une Down in Zmacs 221

Down Line 74,95
Down List 77

Motion up and Down Nesting Levels 77
Down Real Line 28, 74, 95

Moving Down to Lisp Comment on Next Line in Zmacs 227
Draw a cubic spline 327
Draw a line 327

Moving the drawing 312, 327
Reflecting the drawing 309, 327

Rotating the drawing 309, 327
Scrolling the drawing 323

Drawing a character 291
Using the CONTROL key while drawing characters 299

Using the MET A key while drawing characters 299
Drawing Characters in FED with the Mouse 299
Drawing characters with the mouse 299

Font Editor drawing command 300
Automatic drawing help 309

Moving the Drawing Horizontally and/or Vertically in FED 323
Scrolling the Drawing Horizontally and/or Vertically in FED 323

Contracting a Drawing Horizontally in FED 316
Stretching a Drawing Horizontally in FED 316

Drawing in FED 299
Centering the Drawing in FED 323

Clearing the Drawing in FED 309
Moving the Drawing in FED 312

Positioning the Drawing in FED 323
Move drawing in the gray plane 303, 328

Saving a Drawing Into a FED Register 307
Drawing Lines and Curves in FED 312
Drawing pane 291, 330

FED Drawing Pane 291
Height and width of the drawing pane 324

Mousing on the FED Drawing Pane 330
Setting the Box Size in the FED Drawing Pane 324

Setting the Height and Width of the FED Drawing Pane 324
Size of boxes in the drawing pane 324, 327

Using the mouse in the drawing pane 330
Drawing Pane Menu 292

Reflecting Drawings in FED 309
Rotating Drawings in FED 309

Stretching and Contracting Drawings in FED 316
FED Configuration and Drawing Transformation 327

Contracting a Drawing Vertically in FED 316

361

July 1986 Index

E

Stretching a Drawing Vertically in FED 316
[Draw Line] Font Editor menu item 312, 327
Draw Mode Menu 292, 299, 331

Mousing on the FED Draw Mode Menu 331
Using the mouse in the draw mode menu 331

[Clear Points] Font Editor draw mode menu item 299
[Flip Points] Font Editor draw mode menu item 299
[Set Points] Font Editor draw mode menu item 299

[Draw Spline] Font Editor menu item 312,327

E
Entering Zmacs with SELECT E 12

SELECT E 12,44
E Dired command 169
E Font Editor command 309, 327

c-X E Zmacs command 258
Echo Area 20

Zmacs Echo Area 20
Echo Area's Minibuffer 20
Echoing 20
Echoing arguments 26

Entering Zmacs with ed 12
ed function 12

Bottom Edge of the FED Character Box 301
Top Edge of the FED Character Box 301

Left and Right Edges of the FED Character Box 301
Edit Buffers (m-X) Zmacs command 134

Init File Form: Edit Buffers on c-X c-B 274
Init File Form: Edit Buffers on m-X 275

The Zmacs Edit Callers Commands 239
Multiple Edit Callers Intersection 240

Edit Cp Command 238
m-X Edit CP Command 238

The Zmacs Edit Definition Commands 235
Edit Definition m-. Zmacs Command 235
Edit Directory (m-X) Zmacs command 163

Dired Edit File 169
[Edit Font] Font Editor menu item 297,329

Entering Zmacs with zwel: edit-functions 13
zwel: edit-functions function 13

Editing a character 291
Editing a File 34
Editing Buffers 134
Editing directories 163
Editing Existing Files 34

Viewing and Editing File Contents in Dired 169
Editing Lisp Programs in Zmacs 223

Introduction to Editing Lisp Programs in Zmacs 224
Zmacs Major Editing Modes 176

Editing the definition of a function 12
Editing the source code of a function 12

Locating Source Code to Edit in Zmacs 235
Entering File System Editor 44

Font Editor 283
Font Editor Basic Concepts 291

/ Font Editor command 330
? Font Editor command 329

@ Font Editor command 327
ABORT Font Editor command 330

B Font Editor command 323

E

362

Text Editing and Processing July 1986

C Font Editor command 298, 330
c-C Font Editor command 329
c-R Font Editor command 329

c-REFRESH Font Editor command 330
c-W Font Editor command 329

o Font Editor command 323, 329
E Font Editor command 309, 327
F Font Editor command 329
G Font Editor command 328
H Font Editor command 323, 327

HELP Font Editor command 329
H Font Editor command 328
Q Font Editor command 329

REFRESH Font Editor command 330
S Font Editor command 329
V Font Editor command 321, 329
[Font Editor command 330
\ Font Editor command 330
] Font Editor command 330

Viewing the Editor Command History 86
. Font Editor drawing command 300

[Clear Points] Font Editor draw mode menu item 299
[Flip Points] Font Editor draw mode menu item 299
[Set Points] Font Editor draw mode menu item 299
Overview of the Editor Menu 57

The Editor Menu 57
Editor Menu Commands 57

[Add in Gray] Font Editor menu item 304, 328
[Center View] Font Editor menu item 323, 327

[Clear Gray] Font Editor menu item 303, 328
[Configure] Font Editor menu item 291,324,327
[Draw Line] Font Editor menu item 312, 327

[Draw Spline] Font Editor menu item 312,327
[Edit Font] Font Editor menu item 297, 329
[Erase All] Font Editor menu item 303, 309, 327

[EXIT] Font Editor menu item 329
[Gray Char] Font Editor menu item 303, 328
[Grid Size] Font Editor menu item 324,327

[HELP] Font Editor menu item 329
[List Fonts] Font Editor menu item 297,329

[Move Black] Font Editor menu item 302, 327
[Move Gray] Font Editor menu item 303, 328
[Move View] Font Editor menu item 323, 327

[Read File] Font Editor menu item 326,329
[Reflect] Font Editor menu item 309, 327

[Rename Char] Font Editor menu item 298, 329
[Rotate] Font Editor menu item 309, 327

[Save Char] Font Editor menu item 298, 329
[Set Sample] Font Editor menu item 321, 329
[Show Font] Font Editor menu item 291,297, 298,329

[Stretch] Font Editor menu item 327
[Swap Gray] Font Editor menu item 303, 328

Using the mouse with [List Fonts] Font Editor menu item 332
Using the mouse with [Show Font] Font Editor menu item 298, 332

[Write File] Font Editor menu item 326, 329
Using the mouse with Font Editor menus 292

Setting Editor Variables in Init Files 272
Wraparound Lines in the Editor Window 64

Zmacs Editor Window 18
The Editor Window and the Buffer 64

Editor Window's Buffer 18

363

July 1986 Index

Editor Window's Cursor and Point 18
Editor Window's Typeout 18
Edit System Files 238
Edit Word Abbrevs 201

Zmacs Electric PI1 Mode 177
Init File Form: Electric Shift Lock in Lisp Mode 273

Retrieving History Elements 87
Using the Mouse on History Elements 87

Encrypting and Decrypting the Buffer 137
Goto End 28, 81
Mark End 107

END completion command 15
END Dired command 167
Ending a Keyboard Macro 258
End Kbd Macro Zmacs command 257

Marking a Region From Here to End of Buffer 107
Moving to end of buffer 81

End of Definition 78
End of Line 28, 74, 95
Entering and Leaving FED 289
Entering Converse 44
Entering Dired 163
Entering Document Examiner 44
Entering File System Editor 44
Entering Flavor Examiner 44
Entering Inspector 44
Entering Usp 44
Entering Notifications 44
Entering Peek 44
Entering Terminal 44
Entering Zmacs 12, 44

Introduction to Entering Zmacs 12
Entering Zmacs with ad 12
Entering Zmacs with SELECT E 12
Entering Zmacs with the Mouse 12
Entering Zmacs with zwel :edlt-functlons 13
Entering Zmail 44

More Ways to Enter Minibuffer Responses 59
Using the mouse to enter Zmacs 12

Enumerate text environment 36
@b text environment 36
@c text environment 36
@g text environment 36
@i text environment 36

@p text environment 36
@r text environment 36
@t text environment 36

Boldface text environment 36
Center text environment 36

Customizing the Zmacs Environment 251
Description text environment 36

Display text environment 36
Enumerate text environment 36

Equation text environment 36
Example text environment 36

Figure text environment 36
Flushleft text environment 36

Flushright text environment 36
Format text environment 36

Fullpagefigure text environment 36
Fullpagetable text environment 36

364

Text Editing and Processing July 1986

Heading text environment 36
How to Create an Environment 35

Italics text environment 36
Itemize text environment 36

Majorheading text environment 36
Multiple text environment 36

Outputexample text environment 36
Overview of Customizing the Zmacs Environment 252

Quotation text environment 36
Subheading text environment 36

Table text environment 36
Verbatim text environment 36

Basic Text Formatting Environments 36
Equation text environment 36
[Erase All] Font Editor menu item 303, 309, 327
Erase backward to start of line 96
Erasing text 90

Description of Erasing Text 30
Introduction to Erasing Text 30

Summary of Erasing Text 30
Error recovery 48
Escaping from prompts 48
Evaluate And Exit 230
Evaluate and Replace Into Buffer 120
Evaluate and Replace Into Buffer (m-X) Zmacs

command 230
Evaluate Buffer (m-X) Zmacs command 230
Evaluate Changed Definitions (m-X) Zmacs

command 230
Evaluate Changed Definitions of Buffer (m-X) Zmacs

command 230
Evaluate Into Buffer (m-X) Zmacs command 230
Evaluate Minibuffer 230
Evaluate Region 230
Evaluate Region (m-X) Zmacs command 230
Evaluate Region Verbose 230
Evaluating and Compiling Lisp Programs in

Zmacs 229
Overview of Evaluating and Compiling Lisp Programs in

Zmacs 229
Evaluating Forms From FED 330
Evaluating Lisp Programs in Zmacs 229
Evaluation commands 230

Entering Document Examiner 44
Entering Flavor Examiner 44

Selecting, Listing, and Examining Zmacs Buffers 132
Mode Line Example 22

Text example 39
Loop Indentor Example 1 217

Example 1 of Making Tables Using Keyboard
Macros 264

Example 1 of Writing and Saving Keyboard
Macros 260

Example 1 of Zmacs Notation Conventions 9
Loop Indentor Example 2 218

Example 2 of Making Tables Using Keyboard
Macros 265

Example 2 of Writing and Saving Keyboard
Macros 260

Example 2 of Zmacs Notation Conventions 9
Example 3 of Zmacs Notation Conventions 9

July 1986

Zmacs Notation Conventions and

Reading a File Into an
Buffer Flags for

Editing
Dired

Evaluate And

Deleting the Current Lisp
Deleting the List Containing the Current Lisp

Deleting the Previous Lisp
Description of Motion by Lisp

Motion by Lisp
Reindenting

Commands to Mark Regions by Lisp
Deleting and Transposing Usp

Introduction to Deleting and Transposing Usp
Motion Among Top-Level

Transposing Lisp
Expanding Lisp

Parenthesizing Usp

Any
Finding Out What an

Example of a Search String for HELP A 53
Example of a Source Compare 142
Example of a Tag Tables Replacement

Operation 122

365

Index

Example of Attribute-Manipulating Commands 156
Example of Calling the Last Keyboard Macro 258
Example of Commands to Mark Regions by

Paragraphs 107
Example of Creating a Directory 148
Example of Displaying the Next Possibility 127
Example of Filling Text with Auto Fill Minor Mode 253
Example of Finding Out What a Zmacs Command

Does 51
Example of Installing and Deinstalling a Macro 262
Example of Usting Buffers 134
Example of Usting Variables by Matching a

String 270
Example of Negative Numeric Arguments with Motion

Commands 71
Example of Numeric Arguments 26
Example of Numeric Arguments with Motion

Commands 71
Example of the m-. Command 236
Example of Using Tabs to Format Text 41
Examples 9
Examples of Copying a File Into Another 152
Example text environment 36
Exchange Lines 96
Exchange Regions 109
Exchange Sexps 93
Exchange Words 92
Exclamation point (I) line continuation indicator 25,

64
Execute Command Into Buffer 136
Execute Command Into Buffer (m-X) Zmacs

command 136
Execute CP Command 43
Executing CP Commands From Zmacs 43
Existing Buffer 137
Existing Files 130
Existing Files 34
Exit 167
Exit 230
[EXIT] Font Editor menu item 329
Expanding Lisp Expressions in Zmacs 234
Expression 93
Expression 93
Expression 93
Expression 76, 93
Expression 76
Expression in Zmacs 219
Expressions 106
Expressions 93
Expressions 93
Expressions 77
Expressions 93
Expressions in Zmacs 234
Expressions in Zmacs 233
Extended Command 7
Extended Command 7
Extended Command Does 52

366

Text Editing and Processing July 1986

Extended command key bindings 54
Extended commands 6, 52

Introduction to Zmacs Extended Commands 7

F F F
SELECT F 44

F Font Editor command 329
c-X F Zmacs command 32, 254

Fast Where Am I 54
Centering the Drawing in FED 323

Clearing the Drawing in FED 309
Contracting a Drawing Horizontally in FED 316

Contracting a Drawing Vertically in FED 316
Creating a New Font in FED 297

Displaying Characters in the Font in FED 297
Drawing in FED 299

Drawing Lines and Curves in FED 312
Entering and Leaving FED 289

Evaluating Forms From FED 330
Mouse Sensitivities in FED 330

Moving the Drawing Horizontally and/or Vertically in FED 323
Moving the Drawing in FED 312

Positioning the Drawing in FED 323
Reflecting Drawings in FED 309

Rotating Drawings in FED 309
Scrolling the Drawing Horizontally and/or Vertically in FED 323

Selecting a Character in FED 297
Selecting a Font in FED 294

Stretching a Drawing Horizontally in FED 316
Stretching a Drawing Vertically in FED 316

Stretching and Contracting Drawings in FED 316
Transformations on Characters in FED 309

FED Character Box 291
Altering the FED Character Box 302

Bottom Edge of the FED Character Box 301
Character Height of the FED Character Box 302

Left and Right Edges of the FED Character Box 301
Top Edge of the FED Character Box 301

Viewing and Altering a Character In the FED Character Box 301
What the Lines Mean in the FED Character Box 301

Selecting a FED Character by Creating a New Character 298
Selecting a FED Character by Renaming Characters 298
Selecting a FED Character From the Character Select Menu 298
Selecting a FED Character From the [Show Font] Display 298

FED Character Select Menu 293
Mousing on the FED Character Select Pane 331

Selecting a FED Character with the C Command 298
FED Command List 327

Outside FED Command Menu 293
FED Configuration and Drawing Transformation 327
FED display 289

Adjusting the FED Display 323
FED Drawing Pane 291

Mousing on the FED Drawing Pane 330
Setting the Box Size in the FED Drawing Pane 324

Setting the Height and Width of the FED Drawing Pane 324
Mousing on the FED Draw Mode Menu 331

Reading FED Flies 325
Reading and Writing FED Files 325

Writing FED Files 326

367

July 1986 Index

FED Font Parameters Menu 293
Mousing on the FED Font Parameters Menu 331

Getting Things Into the FED Gray Plane 303
Merging Characters with the FED Gray Plane 304

The FED Gray Plane 303
FED Gray Plane Menu Items 328
FED Keyboard-only Commands 330
(fed) Lisp Listener command 289

Mousing on the FED List Fonts and Show Font Displays 332
FED Menu and Keyboard Commands 327
FED Menus 292

The FED Nonmouse Cursor 300
FED Outside World Interface Menu Items 329
FED Prompt Pane 292

Retrieving the Contents of a FED Register 307
Saving a Drawing Into a FED Register 307

FED Register Pane 294
Mousing on the FED Register Pane 331

Retrieving the Black Plane While Manipulating FED Registers 307
Saving Characters and Pieces of Characters in FED Registers 307

FED Sample Pane 291
Mousing on the FED Sample Pane 331

The FED Sample String 321
FED Status Pane 293
FED, the Subsystem 291

Drawing Characters in FED with the Mouse 299
Figure text environment 36

Add region to patch file 242
Appending a Region to a File 141

Changing the Properties of a File 150
Copy File 152

Creating a File 34
Creating an Init File 272

Delete File 153
Dired Edit File 169

Dired Hardcopy File 172
Dired View File 169

Editing a File 34
Find File 32

Format File 42
Hardcopying a File 151

Install patch file 247
m-X Spell File 185
Naming a File 138

Prepending a Region to a File 141
Read Word Abbrev File 202

Rename File 151
Renaming a File 151

Save File 32, 138
Saving a File 34

Saving the Buffer Contents to the File 138
Showing a File 150

Showing the Properties of a File 150
Speller dictionary file 187

View File 150
Visit File 137

Write File 32, 138
Write Word Abbrev File 203

Writing the Buffer Contents to a File 138
Other Set Commands for File and Buffer Attributes 159

Set commands for file and buffer attributes 159

368

Text Editing and Processing

Backspace file attribute 159
Base file attribute 160

Lowercase file attribute 160
Nofill file attribute 160

Patch-File file attribute 161
Tab-Width file attribute 161

Vsp file attribute 161
File Attribute Checking 156

Buffer and File Attribute Descriptions 159
Warnings about file attribute lists 156

File attributes 155
Viewing File Attributes in Dired 168

Buffer and File Attributes in Zmacs 155
File backup flag 172
File buffers 139

Viewing and Editing File Contents in Dired 169
File flags 130

[Read File] Font Editor menu item 326, 329
[Write File] Font Editor menu item 326, 329

Supported file formats 326
Init File Form: Auto Fill in Text Mode 274
Init File Form: c-m-L on the SQUARE Key 274
Init File Form: Edit Buffers on c-X c-8 274
Init File Form: Edit Buffers on m-X 275

July 1986

Init File Form: Electric Shift Lock in Lisp Mode 273
Init File Form: Fixing White Space for KiIIlY ank

Commands 273
Init File Form: m-. on m-(L) 275
Init File Form: Ordering Buffer Lists 272
Init File Form: Putting Buffers Into Current Package 272
Init File Form: Setting Default Major Mode 273
Init File Form: Setting Find File Not to Create New

Files 273
Init File Form: Setting Goal Column for Real Line

Commands 273
Init File Form: White Space in Lisp Code 274

Loading a File in Dired 168
Find File In Fundamental Mode (m-X) Zmacs

command 139
Inserting a File Into a Buffer 141
Reading a File Into a New Buffer 137
Reading a File Into an Existing Buffer 137
Copying a File Into Another 151

Examples of Copying a File Into Another 152
Re-reading a File Into the Buffer 138

Append To File (m-X) Zmacs command 141
Copy File (m-X) Zmacs command 152

Delete File (m-X) Zmacs command 153
Format File (m-X) Zmacs command 35, 42

Hardcopy File (m-X) Zmacs command 151
Insert File (m-X) Zmacs command 141

Prepend To File (m-X) Zmacs command 141
Reap File (m-X) Zmacs command 153

Rename File (m-X) Zmacs command 151
Set Patch File (m-X) Zmacs command 161

Show File (m-X) Zmacs command 150
Overview of Zmacs File Manipulation Commands 148

Zmacs File Manipulation Commands 148
Set Visited File Name (m-X) Zmacs command 139

Zmacs Buffer and File Names 130
Init File Form: Setting Find File Not to Create New Files 273

July 1986

File Properties 150
Show File Properties 150
View File Properties 150

Changing File Properties In Dired 168
Change File Properties (m-X) Zmacs command 150

Show File Properties (m-X) Zmacs command 150
Files 32

Association of buffers with files 32
Buffer Flags for Existing Files 130

Buffer Flags for New Files 131
Commands for manipulating files 148

Copying files 169
Creating and Saving Buffers and Files 32

Creating Links to Files 152
Customizing Zmacs in Init Files 272

Deleting Files 153
Description of Creating and Saving Buffers and Files 32

Editing Existing Files 34
Edit System Files 238

Init Files 272
Init File Form: Setting Find File Not to Create New Files 273

Introduction to Customizing Zmacs in Init Files 272
Reading and Writing FED Files 325

Reading FED Files 325
Reading font files 326

Renaming Files 169
Setting Editor Variables in Init Files 272

Setting Key Bindings in Init Files 274
Setting Mode Hooks in Init Files 273

Summary of Creating and Saving Buffers and Files 32
Using the mouse with List Files 148

Writing FED Files 326
Writing font files 326
Comparing Flies and Buffers In Zmacs 142

Marking Files for Deletion In Dired 170
Protecting Files From Being Deleted In Dlred 171
Protecting Files From Being Reaped In Dired 171

Listing Files in a Directory 148
Applying Arbitrary Functions to Files in Dired 172
Comparing Recent Versions of Files In Dired 169

Copying and Renaming Files in Dired 169
Setting Generation Retention Count on Files In Dlred 171

Manipulating Buffers and Files in Zmacs 129
Overview of Working with Buffers and Files in Zmacs 130

Working with Buffers and Files In Zmacs 130
Save All Files (m-X) 136

List Files (m-X) Zmacs command 148

369

Index

Finding Files That Have Not Been Backed up in Dired 172
Marking Files to Be Hardcopied in Dired 172

Association of files with buffers 32
Entering File System Editor 44

fs: *flle-type-mode-allst* variable 256
File Types and Zmacs Major Modes 256
File versions 130

Comparing file versions 169
Deleting Multiple File Versions in Dired 170

zwel: *flle-verslons-kept* variable 153
Associating a File with a Buffer 139

Find File Zmacs command 33, 34
Save File Zmacs command 34
Write File Zmacs command 34

370

Text Editing and Processing July 1986

Set Fill Column 254
Filling a Region 109

Example of Filling Text with Auto Fill Minor Mode 253
Init File Form: Auto Fill in Text Mode 274

Example of Filling Text with Auto Fill Minor Mode 253
Auto Fill Mode 160, 254

Fill Paragraph 110
Set Fill Prefix 110

Fill Region 110
Find Character in Style 212
Find File 32
Find File In Fundamental Mode (m-X) Zmacs

command 139
Init File Form: Setting Find File Not to Create New Files 273

Find File Zmacs command 33, 34
Finding Files That Have Not Been Backed up in

Dired 172
Zmacs Commands for Finding Out About Flavors 281
Zmacs Commands for Finding Out About Lisp 280
Zmacs Commands for Finding Out About the State of Buffers 278
Zmacs Commands for Finding Out About the State of Zmacs 279

Finding Out About Zmacs Commands 51
More HELP Commands for Finding Out About Zmacs Commands 53

Overview of Finding Out About Zmacs Commands 51
Finding Out About Zmacs Commands with HELP 51
Finding Out About Zmacs Variables 269
Finding Out What an Extended Command Does 52
Finding Out What a Prefix Command Does 52
Finding Out What a Zmacs Command Does 51

Example of Finding Out What a Zmacs Command Does 51
Finding Out What You Have Typed 53
Finding source code 224
Finding the right command 53
Find Unbalanced Parentheses 56
Find Unbalanced Parentheses (m-X) Zmacs

command 56
Finish Patch (m-X) 247

Going Back to First Indented Character in Zmacs 219
Fixed-width Font Attribute 287
Fixed-width fonts 287

Init File Form: Fixing White Space for KiIINank Commands 273
Dired Complement No Reap Flag 171

File backup flag 172
Modification flag 130

+ flag in Zmacs 131
File flags 130

Buffer Flags for Existing Files 130
Buffer Flags for New Files 131

Entering Flavor Examiner 44
Zmacs Commands for Finding Out About Flavors 281

[Flip Points] Font Editor draw mode menu item 299
Flushleft text environment 36
Flushright text environment 36

Default font 287
fonts:cptfont font 287

Selecting a font 329
Baseline Font Attribute 286

Character Height Font Attribute 285
Character Width Font Attribute 286

Chars-exist-table Font Attribute 287
Fixed-width Font Attribute 287

July 1986

Left Kern

Blinker Width and Blinker Height

Selecting a FED Character From the [Show
Mousing on the FED Ust Fonts and Show

I
?

@
ABORT

B
C

c-c
c-R

c-REFRESH
c-W

D
E
F
G
H

HELP
M
Q

REFRESH
S
V
[
\
]

[Clear Points]
[Flip Points]
[Set Points]

[Add in Gray]
[Center View]

[Clear Gray]
[Configure]
[Draw Line]

[Draw Spline]
[Edit Font]
[Erase All]

[EXIT]
[Gray Char]
[Grid Size]

[HELP]
[List Fonts]

[Move Black]
[Move Gray]
[Move View]

[Read File]
[Reflect]

[Rename Char]
[Rotate]

[Save Char]
[Set Sample]
[Show Font]

[Stretch]
[Swap Gray]

Font Attribute 286
Font attributes 285
Font Attributes 287
Font Basic Concepts 285
Font] Display 298
Font Displays 332
Font Editor 283
Font Editor Basic Concepts 291
Font Editor command 330
Font Editor command 329
Font Editor command 327
Font Editor command 330
Font Editor command 323
Font Editor command 298, 330
Font Editor command 329
Font Editor command 329
Font Editor command 330
Font Editor command 329
Font Editor command 323, 329
Font Editor command 309, 327
Font Editor command 329
Font Editor command 328
Font Editor command 323, 327
Font Editor command 329
Font Editor command 328
Font Editor command 329
Font Editor command 330
Font Editor command 329
Font Editor command 321, 329
Font Editor command 330
Font Editor command 330
Font Editor command 330
Font Editor drawing command 300
Font Editor draw mode menu item 299
Font Editor draw mode menu item 299
Font Editor draw mode menu item 299
Font Editor menu item 304, 328
Font Editor menu item 323, 327
Font Editor menu item 303, 328
Font Editor menu item 291, 324, 327
Font Editor menu item 312,327
Font Editor menu item 312,327
Font Editor menu item 297,329
Font Editor menu item 303, 309, 327
Font Editor menu item 329
Font Editor menu item 303, 328
Font Editor menu item 324, 327
Font Editor menu item 329
Font Editor menu item 297, 329
Font Editor menu item 302, 327
Font Editor menu item 303, 328
Font Editor menu item 323, 327
Font Editor menu item 326, 329
Font Editor menu item 309,327
Font Editor menu item 298, 329
Font Editor menu item 309, 327
Font Editor menu item 298, 329
Font Editor menu item 321, 329
Font Editor menu item 291,297,298,329
Font Editor menu item 327
Font Editor menu item 303, 328

371

Index

372

Text Editing and Processing July 1986

Using the mouse with [List Fonts] Font Editor menu item 332
Using the mouse with [Show Font] Font Editor menu item 298, 332

[Write File] Font Editor menu item 326,329
Using the mouse with Font Editor menus 292

Reading font files 326
Writing font files 326

[Edit Font] Font Editor menu item 297,329
[Show Font] Font Editor menu item 291, 297, 298, 329

Using the mouse with [Show Font] Font Editor menu item 298, 332
Creating a New Font in FED 297

Displaying Characters in the Font in FED 297
Selecting a Font in FED 294

Font Parameters menu 293
FED Font Parameters Menu 293

Mousing on the FED Font Parameters Menu 331
Using the mouse in the Font Parameters menu 331

Attributes of TV Fonts 285
Creating new fonts 297

Fixed-width fonts 287
Introduction to Fonts 285

Standard TV Fonts 287
Variable-width fonts 286

fonts:cptfont font 287
Mousing on the FED List Fonts and Show Font Displays 332

Fonts Attribute 160
[List Fonts] Font Editor menu item 297, 329

Using the mouse with [List Fonts] Font Editor menu item 332
List Fonts (m-X) Zmacs command 287
Set Fonts (m-X) Zmacs command 160
@ foot text formatting command 39

Minibuffer Response Format 59
Format Buffer 42
Format Buffer (m-X) Zmacs command 35,42

Zmacs Format Commands 41
Format File 42
Format File (m-X) Zmacs command 35,42
Format Region 42
Format Region (m-X) Zmacs command 35,42

Supported file formats 326
Producing Formatted Text 35

Example of Using Tabs to Format Text 41
Format text environment 36

Inserting Formatting Characters 25
@ text formatting command 39

@# text formatting command 39
@* text formatting command 39
@' text formatting command 39
@= text formatting command 39
@> text formatting command 39

@blankspace text formatting command 39
@caption text formatting command 39

@foot text formatting command 39
@note text formatting command 39

@tabclear text formatting command 39
@tabdivide text formatting command 39

@tabset text formatting command 39
@\ text formatting command 39
@" text formatting command 39

Basic Text Formatting Commands 39
How to Use Formatting Commands 38
Basic Text Formatting Environments 36

Introduction to Text Formatting in Zmacs 35
Zmacs Commands for Formatting Text 35

Init File Form: Auto Fill in Text Mode 274
Init File Form: c-m-L on the SQUARE Key 274
Init File Form: Edit Buffers on c-X c-B 274
In it File Form: Edit Buffers on m-X 275
Init File Form: Electric Shift Lock in Lisp Mode 273
Init File Form: Fixing White Space for KilVYank

Commands 273
Init File Form: m-. on m-(L) 275
Init File Form: Ordering Buffer Lists 272
Init File Form: Putting Buffers Into Current Package 272
Init FiI,e Form: Setting Default Major Mode 273

373

Inlt File Form: Setting Find File Not to Create New Files 273
Init File Form: Setting Goal Column for Real Line

Commands 273
Evaluating Forms From FED 330

Init File Form: White Space in Lisp Code 274
Zmacs Fortran Mode 177

Forward 28
Delete Forward 30, 90

Forward Character 72
Forward List 76
Forward Page 80
Forward Paragraph 28, 79
Forward Sentence 73
Forward Sexp 76
Forward up List 77
Forward Word 28, 72

Scale fraction 303
Frame configurations 327

Protecting Files From Being Deleted in Dired 171
Protecting Files From Being Reaped in Dired 171

Evaluating Forms From FED 330
Marking a Region From Here to Beginning of Buffer 107
Marking a Region From Here to End of Buffer 107

Create Spell Dictionary From Namespace Command 190
Inserting and Removing Lisp Comments From Regions in Zmacs 228

m-X Delete Word From Spell Dictionary 193
Selecting a FED Character From the Character Select Menu 298
Selecting a FED Character From the [Show Font] Display 298
Executing CP Commands From Zmacs 43

fs:*flle-type-mode-allst* variable 256
Fullpagefigure text environment 36
Fullpagetable text environment 36

Dired Apply Function 172
ed function 12

Editing the definition of a function 12
Editing the source code of a function 12

note-prlvate-patch function 249
zwel:add-words-to-spell-dlctlonary function 194

zwel :delete-words-from-spell-dlctlonary function 195
zwel:edlt-functlons function 13

zwel :read-spell-dlctlonary function 193
zwel:read-standard-spell-dlctlonarles function 194

Function Documentation 54
Speller Dictionary Functions 193
Applying Arbitrary Functions to Files in Dired 172

Zmacs Fundamental Mode 176
Creating a Fundamental Mode Buffer 139

Find File In Fundamental Mode (m-X) Zmacs command 139

374

Text Editing and Processing July 1986

G

H

G
G Font Editor command 328
General Information-giving Zmacs Commands 54

Setting Generation Retention Count on Files in Dired 171
Getting Help in Zmacs 47
Getting Information About Buffers and Regions 61
Getting Out of Dired 166
Getting Out of Keystroke Prefixes 48
Getting Out of Minibuffer Prompts 48
Getting Out of Prefixes and Prompts 48
Getting Out of Trouble 48

Overview of Getting Out of Trouble 48
Getting Started in Zmacs 11
Getting Text Back 49
Getting Things Into Gray with [Gray Char] 303
Getting Things Into Gray with [Swap Gray] 303
Getting Things Into the FED Gray Plane 303

Making Global Replacements in Zmacs 118
Querying While Making Global Replacements in Zmacs 118

Querying While Making Multiple Global Replacements in Zmacs 119
zl:lbase global variable 160

zwel :*set-attribute-update-lIst* global variable 159
c-X pl us-SIGN Add Global Word Abbrev 200

Set Goal Column 75
Goal Column and the Motion Commands 74

Init File Form: Setting Goal Column for Real Line Commands 273

G

Going Back to First Indented Character In Zmacs 219
Goto Beginning 28, 81
Goto End 28, 81

Mouse as a graphic input device 291
Getting Things Into Gray with [Swap Gray] 303

Getting Things Into Gray with [Gray Char] 303
[Gray Char] Font Editor menu item 303, 328

[Add in Gray] Font Editor menu item 304, 328
[Clear Gray] Font Editor menu item 303, 328
[Move Gray] Font Editor menu item 303, 328
[Swap Gray] Font Editor menu item 303, 328

Gray plane 293, 303
Clear gray plane 303, 328

Getting Things Into the FED Gray Plane 303
Merging Characters with the FED Gray Plane 304

Move drawing in the gray plane 303, 328
The FED Gray Plane 303

Gray Plane Menu 293
FED Gray Plane Menu Items 328

Getting Things Into Gray with [Gray Char] 303
Getting Things Into Gray with [Swap Gray] 303

[Grid Size] Font Editor menu item 324, 327
Grow Window 146

@ g text environment 36

H
H Font Editor command 323, 327

Marking Files to Be Hardcopied in Dired 172
Hardcopy Buffer (m-X) Zmacs command 136

Dired Hardcopy File 172
Hardcopy File (m-X) Zmacs command 151
Hardcopying a File 151
Hardcopying a Region 109

H

July 1986

Finding Files That
Finding Out What You

Text

Blinker
Character

Line
Character

Blinker Width and Blinker

Setting the
Character

Automatic drawing
Dired

Finding Out About Zmacs Commands with
Introduction to

Introduction to Zmacs
Minibuffer Response

Zmacs

Example of a Search String for

More

Zmacs

Getting

Marking a Region From
Marking a Region From

What
Buffer

Command
Kill

Viewing the Editor Command
Viewing the Kill

Yanking in the command
Yanking in the kill

Zmacs Buffer
Retrieving

375

Index

Hardcopying the Buffer 136
Have Not Been Backed up in Dired 172
Havo Typed 53
heading 39
Heading text environment 36
height 287
height 285, 291, 302
height 285
Height Font Attribute 285
Height Font Attributes 287
Height and width of the drawing pane 324
Height and Width of the FED Drawing Pane 324
Height of the FED Character Box 302
HELP 51
help 309
Help 167
HELP 51
HELP 14
Help 14
Help 59
Help 14
HELP? Zmacs command 14
HELP A 53
HELP A Zmacs command 14,53
HELP C Zmacs command 14, 52
HELP Commands for Finding Out About Zmacs

Commands 53
HELP completion command 15
HELP 0 Zmacs command 14,52
HELP Dired command 167
HELP Font Editor command 329
HELP key 14, 51
HELP L Zmacs command 14,53
HELP or c-? 15
HELP SPACE Zmacs command 14
HELP U Zmacs command 14, 53
HELP V Zmacs command 14, 54, 269
HELP W Zmacs command 54
HELP W Zmacs command 14
HELP a 52
HELP C 51
Help Command Summary 277
HELP D 52
[HELP] Font Editor menu item 329
Help in Zmacs 47
HELP L 53
HELP U 53
HELP V 54
HELPW 54
Here to Beginning of Buffer 107
Here to End of Buffer 107
Histories Save 84
History 132
history 49
history 49, 85, 89
History 86
History 85
history 15
history 15
History 132
History Elements 87

376

Text Editing and Processing

Using the Mouse on

Setting Mode
Moving the Drawing

Scrolling the Drawing
Contracting a Drawing

Stretching a Drawing
Delete

SELECT
zl:

Mirror

Zmacs
Zmacs Reverse

Delete
Zwei:*inhibit-fancy-Ioop

Aligning
Changing Case and

Deleting
New Line with This

Overview of
Going Back to First

Creating a New

How to Use the zl:loop
The zl:loop

Loop
Loop

Exclamation point (I) line continuation
Semicolon (;) comment

Getting
General

Creating an

History Elements 87
History list 15
Hooks in Init Files 273
Horizontally and/or Vertically in FED 323
Horizontally and/or Vertically in FED 323
Horizontally in FED 316
Horizontally in FED 316
Horizontal Space 30
How Key Bindings Work: the Comtab 267
How Many 62
How Tag Tables Work 122
How They Work 155
How to Create an Environment 35

July 1986

How to Specify Zmacs Variable Settings 269
How to Use Formatting Commands 38
How to Use the zl:loop Indentor 217
How Zmacs Keyboard Macros Work 257
How Zmacs Minor Modes Work 253

I 44
Ibase global variable 160
imaging characters 309
Inactive patches 246
Incremental Search 114
Incremental Search 115
Indentation 30
indentation 216
Indentation in zl:loop Macros 216
Indentation In Zmacs 216
Indentation in Zmacs 220
Indentation in Zmacs 213
Indentation in Zmacs 220
Indentation in Zmacs 220
Indentation in Zmacs 216
Indented Character in Zmacs 219
Indented Lisp Comment Line in Zmacs 227
Indenting Current Line in Zmacs 216
Indenting for Lisp Comment in Zmacs 226
Indenting New Line in Zmacs 219
Indenting Region in Zmacs 219
Indenting Region Uniformly in Zmacs 220
Indentor 217
Indentor 216
Indentor Example 1 217
Indentor Example 2 218
indicator 25, 64
indicator 226
Information About Buffers and Regions 61
Information-giving Zmacs Commands 54
Init File 272
Init File Form: Auto Fill in Text Mode 274
Init File Form: c-m-L on the SQUARE Key 274
Init File Form: Edit Buffers on c-X c-8 274
Init File Form: Edit Buffers on m-X 275
Init File Form: Electric Shift Lock in Lisp Mode 273
Init File Form: Fixing White Space for KilVYank

Commands 273
Init File Form: m-. on m-(L) 275
Init File Form: Ordering Buffer Lists 272

377

July 1986 Index

Init File Form: Putting Buffers Into Current
Package 272

Init File Form: Setting Default Major Mode 273
Init File Form: Setting Find File Not to Create New

Files 273
Init File Form: Setting Goal Column for Real Line

Commands 273
Init File Form: White Space in Lisp Code 274
Init Files 272

Customizing Zmacs in Init Files 272
Introduction to Customizing Zmacs In Init Files 272

Setting Editor Variables in Init Files 272
Setting Key Bindings in Init Files 274
Setting Mode Hooks in Init Files 273

Initial patch state 246
In-progress patch 246
In-progress patch state 246

Mouse as a graphic input device 291
Insert Buffer (m-X) Zmacs command 141
Insert File (m-X) Zmacs command 141
Inserting a Buffer Into Another Buffer 141
Inserting a File Into a Buffer 141
Inserting and Removing Lisp Comments From

Regions in Zmacs 228
Inserting Blank Line in Zmacs 221
Inserting Characters 24
Inserting Command Output Into the Buffer 136
Inserting Formatting Characters 25
Inserting output into the buffer 136

Saving and Inserting Regions in Registers 104
Inserting Text 24

Introduction to Inserting Text 24
Appending. Prepending. and Inserting Text in Zmacs 141

Insert Matching parentheses 233
Insert text from register into buffer 105
Insee1 Word Abbrevs 201

Entering Inspector 44
Install Command 268
Install Command (m-X) Zmacs command 268

Source Compare Installed Definition 145
Source Compare Merge Installed Definition 145

Installing a Macro on a Key 261
Installing a Mouse Macro 262

Example of Installing and Deinstalling a Macro 262
Install Macro (m-X) Zmacs command 262
Install patch file 247

Zmacs Commands for Interacting with Lisp 282
Defining an Interactive Keyboard Macro 260

FED Outside World Interface Menu Items 329
Multiple Edit Callers Intersection 240
Multiple List Callers Intersection 241

Introduction to Completion 15
Introduction to Customizing Zmacs 252
Introduction to Customizing Zmacs in Init Files 272
Introduction to Deleting and Transposing Lines 95
Introduction to Deleting and Transposing Lisp

Expressions 93
Introduction to Deleting and Transposing Words 92
Introduction to Deleting Sentences 97
Introduction to Editing Lisp Programs in Zmacs 224
Introduction to Entering Zmacs 12

378

Text Editing and Processing July 1986

K

Introduction to Erasing Text 30
Introduction to Fonts 285
Introduction 10 HELP 14
Introduction to Inserting Text 24
Introduction 10 Locating Source Code in Zmacs 235
Introduction to Motion by Page 80
Introduction to Motion by Paragraph 79
Introduction to Moving the Cursor 28
Introduction to Redisplaying the Window 65
Introduction to Regions 100
Introduction to Speller Dictionaries 187
Introduction to Tag Tables and Search Domains 122
Introduction to Text Formatting in Zmacs 35
Introduction to the Character Style Commands 206
Introduction to the Motion Commands 71
Introduction to the Organization of the Screen 18
Introduction to the Zmacs Manual 3
Introduction to Using the Mouse f)7
Introduction to Yanking 15
Introduction to Zmacs 6
Introduction to Zmacs Commands 6
Introduction to Zmacs Command Tables 7
Introduction to Zmacs Extended Commands 7
Introduction to Zmacs Help 14
Introduction to Zmacs Keystrokes 7
Invoking Zmacs 12

What is a Zmacs Region? 100
Italics text environment 36
Itemize text environment 36

FED Gray Plane Menu Items 328
FED Outside World Interface Menu Items 329

K
Start

Name Last

End
Left
Left

HELP
Init File Form: c-m-L on the SQUARE

Installing a Macro on a
Leaving Zmacs with the SELECT

RUBOUT
SELECT

Setting the
Assign

Definition of
Extended command

Zmacs
Setting

How
FED Menu and
Calling the Last

Defining an Interactive
Definition of a Zmacs

Ending a
Example of Calling the Last

Naming a

K Dired command 170
Kbd Macro 257
Kbd Macro (m-X) Zmacs command 261
Kbd Macro Query 260
Kbd Macro Zmacs command 257
kern 286
Kern Font Attribute 286
key 14,51
Key 274
Key 261
Key 44
key 24
key 44
Key 267
key bindings 267
Key Bindings 267
key bindings 54
Key Bindings 267
Key Bindings in Init Files 274
Key Bindings Work: the Comtab 267
Keyboard Commands 327
Keyboard Macro 258
Keyboard Macro 260
Keyboard Macro 257
Keyboard Macro 258
Keyboard Macro 258
Keyboard Macro 261

K

379

July 1986 Index

L

Showing a Keyboard Macro 258
Starting a Keyboard Macro 258

Show Keyboard Macro (m-X) Zmacs command 258
Creating New Zmacs Commands with Keyboard Macros 257

Example 1 of Making Tables Using Keyboard Macros 264
Example 1 of Writing and Saving Keyboard Macros 260

Example 2 of Making Tables Using Keyboard Macros 265
Example 2 of Writing and Saving Keyboard Macros 260

Making Tables Using Keyboard Macros 263
Procedure for Creating Zmacs Commands with Keyboard Macros 257

Sort Via Keyboard Macros 261
Writing and Saving Keyboard Macros 259

Using Keyboard Macros to Sort 261
How Zmacs Keyboard Macros Work 257

FED Keyboard-only Commands 330
RETURN key in the minibuffer 59

Shift keys 7
Getting Out of Keystroke Prefixes 48

Keystrokes 6, 7
Creating a Region with Keystrokes 101

Displaying previous keystrokes 53
Introduction to Zmacs Keystrokes 7

Ust the last sixty keystrokes 53
Using the CONTROL key while drawing characters 299

Using the MET A key while drawing characters 299
Append Next Kill 89

Query Replace Last Kill 120
Init File Form: Fixing White Space for KilllYank Commands 273

Kill All Word Abbrevs 201
Kill Backward Up List (c-m-X) Zmacs command 93
Kill commands 30
Kill history 49, 85, 89

Viewing the Kill History 85
Yanking in the kill history 15

Killing a Lisp Comment in Zmacs 226
Deleting Vs. Killing Text 84

Overview of Deleting Vs. Killing Text 84
Kill Line 30, 95
Kill Merging 89
Kill Region 30
Kill Sentence 30, 97

Bacl(ward Kill Sentence 30
Kill Sexp 30, 93

Backward Kill Sexp 30, 93
m-X Kill Spell Dictionary 192

Kill Word 30, 92
Backward Kill Word 30,92

L
HELP

Init File Form: m-. on m
SELECT

c-X
HELP

Deleting the
Cancel
Name

Calling the

L 53
(L) 275
L 44
L Dired command 168
L Zmacs command 55
L Zmacs command 14, 53
Large Deletions 49
Last Character 90
last command 48
Last Kbd Macro (m-X) Zmacs command 261
Last Keyboard Macro 258

L

380

Text Editing and Processing

Example of Calling the
Query Replace

Repeat
Repeat
List the
List the

c-X U Unexpand
Entering and

Overview of

Query Replace
Abort At Top

Motion Along One Nesting
Motion up and Down Nesting

Beginning of
Breaking a

Deleting Backward on the
Deleting the Current

Down
Down Real

Draw a
End of

Erase backward to start of
Kill

Motion by
Mouse Documentation

Move cursor to beginning of
Moving to a Specified

Starting a New
Up

Up Real
Zmacs Mode

Init File Form: Setting Goal Column for Real
Exclamation point (!)

Status
MOving Rest of

Mode
[Draw

Centering the Current
Creating a New Indented Lisp Comment

Deleting Blank
Indenting Current

Indenting New
Inserting Blank

Mouse Documentation
Moving Down to Lisp Comment on Next

Moving up to Lisp Comment on Previous
Count

Delete Blank
Deleting and Transposing

Exchange
Introduction to Deleting and Transposing

Merging

Last Keyboard Macro 258
Last Kill 120
Last Matching Minibuffer Command 88
Last Minibuffer Command 59, 88
last sixty commands 53
last sixty keystrokes 53
Last Word 203
Leaving FED 289
Leaving Zmacs 44
Leaving Zmacs 44
Leaving Zmacs Via the System Menu 44
Leaving Zmacs with c-Z 45
Leaving Zmacs with the SELECT Key 44

July 1986

Left and Right Edges of the FED Character Box 301
Left kern 286
Left Kern Font Attribute 286
LET Binding 121
Level 48
Level 76
Levels 77
Line 28,74,95
line 24
Line 96
Line 95
Line 74,95
Line 28,74,95
line 327
Line 28,74,95
line 96
Line 30,95
Line 74
Line 67
line 66
Line 66
Line 24
Line 74,95
Line 28,74,95
Line 20
LINE Zmacs command 219
Line Commands 273
line continuation indicator 25, 64
line documentation 323
Line Down in Zmacs 221
Line Example 22
Line] Font Editor menu item 312, 327
Line height 285
Line in Zmacs 219
Line in Zmacs 227
Line in Zmacs 221
Line in Zmacs 216
Line in Zmacs 219
Line in Zmacs 221
Line in Zmacs 67
Line in Zmacs 227
Line in Zmacs 227
Lines 61
Lines 30
Lines 95
Lines 96
Lines 95
lines 24

July 1986

Wraparound
Wrapping

Drawing
Mode
Mode

Wraparound
Mode

What the
Mode

Transposing
Count
Mode
Count
Mode
New

Create
Create

Creating
Base and Syntax Default Settings for

Entering
Setting the Syntax for Symbolics Common
Zmacs Commands for Finding Out About

Zmacs Commands for Interacting with
Init File Form: White Space in

Commenting
Overview of Commenting

Setting the
Indenting for

Killing a
Creating a New Indented

Moving Down to
Moving up to

Inserting and Removing

Deleting the Current
Deleting the List Containing the Current

Deleting the Previous
Description of Motion by

Motion by
Commands to Mark Regions by

Deleting and Transposing
Introduction to Deleting and Transposing

Transposing
Expanding

Parenthesizing
(fed)

Init File Form: Electric Shift Lock in
Zmacs

Compiling
Editing

Evaluating
Evaluating and Compiling

Introduction to Editing
Overview of Evaluating and Compiling

Attribute
Backward

Backward up
Describe Attribute
Display argument

Lines 64
Lines 25
Lines and Curves in FED 312
Line's Buffer 21
Line's Buffer-status 22
Lines in the Editor Window 64
Line's Major-mode 21
Lines Mean in the FED Character Box 301
Line's Minor-mode 21
Lines of Text 96
Lines Page 55
Line's Position-flag 22
Lines Region 55
Line's Version 22
Line with This Indentation in Zmacs 220
Link 152
Link (m-X) Zmacs command 152
Links to Files 152
Lisp 33,137,176,224
Lisp 44
Lisp 158
Lisp 280
Lisp 282
Lisp Code 274
Lisp Code in Zmacs 226
Lisp Code in Zmacs 226
Lisp Comment Column in Zmacs 227
Lisp Comment in Zmacs 226
Lisp Comment in Zmacs 226
Lisp Comment Line in Zmacs 227
Lisp Comment on Next Line in Zmacs 227
Lisp Comment on Previous Line in Zmacs 227
Lisp comments 228
Lisp Comments From Regions in Zmacs 228
Lisp Compiler Warnings 232
Lisp Expression 93
Lisp Expression 93
Lisp Expression 93
Lisp Expression 76, 93
Lisp Expression 76
Lisp Expressions 106
Lisp Expressions 93
Lisp Expressions 93
Lisp Expressions 93
Lisp Expressions in Zmacs 234
Lisp Expressions in Zmacs 233
Lisp Listener command 289
Lisp Mode 273
Lisp Mode 176
Lisp Mode (m-X) Zmacs command 224
Lisp Programs in Zmacs 230
Lisp Programs in Zmacs 223
Lisp Programs in Zmacs 229
Lisp Programs in Zmacs 229
Lisp Programs in Zmacs 224
Lisp Programs in Zmacs 229
list 155
List 76
List 77
List 168
list 55

381

Index

382

Text Editing and Processing July 1986

Down List 77
FED Command List 327

Forward List 76
Forward up List 77

History list 15
Speller dictionary list 187

List Buffers 134
List Buffers Zmacs command 131

Kill Backward Up List (c-m-X) Zmacs command 93
Multiple List Callers Intersection 241

List Changed Definitions of Buffer (m-X) Zmacs
command 239

Deleting the List Containing the Current Lisp Expression 93
List contents of a directory 148

The Zmacs List Definition Commands 238
List Definitions (m-X) Zmacs command 239

(fed) Lisp Listener command 289
Using the mouse with List Files 148

List Files (m-X) Zmacs command 148
Mousing on the FED List Fonts and Show Font Displays 332

[List Fonts] Font Editor menu item 297,329
Using the mouse with [List Fonts] Font Editor menu item 332

List Fonts (m-X) Zmacs command 287
Selecting, Listing, and Examining Zmacs Buffers 132

Listing Buffers 133
Example of Listing Buffers 134

Listing Files in a Directory 148
Specifying and Listing Tag Tables 122

listing Variables by Matching a String 269
Example of Listing Variables by Matching a String 270

Listing Zmacs Variables 269
Reparse Attribute List (m-X) Zmacs command 155

Update Attribute List (m-X) Zmacs command 156
List of dictionaries 193

Speller list of dictionaries 187
Update Attribute List Query 159

Attribute lists 156
Init File Form: Ordering Buffer Lists 272

Warnings about file attribute lists 156
List Some Word Abbrevs 202
List the last sixty commands 53
List the last sixty keystrokes 53
List Variables 269
List Variables (m-X) Zmacs command 269
List Word Abbrevs 202
L:Move point mouse click 67
Loading a File in Dired 168

Overview of Locating and Replacing Strings Automatically 118
Locating and Replacing Strings Automatically in

Zmacs 118
Introduction to Locating Source Code in Zmacs 235

Locating Source Code to Edit in Zmacs 235
Saving and Moving to Locations in Registers 104

Init File Form: Electric Shift Lock in Lisp Mode 273
Show Login Directory 149
Show Login Directory (m-X) Zmacs command 149

Long Documentation 55
How to Use the zl: loop Indentor 217

The zl: loop Indentor 216
T AS in zl: loop macro 216

Indentation in zl: loop Macros 216

July 1986

M

Loop Indentor Example 1 217
Loop Indentor Example 2 218
LO\'/ercase Attribute 160
Lowercase file attribute 160

Set Lowercase (m-X) Zmacs command 160

M
SELECT H 44

Zmacs Command:
Example of the

Init File Form:
Edit Definition

H Font Editor command 328
m-$ 180
m-$ (Spell This Word) 184
m-% Zmacs command 118
m-) Zmacs command 78
m-. 235
m-. Command 236
m-. on m-(L) 275
m-. Zmacs Command 235
m-; Zmacs command 226
m-< Zmacs command 28,81
m-= Zmacs command 55
m-> Zmacs command 28,81
m-@ Zmacs command 106
m-A Zmacs command 28
m-8 Zmacs command 28, 72
m-C Zmacs command 214
m-D Zmacs command 30, 92
m-E Zmacs command 73
m-ESCAPE Zmacs command 230
m-F Zmacs command 28,72
m-H Zmacs command 107
m-J Change Style Word 211
m-K Zmacs command 30, 97

Init File Form: m-. on m-(L) 275

Abort Patch (
Add Patch (

Add Patch Changed Definitions (
Add Patch Changed Definitions of Buffer (

Apropos (
Arglist (

Finish Patch (
Init File Form: Edit Buffers on

Recompile Patch (
Reload Patch (

m-L Zmacs command 214
m-L I NE Zmacs command 227
m-N Zmacs command 227
m-D Zmacs command 220
m-P Zmacs command 227
m-R Zmacs command 66
m-RU8DUT Zmacs command 30, 92
m-S Zmacs command 219
m-SCRDLL Zmacs command 28, 66
m-sh-D Zmacs command 54
m-sh-E Zmacs command 230
m-sh-Y yank command 88
m-T Zmacs command 92
m-U Zmacs command 214
m-V Zmacs command 28,66
m-W Zmacs command 109
m-X 7
m-X) 248
m-X) 244
m-X) 245
m-X) 245
m-X) 52
m-X) 55
m-X) 247
m-X 275
m-X) 248
m-X) 248

383

Index

M

384

Text Editing and Processing July 1986

Resume Patch (m-X) 248
Save All Files (m-X) 136
Select Patch (m-X) 246

Set Syntax [m-X) 158
Show Patches (m-X) 246

Start Patch (m-X) 243
Start Private Patch (m-X) 244

m-X Add Word to Spell Dictionary 192
m-X Apropos 53
m-X command 210, 212
m-X Compile Spell Dictionary 190
m-X Delete Word From Spell Dictionary 193
m-X Edit CP Command 238
m-X Kill Spell Dictionary 192
m-X Read Spell Dictionary 190
m-X Save All Spell Dictionaries 192
m-X Save Spell Dictionary 191
m-X Show Contents of Spell Dictionary 193
m-X Show Spell Dictionaries 191
m-X Spell Buffer 180, 185
m-X Spell File 185
m-X Spell Region 184
m-X Spell Word 184
m-X Tags Spell 185

Append To File (m-X) Zmacs command 141
Arglist (m-X) Zmacs command 55

Change File Properties (m-X) Zmacs command 150
Clean Directory (m-X) Zmacs command 153
Compile Region (m-X) Zmacs command 109

Copy File (m-X) Zmacs command 152
Create Directory (m-X) Zmacs command 148

Create Link (m-X) Zmacs command 152
Deinstall Macro (m-X) Zmacs command 262

Delete File (m-X) Zmacs command 153
Describe Variable (m-X) Zmacs command 269

Dired (m-X) Zmacs command 163
Edit Buffers (m-X) Zmacs command 134

Edit Directory (m-X) Zmacs command 163
Evaluate and Replace Into Buffer (m-X) Zmacs command 230

Evaluate Buffer (m-X) Zmacs command 230
Evaluate Changed Definitions (m-X) Zmacs command 230

Evaluate Changed Definitions of Buffer (m-X) Zmacs command 230
Evaluate Into Buffer (m-X) Zmacs command 230

Evaluate Region (m-X) Zmacs command 230
Execute Command Into Buffer (m-X) Zmacs command 136

Find File In Fundamental Mode (m-X) Zmacs command 139
Find Unbalanced Parentheses (m-X) Zmacs command 56

Format Buffer (m-X) Zmacs command 35,42
Format File (m-X) Zmacs command 35, 42

Format Region (m-X) Zmacs command 35,42
Hardcopy Buffer (m-X) Zmacs command 136

Hardcopy File (m-X) Zmacs command 151
Insert Buffer (m-X) Zmacs command 141

Insert File (m-X) Zmacs command 141
Install Command (m-X) Zmacs command 268

Install Macro (m-X) Zmacs command 262
Lisp Mode (m-X) Zmacs command 224

List Changed Definitions of Buffer (m-X) Zmacs command 239
Ust Definitions (m-X) Zmacs command 239

List Files (m-X) Zmacs command 148
List Fonts (m-X) Zmacs command 287

List Variables (m-X) Zmacs command 269
Name Last Kbd Macro (m-X) Zmacs command 261

Prepend To File (m-X) Zmacs command 141
Query Replace (m-X) Zmacs command 118

Reap File (m-X) Zmacs command 153
Rename Buffer (m-X) Zmacs command 136

Rename File (m-X) Zmacs command 151
Reparse Attribute List (m-X) Zmacs command 155

Replace String (m-X) Zmacs command 118
Revert Buffer (m-X) Zmacs command 138

Set Backspace (m-X) Zmacs corrmand 159
Set Base (m-X) Zmacs command 160
Set Fonts (m-X) Zmacs command 160

Set Lowercase (m-X) Zmacs command 160
Set Nofill (m-X) Zmacs command 160

Set Package (m-X) Zmacs command 156
Set Patch File (m-X) Zmacs command 161
Set Tab Width (m-X) Zmacs command 161

Set Variable (m-X) Zmacs command 271
Set Visited File Name (m-X) Zmacs command 139

Set Vsp (m-X) Zmacs command 161
Show Buffer (m-X) Zmacs command 135

Show Directory (m-X) Zmacs command 149
Show File (m-X) Zmacs command 150

Show File Properties (m-X) Zmacs command 150
Show Keyboard Macro (m-X) Zmacs command 258

Show Login Directory (m-X) Zmacs command 149
Source Compare (m-X) Zmacs command 142

Source Compare Merge (m-X) Zmacs command 142
Trace (m-X) Zmacs command 56

Update Attribute List (m-X) Zmacs command 156
m-Y yank command 15,59,88
m-Z Zmacs command 231
m-[Zmacs command 28,79
m-\ Zmacs command 30
m-] Zmacs command 28, 79
m-.... Zmacs command 30, 220

Calling the Last Keyboard Macro 258
Defining an Interactive Keyboard Macro 260

Definition of a Zmacs Keyboard Macro 257
Deinstalling a Macro 262

Ending a Keyboard Macro 258
Example of Calling the Last Keyboard Macro 258

Example of Installing and Deinstalling a Macro 262
Installing a Mouse Macro 262

Naming a Keyboard Macro 261
Showing a Keyboard Macro 258
Starting a Keyboard Macro 258

Start Kbd Macro 257
T AS in zl:loop macro 216

Deinstall Macro (m-X) Zmacs command 262
Install Macro (m-X) Zmacs command 262

Name Last Kbd Macro (m-X) Zmacs command 261
Show Keyboard Macro (m-X) Zmacs command 258

Installing a Macro on a Key 261
Kbd Macro Query 260

Creating New Zmacs Commands with Keyboard Macros 257
Example 1 of Making Tables Using Keyboard Macros 264

Example 1 of Writing and Saving Keyboard Macros 260
Example 2 of Making Tables Using Keyboard Macros 265

Example 2 of Writing and Saving Keyboard Macros 260

385

386

Text Editing and Processing July 1986

Indentation in ll:loop Macros 216
Making Tables Using Keyboard Macros 263

Procedure for Creating Zmacs Commands with Keyboard

Sort Via Keyboard
Writing and Saving Keyboard

Using Keyboard
How Zmacs Keyboard

End Kbd
Zmacs

Send
Zmacs

Default
Init File Form: Setting Default

Mode Line's
Overview of Setting the

Setting the Zmacs
File Types and Zmacs

User-Defined Zmacs
Zmacs
lwei:
lwei:

Macros 257
Macros 261
Macros 259
Macros to Sort 261
Macros Work 257
Macro Zmacs command 257
Macsyma Mode 177
mail about patch 247
Major Editing Modes 176
Majorheading text environment 36
major mode 256
Major Mode 273
Major-mode 21
Major Mode 176
Major Mode 175
Major Modes 256
Major Modes 256
Major Modes 256
major-mode-translations variable 256
make-macro-command 259
Make region 67
Make Word Abbrev 202
Making Global Replacements in Zmacs 118

Querying While Making Global Replacements in Zmacs 118
Querying While Making Multiple Global Replacements in Zmacs 119

Making Patches 242
Making Tables Using Keyboard Macros 263

Example 1 of Making Tables Using Keyboard Macros 264
Example 2 of Making Tables Using Keyboard Macros 265

Speller Dictionary Management 187

Retrieving the Black Plane While
Commands for

Overview of Zmacs File
Zmacs File

Introduction to the Zmacs
Organization of the Zmacs

Overview of the Zmacs
Scope of the Zmacs

Zmacs
Zmacs

How
Right

Region Right
Set Pop

Setting/Popping the
Showing the

Swap Point And

Manipulating Buffers and Files in Zmacs 129
Manipulating FED Registers 307
manipulating files 148
Manipulation Commands 148
Manipulation Commands 148
Manual 3
Manual 4
Manual 4
Manual 4
Manual 1
Manual Notation Conventions 9
Many 62
margin 254
Margin Mode Variable 270
Mark 102
Mark 102
Mark 103
Mark 103
Mark and the Region 100
Mark Beginning 107
Mark Definition 106
Mark End 107
Marking a Region From Here to Beginning of

Buffer 107
Marking a Region From Here to End of Buffer 107
Marking Files for Deletion in Dired 170
Marking Files to Be Hardcopied in Dired 172

Region Marking Mode Variable 270

387

July 1986 Index

Marking text 1 06
Mark Page 107
Mark Paragraph 107
Mark region 67

Commands to Mark Regions 1 06
Overview of Commands to Mark Regions 106

Commands to Mark Regions by Buffers 107
Commands to Mark Regions by Lisp Expressions 106
Commands to Mark Regions by Pages 107
Commands to Mark Regions by Paragraphs 1 07

Example of Commands to Mark Regions by Paragraphs 107
Commands to Mark Regions by Words 106

Mark Sexp 106
Yank Matching 87

Yank Pop Matching 88
Example of Listing Variables by Matching a String 270

Listing Variables by Matching a String 269
Repeat Last Matching Minibuffer Command 88

Insert Matching parentheses 233
Current meaning of mouse clicks 67

What the Lines Mean in the FED Character Box 301
Character Select menu 293

Dired Menu 167, 168
Drawing Pane Menu 292

Draw Mode Menu 292, 299, 331
FED Character Select Menu 293
FED Font Parameters Menu 293

Font Parameters menu 293
Gray Plane Menu 293

Leaving Zmacs Via the System Menu 44
Mousing on the FED Draw Mode Menu 331

Mousing on the FED Font Parameters Menu 331
Outside FED Command Menu 293

Overview of the Editor Menu 57
Selecting a FED Character From the Character Select Menu 298

The Editor Menu 57
The Zmacs Speller Menu 181

Using the mouse in the draw mode menu 331
Using the mouse in the Font Parameters menu 331

FED Menu and Keyboard Commands 327
Editor Menu Commands 57

[Add in Gray] Font Editor menu item 304, 328
[Center View] Font Editor menu item 323, 327

[Clear Gray] Font Editor menu item 303, 328
[Clear Points] Font Editor draw mode menu item 299

[Configure] Font Editor menu item 291, 324, 327
[Draw Une] Font Editor menu item 312,327

[Draw Spline] Font Editor menu item 312,327
[Edit Font] Font Editor menu item 297, 329
[Erase All] Font Editor menu item 303, 309, 327

[EXIT] Font Editor menu item 329
[Flip Points] Font Editor draw mode menu item 299

[Gray Char] Font Editor menu item 303, 328
[Grid Size] Font Editor menu Item 324, 327

[HELP] Font Editor menu item 329
[List Fonts] Font Editor menu item 297,329

[Move Black] Font Editor menu item 302, 327
[Move Gray] Font Editor menu item 303, 328
[Move View] Font Editor menu item 323,327

[Read File] Font Editor menu item 326,329
[Reflect] Font Editor menu item 309, 327

388

Text Editing and Processing

[Rename Char] Font Editor
[Rotate] Font Editor

[Save Char] Font Editor
[Set Points] Font Editor draw mode

[Set Sample] Font Editor
[Show Font] Font Editor

[Stretch] Font Editor
[Swap Gray] Font Editor

Using the mouse with [List Fonts] Font Editor
Using the mouse with [Show Font] Font Editor

[Write File] Font Editor
FED Gray Plane

FED Outside World Interface
Sh-R:System

Command
FED

Using the mouse with Font Editor
Source Compare
Source Compare
Source Compare
Source Compare
Source Compare

Kill

Using the

Zmacs

Echo Area's
Evaluate

More on the
RETURN key in the

Yanking in the
Repeat Last

Repeat Last Matching

Getting Out of

More Ways to Enter
Example of Filling Text with Auto Fill

Mode Line's
Built-in Customization Using Zmacs

Definition of Zmacs
Summary of Zmacs

How Zmacs

Auto Fill
Default major

Example of Filling Text with Auto Fill Minor
Init File Form: Auto Fill in Text

Init File Form: Electric Shift Lock in Lisp
Init File Form: Setting Default Major

Overview of Setting the Major
Setting the Zmacs Major

Two window

menu item 298. 329
menu item 309. 327
menu item 298. 329
menu item 299
menu item 321. 329
menu item 291. 297.298.329
menu item 327
menu item 303. 328
menu item 332
menu item 298, 332
menu item 326. 329
Menu Items 328
Menu Items 329
menu mouse click 67
menus 292
Menus 292
menus 292
Merge 142
Merge Installed Definition 145
Merge (m-X) Zmacs command 142
Merge Newest Definition 144
Merge Saved Definition 144
Merging 89

July 1986

Merging Characters with the FED Gray Plane 304
Merging lines 24
META key while drawing characters 299
Method for Searching for Appropriate Zmacs

Commands 53
Midas Mode 177
Minibuffer 20
Minibuffer 20
Minibuffer 230
Minibuffer 59
minibuffer 59
Minibuffer 59
Minibuffer Command 59. 88
Minibuffer Command 88
Minibuffer Prompts 48
Minibuffer Prompts 48
Minibuffer Response Format 59
Minibuffer Response Help 59
Minibuffer Responses 59
Minor Mode 253
Minor-mode 21
Minor Modes 253
Minor Modes 253
Minor Modes 254
Minor Modes Work 253
Minor version number 242
Mirror imaging characters 309
Misspelling 180
M:Mark thing mouse click 67
Mode 160. 254
mode 256
Mode 253
Mode 274
Mode 273
Mode 273
Mode 176
Mode 175
mode 146

July 1986

Word Abbrev
Zmacs Bolio

Zmacs Electric PI1
Zmacs Fortran

Zmacs Fundamental
Zmacs Lisp

Zmacs Macsyma
Zmacs Midas

Zmacs PI1
Zmacs Teco
Zmacs Text

Creating a Fundamental
Setting

Dired
Zmacs

Find File In Fundamental
Lisp

Draw
Mousing on the FED Draw

Using the mouse in the draw
[Clear Points] Font Editor draw

[Flip Points] Font Editor draw
[Set Points] Font Editor draw

Built-in Customization Using Zmacs Minor
Definition of Zmacs Minor

File Types and Zmacs Major
Summary of Zmacs Minor

User-Defined Zmacs Major
Zmacs Major

Zmacs Major Editing
How Zmacs Minor

Region Marking
Region Right Margin

c-X c-A Add

Description of

Introduction to

Introduction to

Mode 203
Mode 177
Mode 177
Mode 177
Mode 176
Mode 176
Mode 177
Mode 177
Mode 177
Mode 177
Mode 176
Mode Buffer 139
Mode Hooks in Init Files 273
Mode in Zmacs 163
Mode Line 20
Mode Line Example 22
Mode Line's Buffer 21
Mode Line's Buffer-status 22
Mode Line's Major-mode 21
Mode Line's Minor-mode 21
Mode Line's Position-flag 22
Mode Line's Version 22
Mode (m-X) Zmacs command 139
Mode (m-X) Zmacs command 224
Mode Menu 292, 299, 331
Mode Menu 331
mode menu 331
mode menu item 299
mode menu item 299
mode menu item 299
Modes 253
Modes 253
Modes 256
Modes 254
Modes 256
Modes 256
Modes 176
Modes Work 253
Mode Variable 270
Mode Variable 270
Mode Word Abbrev 200
Modification flag 130
Modified Two Windows 146

389

Index

More HELP Commands for Finding Out About Zmacs
Commands 53

More on the Minibuffer 59
More Ways to Enter Minibuffer Responses 59
Motion 67
Motion Along One Nesting Level 76
Motion Among Top-Level Expressions 77
Motion by Character 71
Motion by Line 74
Motion by Lisp Expression 76
Motion by Lisp Expression 76, 93
Motion by Page 80
Motion by Page 80
Motion by Paragraph 79
Motion by Paragraph 79
Motion by Sentence 73
Motion by Word 72
Motion Commands 71

390

Text Editing and Processing July 1986

Example of Negative Numeric Arguments with Motion Commands 71
Example of Numeric Arguments with Motion Commands 71

Goal Column and the Motion Commands 74
Introduction to the Motion Commands 71

Negative Numeric Arguments and Motion Commands 71
Numeric Arguments and the Motion Commands 71

Motion up and Down Nesting Levels 77
Motion with Respect to the Whole Buffer 81
Mouse 12,67,134,142

Creating a Region with the Mouse 101
Drawing Characters in FED with the Mouse 299

Drawing characters with the mouse 299
Entering Zmacs with the Mouse 12
Introduction to Using the Mouse 67

Moving the Cursor with the Mouse 67
Mouse as a graphic input device 291

L:Move point mouse click 67
M:Mark thing mouse click 67

R:Menu mouse click 67
Sh-2:Move to point mouse click 67

Sh-M:Save/KiIIlYank mouse click 67
Sh-R:System menu mouse click 67
Current meaning of mouse clicks 67

Mouse Documentation Line 67
Mouse Documentation Line in Zmacs 67

Using the mouse in the character select pane 331
Using the mouse in the drawing pane 330
Using the mouse in the draw mode menu 331
Using the mouse in the Font Parameters menu 331
Using the mouse in the register pane 331
Using the mouse in the sample pane 331

Installing a Mouse Macro 262
Using the Mouse on History Elements 87
Using the mouse on the character box 302

Mouse-sensitive Zmacs commands 67
Mouse Sensitivities in FED 330

Using the mouse to enter Zmacs 12
Using the mouse with Font Editor menus 292
Using the mouse with List Files 148
Using the mouse with [List Fonts] Font Editor menu item 332
Using the mouse with [Show Font] Font Editor menu item 298,

332
Mousing on the FED Character Select Pane 331
Mousing on the FED Drawing Pane 330
Mousing on the FED Draw Mode Menu 331
Mousing on the FED Font Parameters Menu 331
Mousing on the FED List Fonts and Show Font

Displays 332
Mousing on the FED Register Pane 331
Mousing on the FED Sample Pane 331
[Move Black] Font Editor menu item 302, 327
Move cursor to beginning of line 66
Move drawing in the gray plane 303, 328
[Move Gray] Font Editor menu item 303, 328

Summary of Cursor Movement 64
Cursor movement commands 28, 71

Move Over) 78
Dired move point 168

Move to Default Previous Point 102
Move to Previous Point 102
[Move View] Font Editor menu item 323, 327

391

July 1986 Index

Moving Around in Dired 168
Moving Down to Usp Comment on Next Une in

Zmacs 227
Moving Rest of Line Down in Zmacs 221
Moving the cursor 67

Description of Moving the Cursor 28
Introduction to Moving the Cursor 28

Overview of Moving the Cursor 64
Summary of Moving the Cursor 28

Moving the Cursor in Zmacs 63
Moving the Cursor with the Mouse 67
Moving the drawing 312, 327
Moving the Drawing Horizontally and/or Vertically in

FED 323
Moving the Drawing in FED 312
Moving the point 67
Moving to a Specified Une 66
Moving to end of buffer 81

Saving and Moving to Locations in Registers 104
Moving to Previous Points 1 02
Moving up to Lisp Comment on Previous Une in

Zmacs 227
Multiple buffers 130
Multiple Edit Callers Intersection 240

Deleting Multiple File Versions in Dired 170
Querying While Making Multiple Global Replacements in Zmacs 119

Multiple Ust Callers Intersection 241
Multiple text environment 36

Deleting Multiple Versions 153
Multiple windows 130

N N N
SELECT N 44

Funct i on-Specs-to-Ed i t- n buffer 13
Name Last Kbd Macro (m-X) Zmacs command 261

Set Visited File Name (m-X) Zmacs command 139
Command Names 6

Zmacs Buffer and File Names 130
Names of commands 7,52

Create Spell Dictionary From Namespace Command 190
Naming a File 138
Naming a Keyboard Macro 261
Negative Numeric Arguments and Motion

Commands 71
Example of Negative Numeric Arguments with Motion

Commands 71
Motion Along One Nesting Level 76

Motion up and Down Nesting Levels 77
Reading a File Into a New Buffer 137

Selecting a FED Character by Creating a New Character 298
Creating new characters 298

Source Compare Newest Definition 144
Source Compare Merge Newest Definition 144

Buffer Flags for New Files 131
Init File Form: Setting Find File Not to Create New Files 273

Creating a New Font in FED 297
Creating new fonts 297

Creating a New Indented Lisp Comment Line in Zmacs 227
Starting a New Line 24

Newline characters 24

392

Text Editing and Processing July 1986

o

Indenting New Line in Zmacs 219
Newlines 24
New Line with This Indentation in Zmacs 220

Creating New Zmacs Commands with Keyboard Macros 257
Append Next Kill 89

Moving Down to Lisp Comment on Next Line in Zmacs 227
Next Page 28, 80
Next Possibility 126

Displaying the Next Possibility 126
Example of Displaying the Next Possibility 127

Next Screen 28
Displaying the Next Screen 65

Dired Next Undumped 172
Nofill Attribute 1 60
Nofill file attribute 160

Set Nofill (m-X) Zmacs command 160
Nonmouse cursor 299, 300, 330

The FED Nonmouse Cursor 300
Dired Complement No Reap Flag 171

Example 1 of Zmacs Notation Conventions 9
Example 2 of Zmacs Notation Conventions 9
Example 3 of Zmacs Notation Conventions 9

Zmacs Manual Notation Conventions 9
Zmacs Notation Conventions and Examples 9

Finding Files That Have Not Been Backed up in Dired 172
note-prlvate-patch function 249

@ note text formatting command 39
Entering Notifications 44

Init File Form: Setting Find File Not to Create New Files 273
Nullifying prefixes 48

Minor version number 242
Quadruple Numeric Arg 26

Numeric arguments 24, 26, 52
Defaults to Numeric Arguments 26
Example of Numeric Arguments 26

Overview of Numeric Arguments 26
Negative Numeric Arguments and Motion Commands 71

Numeric Arguments and the Motion Commands 71
Example of Numeric Arguments with Motion Commands 71

Example of Negative Numeric Arguments with Motion Commands 71

o
c-X

Count
Zmacs Speller Accept

Motion Along
Change

Returning to

Example of a Tag Tables Replacement
Other Types of Replacement

Performing
Init File Form:

Introduction to the

o Zmacs command 147
Occurrences 62
Once command 181
One Nesting Level 76
One Style Region 210
One Window 147
One Window 147
One Window Default Variable 270
Online documentation for commands 52
Online Documentation for Dlred 167
Online documentation for prefixes 52
Operation 122
Operations In Zmacs 120
Operations with Tag Tables 123
Ordering Buffer Lists 272
Organization of the Screen 18
Organization of the Screen 18
Organization of the Zmacs Manual 4

o

Creating Two Windows, Specifying Other Contents 146
Other Region-related Commands 110
Other Set Commands for File and Buffer

Attributes 159
Other Types of Replacement Operations in

Zmacs 120
Other Window 147

Choosing the Other Window 147
Scroll Other Window 147

Scrolling the Other Window 147
Zmacs Commands for Finding Out About Flavors 281
Zmacs Commands for Finding Out About Lisp 280
Zmacs Commands for Finding Out About the State of Buffers 278
Zmacs Commands for Finding Out About the State of Zmacs 279

Finding Out About Zmacs Commands 51
More HELP Commands for Finding Out About Zmacs Commands 53

Overview of Finding Out About Zmacs Commands 51
Finding Out About Zmacs Commands with HELP 51
Finding Out About Zmacs Variables 269
Getting Out of Dired 166
Getting Out of Keystroke Prefixes 48
Getting Out of Minibuffer Prompts 48
Getting Out of Prefixes and Prompts 48
Getting Out of Trouble 48

Overview of Getting Out of Trouble 48
Outputexample text environment 36

Inserting output into the buffer 136
Inserting Command Output Into the Buffer 136

Outside FED Command Menu 293
FED Outside World Interface Menu Items 329

Finding Out What an Extended Command Does 52
Finding Out What a Prefix Command Does 52

Example of Finding Out What a Zmacs Command Does 51
Finding Out What a Zmacs Command Does 51
Finding Out What You Have Typed 53

393

Overview of Changing Case in Zmacs 214
Overview of Commands to Mark Regions 106
Overview of Commenting Lisp Code in Zmacs 226
Overview of Customizing the Zmacs

Environment 252
Overview of Deleting Vs. Killing Text 84
Overview of Dired 163
Overview of Evaluating and Compiling Lisp Programs

in Zmacs 229
Overview of Finding Out About Zmacs Commands 51
Overview of Getting Out of Trouble 48
Overview of Indentation in Zmacs 216
Overview of Leaving Zmacs 44
Overview of Locating and Replacing Strings

Automatically 118
Overview of Moving the Cursor 64
Overview of Numeric Arguments 26
Overview of Searching in Zmacs 114
Overview of Setting the Major Mode 176
Overview of Sorting in Zmacs 128
Overview of the Editor Menu 57
Overview of the Zmacs Manual 4
Overview of Working with Buffers and Files in

Zmacs 130
Overview of Zmacs 6
Overview of Zmacs File Manipulation

394

Text Editing and Processing

p

Commands 148

P
SELECT P 44

P Dired command 172
Init File Form: Putting Buffers Into Current Package 272

Setting the Package 156
Set Package (m-X) Zmacs command 156

Packages 156
Backward Page 80

Count Lines Page 55
Forward Page 80

Introduction to Motion by Page 80
Mark Page 107

Motion by Page 80
Next Page 28,80

Previous Page 28,80
Commands to Mark Regions by Pages 107

Count Pages 61
Black pane 303

Drawing pane 291, 330
FED Drawing Pane 291
FED Prompt Pane 292

FED Register Pane 294
FED Sample Pane 291

FED Status Pane 293
Height and width of the drawing pane 324

Mousing on the FED Character Select Pane 331
Mousing on the FED Drawing Pane 330
Mousing on the FED Register Pane 331
Mousing on the FED Sample Pane 331

Prompt pane 292
Register pane 294, 307, 331
Sample pane 291, 299, 321, 331

Setting the Box Size in the FED Drawing Pane 324
Setting the Height and Width of the FED Drawing Pane 324

Size of boxes in the drawing pane 324, 327
Status pane 293

Using the mouse in the character select pane 331
Using the mouse in the drawing pane 330
Using the mouse in the register pane 331
Using the mouse in the sample pane 331

Drawing Pane Menu 292
Backward Paragraph 28, 79

Fill Paragraph 11 0
Forward Paragraph 28, 79

Introduction to Motion by Paragraph 79
Mark Paragraph 107

Motion by Paragraph 79
Commands to Mark Regions by Paragraphs 107

Count Paragraphs 61
Example of Commands to Mark Regions by Paragraphs 107

FED Font Parameters Menu 293
Font Parameters menu 293

Mousing on the FED Font Parameters Menu 331
Using the mouse in the Font Parameters menu 331

Find Unbalanced Parentheses 56
Insert Matching parentheses 233

Find Unbalanced Parentheses (m-X) Zmacs command 56
Check Unbalanced Parentheses When Saving Variable 271

July 1986

p

July 1986

Current
In-progress

Send mail about
Add
Add

Active
Inactive
Making

Show
Add region to

Install

Set

Abort
Add

Finish
Recompile

Reload
Resume

Select
Start

Start Private
Initial

In-progress
Default

Entering

Saving Characters and

Zmacs
Zmacs Electric

Clear gray
Getting Things Into the FED Gray

Gray
Merging Characters with the FED Gray

Move drawing in the gray
The FED Gray

Gray
FED Gray

Retrieving the Black
c-X

Describe Variable At
Dired move

Editor Window's Cursor and
Move to Default Previous

Move to Previous
Moving the

Exclamation
Swap

Buffer
L:Move

Sh-2:Move to
The

Clear all
Moving to Previous

[Clear

Parenthesizing Lisp Expressions In Zmacs 233
patch 246
patch 246
patch 247
Patch Changed Definitions (m-X) 245
Patch Changed Definitions of Buffer (m-X) 245
patches 242, 246
patches 246
Patches 242
Patches (m-X) 246
patch file 242
patch file 247
Patch-File Attribute 161
Patch-File file attribute 161
Patch File (m-X) Zmacs command 161
Patching Programs in Zmacs 242
Patch (m-X) 248
Patch (m-X) 244
Patch (m-X) 247
Patch (m-X) 248
Patch (m-X) 248
Patch (m-X) 248
Patch (m-X) 246
Patch (m-X) 243
Patch (m-X) 244
patch state 246
patch state 246
Path names in Dired 166
Peek 44
Performing Operations with Tag Tables 123
Pieces of Characters In FED Registers 307
Pixel 254, 291
PI1 Mode 177
PI1 Mode 177
plane 303, 328
Plane 303
plane 293, 303
Plane 304
plane 303, 328
Plane 303
Plane Menu 293
Plane Menu Items 328
Plane While Manipulating FED Registers 307
p 1 us-S I GN Add Global Word Abbrev 200
Point 54
Point 55
point 168
Point 18
Point 102
Point 102
point 67
point (!) line continuation indicator 25, 64
Point And Mark 103
Point and the Region 100
pointers 100
point mouse click 67
point mouse click 67
Polnt-pdl 101
points 327
Points 102
Points] Font Editor draw mode menu item 299

395

Index

396

Text Editing and Processing

[Flip
[Set

Yank
Set

Yank
Default column

Mode Line's

Displaying the Next
Example of Displaying the Next

Next

Set Fill

Finding Out What a

Getting Out of Keystroke
Nullifying

Online documentation for
Getting Out of

Appending,

Select
Select Default

Displaying
Moving up to Lisp Comment on

Deleting the

Move to
Move to Default

Moving to

Displaying the
Deleting the
Deleting the

Start

Compiling Lisp
Editing Lisp

Evaluating and Compiling Lisp
Evaluating Lisp

Introduction to Editing Lisp
Overview of Evaluating and Compiling Lisp

Patching
Zmacs Speller

FED
Escaping from

Getting Out of Minibuffer
Getting Out of Prefixes and

Minibuffer
File

Show File
View File

Changing File
Change File

July 1986

Points] Font Editor draw mode menu item 299
Points] Font Editor draw mode menu item 299
Pop 59,88
Pop Mark 102
Pop Matching 88
position 75
Position-flag 22
Positioning the Drawing in FED 323
Positioning the Window Around a Definition 66
Possibility 126
Possibility 127
Possibility 126
Possibility Buffers 126
Prefix 110
Prefix character commands 7
Prefix Command Does 52
Prefix Commands 52
Prefixes 48
Prefixes 48
prefixes 48
prefixes 52
Prefixes and Prompts 48
Prepending, and Inserting Text in Zmacs 141
Prepending a Region to a File 141
Prepend To File (m-X) Zmacs command 141
Previous Buffer 133
Previous Buffer 133
previous keystrokes 53
Previous Line in Zmacs 227
Previous Lisp Expression 93
Previous Page 28, 80
Previous Point 102
Previous Point 102
Previous Points 102
Previous Screen 28
Previous Screen 66
Previous Sentence 97
Previous Word 92
Private Patch (m-X) 244
Procedure for Creating Zmacs Commands with

Keyboard Macros 257
Producing Formatted Text 35
Programs in Zmacs 230
Programs in Zmacs 223
Programs in Zmacs 229
Programs in Zmacs 229
Programs in Zmacs 224
Programs in Zmacs 229
Programs in Zmacs 242
Prompt command 181
Prompt pane 292
Prompt Pane 292
prompts 48
Prompts 48
Prompts 48
Prompts 48
Properties 150
Properties 150
Properties 150
Properties in Dired 168
Properties (m-X) Zmacs command 150

July 1986

Q

R

397

Index

Show File Properties (m-X) Zmacs command 150
Changing the Properties of a File 150
Showing the Properties of a File 150

Protecting Files From Being Deleted in Dired 171
Protecting Files From Being Reaped in Dired 171

@ p text environment 36
Init File Form: Putting Buffers Into Current Package 272

Q
Q Dired command 167
Q Font Editor command 329

c-X Q Zmacs command 260
Quadruple Numeric Arg 26

Kbd Macro Query 260
Update Attribute List Query 159

Querying While Making Global Replacements in
Zmacs 118

Q

Querying While Making Multiple Global Replacements
in Zmacs 119

Query Replace 118
Atom Query Replace 121

R

Query Replace Last Kill 120
Query Replace LET Binding 121
Query Replace (m-X) Zmacs command 118
Quick Arglist 55
Quotation text environment 36

R Dired command 169
[Read File] Font Editor menu item 326,329
Reading a File Into a New Buffer 137
Reading a File Into an Existing Buffer 137
Reading and Writing FED Files 325
Reading FED Files 325
Reading font files 326

m-X Read Spell Dictionary 190
zwel: read-spell-dlctlonary function 193
zwel: read-slandard-spell-dictlonarles function 194

Read Word Abbrev File 202
Down Real Line 28, 74, 95

Up Real Line 28, 74, 95
Init File Form: Setting Goal Column for Real Line Commands 273

Protecting Files From Being Reaped in Dired 171
Reap File (m-X) Zmacs command 153

Dired Complement No Reap Flag 171
Recentering the Window 65

Comparing Recent Versions of Files in Dired 169
Recompile Patch (m-X) 248

Error recovery 48
Redisplaying the Window 65

Introduction to Redisplaying the Window 65
[Reflect] Font Editor menu item 309, 327
Reflecting Drawings in FED 309
Reflecting the drawing 309, 327
REFRESH Font Editor command 330
Region 100

c-X c-J Change Style Region 210
Change One Style Region 210

R

398

Text Editing and Processing July 1986

Compiling a Region 109
Count Lines Region 55

Creating a Region 101
Deleting a Region 109

Evaluate Region 230
Fill Region 110

Filling a Region 109
Format Region 42

Hardcopying a Region 109
Kill Region 30

m-X Spell Region 184
Make region 67
Mark region 67

Mark and the Region 100
Point and the Region 100

Save Region 109
Saving a Region 109

Two Windows Showing Region 146
What is a Zmacs Region? 100

Marking a Region From Here to Beginning of Buffer 107
Marking a Region From Here to End of Buffer 107

Creating Two Windows with the Region in Top 146
Indenting Region in Zmacs 219
Compile Region (m-X) Zmacs command 109
Evaluate Region (m-X) Zmacs command 230

Format Region (m-X) Zmacs command 35, 42
Region-Manipulating Commands 109
Region Marking Mode Variable 270

Other Region-related Commands 110
Region Right Margin Mode Variable 270

Commands to Mark Regions 106
Exchange Regions 109

Getting Information About Buffers and Regions 61
Introduction to Regions 1 00

Overview of Commands to Mark Regions 106
Transposing Regions 109

Commands to Mark Regions by Buffers 107
Commands to Mark Regions by Usp Expressions 106
Commands to Mark Regions by Pages 1 07
Commands to Mark Regions by Paragraphs 107

Example of Commands to Mark Regions by Paragraphs 107
Commands to Mark Regions by Words 106

Saving and Inserting Regions in Registers 104
Changing Case of Regions in Zmacs 214

Inserting and Removing Lisp Comments From Regions in Zmacs 228
Working with Regions in Zmacs 99
Appending a Region to a Buffer 141
Appending a Region to a File 141

Prepending a Region to a File 141
Add region to patch file 242

Indenting Region Uniformly in Zmacs 220
Evaluate Region Verbose 230

Creating a Region with Keystrokes 101
Creating a Region with the Mouse 101

Retrieving the Contents of a FED Register 307
Saving a Drawing Into a FED Register 307

Insert text from register into buffer 105
Register pane 294,307,331

FED Register Pane 294
Mousing on the FED Register Pane 331

Using the mouse in the register pane 331

399

July 1986 Index

Registers 294
Retrieving the Black Plane While Manipulating FED Registers 307

Saving and Inserting Regions In Registers 104
Saving and Moving to Locations in Registers 104

Saving Characters and Pieces of Characters in FED Registers 307
Registers in Zmacs 104
Reindenting Expression in Zmacs 219
Reinitializing Zmacs 12
Reload Patch (m-X) 248
Relocate cursor 67

Inserting and Removing Lisp Comments From Regions in
Zmacs 228

Rename Buffer (m-X) Zmacs command 136
[Rename Char] Font Editor menu item 298. 329
Rename File 151
Rename File (m-X) Zmacs command 151
Renaming a File 151

Selecting a FED Character by Renaming Characters 298
Renaming Files 169

Copying and Renaming Files in Dired 169
Renaming the Buffer 136
Reparse Attribute List (m-X) Zmacs command 155
Repeat Last Matching Minibuffer Command 88
Repeat Last Minibuffer Command 59. 88

Atom Query Replace 121
Query Replace 118

Evaluate and Replace Into Buffer 120
Evaluate and Replace Into Buffer (m-X) Zmacs command 230

Query Replace Last Kill 120
Query Replace LET Binding .121
Query Replace (m-X) Zmacs command 118

Example of a Tag Tables Replacei-lent Operation 122
Other Types of Replacement Operations in Zmacs 120
Making Global Replacements in Zmacs 118

Querying While Making Global Replacements In Zmacs 118
Querying While Making Multiple Global Replacements in Zmacs 119

Replace String (m-X) Zmacs command 118
Searching. Replacing. and Sorting in Zmacs 113

Overview of Locating and Replacing Strings Automatically 118
Locating and Replacing Strings Automatically in Zmacs 118

Reposition Window 66
Re-reading a File Into the Buffer 138

Motion with Respect to the Whole Buffer 81
Cancel response 48

Minibuffer Response Format 59
Minibuffer Response Help 59

More Ways to Enter Minibuffer Responses 59
Moving Rest of Line Down in Zmacs 221

Restoring text 49
Resume Patch (m-X) 248

Setting Generation Retention Count on Files in Dired 171
Retrieving History Elements 87
Retrieving the Black Plane While Manipulating FED

Registers 307
Retrieving the Contents of a FED Register 307

Carriage return 7
RETURN completion command 15
RETURN key in the mini buffer 59
Returning to One Window 147

Zmacs Reverse Incremental Search 115
Dired Reverse Undelete 170

400

Text Editing and Processing July 1986

s

Revert Buffer (m-X) Zmacs command 138
Reverting buffers 138. 139

Finding the right command 53
Left and Right Edges of the FED Character Box 301

Right margin 254
Region Right Margin Mode Variable 270

R:Menu mouse click 67
[Rotate] Font Editor menu item 309.327
Rotating Drawings in FED 309
Rotating the drawing 309. 327

@ r text environment 36
Rubout 30
RUBOUT Dired command 170
RUBOUT key 24
RUBOUT Zmacs character 90
RUBOUT Zmacs command 30. 49

c-X RUBOUT Zmacs command 30. 97

s
c-X
[Set

FED
Mousing on the FED

Using the mouse in the

The FED
What Histories

m-X

Source Compare
Source Compare Merge

m-X

Creating and
Description of Creating and

Summary of Creating and

S Font Editor command 329
S Zmacs command 32
Sample] Font Editor menu item 321. 329
Sample pane 291. 299. 321. 331
Sample Pane 291
Sample Pane 331
sample pane 331
Sample string 291. 321. 329
Sample String 321
Save 84
Save All Files (m-X) 136
Save All Spell Dictionaries 192
[Save Char] Font Editor menu item 298. 329
Saved Definition 144
Saved Definition 144
Save File 32. 138
Save File Zmacs command 34
Save Region 1 09
Save Spell Dictionary 191
Saving a Drawing Into a FED Register 307
Saving a File 34
Saving and Inserting Regions in Registers 104
Saving and Moving to Locations in Registers 104
Saving a Region 1 09
Saving Buffers 136
Saving Buffers and Files 32
Saving Buffers and Files 32
Saving Buffers and Files 32

s

Saving Characters and Pieces of Characters in FED

Example 1 of Writing and
Example 2 of Writing and

Writing and

Check Unbalanced Parentheses When

Displaying the Next
Displaying the Previous

Introduction to the Organization of the

Registers 307
Saving Keyboard Macros 260
Saving Keyboard Macros 260
Saving Keyboard Macros 259
Saving the Buffer Contents to the File 138
Saving Variable 271
Scale fraction 303
SCL syntax 158
Scope of the Zmacs Manual 4
Screen 65
Screen 66
Screen 18

401

July 1986 Index

Next Screen 28
Organization of the Screen 18

Previous Screen 28
Split Screen 147

Splitting the Screen 147
SCROLL Zmacs command 28
Scroll bar 323
Scrolling the drawing 323
Scrolling the Drawing Horizontally and/or Vertically in

FED 323
Scrolling the Other Window 147
Scroll Other Window 147

Zmacs Incremental Search 114
Zmacs Reverse Incremental Search 115

Zmacs String Search 116
Introduction to Tag Tables and Search Domains 122

Tag Tables and Search Domains in Zmacs 122
Searching for Appropriate Commands 53
Searching for Appropriate Zmacs Commands 52

Method for Searching for Appropriate Zmacs Commands 53
Searching in Zmacs 114

Overview of Searching in Zmacs 114
Searching, Replacing, and Sorting in Zmacs 113

Example of a Search String for HELP A 53
SELECT C 44
SELECT 0 44
SELECT E 12, 44

Entering Zmacs with SELECT E 12
SELECT F 44
SELECT I 44
SELECT key 44

Leaving Zmacs with the SELECT Key 44
SELECT L 44
SELECT M 44
SELECT N 44
SELECT P 44
SELECT T 44
SELECT X 44

Using Two Windows, Select Bottom 146
Select Buffer 32, 133
Select Default Previous Buffer 133
Selected buffer 132
Selecting a Character in FED 297
Selecting a FED Character by Creating a New

Character 298
Selecting a FED Character by Renaming

Characters 298
Selecting a FED Character From the Character Select

Menu 298
Selecting a FED Character From the [Show Font]

Display 298
Selecting a FED Character with the C Command 298
Selecting a font 329
Selecting a Font in FED 294
Selecting, Listing, and Examining Zmacs Buffers 132

Character Select menu 293
FED Character Select Menu 293

Selecting a FED Character From the Character Select Menu 298
Mousing on the FED Character Select Pane 331

Using the mouse in the character select pane 331
Select Patch (m-X) 246

402

Text Editing and Processing July 1986

Select Previous Buffer 133
Using Two Windows, Select Top 146

Semicolon (;) comment indicator 226
Send mail about patch 247

zwel: *send-mall-about-patch* 247
Mouse Sensitivities in FED 330

Backward Sentence 28, 73
Backward Kill Sentence 30

Deleting the Current Sentence 97
Deleting the Previous Sentence 97

Forward Sentence 73
Kill Sentence 30, 97

Motion by Sentence 73
Description of Zmacs Sentence Delimiters 73, 97

Deleting Sentences 97
Introduction to Deleting Sentences 97

zwel: *set-attrlbute-update-lIst* global variable 159
Set Backspace (m-X) Zmacs command 159
Set Base (m-X) Zmacs command 160
Set commands for file and buffer attributes 159

Other Set Commands for File and Buffer Attributes 159
Set Default Character Style 212
Set Fill Column 254
Set Fill Prefix 11 0
Set Fonts (m-X) Zmacs command 160
Set Goal Column 75
Set Lowercase (m-X) Zmacs command 160
Set Nofill (m-X) Zmacs command 160
Set Package (m-X) Zmacs command 156
Set Patch File (m-X) Zmacs command 161
[Set Points] Font Editor draw mode menu item 299
Set Pop Mark 102
[Set Sample] Font Editor menu item 321,329
Set Syntax [m-X) 158
Settable Zmacs Variables 270
Set Tab Width (m-X) Zmacs command 161
Setting/Popping the Mark 102
Setting Buffer Attributes 159

Init File Form: Setting Default Major Mode 273
Setting Editor Variables in Init Flies 272

Init File Form: Setting Find File Not to Create New Files 273
Setting Generation Retention Count on Files in

Dired 171
Init File Form: Setting Goal Column for Real Line Commands 273

Setting Key Bindings in Init Files 274
Setting Mode Hooks in Init Files 273

How to Specify Zmacs Variable Settings 269
Base and Syntax Default Settings for Usp 33, 137, 176, 224

Setting the Box Size in the FED Drawing Pane 324
Setting the Height and Width of the FED Drawing

Pane 324
Setting the Key 267
Setting the Lisp Comment Column in Zmacs 227

Overview of Setting the Major Mode 176
Setting the Package 156
Setting the Syntax for Symbolics Common Lisp 158
Setting the Zmacs Major Mode 175
Setting Variables 270
Set Variable 271
Set Variable (m-X) Zmacs command 271
Set Visited File Name (m-X) Zmacs command 139

403

July 1986 Index

Set Vsp (m-X) Zmacs command 161
Backward Sexp 76

Backward Kill Sexp 30,93
Forward Sexp 76

Kill Sexp 30, 93
Mark Sexp 106

Exchange Sexps 93
Sh-2:Move to point mouse click 67
Shift keys 7

Init File Form: Electric Shift Lock in Usp Mode 273
Sh-M:Save/KiIIlYank mouse click 67
Show Buffer (m-X) Zmacs command 135
Show Character Styles 212

m-X Show Contents of Spell Dictionary 193
Show Directory 149
Show Directory (m-X) Zmacs command 149
Show Documentation 54
Show File (m-X) Zmacs command 150
Show File Properties 150
Show File Properties (m-X) Zmacs command 150

Selecting a FED Character From the [Show Font] Display 298
Mousing on the FED List Fonts and Show Font Displays 332

[Show Font] Font Editor menu item 291,297,298,
329

Using the mouse with [Show Font] Font Editor menu item 298,332
Showing a Buffer 135
Showing a File 150
Showing a Keyboard Macro 258

Two Windows Showing Region 146
Showing the Mark 103
Showing the Properties of a File 150
Show Keyboard Macro (m-X) Zmacs command 258
Show Login Directory 149
Show Login Directory (m-X) Zmacs command 149
Show Patches (m-X) 246

m-X Show Spell Dictionaries 191
Sh-R:System menu mouse click 67

Adding Site-specific Speller Dictionaries 189
List the last sixty commands 53
List the last sixty keystrokes 53

Changing Window Size 146
[Grid Size] Font Editor menu Item 324, 327

Setting the Box Size in the FED Drawing Pane 324
Size of boxes in the drawing pane 324, 327

List Some Word Abbrevs 202
Using Keyboard Macros to Sort 261

Zmacs Sorting Commands 128
Sorting in Zmacs 128

Overview of Sorting in Zmacs 128
Searching, Replacing, and Sorting in Zmacs 113

Sort Via Keyboard Macros 261
Finding source code 224

Introduction to Locating Source Code in Zmacs 235
Editing the source code of a function 12

Locating Source Code to Edit in Zmacs 235
Source Compare 142, 148

Example of a Source Compare 142
Source Compare Installed Definition 145
Source Compare (m-X) Zmacs command 142
Source Compare Merge 142
Source Compare Merge Installed Definition 145

404

Text Editing and Processing

Delete Horizontal

HELP
Init File Form: Fixing White

Init File Form: White
Vertical

Moving to a

Creating Two Windows,
How to

m-X Tags
m-X

m-X Save All
m-X Show

m-X Add Word to
m-X Compile

m-X Delete Word From
m-X Kill

m-X Read
m-X Save

m-X Show Contents of
Create

Using the Zmacs
Zmacs
Zmacs
Zmacs

Adding Site-specific
Adding User-specific

Introduction to

The Zmacs
Zmacs

m-X
Speller Commands for

m-X
m-$
m-X

Draw a cubic
[Draw

Init File Form: c-m-L on the
Dired

July 1986

Source Compare Merge (m-X) Zmacs command 142
Source Compare Merge Newest Definition 144
Source Compare Merge Saved Definition 144
Source Compare Newest Definition 144
Source Compare Saved Definition 144
SPACE 15
Space 30
SPACE completion command 15
SPACE Dired command 168
SPACE Zmacs command 14
Space for KilVYank Commands 273
Space in Lisp Code 274
spacing 161
Specified Line 66
Specifying and Listing Tag Tables 122
Specifying Other Contents 146
Specify Zmacs Variable Settings 269
Spell 185
Spell Buffer 180, 185
Spell Dictionaries 192
Spell Dictionaries 191
Spell Dictionary 192
Spell Dictionary 190
Spell Dictionary 193
Spell Dictionary 192
Spell Dictionary 190
Spell Dictionary 191
Spell Dictionary 193
Spell Dictionary From Namespace Command 190
Speller 180
Speller 179
Speller Accept command 181
Speller Accept Once command 181
Speller Commands for Spelling 184
Speller Dictionaries 187
Speller Dictionaries 189
Speller Dictionaries 188
Speller Dictionaries 187
Speller dictionary 187
Speller Dictionary Commands 190
Speller dictionary file 187
Speller Dictionary Functions 193
Speller dictionary list 187
Speller Dictionary Management 187
Speller list of dictionaries 187
Speller Menu 181
Speller Prompt command 181
Spell File 185
Spelling 184
Spelling correction 180
Spell Region 184
(Spell This Word) 184
Spell Word 184
spline 327
Spline] Font Editor menu item 312, 327
Split Screen 147
Splitting the Screen 147
SQUARE Key 274
Srccom 169
Standard comtab 267
Standard TV Fonts 287

405

July 1986 Index

Getting Started in Zmacs 11
Starting a Keyboard Macro 258
Starting a New Line 24
Starting Zmacs 12
Start Kbd Macro 257

Erase backward to start of line 96
Start Patch (m-X) 243
Start Private Patch (m-X) 244

Initial patch state 246
In-progress patch state 246

Zmacs Commands for Finding Out About the State of Buffers 278
Zmacs Commands for Finding Out About the State of Zmacs 279

Status line documentation 323
Status pane 293

FED Status Pane 293
[Stretch] Font Editor menu item 327
Stretching a character 327
Stretching a Drawing Horizontally in FED 316
Stretching a Drawing Vertically in FED 316
Stretching and Contracting Drawings in FED 316

Example of Listing Variables by Matching a String 270
Listing Variables by Matching a String 269

Sample string 291,321,329
The FED Sample String 321

Example of a Search String for HELP A 53
Replace String (m-X) Zmacs command 118

String-matching in yank commands 85
c-sh-Y string-matching yank command 87

Overview of Locating and Replacing Strings Automatically 118
Locating and Replacing Strings Automatically in Zmacs 118

Zmacs String Search 116
c-m-J Change Typein Style 211

Find Character In Style 212
Set Default Character Style 212

c-J Change Style Character 210
Introduction to the Character Style Commands 206

Character Style Commands in Zmacs 21 0
Character style for 206

c-X c-J Change Style Region 210
Change One Style Region 210

Character styles 210, 211, 212
Show Character Styles 212
Using Character Styles in Zmacs 205

m-J Change Style Word 211
Text subheading 39

Subheading text environment 36
FED, the Subsystem 291

Dired Command Summary 165
Zmacs Help Command Summary 277

Summary of Creating and Saving Buffers and
Files 32

Summary of Cursor Movement 64
Summary of Erasing Text 30
Summary of Moving the Cursor 28
Summary of Zmacs Minor Modes 254
Support Buffers 126
Supported file formats 326

Getting Things Into Gray with [Swap Gray] 303
[Swap Gray] Font Editor menu item 303, 328
Swap Point And Mark 1 03

Setting the Syntax for Symbolics Common Lisp 158

406

Text Editing and Processing July 1986

T

Default syntax 158
SCL syntax 158

Zetalisp syntax 158
Syntax attribute 157

Base and Syntax Defaults 157
Base and Syntax Default Settings for Lisp 33, 137, 176, 224

Setting the Syntax for Symbolics Common Usp 158
Set Syntax [m-X) 158

Entering File System Editor 44
Edit System Files 238

Leaving Zmacs Via the System Menu 44

T T
SELECT T 44

c-X T Zmacs command 109
TAB 217
TAB in zl:loop macro 216

@ tabclear text formatting command 39
@ tabdivide text formatting command 39

Compile Changed Definitions of Tag Table 231
Command tables 7, 267

Introduction to Zmacs Command Tables 7
Performing Operations with Tag Tables 123

Specifying and Listing Tag Tables 122
Introduction to Tag Tables and Search Domains 122

Tag Tables and Search Domains in Zmacs 122
Example of a Tag Tables Replacement Operation 122

Example 1 of Making Tables Using Keyboard Macros 264
Example 2 of Making Tables Using Keyboard Macros 265

Making Tables Using Keyboard Macros 263
How Tag Tables Work 122

Table text environment 36
@ tabset text formatting command 39

Example of Using Tabs to Format Text 41
Tab-Width Attribute 161
Tab-Width file attribute 161

Set Tab Width (m-X) Zmacs command 161
m-X Tags Spell 185

Compile Changed Definitions of Tag Table 231
Performing Operations with Tag Tables 123

Specifying and Listing Tag Tables 122
Introduction to Tag Tables and Search Domains 122

Tag Tables and Search Domains in Zmacs 122
Example of a Tag Tables Replacement Operation 122

How Tag Tables Work 122
Zmacs Teco Mode 177
zwel: *temp-flle-type-lIst* variable 153

Entering Terminal 44
Deleting Vs. Killing Text 84

Description of Erasing Text 30
Erasing text 90

Example of Using Tabs to Format Text 41
Inserting Text 24

Introduction to Erasing Text 30
Introduction to Inserting Text 24

Marking text 106
Overview of Deleting Vs. Killing Text 84

Producing Formatted Text 35
Restoring text 49

Summary of Erasing Text 30

July 1986

Transposing Lines of Text 96
Zmacs Commands for Formatting Text 35

Getting Text Back 49
@b text environment 36
@c text environment 36
@g text environment 36
@i text environment 36

@p text environment 36
@r text environment 36
@t text environment 36

Boldface text environment 36
Center text environment 36

Description text environment 36
Display text environment 36

Enumerate text environment 36
Equation text environment 36
Example text environment 36

Figure text environment 36
Flushleft text environment 36

Flushright text environment 36
Format text environment 36

Fullpagefigure text environment 36
Fullpagetable text environment 36

Heading text environment 36
Italics text environment 36

Itemize text environment 36
Majorheading text environment 36

Multiple text environment 36
Outputexample text environment 36

Quotation text environment 36
Subheading text environment 36

Table text environment 36
Verbatim text environment 36

Text example 39
@ text formatting command 39

@# text formatting command 39
@* text formatting command 39
@. text formatting command 39
@= text formatting command 39
@> text formatting command 39

@blankspace text formatting command 39
@caption text formatting command 39

@foot text formatting command 39
@note text formatting command 39

@tabclear text formatting command 39
@tabdivide text formatting command 39

@tabset text formatting command 39
@\ text formatting command 39
@" text formatting command 39

Basic Text Formatting Commands 39
Basic Text Formatting Environments 36

Introduction to Text Formatting in Zmacs 35
Insert text from register into buffer 105

Text heading 39
Appending, Prepending, and Inserting Text in Zmacs 141

Deleting and Transposing Text in Zmacs 83
Init File Form: Auto Fill in Text Mode 274

Zmacs Text Mode 176
Text subheading 39

Example of Filling Text with Auto Fill Minor Mode 253
Finding Files That Have Not Been Backed up in Dired 172

407

Index

408

Text Editing and ProcessIng July 1986

How They Work 155
M:Mark thing mouse dick 67
Getting Things Into Gray with [Gray Char] 303
Getting Things Into Gray with [Swap Gray] 303
Getting Things Into the FED Gray Plane 303

New Line with This Indentation In Zmacs 220
m-$ (Spell This Word) 184

Append To Buffer 141
Append To File (m-X) Zmacs command 141
Prepend To File (m-X) Zmacs command 141

Toggle 253
Creating Two Windows with the Region in Top 146

Using Two Windows, Select Top 146
Top Edge of the FED Character Box 301

Abort At Top Level 48
Motion Among Top-Level Expressions 77

Trace 56
Trace (m-X) Zmacs command 56

FED Configuration and Drawing Transformation 327
Transformations on Characters in FED 309
Transposing Characters 90

Deleting and Transposing Characters 90
Deleting and Transposing Unes 95

Introduction to Deleting and Transposing Unes 95
Transposing Unes of Text 96
Transposing Usp Expressions 93

Deleting and Transposing Usp Expressions 93
Introduction to Deleting and Transposing Usp Expressions 93

Transposing Regions 109
Deleting and Transposing Text in Zmacs 83

Transposing Words 92
Deleting and Transposing Words 92

Introduction to Deleting and Transposing Words 92
Getting Out of Trouble 48

Overview of Getting Out of Trouble 48
Attributes of TV Fonts 285

Standard TV Fonts 287
Two window mode 146
Two Windows 146

Modified Two Windows 146
Using Two Windows 146
View Two Windows 146

Using Two Windows, Select Bottom 146
Using Two Windows, Select Top 146

Two Windows Showing Region 146
Creating Two Windows, Specifying Other Contents 146
Creating Two Windows with the Region in Top 146

Finding Out What You Have Typed 53
c-m-J Change Typein Style 211

Typeout 18
Editor Window's Typeout 18

Typeout window 18, 51
Canonical types 152

File Types and Zmacs Major Modes 256
Other Types of Replacement Operations in Zmacs 120

Typical use of Zmacs 224
Correcting Typos 24

July 1986

u u
c-X

HELP
Find
Find

Check
Dired

Dired Reverse

Dlred Next
c-X U

Indenting Region

Motion

Finding Files That Have Not Been Backed

Backward
Forward

Kill Backward

Moving

Adding

409

Index

U Dired command 170
U Unexpand Last Word 203
U Zmacs command 14,53
Unbalanced Parentheses 56

u

Unbalanced Parentheses (m-X) Zmacs command 56
Unbalanced Parentheses When Saving Variable 271
Undelete 170
Undelete 170
Undo a" changes to buffer 138
Undumped 172
Un expand Last Word 203
Uniformly in Zmacs 220
Unknown attribute 156
up and Down Nesting Levels 77
Update Attribute List (m-X) Zmacs command 156
Update Attribute List Query 159
Updating the Dired Display 164
up in Dired 172
Up Line 74,95
up List 77
up List 77
Up List (c-m-X) Zmacs command 93
Up Real Line 28, 74, 95
up to Lisp Comment on Previous Line in Zmacs 227
User-Defined Zmacs Major Modes 256
User-specific Speller Dictionaries 188

v v v
HELP

c-HELP
c-m-?

c-X
HELP

Check Unbalanced Parentheses When Saving
Definition of a Zmacs

Describe
fs:*flle-type-mode-allst*

One Window Default
Region Marking Mode

Region Right Margin Mode
Set

zl:lbase global
zwel :*flle-verslons-kept*

zwel :*maJor-mode-translatlons*
zwel:*set-attrlbute-update-lIst* global

zwel :*temp-flle-type-lIst*

Describe
Describe

Set
Describing Zmacs

Finding Out About Zmacs
List

Listing Zmacs
Settable Zmacs

V 54
V Dired command 169
V Font Editor command 321, 329
V Zmacs command 269
V Zmacs command 269
V Zmacs command 135
V Zmacs command 14, 54, 269
Variable 271
Variable 269
Variable 269
variable 256
Variable 270
Variable 270
Variable 270
Variable 271
variable 160
vari abl e 153
variable 256
variable 159
variable 153
Variable Apropos 269
Variable Apropos Zmacs command 269
Variable At Point 55
Variable (m-X) Zmacs command 269
Variable (m-X) Zmacs command 271
Variables 269
Variables 269
Variables 269
Variables 269
Variables 270

410

Text Editing and Processing

Setting
Zmacs

Example of Listing
Listing

How to Specify Zmacs
Setting Editor

List

Evaluate Region
Mode Line's

Minor
Comparing/Merging Current/Installed
Comparing/Merging Current/Newest
Comparing/Merging Current/Saved

Comparing file
Deleting Multiple

File
Deleting Multiple File

Comparing Recent
Contracting a Drawing

Moving the Drawing Horizontally and/or
Scrolling the Drawing Horizontally and/or

Stretching a Drawing

Sort
Leaving Zmacs

Dlred

[Center
[Move

Set

Deleting
Overview of Deleting

Set

Variables 270
variables 54
Variables by Matching a String 270
Variables by Matching a String 269
Variable Settings 269
Variables in Init Files 272
Variables (m-X) Zmacs command 269
Variable-width fonts 286
Verbatim text environment 36
Verbose 230
Version 22
version number 242
Versions 145
Versions 144
Versions 144
versions 169
Versions 153
versions 130
Versions in Dired 170
Versions of Files in Dired 169
Vertically in FED 316
Vertically in FED 323
Vertically in FED 323
Vertically in FED 316
Vertical spacing 161
Via Keyboard Macros 261
Via the System Menu 44
View Buffer 135
View File 150
View File 169
View File Properties 150

July 1986

View] Font Editor menu item 323, 327
View] Font Editor menu item 323, 327
Viewing and Altering a Character in the FED

Character Box 301
Viewing and Editing File Contents in Dired 169
Viewing File Attributes in Dired 168
Viewing the Editor Command History 86
Viewing the Kill History 85
View Two Windows 146
Visited File Name (m-X) Zmacs command 139
Visit File 137
Vs. Killing Text 84
Vs. Killing Text 84
Vsp Attribute 161
Vsp file attribute 161
Vsp (m-X) Zmacs command 161

w w w
c-X

HELP
HELP

Lisp Compiler

More
Finding Out
Finding Out

Example of Finding Out
Finding Out

W Zmacs command 32
W Zmacs command 14
W Zmacs command 54
Warnings 232
Warnings about file attribute lists 156
Ways to Enter Minibuffer Responses 59
What an Extended Command Does 52
What a Prefix Command Does 52
What a Zmacs Command Does 51
What a Zmacs Command Does 51
What Histories Save 84

July 1986

Finding Out
Check Unbalanced Parentheses

Fast
Using the CONTROL key

Using the HET A key
Querying
Querying

Retrieving the Black Plane
Init File Form: Fixing

Init File Form:
Motion with Respect to the

Blinker
Character

Blinker
Character

Set Tab
Height and

Setting the Height and
Choosing the Other

Grow
Introduction to Redisplaying the

One
Other

Recentering the
Redisplaying the

Reposition
Returning to One

Scrolling the Other
Scroll Other

Typeout
Wraparound Lines in the Editor

Zmacs Editor
The Editor

Positioning the
Zmacs

One
Two

Modified Two
Multiple

Two
Using Two
View Two

Editor
Editor

Changing
Using Two
Using Two

Two
Creating Two

Editor
Creating Two

Backward
Backward Kill

c-X U Unexpand Last
Deleting the Current

Deleting the Previous

411

Index

What is a Zmacs Region? 100
What the Lines Mean in the FED Character Box 301
What You Have Typed 53
When Saving Variable 271
Where Am I 54
Where Am I 54
while drawing characters 299
while drawing characters 299
.While Making Global Replacements In Zmacs 118
While Making Multiple Global Replacements In

Zmacs 119
While Manipulating FED Registers 307
White Space for KilllYank Commands 273
White Space in Lisp Code 274
Whole Buffer 81
Wide Configuration 291
width 287
width 286,302
Width and Blinker Height Font Attributes 287
Width Font Attribute 286
Width (m-X) Zmacs command 161
width of the drawing pane 324
Width of the FED Drawing Pane 324
Window 147
Window 146
Window 65
Window 147
Window 147
Window 65
Window 65
Window 66
Window 147
Window 147
Window 147
window 18, 51
Window 64
Window 18
Window and the Buffer 64
Window Around a Definition 66
Window Commands 146
Window Default Variable 270
window mode 146
Windows 146
windows 130
Windows 146
Windows 146
Windows 146
Window's Buffer 18
Window's Cursor and Point 18
Window Size 146
Windows, Select Bottom 146
Windows, Select Top 146
Windows Showing Region 146
Windows, Specifying Other Contents 146
Window's Typeout 18
Windows with the Region in Top 146
Word 28,72
Word 30,92
Word 203
Word 92
Word 92

412

Text Editing and Processing July 1986

Forward Word 28, 72
Kill Word 30, 92

m-$ (Spell This Word) 184
m-J Change Style Word 211

m-X Spell Word 184
Motion by Word 72

Word abbrev 198
c-X c-A Add Mode Word Abbrev 200

c-X pl us-SIGN Add Global Word Abbrev 200
Make Word Abbrev 202
Read Word Abbrev File 202
Write Word Abbrev File 203

Word Abbreviation Commands 200
Word Abbreviations 197

Using Word Abbreviations 198
Word Abbrev Mode 203
Word abbrevs 198

Edit Word Abbrevs 201
Insert Word Abbrevs 201
Kill All Word Abbrevs 201

List Word Abbrevs 202
List Some Word Abbrevs 202

m-X Delete Word From Spell Dictionary 193
Commands to Mark Regions by Words 106

Count Words 61
Deleting and Transposing Words 92

Exchange Words 92
Introduction to Deleting and Transposing Words 92

Transposing Words 92
Changing Case of Words in Zmacs 214

m-X Add Word to Spell Dictionary 192
How Tag Tables Work 122

How They Work 155
How Zmacs Keyboard Macros Work 257

How Zmacs Minor Modes Work 253
Working with Buffers and Files in Zmacs 130

Overview of Working with Buffers and Files in Zmacs 130
Working with Regions in Zmacs 99

How Key Bindings Work: the Comtab 267
FED Outside World Interface Menu Items 329

Wraparound Lines 64
Wraparound Lines in the Editor Window 64
Wrapping Lines 25
Write File 32, 138
[Write File] Font Editor menu item 326,329
Write File Zmacs command 34
Write Word Abbrev File 203
Writing and Saving Keyboard Macros 259

Example 1 of Writing and Saving Keyboard Macros 260
Example 2 of Writing and Saving Keyboard Macros 260

Writing FED Files 326
Reading and Writing FED Files 325

Writing font files 326
Writing the Buffer Contents to a File 138

July 1986

x

v

z

X
SELECT X 44

v
Yank 87

c-8 c-m-Y yank command 15
c-m-Y yank command 15

c-o c-Y yank command 15
c-sh-Y string-matching yank command 87

c-Y yank command 15, 87
m-sh-Y yank command 88

m-Y yank command 15,59,88
String-matching in yank commands 85

Yanking 15, 49
Introduction to Yanking 15

Yanking in the command history 15
Yanking in the kill history 15
Yanking in the Minibuffer 59
Yank Matching 87
Yank Pop 59,88
Yank Pop Matching 88

Finding Out What You Have Typed 53

z
How to Use the

The
TAB in

Indentation in
+ flag in

Aligning Indentation in
Appending, Prepending, and Inserting Text in

Buffer and File Attributes in
Centering the Current Line in

Changing Case and Indentation in
Changing Case in

Changing Case of Buffers in
Changing Case of Regions in

Changing Case of Words in
Character Style Commands in

Commenting Lisp Code in
Comparing Files and Buffers in

Compiling Lisp Programs in
Creating a New Indented Lisp Comment Line in

Deleting and Transposing Text in
Deleting Blank Line in
Deleting Indentation in

Dired Mode in
Editing Lisp Programs in

Entering
Evaluating and Compiling Lisp Programs in

Evaluating Lisp Programs in
Executing CP Commands From
Expanding Lisp Expressions in

Getting Help in
Getting Started in

Zetalisp syntax 158
zl:lbase global variable 160
zl:loop Indentor 217
zl :Ioop Indentor 216
zl:loop macro 216
zl:loop Macros 216
Zmacs 131
Zmacs 220
Zmacs 141
Zmacs 155
Zmacs 219
Zmacs 213
Zmacs 214
Zmacs 214
Zmacs 214
Zmacs 214
Zmacs 210
Zmacs 226
Zmacs 142
Zmacs 230
Zmacs 227
Zmacs 83
Zmacs 221
Zmacs 220
Zmacs 163
Zmacs 223
Zmacs 12,44
Zmacs 229
Zmacs 229
Zmacs 43
Zmacs 234
Zmacs 47
Zmacs 11

413

Index

x

v

z

414

Text Editing and Processing

Going Back to First Indented Character in Zmacs 219
Indentation in Zmacs 216

Indenting Current Line in Zmacs 216
Indenting for Usp Comment in Zmacs 226

Indenting New Line in Zmacs 219
Indenting Region in Zmacs 219

Indenting Region Uniformly in Zmacs 220

July 1986

Inserting and Removing Usp Comments From Regions in
Zmacs 228

Inserting Blank Line in Zmacs 221
Introduction to Zmacs 6

Introduction to Customizing Zmacs 252
Introduction to Editing Lisp Programs in Zmacs 224

Introduction to Entering Zmacs 12
Introduction to Locating Source Code in Zmacs 235

Introduction to Text Formatting in Zmacs 35
Invoking Zmacs 12

Killing a Usp Comment in Zmacs 226
Leaving Zmacs 44

Locating and Replacing Strings Automatically in Zmacs 118
Locating Source Code to Edit in Zmacs 235
Making Global Replacements in Zmacs 118

Manipulating Buffers and Files in Zmacs 129
Mouse Documentation Line in Zmacs 67

Moving Down to Usp Comment on Next Line in Zmacs 227
Moving Rest of Une Down in Zmacs 221

Moving the Cursor in Zmacs 63
Moving up to Usp Comment on Previous Line in Zmacs 227

New Une with This Indentation in Zmacs 220
Other Types of Replacement Operations in Zmacs 120

Overview of Zmacs 6
Overview of Changing Case in Zmacs 214

Overview of Commenting Lisp Code In Zmacs 226
Overview of Evaluating and Compiling Usp Programs in

Zmacs 229
Overview of Indentation in Zmacs 216

Overview of Leaving Zmacs 44
Overview of Searching in Zmacs 114

Overview of Sorting in Zmacs 128
Overview of Working with Buffers and Files in Zmacs 130

Parenthesizing Lisp Expressions In Zmacs 233
Patching Programs in Zmacs 242

Querying While Making Global Replacements in Zmacs 118
Querying While Making Multiple Global Replacements in

Zmacs 119
Registers in Zmacs 104

Reindenting Expression in Zmacs 219
Reinitializing Zmacs 12
Searching in Zmacs 114

Searching, Replacing, and Sorting in Zmacs 113
Setting the Usp Comment Column in Zmacs 227

Sorting In Zmacs 128
Starting Zmacs 12

Tag Tables and Search Domains in Zmacs 122
Typical use of Zmacs 224

Using Character Styles in Zmacs 205
Using the mouse to enter Zmacs 12

Working with Buffers and Files in Zmacs 130
Working with Regions in Zmacs 99

Zmacs Commands for Finding Out About the State of Zmacs 279
Zmacs Bolio Mode 177

July 1986

Current

Selecting. Usting. and Examining
RUBOUT

ABORT
Append To File (m-X)

Argllst (m-X)
c-%
c-;
c-=
c-A
c-B
c-O
c-E
c-F
c-G

c-HELP V
c-K
c-L

c-m-(
c-m-)
c-m-;

c-m-? V
c-m-@
c-m-A
c-m-B
c-m-O
c-m-E
c-m-F
c-m-H
c-m-K
c-m-L
c-m-N
c-m-O
c-m-P
c-m-Q
c-m-R

c-m-RUBOUT
c-m-sh-E

c-m-SPACE
c-m-T
c-m-U
c-m-V
c-m-Z
c-m-[
c-m-\
c-m-J
c-m-'"

c-N
c-O
c-P

c-sh-A
c-sh-C
c-sh-O
c-sh-E
c-sh-V

c-SPACE
c-T
c-U

Zmacs Buffer 132
Zmacs Buffer and File Names 130
Zmacs Buffer Commands 133
Zmacs Buffer History 132
Zmacs Buffers 132
Zmacs character 90
Zmacs command 48
Zmacs command 141
Zmacs command 55
Zmacs command 118
Zmacs command 226
Zmacs command 54
Zmacs command 28.74.95
Zmacs command 28. 72
Zmacs command 30.49.90
Zmacs command 28. 74. 95
Zmacs command 28. 72
Zmacs command 48
Zmacs command 269
Zmacs command 30. 95
Zmacs command 65
Zmacs command 77
Zmacs command 77
Zmacs command 226
Zmacs command 269
Zmacs command 1 06
Zmacs command 78
Zmacs command 76
Zmacs command 77
Zmacs command 78
Zmacs command 76
Zmacs command 1 06
Zmacs command 30. 93
Zmacs command 133
Zmacs command 76
Zmacs command 221
Zmacs command 76
Zmacs command 219
Zmacs command 66
Zmacs command 30.93
Zmacs command 230
Zmacs command 1 02
Zmacs command 93
Zmacs command 77
Zmacs command 147
Zmacs command 230
Zmacs command 78
Zmacs command 219
Zmacs command 78
Zmacs command 220
Zmacs command 28. 74. 95. 257
Zmacs command 221
Zmacs command 28. 74. 95
Zmacs command 55
Zmacs command 1 09
Zmacs command 55
Zmacs command 230
Zmacs command 55
Zmacs command 1 02
Zmacs command 90
Zmacs command 26

415

Index

416

Text Editing and Processing

c-v
c-w
c-X

c-x)
c-X 1
c-X 2
c-X 3
c-X 4
c-X 8
c-X'
c-X ~
c-XA
c-X B

c-X c-;
c-X c-B
C-X c-D
c-X c-F
c-X c-I
C-X c-L

C-X c-m-L
C-X c-m-SPACE

C-X c-N
C-X c-O
C-X C-P
C-X c-S
C-X c-T
C-X c-U
C-X c-v
c-X c-W
c-X c-X

C-X 0
C-X E
C-X F
C-X L
c-X 0
C-X Q

C-X RUBOUT
C-X S
C-X T
C-X V
c-X W

c-X [
c-X]
c-X

Change File Properties (m-X)
Clean Directory (m-X)

CLEAR-INPUT
Compile Region (m-X)

Copy File (m-X)
Create Directory (m-X)

Create Link (m-X)
Deinstall Macro (m-X)

Delete File (m-X)
Describe Variable (m-X)

Dired (m-X)
Edit Buffers (m-X).

Edit Definition m- .
Edit Directory (m-X)

End Kbd Macro
Evaluate and Replace Into Buffer (m-X)

Evaluate Buffer (m-X)

Zmacs command 28, 65
Zmacs command 30, 109
Zmacs command 257
Zmacs command 257
Zmacs command 147
Zmacs command 146
Zmacs command 146
Zmacs command 146
Zmacs command 146
Zmacs command 227
Zmacs command 54
Zmacs command 141
Zmacs command 32, 33, 133
Zmacs command 228
Zmacs command 131, 134
Zmacs command 149
Zmacs command 33, 34
Zmacs command 220
Zmacs command 214
Zmacs command 133
Zmacs command 1 02
Zmacs command 75
Zmacs command 30, 221
Zmacs command 1 07
Zmacs command 34, 138
Zmacs command 96
Zmacs command 214
Zmacs command 137
Zmacs command 34, 138
Zmacs command 1 03
Zmacs command 163
Zmacs command 258
Zmacs command 32, 254
Zmacs command 55
Zmacs command 147
Zmacs command 260
Zmacs command 30, 97
Zmacs command 32
Zmacs command 109
Zmacs command 135
Zmacs command 32
Zmacs command 28, 80
Zmacs command 28, 80
Zmacs command 146
Zmacs command 150
Zmacs command 153
Zmacs command 96
Zmacs command 109
Zmacs command 152
Zmacs command 148
Zmacs command 152
Zmacs command 262
Zmacs command 153
Zmacs command 269
Zmacs command 163
Zmacs command 134
Zmacs Command 235
Zmacs command 163
Zmacs command 257
Zmacs command 230
Zmacs command 230

July 1986

July 1986

Evaluate Changed Definitions (m-X)
Evaluate Changed Definitions of Buffer (m-X)

Evaluate Into Buffer (m-X)
Evaluate Region (m-X)

Execute Command Into Buffer (m-X)
Find File

Find File In Fundamental Mode (m-X)
Find Unbalanced Parentheses (m-X)

Format Buffer (m-X)
Format File (m-X)

Format Region (m-X)
Hardcopy Buffer (m-X)

Hardcopy File (m-X)
HELP?
HELP A
HELP C
HELP 0
HELP L

HELP SPACE
HELP U
HELP V
HELP W

HELP W
Insert Buffer (m-X)

Insert File (m-X)
Install Command (m-X)

Install Macro (m-X)
Kill Backward Up List (c-m-X)

LINE
Usp Mode (m-X)

List Buffers
List Changed Definitions of Buffer (m-X)

List Definitions (m-X)
List Files (m-X)

Ust Fonts (m-X)
List Variables (m-X)

m-%
m-)
m-;
m-<
m-=
m->

m-@
m-A
m-8
m-C
m-O
m-E

m-ESCAPE
m-F
m-H
m-K
m-L

m-LINE
m-N
m-O
m-P
m-R

m-RU80UT
m-S

m-SCROLL

Zmacs command 230
Zmacs command 230
Zmacs command 230
Zmacs command 230
Zmacs command 136
Zmacs command 33, 34
Zmacs command 139
Zmacs command 56
Zmacs command 35, 42
Zmacs command 35, 42
Zmacs command 35, 42
Zmacs command 136
Zmacs command 151
Zmacs command 14
Zmacs command 14, 53
Zmacs command 14, 52
Zmacs command 14,52
Zmacs command 14, 53
Zmacs command 14
Zmacs command 14, 53
Zmacs command 14, 54, 269
Zmacs command 14
Zmacs command 54
Zmacs command 141
Zmacs command 141
Zmacs command 268
Zmacs command 262
Zmacs command 93
Zmacs command 219
Zmacs command 224
Zmacs command 131
Zmacs command 239
Zmacs command 239
Zmacs command 148
Zmacs command 287
Zmacs command 269
Zmacs command 118
Zmacs command 78
Zmacs command 226
Zmacs command 28, 81
Zmacs command 55
Zmacs command 28, 81
Zmacs command 106
Zmacs command 28
Zmacs command 28, 72
Zmacs command 214
Zmacs command 30,92
Zmacs command 73
Zmacs command 230
Zmacs command 28, 72
Zmacs command 107
Zmacs command 30, 97
Zmacs command 214
Zmacs command 227
Zmacs command 227
Zmacs command 220
Zmacs command 227
Zmacs command 66
Zmacs command 30, 92
Zmacs command 219
Zmacs command 28, 66

417

Index

418

Text Editing and Processing July 1986

m-sh-D Zmacs command 54
m-sh-E Zmacs command 230

m-T Zmacs command 92
m-U Zmacs command 214
m-V Zmacs command 28, 66
m-W Zmacs command 109
m-Z Zmacs command 231
m- [Zmacs command 28, 79
m-\ Zmacs command 30
m-] Zmacs command 28, 79
m-- Zmacs command 30, 220

Name Last Kbd Macro (m-X) Zmacs command 261
Prepend To File (m-X) Zmacs command 141
Query Replace (m-X) Zmacs command 118

Reap File (m-X) Zmacs command 153
Rename Buffer (m-X) Zmacs command 136

Rename File (m-X) Zmacs command 151
Reparse Attribute List (m-X) Zmacs command 155

Replace String (m-X) Zmacs command 118
Revert Buffer (m-X) Zmacs command 138

RUBOUT Zmacs command 30, 49
Save File Zmacs command 34
SCROLL Zmacs command 28

Set Backspace (m-X) Zmacs command 159
Set Base (m-X) Zmacs command 160
Set Fonts (m-X) Zmacs command 160

Set Lowercase (m-X) Zmacs command 160
Set Nofill (m-X) Zmacs command 160

Set Package (m-X) Zmacs command 156
Set Patch File (m-X) Zmacs command 161
Set Tab Width (m-X) Zmacs command 161

Set Variable (m-X) Zmacs command 271
Set Visited File Name (m-X) Zmacs command 139

Set Vsp (m-X) Zmacs command 161
Show Buffer (m-X) Zmacs command 135

Show Directory (m-X) Zmacs command 149
Show File (m-X) Zmacs command 150

Show File Properties (m-X) Zmacs command 150
Show Keyboard Macro (m-X) Zmacs command 258

Show Login Directory (m-X) Zmacs command 149
Source Compare (m-X) Zmacs command 142

Source Compare Merge (m-X) Zmacs command 142
Trace (m-X) Zmacs command 56

Update Attribute List (m-X) Zmacs command 156
Variable Apropos Zmacs command 269

Write File Zmacs command 34
Example of Finding Out What a Zmacs Command Does 51

Finding Out What a Zmacs Command Does 51
Zmacs Command: m-. 235

Finding Out About Zmacs Commands 51
General Information-giving Zmacs Commands 54

Introduction to Zmacs Commands 6
Method for Searching for Appropriate Zmacs Commands 53

More HELP Commands for Finding Out About Zmacs Commands 53
Mouse-sensitive Zmacs commands 67

Overview of Finding Out About Zmacs Commands 51
Searching for Appropriate Zmacs Commands 52

Zmacs Commands for Finding Out About Flavors 281
Zmacs Commands for Finding Out About Lisp 280
Zmacs Commands for Finding Out About the State of

Buffers 278

419

Zmacs Commands for Finding Out About the State of
Zmacs 279

Zmacs Commands for Formatting Text 35
Zmacs Commands for Interacting with Lisp 282

Finding Out About Zmacs Commands with HELP 51
Creating New Zmacs Commands with Keyboard Macros 257

Procedure-for Creating Zmacs Commands with Keyboard Macros 257
Introduction to Zmacs Command Tables 7

zwel: *zmacs-comtab* 259
Zmacs Echo Area 20

The Zmacs Edit Callers Commands 239
The Zmacs Edit Definition Commands 235

Zmacs Editor Window 18
Zmacs Electric PI1 Mode 177

Customizing the Zmacs Environment 251
Overview of Customizing the Zmacs Environment 252

Introduction to. Zmacs Extended Commands 7
Zmacs File Manipulation Commands 148

Overview of Zmacs File Manipulation Commands 148
Zmacs Format Commands 41
Zmacs Fortran Mode 177
Zmacs Fundamental Mode 176
Zmacs Help 14

Introduction to Zmacs Help 14
Zmacs Help Command Summary 277
Zmacs Incremental Search 114

Customizing Zmacs in Init Files 272
Introduction to Customizing Zmacs in Init Files 272

Zmacs Key Bindings 267
Definition of a Zmacs Keyboard Macro 257

How Zmacs Keyboard Macros Work 257
Introduction to Zmacs Keystrokes 7

Zmacs Lisp Mode 176
The Zmacs List Definition Commands 238

Zmacs Macsyma Mode 177
Zmacs Major Editing Modes 176

Setting the Zmacs Major Mode 175
Zmacs Major Modes 256

File Types and Zmacs Major Modes 256
User-Defined Zmacs Major Modes 256

Zmacs Manual 1
Introduction to the Zmacs Manual 3

Organization of the Zmacs Manual 4
Overview of the Zmacs Manual 4

Scope of the Zmacs Manual 4
Zmacs Manual Notation Conventions 9
Zmacs Midas Mode 177

Built-in Customization Using Zmacs Minor Modes 253
Definition of Zmacs Minor Modes 253
Summary of Zmacs Minor Modes 254

How Zmacs Minor Modes Work 253
Zmacs Mode Line 20

Example 1 of Zmacs Notation Conventions 9
Example 2 of Zmacs Notation Conventions 9
Example 3 of Zmacs Notation Conventions 9

Zmacs Notation Conventions and Examples 9
Zmacs PI1 Mode 177

What is a Zmacs Region? 1 CO
Zmacs Reverse Incremental Search 115

Description of Zmacs Sentence Delimiters 73,97
Zmacs Sorting Commands 128

420

Text Editing and Processing July 1986

[

\

Zmacs Speller 179
Using the Zmacs Speller 180

Zmacs Speller Accept command 181
Zmacs Speller Accept Once command 181

The Zmacs Speller Menu 181
Zmacs Speller Prompt command 181
Zmacs String Search 116
Zmacs Teco Mode 177
Zmacs Text Mode 176

Definition of a Zmacs Variable 269
Zmacs variables 54

Describing Zmacs Variables 269
Finding Out About Zmacs Variables 269

Listing Zmacs Variables 269
Settable Zmacs Variables 270

How to Specify Zmacs Variable Settings 269
Leaving Zmacs Via the System Menu 44

Zmacs Window Commands 146
Leaving Zmacs with c-Z 45
Entering Zmacs with ed 12
Entering Zmacs with SELECT E 12
Entering Zmacs with the Mouse 12
Leaving Zmacs with the SELECT Key 44
Entering Zmacs with zwel:edlt-functlons 13
Entering Zmail 44

Zwei:*inhibit-fancy-Ioop indentation 216
zwel:add-words-to-spell-dlctlonary function 194
zwel :command-store 259
zwel :deflne-keyboard-macro 259
zwei :defmaJor 256
zwei:delete-words-from-spell-dlctlonary

function 195
Entering Zmacs with zwel:edit-functions 13

zwei:edit-functions function 13
zwel :*fIIe-verslons-kept* variable 153
zwel:*major-mode-translations* variablf3 256
zwel :make-macro-command 259
zwel:read-spell-dlctlonary function 193
zwel :read-standard-spell-dlctionaries function 194
zwei:*send-mail-about-patch* 247
zwel:*set-attrlbute-update-lIst* global variable 159
zwel:*temp-flle-type-list* variable 153
zwei:*zmacs-comtab* 259

[[Font Editor command 330
c-X [Zmacs command 28, 80

\
\ Font Editor command 330

@ \ text formatting command 39

[

\

421

July 1986 Index

]] .
] Font Editor command 330

]
c-X] Zmacs command 28. 80

A A A

c-X - Zmacs command 146
@ 1\ text formatting command 39

