

symbolicsT
..

28 Symbolics Common Lisp
Language Dictionary

Cambridge, Massachusetts

Symbolics Common Lisp: Language Dictionary
999019

August 1986

This document corresponds to Genera 7.0 and later releases.

The software, data, and information contained herein are proprietary to, and comprise
valuable trade secrets of, Symbolics, Inc. They are given in confidence by Symbolics
pursuant to a written license agreement, and may be used, copied, transmitted, and
stored only in accordance wi~h the terms of such license. This document may not be
reproduced in whole or in part without the prior written consent of Symbolics, Inc.

Copyright © 1986, 1985, 1984, 1983, 1982, 1981, 1980 Symbolics, Inc. All Rights
Reserved.
Portions of font library Copyright © 1984 Bitstream Inc. All Rights Reserved.
Portions Copyright © 1980 Massachusetts Institute of Technology. All Rights Reserved.

Symbollcs, Symbolics 3600, Symbolics 3670, Symbolics 3675, Symbolics 3640,
Symbollcs 3645, Symbolics 3610, Symbolics 3620, Symbolics 3650, Genera,
Symbollcs-Llsp®, Wheels, Symbolics Common Lisp, Zetalisp®, Dynamic Windows,
Document Examiner, Showcase, SmartStore, SemantiCue, Frame-Up, Firewall,
S-DVNAMICS®, S-GEOMETRV, S-PAINT, S-RENDER®, MACSVMA, COMMON LISP
MACSVMA, CL-MACSYMA, LISP MACHINE MACSYMA, MACSYMA Newsletter and
Your Next Step In Computing are trademarks of Symbolics, Inc.

Restricted Rights Legend
Use, duplication, and disclosure by the Government are subject to restrictions as set
forth in subdivision (b)(3)(ii) of the Rights in Technical Data and Computer Software
Clause at FAR 52.227-7013.

Symbolics, Inc.
4 New England Tech Center
555 Virginia Road
Concord, MA 01742

Text written and produced on Symbolics 3600-family computers by the Documentation
Group of Symbolics, Inc.
Text masters produced on Symbolics 3600-family computers and printed on Symbolics
LGP2 Laser Graphics Printers.
Cover Design: SchaferlLaCasse
Printer: CSA Press
Printed in the United States of America.

Printing year and number: 888786987654321

1

~ number &rest numbers Function
Returns t if number is not numerically equal to any of numbers, and nil
otherwise. Either argument can be of any numeric type.

The following function is a synonym of ;t:

1=

~ number &rest more-numbers Function
~ compares its arguments from left to right. If any argument is greater
than the next, ~ returns nil. But if the arguments are monotonically in
creasing or equal, the result is t.

Arguments must be noncomplex numbers, but they need not be of the same
type. Examples:

(S 5) => T

(~ 1 2 3) => T

(S 3 6 2 8) => NIL
(~ 5 6.3) => T

The following function is a synonym of S :

<=

~ number &rest more-numbers Function
~ compares its arguments from left to right. If any argument is less than
the next, ~ returns nil. But if the arguments are monotonically decreasing
or equal, the result is t.

Arguments must be noncomplex numbers, but they need not be of the same
type. Examples:

(~ 8) => T

(~ 3 2 2 1) => T

(~ 5 4 6 2) => NIL
(~ 6.92523 6.92d23) => T

The following function is a synonym of ~ :

>=

* &rest numbers Function
Returns the product of its arguments. If there are no arguments, it
returns 1, which is the identity for this operation.

If the arguments are of different numeric types they are converted to a
common type, which is also the type of the result. See the section
"Coercion Rules for Numbers" in Symbolics Common Lisp: Language Con
cepts.

I

I
zl:*$

Examples:

(*) => 1
(* 4 6) => 24
(* 1 2 3 4) => 24
(* 2.5 4) => 18.8
(* 3.854 18) => 388888.8

The following functions are synonyms of * :
zl:times
zl:*$

For a table of related items: See the section "Arithmetic Functions" in
Symbolics Common Lisp: Language Concepts.

2

zl:*$ &rest args Function
Returns the product of its arguments. If there are no arguments, it
returns 1, which is the identity for this operation.

The following functions are synonyms of zl:*$:

zl:times

*

+ &rest numbers Function
Returns the sum of its arguments. If there are no arguments, it returns 0,
which is the identity for this operation.

If the arguments are of different numeric types, they are converted to a
common type, which is also the type of the result. See the section
"Coercion Rules for Numbers" in Symbolics Common Lisp: Language Con
cepts.

Examples:

(+) => 8

(+ -8) => -8
(+ 1 2 3 4) => 18
(+ 2 5.9) => 7.9
(+ 5/2 2 2/3) => 31/6

The following functions are synonyms of + :

zl:plus
zl:+$

For a table of related items: See the section "Arithmetic Functions" in
Symbolics Common Lisp: Language Concepts.

3 zl:+$

zl:+$ &rest args Function
Returns the sum of its arguments. If there are no arguments, it returns 0,
which is the identity for this operation.

The following functions are synonyms of zl:+$:

zl:plus
+

number &rest more-numbers Function
With only one argument, - returns the negative of its argument. With
more than one argument, - returns its first argument minus all of the rest
of its arguments.

If the arguments are of different numeric types they are converted to a
common type, which is also the type of the result. See the section
II Coercion Rules for Numbers II in Symbolics Common Lisp: Language Con
cepts.

Examples:

(- 8) => -8
(- 9 3) => 6

(- 9 4 2 1) => 2
(- #C(3 4) 4) => #C(-1 4)
(- 9 5/6) => 49/6

The following function is a synonym of - :

zl:-$

For a table of related items: See the section II Arithmetic Functions II in
Symbolics Common Lisp: Language Concepts.

zl:-$ arg &rest args Function
With only one argument, z1:-$ returns the negative of its argument. With
more than one argument, zl:-$ returns its first argument minus all of the
rest of its arguments.

The following function is a synonym of zl:-$:

/ number &rest more-numbers Function
With more than one argument / successively divides the first argument by
all the others and returns the result. With one argument, / returns the
reciprocal of the argument: (I x) is the same as (/ 1 x). Arguments can be
of any numeric type; the rules of coe;rcion are applied to arguments of dis
similar numeric types.

I

I
zl:1 4

I follows normal mathematical rules, so if the mathematical quotient of two
integers is not an exact integer, the function returns a ratio. To obtain an
integer result, use one of these functions: floor, ceiling, truncate, round.

(I 4) => 1/4
(I 4.9) => 9.25
(I 9 3) => 3
(I 18 4) => 9/2 jreturns rational number in canonical form
(I 191 19.9) => 19.1 japplies coercion rules
(I 191 19) => 191/19
(I 24 4 2) => 3
(I 36. 4. 3.) => 3
(I 36.9 4.9 3.9) => 3.9
(I #c(1 1) #c(1 -1» => #c(9 1)
(I #c(3 4) 5) => #c(3/5 4/5)

For a table of related items: See the section "Arithmetic Functions" in
Symbolics Common Lisp: Language Concepts.

zl:1 number &rest more-numbers Function
With more than one argument, zl:1 is the same as zl:quotient; it returns
the irrst argument divided by all of the rest of its arguments. With only
one argument, (zl:1 x) is the same as (zl:1 1 x).

With integer arguments, zl:1 acts like truncate, except that it returns only
a single value, the quotient.

Note that in Zetalisp syntax I is the quoting character and must therefore
be doubled.

Examples:

(zl!1 3 2) => 1 ;Integer division truncates.
(zl:/3 -2) => -1
(zl:1 -3 2) => -1
(zl:1 -3 -2) => 1
(zl:/3 2.9) => 1.5
(zl:/3 2.9d9) => 1.5d9
(zl:/4 2) => 2
(zl:1 12. 2. 3.) => 2
(zl:1 4.9) => .25

The following function is a synonym of zl:1 :

zl:l$

For a table of related items: See the section "Arithmetic Functions" in
Symbolics Common Lisp: Language Concepts.

5 zl:/$

zl:l$ arg &rest args Function
With more than one argument, zl:/$ is the same as zl:quotient; it returns
the first argument divided by all of the rest of its arguments. With only
one argument, (zl:/$ x) is the same as (zl:/$ 1 x).

With integer arguments, zl:l$ acts like truncate, except that it returns
only a single value, the quotient.

Note that in Zetalisp syntax 1 is . the quoting character and must therefore
be doubled.

The following function is a synonym of zl:/$:

zl:1

1= number &rest numbers Function
Returns t if all arguments are not equal, and nil otherwise. Arguments
can be of any numeric type; the rules of coercion are applied for arguments
of different numeric types.

Two complex numbers are considered = if their real parts are = and their
imaginary parts are =.
Examples:

(/= 4) => T
(/= 4 4.B) => NIL
(/= 4 #c(4.B B» => NIL
(/= 4 5) => T
(/= 4 5 6 7) => T

(/= 4 5 6 7 4) => NIL
(/= 4 5 4 7 4) => NIL
(/= #c(3 2) #c(2 3) #c(2 -3» => T
(/= #c(3 2) #c(2 3) #c(2 -3) #c(2 3.B» => NIL

The following function is a synonym of 1= :

-:t

For a table of related items: See the section "Numeric Comparison
Functions" in Symbolics Common Lisp: Language Concepts.

1- number Function
(1- number) is the same as (- number 1). Note that this name might be
confusing: (1- number) does not mean 1 - number; rather, it means number
- 1.

I

I
zl:1-$

Examples:
(1- 9) => 8

(1- 4.B) => 3.B
(1- 4.BdB) => 3.BdB
(1- #C(4 5» => #C(3 5)

The following functions are synonyms of 1- :

zl:subl
zl:I-$

For a table of related items: See the section "Arithmetic Functions" in
Symbolics Common Lisp: Language Concepts.

6

zl:I-$ x Function
(1-$ x) is the same as (- x 1).
The following functions are synonyms of zl:I-$:

zl:subl
1-

1+ number
(1+ number) is the same as (+ number 1).
Examples:

(1+ 5) => 6
(1+ 3.BdB) => 4.BdB
(1+ 3/2) => 5/2

(1+ #C(4 5» => #C(5 5)

The following functions are synonyms of 1+ :

zl:addl
zl:I+$

Function

For a table of related items: See the section "Arithmetic Functions" in
Symbolics Common Lisp: Language Concepts.

zl:l+$ x Function
(1+$ x) is the same as (+ x 1).
The following functions are synonyms of zl:I+$:

zl:addl
1+

sys:%ld-aloc array index Function
Returns a locative pointer to the element-cell of array selected by the in
dex. sys:%ld-aloc is the same as zl:aloc, except that it ignores the num
ber of dimensions of the array and acts as if it were a one-dimensional ar
ray by linearizing the multidimensional elements.

7 sys:%1d-aref

Current style suggests that you should use (Iocf (sys:%ld-aref ••• » instead
of sys:%ld-aloc.

When using sys:%ld-aloc it is necessary to understand how arrays are
stored in memory: See the section "Row-major Storage of Arrays" in Con
verting to Genera 7.0.

For an example of accessing elements of a multidimensional array as if it
were a one-dimensional array: See the function sys:%ld-aref, page 7.

sys:%ld-aref array index Function
Returns the element of array selected by the index. sys:%ld-aref is the
same as aref, except that it ignores the number of dimensions of the array
and acts as if it were a one-dimensional array by linearizing the mul
tidimensional elements. copy-array-portion uses this function.

For example:

(setq *array* (make-array '(2B 3B 5B») => #<Art-Q-2B-3B-5B 5B23116>
(setf (aref *array* 5 6 7) 'faa) => FOO

;;; The following three forms have the same effect.
(aref *array* 5 6 7) => FOO
(sys:%1d-aref *array* (+ (* (+ (* 5 3B) 6) 5B) 7» => FOO
(sys:%1d-aref *array* (array-row-major-index *array*» => FOO

When using sys:%ld-aref it is necessary to understand how arrays are
stored in memory: See the section "Row-major Storage of Arrays" in Con
verting to Genera 7.0.

sys:%ld-aset value array index Function
Stores value into the element of array selected by the index. sys:%ld-aset
is the same as zl:aset, except that it ignores the number of dimensions of
the array and acts as if it were a one-dimensional array by linearizing the
multidimensional elements. copy-array-portion uses this function.

Current style suggests that you should use (setf (sys:%ld-aref ••• » instead
of sys:%ld-aset.

When using sys:%ld-aset it is necessary to understand how arrays are
stored in memory: See the section "Row-major Storage of Arrays" in Con
verting to Genera 7.0.

For an example of accessing elements of a multidimensional array as if it
were a one-dimensional array: See the function sys:%ld-aref, page 7.

I

I
2d-array-blt 8

2d-array-blt alu nrows ncolumns from-array from-row from-column Function
to-array to-row to-column

Copies a rectangular portion of from-array into a portion of to-array.
2d-array-blt is similar to bitblt but takes (row,column) style arguments on
two-dimensional arrays, while bitblt takes (x,y) arguments on rasters.

The number of columns in from-array times the number of bits per element
must be a multiple of 32. The same is true for to-array.

This can be used on sys:art-ilXIlUIn or sys:art-lb, sys:art-2b, ...
sys:art-16b arrays. It can also be used on sys:art-q arrays provided all the
elements are IlXIlums.

sys:%32-bit-difference fixnuml fixnum2 Function
Returns the difference of fixnuml and fixnum2 in 32-bit two's complement
arithmetic. Both arguments must be IlXIlums. The result is a IlXDum.

For a table of related items: See the section "Machine-dependent Arith
metic Functions" in Symbolics Common Lisp: Language Concepts.

sys:%32-bit-plus fixnuml {LXnum2 Function
Returns the sum of fixnuml and fixnum2 in 32-bit two's complement arith
metic. Both arguments must be IlXDums. The result is a IlXDum.

For a table of related items: See the section "Machine-dependent Arith
metic Functions" in Symbolics Common Lisp: Language Concepts.

< number &rest more-numbers Function
< compares its arguments from left to right. If any argument is not less
than the next, < returns nil. But if the arguments are monotonically
strictly increasing, the result is t.

Arguments must be noncomplex numbers, but they need not be of the same
type.

Examples:

« 3 4) => T

« 1 1.B) => NIL
« B 1/2 2.B 3 4) => T

« B 1 3 2 4) => NIL

The following function is a synonym of < :

z1:1essp

For a table of related items: See the section "Numeric Comparison
Functions" in Symbolics Common Lisp: Language Concepts.

9 <=

<= number &rest more-numbers Function
<= compares its arguments from left to right. If any argument is greater
than the next, <= returns nil. But if the arguments are monotonically in
creasing or equal, the result is t.

Arguments must be noncomplex numbers, but they need not be of the same
type.

Examples:

«= 8) => T
«= 3 4) => T
«= 1 1) => T

«= 1 1.9) => T

«= 9 1/2 2.9 3 4) => T

«= 9 1 3 2 4) => NIL
«= 9 1 3 3 4) => T

The following function is a synonym of <= :

~

For a table of related items: See the section "Numeric Comparison
Functions" in Symbolics Common Lisp: Language Concepts.

= number &rest more-numbers
Returns t if all arguments are numerically equal.

Function

= takes arguments of any numeric type; the arguments can be of dissimilar
numeric types.

Examples:

(= 8) => T

(= 3 4) => NIL
(= 3 3.9 3.9d9) => T
(= 4 #C(4 9) #C(4.9 9.9) #C(4.9d9 9.9d9» => T

For a discussion of non-numeric equality predicates: See the section
"Comparison-performing Predicates" in Symbolics Common Lisp: Language
Concepts.

For a table of related items: See the section "Numeric Comparison
Functions" in Symbolics Common Lisp: Language Concepts.

> number &rest more-numbers Function
> compares its arguments from left to right. If any argument is not
greater than the next, > returns nil. But if the arguments are monotoni
cally strictly decreasing, the result is t.

Arguments must be noncomplex numbers, but they need not be of the same
type.

I

I
>=

Examples:

(> 4 3.B) => T
(> 4 3 2 1/2 B)

(> 4 3 1 2 B)

=> T
=> NIL

The following function is a synonym of > :

zl:greaterp

For a table of related items: See the section "Numeric Comparison
Functions" in Symbolics Common Lisp: Language Concepts.

10

>= number &rest more-numbers Function
>= compares its arguments from left to right. If any argument is less than
the next, >= returns nil. But if the arguments are monotonically decreas
ing or equal, the result is t.

Arguments must be noncomplex numbers, but they need not be of the same
type.

Examples:

(>= 8) => T

(>= 4 3.B) => T
(>= 4 3 2 1 B) => T

(>= 4 2 3 1 B) => NIL
(>= 4 3 3 2 1/2 B) => T

The following function is a synonym of >= :

~

For a table of related items: See the section "Numeric Comparison
Functions" in Symbolics Common Lisp: Language Concepts.

zl:@define &rest ignore Macro
This macro turns into nil, doing nothing. It exists for the sake of the
@ listing generation program, which uses it to declare names of special
forms that define objects (such as functions) that @ should cross-reference.

zl:\\ x y Function
Returns the remainder of x divided by y. x and y must be integers.

zl:\\ acts like truncate, except that it returns only a single value, the
remainder.

Examples:

11

zl:\\\\

(z1:\ 3 2) => 1
(z1:\ -3 2) => -1
(z1:\ 3 -2) => 1

(z1:\ -3 -2) => -1

The following functions are synonyms for zl:\\ :

rem
zl:remainder

zl :\\\\

Note: In programs using the Zetalisp syntax you would represent zl:\\ as \.
The function is represented here as zl:\\ only because all objects in this
manual are represented as if printed by print with *package* bound to the
Common Lisp readtable. In Common Lisp, the backslash character (\) is
the escape character and must be doubled.

x y &rest args
Returns the greatest common divisor of all its arguments.
must be integers.

The following function is a synonym of zl:\\\\ :

zl:gcd

Function
The arguments

note: In programs using the Zetalisp syntax you would represent zl:\\\\ as \\.
The function is represented here as zl:\\\\ only because all objects in this
manual are represented as if printed by print with *package* bound to the
Common Lisp readtable. In Common Lisp, the backslash character (\) is
the escape character and must be doubled.

zl:" x y Function
Returns x raised to the yth power. The result is an integer if both ar
guments are integers (even if y is negative!) and floating-point if either x
or y or both is floating-point. If the exponent is an integer a repeated
squaring algorithm is used, while if the exponent is floating the result is
(exp (* y (log x»).

The following functions are synonyms of zl:"

zl:expt
zl:"$

zl:" $ x y Function
Returns x raised to the yth power. The result is an integer if both ar
guments are integers (even if y is negative!) and floating-point if either x
or y or both is floating-point. If the exponent is an integer a repeated
squaring algorithm is used, while if the exponent is floating the result is
(exp (*~ y (log x»).

I

zl:J\$

I
The following functions are synonyms of zl: A $:

zl:expt
zl:A

12

13

abs

abs

number Function A
Returns \number\, the absolute value of number. For noncomplex numbers,
abs could have been defined by:

(defun abs (number)
(eond «minusp number) (minus number»

(t number»)

Note that if number is equal to negative zero in IEEE floating-point format
the above algorithm returns -0.0.

For complex numbers, abs could have been defined by:

(defun abs (number)
(sqrt (+ (- (real part number) 2) (- (imagpart number) 2»»

See the function phase, page 393.

For a table of related items: See the section "Arithmetic Functions" in
Symbolics Common Lisp: Language Concepts.

aeons key datum alist Function
aeons constructs a new association list by adding the pair
(key. datum) onto the front of alist. See the section "Association Lists" in
Symbolics Common Lisp: Language Concepts. This is equivalent to using
the eons function on key and datum, and consing it onto the old list as fol
lows:

(aeons key datum alist) - (cons (cons key datum) alist)

Example:

(setq bird-alist '«wader. heron) (raptor . eagle») =>
«WADER. HERON) (RAPT OR . EAGLE»

(aeons 'diver 'loon bird-alist) =>
«DIVER. LOON) (WADER. HERON) (RAPTOR . EAGLE»

bird-alist =>
«WADER. HERON) (RAPTOR . EAGLE»)

For a table of related items: See the section "Functions That Operate on
Association Lists" in Symbolics Common Lisp: Language Concepts.

aeos number Function
Computes and returns the arc cosine of the argument (that is, the angle
whose cosine is equal to number). The result is in radians.

The argument can be any noncomplex or complex number. Note that if the

acosh 14

absolute value of number is greater than one, the result is complex, even if
the argument is not complex.

The arc cosine being a mathematically.multiple-valued function, acos
returns a principal value whose range is that strip of the complex plane
containing numbers with real parts between 0 and ft. The range excludes
any number with a real part equal to zero and a negative imaginary part,
as well as any number with a real part equal to ft and a positive imaginary
part.

Examples:

(aces 1) => B.B
(aces B) => 1.57B7964 i ft/2 radians
(aces -1) => 3.1415927 ; ft
(aces 2) => #C(B.B 1.3169578)
(aces -2) => #C(3.1415927 -1.316958)

For a table of related items: See the section "Trigonometric and Related
Functions" in Symbolics Common Lisp: Language Concepts.

acosh number Function
Computes and returns the hyperbolic arc cosine of the argument (that is,
the angle whose cosh is equal to number). The result is in radians.

The argument can be any noncomplex or complex number, except -1. Note
that if the value of number is less than one, the result is complex, even if
the argument is not complex. The hyperbolic arc cosine being mathemati
cally multiple-valued in the complex domain, acosh returns a principal
value whose range is that half-strip of the complex plane containing num
bers with a non-negative real part and an imaginary part between -ft and ft
(inclusive). A number with real part zero is in the range if its imaginary
part is between zero (inclusive) and ft (inclusive).

Example:

(acesh 1) => B.B i(cesh B) => 1.B
(acesh -2) => #c(1.316958 3.1415927)

For a table of related items: See the section "Hyperbolic Functions" in
Symbolics Common Lisp: Language Concepts.

zl:addl x Function
(addl x) is the same as (+ xl).
The following functions are synonyms of zl:add1:

1+
zl:1+$

15 adjoin

adjoin item list &key (test #'eql) test-not (key #'identity) Function •
You can use adjoin to add an element to a set provided that it is not al- .
ready a member. The keywords for this function are:

:test Any predicate specifying a binary operation to be applied
to a supplied argument and an element of a target list.
The item matches the specification only if the predicate
returns t. If :test is not supplied the default operation is
eql.

: test-not Similar to :test, except the item matches the specification
only if there is an element of the list for which the
predicate returns nil.

:key If not nil, should be a function of one argument. that will
extract from an element the part to be tested in place of
the whole element.

Note that, since adjoin adds an element only if it is not already a member,
the sense of :test and :test-not have inverted effect: with :test, an item is
added to the list only if there is no element of the list for which the predi
cate returns t. With :test-not, an item is added if there is no element for
which the predicate returns nil.

When :test is eqI, the default, then

(adjoin item list) = (if (member item list) list (cons item list))

Here are some examples:

(setq bird-list '«loon. diver) (heron. wader))) =>
«LOON. DIVER) (HERON. WADER))

(setq bird-list (adjoin '(eagle. raptor) bird-list :key #'car)) =>
«EAGLE. RAPTOR) (LOON. DIVER) (HERON. WADER))

(adjoin '(eagle. oops) bird-list :key #'car) =>
«EAGLE. RAPTOR) (LOON. DIVER) (HERON. WADER))

For a table of related items: See the section "Functions for Constructing
Lists and Conses" in Symbolics Common Lisp: Language Concepts.

adjustable-array-p array Function
Returns t if array is adjustable, and nil if it is not. Lisp dialects supported
by Genera make most arrays adjustable even ifd the :adjustable option to
make-array is not specified; but to guarantee that an array can be ad
justed after created, it is necessary to use the :adjustable option.

adjust-array

•. adjust-array array new-dimensions &key (element-type nil
element-type-specified) (initial-element nil
initial-element-specified) (initial-contents nil
initial-contents-specified) fill-pointer displaced-to
displaced-index-offset displaced-conformally

16

Function

adjust-array changes the dimensions of an array. I t returns an array of
the same type and rank as array, but with the new-dimensions. The number
of new-dimensions must equal the rank of the array. All elements of array
that are still in the bounds are carried over tothe new array.

:element-type specifies that elements of the new array are required to be
of a certain type. An error is signalled if array contains elements that are
not of that type. :element-type thus provides an error check.

:initial-element allows you to specify an initial element for any elements of
the new array that are not in the bounds of array.

The :initial-contents and :displaced-to options have the same effect as
they do for make-array. If you use either of these options, none of the
elements of array are carried over to the new array.

You can use the :fill-pointer option to reset the fill pointer of array. If ar
ray had no fill pointer and error is signalled.

If the size of the array is being increased, adjust-array might have to al
locate a new array somewhere. In that case, it alters array so that
references to it are made to the new array instead, by means of "invisible
pointers". See the function structure-forward in Internals, Processes, and
Storage Management. adjust-array returns this new array if it creates one,
and otherwise it returns array. Be careful to be consistent about using the
returned result of adjust-array, because you might end up holding two ar
rays that are not the same (that is, not eq), but that share the same con
tents.

The meaning of adjust-array for conformal indirect arrays is undefined.

zl:adjust-array-size array new-size Function
If array is a one-dimensional array, its size is changed to be new-size. If
array has more than one dimension, its size (array-total-length) is changed
to new-size by changing only the first dimension.

If array is made smaller, the extra elements are lost. If array is made big
ger, the new elements are initialized in the same fashion as make-array
would initialize them: either to nil, 0 or <code-char 0), depending on the
type of array.

Example:

17

(setq a (make-array 5))

(setf (aref a 4) 'faa)
(aref a 4) => faa
(zl:adjust-array-size a 2)

(aref a 4) => an error occurs

See the function adjust-array, page 16.

sys:*all-flavor-names*

sys:*all-flavor-names* Variable
This is a list of the names of all the flavors that have ever been created by
defflavor.

&allow-other-keys Lambda List Keyword
In a lambda-list that accepts keyword arguments, &allow-other-keys
specifies that keywords that are not specifically listed after &key are al
lowed. They and their corresponding values are ignored, as far as
keywords arguments are concerned, but they do become part of the &rest
argument, if there is one.

zl:aloc array &rest subscripts Function
Returns a locative pointer to the element of array selected by the sub
scripts. The subscripts must be integers and their number must match the
dimensionality of array. See the section "Cells and Locatives".

Current style suggests using locf with aref instead of zl:aloc. For ex
ample:

(locf (aref this-array subscripts))

alpha-char-p char Function
Returns t if char is a letter of the alphabet.

(a1pha-char-p #\A) => T

(a1pha-char-p #\1) => NIL

For a list of other character predicates: See the section "Character
Predicates" in Symbolics Common Lisp: Language Concepts.

alphalessp stringl string2 Function
<alphalessp stringl string2) is equivalent to <string-Iessp stringl string2).
If the arguments are not strings, alphalessp compares numbers numeri
cally, lists by element, and all other objects by printed representation. al
phalessp is a Maclisp all-purpose alphabetic sorting function.
Examples:

I

I

alphanumericp

(alphalessp "apple" "orange") => T
(alphalessp 'tom 'tim) => NIL
(alphalessp "same" "same") => NIL
(alphalessp 'symbol "string") => NIL
(alphalessp '(a b e) '(a b d» => T

For a table of related items: See the section "Maclisp-Compatible String
Functions" in Symbolics Common Lisp: Language Concepts.

18

alphanumericp char Function
Returns t if char is a letter of the alphabet or a base-lO digit.

(alphanumer;cp #\7) => T
(alphanumericp #\%) => NIL

For a list of other character predicates: See the section "Character
Predicates" in Symbolics Common Lisp: Language Concepts.

always Keyword For loop

always expr

Causes the loop to return t if expr always evaluates non-null. If expr evaluates to
nil, the loop immediately returns nil, without running the epilogue code (if any, as
specified with the finally clause); otherwise, t is returned when the loop finishes,
after the epilogue code has been run. If the loop terminates before expr is ever
evaluated, the epilogue code is run and the loop returns t.

always expr is like (and exprl expr2 ...), except that if no expr evaluates to nil,
always returns t and and returns the value of the last expr. If the loop
terminates before expr is ever evaluated, always is like (and).

If you want a similar test, except that you want the epilogue code to run if expr
evaluates to nil, use while.

Examples:

(defun loop-always (my-list)
(loop for x in my-list

finally (print "what you going to do next 1")
do

(prine x) (prine" ")
do
and always (equal x 'a») => LOOP-ALWAYS

(loop-always '(b c a d» => B NIL

19

(loop-always '(a a» => A A
"what you going to do next ?" T

and

See the section "loop Clauses", page 310.

and &rest body Special Form
Evaluates each form one at a time, from left to right. If any form
evaluates to nil, and immediately returns nil without evaluating any other
form. If every form evaluates to non-nil values, and returns the value of
the last form.

and can be used in two different ways. You can use it as a logical and
function, because it returns a true value only if all of its arguments are
true. So you can use it as a predicate:

Examples:

(if (and 'this 'that) "reaches this point") => "reaches this point"

(if (and (equal 1 1)(equal nil 'C»~) "equal") => "equal"

(if (and socrates-is-a-person all-people-are-mortal)
(setq socrates-is-mortal t»

Because the order of evaluation is well-defined, you can do:

(if (and (boundp 'x)
(eq x 'faa»

(setq y 'bar» => NIL

knowing that the x in the eq form is not evaluated if x is found to be un
bound.

You can also use and as a simple conditional form:

Examples:

(and) => T

(and t nil) => NIL

(and t 'hi (numberp 3.14» => T

(when (and (setq temp (assq x y»
(rplacd temp z»)

I

I

and

(when (and bright-day
glorious-day
(princ HIt is a bright and glorious day."»)

Note: (and) => t , which is the identity for the and operation.

For a table of related items: See the section "Conditional Functions" in
Symbolics Common Lisp: Language Concepts.

20

and &rest types Type Specifier
The type specifier and allows the definition of data types that are the in
tersection of other data types specified by types. As a type specifier, and
can only be used in list form.

Examples:

(typep 89 '(and integer number» => T
(subtypep 'bit-vector '(and vector array» => T and T
(sys:type-arglist 'and) => (&REST TYPES) and T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

For a discussion of the function and: See the section "Flow of Control" in
Symbolics Common Lisp: Language Concepts.

zl:ap-l array index Function
This is an obsolete version of zl:aloc that only works for one-dimensional
arrays. There is no reason ever to use it.

zl:ap-2 array indexl index2 Function
This is an obsolete version of zl:aloc that only works for two-dimensional
arrays. There is no reason ever to use it.

zl:ap-Ieader array index Function
Returns a locative pointer to the indexed element of array's leader. array
should be an array with a leader, and index should be an integer. See the
section "Cells and Locatives".

However, the preferred method is to use locf and array-leader as shown in
the following example:

(setq *array*
(make-array '(2 3) :element-type 'character

:leader-list '(t nil»)

(locf (array-leader *array* 1»

21 append

append &rest lists Function
The arguments to append are lists. The result is a list that is the con
catenation of the arguments. The arguments are not changed (see nconc).
Example:

(append J(a b c) J(d e f) nil J(g) => (a b c d e f g)

append makes copies of the top-level list structure of all the arguments it
is given, except for the last one. So the new list shares the conses of the
last argument to append, but all the other conses are newly created. Only
the lists are copied, not the elements of the lists. The function
concatenate can perform a similar operation, but always copies
all its arguments. See also nconc, which is like append but destroys all
its arguments except the last.

The last argument does not have to be a list, but may be any Lisp object,
which becomes the tail of the constructed list. For example,

(append J(a b c) Jd) => (a b c . d)

A version of append that only accepts two arguments could have been
defined by:

(de fun append2 (x y)
(cond «null x) y)

«cons (car x) (append2 (cdr x) y)))))

The generalization to any number of arguments could then be made
(relying on car of nil being nil):

(defun append (&rest args)
(if « (length args) 2) (car args)

(append2 (car args)
(apply (function append) (cdr args)))))

These definitions do not express the full functionality of append; the real
definition minimizes storage utilization by cdr-coding the list it produces,
using cdr-next except at the end where a full node is used to link to the
last argument, unless the last argument is nil in which case cdr-nil is
used. See the section "Cdr-Coding" in Symbolics Common Lisp: Language
Concepts.

To copy a list, use zl-user:copy-list (or zl:copylist); the old practice of
using

(append x J 0)

to copy lists is unclear and obsolete.

•

apply

append Keyword For loop

append expr {into var}

Causes the values of expr on each iteration to be appended together. When the
epilogue of the loop is reached, var has been set to the accumulated result and
can be used by the epilogue code.

I t is safe to reference the values in var during the loop, but they should not be
modified until the epilogue code for the loop is reached.

The forms append and appending are synonymous.

Examples:

(defun splice-list (list1 list2)
(loop for item1 in list1

for item2 in list2
append (list item1) into result
append (list item2) into result
finally (return (append result »» => SPLICE-LIST

(splice-list '(Let not the of minds) '(me to marriage true» =>
(LET ME NOT TO THE MARRIAGE OF TRUE)

Is equivalent to

(defun splice-list (list1 list2)
(loop for item1 in list1

for item2 in list2
appending (list item1) into result
appending (list item2) into result
finally (return (append result »» => SPLICE-LIST

(splice-list '(Let not the of minds) '(me to marriage true» =>
(LET ME NOT TO THE MARRIAGE OF TRUE)

22

Not only can there be multiple accumulations in a loop, but a single accumulation
can come f~om multiple places within the same loop form, if the types of the
collections are compatible. append, collect, and nconc are compatible.

See the section "loop Clauses", page 310.

apply function &rest arguments Function
-Applies the function function to arguments. function can be any function,
but it cannot be a special form or a macro. Examples:

23 zl:apply

(setq fred '+)

(apply fred '(1 2» => 3
(setq fred '-)
(apply fred '(1 2» => -1
(apply 'cons '«+ 2 3) 4» => «+ 2 3) . 4) not (5 . 4)

Note that if the function takes keyword arguements, you must put the
keywords as well as the corresponding values in the argument list.

(apply #'(lambda (&key a b) (list a b» '(:b 3) => (nil 3)

See the section "Functions for Function Invocation" in Symbolics Common
Lisp: Language Concepts. r. »("1

zl:apply function args Function
Applies the function function to the list of arguments args. args should be
a list; function can be any function, but it cannot be a special form or a
macro.

Examples:

(setq fred '+)

(apply fred '(1 2» => 3
(setq fred '-)
(apply fred '(1 2» => -1
(apply 'cons '«+ 2 3) 4» => «+ 2 3) . 4) not (5 . 4)

Of course, args can be nil. Note: Unlike Maclisp, zl:apply never takes a
third argument; there are no "binding context pointers" in Symbolics Com
mon Lisp.

See the function funcall, page 245.

See the section "Functions for Function Invocation" in Symbolics Common
Lisp: Language Concepts.

zl:ar-l array index Function
This is an obsolete version of aref that only works for one-dimensional ar
rays. There is no reason ever to use it.

zl:ar-2 array index1 index2 Function
This is an obsolete version of aref that only works for two-dimensional ar
rays. There is no reason ever to use it.

I

aref 24

aref array &rest subscripts Function
Returns the element of array selected by the subscripts. The subscripts
must be integers and their number must match the dimensionality of array.

(setq this-array (make-array '(2 3) :initial-contents
I «a b c) (d e f»»

(aref this-array e e) => A
(aref this-array e 1) => B

(aref this-array e 2) => C
(aref this-array 1 e) => 0

setf may be used with aref to set the value of an array element.

(setf (aref this-array 1 e) 'x) => X
(aref this-array 1 e) => x

zl:arg x Function
(zl:arg nil), when evaluated during the application of a lexpr, gives the
number of arguments supplied to that lexpr. This is primarily a debugging
aid, since lexprs also receive their number of arguments as the value of
their lambda-variable.

(zl:arg i), when evaluated during the application of a lexpr, gives the value
of the i'th argument to the lexpr. i must be an integer in this case. It is
an error if i is less than 1 or greater than the number of arguments sup
plied to the lexpr. Example:

(defun foo nargs ;define a lexpr foo.
(print (arg 2» ;print the second argument.
(+ (arg 1) ; return the sum of the first

(arg (- nargs 1»» ; and next to last arguments.

zl:arg exists only for compatibility with Maclisp lexprs. To write functions
that can accept variable numbers of arguments, use the &optional and
&rest keywords. See the section "Evaluating a Function Form" in Sym
bolics Common Lisp: Language Concepts.

arglist function &optional real-flag Function
arglist is given an ordinary function, a generic function, or a function spec,
and returns its best guess at the nature of the function's lambda-list. It
can also return a second value which is a list of descriptive names for the
values returned by the function. The third value is a symbol specifying the
type of function:

25

Returned Value
nil
subst
special
macro
si:special-macro
array

Function Type
ordinary or generic function
substitutable function
special form
macro
both a special form and a macro
array

args-info

If function is a symbol, arglist of its function defInition is used.

Some functions' real argument lists are not what would be most descriptive
to a user. A function can take an &rest argument for technical reasons
even though there are standard meanings for the irrst element of that ar
gument. For such cases, the definition of the function can specify, with a
local declaration, a value to be returned when the user asks about the ar
gument list. Example:

(defun foo (&rest rest-arg)
(declare (arglist x y &rest z))
.....)

Note that since the declared argument list is supplied by the user, it does
not necessarily correspond to the function's actual argument list.

real-flag allows the caller of arglist to say that the real argument list
should be used even if a declared argument list exists.

If real-flag is t or a declared argument list does not exist, arglist computes
its return value using information associated with the function. Normally
the computed argument list is the same as that supplied in the source
defInition, but occasionally some differences occur. However, arglist always
returns a functionally correct answer in that the number and type of the
arguments is correct.

When a function returns mUltiple values, it is useful to give the values
names so that the caller can be reminded which value is which. By means
of a values declaration in the function's deimition, entirely analogous to
the a.rglist declaration above, you can specify a list of mnemonic names for
the returned values. This list is returned by arglist as the second value.

(arglist larglist)
=> (function &optional real-flag) and (arglist values type)

args-info fcn Function
args-info returns an integer called the "numeric argument descriptor" of
the function, which describes the way the function takes arguments. This
descriptor is used internally by the microcode, the evaluator, and the com
piler. function can be a function or a function spec.

I

I

sys:%args-info

The information is stored in various bits and byte fields in the integer,
which are referenced by the symbolic names shown below. By the usual
Symbolics Lisp Machine convention, those starting with a single "%" are
bit-masks (meant to be zl:loganded or zl:bit-tested with the number), and
those starting with "%%" are byte descriptors (meant to be used with ldb
or ldb-test).

Here are the fields:

sys:%%arg-desc-min-args
This is the minimum number of arguments that can be passed to
this function, that is, the number of "required" parameters.

sys:%%arg-desc-max-args

26

This is the maximum number of arguments that can be passed to
this function, that is, the sum of the number of "required"
parameters and the number of "optional" parameters. If there is an
&rest argument, this is not really the maximum number of ar
guments that can be passed; an arbitrarily large number of ar
guments is permitted, subject to limitations on the maximum size of
a stack frame (abflut 200 words).

sys:%%arg-desc-rest-arg
If this is nonzero, the function takes an &rest argument or &key
arguments. A greater number of arguments than
sys:%%arg-desc-max-args can be passed.

sys:%arg-desc-interpreted
This function is not a compiled-code object.

sys:%%arg-desc-interpreted
This is the byte field corresponding to the
sys:%arg-desc-interpreted bit.

sys:%%arg-desc-quoted
This is obsolete. In Release 5 this was used by the zl:"e fea
ture.

sys:%args-info function Function
This is an internal function; it is like args-info but does not work for in
terpreted functions. Also, function must be a function, not a function spec.

zl:argument-typecase arg-name &body clauses Special Form
zl:argument-typecase is a hybrid of zl:typecase and zl:check-arg-type.
Its clauses look like clauses to zl:typecase. zl:argument-typecase
automatically generates an otherwise clause which signals an error. The
proceed types to this error are similar to those from zl:check-arg; that is,
you can supply a new value that replaces the argument that caused the er
ror.

27

For example, this:

(defun faa (x)
(argument-typecase x

(:symbol (print 'symbol»
(:number (print 'number»»

is the same as this:

(defun faa (x)
(check-arg x

(typecase x
(:symbol (print 'symbol) t)
(:number (print 'number) t)
(otherwise nil»

"a symbol or a number"»

array

For a table of related items: See the section "Condition-Checking and Sig
nalling Functions and Variables" in Symbolics Common Lisp: Language
Concepts.

array &optional (element-type '.) (dimensions '.) Type Specifier
array is the type specifier symbol for the Lisp data structure of that name.

The types array, CODS, symbol, number, and character are pairwise dis
joint.

The type array is a supertype of the types:

simple-array
vector

This type specifier can be used in either symbol or list form. Used in list
form, array allows the declaration and creation of specialized arrays whose
members are all members of the type element-type and whose dimensions
match dimensions.

element-type must be a valid type specifier, or unspecified. For standard
Symbolics Common Lisp type specifiers: See the section "Type Specifiers"
in Symbolics Common Lisp: Language Concepts.

dimensions can be a non-negative integer, which is the number of dimen
sions, or it can be a list of non-negative integers representing the length of
each dimension (any of which can be unspecified). dimensions can also be
unspecified.

Note that (array t) is a proper subset of (array *). This is because
(array t) is the set of arrays that can hold any Symbolics Common Lisp ob
ject (the elements are of type t, which includes all objects). On the other

I

I

zl:array 28

hand, (array *) is the set of all arrays whatsoever, including for example
arrays that can hold only characters. (array character) is not a subset of
(array t); the two sets are in fact disjoint because (array character) is not
the set of all arrays that can hold characters, but rather the set of arrays
that are specialized to hold precisely characters and no other objects. To
test whether an array foo can hold a character, one should not use

(typep faa '(array character»

but rather

(subtypep 'character (array-element-type faa»

Examples:

(setq example-array (make-array '(3) :fill-pointer 2»
=> #<ART-Q-3 43963275>

(typep example-array 'array) => T

(typep example-array 'simple-array) => NIL
; simple arrays do not have fill-pointers.

(zl :typep #*191) => :ARRAY

(subtypep 'array t) => T and T

(array-has-fill-pointer-p example-array) => T

(arrayp example-array) => T

(sys:type-arglist 'array)
=> (&OPTIONAL (ELEMENT-TYPE '*) (DIMENSIONS '*» and T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

See the section "Arrays" in Symbolics Common Lisp: Language Concepts.

zl:array x type &rest dimlist Macro
This creates an sys:art-q type array in sys:default-cons-area with the
given dimensions. (That is, dimlists is given to zl:make-array as its first
argument.) type is ignored. If x is nil, the array is returned; otherwise,
the array is put in the function cell of symbol, and symbol is returned.
This exists for Maclisp compatibility.

We suggest using make-array in new programs.

zl:*array x type &rest dimlist Function
This is just like zl:array, except that all of the arguments are evaluated.
It exists for Maclisp compatibility.

29 zl :array-#-dims

zl:array-#-dims array Function
Returns the dimensionality of array. For example:

(zl:array-#-dims (make-array '(3 5») => 2

array-rank provides the same functionality.

zl:array-active-Iength array Function
Returns the number of active elements in array. If array does not have a
rill pointer, this returns whatever <array-total-size array) would have. If
array does have a rill pointer that is a non-negative rlXIlum,
zl:array-active-Iength returns it. See the section "Array Leaders" in Sym
bolics Common Lisp: Language Concepts. A general explanation of the use
of rill pointers is in that section.

Note that length provides the same functionality for lists and vectors.

sys:array-bits-per-element Variable
The value of sys:array-bits-per-element is an association list that as
sociates each array type symbol with the number of bits of unsigned num
bers (or rlXIlums) it can hold, or nil if it can hold Lisp objects. This can
be used to tell whether an array can hold Lisp objects or not. See the sec
tion "Association Lists" in Symbolics Common Lisp: Language Concepts.

sys:array-bits-per-element index Function
Given the internal array-type code numbers, returns the number of bits per
cell for unsigned numeric arrays, or nil for a type of array that can contain
Lisp objects.

array-dimension array dimension-number Function
Returns the length of the dimension numbered dimension-number of array.
dimension-number should be a non-negative integer less than the rank of
array.

array-diMension-limit Constant
Represents the upper exclusive bound on each individual dimension of an
array. The value of this is 134217728.

zl:array-dimension-n n array Function
Returns the size for the specified dimension of the array. array can be any
kind of array, and n should be an integer. If n is between 1 and the
dimensionality of array, this returns the nth dimension of array. If n is 0,
this returns the length of the leader of array; if array has no leader it
returns nil. If n is any other value, this returns nil.

I

I

array-dimensions

Examples:
(setq a (make-array '(3 5) :leader-length 7»
(zl:array-dimension-n 1 a) => 3
(zl :array-dimension-n 2 a) => 5
(zl :array-dimension-n 3 a) => nil
(zl:array-dimension-n B a) => 7

Use array-dimension in new programs.

30

array-dimensions array Function
array-dimensions returns a list whose elements are the dimensions of ar
ray. Example:

(setq a (make-array '(3 5»)
(array-dimensions a) => (3 5)

zl:arraydims array Function
zl:arraydims returns a list whose flrst element is the symbolic name of the
type of array, and whose remaining elements are its dimensions. array can
be any array; it also can be a symbol whose function cell contains an array
(for Maclisp compatibility).

Example:

(setq a (make-array '(3 5))
(zl :arraydims a) => (sys:art-q 3 5)

Note: the list returned by (array-dimensions x) is equal to the cdr of the
list returned by (zl:arraydims x).

See the function array-dimensions, page 30.

sys:array-displaced-p array Function
Tests whether the array is a displaced array. array can be any kind of ar
ray. This predicate· returns t if array is any kind of displaced array
(including an indirect array). Otherwise it returns nil.

sys:array-element-size array Function
Given an array, returns the number of bits that flt in an element of that
array. For arrays that can hold general Lisp objects, the result is 31; this,
assumes that you are storing flXllums in the array and manipulating their
bits with dpb (rather than sys:%logdpb). You can store any number of
bits per element in an array that holds general Lisp objects, by letting the
elements expand into bignums. .

sys:array-elements-per-q index Function
Given the internal array-type index, returns the number of array elements
stored in one word, for an array of that type.

31 sys:array-elements-per-q

sys:array-elements-per-q index Variable I
sys:array-elements-per-q is an association list that associates each array ,
type symbol with the number of array elements stored in one word, for an
array of that type. See the section "Association Lists" in Symbolics Com-
mon Lisp: Language Concepts.

array-element-type array
Returns the type of the elements of array. Example:

(setq a (make-array J(3 5»)
(array-element-type a) => T
(array-element-type "faa") => STRING-CHAR

Function

zl:array-grow array &rest dimensions Function
zl:array-grow creates a new array of the same type as array, with the
specified dimensions. Those elements of array that are still in bounds are
copied into the new array. The elements of the new array that are not in
the bounds of array are initialized to nil or 0 as appropriate. If array has
a leader, the new array has a copy of it. zl:array-grow returns the new
array and also forwards array to it, like adjust-array.

Unlike adjust-array, zl:array-grow usually creates a new array rather
than growing or shrinking the array in place. (If the array is one
dimensional and it is being shrunk, zl:array-grow does not create a new
array.) zl:array-grow of a multidimensional array can change all the sub
scripts and move the elements around in memory to keep each element at
the same logical place in the array.

array-has-fill-pointer-p array Function
Returns t if the array has a fill pointer; otherwise it returns nil. array can
be any array.

array-has-Ieader-p array Function
Returns t if array has a leader; otherwise it returns nil. array can be any
array.

array-in-bounds-p array &rest subscripts Function
Checks whether subscripts is a valid set of subscripts for array, and returns
t if they are; otherwise it returns nil.

sys:array-indexed-p array Function
This predicate returns t if array is an indirect array with an index-offset.
Otherwise it returns nil. array can be any kind of array. Note, however,
that displaced arrays with an offset are not considered indexed.

I

sys :array-i ndi rect-p 32

sys:array-indirect-p array Function
This predicate returns t if array is an indirect array. Otherwise it returns
nil. array can be any kind of array.

array-leader array index Function
Returns the indexed element of array's leader. array should be an array
with a leader, and index should be an integer.

array-leader-length array Function
This returns the length of array's leader if it has one, or nil if it does not.
array can be any array.

array-Ieader-Iength-limit Constant
This is the exclusive upper bound of the length of an array leader. It is
1024 on Symbolics 3600-family computers.

(condition-case (err)
(make-array 4 :leader-length array-leader-length-limit)

(error (princ err)))
=> Leader length specified (1924) is too large.

#<FERROR 69965943>

zl:array-Iength array Function
array-total-size provides the same functionality as does zl:array-Iength.

Returns the total number of elements in array. array can be any array.
The total size of a one-dimensional array is calculated without regard for
any fill pointer. For a one-dimensional array, zl:array-Iength returns one
greater than the maximum allowable subscript. For example:

(zl :array-length (make-array 3)) => 3
(zl :array-length (make-array '(3 5))) => 15

Note that if fill pointers are being used and you want to know the active
length of the array, you should use length or zl:array-active-Iength in
stead of zl:array-Iength.

zl:array-Iength does not return the same value as the product of the
dimensions for conformal arrays.

arrayp arg Function
arrayp returns t if its argument is an array, otherwise nil. Note that
strings are arrays.

33 zl :array-pop

zl:array-pop array &optional (default nil) Function
Decreases the fill pointer by one and returns the array element designated
by the new value of the fill pointer. array must be a one-dimensional array
that has a fill pointer.

The second argument, if supplied, is the value to be returned if the array
is empty. If zl:array-pop is called with one argument and the array is
empty, it signals an error.

The two operations (decrementing and array referencing) happen uninter
ruptibly. If the array is of type sys:art-q-list, an operation similar to
nbutlast has taken place. The cdr coding is updated to ensure this.

See the function vector-pop, page 612.

zl:array-push array x Function
zl:array-push attempts to store x in the element of the array designated by
the fill pointer and increase the fill pointer by one. array must be a one
dimensional array that has a fill pointer, and x can be any object allowed to
be stored in the array. If the fill pointer does not designate an element of
the array (specifically, when it gets too big), it is unaffected and
zl:array-push returns nil; otherwise, the two actions (storing and
incrementing) happen uninterruptibly, and zl:array-push returns the former
value of the fill pointer, that is, the array index in which it stored x.

If the array is of type sys:art-q-list, an operation similar to nconc has
taken place, in that the element has been added to the list by changing the
cdr of the formerly last element. The cdr coding is updated to ensure this.

See the function vector-push, page 612.

zl:array-push-extend array x &optional extension Function
zl:array-push-extend is just like zl:array-push except that if the fill
pointer gets too large, the array is grown to fit the new element; that is, it
never "fails" the way zl:array-push does, and so never returns nil. exten
sion is the number of elements to be added to the array if it needs to be
grown. It defaults to something reasonable, based on the size of the array.
zl:array-push-extend returns the former value of the fill pointer, that is,
the array index in which it stored x.

See the function vector-push-extend, page 612.

zl:array-push-portion-extend to-array from-array &optional Function
(from-start 0) from-end

Copies a portion of one array to the end of another, updating the fill
pointer of the other to reflect the new contents. The destination array
must have a fill pointer. The source array need not. This is equivalent to
numerous zl:array-push-extend calls, but more efficient.

I

I

array-rank

zl:array-push-portion-extend returns the to-array and the index of the
next location to be filled.

Example:

(setq to-string
(z1 : array-push-porti on-extend to-string

from-string
(or from 8)

to»

34

This is similar to zl:array-push-extend except that it copies more than one
element and has different return values. The arguments default in the
usual way, so that the default is to copy all of from-array to the end of
to-array.

zl:array-push-portion-extend adjusts the array size using adjust-array. It
picks the new array size in the same way that zl:array-push-extend does,
making it bigger than needed for the information being added. In this
way, successive additions do not each end up consing a new array.
zl:array-push-portion-extend uses copy-array-portion internally.

See the function vector-push-portion-extend, page 612.

array-rank array Function
Returns the number of dimensions of array. For example:

(array-rank (make-array '(3 5») => 2

array-rank-limit Constant
Represents the exclusive upper bound on the rank of an array. The value
of this is 8.

array-row-major-index array &rest subscripts Function
Takes an array and valid subscripts for the array and returns a single posi
tive integer, less than the total size of the array, that identifies the ac
cessed element in the row-major ordering of the elements. The number of
subscripts supplied must equal the rank of the array. Each subscript must
be a nonnegative integer less than the corresponding array dimension.
Like aref, array-row-major-index returns the position whether or not that
position is within the active part of the array.

For example:

wi ndow is a conformal array whose 0,0 coordinate is at 256,256 of bi g
array. The following code creates a 114 size portal into the center of big
array.

35 sys:array-row-span

;;; -*- Syntax: Zetalisp; Package: USER; Base: 10; Hade: LISP -*
(setq big-array (make-array '(1024 1024) :type 'art-q

:initial-value 0»
(setq window (make-array '(512 512) :type 'art-q

:displaced-to big-array
:displaced-index-offset

(array-row-major-index big-array 256 256)
:displaced-conformally t»

For a one-dimensional array, the result of array-row-major-index equals
the supplied subscript.

An error is signalled if some subscript is not valid.

array-row-major-index can be used with the :displaced-index-offset option
of make-array to construct the desired value for multidimensional arrays.

sys:array-row-span array Function
sys:array-row-span, given a two-dimensional array, returns the number of
array elements spanned by one of its rows. Normally, this is just equal to
the length of a row (that is, the number of columns), but for conformally
displaced arrays, the length and the span are not equal.

(sys:array-row-span (make-array '(4 5») => 5
(sys:array-row-span (make-array '(4 5)

=> 9

:displaced-to (make-array '(8 9»
:displaced-conformally t»

Note: if the array is conceptually a raster, it is better to use
decode-raster-array instead of sys:array-row-span

array-total-size array Function
Returns the total number of elements in array. The total size of a one
dimensional array is calculated without regard for any fill pointer.

(array-total-size (make-array '(3 5 2») => 30

Note that if fill pointers are being used and you want to know the active
length of the array, you should use length or zl:array-active-Iength.

array-total-size does not return the same value as the product of the
dimensions for conformal arrays.

array-total-size-limit Constant
Represents the exclusive upper bound on the number of elements of an ar
ray. The value of this is 134217728.

I

I

sys :array-type 36

sys:array-type array Function
Returns the symbolic type of array. Example:

(sys:array-type (make-array '(3 5») => SYS:ART-Q

sys:*array-type-codes* Variable
The value of sys:*array-type-codes* is a list of all of the array type sym
bols such as sys:art-q, sys:art-4b, sys:art-string and so on. The values of
these symbols are internal array type code numbers for the corresponding
type.

sys:array-types index Function
Returns the symbolic name of the array type. The index is the internal
numeric code stored in sys:*array-type-codes*.

zl:as-l value array index Function
This is an obsolete version of zl:aset that only works for one-dimensional
arrays. There is no reason ever to use it.

zl:as-2 value array indexl index2 Function
This is an obsolete version of zl:aset that only works for two-dimensional
arrays. There is no reason ever to use it.

zl:ascii x Function
zl:ascii returns a symbol whose printname is the character x.

x can be an integer (a character code), a character, a string, or a symbol.

Examples:

(zl:ascii 2) => a
(zl :asci; #\y) => Iyl
(zl :asc;; "V") => Y

(zl :asc;; 'a) => A

The symbol returned is interned in the current package.

This function is provided for Maclisp compatibility only.

For a table of related items: See the section "Maclisp-Compatible String
Functions" in Symbolics Common Lisp: Language Concepts.

ascii-code spec Function
Returns an integer that is the ASCII code named by spec. If spec is a
character, char-to-ascii is called. Otherwise, spec can be a string or
keyword that names one of the ASCII special characters.

ascii-code returns an integer, for example (ascii-code #\cr) => #015.
ascii-code also recognizes strings and looks up the names of the ASCII

37 ascii-to-char

"control" characters. Thus (ascii-code "soh") and (ascii-code #\J,)
return 1. (ascii-code #\c-A) returns #0101, not 1; there is no mapping be
tween Symbolics character set control characters and ASCII control charac
ters.

Valid ASCII special character names are listed below. All numbers are in
octal.

NUL 000
SOH 001
STX 002
ETX 003
EOT 004
ENQ 005
ACK 006
BEL 007
BS 010
TAB 011

HT 011
LF 012
NL 012
VT 013
FF 014
CR 015
SO 016
SI 017
DLE 020

DC1 021
DC2 022
DC3 023
DC4 024
NAK 025
SYN 026
ETB 027
CAN 030
EM 031

SUB 032
ESC 033
ALT 033
FS 034
OS 035
RS 036
US 037
SP 040
DEL 177

ascii-to-char code Function
Converts code (an ASCII code) to the corresponding character. The caller
must ignore LF after CR if desired. See the section "ASCII String
Functions" in Symbolics Common Lisp: Language Concepts.

The functions char-to-ascii and ascii-to-char provide the primitive conver
sions needed by ASCII-translating streams. They do not translate the
Return character into a CR-LF pair; the caller must handle that. They just
translate #\return into CR and #\line into LF. Except for CR-LF,
char-to-ascii and ascii-to-char are wholly compatible with the ASCII
translating streams.

They ignore Symbolics Lisp Machine control characters; the translation of
#\c-g is the ASCII code for G, not the ASCII code to ring the bell, also
known as "control 0." (ascii-to-char (ascii-code "BEL"» is #/1t, not #\c-G.
The translation from ASCII to character never produces a Lisp Machine
control character.

ascii-to-string ascii-array Function
Converts ascii-array, an sys:art-8b array representing ASCII characters,
into a Lisp string. Note that the length of the string can vary depending
on whether ascii-array contained a newline character or Carriage Return
Line Feed characters. See the section "ASCII Characters" in Symbolics
Common Lisp: Language Concepts.

Example:

I

I

zl:aset 38

(setq a-string-array
(zl :make-array 5 :type zl:art-8b :initia1-va1ue (ascii-code #\x»)

=> #(129 129 129 129 129)
(ascii-to-string a-string-array) => "xxxxx"

For a table of related items: See the section "ASCII String Functions" in
Symbolics Common Lisp: Language Concepts.

zl:aset element array &rest subscripts Function
Stores element into the element of array selected by the subscripts. The
subscripts must be integers and their number must match the dimen
sionality of array. The returned value is element.

Current style suggests using setf and aref instead of zI:aset. Fpr example:

(setf (aref array subscripts ...) new-value)

ash number count Function
Shifts number arithmetically left count bits if count is positive, or right
-count bits if count is negative. Unused positions are filled by zeroes from
the right, and by copies of the sign bit from the left. Thus, unlike Ish, the
sign of the result is always the same as the sign of number. If number is
an integer, this is a shifting operation. If number is a floating-point num
ber, this does scaling (multiplication by a power of two), rather than ac
tually shifting any bits.
Examples:

(ash 1 3) => 8
(ash 19 3) => 89
(ash 19 -3) => 1
(ash 1 -3) => 9
(ash 1.5 3) => 12.9
(ash -1 3) => -8
(ash -1 -3) => -1

See the section "Functions Returning Result of Bit-wise Logical
Operations" in Symbolics Common Lisp: Language Concepts.

For a table of related items: See the section "Functions Returning Result
of Bit-wise Logical Operations" in Symbolics Common Lisp: Language Con
cepts.

asin number Function
Computes and returns the arc sine of number. The result is in radians.

The argument can be any noncomplex or complex number. Note that if the
absolute value of number is greater than one, the result is complex, even if
the argument is not complex.

39 asinh

The arc sine being a mathematically multiple-valued function, asin returns I
a principal value whose range is that strip of the complex plane containing ,
numbers with real parts between -7tl2 and 7tl2. Any number with a real
part equal to -7tl2 and a negative imaginary part is excluded from the
range. Also excluded from the range is any number with real part equal to
Tt/2 and a positive imaginary part.

Examples:

(asin 1) => 1.5707964 ;n/2 radians
(asin 0) => 0.0
(asin -1) => -1.5707964 ;-Tt/2 radians
(asin 2) => #c(1.5707964 -1.316958)
(asin -2) => #c(-1.5707964 1.3169578)

For a table of related items: See the section "Trigonometric and Related
Functions" in Symbolics Common Lisp: Language Concepts.

asinh number Function
Computes and returns the hyperbolic arc sine of number. The result is in
radians. The argument can be any noncomplex or complex number.

The hyperbolic arc sine being mathematically multiple-valued in the com
plex plane, asinh returns a principal value whose range is that strip of the
complex plane containing numbers with imaginary parts between -Tt/2 and
Ttl2. Any number with an imaginary part equal to -n/2 is not in the range
if its real part is negative; any number with real part equal to n/2 is ex
cluded from the range if its imaginary part is positive.

Example:

(asinh 0) => 0.0 ;(sinh 0) => 0.0

For a table of related items: See the section "Hyperbolic Functions" in
Symbolics Common Lisp: Language Concepts.

zl:ass predicate item alist Function
(zl:ass item alist) looks up item in the association list (list of conses) alist.
The value is the first cons whose car matches x according to predicate, or
nil if there is none such. (zl:ass 'eq a b) is the same as (zl:assq a b). See
the function zl:mem, page 345. As with zl:mem, you may use noncommuta
tive predicates; the first argument to the predicate is item and the second
is the key of the element of alist.

For a table of related items: See the section "Functions That Operate on
Association Lists" in Symbolics Common Lisp: Language Concepts.

I

assert 40

assert test-form &optional references format-string &rest Macro
format-args

assert signals an error if the value of test-form is nil. It is possible to
proceed from this error; the function lets you change the values of some
variables, and starts over, evaluating test-form again.

assert returns nil.

test-form is any form.

references is a list, each item of which must be a generalized variable refer
ence that is acceptable to the macro setf. These should be variables on
which test-form depends, whose values can sensibly be changed by the user
in attempting to correct the error. Subforms of each of references are only
evaluated if an error is signalled, and can be re-evaluated if the error is re
signalled (after continuing without actually fIxing the problem).

format-string is an error message string.

format-args are additional arguments; these are evaluated only if an error
is signalled, and re-evaluated if the error is signalled again.

The function format is applied in the usual way to format-string and and
format-args to produce the actual error message.

If format-string (and therefore also format-args) are omitted, a default error
message is used.

For a table of related items: See the section "Condition-Checking and Sig
nalling Functions and Variables" in Symbolics Common Lisp: Language
Concepts.

assoc item a-list &key (test #'eql) test-not (key #'identity) Function
assoc searches the association list a-list. The value returned is the first
pair in a-list such that the car of the pair satisfIes the predicate specifIed
by :test, or nil if there is no such pair in a-list. The keywords are:

:test Any predicate specifying a binary operation to be applied
to a supplied argument and an element of a target list.
The item matches the specifIcation only if the predicate
returns t. If :test is not supplied the default operation is
eql.

: test· not Similar to :test, except the item matches the specification
only if there is an element of the list for which the
predicate returns nil.

:key If not nil, should be a function of one argument that will
extract from. an element the part to be tested in place of
the whole element.

Example:

41

(assoc Jl oon '«eagle. raptor) (loon. diver») =>
(LOON . DIVER)

zl:assoc

(assoc Jdiver J«eagle raptor) (loon. diver») => NIL

(assoc J2 J«1 a b c) (2 bed) (-7 x y z») => (2 BCD)

It is possible to rplacd the result of assoc (provided that it is non-nil) in
order to update a-list. However, it is often better to update an alist by ad
ding new pairs to the front, rather than altering old pairs. For example:

(setq values J«x . 100) (y . 200) (z . 50») =>
«X . 100) (Y . 200) (2 50»

(assoc Jy values) => (Y 200)

(rplacd (assoc Jy values) 201) => (Y . 201)

(assoc Jy values) => (Y . 201)

The two expressions

(assoc item alist :test pred)

and

(find item alist :test pred :key #J car)

are. almost equivalent in meaning. The difference occurs when nil appears
in a-list in place of a pair, and the item being searched for is nil. In these
cases, find computes the car of the nil in a-list, finds that it is equal to
item, and returns nil, while assoc ignores the nil in a-list and continues to
search for an actual cons whose car is nil. See also, find position.

zl:assoc item alist Function
(zl:assoc item alist) looks up item in the association list (list of conses)
alist. The value is the first cons whose car is zl:equal to x, or nil if there
is none such. Example:

(zl :assoc J (a b) J «x . y) «a b) . 7) «c . d) .e»)
=> «a b) . 7)

zl:assoc could have been defined by:

(de fun assoc (item list)
(cond «null list) nil)

«equal item (caar list» (car list»
«assoc item (cdr list»)) »

This Zetalisp function is shadowed by the Common Lisp function of the
same name.

I

I

assoc-if

For a table of related items: See the section "Functions That Operate on
Association Lists" in Symbolics Common Lisp: Language Concepts.

42

assoc-if predicate a-list &key key Function
assoc-if searches the association list a-list. The value returned is the first
pair in a-list such that the car of the pair satisfies predicate, or nil if there
is no such pair in a-list. The keyword is:

:key If not nil, should be a function of one argument that will
extract from an element the part to be tested in place of
the whole element.

Example:

(assoc-if #'integerp '«eagle. raptor) (1 . 2))) =>
(1 . 2)

(assoc-if #'symbolp '«eagle. raptor) (1 . 2))) =>
(EAGLE . RAPT OR)

(assoc-if #'floatp '«eagle. raptor) (1 . 2))) =>
NIL

For a table of related items: See the section "Functions That Operate on
Association Lists" in Symbolics Common Lisp: Language Concepts.

assoc-if-not predicate a-list &key key Function
assoc-if-not searches the association list a-list. The value returned is the
first pair in a-list such that the car of the pair does not satisfy predicate, or
nil if there is no such pair in a-list. The keyword is:

: key If not nil, should be a function of one argument that will
extract from an element the part to be tested in place of
the whole element.

Example:

(assoc-if-not #'integerp '«eagle. raptor) (1 . 2))) =>
(EAGLE . RAPT OR)

(assoc-if-not #'symbolp '«eagle. raptor) (1 . 2))) =>
(1 . 2)

(assoc-if-not #'symbolp '«eagle. raptor) (loon. diver))) =>
NIL

For a table of related items: See the section "Functions That Operate on
Association Lists" in Symbolics Common Lisp: Language Concepts.

43 zl:assq

zl:assq item alist Function I
(zl:assq item alist) looks up item in the association list (list of conses) alist. ,
The value is the first cons whose car is eq to x, or nil if there is none
such. Examples:

(zl :assq 'r '«a. b) (c . d) (r . x) (s . y) (r . z))
=> (r. x)

(zl :assq 'fooo '«faa. bar) (zoo. goo)) => nil

(zl :assq 'b '«a b c) (b c d) (x y z») => (b c d)

You can rplacd the result of zl:assq as long as it is not nil, if your inten
tion is to "update" the "table" that was zl:assq's second argument. Ex
ample:

(setq values '«x. 100) (y . 200) (z . 50»))
(zl :assq 'y values) => (y . 200)
(rplacd (zl :assq 'y values) 201)
(zl :assq 'y values) => (y . 201) now

A typical trick is to say (cdr (zl:assq x y». Since the cdr of nil is
guaranteed to be nil, this yields nil if no pair is found (or if a pair is
found whose cdr is nil.)

zl:assq could have been defined by:

(defun zl :assq (item list)
(cond «null list) nil)

«eq item (caar list)) (car list))
«assq item (cdr list))) »

zl:assq is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions That Operate on
Association Lists" in Symbolics Common Lisp: Language Concepts.

atan y &optional x Function
With two arguments, y and x, atan computes and returns the arc tangent
of the quantity y/x. If either argument is a double-float, the result is also
a double-float. In the two argument case neither argument can be com
plex. The returned value is in radians and is always between -1t (exclusive)
and 1t (inclusive). The signs of y and x determine the quadrant of the
result angle.

Note that either y or x (but not both simultaneously) can be zero. The ex
amples illustrate a few special cases.

With only one argument y, atan computes and returns the arc tangent of

I

zl:atan 44

y. The argument can be any noncomplex or complex number. The result
is in radians and its range is as follows: for a noncomplex y the result is
noncomplex and lies between -w2 and w2 (both exclusive); for a complex y
the range is that strip of the complex plane containing numbers with a real
part between -w2 and w2. A number with real part equal to -w2 is not in
the range if it has a non-positive imaginary part. Similarly, a number with
real part equal to w2 is not in the range if its imaginary part is non
negative.

Examples:

(atan B) => B.B
(atan B 673) => B.B
(atan 1 1) => B.7853982
(atan 1 -1) => 2.3561945
(atan -1 -1) => -2.3561945
(atan -1 1) => -B.7853982
(atan 1 B) => 1.57B7964

;(atan (/ Y x»
;first quadrant
;second quadrant
;third quadrant
;fourth quadrant

For a table of related items: See the section "Trigonometric and Related
Functions" in Symbolics Common Lisp: Language Concepts.

zl:atan y x Function
Returns the angle, in radians, whose tangent is y/x. zl:atan always returns
a number between zero and 21t.

Examples:

(zl :atan 1 1) => B.7853982
(zl:atan -1 -1) => 3.926991

For a table of related items: See the section "Trigonometric and Related
Functions" in Symbolics Common Lisp: Language Concepts.

zl:atan2 y x Function
Similar to atan, except that it accepts only noncomplex arguments.

Returns the angle, in radians, whose tangent is y/x. zl:atan2 always
returns a number between -1t and 1t. .

For a table of related items: See the section "Trigonometric and Related
Functions" in Symbolics Common Lisp: Language Concepts.

atanh number Function
Computes and returns the hyperbolic arc tangent of number. The result is
in radians. The argument can be any noncomplex or complex number.
Note that if the absolute value of the argument is greater than one, the
result is complex even if the argument is not complex.

45 atom

The hyperbolic arc tangent being mathematically multiple-valued in the A
complex plane, atanh returns a principal value whose range is that strip of
the complex plane containing numbers with imaginary parts between -1tf2
and 1tf2. Any number with an imaginary part equal to -1tI2 is not in the
range if its real part is non-negative; any number with imaginary part
equal to 1tI2 is excluded from the range if its real part is non-positive.

Example:

(atanh B) => B.B

For a table of related items: See the section "Hyperbolic Functions" in
Symbolics Common Lisp: Language Concepts.

atom Type Specifier
atom is the type specifier symbol for the predefined Lisp object, atom.

atom == (not cons).

Examples:

(typep 'a 'atom) => T

(zl :typep 'a) => :SYMBOL

(subtypep 'atom 'common) => NIL and NIL

(atom 'a) => T

(sys:type-arglist 'atom) => NIL and T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

See the section "Symbols and Keywords" in Symbolics Common Lisp: Lan
guage Concepts.

atom object Function
The predicate atom returns t if its argument is not a cons, otherwise nil.

Note that

(atom '0)

is true because 0 is equivalent to nil.

(atom x)

is equivalent to

(type x 'atom)

is equivalent to

(not (typep x 'cons»

I

&aux 46

&aux

For a table of related items: See the section "Predicates That Operate on
Lists" in Symbolics Common Lisp: Language Concepts.

Lambda List Keyword
&aux separates the arguments of a function from the auxiliary variables.
If it is present, all specifiers after it are entries of the form:

(variable initial-value-form)

47 zl:base

zl:base Variable
The value of zl:base is a number that is the radix in which integers and
ratios are printed in, or a symbol with a si:princ-function property. The
initial value of zl:base is 10. zl:base should not be greater than 36 or less
than 2.

The printing of trailing decimal points for integers in base ten is controlled I __
by the value of variable ·print-radix*. See the section "Printed Represen-
tation of Rational Numbers" in Symbolics Common Lisp: Language Con-
cepts.

The following variable is a synonym for zl: base:

*print-base·

bignum Type Specifier
bignum is the type specifier symbol for the predefmed primitive Lisp ob
ject, bignum.

The types bignum and IlXllum are an exhaustive partition of the type in
teger, since integer == (or bignum fixnum). These two types are internal
representations of integers used by the system for efficiency depending on
integer size; in general, bignums and fIXnums are transparent to the
programmer.

Examples:

(typep 1888888888888888888888888880888888 'bignum) => T

(typep '1 'bignum) => NIL

(zl:typep '18888888888888888888888888888888) => :SIGNUM

(subtypep 'bignum 'integer) => T and T ; subtype and certain

(typep 565682366398848747848463539484874 'common) => T

(zl:bigp 444444444445555555555555555556666666666666) => T

(sys:type-arglist 'bignum) => NIL and T

(type-of 89889374897338373689484949494373639484899876) => SIGNUM

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

See the section "Numbers" in Symbolics Common Lisp: Language Concepts.

zl: bigp object Function
zl: bigp returns t if object is a bignum, otherwise nil.

For a table of related items: See the section "Numeric Type-checking
Predicates" in Symbolics Common Lisp: Language Concepts.

I

bit 48

bit array &rest subscripts Function

bit

Returns the element of array selected by the sUbscripts. The subscripts
must be integers and their number must match the dimensionality of array.
The array must be an array of bits.

Type Specifier
bit is the type specifier symbol for the predefmed Lisp bit data type.

The type bit is a subtype of the types unsigned-byte and tlxnum.

bit is the special name for the type (integer e 1) and the type (mod 2).

Examples:

(typep 2 'bit) => NIL
(typep e 'bit) => T

(subtypep 'bit 'unsigned-byte) => T and T ;subtype and certain

(equal-typep 'bit '(unsigned-byte 1» => T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

bit-and first second &optional third Function
Performs logical and operations on bit arrays. The arguments must be bit
arrays of the same rank and dimensions. A new array is created to contain
the result if the third argument is nil or omitted. If the third argument is
t, the first array is used to hold the result.

bit-andcl first second &optional third Function
Performs logical and operations on the complement of first with second on
bit arrays. The arguments must be bit arrays of the same rank and dimen
sions. A new array is created to contain the result if the third argument
is nil or omitted. If the third argument is t, the first array is used to hold
the result.

bit-andc2 first second &optional third Function
Performs logical and operations on first with the complement of second on
bit arrays. The arguments must be bit arrays of the same rank and dimen
sions. A new array is created to contain the result if the third argument
is nil or omitted. If the third argument is t, the first array is used to hold
the result.

bitblt alu width height from-raster from-x from-y to-raster to-x to-y Function
bitblt copies a rectangular portion of from-raster into a rectangular portion
of to-raster. from-raster and to-raster must be two-dimensional arrays of bits
or bytes (sys:art-lb, sys:art-2b, sys:art-4b, sys:art-8b, sys:art-16b, or
sys:art-ilXllum). The value stored can be a Boolean function of the new

49 bitblt

value and the value already there, under the control of alu. This function
is most commonly used in connection with raster images for TV displays.

The top-left corner of the source rectangle is:

(raster-aref from-raster from-x from-y)

The top-left corner of the destination rectangle is:

(raster-aref to-raster to-x to-y)

width and height are the dimensions of both rectangles. If width or height
is zero, bitblt does nothing.

from-raster and to-raster are allowed to be the same array. bitblt normally
traverses the arrays in increasing order of x and y subscripts. If width is
negative, then (abs width) is used as the width, but the processing of the x
direction is done backwards, starting with the highest value of x and work
ing down. If height is negative it is treated analogously. When bitblting
an array to itself, when the two rectangles overlap, it might be necessary
to work backwards to achieve the desired effect, such as shifting the entire
array upwards by a certain number of rows. Note that negativity of width
or height does not affect the (x,y) coordinates specified by the arguments,
which are still the top-left corner even if bitblt starts at some other
corner.

If the two arrays are of different types, bitblt works bit-wise and not
element-wise. That is, if you bitblt from an sys:art-2b raster into an
sys:art-4b raster, then two elements of the from-raster correspond to one
element of the to-raster. width is in units of elements of the to-raster.

If bitblt goes outside the bounds of the source array, it wraps around.
This allows such operations as the replication of a small stipple pattern
through a large array. If bitblt goes outside the bounds of the destination
array, it signals an error.

If src is an element of the source rectangle, and dst is the corresponding
element of the destination rectangle, then bitblt changes the value of dst
to (boole alu src dst). The following are the symbolic names for some of
the most useful alu functions:

tv:alu-seta
tv:alu-setz
tv:alu-ior
tv:alu-xor
tv:alu-andca

plain copy
set destination to 0
inclusive or
exclusive or
and with complement of source

For a chart of more alu possibilities: See the function boole, page 54.

bitblt is written in highly optimized microcode and goes very much faster
than the same thing written with ordinary raster operations would. Unfor-

I

I

bit-eqv 50

tunately this causes bitblt to have a couple of strange restrictions.
Wraparound does not work correctly if from-raster is an indirect array with
an index offset. bitblt signals an error if the widths of from-raster and
to-raster are not both integral multiples of the machine word length. For
sys:art-lb arrays, width must be a multiple of 32., for sys:art-2b arrays it
must be a multiple of 16., and so on.

bit-eqv first second &optional third Function
Performs logical exclusive nor operations on bit arrays. The arguments
must be bit arrays of the same rank and dimensions. A new array is
created to contain the result if the third argument is nil or omitted. If the
third argument is t, the first array is used to hold the result.

bit-ior first second &optional third Function
Performs logical inclusive or operations on bit arrays. The arguments must
be bit arrays of the same rank and dimensions. A new array is created to
contain the result if the third argument is nil or omitted. If the third ar
gument is t, the first array is used to hold the result.

bit-nand first second &optional third Function
Performs logical not and operations on bit arrays. The arguments must be
bit arrays of the same rank and dimensions. A new array is created to
contain the result if the third argument is nil or omitted. If the third ar
gument is t, the first array is used to hold the result.

bit-nor first second &optional third Function
Performs logical not or operations on bit arrays. The arguments must be
bit arrays of the same rank and dimensions. A new array is created to
contain the result if the third argument is nil or omitted. If the third ar
gument is t, the first array is used to hold the result.

bit-not source &optional destination Function
source must be a bit-array. bit-not returns a bit-array of the same rank
and dimensions that contains a copy of the argument with all the bits in
verted. If destination is nil or omitted, a new array is created to contain
the result. If destination is t, the result is destructively placed in the
source array.

bit-orcl first second &optional third Function
Performs logical or operations on the complement of first with second on
bit arrays. The arguments must be bit arrays of the same rank and dimen
sions. A new array is created to contain the result if the third argument
is nil or omitted. If the third argument is t, the first array is used to hold
the result.

51 bit-orc2

bit-orc2 first second &optional third Function
Performs logical or operations on first with the complement of second on
bit arrays. The arguments must be bit arrays of the same rank and dimen
sions. A new array is created to contain the result if the third argument
is nil or omitted. If the third argument is t, the first array is used to hold
the result.

zl: bit-test x y Function
zl: bit-test is a predicate that returns t if any of the bits designated by the
1's in x are 1's in y.

The following function is a synonym of zl:bit-test:

logtest

For a table of related items: See the section "Predicates for Testing Bits in
Integers" in Symbolics Common Lisp: Language Concepts.

bit-vector &optional (size '*) Type Specifier
bit-vector is the type specifier symbol for the Lisp data structure of that
name.

The type bit-vector is a subtype of the type vector; (bi t-vector) means
(vector bi t).

The type bit-vector is a supertype of the type simple-bit-vector.

The types (vector t), string, and bit-vector are disjoint.

This type specifier can be used in either symbol or list form. Used in list
form, bit-vector allows the declaration and creation of specialized types of
bit vectors whose size is restricted to the specified size. (bi t-vector si ze)
means the same as (array bit (size»: the set of bit-vectors of the in
dicated size.

Examples:

(setq array-bit-vector
(make-array '(3) :element-type 'bit :fill-pointer 2»

=> #<ART-1B-3 43915121>

(typep #*19119 'bit-vector) => T

(typep #*191 '(bit-vector 3» => T

(typep array-bit-vector 'bit-vector) => T

(subtypep 'bit-vector 'vector) => T and T

I

I

bit-vector-p

(bit-vector-p ~) => T ;empty bit vector

(sys:type-arglist 'bit-vector) => (&OPTIONAl (SIZE '*» and T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

See the section "Arrays" in Symbolics Common Lisp: Language Concepts.

52

bit-vector-p object Function
Tests whether the given object is a bit vector. A bit vector is a one
dimensional array whose elements are required to be bits. See the type
specifier bit-vector, page 51.

(bit-vector-p (make-array 3 :element-type 'bit :fill-pointer 2»
=> T

(bit-vector-p (make-array 5 :element-type 'string-char»
=> NIL

bit-xor first second &optional third Function
Performs logical exclusive or operations on bit arrays. The arguments must
be bit arrays of the same rank and dimensions. A new array is created to
contain the result if the third argument is nil or omitted. If the third ar
gument is t, the first array is used to hold the result.

block name &body body Special Form
Evaluates each form in sequence and normally returns the (possibly
multiple) values of the last form. However, (return-from name value) or
(return or (return (values-list list» form) might be evaluated during the
evaluation of some form. In that case, the (possibly multiple) values that
result from evaluating value are immediately returned from the innermost
block that has the same name and that lexically contains the return-from
form. Any remaining forms in that block are not evaluated.

name is not evaluated. It must be a symbol.

The scope of name is lexical. That is, the return-fi'om form must be in
side the block itself (or inside a block that that block lexically contains),
not inside a function called from the block.

do, prog, and their variants establish implicit blocks around their bodies;
you can use return-from to exit from them. These blocks are named nil
unless you specify a name explicitly.

Examples:

53

(block nil
(print "clear")
(return)
(print "open"» => "clear" NIL

(let «x 2408»
(block time-x

(when (= x 240B)
(return-from time-x "time to go"»

("time time time"») => "time to go"

(defun bar 0
(princ "zero ")
(block a

(princ "one ") (return-from a "two ")
(princ "three H»~

(pri nc "four ")
t) => BAR

(bar) => zero one four T

(block negative
(mapcar (function (lambda (x)

y»

(cond «minusp x)
(return-from negative x»

(t (f x») »

The following two forms are equivalent:

(cond «predicate x)
(do-one-thing»

(t

(format t "The value of X is -5-%" x)
(do-the-other-thing)
(do-something-e1se-too»)

(block deal-with-x
(when (predicate x)

(return-from dea1-with-x (do-one-thing»)
(format t "The value of X is -5-%" x)
(do-the-other-thing)
(do-something-else-too»

block

The interpreter and compiler generate implicit blocks for functions whose
name is a list (such as methods) just as they do for functions whose name

I

I

&body 54

is a symbol. You can use return-from for methods. The name of a
method's implicit block is the name of the generic function it implements.
If the name of the generic function is a list, the block name is the second
symbol in that list.

For a table of related items: See the section "Blocks and Exits Functions
and Variables" in Symbolics Common Lisp: Language Concepts.

&body Lambda List Keyword
This keyword is used with macros only. I t is identical in function to
&rest, but it informs output-formatting and editing functions that the
remainder of the form is treated as a body, and should be indented accord
ingly.

Note that either &body or &rest, but not both, should be used in any
definition.

boole op integerl &rest more-integers Function
boole is the generalization of logical functions such as logand, logior and
logxor. It performs bit-wise logical operations on integer arguments
returning an integer which is the result of the operation.

The argument op specifies the logical operation to be performed; sixteen
operations are possible. These are listed and described in the table below
which also shows the truth tables· for each value of op.

op can be specified by writing the name of one of the constants listed
below which represents the desired operation, or by using an integer be
tween 0 and 15 inclusive which controls the function that is computed. If
the binary representation of op is abcd (a is the most significant bit, d the
least) then the truth table for the Boolean operation is as follows:

integerl

Examples:

integer2
1 B 1

BI a c

11 b d

(boole 6 B B) => B
(boole 11 1 B) => -2
(boole 2 6 9) => 9

a=B
a=1 and b=B
a=b=d=B c=1 therefore 1J s appear only
when integer1 is Band integer2 is 1

With two arguments, the result of hoole is simply its second argument. At
least two arguments are required.

55 boole

If boole has more than three arguments, it is associated left to right; thus,

(boole op x y 2) = (boole op (boole op x y) 2)

(boole boole-and e 1 1) => e
For the basic case of three arguments, the results of boole are shown in
the table below. This table also shows the value of bits abed in the binary I representation of op for each of the sixteen operations. (For example,
boole-clr corresponds to #bOOOO, boole-and to #bOOOl, and so on.)

a b e d
Integerl 0 1 0 1

op Integer20 0 1 1 Operation Name

boole-clr 0 0 0 0 clear, always 0
boole-and 0 0 0 1 and
boole-andcl 0 0 1 0 and complement of integerl

with integer2
boole-2 0 0 1 1 last of more-integers
boole-andc2 0 1 0 0 and integerl with complement

of integer2
boole-l 0 1 0 1 integerl
boole-xor 0 1 1 0 exclusive or
boole-ior 0 1 1 1 inclusive or
boole-nor 1 0 0 0 nor (complement of

inclusive or)
boole-eqv 1 0 0 1 equivalence (exclusive nor)
boole-cl 1 0 1 0 complement of integerl
boole-orcl 1 0 1 1 or complement of integerl

with integer2
boole-c2 1 1 0 0 complement of integer2
boole-orc2 1 1 0 1 or integerl with complement

of integer2
boole-nand 1 1 1 0 nand (complement of and)
boole-set 1 1 1 1 set, always 1

I

boole-1

Examples:
(boole boole-clr 3) => 3 ;with two arguments always returns

; integer1
(boole boole-set 7) => 7

(boole boole-1 1 B) => 1
(boole boole-2 1 B) => B

56

As a matter of style the explicit logical functions such as logand, logior,
and logxor are usually preferred over the equivalent forms of boole. boole
is useful, however, when you want to generalize a procedure so that it can
use one of several logical operations.

For a table of related items: See the section "Functions Returning Result
of Bit-wise Logical Operations" in Symbolics Common Lisp: Language Con
cepts.

boole-l Constant
This constant can be used as the fIrst argument to the function boole; it
specilles a bit-wise logical operation that returns the irrst integer argument
of boole.

boole-2 Constant
This constant can be used as the irrst argument to the function boole; it
specilles a bit-wise logical operation that returns the last integer argument
of boole.

boole-and Constant
This constant can be used as the irrst argument to the function boole; it
specifIes a bit-wise logical and operation to be performed on the integer ar
guments of boole.

boole-andcl Constant
This constant can be used as the fIrst argument to the function boole; it
specilles a logical operation to be performed on the integer arguments of
boole, namely, a bit-wise logical and of the complement of the first integer
argument with the next integer argument.

boole-andc2 Constant
This constant can be used as the fIrst argument to the function boole; it
specifies a logical operation to be performed on the integer arguments of
boole, namely, a bit-wise logical and of the irrst integer argument with the
complement of the next integer argument.

57 boole-c1

boole-cl Constant
This constant can be used as the first argument to the function boole; it
specifies a bit-wise logical operation that returns the complement of the
first integer argument of boole.

boole-c2 Constant 1_.
This constant can be used as the first argument to the function boole; it
specifies a bit-wise logical operation that returns the complement of the
last integer argument of boole.

boole-clr Constant
This constant can be used as the first argument to the function boole; it
specifies a bit-wise logical clear operation to be performed on the integer
arguments of boole.

boole-eqv Constant
This constant can be used as the first argument to the function boole; it
specifies a bit-wise logical equivalence operation to be performed on the in
teger arguments of boole.

boole-ior Constant
This constant can be used as the first argument to the function boole; it
specifies a bit-wise logical inclusive or operation to be performed on the in
teger arguments of boole.

boole-nand Constant
This constant can be used as the first argument to the function boole; it
specifies a bit-wise logical not-and operation to be performed on the integer
arguments of boole.

boole-nor Constant
This constant can be used as the irrst argument to the function boole; it
specifies a bit-wise logical not-or operation to be performed on the integer
arguments of boole.

boole-orcl Constant
This constant can be used as the irrst argument to the function boole; it
specifies a bit-wise logical operation to be performed on the integer ar
guments of boole, namely, the logical or of the complement of the first in
teger argument with the next integer argument.

boole-orc2 Constant
This constant can be used as the irrst argument to the function boole; it
specifies a bit-wise logical operation to be performed on the integer ar
guments of boole, namely, the logical or of the first integer argument with
the complement of the next integer argument.

•

boole-set 58

boole-set Constant
This constant can be used as the first argument to the function boole; it
specifies a bit-wise logical set operation to be performed on the integer ar
guments of boole.

boole-xor Constant
This constant can be used as the first argument to the function boole; it
specifies a bit-wise logical exclusive or operation to be performed on the in
teger arguments of boole.

both-case-p char Function
Returns t if char is a letter that exists in another case.

(both-case-p #\H) => T
(both-case-p #\m) => T

boundp symbol Function
Returns t if the dynamic (special) variable symbol is bound; otherwise, it
returns nil.

boundp-in-closure closure symbol Function
Returns t if symbol is bound in the environment of closure; that is, it does
what boundp would do if you restored the value cells known about by
closure. If symbol is not closed over by closure, this is just like boundp.
See the section "Dynamic Closure-Manipulating Functions" in Symbolics
Common Lisp: Language Concepts.

boundp-in-instance instance symbol Function
Returns t if the instance variable symbol is bound in the given instance.

breakon &optional function (condition t) Function
With no arguments, breakon returns a list of all functIons with break
points set by breakon.

breakon sets a trace-style breakpoint for the function-spec. Whenever the
function named by function-spec is called, the condition dbg:breakon-trap
is signalled, and the Debugger assumes control. At this point, you can in
spect the state of the Lisp environment and the stack. Proceeding from
the condition then causes the program to continue to run.

The ilIst argument can be any function spec, so that you can trace
methods and other functions not named by symbols. See the section
"Function Specs" in Symbolics Common Lisp: Language Concepts.

condition-form can be used for making a conditional breakpoint.
condition-form should be a Lisp form. It is evaluated when the function is
called. If it returns nil, the function call proceeds without signalling any-

59 *break-on-warnings*

thing. condition-form arguments from multiple calls to breakon accumu
late and are treated as an or condition. Thus, when any of the forms be
comes true, the breakpoint "goes off'. condition-form is evaluated in the
dynamic environment of the function call. You can inspect the arguments
of function-spec by looking at the variable arglist.

For a table of related items: See the section "Breakpoint Functions" in
Symbolics Common Lisp: Language Concepts.

break-on-warnings Variable
This variable controls the action of the function warn. If
break-on-warnings is nil, warn prints a warning message without sig
nalling.

If *break-on-warnings* is not nil, warn enters the Debugger and prints
the warning message. The default value is nil.

This flag is intended primarily for use when you are debugging programs
that issue warnings.

For a table of related items: See the section "Condition-Checking and Sig
nalling Functions and Variables" in Symbolics Common Lisp: Language
Concepts.

dbg: bug-report-description condition stream nframes Generic Function
This generic function is called by the :Mail Bug Report (c-M) command in
the Debugger to print out the text that is the initial contents of the mail
sending buffer. The handler should simply print whatever information it
considers appropriate onto stream. nframes is the numeric argument given
to c-M. The Debugger interprets nframes as the number of frames from
the backtrace to include in the initial mail buffer. A nframes of nil means
all frames.

The compatible message for dbg:bug-report-description is:

: bug-report-description

For a table of related items: See the section "Debugger Bug Report
Functions" in Symbolics Common Lisp: Language Concepts.

dbg: bug-report-recipient-system condition Generic Function
This generic function is called by the :Mail Bug Report (c-M) command in
the Debugger to find the mailing list to which to send the bug report mail.
The mailing list is returned as a string.

The default method (the one in the condition flavor) returns "lispm", and
this is passed as the first argument to the zl: bug function.

The compatible message for dbg: bug-report-recipient-system is:

I

I

butlast

: bug-report-recipient-system

For a table of related items: See the section "Debugger Bug Report
Functions" in Symbolics Common Lisp: Language Concepts.

60

butlast list Function
This creates and returns a list with the same elements as list, excepting
the last element. Examples:

(butlast 'ea bed» => (a b c)
(butlast '((a b) (c d») => ((a b»
(butlast 'ea»~ => nil
(butlast nil) => nil

The name is from the phrase "all elements but the last".

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

byte size position Function
Creates a byte specifier for a byte size bits wide, position bits from the
right-hand (least-significant) end of the word. The arguments size and
position must be integers greater than or equal to zero.

The byte specifier so created serves as an argument to various byte
manipulation functions.

Examples:

(ldb (byte 2 1) 9) => e
(ldb (byte 3 4) #012345) => 6

For a table of related items: See the section "Summary of Byte Manipula
tion Functions" in Symbolics Common Lisp: Language Concepts.

byte-position bytespec Function
Extracts the position field of bytespec.

bytespec is built using function byte with bit size and position arguments.

Example:

(byte-position (byte 3 4» => 4

For a table of related items: See the section "Summary of Byte Manipula
tion Functions': in Symbolics Common Lisp: Language Concepts.

61 byte-size

byte-size bytespec Function
Extracts the size field of bytespec.

bytespec is built using function byte with bit size and position arguments.

Example:

(byte-size (byte 3 4» => 3

For a table of related items: See the section "Summary of Byte Manipula
tion Functions" in Symbolics Common Lisp: Language Concepts.

caaaar x Function

(caaaar x) is the same as (car (car (car (car x»»

caaadr x Function

(caaadr x) is the same as (car (car (car (cdr x»»

caaar x Function

(caaar x) is the same as (car (car (car x»)

caadar x Function

(caadar x) is the same as (car (car (cdr (car x»»

caaddr x Function

(caaddr x) is the same as (car (car (cdr (cdr x»»

caadr x Function

(caadr x) is the same as (car (car (cdr x»)

caar x Function

(caar x) is the same as (car (car x»

cadaar x Function

(cadaar x) is the same as (car (cdr (car (car x»»

cadadr x Function

(cadadr x) is the same as (car (cdr (car (cdr x»»

I

I

cadar 62

cadar x Function

(cadar x) is the same as (car (cdr (car x»)

caddar x Function

(caddar x) is the same as (car (cdr (cdr (car x»»

cadddr x Function

(cadddr x) is the same as (car (cdr (cdr (cdr x»»

caddr x Function

(caddr x) is the same as (car (cdr (cdr x»)

cadr x Function

(cadr x) is the same as (car (cdr x»

flavor:call-component-method function-spec &key apply arglist Function
Produces a form that calls function-spec, which must be the function-spec
for a component method. If no keyword arguments are given to
flavor:call-component-method, the method receives the same arguments
that the generic function received. That is, the rust argument to the
generic function is bound to self inside the method, and succeeding ar
guments are bound to the argument list specified with defmethod. Ad
ditional internal arguments are passed to the method, but the user never
needs to be concerned about these.

arglist is a list of forms to be evaluated to supply the arguments to the
method, instead of simply passing through the arguments to the generic
function.

When arglist and apply are both supplied, :apply should be followed by t or
nil. If :apply t is supplied, the method is called with apply instead of fun
call. :apply nil causes the method to be called with funcall.

When arglist is not supplied, the value following :apply is the argument
that should be given to apply when the method is called. (Certain internal
arguments are also included in the apply form.) For example:

(flavor:call-component-method function-spec :apply list)

Results in:

(apply #'function-spec :apply list)

In other words, the following two forms have the same effect:

63 flavor:call-component-methods

(f1 avor: ca11-component-method function-spec : app1 y list)
(fl avor: ca11-component-method function-spec : arg1 i st (1 i st list)

:app1y t)

If function-spec is nil, flavor:call-component-method produces a form that
returns nil when evaluated.

For examples: See the section "Examples Of define-method-combination"
in Symbolics Common Lisp: Language Concepts.

flavor:call-component-methods function-spec-list &key (operator Function
'progn)

Produces a form that invokes the function or special form named operator.
Each argument or subform is a call to one of the methods in
function-spec-list. operator defaults to progn.

car x Function
Returns the head (car) of list or cons x. Example:

(car '(a be» => a

Officially car is applicable only to conses and locatives. However, as a
matter of convenience, car of nil returns nil.

For a table of related items: See the section "Functions for Extracting
From Lists" in Symbolics Common Lisp: Language Concepts.

zl:car-Iocation cons Function
zl:car-Iocation returns a locative pointer to the cell containing the car of
cons.

Note: there is no cdr-location function; the cdr-coding scheme precludes it.

For a table of related items: See the section "Functions for Finding Infor
mation About Lists and Conses" in Symbolics Common Lisp: Language Con
cepts.

case test-object &body clauses Special Form
case is a conditional that chooses one of its clauses to execute by compar
ing a value to various constants. The constants can be any object.

Its form is as follows:

(case key-form
(test consequent consequent ...)
(test consequent consequent ...)
(test consequent consequent ...)
...)

Structurally case is much like cond, and it behaves like cond in selecting

•

case

I

one clause and then executing all consequents of that clause. However,
case differs in the mechanism of clause selection.

64

The lrrst thing case does is to evaluate test·object, to produce an object
called the key object. Then case considers each of the clauses in turn. If
key is eql to any item in the clause, case evaluates the consequents of that
clause as an implicit progn.

If no clause is satisfied, case returns nil.

case returns the value of the last consequent of the clause evaluated, or nil
if there are no consequents to that clause.

The keys in the clauses are not evaluated; they must be literal key values.
It is an error for the same key to appear in more than one clause. TJ:1e or
der of the clauses does not affect the behavior of the case construct.

Instead of a test, one can write one of the symbols t and otherwise. A
clause with such a symbol always succeeds and must be the last clause;
this is an exception to the order-independence of clauses.

If there is only one key for a clause, that key can be written in place of a
list of that key, provided that no ambiguity results. Such a "singleton key"
can not be nil (which is confusable with 0, a list of no keys), t, otherwise,
or a cons.

Examples:

(let «num 69»
(case num

«1 2) "math ... ack H
)

«3 4) "great now we can count"») => NIL

(1 et «num 3»

T

(case num
«1 2) "one two")
«3 4 5 6) (princ "numbers") (princ " three") (fresh-line))
(t "not today"») => numbers three

(let «object-one 'candy»
(case object-one

(apple (setq class 'health) "weekdays")
(candy (setq class 'junk) "weekends")
(otherwise (setq class 'unknown) "all week long"») => "weekends"

class => JUNK

For a table of related items: See the section "Conditional Functions" in
Symbolics Common Lisp: Language Concepts.

65 zl:caseq

zl:caseq test-object &body clauses Special Form
Provided for Maclisp compatibility; it is exactly the same as zl:selectq.
This is not perfectly compatible with Maclisp, because zl:selectq accepts
otherwise as well as t where zl:caseq would not accept otherwise, and be
cause Maclisp accepts a more limited set of keys then zl:selectq does.
Maclisp programs that use zl:caseq work correctly as long as they do not
use the symbol otherwise as the key.

Examples:

(let « a 'big-bang»
(caseq a

(light "day")
(dark "night"») => NIL

(setq a 3) => 3
(caseq a

(1 "one")
(2 "two")
(t "not one or two"» => "not one or two"

(let « a 'big-bang»
(caseq a

(1 ight "day")
(dark "ni ght")
(otherwise "night and day"») => "night and day"

For a table of related items: See the section "Conditional Functions" in
Symbolics Common Lisp: Language Concepts.

catch tag &body body Special Form
Used with throw for nonlocal exits. catch first evaluates tag to obtain an
object that is the "tag" of the catch. Then the body forms are evaluated in
sequence, and catch returns the (possibly multiple) values of the last form
in the body.

However, a throw (or zl:*throw) form might be evaluated during the
evaluation of one of the forms in body. In that case, if the throw "tag" is
eq to the catch "tag" and if this catch is the innermost catch with that
tag, the evaluation of the body is immediately aborted, and catch returns
values specified by the throw or zl:*throw form.

If the catch exits abnormally because of a throw form, it returns the
(possibly multiple) values that result from evaluating throw's second sub
form. If the catch exits abnormally because of a zl:*throw form, it
returns two values: the first is the result of evaluating zl:*throw's second
subform, and the second is the result of evaluating zl:*throw's first sub
form (the tag thrown to).

I

I

zl:*catch 66

(catch 'foo form) catches a (throw 'foo form) but not a (throw 'bar form).
I t is an error if throw is done when no suitable catch exists.

The scope of the tags is dynamic. That is, the throw does not have to be
lexically within the catch form; it is possible to throw out of a function
that is called from inside a catch form.

For example:

(catch 'done
(ask-database <pattern>

#'(lambda (x) (when (n;ce-p x)
(throw 'done x»»)

The throw to 'done returns X, the pattern searched for in the database.

For a table of related items: See the section "Nonlocal Exit Functions" in
Symbolics Common Lisp: Language Concepts.

zl:*catch tag &body body Special Form
An obsolete version of catch that is supported for compatibility with
Maclisp. It is equivalent to catch except that if zl:*catch exits normally,
it returns only two values: the fIrst is the result of evaluating the last
form in the body, and the second is nil. If zl:*catch exits abnormally, it
returns the same values as catch when catch exits abnormally: that is,
the returned values depend on whether the exit results from a throw or a
zl: * throw. See the special form catch, page 65.

For a table of related items: See the section "N onlocal Exit Functions" in
Symbolics Common Lisp: Language Concepts.

catch-error form &optional (printflag t) Function
catch-error evaluates form, trapping all errors.

form can be any Lisp expression.

printflag controls the printing or suppression of an error message by
catch-error.

If an error occurs during the evaluation of form, catch-error prints an er
ror message if the value of printflag is not nil. The default value of
printflag is t.

catch-error returns two values: if form evaluated without error, the value
of form and nil are returned. If an error did occur during the evaluation
of form, t is returned.

Only the fIrst value of form is returned if it was successfully evaluated.

67 catch-error-restart

catch-error-restart (condition-flavor format-string. format-args) Special Form
catch-error-restart establishes a restart handler for condition-flavor and
then evaluates the body. If the handler is not invoked, catch-error-restart
returns the values produced by the last form in the body, and the restart
handler disappears. If a condition is signalled during the execution of the
body and the restart handler is invoked, control is thrown back to the I __
dynamic environment of the catch-error-restart form. In this case,
catch-error-restart also returns nil as its first value and something other
than nil as its second value. Its format is:

(catch-error-restart (condition-flavor format-string . format-args)
formal
form-2
...)

condition-flavor is either a condition or a list of conditions that can be
~andled. format-string and format-args are a control string and a list of ar
guments (respectively) to be passed to format to construct a meaningful
description of what would happen if the user were to invoke the handler.
The Debugger uses these values to create a message explaining the intent
of the restart handler.

The conditional variant of catch-error-restart is the form:

catch-error-restart-if

For a table of related items: See the section "Restart Functions" in Sym
bolies Common Lisp: Language Concepts.

catch-error-restart-if cond-form (condition-flavor format-string. Special Form
format-args)

catch-error-restart-if establishes its restart handler conditionally. In all
other respects, it is the same as catch-error-restart. It~ format is:

(catch-error-restart-i f cond-form
(condition-flavor format-string. format-args)

formal
form-2
...)

catch-error-restart-if first evaluates cond-form. If the result is nil, it
evaluates the body as if it were a progn but does not establish any hand
lers. If the result is not nil, it continues just like catch-error-restart, es
tablishing the handlers and executing the body.

For a table of related items: See the section "Restart Functions" in Sym
bolics Common Lisp: Language Concepts.

I

cease 68

ccase object &body body Special Form
The name of this function stands for "continuable exhaustive case".

Structurally ccase is much like case, and it behaves like case in selecting
one clause and then executing all consequents of that clause. However,
ccase does not permit an explicit otherwise or t clause. The form of
ccase is as follows:

(cease key-form
(test consequent consequent ...)
(test consequent consequent ...)
(test consequent consequent ...)
...)

object must be a generalized variable reference acceptable to setf.

The irrst thing cease does is to evaluate object, to produce an object called
the key object.

Then ccase considers each of the clauses in turn. If key is eql to any item
in the clause, ccase evaluates the consequents of that clause as an implicit
progn.

ccase returns the value of the last consequent of the clause evaluated, or
nil if there are no consequents to that clause.

The keys in the clauses are not evaluated; literal key values must appear in
the clauses. I t is an error for the same key to appear in more than one
clause. The order of the clauses does not affect the behavior of the ccase
construct.

If there is only one key for a clause, that key can be written in place of a
list of that key, provided that no ambiguity results. Such a "singleton key"
can not be nil (which is confusable with 0, a list of no keys), t, otherwise,
or a cons.

If no clause is satisfied, ccase uses an implicit otherwise clause to signal
an error with a message constructed from the clauses. To continue from
this error supply a new value for object, causing ccase to store that value
and restart the clause tests. Subforms of object can be evaluated multiple
times.

Examples:

(let «num 24»
(cease num

«1 2 3) "integer less then 4")
«4 5 6) "integer greater than 3"») =>

Error: The value of NUM is SI:*EVAL, 24, was of the wrong type.
The function expected one of 1, 2, 3, 4, 5, or 6.

69

SI:*EVAL:
Arg B (SYS:FORM): (DBG:CHECK-TYPE-1 'NUM NUM '#)
Arg 1 (51 :ENV): «# #) NIL (#) (#) ...)
--defaulted args:--
Arg 2 (SI:HOOK): NIL

cdaaar

s-A, <RESUME>: Supply a replacement value to be stored into NUM
s-B, <ABORT>: Return to Lisp Top Level in dynamic Lisp Listener 1
~ Supply a replacement value to be stored into NUM:
4
"integer greater than 3"

(1 et «num 3»

T

(cease num
«1 2) "one two")
«3 4 5 6) (princ "numbers") (princ " three") (terpri))
(t "not today"») => numbers three

(let «Dwarf 'Sleepy»
(ccase Dwarf

«Grumpy Dopey) (setq class "confused"»
«Bilbo Frodo) (setq class "Hobbits not Dwarfs"»
(otherwise (setq class 'unknown) "talk to Snow White"»)

=> "talk to Snow White"
class => UNKNOWN

For a table of related items: See the section "Conditional Functions" in
Symbolics Common Lisp: Language Concepts.

For a table of related items: See the section "Condition-Checking and Sig
nalling Functions and Variables" in Symbolics Common Lisp: Language
Concepts.

cdaaar x Function

(cdaaar x) is the same as (cdr (car (car (car x»»

cdaadr x Function

(cdaadr x) is the same as (cdr (car (car (cdr x»»

cdaar x Function

I

cdadar 70

(cdaar X) is the sa~e as (cdr (car (car x»)

cdadar x Function

(cdadar x) is the sa~e as (cdr (car (cdr (car x»»

I cdaddr x Function

(cdaddr x) is the s~e as (cdr (car (cdr (cdr x»»

cdadr x Function

(cdadr x) is the sa~e as (cdr (car (cdr x»)

cdar x Function

(cdar x) is the sa~e as (cdr (car x»

cddaar x Function

(cddaar x) is the sa~e as (cdr (cdr (car (car x»»

cddadr x Function

(cddadr x) is the sa~e as (cdr (cdr (car (cdr x»»

cddar x Function

(cddar x) is the sa~e as (cdr (cdr (car x»)

cdddar x Function

(cdddar x) is the sa~e as (cdr (cdr (cdr (car x»»

cddddr x Function

(cddddr x) is the sa~e as (cdr (cdr (cdr (cdr x»»

cdddr x Function

(cdddr x) is the sa~e as (cdr (cdr (cdr x»)

cddr x , Function

(cddr x) is the sa~e as (cdr (cdr x»

cdr x Function
Returns the tail (cdr) of list or cons x. Exa~ple:

71 ceiling

(cdr '(a b c» => (b c)

Officially cdr is applicable only to conses and locatives. However, as a
matter of convenience, cdr of nil returns nil.

Note that cdr is not the right way to read hardware registers, since cdr
will in some cases start a block-read and the second read could easily read
some register you did not want it to. Therefore, you should use car or
sys:%p-Idb as appropriate for these operations.

For a table of related items: See the section "Functions for Extracting
From Lists" in Symbolics Common Lisp: Language Concepts.

ceiling number &optional (divisor 1) Function
Divides number by divisor, and truncates the result toward positive infinity.
The truncated result and the remainder are the returned values.

number and divisor must each be a noncomplex number. Not specifying a
divisor is exactly the same as specifying a divisor of 1.

If the two returned values are Q and R, then (+ (. Q divisor) R) equals
number. If divisor is 1, then Q and R add up to number. If divisor is 1
and number is an integer, then the returned values are number and o.
The first returned value is always an integer. The second returned value
is integral if both arguments are integers, is rational if both arguments are
rational, and is floating-point if either argument is floating-point. If only
one argument is specified, then the second returned value is always a num
ber of the same type as the argument.

I

I

cerror

Examples:
(ceiling 5) => 5 and B
(ceiling -5) => -5 and 8
:(ceiling 5.2) => 6 and -B.8BBBBB2
(ceiling -5.2) => -5 and -B.19999981
(ceiling 5.8) => 6 and -B.19999981
(ceiling -5.8) => -5 and -B.89B9BB2
(ceiling 5 3) => 2 and -1
(ceiling -5 3) => -1 and -2
(ceiling 5 4) => 2 and -3
(ceiling -5 4) => -1 and -1
(ceiling 5.2 3) => 2 and -B.8999992
(ceiling -5.2 3) => -1 and -2.1999998
(ceiling 5.2 4) => 2 and -2.89B9992
(ceiling -5.2 4) => -1 and -1.1999998
(ceiling 5.8 3) => 2 and -B.19999981
(ceiling -5.8 3) => -1 and -2.8B99BB2
(ceiling 5.8 4) => 2 and -2.1999998
(ceiling -5.8 4) => -1 and -1.898B9B2

For a table of related items: See the section "Functions That Divide and
Convert Quotient to Integer" in Symbolics Common Lisp: Language Con
cepts.

72

cerror continue-format-string error-format-string &rest args Function
cerror is used to signal proceedable (continuable) errors. Like error it sig
nals an error and enters the debugger. However, cerror allows the user to
continue program execution from the debugger after resolving the error.

If the program is continued after encountering the error, cerror returns
nil. The code following the call to cerror is then executed. This code
should correct the problem, perhaps by accepting a new value from the
user if a variable was invalid.

If the code that corrects the problem interacts with the program's use and
might possibly be misleading it should make sure the error has really been
corrected before continuing. One way to do this is to put the call to cer
ror and the correction code in a loop, checking each time to see if the error
has been corrected before terminating the loop.

The continue-format-string argument, like the error-format-string argument,
is given as a control string to format along with args to construct a mes-

73 cerror

sage string. The error message string is used in the same way that error
uses it. The continue message string should describe the effect of continu
ing. The message is displayed as an aid to the user in deciding whether
and how to continue. For example, it might be used by an interactive
debugger as part of the documentation of its "continue" command.

The content of the continue message should adhere to the rules of style for
error messages.

In complex cases where the error-format-string uses some of the args and
the continue-format-string uses others, it may be necessary to use the
format directives ... * and ... @* to skip over unwanted arguments in one
or both of the format control strings.

For a table of related items: See the section "Condition-Checking and Sig
nalling Functions and Variables" in Symbolics Common Lisp: Language
Concepts.

I

I

change-instance-flavor 74

change-instance-flavor instance new-flavor Function
Changes the flavor of an instance to another flavor.

For those instance variables in common (contained in the definition of the
old flavor and the new flavor), the values of the instance variables remain
the same when the instance is changed to the new format. New instance
variables (defined by the new flavor but not the old flavor) are initialized
according to any defaults contained in the definition of the new flavor.

Instance variables contained by the old flavor but not the new flavor are no
longer part of the instance, and cannot be accessed once the instance is
changed to the new format.

Instance variables are compared with eq of their names; if they have the
same name and are dermed by both the old flavor (or any of its component
flavors) and the new flavor (or any of its component flavors), they are con
sidered to be "in common".

If you need to specify a different treatment of instance variables when the
instance is changed to the new flavor, you can write code to be executed at
the time that the instance is changed. See the generic function
flavor:transform-instance, page 591.

Note: There are two possible problems that might occur if you use
change-instance-flavor while a process (either the current process or some
other process) is executing inside of a method. The first problem is that
the method continues to execute until completion even if it is now the
"wrong" method. That is, the new flavor of the instance might require a
different method to be executed to handle the generic function. The
Flavors system cannot undo the effects of executing the wrong method and
cause the right method to be executed instead.

The second problem is due to the fact that change-instance-flavor might
change the order of storage of the instance variables. A method usually
commits itself to a particular order at the time the generic function is
called. If the order is changed after the generic function is called, the
method might access the wrong memory location when trying to access an
instance variable. The usual symptom is an access to a different instance
variable of the same instance or an error "Trap: The word #<DTP
HEADER-I nnnn> was read from location nnnn". If the garbage collector
has moved objects around in memory, it is possible to access an arbitrary
location outside of the instance.

When a flavor is redefined, the implicit change-instance-flavor that hap
pens never causes accesses to the wrong instance variable or to arbitrary
locations outside the instance. But redefining a flavor while methods are
executing might leave those methods as no longer valid for the flavor.

We recommend that you do not use change-instance-flavor of self inside a

75 char

method. If you cannot avoid it, then make sure that the old and new
flavors have the same instance variables and inherit them from the same
components. You can do this by using mixins that do not define any in
stance variables of their own, and using change-instance-flavor only to
change which of these mixins are included. This prevents the problem of
accessing the wrong location for an instance variable, but it cannot prevent
a running method from continuing to execute even if it is now the wrong
method.

A more complex solution is to make sure that all instance variables ac
cessed after the change-instance-flavor by methods that were called before
the change-instance-flavor are ordered (by using the
:ordered-instance-variables option to defflavor), or are inherited from
common components by both the old and new flavors. The old and new
flavors should differ only in components more specific than the flavors
providing the variables.

char array &rest subscripts Function
The function char returns the character at position subscripts of array.
The count is from zero. The character is returned as a character object; it
will necessarily satisfy the predicate string-char-p.

array must be a string array.

subscripts must be a non-negative integer less than the length of array.

Note that the array-specific function aref, and the general sequence func
tion eit also work on strings.

To destructively replace a character within a string, use char in conjunc
tion with the function setf.

Examples:

(char "a string" 1) => #\Space
(string-char-p (char "a string" 3» => T

(char (make-array 4 :element-type 'character
:initial-element #\y) 3) => #\y

(string-char-p (char (make-array 4 :element-type 'character
:initial-element #\.) 2» => T

(char (make-array 4 :element-type 'character
:initial-element #\.
:fill-pointer 2) 1) => #\.

For a table of related items: See the section "String Access and
Information" in Symbolics Common Lisp: Language Concepts.

I

I

char:;e 76

char:;t char &rest chars Function
This comparison predicate compares characters exactly, depending on all
fields including code, bits, character style, and alphabetic case. If all of
the arguments are equal, nil is returned; otherwise t.

(char/= #\A #\A #\A) => NIL
(char/= #\A #\8 #\C) => T

char:;t can be used in place of char/=.

char~ char &rest chars Function
This predicate compares characters exactly, depending on all fields includ
ing code, bits, character style, and alphabetic case. If each of the ar
guments is equal to or less than the next, t is returned; otherwise nil.

(char<= #\A #\8 #\C) => T
(char<= #\C #\8 #\A) => NIL
(char<= #\A #\A) => T

cha~ can be used instead of char<=.

char~ char &rest chars Function
This comparison predicate compares characters exactly, depending on all
fields including code, bits, character style, and alphabetic case. If each of
the arguments is equal to or greater than the next, t is returned; otherwise
nil.

(char>= #\C #\8 #\A) => T
(char>= #\A #\A) => T
(char>= #\A #\8 #\C) => NIL

char~ can be used instead of char>=. n

char/= char &rest chars Function
This comparison predicate compares characters exactly, depending on all
fields including code, bits, character style, and alphabetic case. If all of
the arguments are equal, nil is returned; otherwise t.

(char/= #\A #\A #\A) => NIL
(char/= #\A #\8 #\C) => T

char:;t can be used in place of char/=.

char< char &rest chars Function
This comparison predicate compares characters exactly, depending on all
fields including code, bits, character style, and alphabetic case. If all of
the arguments are ordered from smallest to largest, t is returned; other
wise nil.

77

(char< #\A #\8 #\C) => T
(char< #\A #\A) => NIL
(char< #\A #\C #\8) => NIL

char<=

char<= char &rest chars Function
This predicate compares characters exactly, depending on all fields includ
ing code, bits, character style, and alphabetic case. If each of the ar
guments is equal to or less than the next, t is returned; otherwise nil.

(char<= #\A #\8 #\C) => T
(char<= #\C #\8 #\A) => NIL
(char<= #\A #\A) => T

char::;; can be used instead of char<=.

char=: char &rest chars Function
This comparison predicate compares characters e.xactly, depending on all
fields including code, bits, character style, and alphabetic case. If all of
the arguments are equal, t is returned; otherwise nil.

(char= #\A #\A #\A) => T
(char= #\A #\8 #\C) => NIL

char> char &rest chars Function
This comparison predicate compares characters exactly, depending on all
fields including code, bits, character style, and alphabetic case. If all of
the arguments are ordered from largest to smallest, [t] is returned; other
wise nil.

(char> #\C #\8 #\A) => T
(char> #\A #\A) => NIL
(char> #\A #\8 #\C) => NIL

char>= char &rest chars Function
This comparison predicate compares characters exactly, depending on all
fields including code, bits, character style, and alphabetic case. If each of
the arguments is equal to or greater than the next, t is returned; otherwise
nil.

(char>= #\C #\8 #\A) => T
(char>= #\A #\A) => T
(char>= #\A #\8 #\C) => NIL

char~ can be used instead of char>=. n

I

I

character 78

character Type Specifier
character is the type specifier symbol for the the predeimed Lisp character
data type.

The types character, cons, symbol, and array are pairwise disjoint.

The type character is a supertype of the type string-char.

Examples:

(typep #\9 'character) => T
(zl :typep #\-) => :CHARACTER
(characterp #\A) => T
(characterp (character "1")) => T
(sys:type-arglist 'character) => NIL and T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the section "Characters" in Symbolics Com
mon Lisp: Language Concepts.

character x Function
character coerces x to a single character. If x is a character, it is
returned. If x is a string or an array, an error is returned. If x is a sym
bol, the first character of its pname is returned. Otherwise, an error oc
curs. See the section "The Character Set" in Reference Guide to Streams,
Files, and I/O. The way characters are represented as integers is explained
in that section.

characterp object Function
Returns t if object is a character object. See the section "Type Specifiers
and Type Hierarchy for Characters" in Symbolics Common Lisp: Language
Concepts.

char-bit char name Function
Returns t if the bit specified by name is set in char, otherwise it returns
nil. name can be : control, :meta, :super, or : hyp er. You can use setf on
char-bit access-form name.

(char-bit #\c-A :control) => T
(char-bit #\h-c-A :hyper) => T
(char-bit #\h-c-A :meta) => NIL

char-bits char Function
Returns the bits field of char. You can use setf on (char-bits access-form>.

79

(char-bits #\c-A) => 1
(char-bits #\h-c-A) => 9
(char-bits #\m-c-A) => 3

char-bits-limit

char-bits-limit Constant
The value of char-bits-limit is a non-negative integer that is the upper
limit for the value in the bits field. Its value is 16.

char-code char
Returns the code field of char.

(char-code #\A) => 65
(char-code #\&) => 38

Function

char-code-limit Constant
The value of char-code-limit is a non-negative integer that is the upper
limit for the number of character codes that can be used. Its value is
65536.

char-control-bit Constant
The value of char-control-bit is the weight of the control bit, which is 1.

char-downcase char Function
If char is an uppercase alphabetic character in the standard character set,
char-downcase returns its lowercase form; otherwise, it returns char. If
character style information is present it is preserved.

(char-downcase #\A) => #\a
(char-downcase #\A) => #\a
(char-downcase #\3) => #\3

char-equal char &rest chars Function
This is the primitive for comparing characters for equality; many of the
string functions call it. char and chars must be characters; they cannot be
integers. char-equal compares code and bits, ignores case and character
style, and returns t if the characters are equal. Otherwise it returns nil.

(char-equal #\A #\A) => T
(char-equal #\A #\Control-A) => NIL
(char-equal #\A #\8 #\A) => NIL

Note that Common Lisp specifies that char-equal should ignore bits. This
difference is incompatible. However, it is likely that the Common Lisp
specification might change in the future so that char-equal should not ig
nore bits.

I

I

char-fat-p· 80

char-fat-p char Function
Returns t if char is a fat character, otherwise nil. char must be a charac
ter object. A character that contains non-zero bits or style information is
called a fat character. See the section "Type Specifiers and Type Hierar
chy for Characters" in Symbolics Common Lisp: Language Concepts.

(char-fat-p #\A) => NIL
(char-fat-p #\c-A) => T
(char-fat-p (make-character #\A :style '(nil :bold nil») => T

char-flip case char Function
If char is a lowercase alphabetic character in the standard character set,
char-flip case returns its uppercase form. If char is an uppercase al
phabetic character in the standard character set, char-flip case returns its
lowercase form. Otherwise, it returns char. If character style information
is present it is preserved.

(char-flipcase #\X) => #\x
(char-flipcase #\b) => #\1J

char-font char Function
The contract of char-font is to return the font field of the character object
specified by char. Genera characters do not have a font field so char-font
always returns zero for character objects.

Genera does not support the Common Lisp concept of fonts, but supports
the character style system instead. See the section "Character Styles" in
Symbolics Common Lisp: Language Concepts. To find out the character
style of a character, use si:char-style: See the function si:char-style, page
83.

The only reason to use char-font would be when writing a program in
tended to be portable to other Common Lisp systems.

char-font-limit Constant
The value of char-font-limit is the upper exclusive limit for the value of
values of the font bit. Genera characters do not have a font field so the
value of char-font-limit is 1. Genera does not support the Common Lisp
concept of fonts, but supports the y character style system instead. See the
section "Character Styles" in Symbolics Common Lisp: Language Concepts.

char-greaterp char &rest chars Function
This primitive compares characters for order; many of the string functions
call it. char and chars must be characters; they cannot be integers. The
result is t if char comes after chars ignoring case and style, otherwise nil.
See the section "The Character Set" in Reference Guide to Streams, Files,
and 110. Details of the ordering of characters are in that section.

81 char-hyper-bit

This comparison predicate compares the code and bits fields and ignores
character style and distinctions of alphabetic case.

(char-greaterp #\A #\8 #\C) => NIL
(char-greaterp #\A #\8 #\8) => T

char-hyper-bit Constant
The name for the hyper bit attribute. The value of char-hyper-bit is 8.

char-int char Function
Returns the character as an integer, including the fields that contain the
character's code (which itself contains the character's set and subindex into
that character set), bits, and style.

(char-;nt #\a) => 97
(char-;nt #\8) => 56
(char-;nt #\c-m-A) => 59331713
(char-;nt

(make-character #\a :style '(nil :bold nil»~) => 65633

char-Iessp char &rest chars Function
This primitive compares characters for order; many of the string functions
call it. char and chars must be characters; they cannot be integers. The
result is t if char comes before chars ignoring case and style, otherwise nil.
See the section "The Character Set" in Reference Guide to Streams, Files,
and I/O. Details of the ordering of characters are in that section.

This comparison predicate compares the code and bits fields and ignores
character style and distinctions of alphabetic case.

(char-lessp #\A #\8 #\C) => T
(char-lessp #\A #\8 #\8) => NIL

char-meta-bit Constant
The name for the meta bit attribute. The value of char-meta-bit is 2.

char-mouse-button char Function
Returns the number corresponding to the mouse button that would have to
be pushed to generate char. 0, 1, and 2 correspond to the left, middle, and
right mouse buttons, respectively.

Example:

(char-mouse-button #\m-mouse-m) ==>
1

The complementary function is make-mouse-char.

•

I

char-mouse-equal 82

char-mouse-equal charl char2 Function
Returns t if the mouse characters charl and char2 are equal, nil otherwise.

char-name char Function
char must be a character object. char-name returns the name of the object
(a string) if it has one. If the character has no name, or if it has non-zero
bits or a character style other than NIL. NIL. NIL, nil is returned.

(char-name #\Tab) => "Tab"

char-not-equal char &rest chars Function
This primitive compares characters for non-equality; many of the string
functions call it. char and chars must be characters; they cannot be in
tegers. char-equal compares code and bits, ignores case and character
style, and returns t if the characters are not equal. Otherwise it returns
nil.

(Char-nat-equal #\A #\8) => T
(char-nat-equal #\A #\c-A) => T
(char-nat-equal #\A #\A) => NIL
(char-nat-equal #\a #\A) => NIL

char-not-greaterp char &rest chars Function
This primitive compares characters for order; many of the string functions
call it. char and chars must be characters; they cannot be integers. The
result is t if char does not come after chars ignoring case and style, other
wise nil. See the section "The Character Set" in Reference Guide to
Streams, Files, and 110. Details of the ordering of characters are in that
section.

This comparison predicate compares the code and bits fields and ignores
character style and distinctions of alphabetic case.

(char-nat-greaterp #\A #\8) => T
(char-nat-greaterp #\a #\A) => T
(char-nat-greaterp #\A #\a) => T
(char-nat-greaterp #\A #\A) => T

char-not-Iessp char &rest chars Function
This primitive compares characters for order; many of the string functions
call it. char and chars must be characters; they cannot be integers. The
result is t if char does not come before chars ignoring case and style,
otherwise nil. See the section "The Character Set" in Reference Guide to
Streams, Files, and 110. Details of the ordering of characters are in that
section.

This comparison predicate compares the code and bits fields and ignores
character style and distinctions of alphabetic case.

83

(char-not-lessp #\A #\B) => NIL
(char-not-lessp #\B #\b) => T
(char-not-lessp #\A #\A) => T

si :char-style

si:char-style char Function
Returns the character style of the character object specified by char. The
returned value is a character style object.

(si:char-style #\a)
=> #<CHARACTER-STYLE NIL.NIL.NIL 294994146>

(si:char-style (make-character #\a :style '(:swiss :bold nil)))
=> #<CHARACTER-STYLE SWISS.BOLD.NIL 116935692>

sys:char-subindex char Function
Returns the subindex field of char as an integer.

char-super-bit Constant
The name for the super bit attribute. The value of char-super-bit is 4.

char-to-ascii ch Function
Converts the character object ch to the corresponding ASCII code. This
function works only for characters with neither bits nor style. See the sec
tion "ASCII String Functions" in Symbolics Common Lisp: Language Con
cepts.

It is an error to give char-to-ascii anything other than one of the 95 stan
dard ASCII printing characters. To get the ASCII code of one of the other
characters, use ascii-code, and give it the correct ASCII name.

The functions char-to-ascii and ascii-to-char provide the primitive conver
sions needed by ASCII-translating streams. They do not translate the
Return character into a CR-LF pair; the caller must handle that. They just
translate #\return into CR and #\line into LF. Except for CR-LF,
char-to-ascii and ascii-to-char are wholly compatible with the ASCII
translating streams.

They ignore Symbolics Lisp Machine control characters; the translation of
#\c-g is the ASCII code for G, not the ASCII code to ring the bell, also
known as "control G." (ascii-to-char (ascii-code "BEL"» is #l1r, not #\c-G.
The translation from ASCII to character never produces a Lisp Machine
control character.

I

I

char-upcase 84

char-up case char Function
If char, which must be a character, is a lowercase alphabetic character in
the standard character 'set, char-up case returns its uppercase form; other
wise, it returns char. If character style information is present it is
preserved.

(char-upcase #\a) => #\A
(char-upcase #\a) => #\A
(char-upcase #\3) => #\3

zl:check-arg arg-name predicate-or-form type-string Macro
The zl:check-arg form is useful for checking arguments to make sure that
they are valid. A simple example is:

(check-arg foo stringp "a string")

faa is the name of an argument whose value should be a string. stringp is
a predicate of one argument, which returns t if the argument is a string.
"a string" is an English description of the correct type for the variable.

The general form of zl:check-arg is

(check-arg var-name
predicate
description)

var-name is the name of the variable whose value is of the wrong type. If
the error is proceeded this variable is setq'ed to a replacement value.
predicate is a test for whether the variable is of the correct type. It can be
either a symbol whose function definition takes one argument and returns
non-nil if the type is correct, or it can be a nonatomic form which is
evaluated to check the type, and presumably contains a reference to the
variable var-name. description is a string which expresses predicate in
English, to be used in error messages.

The predicate is usually a symbol such as zl:f"lXp, stringp, zl:listp, or
zl:closurep, but when there isn't any convenient predefined predicate, or
when the condition is complex, it can be a form. For example:

(defun test1 (a)
(zl :check-arg a

...)

(and (numberp a) (~a 1e.) (> a e.»
"a number from one to ten")

If testl is called with an argument of 17, the following message is printed:

85 21 :check-arg-type

The argument A to TEST1, 17, was of the wrong type.
The function expected a number from one to ten.

In general, what constitutes a valid argument is specified in two ways in a
zl:check-arg. description is human-understandable and predicate is ex
ecutable. It is up to the user to ensure that these two specifications agree.

zl:check-arg uses predicate to determine whether the value of the variable
is of the correct type. If it is not, zl:check-arg signals the
sys:wrong-type-argument condition. See the flavor
sys:wrong-type-argument in Symbolics Common Lisp: Language Concepts.

For a table of related items: See the section "Condition-Checking and Sig
nalling Functions and Variables" in Symbolics Common Lisp: Language
Concepts.

zl:check-arg-type arg-name type &optional type-string Macro
This is a useful variant of the zl:check-arg form. A simple example is:

(21 :check-arg-type foo :number)

foo is the name of an argument whose value should be a number.
:number is a value which is passed as a second argument to zl:typep; that
is, it is a symbol that specifies a data type. The English form of the type
name, which gets put into the error message, is found automatically.

The general form of zl:check-arg-type is:

(21 :check-arg-type var-name
type-name
description)

var-name is the name of the variable whose value is of the wrong type. If
the error is proceeded this variable is setq'ed to a replacement value.
type-name describes the type which the variable's value ought to have. It
can be exactly those things acceptable as the second argument to zl:typep.
description is a string which expresses predicate in English, to be used in
error messages. It is optional. If it is omitted, and type-name is one of the
keywords accepted by zl:typep, which describes a basic Lisp data type, then
the right description is provided correctly. If it is omitted and type-name
describes some other data type, then the description is the word "a" fol
lowed by the printed representation of type-name in lowercase.

The Common Lisp equivalent of zl:check-arg-type is the macro:

check-type

For a table of related items: See the section "Condition-Checking and Sig
nalling Functions and Variables" in Symbolics Common Lisp: Language
Concepts.

I

I

check-type 86

check-type place type &optional (type-string 'nil) Macro
check-type signals an error if the contents of place are not of the desired
type. If you continue from this error, you will be asked for a new value;
check-type stores the new value in place and starts over, checking the type
of the new value and signalling another error if it is still not of the desired
type. Subforms of place cal) be evaluated multiple times because of the im
plicit loop generated. check-type returns nil.

place must be a generalized variable reference acceptable to the macro setf.

type must be a type specifier; it is not evaluated. For standard Symbolics
Common Lisp type specifiers: See the section "Type Specifiers" in Sym
bolics Common Lisp: Language Concepts.

type-string should be an English description of the type, starting with an in
definite article ("a" or "an"); it is evaluated. If type-string is not supplied,
it is computed automatically from type. This optional argument is allowed
because some applications of check-type may require a more specific
description of what is wanted than can be generated automatically from the
type specifier.

The error message mentions place, its contents, and the desired type.

Examples:

(setq bees '(bumble wasp jacket» => (BUMBLE WASP JACKET)
(check-type bees (vector integer »
=> Error: The value of BEES in SI:*EVAL. (BUMBLE WASP JACKET),

was of the wrong type.
The function expected a vector whose typical element

is an integer.
(setq naards 'foo) => FDD
(check-type naards (integer e *) "a positive integer")
=> Error: The value of NAARDS in SI:*EVAL, FDD, was of the wrong

type.
The function expected a positive integer.

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

circular-list &rest args Function
circular-list constructs a circular list whose elements are args, repeated in
finitely. circular-list is the same as list except that the list itself is used
as the last cdr, instead of nil. circular-list is especially useful with map
car, as in the expression:

87

cis

cis

(mapcar (function +) faa (circular-list 5))

which adds each element of foo to 5. circular-list could have been defined
by:

(defun circular-list (&rest elements)
(setq elements (copylist* elements))
(rplacd (last elements) elements)
elements)

circular-list is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions for Constructing
Lists and Conses" in Symbolics Common Lisp: Language Concepts.

radians Function
radians must be a noncomplex number. cis could have been defined by:

(de fun cis (radians)
(complex (cos radians) (sin radians)))

Mathematically, this is equivalent to ei * radians

For a table of related items: See the section "Trigonometric and Related
Functions" in Symbolics Common Lisp: Language Concepts.

:clear-hash Message
Removes all of the entries from the hash table. This message will be
removed in the future - use clrhash instead.

:clear of si:heap Method
Remove all of the entries from the heap.

For a table of related items: See the section "Heap Functions and Methods"
in Symbolics Common Lisp: Language Concepts.

zl:closure symbol-list function Function
This creates and returns a dynamic closure of function over the variables in
symbol-list. Note that all variables on symbol-list must be declared special.

To test whether an object is a dynamic closure, use the zl:closurep predi
cate. See the section "Predicates" in Symbolics Common Lisp: Language
Concepts. The typep function returns the symbol zl:closure if given a
dynamic closure. (typep x :closure) is equivalent to (zl:closurep x).

The Symbolics Common Lisp equivalent of this function is
make-dynamic-closure.

See the section "Dynamic Closure-Manipulating Functions" in Symbolics
Common Lisp: Language Concepts.

I

•

zl :closure-alist 88

zl:closure-aUst closure Function
Returns an alist of (symbol. value) pairs describing the bindings which the
dynamic closure performs when it is called. This list is not the same one
that is actually stored in the closure; that one contains pointers to value
cells rather than symbols, and zl:closure-aUst translates them back to sym
bols so you can understand them. As a result, clobbering part of this list
does not change the closure.

If any variable in the closure is unbound, this function signals an error.

The Symbolics Common Lisp equivalent of this function is
dynamic-closure-aUst.

See the section "Dynamic Closure-Manipulating Functions" in Symbolics
Common Lisp: Language Concepts.

closure-function closure Function
Returns the closed function from the dynamic closure closure. This is the
function that was the second argument to zl:closure when the dynamic
closure was created. See the section "Dynamic Closure-Manipulating
Functions" in Symbolics Common Lisp: Language Concepts.

zl:closurep arg Function
zl:closurep returns t if its argument is a closure, otherwise nil.

zl:closure-variables closure Function
Creates and returns a list of all of the variables in the dynamic closure
closure. It returns a copy of the list that was passed as the first argument
to zl:closure when closure was created.

The Symbolics Common Lisp equivalent of this function is
dynamic-closure-variables

See the section "Dynamic Closure-Manipulating Functions" in Symbolics
Common Lisp: Language Concepts.

clrhash table Function
Removes all of the entries from table.

For a table of related items: See the section "Table Functions" in Sym
bolics Common Lisp: Language Concepts.

zl:clrhash-equal hash-table Function
Removes all of the entries from hash-table. This function will be removed
in the future - use clrhash instead.

89 sys:cl-structure-printer

sys:cl-structure-printer structure-name object stream depth Macro
This macro expands into an efficient function that prints a given structure
object of type structure-name to the specified stream in #S format. It
depends on the information calculated by defstruct, and so is only useful
after the defstruct form has been compiled. This macro enables a struc
ture print function to respect the variable ·print-escape·.

(defstruct (faa
(:print-functian faa-printer»

a b c)

(defun faa-printer (object stream depth)
(if *print-escape*

(sys:cl-structure-printer faa object stream depth)
ather-printing-strategy»

code-char code &optional (bits 0) (font 0) Function
Constructs a character given its code field. code, bits, and font must be
non-negative integers. If code-char cannot construct a character given its
arguments, it returns nil.

To set the bits of a character, supply one of the character bits constants as
the bits argument. See the section "Character Bit Constants" in Symbolics
Common Lisp: Language Concepts.

For example:

(code-char 65 char-control-bit) => #\c-A

Since the value of char-font-limit is 1, the only valid value of font is o.
The only reason to use the font option would be when writing a program
intended to be portable to other Common Lisp systems.

If you want to construct a new character that has character style other
than NIL.NIL.NIL, use make-character: See the function
make-character, page 323.

coerce object result-type Function
Converts an object to an equivalent object of another type.

object is a Lisp object.

result-type must be a type-specifier; object is converted to an equivalent ob
ject of the specified type. If object is already of the specified type, as deter
mined by typep, it is returned.

If the coercion cannot be performed, an error is signalled. In particular,
(coerce x nil) always signals an error.

Example:

I

I

coerce

(coerce 'x nil)
=> Error: I don't know how to coerce an object to nothing

It is not generally possible to convert any object to be of any type what
soever; only certain conversions are allowed:

90

Any sequence type can be converted to any other sequence type, provided
the new sequence can contain all actual elements of the old sequence (it is
an error if it cannot). If the result-type is specified as simply array, for ex
ample, then array t is assumed. A specialized type such as string or
(vector (complex short-float) can be specified;

Examples:

(coerce '(a b c) 'vector) => #(A B C)
(coerce '(a b c) 'array) => #(A B C)
(coerce #*181 '(vector (complex short-float») => #(1 8 1)
(coerce #(4 4) 'number)
=> Error: I don't know how to coerce an object to a number

Elements of the new sequence will be eql to corresponding elements of the
old sequence. Note that elements are not coerced recursively. If you
specify sequence as the result-type, the argument can simply be returned
without copying it, if it already is a sequence.

Examples:

(coerce #(8 9) 'sequence) => #(8 9)
(eql (coerce #(1 2) 'sequence) #(1 2» => NIL
(equalp (coerce #(1 2) 'sequence) #(1 2» => T

In this respect, (coerce sequence type) differs from (concatenate type
sequence), since the latter is required to copy the argument sequence.

Some strings, symbols, and integers can be converted to characters. If ob
ject is a string of length 1, then the sole element of the string is returned.
If object is a symbol whose print name is of length 1, then the sole element
of the print name is returned. If object is an integer n, then (int-char n)
is returned.

Examples:

(coerce HbH 'character) => #\b
(coerce HabH 'character)
=> Error: HABH is not one character long.
(coerce 'a 'character) => #\A
(coerce 'ab 'character)
=> Error: HABH is not one character long.

(coerce 65 'character) => #\A
(coerce 158 'character) => #\Circle

91 collect

Any non-complex number can be converted to a short-float, single-float
double-float, or long-float. If simply float is specified as the result-type
and if object is not already a floating-point number of some kind, then ob
ject is converted to a single-float.

Examples:

(coerce B 'short-float) => B.B
(coerce 3.5LB 'float) => 3.5dB
(coerce 7/2 'float) => 3.5

Any number can be converted to a complex number. If the number is not •
already complex, then a zero imaginary part is provided by coercing the in-
teger zero to the type of the given real part. If the given real part is ra- •
tional, however, then the rule of canonicalization for complex rational num-
bers results in the immediate re-conversion of the the result type from type
complex back to type rational.

Examples:

(coerce 4.5sB 'complex) => #C(4.5 B.B)
(coerce 7/2 'complex) => 7/2
(coerce #C(7/2 B) '(complex double-float»
=> #C(3.5dB B.BdB)

Any object can be coerced to type t.

Example:

(coerce 'house 't) => HOUSE

is equivalent to

(identity 'house) => HOUSE

Coercions from floating-point numbers to rational numbers, and of ratios to
integers are not supported because of rounding problems. Use one of the
specialized functions such as rational, rationalize, floor, and ceiling in
stead. See the section "Numeric Type Conversions" in Symbolics Common
Lisp: Language Concepts.

Similarly, coerce does not convert characters to integers; use the special
ized functions char-code or char-int instead.

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

collect Keyword For loop

collect expr {into var}

Causes the values of expr on each iteration to be collected into a list. When the

I

collect

epilogue of the loop is reached, var has been set to the accumulated result and
can be used by the epilogue code.

I t is safe to reference the values in var during the loop, but they should not be
modified until the epilogue code for the loop is reached.

The forms collect and collecting are synonymous.

Examples:

(defun loop1 (start end)
(loop for x from start to end

collect x» => LOOP1
(loop1 8 4) => (8 1 2 3 4)

(defun loop2 (small-list)
(loop for x from 8

for item in small-list
collect (list x item») => LOOP2

(loop2 '("one" "two" "three" "four"»
=> «8 "one") (1 "two") (2 "three") (3 "four"»

The following examples are equivalent.

(defun loop3 (small-list)
(loop for x from 8

for item in small-list
collect x into result-1
collect item into result-2
finally (print (list result-1 result-2»» => LOOP3

(loop3 '(a b c d e f» =>
«8 1 2 3 4 5) (A BCD E F» NIL

(defun loop3 (small-list)
(loop for x from 8

for item in small-list
collecting x into result-1
collecting item into result-2
finally (print (list result-1 result-2»» => LOOP3

(loop3 '(a b c d e f» =>
«8 1 2 3 4 5) (A BCD E F» NIL

92

Not only can there be multiple accumulations in a loop, but a single accumulation
can come from multiple places within the same loop form, if the types of the
collections are compatible. collect, nconc, and append are compatible.

93 zl:comment

See the section "loop Clauses", page 310.

zl:comment Special Form
Ignores its form and returns the symbol zl:comment. Example:

(defun faa (x)
(cond «null x) 9)

(t (comment x has something in it)
(1+ (faa (cdr x))))))

Usually it is preferable to comment code using the semicolon-macro feature
of the standard input syntax. This allows you to add comments to your
code that are ignored by the Lisp reader. Example:

(defun faa (x)
(cond «null x) 9)

(t (1+ (faa (cdr x)))) ;x has something in it
))

A problem with such comments is that they are discarded when the form is
read into Lisp. If the function is read into Lisp, modified, and printed out
again, the comment is lost. However, this style of operation is hardly ever
used; usually the source of a function is kept in an editor buffer and any
changes are made to the buffer, rather than the actual list structure of the
function. Thus, this is not a real problem.

See the section "Functions and Special Forms for Constant Values" in Sym
bolics Common Lisp: Language Concepts.

common Type Specifier
common is the type specifier symbol denoting an exhaustive union of the
following Common Lisp data types:

cons, symbol
(array x), where x is either t or a subtype of common
string, IlXIlum, bignum, ratio, short-float,
single-float, double-float long-float
(complex x) where x is a subtype of common
standard-char, hash-table, readtable, package,
pathname, stream, random-state
and all types created by the user with defstruct, or defflavor.

The type common, is a subtype of type t.

I

I

commonp 94

Examples:
(typep '#c(3 4) 'common) => T

(subtypep 'common t) => T and T

(commonp 'cons) => T

(sys:type-arglist 'common) => NIL and T

(setq four
(let «x 4»

(closure '(x) 'zerop») => #<DTP-CLOSURE 151B647>

(typep four 'sys:dynamic-closure) => T

(subtypep 'sys:dynamic-closure 'common) => NIL and NIL

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

commonp object Function
The predicate commonp is true if its argument is any standard Common
Lisp data type; it is false otherwise.

(commonp x) = (typep x 'common)

Examples:

(commonp 1.5d9) => T
(commonp 1.B) => T
(commonp -12.) => T
(commonp '3kd) => T
(commonp 'symbol) => T
(commonp #c(3 4» => T
(commonp 4) => T is equivalent to (typep 4 'common) => T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the section "Predicates" in Symbolics Com
mon Lisp: Language Concepts.

compiled·function Type Specifier
compiled·function is the type specifier symbol for the predefined Lisp data
type of that name.

Examples:

95 compiled-function-p

(typep (compile nil J(lambda (a b) (+ a b))) Jcompiled-function)
=> T

(21 :typep (compile nil J(lambda (a b) (+ a b))))
=> :COMPILED-FUNCTION

(sys:type-arglist Jcompiled-function) => NIL and T

(compiled-function-p (compile nil J(lambda (a) (+ a a)))) => T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

See the section "Functions" in Symbolics Common Lisp: Language Concepts.

compiled-function-p object Function
compiled-function-p returns t if its argument is any compiled code object.

compile-flavor-methods flavorl flavor2... Macro
You can use compile-flavor-methods to cause the combined methods of a
program to be compiled at compile-time, and the data structures to be
generated at load-time, rather than both happening at run-time.
compile-flavor-methods is thus a very good thing to use, since the need to
invoke the compiler at run-time slows down a program using flavors the
first time it is run. (The compiler is still called if incompatible changes
have been made, such as addition or deletion of methods that must be
called by a combined method.)

It is necessary to use compile-flavor-methods when you use the
:constructor option for defflavor, to ensure that the constructor function
is defined.

You use compile-flavor-methods by including the forms in a file to be
compiled. This causes the compiler to include the automatically generated
combined methods for the named flavors in the resulting .bin file, provided
that all of the necessary flavor definitions have been made. Furthermore,
when the . bin file is loaded, internal data structures (such as the list of all
methods of a flavor) are generated.

You should use compile-flavor-methods only for flavors that will be instan
tiated. For a flavor that will never be instantiated (that is, one that only
serves to be a component of other flavors that actually do get instantiated),
it is almost always useless. The one exception is the unusual case where
the other flavors can all inherit the combined methods of this flavor in
stead of each having its own copy of a combined method that happens to be
identical to the others.

The compile-flavor-methods forms should be compiled after all of the in
formation needed to create the combined methods is available. You should

I

I

compiler-let 96

put these forms after all of the definitions of all relevant flavors, wrappers,
and methods of all components of the flavors mentioned.

In general, Flavors cannot guarantee that defmethod macro-expands cor
rectly unless the flavor (and all of its component flavors) have been com
piled. Therefore, the compiler gives a warning when you try to compile a
method before the flavor and its components have been compiled.

If you see this warning and no other warnings, it is usually the case that
the flavor system did compile the method correctly.

In complicated cases, such as a regular function and an internal flavor
function (defined by defun-in-flavor or the related functions) having the
same name, the flavor system cannot compile the method correctly. In
those cases it is advisable to compile all the flavors first, and then compile
the method.

See the function flavor:print-flavor-compile-trace, page 403.

compiler-let bindlist body... Special Form
When interpreted, a compiler-let form is equivalent to let with all variable
bindings declared special. When the compiler encounters a compiler-let,
however, it performs the bindings specified by the form (no compiled code
is generated for the bindings) and then compiles the body of the
compiler-let with all those bindings in effect. In particular, macros within
the body of the compiler-let form are expanded in an environment with the
indicated bindings. See the section "Nesting Macros" in Symbolics Com
mon Lisp: Language Concepts.

compiler-let allows compiler switches to be bound locally at compile time,
during the processing of the body forms. Value forms are evaluated at
compile time. See the section "Compiler Switches" in Program Development
Utilities. In the following example the use of compiler-let prevents the
compiler from open-coding the zl:map.

(compiler-let «open-code-map-switch nil»
(zl :map (function (lambda (x) ... » faa»

See the section "Special Forms for Binding Variables" in Symbolics Com
mon Lisp: Language Concepts.

complex &optional (type '*) Type Specifier
complex is the type specifier symbol for the predefmed Lisp complex num
ber type.

The types complex, rational, and float are pairwise disjoint subtypes of the
type number.

This type specifier can be used in either symbol or list form. Used in list

97 complex

form, complex allows the declaration and creation of complex numbers,
whose real part and imaginary part are each of type type.

Examples:

(typep #c(3 4) 'complex) => T

(zl:typep #c(1.2 3.3)) => :COMPLEX

(subtypep 'complex 'number) => T and T ;subtype and certain

(typep '(complex 3 4) 'common) => T

The expression

(complexp #c(4/5 7.0)) => T

Is equivalent to

(typep #c(4/5 7.0) 'complex) => T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

See the section "Numbers" in Symbolics Common Lisp: Language Concepts.

complex real part &optional imagpart Function
Constructs a complex number from real and imaginary noncomplex parts,
applying complex canonicalization.

If the types of the real and imaginary parts are different, the coercion
rules are applied to make them the same. If imagpart is not specified, a
zero of the same type as realpart is used. If realpart is an integer or a
ratio, and imagpart is 0, the result is realpart.
Examples:

(compl ex 7) => 7
(complex 4.3 0) => #C(4.3 0.0)
(complex 2 0) => 2
(complex 3 4) => #C(3 4)
(complex 3 4.0) => #C(3.0 4.0)
(complex 3.0d0 4) => #C(3.0d0 4.0d0)
(complex 5/2 4.0d0) => #C(2.5d0 4.0d0)

Related Functions:

realpart
imagpart

For a table of related items: See the section "Functions That Decompose
and Construct Complex Numbers" in Symbolics Common Lisp: Language
Concepts.

I

I

complexp 98

complexp object Function
Returns t if object is a complex number, otherwise nil.

For a table of related items: See the section "Numeric Type-checking
Predicates" in Symbolics Common Lisp: Language Concepts.

flavor:compose-handler generic flavor-name &keyenv Function
Finds the methods that handle the specified generic operation on instances
of the specified flavor. Four values are returned:

handler-function-spec
The name of the handler, which can be a combined
method, a single method, or an instance-variable acces
sor.

combined-method-list
A list of function specs of all the methods called, in or
der of execution; the order is approximate because of
wrappers.

method-combination

error

A list of the method combination type and parameters to
it.
nil normally, otherwise a string describing an error that
occurred.

For example, to use flavor:compose-handler on the generic function
change-status for the flavor box-with-cell:

(flavor:compose-handler 'change-status 'box-with-cell)
-->(FLAVOR:COMBINED CHANGE-STATUS BOX-WITH-CELL)

«FLAVOR:METHOD CHANGE-STATUS CELL)
(FLAVOR:METHOD CHANGE-STATUS BOX-WITH-CELL))

(:AND :MOST-SPECIFIC-LAST)
NIL

The generic function change-status and the methods for the flavors
box-with-cell and cell are defmed elsewhere: See the section "Example of
Programming with Flavors: Life" in Symbolics Common Lisp: Language
Concepts.

In the second return value of sample output here, we put each method on
one line, for readability. This is not done by flavor:compose-handler.

The env parameter is described elsewhere: See the function
flavor: compose-handler-source, page 99.

99 flavor:compose-handler-source

flavor: compose-handler-source generic flavor-name &key env Function
Finds the methods that handle the specified generic operation on instances
of the flavor specified by flavor-name, and finds the source code of the com
bined method (if any). Seven values are returned:

form A Lisp form which is the body of the combined method.
If there isn't actually a combined method, this is nil.

handler-function-spec
The name of the handler, which can be a combined
method, a single method, or an instance-variable acces
sor.

combined-method-list
A list of function specs of all the methods called,. in or
der of execution; the order is approximate because of
wrappers.

wrapper-sources Information that the combined method requires so that
Flavors knows when it needs to be recompiled.

lambda-list A list describing what the arguments of the combined
method should be (not including the three interal ar
guments automatically given to all methods).

method-combination

error

A list of the method combination type and parameters to
it.
nil normally, otherwise a string describing an error that
occurred.

flavor:compose-handler-source is generally slower than
flavor: compose-handler, since the latter function can usually take advan
tage of pre-computed information present in virtual memory.

The env parameter to flavor:compose-handler and
flavor:compose-handler-source can be used to insert hypotheses into their
computations. If env is nil, the generics, flavors, and methods in the run
ning world are used. env can be an alist of modifications to the running
world; each element takes the form:

(name flavor-structure generic-structure (method definition) ...)

Everything except name can be nil. name is the name of a generic, or a
flavor, or both. flavor-structure is nil or the internal structure that
describes the flavor. generic-structure is nil or the internal structure that
describes the generic function. The remaining elements of an alist element
refer to methods of the flavor named name; method is a function spec and
definition is nil if that method is to be ignored, t if the method is to be as
sumed to exist, or the actual definition (expander function) in the case of a
wrapper.

I

I

flavor:compose-handler-source 100

env can also be the symbol compile, which is used internally to access the
compile-time environment.

101 concatenate

concatenate result-type &rest sequences Function
concatenate returns a new sequence that contains all of the elements of
all of the sequences in order.

The result does not share any structure with any of the argument se
quences. The type of the result is specified by result-type, which must be a
subtype of type sequence. It must be possible for every element of the ar
gument sequences to be an element of a sequence of type result-type.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

For example:

(concatenate 'vector "abc" #(ab) "gh") => #(#\a #\b #\c AS #\g #\h)

(setq vector (vector 'a 'b '1 '2» => #(A B 1 2)

(setq list (make-list 3 :initial-element 'blah»
=> (BLAH BLAH BLAH)

(concatenate 'list vector list)
=> (A B 1 2 BLAH BLAH BLAH)

(concatenate 'vector list vector) => #(BLAH BLAH BLAH A B 1 2)

If only one sequence argument is provided and it has the type specified by
result-type, concatenate is required to to copy the argument rather than
simply returning it. If a copy is not required, but only possible type
conversion, then the function coerce may be appropriate.

For a table of related items: See the section "Sequence Construction and
Access" in Symbolics Common Lisp: Language Concepts.

cond &rest clauses Special Form
Consists of the symbol cond followed by several clauses. Each clause con
sists of a predicate form, called the antecedent, followed by zero or more
consequent forms.

(cond (antecedent consequent consequent . ..)
(antecedent)
(antecedent consequent ...)
. ..)

Each clause represents a case that is selected if its antecedent is satisfied
and the antecedents of all preceding clauses were not satisfied. When a
clause is selected, its consequent forms are evaluated.

I

•

cond-every 102

cond processes its clauses in order from left to right. First, the antece
dent of the current clause is evaluated. If the result is nil, cond advances
to the next clause. Otherwise, the cdr of the clause is treated as a list of
consequent forms that are evaluated in order from left to right. After
evaluating the consequents, cond returns without inspecting any remaining
clauses. The value of the cond special form is the value of the last con
sequent evaluated, or the value of the antecedent if there were no con
sequents in the clause. If cond runs out of clauses, that is, if every an
tecedent evaluates to nil, and thus no case is selected, the value of the
cond is nil.

Examples:

(cond) => NIL

(cond ((= 2 3) (print "2 equals 3, new math"»
((< 3 3) (print "3 < 3, not yet I"»~) => NIL

(cond ((equal 'Becky 'Becky) "Girl")
((equal 'Tom 'Tom) "Boy"» => "Girl"

(cond ((equal 'Rover 'Red) "dog")
((equal 'Pumpkin 'Pickles) "cat")
(t "rat"» => "rat"

(cond ((zerop x)

(+ y 3»
;First clause:
; (zerop x) is the antecedent.
;(+ y 3) is the consequent.
;A clause with 2 consequents:
;this

((null y)

(setq y 4)
(cons x z»

(z)

(t
H)5)

)

;and this.
;A clause with no consequents: the antecedent
;is just z. If z is non-nil, it is returned.
;An antecedent of t
;is always satisfied.
;This is the end of the condo

For a table of related items: See the section "Conditional Functions" in
Symbolics Common Lisp: Language Concepts.

cond-every &body clauses Special Form
Has the same syntax as cond, but executes every clause whose predicate is
satisfied, not just the first. If a predicate is the symbol otherwise, it is
satisfied if and only if no preceding predicate is satisfied. The value
returned is the value of the last consequent form in the last clause whose
predicate is satisfied. Multiple values are not returned.

103 condition-bind

Examples:

(cond-every) => NIL

(cond-every ((> 2 3) (print "sister"»
((= 2 3) (print "brother"») => NIL

(cond-every ((equal 'mom 'mom) (princ "mother H»~

((equal 'dog 'cat) (princ "pet dog"»
((equal 'dad 'dad) (princ "father"»)

=> mother father"father"

(cond-every ((= 1 1) t) ((= 2 2) "yes!")
(otherwise "no"» => "yes!"

For a table of related items: See the section "Conditional Functions" in
Symbolics Common Lisp: Language Concepts.

condition-bind list &body body Special Form
condition-bind binds handlers for conditions and then evaluates its body
with those handlers bound. One of the handlers might be invoked if a con
dition is signalled while the hody is being evaluated. The handlers bound
have dynamic scope.

The following simple example sets up application-specific handlers for two
standard error conditions, fs:file-not-found and fs:delete-failure.

(condition-bind ((fs:file-not-found 'my-fnf-handler)
(fs:delete-failure 'my-delete-handler»

(deletef pathname»

The format for condition-bind is:

(condi t ion-bi nd ((condition-flavor-l handler-l)
(condition-flavor-2 handler-2)

form-l
form-2

form-n)

(condition-flavor-m handler-m»

condition-flavor-j The name of a condition flavor or a list of names of con
dition flavors. The condition-flavor-j need not be unique
or mutually exclusive. (See the section "Finding a
Handler" in Symbolics Common Lisp: Language Concepts.
Search order is explained in that section.)

I

I

condition-bind-default 104

handler-j

form-i

A form that is evaluated to produce a handler function.
O~e handler is bound for each condition flavor clause in
the list. The forms for binding handlers are evaluated in
order from handler-l to handler-m. All the handler-j
forms are evaluated and then all handlers are bound.
When handler is a lambda-expression, it is compiled.
The handler function is a lexical closure, capable of
referring to the lexical variables of the containing block.
A body, constituting an implicit progn. The forms are
evaluated sequentially. The condition-bind form returns
whatever values form-n returns (nil when the b.ody con
tains no forms). The handlers that are bound disappear
when the condition-bind form is exited.

If a condition signal occurs for one of the condition-fiavor-j during evalua
tion of the body, the signalling mechanism examines the bound handlers in
the order in which they appear in the condition-bind form, invoking the
first appropriate handler. You can think of the mechanism as being
analogous to typecase or zl-user:case. It invokes the handler function
with one argument, the condition object. The handler runs in the dynamic
environment in which the error occurred; no throw is performed.

Any handler function can take one of three actions:

• It can return nil to indicate that it does not want to handle the con
dition after all. The handler is free to decide not to handle the con
dition, even though the condition-fiavor-j matched. (In this case the
signalling mechanism continues to search for a condition handler.)

• It can throw to some outer catch-form, using throw.
• If the condition has any proceed types, it can proceed from the con

dition by sending a sys:proceed method to the condition object and
returning the resulting values. In this case, signal returns all of the
values returned by the handler function. (Proceed types are not
available for conditions signalled with error. See the section
"Proceeding" in Symbolics Common Lisp: Language Concepts.)

The conditional variant of condition-bind is the form:

condition-bind-if

For a table of related items: See the section "Basic Forms for Bound
Handlers" in Symbolics Common Lisp: Language Concepts.

condition-bind-default list &body body Special Form
This form binds its handlers on the default handler list instead of the
bound handler list. See the section "Finding a Handler" in Symbolics Com
mon Lisp: Language Concepts. In other respects condition-bind-default is

105 condition-bind-default-if

just like condition-bind. The default handlers are examined by the signall
ing mechanism only after all of the bound handlers have been examined.
Thus, a condition-bind-default can be overridden by a condition-bind out
side of it. This advanced feature is described in more detail in another
section. See the section "Default Handlers and Complex Modularity" in
Symbolics Common Lisp: Language Concepts.

The conditional variant of condition-bind-default is the form:

condition-bind-default-if

For a table of related items: See the section "Basic Forms for Default
Handlers" in Symbolics Common Lisp: Language Concepts.

condition-bind-default-if cond-form list &body body Special Form
This form binds its handlers on the default handler list instead of the
bound handler list. (See the section "Finding a Handler" in Symbolics I
Common Lisp: Language Concepts.) In other respects •
condition-bind-default-if is just like condition-bind-if. The default hand-
lers are examined by the signalling mechanism only after all of the bound
handlers have been examined. Thus, a condition-bind-default-if can be
overridden by a condition-bind outside of it. This advanced feature is
described in more detail in another section. See the section "Default Hand-
lers and Complex Modularity" in Symbolics Common Lisp: Language Con-
cepts.

For a table of related items: See the section "Basic Forms for Default
Handlers" in Symbolics Common Lisp: Language Concepts.

condition-bind-if cond-form list &body body Special Form
condition-bind-if binds its handlers conditionally. In all other respects, it
is just like condition-bind. It has an extra subform called cond-form, for
the conditional. I ts format is:

(condition-bind-if cond-form

form-I
form-2

form-n)

«condition-flavor-I handler-I)
(condition-flavor-2 handler-2)

(condition-fiavor-m handler-m»

condition-bind-if first evaluates cond-form. If the result is nil, it evaluates
the handler forms but does not bind any handlers. It then executes the
body as if it were a progn. If the result is not nil, it continues just like
condition-bind binding the handlers and executing th(' h'lr1y.

I

condition-call

For a table of related items: See the section "Basic Forms for Bound
Handlers" in Symbolics Common Lisp: Language Concepts.

106

condition-call (&rest varlist) form &body clauses Special Form
condition-call binds handlers for conditions, expressing the handlers as
clauses of a case-like construct instead of as functions. These handlers
have dynamic scope.

condition-call and condition-case have similar applications. The major
distinction is that condition-call provides the mechanism for using a com
plex conditional criterion to determine whether or not to use a handler.
condition-call clauses have the ability to decline to handle a condition be
cause the clause is selected on the basis of the predicate, rather than on
the basis of the type of a condition.

The format is:

(condition-call (var)
form

(predicate-l form-l-l form-1-2 ... form-l-n)
(predicate-2 form-2-1 form-2-2 ... form-2-n)

(predicate-m form-m-l form-m-2 ... form-m-n»

Each predicate-j must be a function of one argument. The predicates are
called, rather than evaluated. The form-j-i are a body, a list of forms con
stituting an implicit progn. The handler clauses are bound simultaneously.

When a condition is signalled, each predicate in turn (in the order in which
they appear in the definition) is applied to the condition object. The cor
responding handler clause is executed for the first predicate that returns a
value other than nil. The predicates are called in the dynamic environ
ment of the signaller.

condition-call takes the following actions when it finds the right predicate:

1. It automatically performs a throw to unwind the dynamic environ
ment back to the point of the condition-call. This discards the hand
lers bound by the condition-call.

2. It executes the body of the corresponding clause.
3. It makes condition-call return the values produced by the last form

in the clause.

During the execution of the clause, the variable var is bound to the con
dition object that was signalled. If none of the clauses needs to examine
the condition object, you can omit var:

107 condition-call-if

(condition-call 0 ...)

condition-cali And :no-error

As a special case, predicate-m (the last one) can be the special symbol
:no-error. If form is evaluated and no error is signalled during the evalua
tion, condition-case executes the :no-error clause instead of returning the
values returned by form. The variables vars are bouna to the values
produced by form, in the style of multiple-value-bind, so that they can be

. accessed by the body of the :no-error case. Any extra variables are bound
to nil.

Some limitations on predicates:

• Predicates must not have side effects. The number of times that the
signalling mechanism chooses to invoke the predicates and the order
in which it invokes them are not defined. For side effects in the
dynamic environment of the signal, use condition-bind.

• The predicates are not lexical closures and therefore cannot access
variables of the lexically containing form, unless those variables are
declared special.

• Lambda-expression predicates are not compiled.

The conditional variant of condition-call is the form:

condi tion-calI-if

For a table of related items: See the section "Basic Forms for Bound
Handlers" in Symbolics Common Lisp: Language Concepts.

condition-call-if cond-form (&rest varlist) form &body clauses Special Form
condition-call-if binds its handlers conditionally. In all other respects, it is
just like condition-call. Its format includes cond-form, the subform that
controls binding handlers:

(condi t i on-call-i f cond-form (var)
form
(predicate-I form-I-I form-I-2 ... form-I-n)
(predicate-2 form-2-I form-2-2 ... form-2-n)

(predicate-m form-m-l form-m-2 ... form-m-n))

condition-call-if iust evaluates cond-form. If the result is nil, it does not
set up any handlers; it just evaluates the form. If the result is not nil, it
continues just like condition-call, binding the handlers and evaluating the
form.

The :no-error clause applies whether or not cond-form is nil.

I

I

condition-case

For a table of related items: See the section "Basic Forms for Bound
Handlers" in Symbolics Common Lisp: Language Concepts.

108

condition-case (&rest varlist) form &rest clauses Special Form
condition-case binds handlers for conditions, expressing the handlers as
clauses of a case-like construct instead of as functions. The handlers
bound have dynamic scope.

Examples:

(condition-case ()
(time:parse string)

(time:parse-error *default-time*»

(condition-case (e)
(time:parse string)

(time:parse-error
(format error-output "-A, using default time instead." e)
defaul t-t i me»

(do 0 (nil)
(condition-case (e)

(return (time:parse" string»
(time:parse-error

(setq string
(prompt-and-read

:string
"-A-XUse what time instead? " e»»)

The format is:

(condition-case (varl var2 ...)
form

(condition-flavor-l form-l-l form-1-2 ... form-l-n)
(condition-flauor-2 for~-2-1 form-2-2 ... form-2-n)

(condition-flavor-m form-m-l form-m-2 ... form-m-n»

Each condition-flavor-j is either a condition flavor, a list of condition
flavors, or : no-error. If :no-error is used, it must be the last of the hand
ler clauses. The remainder of each clause is a b<:>dy, a list of forms con
stituting an implicit progn.

condition-case binds one handler for each clause. The handlers are bound
simultaneously.

If a condition is signalled during the evaluation of form, the signalling

109 condition-ease-if

mechanism examines the bound handlers in the order in which they appear
in the definition, invoking the first appropriate handler.

condition-case normally returns the values returned by form. If a con
dition is signalled during the evaluation of form, the signalling mechanism
determines whether the condition is one of the condition-flavor-}. If so, the
following actions occur:

1. It automatically performs a throw to unwind the dynamic environ
ment back to the point of the condition-case. This discards the
handlers bound by the condition-case.

2. It executes the body of the corresponding clause.
3. It makes condition-case return the values produced by the last form

in the handler clause.

While the clause is executing, varl is bound to the condition object that
was signalled and the rest of the variables (var2, ...) are bound to nil. If
none of the clauses needs to examine the condition object, you can omit
varl.

(condition-case () ...)

As a special case, condition-flavor-m (the last one) can be the special sym
bol : no-error. If form is evaluated and no error is signalled during the
evaluation, condition-case executes the :no-error clause instead of return
ing the values returned by form. The variables varl, var2, and so on are
bound to the values produced by form, in the style of multiple-value-bind,
so that they can be accessed by the body of the :no-error case. Any extra
variables are bound to nil.

When an event occurs that none of the cases handles, the signalling
mechanism continues to search the dynamic environment for a handler.
You can provide a case that handles any error condition by using error as
one condition-flavor-j.

The conditional variant of condition-case is the form:

condition-ease-if

For a table of related items: See the section "Basic Forms for Bound
Handlers" in Symbolies Common Lisp: Language Concepts.

condition-ease-if cond-form (&rest varlist) form &rest clauses Special Form
condition-ease-if binds its handlers conditionally. In all other respects, it
is just like condition-case. Its syntax includes eond-form, a subform that
controls binding handlers:

I

I

dbg :condition-handled-p

(condition-ease-if cond-form (var)
form

(condition-fiavor-l form-l-l form-1-2 ... form-l-n)
(condition-fiavor-2 form-2-1 form-2-2 ... form-2-n)

110

(condition-fiavor-m form-m-l form-m-2 ... form-m-n))

condition-ease-if first evaluates cond-form. If the result is nil, it does not
set up any handlers; it just evaluates the form. If the result is not nil, it
continues just like condition-case, binding the handlers and evaluating the
form.

The :no-error clause applies whether or not cond-form is nil.

For a table of related items: See the section "Basic Forms for Bound
Handlers" in Symbolics Common Lisp: Language Concepts.

dbg:condition-handled-p condition Function
dbg:condition-handled-p searches the bound handler list and the default
handler list to see whether a handler exists for the condition object, con
dition. This function should be called only from a condition-bind handler
function. It starts looking from the point in the lists from which the cur
rent handler was invoked and proceeds to look outwards through the bound
handler list and the default handler list. It returns a value to indicate
what it found:

Value
: maybe

nil
t

Meaning
condition-bind handlers for the flavor exist. These
handlers are permitted to decline to handle the condition.
You cannot determine what would happen without ac
tually running the handler.
No handler exists.
A handler exists.

conjugate number Function
Returns the complex conjugate of number. The conjugate of a noncomplex
number is itself. conjugate could have been defined by:

(defun conjugate (number)
(complex (real part number) (- (imagpart number))))

For a table of related items: See the section "Arithmetic Functions" in
Symbolics Common Lisp: Language Concepts.

111 cons

cons Type Specifier
cons is the type specifier symbol for the predefmed Lisp object of that
name.

The types cons and null form an exhaustive partition of the type list.

The types cons, symbol, array, number, and character are pairwise dis
joint.

Examples:

(typep '(a.b) 'cons) => T

(typep '(a b c) 'cons) => T

(zl :listp '(a be» => T

(subtypep 'cons 'list) => T and T

(subtypep 'list 'cons) => NIL and T

(sys:type-arglist 'cons) => NIL and T

(consp '(a be» => T

(type-of '(signed-byte 3» => CONS

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the section "List Data Types".

cons x y Function
cons is the primitive function to create a new cons, whose car is x and
whose cdr" is y. Examples:

(cons 'a 'b) => (a . b)
(cons 'a (cons 'b (cons 'c nil») => (a b c)
(cons 'a '(b cd» => (a bed)

cons may be thought of as creating a cons, or as adding a new element to
the front of a list.

For a table of related items: See the section "Functions for Constructing
Lists and Conses" in Symbolics Common Lisp: Language Concepts.

cons-in-area x y area-number Function
cons-in-area creates a cons, whose car is x and whose cdr is y, in the
specified area. (Areas are an advanced feature of storage management.)
See the section "Areas" in Internals, Processes, and Storage Management.

Example:

I

I

constantp

(cons-in-area 'a 'b my-area) => (a . b)

cons-in-area is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions for Constructing
Lists and Conses" in Symbolics Common Lisp: Language Concepts.

112

constantp object Function
This predicate is t if object, when considered as a form to be evaluated, al
ways evaluates to the same thing. This includes self-evaluating objects
such as numbers, characters, strings, bit-vectors and keywords, as well as
all constant symbols declared by defconstant, such as nil, t, and pi. In ad
dition, a list whose car is quote, such as (quote rhumba) also returns t
when it is given as object to constantp.

This predicate is nil if user::object, considered as a form, mayor may not
always evaluate to the same thing.

continue-whopper &rest args Special Form
Calls the combined method for the generic function that was intercepted by
the whopper. Returns the values returned by the combined method.

args is the list of argul11-ents passed to those methods. This function must
be called from inside the body of a whopper. Normally the whopper passes
down the same arguments that it was given. However, some whoppers
might want to change the values of the arguments and pass new values;
this is valid.

For more information on whoppers, including examples: See the section
"Wrappers and Whoppers" in Symbolics Common Lisp: Language Concepts.

copy-aUst al &optional area Function
This function returns an association list that is equal to al, but not eq.
See the section "Association Lists" in Symbolics Common Lisp: Language
Concepts. Only the top level of list structure is copied; that is, copy-aUst
copies in the cdr direction, but not in the car direction. Each element of al
that is a cons is replaced in the copy by a new cons with the same car and
cdr. See the function copy-seq, page 116. See the function copy-tree,
page 117.

The optional area argument is the number of the area in which to create
the new alist. (Areas are an advanced feature of storage management.)
See the section "Areas" in Internals, Processes, and Storage Management.

For a table of related items: See the section "Functions for Copying Lists"
in Symbolics Common Lisp: Language Concepts.

113 zl :copyalist

zl:copyalist list &optional area Function
zl:copyalist is for copying association lists. See the section "Lists" in
Symbolics Common Lisp: Language Concepts. The list is copied, as in
zl:copylist. In addition, each element of list that is a cons is replaced in
the copy by a new cons with the same car and cdr. You can optionally
specify the area in which to create the new copy. The default is to copy
the new list into the area occupied by the old list.

For a table of related items: See the section "Functions for Copying Lists"
in Symbolics Common Lisp: Language Concepts.

copy-array-contents from-array to-array Function
Copies the contents of from-array into the contents of to-array, element by
element. from-array and to-array must be arrays. If to-array is shorter
than from-array, the rest of from-array is ignored. If from-array is shorter
than to-array, the rest of to-array is filled with nil if it is a general array,
or 0 if it is a numeric array or <code-char 0) for strings. This function al
ways returns t.

Note that even if from-array or to-array has a leader, the whole array is
used; the convention that leader element 0 is the "active" length of the ar
ray is not used by this function. The leader itself is not copied.

copy-array-contents works on multidimensional arrays. from-array and
to-array are "linearized" and row-major order is used. See the section
"Row-major Storage of Arrays" in Converting to Genera 7.0.

copy-array-contents does not work on conformally displaced arrays.

copy-array-contents-and-Ieader from-array to-array Function
Copies the contents and leader of from-array into the contents of to-array,
element by element. copy-array-contents copies only the main part of the
array.

copy-array-contents-and-Ieader does not work on conformally displaced ar
rays.

copy-array-portion from-array from-start from-end to-array to-start Function
to-end

The portion of the array from-array with indices greater than or equal to
from-start and less than from-end is copied into the portion of the array
to-array with indices greater than or equal to to-start and less than to-end,
element by element. If there are more elements in the selected portion of
to-array than in the selected portion of from-array, the extra elements are
filled with the default value as by copy-array-contents. If there are more
elements in the selected portion of from-array, the extra ones are ignored.
Multidimensional arrays are treated the same way as copy-array-contents
treats them. This function always returns t.

I

I

zl :copy-closure 114

copy-array-portion does not work on conformally displaced arrays.

Currently, copy-array-portion (as well as copy-array-contents and
copy-array-contents-and-Ieader) copies one element at a time in increas
ing order of subscripts (this behavior might change in the future). This
means that when copying from and to the same array, the results might be
unexpected if from-start is less than to-start. You can safely copy from and
to the same array as long as from-start >= to-start.

zl:copy-closure closure' Function
Creates and returns a new closure by copying the dynamic closure closure.
zl:copy-closure generates new external value cells for each variable in the
closure and initializes their contents from the external value cells of
closure.

The Symbolics Common Lisp equivalent of this function is
copy-dynaMic-closure.

See the section "Dynamic Closure-Manipulating Functions" in Symbolics
Common Lisp: Language Concepts.

copy-dynaMic-closure closure Function
Creates and returns a new closure by copying the dynamic closure closure.
copy-dynaMic-closure generates new external value cells for each variable
in the closure and initializes their contents from the external value cells of
closure.

See the section "Dynamic Closure-Manipulating Functions" in Symbolics
Common Lisp: Language Concepts.

sys:copy-if-necessary thing &optional (default-cons-area Function
sys:working-storage-area)

sys:copy-if-necessary moves thing from a temporary storage area or stack
list to a permanent area. thing may be a string, symbol, list, tree, or
&rest argument. sys:copy-if-necessary checks whether thing is in a tem
porary area of some kind, and moves it if it is. If thing is not in a tem
porary area, it is simply returned.

This function is used especially for &rest arguments, which are not
guaranteed to be in permanent storage. Sometimes the rest-argument list
is stored in the function-calling stack, and loses its validity when the func
tion returns. If you wish to return a rest-argument or make it part of a
permanent list structure, you must copy it first, as you must always assume
that it is one of these special lists. See the section "Lambda-List
Keywords" in Symbolics Common Lisp: Language Concepts.

sys:copy-if-necessary is a Symbolics extension to Common Lisp.

115 copy-list

For more information on stack lists: Se.e the section "Consing Lists on the
Control Stack" in Internals, Processes, and Storage Management. See the
special form with-stack-list in Internals, Processes, and Storage Manage
ment.

For more information on temporary storage areas see the :gc keyword of
make-area. See the function make-area in Internals, Processes, and
Storage Management.

For a table of related items: See the section "Functions for Copying Lists"
in Symbolics Common Lisp: Language Concepts.

copy-list list &optional area force-dotted Function
This function returns a list that is equal to list, but not eq. Only the top
level of list structure is copied; that is, copy-list copies in the cdr direc
tion, but not in the car direction. Each element of list that is a cons is
replaced in the copy by a new cons with the same car and cdr. See also,
copy-alist copy-seq copy-tree copy-tree-share.

The optional area argument is the number of the area in which to create
the new list. (Areas are an advanced feature of storage management.) See
the section "Areas" in Internals, Processes, and Storage Management.

If list is a dotted list, this will be true of the returned list also. This can
be forced with the force-dotted argument. If the value of force-dotted is t,
copy-list will always return a dotted list.

For a table of related items: See the section "Functions for Copying Lists"
in Symbolics Common Lisp: Language Concepts.

zl:copylist list &optional area force-dotted Function
Returns a list that is zl:equal to list, but not eq. zl:copylist does not copy
any elements of the list: only the conses of, the list itself. The returned
list is fully cdr-coded to minimize storage. See the section "Cdr-Coding" in
Symbolics Common Lisp: Language Concepts. If the list is "dotted", that is,
(cdr (last list» is a non-nil atom, this is true of the returned list also.
You can optionally specify the area in which to create the new copy. The
default is to copy the new list into the area occupied by the old list.

For a table of related items: See the section "Functions for Copying Lists"
in Symbolics Common Lisp: Language Concepts.

copy-list* list &optional area Function
This function is the same as copy-list except that the last cons of the
resulting list is never cdr-coded. See the function copy-list, page 115. See
the section "Cdr-Coding" in Symbolics Common Lisp: Language Concepts.
This makes for increased efficiency if you nconc something onto the list
later.

I

I

zl :copylist* 116

The optional area argument is the number of the area in which to create
the new list. (Areas are an advanced feature of storage management.) See
the section "Areas" in Internals, Processes, and Storage Management.

copy-list· is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions for Copying Lists"
in Symbolics Common Lisp: Language Concepts.

zl:copylist· list &optional area Function
This is the same as zl:copylist except that the last cons of the resulting
list is never cdr-coded. See the function zl:copylist, page 115. See the sec
tion "Cdr-Coding" in Symbolics Common Lisp: Language Concepts. This
makes for increased efficiency if you nconc something onto the list later.

For a table of related items: See the section "Functions for Copying Lists"
in Symbolics Common Lisp: Language Concepts.

copy-seq sequence &optional area Function
A copy is made of the argument sequence, and the result is equalp to the
argument, but not eq. The function copy-seq returns the same result as
the function subseq, when the value of the start argument of subseq is o.
sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

For example:

(setq name "Bill") => "Bill"

(setq a-copy (copy-seq name» => "Bill"

a-copy => "Bill"

name => "Bill"

(equalp a-copy name) => T

(eq a-copy name) => NIL

The optional area argument is the number of the area in which to create
the new alist. (Areas are an advanced feature of storage management.)
See the section "Areas" in Internals, Processes, and Storage Management.

For a table of related items: See the section "Sequence Construction and
Access" in Symbolics Common Lisp: Language Concepts.

117 copy-symbol

copy-symbol symbol &optional copyprops Function
Returns a new uninterned symbol with the same print-name as symbol. If
copyprops is non-nil, then the value and function-definition of the new sym
bol are the same as those of sym, and the property list of the new symbol
is a copy of symbol's. If copyprops is nil (the default), then the new symbol
is unbound and undefined, and its property list is empty. See the section
"Functions for Creating Symbols" in Symbolics Common Lisp: Language
Concepts.

zl:copysymbol symbol &optional copyprops Function
Returns a new uninterned symbol with the same print-name as symbol. If
copyprops is non-nil, then the value and function-definition of the new sym
bol are the same as those of sym, and the property list of the new symbol
is a copy of symbol's. If copyprops is nil (the default), then the new symbol
is unbound and undefined, and its property list is empty. See the section
"Functions for Creating Symbols" in Symbolics Common Lisp: Language
Concepts.

copy-tree tree &optional area Function
copy-tree is useful for copying trees of conses. The argument tree may be
any Lisp object. If it is not a cons, it is returned; otherwise the result is a
new cons made from the results of calling copy-tree on the car and cdr of
the argument. In other words, all conses in the tree are copied recursively,
stopping only when non-conses are encountered. Circularities and the shar
ing of substructure are not preserved.

The optional area argument is the number of the area in which to create
the new tree. (Areas are an advanced feature of storage management.)
See the section "Areas" in Internals, Processes, and Storage Management.

For a table of related items: See the section "Functions for Copying Lists"
in Symbolics Common Lisp: Language Concepts.

zl:copytree tree &optional area Function
zl:copytree copies all the conses of a tree and makes a new tree with the
same fringe. You can optionally specify the area in which to create the
new copy. The default is to copy the new list into the area occupied by the
old list.

For a table of related items: See the section "Functions for Copying Lists"
in Symbolics Common Lisp: Language Concepts.

copy-tree-share tree &optional area (hash Function
<zl:make-equal-hash-table») cdr-code

copy-tree-share is similar to copy-tree; it makes a copy of an arbitrary
structure of conses, copying at all levels, and optimally cdr-coding.

I

I

zl :copytree-share 118

However, it also assures that all lists or tails of lists are optimally shared
when equal.

copy-tree-share takes as arguments the tree to be copied, and optionally a
storage area, an externally created hash table to be used for the equality
testing and a cdr-code. The default storage area for the new list is the
area occupied by the old list. If cdr-code is t, then lists will never be
"forked" to enable sharing a tail. This wastes space but improves locality.

Note: copy-tree-share might be very slow in the general case, for long
lists. However, applying it at the appropriate level of a specific structure
copying routine (furnishing a common externally created hash table) is
likely to yield all the sharing possible, at a much lower computational cost.
For example, copy-tree-share could be applied only to the branches of a
long alist.

Example:

(copy-tree-share '«1 2 3) (1 2 3) (9 1 2 3) (923»)

If x = '(1 2 3), the above returns (roughly):

lLx ,x (9 . ,x) (9 . ,(cdr x»)

copy-tree-share is a Symbolics extension to Common Lisp.

zl:copytree-share tree &optional area (hash Function
<zl:make-equal-hash-table» cdr-code

zl:copytree-share is similar to zl:copytree; it makes a copy of an arbitrary
structure of conses, copying at all levels, and optimally cdr-coding.
However, it also assures that all lists or tails of lists are optimally shar~d
when zl:equal.

zl:copytree-share takes as arguments the tree to be copied, and optionally
a storage area, an externally created hash table to be used for the equality
testing and a cdr-code. The default storage area for the new list is the
area occupied by the old list. If cdr-code is t, then lists will never be
"forked" to enable sharing a tail. This wastes space but improves locality.

Note: zl:copytree-share might be very slow in the general case, for long
lists. However, applying it at the appropriate level of a specific structure
copying routine (furnishing a common externally created hash table) is
likely to yield all the sharing possible, at a much lower computational cost.
For example, zl:copytree-share could be applied only to the branches of a
long alist.

Example:

119

(zl:copytree-share '«1 2 3) (1 2 3) (9 1 2 3) (923»)

If x = '(1 2 3), the above returns (roughly):

l(,X ,x (9. ,x) (9. ,(cdr x»)

cos

For a table of related items: See the section "Functions for Copying Lists"
in Symbolics Common Lisp: Language Concepts.

cos radians Function
Returns the cosine of radians. radians can be of any numeric type.

Examples:

(cos 9) => 1.9
(cos (/ pi 2» => -9.9d9

For a table of related items: See the section "Trigonometric and Related
Functions" in Symbolics Common Lisp: Language Concepts.

cosd degrees Function
Returns the cosine of degrees. degrees can be of any numeric type.

Examples:

(cosd 99) => -9.9
(cosd 45) => 9.7971968
(cosd 36.2) => 9.89696934

For a table of related items: See the section "Trigonometric and Related
Functions" in Symbolics Common Lisp: Language Concepts.

cosh radians Function
Returns the hyperbolic cosine of radians.

Example:

(cosh 9) => 1.9

For a table of related items: See the section "Hyperbolic Functions" in
Symbolics Common Lisp: Language Concepts.

count item sequence &key (test #'eql) test-not (key #'identity) Function
from-end (start 0) end

Counts the number of elements in a subsequence of sequence satisfying the
predicate specified by the :test keyword. count returns a non-negative in
teger, which represents the number of elements in the specified sub
sequence of sequence.

item is matched against the elements specified by the test keyword. item
can be any Symbolics Common Lisp object.

I

cos

I

120

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

:test specifies the test to be performed. An element of sequence satisfies
the test if (funcall testfun item (keyfn x)) is true, where testfun is the test
function specified by :test, keyfn is the function specified by :key and x is
an element of the sequence. The default test is eqI.

For example:

(count 'a '(a b c d) :test-not #'eql) => 3

:test-not is similar to :test, except that the sense of the test is inverted.
An element of sequence satisfies the test if (funcall testfun item (keyfn x»
is false.

The value of the keyword argument : key, if non-nil, is a function that
takes one argument. This function extracts from each element the part to
be tested in place of the whole element. For example:

(count 'a '«a b) (a b) (b c» :key #'car) => 2

(count 1 #(1 231 4 1) :key #'(lambda (x) (- x 1») => 1

The :from-end argument does not affect the result returned; it is accepted
purely for compatibility with other sequence functions. For example:

(count 'a '(a a abc d) :from-end t :start 3) => e

(count 'a '(a a abc d) :from-end nil :start 3) => e
For the sake of efficiency, you can delimit the portion of the sequence to be
operated on by the keyword arguments :start and :end.

:start and :end must be non-negative integer indices into the sequence.
:start must be less than or equal to :end, else an error is signalled. It
defaults to zero (the start of the sequence).

:start indicates the start position for the operation within the sequence.
:end indicates the position of the first element in the sequence beyond the
end of the operation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by
default.

For example:

(count 'a '(a b a» => 2

(count 'heron '(heron loon heron pelican heron stork» => 3

(count 'a '(a a b b a a) :start 1 :end 5) => 2

121 count-if

(count 'a '(a a b b a a) :start 1 :end 6) => 3

(count 'a #(a b b b a)) => 2

For a table of related items: See the section "Searching for Sequence
I terns" in Symbolics Common Lisp: Language Concepts.

count Keyword For loop

count expr {into uar} {data-type}

If expr evaluates non-nil, a counter is incremented. The data-type defaults to
fixnum. When the epilogue of the loop is reached, uar has been set to the
accumulated result and can be used by the epilogue code.

I t is safe to reference the values in uar during the loop, but they should not be
modified until the epilogue code for the loop is reached.

The forms count and counting are synonymous.

Examples:

(defun num-entry (small-list)
(loop for x in small-list

count t into num
finally (return num») => NUN-ENTRY

(num-entry '(a b cd» => 4

Is equivalent to

(de fun num-entry (small-list)
(loop for x in small-list

counting t into num
finally (return num») => NUN-ENTRY

(num-entry '(a b cd» => 4

Not only can there be multiple accumulations in a loop, but a single accumulation
can come from multiple places within the same loop form, if the types of the
collections are compatible. count and sum are compatible.

See the section "loop Clauses", page 310.

count-if predicate sequence &key key from-end (start 0) end Function
count-if returns a non-negative integer, which represents the number of
elements in the specified subsequence of sequence satisfying the predicate.

predicate is the test to be performed on each element.

I

I

count-if-not 122

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

The value of the keyword argument : key, if non-nil, is a function that
takes one argument. This function extracts from each element the part to
be tested in place of the whole element.

For example:

(count-if #'atom '«a b) «a) b) (nil nil» :key #'car) => 2

(count-if #'zerop #(1 2 1) :key #'(lambda (x) (- x 1») => 2

The :from-end argument does not affect the result returned; it is accepted
purely for compatibility with other sequence functions.

For example:

(count-if #'oddp '(1 1 2 2) :start 2 :from-end t) => B

(count-if #'oddp '(1 1 2 2) :start 2 :from-end nil) => B

For the sake of efficiency, you can delimit the portion of the sequence to be
operated on by the keyword arguments :start and :end.

:start and :end must be non-negative integer indices into the sequence.
:start must be less than or equal to : end, else an error is signalled. It
defaults to zero (the start of the sequence).

:start indicates the start position for the operation within the sequence.
:end indicates the position of the first element in the sequence beyond the
end of the operation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by
default.

For example:

(count-if #'oddp '(1 2 1 2» => 2

(count-if #'oddp '(1 1 1 222) :start 2 :end 4) =>

(count-if #'numberp , (heron 1.B a 2 #\Space» => 2

For a table of related items: See the section "Searching for Sequence
Items" in Symbolics Common Lisp: Language Concepts.

count-if-not predicate sequence &key key from-end (start 0) end Function
count-if-not returns a non-negative integer, which represents the number
of elements in the specified subsequence of sequence that do not satisfy the
predicate.

123 ctypecase

predicate is the test to be performed on each element.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

The value of the keyword argument :key, if non-nil, is a function that
takes one argument. This function extracts from each element the part to
be tested in place of the whole element.

For example:

(count-if-not #'atom '«a b) «a) b) (nil nil» :key #'car) => 1

(count-if-not #'zerop #(1 2 1) :key #'(lambda (x) (- x 1») => 1

The :from-end argument does not affect the result returned; it is accepted
purely for compatibility with other sequence functions.

For example:

(count-if-not #'oddp '(1 1 2 2) :start 2 :from-end t) => 2

(count-if-not #'oddp '(1 2 2) :start 2 :from-end nil) => 2

For the sake of efficiency, you can delimit the portion of the sequence to be
operated on by the keyword arguments :start and :end.

:start and :end must be non-negative integer indices into the sequence.
:start must be less than or equal to :end, else an error is signalled. It
defaults to zero (the start of the sequence).

:start indicates the start position for the operation within the sequence.
:end indicates the position of the first element in the sequence beyond the
end of the operation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by
default.

For example:

(count-if-not #'numberp '(heron 1.9 a 2 #\Space» => 3

(count-if-not #'oddp '(3 4 3 4» => 2

For a table of related items: See the section "Searching for Sequence
Items" in Symbolics Common Lisp: Language Concepts.

ctypecase object &body body Special Form
The name of this function stands for "continuable exhaustive case".
ctypecase is similar to typecase, except that it does not allow an explicit
otherwise or t clause, and if no clause is satisfied it signals a proceedable
error instead of returning nil.

I

I

ctypecase 124

ctypecase is a conditional that chooses one of its clauses by examining the
type of an object. Its form is as follows:

(typecase form
(types consequent consequent ...)
(types consequent consequent ...)

)

First ctypecase evaluates form, producing an object. ctypecase then ex
amines each clause in sequence. types in each clause is a type specifier in
either symbol or list form, or a list of type specifiers. The type specifier is
not evaluated. If the object is of that type, or of one of those types, then
the consequents are evaluated and the result of the last one is returned (or
nil if there are no consequents in that clause). Otherwise, ctypecase
moves on to the next clause.

If no clause is satisfied, ctypecase signals an error with a message con
structed from the clauses. To continue from this error, supply a new value
for object, causing ctypecase to store that value and restart the type tests.
Subforms of object can be evaluated multiple times.

For an object to be of a given type means that if typep is applied to the
object and the type, it returns t. That is, a type is something meaningful
as a second argument to typep. A chart of supported data types appears
elsewhere. See the section "Data Types and Type Specifiers" in Symbolics
Common Lisp: Language Concepts.

It is permissible for more than one clause to specify a given type, par
ticularly if one is a subtype of another; the earliest applicable clause is
chosen. Thus, for ctypecase, the order of the clauses can affect the be
havior of the construct.

Examples:

(defun tell-about-car (x)
(ctypecase (car x)

(string "string"»)=> TELL-ABOUT-CAR
(tell-about-car '("word" "more"» => "string"
(tell-about-car '(a 1» => proceedable error is signalled

125 ctypecase

(defun tell-about-car (x) see typecase
(ctypecase (car x)

(fixnum "number.")
((or string symbol) "string or symbol.")
(otherwise "I don't know."») => TEll-ABDUT-CAR

(tell-about-car '(1 a» => "number."
(tell-about-car '(a 1» => "string or symbol."
(tell-about-car '("word" "more"» => "string or symbol."
(tell-about-car '(1.9» =>"1 don't know."

For a table of related items: See the section "Conditional Functions" in
Symbolics Common Lisp: Language Concepts.

For a table of related items: See the section "Condition-Checking and Sig
nalling Functions and Variables" in Symbolics Common Lisp: Language
Concepts. I

I·· I .

debugging-info 126

debugging-info function Function
This returns the debugging info alist of function. Most of the elements of
this alist are an internal interface between the compiler and the Debugger.

sys:debug-instance instance Function
Enters the debugger in the lexical environment of instance. This is useful
in debugging. You can examine and alter instance variables, and run func
tions that use the instance variables.

decf access-form &optional amount Macro
Decrements the value of a generalized variable. (decf ref) decrements the
value of ref by 1. (decf ref amount) subtracts amount from ref and stores
the difference back into ref.

decf expands into a setf form, so ref can be anything that setf understands
as its access-form. This also means that you should not depend on the
returned value of a decf form.

You must take great care with decf because it might evaluate parts of ref
more than once. (decf does not evaluate any part of ref more than once.)

See the section "Generalized Variables" in Symbolics Common Lisp: Lan
guage Concepts.

declare &rest ignore Special Form
The declare special form can be used in two ways: at top level or within
function bodies. For information on top-level declare forms: See the sec
tion "How the Stream Compiler Handles Top-level Forms" in Program
Development Utilities.

declare forms that appear within function bodies provide information to the
Lisp system (for example, the interpreter and the compiler) about this par
ticular function. Expressions appearing within the function-body declare
are declarations; they are not evaluated. declare forms must appear at the
front of the body of certain special forms, such as let and defun. Some
declarations apply to function definitions a~d must appear as the first
forms in the body of that function; otherwise they are ignored.

Function-body declare forms understand the following declarations. The
first group of declarations can be used only at the beginning of a function
body, for example, defun, defmacro, defmethod, lambda, or flet.
(arglist • arglist)

This declaration saves arglist as the argument list of the function,
to be used instead of its lambda-list if c-sh-A or the arglist func
tion need to determine the function's arguments. The arglist decla
ration is used purely for documentation purposes.

Example:

127

(defun example (&rest options)
(declare (arglist &key x y z))
(lexpr-funcall #'example-2 "Print" options))

(values. values)

declare

This declaration saves values as the return values list of the func
tion, to be used if c-sh-A or the arglist function asks what values it
returns. The values declaration is used purely for documentation
purposes.

(sys:function-parent name type)
Helps the editor and source-finding tools (like M-.) locate symbol
definitions produced as a result of macro expansion. (The accessor,
constructor, and alterant macros produced by a zl:defstruct are an
example.)

The sys:function-parent declaration should be inserted in the
source definition to record the name of the outer definition of which
it is a part. name is the name of the outer definition. type is its
type, which defaults to defun. See the section " Using The
sys:function-parent Declaration" in Symbolics Common Lisp: Lan
guage Concepts.

(sys:downward-function)
The declaration sys:downward-function, in the body of an internal
lambda, guarantees to the system that lexical closures of the lambda
in which it appears are only used as downward funargs, and never
survive the calls to the procedure that produced them. This allows
the system to allocate these closures on the stack..

(defun special-search-table (item)
(block search

(send *hash-table* :map-hash
#'(lambda (key object)

(declare (sys:downward-function))
(when (magic-function key object item)

(return-from search object))))))

Here, the :map-hash message to the hash table calls the closure of
the internal lambda many times, but does not store it into per
manent variables or data structure, or return it "around"
special-search-table. Therefore, it is guaranteed that the closure
does not survive the call to special-search-table. It is thus safe to
allow the system to allocate that closure on the stack..

Stack-allocated closures have the same lifetime (extent) as &rest ar-

1-·
I - '

I

declare

guments and lists created by with-stack-list and with-stack-list*,
and require the same precautions. See the variable
lambda-list-keywords, page 282.

128

(sys:downward-funarg varl var2 ...) or (sys:downward-funarg *)
The sys:downward-funarg declaration (not to be confused with
sys:downward-function) permits a procedure to declare its intent to
use one or more of its arguments in a downward manner. For in
stance, zl:sort's second argument is a funarg, which is only used in
a downward manner, and is declared this way. The second ar
gument to process-run-function is a good example of a funarg that
is not downward. Here is an example of a function that uses and
declares its argument as a downward funarg.

(defun search-alist-by-predicate (alist predicate)
(declare (sys:downward-funarg predicate»
;; Traditional "recursive" style J for variety.
(if (null alist)

nil
(let «element (car list»

(rest (cdr list»
(if (funcall predicate (car element»

(cdr element)
(search-alist-by-predicate rest predicate»»»

This function only calls the funarg passed as the value of predicate.
It does not store it into permanent structure, return it, or throw it
around search-alist-by-predicate's activation.

The reason you so declare the use of an argument is to allow the
system to deduce guaranteed downward use of a funarg without
need for the sys:downward-function declaration. For instance, if
search-alist-by-predicate were coded as above, we could write

(defun look-for-element-in-tolerance (alist required-value tolerance)
(search-alist-by-predicate alist

#J (1 ambda (key)
« (abs (- key required-value» tolerance»»

to search the keys of the list for a number within a certain
tolerance of a required value. The lexical closure of the internal
lambda is automatically allocated by the system on the stack be
cause the system has been told that any funarg used as the first ar
gument to search-alist-by-predicate is used only in a downward
manner. No declaration in the body of the lambda is required.

129 declare

All appropriate parameters to system functions have been declared
in this way.

There are two possible forms of the sys:downward-funarg declara
tion:

(declare (sys:downward-funarg uarl uar2 •••)
Declares the named variables, which must be
parameters (formal arguments) of the function in
which this declaration appears, to have their
values used only in a downward fashion. This af
fects the generation of closures as functional ar
guments to the function in which this declaration
appears: it does not directly affect the function it
self. Due to an implementation restriction, uar-i
cannot be a keyword argument.

<declare (sys:downward-funarg *»
Declares guaranteed downward use of all func
tional arguments to this function. This is to
cover closures of functions passed as elements of
&rest arguments and keyword arguments.

The following group of declarations can be used at the beginning of any
body, for example, a let body.

(special syml sym2 ...)
The symbols syml, sym2, and so on, are treated as special variables
within the form containing the declare; the Lisp system (both the
compiler and the interpreter) implements the variables using the
value cells of the symbols.

(zl:unspecial syml sym2 ...)
The symbols syml, sym2, and so on, are treated as local variables
within the form containing the declare.

Example:
(defun print-integer (number base)

(declare (unspecial base»
(when (~ number base)

(print-integer (floor number base) base»
(tyo (digit-char (mod number base) base»)

(sys:array-register uariablel uariable2 ...)
Indicates to the compiler that uariablel, uariable2, and so on, are
holding single-dimensional arrays as their values. Henceforth, each
of these variables must always hold a single-dimensional array. The

1_, . -

I

decode-float 130

compiler can then use special faster array element referencing and
setting instructions for the aref and zl:aset functions. Whether or
not this declaration is worthwhile depends on the type of array and
the number of times that referencing and setting instructions are
executed. For example, if the number of referencing instructions is
more than ten, this declaration makes your program run faster; for
one or two references, it actually slows execution.

<sys:array-register-ld variablel variable2 ...)
Indicates to the compiler that variablel, variable2, and so on, are
holding single- or multidimensional arrays as their values, and that
the array is going to be referenced as a one-dimensional array.
Henceforth, each of these variables must always hold an array. The
compiler can then use special faster array element referencing and
setting instructions for the sys:%ld-aref and sys:%ld-aset functions.
Whether or not this declaration is worthwhile depends on the type
of array and the number of times that referencing and setting in
structions are executed. For example, if the number of referencing
instructions is more than ten, this declaration makes your program
run faster; for one or two references, it actually slows execution.

The compiler also recognizes any number of declare forms as the first
forms in the bodies of the following special forms. This means that you
can have special declarations that are local to any of these blocks. In ad
dition, declarations can appear at the front of the body of a function defini
tion, like defun, defmacro, defsubst, and so on.

zl:destructuring-bind
let
do
zl:do-named
prog
lambda

multiple-value-bind
let'"
do'"
zl:do"'-named
prog*

decode-float float Function
Determines and returns the significand, the exponent, and the sign cor
responding to the floating-point argument float.

The significand is returned as a floating-point number of the same format
as float. It is obtained by dividing the argument by an integral power of 2,
the radix of the floating-point representation, so as to bring its value be
tween 1/2 (inclusive) and 1 (exclusive). The quotient is then returned as
the significand.

The second result of decode-float is the integer exponent e to which 2
must be raised to produce the appropriate power for the division.

131 decode-raster-array

The third result is a floating-point number, of the same format as the ar
gument, whose absolute value is one and whose sign matches that of the
argument.

Examples:

(decode-float 2.8) => 8.5 and 2 and 1.8
(decode-float -2.8) => 8.5 and 2 and -1.8
(decode-float 4.8) => 8.5 and 3 and 1.8
(decode-float B.8) => 8.5 and 4 and 1.8
(decode-float 3.8) => 8.75 and 2 and 1.8
(decode-float 8.8) => 8.8 and 8 and 1.8
(decode-float -8.8) => 8.8 and 8 and -1.8

'" ,
, , , ,

a possible use of decode-float
(log-abs f10at)=(10g (abs float»

(defun 10g-abs (float)
(mu1tip1e-va1ue-bind (significand exponent)

(decode-float float)
(+ (log significand) ;log ab= log a + log b

(* exponent (log 2»») ;log (expt x y)= y10gx

(log-abs 2.8) => 8.6931472 ;(log 2) => 8.6931472

For a table of related items: See the section "Functions That Decompose
and Construct Floating-point Numbers" in Symbolics Common Lisp: Lan
guage Concepts.

decode-raster-array raster Function
Returns the following attributes of the raster as values: width, height, and
spanning width. In a row-major implementation, width and height are the
second and first dimensions, respectively. The spanning width is the num
ber of linear array elements needed to go from (x,y) to (x,y+l). For noncon
formal arrays, this is the same as the width. For conformal arrays, this is
the width of the underlying array that provides the storage adjusted for
possibly differing numbers of bits per element.

decode-raster-array should be used rather than array-dimensions,
zl:array-dimension-n, or sys:array-row-span for the following reasons.

• decode-raster-array does error checking by ensuring that the array
is two-dimensional.

• A single call to decode-raster-array is faster than any non-null com
bination of the alternatives.

• decode-raster-array always returns the width and height, which are

1-·
I - .

I

math:decompose 132

not the first and second dimensions as returned by array-dimensions
or zl:array-dimension-n.

math: decompose a &optionallu ps ignore Function
Computes the LU decomposition of matrix a. If lu is non-nil, stores the
result into it and returns it; otherwise it creates an array to hold the
result, and returns that. The lower triangle of lu, with ones added along
the diagonal, is L, and the upper triangle of lu is U, such that the product
of Land U is a. Gaussian elimination with partial pivoting is used. The
lu array is permuted by rows according to the permutation array ps, which
is also produced by this function. If the argument ps is supplied, the per
mutation array is stored into it; otherwise, an array is created to hold it.
This function returns two values: the LU decomposition and the permuta
tion array.

def function &rest defining-forms Special Form
If a function is created in some strange way, wrapping a def special form
around the code that creates it informs the editor of the connection. The
form:

(def function-spec
forml form2 . ..)

simply evaluates the forms forml, form2, and so on. It is assumed that
these forms create or obtain a function somehow, and make it the defini
tion of function-spec.

Alternatively, you could put (def function-spec> in front of or anywhere near
the forms that define the function. The editor only uses it to tell which
line to put the cursor on.

zl:defconst variable initial-value &optional documentation Special Form
The same as defvar, except that variable is always set to initial-value
regardless of whether variable is already bound. The rationale for this is
that defvar declares a global variable, whose value is initialized to some
thing but is then changed by the functions that use it to maintain some
state. On the other hand, zl:defconst declares a constant, whose value is
never changed by the normal operation of the program, only by changes to
the program. zl:defconst always sets the variable to the specified value so
that if, while developing or debugging the program, you change your mind
about what the constant value should be, and you then evaluate the
zl:defconst form again, the variable gets the new value. It is not the in
tent of zl:defconst to declare that the value of variable never changes; for
example, zl:defconst is not license to the compiler to build assumptions
about the value of variable into programs being compiled. See defconstant
for that.

133 defconstant

See the section "Special Forms for Defining Special Variables" in Symbolics
Common Lisp: Language Concepts.

defconstant variable initial-value &optional documentation Special Form
Declares the use of a named constant in a program. initial-value is
evaluated and variable set to the result. The value of variable is then
fixed. It is an error if variable has any special bindings at the time the
defconstant form is executed. Once a special variable has been declared
constant by defconstant, any further assignment to or binding of that vari
able is an error.

The compiler is free to build assumptions about the value of the variable
into programs being compiled. If the compiler does replace references to
the name of the constant by the value of the constant in code to be com
piled, the compiler takes care that such "copies" appear to be eqi to the

. object that is the actual value of the constant. For example, the compiler
can freely make copies of numbers, but it exercises care when the value is
a list.

In Symbolics Common Lisp, defconstant and zI:defconst are essentially the
same if the value is other than a number, a character, or an interned sym
bol. However, if the variable being declared already has a value,
zI:defconst freely changes the value, whereas defconstant queries before
changing the value. defconstant's query offers three choices: Y, N, and
P.

• The Y option changes the value.
• The N option does not change the value.
• The P option changes the value and when you change any future

value, it prints a warning rather than a query.

The P option sets sys:inhibit-fdefine-warnings to :just-warn. defconstant
obeys that variable, just as query-about-redefinition does. Use
(setq sys:inhibit-fdefine-warnings nil) to revert to the querying mode.

When the value of a constant is changed by a patch file, a warning is
printed.

defconstant assumes that changing the value is dangerous because the old
value might have been incorporated into compiled code, which is out of
date if the value changed.

In general, you should use defconstant to declare constants whose value is
a number, character, or interned symbol and is guaranteed not to change.
An example is n. The compiler can optimize expressions that contain
references to these constants. If the value is another type of Lisp object or
if it might change, you should use zl:defconst instead.

documentation, if provided, should be a string. I t is accessible to the
documentation function.

1-·
I -

I

deff 134

See the section "Special Forms for Defming Special Variables" in Symbolics
Common Lisp: Language Concepts.

deff function definition Special Form
deff is a simplified version of def. It evaluates the form definition-creator,
which should produce a function, and makes that function the defmition of
function-spec, which is not evaluated. deff is used for giving a function
spec a definition that is not obtainable with the specific defining forms
such as defun and macro. For example:

(deff faa 'bar)

makes foo equivalent to bar, with an indirection so that if bar changes,
foo likewise changes;

(deff faa (function bar»

copies the definition of bar into foo with no indirection, so that further
changes to bar have no effect on foo.

defflavor name instance-variables component-flavors &rest options Special Form
name is a symbol that is the name of this flavor. defflavor defines the
name of the flavor as a type name in both the Common Lisp and Zetalisp
type systems: See the section "Flavor Instances and Types" in Symbolics
Common Lisp: Language Concepts.

instance-variables is a list of the names of the instance variables containing
the local state of this flavor. Each element of this list can be written in
two ways: either the name of the instance variable by itself, or a list con
taining the name of the instance variable and a default initial value for it.
Any default initial values given here are forms that are evaluated by
make-instance if they are not overridden by explicit arguments to
make-instance.

If you do not supply an initial value for an instance variable as an ar
gument to make-instance, and there is no default initial value provided in
the defflavor form, the value of an instance variable remains unbound.
(Another way to provide a default is by using the :default-init-plist option
to defflavor.)

component-flavors is a list of names of the component flavors from which
this flavor is built.

Each option can be either a keyword symbol or a list of a keyword symbol
and its arguments. The options to defflavor are described elsewhere:

See the section "Summary of defflavor Options" in Symbolics
Common Lisp: Language Concepts.
See the section "Complete Options for defflavor" in
Symbolics Common Lisp: Language Concepts.

Several of these options affect instance variables. These options can be given in
two ways:

135 deffunction

keyword The keyword appearing by itself indicates that the option
applies to all instance variables listed at the top of this
defflavor form.

(keyword varl var2 ...)
A list containing the keyword and one or more instance
variables indicates that this option refers only to the in
stance variables listed here.

The following form defines a flavor wink to represent tiddly-winks. The
instance variables x and y store the location of the wink. The default in
itial value of both x and y is o. The instance variable color has no default
initial value. The options specify that all instance variables are
:initable-instance-variables; x and yare :writable-instance-variables; and
color is a :readable-instance-variable.

(defflavor wink «x B) (y B) color) ;x and y represent location
o ;no component flavors

:initable-instance-variables
(:writable-instance-variables x y) ;this implies readable
(:readable-instance-variables color»)

You can specify that an option should alter the behavior of instance vari
ables inherited from a component flavor. To do so, include those instance
variables explicitly in the list of instance variables at the top of the def
flavor form. In the following example, the variables x and yare explicitly
included in this defflavor form, even though they are inherited from the
component flavor, wink. These variables are made initable in the def
flavor form for big-wink; they are made writable in the defflavor form for
wink.

(defflavor big-wink (x y size)
(wink)

(:initable-instance-variables x y»
;wink is a component

If you specify a defflavor option for an instance variable that is not in
cluded in this defflavor form, an error is signalled. Flavors assumes you
misspelled the name of the instance variable.

deffunction function-spec lambda-macro-name lambda-list body... Special Form
deffunction defmes a function using an arbitrary lambda macro in place of
lambda. A deffunction form is like a defun form, except that the func
tion spec is immediately followed by the name of the lambda macro to be
used. deffunction expands the lambda macro immediately, so the lambda
macro must already be defined before deffunction is used. For example,
suppose the ilisp lambda macro were defined as follows:

I-I

I -

I

defgeneric

(lambda-macro ilisp (x)
'(lambda (&optional ,@(second x) &rest ignore) . ,(cddr x»)

Then the following example would define a function called new-list that
would use the lambda macro called ilisp:

(deffunction new-list ilisp (x y z)
(list x y z»

new-list's arguments are optional, and any extra arguments are ignored.
Examples:

(new-list 1 2) => (1 2 nil)
(new-list 1 2 3 4) -> (1 2 3)

136

defgeneric generic-function-name (argl arg2 ...) options... Special Form
Defines a generic function named generic-function-name that accepts ar
guments defined by (argl arg2 ...), a lambda-list. The first argument, argl,
is required, unless the :function option is used to indicate otherwise. argl
represents the object that is supplied as the first argument to the generic
function. The flavor of argl determines which method is appropriate to
perform this generic function on the object. Any additional arguments
(arg2, and so on) are passed to the methods.

The arguments to defgeneric are displayed when you give the Arglist (M-X)
command or press c-sh-A while this generic function is current.

For example, to define a generic function total-fuel-supply that works on
instances of army and navy, and takes one argument (fuel-type) in addition
to the object itself, we might supply military-group as argl:

(defgeneric total-fuel-supply (military-group fuel-type)
"Returns today's total supply

of the given type of fuel
available to the given military group."

(:method-combination :sum»

The generic function is called as follows:

(total-fuel-supply blue-army ':gas)

The argument blue-army is known to be of flavor army. Therefore,
Flavors chooses the method that implements the total-fuel-supply generic
function on instances of the army flavor. That method takes only one ar
gument, fuel-type:

(defmethod (total-fuel-supply army) (fuel-type)
body of method)

The set of options for defgeneric are described elsewhere: See the section
"Options For defgeneric" in Symbolics Common Lisp: Language Concepts.

137 si :defi ne-character-style-fami lies

I t is not necessary to use defgeneric to set up a generic function. For fur
ther discussion: See the section "Use Of defgeneric" in Symbolics Com
mon Lisp: Language Concepts.

The function spec of a generic function is described elsewhere: See the
section "Function Specs for Flavor Functions" in Symbolics Common Lisp:
Language Concepts.

si:define-character-style-families device character-set &rest plists Function
This function is the mechanism for defining new character styles, and for
defining which font should be used for displaying characters from
character-set on the specified device. plists contain the actual mapping be
tween character styles and fonts.

It is necessary that a character style be defined in the world before you ac
cess a file that uses the character style. You should be careful not to put
any characters from a style you define into a file that is shared by other
users, such as sys. translations.

It is possible for plists to map from a character style into another character
style; this usage is called logical character styles. It is expected that the
logical style used has its own mapping, in this
si:define-character-style-families form or another such form, that even
tually is resolved into an actual font.

plists is a nested structure whose elements are of the form:

(: famil y family
(: si ze size

(: face face target-font
: face face target-font
: face face target-font)

: si ze size
(: face face target-font

: face face target-font)))

Each target-font is one of:

o A symbol such as fonts:cptfont, which represents a font for a black
and white Symbolics console.

• A string such as "furrier7", which represents a font for an LGP2
printer.

• A list whose car is :font and whose cadr is an expression represent
ing a font, such as (:font ("Furrier" "8" 9 1.17)). This is also a
font for an LGP2 printer.

• A list whose car is :style and whose cdr is a character style, such as:
(: styl e family face size). This is an example of using a logical
character style (see ahead for more details).

I-I . -

I

si:define-character-style-families 138

Each size is either a symbol representing a size, such as : normal, or an as
terisk * used as a wildcard to match any size. The wildcard syntax is sup
ported for the :size element only. When you use a wildcard for size the
target-font must be a character style. The size element of target-font can be
:same to match whatever the size of the character style is, or :smaller or
: larger.

If you define a new size, that size cannot participate in the merging of
relative sizes against absolute sizes. The ordered hierarchy of sizes is
predefined. See the section "Merging Character Styles" in Symbolics Com
mon Lisp: Language Concepts.

The elements can be nested in a different order, if desired. For example:

(:size size
(: face face

(: famil y target-font)))

The first example simply maps the character style BOX. ROMAN. NORMAL
into the font fonts: boxfont for the character set
si:*standard-character-set* and the device si:*b&w-screen*. The face
ROMAN and the size NORMAL are already valid faces and sizes, but BOX
is a new family; this form makes BOX one of the valid families.

;;; -*- Package:SYSTEM-INTERNALS; Mode:LISP; Base: 19 -*-

(define-character-style-families *b&w-screen* *standard-character-set*
'(:family :box
(:size :normal (:face :roman fonts:boxfont))))

Once you have compiled this form, you can use the Zmacs command
Change Style Region (invoked by c-~ c-J) and enter
BOX. ROMAN. NORMAL. This form does not make any other faces or sizes
valid for the BOX family.

The following example uses the wildcard syntax for the :size, and as
sociates the faces : italic, :bold, and :bold-italic all to the same character
style of BOX. ROMAN. NORMAL. This is an example of using logical
character styles. This form has the effect of making several more charac
ter styles valid; however, all styles that use the BOX family are associated
with the same logical character style, which uses the same font.

;;; -*- Package:SYSTEM-INTERNALS; Mode:LISP; Base: 19 -*-

(define-character-style-families *b&w-screen* *standard-character-set*
'(:family :box
(:5ize * (:face :italic (:style :box :roman :normal)
:bold (:style :box :roman :normal)

139 define-global-handler

:bold-italic (:style :box :roman :normal»»)

For lengthier examples: See the section "Examples Of
si:define-character-style-families" in Symbolics Common Lisp: Language
Concepts.

define-global-handler name conditions arglist &body body Macro
name is a symbol, and a handler function by that name is defined.

conditions is a condition name, or a list of condition names.

arglist is a list of one element, the name of the argument (a symbol) which
is bound to the condition object.

A global handler is like a bound handler with an important exception: un
like a bound handler which is of dynamic extent, a global handler is of in
defmite extent. Once defined, a global handler must therefore be specifi
cally removed with undefine-global-handler.

Similarly, since a global handler could be called in any process by any
program, it cannot use a throw the way a bound handler can. Instead it
should return nil (keep searching for another handler), or return mUltiple
values where the first one is the name of a proceed-type, as with bound
handlers.

A note of caution: The global handler functions do not maintain the order
of the global handler list in any way. If there are two handlers whose con
ditions overlap each other in such a way that some instantiable condition
could be handled by either, then either handler might run, depending on
the order in which they were defined. When there is more experience with
use of global handlers we will try to develop a good approach to this
problem.

Example:

(define-global-handler infinity-is-three sys:divide-by-zero
(error)

(values :return-values J(3»)

(/ 1 8) ==> 3

For a table of related items: See the section "Basic Forms for Global
Handlers" in Symbolics Common Lisp: Language Concepts.

define-Method-combination name parameters method-patterns Special Form
options ... body ..

Provides a rich declarative syntax for defining new types of method com
bination. This is more flexible and powerful than
define-simple-method-combination.

I -I . -

1-· I -

define-method-combination 140

name is a symbol that is the name of the new method· combination type.
parameters resembles the parameter list of a defmacro; it is matched
against the parameters specified in the :method-combination option to def
generic or defflavor.

method-patterns is a list of method pattern specifications. Each method pat
tern selects some subset of the available methods and binds a variable to a
list of the function specs for these methods. Two of the method patterns
select only a single method and bind the variable to the chosen method's
function spec if a method is found and otherwise to nil. The variables
bound by method patterns are lexically available while executing the body
forms. See the section "Method-patterns Option To
define-method-combination" in Symbolics Common Lisp: Language Con
cepts.

Each option is a list whose car is a keyword. These can be inserted in
front of the body forms to select special options. See the section "Options
Available In define-method-combination" in Symbolics Common Lisp: Lan
guage Concepts.

The body forms are evaluated to produce the body of a combined method.
Thus the body forms of define-Method-combination resemble the body
forms of defmacro. Backquote is used in the same way. The body forms
of define-Method-combination usually produce a form that includes invoca
tions of flavor:call-component-method and/or
flavor:call-component-methods. These functions hide the implementation
dependent details of the calling of component methods by the combined
method.

Flavors performs some optimizations on the combined method body. This
makes it possible to write the body forms in a simple and easy-to
understand style, without being concerned about the efficiency of the
generated code. For example, if a combined method chooses a single
method and calls it and does nothing else, Flavors implements the called
method as the handler rather than constructing a combined method.
Flavors removes redundant invocations of progn and multiple-value-progl
and performs similar optimizations.

The variables flavor:generic and flavor:flavor are lexically available to the
body forms. The values of both variables are symbols:

flavor: generic

flavor: flavor

value is the name of the generic operation whose handler
is being computed.
value is the name of the flavor.

The body forms are permitted to setq the variables defined by the
method-patterns, if further filtering of the available methods is required,
beyond the filtering provided by the built-in filters of the method-patterns

141 define-modify-macro

mechanism. It is rarely necessary to resort to this. Flavors assumes that
the values of the variables defined by the method patterns (after evaluating
the body forms) reflect the actual methods that will be called by the com
bined method body.

body forms must not signal errors. Signalling an error (such as a com
plaint about one of the available methods) would interfere with the use of
flavor examining tools, which call the user-supplied method combination
routine to study the structure of the erroneous flavor. If it is absolutely
necessary to signal an error, the variable flavor:error-p is lexically avail
able to the body forms; its value must be obeyed. If nil, errors should be
ignored.

define-modify-macro name args function &rest Macro
documentation-and-declarations

This macro defines a read-modify-write macro named name. An example of
such a macro is incf. The first subform of the macro will be a
generalized-variable reference. The function is literally the function to ap
ply to the old contents of the generalized-variable to get the new contents;
it is not evaluated. lambda-list describes the remaining arguments for the
function; these arguments come from the remaining subforms of the macro
after the generalized-variable reference. lambda-list may contain &optional
and &rest markers. (The &key marker is not permitted here; &rest suffices
for the purposes of define-modify-macro.) doc-string is documentation for
the macro name being defined.

The expansion of a define-modify-macro is equivalent to the following, ex
cept that it generates code that follows the semantic rules outlined above.

(defmacro name (reference . lambda-list)
doc-string
, (setf ,reference

(function ,reference ,argl ,arg2 ... »)

where argl, arg2, ... , are the parameters appearing in lambda-list; ap
propriate provision is made for a &rest parameter.

As an example, incf could have been defined by:

(define-modify-macro incf (&optional (delta 1» +)

define-setf-method access-function subforms &body body
In this context, the word "method" has nothing to do with flavors.

Macro

This macro defines how to setf a generalized-variable reference that is of
the form (access-fn ...). The value of the generalized-variable reference
can always be obtained by evaluating it, so access-fn should be the name of
a function or a macro.

I· I -

define-setf-method 142

subforms is a lambda list that describes the subforms of the generalized
variable reference, as with defmacro. The result of evaluating body must
be five values representing the setf method. (The five values are described
in detail at the end of this discussion.) Note that define-setf-method dif
fers from the complex form of defsetf in that while the body is being ex
ecuted the variables in subforms are bound to parts of the generalized
variable reference, not to temporary variables that will be bound to the
values of such parts. In addition, define-setf-method does not have the
defsetf restriction that access-fn must be a function or a function-like
macro. An arbitrary defmacro destructuring pattern is permitted in sub
forms.

By definition, there are no good small examples of define-setf-method be
cause the easy cases can all be handled by defsetf. A typical use is to
define the setf method for ldb.

SETF method for the form (LOB bytespec int).
;;; Recall that the int form must itself be suitable for SETF.

(define-setf-method ldb (bytespec int)
(multiple-value-bind (temps vals stores

store-form accessform)
(get-setf-method int) ;Get SETF method for into

(let «btemp (gensym» ;Temp var for byte specifier.
(store (gensym» ;Temp var for byte to store.
(stemp (first stores») ;Temp var for int to store.

" Return the SETF method for LOB as five values.
(values (cons btemp temps) ;Temporary variables.

) »)

(cons bytespec vals) ;Value forms.
(list store) ;Store variables.
'(let «,stemp (dpb ,store ,btemp ,access-form»)

,store-form
,store) ;Storing form.

'(ldb ,btemp ,access-form);Accessing form.

Here are the five values that express a setf method for a given access
form .

• A list of temporary variables.
o A list of value forms (subforms of the given form) to whose values

the teporary variables are to be bound .
• A second list of temporary variable, called store variables.
• A storing form.
• An accessing form.

143 defi ne-setf-method

The temporary variables are bound to the value forms as if by let·; that is,
the value forms are evaluated in the order given and may refer to the
values of earlier value forms by using the corresponding variable.

The store variables are to be bound to the values of the new value form,
that is, the values to be stored into the generalized variable. In almost all
cases, only a single value is stored, and there is only one store variable.

The storing form and the accessing form may contain references to the
temporary variables (and also, in the case of the storing form, to the store
variables). The accessing form returns the value of the generalized vari
able. The storing form modifies the value of the generalized variable and
guarantees to return the values of the store variables as its values. These
are the correct values for setf to return. (Again, in most cases there is a
single store variable and thus a single value to be returned.) The value
returned by the accessing form is, of course, affected by execution of the
storing form, but either of these forms may be evaluated any number of
times, and therefore should be free of side effects (other than the storing
action of the storing form).

The temporary variables and the store variables are generated names, as if
by gensym or gentemp, so that there is never any problem of name
clashes among them, or between them and other variables in the program.
This is necessary to make the special forms that do more than one setf in
parallel work properly. These are psetf, shiftf and rotatef.

Here are some examples of setf methods for particular forms:

• For a variable x:

o
o
(g8881)
(setq x g8881)
x

• For (car exp):

(g8882)
(exp)
(g8883)
(progn (rplaca g8882 g8883) g8883)
(car g8882)

• For (supseq seq s e):

1-·
I -

1-·
I -

define-simple-method-combination 144

(g8884 g8885 g8886)
(seq s e)

(g8887)
(progn (replace g8884 g8887 :start1 g8885 :end1 g8886)

g8887)
(subseq g8884 g8885 g8886)

define-simple-method-combination name operator &optional Special Form
single-arg-is-value pretty-name

Defines a new type of method combination that simply calls all the
methods, passing the values they return to the function named operator.

It is also legal for operator to be the name of a special form. In this case,
each subform is a call to a method. It is legal to use a lambda expression
as operator.

name is the name of the method-combination type to be defined. It takes
one optional parameter, the order of methods. The order can be either
:most-specific-first (the default) or :most-specific-Iast.

When you use a new type of method combination defined by
define-simple-method-combination, you can give the argument
:most-specific-first or :most-specific-Iast to override the order that this
type of method combination uses by default.

If single-arg-is-value is specified and not nil, and if there is exactly one
method, it is called directly and operator is not called. For example,
single-arg-is-value makes sense when operator is +.

pretty-name is a string that describes how to print method names concisely.
It defaults to (string-downcase name).

Most of the simple types of built-in method combination are defined with
define-simple-method-combination. For example:

(define-simple-method-combination :and and t)
(define-simple-method-combination :or or t)
(define-simple-method-combination :list list)
(define-simple-method-combination :progn progn t)
(define-simple-method-combination :append append t)

define-symbol-macro name form Special Form
define-symbol-macro name form defines a symbol macro. name is a sym
bol to be defined as a symbol macro. form is a Lisp form to be substituted
for the symbol when the symbol is evaluated. A symbol macro is more like
an inline function than a macro: form is the form to be substituted for the
symbol, not a form whose evaluation results in the substitute form.

Example:

145

(define-symbol-macro faa (+ 3 bar»
(setq bar 2)

faa => 5

deflambda-macro

A symbol defmed as a symbol macro cannot be used in the context of a
variable. You cannot use setq on it, and you cannot bind it. You can use
setf on it: setf substitutes the replacement form, which should access
something, and expands into the appropriate update function.

For example, suppose you want to defme some new instance variables and
methods for a flavor. You want to test the methods using existing in
stances of the flavor. For testing purposes, you might use hash tables to
simulate the instance variables, using one hash table per instance variable
with the instance as the key. You could then implement an instance vari
able x as a symbol macro:

(defvar x-hash-table (make-hash-table»
(define-symbol-macro x (send x-hash-table :get-hash self»

To simulate setting a new value for X, you could use (setf x value), which
would expand into (send x-hash-table :put-hash self value).

deflambda-macro name pattern &body body Special Form
Like defmacro, but defines a lambda macro instead of a normal macro.

zl:deflambda-macro-displace name pattern &body body Special Form
Like zl:defmacro-displace, but defmes a displacing lambda macro instead
of a displacing normal macro.

deflocf access-function locate-function-or-subforms &body body Function

defmacro name pattern &body body Macro
defmacro is a general-purpose macro-defming macro. A defmacro form
looks like:

(defmacro name pattern . body)

The pattern can be anything made up out of symbols and conses. It is
matched against the body of the macro form; both pattern and the form are
car'ed and cdr'ed identically, and whenever a non-nil symbol occurs in pat
tern, the symbol is bound to the corresponding part of the form. If the
corresponding part of the form is nil, it goes off the end of the form.
&optional, &rest, &key, and &body can be used to indicate where optional
pattern elements are allowed.

All of the symbols in pattern can be used as variables within body. name is
the name of the macro to be defined; it can be any function spec. See the
section "Function Specs" in Symbolics Common Lisp: Language Concepts.

I ·· I ..

1-· I -

zl :defmacro-displace 146

body is evaluated with these bindings in effect, and its result is returned to
the evaluator as the expansion of the macro.

defmacro could have been defined in terms of destructuring-bind as fol
lows, except that the following is a simplified example of defmacro show
ing no error-checking and omitting the &environment and &whole fea
tures.

&whole is followed by variable, which is bound to the entire macro-call
form or subform. variable is the value that the macro-expander function
receives as its first argument. &whole is allowed only in the top-level pat
tern, not in inside patters.

&environment is followed by variable, which is bound to an object
representing the lexical environment where the macro call is to be inter
pered. This environment might not be the complete lexical environment.

(defmacro defmacro (name pattern &body body)
\(macro ,name (form env)

(destructuring-bind ,pattern (cdr form)
. ,body)))

See the section "&-Keywords Accepted By defmacro" in Symbolics Common
Lisp: Language Concepts.

See the special form destructuring-bind, page 177.

zl:defmacro-displace name pattern &body body Macro
zl:defmacro-displace is just like defmacro except that it defines a displac
ing macro, using the zl:displace function.

defmacro-in-flavor (function-name flavor-name) arglist body ...) Special Form
Defines a macro inside a flavor. Functions inside the flavor can use this
macro, but the macro is not accessible in the global environment .

. See the section "Defining Functions Internal to Flavors" in Symbolics Com
mon Lisp: Language Concepts.

defmethod Special Form
A method is the code that performs a generic function on an instance of a
particular flavor. It is defined by a form such as:

(defmethod (generic-function flavor options ...) (argl arg2 ...)
body ...)

The method defined by such a form performs the generic function named
by generic-function, when that generic function is applied to an instance of
the given flavor. (The name of the generic function should not be a
keyword, unless you want to define a message to be used with the old send

147 defmethod

syntax.) You can include a documentation string and declare forms after
the argument list and before the body.

A generic function is called as follows:

(generic-function g-f-argl g-f-arg2 ...)

Usually the flavor of g-f-argl determines which method is called to perform
the function. When the appropriate method is called, self is bound to the
object itself (which was the first argument to the generic function). The
arguments of the method are bound to any additional arguments given to
the generic function. A method's argument list has the same syntax as in
defun.

The body of a defmethod form behaves like the body of a defun, except
that the lexical environment enables you to access instance variables by
their names, and the instance by self.

For example, we can define a method for the generic function list-position
that works on the flavor wink. list-position prints the representation of
the object and returns a list of its x and y position.

(defmethod (list-position wink) () ; no args other than object
"Returns a list of x and y position."
(print self) ; self is bound to the instance
(list x y» ; instance vars are accessible

The generic function list-position is now defined, with a method that
implements it on instances of wink. We can use it as follows:

(list-position my-wink)
-->#<WINK 61311676>

(4 8)

If no options are supplied, you are defining a primary method. Any options
given are interpreted by the type of method combination declared with the
:method-combination argument to either defgeneric or defflavor. See the
section "Deiming Special-Purpose Methods" in Symbolics Common Lisp:
Language Concepts. For example, :before or :after can be supplied to in
dicate that this is a before-daemon or an after-daemon. For more infor
mation: See the section "Writing Before and After-Daemons" in Symbolics
Common Lisp: Language Concepts.

If the generic function has not already been defined by defgeneric, def
method sets up a generic function with no special options. If you call def
generic for the name generic-function later, the generic function is updated
to include any new options specified in the defgeneric form.

Several other sections of the documentation contain information related to
defmethod:

a··· I .

1-· I -

defpackage 148

See the section "defmethod Declarations" in Symbolics Common Lisp: Language
Concepts. See the section "Writing Methods for make-instance" in Symbolics
Common Lisp: Language Concepts. See the section "Function Specs for Flavor
Functions" in Symbolics Common Lisp: Language Concepts. See the section
"Setter and Locator' Function Specs" in Symbolics Common Lisp: Language
Concepts. See the function block, page 52. See the section "Variant Syntax of
defmethod" in Symbolics Common Lisp: Language Concepts. See the section
"Defining Methods to be Called by Message-Passing" in Symbolics Common Lisp:
Language Concepts.

defpackage name options... Special Form
Define a package named name; the name must be a symbol so that the
source file name of the package can be recorded and the editor can cor
rectly sectionize the definition. If no package by that name alre~dy exists,
a new package is created according to the specified options. If a package
by that name already exists, its characteristics are altered according to the
options specified. If any characteristic cannot be altered, an error is sig
nalled. If the existing package was defined by a different file, you are
queried before it is changed, as with any other type of definition.

Each option is a keyword or a list of a keyword and arguments. A keyword
by itself is equivalent to a list of that keyword and one argument, t; this
syntax really only makes sense for the :external-only and
:hash-inherited-symbols keywords.

Wherever an argument is said to be a name or a package, it can be either
a symbol or a string. Usually symbols are preferred, because the reader
standardizes their alphabetic case and because readability is increased by

. not cluttering up the defpackage form with string quote (") characters.

None of the arguments are evaluated. The keywords arguments, most of
which are identical to make-package's, are:

(:nicknames name name •••)
The package is given these nicknames, in addition to its primary
name.

(:preIlX-name name)
This name is used when printing a qualified name for a symbol in
this package. The specified name should be one of the nicknames of
the package or its primary name. If :preIlX-name is not specified,
it defaults to the shortest of the package's names (the primary name
plus the nicknames).

(:use package package •••)
External symbols and relative name mappings of the specified
packages are inherited. If this option is not specified, it defaults to
(:use global). To inherit nothing, specify (:use).

(:shadow name name •••)
Symbols with the specified names are created in this package and
declared to be shadowing.

149 defpackage

(:export name name •••)
Symbols with the specified names are created in this package, or in
herited from the' packages it uses, and declared to be external.

(:import symbol symbol •••)
The specified symbols are imported into the package. Note that un
like : export, :import requires symbols, not names; it matters in
which package this argument is read.

(:shadowing-import symbol symbol •••)
The same as :import but no name conflicts are possible; the sym
bols are declared to be shadowing.

(:import-from package name name •••)
The specified symbols are imported into the package. The symbols
to be imported are obtained by looking up each name in package.
(defpackage only) This option exists primarily for system bootstrap
ping, since the same thing can normally be done by :import. The
difference between :import and :import-from can be visible if the
file containing a defpackage is compiled; when :import is used the
symbols are looked up at compile time, but when :import-from is
used the symbols are looked up at load time. If the package struc
ture has been changed between the time the file was compiled and
the time it is loaded, there might be a difference.

(:relative-names (name package) (name package) •••)
Declare relative names by which this package can refer to other
packages. The package being created cannot be one of the packages,
since it has not been created yet. For example, to be able to refer
to symbols in the common-lisp package print with the pref"lX lisp:
instead of cl: when they need a package pref"lX (for instance, when
they are shadowed), you would use :relative-names like this:

(defpackage my-package (:use cl)
(: shadow error)
(:relative-names (lisp common-lisp»)

(let «*package* (find-package 'my-package»)
(print (list 'my-package: :error 'cl :error»)

(:relative-names-for-me (package name) (package name) •••)
Declare relative names by which other packages can refer to this
package.
(defpackage only) It is valid to use the name of the package being
created as a package here; this is useful when a package has a rela
tive name for itself.

(:size number)
The number of symbols expected to be present in the package. This

1-·
I -

11-· I -

defparameter 150

controls the initial size of the package's hash table. The :size
specification can be an underestimate; the hash table is expanded as
necessary.

(:hash-inherited-symbols boolean)
If true, inherited symbols are entered into the package's hash table
to speed up symbol lookup. If false (the default), looking up a sym
bol in this package searches the hash table of each package it uses.

(:external-only boolean)
If true, all symbols in this package are external and the package is
locked. This feature is only used to simulate the old package sys
tem that was used before Release 5.0. See the section "External
only Packages and Locking" in Symbolics Common Lisp: Language
Concepts.

(:include package package •••)
Any package that uses this package also uses the specified packages.
Note that if the :include list is changed, the change is not
propagated to users of this package. This feature is used only to
simulate the old package system that was used before Release 5.0.

(:new-symbol-function function)
function is called when a new symbol is to be made present in the
package. The default is si:pkg-new-symbol unless :external-only is
specified. Do not specify this option unless you understand the in
ternal details of the package system.

(:colon-mode mode)
If· mode is : external, qualified names mentioning this package be
have differently depending on whether ":" or "::" is used, as in
Common Lisp. ":" names access only external symbols. If mode is
: internal, ":" names access all symbols. :internal is the default
currently. See the section "Specifying Internal and External Sym
bols in Packages" in Symbolics Common Lisp: Language Concepts.

(:preilX-intern-function function)
The function to call to convert a qualified name referencing this
package with ":" (rather than "::") to a symbol. The default is in
tern unless (:colon-mode :external) is specified. Do not specify this
option unless you understand the internal details of the package sys
tem.

defparameter variable initial-value &optional documentation Special Form
The same as defvar, except that variable is always set to initial-value
regardless of whether variable is already bound. The rationale for this is
that defvar declares a global variable, whose value is initialized to some
thing but is then changed by the functions that use it to maintain some
state. On the other hand, defparameter declares a constant, whose value

151 defprop

is never changed by the normal operation of the program, only by changes
to the program. defparameter always sets the variable to the specified
value so that if, while developing or debugging the program, you change
your mind about what the constant value should be, and you then evaluate
the defparameter form again, the variable gets the new value. It is not
the intent of defparameter to' declare that the value of variable never
changes; for example, defparameter is not a license to the compiler to
build assumptions about the value of variable into programs being compiled.
See defconstant for that.

See the section "Special Forms for Defining Special Variables" in Symbolics
Common Lisp: Language Concepts.

defprop symbol x indicator Special Form
This gives symbol's property list an indicator-property of x. After this is
done, (zl:get plist indicator) returns x. If plist is a symbol, the symbol's as
sociated property list is used. zl:putprop returns its second argument. See
the section "Property Lists" in Symbolics Common Lisp: Language Con
cepts.

defprop is a form of zl:putprop with "unevaluated arguments," which is
sometimes more convenient for typing. Normally it does not make sense to
use a property list rather than a symbol as the first (or plist) argument.
Example:

(defprop foo bar next-to)

is the same 'as:

(z1 :putprop Jfoo Jbar Jnext-to)

defprop is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions That Operate on
Property Lists" in Symbolics Common Lisp: Language Concepts.

defselect (spec &body methods Special Form
defselect defines a function that is a select-method. This function contains
a table of subfunctions; when it is called, the first argument, a symbol on
the keyword package called the message name, is looked up in the table to
determine which subfunction to call. Each subfunction can take a different
number of arguments, and have a different pattern of &optional and &rest
arguments. defselect is useful for a variety of "dispatching" jobs. By
analogy with the more general message passing facilities in flavors, the
subfunctions are sometimes called methods and the first argument is some
times called a message.

The special form looks like:

I-I :

I' I -

defsetf

(defsel ect (function-spec default-handler no-which-operations)
(message-name (args ...)
body ...)

(message-name (args ...)
body ...)

...)

152

function-spec is the name of the function to be defined. default-handler is
optional; it must be a symbol and is a function that gets called if the
select-method is called with an unknown message. If default-handler is un
supplied or nil, then an error occurs if an unknown message is sent. If
no-which-operations is non-nil, the :which-operations method that would
normally be supplied automatically is suppressed. The :which-operations
method takes no arguments and returns a list of all the message names in
the defselect.

The :operation-handled-p and :send-if-handles methods are automatically
supplied. See the message :operation-handled-p, page 388. See the mes
sage :send-if-handles, page 473.

If function-spec is a symbol, and default-handler and no-which-operations are
not supplied, then the first subform of the defselect can be just
function-spec by itself, not enclosed in a list.

The remaining subforms in a defselect define methods. message-name is
the message name, or a list of several message names if several messages
are to be handled by the same subfunction. args is a lambda-list; it should
not include the first argument, which is the message name. body is the
body of the function.

A method subform can instead look like:

(message-name. symbol)

In this case, symbol is the name of a function that is called when the
message-name message is received. It is called with the same arguments as
the select-method, including the message symbol itself.

defsetf access-function storing-function-or-args &optional Macro
store-variables &body body

This macro defines how to setf a generalized-variable reference of the form
(access-fn .. . J. The value of a generalized-variable reference can always be
obtained by evaluating it, so user::access-fn should be the name of a func
tion or macro that evaluates its arguments, behaving like a function.

The user of defsetf provides a description of how to store into the
generalized-varIable reference and return the value that was stored
(because setf is defined to return this value). Subforms of the reference
are evaluated exactly once and in the proper left-to-right order. A setf of a

153 defsetf

call on access-fn will also evaluate all of access-fn's arguments; it cannot
treat any of the specially. This means that defsetf cannot be used to
describe how to store into a generalized variable that is a byte, such as
(ldb field reference). To handle situations that do not fit the restrictions
of defsetf, use user::define-set-method, which gives the user additional
control at the cost of additional complexity.

A defsetf function can take two forms, simple and complex. In the simple
case, storing-function-or-args is the name of a function or macro. In the
complex case, storing-function-or-args is a lambda list of arguments.

The simple form of defsetf is

(defsetf access-fn storing-function-or-args)

storing-function-or-args names a function or macro that takes one more ar
gument than access-fn takes. When setf is given a place that is a acall on
access-fn, it expands into a call on storing-function-or-args that is given all
the arguments to access-fn and also, as its last argument, the new value
(which must be returned by storing-function-or-args as its value).

For example, the effect of

(defsetf symbol-value set)

is built into the Common Lisp system. This causes the form (set f
(symbol-val ue faa) fu) to expand into (set faa fu). Note that

(defsetf car rplaca)

would be incorrect because rplaca does not return its last argument.

The complex form of defsetf looks like

(defsetf access-fn storing-function-or-args
(store-variables). body)

and resembles defmacro. The body must compute the expansion of a setf
of a call on access-tn. storing-function-or-args is a lambda list that
describes the arguments of access-fn and may include &optional, &rest,
and &key markers. Optional arguments can have defaults and "supplied-p"
flags. store-variables describes the value to be stored into the generalized
variable reference.

1*

I *

I, I -

defstruct 154

The body forms can be written as if the variables in storing-function-or-args
were bound to subforms of the call on access-fn and the store-variables were
bound to the second subform of setf. However, this is not actually the
case. During the evaluation of the body forms, these variables are bound
to names of temporary variables, generated as if by gensym or gentemp,
that will be bound by the expansion of setf to the values of those subforms.
This binding permits the body forms to be writeen without regard for order
of evaluation. defsetf arranges for the temporary variables to be optimized
out of the final results in cases where that is possible. In other words, an
attempt is made by defsetf to generate the best code possible.

Note that the code generated by the body forms must include provision for
returning the correct value (the value of store-variables). This is handled
by the body forms rather than by defsetf because in many cases this value
can be returned at no extra cost, by calling a function that simultaneously
stores into the generalized variable and returns the correct value.

Here is an example of the complex form of defsetf.

(defsetf subseq (sequence start &optional end) (new-sequence)
'(progn (replace ,sequence ,new-sequence

:start1 ,start :end1 ,end)
,new-sequence»

For even more complex operations on setf: See the macro
define-setf-method, page 141.

defstruct options &body items Macro
defstruct defines a record-structure data type. A call to defstruct looks
like:

(defstruct (name option-l option-2 ...)
slot-description-l
slot-description-2
...)

name must be a symbol; it is the name of the structure. It is given a
si:defstruct-description property that describes the attributes and elements
of the structure; this is intended to be used by programs that examine
other Lisp programs and that want to display the contents of structures in
a helpful way. name is used for other things; for more information: See
the section "Named Structures" in Symbolics Common Lisp: Language Con
cepts.

Because evaluation of a defstruct form causes many functions and macros
to be defined, you must take care not to define the same name with two

155 zl :defstruct

different defstruct forms. A name can only have one function definition at
a time. If a name is redefined, the later definition is the one that takes ef
fect, destroying the earlier definition. (This is the same as the require
ment that each defun that is intended to define a distinct function must
have a distinct name.)

Each option can be either a symbol, which should be one of the recognized
option names, or a list containing an option name followed by the ar
guments to the option. Some options have arguments that default; others
require that arguments be given explicitly. For more information about op
tions: See the section "Options For defstruct And zl:defstruct" in 8ym
bolics Common Lisp: Language Concepts.

Each slot-description can be in any of three forms:

1: slot-name
2: (slot-name default-init)
3: «slot-name-l byte-spec-l default-init-l)

(slot-name-2 byte-spec-2 default-init-2)
...)

Each slot-description allocates one element of the physical structure, even
though in form 3 several slots are defined.

Each slot-name must always be a symbol; an accessor function is defined
for each slot.

In form 1, slot-name simply defines a slot with the given name. An acces
sor function is defined with the name slot-name. The :conc-name option
allows you to specify a pref'lX and have it concatenated onto the front of all
the slot names to make the names of the accessor functions. Form 2 is
similar, but allows a default initialization for the slot. Form 3 lets you
pack several slots into a single element of the physical underlying struc
ture, using the byte field feature of defstruct.

zl:defstruct Macro
zl:defstruct defines a record-structure data type. With Genera 7.0, the
defstruct macro is available and preferred over zl:defstruct. defstruct ac
cepts all standard Common Lisp options, and accepts several additional op
tions. zl:defstruct is supported for compatibility with previous releases.
See the section "Differences Between defstruct And zl:defstruct" in 8ym
bolics Common Lisp: Language Concepts.

The basic syntax of zl:defstruct is the same as defstruct: See the macro
defstruct, page 154.

For information on the options that can be given to zl:defstruct as well as
defstruct: See the section "Options For defstruct And zl:defstruct" in
8ymbolics Common Lisp: Language Concepts.

1_,
I -

I, I •

defstruct-define-type 156

The :export opton is accepted by zl:defstruct but not by defstruct. Stylis
tically, it is preferable to export any external interfaces in the package
declarations instead of scattering :export options throughout a program's
source files.

: export The :export option exports the specified symbols from
the package in which the structure is defined. This op
tion accepts the following as arguments: the names of
slots and the following options: :alterant, : constructor,
:copier, :predicate, :size-macro, and :size-symbol.
The following example shows the use of : export.

(zl :defstruct (2d-moving-object
(:type :array)
:conc-name

mass
x-pas
y-pos
x-velocity
y-velocity)

;; export all accessors and the
;; make-2d-moving-object constructor
(:export :accessors :constructor))

See the section "Importing and Exporting Symbols" in
Symbolics Common Lisp: Language Concepts.

defstruct-define-type type &body options Macro
Teaches defstruct and zl:defstruct about new types that it can use to
implement structures.

The body of this function is shown in the following example:

(defstruct-define-type type
option-l
option-2
...)

where each option is either the symbolic name of an option or a list of the
form (option-name. rest). See the section "Options To
defstruct-define-type" in Symbolics Common Lisp: Language Concepts.

Different options interpret rest in different ways. The symbol type is given
an si:defstruct-type-description property of a structure that describes the
type completely.

157 defsubst

defsuhst function lambda-list & body body Special Form
It is used just like defsubst is an easier way to define inline functions.

defun and does almost the same thing.

(defsubst name lambda-list . body)

defsubst defines a function that executes identically to the one that a
similar call to defun would define. The difference comes when a function
that calls this one is compiled. Then, the call is open-coded by sUbstituting
the inline function's definition into the code being compiled. Such a func
tion is called an inline function. For example, if we define:

(defsubst square (x) (* x x))

(defun faa (a b) (square (+ a b)))

then if foo is used interpreted, square works just as if it had been defined
by defun. If foo is compiled, however, the squaring is substituted into it
and it compiles just like:

(defun faa (a b) (* (+ a b) (+ a b)))

square could have been defined as:

(proclaim «inline square (x) (* x x))

(defun faa ...)

See the declaration inline, page 272.

A similar square could be defined as a macro, with:

(defmacro square (x) '(* ,x IX)

When the compiler open-codes an inline function, it binds the argument
variables to the argument values with let, so they get evaluated only once
and in the right order. Then, when possible, the compiler optimizes out
the variables. In general, anything that is implemented as an inline func
tion can be reimplemented as a macro, just by changing the defsubst to a
defmacro and putting in the appropriate backquote and commas, except
that this does not get the simultaneous guarantee of argument evaluation
order and generation of optimal code with no unnecessary temporary vari
ables. The disadvantage of macros is that they are not functions, and so
cannot be applied to arguments. Their advantage is that they can do much
more powerful things than inline functions can. This is also a disadvan
tage since macros provide more ways to get into trouble. If something can
be implemented either as a macro or as an inline function, it is generally
better to make it an inline function.

As with defun, name can be any function spec, but you get the "subst" ef
fect only when name is a symbol.

I ·· I .

I

defsubst-in-flavor 158

The difference between an inline function and one not declared inline is
the way the calls to them are handled by the compiler. A call to a normal
function is compiled as a closed subroutine; the compiler generates code to
compute the values of the arguments and then apply the function to those
values. A call to an inline function is compiled as an open subroutine; the
compiler incorporates the body forms of the inline function into the func
tion being compiled, substituting the argument forms for references to the
variables in the function's lambda-list.

defsubst-in-flavor (function-name flavor-name) arglist body ...) Special Form
Defines a function inside a flavor to be inline-coded in its callers. There is
no analogous form for methods, since the caller cannot know at compile
time which method is going to be selected by the generic function
mechanism.

See the section "Derming Functions Internal to Flavors" in Symbolics Com
mon Lisp: Language Concepts.

defun Special Form
defun is the usual way of derming a function that is part of a. program. A
defun form looks like:

(defun name lambda-list
body .. .)

name is the function spec you wish to define as a function. The
lambda-list is a list of the names to give to the arguments of the function.
Actually, it is a little more general than that; it can contain lambda-list
keywords such as &optional and &rest. (Keywords are explained in other
sections. See the section "Evaluating a Function Form" in Symbolics Com
mon Lisp: Language Concepts. See the section "Lambda-List Keywords" in
Symbolics Common Lisp: Language Concepts.) Additional syntactic features
of defun are explained in another section. See the section "Function
Defining Special Forms" in Symbolics Common Lisp: Language Concepts.

defun creates a list which looks like:

(si:digested-lambda ...)

and puts it in the function cell of name. name is now defined as a func
tion and can be called by other forms.

Examples:

(defun addone (x)
(1+ x»

(defun add-a-number (x &optional (inc 1»
(+ x inc»

159 defsubst-in-flavor

(defun average (&rest numbers &aux (total 0))
(loop for n in numbers

do (setq total (+ total n)))
(II total (length numbers»))

addone is a function that expects a number as an argument, and returns a
number one larger. add-a-number takes one required argument and one
optional argument. average takes any number of additional arguments
that are given to the function as a list named numbers.

A declaration (a list starting with declare) can appear as the first element
of the body. It is equivalent to a zl:local-declare surrounding the entire
defun form. For example:

(defun foo (x)
(declare (special x))
(bar)) ;bar uses x free.

is equivalent to and preferable to:

(local-declare ((special x))
(defun foo (x)

(bar)))

(It is preferable because the editor expects the open parenthesis of a top
level function definition to be the first character on a line, which isn't pos
sible in the second form without incorrect indentation.)

A documentation string can also appear as the first element of the body
(following the declaration, if there is one). (It shouldn't be the only thing
in the body; otherwise it is the value returned by the function and so is not
interpreted as documentation. A string as an element of a body other than
the last element is only evaluated for side effect, and since evaluation of
strings has no side effects, they are not useful in this position to do any
computation, so they are interpreted as documentation.) This documen
tation string becomes part of the function's debugging info and can be ob
tained with the function documentation. The first line of the string
should be a complete sentence that makes sense read by itself, since there
are two editor commands to get at the documentation, one of which is
"brief' and prints only the first line.

I ·· I ..

I

defun-in-flavor

Examples:
(defun my-append (&rest lists)

"Like append but copies all the lists.
This is like the Lisp function append, except that
append copies all lists except the last, whereas
this function copies all of its arguments
including the last one."

...)

160

defun-in-flavor (function-name flavor-name) arglist body ... } Special Form
Defines an internal function of a flavor. The syntax of defun-in-flavor is
similar to the syntax of defmethod; the difference is the way the function
is called and the scoping of function-name.

See the section "Defining Functions Internal to Flavors" in Symbolics Com
mon Lisp: Language Concepts.

zl:defunp Macro
Usually when a function uses prog, the prog form is the entire body of the
function; the definition of such a function looks like (defun name arglist
(prog varlist ... ». Although the use of prog is generally discouraged, prog
fans might want to use this special form. For convenience, the zl:defunp
macro can be used to produce such definitions. A zl:defunp form such as:

(defunp fctn (args)
form1
form2

formn)

expands into:

(defun fctn (args)
(prog 0

form1
form2

(return formn»)

You can think of zl:defunp as being like defun except that you can return
out of the middle of the function's body.

defvar name &optional initial-value documentation Special Form
Declares variable special and records its location for the sake of the editor
so that you can ask to see where the variable is defined. This is the
recommended way to declare the use of a global variable in a program. If
a second subform is supplied,

161 sys:defvar-resettable

(defvar variable initial-value)

variable is initialized to the result of evaluating the form initial-value un
less it already has a value, in which case it keeps that value. initial-value
is not evaluated unless it is used; this is useful if it does something expen
sive like creating a large data structure. See the special form
sys:defvar-resettable, page 161. See the special form sys:defvar-standard,
page 161.

defvar should be used only at top level, never in function definitions, and
only for global variables (those used by more than one function). (defvar
foo 'bar) is roughly equivalent to:

(declare (special foo»
(if (not (boundp 'faa»

(setq foo ' bar»

(defvar variable initial-value documentation)

allows you to include a documentation string that describes what the vari
able is for or how it is to be used. Using such a documentation string is
even better than commenting the use of the variable, because the documen
tation string is accessible to system programs that can show the documen
tation to you while you are using the machine.

If defvar is used in a patch file or is a single form (not a region)
evaluated with the editor's compile/evaluate from buffer commands, if there
is an initial-value the variable is always set to it regardless of whether it is
already bound. See the section "Patch Facility" in Program Development
Utilities. See the section "Special Forms for Defining Special Variables" In
Symbolics Common Lisp: Language Concepts.

sys:defvar-resettable name initial-value &optional Special Form
(warm-boot-value nil wbv-p) documentation

sys:defvar-resettable is like defvar, except that it also maintains a
warm-boot value. During a warm-boot, the system sets the variable to its
warm-boot value. If you want a variable to be reset at warm boot time,
define it with sys:defvar-resettable.

sys:defvar-standard name initial-value &optional (warm-boot-value Special Form
nil wb'v-p) (standard-value nil sv-p)
validation-predicate documentation

sys:defvar-standard is like sys:defvar-resettable, except that it also
defines a standard value that the variable should be bound to in command
and breakpoint loops. For example, the standard values of zl: base and
zl:ibase are 10. The validation-predicate is used to ensure that the value of
the variable is valid when it is bound in command loops.

I-I :.

I

defwhopper

For example, zl: base is defined like this:

(defvar-standard zl :base 18. 18. 18. validate-base)
(defun validate-base (b)

(and (fixnump b) « 1 b 37.»)

162

See the section "Standard Variables" in Symbolics Common Lisp: Language
Concepts.

defwhopper Special Form
The following form defines a whopper for a given generic-function when ap
plied to the specified flavor:

(defwhopper (generic-function flavor) (argl arg2 ..)
body)

The arguments should be the same as the arguments for any method per
forming the generic function.

When a generic function is called on an object of some flavor, and a whop
per is defined for that function, the arguments are passed to the whopper,
and the code of the whopper is executed.

Most whoppers run the methods for the generic function. To make this
happen, the body of the whopper calls one of the following two functions:
continue-whopper or lexpr-continue-whopper. At that point, the before
daemons, primary methods, and after daemons are executed. Both
continue-whopper and lexpr-continue-whopper return the values returned
by the combined method, so the rest of the body of the whopper can use
those values.

If the whopper does not use continue-whopper or lexpr-continue-whopper,
the methods themselves are never executed, and the result of the whopper
is returned as the result of calling the generic function.

Whoppers return their own values. If a generic function is called for value
rather than effect, the whopper itself takes responsibility for getting the
value back to the caller.

For more information on whoppers, including examples: See the section
"Wrappers and Whoppers" in Symbolics Common Lisp: Language Concepts.

defwhopper-subst (flavor generic-function) lambda-list &body body Macro
Defines a wrapper for the generic-function when applied to the given flavor
by combining the use of defwhopper with the efficiency of defwrapper.

The following example shows the use of defwhopper-subst.

163

(defwhopper-subst (xns add-checksum-to-packet)
(checksum &optional (bias 9))

(when (= checksum #0177777)
(setq checksum 9))

(continue-whopper checksum bias))

defwrapper

The body is expanded in-line in the combined method, providing improved
time efficiency but decreased space efficiency, unless the body is small.

See the section "Wrappers and Whoppers" in Symbolics Common Lisp: Lan
guage Concepts.

defwrapper Macro
Offers an alternative to the daemon system of method combination, for
cases in which : before and :after daemons are not powerful enough.

defwrapper defines a macro that expands into code that is wrapped around
the invocation of the methods. defwrapper is used in forms such as:

(defwrapper (generic-function flavor) «argl arg2) form)
body .. .)

The wrapper created by this form is wrapped around the method that per
forms generic-function for the given flavor. body is the code of the wrap
per; it is analogous to the body of a defmacro. During the evaluation of
body, the variable form is bound to a form that invokes the enclosed
method. The result returned by body should be a replacement form that
contains form as a subform. During the evaluation of this replacement
form, the variables argl, arg2, and so on are bound to the arguments given
to the generic function when it is called. As with methods, self is implied
as the first argument.

The symbol ignore can be used in place of the list (argl arg2) if the ar
guments to the generic function do not matter. This usage is common.

For more information on wrappers, including examples: See the section
"Wrappers and Whoppers" in Symbolics Common Lisp: Language Concepts.

I-I . -

I

zl :del 164

zl:del predicate item list &optional n Function
(zl:del item list) returns the list with all occurrences of item removed.
predicate is used for the comparison. The argument list is actually
modified (rplacded) when instances of item are spliced out. zl:del should
be used for value, not for effect.

(zl:del 'eq a b) is the same as <zl:delq a b). See the function zl:mem, page
345.

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

165 delete

delete item sequence &key (test #'eql) test-not (key #'identity) Function
from-end (start 0) end count

delete returns a sequence of those items in the subsequence of sequence
delimited by :start and :end which satisfy the predicate ~ecified by the
:test keyword argument. This is a destructive operation. The argument
sequence may be destroyed and used to construct the result; however, the
returned form mayor may not be eq to sequence. The elements that are
not deleted occur in the same order in the result that they did in the ar
gument.

For example:

(setq nums '(1 2 3» => (1 2 3)

(delete 1 nums) => (2 3)
nums => (1 2 3)

However,

nums => (1 2 3)
(delete 2 nums) => (1 3)
nums => (1 3)

item is matched against the elements specified by the test keyword. The
item can be any Symbolics Common Lisp object.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

:test specifies the test to be performed. An element of sequence satisfies I
II· the test if (funcall testfun item (keyfn x» is true. Where testfun is the test

function specified by :test, keyfn is the function specified by :key and x is
an element of the sequence. The default test is eqI.

For example:

(delete 4 '(6 1 6 4) :test #'» => (6 6 4)

:test-not is similar to :test, except that the sense of the test is inverted.
An element of sequence satisfies the test if (funcall testfun item (keyfn x»
is false.

The value of the keyword argument :key, if non-nil, is a function that
takes one argument. This function extracts from each element the part to
be tested in place of the whole element.

Example:

(delete 9 ' «9 1) (9 1) (1 9» :key #'second) => «9 1) (9 1»

(delete 9 #(1 2 1) :key #'(lambda (x) (- x 1») => #(2)

If the value of the :from-end argument is non-nil, it only affects the result

c~~~
LcJ It. (/

I

zl:delete

when the :count argument is specified. In that case only the rightmost
:count elements that satisfy the predicate are deleted.

For example:

(delete 4 '(4 2 4 1) :count 1) => (2 4 1)

(delete 4 #(4 2 4 1) :count 1 :from-end t) => #(4 2 1)

:start and :end must be non-negative integer indices into the sequence.
:start must be less than or equal to : end, else an error is signalled. It
defaults to zero (the start of the sequence).

166

:start indicates the start position for the operation within the sequence.
:end indicates the position of the Irrst element in the sequence beyond the
end of the operation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by
default.

For example:

(delete 'a #(a b c a» => #(8 C)

(delete 4 '(4 4 1» => (1)

(delete 4 '(4 4) :start 1 :end 2) => (4 1 4)

(delete 4 '(4 4) :start e :end 3) => (1)

The :count argument, if supplied, limits the number of elements deleted:
If more than :count elements of sequence satisfy the predicate, then only
the leftmost :count of those elements are deleted.

For example:

(delete 4 '(4 2 4 1) :count 1) => (2 4 1)

delete is the destructive version of remove.

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

For a table of related items: See the section "Sequence Modification" in
Symbolics Common Lisp: Language Concepts.

zl:delete item list &optional n Function
(zl:delete item list) returns the list with all occurrences of item removed.
zl:equal is used for the comparison. The argument list is actually modified
(rplacd'ed) when instances of item are spliced out. zl:delete should be
used for value, not for effect. That is, use:

167

(setq a (delete 'b a))

rather than:

(del ete 'b a)

:delete-by-item

i[n] instances of item are deleted. n is allowed to be zero. If n is greater
than or equal to the number of occurrences of item in the list, all occur
rences of item in the list are deleted.

This Zetalisp function is shadowed by the Common Lisp function of the
same name.

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

For a table of related items: See the section "Sequence Modification" in
Symbolics Common Lisp: Language Concepts.

:delete-by-item item &optional (equal-predicate #'=) of si:heap Method
Finds the first item that satisfies equal-predicate, and deletes it, returning
the item and key if it was found, otherwise it signals
si:heap-item-not-found. equal-predicate should be a function that takes two
arguments. The first argument to equal-predicate is the current item from
the heap and the second argument is item.

For a table of related items: See the section "Heap Functions and Methods"
in Symbolics Common Lisp: Language Concepts.

:delete-by-key key &optional (equal-predicate #'=) of si:heap Method
Finds the first item whose key satisfies equal-predicate and deletes it,
returning the item and key if it was found; otherwise it signals
si:heap-item-not-found. equal-predicate should be a function that takes two
arguments. The first argument to equal-predicate is the current key from
the heap and the second argument is key.

For a table of related items: See the section "Heap Functions and Methods"
in Symbolics Common Lisp: Language Concepts.

delete-duplicates sequence &key (test #'eqI) test-not (start 0) end Function
from-end key replace

delete-duplicates compares the elements of sequence pairwise, and if any
two match, then the one occurring earlier in the sequence is discarded.
The returned form is sequence, with enough elements removed such that no
two of the remaining elements match. delete-duplicates is a destructive
function.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

I

•

delete-duplicates 168

:test specifies the test to be performed. An element of sequence satisfies
the test if (funcall test fun item (keyfn x» is true. Where testfun is the test
function specified by :test, keyfn is the function specified by :key and x is
an element of the sequence. The default test is eql.

For example:

(delete-duplicates '(1 1 1 2 2 2 3 3 3) :test #'» => (1 1 1 222 333)

(delete-duplicates '(1 1 1 2 2 2 3 3 3) :test #'=) => (1 2 3)

:test-not is similar to :test, except that the sense of the test is inverted.
An element of sequence satisfies the test if (funcall testfun item (keyfn x»
is false.

Use the keyword arguments :start and :end to delimit the portion of the
sequence to be operated on.

:start and :end must be non-negative integer indices into the sequence.
:start must be less than or equal to :end, else an error is signalled. It
defaults to zero (the start of the sequence).

:start indicates the start position for the operation within the sequence.
:end indicates the position of the first element in the sequence beyond the
end of the operation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by
default .

For example:

(delete-duplicates '(a a b b c c» => (A 8 C)

(delete-duplicates #(1 1 1 1 1» => #(1)

(delete-duplicates #(1 1 2 2 2) :start 3) => #(1 1 1 2)

(delete-duplicates #(1 1 1 2 2 2) :start 2 :end 4) => #(1 1 1 2 2 2)

The function normally processes the sequence in the forward direction, but
if a non-nil value is specified for :from-end, processing starts from the
reverse direction. If the :from-end argument is true, then the one later in
the sequence is discarded.

The value of the keyword argument :key, if non-nil, is a function that
takes one argument. This function extracts from each element the part to
be tested in place of the whole element.

For example:

169 delete-if

(delete-duplicates '«Smith S) (Jones J) (Taylor T) (Smith S)) :key #'second)
=> «JONES J) (TAYLOR T) (SMITH S))

When the :replace keyWord is specified, elements that stay are moved up to
the position of elements that are deleted. :replace is not meaningful if the
value of :from-end is t.

For example:

(delete-duplicates '(1 231 4 3) :replace 'non-nil) => (1 234)

delete-duplicates is the destructive version of reD;love-duplicates.

For a table of related items: See the section "Sequence Modification" in
Symbolics Common Lisp: Language Concepts.

delete-if predicate sequence &key key from-end (start 0) end count Function
delete-if returns a sequence of those items in the subsequence of sequence
delimited by :start and :end which satisfy predicate. The elements that are
not deleted occur in the same order in the result that they did in the ar
gument. This is a destructive operation. The argument sequence may be
destroyed and used to construct the result; however, the returned form may
or may not be eq to sequence.

For example:

(setq a-list '(1 a b c)) => (1 A B C)
(delete-if #'numberp a-list) => (A B C)
a-list => (1 A B C)

However,

(setq my-list '(0 1 0)) => (0 1 0)
(delete-if #'zerop my-list) => (1)
my-list => (0 1)

predicate is the test to be performed on each element.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

The value of the keyword argument :Itey, if non-nil, is a function that
takes one argument. This function extracts from each element the part to
be tested in place of the whole element.

For example:

(delete-if #'atom '«book 1) (math (room c)) (text 3)) :key #'second)
=> «MATH (ROOM C)))

(delete-if #'zerop #(1 2 1) :key #'(lambda (x) (- x 1)))
=> #(2)

I

I

delete-if-not 170

If the value of the :from-end argument is non-nil, it only affects the result
when the :count argument is specified. In that case only the rightmost
:count elements that satisfy the predicate are deleted.

For example:

(delete-if #'numberp '(4 2 4 1) :count 1) => (2 4 1)

(delete-if #'numberp '(4 2 4 1) :count 1 :from-end t) => (4 2 4)

Use the keyword arguments :start and :end to delimit the portion of the
sequence to be operated on.

:start and :end must be non-negative integer indices into the sequence.
:start must be less than or equal to :end, else an error is signalled. It
defaults to zero (the start of the sequence).

:start indicates the start position for the operation within the sequence.
:end indicates the position of the first element in the sequence beyond the
end of the operation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by
default.

For example:

(delete-if #'atom 'e'a 1 "list")) => ('A)

(delete-if #'numberp '(4 1 4) :start 1 :end 2) => (4 4)

(delete-if #'evenp '(4 1 4) :start 0 :end 3) => (1)

The :count argument, if supplied, limits the number of elements deleted.
If more than :count elements of sequence satisfy the predicate, then only
the leftmost :count of those elements are deleted.

For example:

(del ete-i f #' oddp I (1 1 2 2) : count 1) => (1 2 2)

delete-if is the destructive version of remove-if.

For a table of related items: See the section "Sequence Modification" in
Symbolics Common Lisp: Language Concepts.

delete-if-not predicate sequence &key key from-end (start 0) end Function
count

delete-if-not returns a sequence of those items in the subsequence of se
quence delimited by :start and :end which do not satisfy predicate. The
elements that are not deleted occur in the same order in the result that
they did in the argument. This is a destructive operation. The argument

171 delete-if-not

sequence may be destroyed and used to construct the result; however, the
returned form mayor may not be eq to sequence.

For example:

(setq a-list '('5 a be» => ('5 A B C)

(delete-if-not #'atom a-list) => (A B C)
a-list => ('5 A 8 C)

However,

(setq my-list '(0 1 0» => (0 1 0)
(delete-if-not #'zerop my-list) => (0 0)
my-list => (0 1)

predicate is the test to be performed on each element.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

The value of the keyword argument :l{ey, if non-nil, is a function that
takes one argument. This function extracts from each element the part to
be tested in place of the whole element.

For example:

(delete-if-not #'atom '((book 1) (math (room c» (text 3» :key #'second)
=> ((BOOK 1) (TEXT 3»

(deleteif-not #'zerop #(1 2 1) :key #' (lambda (x) (- x 1») => #(1 1)

If the value of the :from-end argument is non-nil, it only affects the result
when the :count argument is specified. In that case only the rightmost
:count elements that satisfy the predicate are deleted.

For example:

(delete-if-not #'oddp '(4 2 4 1) :count 1) => (2 4 1)

(delete-if-not #'oddp '(4 2 4 1) :count 1 :from-end t) => (4 2 1)

Use the keyword arguments :start and :end to delimit the portion of the
sequence to be operated on.

:start and :end must be non-negative integer indices into the sequence.
:start must be less than or equal to :end, else an error is signalled. It
defaults to zero (the start of the sequence).

:start indicates the start position for the operation within the sequence.
:end indicates the position of the first element in the sequence beyond the
end of the operation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by
default.

I

I

zl :del-if

For example:

(delete-if-not #'atom '('a 1 "list"» => (1 "list")

(delete-if-not #'numberp '(4 1 4) :start 1 :end 2) => (4 1 4)

(delete-if-not #'evenp '(4 1 4) :start e :end 3) => (4 4)

The :count argument, if supplied, limits the number of elements deleted.
If more than :count elements of sequence satisfy the predicate, then only
the leftmost :count of those elements are deleted.

For example:

(delete-if-not #'oddp '(1 1 2 2) :count 1) => (1 1 2)

delete-if-not is the destructive version of remove-if-not.

For a table of related items: See the section "Sequence Modification" in
Symbolics Common Lisp: Language Concepts.

172

zl:del-if predicate list Function
zl:del-if means "remove if this condition is true." predicate should be a
function of one argument. A modified list is made by applying predicate to
all the elements of list and removing the ones for which the predicate
returns non-nil. zl:del-if is the destructive version of zl:rem-if, without the
extra-lists &rest argument.

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

zl:del-if-not predicate list Function
zl:del-if-not means "remove if this condition is not true"; that is, it keeps
the elements for which predicate is true.

predicate should be a function of one argument. A modified list is made by
applying predicate to all of the elements of list and removing the ones for
which the predicate returns nil. zl:del-if-not is the destructive version
zl:rem-if-not, without the extra-lists &rest argument.

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

zl:delq item list &optional n Function
(zl:delq item list) returns the list with all occurrences of item removed. eq
is used for the comparison. The argument list is actually modified
(rplacd'ed) when instances of item are spliced out. zl:delq should be used
for value, not for effect. That is, use:

173

(setq a (delq 'b a»

rather than:

(delq 'b a)

denominator

These two are not equivalent when the first element of the value of a is b.

<zl:delq item list n) is like <zl:delq item list) except only the first n in
stances of item are deleted. n is allowed to be zero. If n is greater than
or equal to the number of occurrences of item in the list, all occurrences of
item in the list are deleted. Example:

(delq 'a '(b a c (a b) d a e» => (b c (a b) d e)

zl:delq could have been defined by:

(defun delq (item list &optional (n -1»
(cond «or (atom list) (zerop n» list)

«eq item (car list»
(delq item (cdr list) (1- n»)

(t (rplacd list (delq item (cdr list) n»»)

If the third argument (n) is not supplied, it defaults to -1, which is effec
tively infinity, since it can be decremented any number of times without
reaching zero.

zl:delq is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts. .

denominator rational Function
If rational is a ratio, denominator returns the denominator of rational. If
rational is an integer, denominator returns 1.
Examples:

(denominator 4/5) => 5
(denominator 3) => 1
(denominator 4/8) => 2

For a table of related items: See the section "Functions That Extract Com
ponents From a Rational Number" in Symbolics Common Lisp: Language
Concepts.

deposit-byte into-value position size byte-value Function
This is like dpb except that instead of using a byte specifier, the bit posi
tion and size are passed as separate arguments. The argument order is not
analogous to that of dpb so that deposit-byte can be compatible with older
versions of Lisp.

I

I

deposit-field 174

For a table of related items: See the section "Summary of Byte Manipula
tion Functions" in Symbolics Common Lisp: Language Concepts.

deposit-field newbyte bytespec integer Function
Returns an integer that is the same as integer except for the bits specified
by bytespec which are taken from newbyte.

This is like function dpb ("deposit byte"), except that newbyte is not taken
to be right-justified; the bytespec bits of newbyte are used for the bytespec
bits of the result, with the rest of the bits taken from integer. integer must
be an integer.

bytespec is built using function byte with bit size and position arguments.

deposit-field could have been defined as follows:

(deposi t-fi el d newbyte bytespec integer) ==>
(dpb (1 db bytespec newbyte) bytespec integer)

Example:

(deposit-field #0239 (byte 6 3) #04567) => #04237

For a table of related items: See the section "Summary of Byte Manipula
tion Functions" in Symbolics Common Lisp: Language Concepts.

:describe Message
The object that receives this message should describe itself, printing a
description onto the *standard-output* stream. The describe function
sends this message when it encounters an instance.

The :describe method of flavor:vanilla calls flavor:describe-instance,
which prints the following information onto the *standard-output* stream:
a description of the instance, the name of its flavor, and the names and
values of its instance variables. It returns the instance. For example:

(send cell-object :describe)
-->#<CELL 1169762135>, an object of flavor CELL,

has instance variable values:
X: 24
Y:
STATUS:
NEXT-STATUS:
NEIGHBORS:

#<CELL 1169762135>

3
:ALIVE
unbound
unbound

175 describe-defstruct

describe-defstruct instance &optional name Function
Takes an instance of a structure and prints out a description of the in
stance, including the contents of each of its slots. name should be the
name of the structure; you must provide this name so that
describe-defstruct can know of what structure instance is an instance, and
thus figure out the names of instance's slots.

If instance is a named structure, you do not have to provide name, since it
is just the named structure symbol of instance. Normally the describe
function calls describe-defstruct if it is asked to describe a named struc
ture; however, some named structures. have their own idea of how to
describe themselves. See the section "Named Structures" in Symbolics Com
mon Lisp: Language Concepts.

dbg:describe-global-handlers Function
Names the conditions for which global handlers have been defined, and the
handlers for these conditions. See the macro define-global-handler, page
139.

Example:

(define-global-handler infinity-is-three sys:divide-by-zero
(error)

(values :return-values '(3»)

(dbg:describe-global-handlers)
Global handler for SYS:DIVIDE-BY-ZERO --> INFINITY-IS-THREE
NIL

For a table of related items: See the section "Basic Forms for Global
Handlers" in Symbolics Common Lisp: Language Concepts.

flavor:describe-instance instance Function
flavor:describe-instance prints the following information onto the
standard-output stream: a description of the instance, the name of its
flavor, and the names and values of its instance variables. It returns the
instance. For example:

I

I

describe-package

(flavor:describe-instance cell-object)
-->#<CELL 1169762135>, an object of flavor CELL,

has instance variable values:
X: 24

V:
STATUS:
NEXT-STATUS:
NEIGHBORS:

#<CELL 1169762135>

3
. :ALIVE
unbound
unbound

176

When you use describe on an instance, a default method (implemented for
flavor:vanilla) performs the flavor:describe-instance function.

describe-package package Function
Print a description of package's attributes and the size of its hash table of
symbols on *standard-output*. package can be a package object or the
name of a package. The describe function calls describe-package when
its argument is a package.

:describe &optional (stream zl:standard-output) of si:heap Method
Describes the heap, giving the predicate, number of elements, and option
ally the contents. If stream is given, the output of :describe is printed on
stream.

For a table of related items: See the section "Heap Functions and Methods"
in Symbolics Common Lisp: Language Concepts.

zl:desetq {variable-pattern value-paUern }... Special Form
Lets you assign values to variables through de structuring patterns. In
place of a variable to be assigned, you can provide a tree of variables. The
value to be assigned must be a tree of the same shape. The trees are
de structured into their component parts, and each variable is assigned to
the corresponding part of the value tree.

The first value-paUern is evaluated. If variable-paUern is a symbol, it is set
to the result of evaluating value-paUern. If variable-paUern is a tree, the
result of evaluating value-pattern should be a tree of the same shape. The
trees are de structured, and each variable that is a component of
variable-pauern is set to the value that is the corresponding element of the
tree that results from evaluating value-pattern. This process is repeated for
each pair of variable-pattern and value-pattern. zl:desetq returns the last
value. Example:

177 destructuri n g-bi nd

(desetq (a b) '«x Y) z) c b)

a is set to (x y), b is set to z, and c is set to z. The form returns the
value of the last form, which is the symbol z.

destructuring-bind pattern datum &body body Special Form
Binds variables to values, using defmacro's de structuring facilities, and
evaluates the body forms in the context of those bindings.

First datum is evaluated. If pattern is a symbol, it is bound to the result
of evaluating datum. If pattern is a tree, the result of evaluating data
should be a tree of the same shape. It signals an error if the trees do not
match. The trees are disassembled, and each variable that is a component
of pattern is bound to the value that is the corresponding element of the
tree that results from evaluating datum. If not enough values are supplied,
the remaining variables are bound to nil. If too many values are supplied,
the excess values are ignored. Finally, the body forms are evaluated se
quentially, the old values of the variables are restored, and the result of
the last body form is returned.

As with the pattern in a defmacro form, pattern actually resembles the
lambda-list of a function; it can have &-keywords. See the section
"&-Keywords Accepted By defmacro" in Symbolics Common Lisp: Language
Concepts.

Example:

(zl:destructuring-bind (a (b) &optional (c 'd»
I «x y) (z»

(values a be»

returns (x y), z, and d.

zl:destructuring-bind also exists. It is the same as destructuring-bind ex
cept that it does not signal an error if the trees data and variable-pattern
do not match.

math: determinant matrix Function
Returns the determinant of matrix. matrix must be a two-dimensional
square matrix.

zl:dfloat x Function
Converts any noncomplex number to a double-precision floating-point num
ber.

For a table of related items: See the section "Functions That Convert Num
bers to Floating-point Numbers" in Symbolics Common Lisp: Language Con
cepts.

I

I

zl :difference 178

zl:difference arg &rest args Function
Returns its first argument minus the sum of the rest of its arguments.
Arguments of different numeric types are converted to a common type,
which is also the type of the result. See the section "Coercion Rules for
Numbers" in Symbolics Common Lisp: Language Concepts.

zl:difference is similar to the function· used with more than one ar
gument.

For a table of related items: See the section "Arithmetic Functions" in
Symbolics Common Lisp: Language Concepts.

digit-char weight &optional (radix 10) (style-index 0) Function
Returns the character that represents a digit with a specified weight
weight. Returns nil if weight is not between 0 and (1· radix) or radiX is
not between 2 and 36.

See the function digit-char-p, page 178.

digit-char-p char &optional (radix 10) Function
char must be a character object. digit-char-p returns the weight of that
digit character (a number from zero to one less than the radix) if it is a
valid digit in the specified radix. It returns nil if char is not a valid digit
in the specified radix; it cannot return t. See the function digit-char, page
178.

zl:dispatch ppss word &body clauses Special Form
(dispatch byte-specifier number clauses ...) is the same as select (not
zl:selectq), but the key is obtained by evaluating (ldb byte-specifier
number). byte-specifier and number are both evaluated. See the section
"Byte Manipulation Functions" in Symbolics Common Lisp: Language Con
cepts. Byte specifiers and ldb are explained in that section. Example:

(prine (dispatch 9292 cat-type
(9 "Siamese.")
(1 "Persian.")
(2 " All ey. ")
(3 (ferror nil

"-S is not a known cat type."
cat-type»»

It is not necessary to include all possible values of the byte that is dis
patched on.

For a table of related items: See the section "Conditional Functions" in
Symbolics Common Lisp: Language Concepts.

179 zl :displace

zl:displace form expansion Function
Replaces the car and cdr of form so that it looks like:

(s i : d i sp 1 aced original-form expansion)

form must be a list. original-form is equal to form but has a different top
level cons so that the replacing mentioned above does not affect it.
si:displaced is a macro, which returns the caddr of its own macro form.
So when the si:displaced form is given to the evaluator, it "expands" to ex
pansion. z1:displace returns expansion.

zl:dlet ((variable-pattern value-pattern) ...) body... Special Form
Binds variables to values, using de struc turing, and evaluates the body
forms in the context of those bindings. In place of a variable to be as
signed, you can provide a tree of variables. The value to be assigned must
be a tree of the same shape. The trees are destructured into their com
ponent parts, and each variable is assigned to the corresponding part of the
value tree.

First the value-patterns are evaluated. If a variable-pattern is a symbol, it
is bound to the result of eValuating the corresponding value-pattern. If
variable-pattern is a tree, the result of evaluating value-pattern should be a
tree of the same shape. The trees are de structured, and each variable that
is a component of variable-pattern is bound to the value that is the cor
responding element of the tree that results from evaluating value-pattern.
The bindings happen in parallel; all the value-patterns are evaluated before
any variables are bound. Finally, the body forms are evaluated sequen
tially, the old values of the variables are restored, and the result of the last
body form is returned. Example:

(2l:dlet (((a b) '((x y) 2))

(c 'd))

(values a b c))

returns (x y), z, and d.

z1:dlet* ((variable-pattern value-pattern) ...) body... Special Form
Binds variables to values, using de structuring, and evaluates the body
forms in the context of those bindings. In place of a variable to be as
signed, you can provide a tree of variables. The value to be assigned must
be a tree of the same shape. The trees are destructured into their com
ponent parts, and each variable is assigned to the corresponding part of the
value tree.

The first value-pattern is evaluated. If variable-pattern is a symbol, it is
bound to the result of evaluating value-pattern. If variable-pattern is a tree,
the result of evaluating value-pattern should be a tree of the same shape.
The trees are destructured, and each variable that is a component of

I

I

do 180

variable-pattern is bound to the value that is the corresponding element of
the tree that results from evaluating value-pattern. The process is repeated
for each pair of variable-pattern and value-pattern. The bindings happen se
quentially; the variables in each variable-pattern are bound before the next
value-pattern is evaluated. Finally, the body forms are evaluated sequen
tially, the old values of the variables are restored, and the result of the last
body form is returned. Example:

(zl :dlet* «(a b) J «x y) z)) (c b)) (values a be))

returns (x y), z, and z.

do (varforms ...) (end-test exit-forms ...) &body body Special Form
Provides a simple generalized iteration facility, with an arbitrary number of
"index variables" whose values are saved when the do is entered and res
tored when it is left, that is, they are bound by the do. The index vari
ables are used in the iteration performed by do. At the beginning, they
are initialized to specified values, and then at the end of each trip around
the loop the values of the index variables are changed according to
specified rules. do allows you to specify a predicate that determines when
the iteration terminates. The value to be returned as the result of the
form can, optionally, be specified.

do looks like this:

(do «var init repeat) ...)
(end-test exit-form ...)
body .. .)

The first item in the form is a list of zero or more index variable
specifiers. Each index variable specifier is a list of the name of a variable
var, an initial value form init, which defaults to nil if it is omitted, and a
repeat value form repeat. If repeat is omitted, the var is not changed be
tween repetitions. If init is omitted, the var is initialized to nil.

An index variable specifier can also be just the name of a variable, rather
than a list. In this case, the variable has an initial value of nil, and is not
changed between repetitions.

All assignment to the index variables is done in parallel. At the beginning
of the first iteration, all the init forms are evaluated, then the vars are
bound to the values of the in it forms, their old values being saved in the
usual way. The in it forms are evaluated before the vars are bound, that is,
lexically outside of the do. At the beginning of each succeeding iteration
those vars that have repeat forms get set to the values of their respective
repeat forms. All the repeat forms are evaluated before any of the vars is
set. .

The second element of the do-form is a list of an end-testing predicate

181 do

form end-test, and zero or more forms, called the exit-forms. This
resembles a cond clause. At the beginning of each iteration, after process
ing of the variable specifiers, the end-test is evaluated. If the result is nil,
execution proceeds with the body of the do. If the result is not nil, the
exit-forms are evaluated from left to right and then do returns. The value
of the do is the value of the last exit-form, or nil if there were no
exit-forms (not the value of the end-test as you might expect by analogy
with cond).

Note that the end-test gets evaluated before the first time the body is
evaluated. do first initializes the variables from the init forms, then it
checks the end-test, then it processes the body, then it deals with the repeat
forms, then it tests the end-test again, and so on. If the end-test returns a
non-nil value the first time, then the body is never processed.

If the second element of the form is (nil), the end-test is never true and
there are no exit-forms. The body of the do is executed over and over.
The infinite loop can be terminated by use of return or throw.

Example:

(do «count 1 (+ count 1»)
(nil) ; Do forever.

(let «item (read) »
(if (null item) (return) (prine item»» => ABCDEFGNIL

;typed - abcdefg()

If a return special form is evaluated inside the body of a do, then the do I
immediately stops, unbinds its variables, and returns the values given to II -

return. See the special form return, page 451. return and its variants
are explained in more detail in that section. go special forms and
prog-tags can also be used inside the body of a do and they mean the same
thing that they do inside prog forms, but we discourage their use since
they make your program complicated and hard to understand.

Examples:

(setq faa-array (make-array '(2 2) :initial-element 'a»
=> #2A«A A) (A A»

(do «x 9 (+ x 1» ; prints out array
(n (array-dimension faa-array 9) »

«= x n»
(do «y 9 (+ Y 1»

(n (array-dimension faa-array 1) »
«= y n»

(prine (aref faa-array x y»» => AAAA
NIL

do

I

(arglist 'cl : array-dimensions) => (ARRAY) and NIL and NIL
(setq a-vector #(1 2 3» => #(1 2 3)

182

(do «i B (+ i 1» ; changes every 2 in vector into a 0
(n (length a-vector»)

«= in»
(if (= 2 (aref a-vector i»

(setf (aref a-vector i) B») => NIL
A-VECTOR => #(1 B 3)

(do «z list (cdr z»
(yother-list)
(x)

w)
(nil)

body)

;z starts as list and is cdr'ed each time.
;y starts as other-list, and is unchanged by the do.
;x starts as nil and is not changed by the do.
;w starts as nil and is not changed by the do.
;The end-test is nil, so this is an infinite loop.

;Presumably the body uses return somewhere.

The following construction exploits parallel assignment to index variables:

(do «x e (cdr x»
(oldx x x»

«null x»
body)

On the first iteration, the value of oldx is whatever value x had before the
do was entered. On succeeding iterations, oldx contains the value that x
had on the previous iteration.

body can contain no forms at all. Very often an iterative algorithm can be
most clearly expressed entirely in the repeats and exit-forms of a new-style
do, and the body is empty.

The following example is like (mapl i st 'f x y). (See the section "Mapping"
in Symbolics Common Lisp: Language Concepts.)

(do «x x (cdr x»
(y y (cdr y»
(z nil (cons (f x y) z») ;exploits parallel assignment.

«or (null x) (null y»
(nreverse z»

»
;typical use of nreverse.
;no do-body required.

For information about a general iteration facility based on a keyword syn
tax rather than a list-structure syntax:

See the section "The loop Iteration Macro" in Symbolics Common Lisp:
Language Concepts.

183 do

Zetalisp note: Zetalisp supports another, "old-style" version of do. This
form is incompatible with the language specification presented in Guy
Steele's Common Lisp: the Language.

The older do looks like this:

(do var init repeat end-test body . ..)

The first time through the loop var gets the value of the init form; the
remaining times through the loop it gets the value of the repeat form,
which is reevaluated each time. Note that the init form is evaluated before
var is bound, that is, lexically outside of the do. Each time around the
loop, after var is set, end-test is evaluated. If it is non-nil, the do finishes
and returns nil. If the end-test evaluated to nil, the body of the loop is ex
ecuted.

If the second element of the form is nil, there is no end-test nor exit-forms,
and the body of the do is executed only once. In this type of do it is an
error to have repeats. This type of do is no more powerful than let; it is
obsolete and provided only for Maclisp compatibility.

return and go can be used in the body. It is possible for body to contain
no forms at all.

Examples:

(do (i B (+ 1 i)) ; searches list for Dan.
(names '(Adam Brain Carla Dan Eric Fred) (cdr names)))

((null names))
(if (equal 'Dan (car names))

(princ "Hey Danny Boooooy U))) => Hey Danny Boooooy NIL

(do ((22 x (cdr 22)))
((or (null 22)

(2erop (f (car 22))))))
;this applies f to each element of x
;continuously until f returns 2ero.
;Note that the do has no body.

(defun list-splice (a b)
(do ((x a (cdr x))

(y b (cdr y))
(xy 'C) (append xy (list (car x) (car y)))))

((endp x) (endp y) (append xy x y)))) => LIST-SPLICE
(list-splice '(1 2 3) '(a b c)) => (1 A 2 B 3 C)
(list-splice '(1 2 3) '(a b c de)) => (1 A 2 B 3 C 0 E)

I

I

do

return forms are often useful to do simple searches:

(setq a-vector #(1 2 3» => #(1 2 3)
(do «i B (+ i 1»)

«and (= 3 (aref a-vector i»
(return i»»

=> 2 ;note (aref a-vector 2) => 3

184

; Iterate over the length of vector
; If we find a element that = 3
;then return its index.

For a table of related items: See the section "Iteration Functions" in Sym
bolics Common Lisp: Language Concepts.

do Keyword For loop

do expression
expression is evaluated each time through the loop, as shown in the follow
ing example:

(de fun print-elements-of-list (list-of-elements)
(loop for element in list-of-elements

do (print element»)
=> PRINT-ELEMENTS-OF-LIST

print-elements-of-list prints-each element in its argument, which should be
a list. I t returns nil.

The forms do and doing are synonymous. Examples

(defun print-list (small-list)
(loop for element in small-list

do
(princ element)
(princ " A"») => PRINT-LIST

(print-list '(1 2 3» => 1 A 2 A 3 A NIL

This is equivalent to

(defun print-list (small-list)
(loop for element in small-list

doing
(princ element)
(princ " A"») => PRINT-LIST

(print-list '(1 2 3» => 1 A 2 A 3 A NIL

See the macro loop, page 309.

185

do·

do*

Special Form
Just like do, except that the variable clauses are evaluated sequentially
rather than in parallel. When a do starts, all the initialization forms are
evaluated before any of the variables are set to the results; when a do*
starts, the first initialization form is evaluated, then the first variable is
set to the result, then the second initialization form is evaluated, and so
on. The stepping forms work analogously.

Examples:

(do ((i 8 (+ 1 i))

(i 8 (+ 1 i)))

«= ; 18))
(prine i)) => 8123456789NIL

(do* ((; 8 (+ 1 i))

(i 8 (+ 1 i)))

«= i 18))
(prine i)) => 82468NIL

For a table of related items: See the section "Iteration Functions" in Sym
bolics Common Lisp: Language Concepts.

zl:do*-named &whole form &rest ignore &environment enu Special Form
Just like zl:do-named, except that the variable clauses are evaluated se
quentially, rather than in parallel. See the special form do·, page 185.

Examples:

(zl:do-named who-do
((i 8 (+ 1 i))

(i 8 (+ 1 i)))

«= i 18))
(prine i)) => 8123456789NIL

(zl:do*-named who-do
((i 8 (+ 1 i))

(i 8 (+ 1 i)))

«= i 18))
(prine i)) => 8123456789NIL

For a table of related items: See the section "Iteration Functions" in Sym
bolics Common Lisp: Language Concepts.

I

I

do-all-symbols 186

do-aU-symbols (variable &optional result) body... Special Form
Evaluate the body forms repeatedly with variable bound to each symbol
present in any package (excluding invisible packages).

When the iteration terminates, result is evaluated and its values are
returned. The value of variable is nil during the evaluation of result. If
result is not specified, the value returned is nil.

The return special form can be used to cause a premature exit from the
iteration.

documentation name &optional (type 'defun) Function
Given a function or a function spec, this finds its documentation string,
which is stored in various different places depending on the kind of func
tion. If there is no documentation, nil is returned.

See the section "The Document Examiner" in User's Guide to Symbolics
Computers.

dbg:document-proceed-type condition proceed-type stream Generic Function
Prints out a description of what it means to proceed, using the given
proceed-type, from this condition, on stream. This is used mainly by the
Debugger to create its prompt messages. Phrase such a message as an im
perative sentence, without any leading or trailing #\return characters.
This sentence is for the human users of the machine who read this when
they have just been dumped unexpectedly into the Debugger. It should be
composed so that it makes sense to a person to issue that sentence as a
command to the system.

The compatible message for dbg:document-proceed-type is:

:document-proceed-type

For a table of related items: See the section "Basic Condition Methods and
Init Options" in Symbolics Common Lisp: Language Concepts.

dbg:document-special-command condition special-command Generic Function
dbg:document-special-command prints the documentation of command-type
onto stream. If you don't provide your own method explicitly, the default
handler uses the documentation string from the dbg:special-command
method. You can, however, provide this method in order to print a prompt
string that has to be computed at run-time. This is analogous to
dbg:document-proceed-type. The syntax is:

(defmethod (dbg: document-spec; al-command my-flavor :my-command-keyword)
(stream)

body ...)

The compatible message for dbg:document-special-command is:

187 do-external-symbols

: document-special-command

For a table of related items: See the section "Debugger Special Command
Functions" in Symbolics Common Lisp: Language Concepts.

do-external-symbols (variable &optional package result) body... Special Form
Evaluate the body forms repeatedly with variable bound to each external
symbol exported by package. package can be a package object or a string
or symbol that is the name of a package, or it can be omitted, in which
case the value of *package* is used by default.

When the iteration terminates, result is evaluated and its values are
returned. The value of variable is nil during the evaluation of result. If
result is not specified, the value returned is nil.

The return special form can be used to cause a premature exit from the
iteration.

dolist (var listform &optional resultform) &body forms Special Form
A convenient abbreviation for the most common list iteration.

dolist performs forms once for each element in the list that is the value of
listform, with var bound to the successive elements.

You can use return and go and prog-tags inside the body, as with do.

dolist returns nil, or the value of resultform, if the latter is specified.

Examples:

(dolist (people '(maryann claire cindy) 4) (print people» =>
MARY
ANN
CLAIRE
CINDY 4

(dolist (z '(1 234) "hi") (prine (+ z 2») => 3456"hi"

(dolist (j '(1 2 3 4) t) (prine (- 1 j» (if (= j 3) (return»)
=> 0-1-2NIL

For a table of related items: See the section "Iteration Functions" in Sym
bolics Common Lisp: Language Concepts.

I

I

zl:dolist 188

zl:dolist (var form) &body body Special Form
A convenient abbreviation for the most common list iteration. zl:dolist
performs body once for each element in the list that is the value of form,
with var bound to the successive elements.

Examples:

(zl :dolist (people '(maryann claire cindy» (print people » =>
MARY
ANN
CLAIRE
CINDY NIL

(zl :dolist (z '(1 234» (prine (+ z 2») => 3456NIL

(zl :dol ist (j '(1 2 3 4» (prine (- 1 j» (if (= j 3) (return»)
=> B-1-2NIL

Where

(zl :dolist (item (frobs foo»
(mung item»

is equivalent to:

(do «1st (frobs foo) (cdr 1st»
(item»

«null 1 st»
(setq item (car 1st»
(mung item»

except that the name 1st is not used. You can use return and go and
prog-tags inside the body, as with do. zl:dolist forms return nil unless
returned from explicitly with return.

See the special form dolist, page 187.

For a table of related items: See the section "Iteration Functions" in Sym
bolics Common Lisp: Language Concepts.

do-local-symbols (variable &optional package result) body... Special Form
Evaluate the body forms repeatedly with variable bound to each symbol
present in package. package can be a package object or a string or symbol
that is the name of a package, or it can be omitted, in which case the
value of *package* is used by default.

When the iteration terminates, result is evaluated and its values are
returned. The value of variable is nil during the evaluation of result. If
result is not specified, the value returned is nil.

189 zl :do-named

The return special form can be used to cause a premature exit from the
iteration.

zl:do-named &whole form &rest ignore &environment env Special Form
Sometimes one do is contained inside the body of an outer do. The return
function always returns from the innermost surrounding do, but sometimes
you want to return from an outer do while within an inner do. You can do
this by giving the outer do a name. You use zl:do-named instead of do
for the outer do, and use return-from, specifying that name, to return
from the zl:do-named.

The syntax of zl:do-named is like do except that the symbol do is im
mediately followed by the name, which should be a symbol. Example:

(zl : do-named out
«x 1 (+ x 1)))

«= x 4))
(do «y 1 (+ 1 y)))

«= y 4))
(if (= y 2) (zl:return-from out (values x y))))) => 1 and 2

(zl:do-named george «a 1 (1+ a))
(d 'foo))

«> a 4) 7)
(do «c b (cdr c)))

«null c))

(return-from george (cons b d))
...))

If the symbol t is used as the name, it is made "invisible" to returns; that
is, returns inside that zl:do-named return to the next outermost level
whose name is not t. (return-from t ...) returns from a zl:do-named
named t. You can also make a zl:do-named invisible to returns by includ
ing immediately inside it the form <declare <si:invisible-block t». This
feature is not intended to be used by user-written code; it is for macros to
expand into.

If the symbol nil is used as the name, it is as if this were a regular do.
Not having a name is the same as being named nil.

progs and zl:loops can have names just as dos can. Since the same func
tions are used to return from all of these forms, all of these names are in
the same namespace; a return returns from the innermost enclosing itera
tion form, no matter which of these it is, and so you need to use names if
you nest any of them within any other and want to return to an outer one
from inside an inner one.

•

I

do-symbols 190

For a table of related items: See the section "Iteration Functions" in Sym
bolics Common Lisp: Language Concepts.

do-symbols (variable &optional package result) body... Special Form
Evaluate the body forms repeatedly with variable bound to each symbol ac
cessible in package. package can be a package object or a string or symbol
that is the name of a package, or it can be omitted, in which case the
value of *package* is used by default.

When the iteration terminates, result is evaluated and its values are
returned. The value of variable is nil during the evaluation of result. If
result is not specified, the value returned is nil.

The return special form can be used to cause a premature exit from the
iteration.

dotimes (var countform &optional resultform) &body forms Special Form
A convenient abbreviation for the most common integer iteration.

dotimes performs forms the number of times given by the value of
countform, with var bound to 0, 1, and so forth on successive iterations.

You can use return and go and prog-tags inside the body, as with do.

The function returns nil, or the value of resultform if the latter is
specified.

Examples:

(dotimes (i 5 19)
(prine i)(prine " H»~ => 9 1 234 19

(dot i mes (j 5 t)
(prine j)(if (= j 3) (return») => 9123NIL

For a table of related items: See the section "Iteration Functions" in Sym
bolics Common Lisp: Language Concepts.

zl:dotimes (var form) &body body Special Form
A convenient abbreviation for the most common integer iteration.
zl:dotimes performs body the number of times given by the value of count,
with index bound to 0, 1, and so forth on successive iterations.

, Example:

(zl:dotimes (i 5)
(prine i)(prine " H»~ => 9 1 234 NIL

(zl :dotimes (j 5)
(prine j)(if (= j 3) (return») => 9123NIL

191

Where

(zl :dotimes (i (II m n))
(frob i))

is equivalent to:

(do «i 8 (1+ i))

(count (II m n)))
«~ i count))

(frob i))

double-float

except that the name count is not used. Note that i takes on values start
ing at 0 rather than 1, and that it stops before taking the value (zl:! m n)
rather than after. You can use return and go and prog-tags inside the
body, as with do. zl:dotimes forms return nil unless returned from ex
plicitly with return For example:

(zl:dotimes (i 5)
(if (eq (aref a i) 'faa)

(return i)))

This form searches the array that is the value of a, looking for the symbol
foo. It returns the fumum index of the first element of a that is foo, or
else nil if none of the elements are foo.

See the special form dotimes, page 190.

For a table of related items: See the section "Iteration Functions" in Sym
bolics Common Lisp: Language Concepts.

double-float Type Specifier
double-float is the type specifier symbol for the predefined Lisp double
precision floating-point number type.

The type double-float is a subtype of the type float. In Symbolics Common
Lisp, the type double-float is equivalent to the type long-float.

The type double-float is disjoint with the types short-float, and
single-float.

Examples:

(typep -1302 'double-float) => T

(zl :typep -1204) => :OOUBLE-FLOAT

(subtypep 'double-float 'float) => T and T ;subtype and certain

I

I

double-float-epsilon

(commonp 9d9) => T

(sys:double-float-p 6.93e23) => NIL

(sys:double-float-p 1.5d9) => T

(equal-typep 'double-float 'long-float) => T

(sys:type-arglist 'double-float) => NIL and T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

192

See the section "Numbers" in Symbolics Common Lisp: Language Concepts.

double-float-epsilon Constant
The value of this constant is the smallest positive floating-point number e
of a format such that it satisfies the expression:

(not (= (float 1 e) (+ (float 1 e) e»)

The current value of double-float-epsilon is: 1.1102230246251568d-16.

double-float-negative-epsilon Constant
The value of this constant is the smallest positive floating-point number e
of a format such that it satisfies the expression:

(not (= (float 1 e) (- (float 1 e) e»)

The current value of double-float-negative-epsilon is:
5.551115123125784d-17

sys:double-float-p object Function
Returns t if object is a double-precision floating-point number, otherwise
nil.

For a table of related items: See the section "Numeric Type-checking
Predicates" in Symbolics Common Lisp: Language Concepts.

dpb newbyte bytespec integer
"Deposit byte."

Function

Returns a number that is the same as integer except in the bits specified
by bytespec.

bytespec is built using function byte with bit size and position arguments.
Here size indicates the number of low bits of newbyte to be placed in the
result.

newbyte is interpreted as being right-justified, as if it were the result of
ldb ("load byte").

integer must be an integer.

193 sys:dynamic-closure

Examples:

(dpb 1 (byte 1 2) 1) => 5
(dpb 8 (byte 1 31.) -1_31.) => -4294967296.
(dpb -1 (byte 48. 8) -1_32.) => -1.
(dpb #0238 (byte 6 3) #04567) => #04387

" a bignum (-1_32)

For a table of related items: See the section "Summary of Byte Manipula
tion Functions" in Symbolics Common Lisp: Language Concepts.

sys:dynamic-closure Type Specifier
sys:dynamic-closure is the type specifier symbol for the predefined Lisp
object of that name.

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the section "Scoping" in Symbolics Common
Lisp: Language Concepts.

Examples:

(setq four
(let ((x 4»

(closure '(x) 'zerop») => #<DTP-CLOSURE 1518647>

(typep four 'sys:dynamic-closure) => T

(subtypep 'sys:dynamic-closure 'common) => NIL and NIL

dynamic-closure-alist closure Function
Returns an alist of (symbol. value) pairs describing the bindings which the
dynamic closure performs when it is called. This list is not the same one
that is actually stored in the closure; that one contains pointers to value
cells rather than symbols, and dynamic-closure-alist translates them back
to symbols so you can understand them. As a result, clobbering part of
this list does not change the closure.

If any variable in the closure is unbound, this function signals an error.
See the section "Dynamic Closure-Manipulating Functions" in Symbolics
Common Lisp: Language Concepts.

dynamic-closure-variables closure Function
Creates and returns a list of all of the variables in the dynamic closure
closure. It returns a copy of the list that was passed as the first argument
to make-dynamic-closure when closure was created. See the section
"Dynamic Closure-Manipulating Functions" in Symbolics Common Lisp:
Language Concepts.

I

I

ecase 194

ecase object &body body Special Form
The name of this function stands for "exhaustive case" or "error-checking
case".

Structurally ecase is much like case, and it behaves like case in selecting
one clause and then executing all consequents of that clause. However,
ecase does not permit an explicit otherwise or t clause. The form of
ecase is as follows:

(ecase key-form
(test consequent consequent ...)
(test consequent consequent ...)
(test consequent consequent ...)
...)

The first thing ecase does is to evaluate object, to produce an object called
the key object.

Then ecase considers each of the clauses in turn. If key is eql to any item
in the clause, ecase evaluates the consequents of that clause as an implicit
progn.

ecase returns the value of the last consequent of the clause evaluated, or
nil if there are no consequents to that clause.

The keys in the clauses are not evaluated; literal key values must appear in
the clauses. It is an error for the same key to appear in more than one
clause. The order of the clauses does not affect the behavior of the ecase
construct.

If there is only one key for a clause, that key can be written in place of ~
list of that key, provided that no ambiguity results. Such a "singleton key"
can not be nil (which is confusable with 0, a list of no keys), t, otherwise,
or a cons.

If no clause is satisfied, ecase uses an implicit otherwise clause to signal
an error with a message constructed from the clauses. It is not permis
sible to continue from this error. To supply your own error message, use
case with an otherwise clause containing a call to error.

Examples:

(1 et ((num 24»
(ecase num

((1 2 3) "integer")
((4 5 6) "integer"») => non-proceedable error is signalled

195 eighth

(let «num 3»
(ecase num

«1 2) "one two")
«3 4 5 6) (princ "numbers") (princ " three") (terpri))
(t "not today"») => numbers three

T

(let «Dwarf 'Sleepy»
(ecase Dwarf

«Grumpy Dopey) (setq class "confused"»
«Bilbo Frodo) (setq class "Hobbits not Dwarfs"»
(otherwise (setq class 'unknown) "talk to Snow White"»)

=> "talk to Snow White"
class => UNKNOWN

(defun test-ecase (x)
(ecase x

(a I a)

(b 'b)

(otherwise 'c») => TEST-ECASE

(test-ecase 'd) => C

For a table of related items: See the section "Conditional Functions II in
Symbolics Common Lisp: Language Concepts.

For a table of related items: See the section "Condition-Checking and Sig
nalling Functions and Variables" in Symbolics Common Lisp: Language
Concepts.

eighth list Function
eighth takes a list as an argument, and returns the eighth element of list.
eighth is identical to

(nth 7 list)

This function is provided because it makes more sense than using nth
when you are thinking of the argument as a list rather than just as a cons.

For a table of related items: See the section "Functions for Extracting
From Lists" in Symbolics Common Lisp: Language Concepts.

elt sequence index Function
elt returns the element of sequence specified by index.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

index must be a non-negative integer less than the length of sequence as
returned by length. The first element of a sequence has index o.

I

I

si :encapsulate

For example:

(setq bird-list '(heron stork pelican turkey» =>
(HERON STORK PELICAN TURKEY)

(elt bird-list 2) => PELICAN

(equalp (elt bird-list' 2) (third bird-list» => T

196

Note that elt observes the fill pointer in those vectors that have fill
pointers. The array-specific function aref may be used to access vector ele
ments that are beyond the vector's flll pointer.

setf can be used with elt to destructively replace a sequence element with
a new value. For example:

(setf (elt bird-list 2) 'hawk) => HAWK

bird-list => (HERON STORK HAWK TURKEY)

For a table of related items: See the section "Sequence Construction and
Access" in Symbolics Common Lisp: Language Concepts.

:empty-p of si:heap Method
Returns t if the heap is empty, otherwise returns nil.

For a table of related items: See the section "Heap Functions and Methods"
in Symbolics Common Lisp: Language Concepts.

si:encapsulate function outer-function type body &optional
extra-debugging-info

A call to si:encapsulate looks like:

(si : encapsul ate function-spec outer-function type
body-form
extra-debugging-info)

Macro

All the subforms of this macro are evaluated. In fact, the macro could al
most be replaced with an ordinary function, except for the way body-form is
handled.

function-spec evaluates to the function spec whose defmition the new encap
sulation should become. outer-function is another function spec, which
should often be the same one. Its only purpose is to be used in any error
messages from si:encapsulate.

type evaluates to a symbol that identifles the purpose of the encapsulation;
it says what the application is. For example, it could be advise or trace.
The list of possible types is deflned by the system because encapsulations
are supposed to be kept in an order according to their type. See the vari-

197 si:encapsulate

able si:encapsulation-standard-order, page 198. type should have an
si:encapsulation-grind-function property that tells grindef what to do with
an encapsulation of this type.

body-form is a form that evaluates to the body of the encapsulation
definition, the code to be executed when it is called. Backquote is typically
used for this expression. See the section "Backquote" in Symbolics Com
mon Lisp: Language Concepts. si:encapsulate is a macro because, while
body is being evaluated, the variable si:encapsulated-function is bound to
a list of the form (function uninterned-symbol), referring to the uninterned
symbol used to hold the prior definition of function-spec. If si:encapsulate
were a function, body-form would just get evaluated normally by the
evaluator before si:encapsulate ever got invoked, and so there would be no
opportunity to bind si:encapsulated-function. The form body-form should
contain (apply si:encapsulated-function arglist) somewhere if the encap
sulation is to live up to its name and truly serve to encapsulate the
original definition. (The variable arglist is bound by some of the code that
the si:encapsulate macro produces automatically. When the body of the
encapsulation is run, arglist's value is the list of the arguments that the
encapsulation received.)

extra-debugging-info evaluates to a list of extra items to put into the debug
ging info alist of the encapsulation function (besides the one starting with
si:encapsulated-definition that every encapsulation must have). Some ap
plications find this useful for recording information about the encapsulation
for their own later use.

When a special function is encapsulated, the encapsulation is itself a spe
cial function with the same argument quoting pattern. (Not all quoting
patterns can be handled; if a particular special form's quoting pattern can
not be handled, si:encapsulate signals an error.) Therefore, when the out
ermost encapsulation is started, each argument has been evaluated or not
as appropriate. Because each encapsulation calls the prior definition with
apply, no further evaluation takes place, and the basic definition of the
special form also finds the arguments evaluated or not as appropriate. The
basic definition can call eval on some of these arguments or parts of them;
the encapsulations should not.

Macros cannot be encapsulated, but their expander functions can be; if the
definition of function-spec is a macro, then si:encapsulate automatically en
capsulates the expander function instead. In this case, the definition of the
uninterned symbol is the original macro definition, not just the original ex
pander function. It would not work for the encapsulation to apply the
macro definition. So during the evaluation of body-form,
si:encapsulated-function is bound to the form (cdr (function
uninterned-symbol» , which extracts the expander function from the prior
definition of the macro.

I

I

si :encapsulation-standard-order 198

Because only the expander function is actually encapsulated, the encapsula
tion does not see the evaluation or compilation of the expansion itself. The
value returned by the encapsulation is the expansion of the macro call, not
the value computed by' the expansion.

si:encapsulation-standard-order Variable
The value of this variable is a list of the allowed encapsulation types, in
the order that the encapsulations are supposed to be kept in (innermost en
capsulations IIrst). If you want to add new kinds of encapsulations, you
should add another symbol to this list. Initially its value is:

(advise breakon trace si:rename-within)

advise encapsulations are used to hold advice. breakon and trace encap
sulations are used for implementing tracing. si:rename-within encapsula
tions are used to record the fact that function specs of the form (:within
within-function altered-function) have been defined. The encapsulation goes
on within-function. See the section " Rename-Within Encapsulations" in
Symbolics Common Lisp: Language Concepts.

endp object Function
The predicate endp is the recommended way to test for the end of a list.
endp returns nil when it is applied to a cons, and t when it is applied to
nil. endp signals an error when it is used on any other object.

For a table of related items: See the section "Predicates That Operate on
Lists" in Symbolics Common Lisp: Language Concepts.

&environment Lambda List Keyword
This keyword is used with macros only. It should be followed by a single
variable that is bound to an environment representing the lexical environ
ment in which the macro call is to be interpreted. This environment is not
required to be the complete lexical environment; it should be used only
with the function macroexpand for the sake of any local macro definitions
that the macrolet construct may have established within that lexical en
vironment. &environment is useful primarily in the rare cases where a
macro definition must explicitly expand any macros in a subform of the
macro call before computing its own expansion.

eq x y Function
(eq x y) => t if and only if x and yare the same object. It should be noted
that things that print the same are not necessarily eq to each other. In
particular, numbers with the same value need not be eq, and two similar
lists are usually not eq. Examples:

199

(eq 'a 'b) => nil
(eq 'a 'a) => t
(eq (cons 'a 'b) (cons 'a 'b» => nil
(setq x (cons 'a 'b» (eq x x) => t

si :eq-hash-table

Note that in Symbolics Common Lisp equal integers are eq; this is not true
in Maclisp. Equality does not imply eqness for other types of numbers. To
compare numbers, use =. See the section "Numeric Comparisons" in Sym
bolics Common Lisp: Language Concepts.

si:eq-hash-table Flavor
This flavor is used to create an old style Zetalisp hash table using the eq
function for comparison of the hash keys. This flavor is superseeded by
table: basic-table. It accepts the following init options:

:size Sets the initial size of the hash table in entries, as an in
teger. The default is 100 (decimal). The actual size is
rounded up from the size you specify to the next size
that is good for the hashing algorithm. An automatic
rehash of the hash table might occur before this many
entries are stored in the table depending upon the keys
being stored.

:area Specifies the area in which the hash table should be
created. This is just like the :area option to
zl:make-array. See the function zl:make-array, page
322. The default is sys:working-storage-area.

: growth-factor Specifies how much to increase the size of the hash table
when it becomes full. If it is an integer, the hash table
is increased by that number. If it is a floating-point
number greater than one, the new size of the hash table
is the old size multiplied by that number.

:rehash-before-cold
Causes zl:disk-save to rehash this hash table if its hash
ing has been invalidated. (This is part of the before-cold
initializations.) Thus every user of the saved band does
not have to waste the overhead of rehashing the first
time they use the hash table after cold booting.
For eq hash tables, the hashing is invalidated whenever
garbage collection or band compression occurs because
the hash function is sensitive to addresses of objects, and
those operations move objects to different addresses. For
equal hash tables, the hash function is not sensitive to
addresses of objects that sxhash knows how to hash but
it is sensitive to addresses of other objects. The hash
table remembers whether it contains any such objects.

I

I

eql 200

Normally a hash table is automatically rehashed "on
demand" the first time it is used after the hashing has
become invalidated. This first :get-hash operation is
therefore much slower than normal.
The :rehash-before-cold option should be used on hash
tables that are a permanent part of your world, likely to
be saved in a band saved by zl:disk-save, and to be
touched by users of that band. This applies both to hash
tables in Genera and to hash tables in user-written sub
systems that are saved on disk bands.

eql x y Function

equal

eql returns t if its arguments are eq, or if they are numbers of the same
type with the same value, or (in Common Lisp) if they are character ob
jects that represent the same character. The predicate = compares the
values of two numbers even if the numbers are of different types.

Examples:

(eql 'a 'a) => t
(eql 3 3) => t
(eql 3 3.B) => nil
(eql 3.B 3.B) => t
(eql #/a #/a) => t
(eql (cons 'a 'b) (cons 'a 'b» => nil
(eql "faa" "Faa") => nil

The following expressions might return either t or nil:

(eq 1 '(a . b) '(a . b»

(eql "faa" "faa")

In Symbolics Common Lisp:

(eql 1.BsB 1.BdB) => nil
(eql B.B -B.B) => nil

x y Function
equal returns t if its arguments are structurally similar (isomorphic) ob
jects. If the two objects are eql, then they are also equal. If the objects
are of different data types, then" they are not equal.

Objects of each data type are compared differently for equal. equal
returns t in the following cases:

Conses
Strings

The two cars are equal and the two cdrs are equal.
The strings are of the same length, and corresponding
characters of each string are char=.

201

Bit-vectors

Numbers

Characters

Symbols

Arrays

Pathnames

For example:

eql

The vectors are of the same length, and corresponding
elements of each vector are =.
The numbers are eql; that is, they must have the same
type and the same value.
The characters are eql; that is, they must be character
objects representing the same character. The code and
bits information are taken into account for equal, but
font information is not.
The symbols are eq; that is, they must be addressing the
same memory location.
The arrays are eq; that is, they must be addressing the
same array in memory.
The pathname objects are equivalent; that is, all of the
corresponding components (host, device, directory name,
and so on) are the same. The sensitivity of the case of
the pathname object is dependent on the file naming con
ventions of the file system the pathname object resides
in.

(equal 'a 'a) => T
(equal 'a 'b) => NIL
(equal 3.8 3.8) => T

(equal 3 3.8) => NIL
(equal #c(3 -4.8) #c(3 -4» => NIL
(equal '(a . b) '(a . b» => T
(equal (cons 'a 'b) (cons 'a 'c» => NIL
(progn (setq x '(a. b» (equal x x » => T
(equal #\A #\a) => NIL
(equal #\A #\~) => T
(equal #\c-A #\A) => NIL
(equal "Faa" "Faa") => T
(equal "FDD" "faa") => NIL

An intuitive definition, which is not quite correct, is that two objects are
equal if their printed representation is the same. For example:

(setq a '(1 2 3»

(setq b '(1 2 3»
(eq a b) => NIL
(equal a b) => T

I

I

zl:equal

(setq a 'a) =:> A
(setq b a) =:> A
(equal a b) =:> T

202

zl:equal X Y Function
The zl:equal predicate returns t if its arguments are similar (isomorphic)
objects. See the function eq, page 198. Two numbers are zl:equal if they
have the same value and type (for example, a flonum is never zl:equal to
an integer, even if = is true of them). For conses, zl:equal is defined
recursively as the two cars being zl:equal and the two cdrs being equal.
Two strings are zl:equal If they have the same length, and the characters
composing them are the same. See the function string-equal, page 525.
Alphabetic case is ignored. All other objects are zl:equal if and only if
they are eq. Thus zl:equal could have been defined by:

(defun equal (x y)
(cond «eq x y) t)

«neq (typep x) (typep y» nil)
«numberp x) (= x y»
«stringp x) (string-equal x y»
«listp x) (and (equal (car x) (car y»

(equal (cdr x) (cdr y»»»

As a consequence of the above definition, it can be seen that zl:equal may
compute forever when applied to looped list structure. In addition, eq al
ways implies zl:equal; that is, if (eq a b) then (zl:equal a b). An intuitive
definition of zl:equal (which is not quite correct) is that two objects are
zl:equal if they look the same when printed out. For example:

(setq a '(1 2 3»
(setq b '(1 2 3»
(eq a b) =:> nil
(equal a b) => t
(equal "Faa" "faa") =:> t

si:equal-hash X Function
si:equal-hash computes a hash code of an object, and returns it as an in
teger. A property of si:equal-hash is that (equal X y) always implies
(= (si:equal-hash x) (si:equal-hash y». The number returned by
si:equal-hash is always a nonnegative integer, possibly a large one.
si:equal-hash tries to compute its hash code in such a way that common
permutations of an object, such as interchanging two elements of a list or
changing one character in a string, always changes the hash code.

si:equal-hash uses %pointer to define the hash key for data types such as

203 si :equal-hash

arrays, stack groups, or closures. This means that some of the hash keys
in equal hash tables are based on a virtual memory address. Hash tables
that are at all dependent on memory addresses are rehashed when the gar
bage collector flips.

si:equal-hash returns a second value (t, :dynamic or nil), if it has used
%pointer to define the hash key.

Value
nil

: dynamic

t

meaning
Returned if the hash does not depend on the virtual ad
dress of the object being hashed.
Returned if the hash depends on the virtual address, but
none of the dependent addresses are ephemeral. That is,
if :dynamic is returned, future calls to si:equal-hash for
the same object might not return the same number if an
intervening dynamic GC occurs.
Returned if the hash depends on the virtual address and
at least one of the virtual addresses is ephemeral. That
is, if t is returned, future calls to si:equal-hash for the
same object might not return the same number if an in
tervening ephemeral GC occurs. The value t is the
strongest and must be preserved when merging more
than one result.

For example, if running-flag is the merged flag that will eventually be
returned, the following form will efficiently do a hash/merge step:

(multiple-value-bind (hash flag) (si:equal-hash object)
;; tis strongest, :dynamic next, do it fast
(setq running-flag (or (eq flag 't) running-flag flag))
hash)

Here is an example of how to use si:equal-hash in maintaining hash tables
of objects:

(defun knownp (x &aux i bkt) ;look up x in the table
(setq i (remainder (si:equal-hash x) 176))

;The remainder should be reasonably randomized.
(setq bkt (aref table i))

;bkt is thus a list of all those expressions that
;hash into the same number as does x.

(memq x bkt))

To write an "intern" for objects, one could:

I

I

si :equal-hash-table

(de fun sintern (x &aux bkt item)
(setq i (remainder (si:equal-hash x) 2n-1»

i2n-1 stands for a power of 2 minus one.
iThis is a good choice to randomize the
;result of the remainder operation.

(setq bkt (aref table i»
(cond «setq tern (memq x bkt»

(car tern»
(t (aset (cons x bkt) table i)

x»)

For a table of related items: See the section "Table Functions" in Sym
bolics Common Lisp: Language Concepts.

204

si:equal-hash-table Flavor
This flavor is used to create an old style Zetalisp hash table using the
zl:equal function for comparison of the hash keys. This flavor is super
seeded by table:basic-table. It accepts the following init option as well as
those described for eq hash tables. See the flavor si:eq-hash-table, page
199.

:rehash-thresholdSpecifies how full the table can be before it must grow.
This is typically a flonum. The default is 0.8, which
represents 80 percent.

equalp x y Function
Two objects are equalp if they are equal. Objects that have components
are equalp if they are of the same type and corresponding components are
equalp.

equalp differs from equal when it compares characters, strings and arrays.
equalp returns t for character objects when they satisfy char-equal.
char-equal ignores case, as well as font information. For example:

(equalp #\A #\a) => T
(equalp #\A #\1\) => T
(equalp #\c-A #\A) => NIL

equalp returns t for arrays when they have the same dimensions, the
dimensions match, and the corresponding elements are equalp. A string
and a general array that happens to contain some characters will be
equalp even though it is not equal. If either argument has a fill pointer,
the fill pointer limits the number of elements examined by equalp. Be
cause equalp performs element-by-element comparisons of strings and ig
nores the alphabetic case of characters, case distinctions are also ignored
when equalp compares strings. For example:

205 equal-typep

(setq string "Any Random String") => "Any Random String"
(setq array (make-array 17 :initial-contents "any random string"»

=> #<ART-Q-17 49192625>
(equalp string array) => T

equal-typep typel type2 Function
Returns t if typel and type2 are equivalent and denote the same data type.
For the standard type specifiers in Symbolics Common Lisp: See the sec
tion "Type Specifier Symbols" in Symbolics Common Lisp: Language Con
cepts.

Examples:

(equal-typep 'bit '(unsigned-byte 1» => T
(equal-typep 'double-float 'long-float) => T
(equal-typep 'bit '(integer 9 1» => T
(equal-typep 'short-float 'single-float) => T
(equal-typep 'pathname 'complex) => NIL

error format-string &rest format-args Function
error is the function for signalling a condition that is not proceedable.

error takes three possible argument lists, as follows:

error {format-string &rest format-args}
or
error {condition &rest init-options}
or
error {condition-object}

Case 1:

When error is called with format-string and format-args, it signals a
zl:ferror condition.

format-string is given as a control string to format along with format-args
to construct an error message string.

Case 2:

When called with the arguments condition and init-options, a condition of
type condition with init options as specified by init-options is created and is
signalled.

condition is the name of a condition flavor.

init-options are the init options specified when the error object is created;
they are passed in the :init message.

Used this way, error is similar to signal but restricted as follows:

I

I

error-message-hook 206

• error sets the proceed types of the error object to nil so that it can
not be proceeded.

• If no handler exists, the Debugger assumes control, whether or not
the object is an error object.

• error never returns to its caller.

Case 3:

In the third and more advanced form of error, condition-object can be a
condition object that has been created with make-condition but not yet sig
nalled. In this case, init-options is ignored.

For compatibility with the old Maclisp error function, error tries to deter
mine that it has been called with Maclisp-style arguments and turns into
an zl:fsignal or zl:ferror as appropriate. If condition is a string or a sym
bol that is not the name of a flavor, and error has no more than three ar
guments, error assumes it was called with Maclisp-style arguments.

For a table of related items: See the section "Condition-Checking and Sig
nalling Functions and Variables" in Symbolics Common Lisp: Language
Concepts.

error-message-hook Variable
This variable lets you customize the error message printed by the Debug
ger.

You can bind *error-message-hook* to a one-argument function. Before
printing an error message the Debugger checks the value of
error-message-hook; if this variable is bound to a non-nil value, the
Debugger evaluates it and displays the result at the end of the Debugger
message.

Examples:

(defun my-error-hook ()
(format t "This is the error hook"»

(setq dbg:*error-message-hook* 'dbg:my-error-hook)

(defun get-plists (list-of-objects)
(let «dbg:*error-message-hook*

(1 ambda 0
(format t "While getting properties of -5" list-of-objects»»

(symbol-plist list-of-objects») => GET-PLI5T5

(get-plists 'ea b c»

207 errorp

Trap: The argument given to the SYS:PROPERTY-CELL-LOCATION instruction, (A B C),
was not a symbol.

While getting properties of (A B C)

SYMBOL-PLIST:
Arg e (SYMBOL): (A B C)

s-A, <RESUME>: Supply replacement argument
s-B: Return a value from the PROPERTY-CELL-LOCATION instruction
s-C: Retry the PROPERTY-CELL-LOCATION instruction
s-D: <ABORT>: Return to Lisp Top Level in Dynamic Lisp Listener 1
~ Resume Proceed
Supply replacement argument
Form to evaluate and use as replacement argument:
'i nteger
(ZWEI:ZMACS-BUFFERS «:SAGE-TYPE-SPECIFIER-RECORD #<SECTION-NODE Sage Type
Specifier Record INTEGER 254116776»)

errorp thing Function
errorp returns t if object is an error object, and nil otherwise. That is:

(errorp x) <=> (typep x 'error)

For a table of related items: See the section "Condition-Checking and Sig
nalling Functions and Variables" in Symbolics Common Lisp: Language
Concepts.

error-restart (condition-flavor format-string. format-args) Special Form
This form establishes a restart handler for condition-flavor and then
evaluates the body. If the handler is not invoked, error-restart returns the
values produced by the last form in the body and the restart handler dis
appears. When the restart handler is invoked, control is thrown back to
the dynamic environment inside the error-restart form and execution of
the body starts all over again. The format is:

(error-restart (condition-flavor format-string . format-args)
form-l
form-2
...)

condition-flavor is either a condition or a list of conditions that can be
handled. format-string and format-args are a control string and a list of ar-

I

I

error-restart-Ioop 208

guments (respectively) to be passed to format to construct a meaningful
description of what would happen if the user were to invoke the handler.
format-args are evaluated when the handler is bound. The Debugger uses
these values to create a message explaining the intent of the restart hand
ler.

For a table of related items: See the section "Restart Functions" in Sym
bolics Common Lisp: Language Concepts.

error-restart-Ioop (condition-flavor format-string. format-args) Special Form
error-restart-Ioop establishes a restart handler for condition-flavor and
then evaluates the body. If the handler is not invoked, error-restart-Ioop
evaluates the body again and again, in an infinite loop. Use the return
function to leave the loop. This mechanism is useful for interactive top
levels.

If a condition is signalled during the execution of the body and the restart
handler is invoked, control is thrown back to the dynamic environment in
side the error-restart-Ioop form and execution of the body is started all
over again. The format is:

(error-restart-loop (condition-flavor format-string . format-args)
form-l
form-2
...)

condition-flavor is either a condition or a list of conditions that can be
handled. format-string and format-args are a control string and a list of ar
guments (respectively) to be passed to format to construct a meaningful
description of what would happen if the user were to invoke the handler.
The Debugger uses these values to create a message explaining the intent
of the restart handler.

For a table of related items: See the section "Restart Functions" in Sym
bolics Common Lisp: Language Concepts.

etypecase object &body body Special Form
The name of this function stands for "exhaustive type case" or "error
checking type case". etypecase is similar to typecase, except that: it does
not allow an explicit otherwise or t clause, and it signals a non-continuable
error instead of returning nil if no clause is satisfied.

etypecase is a conditional that chooses one of its clauses by examining the
type of an object. Its form is as follows:

209 etypecase

(typecase form
(types consequent consequent ...)
(types consequent consequent ...)

First etypecase evaluates form, producing an object. etypecase then ex
amines each clause in sequence. types in each clause is a type specifier in
either symbol or list form, or a list of type specifiers. The type specifier is
not evaluated. If the object is of that type, or of one of those types, then
the consequents are evaluated and the result of the last one is returned (or
nil if there are no consequents in that clause). Otherwise, etypecase
moves on to the next clause.

If no clause is satisfied, etypecase signals an error with a message con
structed from the clauses. It is not permissible to continue from this error.
To supply your own error message, use typecase with an otherwise clause
containing a call to error.

For an object to be of a given type means that if typep is applied to the
object and the type, it returns t. That is, a type is something meaningful
as a second argument to typep. A chart of supported data types appears
elsewhere. See the section "Data Types and Type Specifiers" in Symbolics
Common Lisp: Language Concepts.

It is permissible for more than one clause to specify a given type, par
ticularly if one is a subtype of another; the earliest applicable clause is
chosen. Thus, for etypecase, the order of the clauses can affect the be
havior of the construct.

Examples:

(defun tell-about-car (x)
(etypecase (car x)

(string Hstring"») => TELL-ABOUT-CAR
(tell-about-car '(Hword" Hmore"» => "string"
(tell-about-car '(a 1» => non-proceedable error is signalled

(defun tell-about-car (x)
(etypecase (car x)

(fixnum "The car is a number.")
«or string symbol) "symbol or string")
(otherwise "I don't know. H») => TELL-ABOUT-CAR

(tell-about-car '(1 a» => "The car is a number."
(tell-about-car '(a 1» => "symbol or string"
(tell-about-car '("word" "more"» => "symbol or string"
(tell-about-car '(1.B» => "I don't know."

I

•

eval

For a table of related items: See the section "Conditional Functions" in
Symbolics Common Lisp: Language Concepts.

210

For a table of related items: See the section "Condition-Checking and Sig
nalling Functions and Variables" in Symbolics Common Lisp: Language
Concepts.

eval form &optional env Function
Evaluates form, and returns the result. Example:

(setq x 43 foo 'bar)
(eval (list 'cons x 'faa»

=> (43 . bar)

It is unusual to explicitly call eval, since usually evaluation is done im
plicitly. If you are writing a simple Lisp program and explicitly calling
eval, you are probably doing something wrong. eval is primarily useful in
programs that deal with Lisp itself.

Also, if you are only interested in getting at the value of a symbol (that is,
the contents of the symbol's value cell), then you should use the primitive
function symbol-value.

The actual name of the compiled code for eval is "si:*eval" because use of
the evalhook feature binds the function cell of eval.

env defaults to the null lexical environment.

sys:eval-in-instance instance form Function

evenp

Evaluates form in the lexical environment of instance. The following form
returns the sum of the instance variables x and y of the instance
this-box-with-cell:

(sys:eval-in-instance this-box-with-cell '(+ x y»
--> 6

You can use setq to modify an instance variable; this is often useful in
debugging. If you need to evaluate more than one form in the lexical en
vironment of the instance, you can use sys:debug-instance: See the func
tion sys:debug-instance, page 126.

integer Function
Returns t if integer is even, otherwise nil. If integer is not an integer,
evenp signals an error.

See the section "Numeric Property-checking Predicates" in Symbolics Com
mon Lisp: Language Concepts.

For a table of related items: See the section "Numeric Property-checking
Predicates" in Symbolics Common Lisp: Language Concepts.

211 every

every predicate &rest sequences Function
every is a predicate which returns nil as soon as any invocation of predi
cate returns nil. predicate must take as many arguments as there are se
quences provided. predicate is first applied to the elements of the se
quences with an index of 0, then with an index of 1, and so on, until a ter
mination criterion is reached or the end of the shortest of the sequences is
reached. If the end of a sequence is reached, every returns a non-nil
value. Thus considered as a predicate, it is true if every invocation of
predicate is true.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

For example:

(every #'oddp '(1 3 5» => T

(every #'equal '(1 2 3) '(3 2 1» => NIL

If predicate has side effects, it can count on being called first on all those
elements with an index of 0, then all those with an index of 1, and so on.

For a table of related items: See the section "Predicates That Operate on
Lists" in Symbolics Common Lisp: Language Concepts.

For a table of related items: See the section "Predicates That Operate on
Sequences" in Symbolics Common Lisp: Language Concepts.

zl:every list predicate &optional step-function Function
zl:every returns t if predicate returns non-nil when applied to every ele
ment of list, or nil if predicate returns nil for some element. If
step-function is present, it replaces #' cdr as the function used to get to the
next element of the list; #'cddr is a typical function to use here. For ex
ample:

(z1 :every '(1 3 5) #'oddp) => T

(zl:every '(1 234 5) #'oddp) => NIL

(z1 : every '(1 234 5) #'oddp #'cddr) => T

This Zetalisp function is shadowed by the Common Lisp function of the
same name.

For a table of related items: See the section "Predicates That Operate on
Lists" in Symbolics Common Lisp: Language Concepts.

For a table of related items: See the section "Predicates That Operate on
Sequences" in Symbolics Common Lisp: Language Concepts.

I

I

exp 212

exp number Function
Returns e raised to the numberth power, where e is the base of natural
logarithms. If number is an integer or a single-float, the result is con
verted to a single-float; if it is a double-float, the result is double-float.

Examples:

(exp 1) => 2.7182817
(exp #c(0 -3» => #C(-0.9899925 -0.14112002)

For a table of related items: See the section "Powers Of e and Log
Functions" in Symbolics Common Lisp: Language Concepts.

export symbols &optional package Function

expt

The symbols argument should be a list of symbols or a single symbol. If
symbols is nil, it is treated like an empty list. These symbols become avail
able as external symbols in package. package can be a package object or
the name of a package (a symbol or a string). If unspecified, package
defaults to the value of *package*. Returns t. The :export option to def
package and make-package is equivalent.

base-number power-number Function
Computes and returns base-number raised to the power power-number. If
the base-number is of type rational and the power-number is an integer, the
calculation is exact (using the rule of rational canonicalization where
applicable), and the result is of type rational; otherwise, a floating-point ap
proximation may result.

If power-number is zero of type integer, the result is the value one in the
type of base-number. This is true even if base-number is zero of any type.
If power-number is a zero of any other data type, the result is the value
one, in the type of the arguments after the application of the coercion
rules, except as follows. An error results if the base-number is zero and
the power-number is a zero not of type integer.

If base-number is negative and power-number is not an integer, the result of
expt can be complex, even though neither argument is complex. expt al
ways returns the principal complex value.

Complex canonicalization is applied to complex results.

Examples:

213

(expt 2 3) => 8
(expt .5 3) => a.125
(expt -49 1/2) => #c(a 7)
(expt 1/2 -2) => 4
(expt 2. a) => 1
(expt a 56) => a
(expt a 3/2) => a
(expt a.a 5) => a.a
(expt a.a #c(3 4)) => a.a
(expt #c(a 7) 2) => -49

zl:expt

;the principal value

For a table of related items: See the section "Arithmetic Functions" in
Symbolics Common Lisp: Language Concepts.

zl:expt num expt Function
Returns num raised to the exptth power. The result is an integer if both
arguments are integers (even if expt is negativeD and floating-point if ei
ther num or expt or both is floating-point. If the exponent is an integer a
repeated-squaring algorithm is used, while if the exponent is floating the
result is (exp (* expt (log num))).

The following functions are sYnonyms of zl:expt:

zl:"
zl:"$

For a table of related items: See the section "Arithmetic Functions" In
Symbolics Common Lisp: Language Concepts.

sys:external-symbol-not-found Flavor
A ":" qualified name referenced a name that had not been exported from
the specified package.

The :string message returns the name being referenced (no symbol by this
name exists yet). The :package message returns the package.

The :export proceed type exports a symbol by that name and uses it.

I

false 214

false &rest ignore Function
Takes no arguments and returns nil. See the section "Functions and Spe
cial Forms for Constant Values" in Symbolics Common Lisp: Language Con
cepts.

fboundp symbol Function
Returns t if symbol's function cell contains a function definition, or if sym
bol names a special form or a macro. Otherwise it returns nil. Since
fboundp returns t for special forms and macros, if you want to check for
these cases use special-form-p or macro-function.

fceiling number &optional (divisor 1) Function
This is just like ceiling, except that the first returned value is always a
floating-point number instead of an integer. The second returned value is
the remainder. If number is a floating-point number and divisor is not a
floating-point number of longer format, then the first returned value is a
floating-point number of the same type as number.

Examples:

(fceiling 5) => 5.8 and 8
(fceiling -5) => -5.8 and 8
(fceiling 5.2) => 6.8 and -8.8888882
(fceiling -5.2) => -5.8 and -8.19999981
(fceiling 5 3) => 2.8 and -1
(fceiling -5 3) => -1.8 and -2
(fceiling 5.2 4) => 2.8 and -2.8888882
(fceiling -5.2 4) => -1.8 and -1.1999998
(fceiling 4.2d8) => 5.8d8 and -8.7999999999999998d8
(fceiling -4.2d8) => -4.8d8 and -8.28888888888888818d8

For a table of related items: See the section "Functions That Divide and
Return Quotient as Floating-point Number" in Symbolics Common Lisp:
Language Concepts.

fdefine function-spec definition &optional carefully-flag Function
no-query-flag

This is the primitive that defun and everything else in the system use to
change the definition of a function spec. If carefully is non-nil, which it
usually should be, then only the basic definition is changed, the previous
basic definition is saved if possible (see undefun), and any encapSUlations

215 fdefinedp

of the function such as tracing and advice are carried over from the old
definition to the new definition. carefully also causes the user to be
queried if the function spec is being redefined by a file different from the
one that defined it originally. However, this warnings is suppressed if ei
ther the argument no-query is non-nil, or if the global variable
sys:inhibit-fdefine-warnings is t.

If fdefine is called while a file is being loaded, it records what file the
function definition came from so that the editor can find the source code.

If function-spec was already defined as a function, and carefully is non-nil,
the function-spec's :previous-definition property is used to save the pre
vious definition. If the previous definition is an interpreted function, it is
also saved on the :previous-expr-definition property. These properties are
used by the undefun function, which restores the previous definition, and
the uncompile function, which restores the previous interpreted definition.
The properties for different kinds of function specs are stored in different
places; when a function spec is a symbol its properties are stored on the
symbol's property list.

defun and the other function-defining special forms all supply t for care
fully and nil or nothing for no-query. Operations that construct encapsula
tions, such as trace, are the only ones that use nil for carefully.

fdefinedp function-spec Function
This returns t if function-spec has a definition, or nil if it does not.

sys:fdefine-file-pathname Variable
While loading a file, this is the generic-pathname for the file. The rest of
the time it is nil. fdefine uses this to remember what file defines each
function.

fdefinition function-spec Function
This returns function-spec's definition. If it has none, an error occurs.

sys:fdefinition-Iocation function-spec &optional for-compiler Function
This returns a locative pointing at the cell that contains function-spec's
definition. For some kinds of function specs, though not for symbols, this
can cause data structure to be created to hold a definition. For example, if
function-spec is of the :property kind, then an entry might have to be ad
ded to the property list if it isn't already there. In practice, you should
write (locf <fdefinition function-spec» instead of calling this function ex
plicitly.

I

zl:ferror 216

zl:ferror format-string &rest format-args Function
zl:ferror is a simple function for signalling when you do not care what the
condition is. zl:ferror signals the condition zl:ferror. (See the flavor
zl:ferror in Symbolics Common Lisp: Language Concepts.) The arguments
are passed as the :format-string and :format-args init keywords to the er
ror object.

The old <zl:ferror nil ...) syntax continues to be accepted for compatibility
reasons indefinitely; the nil is ignored. An error is signalled if the first ar
gument is a symbol other than nil; the first argument must be nil or a
string.

Note: zl:ferror is an obsolete function. Use error instead in your new
programs.

For a table of related items: See the section "Condition-Checking and Sig
nalling Functions and Variables" in Symbolics Common Lisp: Language
Concepts.

ffloor number &optional (divisor 1) Function
This is just like floor, except that the first returned value is always a
floating-point number instead of an integer. The second returned value is
the remainder. If number is a floating-point number and divisor is not a
floating-point number of longer format, then the first returned value is a
floating-point number of the same type as number.

Examples:

(ffloor 5) => 5.B and B
(ffloor -5) => -5.B and B
(ffloor 5.2) => 5.B and B.19999981
(ffloor -5.2) => -6.B and B.8BBBBB2
(ffloor 5 3) => 1.B and 2
(ffloor -5 3) => -2.B and 1
(ffloor 5.2 4) => 1.B and 1.1999998
(ffloor -5.2 4) => -2.B and 2.8BBBBB2
(ffloor 4.2dB) => 4.BdB and B.2BBBBBBBBBBBBBB18dB
(ffloor -4.2dB) => -5.BdB and B.7999999999999998dB

For a table of related items: See the section "Functions That Divide and
Return Quotient as Floating-point Number" in Symbolics Common Lisp:
Language Concepts.

217 fifth

fifth list Function
This function takes a list as an argument, and returns the fifth element of
the list. fifth is identical to

(nth 4 list)

The reason this name is provided is that it makes more sense when you
are thinking of the argument as a list rather than just as a cons.

For a table of related items: See the section "Functions for Extracting
From Lists" in Symbolics Common Lisp: Language Concepts.

fill sequence item &key (start 0) end Function
fill destructively modifies sequence by replacing each element of the sub
sequence specified by the :start (which defaults to zero) and :end (which
defaults to the length of the sequence) arguments with item.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero. '

item can be any be any Lisp object, but must be a suitable element for se
quence.

Use the keyword arguments :start and :end to delimit the portion of the
sequence to be operated on.

:start and :end must be non-negative integer indices into the sequence.
:start must be less than or equal to :end, else an error is signalled. It
defaults to zero (the start of the sequence).

:start indicates the start position for the operation within the sequence, up
to but not including the one specified by the :end index (defaults to -length
of sequence).

If both :start and :end are omitted, the entire sequence is processed by
default.

For example:

(setq a-vector (vector Ja Jb Jc Jd Je» => #(A BCD E)

(fill a-vector Jz :start 1 :end 3) => #(A Z ZOE)

a-vector => #(A Z ZOE)

(fill a-vector Jrah) => #(RAH RAH RAH RAH RAH)

a-vector => #(RAH RAH RAH RAH RAH)

For a table of related items: See the section "Sequence Modification" in
Symbolics Common Lisp: Language Concepts.

I

math :fill-2d-array 218

math:fill-2d-array array list Function
This is the opposite of math:list-2d-array. list should be a list of lists,
with each element being a list corresponding to a row. array's elements
are stored from the list. Unlike zl:fillarray, if list is not long enough,
math:fill-2d-array "wraps around", starting over at the beginning. The
lists that are elements of list also work this way.

zl:fillarray array source Function
Fills up array with the elements of source. array can be any type of array
or a symbol whose function cell contains an array. Two forms of this func
tion exist, depending on whether the type of source is a list or an array.

If source is a list, then zl:fillarray fills up array with the elements of list.
If source is too short to fill up all of array, then the last element of source
is used to fill the remaining elements of array. If source is too long, the
extra elements are ignored. If source is nil (the empty list), array is filled
with the default initial value for its array type (nil or 0).

If source is an array (or a symbol whose function cell contains an array),
then the elements of array are filled up from the elements of source. If
source is too small, then the extra elements of array are not affected.
zl:fillarray returns array.

If array is multidimensional, the elements are accessed in row-major order:
the last subscript varies the most quickly. The same is true of source if it
is an array.

: filled-elements Message
Returns the number of entries in the hash table that have an associated
value. This message will be removed in the future - use
zl-user:hash-table-count instead.

fill-pointer array Function
Returns the value of the fill pointer. array must have a fill pointer. setf
can be used on a fill-pointer form to set the value of the fill pointer.

finally Keyword For loop

finally expression
Puts expression into the epilogue of the loop, which is evaluated when the
iteration terminates (other than by an explicit return). For stylistic
reasons, then, this clause should appear last in the loop body. Note that
certain clauses can generate code that terminates the iteration without run
ning the epilogue code; this behavior is noted with those clauses. See the
section "loop Clauses", page 310. This clause can be used to cause the
loop to return values in a nonstandard way:

219

(loop for n in 1
sum n into the-sum
count t into the-count
finally (return (quotient the-sum the-count»)

(defun sum-series (limit)
(loop for num from 8 to limit

with sum-of-series = 8

is a list

initially (print "The sum of this series is :")
do

(setq sum-of-series (+ sum-of-series num»
finally (prin1 sum-of-series») => SUM-SERIES

(sum-series 9) =>
"The sum of this series is :" 45
NIL

(defun over-the-top (num)
(loop for i from 1 to 18

when (= i num) return
finally (print "Finally triggered"») => OVER-THE-TOP

(over-the-top 5) => 5
(over-the-top 28) =>
"Finally triggered" NIL

find

See the macro loop, page 309.

find item sequence &key (test #'eql) test-not (key #'identity) Function
from-end (start 0) end

If sequence contains an element satisfying the predicate specified by the
:test keyword argument, then the leftmost such element is returned; other
wise nil is returned.

item is matched against the elements specified by the test keyword. The
item can be any Symbolics Common Lisp object.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

:test specifies the test to be performed. An element of sequence satisfies
the test if (funcall testfun item (keyfn x» is true. Where testfun is the test
function specified by :test, keyfn is the function specified by :key and x is
an element of the sequence. The default test is eql.

:test-not is similar to :test, except that the sense of the test is inverted.
An element of sequence satisfies the test if (funcall testfun item (keyfn x»
is false.

I

find 220

For example:

(find 'a '(a bed) :test-not #'eql) => 8

The value of the keyword argument : key, if non-nil, is a function that
takes one argument. This function extracts from each element the part to
be tested in place of the whole element.

For example:

(find 'a '«a b) (a d) (b c» :key #'car) => (A 8)

(find 'a #«a b) (a d) (b a» :key #'cadr) => (8 A)

If the value of the :from-end keyword is non-nil, then the result is the
rightmost element satisfying the test.

For example:

(find 3 '«right 3) (west 2) (south 3» :key #'cadr :from-end t) => (SOUTH 3)

You can delimit the portion of the sequence to be operated on by the
keyword arguments :start and :end.

:start and :end must be non-negative integer indices into the sequence.
:start must be less than or equal to :end, else an error is signalled. It
defaults to zero (the start of the sequence).

:start indicates the start position for the operation within the sequence.
:end indicates the position of the first element in the sequence beyond the
end of the operation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by
default.

For example:

(find 'A '(b c a» => A

(find 'a '(a b b) :start 1 :end 3) => NIL

(find 'a '(a b b) :start 0 :end 3) => A

(find #(2 3 4 1) :end 4) => 1

(find #(2 3 4 1) :end 3) => NIL

For a table of related items: See the section "Searching for Sequence
Items" in Symbolics Common Lisp: Language Concepts.

221 find-ail-symbols

find-aU-symbols string Function
Searches all packages for symbols named string and returns a list of them.
Duplicates are removed from the list; if a symbol is present in more than
one package, it only appears once in the list. The global package is
searched first, and so global symbols appear earlier in the list than symbols
that shadow them. In . general packages are searched in the order that they
were created.

string can be a symbol, in which case its name is used. This is primarily
for user convenience when calling find-alI-symbols directly from the read
eval-print loop.

Invisible packages are not searched.

The where-is function is a more user-oriented version of find-aU-symbols;
it returns information about string, rather than just a list.

For more information: See the section "Mapping Names to Symbols" in
Symbolics Common Lisp: Language Concepts.

: find-by-item item &optional (equal-predicate #'=) of si:heap Method
Finds the first item that satisfies equal-predicate and returns the item and
key if it was found; otherwise it signals si:heap-item-not-found.
equal-predicate should be a function that takes two arguments. The first
argument to equal-predicate is the current item from the heap and the
second argument is item.

For a table of related items: See the section "Heap Functions and Methods"
in Symbolics Common Lisp: Language Concepts.

:find-by-key key &optional (equal-predicate #'=) of si:heap Method
Finds the first item whose key satisfies equal-predicate and returns the
item and key if it was found; otherwise it signals si:heap-item-not-found.
equal-predicate should be a function that takes two arguments. The first
argument to equal-predicate is the current key from the heap and the
second argument is key.

For a table of related items: See the section "Heap Functions and Methods"
in Symbolics Common Lisp: Language Concepts.

flavor:find-flavor flavor-name &optional (error-p t) Function
This is useful for determining whether a flavor is defined in the world.
Returns non-nil if the flavor is defined.

If the flavor is not defined and error-p is non-nil (or not supplied),
flavor:find-flavor returns nil. However, if the flavor is not defined and
error-p is nil, flavor:find-flavor signals an error.

•

find-if 222

find-if predicate sequence &key key from-end (start 0) end Function
If sequence contains an element satisfying predicate, then the leftmost such
element is returned; otherwise nil is returned.

predicate is the test to be performed on each element.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

The value of the keyword argument : key, if non-nil, is a function that
takes one argument. This function extracts from each element the part to
be tested in place of the whole element.

For example:

(find-if #'atom '«a (b» «a) b) (nil nil» :key #'second)
=> «A) 8)

If the value of the :from-end keyword is non-nil, then the result is the
rightmost element satisfying the test.

For example:

(find-if #'numberp '(1 2 2) :from-end t) => 2

(find-if #'numberp '(1 2 2) :from-end nil) => 1

You can delimit the portion of the sequence to be operated on by the
keyword arguments :start and :end.

:start and :end must be non-negative integer indices into the sequence.
:start must be less than or equal to :end, else an error is signalled. It
defaults to zero (the start of the sequence).

:start indicates the start position for the operation within the sequence.
:end indicates the position of the first element in the sequence beyond the
end of the operation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by
default.

For example:

(find-if #'oddp '(1 2 2» => 1

(find-if #'oddp '(1 1 1 222) :start 3 :end 4) => NIL

For a table of related items: See the section "Searching for Sequence
Items" in Symbolics Common Lisp: Language Concepts.

223 find-if-not

find-if-not predicate sequence &key key from-end (start 0) end Function
If sequence contains an element that does not satisfy predicate, then the
leftmost such element is returned; otherwise nil is returned.

predicate is the test to be performed on each element.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

The value of the keyword argument :key, if non-nil, is a function that
takes one argument. This function extracts from each element the part to
be tested in place of the whole element.

For example:

(find-if-not #'atom '«a (b» «a) b) (nil nil» :key #'second)
=> (A (8»)

If the value of the :from-end keyword is non-nil, then the result is the
rightmost element satisfying the test.

For example:

(find-if-not #'evenp '(3 2 1) :from-end t) => 1

(find-if-not #'evenp '(3 2 1) :from-end nil) => 3

For the sake of efficiency, you can delimit the portion of the sequence to be
operated on by the keyword arguments :start and :end.

:start and :end must be non-negative integer indices into the sequence.
:start must be less than or equal to :end, else an error is signalled. It
defaults to zero (the start of the sequence).

:start indicates the start position for the operation within the sequence.
:end indicates the position of the first element in the sequence beyond the
end of the operation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by
default.

For example:

(find-if-not #'oddp '(3 5 4 3 5) => 4

(find-if-not #'oddp '(3 543 5) :start 3 :end 4) => NIL

(find-if-not #'evenp '(3 5 4 3 5) :start 3 :end 4) => 3

For a table of related items: See the section "Searching for Sequence
Items" in Symbolics Common Lisp: Language Concepts.

•

find-package 224

find-package name Function
Returns the package object whose name is name. This allows you to locate
the actual package object for use with those functions that take a package
(not the name of the package) as an argument, such as package-name and
package-nicknames.

(find-package Jcl-user) =>
#<Package USER (really COMMON-LISP-USER) 35715022>

(find-package Jsys) => #<Package SYSTEM 35532204>

See the section "Mapping Between Names and Packages" in Symbolics
Common Lisp: Language Concepts.

zl:find-position-in-list item list Function
zl:find-position-in-list looks down list for an element that is eq to item,
like zl:memq. However, it returns the numeric index in the list at which it
found the first occurrence of item, or nil if it did not find it at all. This
function is sort of the complement of nth; like nth, it is zero-based. See
the function nth, page 382. Examples:

(zl :find-position-in-list Ja J(a b c» => 0
(zl :find-position-in-list Jc J(a b c» => 2
(zl :find-position-in-list Je J(a b c» => nil

For a table of related items: See the section "Functions for Finding Infor
mation About Lists and Conses" in Symbolics Common Lisp: Language Con
cepts.

zl:find-position-in-list-equal item list Function
zl:find-position-in-list-equal is exactly the same as zl:find-position-in-list,
except that the comparison is done with zl:equal instead of eq.

For a table of related items: See the section "Functions for Finding Infor
mation About Lists and Conses" in Symbolics Common Lisp: Language Con
cepts.

find-symbol string &optional (Pkg zl:package) Function

first list Function
This function takes a list as an argument and returns its first element.
first is identical to car. The reason this name is provided is that it makes
more sense when you are thinking of the argument as a list rather than
just as a cons.

For a table of related items: See the section "Functions for Extracting
From Lists" in Symbolics Common Lisp: Language Concepts.

225 zl :firstn

zl:firstn n list Function
zl:firstn returns a list of length n, whose elements are the first n elements
of list. If list is fewer than n elements long, the remaining elements of the
returned list are nil. Example:

(zl :firstn 2 '(a b cd» => (a b)
(zl :firstn 9 '(a b cd» => nil
(zl :firstn 6 '(a b cd» => (a b c d nil nil)

For a table of related items: See the section "Functions for Extracting
From Lists" in Symbolics Common Lisp: Language Concepts.

zl:IlX x Function
Converts x from a floating-point number to an integer, truncating towards
negative infinity. If x is already an integer, it is returned unchanged.

zl:IlX is similar to floor, except that it returns only the first value of floor.

See the section "Functions That Divide and Convert Quotient to Integer" in
Symbolics Common Lisp: Language Concepts.

For a table of related items: See the section "Functions That Divide and
Convert Quotient to Integer" in Symbolics Common Lisp: Language Con
cepts.

fixnum Type Specifier
fixnum is the type specifier symbol for the predefined primitive Lisp object,
fumum.

The types IIXnum and bignum are an exhaustive partition of the type in
teger, since integer == (or bi gnum fi xnum). These are internal represen
tations of integers used by the system for efficiency depending on integer
size; in general, fumums and bignums are transparent to the programmer.

Examples:

(typep 4 'fixnum) => T

(zl :typep '1) => :FIXNUM

(subtypep 'fixnum 'number) => T and T subtype and certain

(commonp most-positive-fixnum) => T

(zl :fixnump 99) => T

(type-of 8654) => FIXNUM

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the section "Numbers" in Symbolics Common
Lisp: Language Concepts.

I

zl:fixnump 226

zl:fixnump object Function
zl:ilXllump returns t if its argument is a flXIlum, otherwise nil.

For a table of related items: See the section "Numeric Type-checking
Predicates" in Symbolics Common Lisp: Language Concepts.

zl:fixp object Function
zl:iIXp returns t if its argument is an integer, otherwise nil.

For a table of related items: See the section "Numeric Type-checking
Predicates" in Symbolics Common Lisp: Language Concepts.

zl:fixr x Function
Converts x from a floating-point number to an integer, rounding to the
nearest integer. zl:iIXr is similar to round, except when x is exactly
halfway between two integers. In this case, Zl:iIXr rounds up <towards
positive infinity), while round rounds to an even integer.

zl:iIXr could have been defined by:

(defun z1 :fixr (x)
(if (z1 :fixp x) x (z1 :fix (+ x a.5))))

For a table of related items: See the section "Functions That Divide and
Convert Quotient to Integer" in Symbolics Common Lisp: Language Con
cepts.

flavor:flavor-allowed-init-keywords flavor-name Function
Returns an alphabetically sorted list of all symbols that are valid init op
tions for the flavor named flavor-name. Valid init options are allowed
keyword arguments to make-instance.

This function is primarily useful for people, rather than programs, to call
to get information. You can use this to help remember the name of an init
option or to help write documentation about a particular flavor.

flavor-allows-init-keyword-p flavor-name keyword Function
Returns non-nil if the keyword is a valid init option for the flavor named
flavor-name, or nil if it does not. Valid init options are allowed keyword
arguments to make-instance. The non-nil value is the name of the com
ponent flavor that contributes the support of that keyword.

This function is primarily useful for people, rather than programs, to call
to get information.

227 flavor:*flavor-com pi le-trace-I ist*

flavor: *flavor-compile-trace-list* Variable
Value is a list of structures, each of which describes the compilation of a
combined method into the run-time (not the compile-time) environment, in
newest-first order. The function flavor:print-flavor-compile-trace lets you
selectively access the information saved in this variable. See the function
flavor:print-flavor-compile-trace, page 403.

flavor:flavor-default-init-get flavor property Function
flavor:flavor-default-init-get is like get except that its first argument is
either a flavor structure or the name of a flavor. It retrieves the property
from the default init-plist of the specified flavor. You can use setf:

(setf (flavor:flavor-default-init-get f p) x)

flavor:flavor-default-init-putprop flavor value property Function
flavor:flavor-default-init-putprop is like putprop except that its first ar
gument is either a flavor structure or the name of a flavor. It puts the
property on the default-init-plist of the specified flavor.

flavor:flavor-default-init-remprop flavor property Function
flavor:flavor-default-init-remprop is like remprop except that its first ar
gument is either a flavor structure or the name of a flavor. It removes the
property from the default init-plist of the specified flavor.

float number &optional other Function
Converts any noncomplex number to a floating-point number. With no
second argument, if number is already a floating-point, number is returned.
If number is not of floating-point type, a single-float is produced and
returned.

If the second argument other is provided, it must be of floating-point type,
and number is converted to the same format as other.

Examples:

(float 3) => 3.8
(float 3 1.8d8) => 3.8d8

For a table of related items: See the section "Functions That Convert Num
bers to Floating-point Numbers" in Symbolics Common Lisp: Language Con
cepts.

float &optional (low '*) (high '*) Type Specifier
float is the type specifier symbol for the predefined Lisp floating-point
number type.

The types float, rational, and complex are pairwise disjoint subtypes of
number.

I

zl:float

The float data type is a supenype of the types:

short-float
single-float
long-float
double-float

228

This type specifier can be used in either symbol or list form. Used in list
form, float allows the declaration and creation of specialized floating-point
numbers, whose range is restricted to low and high.

low and high must each be a floating-point number, a list of floating-point
number, or unspecified; in floating-point number form the limits a;re in
clusive; in list form they are exclusive, and * means that a limit does not
exist and so effectively denotes minus or plus infinity, respectively.

Examples:

(typep 28.4e-2 'float) => T
(typep (/ (float 14) (float 4» 'float) => T
;note the use of float the function and float the type

(subtypep 'float 'number) => T and T ;subtype and certain
(subtypep 'single-float 'float) => T and T
(commonp (float 3» => T
(floatp 989.e-3) => T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

See the section "Numbers" in Symbolics Common Lisp: Language Concepts.

zl:float x Function
Converts any noncomplex number to a single-precision floating-point num
ber. Note that zl:float reduces a double-precision argument to single preci
sion.

Examples:

(zl :float 3) => 3.8
(zl :float 6.82d23) => 6.82e23

See the section "Functions That Convert Numbers to Floating-point
Numbers" in Symbolics Common Lisp: Language Concepts.

For a table of related items: See the section "Functions That Convert Num
bers to Floating-point Numbers" in Symbolics Common Lisp: Language Con
cepts.

229 float-digits

float-digits float Function
Returns, as a non-negative integer, the number of binary digits used in the
binary representation of its floating-point argument (including the implicit
"hidden bit" used in IEEE standard floating-point representation).

Examples:

(float-digits 8.8) => 24
(float-digits 3.8s5) => 24
(float-digits pi) => 53
(float-digits 1.9s-49) => 24

;pi is a long float

For a table of related items: See the section "Functions That Decompose
and Construct Floating-point Numbers" in Symbolics Common Lisp: Lan
guage Concepts.

floatp object Function
floatp returns t if its argument is a (single- or double-precision) floating
point number. Otherwise it returns nil.

For a table of related items: See the section "Numeric Type-checking
Predicates" in Symbolics Common Lisp: Language Concepts.

float-precision float Function
Returns, as a non-negative integer, the number of significant binary digits
present in the binary representation of the floating-point argument. Note
that if the argument is (a floating-point) zero, the result is an (integer)
zero. For normalized floating-point numbers, float-digits and
float-precision return identical results. For a denormalized or zero num
ber, the precision is smaller than the number of representation digits (that
is, float-precision returns a smaller number).

Examples:

(float-precision 8.8) => 8
(float-precision 1.6s-19) => 24
(float-precision 1.61-19) => 53
(float-precision 1.8s-48) => 17

For a table of related items: See the section "Functions That Decompose
and Construct Floating-point Numbers" in Symbolics Common Lisp: Lan
guage Concepts.

float-radix float Function
Returns the integer 2 denoting the radix of the internal IEEE floating-point
representation in Symbolics Common Lisp.

I

float-sign

Examples:
(float-radix pi) => 2
(float-radix 5.818) => 2

For a table of related items: See the section "Functions That Decompose
and Construct Floating-point Numbers" in Symbolics Common Lisp: Lan
guage Concepts.

230

float-sign fioatl &optional fioat2 Function
Returns a floating-point number z which has the same sign as fioatl and
the same absolute value and format as fioat2. The second argument
defaults to the value of (float 1 fioatl), that is, it is a floating-point 1 of
the same type as fioatl. Both arguments must be floating-point numbers.

Examples:

(float-sign 3.8) => 1.8
(float-sign -7.9) => -1.8
(float-sign -2.8 pi) => -3.141592653589793d8

For a table of related items: See the section "Functions That Decompose
and Construct Floating-point Numbers" in Symbolics Common Lisp: Lan
guage Concepts.

zl:flonump object Function
zl:flonump returns t if object is a single-precision floating-point number,
otherwise it returns nil.

The following function is a synonym of flonump:

sys:single-float-p

For a table of related items: See the section "Numeric Type-checking
Predicates" in Symbolics Common Lisp: Language Concepts.

floor number &optional (divisor 1) Function
Divides number by divisor, and truncates the result toward negative in
finity. The truncated result and the remainder are the returned values.

number and divisor must each be a noncomplex number. Not specifying a
divisor is exactly the same as specifying a divisor of 1.

If the two returned values are Q and R, then (+ (* Q divisor) R) equals
number. If divisor is 1, then Q and R add up to number. If divisor is 1
and number is an integer, then the returned values are number and o.
The first returned value is always an integer. The second returned value
is integral if both arguments are integers, is rational if both arguments are
rational, and is floating-point if either argument is floating-point. If only
one argument is specified, then the second returned value is always a num
ber of the same. type as the argument.

231

Examples:

(floor 5) => 5 and 8
(floor -5) => -5 and 8
(floor 5.2) => 5 and 8.19999981
(floor -5.2) => -6 and 8.8888882
(floor 5.8) => 5 and 8.8888882
(floor -5.8) => -6 and 8.19999981
(floor 5 3) => 1 and 2
(floor -5 3) => -2 and 1
(floor 5 4) => 1 and 1
(floor -5 4) => -2 and 3
(floor 5.2 3) => 1 and 2.1999998
(floor -5.2 3) => -2 and 8.8088082
(floor 5.2 4) => 1 and 1.1999998
(floor -5.2 4) => -2 and 2.8808882
(floor 5.8 3) => 1 and 2.8888882
(floor -5.8 3) => -2 and 8.19999981
(floor 5.8 4) => 1 and 1.8808882
(floor -5.8 4) => -2 and 2.1999998

fmakunbound

Using floor with one argument is the same as the zl:fix function, except
that zl:ilX returns only the first value of floor.

See the section "Comparison Of floor, ceiling, truncate And round" in
Symbolics Common Lisp: Language Concepts.

For a table of related items: See the section "Functions That Divide and
Convert Quotient to Integer" in Symbolics Common Lisp: Language Con
cepts.

fmakunbound sym Function
Causes sym to be undefined, that is, its function cell to be empty. It
returns sym.

for Keyword For loop

for is one of the iteration driving clauses for loop. As described below, there are
numerous variants for this keyword.

The optional argument, data-type is reserved for data type declarations. It is
currently ignored.

for var {data-type} from exprl {to expr2} {byexpr3}
To iterate upward. Performs numeric iteration.

var is initialized to exprl, and on each succeeding iteration is incremented by
expr3 (default 1). If the to phrase is given, the iteration terminates when

I

fmakunbound 232

var becomes greater than expr2. Each of the expressions is evaluated only
once, and the to and by phrases can be written in either order.

Note that the to variant appropriate for the direction of stepping must be used for
the endtest to be formed correctly; that is, the code does not work if expr3
is negative or O.

data-type defaults to f'lXIlUtn. The keyword as is equivalent to the keyword for.
Examples:

(defun loop1 0
(loop for i from 1 to 18

collect i» => LOOP1
(loop1) => (1 2 3 4 5 6 7 8 9 18)

(defun loop2 0
(loop for i from 8 to 5 by 1

do
(princ i») => LOOP2

(loop2) => 812345NIL

(defun loop3(inc)
(loop as x from 8 by inc to (+ inc 4)

do
(princ x)

(setq x (+ x 1»» => LOOP3
(loop3 1) => 924NIL

for var {data-type} from exprl downto expr2 {by expr3}
To iterate downward. Performs numeric iteration. var is initialized to
exprl, and on each succeeding iteration is decremented by expr3, and the
endtest is adjusted accordingly.

Examples:

(defun loop3 0
(loop for my-number from 7 by 2 downto -2

do
(princ my-number) (princ " H»~) => LOOP3

(loop3) => 7 5 3 1 -1 NIL

for var {data-type} from exprl {below expr2} {byexpr3}
Loop will terminate when the variable of iteration, exprl, is greater than or
equal to some terminal value, expr2.

Examples:

233·

(defun loop1 0
(loop for; from B below 1B

do
(princ i))) => LOOP1

(loop1) => 0123456789NIL

(defun loop2 0
(loop for my-number from 7.5 by .5 below 12

do
(princ my-number) (princ " "))) => LOOP2

(loop2) => 7.5 8.B 8.5 9.0 9.5 10.8 1B.5 11.0 11.5 NIL

for var {data-type} from exprl {above expr2} {byexpr3}

for

Loop will terminate when the variable of iteration is less than or equal to
some terminal value.

Examples:

(defun loop1 0
(loop for my-number from 12 by .5 above 7.5

do
(print my-number))) => LOOP1

(loop1) =>
12
11.5
11.0
10.5
10.0
9.5
9.B
8.5
8.0 NIL

for var {data-type} downfrom exprl {byexpr2}
Used to iterate downward with no limit.

Examples:

for

(defun loop-downfrom (num)
(loop for x downfrom 8 by num

do
(print x») => LOOP-OOWNFROH

(loop-downfrom 1)
8

7
6

5 ... ;infinite

234

for var {data-type} upfrom exprl {byexpr2}
Used to iterate upward with no limit.

Examples:

(defun loop-upfrom ()
(loop for x upfrom -2 by 2

do
(print x») => LOOP-UPFROH

(loop-upfrom)
-2
B
2

4 ... ;infinite

for var {data-type} in exprl {by expr2}
Iterates over each of the elements in the list exprl. If the by subclause is
present, expr2 is evaluated once on entry to the loop to supply the function
to be used to fetch successive sublists, instead of cdr.

Examples:

(defun loop1 (input-list)
(loop for x in input-list

for i from B
do

(prine (list i x»» => LOOP1
(loop1 '(a b (e d) e» => (B A)(1 8)(2 (C 0»(3 E)NIL

for var {data-type} on exprl {byexpr2}
Like the previous for format, except that var is set to successive sublists of
the list instead of successive elements. Note that since var is always a list,
it is not meaningful to specify a data-type unless var is a destructuring pat
tern, as described in the section on destructuring. Note also that loop uses
a null rather than an atom test to implement both this and the preceding
clause.

235

Example:

(defun loop1 (input-list)
(loop for sub1 on input-list

do
(print sub1))) => LOOP1

(loop1 J (a b c (k c) d)) =>
(A 8 C (K C) D)
(8 C (K C) D)
(C (K C) D)

«K C) D)

(D) NIL

In contrast to what in would do

(defun loop1 (input-list)
(loop for sub1 in input-list

do
(print sub1)) => LOOP1

(loop1 J(a b c (k c) d» =>
A
8
C
(K C)
D NIL

for uar {data-type} = expr
On each iteration, expr is evaluated and uar is set to the result.

for uar {data-type} = exprl then expr2

for

uar is bound to exprl when the loop is entered, and set to expr2
(reevaluated) at all but the first iteration. Since exprl is evaluated during
the binding phase, it cannot reference other iteration variables set before
it; for that, use the following:

Examples:

(defun loop1 (x)

(loop for stepper = x then (* stepper x)
do

(print stepper») => LOOP1
(loop1 3)
3
9

27
81... infinite loop

•

fourth 236

for var {data-type} first exprl then expr2
Sets var to exprl on the first iteration, and to expr2 (reevaluated) on each
succeeding iteration. The evaluation of both expressions is performed in
side of the loop binding environment, before the loop body. This allows
the first value of var to come from the first value of some other iteration
variable, allowing such constructs as:

(loop for term in poly
for ans first (car term) then (gcd ans (car term»
finally (return ans»

for var. {data-type} being expr and its path •••
for var {data-type} being {eachlthe} path •••

This provides a user-definable iteration facility. path names the manner in
which the iteration is to be performed. The ellipsis indicates where various
path-dependent preposition/expression pairs can appear.

See the section "Iteration Paths" in Symbolics Common Lisp: Language Concepts.
Examples:

(define-loop-sequence-path ascii-char
(lambda (string i)

(ascii-code (aref string i»)
length) => NIL

(loop for x being the ascii-char of "ABC"
doing

(print x» =>
65
66
67 NIL; 65 is the ascii equivalent of "A"

(loop for a being the array-elements of q using (index ai)
collecting (lambda (x)

when (> x a)
(aset x q ai»»

See the section "loop Clauses", page 310.

fourth list Function
This function takes a list as an argument, and returns the fourth element
of the list. fourth is identical to

237 dbg :frame-active-p

(nth 3 1 i st)

The reason this name is provided is that it makes more sense when you
are thinking of the argument as a list rather than just as a cons.

For a table of related items: See the section "Functions for Extracting
From Lists" in Symbolics Common Lisp: Language Concepts.

dbg:frame-active-p frame Function
dbg:frame-active-p indicates whether frame is an active frame.

Value Meaning
nil Frame is not active
not nil Frame is active

Caution: Use this function only within the context of the
dbg:with-erring-frame macro.

For a table of related items: See the section "Functions for Examining
Stack Frames" in Symbolics Common Lisp: Language Concepts.

dbg:frame-arg-value frame arg-name-or-number &optional Function
callee-context no-error-p

dbg:frame-arg-value returns the value of the nth argument to frame. It
returns a second value, which is a locative pointer to the word in the stack
that holds the argument. If n is out of range, then it takes action based
on no-error-p: if no-error-p is nil, it signals an error, otherwise it returns
nil. n can also be the name of the argument (a symbol, but it need not be
in the right package). Each argument passed for an &rest parameter
counts as a separate argument when n is a number. dbg:frame-arg-value
controls whether you get the caller or callee copy of the argument (original
or possibly modified.)

Caution: Use this function only within the context of the
dbg:with-erring-frame macro.

For a table of related items: See the section "Functions for Examining
Stack Frames" in Symbolics Common Lisp: Language Concepts .

dbg:frame-Iocal-value frame local-name-or-number &optional Function
no-error-p

dbg:frame-Iocal-value returns the value of the nth local variable in frame.
n can also be the name of the local variable (a symbol, but it need not be
in the right package). It returns a second value, which is a locative
pointer to the word in the stack that holds the local variable. If n is out
of range, then the action is based on no-error-p: if no-error-p is nil, it sig
nals an error, otherwise it returns nil.

Caution: Use this function only within the context of the
dbg:with-erring-frame macro.

•

dbg :frame-next-active-frame

For a table of related items: See the section "Functions for Examining
Stack Frames" in Symbolics Common Lisp: Language Concepts.

238

dbg:frame-next-active-frame frame Function
dbg:frame-next-active-frame returns a frame pointer to the next active
frame following frame. If frame is the last active frame on the stack, it
returns nil.

"Next" means the frame of a procedure that was invoked more recently
(the frame called by this one; toward the top of the stack).

Caution: Use this function only within the context of the
dbg:with-erring-frame macro.

For a table of related items: See the section "Functions for Examining
Stack Frames" in Symbolics Common Lisp: Language Concepts.

dbg:frame-next-interesting-active-frame frame Function
dbg:frame-next-interesting-active-frame returns a frame pointer to the
next interesting active frame following frame. If frame is the last interest
ing active frame on the stack, it returns nil.

"Next" means the frame of a procedure that was invoked more recently
(the frame called by this one; toward the top of the stack).

"Interesting active frames" include all of the active frames except those
that are parts of the internals of the Lisp interpreter, such as the frames
for eval, apply, funcall, let, and other basic Lisp special forms. The list
of such functions is the value of the system constant,
dbg:*uninteresting-functions*.

Caution: Use this function only within the context of the
dbg:with-erring-frame macro.

For a table of related items: See the section "Functions for Examining
Stack Frames" in Symbolics Common Lisp: Language Concepts.

dbg:frame-next-nth-active-frame frame &optional (count 1) Function
dbg:frame-next-nth-active-frame goes up the stack by count active frames
from frame and returns a frame pointer to that frame. It returns a second
value that is not nil. When count is positive, this is like calling
dbg:frame-next-active-frame count times; count can also be negative or
zero. If either end of the stack is reached, it returns a frame pointer to
the first or last active frame and nil.

"Next" means the frame of a procedure that was invoked more recen~ly
(the frame called by this one; toward the top of the stack).

Caution: Use this function only within the context of the
dbg:with-erring-frame macro.

239 dbg:frame-next-nth-interesting-active-frame

For a table of related items: See the section "Functions for Examining
Stack Frames" in Symbolics Common Lisp: Language Concepts.

dbg:frame-next-nth-interesting-active-frame frame &optional Function
(count 1)

dbg:frame-next-nth-interesting-active-frame goes up the stack by count in
teresting active frames from frame and returns a frame pointer to that
frame. It returns a second value that is not nil. When count is positive,
this is like calling dbg:frame-next-interesting-active-frame count times;
count can also be negative or zero. If either end of the stack is reached, it
returns a frame pointer to the first or last active frame and nil.

"Next" means the frame of a procedure that was invoked more recently
(the frame called by this one; toward the top of the stack).

"Interesting active frames" include all of the active frames except those
that are parts of the internals of the Lisp interpreter, such as the frames
for eval, apply, funcall, let, and other basic Lisp special forms. The list
of such functions is the value of the system constant,
dbg:*uninteresting-functions* .

Caution: Use this function only within the context of the
dbg:with-erring-frame macro.

For a table of related items: See the section "Functions for Examining
Stack Frames" in Symbolics Common Lisp: Language Concepts.

dbg:frame-next-nth-open-frame frame &optional (count 1) Function
dbg:frame-next-nth-open-frame goes up the stack by count open frames
from frame and returns a frame pointer to that frame. It returns a second
value that is not nil. When count is positive, this is like calling
dbg:frame-next-open-frame count times; count can also be negative or
zero. If either end of the stack is reached, it returns a frame pointer to
the iust or last active frame and nil.

"Next" means the frame of a procedure that was invoked more recently
(the frame called by this one; toward the top of the stack).

Caution: Use this function only within the context of the
dbg:with-erring-frame macro.

For a table of related items: See the section "Functions for Examining
Stack Frames" in Symbolics Common Lisp: Language Concepts.

dbg:frame-next-open-frame frame Function
dbg:frame-next-open-frame returns a frame pointer to the next open frame
following frame-pointer. If frame is the last open frame on the stack, it
returns nil.

I

dbg:frame-number-of-Iocals

" Next" means the frame of a procedure that was invoked more recently
(the frame called by this one; toward the top of the stack).

Caution: Use this function only within the context of the
dbg:with-erring-frame macro.

For a table of related items: See the section "Functions for Examining
Stack Frames" in Symbolics Common Lisp: Language Concepts.

240

dbg:frame-number-of-Iocals frame Function
dbg:frame-number-of-Iocals returns the number of local variables allocated
for frame.

Caution: Use this function only within the context of the
dbg:with-erring-frame macro.

For a table of related items: See the section "Functions for Examining
Stack Frames" in Symbolics Common Lisp: Language Concepts.

dbg:frame-number-of-spread-args frame &optional (type Function
: supplied)

dbg:frame-number-of-supplied-args returns the number of "spread" ar
guments that were passed in frame. (These are the arguments that are not
part of a &rest parameter.) Sending a message to an instance results in
two implicit arguments being passed internally along with the other ar
guments. These implicit arguments are included in the count.

type requests more specific definition of the number:

Value
: supplied

: expected

:allocated

Meaning
Returns the number of arguments that were actually
passed by the caller, except for arguments that were
bound to a &rest parameter. This is the default.
Returns the number of arguments that were expected by
the function being called.
Returns the number of arguments for which stack loca
tions have been allocated. In the absence of a &rest
parameter, this is the same as :expected for compiled
functions, and the same as :supplied for interpreted
functions. If stack locations were allocated for ar
guments that were bound to a &rest parameter, they are
included in the returned count.

These values would all be the same except in cases where a wrong-number
of-arguments error occurred, or where there are optional arguments
(expected but not supplied).

Caution: Use this function only within the context of the
dbg:with-erring-frame macro.

241 d bg :frame-out-to-interesti n g-active-frame

For a table of related items: See the section "Functions for Examining
Stack Frames" in Symbolics Common Lisp: Language Concepts.

dbg:frame-out-to-interesting-active-frame frame Function
dbg:frame-out-to-interesting-active-frame returns either frame (if it points
to an interesting active frame) or the previous interesting active frame be
fore frame-pointer. (This is' what the :Previous Frame command C-M-U in
the debugger does.)

"Interesting active frames" include all of the active frames except those
that are parts of the internals of the Lisp interpreter, such as the frames
for eval, apply, funcall, let, and other basic Lisp special forms. The list
of such functions is the value of the system constant,
dbg:*uninteresting-functions* .

Caution: Use this function only within the context of the
dbg:with-erring-frame macro.

For a table of related items: See the section "Functions for Examining
Stack Frames" in Symbolics Common Lisp: Language Concepts.

dbg:frame-previous-active-frame frame Function
dbg:frame-previous-active-frame returns a frame pointer to the previous
active frame before frame. If frame is the first active frame on the stack,
it returns nil.

"Previous" means the frame of a procedure that was invoked less recently
(the caller of this frame; towards the base of the stack).

Caution: Use this function only within the context of the
dbg:with-erring-frame macro.

For a table of related items: See the section "Functions for Examining
Stack Frames" in Symbolics Common Lisp: Language Concepts.

dbg:frame-previous-interesting-active-frame frame Function
dbg:frame-previous-interesting-active-frame returns a frame pointer to
the previous interesting active frame before frame. If frame is the first in
teresting active frame on the stack, it returns nil.

"Previous" means the frame of a procedure that was invoked less recently
(the caller of this frame; towards the base of the stack).

"Interesting active frames" include all of the active frames except those
that are parts of the internals of the Lisp interpreter, such as the frames
for eval, apply, funcall, let, and other basic Lisp special forms. The list
of such functions is the value of the system constant,
dbg:*uninteresting-functions*. .

Caution: Use this function only within the context of the
dbg:with-erring-frame macro.

I

dbg :frame-previous-open-frame

For a table of related items: See the section "Functions for Examining
Stack Frames" in Symbolics Common Lisp: Language Concepts.

242

dbg:frame-previous-open-frame frame Function
dbg:frame-previous-open-frame returns a frame pointer to the previous
open frame before frame. If frame is the first open frame on the stack, it
returns nil.

"Previous" means the frame of a procedure that was invoked less recently
(the caller of this frame; towards the base of the stack).

Caution: Use this function only within the context of the
dbg:with-erring-frame macro.

For a table of related items: See the section "Functions for Examining
Stack Frames" in Symbolics Common Lisp: Language Concepts.

dbg:frame-real-function frame Function
dbg:frame-real-function returns either the function object associated with
frame or self when the frame was the result of sending a message to an in
stance.

Caution: Use this function only within the context of the
dbg:with-erring-frame macro.

For a table of related items: See the section "Functions for Examining
Stack Frames" in Symbolics Common Lisp: Language Concepts.

dbg:frame-real-value-disposition frame Function
dbg:frame-real-value-disposition returns a symbol indicating how the call
ing function is going to handle the values to be returned by this frame. If
the calling function just returns the values to its caller, then the symbol
indicates how the final recipient of the values is going to handle them.
Value Meaning
: ignore The values would be ignored; the function was called for

effect.
: single

: multiple

The first value would be received and the rest would not;
the function was called for value.
All the values would be received; the function was called
for multiple values. It returns a second value indicating
the number of values expected. nil indicates an indeter
minate number and is always returned.

Caution: Use this function only within the context of the
dbg:with-erring-frame macro.

For a table of related items: See the section "Functions for Examining
Stack Frames" in Symbolics Common Lisp: Language Concepts.

243 dbg :frame-self-val ue

dbg:frame-self-value frame &optional instance-trame-only Function
dbg:frame-self-value returns the value of self in frame, or nil if self does
not have a value. If instance-frame-only is not nil then it returns nil un
less this frame is actually a message-sending frame created by send.

Caution: Use this function only within the context of the
dbg:with-erring-frame macro.

For a table of related items: See the section "Functions for Examining
Stack Frames" in Symbolics Common Lisp: Language Concepts.

dbg:frame-total-number-of-args frame Function
dbg:frame-total-number-of-args returns the number of arguments that
were passed in frame. For functions that take an &rest parameter, each
argument is counted separately. Sending a message to an instance results
in two implicit arguments being passed internally along with the other ar
guments. These implicit arguments are included in the count.

Caution: Use this function only within the context of the
dbg:with-erring-frame macro.

For a table of related items: See· the section "Functions for Examining
Stack Frames" in Symbolics Common Lisp: Language Concepts.

fround number &optional (divisor 1) Function
This is just like round, except that the first returned value is always a
floating-point number instead of an integer. The second returned value is
the remainder. If number is a floating-point number and divisor is not a
floating-point number of longer format, then the first returned value is a
floating-point number of the same type as number.

Examples:

(fround 5) => 5.8 and 8
(fround -5) => -5.8 and 8
(fround 5.2) => 5.8 and 8.19999981
(fround -5.2) => -5.8 and -8.19999981
(fround 5 3) => 2.8 and -1
(fround -5 3) => -2.8 and 1
(fround 5.2 4) => 1.8 and 1.1999998
(fround -5.2 4) => -1.8 and -1.1999998
(fround 4.2d8) => 4.8d8 and 8.28800000080000018d0
(fround -4.2d8) => -4.8d0 and -8.28000000000000018d0

•

zl:fset

For a table of related items: See the section "Functions That Divide and
Return Quotient as Floating-point Number" in Symbolics Common Lisp:
Language Concepts.

244

zl:fset sym definition Function
Stores definition, which can be any Lisp object, into sym's function cell. It
returns definition.

zl:fset-carefully function-spec definition &optional no-query-flag
This function is obsolete. It is equivalent to:

(fdefi ne symbol definition t force-flag)

Function

zl:fsignal format-string &rest format-args Function
zl:fsignal is a simple function for signalling when you do not care to use a
particular condition. zl:fsignal signals dbg:proceedable-ferror. (See the
flavor dbg:proceedable-ferror in Symbolics Common Lisp: Language
Concepts.) The arguments are passed as the :format-string and
:format-args init keywords to the error object.

Note: zl:fsignal is now obsolete. Use cerror in your new programs in
stead.

For a table of related items: See the section "Condition-Checking and Sig
nalling Functions and Variables" in Symbolics Common Lisp: Language
Concepts.

zl:fsymeval symbol Function
Returns symbol's definition, the contents of its function cell. If the func
tion cell is empty, zl:fsymeval causes an error.

The Common Lisp equivalent for zl:fsymeval is symbol-function.

ftruncate number &optional (divisor 1) Function
This is just like truncate, except that the first returned value is always a
floating-point number instead of an integer. The second returned value is
the remainder. If number is a floating-point number and divisor is not a
floating-point number of longer format, then the first returned value is a
floating-point number of the same type as number.

245

Examples:
(ftruncate 5) => 5.0 and 0
(ftruncate -5) => -5.0 and 0
(ftruncate 5.2) => 5.0 and 0.19999981
(ftruncate -5.2) => -5.0 and -0.19999981
(ftruncate 5 3) => 1.0 and 2
(ftruncate -5 3) => -1.0 and -2
(ftruncate 5.2 4) => 1.0 and 1.1999998
(ftruncate -5.2 4) => -1.0 and -1.1999998
(ftruncate 4.2d0) => 4.0d0 and 0.2B000000000000018d0
(ftruncate -4.2d0) => -4.0d0 and -B.200BBBBBBBBBBBB18dB

funeall

For a table of related items: See the section "Functions That Divide and
Return Quotient as Floating-point Number" in Symbolics Common Lisp:
Language Concepts.

funcall fn &rest args Function
(funcall fn al a2 ••• an) applies the function fn to the arguments al, a2, ""
an. fn cannot be a special form nor a macro; this would not be meaning
ful. Example:

(cons 1 2) => (1 . 2)
(setq cons 'plus)
(funcall cons 1 2) => 3
(cons 1 2) => (1 . 2)

This shows that the use of the symbol cons as the name of a variable and
the use of that symbol as the name of a function do not interact. The fun
call form evaluates the variable and gets the symbol zl:plus, which is the
name of a different function. The cons form invokes the function named
cons.

Note: The Maclisp functions sub realI, IsubrcalI, and zl:arraycall are not I
needed in Symbolics Common Lisp; funcall is just as efficient. zl:arraycall
is provided for compatibility; it ignores its first subform (the Maclisp array
type) and is otherwise identical to aref. subrcall and lsubrcall are not
provided.

See the section "Functions for Function Invocation" in Symbolics Common
Lisp: Language Concepts.

function 246

function « argl-type arg2-type ...) value-type) Type Specifier
function is the type specifier for the predefined Lisp object of that name.

The list syntax is for declaration. Every element of this type is a function
that accepts arguments at least of the types specified by the argj-type
forms, and returns a value that is a member of the types specified by the
value-type form.

Examples:

(defun fun-example (num) (+ num num» => FUN-EXAMPLE
(typep 'fun-example 'function) => T
(sys:type-arglist 'function) => NIL and T
(functionp 'fun-example) => T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

See the section "Functions" in Symbolics Common Lisp: Language Concepts.

function function Special Form
This means different things depending on whether function is a function or
the name of a function. (Note that in neither case is function evaluated.)
The name of a function is a symbol or a function-spec list. See the section
"Function Specs" in Symbolics Common Lisp: Language Concepts. A func
tion is typically a list whose car is the symbol lambda; however there are
several other kinds of functions available. See the section "Kinds of
Functions" in Symbolics Common Lisp: Language Concepts.

If you want to pass an anonymous function as an argument to a function,
you could just use quote. For example:

(mapc (quote (lambda (x) (car x») some-list)

The compiler and interpreter cannot tell that the first argument is going to
be used as a function; for all they know, mapc treats its first argument as
a piece of list structure, asking for its car and cdr and so forth. The com
piler cannot compile the function; it must pass the lambda-expression un
modified. This means that the function does not get compiled, which
makes it execute more slowly than it might otherwise. The interpreter
cannot make references to free lexical variables work by making a lexical
closure; it must pass the lambda-expression unmodified.

The function special form is the way to say that a lambda-expression
represents a function rather than a piece of list structure. You just use
the symbol function instead of quote:

247 function

(mapc (function (lambda (x) (car x))) some-list)

To ease typing, the reader converts #'thing into (function thing). So #' is
similar to ' except that it produces a function form instead of a quote
form. So the above form could be written as:

(mapc #J(lambda (x) (car x)) some-list)

If function is not a function but the name of a function (typically a symbol,
but in general any kind of function spec), then function returns the defini
tion of function; it is like fdefinition except that it is a special form in
stead of a function, and so

(function fred)

is like

(fdefinition Jfred)

which is like

(fsymeval Jfred)

since fred is a symbol.

If function is the name of a local function defined with flet or labels, then
(function function) produces a lexical closure of function, just like
(function (lambda ••. ».
Another way of explaining function is that it causes function to be treated
the same way as it would as the car of a form. Evaluating the form
(function argl arg2 •••) uses the function definition of function if it is a sym
bol, and otherwise expects function to be a list that is a lambda-expression.
Note that the car of a form cannot be a nonsymbol function spec, to avoid
difficult-to-read code. This can be written as:

(funcall (function spec) args ...)

You should be careful about whether you use #' or'. Suppose you have a
program with a variable x whose value is assumed to contain a function
that gets called on some arguments. If you want that variable to be the
car function, there are two things you could say:

(setq x Jcar)
or
(setq x #J car)

The former causes the value of x to be the symbol car, whereas the latter
causes the value of x to be the function object found in the function cell of
car. When the time comes to call the function (the program does (funcall
x ••• », either of these two work because if you use a symbol as a function,
the contents of the symbol's function cell is used as the function. The

I

sys:function-cell-Iocation 248

former case is a bit slower, because the function call has to indirect
through the symbol, but it allows the function to be redefined, traced, or
advised. (See the special form trace in Program Development Utilities. See
the special form advise in Program Development Utilities.) The latter case,
while faster, picks up· the function definition out of the symbol car and
does not see any later changes to it.

sys:function-cell-Iocation sym Function
Returns a locative pointer to sym's function cell. See the section "Cells
and Locatives". It is preferable to write:

(locf (fsymeval sym»

rather than calling this function explicitly.

si:function-encapsulated-p function-spec Function
si:function-encapsulated-p looks at the debugging info alist to check
whether function-spec is an encapsulation.

functionp arg &optional allow-special-forms Function
functionp returns t if its argument is a function (essentially, something
that is acceptable as the first argument to apply), otherwise it returns nil.
In addition to interpreted, compiled, and built-in functions, functionp is
true of closures, select-methods, and symbols whose function definition is
functionp. See the section "Other Kinds of Functions" in Symbolics Com
mon Lisp: Language Concepts. functionp is not true of objects that can be
called as functions but are not normally thought of as functions: arrays,
stack groups, entities, and instances. If allow-special-forms is specified and
non-nil, then functionp is true of macros and special-form functions (those
with quoted arguments). Normally functionp returns nil for these since
they do not behave like functions. As a special case, functionp of a symbol
whose function defmition is an array returns t, because in this case the ar
ray is being used as a function rather than as an object.

sys:function-parent function-spec &optional definition-type Function
When a symbol's definition is produced as the result of macro expansion of
a source definition, so that the symbol's definition does not appear textually
in the source, the editor cannot find it. The accessor, constructor, and al
terant macros produced by a zl:defstruct are an example of this. The
sys:function-parent declaration can be inserted in the source definition to
record the name of the outer definition of which it is a part.

The declaration consists of the following:

(sys:function-parent name type)

name is the name of the outer definition. type is its type, which defaults to

249 si :function-spec-get

defun. See the section "Using The sys:function-parent Declaration" in
Symbolics Common Lisp: Language Concepts. Declarations are explained in
another section. See the section "Declarations" in Symbolics Common Lisp:
Language Concepts.

sys:function-parent is a function related to the declaration. It takes a
function spec and returns nil or another function spec. The first function
spec's definition is contained inside the second function spec's definition.
The second value is the type of definition.

Two examples:

(defsubst foo (x y)
(declare (sys:function-parent bar»
...)

(defmacro defxxx (name ...)
'(local-declare «sys:function-parent ,name defxxx))

(defmacro ...)
(defmacro ...)
))

si:function-spec-get function-spec indicator Function
Returns the value of the indicator property of function-spec, or nil if it
doesn't have such a property.

si:function-spec-putprop function-spec value indicator Function
Gives function-spec an indicator property whose value is value.

fundefine function-spec Function
Removes the definition of function-spec. For symbols this is equivalent to
fmakunbound. If the function is encapsulated, fundefine removes both
the basic definition and the encapsulations. Some types of function specs
(:location for example) do not implement fundefine. fundefine on a
:within function spec removes the replacement of function-to-affect, putting
the definition of within-function back to its normal state. fundefine on a
method's function spec removes the method completely, so that future mes
sages or generic functions will be handled by some other method.

Regarding fundefine and generic functions: The first time you define a
method for a previously undefined generic function, the name of the
generic function is given the generic function as its function definition, so
you can call it. Additional method definitions do not do this, even if you
fundefine the name of the generic function. Thus, if you fundefine a
generic function, and then compile a defmethod form, the generic function
remains undefined until you do an explicit defgeneric. While the generic
function is undefined, any callers to it will malfunction.

I

I

ged. 30

gcd &rest integers Function
Computes and returns an integer representing the greatest common divisor
of all the arguments, which must be integers. The result is always non
negative.

If one argument is given, the absolute value is returned. If there are no
arguments, the returned value is o.
Examples:

(gcd) => 8
(gcd -9) => 9
(gcd 36 48) => 12
(gcd 16 72 48 24) => 8

For a table of related items: See the section "Arithmetic Functions" in
Symbolics Common Lisp: Language Concepts.

zl:gcd integerl integer2 &rest more-integers Function
Returns the greatest common divisor of all its arguments. The arguments
must be integers.

The following function is a synonym of zl:gcd:

zl:\\\\

For a table of related items: See the section "Arithmetic Functions" in
Symbolics Common Lisp: Language Concepts.

flavor: generic generic-function-name Special Form
Evaluates to the generic function named generic-function-name (which is not
evaluated). This is used when there is a prologue function so that the
function definition of generic-function-name is not itself the generic func
tion. This is used in conjunction with the :function option to defgeneric.
For example:

(apply (flavor:generic make-instance) new-instance init-options)

sys:generic-function Type Specifier
sys:generic-function is the type specifier symbol for the predefined Lisp
object of that name.

Examples:

251

(defflavor ship
(name x-velocity y-velocity z-velocity mass)
o j no component fl avors

:readable-instance-variables
:writable-instance-variables
:initable-instance-variables) => SHIP

(setq my-ship
(make-instance 'ship :name "Enterprise"

:mass 4534
:x-velocity 24
:y-velocity 2

gensym

:z-velocity 45)) => #<SHIP 43062426>

(ship-name my-ship) => "Enterprise"

(typep #'ship-name 'sys:generic-function) => T

(defmethod (speed ship) ()
(sqrt (+ (expt x-velocity 3)

(expt y-velocity 4)
(expt z-velocity 1)))) => (FLAVOR:HETHOD SPEED SHIP)

(typep #'speed 'sys:generic-function) => T
(type-of my-ship) => SHIP
(sys:type-arglist 'sys:generic-function) => NIL

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

See the section "Flavors" in Symbolics Common Lisp: Language Concepts.

gensym &optional arg Function
Invents a print-name, and creates a new symbol with that print-name. It
returns the new, uninterned symbol.

The invented print-name is a character prefix (the value of
si:*gensym-preilX) followed by the decimal representation of a number (the
value of si:*gensym-counter), for example, "GOOOl". The number is in
creased by 1 every time gensym is called.

If the argument arg is present and is a fIXnum, then si:*gensym-counter is
set to argo If arg is a string or a symbol, then si:*gensym-preilX is set to
the string or the symbol's print-name. After handling the argument, gen
sym creates a symbol as it would with no argument. Examples:

I

zl:gensym 252

if (gensym) =>#: G3310
then (gensym "faa") => #: Ifo03311 1

(gensym 32) => #: Ifo0321
(gensym) => #: 1 fo033 1

gensym is usually used to create a symbol that should not normally be
seen by the user, and whose print-name is unimportant, except to allow
easy distinction by eye between two such symbols. The optional argument
is rarely supplied. The name comes from "generate symbol", and the sym
bols produced by it are often called "gensyms".

zl:gensym &optional x Function
Invents a print-name, and creates a new symbol with that print-name. It
returns the new, uninterned symbol.

If the argument x is present and is a Iumum, then si:*gensym-counter is
set to x and incremented. If x is a string or a symbol, then
si:*gensym-preIlX is set to the first character of the string or of the
symbol's print-name. Mter handling the argument, zl:gensym creates a
symbol as it would with no argument. Examples:

if (z1 :gensym) =>#:G3310
then (z1 :gensym "faa") => #:F3311

(z1 :gensym 32) => #:F0033
(z1 :gensym) => #:F0034

Note that the number is in decimal and always has four digits, and the
prefix is always one character.

See the function gensym, page 251.

gentemp &optional (prefix "t") package Function
Creates and returns a new symbol as gensym does, but gentemp interns
the symbol in package. package defaults to the current package, that is,
the value of *package*. gentemp guarantees that the generated symbol is
a new one not already existing in package. There is no provision for reset
ting the gentemp counter and the prefix is not remembered from one call
to the next. If prefix is omitted, T is used. See the section "Functions for
Creating Symbols" in Symbolics Common Lisp: Language Concepts.

get symbol indicator &optional default Function
get searches the property list of symbol for an indicator that is eq to in
dicator. See the section "Property Lists" in Symbolics Common Lisp: Lan
guage Concepts. The first argument must be a symbol. If a matching in
dicator is found, then the corresponding value is returned; otherwise default
is returned. If default is not specified, then nil is used as the default.

253 zl:get

Note that there is no way to distinguish an absent property from one whose
value is default.

Suppose that the property list of eagle is

(color (brown white) food snakes seed-eater nil)

Then, for example:

(get 'eagle 'color) => (BROWN WHITE)

(get 'eagle 'food) => SNAKES

(get 'eagle 'seed-eater) => NIL

(get 'eagle 'beak "No such indicator") => "No such indicator"

setf may be used with get to create a new property-value pair, possibly
replacing an old pair with the same name. For example:

(setf (get 'eagle 'food) '(mice snakes)) => (MICE SNAKES)

For a table of related items: See the section "Functions That Operate on
Property Lists" in Symbolics Common Lisp: Language Concepts.

zl:get plist indicator Function
zl:get looks up plist's indicator property. See the section "Property Lists"
in Symbolics Common Lisp: Language Concepts. If it finds such a property,
it returns the value; otherwise, it returns nil. If plist is a symbol, the
symbol's associated property list is used. For example, if the property list
of foo is (baz 3), then:

(zl :get 'foo 'baz) => 3

(zl :get 'foo 'zoo) => nil

For a table of related items: See the section "Functions That Operate on
Property Lists" in Symbolics Common Lisp: Language Concepts.

flavor:get-all-flavor-components flavor-name &optional env Function
Returns a list of the components of the flavor flavor-name, in the sorted or
dering of flavor components. Any duplicate flavors are eliminated from this
list by the flavor ordering mechanism. See the section "Ordering Flavor
Components" in Symbolics Common Lisp: Language Concepts.

For example:

(flavor:get-all-flavor-components 'tv:minimum-window)
-->(TV:MINIMUM-WINDOW TV:ESSENTIAL-EXPOSE TV:ESSENTIAL-ACTIVATE

TV:ESSENTIAL-SET-EDGES TV:ESSENTIAL-MOUSE TV:ESSENTIAL-WINDOW
TV:SHEET SI:OUTPUT-STREAM SI:STREAM FLAVOR:VANILLA)

I

I

zl:getchar 254

zl:getchar string index Function
Returns the indexth character of string as a symbol. Note that i-origin in
dexing is used. This function is mainly for Maclisp compatibility; aref
should be used to index into strings (however, aref does not coerce symbols
into strings).
Examples:

(21 :getchar "string" 1) => lsi
(21 :getchar 'symbol 2) => Y
(21 :getchar "STRING" 1) => S
(zl :getchar "ORANGE" 0) => NIL ;1-origin indexing is used

For a table of related items: See the section "Maclisp-Compatible String
Functions" in Symbolics Common Lisp: Language Concepts.

zl:getcharn string index Function
Returns the indexth character of string as a character. Note that i-origin
indexing is used. This function is mainly for Maclisp compatibility; aref
should be used to index into strings (however, aref does not coerce symbols
or numbers into strings).
Examples:

(21 :getcharn "string" 1) => #\s
(zl :getcharn 'symbol 2) => #\Y
(21 :getcharn "STRING" 1) => #\S
(21 :getcharn "ORANGE" 0) => 0 ;1-origin indexing is used

For a table of related items: See the section "Maclisp-Compatible String
Functions" in Symbolics Common Lisp: Language Concepts.

getf plist indicator &optional default Function
Searches the property list plist for indicator. If indicator is found, the cor
responding value is returned. If getf cannot find indicator, default is
returned. If default is not specified, nil is used. Note that there is no way
to distinguish between a property whose value is default and a missing
property. See the section "Functions Relating to the Property List of a
Symbol" in Symbolics Common Lisp: Language Concepts.

zl:get-flavor-handler-for flavor-name operation Function
Given a flavor-name and an operation (a function spec that names a generic
function or a message), zl:get-flavor-handler-for returns the flavor's
method for the operation or nil if it has none.

For example:

255 si :get-font

(zl :get-flavor-handler-for 'box-with-cell 'find-neighbors)
-->#<OTP-COHPILEO-FUNCTION

(FLAVOR:HETHOD FIND-NEIGHBORS CELL) 29749329>

(zl :get-flavrir-handler-for 'cell ':print-self)
-->#<OTP-COHPILED-FUNCTION

(FLAVOR:HETHOD SYS:PRINT-SELF FLAVOR:VANILLA DEFAULT) 42456359>

Although operation is usually a symbol (naming a generic function) or a
keyword (naming a message), it is occasionally a list. For example, names
of some generic functions are lists, such as (setf function).

si:get-font device character-set style &optional (error-p t) Function
inquiry-only

Given a device, character-set and style, si:get-font returns a font object that
would be used to display characters from that character set in that style on
the device. This is useful for determining whether there is such font map
ping for a given device/set/style combination.

If error-p is non-nil, this function signals an error if no font is found. If
error-p is nil and no font isfound, si:get-font returns nil.

If inquiry-only is provided, the returned value is not a font object, but some
other representation of a font, such as a symbol in the fonts package (for
screen fonts) or a string (for printer fonts).

(si:get-font si:*b&w-screen* si:*standard-character-set*
'(:jess :roman :normal»

=> #

(si:get-font 19p:*lgp2-printer* si:*standard-character-set*
'(:swiss :roman :normal) nil t)

=> "Helvetica10"

dbg:get-frame-function-and-args frame Function
dbg:get-frame-function-and-args returns a list containing the name of the
function for frame-pointer and the values of the arguments.

Caution: Use this function only within the context of the
dbg:with-erring-frame macro.

For a table of related items: See the section "Functions for Examining
Stack Frames" in Symbolics Common Lisp: Language Concepts.

get-handler-for 256

get-handler-for object operation Generic Function
Given an object and an operation (a function spec that names a generic
function or a message), get-handler-for returns that object's method for
the operation, or nil if it has none. When object is an instance of a flavor,
this function can be useful to find which of that flavor's components sup
plies the method. If a combined method is returned, you can use the
Zmacs command List Combined Methods (M-X) to find out what it does.

For example:

(get-handler-for this-box-with-cell 'count-live-neighbors)
-->#<DTP-COHPILED-FUNCTION

(FLAVOR:HETHOD 'COUNT-LIVE-NEIGHBORS CELL) 42456359>

(get-handler-for this-box-with-cell ':print-self)
-->#<DTP-COHPILED-FUNCTION

(FLAVOR:HETHOD SYS:PRINT-SELF FLAVOR:VANILLA DEFAULT) 42456359>

Because it is a generic function, you can define methods for
get-handler-for. The syntax of this is:

(defmethod (get-handl er-for flavor) (operation)
body)

In most cases you should use :or method combination (by supplying the
:method-combination option for defflavor) so your method need not know
what the flavor:vanilla method does.

Although operation is usually a symbol (naming a generic function) or a
keyword (naming a message), it is occasionally a list. For example, names
of some generic functions are lists, such as (setf function).

Note that get-handIer-for does not work on named-structures or non
instance streams. You might consider using :operation-handled-p instead.

gethash key table &optional default Function
This function finds the entry in table whose key is key and returns the as
sociated value. If there is no such entry, gethash returns default which is
nil if not specified. It returns three values; the value associated with key,
whether or not the key was found (t or nil), and the found key if one ex
ists, or nil if not.

setf is used with gethash to make new entries in the table. If an entry
with the specified key exists, it is removed before the new entry is added.

(setf (gethash a-key my-table) a-value)

The default argument to gethash can be specified in a very useful way
with related functions like incf.

257

(incf (gethash b-key my-table 8) b-value)
is a shorthand for

:get-hash

(setf (gethash b-key my-table) (+ (gethash b-key my-table 8) 1))

For a table of related items: See the section "Table Functions" in Sym
bolics Common Lisp: Language Concepts.

:get-hash key Message
Find the entry in the hash table whose key is key, and return three values.
The first returned value is the associated value of key, or nil if there is no
such entry. The second value is t if an entry was found or nil if there is
no entry for key in this table. The third value is key, or nil if there was
no such key. This message will be removed in the future - use zl:gethash
instead.

zl:gethash key hash-table Function
Finds the entry in table whose key is key and returns the associated value.
This function will be removed in the future - use gethash instead.

zl:gethash-equal key hash-table Function
Finds the entry in table whose key is key and returns the associated value.
This function will be removed in the future - use gethash instead.

zl:getl plist indicator-list Function
zl:getl is like zl:get, except that the second argument is a list of indicators.
zl:getl searches down plist for any of the indicators in indicator-list until it
finds a property whose indicator is one of the elements of indicator-list. If
plist is a symbol, the symbol's associated property list is used. See the sec
tion "Property Lists" in Symbolics Common Lisp: Language Concepts.
zl:getl returns the portion of the list inside plist beginning with the first
such property that it found. So the car of the returned list is an indicator,
and the cadr is the property value. If none of the indicators on
indicator-list are on the property list, zl:getl returns nil. For example, if
the property list of foo were:

(bar (1 2 3) baz (3 2 1) color blue height six-two)

then:

(zl : getl 'faa '(baz he; ght))
=> (baz (3 2 1) color blue height six-two)

When more than one of the indicators in indicator-list is present in plist, •
which one zl:getl returns depends on the order of the properties. This is
the only thing that depends on that order. The order maintained by
zl:putprop and defprop is not defined (their behavior with respect to order
is not guaranteed and can be changed without notice).

zl :get-pname

For a table of related items: See the section "Functions That Operate on
Property Lists" in Symbolics Common Lisp: Language Concepts.

258

zl:get-pname sym Function
Returns the print-name of the symbol sym. Example:

(zl :get-pname 'xyz) => "xyz"

get-properties plist indicator-list Function
Searches the property list stored in plist for any of the indicators in
indicator-list.

get-properties returns three values. If none of the indicators is found, all
three values are nil. If the search is successful, the first two values are
the property found and its value and the third value is the tail of the
property list whose car is the property found. Thus the third value serves
to indicate success or failure and also allows you to restart the search after
the property found, if you so desire.

See the section "Functions Relating to the Property List of a Symbol" in
Symbolics Common Lisp: Language Concepts.

get-setf-method reference &optional for-effect Function
In this context, the word "method" has nothing to do with flavors.

get-setf-method returns five values constituting the setf method for refer
ence, which is a generalized-variable reference. (The five values are
described in detail at the end of this discussion.) get-setf-method takes
care of error-checking and macro expansion and guarantees to return ex
actly one store-variable.

If for-effect is t, you are indicating that you don't care about the evaluation
of store-forms (one of the five values), which allows the possibility of more
efficient code. In other words, for-effect is an optimization.

As an example, an extremely simplified version of setf, allowing no more
and no fewer than two subforms, containing no optimization to remove un
cessary variables, an not allowing storing of multiple values, could be
defined by:

(defmacro setf (reference value)
(multiple-value-bind (vars vals stores store-form access-form)

(get-setf-method reference)
(declare (ignore access-form»
'(let* ,(m~pcar #J1ist

(append vars stores)
(append vals (list value»)

,store form»)

259 get-setf-method

Here are the five values that express a setf method for a given access
form.

• A list of temporary variables.
• A list of value forms (subforms of the given form) to whose values

the teporary variables are to be bound.
• A second list of temporary variable, called store variables.
• A storing form.
• An accessing form.

The temporary variables are bound to the value forms as if by let*; that is,
the value forms are evaluated in the order given and may refer to the
values of earlier value forms by using the corresponding variable.

The store variables are to be bound to the values of the newvalue form,
that is, the values to be stored into the generalized variable. In almost all
cases, only a single value is stored, and there is only one store variable.

The storing form and the accessing form may contain references to the
temporary variables (and also, in the case of the storing form, to the store
variables). The accessing form returns the value of the generalized vari
able. The storing form modifies the value of the generalized variable and
guarantees to return the values of the store variables as its values. These
are the correct values for setf to return. (Again, in most cases there is a
single store variable and thus a single value to be returned.) The value
returned by the accessing form is, of course, affected by execution of the
storing form, but either of these forms may be evaluated any number of
times, and therefore should be free of side effects (other than the storing
action of the storing form).

The temporary variables and the store variables are generated names, as if
by gensym or gentemp, so that there is never any problem of name
clashes among them, or between them and other variables in the program.
This is necessary to make the special forms that do more than one setf in
parallel work properly. These are psetf, shiftf and rotatef.

Here are some examples of setf methods for particular forms:

• For a variable x:

o
o
(90001)
(setq x 9(881)
x

• For (car exp):

get-setf-method-multiple-value

(gBBB2)
(exp)

(gBBB3)
(progn (rplaca gBBB2 gBB83) g8883)
(car gBB82)

• For (supseq seq s e):

(gBB84 gB885 g8886)
(seq s e)
(gBB87)
(progn (replace g88B4 g8887 :start1 g8885 :end1 gBB86)

gB8B7)
(subseq gBB84 g8B85 g8886)

260

get-setf-method-multiple-value reference &optional for-effect Function
user::get-setf-multiple-value returns five values constituting the setf
method for user::reference, which is a generalized-variable reference. (The
five values are described in detail at the end of this discussion.) This is
the same as define-setf-method, except that it does not check the number
of store-variables (one of the five values). Use
user::get-setf-multiple-value in cases that allow storing multiple values
into a generalized variable. This is not a common need.

Here are the five values that express a setf method for a given access
form.

• A list of temporary variables.
e A list of value forms (subforms of the given form) to whose values

the teporary variables are to be bound.
• A second list of temporary variable, called store variables.
• A storing form.
• An accessing form.

The temporary variables are bound to the value forms as if by let·; that is,
the value forms are evaluated in the order given and may refer to the
values of earlier value forms by using the corresponding variable.

The store variables are to be bound to the values of the newvalue form,
that is, the values to be stored into the generalized variable. In almost all
cases, only a single value is stored, and there is only one store variable.

The storing form and the accessing form may contain references to the
temporary variables (and also, in the case of the storing form, to the store
variables). The accessing form returns the value of the generalized vari
able. The storing form modifies the value of the generalized variable and
guarantees to return the values of the store variables as its values. These
are the correct values for setf to return. (Again, in most cases there is a

261 globalize

single store variable and thus a single value to be returned.) The value
returned by the accessing form is, of course, affected by execution of the
storing form, but either of these forms may be evaluated any number of
times, and therefore should be free of side effects (other than the storing
action of the storing form).

The temporary variables and the store variables are generated names, as if
by gensym or gentemp, so that there is never any problem of name
clashes among them, or between them and other variables in the program.
This is necessary to make the special forms that do more than one setf in
parallel work properly. These are psetf, shiftf and rotatef.

Here are some examples of setf methods for particular forms:

• For a variable x:

o
o
(g8881)
(setq x g88(1)
x

• For (car exp):

(g8882)
(exp)
(g8883)
(progn (rplaca g8882 g88(3) g88(3)
(car g88(2)

• For (supseq seq s e):

(g8884 g8885 g88(6)
(seq s e)
(g8887)
(progn (replace g8884 g8887 :start1 g8885 :end1 g88(6)

g88(7)
(subseq g8884 g8885 g88(6)

globalize name &optional package Function
Establish a symbol named name in package and export it. If this causes
any name conflicts with symbols with the same name in packages that use
package, instead of signalling an error make an attempt to resolve the
name conflict automatically. Print an explanation of what is being done on I
zl:error-output.

globalize is useful for patching up an existing package structure. For ex
ample, if a new function is added to the Lisp language globalize can be
used to add its name to the global package and hence make it accessible to

globalize 262

all packages. Symbols with the desired name might already exist, either by
coincidence or because the function was already ed or already called.
globalize makes all such symbols have the new function as their definition.

package can be a package or the name of a package, as a symbol or a
string. It defaults to the global package. globalize is the only function
that does not care whether package is locked.

name can be a symbol or a string. If package already contains a symbol by
that name, that symbol is chosen. Otherwise, if name is a symbol, it is
chosen. If name is a string and any of the packages that use package con
tains a nonshadowing symbol by that name, one such symbol is chosen.
Otherwise, a new symbol named name is created. Whichever symbol is
chosen this way is made present in package and exported from it. If the
home package of the chosen symbol is a package that uses package, then
the home package is set to package; in other words, the symbol is
"promoted" to a "higher" package. If the home package of the chosen sym
bol is some other package, it is not changed. This case typically occurs
when the chosen symbol is inherited by package from some package it uses.

The above rules for choosing a symbol to export ensure that no name con
flict occurs if at all possible. If any nonshadowing symbols exist named
name but that are distinct from the chosen symbol present in the packages
that use package, then a name conflict occurs. globalize does its best to
resolve the name conflict by merging together the values, function defini
tions, and properties of all the symbols involved. After merging, all the
symbols have the same value, the same function definition, and the same
properties. The value cells, function cells, and property list cells of all the
symbols are forwarded to the corresponding cells of the chosen symbol,
using sys:dtp-one-q-forward. This ensures that any future change to one
of the symbols is reflected by all of the symbols.

The merging operation simply consists of making sure that there are no
conflicts. If more than one of the symbols has a value (is boundp), all the
values must be eql or an error is signalled. Similarly, all the function
definitions of symbols that are fboundp must be eql and all the properties
with any particular indicator must be eql. If an error occurs you must
manually resolve it by removing the unwanted value, definition, or property
(using makunbound, fmakunbound, or zl:remprop) then try again.

Note that if name is a symbol, globalize attempts to use that symbol, but
there is no guarantee that it will not use some other symbol. If name is in
a package that does not use package, and globalize does not use name as
the symbol (because another symbol by that name already exists in package
or in some package that uses package), then name is not merged with the
chosen symbol. It is generally more predictable to use a string, rather
than a symbol, for name.

263 g-I-p

Of course, globalize cannot cause two distinct symbols to become eq. Its
conflict resolution techniques are useful only for symbols that are used as
names for things like functions and variables, not for symbols that are used
for their own sake. You can sometimes get the desired effect by using one
of the conflicting symbols as the first argument to globalize, rather than
using a string.

For example, suppose a program in the color package deals with colors by
symbolic names, perhaps using zl:selectq to test for such symbols as red,
green, and yellow. Suppose there is also a function named red in the
math package and someone decides that this function is generally useful
and should be made global. Doing (globalize 'color:red) ensures that the
exported symbol is the one that the color program is looking for; this
means that every package except the math package sees the right symbol
to use if it wants to call the color program. Programs that call the red
function do not care which of the two symbols they use as the name of the
function, since both symbols have the same definition. Usually the situa
tion described in this example would not arise, because standard program
ming style dictates that the color program should have been using
keywords for this application.

globalize returns two values. The first is the chosen symbol and the
second is a (possibly empty) list of all the symbols whose value, function,
and property cells were forwarded to the cells of the chosen symbol.

To disable the messages printed by globalize, bind zl:error-output to a
null stream (one that throws away all output). For example:

(let «zl : error-output 'si:null-stream»
(globalize 'rumpelstiltskin»

g-l-p array Function
If array has a fill pointer, g-l-p returns a list that stops at the fill pointer,
if you never modify the fill-pointer except with zl:array-push, zl:array-pop
and so on. array must be a general (sys:art-q-list) array. Example:

(setq a (zl :make-array 4 :type 'art-q-list»
(aref a 8) => nil
(setq b (g-l-p a» => (nil nil nil nil)
(setf (car b) t)
b => (t nil nil nil)
(aref a 8) => t
(setf (aref a 2) 38)
b => (t nil 38 nil)

go ~

go tag Special Form
Transfers control within a tagbody form or a construct like do or prog
that uses an implicit tagbody.

The tag can be a symbol or an integer. It is not evaluated. go transfers
control to the tag in the body of the tagbody that is eql to the tag in the
go form. If the body has no such tag, the bodies of any lexically contain
ing tagbody forms are examined as well. If no tag is found, an error is
signalled.

The scope of tag is lexical. That is, the go form must be inside the tag
body construct itself (or inside a tagbody form that that tagbody lexically
contains), not inside a function called from the tagbody, but defined out
side the tagbody.

Examples:

(tagbody
(let «z 5»

(unwind-protect

out

(if (= 5 z) (go out»
(print z»)

(princ "4 3 and then there were none") (terpri» =>
5 4 3 and then there were none
NIL

(prog (x y z)
(setq x some frob)

loop
do something
(i f some predicate (go endtag»
do something more
(if (minusp x) (go loop»

end tag
(return z»

For a table of related items: See the section "Transfer of Control
Functions" in Symbolics Common Lisp: Language Concepts.

graphic-char-p char Function
Returns t if char does not have any control bits set and is not a format ef
fector.

265

(graphic-char-p #\A) => T
(graphic-char-p #\c-A) => NIL
(graphic-char-p #\Space) => T

zl:greaterp

zl:greaterp number &rest more-numbers Function
zl:greaterp compares its arguments from left to right. If any argument is
not greater than the next, zl:greaterp returns nil. But if the arguments
are monotonically strictly decreasing, the result is t. Examples:

(zl :greaterp 4 3) => t
(zl:greaterp 4 3 2 19) => t
(zl:greaterp 4 3 1 2 9) => nil

The following function is a synonym of zl:greaterp:

>

zl:haipart x n Function
Returns the high n bits of the binary representation of lxi, or the low -n
bits if n is negative. x must be an integer; its sign is ignored. zl:haipart
could have been defined by:

(defun zl :haipart (x n)
(setq x (abs x))
(if (minusp n)

(logand x (1- (ash 1 (- n))))
(ash x (min (- n (zl :hau1ong x)) 9))))

For a table of related items: See the section "Functions Returning Com
ponents or Characteristics of Argument" in Symbolics Common Lisp: Lan
guage Concepts.

:handle-condition cond ignore Message
:handle-condition is an interactive handler message to instances of
dbg: basic-handler.

cond is a condition object. You should handle this condition, ignoring the
second argument. :handle-condition can return values or throw in the
same way that condition-bind handlers can.

For a table of related items: See the section "Interactive Handler
Messages".

:handle-condition-p cond Message •
:handle-condition-p is an interactive handler message to instances of
dbg:basic-handler. This message examines cond which is a condition ob-
ject. It returns nil it if declines to handle the condition and something
other than nil when it is prepared to handle the condition.

hash-table

For a table of related items: See the section "Interactive Handler
Messages".

266

hash-table Type Specifier
hash-table is the type specifier symbol for the predefined Lisp data struc
ture, hash table.

The types hash-table, readtable, package, pathname, stream and
random-state are pairwise disjoint.

Examples:

(setq a-hash-table (make-hash-table»
=> #<EQL-BLOCK-ARRAY-PROCESS-LOCKING-DUMMY

-GC-LOCKING-ASSOCIATION-MUTATING-TABLE 16126776>
(setf (gethash 'color a-hash-table) 'red) => RED
(setf (gethash 'name a-hash-table) 'Ron) => RON
(typep 'hash-table 'common) => T
(subtypep 'hash-table 't) => T and T
(sys:type-arglist 'hash-table) => NIL and T
(hash-table-p a-hash-table) => T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the'section "Table Management" in Sym
bolics Common Lisp: Language Concepts.

hash-table-count table Function
This function returns the number of entries in table. When a table is first
created or has been cleared, the number of entries is zero.

For a table of related items: See the section "Table Functions" in Sym
bolics Common Lisp: Language Concepts.

hash-table-p object Function
hash-table-p returns t if its argument is an old Zetalisp hash-table or new
generic table object, and nil otherwise.

For a table of related items: See the section "Table Functions" in Sym
bolics Common Lisp: Language Concepts.

z1:haulong x Function
This returns the number of significant bits in ~I. x must be an integer.
Its sign is ignored. The result is the least integer strictly greater than the
base-2 logarithm of ~I.

zl:haulong is similar to integer-length.

Examples:

267

(zl:haulong B) => B
(zl:haulong 3) => 2
(zl :haulong -7) => 3

zl:ibase

For a table of related items: See the section "Functions Returning Com
ponents or Characteristics of Argument" in Symbolics Common Lisp: Lan
guage Concepts.

zl:ibase Variable
The value of zl:ibase is a number that is the radix in which integers and
ratios are read. The initial value of zl:ibase is 10. zl:ibase should not be
greater than 36.

When zl:ibase is set to a value greater than ten, the reader interprets the
token as a symbol, unless control variable
si:*read-extended-ibase-signed-number* or
si:*read-extended-ibase-unsigned-number* is set to t.

identity x Function
identity always returns x as its value. Sometimes functions require a
second function as an argument, and identity is useful in those situations.

if condition true &rest false Special Form
The simplest conditional form. The "if-then" form looks like:

(i f predicate-form then-form)

predicate-form is evaluated, and if the result is non-nil, the then-form is
evaluated and its result is returned. Otherwise, nil is returned.

Examples:

(if (numberp 'a) "never reaches this point") => NIL

(if (not nil) "A Word") => "A Word"

(if 'not-nil "reaches this point") => "reaches this point"

In the "if-then-else" form, it looks like:

(; f predicate-form then-form else-form)

predicate-form is evaluated, and if the result is non-nil, the then-form is
evaluated and its result is returned. Otherwise, the else-form is evaluated
and its result is returned.

Examples:

zl:ibase

(if (equal Jboy Jgirl) "same" "different") => "different"

(if (not nil) JA J8) => A

(if Jword "reaches this point" "never reaches this point")
=> "reaches this point"

268

Zetalisp Note: Zetalisp supports multiple else clauses: if there are more
than three subforms, if assumes you want more than one else-form; these
are evaluated sequentially and the result of the last one is returned, if the
predicate returns nil.

Multiple else clauses are incompatible with the language specification
presented in Guy Steele's Common Lisp: the Language.

For a table of related items: See the section "Conditional Functions" in
Symbolics Common Lisp: Language Concepts.

if Keyword For loop

if expr
If expr evaluates to nil, the following clause is skipped, otherwise not.

Examples

(defun print-odd (list-of-nums)
(loop for num in list-of-nums

if (oddp num)
collect num and do (print num») => PRINT-ODD

(print-odd J(2 3 49 2 3 4» =>
3
49
3 (3 49 3)

if-then-else conditionals can be written using the else keyword, as in:

(defun print-add-else (list-of-nums)
(loop for num in list-af-nums

if (oddp num)
collect num and do (print num)

else
do (print "An even number I"») => PRINT-DOD-ELSE

(print-add-else J(4 329 7» =>
"An even number ! "
3
"An even number ! "

9
7 (3 9 7)

269 ignore

MUltiple clauses can appear in an else-phrase using and to join them.

In the typical format of a conditionalized clause such as

when exprl keyword expr2

expr2 can be the keyword it. If that is the case, then a variable is generated to
hold the value of exprl, and that variable gets substituted for expr2. Thus, the
composition:

when expr return it

is equivalent to the clause:

thereis expr

and one can collect all non-null values in an iteration by saying:

when expression collect it

If multiple clauses are joined with and, the it keyword can only be used in the
first. If multiple whens, unlesses, and/or ifs occur in sequence, the value
substituted for it is that of the last test performed. The it keyword is not
recognized in an else-phrase.

Conditionals can be nested.

See the section "loop Clauses", page 310.

ignore &rest ignore Function
Takes any number of arguments and returns nil. This is often useful as a
"dummy" function; if you are calling a function that takes a function as an
argument, and you want to pass one that does not do anything and does not
mind being called with any argument pattern, use this.

ignore is also used to suppress compiler warnings for ignored arguments.
For example:

(defun foo (x y)

(i gnore y)
(sin x))

See the section "Functions and Special Forms for Constant Values" in Sym
bolics Common Lisp: Language Concepts.

ignore-errors &body body Special Form
ignore-errors sets up a very simple handler on the bound handlers list that
handles all error conditions. Normally, it executes body and returns the •
first value of the last form in body as its iust value and nil as its second
value. If an error signal occurs while body is executing, ignore-errors im-
mediately returns with nil as its first value and something not nil as its
second value.

imagpart

ignore-errors replaces zl:errset and catch-error.

For a table of related items: See the section "Basic Forms for Bound
Handlers" in Symbolics Common Lisp: Language Concepts.

270

imagpart number Function
If number is a complex number, imagpart returns the imaginary part of
number. If number is a noncomplex number, imagpart returns a zero of
the same type as number.
Examples:

(imagpart #c(3 4)) => 4
(imagpart 4) => 0

Related Functions:

complex
realpart

For a table of related items: See the section "Functions That Decompose
and Construct Complex Numbers" in Symbolics Common Lisp: Language
Concepts.

zl:implode char-list Function
zl:implode is like zl:maknam except that the returned symbol is interned
in the current package. This function is provided mainly for Maclisp com
patibility.

Example:

(zl :imp1ode '(a #\b "C" #\4 5)) => IAbC4-d

For a table of related items: See the section "Maclisp-Compatible String
Functions" in Symbolics Common Lisp: Language Concepts.

import symbols &optional package Function
The symbols argument should be a list of symbols or a single symbol. If
symbols is nil, it is treated like an empty list. These symbols become in
ternal symbols in package, and can therefore be referred to without a colon
qualifier. import signals a correctable error if any of the imported symbols
has the same name as some distinct symbol already available in the pack
age.

package can be a package object or the name of a package (a symbol or a
string). If unspecified, package defaults to the value of *package*.
Returns t.

271 incf

incf access-form &optional amount Macro
Increments the value of a generalized variable. (incf ref) increments the
value of ref by 1. (incf ref amount) adds amount to ref and stores the sum
back into ref.

incf expands into a setf form, so ref can be anything that setf understands
as its access-form. This also means that you should not depend on the
returned value of an incf form.

You must take great care with incf because it might evaluate parts of ref
more than once. (incf does not evaluate any part of ref more than once.)

Example:

(incf (car (mumble») ==>
(setf (car (mumble» (1+ (car (mumble»» ==>
(rplaca (mumble) (1+ (car (mumble»»

The mumble function is called more than once, which can be significantly
inefficient if mumble is expensive, and which can be downright wrong if
mumble has side effects. The same problem can come up with the decf,
zl:swapf, push, and pop macros.

See the section "Generalized Variables" in Symbolics Common Lisp: Lan
guage Concepts.

dbg:initialize-special-commands condition Generic Function
The Debugger calls dbg:initialize-special-commands after it prints the er
ror message. The methods are combined with :progn combination, so that
each one can do some initialization. In particular, the methods for this
generic function can remove items from the list dbg:special-commands in
order to decide not to offer these special commands.

The compatible message for dbg:initialize-special-commands is:

:initialize-special-commands

For a table of related items: See the section "Debugger Special Command
Functions" in Symbolics Common Lisp: Language Concepts.

initially Keyword For loop

initially expression
Puts expression into the prologue of the iteration. It is evaluated before
any other initialization code other than the initial bindings. For the sake
of good style, the initially clause should therefore be placed after any with
clauses but before the main body of the loop.

Examples

inline

(defun sum-it (limit)
(loop with sum-of-series = e

initially (print "The sum of this series is :")
for num from e to limit
do

(setq sum-of-series (+ sum-of-series num»
finally (prin1 sum-of-series») => SUM-IT

(sum-it 9) =>
"The sum of this series is :" 45
NIL

See the macro loop, page 309.

272

inline Declaration
(inline functionl function2 00') specifies that it is desirable for the compiler
to open-code calls to the specified functions; that is, the code for a specified
function should be integrated into the calling routine, appearing "in line"
in place of a procedure call. This may achieve extra speed at the expense
of debuggability (calls to functions compiled in-line cannot be traced, for
example). This declaration is pervasive, that is it affects all code in the
body of the form. The compiler is free to ignore this declaration.

Note that rules of lexical scopingare observed; if one of the functions men
tioned has a lexically apparent local definition (as made by flet or labels),
then the declaration applies to that local definition and not to the global
function definition.

in-package package-name &rest make-package-keywords Function

:insert item key of si:heap Method
Inserts item into the heap based on key, and returns item and key.

For a table of related items: See the section "Heap Functions and Methods"
in Symbolics Common Lisp: Language Concepts.

instance &optional (flavor '*) Type Specifier
instance is a type specifier symbol denoting flavor instances. When a new
flavor is defined with defflavor, the name of the flavor becomes a valid
type symbol, and individual instances of that flavor become valid types of
instance that can be tested with typep.

instance is a subtype of t.

Examples:

273

(defflavor ship
(name x-velocity y-velocity z-velocity mass)

() i no component flavors
: readable-instance-variables
:writable-instance-variables
:initable-instance-variables) => SHIP

(setq my-ship
(make-instance 'ship :name UEnterprise u

:mass 4534
:x-velocity 24
:y-velocity 2

instancep

:z-velocity 45» => #<SHIP 43100701>

(ship-name my-ship) => UEnterprise u

(typep my-ship 'instance) => T

(typep my-ship '(instance ship» => T

(zl:typep my-ship) => SHIP

(type-of my-ship) => SHIP

(type-of 'ship) => SYMBOL

(sys:type-arglist 'instance) => (&OPTIONAL (FLAVOR '*» and T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

For a discussion of flavors: See the section "Flavors" in Symbolics Common
Lisp: Language Concepts.

instancep x Function
Returns t if the object x is a flavor instance, otherwise nil.

int-char integer Function
Converts integer to a character.

(int-char 97) => #\A

integer 274

integer &optional (low 'II<) (high 'II<) Type Specifier
integer is the type specifier symbol for the predefined Lisp integer number
type.

The types integer and ratio are an exhaustive partition of the type ra
tional, since rational == (or integer ratio).

This type specifier can be used in either symbol or list form. Used in list
form, integer allows the declaration and creation of specialized integer
numbers, whose range is restricted to low and high.

low and high must each be an integer, a list of an integer, or unspecified.
If these limits are expressed as integers, they are inclusive; if they are ex
pressed as a list of an integer, they are exclusive; * means that a limit does
not exist, and so effectively denotes minus or plus infinity, respectively.

The type ilXIlUlD is simply a name for (intege'r small est 1 argest) for the
values of most-negative-ilXIlUlD and most-positive-ilXIlUlD. The type
(integer e 1) is so useful that it has the special name bit.

Examples:

(typep 4 'integer) => T
(subtypep 'integer 'rational) => T and T ;subtype and certain
(subtypep '(integer *) 'rational) => T and T
(subtypep 'signed-byte 'integer) => T and T
(subtypep 'fixnum 'integer) => T and T
(subtypep 'bignum 'integer) => T and T
(commonp 23.) => T
(integerp 23.) => T
(integerp -3_78) => T
(integerp most-positive-fixnum) => T
(integerp most-negative-fixnum) => T
(integerp -2147483648) => T
(equal-typep 'bit '(integer e 1» => T
(equal-typep '(integer -2147483648 2147483647) 'fixnum) => T
(sys:type-arglist 'integer) => (&OPTIONAL (LOW '*) (HIGH '*» and T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

See the section "Numbers" in Symbolics Common Lisp: Language Concepts.

integer-decode-float float Function
Returns three values, representing: the significand (scaled so as to be an
integer), the exponent, and the sign of the floating-point argument, float, as
described below.

For an argument f, the first result is an integer which is strictly less than

275 integer-length

(expt 2 (float-precision t», but no less than (expt 2 (-(float-precision fJ 1»
except that if t is zero, the returned integer value is zero.

The second value returned is an integer e such that the first result (the
significand) times 2 raised to the power e is equal to the absolute value of
the argument float.

The tmal value of integer-decode-float represents the sign of float and is 1
or -1.

Examples:

(integer-decade-float 2.9) => 8388698 and -22 and 1
(integer-decade-float -2.9) => 8388698 and -22 and -1
(integer-decade-float 4.9) => 8388698 and -21 and 1
(integer-decade-float 8.9) => 8388698 and -29 and 1
(integer-decade-float 3.e) => 12582912 and -22 and 1

For a table of related items: See the section "Functions That Decompose
and Construct Floating-point Numbers" in Symbolics Common Lisp: Lan
guage Concepts.

integer-length integer Function
Returns the result of the following computation:

(values (ceiling (log (if (minusp integer)(- integer)(l+ integer)) 2))

If integer is non-negative, the result represents the number of significant
bits in the unsigned binary representation of integer. More generally,
regardless of the sign of integer, the result denotes the number of sig
nificant bits needed to represent integer in unsigned binary two's
complement form. (To get the number of bits needed for a signed binary
two's complement representation, add 1 bit to the result of integer-length).

Examples:

(integer-length 9) => 9 (integer-length -9) => 9
(integer-length 1) => 1 (integer-length -1) => 9
(integer-length 2) => 2 (integer-length -2) => 1
(integer-length 8) => 4 (integer-length -8) => 3
(integer-length 15) => 4 (integer-length -15) => 4

J J J A possible use of integer-length
'" The function trailing-zeros returns the number of
, J J consecutive zeros starting at the least significant
'" bit of the binary representation of an integer I

integerp

(defun trailing-zeros (integer)
(1- (integer-length (logand integer (- integer»»)

(trailing-zeros 0) => -1
iii An adequate result since there are an undefined amount
iii of trailing zeros in 0
(trailing-zeros 1) => 0
(trailing-zeros 4) => 2
(trailing-zeros 9) => 0

; 4 is #b100
i 9 is #b1001

276

For a table of related items: See the section "Functions Returning Com
ponents or Characteristics of Argument" in Symbolics Common Lisp: Lan
guage Concepts.

integerp object Function
The predicate integerp is true if its argument is an integer; it is false,
otherwise.

Examples:

(integerp 7) => T
(integerp 4.0) => NIL
(integerp #c(2 0» => T i#c(2 0) is coerced to an integer
(integerp "not a number") => NIL

For a table of related items: See the section "Numeric Type-checking
Predicates" in Symbolics Common Lisp: Language Concepts.

intern string &optional (Pkg zl:package) Function
Finds or creates a symbol named string in pkg. Inherited symbols in pkg
are included in the search for a symbol named string. If a symbol named
string is found, it is returned. If no such symbol is found, one is created
and installed in pkg as an internal symbol (if pkg is the keyword package,
the symbol is installed as an external symbol).

intern returns two values. The first is the symbol that was found or
created. The second value is nil for newly created symbols. If the symbol
returned is a pre-existing symbol, this second value is one of the following:

: internal
: external
: inherited

The symbol is present in pkg as an internal symbol.
The symbol is present in pkg as an external symbol.
The symbol is an internal symbol in pkg inherited by way
of use-package.

For more information: See the section "Mapping Names to Symbols" in
Symbolics Common Lisp: Language Concepts.

277 zl:intern

zl:intern sym &optional pkg Function
Finds or creates a symbol named string accessible to pkg, either directly
present in pkg or inherited from a package it uses.

If string is not a string but a symbol, zl:intern searches for a symbol with
the same name. If it does not find one, it interns string - rather than a
newly created symbol - in pkg (even if it is also interned in some other
package) and returns it.

See the function intern, page 276.

intern-local string &optional pkg Function
Finds or creates a symbol named string directly present in pkg. Symbols
inherited by pkg from packages it uses are not considered, thus
intern-local can cause a name conflict. intern-local is considered to be a
low-level primitive and indiscriminate use of it can cause undetected name
conflicts. Use import, shadow, or shadowing-import for normal purposes.

If string is not a string but a symbol, and no symbol with that print name
is already interned in pkg, intern-local interns string - rather than a newly
created symbol - in pkg (even if it is also interned in some other package)
and returns it.

For more information: See the section "Mapping Names to Symbols" in
Symbolics Common Lisp: Language Concepts.

intern-local-soft string &optional pkg Function
Find a symbol named string directly present in pkg. Symbols inherited by
pkg from packages it uses are not considered. If no symbol is found, the
two values nil nil are returned.

intern-local-soft is a good low-level primitive for when you want complete
control of what packages to search and when to add new symbols.

For more information: See the section " Mapping Names to Symbols" in
Symbolics Common Lisp: Language Concepts.

intern-soft string &optional pkg Function
Finds a symbol named string accessible to pkg, either directly present in
pkg or inherited from a package it uses. If no symbol is found, the two
values nil nil are returned.

intersection listl list2 &key (test #'eql) test-not (key #'identity) Function
intersection takes two lists and returns a new list containing everything
that is an element of both lists, as checked by the :test and :test-not
keywords. If either list has duplicate entries, the· redundant entries mayor
may not appear in the result. For example:

I

zl :intersection 278

(intersection '(a b c) '(f a d» => (A)

(intersection '(a b c a d) '(f a d» => (A A D)

(intersection '(a b c) '(a f a d» => (A)

There is no guarantee that the order of elements in the result will reflect
the ordering of the arguments in any particular way.

:test

:test-not

:key

Any predicate specifying a binary operation to be applied
to a supplied argument and an element of a target list.
The item matches the specification only if the predicate
returns t. If :test is not supplied the default operation is
eql.
Similar to :test, except the item matches the specification
only if there is an element of the list for which the
predicate returns nil.
If not nil, should be a function of one argument that will
extract from an element the part to be tested in place of
the whole element.

For all possible ordered pairs consisting of one element from listl and one
element from list2, the test is used to determine whether they match. For
every matching pair, the element from listl will be put in the result.

For a table of related items: See the section "Functions for Comparing
Lists" in Symbolics Common Lisp: Language Concepts.

zl:intersection &rest lists Function
Takes any number of lists that represent sets and creates and returns a
new list that represents the intersection of all the sets it is given.
zl:intersection uses eq for its comparisons. You cannot change the func
tion used for the comparison. (zl:intersection) returns nil.

This Zetalisp function is shadowed by the Common Lisp function of the
same name.

For a table of related items: See the section "Functions for Comparing
Lists" in Symbolics Common Lisp: Language Concepts.

math:invert-matrix matrix &optional into-matrix Function
Computes the inverse of matrix. If into-matrix is supplied, stores the result
into it and returns it; otherwise it creates an array to hold the result, and
returns that. matrix must be two-dimensional and square. The Gauss
Jordan algorithm with partial pivoting is used. Note: if you want to solve
a set of simultaneous equations, you should not use this function; use
math:decompose and math: solve.

279 dbg:invoke-restart-handlers

math:invert-matrix does not work on conformally displaced arrays.

dbg:invoke-restart-handlers condition &key (flavors nil Function
flavors-specified)

dbg:invoke-restart-handlers searches the list of restart handlers to imd a
restart handler for condition. The flavors argument controls which restart
handlers are examined. flavors is a list of condition names. When flavors
is omitted, the function examines every restart handler. When flavors is
provided, the function examines only those restart handlers that handle at
least one of the conditions on the list.

The iIrst restart handler that it iInds to handle the condition is invoked
and given condition. It returns nil if no appropriate restart handler is
found.

isqrt integer Function
Integer square root. integer must be a non-negative integer; the result is
the greatest integer less than or equal to the exact square root of integer.
Examples:

(isqrt 4) => 2
(isqrt 5) => 2
(isqrt 8) => 2
(isqrt 9) => 3

For a table of related items: See the section "Arithmetic Functions" in
Symbolics Common Lisp: Language Concepts.

I
&key 280

&key Lambda List Keyword
If the lambda-list keyword &key is present, all specifiers up to the next
lambda-list keyword, or the end of the list, are keyword parameter
specifiers. The keyword parameter specifiers can be followed by the
lambda-list keyword &allow-other-keys, if desired.

keyword Type Specifier
keyword is the type specifier symbol for the predefined Lisp object of that
name.

Examples:

(typep ':list 'keyword) => T
(subtypep 'keyword 't) => T and T
(subtypep 'keyword 'common) => NIL and NIL
(sys:type-arg1ist 'keyword) => NIL and T
(keywordp ':fixnum) => T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

See the section "Symbols and Keywords" in Symbolics Common Lisp: Lan
guage Concepts.

zl:keyword-extract keylist keyvar keywords &optional flags &body Special Form
otherwise

Aids in writing functions that take keyword arguments in the standard
fashion. You can also use the &key lambda-list keyword to create func
tions that take keyword arguments. &key is preferred and is substantially
more efficient; zl:keyword-extract is obsolete. See the section "Evaluating
a Function Form" in Symbolics Common Lisp: Language Concepts.

The form:

(zl : keyword-extract key-list iteration-var
keywords flags other-clauses . ..)

parses the keywords out into local variables of the function. key-list is a
form that evaluates to the list of keyword arguments; it is generally the
function's &rest argument. iteration-var is a variable used to iterate over
the list; sometimes other-clauses uses the form:

(car (setq iteration-var (cdr iteration-var)))

to extract the next element of the list. (Note that this is not the same as
pop, because it does the car after the cdr, not before.)

keywords defines the symbols that are keywords to be followed by an ar
gument. Each element of keywords is either the name of a local variable

281 keywordp

that receives the argument and is also the keyword, or a list of the
keyword and the variable, for use when they are different or the keyword is
not to go in the keyword package. Thus, if keywords is (a (b c) d) then
the keywords recognized are :a, b, and :d. If:a is specified its argument
is stored into a. If:d is specified its argument is stored into d. If b is
specified, its argument is stored into c.

Note that zl:keyword-extract does not bind these local variables; it as
sumes you have done that somewhere else in the code that contains the
zl:keyword-extract form.

flags defines the symbols that are keywords not followed by an argument.
If a flag is seen its corresponding variable is set to t. (You are assumed to
have initialized it to nil when you bound it with let or &aux.) AI:, in
keywords, an element of flags can be either a variable from which the
keyword is deduced, or a list of the keyword and the variable.

If there are any other-clauses, they are zl:selectq clauses selecting on the
keyword being processed. These clauses are for handling any keywords
that are not handled by the keywords and flags elements. These can be
used to do special processing of certain keywords for which simply storing
the argument into a variable is not good enough. Unless the other-clauses
include an otherwise (or t clause, after them there is an otherwise clause
to complain about any unhandled keywords found in key-list. If you write
your own otherwise clause, it is up to you to take care of any unhandled
keywords.

For a table of related items: See the section "Iteration Functions" in Sym
bolics Common Lisp: Language Concepts.

keywordp object Function
A predicate that is true if object is a symbol and its home package is the
keyword package, and false otherwise.

lambda lambda-list body... Special Form
Provided, as a convenience, to obviate the need for using the function spe
cial form when the latter is used to name an anonymous (lambda) function.
When lambda is used as a special form, it is treated by the evaluator and
compiler identically to the way it would have been treated if it appeared as
the operand of a function special form. For example, the following two
forms are equivalent:

(my-mapping-function (lambda (x) (+ x 2)) list)

(my-mapping-function (function (lambda (x) (+ x 2))) list)

Note that the form immediately above is usually written as:

I

I
lambda-list-keywords

(my-mapping-function #'(lambda (x) (+ x 2)) list)

The fIrst form uses lambda as a special form; the latter two do not use
the lambda special form, but rather, use lambda to name an anonymous
function.

282

See the section "Functions and Special Forms for Constant Values" in Sym
bolics Common Lisp: Language Concepts.

Using lambda as a special form is incompatible with Common Lisp.

lambda-list-keywords Variable
The value of this variable is a list of all of the allowed "&" keywords.
Some of these are obsolete and do not do anything; the remaining ones
(some of which are also obsolete) are listed below. See the section
"Evaluating a Function Form" in Symbolics Common Lisp: Language Con
cepts. Example functions which use each of these keywords are provided in
that section.

&optional
Declares the following arguments to be optional. See the section
"Evaluating a Function Form" in Symbolics Common Lisp: Language
Concepts.

&rest Declares the following argument to be a rest argument. There can
be only one &rest argument.
It is important to realize that the list of arguments to which a rest
parameter is bound· is set up in whatever way is most effIciently im
plemented, rather than in the way that is most convenient for the
function receiving the arguments. It is not guaranteed to be a
"real" list. Sometimes the rest-args list is stored in the function
calling stack, and loses its validity when the function returns. If a
rest-argument is to be returned or made part of permanent list
structure, it must fIrst be copied, as you must always assume that it
is one of these special lists. See the function sys:copy-if-necessary,
page 114.
The system does not detect the error of omitting to copy a rest
argument; you simply fInd that you have a value that seems to
change behind your back. At other times the rest-args list is an ar
gument that was given to zl:apply; therefore it is not safe to rplaca
this list as you might modify permanent data structure. An attempt
to rplacd a rest-args list is unsafe in this case, while in the fIrst
case it causes an error, since lists in the stack are impossible to
rplacd.

&key Separates the positional parameters and rest parameter from the
keyword parameters. See the section "Evaluating a Function Form"
in Symbolics Common Lisp: Language Concepts.

283 lambda-list-keywords

&allow-other-keys
In a lambda-list that accepts keyword arguments, &allow-other-keys
says that keywords that are not specifically listed after &key are al
lowed. They and the corresponding values are ignored, as far as
keyword arguments are concerned, but they do become part of the
rest argument, if there is one.

&aux It separates the arguments of a function from the auxiliary vari
ables. Following &aux you can put entries of the form:

(variable initial-value-form)

or just variable if you want it initialized to nil or do not care what
the initial value is.

zl:&special
Declares the following arguments and/or auxiliary variables to be
special within the scope of this function. zl:&special can appear
anywhere any number of times.

zl:&local
Turns off a preceding zl:&special for the variables that follow.
zl:&local can appear anywhere any number of times.

zl:"e
Using zl:"e is an obsolete way to define special functions.
zl:"e declares that the following arguments are not to be
evaluated. You should implement language extensions as macros
rather than through special functions, because macros directly
define a Lisp-to-Lisp translation and therefore can be understood by
both the interpreter and the compiler.
Special functions, on the other hand, only extend the interpreter.
The compiler has to be modified to understand each new special
function so that code using it can be compiled. Since all real
programs are eventually compiled, writing your own special func
tions is strongly discouraged.

zl:&eval
This is obsolete. Use macros instead to define special functions.
zl:&eval turns off a preceding zl:"e for the arguments which
follow.

zl:&list-of
This is not supported. Use zl:loop or mapcar instead of zl:&list-of.

&bodyThis is for macros defined by defmacro or macrolet only. It is
similar to &rest, but declares to grindef and the code-formatting
module of the editer that the body forms of a special form follow
and should be indented accordingly.
See the section "&-Keywords Accepted By defmacro" in Symbolics
Common Lisp: Language Concepts.

I

I
lambda-macro 284

&whole
This is for macros defined by defmacro or macrolet only. &whole
is followed by variable, which is bound to the entire macro-call form
or subform. variable is the value that the macro-expander function
receives as its first argument. &whole is allowed only in the top
level pattern, not in inside patterns.
See the section "&-Keywords Accepted By defmacro" in Symbolics
Common Lisp: Language Concepts.

&environment
This is for macros defined by defmacro or macrolet
only.&environment is followed by variable, which is bound to an ob
ject representing the lexical environment where the macro call is to
be interpreted. This environment might not be the complete lexical
environment. It should be used only with the macroexpand function
for any local macro definitions that the macrolet construct might
have established within that lexical environment. &environment is
allowed only in the top-level pattern, not in inside patterns. See the
section "Lexical Environment Objects and Arguments" in Symbolics
Common Lisp: Language Concepts.
See the section "&-Keywords Accepted By defmacro" in Symbolics
Common Lisp: Language Concepts.

lambda-macro name lambda-list body... Special Form
Like macro, defines a lambda macro to be called name. lambda-list should
be a list of one variable, which is bound to the function being expanded.
The lambda macro must return a function. Example:

(lambda-macro ilisp (x)
'(lambda (&optional ,@(second x) &rest ignore) . , (cddr x»)

This defines a lambda macro called ilisp. After it has been defined, the
following list is a valid Lisp function:

(ilisp (x y z) (list x y z»

The above function takes three arguments and returns a list of them, but
all of the arguments are optional and any extra arguments are ignored.
(This shows how to make functions that imitate Interlisp functions, in
which all arguments are always optional and extra arguments are always
ignored.) So, for example:

(funcall #'(ilisp (x y z) (list x y z» 1 2) => (1 2 nil)

285 lambda-parameters-limit

lambda-parameters-limit Constant
The value of lambda-parameters-limit is a positive integer that is the up
per exclusive bound on the number of distinct parameter names that can
appear in a single lambda-list. The value is currently 128.

last list Function
last returns the last cons of list. If list is nil, it returns nil. Note that
last is unfortunately not analogous to first (first returns the first element
of a list, but last does not return the last element of a list); this is a his
torical artifact. Example:

(setq x J(a bed))
(last x) => (d)
(rp1 aed (1 ast x) J (e f))

x => J (a bed e f)

last could have been defined by:

(de fun last (x)

(eond «atom x) x)

«atom (cdr x)) x)

«last (cdr x)))))

For a table of related items: See the section "Functions for Extracting
From Lists" in Symbolics Common Lisp: Language Concepts.

lem &rest integers Function
Computes and returns the least common multiple of the absolute values of
its arguments. All the arguments must be integers, and the result is al
ways a non-negative integer.

For one argument, lem returns the absolute value of that argument. If one
or more of the arguments is zero, lem returns zero. If there are no ar
guments, the returned value is 1.

Examples:

(1 em) => 1

(lem -6) => 6
(lem 6 15) => 39

(lem 9 6) => 9

(lem 2 3 4 5) => 69

;abso1ute value of only one argument

For a table of related items: See the section "Arithmetic Functions" in
Symbolics Common Lisp: Language Concepts .

. . ~

I

Idb 286

ldb bytespec integer
"Load byte."

Function

Returns a byte extracted from integer as specified by bytespec.

bytespec is built using function byte with bit size and position arguments.

ldb extracts from integer size contiguous bits starting at position and
returns this value. integer must be an integer.

The result is right-justified: the size bits are the lowest bits in the
returned value and the rest of the returned bits are zero. ldb always
returns a nonnegative integer.

Examples:

(ldb (byte 1 2) 5) => 1
(ldb (byte 32. B) -1) => (1- 1_32.) ;;a positive bignum
(ldb (byte 16. 24.) -1_31.) => #01776BB
(ldb (byte 6 3) #04567) => #056

For a table of related items: See the section "Summary of Byte Manipula
tion Functions" in Symbolics Common Lisp: Language Concepts.

ldb-test bytespec integer Function
ldb-test is a predicate that returns t if any of the bits designated by the
byte specifier bytespec are 1's in integer. That is, it returns t if the desig
nated field is nonzero. ldb-test could have been defined as follows:

(ldb-test bytespec integer) ==> (not (zerop (ldb bytespec integer)))

Examples:

(ldb-test (byte 2 1) 6) => T
(ldb-test (byte 2 3) #0542) => NIL

For a table of related items: See the section "Summary of Byte Manipula
tion Functions" in Symbolics Common Lisp: Language Concepts.

ldiff list sub list Function
list should be a list, and sublist should be one of the conses that make up
list. Idiff (meaning "list difference") returns a new list, whose elements
are those elements of list that appear before sublist. Examples:

(setq x '(a bed e))
(setq y (cdddr x)) => (d e)
(ldiff x y) => (a b c)

but:

(ldiff '(a bed) '(c d)) => (a bed)

287 least-negative-double-float

since the sublist was not eq to any part of the list.

For a table of related items: See the section "Functions for Comparing
Lists" in Symbolics Common Lisp: Language Concepts.

least-negative-double-float Constant
The value of least-negative-double-float is that negative floating-point
number in double-float format which is closest in value (but not equal to)
zero.

least-negative-Iong-float Constant
The value of least-negative-Iong-float is that negative floating-point num
ber in long-float format closest in value (but not equal to) zero. In Sym:
bolics Common Lisp this constant has the same value as
least-negative-double-float.

least-negative-short-float Constant
The value fo least-negative-short-float is that negative floating-point num
ber in short-float format closest in value (but not equal to) zero. In Sym
bolics Common Lisp this constant has the same value as
least-negative-single-float.

least-negative-single-float Constant
The value of least-negative-single-float is that negative floating-point num
ber in single-float format that is closest in value (but not equal to) zero.

least-positive-double-float Constant
The value of least-positive-double-float is that positive floating-point num
ber in double-float format closest in value (but not equal to) zero.

least-positive-Iong-float Constant
The value of least-positive-Iong-float is that positive floating-point number
in single- float format closest in value (but not equal to) zero. In Sym
bolics Common Lisp this constant has the same value as
least-positive-double-float.

least-positive-short-float Constant
The value of least-positive-short-float is that positive floating-point num
ber in short- float format closest in value (but not equal to) zero. In Sym
bolics Common Lisp this constant has the same value as
least-positive-single-float.

I

I
least-positive-single-float 288

least-positive-single-float Constant
The value of least-positive-single-float is that positive floating-point num
ber in single- float format closest in value (but not equal to) zero.

length sequence Function
length returns the number of elements in sequence as a non-negative in
teger. If the sequence is a vector with a fill pointer, the "active length" as
specified by the fill pointer is returned.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

For example:

(length 'e»~ => B

(length '(a be» => 3

(length '(a (b c) de» => 4

(length (vector 'a 'b Ie 'd 'e» => 5

See the section "Array Leaders" in Symbolics Common Lisp: Language Con
cepts.

For a table of related items: See the section "Functions for Finding Infor
mation About Lists and Conses" in Symbolics Common Lisp: Language Con
cepts.

For a table of related items: See the section "Sequence Construction and
Access" in Symbolics Common Lisp: Language Concepts.

zl:length list Function
zl:length returns the length of list. The length of a list is the number of
elements in it. Examples:

(21 :length nil) => B
(21 :length '(a bed» => 4
(21 :length '(a (b c) d» => 3

zl:length could have been defined by:

(defun length (x)

(cond «atom x) B)
«1+ (21 :length (cdr x»» »

or by:

289

(defun length (x)
(do «n 8 (1+ n))

(y x (cdr y)))

«atom y) n)))

except that it is an error to take zl:length of a non-nil atom.

zl:lessp

This Zetalisp function is shadowed by the Common Lisp function of the
same name.

For a table of related items: See the section "Functions for Finding Infor
mation About Lists and Conses" in Symbolics Common Lisp: Language Con
cepts.

For a table of related items: See the section "Sequence Construction and
Access" in Symbolics Common Lisp: Language Concepts.

zl:lessp number &rest more-numbers Function
zl:lessp compares its arguments from left to right. If any argument is not
less than the next, zl:lessp returns nil. But if the arguments are
monotonically strictly increasing, the result is t.

Arguments must be noncomplex numbers, but they need not be of the same
type.

Examples:

(zl :lessp 3 4) => t
(zl :lessp 1 1) => nil
(zl :lessp 8 1 2 3 4) => t
(zl :lessp 8 1.8 5/2 3 2 4) => nil

The following function is a synonym of zl:lessp:

<

let ((var value) ...) body... Special Form
Used to bind some variables to some objects, and evaluate some forms (the
"body") in the context of those bindings. A let form looks like this:

(1 et «varl vforml)
(var2 vform2)
...)

bforml
bform2
...)

When this form is evaluated, first the vforms (the values) are evaluated.
Then the vars are bound to the values returned by the corresponding

I

I
let* 290

vforms. Thus the bindings happen in parallel; all the vforms are evaluated
before any of the vars are bound. Finally, the bforms (the body) are
evaluated sequentially, the old values of the variables are restored, and the
result of the last bform is returned.

You can omit the vform from a let clause, in which case it is as if the
vform were nil: the variable is bound to nil. Furthermore, you can replace
the entire clause (the list of the variable and form) with just the variable,
which also means that the variable gets bound to nil. I t is customary to
write just a variable, rather than a clause, to indicate that the value to
which the variable is bound does not matter, because the variable is
setq'ed before its first use. Example:

(let «a (+ 3 3»
(b 'foo)
(c)
d)

...)
Within the body, a is bound to 6, b is bound to foo, c is bound to nil, and
d is bound to nil.

See the section "Special Forms for Binding Variables" in Symbolics Com
mon Lisp: Language Concepts.

let* ((var value) ...) body... Special Form
The same as let, except that the binding is sequential. Each var is bound
to the value of its vform before the next vform is evaluated. This is useful
when the computation of a vform depends on the value of a variable bound
in an earlier vform. Example:

(let* «a (+ 1 2»
(b (+ a a»)

...)
Within the body, a is bound to 3 and b is bound to 6.

See the section "Special Forms for Binding Variables" in Symbolics Com
mon Lisp: Language Concepts.

let-and-make-dynamic-closure vars &body body Function
When using dynamic closures, it is very common to bind a set of variables
with initial values, and then make a closure over those variables. Further
more, the variables must be declared as "special".
let-and-make-dynamic-closure is a special form that does all of this. It is
best described by example:

291

(let-and-make-dynamic-c1osure «a 5) b (c 'x»
(function (lambda () ... »)

macro-expands into

(let «a 5) b (c 'x»
(declare (special abc »
(make-dynamic-c1osure 'ea b c)

(funct ion (1 ambda 0 ... »»)

zl:let-closed

See the section "Dynamic Closure-Manipulating Functions" in Symbolics
Common Lisp: Language Concepts.

zl:let-closed ((variable value) ...) function Special Form
When using dynamic closures, it is very common to bind a set of variables
with initial values, and then make a closure over those variables. Further
more, the variables must be declared as "special". zl:let-closed is a special
form that does all of this. It is best described by example:

(let-closed «a 5) b (c 'x»
(funct ion (1 ambda 0 ... »)

macro-expands into

(let «a 5) b (c 'x»
(declare (special abc »
(closure 'ea b c)

(functi on (1 ambda 0 ... »»)

The Symbolics Common Lisp equivalent of this function is
let-and-make-dynamic-closure. See the section "Dynamic Closure
Manipulating Functions" in Symbolics Common Lisp: Language Concepts.

letf places-and-values body... Special Form
Just like let, except that it can bind any storage cells rather than just vari
ables. The cell to be bound is specified by an access form that must be ac
ceptable to locf. For example, letf can be used to bind slots in a structure.
letf does parallel binding.

Given the following structure, letf calls do-something-to with ship's x
position bound to zero.

I

I
letf* 292

(defstruct ship position-x position-y) => SHIP
(setq QE2 (make-ship)) => #S(SHIP :POSITION-X NIL :POSITION-Y NIL)

(letf «(ship-position-x QE2) 0))
(do-something-to QE2))

It is preferable to use letf instead of the zl: bind subprimitive.

See the section "Special Forms for Binding Variables" in Symbolics Com
mon Lisp: Language Concepts.

letf* places-and-values body... Special Form
Just like let*, except that it can bind any storage cells rather than just
variables. The cell to be bound is specified by an access form that must be
acceptable to locf. For example, letf* can be used to bind slots in a struc
ture. letf* does sequential binding.

Given the following structure, letf* calls do-soMething-to with ship's x
position bound to 0 and y position bound to 5.

(defstruct ship position-x position-y) => SHIP
(setq QE2 (make-ship)) => #S(SHIP :POSITION-X NIL :POSITION-Y NIL)

(letf* «(ship-position-x QE2) 0)
«ship-position-y QE2) (+ (ship-position-x QE2) 5)))

(do-something-to QE2))

It is preferable to use letf* instead of the zl:bind subprimitive.

See the section "Special Forms for Binding Variables" in Symbolics Com
mon Lisp: Language Concepts.

let-globally ((var value) ...) body... Special Form
Similar in form to let. The difference is that let-globally does not bind
the variables; instead, it saves the old values and sets the variables, and
sets up an unwind-protect to set them back The important difference be
tween let-globally and let is that when the current stack group calls some
other stack group, the old values of the variables are not restored. Thus,
let-globally makes the new values visible in all stack groups and processes
that do not bind the variables themselves, not just the current stack group.

See the section "Special Forms for Binding Variables" in Symbolics Com
mon Lisp: Language Concepts.

293 let-globally-if

let-globally-if predicate varlist body... Special Form
let-globally-if is like let-globally. It takes a predicate form as its first ar
gument. It binds the variables only if predicate evaluates to something
other than nil. body is evaluated in either case.

let-if condition ((var value) ...) body... Special Form
A variant of let in which the binding of variables is conditional. The vari
ables must all be special variables. The let-if special form, typically writ
ten as:

(1 et-i f cond
«var-i val-i) (var-2 val-2) .. .)

body-formi body-form2 . ..)

first evaluates the predicate form condo If the result is non-nil, the value
forms val-l, val-2, and so on, are evaluated and then the variables var-l,
var-2, and so on, are bound to them. If the result is nil, the vars and vals
are ignored. Finally the body forms are evaluated.

See the section "Special Forms for Binding Variables" in Symbolics Com
mon Lisp: Language Concepts.

sys:lexical-closure Type Specifier
sys:lexical-closure is the type specifier symbol for the predefined Lisp ob
ject of that name.

Examples:

(typep *standard-output* 'sys:lexical-closure) => T
(zl :typep *standard-output*) => :LEXICAL-CLOSURE
(sys:type-arglist 'sys:lexical-closure) => NIL and T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

See the section "Scoping" in Symbolics Common Lisp: Language Concepts.

lexpr-continue-whopper &rest args Special Form
Calls the methods for the generic function that was intercepted by the
whopper in the same way that continue-whopper does, but the last ele
ment of args is a list of arguments to be passed. This is usefu.l when the
arguments to the intercepted generic function include an &rest argument.
Returns the values returned by the combined method.

For more information on whoppers, including examples: See the section
"Wrappers and Whoppers" in Symbolics Common Lisp: Language Concepts.

I

I
lexpr-send 294

lexpr-send object message-name &rest arguments Function
Sends the message named message-name to the object. arguments are the ar
guments passed, except that the last element of arguments should be a list,
and all the elements of that list are passed as arguments. Example:

(send some-window :set-edges 1B 1B 4B 4B)

does the same thing as

(setq new-edges '(1B 1B 4B 4B»
(lexpr-send some-window :set-edges new-edges)

lexpr-send is to send as zl:lexpr-funcall is to funcall.

lexpr-send is supported for compatibility with previous versions of the
flavor system. When writing new programs, it is good practice to use
generic functions instead of message-passing.

lexpr-send-if-handles object message &rest arguments Function
Sends the message named message to object if the flavor associated with ob
ject has a method defined for message. message is a message name and ar
guments is a list of arguments for that message. If object does not have a
method defined, nil is returned.

The difference between lexpr-send-if-handles and send-if-handles is that
for lexpr-send-if-handles, the last element of arguments should be a list;
all the elements of that list are passed as arguments.
lexpr-send-if-handles is to send-if-handles as lexpr-send is to send.

list Type Specifier
list is the type specifier symbol for the predefined Lisp data structure, list.

The types list and vector are an exhaustive partition of the type sequence,
since sequence = (or list vector).

Examples:

(typep '(a b c) 'list) => T
(zl :typep '(a b (d c) e» => :LIST
(subtypep 'list 'sequence) => T and T
(sys:type-arglist 'list) => NIL and T
(listp 0) => T

(listp '(2.BsB (a 1) #*» => T

(listp '(\Albl» => T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the section "Lists" in Symbolics Common
Lisp: Language Concepts.

295 list

list &rest args Function
list constructs and returns a list of its arguments. Example:

(list 3 4 'a (car '(b. c)) (+ 6 -2») => (3 4 a b 4)

list could have been defmed by:

(defun list (&rest args)
(let «list (make-list (length args))))

(do «1 list (cdr 1))
(a args (cdr a)))

«null a) 1 i st)
(rp1aca 1 (car a)))))

For a table of related items: See the section "Functions for Constructing
Lists and Conses" in Symbolics Common Lisp: Language Concepts.

list· &rest args Function
list· is like list except that the last cons of the constructed list is "dotted."
It must be given at least one argument. Example:

(list* 'a 'b 'c 'd) => (a be. d)

This is like

(cons 'a (cons 'b (cons 'c 'd)))

More examples:

(list* 'a 'b) => (a . b)
(list* 'a) => a

For a table of related items: See the section "Functions for Constructing
Lists and Conses" in Symbolics Common Lisp: Language Concepts.

list·-in-area area-number &rest args Function
list·-in-area is exactly the same as list· except that it takes an extra ar
gument, an area number, and creates the list in that area. See the section
"Areas" in Internals, Processes, and Storage Management.

list·-in-area is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions for Constructing
Lists and Conses" in Symbolics Common Lisp: Language Concepts.

math:list-2d-array array Function
Returns a list of lists containing the values in array, which must be a two
dimensional array. There is one element for each row; each element is a
list of the values in that row.

I

I
list-all-packages 296

list-all-packages Function
Returns a list of all the packages that exist in Genera.

zl:listarray array &optional limit Function
zl:listarray creates and returns a list whose elements are those of array.
array can be any type of array or a symbol whose function cell contains an
array.

If limit is present, it should be an integer, and only the first limit (if there
are more than that many) elements of array are used, and so the maximum
length of the returned list is limit.

If array is multidimensional, the elements are accessed in row-major order:
the last SUbscript varies the most quickly.

list-array-Ieader array &optionallimit Function
list-array-Ieader creates and returns a list whose elements are those of
array's leader. array can be any type of array or a symbol whose function
cell contains an array.

If limit is present, it should be an integer, and only the first limit (if there
are more than that many) elements of array's leader are used, and so the
maximum length of the returned list is limit. If array has no leader, nil is
returned.

zl:listify n Function
Manufactures a list of n of the arguments of a lexpr. With a positive ar
gument n, it returns a list of the first n arguments of the lexpr. With a
negative argument n, it returns a list of the last (abs n) arguments of the
lexpr. Basically, it works as if defined as follows:

(defun listify (n)
(cond «minusp n)

(l;stify1 (arg nil) (+ (arg nil) n 1»)
(t

(listify1 n 1» »

(de fun listify1 (n m)
(do «; n (1- i»

; auxiliary function.

(result nil (cons (arg i) result»)
«< i m) result) »

zl:listify exists only for compatibility with Maclisp lexprs. To write func
tions that can accept variable numbers of arguments, use the &optional
and &rest keywords. See the section "Evaluating a Function Form" in
Symbolics Common Lisp: Language Concepts.

297 list-in-area

list-in-area area-number &rest args Function
list-in-area is exactly the same as list except that it takes an extra ar
gument, an area number, and creates the list in that area. See the section
"Areas" in Internals, Processes, and Storage Management.

list-in-area is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions for Constructing
Lists and Conses" in Symbolics Common Lisp: Language Concepts.

list-length list Function
list-length returns, as an integer, the length of list. list-length differs
from length when list is circular. In these cases, length may fail to
return, whereas list-length will return nil. For example:

(list-length 'e)) => e

(list-length 'ea bed)) => 4

(list-length 'ea (b e) d)) => 3

(let «x (list 'a 'b 'e)))
(rplaed (last x) x)
(list-length x)) => NIL

See the function length, page 288.

For a table of related items: See the section "Functions for Finding Infor
mation About Lists and Conses" in Symbolics Common Lisp: Language Con
cepts.

listp object Function
listp returns t if its argument is a list, otherwise nil. This means
(listp nil) is t. Note this distinction between listp and zl:listp.
(zl:listp nil) is nil, since zl:listp returns t if its argument is a cons.

For a table of related items: See the section "Predicates That Operate on
Lists" in Symbolics Common Lisp: Language Concepts.

zl:listp arg Fu,;c:i.>:j;·

zl:listp returns t if its argument is a cons, otherwise nil. Note that this
means (zl:listp nil) is nil even though nil is the empty list.

For a table of related items: See the section "Predicates That Operate on
Lists" in Symbolics Common Lisp: Language Concepts.

I

I
load-byte 298

load-byte from-value position size Function
This is like ldb' except that instead of using a byte specifier, the bit posi
tion and size are passed as separate arguments. The argument order is not
analogous to that of ldb so that load-byte can be compatible with older
"~l'sions of Lisp.

For). table of related items: See the section "Summary of Byte Manipula
tion Iunctions" in Symbolics Common Lisp: Language Concepts.

sys:local-declarations Variable
sys:local-declarations is a list of local declarations. Each declaration is it
self a list whose car is an atom which indicates the type of declaration.
The meaning of the rest of the list depends on the type of declaration. For
example, in the case of special and zl:unspecial the cdr of the list contains
the symbols being declared.

The compiler is interested only in special, zl:unspecial, macro, and arglist
declarations.

Local declarations are added to sys:local-declarations in two ways:

• Inside a zl:local-declare, the specified declarations are bound onto
the front.

• If sys:undo-declarations-flag is t, some kinds of declarations in a file
that is being compiled are consed onto the front of the list; they are
not popped until sys:local-declarations is unbound at the end of the
file.

zl:local-declare declarations &body body Special Form
zl:local-declare, while available in Release 6, should not be used for new
code. See the section "Lexical Scoping" in Symbolics Common Lisp: Lan
guage Concepts.

A zl:local-declare form looks like this:

(1 ocal-decl are (declaration declaration ...)
forml
form2
...)

Example:

(local-declare «special foo1 foo2))
(defun 1 arry 0

)

(defun george ()
)

); end of local-declare

299 sys:localize-list

zl:local-declare understands the same declarations as declare.

Each local declaration is consed onto the list sys:local-declarations while
the forms are being evaluated (in the interpreter) or compiled (in the
compiler). This list has two uses. First, it can be used to pass infor
mation from outer macros to inner macros. Secondly, the compiler spe
cially interprets certain declarations as local declarations, which apply only
to the compilation of the forms.

sys:localize-list list &optional area Function
sys:localize-list is a function that improves locality of incrementally
constructed lists and alists. sys:localize-list returns either list or a copy of
list, depending on how sparsely it is stored in virtual memory.

The optional area argument is the number of the area in which to create
the new list. (Areas are an advanced feature of storage management.) See
the section "Areas" in Internals, Processes, and Storage Management.

sys:localize-list is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions for Copying Lists"
in Symbolics Common Lisp: Language Concepts.

sys:localize-tree tree &optional (n-levels 100) area Function
sys:localize-tree is a function that improves locality of incrementally
constructed lists and trees. sys:localize-tree returns either tree or a copy
of tree, depending on how sparsely it is stored in virtual memory.

The optional argument n-levels is the number of levels of list structure to
localize. This is especially useful for alists, where the value of n-levels is
set to 2.

The optional area argument is the number of the area in which to create
the new tree. (Areas are an advanced feature of storage management.)
See the section "Areas" in Internals, Processes, and Storage Management.

L[sys:localize-tree] is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions for Copying Lists"
in Symbolics Common Lisp: Language Concepts.

locally &body body Macro
The locally macro is a special form that you can use to declare local per
vasive declarations wherever you need them. locally does not bind vari
ables and cannot be used to declare variable bindings. You can use the
special declaration to pervasively affect referenes to, rather than bindings
of, variables. For example:

I

I
zl : locate-i n-closure

(locally (declare (inline floor) (notinline car cdr))
(declare (optimize space))

(floor (car x) (cdr y)))

300

zl:locate-in-closure closure symbol Function
This returns the location of the place in the dynamic closure closure where
the saved value of symbol is stored. An equivalent form is
(locf (symeval-in-closure closure symbol». See the section "Dynamic
Closure-Manipulating Functions" in Symbolics Common Lisp: Language
Concepts.

zl:locate-in-instance instance symbol Function
Returns a locative pointer to the cell inside instance that holds the value of
the instance variable named symbol, regardless of whether the instance
variable was declared a :locatable-instance-variable.

In Symbolics Common Lisp, this operation is performed by:

(locf (scl : symbol-val ue-in-instance instance symbol))

loca tion-boundp location Function
location-boundp is a version of boundp that can be used on any cell in
the Symbolics Lisp Machine. It takes a locative pointer to designate the
cell rather than a symbol. It returns t if the cell at location is bound to a
value, and otherwise it returns nil. The following two calls are equivalent:

(location-boundp (locf a))
(variable-boundp a)

The following two ,calls are also equivalent. When a is a special variable,
they are also the same as the two calls in the preceding example.

(location-boundp (value-cell-location 'a))
(boundp 'a)

location-contents locative Function
Returns the contents of the cell at which locative points. For example:

(location-contents (value-cell-location x))

is the same as:

(symeval x)

To store objects into the cell at which a locative points, you should use
(setf (location-contents x) y) as shown in the following example:

301 location-makunbound

(setf (location-contents (value-cell-location x» y)

This is the same as:

(set x y)

Note that location-contents is not the right way to read hardware
registers, since cdr (which is called by location-contents) will in some
cases start a block-read and the second read could easily read some register
you didn't want it to. Therefore, you should use car or sys:%p-Idb as ap
propriate for these operations.

location-makunbound loc &optional variable-name Function
location-makunbound is a version of makunbound that can be used on
any cell in the Symbolics Lisp Machine. It takes a locative pointer to .
designate the cell rather than a symbol. (makunbound is restricted to use
with symbols.) .

location-makunbound takes a symbol as an optional second argument:
variable-name of the location that is being made unbound. It uses
variable-name to label the null pointer it stores so that the Debugger knows
the name of the unbound location if it is referenced. This is particularly
appropriate when the location being made unbound is really a variable
value cell of one sort or another, for example, closure or instance.

locative Type Specifier
locative is the type specifier symbol for the predefined Lisp object, locative.

Examples:

(typep (locf x) 'locative) => T
(zl:typep (locf x» => :LOCATIVE
(subtypep 'locative 'common) => NIL and NIL
(subtypep 'locative 't) => T and T
(sys:type-arglist 'locative) => NIL and T
(zl :locativep (locf xyz» => T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

locativep arg Function
locativep returns t if its argument is a locative, otherwise nil.

locf access-form Macro
Takes a form that accesses some cell and produces a corresponding form to
create a locative pointer to that cell. Examples:

I

I
log

(locf (array-leader faa 3» ==> (ap-leader faa 3)
(locf a) ==> (variable-location 'a)
(locf (plist 'a» ==> (property-cell-location 'a)
(locf (aref q 2» ==> (aloc q 2)

302

If access-form invokes a macro or a substitutable function, locf expands the
access-form· and starts over again. This lets you use .locf together with
defstruct accessors.

If access-form is (cdr list), locf returns the list itself instead of a locative.

See the section "Generalized Variables" in Symbolics Common Lisp: Lan
guage Concepts.

log number &optional base Function
Computes and returns the logarithm of number in the base base, which
defaults to e, the base of the natural logarithms. Note that the result can
be a complex number even when the argument is noncomplex. This occurs
if the argument is negative.

The range of the one-argument log function is that strip of the complex
plane containing numbers with imaginary parts between -1t (exclusive) and
1t (inclusive).

The range of the two-argument log function is the entire complex plane.
I t is an error if number or base is zero. Both arguments can be numbers
of any type.

The result is always in complex or noncomplex floating-point format.
Numeric type coercion is applied to the arguments where proper.

Examples:

(log 2) => B.6931472
(log 16 2) => 4.B
(log -1.B) => #C(B.B 3.1415927)
(log -1 #C(B 1» => #C(2.B B.B)

For a table of related items: See the section "Powers Of e and Log
Functions" in Symbolics Common Lisp: Language Concepts.

zl:log n Function
Returns the natural logarithm of n. n must be positive, and can be of any
numeric data type.

Example:

303 logand

(zl:log 2) => 9.6931472

For a table of related items: See the section "Powers Of e and Log
Functions" in Symbolics Common Lisp: Language Concepts.

logand &rest integers Function
Returns the bit-wise logical and of its arguments. If no argument is given
the result is -1, which is an identity for this operation.

Examples:

(logand) => -1
(logand 8) => 8
(logand 9 15) => 9
(logand 9 15 12) => 8

See the function boole, page 54.

For a table of related items: See the section "Functions Returning Result
of Bit-wise Logical Operations" in Symbolics Common Lisp: Language Con
cepts.

zl:logand number &rest more-numbers Function
Returns the bit-wise logical and of its arguments. At least one argument
is required. Examples:

(zl :logand #03456 #0797) => #0496
(zl :logand #03456 #0-199) => #03499

For a table of related items: See the section "Functions Returning Result
of Bit-wise Logical Operations" in Symbolics Common Lisp: Language Con
cepts.

logandcl integerl integer2 Function
logandcl is a non-associative bit-wise logical operation and takes exactly
two arguments. It returns the bit-wise logical and of the complement of
integerl with integer2.

Examples:

(10gandc1 15 8) => 9
(10gandc1 8 15) => 7

See the function boole, page 54.

For a table of related items: See the section "Functions Returning Result
of Bit-wise Logical Operations" in Symbolics Common Lisp: Language Con
cepts.

I

I
logandc2 304

logandc2 integerl integer2 Function
logandc2 is a non-associative bit-wise logical operation and takes exactly
two arguments. It returns the bit-wise logical and of integerl with the
complement of integer2.

Examples:

(logandc2 15 8) => 7
(logandc2 8 15) => 8

See the function boole, page 54.

For a table of related items: See the section "Functions Returning Result
of Bit-wise Logical Operations" in Symbolics Common Lisp: Language Con
cepts.

logbitp index integer Function
If index is a non-negative integer j, the predicate logbitp is true if bit j in
integer (that bit whose weight is 21) is a one-bit; otherwise it is false.

Examples:

(logbitp 1 8) => NIL
(logbitp 1 18) => T

For a table of related items: See the section "Predicates for Testing Bits in
Integers" in Symbolics Common Lisp: Language Concepts.

logcount integer Function
If integer is positive, logcount determines and returns the number of one
bits in the binary representation of integer. If integer is negative, logcount
determines and returns the number of 0 bits in the two's-complement bi
nary representation of integer. The result is always a non-negative integer.

Examples:

(logcount 8) => 8
(logcount 6) => 2
(logcount -1) => 8
(logcount -5) => 1 ;-5 is #b ... 11811

For a table of related items: See the section "Functions Returning Com
ponents or Characteristics of Argument" in Symbolics Common Lisp: Lan
guage Concepts.

sys:%logdpb newbyte bytespec integer Function
sys:%logdpb is like dpb except that it only returns flXllums, while dpb
would produce a bignum result for arithmetic correctness. If the sign-bit
(bit-32) changes, the result reflects the changed sign.

305 logeqv

sys:%logdpb is good for manipulating flXIlum bit-masks such as are used in
some internal system tables and data structures.

The behavior of sys:%logdpb depends on the size of flXIlums, so functions
using it might not work the same way on future implementations of Sym
bolics Common Lisp. Its name starts with "%" because it is more like
machine-level subprimitives than other byte manipulation functions.

For a table of related items: See the section "Machine-dependent Arith
metic Functions" in Symbolics Common Lisp: Language Concepts.

logeqv &rest integers Function
Returns the bit-wise logical equivalence (also known as exclusive nor) of its
arguments. If no argument is given, the result is -1, which is an identity
for this operation.

Examples:

(logeqv) => -1
(logeqv 5) => 5
(logeqv -3 4) => 6 ;-3 is #b11191 and 4 is #b99199
(logeqv 9 2) => -12
(logeqv -3 4 9 2) => 13 ; (logeqv 6 -12) => 13

See the function boole, page 54.

For a table of related items: See the section "Functions Returning Result
of Bit-wise Logical Operations" in Symbolics Common Lisp: Language Con
cepts.

logior &rest integers Function
Returns the bit-wise logical inclusive or of its arguments.

If no argument is given, the result is zero. This is an identity for this
operation.

Examples:

(logior) => 9
(logior -5) => -5
(logior 3 19) => 11
(logior 4 8 2) => 14

See the function boole, page 54.

For a table of related items: See the section "Functions Returning Result
of Bit-wise Logical Operations" in Symbolics Common Lisp: Language Con
cepts.

I

•
zl:logior 306

zl:logior number &rest more-numbers Function
Returns the bit-wise logical inclusive or of its arguments. At least one ar
gument is required. Example:

(zl:logior #04882 #067) => #04867

For a table of related items: See the section "Functions Returning Result
of Bit-wise Logical Operations" in Symbolics Common Lisp: Language Con
cepts.

sys:%logldb bytespec integer Function
sys:%logldb is like ldb except that it only loads out of flXl1ums and allows
a byte size of 32 bits of the flXl1um including the sign bit. The result of
sys:%logldb can be negative when the size of the byte specified by bytespec
is 32.

The behavior of sys:%logldb depends on the size of flXl1ums, so functions
using it might not work the same way on future implementations of Sym
bolics Common Lisp. Its name starts with "%" because it is more like
machine-level sub primitives than other byte manipulation functions.

For a table of related items: See the section "Machine-dependent Arith
metic Functions" in Symbolics Common Lisp: Language Concepts.

lognand integerl integer2 Function
lognand is a non-associative bit-wise logical operation and takes exactly
two arguments. It returns the logical not-and of its two arguments.

Example:

(lognand 6 12) => -5 ; (lognot 4) => -5

See the function boole, page 54.

For a table of related items: See the section "Functions Returning Result
of Bit-wise Logical Operations" in Symbolics Common Lisp: Language Con
cepts.

lognor integerl integer2 Function
lognor is a non-associative bit-wise logical operation and takes exactly two
arguments. It returns the logical not-or of its two arguments.

Example:

(lognor 3 18) => -12

See the function boole, page 54.

For a table of related items: See the section "Functions Returning Result
of Bit-wise Logical Operations" in Symbolics Common Lisp: Language Con
cepts.

307 lognot

lognot integer Function
Returns the logical complement of integer. This is the same as
zl:logxoring integer with -1.
Example:

(lognot 3456) => -3457
(lognot 8) => -1
(lognot 1) => -2

For a table of related items: See the section "Functions Returning Result
of Bit-wise Logical Operations" in Symbolics Common Lisp: Language Con
cepts.

logorcl integer 1 integer2 Function
logorcl is a non-associative bit-wise logical operation and takes exactly two
arguments. It returns the logical or of the complement of integerl with
integer2.

Examples:

(logorc1 -1 11) => 11
(logorc1 11 -1) => -1

See the function hoole, page 54.

For a table of related items: See the section "Functions Returning Result
of Bit-wise Logical Operations" in Symbolics Common Lisp: Language Con
cepts.

logorc2 integerl integer2 Function
logorc2 is a non-associative bit-wise logical operation and takes exactly two
arguments. It returns the logical or of integerl with the complement of
integer2.

Examples:

(logorc2 -1 11) => -1
(logorc2 11 -1) => 11

See the function hoole, page 54.

For a table of related items: See the section "Functions Returning Result
of Bit-wise Logical Operations" in Symbolics Common Lisp: Language Con
cepts.

logtest integer 1 integer2 Function
The predicate logtest is true if any of the bits designated by the l's in
integerl are l's in integer2 (that is, if there exists at least one non-negative
integer j, such that bit j in integerl and bit j in integer2 are both 1's).

I

II
logxor

Examples:

(logtest 19 4) => NIL
(logtest 9 1) => T

(logtest 11 3) => T

308

For a table of related items: See the section "Predicates for Testing Bits in
Integers" in Symbolics Common Lisp: Language Concepts.

logxor &rest integers Function
logxor returns the bit-wise logical exclusive or of its arguments. If no ar
gument is given, the result is zero. This is an identity for this operation.

Examples:

(logxor) => e
(logxor 5) => 5
(logxor 3 4) => 7

(logxor 9 2) => 11

(logxor 3 4 9 2) => 12

See the function boole, page 54.

; (logxor 7 11) => 12

For a table of related items: See the section "Functions Returning Result
of Bit-wise Logical Operations" in Symbolics Common Lisp: Language Con
cepts.

zl:logxor integer &rest more-integers Function
Returns the bit-wise logical exclusive or of its arguments. At least one ar
gument is required. Example:

(zl :logxor #02531 #07777) => #05246

For a table of related items: See the section "Functions Returning Result
of Bit-wise Logical Operations" in Symbolics Common Lisp: Language Con
cepts.

long-float Type Specifier
long-float is the type specifier symbol for the predefined Lisp double
precision floating-point number type.

The type long-float is a subtype of the type float. In Symbolics Common
Lisp, the type long-float is identical to the type double-float.

The type long-float is disjoint with the types short-float, and single-float.

Examples:

309

(typep ede 'long-float) => T

(subtypep 'long-float 'double-float)
=> T and T ;subtype and certain

(commonp 1.5d9) => T

long-float-epsilon

(equal-typep 'long-float 'double-float) => T

(sys:double-float-p 1.5d9) => T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

See the section "Numbers" in Symbolics Common Lisp: Language Concepts.

long-float-epsilon Constant
The value of this constant is the smallest positive floating-point number e
of a format such that it satisfies the expression:

(not (= (float 1 e) (+ (float 1 e) e»)

In Symbolics Common Lisp long-float-epsilon has the same value as
double-float-epsilon, namely: 1.1102230246251568d-16.

long-float-negative-epsilon Constant
The value of this constant is the smallest positive floating-point number e
of a format such that it satisfies the expression:

(not (= (float 1 e) (- (float 1 e) e»)

In Symbolics Common Lisp the value of long-float-negative-epsilon is the
same as that of double-float-negative-epsilon, namely:
5.551115123125784d-17.

loop &rest forms Macro
loop is a Lisp macro that provides a programmable iteration facility. The
Symbolics Common Lisp implementation of loop is an extension of the
Common Lisp specification for this macro in Guy L. Steele's Common Lisp:
the Language. loop works identically in Symbolics Common Lisp and in
Zetalisp.

The general approach is that a form introduced by the word loop generates
a single program loop, into which a large variety of features can be incor
porated. The loop consists of some initialization (prologue) code, a body
that can be executed several times, and some exit (epilogue) code. Vari
ables can be declared local to the loop. The features are concerned with
loop variables, deciding when to end the iteration, putting user-written code
into the loop, returning a value from the construct, and iterating a variable
through various real or virtual sets of values.

I

loop

I
310

The loop form consists of a series of clauses, each introduced by a keyword
symbol. Forms appearing in or implied by the clauses of a loop form are
classed as those to be executed as initialization code, body code, and/or exit
code; within each part of the template that loop fills in, they are executed
strictly in the order implied by the original composition. Thus, just as in
ordinary Lisp code, side effects can be used, and one piece of code might
depend on following another for its proper operation.

Note that loop forms are intended to look like stylized English rather than
Lisp code. There is a notably low density of parentheses, and many of the
keywords are accepted in several synonymous forms to allow writing of
more euphonious and grammatical English.

loop Clauses

Internally, loop constructs a prog that includes variable bindings, preitera
tion (initialization) code, postiteration (exit) code, the body of the iteration,
and stepping of variables of iteration to their next values (which happens
on every iteration after executing the body).

A clause consists of the keyword symbol and any Lisp forms and keywords
with which it deals. For example:

(loop for x in 1
do (print x»

contains two clauses, "for x in 1" and "do (pri nt x)". Certain parts of
the clause are described as being expressions, such as, (print x) in the ex
ample above. An expression can be a single Lisp form, or a series of forms
implicitly collected with progn. An expression is terminated by the next
following atom, which is taken to be a keyword. This syntax allows only
the first form in an expression to be atomic, but makes misspelled
keywords more easily detectable.

loop uses print-name equality to compare keywords so that loop forms can
be written without package prefixes; in Lisp implementations that do not
have packages, eq is used for comparison.

Bindings and iteration variable steppings can be performed either sequen
tially or in parallel, which affects how the stepping of one iteration variable
can depend on the value" of another. The syntax for distinguishing the two
is described with the corresponding clauses. When a set of things is "in
parallel", all of the bindings produced are performed in parallel by a single
lambda binding. Subsequent bindings are performed inside that binding en
vironment.

These are the main loop clauses and their keywords.

311

Clause

Iteration-driving

Initialization bindings

Entrance and Exit

Side Effects

Accumulating Return Values

End Tests

Conditionalization

Miscellaneous

Keywords

repeat, for, as

with, nodeclare

initially, finally

do, doing

collect[ing], nconc[ing]
append[ing], count[ing]
summ[ing], maximize
minimize

until, while, loop-finish
always, never, thereis

when, if, unless

named, return

The dictionary entry for each individual keyword covers it in detail.

Iteration-Driving Clauses

loop

These clauses all create a variable of iteration, which is bound locally to the
loop and takes on a new value on each successive iteration. Note that if
more than one iteration-driving clause is used in the same loop, several
variables are created that all step together through their values; when any
of the iterations terminates, the entire loop terminates. Nested iterations
are not generated; for those, you need a second loop form in the body of
the loop. In order to not produce strange interactions, iteration-driving
clauses are required to precede any clauses that produce "body" code: that
is, all except those that produce prologue or epilogue code (initially and
finally), bindings (with), the named clause, and the iteration termination
clauses (while and until).

The following kinds of iteration are possible:

• Iteration in series and in parallel
• Joining iteration clauses with and
• Iterating with repeat
• Iterating with for and as

I

loop

I
See the section "loop Clauses", page 310.

Accumulating Return Values for loop

Several clauses accumulate a return value for the iteration in some man
ner. The general form is:

type-of-collection expr {data-type} {into var}

where type-of-collection is a loop keyword, and expr is the thing being
"accumulated" somehow. (The optional argument, data-type, is currently
ignored.)

312

If no into is specified, then the accumulation is returned when the loop
terminates. If there is an into, then when the epilogue of the loop is
reached, var (a variable automatically bound locally in the loop) has been
set to the accumulated result and can be used by the epilogue code. In
this way, a user can accumulate and someho:w pass back multiple values
from a single loop, or use them during the loop. It is safe to reference
these variables during the loop, but they should not be modified until the
epilogue code of the loop is reached.

For example:

(loop for x in list
collect (faa x) into faa-list
collect (bar x) into bar-list
collect (baz x) into baz-list
finally (return (list foo-list bar-list baz-list»)

has the same effect as:

(do «90081 list (cdr 90001»
(x) (foo-list) (bar-list) (baz-list»

«null 90001)
(list (nreverse foo-list)

(nreverse bar-list)
(nreverse baz-list»)

(setq x (car 90081»
(setq foo-list (cons (foo x) foo-list»
(setq bar-list (cons (bar x) bar-list»
(setq baz-list (cons (baz x) baz-list»)

except that loop a~ranges to form the lists in the correct order, obviating
the nreverses at the end, and allowing the lists to be examined during the
computation.

Not only can there be multiple accumulations in a loop, but a single ac
cumulation can come from multiple places within the same loop form. Ob-

313 loop

viously, the types of the collection must be compatible. collect, nconc, and
append can all be mixed, as can sum and count, and maximize and min
imize.

For example:

(loop for x in '(a b c) for y in '«1 2) (3 4) (5 6»
call ect x
append y)

=> (a 1 2 b 3 4 c 5 6)

The following computes the average of the entries in the list list-or-frobs:

(loop for x in list-of-frobs
count t into count-var
sum x into sum-var
finally (return (quotient sum-var count-var»)

End Tests for loop

Several clauses can be used to provide additional control over when the
iteration gets terminated, possibly causing exit code (due to finally) to be
performed and possibly returning a value (for example, from collect).

until might be needed, for example, to step through a strange data struc
ture, as in:

(loop until (top-of-concept-tree? concept)
for concept = expr then (superior-concept concept)

...)

Note that the placement of the until clause before the for clause is valid
in this case because of the definition of this particular variant of for,
which binds concept to its first value rather than setting it from inside
the loop.

loop-finish can also be of use in terminating the iteration.

loop Conditionalization

The keywords when, if-then-else, and unless can be used to
"conditionalize" the following clause. Conditionalization clauses can
precede any of the side-effecting or value-producing clauses, such as do,
collect, always, or return.

Multiple conditionalization clauses can appear in sequence. If one test
fails, then any following tests in the immediate sequence, and the clause
being conditionalized, are skipped.

The format of a conditionalized clause is typically something like:

I

loop

I
when exprl keyword expr2

For example:

keyword can be ..

314

If expr2 is the keyword it, a variable is generated to hold the value of exprl
and that variable is substituted for expr2. See the section "loop
Conditionalization " in Symbolics Common Lisp: Language Concepts.

Multiple clauses can be conditionalized under the same test by joining them
with and, as in:

(loop for i from a to b
when (zerop (remainder i 3»

collect i and do (print i»

which returns a list of all mUltiples of 3 from a to b (inclusive) and prints
them as they are being collected.

If-then-else conditionals can be written using the else keyword, as in:

(loop for i from 1 to 9
if (oddp i)

collect i into odd-numbers
else collect i into even-numbers
finally (return even-numbers» => (2 4 6 8)

MUltiple clauses can appear in an else-phrase, using and to join them in
the same way as above.

Conditionals can be nested. For example:

(loop for i from a to b
when (zerop (remainder i 3»

do (print i)
and when (zerop (remainder i 2»

collect i)

returns a list of all multiples of 6 from a to b, and prints all multiples of 3
from a to b.

When else is used with nested conditionals, the "dangling else" ambiguity
is resolved by matching the else with the innermost when not already
matched with an else. Here is a complicated example.

315

(loop for x in 1
when (atom x)

when (memq x *distinguished-symbols*)
do (process1 x)

else do (process2 x)
else when (memq (car x) *spec;al-prefixes*)

collect (process3 (car x) (cdr x»
and do (memorize x)

else do (process4 x»

loop

Useful with the conditionalization clauses is the return clause, which
causes an explicit return of its "argument" as the value of the iteration,
bypassing any epilogue code. That is:

when exprl return expr2

is equivalent to:

when exprl do (return expr2)

Conditionalization of one of the "aggregated boolean value" clauses simply
causes the test that would cause the iteration to terminate early not to be
performed unless the condition succeeds. For example:

(loop for x in 1
when (significant-p x)

do (print x) (princ "is significant.")
and thereis (extra-special-significant-p x»

does not make the extra-special-significant-p check unless the
significant-p check succeeds.

In the typical format of a conditionalized clause such as

when exprl keyword expr2

expr2 can be the keyword it. If that is the case, then a variable is
generated to hold the value of exprl, and that variable gets substituted for
expr2. Thus, the composition:

when expr return it

is equivalent to the clause:

thereis expr

and one can collect all non-null values in an iteration by saying:

when expression collect it

If multiple clauses are joined with and, the it keyword can only be used in
the first. If multiple whens, unlesses, and/or ifs occur in sequence, the

I

loop

I
316

value substituted for it is that of the last test performed. The it keyword
is not recognized in an else-phrase.

Destructurlng

Destructuring provides you with the ability to "simultaneously" assign or
bind multiple variables to components of some data structure. Typically
this is used with list structure. For example:

(loop with (faa. bar) = '(a b e) ...)

has the effect of binding foo to a and bar to (b c).

Here's how this might work:

(defun ex-destrueturing ()
(loop for x from 1 to 4

with (one. rest) = '(1 2 3)
do

(prine x) (prine " ")
finally (print one) (print rest») => EX-OESTRUCTURING

(ex-destrueturing) => 1 2 3 4
1
(2 3) NIL

Iteration Paths For loop

Iteration paths provide a mechanism for user extension of iteration-driving
clauses. The interface is constrained so that the definition of a path need
not depend on much of the internals of loop. The typical form of an itera
tion path is

for var {data-type} being {eaehlthe} pathname {prepositionl exprl} ...

pathname is an atomic symbol that is defined as a loop path function. The
usage and defaulting of data-type is up to the path function. Any number
of preposition/expression pairs can be present; the prepositions allowable for
any particular path are defined by that path. For example:

(loop for x being the array-elements of my-array from 1 to 10
...)

To enhance readability, pathnames are usually defined in both the singular
and plural forms; this particular example could have been written as:

317 zl:loop

(loop for x being each array-element of my-array from 1 to 10
...)

See the section "Iteration Paths" in Symbolics Common Lisp: Language
Concepts.

zl:loop x &optional ignore Macro
A Lisp macro that provides a programmable iteration facility.

The general approach is that a form introduced by the word zl:loop
generates a single program loop, into which a large variety of features can
be incorporated. The loop consists of some initialization (prologue) code, a
body that can be executed several times, and some exit (epilogue) code.
Variables can be declared local to the loop. The features are concerned
with loop variables, deciding when to end the iteration, putting user-written
code into the loop, returning a value from the construct, and iterating a
variable through various real or virtual sets of values.

The zl:loop form consists of a series of clauses, each introduced by a
keyword symbol. Forms appearing in or implied by the clauses of a zl:loop
form are classed as those to be executed as initialization code, body code,
and/or exit code; within each part of the template that zl:loop fills in, they
are executed strictly in the order implied by the original composition.
Thus, just as in ordinary Lisp code, side effects can be used, and one piece
of code might depend on following another for its proper operation.

Note that zl:loop forms are intended to look like stylized English rather
than Lisp code. There is a notably low density of parentheses, and many of
the keywords are accepted in several synonymous forms to allow writing of
more euphonious and grammatical English.

Here are some examples to illustrate the use of zl:loop. The dictionary
entry for loop, and the chapter discussion cover this topic in more detail.
See the macro loop, page 309. See the section "The loop Iteration Macro"
in Symbolics Common Lisp: Language Concepts.

print-elements-of-list prints each element in its argument, which should be
a list. It returns nil.

(defun print-elements-of-list (list-of-elements)
(loop for element in list-of-elements

do (print element)) => PRINT-ELEMENTS-OF-LIST

gather-alist-entries takes an association list and returns a list of the
"keys"; that is, (gather-alist-entries '«foo 1 2) (bar 259) (baz») returns
(foo bar baz).

•

I
zl:loop

(defun gather-alist-entries (list-of-pairs)
(loop for pair in list-of-pairs

collect (car pair») => GATHER-ALIST-ENTRIES

318

extract-interesting-numbers takes two arguments, which should be in
tegers, and returns a list of all the numbers in that range (inclusive) that
satisfy the predicate interesting-po

(defun extract-interesting-numbers (start-value end-value)
(loop for number from start-value to end-value

when (interesting-p number) collect number»
=> EXTRACT-INTERESTING-NUMBERS

find-maximum-element returns the maximum of the elements of its ar
gument, a one-dimensional array. For Maclisp, aref could be a macro that
turns into either funcall or zl:arraycall depending on what is known about
the type of the array.

(defun find-maximum-element (an-array)
(loop for i from B below (array-dimension-n 1 an-array)

maximi2e (aref an-array i»)
=> FIND-MAXIMUM-ELEMENT

my-remove is like the Lisp function zl:delete, except that it copies the list
rather than destructively splicing out elements. This is similar, although
not identical, to the zl:remove function.

(defun my-remove (object list)
(loop for element in list

unless (equal object element) collect element»
=> MY-REMOVE

find-frob returns the first element of its list argument that satisfies the
predicate frobp. If none is found, an error is generated.

(defun find-frob (list)
(loop for element in list

when (frobp element) return element
finally (ferror nil "No frob found in the list -S" list»)

=> FIND-FROB

Data Types Recognized By zl:loop

In many of the clause descriptions, an optional data-type is shown. This is
a slot reserved for data type declarations; it is currently ignored.

319 loop-finish

loop-finish Macro
(loop-finish) causes the iteration to terminate "normally", the same as im
plicit termination by an iteration-driving clause, or by the use of while or
until - the epilogue code (if any) is run, and any implicitly collected result
is returned as the value of the loop. For example:

(loop for x in '(1 2 3 456)
call eet x
do (eond «= x 4) (loop-finish))))

=> (1 2 3 4)

This particular example would be better written as until (= x 4) in place of
the do clause.

See the section "loop Clauses", page 310.

lower-case-p char
Returns t if char is a lower-case letter.

(lower-ease-p #\a) => T
(lower-ease-p #\A) => NIL

Function

Ish number count Function
Returns number shifted left count bits if count is positive or zero, or num
ber shifted right Icountl bits if count is negative. Zero bits are shifted in
(at either end) to fill unused positions. number and count must be flXIlums.
Since the result is also a fumum, bits shifted off either end are lost. (In
some applications you might find ash useful for shifting bignums.)

Note that like the Zetalisp functions whose name begins with the percent
sign (%), Ish is machine-dependent.

Examples:

(lsh 4 1) => #019
(lsh #014 -2) => #03
(lsh -1 1) => #0-2
(lsh -199 27) => -536879912 ; (ash -199 27) => -13421772899

For a table of related items: See the section "Machine-dependent Arith
metic Functions" in Symbolics Common Lisp: Language Concepts.

I

I

macro 320

macro name lambda-list &body body Special Form
The primitive special form for defining macros is macro. A macro defini
tion looks like this:

(macro name (form env)
body)

name can be any function spec. form and env must be variables. body is a
sequence of Lisp forms that expand the macro; the last form should return
the expansion. defmacro is usually preferred in practice.

macroexpand form &optional env dont-expand-special-forms Function
If form is a macro form, macroexpand expands it repeatedly until it is not
a macro form and returns two values: the final expansion and t. Other
wise, it returns form and nil. env is a lexical environment that can be sup
plied to specify the lexical environment of the expansions. See the section
"Lexical Environment Objects and Arguments" in Symbolics Common Lisp:
Language Concepts. dont-expand-special-forms prevents macro expansion of
forms that are both special forms and macros.

macroexpand-l form &optional env dont-expand-special-forms Function
If form is a macro form, macroexpand-l expands it (once) and returns the
expanded form and t. Otherwise it returns form and nil. env is a lexical
environment that can be supplied to specify the lexical environment of the
expansions. See the section "Lexical Environment Objects and Arguments"
in Symbolics Common Lisp: Language Concepts. dont-expand-special-forms
prevents macro expansion of forms that are both special forms and macros.
See the variable *macroexpand-hook*, page 320.

macroexpand-hook Variable
The value of this variable is used as the expansion interface hook by
macroexpand-l. When macroexpand-l determines that a symbol names a
macro, it obtains the expansion function for that macro. The value of
macroexpand-hook is called as a function of three arguments: the ex
pansion function, form, and env. The value returned from this call is the
expansion of the macro call.

The initial value of *macroexpand-hook* is funcall, and the net effect is
to invoke the expansion function, giving it form and env as its two ar
guments.

macro-function function Function
macro-function tests whether its argument is the name of a macro. func
tion should be a symbol. If function has a global function definition that is
a macro definition, then the expansion function (a function of two ar
guments, the macro-call form and an environment) is returned. The func
tion macro expand is the best way to invoke the expansion function.

321 make-array

If function has no global function definition, or has a definition as an or
dinary function or as a special form but not as a macro, then nil is
returned.

It is possible for both macro-function and special-form-p to be true of a
symbol. This is so because it is permitted to implement any macro also as
a special form for speed.

macro-function cannot be used to determine whether a symbol names a
locally defined macro established by macrolet; macro-function can examine
only global definitions.

setf can be used with macro-function to install a macro as a symbol's
global function definition:

For example:

(setf (macro-function symbol) fn)

The value installed must be a function that accepts two arguments, an en
tire macro call and an environment, and computes the expansion for that
call. Performing this operation causes the symbol to have only that macro
definition as a global function definition; any previous definition, whether
as a macro or as a function, is lost.

make-array dimensions &key (element-type t) initial-element Function
initial-contents adjustable fill-pointer
displaced-to displaced-index-offset
displaced-conformally area leader-list
leader-length named-structure-symbol

make-array creates and returns a new array. dimensions is the only re
quired argument. dimensions is a list of integers that are the dimensions
of the array; the length of the list is the dimensionality, or rank of the ar
ray.

;; Create a two-dimensional array
(make-array '(3 4) :element-type 'string-char)

For convenience when making a one-dimensional array, the single dimen
sion can be provided as an integer rather than a list of one integer.

;; Create a one-dimensional array of five elements.
(make-array 5)

The initialization of the elements of the array depends on the element type.
By default the array is a general array, the elements can be any type of
Lisp object, and each element of the array is initially nil. However, if the
:element-type option is supplied, and it constrains the array elements to
being integers or characters, the elements of the array are initially 0 or
characters whose character code is 0 and style is [nil.nil.nil]. You can

I

I

zl: make-array

specify initial values for the elements by using the :initial-contents or
:initial-element options.

322

Several of the keyword options are enhancements to Common Lisp. These
include: :displaced-conformally, :area, :leader-list, : leader-length, and
: named-structure-symb 01.

See the section "Keyword Options For make-array" in Symbolics Common
Lisp: Language Concepts.

See the section "Examples Of make-array" in Symbolics Common Lisp:
Language Concepts.

zl:make-array dimensions &key area type displaced-to Function
displaced-index-offset displaced-conformally ad-
justable leader-list leader-length
named-structure-symbol initial-value fill-pointer

Genera offers both zl:make-array and make-array. See the function
make-array, page 321.

dimensions is the only required argument. dimensions is a list of integers
that are the dimensions of the array; the length of the list is the dimen
sionality, or rank of the array. For the one-dimensional case you can just
give the integer.

zl:make-array returns two values: the newly created array, and the num
ber of words allocated in the process of creating the array. The second
value is the sys:%structure-total-size of the array. Note that make-array
returns only one value, the newly created array.

Most of the keyword options to zl:make-array have the same meaning as
the keyword options with the same name that can be given to make-array.
See the section "Keyword Options For make-array" in Symbolics Common
Lisp: Language Concepts.

:initial-value

:type

The :initial-value keyword for zl:make-array has the
same meaning as the :initial-element keyword for
make-array.
The :type option for zl:make-array is used for the same
purpose as is the :element-type option for make-array;
that is, to specify that the elements of the array should
be of a certain type. The value of the :type option is the
symbolic name of one of the Zetalisp array types, which
include:

323 zl :make-array-i nto-named-structu re

sys:art-q I
sys:art-q-list
sys:art-nb
sys: art-string
sys:art-fat-string
sys:art-boolean
sys:art-ilXllUID

The default type of array is sys:art-q, a general array.
See the section "Zetalisp Array Types" in Symbolics Com
mon Lisp: Language Concepts.

The initialization of the elements of the array depends on the type of array.
If the array is of a type whose elements can only be integers or characters,
element of the array are initially 0 or character code o. Otherwise, each
element is initially nil.

zl:make-array-into-named-structure array Function
array is made to be a named structure, and is returned.

make-char ehar &optional (bits 0) (font 0) Function
Takes the argument char, which must be a character object. bits and font
must be non-negative integers. make-char sets the bits field to bits and
returns the new character. If make-char cannot construct a character
given its arguments, it returns nil.

To set the bits of the character, supply one of the character bits constants
as the bits argument. See the section "Character Bit Constants" in Sym
bolies Common Lisp: Language Concepts.

(make-char #\A char-meta-bit) => #\m-A

Since the value of char-font-limit is 1, the only valid value' of font is o.
The only reason to use the font option would be when writing a program
intended to be portable to other Common Lisp systems.

If you want to construct a new character that has character style other
than NIL.NIL.NIL, use make-character: See the function
make-character, page 323.

make-character char &key (bits 0) (style nil) Function
Takes an argument char, which must be a character object, and returns a
new character with the same code, but having the specified bits and style.

To set the bits of the character, supply one of the character bits constants
as the value of the :bits keyword. See the section "Character Bit
Constants" in Symbolics Common Lisp: Language Concepts. For example:

I

make-condition 324

(make-character #\1 :bits char-control-bit) => #\c-1

To set the character style of the character, use the :style keyword and
supply a list of the form (:family :face :size). Any of the elements of this
list can be nil. For example:

(make-character #\A :style '(nil :italic nil» => #\A

make-condition condition-name &rest init-options Function
make-condition creates a condition object of the specified condition-name
with the specified init-options. This object can then be signalled by passing
it to signal or error. Note that you are not supposed to design functions
that indicate errors by returning error objects; functions should always in
dicate errors by signalling error objects. This function makes it possible to
build complex systems that use subroutines to generate condition objects so
that their callers can signal them.

For a table of related items: See the section "Condition-Checking and Sig
nalling Functions and Variables" in Symbolics Common Lisp: Language
Concepts.

make-dynamic-closure symbol-list function Function
Creates and returns a dynamic closure of function over the variables in
symbol-list. Note that all variables on symbol-list must be declared special.

To test whether an object is a dynamic closure, use (typep x :closure).
(typep x :closure) is equivalent to (zl:closurep x). See the section
"Dynamic Closure-Manipulating Functions" in Symbolics Common Lisp:
Language Concepts.

zl:make-equal-hash-table &rest options Function
This creates a new hash table using the equal function for comparison of
the keys. This function calls make-instance using the si:equal-hash-table
flavor, passing options to make-instance as init options. See the flavor
si:equal-hash-table, page 204. This function will be removed in the future
- use zl:make-hash-table with the :test keyword.

make-hash-table &key (test 'eql) (size cli:*default-table-size*) Function
(area sys:default-cons-area) hash-function
rehash-before-cold rehash-after-full-gc (entry-size
2) (mutating t) initial-contents optimizations
(locking :process) ignore-gc growth-factor
growth-threshold rehash-size rehash-threshold
&rest options

This function creates and returns a new table object. This function calls
make-instance using a basic table flavor and mixins for the necessary ad
ditional flavors as specified by the options.

325 make-hash-table

make-hash-table takes the following keyword arguments:

:test One of the values #'eq, #'eql, or #'equal; one of the
predicates eq, eqI, equal; or some arbitrary predicate
that you specify. It determines how keys are compared.

:size An integer representing the initial size of the table.
:area If :area is nil (the default), the sys:default-cons-area is

used. Otherwise, the number of the area that you wish
to use. This keyword is a Symbolics extension to Com
mon Lisp.

: hash-function Specifies a replacement hashing function. The default is
based on the :test predicate. This keyword is a Sym
bolics extension to Common Lisp.

:rehash-before-cold
Causes a rehash whenever the hashing algorithm has
been invalidated. (This is part of the before-cold
initializations.) Thus every user of the saved band does
not have to waste the overhead of rehashing the first
time they use the table after cold booting.
For eq tables, hashing is invalidated whenever garbage
collection or band compression occurs because the hash
function is sensitive to addresses of objects, and those
operations move objects to different addresses. For
equal tables, the hash function is not sensitive to ad
dresses of objects that smash knows how to hash but it
is sensitive to addresses of other objects. The table
remembers whether it contains any such objects.
Normally a table is automatically rehashed "on demand"
the first time it is used after hashing has become in
validated. This first gethash operation is therefore
much slower than normal.
The :rehash-before-cold keyword should be used on
tables that are a permanent part of your world, likely to
be saved in a band saved by zl:disk-save, and to be
touched by users of that band. This applies both to
tables in Genera and to tables in user-written subsystems
that are saved on disk bands.
This keyword is a Symbolics extension to Common Lisp.

:rehash-after-full-gc

: entry-size

Similar to :rehash-before-cold. Causes a rehash when
ever the garbage collector performs a full gc. This
keyword is a Symbolics extension to Common Lisp.
An integer that determines how large each entry is.
Especially useful for tables of type set. Currently the

I

I

make-hash-table

only legal values are 1 and 2. This keyword is a Sym
bolics extension to Common Lisp.

326

: mutating Turns mutation on and off. This keyword is a Symbolics
extension to Common Lisp.

: initial-contents A table object to copy the contents from, or a sequence
of keys and values to fill the table with. This keyword is
a Symbolics extension to Common Lisp.

:optimizations This keyword is reserved for use in a future release. It
is a Symbolics extension to Common Lisp.

:locking One or more of the following locking strategies:
:process, :without-interrupts, nil, or a cons consisting of
a lock and an unlock function. The default -is to lock
against the garbage collector when necessary and to lock
against other processes. This keyword is a Symbolics ex
tension to Common Lisp.

:ignore-gc By default, if the hash function is sensitive to the gar
bage collector, then the table is protected against GC
flip. This keyword is a Symbolics extension to Common
Lisp.

: growth-factor A synonym for : rehash-size. If the keyword is an in
teger, it is the number of entries to add, and if it is a
floating-point number, it is the ratio of the new size to
the old size. If the value is neither an integer or a
floating-point number, then an error is signalled. This
keyword is a Symbolics extension to Common Lisp.

: growth-threshold
A synonym for : rehash-threshold. If it is an integer
greater than zero and less than the :size, then it is re
lated to the number of entries at which growth should
occur. The threshold is the current size minus the
:growth-threshold. If it is a floating-point number be
tween zero and one, then it is the percentage of entries
that can be fuled before growth will occur. If the value
is neither an integer or a floating-point number, then an
error is signalled. This keyword is a Symbolics extension
to Common Lisp.

: rehash-size The growth factor of the table when it becomes full. If
the value of the keyword is an integer, it is the number
of entries to add, and if it is a floating-point number, it
is the ratio of the new size to the old size. If the value
is neither an integer or a floating-point number, then an
error is signalled.

:rehash-thresholdHow full the table can become before it must grow. If it

327 zl :make-hash-table

is an integer greater than zero and less than the :size,
then it is related to the number of entries at which
growth should occur. The threshold is the current size
minus the : growth-threshold. If it is a floating point
number between zero and one, then it is the percentage
of entries that can be filled before growth will occur. If
the value is neither an integer or a floating-point num
ber, then an error is signalled.

For a table of related items: See the section "Table Functions" in Sym
bolics Common Lisp: Language Concepts.

zl:make-hash-table &rest options Fun~tion

This creates a new hash table using the eq function for comparison of the
keys. This function calls make-instance using the si:eq-hash-table flavor,
passing options to make-instance as init options. See the flavor
si:eq-hash-table, page 199. This function will be removed in the future -
use zl:make-hash-table with the :test keyword.

make-heap (&key (size 100) (predicate #'<) (growth-factor 1.5) Function
interlocking)

make-heap creates a new heap. :predicate, :size, and :growth-factor are
passed as init options to make-instance when the heap is created.

make-heap takes the following keyword arguments:

:size The default is 100.
:predicate An ordering predicate that is applied to each key. The

default is #' <.
: growth-factor A number or nil. If it is an integer, the heap is in

creased by that number. If it is a floating-point number
greater than one, the new size of the heap is the old size
multiplied by that number. If it is nil, the condition
si:heap-overflow is signalled instead of growing the
heap.

:interlocking

:without-interrupts
This causes make-heap to create a
kind of heap that can be interlocked
for use by multiple processes, using
without-interrupts to perform the in
terlocking.

t This causes make-heap to create a
kind of heap that can be interlocked
for use by multiple processes, using

I

I

make-instance

nil

328

process-lock to perform the interlock
ing.
This causes make-heap to create a
heap that uses no locking at all. This
is the default.

For a table of related items: See the section "Heap Functions and Methods"
in Symbolics Common Lisp: Language Concepts.

make-instance flavor-name &rest init-options Generic Function
Creates and returns a new instance of the flavor named flavor-name, initial
ized according to init-options, which are alternating keywords and ar
guments. All init-options are passed to any methods defined for
make-instance.

If compile-flavor-methods has not been done in advance, make-instance
causes the combined methods of a program to be compiled, and the data
structures to be generated. This is sometimes called composing the flavor.
make-instance also checks that the requirements of the flavor are met.
Requirements of the flavor are set up with these defflavor options:
: required-flavors , : required-methods , :required-init-keywords, and
:required-instance-variables.

init-options can include:

: initable-instance-variable value
You can supply keyword arguments to make-instance
that have the same name as any instance variables
specified as :initable-instance-variables in the defflavor
form. Each keyword must be followed by its initial
value. This overrides any defaults given in defflavor
forms.

:init-keyword value
You can supply keyword arguments to make-instance
that have the same name as any keywords specified as
:init-keywords in the defflavor form. Each keyword
must be followed by a value. This overrides any defaults
given in defflavor forms.

:allow-other-keys t
Specifies that unrecognized keyword arguments are to be
ignored.

:allow-other-keys :return

:area number

Specifies that a list of unrecognized keyword arguments
are to be the second return value of make-instance.
Otherwise only one value is returned, the new instance.
Specifies the area number in which the new instance is

329

:area nil

make-list

to be created. Note that you can use the :area-keyword I
option to defflavor to change the :area keyword to
make-instance to a keyword of your choice, such as
:area-for-instances.
Note that any ancillary values constructed by
make-instance (other than the instance itself) are con
structed in whatever area you specify for them; this is
not affected by using the :area keyword. For example, if
you supply a variable initialization that causes consing,
that allocation is done in whatever area you specify for
it, not in this area. For example:

(defflavor foo «foo-1 (make-array 100)))
0)

In this example the array is consed in
sys:default-cons-area.
Specifies that the new instance is to be created in the
sys:default-cons-area. This is the default, unless the
:default-init-plist option is used to specify a different
default for :area.

If not supplied in the init-options argument to make-instance, the
:default-init-plist option to the defflavor form is consulted for any default
values for initable instance variables, init keywords, and the :area and
:allow-other-keys options.

If you want to know what the allowed keyword arguments to
make-instance are, use the Show Flavor Initializations command. See the
section "Show Flavor Commands" in 8ymbolics Common Lisp: Language
Concepts. c-sh-A works too, if the flavor name is constant.

You can define a method to run every time an instance of a certain flavor
is created: See the section "Writing Methods For make-instance" in 8ym
bolics Common Lisp: Language Concepts.

make-list size &key initial-element area Function
This function creates and returns a list containing size elements, each of
which is initialized to the value of the : initial-element. The value of size
should be a non-negative integer. For example:

(make-list 5) => (NIL NIL NIL NIL NIL)

(make-list 3 :initial-element 'rah) => (RAH RAH RAH)

:initial-element The value of the :initial-element argument. The default
is nil).

area An optional argument that: ~s thc~ P!!"Jber of the a:reH jn

I

zl:make-list 330

which to create the new list. (Areas are an advanced
feature of storage management.) See the section "Areas"
in Internals, Processes, and Storage Management.

For a table of related items: See the section "Functions for Constructing
Lists and Conses" in Symbolics Common Lisp: Language Concepts.

zl:make-list length &rest options Function
This creates and returns a list containing length elements. length should
be an integer. options are alternating keywords and values. The keywords
can be either of the following:

:area The value specifies in which area the list should be created. See
the section "Areas" in Internals, Processes, and Storage Management.
It should be either an area number (an integer), or nil to mean the
default area.

: initial-value
The elements of the list are all this value. It defaults to nil.

zl:make-list always creates a cdr-coded list. See the section "Cdr-Coding"
in Symbolics Common Lisp: Language Concepts. Examples:

(zl:make-list 3) => (nil nil nil)
(zl:make-list 4 :initial-value 7) => (7 7 7 7)

When zl:make-list was originally implemented, it took exactly two ar
guments: the area and the length. This obsolete form is still supported so
that old programs will continue to work, but the new keyword-argument
form is- preferred.

For a table of related items: See the section "Functions for Constructing
Lists and Conses" in Symbolics Common Lisp: Language Concepts.

make-mouse-char button &optional (bits 0) Function
Constructs a mouse character given a mouse button number. 0, 1, and 2
correspond to the left, middle, and right mouse buttons, respectively.

The optional bits argument is a number encoding the shift keys qualifying
the root mouse character as follows:

Bits Shift Key
0 None
1 CONTROL
2 META
4 SUPER
8 HYPER
16 SHIFT

The shift keys are additive with respect to the bits value, for example:

331

(make-mouse-char B 31) ==>

#\h-s-m-c-sh-House-L

make-package

make-package name &key... Function
make-package is the primitive subroutine called by defpackage.
make-package makes a new package and returns it. An error is signalled
if the package name or nickname conflicts with an existing package.
make-package takes the same arguments as defpackage except that stan
dard &key syntax is used, and there is one additional keyword, :invisible.

When an argument is called a name, it can be either a symbol or a string.
When an argument is called a package, it can be the name of the package
as a symbol or a string, or the package itself.

The keyword arguments are:

:use '(package package ...)
External symbols and relative name mappings of the specified
packages are inherited. If only a single package is to be used, the
name rather than a list of the name can be passed. If no package
is to be used, specify nil. The default value for :use is global.

:nicknames '(name name •••)
The package is given these nicknames, in addition to its primary
name.

Symbolics Common Lisp provides additional functionality with these
keywords:

:preIlX-name name
This name is used when printing a qualified name for a symbol in
this package. The specified name should be one of the nicknames of
the package or its primary name. If :prefix-name is not specified,
it defaults to the shortest of the package's names (the primary name
plus the nicknames).

:invisible boolean
If true, the package is not entered into the system's table of
packages, and therefore cannot be referenced via a qualified name.
This is useful if you simply want a package to use as a data struc
ture, rather than as the package in which to write a program.

:shadow '(name name •••)
Symbols with the specified names are created in this package and
declared to be shadowing.

:export '(name name •••)
Symbols with the specified names are created in this package, or in
herited from the packages it uses, and declared to be external.

:import '(symbol symbol •••)

I

I

make-package 332

The specified symbols are imported into the package. Note that un
like : export, :import requires symbols, not names; it matters in
which package this argument is read.

:shadowing-import '(symbol symbol •••)
The same as :import but no name conflicts are possible; the sym
bols are declared to be shadowing.

:import-from '(package name name •••)
The specified symbols are imported into the package. The symbols
to be imported are obtained by looking up each name in package.
(defpackage only) This option exists primarily for system bootstrap
ping, since the same thing can normally be done by :import. The
difference between :import and :import-from can be visible if the
file containing a defpackage is compiled; when :import is used the
symbols are looked up at compile time, but when :import-from is
used the symbols are looked up at load time. If the package struc
ture has been changed between the time the file was compiled and
the time it is loaded, there might be a difference.

:relative-names '«name package) (name package) •••)
Declare relative names by which this package can refer to other
packages. The package being created cannot be one of the packages,
since it has not been created yet. For example, to be able to refer
to symbols in the common-lisp package print with the prefix lisp:
instead of c1: when they need a package prefix (for instance, when
they are shadowed), you would use :relative-names like this:

(defpackage my-package (:use cl)
(: shadow error)
(:relative-names (lisp common-lisp)))

(let «*package* (find-package 'my-package)))
(print (list 'my-package: :error 'cl :error)))

:relative-names-for-me '«package name) (package name) •••)
Declare relative names by which other packages can refer to this
package.
(defpackage only) It is valid to use the name of the package being
created as a package here; this is useful when a package has a rela
tive name for itself.

:size number
The number of symbols expected to be present in the package. This
controls the initial size of the package's hash table. The :size
specification can be an underestimate; the hash table is expanded as
necessary.

:hash-inherited-symbols boolean

333 make-plane

If true, inherited symbols are entered into the package's hash table
to speed up symbol lookup. If false (the default), looking up a sym
bol in this package searches the hash table of each package it uses.

:external-only boolean
If true, all symbols in this package are external and the package is
locked. This feature is only used to simulate the old package sys
tem that was used before Release 5.0. See the section "External
only Packages and Locking" in Symbolics Common Lisp: Language
Concepts.

:include '(package package •••)
Any package that uses this package also uses the specified packages.
Note that if the :include list is changed, the change is not
propagated to users of this package. This feature is used only to
simulate the old package system that was used before Release 5.0.

:new-symbol-function function
function is called when a new symbol is to be made present in the
package. The default is si:pkg-new-symbol unless :external-only is
specified. Do not specify this option unless you understand the in
ternal details of the package system.

:colon-mode mode
If mode is : external, qualified names mentioning this package be
have differently depending on whether ":" or "::" is used, as in
Common Lisp. " :" names access only external symbols. If mode is
: internal, ":" names access all symbols. :internal is the default
currently. See the section "Specifying Internal and External Sym
bols in Packages" in Symbolics Common Lisp: Language Concepts.

:prefix-intern-function function
The function to call to convert a qualified name referencing this
package with ":" (rather than "::") to a symbol. The default is in
tern unless (:colon-mode :external) is specified. Do not specify this
option unless you understand the internal details of the package sys
tem.

make-plane rank &key (type sys:art-q) (default-value nil Function
default-value-supplied) (extension 32)
(initial-dimensions nil) (initial-origins nil)

Creates and returns a plane. rank is the number of dimensions. options is
a list of alternating keyword symbols and values. The allowed keywords
are:

:type The array type symbol (for example, sys:art-lb) specifying the type
of the array out of which the plane is made.

: default-value
The default component value.

I

I

make-rand om-state 334

: extension
The amount by which to extend the plane. See the section "Planes"
in Symbolics Common Lisp: Language Concepts.

: initial-dimensions
A list of dimensions for the initial creation of the plane. You might
want to use this option to create a plane whose ill"st dimension is a
multiple of 32, so you can use bitblt on it. The default is 1 in each
dimension.

: initial-origins
A list of origins for the initial creation of the plane. The default is
all zero.

Example:

(make-plane 2 :type sys:art-4b :default-value 3)

creates a two-dimensional plane of type sys:art-4b, with default value 3.

make-random-state &optional state Function
Returns a new object of type random-state which the function random can
use as its state argument.

If state is nil or omitted, make-random-state returns a copy of the current
random-number state object (the value of variable *random-state*).

If state is a state object, a copy of that state object is returned.

If state is t, the function returns a new state object that has been
"randomly" initialized.

Examples:

(setq x (make-random-state» => #.(RANOOM-STATE 71 16954B6379 ...)
;;; the value of x is now a random state
(setq copy-x (make-random-state x» => #.(RANOOM-STATE 71 ...)
;;; this makes a copy of random state x
;;; a way to get reproducibly random numbers

For a table of related items: See the section "Random Number Functions"
in Symbolics Common Lisp: Language Concepts.

make-raster-array width height &key make-array-options Function
Makes rasters; this should be used instead of make-array when making ar
rays that are rasters. make-raster-array is similar to make-array, but
make-raster-array takes width and height as separate arguments instead of
taking a single dimensions argument. If the raster is to be used with
bitblt, the width times the number of bits per array element must be a
multiple of 32.

335 zl :make-raster-array

The make-array-options are the options that can be given to make-array.
For information on those options: See the section "Keyword Options For
make-array" in Symbolics Common Lisp: Language Concepts.

When you cannot use make-raster-array, for example from the
:make-array option to defstruct contructors, you should use
raster-width-and-height-to-make-array-dimensions instead.

zl:make-raster-array width height &rest zl:make-array-options Function
This function is provided for compatibility with previous releases.
make-raster-array offers the same functionality. For information on this
function: See the function make-raster-array, page 334.

The only difference between zl:make-raster-array and make-raster-array
is the list of keyword options they accept. zl:make-raster-array accepts
the keyword options that can be given to zl:make-array.
make-raster-array accepts the keyword options that can be given to
make-array.

For information on the argument zl:make-array-options: See the function
zl:make-array, page 322.

make-sequence type size &key initial-element area Function
make-sequence returns a sequence of type type and of length size, each of
whose elements has been initialized to the value of the :initial-element ar
gument (or nil if none is specified). If :initial-element is specified, the
value must be an object that can be an element of a sequence of type type.
For example:

(make-sequence '(vector double-float) 5 :initial-element 1d0)
=> #(1.0d0 1.0d0 1.0d0 1.0d0 1.0d0)

The optional area argument is the number of the area in which to create
the new alist. (Areas are an advanced feature of storage management.)
See the section "Areas" in Internals, Processes, and Storage Management.

You can also create sequences using the vector and make-list functions.
See the function vector, page 610. See the function make-list, page 329.

For a table of related items: See the section "Sequence Construction and
Access" in Symbqlics Common Lisp: Language Concepts.

make-string size &key initial-element element-type area Function
The function make-string returns a simple string of length size. It con
structs a one-dimensional array without fill pointer or displacement, to hold
elements of type character, or any of its subtypes, that is, string-char, or
standard-char. Depending on their character type, strings created with
make-string can therefore be either fat or thin.

I

I

zl: make-raster-array 336

The ability to create fat as well as thin strings represents an extension of
the make-string function as presented in Guy L. Steele's Common Lisp: the
Language.

The optional keywords are as follows:

: initial-element

: element-type

:area

Each element of the new array is initialized to the
character specified by this keyword; this character
must correspond to the type specified by
: element-type, if any. If no initial element is
specified, array elements are initialized to characters
with a char-code of 0, whose type corresponds to the
type specified by :element-type; if :element-type is
also unspecified, make-string builds a thin string.
Specifies the type of characters in the string and
must be of type character, or any of its subtypes. If
this keyword is left unspecified, the string type cor
responds to the type of the character specified in
: initial-element. If both keywords are omitted,
make-string builds a thin string.
Specifies the area in which to create the array. :area
should be an integer or nil to mean the default area.

The examples below show the interaction of the keywords :initial-element
and : element-type.

Since make-string only lets you build simple character arrays, you must
use the array-specific function make-array to build more complex character
arrays.

Examples:

; :initial-element and :element-type are omi tted. Stri ng is thi n.
(string-char-p (char (make-string 5) 1)) => T

; :initial-element and :element-type speci fy a thi n stri ng.
(string-char-p (char (make-string 5 :initial-element #\C

:element-type 'string-char) 0)) => T

; :initial-element and :element-type speci fy a fat stri ng.
(string-fat-p (make-string 5 :initial-element #\hyper-C

:element-type 'character)) => T

; :element-type is omi tted, and :initial-element
; is a standard character. String is thin.
(string-char-p (char (make-string 5 :initial-element #\a) 2)) => T

337

; :element-type is ami tted, and : initial-element
; is a fat character. String is fat.

make-symbol

(string-fat-p (make-string 3 :initial-element #\hyper-super-a)) => T

; :initial-element is am it ted and
; :element-type is a subtype of character. Stri ng is tn, n.
(string-fat-p (make-string 4 :element-type 'string-char)) => NIL

; :initial-element is am it ted and
; :element-type is of type character. Stri ng is fat.
(string-fat-p (make-string 4 :element-type 'character)) => T

(make-array 5 :element-type 'string-char) =>
;returns a simple, thin string

(make-array 3 :element-type 'character :initial-element #\hyper-super-q)
=> "<H-S-Q><H-S-Q-><H-S-Q>" ;returns a fat, simple string

(make-string 4 :area working-storage-area) => " "

For a table of related items: See the section "String Construction" in Sym
bolics Common Lisp: Language Concepts.

make-symbol pname &optional permanent-p Function
Creates a new uninterned symbol whose print-name is the string pname.
The value and function bindings are unbound and the property list is
empty. If permanent-p is specified, it is assumed that the symbol is going
to be interned and probably kept around forever; in this case it and its
pname are put in the proper areas. If permanent-p is nil (the default), the
symbol goes in the default area and pname is not copied. permanent-p is
mostly for the use of intern itself.

Examples:

(make-symbol "FDD") => FDD
(make-symbol "Faa") => IFool

Note that the symbol is not interned; it is simply created and returned.

If a symbol has lowercase characters in its print-name, the printer quotes
the name using slashes or vertical bars. The vertical bars inhibit the Lisp
reader's normal action, which is to convert a symbol to uppercase upon
reading it. See the section "What the Printer Produces" in Reference
Guide to Streams, Files, and I/O.

I

I

zl:maknam

Example:

(setq a (make-symbol "Hello"»
(pri nc a)

zl:maknam char-list

=> IHellol
prints out Hello

338

Function
zl:maknam returns an uninterned symbol whose print-name is a string
made up of the characters in char-list. This function is provided mainly for
Maclisp compatibility.

Examples:

(zl :maknam 'ea b #\9 d» => #:AB9D
(zl :maknam '(1 2 #\h "b"» => #: lJ..ahbl

For a table of related items: See the section "Maclisp-Compatible String
Functions" in 8ymbolics Common Lisp: Language Concepts.

makunbound symbol Function
makunbound causes symbol to become unbound. Example:

(setq a 1)
a => 1
(makunbound 'a)
a => causes an error.

makunbound returns its argument.

makunbound-globally var Function
Works like makunbound but sets the global value regardless of any bind
ings currently in effect.

makunbound-globally operates on the global value of a special variable; it
bypasses any bindings of the variable in the current stack group. I t resides
in the global package.

makunbound-globally does not work on local variables.

makunbound-in-closure closure symbol Function
Makes symbol be unbound in the environment of closure; that is, it does
what makunbound would do if you restored the value cells known about by
closure. If symbol is not closed over by closure, this is just like makun
bound. See the section "Dynamic Closure-Manipulating Functions" in 8ym
bolics Common Lisp: Language Concepts.

map result-type function &rest sequences Function
map applies function to sequences, and returns a new sequence such that
element j of the new sequence is the result of applying function to element
j of each of the argument sequences. The returned sequence is as long as

339 zl:map

the shortest of the input sequences. function must take at least as many
arguments as there are sequences provided, and at least one sequence must
be provided.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

For example:

(map 'list #'- '(4 3 2 1) '(3 2 1 9» => (1 1 1 1)

(map 'string #'(lambda (x) (if (oddp x) #\1 #\3» '(1 2 3 4» =>
"1913"

If function has side effects, it can count on being called Irrst on all of tHe
elements with index 0, then on all of those numbered 1, and so on.

The type of the result sequence is specified by the argument result-type
(which must be a subtype of the type sequence), as for the function coerce.
In addition, you may specify nil for the result type, meaning that no result
sequence is to be produced. In this case function is invoked only for effect,
and map returns nil. This gives an effect similar to mapc.

For a table of related items: See the section "Mapping Functions" in Sym
bolics Common Lisp: Language Concepts.

For a table of related items: See the section "Mapping Sequences" in Sym
bolics Common Lisp: Language Concepts.

zl:map fen list &rest more-lists Function
The mapping function zl:map applies fen to list and to successive sublists
of that list. If all the lists are not of the same length, the iteration ter
minates when the shortest list runs out, and excess sublists of it are ig
nored.

zl:map works like maplist except that it does not construct a list to
return. Use zl:map when the fen is being called merely for its side effects,
rather than its returned values.

zl:map is the same as mapl.

Examples:

I

I

zl :mapatoms

(zl :map #'equal ' (2 3 4) , (2 3 4)) => (2 3 4)
(zl :map #'(lambda (x y) (if (equal x y)(princ "equal H)))

'(234) '(234))
=> equal equal equal

(2 3 4)
(zl :map #'(lambda (x) (if (member (car x) (cdr x)) nil

(princ (car x)) (princ " H)))

'(a b a c b») => A C 8 (A 8 A C 8)

340

For a table of related items: See the section "Mapping Functions" in Sym
bolics Common Lisp: Language Concepts.

For a table of related items: See the section "Mapping Sequences" in Sym
bolics Common Lisp: Language Concepts.

zl:mapatoms function &optional (Pkg zl:package) (inherited-p t) Function
function should be a function of one argument. zl:mapatoms applies func
tion to each of the symbols in package. If inherited-p is t, this is all sym
bols accessible to package, including symbols it inherits from other
packages. If inherited-p is nil, function only sees the symbols that are
directly present in package.

Note that when inherited-p is t symbols that are shadowed but otherwise
would have been inherited are seen; this slight blemish is for the sake of
efficiency. If this is a problem, function can try zl:intern in package on
each symbol it gets, and ignore the symbol if it is not eq to the result of
zl:intern; this measure is rarely needed.

zl:mapatoms-all function Function
function should be a function of one argument. zl:mapatoms-all applies
function to all of the symbols in all of the packages in existence, except for
invisible packages. Note that symbols that are present in more than one
package are seen more than once.

Example:

(mapatoms-all
(function

(1 ambda (x)
(and (alphalessp 'z x)

(print x))))

mapc fcn list &rest more-lists . Function
mapc is like map car, except that it does not return any useful value.

mapc applies fcn to successive elements of the argument lists. If the lists
are not of the same length, the iteration terminates when the shortest list
runs out.

341 mapcan

fen must take take as many arguments as there are lists.

mapc is used when fen is being called merely for its side effects, rather
than its returned values.

Examples:

(mape #J+ J(2 1 8) J(2 3 4» => (2 1 8)
(mape #J(lambda (x y) (if (= (+ x y) 3) (prine "three a»~)

J (1 2 3) J (2 1 3»

=> three three (1 2 3)

For a table of related items: See the section "Mapping Functions" in Sym
bolies Common Lisp: Language Concepts.

mapcan fen list &rest more-lists Function
The mapping function mapcan is like map car, except that it combines the
results of the function using nconc instead of list.

mapcan applies fen to list and to successive elements of that list.

fen must take as many arguments as there are lists.

Examples:

(mapean #J(lambda (x) (if (equal x 3) nil (prine x») J(1 234»
=> 124NIL

(mapean #J(lambda (x) (and (integerp x) (list x»)
J(1 2.3 3. 4 Jd 8»

=> (1 3 4 8)

If mapcar were used for the above example, the result would be as follows:

(mapear #J (lambda (x) (if (equal x 3) nil (prine x») J (1 2 3 4»
=> 124(1 2 NIL 4)

(mapear #J(lambda (x) (and (integerp x) (list x»)
J(1 2.3 3. 4 Jd 8» => «1) NIL (3) (4) NIL (8»

For a table of related items: See the section "Mapping Functions" in Sym
bolies Common Lisp: Language Concepts.

mapcar fen list &rest more-lists Function
fen is a function that takes as many arguments as there are lists in the
call to map car. For example, since expt takes two arguments the follow
ing use of mapcar is incorrect:

Wrong:

I

I

mapcon 342

(mapcar #'expt '(1 234 5) '(43 2 1 4 2) '(2 3 232))

Right:

(mapcar #'expt '(1 234 5) '(43 2 1 4 2))

In the correct example, mapcar calls expt repeatedly, each time using suc
cessive elements of the first list as its first argument and successive ele
ments of the second list as its second argument. Thus, mapcar calls expt
with the arguments 1 and 43, 2 and 2, 3 and 1, 4 and 4, and 5 and 2 and
returns a list of the five results.

Examples:

(mapcar #'- '(3 4 2 5) '(1 1 2 3)) => (2 3 e 2)

(mapcar #'= '(1 234) '(1 2 3 8)) => (T T T NIL)

(mapcar #'(lambda (x) (if (numberp x) e 1)) '(1 2 3 'k "hi" 'fly))
=> (0 0 0 1 1 1)

(mapcar #'list '('hot 'cat 'sam 'new) '('dog 'hat 'man 'york))
=> «'HOT 'DOG) ('CAT 'HAT) ('SAM 'MAN) ('NEW 'YORK))

(mapcar #'+ '(1 234) (circular-list 1)) => (2 3 4 5)

(mapcar #'= '(1 2 3 3 45) '(2 2)) => (NIL T)

For a table of related items: See the section "Mapping Functions" in Sym
bolics Common Lisp: Language Concepts.

mapcon fen list &rest more-lists Function
The mapping function mapcon is like maplist, except that it combines the
results of the function using nconc instead of list.

mapcon applies fen to list and to successive sublists of that list rather
than to successive elements.

fen must take as many arguments as there are lists.

mapcon could have been defined by:

(defun mapcon (f x y)

(apply 'nconc (maplist f x y)))

Of course, this definition is less general than the real one.

Examples:

343

(mapcon #'(lambda (x y) (and (equal y x)(list x))

, (' yo 'ho 'woo 'wa) '(' hi' ho 'woo 'wa))
=> «'HO 'WOO 'WA) ('WOO 'WA) ('WA))

:map-hash

If maplist were used for the above example the result would look as fol
lows:

(maplist #'(lambda (x y) (and (equal y x)(list x))

'('yo 'ho 'woo 'wa) '('hi 'ho 'woo 'wa))
=> (NIL «'HO 'WOO 'WA)) «'WOO 'WA)) «'WA)))

For a table of related items: See the section "Mapping Functions" in Sym
bolics Common Lisp: Language Concepts.

:map-hash function &rest args Message
For each entry in the hash table, call function on the key of the entry and
the value of the entry. If args are supplied, they are passed along to func
tion following the value of the entry argument. This message will be
removed in the future - use maphash instead.

maphash function table Function
For each entry in table, call function on the k~y of the entry and the value
of the entry.

For a table of related items: See the section "Table Functions" in Sym
bolics Common Lisp: Language Concepts.

zl:maphash-equal function hash-table &rest args Function
For each entry in hash-table, call function on the key of the entry and the
value of the entry. If args are supplied, they are passed along to function
following the value of the entry. This message will be removed in the fu
ture - use maphash instead.

mapl fen list &rest more-lists Function
The mapping function mapl applies fen to list and to successive sublists of
that list. If all the lists are not of the same length the iteration ter
minates when the shortest list runs out and excess sublists of it are ig
nored.

mapl works like maplist, except that it does not accumulate the results of
calling fen. Use mapl when fen is being called merely for its side effects,
rather than its returned value.

For a table of related items: See the section "Mapping Functions" in Sym
bolics Common Lisp: Language Concepts.

I

I

maplist 344

maplist fen list &rest more-lists Function
maplist applies fen to list and to successive sublists of that list rather than
to successive elements as does mapcar.

fen must take as many arguments as there are lists.

maplist returns a list that accumulates the results of the successive calls
to fen.

Examples:

(maplist #'append '(a bed) '(1 234))
=> «A BCD 1 2 3 4) (B C02 3 4) (C 0 3 4) (0 4))

(maplist #'(lambda (a-list) (cons 'twiddle a-list))
'(blank dee dumb))

=> «TWIDDLE BLANK DEE DUMB) (TWIDDLE DEE DUMB) (TWIDDLE DUMB))

(maplist #'equal '("car" "house" "door" "barn")
'('cat 'hat "door" "barn"))

=> (NIL NIL T T)

For a table of related items: See the section "Mapping Functions" in Sym
bolics Common Lisp: Language Concepts.

mask-field bytes pee integer Function
This is similar to ldb ("load byte"); however, the specified byte of integer is
returned as a number in the position specified by bytespec in the returned
word, instead of in position 0 as with ldb. integer must be an integer.

bytespec is built using function byte with bit size and position arguments.

Example:

(mask-field (byte 6 3) #04567) => #0568

For a table of related items: See the section "Summary of Byte Manipula
tion Functions" in Symbolics Common Lisp: Language Concepts.

max number &rest more-numbers Function
max returns the largest of its arguments. At least one argument is re
quired. The arguments can be of any noncomplex numeric type. The
result type is the type of the largest argument.

Example:

345 zl:mem

(max 1 3 2) => 3

For a table of related items: See the section "Numeric Comparison
Functions" in Symbolics Common Lisp: Language Concepts.

maximize Keyword For loop

maximize expr {data-type} {into var}

Computes the maximum of expr over all iterations. data-type defaults to number.
Note that if the loop iterates zero times, or if conditionalization prevents the code
of this clause from being executed, the result is meaningless. If loop can
determine that the arithmetic being performed is not contagious (by virtue of
data-type being ilXllum or flonum), it can choose to code this by doing an
arithmetic comparison rather than calling max. As with the sum clause,
specifying data-type implies that both the result of the max operation and the
value being maximized is of that type. When the epilogue of the loop is reached,
var has been set to the accumulated result and can be used by the epilogue code.

I t is safe to reference the values in var during the loop, but they should not be
modified until the epilogue code for the loop is reached.

Examples:

(defun maxi (my-list)
(loop for x from B

for item in my-list
maximize item into result1
finally (return result1))) => MAXI

(maxi '(1 2 4 5 8 7 6)) => 8

Not only can there be mUltiple accumulations in a loop, but a single accumulation
can come from multiple places within the same loop form, if the types of the
collections are compatible. maximize and minimize are compatible.

See the section "loop Clauses", page 310.

zl:mem predicate item list Function
(zl:mem item list) returns nil if item is not one of the elements of list.
Otherwise, it returns the sublist of list beginning with the first occurrence
of item; that is, it returns the first cons of the list whose car is item. The
comparison is made by predicate. Because zl:mem returns nil if it does not
find anything, and something non-nil if it finds something, it is often used
as a predicate.

zl:mem is the same as zl:memq except that it takes an extra argument
that should be a predicate of two arguments, which is used for the com-

I

I

zl:memass 346

parison instead of eq. (zl:mem 'eq a b) is the same as (zl:memq a b).
(zl:mem 'equal a b) is the same as (zl:member a b).

zl:mem is usually used with equality predicates other than eq and zl:equal,
such as =, char-equal or zl:string-equal. It can also be used with noncom
mutative predicates. The predicate is called with item as its first argument
and the element of list as its second argument, so:

(zl :mem #'< 4 list)

fmds the first element in list for which « 4 x) is true; that is, it finds the
first element greater than 4.

For a table of related items: See the section "Functions for Searching
Lists" in Symbolics Common Lisp: Language Concepts.

zl:memass predicate item alist Function
(zl:memass item alist) looks up item in the association list (list of conses)
alist. The value returned is the portion of the list beginning with the pair
containing the first element that matches item, according to predicate, or
nil if there is none such.

(car (zl:memass x y z» = (zl:ass x y z).

See the function zl:mem, page 345. As with zl:mem, you can use noncom
mutative predicates; the first argument to the predicate is item and the
second is the key of the element of alist.

For a table of related items: See the section "Functions That Operate on
Association Lists" in Symbolics Common Lisp: Language Concepts.

member item list &key (test #'eql) test-not (key #'identity) Function
. member searches list for an element that satisfies the predicate specified

by the :test keyword with respect to item. If no element is found that
matches item, nil is returned; otherwise the tail of list beginning with the
first element that satisfied the predicate is returned. The keywords are:

:test

:test-not

:key

Any predicate specifying a binary operation to be applied
to a supplied argument and an element of a target list.
The item matches the specification only if the predicate
returns t. If :test is not supplied the default operation is
eql.
Similar to :test, except the item matches the specification
only if there is an element of the list for which the
predicate returns nil.
If not nil, should be a function of one argument that will
extract from an element the part to be tested in place of
the whole element.

347 member

list is searched on the top level only. For example:

(member litem I(a be)) => NIL

(member litem I(a #\Space item 5/3)) => (ITEM 5/3)

member can be used as a predicate, since the value returned by member
is eq to the portion of the list it matches. This implies that rplaca or
rplacd can be used to alter the found list element, as long as a check is
made fIrst that member did not return nil. For example:

(setq list '(loon eagle heron)) => (LOON EAGLE HERON)

(if (member 'eagle list)
(rplaca (member 'eagle list) 'hawk)) => (HAWK HERON)

list => (LOON HAWK HERON)

See also, find position.

For a table of related items: See the section "Functions for Searching
Lists" in Symbolics Common Lisp: Language Concepts.

member &rest list Type Specifier
member allows the defInition of a data type consisting of objects that are
elements of list. An object is of this type if it is eql to one of the objects
specifIed in list. As a type specifIer, member can only be used in list form.

Examples:

(typep 3 I (member 1 2 3)) => T
(typep 'a I (member a be)) => T
(subtypep I (member one two three) I (member one two three four))
=> T and T

(sys:type-arglist 'member) => (&REST LIST) and T

See the section "Data Types and Type SpecifIers" in Symbolics Common
Lisp: Language Concepts. See the section "Lists" in Symbolics Common
Lisp: Language Concepts.

zl:member item list Function
(zl:member item list) returns nil if item is not one of the elements of list.
Otherwise, it returns the sublist of list beginning with the fIrst occurrence
of item; that is, it returns the fIrst cons of the list whose car is item. The
comparison is made by zl:equal.

zl:member could have been defIned by:

•

I

member-if

(defun member (item list)
(cond «null list) nil)

«equal item (car list)) list)
(t (member item (cdr list)))))

For a table of related items: See the section "Functions for Searching
Lists" in Symbolics Common Lisp: Language Concepts.

348

member-if predicate list &key key Function
member-if is very similar to member. member-if searches for an element
in list which satisfies predicate. If none is found, member-if returns nil;
otherwise the tail of list beginning with the first element that satisfied the
predicate is returned. list is searched on the top level only. For example:

:key

(member-if #Jnumberp J(a #\Space 5/3 item)) => (5/3 ITEM)

If not nil, should be a function of one argument that will
extract from an element the part to be tested in place of
the whole element.

For a table of related items: See the section "Functions for Searching
Lists" in Symbolics Common Lisp: Language Concepts.

member-if-not predicate list &key key Function
member-if-not is very similar to member. member-if-not searches for the
first element in list which does not satisfy predicate. If every element
satisfies the predicate, member-if-not returns nil; otherwise it returns the
tail of list beginning with the first element that did not satisfy the predi
cate. list is searched on the top level only. For example:

:key

(member-if-not #Jnumberp J(4.0 #\Space 5/3 item)) =>
(#\Space 5/3 ITEM)

(member-if-not #Jnumberp J(5/3 4.0)) => NIL

If not nil, should be a function of one argument that will
extract from an element the part to be tested in place of
the whole' element.

For a table of related items: See the section "Functions for Searching
Lists" in Symbolics Common Lisp: Language Concepts.

I
zl:memq item list Function

(zl:memq item list) returns nil if item is not one of the elements of list.
Otherwise, it returns the sublist of list beginning with the first occurrence
of item; that is, it returns the first cons of the list whose car is item. The
comparison is made by eq. Because zl:memq returns nil if it does not find
anything, and something non-nil if it finds something, it is often used as a
predicate. Examples:

"

349 merge

(zl :memq 'a '(1 2 3 4)) => nil
(zl :memq 'a '(g (x a y) cad e a f)) => (a d e a f)

Note that the value returned by zl:memq is eq to the portion of the list
beginning with a. Thus rplaca on the result of zl:memq can be used, if
you first check to make sure zl:memq did not return nil. Example:

(let (sublist (zl :memq x z)))
(if (not (null sublist))

(rplaca sublist y)))

zl:memq could have been defined by:

(defun memq (item list)
(cond «null list) nil)

isearch for x in the list z.
; i fit is found I

;replace it with y.

«eq item (car list)) list)
(t (memq item (cdr list)))))

zl:memq is hand-coded in microcode and therefore especially fast.

For a table of related items: See the section "Functions for Searching
Lists" in Symbolics Common Lisp: Language Concepts.

merge result-type sequencel sequence2 predicate &key key Function
merge destructively merges the sequences according to an order deter
mined by predicate. The result is a sequence of type result-type, which
must be a subtype of sequence, as for the function coerce.

Sequencel and sequence2 can be either a list or a vector (one-dimensional
array). Note that nil is considered to be a sequence, of length zero.

predicate should take two arguments and return a non-nil value if and only
if the first argument is strictly less than the second (in some appropriate
sense). If the first argument is 'greater than or equal to the second (the
the appropriate sense), then predicate should return nil.

The merge function determines the relationship between two elements by
giving keys extracted from the elements to predicate. The :key function,
when applied to an element, should return the key for that element. The
:key function defaults to the identity function, thereby making the element
itself be the key.

The :key fupction should not have any side effects. A useful example of a
:key functi01 would be a component selector function for a defstruct struc
ture, used to merge a sequence of structures. 't

If the :key and predicate functions always return, then the merging func
tion will always terminate. The result of merging two sequences x and y is
a new sequence z, such that the length of z is the sum of the lengths of x
and y, and z contains all of the elements of x and y. If xl and x2 are two

I

I

flavor:method-options

elements of x, and xl precedes x2 in x, then xl precedes x2 in Z, and
similarly for the elements of y. In short, Z is an interleaving of x and y.

Moreover, if x and y were correctly sorted according to predicate, then Z

will also be correctly sorted. For example:

(merge 'list '(1 346 7) '(2 5 8) #'<) => (1 234 5 6 7 8)

350

If x or y is not so sorted, then Z will not be sorted, but will nevertheless be
an interleaving of x and y. For example:

(merge 'list '(3 641 7) '(2 5 8) #'<) => (2 3 564 1 7 8)

The merging operation is guaranteed to be stable, that is, if two or more
elements are considered equal by predicate, then the elements from
sequencel will precede those from sequence2 in the result. The predicate is
assumed to consider two elements from x and y to be equal if
(funcall predicate x y) and (funcall predicate y x) are both false. For ex
ample:

(merge 'string "BOY" "nosy" #'char-lessp) => "BnOosYy"

The result can not be "BnoOsYy", "BnOosyY", or "BnoOsyY", because the
function char-Iessp ignores case, and so considers the characters Y and y
to be equal. Since Y and yare equal, the stability property then
guarantees that the character' from the first argument (Y) must precede
the one from the second argument (y).

For a table of related items: See the section "Sorting and Merging
Sequences" in Symbolics Common Lisp: Language Concepts.

flavor:method-options function-spec Function
flavor:method-options returns the (options ...) portion of the function-spec.
options is the options argument that was given in the defmethod form for
this method, such as :before or :progn. See the section "Function Specs
for Flavor Functions" in Symbolics Common Lisp: Language Concepts.

The (options... portion is the cdddr of the function-spec. Functions specs
for methods are in the form:

(type generic flavor options ...)

type is typically flavor:method.

This is useful in the bodies of define-method-combination forms. The
definition of the :case method combination type provides a good example of
the use of flavor:method-options. See the section "Examples Of
define-method-combination" in Symbolics Common Lisp: Language Con
cepts.

351 mexp

mexp (repeat nil) (compile nil) (do-style-checking nil) Special Form I
(do-macro-expansion t) (do-named-constants nil)
(do-inline-forms t) (do-optimizers nil)
(do-constant-folding nil) (do-function-args nil)

The function mexp goes into a loop in which it reads forms and sequen
tially expands them, printing out the result of each expansion (using the
grinder to improve readability). See the section "Formatting Lisp Code" in
Reference Guide to Streams, Files, and lID. It terminates when you press
the END key. If you type in a form that is not a macro form, there are no
expansions and so it does not type anything out, but just prompts you for
another form. This allows you to see what your macros are expanding into,
without actually evaluating the result of the expansion.

For example:

(mexp)
Type End to stop expanding forms

Macro form ~ (loop named t until nil return 5)
(ZL:LOOP NAMED T UNTIL NI RETURN 5) ~
(PROG T NIL
SI:NEXT-LOOP AND NIL

(GO SI:END-LOOP»
(RETURN 5)
(GO SI:NEXT-LOOP)

SI:END-LOOP)

Macro form ~ (defparameter faa bar) ~
(PROGN (EVAL-WHEN (COMPILE)

(COMPILER:SPECIAL-2 'FOO»
(EVAL-WHEN (LOAD EVAL)

(SI:DEFCONST-1 FOO BAR NIL»)

See the section "Expanding Lisp Expressions in Zmacs" in Text Editing and
Processing. That section describes two editor commands that allow you to
expand macros - c-sh-M and M-sh-M. There is also the Command Proces
sor command, Show Expanded Lisp Code. See the document User's Guide
to Symbolics Computers.

min number &rest more-numbers Function
min returns the smallest of its arguments. At least one argument is re
quired. The arguments can be of any noncomplex numeric type. The
result type is the type of the smallest argument.

Example:

I

minimize

(min 1 3 2) => 1

For a table of related items: See the section "Numeric Comparison
Functions" in Symbolics Common Lisp: Language Concepts.

minimize Keyword For loop

minimize expr {data-type} {into var}

352

Computes the minimum of expr over all iterations. data-type defaults to number.
Note that if the loop iterates zero times, or if conditionalization prevents the code
of this clause from being executed, the result is meaningless. If loop can
determine that the arithmetic being performed is not contagious (by virtue of
data-type being fixnum or flonum), it can choose to code this by doing an
arithmetic comparison rather than calling min. As with the sum clause,
specifying data-type implies that both the result of the min operation and the
value being minimized is of that type. When the epilogue of the loop is reached,
var has been set to the accumulated result 'and can be used by the epilogue code.

It is safe to reference the values in var during the loop, they should not be
modified until the epilogue code for the loop is reached.

Examples:

(defun mini (my-list)
(loop for x from 8

for item in my-list
minimize item into result1
finally (return result1))) => MINI

(mi ni J (3 4 5 6 8 8 7)) => 8

Not only can there be multiple accumulations in a loop, but a single accumulation
can come from multiple places within the same loop form, if the types of the
collections are compatible. minimize and maximize are compatible.

See the section "loop Clauses", page 310.

zl:minus x Function
Returns the negative of x. zl:minus is similar to - used with one ar
gument.

Examples:

(zl :minus 1) => -1
(zl :minus -3.8) => 3.8

For a table of related items: See the section "Arithmetic Functions" In
Symbolics Common Lisp: Language Concepts.

353 minusp

minusp number Function
Returns t if its argument is a negative number, strictly less than zero.
Otherwise it returns nil. If number is not a noncomplex number, minusp
signals an error.

Examples:

(minusp -5) => T
(minusp 9) => NIL
(minusp 9.9d9) => NIL
(minusp -9.9) => NIL

For a table of related items: See the section "Numeric Property-checking
Predicates" in Symbolics Common Lisp: Language Concepts.

mismatch sequencel sequence2 &key from-end (test #'eql) test-not Function
key (startl 0) (start2 0) endl end2

mismatch compares the specified subsequences of sequencel and sequence2
element-wise. If they are of equal length and match in every element, the
result is nil. Otherwise, the result is a non-negative integer representing
the index within sequencel of the leftmost position at which the two sub
sequences fail to match, or, if one subsequence is shorter than and a
matching prefix of the other, the result is the index relative to sequencel
beyond the last position tested.

For example:

(mismatch '(loon heron stork) '(loon heron stork)) => NIL

(mismatch '(hawk loon owl pelican) '(hawk loon eagle pelican)) => 2

(mismatch '(1 2 3) '(1 2 3 4 5)) => 3

If the value of the :from-end keyword is non-nil, then one plus the index of
the rightmost position in which the sequences differ is returned. In effect,
the (sub)sequences are aligned at their right-hand ends and the last ele
ments are compared, then the ones before, and so on. The index returned
is again an index relative to sequencel. For example:

(mismatch '(hawk loon owl pelican) '(hawk loon eagle pelican)
:from-end t) => 3

:test specifies the test to be performed. An element of sequence satisfies
the test if (funcall testfun item (keyfn x)) is true. Where test fun is the test
function specified by :test, keyfn is the function specified by :key and x is an
element of the sequence. The default test is eql.

For example:

•

I

mod 354

(mismatch '(234) '(1 2 3) :test #'» => NIL

:test-not is similar to :test, except that the sense of the test is inverted.
An element of sequence satisfies the test if (funcall testfun item (keyfn x»
is false.

The value of the keyword argument :key, if non-nil, is a function that
takes one argument. This function extracts from each element the part to
be tested in place of the whole element.

For example:

(mismatch '«north 1) (south 2» '«right 1)(left 2» :key #'second)
=> NIL

For a table of related items: See the section "Searching for Sequence
Items" in Symbolics Common Lisp: Language Concepts.

mod number divisor Function
Divides number by divisor converting the quotient into an integer and trun
cating the result toward negative infinity. Returns the remainder. This is
the same as the second value of (floor number divisor).

When there is no remainder, the returned value is o.
The arguments can be integers or floating-point numbers.

Examples:

(mod 3 2) => 1
(mod -3 2) =>
(mod 3 -2) =>-1
(mod -3 -2) => -1
(mod 4 -2) => 8
(mod 3.8 2) => 1.8
(mod -3.8 2) => 8.28888885

Related Functions:

floor
rem

For a table of related items: See the section "Arithmetic Functions" in
Symbolics Common Lisp: Language Concepts.

mod n Type Specifier
mod defines the set of non-negative integers less than n. This is equiv
alent to (integer 8 n-1), or to (integer 8 (n».

As a type specifier, mod can only be used in list form.

Examples:

355

(typep 3 '(mod 4» => T
(typep 5 '(mod 4» => NIL
(typep 4 '(mod 4» => NIL
(subtypep 'bit '(mod 2» => T and T
(sys:type-arglist 'mod) => (N) and T

modify-hash

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. For a discussion of the function mod: See the
section "Numbers" in Symbolics Common Lisp: Language Concepts.

modify-hash table key "function Function
modify-hash combines the action of setf of gethash into one call to
modify-hash. It lets you both examine the value of key and change it. It
is more efficient because it does the lookup once instead of twice.

Finds the value associated with key in table, then calls function with key,
this value, a flag indicating whether or not the value was found. Puts
whatever is returned by this call to function into table, associating it with
key. Returns the new value and the key of the entry.

For a table of related items: See the section "Table Functions" in Sym
bolics Common Lisp: Language Concepts.

:modify-hash key function &rest args Message
This message combines the actions of :get-hash and :put-hash. It lets you
both examine the value for a particular key and change it. It is more ef
ficient because it does the hash lookup once instead of twice.

It finds value, the value associated with key, and key-exists-p, which in
dicates whether the key was in the table. It then calls function with key,
value, key-exists-p, and other-args. If no value was associated with the key,
then value is nil and key-exists-p is nil. It puts whatever value function
returns into the hash table, associating it with key.

(send new-cams ':modify-hash k faa a b c) =>
(funcall faa k val key-exists-p a b c)

This function will be removed in the future - use modify-hash instead.

*modules· Variable

most-negative-double-float Constant
The value of most-negative-double-float is that floating-point number in
double-float format closest in value (but not equal to) negative infinity.

I

I

most-negative-fixnum 356

most-negative-ilXl1UIn Constant
The value of most-negative-ilXl1UIn is that flXllum closest in value to nega
tive infinity.

most-negative-Iong-float Constant
The value of most-negative-Iong-float is that floating-point number in
long-float format closest in value (but not equal to) negative infinity. In
Symbolics Common Lisp this constant has the same value as
most-negative-double-float.

most-negative-short-float Constant
The value of most-negative-short-float is that floating-point number in
short-float format closest in value (but not equal to) negative infinity. In
Symbolics Common Lisp this constant has the same value as
most-negative-single-float.

most-negative-single-float Constant
The value of most-negative-single-float is that floating-point number in
single-float format closest in value (but not equal to) negative infinity.

most-positive-double-float Constant
The value of most-positive-double-float is that floating-point number in
double-float format which is closest in value (but not equal to) positive in
finity.

most-positive-fixnUIn Constant
The value of most-positive-ilXl1um is that flXllum closest in value to posi
tive infinity.

most-positive-Iong-float Constant
The value of most-positive-Iong-float is that floating-point number in long
float format which is closest in value (but not equal to) positive infinity.
In Symbolics Common Lisp this constant has the same value as
most-positive-double-float.

most-positive-short-float Constant
The value of most-positive-short-float is that floating-point number in
short-float format which is closest in value (but not equal to) positive in
finity. In Symbolics Common Lisp this constant has the same value as
most-positive-single-float.

most-positive-single-float Constant
The value of most-positive-single-float is that floating-point number in
single-float format which is closest in value (but not equal to) positive in
finity.

357 mouse-char-p

mouse-char-p char Function
Returns t if char is a mouse character, nil otherwise.

zl:multiple-value (variable ...) form Special Form
Used for calling a function that is expected to return more than one value.
form is evaluated, and the variables are set (not lambda-bound) to the
values returned by form. If more values are returned than there are vari
ables, then the extra values are ignored. If there are more variables than
values returned, extra values of nil are supplied. If nil appears in the
var-list, then the corresponding value is ignored (you can't use nil as a
variable.) Example:

(zl :multiple-value (symbol already-there-p)
(intern "goo")

In addition to its Irrst value (the symbol), zl:intern returns a second value,
which is t if the symbol returned as the first value was already interned,
or else nil if zl:intern had to create it. So if the symbol goo was already
known, the variable already-there-p is set to t, otherwise it is set to nil.

zl:multiple-value is usually used for effect rather than for value; however,
its value is defined to be the first of the values returned by form.

multiple-value-bind (variable ...) form body... Special Form
Similar to zl:multiple-value, but locally binds the variables that receive the
values, rather than setting them, and has a body - a set of forms that are
evaluated with these local bindings in effect. First form is evaluated.
Then the variables are bound to the values returned by form. Then the
body forms are evaluated sequentially, the bindings are undone, and the
result of the last body form is returned.

multiple-value-call function body... Special Form
First evaluates function to obtain a function. It then evaluates all the
forms in body, gathering together all the values of the forms (not just one
value from each). It gives these values as arguments to the function and
returns whatever the function returns.

For example, suppose the function frob returns the first two elements of a
list of numbers:

(multiple-value-call #'+ (frob '(1 2 3) (frob '(4 5 6)))
<=> (+ 1 2 4 5) => 12.

multiple-value-list form Special Form
Evaluates form and returns a list of the values it returned. This is useful
for when you do not know how many values to expect. Example:

I

I

multiple-value-prog1

(setq a (mu1tip1e-va1ue-1ist (intern "goo"»)
a => (goo nil)

358

This is similar to the example of zl:multiple-value; a is set to a list of two
elements, the two values returned by zl:intern.

multiple-value-progl first-form body... Special Form
Like progl, except that if its Ill"st form returns multiple values,
inultiple-value-progl returns those values. In certain cases, progl is more
efficient than multiple-value-progl, which is why both special forms exist.

flavor:multiple-value-prog2 forms... Macro
Evaluates the forms and returns all the values of the second form. This is
similar to multiple-value-progl.

math: multiply-matrices matrix-I matrix-2 &optional matrix-3 Function
Multiplies matrix-I by matrix-2. If matrix-3 is supplied,
math:multiply-matrices stores the results into matrix-3 and returns
matrix-3; otherwise it creates an array to contain the answer and returns
that. All matrices must be two-dimensional arrays, and the Ill"st dimension
of matrix-2 must equal the second dimension of matrix-I.

359 name-char

name-char name Function
If name is the same as the name of a character object, that object is
returned; otherwise nil is returned. name-char does not recognize names
with modifier bit prefixes such as "hyper-space".

(name-char "Tab") => #\Tab

sys:name-conflict Flavor
Any sort of name conflict occurred (there are specific flavors, built on
sys:name-conflict, for each possible type of name conflict.) The following
proceed types might be available, depending on the particular error:

The :skip proceed type skips the operation that would cause a name con
flict.

The :shadow proceed type prefers the symbols already present in a package
to conflicting symbols that would be inherited. The preferred symbols are
added to the package's shadowing-symbols list.

The :export proceed type prefers the symbols being exported (or being in
herited due to a use-package) to other symbols. The conflicting symbols
are removed if they are directly present, or shadowed if they are inherited.

The :unintern proceed type removes the conflicting symbol.

The :shadowing-import proceed type imports one of the conflicting symbols
and makes it shadow the others. The symbol to be imported is an optional
argument. .

The :share proceed type causes the conflicting symbols to share v::ilue,
function, and property cells. It as if globalize were called.

The :choose proceed type pops up a window in which the user can choose
between the above proceed types individually for each conflict.

named Keyword For loop

named name

Gives the prog that loop generates a name of name, so that you can use the
return-from form to return explicity out of that particular loop:

(loop named sue

do (loop ... do (return-from sue value))
...)

The return-from form shown causes value to be immediately returned as the value
of the outer loop. Only one name can be given to any particular loop construct.
This feature does not exist in the Maclisp version of zl:loop, since Maclisp does
not support "named progs".

I

I

named-structure-invoke 360

See the section "loop Clauses", page 310.

named-structure-invoke operation structure &rest args Function
operation should be a keyword symbol, and structure should be a named
structure. The handler function of the named structure symbol, found as
the value of the named-structure-invoke property of the symbol, is called
with appropriate arguments.

named-structure-p x Function
This semi-predicate returns nil if x is not a named structure; otherwise it
returns x's named structure symbol.

named-structure-symbol x Function
x should be a named structure. This returns x's named structure symbol:
if x has an array leader, element 1 of the leader is returned, otherwise ele
ment 0 of the array is returned.

nbutlast list Function
This is the destructive version of butlast; it changes the cdr of the second
to-last cons of the list to zl-user:nil. If there is no second-to-Iast cons (that
is, if the list has fewer than two elements) it returns nil. Examples:

(setq faa '(a bed»
(nbutlast faa) => (a b c)
faa => (a b c)
(nbutlast 'ea)) => nil

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

nconc &rest lists Function
nconc takes lists as arguments. It returns a list that is the arguments
concatenated together. The arguments are changed, rather than copied.
See the function append, page 21. Example:

(setq x '(a be))
(setq y 'Cd e f))

(nconc x y) => (a bed e f)

x => (a bed e f)

Note that the value of x is now different, since its last cons has been
rplacd' ed to the value of y. If

(nconc x y)

evaluated again, it would yield a piece of "circular" list structure, whose
printed representation would be (a bed e f d e f d e f •.•), repeating
forever.

361 nconc

nconc could have been defined by:

(defun nconc (x y) ;for simplicity, this definition
(cond «null x) y) ;only works for 2 arguments.

(t (rplacd (last x) y) ;hook y onto x
x») ;and return the modified x.

nconc Keyword For loop

nconc expr {into var}

Causes the values of expr on each iteration to be nconced together, for example:

(loop for i from 1 to 3
nconc (list i (* i i»)

=> (1 1 2 4 3 9)

When the epilogue of the loop is reached, var has been set to the accumulated
result and can be used by the epilogue code.

It is safe to reference the values in var during the loop, but they should not be
modified until the epilogue code for the loop is reached.

The forms nconc and nconcing are synonymous.

Examples:

(de fun indexing (small-list)
(loop for x from 0

for item in small-list
nconc (list x item») => INDEXING

(indexing '(a b cd» => (0 A 1 B 2 C 3 D)

Is equivalent to

(defun indexing (small-list)
(loop for x from 0

for item in small-list
nconcing (list x item») => INDEXING

(indexing '(a b cd» => (0 A 1 B 2 C 3 D)

Not only can there be mUltiple accumulations in a loop, but a single accumulation
can come from multiple places within the same loop form, if the types of the
collections are compatible. nconc, collect, and append are compatible.

See the section "loop Clauses", page 310.

I

I

ncons 362

ncons x Function
(ncons x) is the same as (cons x nil). In other words, it creates a new
cons, whose car is x and whose cdr is nil. The name of the function is
from "nil-cons".

ncons is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions for Constructing
Lists and Conses" in Symbolics Common Lisp: Language Concepts.

ncons-in-area x area-number Function
ncons-in-area creates a cons, whose car is x and whose cdr is nil, in the
specified area. (Areas are an advanced feature of storage management.)
See the section "Areas" in Internals, Processes, and Storage Management.

ncons-in-area is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions for Constructing
Lists and Conses" in Symbolics Common Lisp: Language Concepts.

neq x y Function
(neq x y) = (not (eq x y». This is provided simply as an abbreviation for
typing convenience.

never Keyword For loop

never expr

Causes the loop to return t if expr never evaluates non-null. This is equivalent to
always (not expr). If the loop terminates before expr is ever evaluated, the
epilogue code is run and the loop returns t.

never expr is like (and (not exprl) (not expr2) ...). If the loop terminates before
expr is ever evaluated, never is like (and).

If you want a similar test, except that you want the epilogue code to run if expr
evaluates non-null, use until.

Examples:

(defun loop-never(my-list)
(loop for x in my-list

finally (print "what you going to do next 1")
do

(prine x) (prine " ")
do
and never (equal x 'a») => LOOP-NEVER

363 nintersection

(loop-never '(b c a e) => (8 C A E)

(loop-never '(a a» => A NIL

See the section "loop Clauses", page 310.

nintersection listl list2 &key (test #'eqI) test-not (key #'identity) Function
nintersection is the destructive version of intersection. intersection takes
listl and list2 and returns a new list containing everything that is an ele
ment of both lists. nintersection performs the same operation, but uses
the cells of listl to construct the result. The value of list2 is not altered.
The keywords are:

:test Any predicate specifying a binary operation to be applied
to a supplied argument and an element of a target list.
The item matches the specification only if the predicate
returns t. If :test is not supplied the default operation is
eql.

:test-not Similar to :test, except the item matches the specification

:key

only if there is an element of the list for which the
predicate returns nil.
If not nil, should be a function of one argument that will
extract from an element the part to be tested in place of
the whole element.

See the function intersection, page 277. For example:

(setq a-list '(a be» => (A 8 C)

(setq b-list '(f a d» => (F A 0)

(nintersection a-list b-list) => (A)

a-list => (A)

b-list => (F A 0)

For a table of related items: See the section "Functions for Comparing
Lists" in Symbolics Common Lisp: Language Concepts.

zl:nintersection &rest lists Function
Takes any number of lists that represent sets and returns a new list that
represents the intersection of all the sets it is given, by destroying any of
the lists passed as arguments and reusing the conses. zl:nintersection
uses eq for its comparisons. You cannot change the function used for the
comparison. (zl:nintersection) returns nil.

I

I

ninth 364

This Zetalisp function is shadowed by the Common Lisp function of the
same name.

For a table of related items: See the section "Functions for Comparing
Lists" in Symbolics Common Lisp: Language Concepts.

ninth list Function
ninth takes a list as an argument, and returns the ninth element of list.
ninth is identical to

(nth 8 list)

This function is provi~ed because it makes more sense than using nth
when you are thinking of the argument as a list rather than just as a cons.

For a table of related items: See the section "Functions for Extracting
From Lists" in Symbolics Common Lisp: Language Concepts.

nleft n list &optional tail Function
Returns a "tail" of list, that is, one of the conses that makes up list, or nil.
(nleft n list) returns the last n elements of list. If n is too large, nleft
returns list.

(nleft n list tail) takes cdr of list enough times that taking n more cdrs
would yield tail, and returns that'. You can see that when tail is nil this is
the same as the two-argument case. If tail is not eq to any tail of list,
nleft returns nil.

nleft is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions for Extracting
From Lists" in Symbolics Common Lisp: Language Concepts.

nlistp x Function
nlistp returns t if its argument is not a list, otherwise nil. This means
(nlistp nil) is nil. Note this distinction between nlistp and zl:nlistp.
(zl:nlistp nil) is t, since zl:nlistp returns nil if its argument is a cons.

nlistp is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Predicates That Operate on
Lists" in Symbolics Common Lisp: Language Concepts.

zl:nlistp arg Function
zl:nlistp returns t if its argument is anything besides a cons, otherwise nil.
zl:nlistp is identical to atom, and so (zl:nlistp nil) returns t.

365 nodeclare

nodeclare Keyword For loop

nodeclare variable-list
The variables in variable-list are noted by loop as not requiring local type
declarations. Consider the following:

(declare (special k) (fixnum k»
(defun faa (1)

(loop for x in 1 as k fixnum = (f x) ... »

If k did not have the fixnum data-type keyword given for it, then loop
would bind it to nil, and some compilers would complain. On the other
hand, the IlXIlum keyword also produces a local IlXIlum declaration for k;
since k is special, some compilers complain (or error out). The solution is
to do:

(de fun faa (1)
(loop nodeclare (k)

for x in 1 as k fixnum = (f x) ... »

which tells loop not to make that local declaration. The nodeclare clause
must come before any reference to the variables so noted. Positioning it in
correctly causes this clause to not take effect, and cannot be diagnosed.
See the macro loop, page 309.
This exists for compatibility with other implementations of loop.

not x Function
not returns t if x is nil, else nil. null is the same as not; both functions
are included for the sake of clarity. Use null to check whether something
is nil; use not to invert the sense of a logical value. Even though Lisp
uses the symbol nil to represent falseness, you should not make under
standing of your program depend on this. For example, one often writes:

(cond «not (null 1 st» ...)
(... »

rather than
(cond (1st ...

(... »

There is no loss of efficiency, since these compile into exactly the same in
structions.

See the function null, page 383.

not type Type Specifier
The type specifier not dermes the set of objects that are not of the
specified type. As a type specifier, not can only be used in list form.

Examples:

I

I

notany

(typep "music" J(not integer» => T
(subtypep Jnil J(not t» => T and T
(suhtypep Jnil J(not integer» => T and T
(suhtypep Jbit (not nil» => T and T
(equal-typep t (not nil» => T
(sys:type-arglist Jnot) => (TYPE) and T

366

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the section "Predicates" in Symbolics Com
mon Lisp: Language Concepts.

notany predicate &rest sequences Function
notany is a predicate which returns nil as soon as any invocation of predi
cate returns a non-nil value. predicate must take as many arguments as
there are sequences provided. predicate is first applied to the elements of
the sequences with an index of 0, then with an index of 1, and so on, until
a termination criterion is reached or the end of the shortest of the se
quences is reached. If the end of a sequence is reached, notany returns a
non-nil value. Thus considered as a predicate, it is true if no invocation of
predicate is true.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

For example:

(notany #Joddp J(1 2 5» => NIL

(notany #Jequal J(e 1 2 3) J(3 2 1 e» => T

If predicate has side effects, it can count on being called first on all those
elements with an index of 0, then all those with· an index of 1, and so on.

For a table of related items: See the section "Predicates That Operate on
Sequences" in Symbolics Common Lisp: Language Concepts.

notevery predicate &rest sequences Function
notevery is a predicate which returns a non-nil value as soon as any in
vocation of predicate returns nil. predicate must take as many arguments
as there are sequences provided. predicate is first applied to the elements
of the sequences with an index of 0, then with an index of 1, and so on, un
til a termination criterion is reached or the end of the shortest of the se
quences is reached. If the end of a sequence is reached, notevery returns
nil. Thus considered as a predicate, it is true if not every invocation of
predicate is true.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

367 notinline

For example:

(notevery #'oddp '(1 2 5» => T

(notevery #'equal '(1 2 3) '(1 2 3» => NIL

If predicate has side effects, it can count on being called fIrst on all those
elements with an index of 0, then all those with an index of 1, and so on.

For a table of related items: See the section "Predicates That Operate on
Sequences" in Symbolics Common Lisp: Language Concepts.

notinline Declaration
(notinline functionl function2 ...) specifies that it is undesirable to compile
the specified functions in-line. This declaration is pervasive, that is it af
fects all code in the body of the form.

Note that rules of lexical scoping are observed; if one of the functions men
tioned has a lexically apparent local defInition (as made by flet or labels),
then the declaration applies to that local defInition and not to the global
function defmition.

nreeone 1 tail Function
This returns a list that is the fIrst argument reversed concatenated con
catenated together with the second argument. (nreeone 1 tail) is exactly
the same as (neone (nreverse l) tail) except that it is more effIcient. Both
1 and tail should be lists. Example:

(setq x '(a b c»
(setq y '(d e f»
(nreconc x y) => (c bad e f)
x => (a d e f)

nreeone could have been defmed by:

(de fun nreconc (1 tail)
(cond «null 1) tail)

«nreverse1 1 tail» »

defun nreverse1 (1 tail) ; auxiliary function
(cond «null (cdr 1» (rp1acd 1 tail»

«nreverse1 (cdr 1) (rp1acd 1 tail»»)
;; this last call depends on order of argument evaluation.

For a table of related items: See the section "Functions for Constructing
Lists and Conses" in Symbolics Common Lisp: Language Concepts.

I

I

nreverse 368

nreverse sequence Function
nreverse returns a sequence containing the same elements as sequence, but
in reverse order. The result mayor may not be eq to the argument, so it
is usually wise to say something like (setq x (nreverse x», because
(nreverse x) is not guaranteed to leave the reversed value in x.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

For example:

(setq item-list '(heron stork loon owl» => (HERON STORK LOON OWL)

(nreverse item-list) => (OWL LOON STORK HERON)

item-list => (HERON)

nreverse is the destructive version of reverse.

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

For a table of related items: See the section "Sequence Modification" in
Symbolics Common Lisp: Language Concepts.

zl:nreverse list Function
zl:nreverse reverses its argument, which should be a list. The argument
is destroyed by rplacds all through the list (see zl:reverse). Example:

(zl :nreverse '(a b c» => (c b a)

zl:nreverse could have been defined by:

(de fun nreverse (x)
(cond «null x) nil)

«nreverse1 x nil»»

(de fun nreverse1 (x y) ; auxiliary function
(cond «null (cdr x» (rplacd x y»

«nreverse1 (cdr x) (rplacd x y»»)
;; this last call depends on order of argument evaluation.

zl:nreverse does something inefficient with cdr-coded lists, because it just
uses rplacd in the straightforward way. See the section "Cdr-Coding" in
Symbolics Common Lisp: Language Concepts. Using zl:reverse might be
preferable in some cases.

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

369 nset-difference

nset-difference listl list2 &key (test #'eql) test-not (key #'identity) Function
nset-difference is the destructive version of set-difference. set-difference
returns a new list of elements of list1 that do not appear in list2.
nset-difference performs the same operation, but uses the cells of list1 to
construct the result. The value of list2 is not altered. The keywords are:

:test

:test-not

:key

Any predicate specifying a binary operation to be applied N
to a supplied argument and an element of a target list.
The item matches the specification only if the predicate
returns t. If :test is not supplied the default operation is
eqI.
Similar to :test, except the item matches the specification
only if there is an element of the list for which the
predicate returns nil.
If not nil, should be a function of one argument that will
extract from an element the part to be tested in place of
the whole element.

See the function set-difference, page 474. For example:

(setq a-list '(eagle hawk loon pelican» =>
(EAGLE HAWK LOON PELICAN)

(setq b-list '(owl hawk stork» => (OWL HAWK STORK)

(nset-difference a-list b-list) => (EAGLE LOON PELICAN)

a-list => (EAGLE LOON PELICAN)

b-list => (OWL HAWK STORK)

For a table of related items: See the section "Functions for Comparing
Lists" in Symbolics Common Lisp: Language Concepts.

nset-exclusive-or listl list2 &key (test #'eql) test-not (key Function
#'identity)

nset-exclusive-or is the destructive version of set-exclusive-or.
set-exclusive-or returns a list of elements that appear in exactly one of
listl and list2. nset-exclusive-or performs the same operation, but alters
the values of the list arguments during the operation. The keywords are:

:test Any predicate specifying a binary operation to be applied
to a supplied argument and an element of a target list.
The item matches the specification only if the predicate
returns t. If :test is not supplied the default operation is
eql.

I

nstring-capitalize 370

: test-not Similar to : test, except the item matches the specification
only if there is an element of the list for which the
predicate returns nil.

:key If not nil, should be a function of one argument that will
extract from an element the part to be tested in place of
the whole element.

See the function set-exclusive-or, page 475. For example:

(setq a-list '(eagle hawk loon pelican)) =>
(EAGLE HAWK LOON PELICAN)

(setq b-list '(owl hawk stork» => (OWL HAWK STORK)

(nset-exclusive-or a-list b-list) =>
(EAGLE LOON PELICAN OWL STORK)

a-list => (EAGLE HAWK LOON PELICAN)

b-list => (OWL STORK)

For a table of related items: See the section "Functions for Comparing
Lists" in Symbolics Common Lisp:' Language Concepts.

nstring-capitalize string &key (start 0) (end nil) Function
The function nstring-capitalize is the destructive version of
string-capitalize. nstring-capitalize returns string modified such that for
every word in string, the initial character, if case-modifiable, is uppercased:
All other case-modifiable characters in the word are lowercased.

For the purposes of string-capitalize, a word is defined as a consecutive
subsequence of alphanumeric characters or digits, delimited at each end ei
ther by a non-alphanumeric character, or by an end of string.

The keywords let you select portions of the string argument for uppercas
ing. These keyword arguments must be non-negative integer indices into
the string array. The entire argument, string, is returned, however.

:start Specifies the position within string from which to begin uppercasing
(counting from 0). Default is 0, the first character in the string.
:start must be ~ :end.

:end Specifies the position within string of the first character beyond the
end of the operation. Default is nil, that is, the operation continues
to the end of the string.

Examples:

371 nstring-capitalize-words

(nstring-capitalize N a bUNch of WOrDs" :start e :end 3)
=> " A bUNch of WOrDsN

(nstring-capitalize " a bUNch of WOrDs" :start 8)
=> " a bUNch Of Words"

(nstring-capitalize N 1234567 a bunch of numbersN :start 1 :end 5)
=> " 1234567 a bunch of numbers"

For a table of related items: See the section "String Conversion" in Sym
bolics Common Lisp: Language Concepts.

nstring-capitalize-words string &key (start 0) (end nil) Function
The function nstring-capitalize-words is the destructive version of
string-capitalize-words.

nstring-capitalize-wotds returns string, modified such that hyphens are
changed to spaces and initial characters of each word are capitalized if
they are case-modifiable.

string is a string or an object that can be coerced to a string. See the
function string, page 502.

The keywords let you select portions of the string argument for uppercas
ing. These keyword arguments must be non-negative integer indices into
the string array. The entire argument, string, is returned, however.

:start Specifies the position within string from which to begin uppercasing
(counting from 0). Default is 0, the first character in the string.
:start must be ~ :end.

:end Specifies the position within string of the first character beyond the
end of the uppercasing operation. Default is nil, that is, the opera
tion continues to the end of the string.

Examples:

(nstring-capitalize-words "three-hyphenated-words")
=> NThree Hyphenated Words"

(nstring-capitalize-words "three-hyphenated-words" :end 5)
=> "Three-hyphenated-words"

(nstring-capitalize-words "three-hyphenated-words" :start 6)
=> "three-Hyphenated Words"

I

I

nstring-downcase 372

For a table of related items: See the section "String Conversion" in Sym
bolics Common Lisp: Language Concepts.

nstring-downcase string &key (start 0) (end nil) Function
The function nstring-downcase is the destructive version of the function
string-downcase. nstring-downcase returns string, modified to replace its
uppercase alphabetic characters by the corresponding lowercase characters.

string is a string or an object that can be coerced to a string. See the
function string, page 502.

The keywords let you select portions of the string argument for lowercas
ing. These keyword arguments must be non-negative integer indices into
the string array. The entire argument, string, is returned, however.

:start Specifies the position within string from which to begin lowercasing
(counting from 0). Default is 0, the first character in the string.
:start must be ~ :end.

:end Specifies the position within string of the first character beyond the
end of the lowercasing operation. Default is nil, that is, the opera
tion continues to the end of the string.

Examples:

(nstring-downcase "WHAT TIME IS IT !! I!") => "what time is it !!!!"
(nstring-downcase "A BUNCH OF WORDS" :start 2 :end 7) => "A bunch OF WORDS"
(nstring-downcase "A BUNCH OF WORDS" :start 11) =>"A BUNCH OF words"
(setq string "THREE UPPERCASE WORDS") => "THREE UPPERCASE WORDS"
(nstring-downcase string :start B :end 5) => "three UPPERCASE WORDS"
(nstring-downcase string :start 16 :end nil) => "three UPPERCASE words"
string => "three UPPERCASE words"

For a table of related items: See the section "String Conversion" in Sym
bolics Common Lisp: Language Concepts.

nstring-upcase string &key (start 0) (end nil) Function
The function nstring-upcase is the destructive version of the function
string-up case. nstring-upcase returns string, modified by replacing its
lowercase alphabetic characters by the corresponding uppercase characters.

string is a string or an object that can be coerced to a string. See the
function string, page 502.

The keywords let you select portions of the string argument for uppercas
ing. These keyword arguments must be non-negative integer indices into
the string array. The entire string argument is returned, however.

373 nsublis

:start Specifies the position within string from which to begin uppercasing
(counting from 0). Default is 0, the first character in the string.
:start must be ~ :end.

:end Specifies the position within string of the first character beyond the
end of the uppercasing operation. Default is nil, that is, the opera
tion continues to the end of the string.

Characters not in the standard character set are unchanged.

Examples:

(nstring-upcase U a four word stringu :start 2 :end 6)
=> U a FOUR word stringU

(nstring-upcase U a four word string U :start 12)
=> u a four word STRING U

For a table of related items: See the section "String Conversion" in Sym
bolics Common Lisp: Language Concepts.

nsublis alist tree &rest args &key (test #'eql) test-not (key Function
#'identity)

nsublis is the destructive version of sublis. sublis makes substitutions for
objects in a tree. nsublis performs the same operation, but alters the
relevant parts of tree. See the function sublis, page 568. The keywords
are

:test Any predicate specifying a binary operation to be applied
to a supplied argument and an element of a target list.
The item matches the specification only if the predicate
returns t. If :test is not supplied the default operation is
eql.

:test-not Similar to :test, except the item matches the specification
only if there is an element of the list for which the
predicate returns nil.

:key If not nil, should be a function of one argument that will
extract from an element the part to be tested in place of
the whole element.

Example:

(setq exp '«* x y) (+ x y))) => «* X Y) (+ X V))

(nsublis '«x. 100)) exp) => «* 100 Y) (+ 100 V))

exp => «* 100 Y) (+ 100 V))

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

•

I

zl:nsublis 374

zl:nsublis alist tree Function
zl:nsublis is like zl:sublis but changes the original tree instead of creating
new.

zl:nsublis could have been defined by:

(defun nsublis (alist tree)
(cond «atom tree)

(let «tern (assq tree alist)))
(if tern (cdr tern) tree)))

(t (rplaca tree (nsublis alist (car tree)))
(rplacd tree (nsublis alist (cdr tree)))
tree)))

This Zetalisp function is shadowed by the Common Lisp function of the
same name.

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

nsubst new old tree &rest args &key (test #'eql) test-not (key Function
#'identity)

nsubst is the destructive version of subst. nsubst changes tree by destruc
tively replacing new for every subtree or leaf of tree such that old and the
subtree or leaf satisfy :test. See the function subst, page 571. The
keywords are:

:test Any predicate specifying a binary operation to be applied
to a supplied argument and an element of a target list ..
The item matches the specification only if the predicate
returns t. If :test is not supplied the default operation is
eql.

:test-not Similar to :test, except the item matches the specification
only if there is an element of the list for which the
predicate returns nil.

:key If not nil, should be a function of one argument that will
extract from an element the part to be tested in place of
the whole element.

For example:

(setq bird-list '(waders (flamingo stork) raptors (eagle hawk))) =>
(WADERS (FLAMINGO STORK) RAPTORS (EAGLE HAWK))

(nsubst 'heron 'stork bird-list) =>
(WADERS (FLAMINGO HERON) RAPTORS (EAGLE HAWK))

375 zl:nsubst

bird-list => (WADERS (FLAMINGO HERON) RAPTORS (EAGLE HAWK»

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

zl:nsubst new old tree Function N
zl:nsubst is a destructive version of zl:subst. The list structure of tree is
altered by replacing each occurrence of old with new. zl:nsubst could have
been defined as

;if item eq to old, replace.
;if no substructure, return argo

(defun nsubst (new old tree)
(cond «eq tree old) new)

«atom tree) tree)
(t ;otherwise, recurse.

(rplaca tree (nsubst new old (car tree»)
(rplacd tree (nsubst new old (cdr tree»)
tree»)

nsubst-if new predicate tree &rest args &key key Function
nsubst-if is the destructive version of subst-if. nsubst-if changes tree by
destructively replacing new for every subtree or leaf of tr"ee such that the
subtree or leaf satisfy predicate. See the function subst-if, page 573. The
keyword is:

:key If not nil, should be a function of one argument that will
extract from an element the part to be tested in place of
the whole element.

For example:

(setq item-list '(numbers (1.8 2 5/3) symbols (faa bar»)
=> (NUMBERS (1.8 2 5/3) SYMBOLS (FOO BAR»

(nsubst-if '3.1415 #'numberp item-list)
=> (NUMBERS (3.1415 3.1415 3.1415) SYMBOLS (FOO BAR»

item-list => (NUMBERS (3.1415 3.1415 3.1415) SYMBOLS (FOO BAR»

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

nsubst-if-not new predicate tree &rest args &key key Function
nsubst-if-not is the destructive version of subst-if-not. nsubst-if-not
changes tree by destructively replacing new for every subtree or leaf of tree
such that the subtree or leaf do not satisfy predicate. See the function
subst-if-not, page 573. The keyword is:

I

nsubstitute 376

:key If not nil, should be a function of one argument that will
extract from an element the part to be tested in place of
the whole element.

For example:

(setq item-list '(numbers 1.0 2 5/3 symbols faa bar»
=> (NUM8ERS 1.8 2 5/3 SYM80LS FOO 8AR)

(nsubst-if-not '3.1415 #' '(numbers 1.8 2 5/3 symbols faa bar»

item-list

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

nsubstitute newitem olditem sequence &key (test #'eql) test-not (key Function
#'identity) from-end (start 0) end count

nsubstitute returns a sequence of the same type as the argument sequence
which has the same elements, except that those in the subsequence
delimited by :start and :end and satisfying the predicate specified by the
:test keyword have been replaced by newitem. The argument sequence is
destroyed during construction of the result, but the result mayor may not
be eq to sequence.

For example:

(setq letters '(a be» => (A 8 C)
(nsubstitute 'a 'b '(a be» => (A A C)
letters => (A 8 C)

However,

letters => (A 8 C)
(nsubstitute 'b 'e letters) => (A 8 8)
letters => (A 8 8)

newitem and olditem can be any Symbolics Common Lisp object but newitem
must be a suitable element for sequence.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence of length zero.

:test specifies the test to be performed. An element of sequence satisfies
the test if (funcall testfun item (keyfn x» is true. Where testfun is the test
function specified by :test, keyfn is the function specified by :key and x is
an element of the sequence. The default test is eql.

For example:

377 nsubstitute

(nsubstitute B 3 '(1 1 442) :test #'<) => (1 1 B B 2)

:test-not is similar to :test, except that the sense of the test is inverted.
An element of sequence satisfies the test if (funcall testfun item (keyfn x))
is false.

The value of the keyword argument :key, if non-nil, is a function that
takes one argument. This function extracts from each element the part to
be tested in place of the whole element.

For example: I
(nsubstitute 1 2 ' «1 1) (1 2) (4 3)) :key #'second) => «1 1) 1 (4 3))

(nsubstitute 'a 'b '«a b) (b c) (b b)) :key #'second) => (A (8 Q) A)

A non-nil :from-end specification matters only when the :count argument
is provided; in that case only the rightmost :count elements satisfying the
test are replaced.

For example:

(nsubstitute 'hi 'b '(b a b) :from-end t :count 1)
=> (8 A HI)

Use the keyword arguments :start and :end to delimit the portion of the
sequence to be operated on.

:start and :end must be non-negative integer indices into the sequence.
:start must be less than or equal to :end, else an error is signalled. It
defaults to zero (the start of the sequence).

:start indicates the start position for the operation within the sequence.
:end indicates the position of the first element in the sequence beyond the
end of the operation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by
default.

For example:

(nsubstitute 'a '8 '(b a b) :start 1 :end 3) => (8 A A)

(nsubstitute 'a 'b '(b a b) :end 2) => (A A 8)

(nsubstitute 'a 'b '(b a b) :end 3) => (A A A)

A non-nil : count, if supplied,. limits the number of elements altered; if
more than :count elements satisfy the test, then of these elements only the
leftmost are replaced, as many as specified by :count

For example:

I

nsu bstitute-if 378

(nsubstitute 'a 'b '(b b a b b) :count 3) => (A A A A B)

To perform destructive substitutions throughout a tree: See the function
nsubst, page 374.

nsubstitute is case-insensitive.

nsubstitute is the destructive version of substitute.

For a table of related items: See the section "Sequence Modification" in
Symbolics Common Lisp: Language Concepts.

nsubstitute-if newitem predicate sequence &key key from-end (start Function
0) end count

nsubstitute-if returns a sequence of the same type as the argument se
quence which has the same elements, except that those in the subsequence
delimited by :start and :end and satisfying predicate have been replaced by
newitem. The argument sequence is destroyed during construction of the
result, but the result mayor may not be eq to sequence.

For example:

(setq numbers '(a b» => (A B)
(nsubstitute-if 3 #'numberp numbers) => (A B)
numbers => (A B)

However,

numbers => (1 1 19)
(nsubstitute-if 2 #'numberp numbers) => (2 2 2)
numbers => (2 2 2)

new item can be any Symbolics Common Lisp object but must be a suitable
element for the sequence.

predicate is the test to be performed on each element.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

The value of the keyword argument :key, if non-nil, is a function that
takes one argument. This function extracts from each element the part to
be tested in place of the whole element.

For example:

(nsubstitute-if 1 #'oddp '«1 1) (1 2) (4 3» :key #'second)
=> (1 (1 2) 1)

A non-nil :from-end specification matters only when the :count argument
is provided; in that case only the rightmost :count elements satisfying the
test are replaced.

379 nsubstitute-if-not

For example:

(nsubstitute-if 'hi #'atom '(b 'a b) :from-end t :count 1)
=> (8 'A HI)

Use the keyword arguments :start and :end to delimit the portion of the
sequence to be operated on.

:start and :end must be non-negative integer indices into the sequence.
:start must be less than or equal to :end, else an error is signalled. It
defaults to zero (the start of the sequence).

:start indicates the start position for the operation within the sequence.
:end indicates the position of the first element in the sequence beyond the
end of the operation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by
default.

For example:

(nsubstitute-if 1 #'zerop '(8 8) :start 1 :end 3) => (8 1 1)

(nsubstitute-if 1 #'zerop '(8 1 9) :start 8 :end 2) => (1 1 8)

(nsubstitute-if 1 #'zerop '(8 1 9) :end 1) => (1 1 9)

A non-nil : count, if supplied, limits the number of elements altered; if
more than :count elements satisfy the test, then of these elements only the
leftmost are replaced, as many as specified by :count

For example:

(nsubstitute-if 'see 'atom '(b b a b b) :count 3)
=> (SEE SEE SEE 8 8)

nsubstitute-if is the destructive version of substitute-if.

For a table of related items: See the section "Sequence Modification" in
Symbolics Common Lisp: Language Concepts.

nsubstitute-if-not newitem predicate sequence &key key from-end Function
(start 0) end count

nsubstitute-if-not returns a sequence of the same type as the argument se
quence which has the same elements, except that those in the subsequence
delimited by :start and :end which do not satisfy predicate have been
replaced by new item. The argument sequence is destroyed during construc
tion of the result, but the result mayor may not be eq to sequence.

For example:

I

I

nsubstitute-if-not

(setq numbers '(9 9 9» => (9 9 9)
(nsubstitute-if-not 1 #'numberp numbers) => (9 9 9)
numbers => (9 9 9)

However,

numbers => (1 9 9)
(nsubstitute-if-not 2 #'consp numbers) => (2 2 2)
numbers => (2 2 2)

380

newitem can be any Symbolics Common Lisp object but must be a suitable
element for the sequence.

predicate is the test to be performed on each element.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

The value of the keyword argument : key, if non-nil, is a function that
takes one argument. This function extracts from each element the part to
be tested in place of the whole element.

For example:

(nsubstitute-if-not 1 #'oddp '«1 1) (1 2) (4 3» :key #'second)
=> «1 1) 1 (4 3»)

A non-nil :from-end specification matters only when the :count argument
is provided; in that case only the rightmost :count elements satisfying the
test are replaced.

For example:

(nsubstitute-if-not 'hi #'atom '('b a 'b) :from-end t :count 1)
=> ('8 A HI)

Use the keyword arguments :start and :end to delimit the portion of the
sequence to be operated on.

:start and :end must be non-negative integer indices into the sequence.
:start must be less than or equal to :end, else an error is signalled. It
defaults to zero (the start of the sequence).

:start indicates the start position for the operation within the sequence.
:end indicates the position of the first element in the sequence beyond the
end of the operation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by
default.

For example:

381 nsubstring

(nsubstitute-if-not 1 #'zerop '(3 e 2) :start 1 :end 3) => (3 e 1)

(nsubstitute-if-not 1 #'zerop '(3 e 2) :start e :end 2) => (1 e 2)

(nsubst i tute-i f-not 1 #' zerop , (3 e 2) : end 1) => (1 e 2)

A non-nil : count, if supplied, limits the number of elements altered; if
more than :count elements satisfy the test, then of these elements only the
leftmost are replaced, as many as specified by :count

For example:

(nsubstitute-if-not 'see 'consp '(b b a b b) :count 3)
=> (SEE SEE SEE 8 8)

nsubstitute-if-not is the destructive version of substitute-if-not.

For a table of related items: See the section "Sequence Modification" in
Symbolics Common Lisp: Language Concepts.

nsubstring string from &optional to (area nil) Function
nsubstring is the destructive form of the function substring. Instead of
copying the substring, the system creates an indirect array that shares part
of the argument string. See the section "Indirect Arrays" in Symbolics
Common Lisp: Language Concepts. Modifying one string modifies the
other.

string is a string or an object that can be coerced to a string. Since
nsubstring is destructive, coercion should be used with care since a string
internal to the object might be modified. See the function string, page
502.

Note that nsubstring does not necessarily use less storage than substring;
an nsubstring of any length uses at least as much storage as a substring
four characters long. So you should not use this just "for efficiency"; it is
intended for uses in which it is important to have a substring that, if
modified, causes the original string to be modified too.

Examples:

(setq a "Aloysius") => "Aloysius"
a => "Aloysius"
(setq b (nsubstring a 2 4)) => Hoy"
(nstring-upcase b) => HOY"
a => "AlOYsius"

For a table of related items: See the section "String Access and
Information" in Symbolics Common Lisp: Language Concepts.

I

I

nsymbolp 382

nsymbolp arg Function
nsymbolp returns nil if its argument is a symbol, otherwise t.

nth n list Function
(nth n list) returns the nth element of list, where the zeroth element is the
car of the list. Examples:

(nth 1 '(faa bar gack» => bar
(nth 3 '(faa bar gack» => nil

If n is greater than the length of the list, nil is returned.

Note: this is not the same as the Interlisp function called nth, which is
similar to but not exactly the same as the Symbolics Common Lisp function
nthcdr. Also, some people have used their own macros and functions
called nth in their Maclisp programs.

nth could have been defined by:

(defun nth (n list)
(do «i n (1- i»

(1 list (cdr 1»)
«zerop i) (car 1»»

For a table of related items: See the section "Functions for Extracting
From Lists" in Symbolics Common Lisp: Language Concepts.

nthcdr n list Function
(nthcdr n list) performs the cdr operation on list n times, and returns the
result. Examples:

(nthcdr B '(a b c» => (a b c)
(nthcdr 2 '(a b c» => (c)

In other words, it returns the nth cdr of the list. If n is greater than the
length of the list, nil is returned.

This is similar to Interlisp's function nth, except that the Interlisp function
is one-based instead of zero-based; see the Interlisp manual for details.
nthcdr could have been defined by:

(defun nthcdr (n list)
(do «i B (1+ i»

(list list (cdr list»)
«= i n) list»)

For a table of related items: See the section "Functions for Extracting
From Lists" in Symbolics Common Lisp: Language Concepts.

383 null

null x Function
not returns t if x is nil, else nil. null is the same as not; both functions
are included for the sake of clarity. Use null to check whether something
is nil; use not to invert the sense of a logical value. Even though Lisp
uses the symbol nil to represent falseness, you should not make under
standing of your program depend on this. For example, one often writes:

(cond «not (null 1st» ...)
(... »

rather than
(cond (1st ...

(... »

There is no loss of efficiency, since these compile into exactly the same in
structions.

null Type Specifier
null is the type specifier symbol for the predefmed Lisp null data type.

The type null is a subtype of the type symbol; the only object of type null
is nil.

The types null and cons form an exhaustive partition of the type list.

Examples:

(typep ni 1 'null) => T
(nullO) => T
(subtypep 'null 't) => T and T
(subtypep 'null 'symbol) => T and T
(equal-typep (nullO) (not 0» => T
(sys:type-arglist 'null) => NIL and T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the section "Predicates" in Symbolics Com
mon Lisp: Language Concepts.

number &optional (low-limit '*) (high-limit '*) Type Specifier
number is the type specifier symbol for the predefined Lisp data type,
number.

The type number is a supertype of the following types, which are them
selves pairwise disjoint:

rational
float
complex

I

I

sys:number-into-array 384

The types number, CODS, symbol, array, and character are pairwise dis
joint.

This type specifier can be used in either symbol or list form. Used in list
form, number allows the declaration and creation of specialized numbers
whose range is restricted to the limits specified in the arguments low-limit
and high-limit. The list form is a Symbolics Common Lisp extension to
Common Lisp.

low-limit and high-limit must each be an integer, a list of an integer, or
unspecified. If these limits are expressed as integers, they are inclusive; if
they are expressed as a list of an integer, they are exclusive; * means that
a limit does not exist, and so effectively denotes minus or plus infinity,
respectively.

Examples:

(typep '1 'number) => T
(typep 1 '(number 1 3» => T
(typep 0 '(number 1 3» => NIL
(typep 4 '(number 5 *» => NIL
(typep 5 '(number 5 *» => T
(subtypep 'bit '(number 0 4» => T and T
(commonp 3.14) => T
(numberp '16) => T
(numberp most-positive-long-float) => T
(subtypep 'rational 'number) => T and T
(subtypep 'float 'number) => T and T
(subtypep 'complex 'number) => T and T
(sys:type-arglist 'number)
=> (&OPTIONAL (LOW-LIMIT '*) (HIGH-LIMIT '*» and T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the section "Numbers" in Symbolics Common
Lisp: Language Concepts.

sys:number-into-array array n &optional (radix zl:base) (at-index Function
0) (min-columns 0)

Deposits the printed representation of number into array, which must be a
string. sys:number-into-array is the inverse of zl:parse-number. It has
three optional arguments:

radix

at-index

min-columns

The radix to use when converting the number into its
printed representation. It defaults to zl: base.
The character position in the array to start putting the
number.
The minimum number of characters required for the

385 numberp

printed representation of the number. If the number
contains fewer characters than min-columns, the number
is right-justified within the array. If the number con
tains more characters than min-columns, min-columns is
ignored. An error is signalled if the number contains
more characters than the length of the array minus N
at-index. The default is the first position, position o.

The following example puts 23453243 into string starting at character posi
tion 5. Since min-columns is 10, the number is preceded by two spaces.

(let «string (make-array 29. :type 'art-string :initia1-va1ue #\X»)
(zl :number-into-array string 23453243. 19. 5. 19.)

string)

=> "XXXXX 23453243XXXXX"

For a table of related items: See the section "String Access and
Information" in Symbolics Common Lisp: Language Concepts.

numberp object Function
numberp returns t if its argument is any kind of number, otherwise nil.

For a table of related items: See the section "Numeric Type-checking
Predicates" in Symbolics Common Lisp: Language Concepts.

numerator rational Function
If rational is a ratio, numerator returns the numerator of rational. If ra
tional is an integer, numerator returns rational.
Examples:

(numerator 4/5) => 4
(numerator 3) => 3
(numerator 4/8) => 1

Related Functions:

denominator

For a table of related items: See the section "Functions That Extract Com
ponents From a Rational Number" in Symbolics Common Lisp: Language
Concepts.

nunion listl list2 &key (test #'eqI) test-not (key #'identity) Function
nunion is the destructive version of union union takes two lists and
returns a new list containing everything that is an element of either of the
lists. nunion performs the same operation, but it destroys the values of
the list arguments. The keywords are:

I

zl:nunion 386

:test

: test-not

:key

Any predicate specifying a binary operation to be applied
to a supplied argument and an element of a target list.
The item matches the specification only if the predicate
returns t. If :test is not supplied the default operation is
eql.
Similar to : test, except the item matches the specification
only if there is an element of the list for which the
predicate returns nil.
If not nil, should be a function of one argument that will
extract from an element the part to be tested in place of
the whole element.

See the function union, page 602. For example:

(setq a-list '(a be)) => (A 8 C)

(setq b-list '(f a d)) => (F A D)

(nunion a-list b-list) => (A 8 C F D)

a-list => (A 8 C F D)

b-list => (F D)

For a table of related items: See the section "Functions for Comparing
Lists" in Symbolics Common Lisp: Language Concepts.

zl:nunion &rest lists Function
Takes any number of lists that represent sets and returns a new list that
represents the union of all the sets it is given, by destroying any of the
lists passed as arguments and reusing the conses. zl:nunion uses eq for its
comparisons. You cannot change the function used for the comparison.
(zl:nunion) returns nil.

This Zetalisp function is shadowed by the Common· Lisp function of the
same name.

For a table of related items: See the section "Functions for Comparing
Lists" in Symbolics Common Lisp: Language Concepts.

~7 oddp

oddp integer Function
Returns t if integer is odd, otherwise nil. If integer is not an integer, oddp
signals an error.

For a table of related items: See the section "Numeric Property-checking
Predicates" in Symbolics Common Lisp: Language Concepts.

once-only variable-list &body body
A once-only form looks like:

(once-onl y var-list
forml
form2
...)

Macro

var-list is a list of variables. once-only is usually used in macros where
these variables are Lisp forms. The forms are a Lisp program that
presumably uses the values of those variables. When the form resulting
from the expansion of the once-only is evaluated, it fIrst inspects the
values of each of the variables in var-list; these values are assumed to be
Lisp forms. It binds each variable either to its current value, if the cur
rent value is a trivial form, or to a generated symbol. Next, once-only
e,·aluates the forms, in this new binding environment, and when they have
been evaluated it undoes the bindings. The result of the evaluation of the
last form is presumed to be a Lisp form, typically the expansion of a
macro. If all of the variables had been bound to trivial forms, then
once-only just returns that result. Otherwise, once-only returns the result
wrapped in a lambda-combination that binds the generated symbols to the
result of evaluating the respective nontrivial forms.

The effect is that the program produced by evaluating the once-only form
is coded in such a way that it only evaluates each form once, unless evalua
tion of the form has no side effects, for each of the forms that were the
values of variables in var-list. At the same time, no unnecessary lambda
binding appears in this program, but the body of the once-only is not clut
tered up with extraneous code to decide whether or not to introduce
lambda-binding in the program it constructs.

Note well: while once-only attempts to prevent multiple evaluation, it does
not necessarily preserve the order of evaluation of the forms! Since it
generates the new bindings, the evaluation of complex forms (for which a
new variable needs to be created) may be moved ahead of the evaluation of
simple forms (such as variable references). once-only does not solve all of
the problems mentioned in this section.

I

I

:operation-handled-p 388

:operation-handled-p operation Message
operation is a generic function or message name. The object should return
t if it has a handler for the specified operation, nil if it does not .

.:

flavor:vanilla provides a method for :operation-handled-p.

Instead of sending this message, you can use the operation-handled-p
function. See the function operation-handled-p, page 388.

operation-handled-p object message-name Function
Returns t if the flavor associated with object has a method defined for
message-name and nil if a method is not defined for message-name.

&optional Lambda List Keyword
If the lambda-list keyword &optional is present, all specifiers up to the
next lambda-list keyword, or the end of the list, are optional parameter
specifiers.

or &rest body Special Form
Evaluates each form one by one, from left to right. If a form evaluates to
nil, or proceeds to evaluate the next form. If there is no other form, or
returns nil. But if a form evaluates to a non-nil value, or immediately
returns that value without evaluating any other form.

As with and, or can be used either as a logical or function, or as a con
ditional. Examples:

(or) => NIL

(or Istart 'finish 'middle) => START

(or (> 3 4» => NIL

(or (numberp larg) "not a number") => "not a number"

(or it-is-fish
it-is-fowl
(print "It is neither fish nor fowl."»

Note: (or) => nil , the identity for this operation.

For a table of related items: See the section "Conditional Functions" in
Symbolics Common Lisp: Language Concepts.

or &rest types Type Specifier
The type specifier or allows the definition of data types as the union of
other data types specified by types. As a type specifier, or can only be used
in list form.

Examples:

389

(typep 33 '(or ratio number)) => T
(typep '33s '(or number atom)) => T

package

(subtypep '(bit-vector 2) '(or (bit-vector 1) (bit-vector 2)))
=> T and T

(sys:type-arglist 'or) => (&REST TYPES) and T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. For a discussion of the function or: See the sec
tion "Flow of Control" in Symbolics Common Lisp: Language Concepts.

package Type Specifier
package is the type specifier symbol for the predefined Lisp data type,
package.

The types package, hash-table, readtable, pathname, stream, and
random-state are pairwise disjoint.

Examples:

(typep *package* 'package) => T
(typep (in-package 'example) 'package) => T
(typep (in-package 'cl-user) 'package) => T
(typep (find-package 'cl-user) 'package) => T
(zl :typep *package*) => ZL:PACKAGE
(sys:type-arglist 'package) => NIL and T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the section "Packages" in Symbolics Com
mon Lisp: Language Concepts.

zl:package Variable
See *package*.

package Variable
The value of *package* is the current package; many functions that take
packages as optional arguments default to the value of *package*, includ
ing intern and related functions. The reader and the printer deal with
printed representations that depend on the value of *package*. Hence the
current package is part of the user interface and is displayed in the status
line at the bottom of the screen.

It is often useful to bind *package* to a package around some code that
deals with that package. The operations of loading, compiling, and editing
a file all bind *package* to the package associated with the file.

I

I

sys:package-cell-Iocation 390

sys:package-cell-Iocation symbol Function
Returns a locative pointer to symbol's package cell. It is preferable to
write the following, rather than calling this function explicitly.

(locf (symbol-package symbol»

sys:package-error Flavor
All package-related error conditions are built on sys:package-error.

package-external-symbols package Function
A list of all the external symbols exported by package. package can be a
package object or the name of a package (a symbol or a string).

sys:package-Iocked Flavor
There was an attempt to intern a symbol in a locked package.

The :symbol message returns the symbol. The :package message returns
the package.

The :no-action proceed type interns the symbol just as if the package had
not been locked. Other proceed types are also available when interning the
symbol would cause a name conflict.

package-name pkg Function
Returns the name of pkg as a string. pkg must be a package object.

(find-package 'global) => #<Package ZL (really GLOBAL) 3573674B>
(package-name *) => "ZL"

See the section "Mapping Between Names and Packages" in Symbolics
Common Lisp: Language Concepts.

package-nicknames pkg Function
Returns the acceptable nickname strings for pkg. pkg must be a package
object.

(find-package "common-lisp") => #<Package COMMON-LISP 35553744>
(package-nicknames *) => ("COMMON-LISP-GLOBAL" "CL" "LISP")

sys:package-not-found Flavor
A package-name lookup did not find any package by the specified name.

The :name message returns the name. The :relative-to message returns
nil if only absolute names are being searched, or else the package whose
relative names are also searched.

The :no-action proceed type can be used to try again. The :new-name
proceed type' can be used to specify a different name or package. The
:create-package proceed type creates the package with default characteris
tics.

391 packagep

packagep object Function

package-shadowing-symbols package Function
The list of symbols that have been declared as shadowing symbols in this
package by shadow or shadowing-import. All symbols on this list are
present in the specified package. package can be a package object or the
name of a package (a symbol or a string).

package-used-by-list package Function
The list of other packages that use the argument package. package can be
a package object or the name of a package (a symbol or a string). The ele
ments of the list returned are package objects.

package-use-list pkg Function
The list of other packages used by the argument package. pkg must be a
package object. The elements of the list returned are package objects.

sys:page-in-raster-array raster &optional from-x from-y to-x to-y Function
(hang-p si:*default-page-in-hang-p*)
(normalize-p t)

Ensures that the storage that represents raster is in main memory. from-x
and from-y can be specified as nil, meaning the lower limit for that item.
to-x and to-y can be specified as nil, meaning the upper limit for that item.

This, rather than sys:page-in-array, should be used on rasters.

sys:page-out-raster-array array &optional from-x from-y to-x to-y Function
(hang-p si:*default-page-in-hang-p*)

Take the pages that represent raster out of main memory. from-x and
from-y can be specified as nil, meaning the lower value for that item. to-x
and to-y can be specified as nil, meaning the upper limit for that item.

This, rather than sys:page-out-array, should be used on rasters.

pairlis keys data &optional a-list Function
pairlis takes two lists and makes an association list that associates ele
ments of the lust list to corresponding elements of the second list. pairlis
signals an error if the two lists, keys and data, are not of the same length.
If the optional argument a-list is provided, then the new pairs are added to
the front of a-list.

The new pairs may appear in the resulting alist in any order; in particular,
either forward or backward order is permitted. Therefore, the result of the
following call might be either of the two results.

I

I

zl:pairlis

(pai rl is' (one two) '(1 2) '((three . 3) (four . 4») =>
«TWO 2) (ONE 1) (THREE. 3) (FOUR. 4»
or
«ONE 1) (TWO 2) (THREE. 3) (FOUR 4»

For a table of related items: See the section "Functions That Operate on
Association Lists" in Symbolics Common Lisp: Language Concepts.

392

zl:pairlis cars cdrs Function
zl:pairlis takes two lists and makes an association list which associates ele
ments of the first list with corresponding elements of the second list. Ex
ample:

(zl :pairlis '(beef clams chicken) '(roast fried yu-shing»
=> «beef. roast) (clams. fried) (chicken. yu-shing»

This Zetalisp function is shadowed by the Common Lisp function of the
same name.

For a table of related items: See the section "Functions That Operate on
Association Lists" in Symbolics Common Lisp: Language Concepts.

zl:parse-ferror format-string &rest format-args Function
Signals an error of flavor zl:parse-ferror. format-string and format-args
are passed as the :format-string and :format-args init options to the error
object.

See the flavor zl:parse-ferror in Symbolics Common Lisp: Language Con
cepts.

For a table of related items: See the section "Condition-Checking and Sig
nalling Functions and Variables" in Symbolics Common Lisp: Language
Concepts.

zl:parse-number string &optional (from 0) (to nil) (radix nil) Function
(fail-if-not-w hole-string nil)

zl:parse-number takes a string and "reads" a number from it. The func
tion currently does not handle anything but integers.

string must be a string. It returns two values: the number found (or nil)
and the character position of the next unparsed character in the string. It
returns nil when the first character that it looks at cannot be part of a
number. (read-from-string is a more general function that uses the Lisp
reader; prompt-and-read reads a number from the keyboard.) Four op
tional arguments:

from

to

The character position in the string to start parsing.
The default is the first one, position o.
The character position past the last one to consider. The
default, nil, means the end of the string.

393

radix

pathname

The radix to read the string in. The default, nil, means
base 10.

fail-if-not-whole-string

Examples:

The default is nil. nil means to read up to the flrst
character that is not a digit and stop there, returning
the result of the parse so far. t means to stop at the
irrst nondigit and to return nil and 0 length if that is
not the end of the string.

(zl : parse-number "123 ") => 123 and 3
(zl : parse-number " 123") => NIL and B
(zl : parse-number "_123") => -123 and 4
(zl : parse-number "25.3") => 25 and 2
(zl : parse-number "$$$123" 3 4) => 1 and 4
(zl : parse-number "123$$$" B nil nil nil) => 123 and 3
(zl : parse-number "123$$$" B nil nil t) => NIL and B

The Common Lisp equivalent to zl:parse-number is the function
parse-integer.

For a table of related items: See the section "String Access and
Information" in Symbolics Common Lisp: Language Concepts.

pathname Type Specifier
pathname is the type specifler symbol for the predeflned Lisp data type,
pathname.

The types pathname, hash-table, readtable, package, stream, and
random-state are pairwise disjoint.

Examples:

(type~ (pathname "apple") 'pathname) => T
(type-of (pathname "bubbles"» => FS:LHFS-PATHNAHE
(sys:type-arglist 'pathname) => NIL
(pathnamep *default-pathname-defaults*) => T

See the section "Data Types and Type Speciflers" in Symbolics Common
Lisp: Language Concepts. See the section "Files" in Reference Guide to
Streams, Files, and lID.

phase number Function
The phase of a number is the angle part of its polar representation as a
complex number. The phase of zero is arbitrarily deflned to be zero.
phase returns a single-precision result, unless number is a double-precision
complex number.

I

I

pi

pi

phase could have been defined as:

(defun phase (number)
(atan (imagpart number) (real part number)))

See the function abs, page 13.

For a table of related items: See the section "Trigonometric and Related
Functions" in Symbolics Common Lisp: Language Concepts.

394

Constant
The value of constant pi is the best possible approximation to 1t in double
floating-point format.

To obtain an approximation to 1t in some other precision, write (float pi
x) where x is a floating-point number of the desired precision; or write

(coerce pi type) where type is the name of a valid floating-point preci
sion type.

Examples:

pi => 3.141592653589793d8

(float pi 1.8) => 3.1415927
(float pi 1.8L8) => 3.141592653589793d8
(coerce pi 'single-float) => 3.1415927

pkg-add-relative-name from-package name to-package Function
Add a relative name named name, a string or a symbol, that refers to
to-package. From now on, qualified names using name as a prefix, when
the current package is from-package or a package that uses from-package,
refer to to-package.

from-package and to-package can be packages or names of packages.

It is an error if from-package already defines name as a relative name for a
package different from to-package.

zl:pkg-bind pkg body... Macro
pkg can be a package or a package name. The forms of the body are
evaluated with the variable *package* bound to the package named by pkg.
The values of the last form are returned.

Example:

395 pkg-delete-relative-name

(zl :pkg-bind "zwei"
(read-from-string function-name))

The difference between zl:pkg-bind and a simple let of the variable
package is that zl:pkg-bind ensures that the new value for *package* is
actually a package; it coerces package names (strings or symbols) into ac
tual package objects.

pkg-delete-relative-name {rom-package name Function
If {rom-package defines name as a relative name, it is removed.
{rom-package can be a package or the name of a package. name can be a
symbol or a string. It is not an error if from-package does not deime name
as a relative name.

pkg-find-package x &optional (create-p :error) (relative-to nil) Function
pkg-find-package tries to interpret x as a package. Most of the functions
whose descriptions say "... can be either a package or the name of a
package" call pkg-find-package to interpret their package argument.

If x is a package, pkg-find-package returns it.

If x is a symbol or a string, it is interpreted as the name of a package. If
relative-to is specified and non-nil, then it must be a package or the name
of a package. If relative-to or one of the packages it uses has a relative
name of x, the package named by that relative name is used. If the rela
tive name search fails, or if no relative name search is called for (that is,
relative-to is nil, which is the default), then if a package with a primary
name or nickname of x exists it is returned.

If x is a list, it is presumed to have come from a file attribute line.
pkg-find-package is done on the car of the list. If that fails, a new pack
age is created with that name, according to the specifications in the rest of
the list. See the section "Specifying Packages in Programs" in Symbolics
Common Lisp: Language Concepts.

If no package is found, the create-p argument controls what happens. Note
that this can only happen if x is a symbol or a string. The possible values
for create-p are:

:error or nil

: find
:ask
t

An error is signalled. The error can be continued by
defining the package manually, creating it automatically
with default attributes, or using a different package
name instead. :error is the default. nil is accepted as a
synonym for :error for backwards compatibility.
Just return nil.
Ask the user whether to create it.
Create a package with the specified name with default
attributes. It does inherit from global but not from any
other packages.

I

I

zl: pkg-glo bal-package 396

The package name search is independent of alphabetic case. However, this
might be changed in the future for Common Lisp compatibility and should
not be depended upon. In any event it is not considered good style to have
two distinct packages whose names differ only in alphabetic case.

zl:pkg-global-package Variable
The global package.

zl:pkg-goto &optional pkg globally Function
pkg can be a package or the name of a package. pkg is made the current
package; in other words, the variable *package* is set to the package
named by pkg. zl:pkg-goto can be useful to "put the keyboard inside" a
package when you are debugging.

pkg defaults to the user package.

If globally is specified non-nil, then *package* is set with zl:setq-globally
instead of setq. This is useful mainly in an init file, where you want to
change the default package for user interaction, and a simple setq of
package does not work because it is bound by z1:load when it loads the
init file.

sys:pkg-keyword-package
The keyword package.

Variable

pkg-kill package Function
Kill package by removing it from all package system data structures. The
name and nicknames of package cease to be recognized package names. If
package is used by other packages, it is un-used, causing its external sym
bols to stop being accessible to those packages. If other packages have
relative names for package, the names are deleted.

Any symbols in package still exist and their home package is not changed.
If this is undesirable, evaluate (zl:mapatoms #'remob package nil) first.

package can be a package or the name of a package.

z1:pkg-name package Function
Get the (primary) name of a package. The name is a string.

It is an error if package is not a package object. (The phrase "it is an
error" has special significance in Common Lisp. See the function
package-name, page 390.) Note that zl:pkg-name is a structure-accessing
function and does not check that its argument is a package object, only
that it is some kind of an array with a leader.

\

397 zl :pkg-system-package

zl:pkg-system-package Variable
The system package.

plane-aref plane &rest point Function
Returns the contents of a specified element of a plane. plane-aref takes
the subscripts as arguments. setf of plane-aref is allowed.

zl:plane-aset datum plane &rest point Function
Stores datum into the specified element of a plane, extending it if neces
sary, and returns datum. zl:plane-aset differs from zl:plane-store in the
way it takes its arguments; zl:plane-aset takes the subscripts as ar
guments, while zl:plane-store takes a list of subscripts.

setf of plane-aref is preferred.

plane-default plane Function
Returns the contents of the infinite number of plane elements that are not
actually stored.

plane-extension plane Function
Returns the amount to extend the plane by in any direction when
zl:plane-store is done outside of the currently stored portion.

zl:plane-origin plane Function
Returns a list of numbers, giving the lowest coordinate values actually
stored.

zl:plane-ref plane point Function
Returns the contents of a specified element of a plane. It differs from
plane-aref in the way that it takes its arguments; plane-aref takes the
subscripts as arguments, while zl:plane-ref takes a list of subscripts.

zl:plane-store datum plane point Function
Stores datum into the specified element of a plane, extending it if neces
sary, and returns datum. zl:plane-store differs from zl:plane-aset in the
way it takes its arguments; zl:plane-aset takes the subscripts as ar
guments, while zl:plane-store takes a list of subscripts.

zl:plist symbol Function
Returns the list that represents the property list of symbol. Note that this
is not the property list itself; you cannot do zl:get on it.

The Common Lisp equivalent of this function is symbol-plist.

I

I

zl:plus 398

zl:plus &rest args Function
Returns the sum of its arguments. If there are no arguments, it returns 0,
which is the identity for this operation.

The following functions are synonyms of zl:plus:

+
zl:+$

plusp number Function
Returns t if its argument is a positive number, strictly greater than zero.
Otherwise it returns nil. If number is not a noncomplex number, plusp
causes an error.

For a table of related items: See the section "Numeric Property-checking
Predicates" in Symbolics Common Lisp: Language Concepts.

pop list Function
The result returned by pop is the car of the contents of list, and as a side
effect, the cdr of contents is stored back into list. The form list may be
any form acceptable as a generalized variable to setf. If list is viewed as a
push-down stack, then pop pops an element from the top of the stack and
returns it. For example:

(setq stack '(a b c» => (A B C)

(pop stack) => A

stack => (8 C)

For a table of related items: See the section "Functions for Extracting
From Lists" in Symbolics Common Lisp: Language Concepts.

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

zl:pop access-form Macro
Removes an element from the front of a list which is stored in a general
ized variable. (zl:pop ref) finds the cons in ref, stores the cdr of the cons
back into ref, and returns the car of the cons. Example:

(setq x '(a b c»
(zl :pop x) => a
x => (b c)

All the caveats that apply to incf apply to zl:pop as well: forms within ref
might be evaluated more than once. (zl:pop does not evaluate any part of
ref more than once.)

399 position

This Zetalisp function is shadowed by the Common Lisp function of the
same name.

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

position item sequence &key (test #'eql) test-not (key #'identity) Function
from-end (start 0) end

If sequence contains an element satisfying the predicate specified by the
:test keyword, then position returns the index within the sequence of the
leftmost such element as a non-negative integer; otherwise nil is returned.

item is matched against the elements specified by the test keyword. The I'
item can be any Symbolics Common Lisp object but must be a suitable ele-.
ment for the sequence.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

:test specifies the test to be performed. An element of sequence satisfies
the test if (funeall testfun item (keyfn x» is true. Where testfun is the test
function specified by :test, keyfn is the function specified by :key and x is
an element of the sequence. The default test is eql.

For example:

(position 1 #(3 2 1 2) :test #'eq) => 2

:test-not is similar to : test, except that the sense of the test is inverted.
An element of sequence satisfies the test if (funeall testfun item (keyfn x»
is false.

The value of the keyword argument :key, if non-nil, is a function that
takes one argument. This function extracts from each element the part to
be tested in place of the whole element.

For example:

(position 'e #«1 a) (2 b) (3 e» :key #'seeond) => 2

If the value of the :from-end argument is non-nil, then the result is the in
dex of the rightmost element that satisfies the predicate, however, the in
dex is still computed from the left-hand end of the sequence.

For example:

(position 3 #(2 2 3 4 4 3) :from-end 'non-nil) => 5

(position 3 #(2 2 3 4 4 3) :from-end nil) => 2

Use the keyword arguments :start and :end to delimit the portion of the
sequence to be operated on.

I

position-if

:start and :end must be non-negative integer indices into the sequence.
:start must be less than or equal to :end, else an error is signalled. It
defaults to zero (the start of the sequence).

400

:start indicates the start position for the operation within the sequence.
:end indicates the position of the first element in the sequence beyond the
end of the operation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by
default.

For example:

(position 'a #(b b a b b)) => 2

(position 'a #(b b a b b)) => 2

(position 2 #(2 3 3 2 3) :start 2) => 3

(position 3 #(2 1 1 1 2) :start 1 :end 4) => NIL

position is case-insensitive.

For a table of related items: See the section "Searching for Sequence
Items" in Symbolics Common Lisp: Language Concepts.

position-if predicate sequence &key key from-end (start 0) end Function
If sequence contains an element satisfying predicate, then position returns
the index within the sequence of the leftmost such element as a non
negative integer; otherwise nil is returned.

predicate is the test to be performed on each element.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

The value of the keyword argument :key, if non-nil, is a function that
takes one argument. This function extracts from each element the part to
be tested in place of the whole element.

For example:

(position-if #'zerop #«1 a)(9 b)(3 c» :key #'car)
=> 1

If the value of the :from-end argument is non-nil, then the result is the in
dex of the rightmost element that satisfies the predicate, however, the in
dex is still computed from the left-hand end of the sequence.

For example:

401 position-if-not

(position-if #'numberp #(1 abc 3) :from-end 'non-nil) => 4

(position-if #'numberp #(a 1 b c 3) :from-end nil) => 1

Use the keyword arguments :start and :end to delimit the portion of the
sequence to be operated on.

:start and :end must be non-negative integer indices into the sequence.
:start must be less than or equal to :end, else an error is signalled. It
defaults to zero (the start of the sequence).

:start indicates the start position for the operation within the sequence.
:end indicates the position of the flrst element in the sequence beyond the
end of the operation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by
default.

For example:

(position-if #'numberp #(2 abc 3) :start 2) => 4

(position-if #'numberp #(2 abc 2) :start 1 :end 4) => NIL

For a table of related items: See the section "Searching for Sequence
Items" in Symbolics Common Lisp: Language Concepts.

position-if-not predicate sequence &key key from-end (start 0) end Function
If sequence contains an element that does not satisfy predicate, then posi
tion returns the index within the sequence of the leftmost such element as
a non-negative integer; otherwise nil is returned.

predicate is the test to be performed on each element.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

The value of the keyword argument :key, if non-nil, is a function that
takes one argument. This function extracts from each element the part to
be tested in place of the whole element.

For example:

(position-if-not #'zerop #«1 a)(B b)(3 c» :key #'car)
=> B

If the value of the :from-end argument is non-nil, then the result is the in
dex of the rightmost element that satisfies the predicate, however, the in
dex is still computed from the left-hand end of the sequence.

For example:

I

I

zl:prinlength 402

(position-if-not #'numberp #(1 abc 3) :from-end 'non-nil) => 3

(position-if-not #'numberp #(a 1 b c 3) :from-end nil) => e

Use the keyword arguments :start and :end to delimit the portion of the
sequence to be operated on.

:start and :end must be non-negative integer indices into the sequence.
:start must be less than or equal to :end, else an error is signalled. It
defaults to zero (the start of the sequence).

:start indicates the start position for the operation within the sequence.
:end indicates the position of the first element in the sequence beyond the
end of the operation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by
default.

For example:

(position-if-not #'numberp #(2 abc 3) :start 2) => 2

(position-if-not #'numberp #(a 1 2 3 a) :start 1 :end 4) => NIL

For a table of related items: See the section "Searching for Sequence
Items" in Symbolics Common Lisp: Language Concepts.

zl:prinlength Variable
zl:prinlength can be set to the maximum number of elements of a list that
is printed before the printer gives up and print a " ••• ". If it is nil, which
it is initially, any length list can be printed. Otherwise, the value of
zl:prinlength must be an integer. This variable has been superseded by
print-Iength .

zl:prinlevel Variable
zl:prinlevel can be set to the maximum number of nested lists that can be
printed before the printer gives up and just prints a "**". If it is nil,
which it is initially, any number of nested lists can be printed. Otherwise,
the value of zl:prinlevel must be an integer. This variable has been super
seded by *print-Ievel*.

print-base Variable
The value of this variable determines the radix in which the printer prints
rational numbers (integers and ratios).

print-base can have any integer value from 2 to 36, inclusive; its default
value is 10 (decimal radix). For values above 10, letters of the alphabet are
used to represent digits above 9.

403 sys:print-cl-structure

If no radix specifier is set (see *print-radixlll) integers in base ten are
printed without a trailing decimal point.

If the value of *print-base* is a symbol that has a si:princ-function
property (such as :roman or : english) , the value of the property is applied
to two arguments

• - of the number to be printed
• the stream to which to print it

This allows output in roman numerals and the like.

Examples:

(setq *print-base* ':roman)
(* 5 5) ==> XXV

(setq *print-base* ':english)
(* 5 5) ==> twenty-five

sys:print-cl-structure object stream depth Function
This function is intended for use in a defstruct :print-function option. It
prints the structure object to the specified stream using the standard #8
syntax. It enables a print function to respect the variable *print-escape*.

(defstruct (foo :print-function

a b c)

(lambda (object stream depth)
(if *print-escape*

(sys:print-cl-structure object stream depth)
other-printing-strategy»)

fIavor:print-fiavor-compile-trace &key flavor generic newest oldest Function
newest-first

Enables you to view information on the compilation of combined methods
that have been compiled into the run-time environment. You can supply
keywords to filter the output and control the order of the combined
methods displayed:

flavor

generic

Argument is a symbol that names a flavor of interest; all
compilations of combined methods for that flavor are dis
played. If the argument to flavor is nil, all flavors are
displayed.
Argument is a generic function or message of interest;
all compilations of combined methods for that generic
functin are displayed. If the argument to generic is nil,
all generic functions are displayed.

•

I

dbg: pri nt-frame-Iocals 404

newest

oldest

newest-first

Argument is an integer greater than or equal to 1, or nil.
• If an integer is given, it selects the number of compila-

tions to display, starting from the most recent. If nil is
given, all compilations are displayed. The order of com
bined methods displayed depends on the keyword
newest-first.
Argument is an integer greater than or equal to 1, or nil.
If an integer is given, it selects the number of compila-
tions to display, starting from the oldest. If nil is given,
all compilations are displayed. The order of combined
methods displayed depends on the keyword newest-first.
Argument is either non-nil or nil. nil causes the display
to be ordered from oldest compilation to newest. A
non-nil value 'causes the order to be from newest to
oldest. By default, combined methods are displayed in
oldest-first order.

The output of this function is mouse-sensitive. When you position the
mouse over the name of a method or flavor, the menu offers several options
that enable you to request more information. Pathnames are also mouse
sensitive.

dbg:print-frame-Iocals frame local-start &optional (indent 0) Function
dbg:print-frame-Iocals prints the names and values of the local variables
of frame. local-start is the first local slot number to print; the value
returned by dbg:print-function-and-args is often suitable for this. indent
is the number of spaces to indent each line; the default is no indentatton.

Caution: Use this function only within the context of the
dbg:with-erring-frame macro.

For a table of related items: See the section "Functions for Examining
Stack Frames" in Symbolics Common Lisp: Language Concepts.

dbg:print-function-and-args frame &optional show-pc-p Function
show-source-file-p show-Iocal-if-different
present-as-function

dbg:print-function-and-args prints the name of the function executing in
frame and the names and values of its arguments, in the same format as
the Debugger uses. If show-pc-p is true, the program counter value of the
frame, relative to the beginning of the function, is printed in octal.
dbg:print-function-and-args returns the number of local slots occupied by
arguments.

Caution: Use this function only within the context of the
dbg:with-erring-frame macro.

405 *print-radix*

For a table of related items: See the section "Functions for Examining
Stack Frames" in Symbolics Common Lisp: Language Concepts.

*print-radiXII Variable
If this variable is set to t, rational numbers are printed with a radix
specifier indicating what radix the printer is using. (The current radix is
controlled by the value of variable *print-base*).

The default value of *print-radix* is nil.

The radix specifier has the general format

#nnrddddd

where n is an unsigned decimal integer in the range 2 - 36 (inclusive)
representing the radix, and ddddd denotes the number in radix n.

When the value of *print-base* is 2, 8, or 16 (that is, binary, octal, or
hexadecimal) the radix specifier is printed in the abbreviated form, #b, #0,
#x, using lower case letters.

For printing integers, base ten is indicated by a trailing decimal instead of
a leading radix specifier; for ratios, however, the specifier #10r is printed.

sys:print-self object stream print-depth slashify-p Generic Function
The object should output its printed representation to the stream.
print-depth is the current depth in list-structure (for comparison with
'llprint-level*). slashify-p indicates whether slashification is enabled (prinl
versus prine). The printer calls this generic function when it encounters
an instance.

The sys:print-self method of flavor:vanilla ignores the last two arguments
and prints something like #</Zavor-name octal-address>. The flavor-name
tells you the type of object, and octal-address lets you tell different objects
apart (provided the garbage collector does not move them). For example:

#<CELL 1169762135>

The compatible message for sys:print-self is :print-self.

sys:proeeed condition proceed-type &rest args Generic Function
Causes a program to continue execution after an error condition has been
signalled.

To proceed from a condition, a handler function calls the sys:proceed
generic function with one or more arguments. The first argument is the
condition object. The second argument is the proceed type, and any remain
ing arguments are the arguments for that proceed type.

The condition flavor defined by the program signalling the error defines
the proceed types that are available to sys:proceed for a particular con
dition. You can also define a method that creates a new proceed type.

..

I

sys:proceed 406

The way to define a method that creates a new proceed type is somewhat
unusual in that it uses a style of method combination called :case combina
tion. Here's an example from the system:

(defmethod (sys:proceed sys:subscript-out-of-bounds :new-subscript)
(&optional (sub (prompt-and-read :number

"Supply a different subscript."
(values :new-subscript sub»

"Subscript to use instead: H»~)

This code fragment creates a proceed type called :new-subscript for the
condition flavor sys:subscript-out-of-bounds. New proceed types are al
ways defined by adding a sys:proceed method to the condition flavor,
which is defined (in the defflavor for condition) to be combined using the
:case method combination. The method must always return values rather
than throwing.

In :case method combination, the first argument to the sys:proceed func
tion is like a subsidiary message name, causing a further dispatch just as
the original message name caused a primary dispatch. The method from
the example is invoked whenever you call the sys:proceed generic function
with a condition object:

(sys:proceed obj :new-subscript new-sub)

The variables in the lambda list for the method come from the rest of the
arguments of the send.

All of the arguments to a sys:proceed method must be optional arguments.
The sys:proceed method should provide default values for all its ar
guments. One useful way of doing this is to prompt a user for the ar
guments using the *query-io* stream. The example uses
prompt-and-read. If all the optional arguments were supplied, the
sys:proceed method must not do any input or output using *query-io*.

This facility has been defined assuming that condition-bind handlers would
supply all the arguments for the method themselves. The Debugger runs
this method and does not supply arguments, relying on the method to
prompt the user for the arguments.

As in the example, the method should have a documentation string as the
first form in its body. The dbg:document-proceed-type generic function
to a proceedable condition object displays the string. This string is used by
the Debugger as a prompt to describe the proceed type. For example, the
SUbscript example might result in the following Debugger prompt:

407 sys:proceed

s-A: Supply a different subscript

The string should be phrased as a one-line description of the effects of
proceeding from the condition. It should not have any leading or trailing
newlines. (You can use the messages that the Debugger prints out to
describe the effects of the s- commands as models if you are interested in
stylistic consistency.)

Sometimes a simple fIxed string is not adequate. You can provide a piece
of Lisp code to compute the documentation text at run time by providing
your own method for sys:document-proceed-type. This method definition
takes the following form:

(defmethod (dbg: document-proceed-type condition-flavor proceed-type)
(stream)

body ...)

The body of the method should print documentation for proceed-type of
condition-flavor onto stream.

The body of the sys:proceed method can do anything it wants. In general,
it tries to repair the state of things so that execution can proceed past the
point at which the condition was signalled. It can have side-effects on the
state of the environment, it can return values so that the function that
called signal can try to fIX things up, or it can do both. Its operation is
invisible to the handler; the signaller is free to divide the work between
the function that calls signal and the sys:proceed method as it sees fit.
When the sys:proceed method returns, signal returns all of those values to
its caller. That caller can examine them and take action accordingly.

The meaning of these returned values is strictly a matter of convention be
tween the sys:proceed method and the function calling signal. It is com
pletely internal to the signaller and invisible to the handler. By conven
tion, the fITst value is often the name of a proceed type. See the section
"Signallers" in Symbolics Common Lisp: Language Concepts.

A sys:proceed method can return a fITst value of nil if it declines to
proceed from the condition. If a nil returned by a sys:proceed method be
comes the return value for a condition-bind handler, this signifies that the
handler has declined to handle the condition, and the condition continues to
be signalled. When the sys:proceed function is called by the Debugger,
the Debugger prints a message saying that the condition was not
proceeded, and it returns to its command level. This might be used by an
interactive sys:proceed method that gives the user the opportunity either
to proceed or to abort; if the user aborts, the method returns nil. Return
ing nil from a sys:proceed method should not be used as a substitute for
detecting earlier (such as when the condition object is created) that the
proceed type is inappropriate for that condition.

I

I

dbg :proceed-type-p

Condition objects created with error instead of signal do not have any
proceed types.

See the section "Proceeding" in Symbolics Common Lisp: Language Con
cepts.

The compatible message for sys:proceed is:

:proceed

408

dbg:proceed-type-p condition proceed-type Generic Function
Returns t if proceed-type is one of the valid proceed types of this condition
object. Otherwise, returns nil.

The compatible message for dbg:proceed-type-p is:

:proceed-type-p

For a table of related items: See the section "Basic Condition Methods and
Init Options" in Symbolics Common Lisp: Language Concepts.

dbg:proceed-types condition Generic Function
Returns a list of all the valid proceed types for this condition.

The compatible message for dbg:proceed-types is:

:proceed-types

For a table of related items: See the section "Basic Condition Methods and
Init Options" in Symbolics Common Lisp: Language Concepts.

:proceed-types (for condition) Init Option
Defines the set of proceed types to be handled by this instance.
proceed-types is a list of proceed types (symbols); it must be a subset of the
set of proceed types understood by this flavor. If this option is omitted, the
instance is able to handle all of the proceed types understood by this flavor
in general, but by passing this option explicitly, a subset of acceptable
proceed types can be established. This is used by signal-proceed-case.

If only one way to proceed exists, proceed-types can be a single symbol in
stead of a list.

If you pass a symbol that is not an understood proceed type, it is ignored.
It does not signal an error because the proceed type might become under
stood later when a new defmethod is evaluated; if not, the problem is
caught later.

The order in which the proceed types occur in the list controls the order in
which the Debugger displays them in its list. Sometimes you might want
to select an order that makes more sense for the user, although usually
this is not important. The most important thing is that the RESUME com
mand in the Debugger is assigned to the first proceed type in the list.

409 d bg :*proceed-type-special-keys*

For a table of related items: See the section "Basic Condition Methods and
Init Options" in Symbolics Common Lisp: Language Concepts.

dbg:*proceed-type-special-keys* Variable
The value of this variable should be an alist associating proceed types with
characters. When an error supplies any of these proceed types, the Debug
ger assigns that proceed type to the specified key. For example, this is the
mechanism by which the :store-new-value proceed type is offered on the
s-sh-C keystroke.

For a table of related items: See the section "Debugger Special Key
Variables" in Symbolics Common Lisp: Language Concepts.

prog &whole form &rest 1 &environment env Special Form
Provides temporary variables, sequential evaluation of forms, and a "go to "
facility. A typical prog looks like:

(prog (varl var2 (var3 init3) var4 (var5 init5»
tagl

statementl
statement2

tag2
statement3

The first subform of a prog is a list of variables, each of which can option
ally have an initialization form. The first thing evaluation of a prog form
does is to evaluate all of the in it forms. Then each variable that had an
init form is bound to its value, and the variables that did not have an init
form are bound to nil. Example:

(prog «a t) b (c 5) (d (car '(zz . pp»»
<body>
)

The initial value of a is t, that of b is nil, that of c is the integer 5, and
that of d is the symbol zz. The binding and initialization of the variables
is done in parallel; that is, all the initial values are computed before any of
the variables are changed. prog* is the same as prog except that this in
itialization is sequential rather than parallel.

The part of a prog after the variable list is called the body. Each element
of the body is either a symbol or an integer, in which case it is called a
tag, or anything else (almost always a list), in which case it is called a
statement.

After prog binds the variables, it processes each form in its body sequen-

I

prog

I

410

tially. Anything that is a tag are skipped over. statements are evaluated,
and their returned values discarded. If the end of the body is reached, the
prog returns nil. However, two special forms can be used in prog bodies
to alter the flow of control. If (return x) is evaluated, prog stops process
ing its body, evaluates x, and returns the result. If (go tag) is evaluated,
prog jumps to the part of the body labelled with the tag, where processing
of the body is continued. tag is not evaluated.

The compiler requires that go and return forms be lexically within the
scope of the prog; it is not possible for a function called from inside a
prog body to return to the prog. That is, the return or go must be inside
the prog itself, not inside a function called by the prog.

See the special form do, page 180. That uses a body similar to prog. The
do, catch, and throw special forms are included as an attempt to en
courage goto-Iess programming style, which often leads to more readable,
more easily maintained code. You should use these forms instead of prog
wherever reasonable. Moreover, since prog is a combination of block, tag
body, and let, it is often better to use these constructs as needed. This is
especially true in the case of macros with bodies where the unintended in
clusion of a block might overshadow the user's use of block.

If the first subform of a prog is a non-nil symbol (rather than a variable
list), it is the name of the prog, and return-from can be used to return
from it. In Zetalisp: See the special form zl:do-named, page 189.

Examples:

(defun t-test (choice)
(prog classic (pep coca) Initialize pep, coca to nil.

(if (equal choice "left") (go left))
right

(princ "pep is it")
(terpri)
(return t)

left
(princ "coca is it")
(terpri)
(return») => T-TEST

(t-test "left") => coca is it
NIL
(t-test "right") => pep is it
T

411

(prog (X y z) iX, y, z are prog variables - temporaries.
(setq y (car w) z (cdr w» ;w is a free variable.

loop
(cond «null y) (return x»

«null z) (go err»)
rejoin

err

(setq x (cons (cons (car y) (car z»
x»

(setq y (cdr y)
z (cdr z»

(go loop)

(break "are-you-sure?")
(setq z y)
(go rej oi n»

prog*

prog, do, and their variants are effectively constructed out of let, block,
and tagbody forms. prog could have been dermed as the following macro
(except for processing of local declare, which has been omitted for clarity):

(defmacro prog (&rest x)
(let «block-name (and (symbolp (car x»

(neq (car x) nil)
(pop x»)

(variables (car x»
(tagbody (cdr x»)

(if block-name
'(block ,block-name

(block nil
(let ,variables

(tagbody ,@tagbody»»
'(block nil

(let ,variables
(tagbody ,@tagbody»»»

For a table of related items: See the section "Iteration Functions" in Sym
bolics Common Lisp: Language Concepts.

prog* &whole form &rest 1 &environment env Special Form
The prog* special form is almost the same as prog. The only difference is
that the binding and initialization of the temporary variables is done se
quentially, so each one can depend on the previous ones.

For example:

I

I

prog1

(prog* «y z) (X (car y»)
(return x»

returns the car of the value of z.

Examples:

(prog ((x 1) (y (+ x 1» z)
(princ x)(princ " ")
(princ y)(princ " ")
(princ z)(princ " ")
(terpri» => Error: The variable X is unbound.

(prog* ((x 1) (y (+ x 1» z)
(princ x) (princ " ")
(princ y)(princ " ")
(princ z)(princ " ")
(terpri» => 1 2 NIL

NIL

412

For a table of related items: See the section "Iteration Functions" in Sym
bolics Common Lisp: Language Concepts.

progl value &rest ignore Special Form
Similar to progn, but it returns value (its first form) rather than its last.
It is most commonly used to evaluate an expression with side effects, and
return a value that must be computed before the side effects happen. Ex
ample:

(setq x (prog1 y (setq y x»)

interchanges the values of the variables x and y.

progl never returns multiple values. See the special form
multiple-value-progl, page 358. See the section "Special Forms for
Sequencing" in Symbolics Common Lisp: Language Concepts.

prog2 ignore value &rest ignore Special Form
prog2 is similar to progn and progl, but it returns its second form. It is
included largely for compatibility with old programs. See the section
"Special Forms for Sequencing" in Symbolics Common Lisp: Language Con
cepts.

progn &body body Special Form
The body forms are evaluated in order from left to right and the value of
the last one is returned. progn is the primitive control structure construct
for "compound statements". Although lambda-expressions, cond forms, do
forms, and many other control structure forms use progn implicitly, that

413 zl:progv

is, they allow multiple forms in their bodies, there are occasions when one
needs to evaluate a number of forms for their side effects and make them
appear to be a single form. Example:

(faa (cdr a)
(progn (setq b (extract frob))

(car b))
(cadrb))

See the section "Special Forms for Sequencing" in Symbolics Common Lisp:
Language Concepts.

zl:progv vars vals &body body Special Form
Provides the user with extra control over binding. It binds a list of special
variables to a list of values, and then evaluates some forms. The lists of
special variables and values are computed quantities; this is what makes
zl:progv different from let, prog, and do.

zl:progv first evaluates vars and vals, and then binds each symbol to the
corresponding value. If too few values are supplied, the remaining symbols
are bound to nil. If too many values are supplied, the excess values are ig
nored.

After the symbols have been bound to the values, the body forms are
evaluated, and finally the symbols' bindings are undone. The result
returned is the value of the last form in the body. Example:

(setq a 'foo b 'bar)

(zl:progv (list a b 'b) (list b)
(list a b faa bar))

=> (foo nil bar nil)

During the evaluation of the body of this zl:progv, foo is bound to bar,
bar is bound to nil, b is bound to nil, and a retains its top-level value foo.

progw vars-and-vals &body body Special Form
A somewhat modified kind of zl:progv; like zl:progv, it only works for spe
cial variables. First, vars-and-vals-form is evaluated. Its value should be a
list that looks like the first subform of a let·:

«varl val-form-l)
(var2 val-form-2)
...)

Each element of this list is processed in turn, by evaluating the val-form,
and binding the var to the resulting value. Finally, the body forms are
evaluated sequentially, the bindings are undone, and the result of the last
form is returned. Note that the bindings are sequential, not parallel.

I

I

sys:property-cell-Iocation 414

This is a very unusual special form because of the way the evaluator is
called on the result of an evaluation. Thus, progw is mainly useful for im
plementing special forms and for functions part of whose contract is that
they call the interpreter. For an example of the latter, see
sys:*break-bindings*; zl:break implements this by using progw.

sys:property-cell-Iocation sym Function
Returns a locative pointer to the location of sym's property-list cell. This
locative pointer is as valid as sym itself as a handle on sym's property list.

sys:property-list-mixin Flavor
This moon flavor provides methods that perform the generic functions on
property lists. sys:property-list-mixin provides methods for the following
generic functions:

:get indicator Message
The :get message looks up the object's indicator property. If it
finds such a property, it returns the value; otherwise it returns nil.

:getl indicator-list Message
The :getl message is like the :get message, except that the ar
gument is a list of indicators. The :getl message searches down the
property list for any of the indicators in indicator-list until it finds a
property whose indicator is one of those elements. It returns the
portion of the property list beginning with the first such property
that it found. If it does not find any, it returns nil.

:putprop property indicator Message
Gives the object; an indicator-property of property.

:remprop indicator Message
Removes the object's indicator property by splicing it out of the
property list. It returns that portion of the list inside the object of
which the former indicator-property was the car.

:push-property value indicator Message
The indicator-property of the object should be a list (note that nil is
a list and an absent property is nil). This message sets the
indicator-property of the object to a list whose car is value and
whose cdr is the former indicator-property of the list. This is
analogous to doing:

(zl : push value (get object indicator»

See the macro zl:push, page 417.

415 provide

:property-list Message
Returns the list of alternating indicators and values that implements
the property list.

:set-property-list list Message
Sets the list of alternating indicators and values that implements
the property list to list.

:property-list list (for sys:property-list-mixin) Init Option
Initializes the list of alternating indicators and values that imple
ments the property list to list.

provide module-name Function

psetf &rest pairs Macro
The psetf macro is similar to setf, except that psetf performs all the as
signments in parallel, that is, simultaneously, instead of from left to right.
The &rest argument indicates that psetf expects 0 or more pairs on which
to perform assignment operations. In each pair, a new value is assigned to
a place. Evaluations are still performed from left to right, but assignments
are parallel. psetf always returns the value nil.

psetq &rest rest Macro
The psetq macro is similar to setq, except that psetq performs all the as
signments in parallel, that is, simultaneously, instead of from left to right.
The &rest argument indicates that psetq expects 0 or more pairs which to
perform assignment operations. In the arglist, these pairs are represented
by rest. In each pair, a form is assigned to a variable. Evaluations are
still performed from left to right, but assignments are parallel. psetq al
ways returns the value nil.

zl:psetq {variable value}... Special Form
Just like a setq form, except that the variables are set "in parallel"; first
all the value forms are evaluated, and then the variables are set to the
resulting values. Example:

(setq a 1)
(setq b 2)

(psetq a b b a)
a => 2
b => 1

I

I

push 416

push item reference &key area localize Function
If the list held in reference is viewed as a push-down stack, then push
pushes an element onto the top of the stack. The value of the argument
item can be any lisp object. The value of the argument reference can be
the name of any generalized variable containing a list. item is consed onto
the front of the list, and the augmented list is stored back into reference
and returned. The value of reference can be any form acceptable as a
generalized variable to setf.

The effect of (push item place) is the same as (setf place (cons item place),
except that the setf form evaluates any subforms of place twice, while push
evaluates them only once. Moreover, for certain place forms, push can be
significantly more efficient than the setf form.

The optional keyword arguments :area and :localize are Symbolics exten
sions to Common Lisp.

:area An integer that specifies the area in which to store the
augmented list. See the section "Areas" in Internals,
Processes, and Storage Management.

:localize Can be nil, t, or a positive integer, which behave as fol
lows:

Examples:

nil
t

integer

Do not change the behavior of push.
Localize the top level of list structure
by calling sys:localize-list or
sys:localize-tree on the list before
returning it.
Localize integer levels of list structure
by calling sys:localize-list or
sys:localize-tree on the list before
returning it.

(setq alist '«a. b) (c . d))) => «A. 8) (C . D))

(push '(1.2) (cdr alist)) => «1.2) (C . D))

alist => «A. 8) (1 . 2) (C . D))

(push '(3 . 4) alist :localize 2) =>
((3 . 4) (A . ",8) (1 . 2) (C . D))

alist => «3 . 4) (A . 8) (1 . 2) (C . D))

For a table of related items: See the section "Functions for Constructing
Lists and Conses" in Symbolics Common Lisp: Language Concepts.

417 zl:push

zl:push item access-form Macro
Adds an item to the front of a list that is stored in a generalized variable.
(zl:push item ref) creates a new cons whose car is the result of evaluating
item and whose cdr is the contents of ref, and stores the new cons into ref.

The form:

(zl :push (hairy-function x y z) variable)

replaces the commonly used construct:

(setq variable (cons (hairy-function x y z) variable»

and is intended to be more explicit and esthetic.

All the caveats that apply to incf apply to zl:push as well: forms within
ref might be evaluated more than once. (zl:push does not evaluate any
part of ref more than once.) The returned value of zl:push is not defmed.

This Zetalisp function is shadowed by the Common Lisp function of the
same name.

For a table of related items: See the section "Functions for Constructing
Lists and Conses" in Symbolics Common Lisp: Language Concepts.

zl:push-in-area item access-form area Macro
Adds an item to the front of a list that is stored in a generalized variable.
(zl:push-in-area item ref area) creates a new cons in area whose car is the
result of evaluating item and whose cdr is the contents of ref, and stores
the new cons into ref. See the section "Areas" in Internals, Processes, and
Storage Management.

This Zetalisp function is shadowed by the Common Lisp function of the
same name.

For a table of related items: See the section "Functions for Constructing
Lists and Conses" in Symbolics Common Lisp: Language Concepts.

pushnew item reference &key test test-not key area localize Function
If the list held in reference is viewed as a push-down stack, then pushnew
pushes item onto the top of the stack, unless it is already a member of the
list. The value of the argument item can be any lisp object. The value of
the argument reference can be the name of any generalized variable con
taining a list.

item is checked for membership in the list, as determined by the :test
predicate, which defaults to eql. If item is not a member of the list, then
it is consed onto the front of the list, and the augmented list is stored back
into reference and returned. If item is member of the list, then the unaug
mented list is returned. The value of reference can be any form acceptable
as a generalized variable to setf.

I

I

:put-hash 418

The optional keyword arguments :area and :localize are Symbolics exten
sions to Common Lisp.

: area An integer that specifies the area in which to store the
augmented list. See the section "Areas" in Internals,
Processes, and Storage Management.

:localize Can be nil, t, or a positive integer, which behave as fol
lows:

Examples:

riil
t

integer

Do not change the behavior of push.
Localize the top level of list structure
by calling sys:localize-list or
sys:localize-tree on the list before
returning it.
Localize integer levels of list structure
by calling sys:localize-list or
sys:localize-tree on the list before
returning it.

(setq alist '«a . b) (c . d») => «A . B) (C . D»

(pushnew '(1 . 2) (cdr al i st) : local i ze nil) => «1 . 2) (C . D»

alist => «A B) (1 . 2) (C . D»

(pushnew 'CC . D) (cdr alist) :test #'equal :localize 2) =>
«1 . 2) (C . 0»

al i st => «A . B) (1 . 2) (C . 0»

For a table of related items: See the section "Functions for Constructing
Lists and Conses" in Symbolics Common Lisp: Language Concepts.

:put-hash key value Message
Create an entry in the hash table associating key to value. If there is an
existing entry for key then replace the value of that entry with value and
return value. The hash table automatically grows if necessary. This mes
sage will be removed in the future - use setf in conjunction with the
gethash function.

zl:puthash key value hash-table Function
Create an entry in hash-table associating key to value. If there is an exist
ing entry for key, then replace the value of that entry with value and
return value. hash-table grows automatically if necessary. This function
will be removed in the future - use setf in conjunction with the gethash
function.

419 zl :puthash-equal

zl:puthash-equal key value hash-table Function
Create an entry in hash-table associating key to value. If there is an exist
ing entry for key, then replace the value of that entry with value and
return value. hash-table grows automatically if necessary. This function
will be removed in the future - use setf in conjunction with the gethash
function.

zl:putprop plist x indicator Function
This gives plist an indicator-property of x. After this is done, (zl:get plist
indicator> returns x. If plist is a symbol, the symbol's associated property
list is used. zl:putprop returns its second argument. See the section I.
"Property Lists" in Symbolics Common Lisp: Language Concepts.

Example:

(zl :putprop 'Nixon 'not 'crook) => NOT

For a table of related items: See the section "Functions That Operate on
Property Lists" in Symbolics Common Lisp: Language Concepts.

quote object Special Form
Returns object. It is useful specifically because object is not evaluated; the
quote is how you make a form that returns an arbitrary Lisp object.
quote is used to include constants in a form. Examples:

(quote x) => x
(setq x (quote (some list») x => (some list)

Since quote is so useful but somewhat cumbersome to type, the reader nor
mally converts any form preceded by a single quote (') character into a
quote form. Example:

(setq x '(some list»

is converted by read into

(setq x (quote (some list»)

See the section "Functions and Special Forms for Constant Values" in Sym
bolics Common Lisp: Language Concepts.

zl:quotient number &rest more-numbers Function
Returns the Irrst argument divided by all of the rest of its arguments.

With more than one argument, zl:quotient is the same as zl:/;

With integer arguments, zl:quotient acts like truncate, except that it
returns only a single value, the quotient.

For a table of related items: See the section "Arithmetic Functions" in
Symbolics Common Lisp: Language Concepts.

I

random 420

random number &optional (state *random-state*) Function
random generates and returns a pseudorandom number between zero
(inclusive) and number (exclusive) of the. same type as number. This ar
gument must be positive and can either be an integer or a floating-point
number. The pseudorandom numbers generated are nearly uniformly dis
tributed.

If number is an integer, each of the possible results occurs with probability
very close to lin umber.

The optional argument state must be an object of type random-state. It
defaults to the current value of the variable *random-state* which is used
to maintain the state of the pseudorandom number generator between calls.
The value of *random-state* changes as a side effect of the random
operation.

Examples:

(random 2) => 9
(random 2) => 1
(random 25) => 14
(setq x (make-random-state» => #.(RANDOM-STATE 71 1695496379 ...)
(setq copy-x (make-random-state x» => #.(RANDOM-STATE 71 ...)
;;; this makes a copy of random state x
;;; a great way to get reproducibly random numbers
(random 19 copy-x) => 8
(random 19 copy-x) => 7
(random 19 copy-x) => 4
(setq new-copy-x (make-random-state x» => #.(RANDOM-STATE 71 ...).
(random 19 new-copy-x) => 8
(random 19 new-copy-x) => 7
(random 19 new-copy-x) => 4

For a table of related items: See the section "Random Number Functions"
in Symbolics Common Lisp: Language Concepts.

zl:random &optional arg random-array Function
(zl:random) returns a random integer, positive or negative. If arg is
present, an integer between 0 and arg minus 1 inclusive is returned. If
random-array is present, the given array is used instead of the default one.
Otherwise, the default random-array is used (and is created if it does not
already exist). The algorithm is executed inside a without-interrupts so
two processes can use the same random-array without colliding.

For a table of related items: See the section "Random Number Functions"
in Symbolics Common Lisp: Language Concepts.

421 si :random-create-array

si:random-create-array length offset seed &optional (area nil) Function
Creates, initializes, and returns a random-array. length is the length of the
array. offset is the distance between the pointers and should be an integer
less than length. seed is the initial value of the seed, and should be an in
teger. This calls si:random-initialize on the random array before return
ing it.

For a table of related items: See the section "Random Number Functions"
in Symbolics Common Lisp: Language Concepts.

si:random-initialize array &optional new-seed Function
array must be a random-array, such as is created by
si:random-create-array. If new-seed is provided, it should be an integer,
and the seed is set to it. si:random-initialize reinitializes the contents of
the array from the seed (calling zl:random changes the contents of the ar
ray and the pointers, but not the seed).

For a table of related items: See the section "Random Number Functions"
in Symbolics Common Lisp: Language Concepts.

random-state Type Specifier
random-state is the type specifier symbol for the predefmed Lisp object,
random-state. An object of type random-state is used to encapsulate state
information used by the pseudo-random number generator.

The types random-state, readtable, hash-table, package, pathname, and
stream are pairwise disjoint.

Examples:

(typep (make-random-state) 'random-state) => T

(zl :typep (make-random-state) 'random-state) => T

(random-state-p *random-state*) => T

(commonp *random-state*) => RANDOM-STATE

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the section "Numbers" in Symbolics Common
Lisp: Language Concepts.

random-state Variable
This variable holds a data structure, an object of type random-state which
the function random uses by default to encode the internal state of the
random-number generator.

This data structure can be printed and successfully read back in. Each call
to random performs a side eff~ct on *random-state*. *random-state* can
be lambda-bound to a different random-number state object to save and re
store the old state object.

I

I

random-state-p 422

random-state-p object Function
This predicate is true if the argument is an object of type random-state; it
is false otherwise.

Examples:

(setq x (make-random-state» => #.(RANDOM-STATE 71 1695486379 ...)
(setq copy-x (make-random-state x» => #.(RANDOM-STATE 71 ...)
(random-state-p x) => T
(random-state-p copy-x) => T
(random-state-p *random-state*) => T
(random-state-p (random 18» => NIL

;always true

For a table of related items: See the section "Random Number Functions"
in Symbolics Common Lisp: Language Concepts.

zl:rass predicate item alist Function
(zl:rass item alist) looks up item in the association list (list of conses) alist.
The value is the flrst cons whose cdr matches x according to predicate, or
nil if there is none such. See the function zl:mem, page 345. As with
zl:mem, you can use noncommutative predicates; the flrst argument to the
predicate is item and the second is the cdr of the element of alist.

For a table of related items: See the section "Functions That Operate on
Association Lists" in Symbolics Common Lisp: Language Concepts.

rassoc item a-list &key (test #'eql) test-not (key #'identity) Function
rassoc searches the association list a-list. The value returned is the fIrst
pair in a-list such that the cdr of the pair satisfles the predicate specifIed
by :test, or nil if there is no such pair in a-list. rassoc is the reverse form
of assoc. The keywords are:

:test

:test-not

: key

Any predicate specifying a binary operation to be applied
to a supplied argument and an element of a target list.
The item matches the specifIcation only if the predicate
returns t. If :test is not supplied the default operation is
eql.
Similar to :test, except the item matches the specifIcation
only if there is an element of the list for which the
predicate returns nil.
If not nil, should be a function of one argument that will
extract from an element the part to be tested in place of
the whole element.

If a-list is considered to be a mapping, then rassoc treats the a-list as
representing the inverse mapping. For example:

423

(rassoc 'diver '«eagle. raptor) (loon. diver») =>
(LOON . DIVER)

zl:rassoc·

(rassoc 'loon '«eagle. raptor) (loon. diver») => NIL

The two expressions

(rassoc item a1ist :test pred)

and

(find item a1ist :test pred :key #'cdr)

are almost equivalent in meaning. The difference occurs when nil appears
in alist in place of a pair, and the item being searched for is nil. In these
cases, find computes the cdr of the nil in alist, finds that it is equal to
item, and returns nil, while assoc ignores the nil in alist and continues to
search for an actual cons whose cdr is nil. See the function assoc, page
40.

For a table of related items: See the section "Functions That Operate on
Association Lists" in Symbolics Common Lisp: Language Concepts.

zl:rassoc item alist Function
(zl:rassoc item alist) looks up item in the association list (list of conses)
alist. The value is the first cons whose cdr is zl:equal to x, or nil if there
is none such.

For a table of related items: See the section "Functions That Operate on
Association Lists" in Symbolics Common Lisp: Language Concepts.

rassoc-if predicate a-list &key key Function
rassoc-if searches the association list a-list. The value returned is the first
pair in a-list such that the cdr of the pair satisfies predicate, or nil if there
is no such pair in a-list. The keyword is:

:key If not nil, should be a function of one argument that will
extract from an element the part to be tested in place of
the whole element.

Example:

(rassoc-if #'integerp '«eagle. raptor) (1 . 2») => (1 . 2)

(rassoc-if #'symbo1p '«eagle. raptor) (1 . 2») =>
(EAGLE . RAPT OR)

(rassoc-if #'f1oatp '«eagle. raptor) (1 . 2») => NIL

For a table of related items: See the section "Functions That Operate on
Association Lists" in Symbolics Common Lisp: Language Concepts.

I

I

rassoc-if-not 424

rassoc-if-not predicate a-list &key key Function
rassoc-if-not searches the association list a-list. The value returned is the
fIrst pair in a-list such that the cdr of the pair does not satisfy predicate,
or nil if there is no such pair in a-list. The keyword is:

:key If not nil, should be a function of one argument that will
extract from an element the part to be tested in place of
the whole element.

Example:

(rassoc-if-not #'integerp '«eagle. raptor) (1 . 2») =>
(EAGLE . RAPT OR)

(rassoc-if-not #'symbolp '«eagle raptor) (1 . 2») => (1 . 2)

(rassoc-if-not #'symbolp '«eagle raptor) (loon. diver») => NIL

For a table of related items: See the section "Functions That Operate on
Association Lists" in Symbolics Common Lisp: Language Concepts.

zl:rassq item alist Function
(zl:rassq item alist) looks up item in the association list (list of conses)
alist. The value is the first cons whose cdr is eq to x, or nil if there is
none such. zl:rassq means "reverse assq." zl:rassq could have been
defined by:

(defun rassq (item in-list)
(do 1 in-list (cdr 1) (null 1)

(and (eq item (cdar 1»
(return (car 1»»)

For a table of related items: See the section "Functions That Operate on
Association Lists" in Symbolics Common Lisp: Language Concepts.

raster-aref raster x y Function
Accesses the (Xs) graphics coordinate of raster. Use this instead of aref
when accessing rasters.

raster-index-offset raster x y Ji'unction
Returns a linear index of the array element referenced by the (x,y) coor
dinate of the raster. This can be used as the index to sys:%ld-aref or as
the :displaced-index-offset argument to make-array.

raster-index-offset is preferred over manual computation and over
array-row-major-index when the array is conceptually a raster.

425 raster-width-and-height-to-make-array-dimensions

raster-width-and-height-to-make-array-dimensions width height Function
Creates an argument that can be used to call make-array. You would use
this in circumstances in which it is not possible to call
zl:make-raster-array, for example from the :make-array option to
defstruct contructors.

ratio &optional (low '*) (high '*) Type Specifier
ratio is the type specifier symbol for the predefined Lisp ratio number
type.

The types ratio and integer are disjoint subtypes of the type rational.

This type specifier can be used in either symbol or list form. Used in list
form, ratio allows the declaration and creation of a specialized set of ratios
whose range is restricted to the limits specified in the arguments low and
high. The list form is a Symbolics Common Lisp extension to Common
Lisp.

low and high must each be an integer, a list of an integer, or unspecified.
If these limits are expressed as integers, they are inclusive; if they are ex
pressed as a list of an integer, they are exclusive; * means that a limit does
not exist, and so effectively denotes minus or plus infinity, respectively.

Examples:

(typep -5/2 'ratio) => T
(typep 4/5 '(ratio 8 1)) => T
(typep 2/1 '(ratio e 1)) => NIL
(typep 2 '(ratio 3 *)) => NIL
(subtypep 'ratio 'rational) => T and T ; subtype and certain
(subtypep '(ratio 2 9) 'rational) => T and T
(subtypep '(ratio 3.2/3 *) 'rational) => T and T
(commonp 15/5) => T
(zl :rationalp #3r128/21) => T
(sys:type-arglist 'ratio) => (&OPTIONAL (LOW '*) (HIGH '*)) and T
(subtypep '(ratio 8 9) '(rational 8 9)) => T and T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the section "Numbers" in Symbolics Common
Lisp: Language Concepts.

rational number Function
rational accepts any non-complex number and converts it to a rational
number in canonical form. If the argument is already--r-ational, it is
returned. If number is in floating-point form, it is assum'ed to be com
pletely accurate, and rational returns a rational number mathematically
equal to the precise value of the floating-point number. Note that:

I

I

rational

(float (rational x) x) == x

Examples:

(rational 9.2) => 13421773/67198864
(rational 3.95) => 16567591/4194394
(rational 6/2) => 3

426

For a table of related items: See the section "Functions That Convert Non
complex to Rational Numbers" in Symbolics Common Lisp: Language Con
cepts.

rational &optional (low '*) (high '*) Type Specifier
rational is the type specifier symbol for the predefined Lisp rational num
ber type.

The types rational, float, and complex are pairwise disjoint subtypes of the
type number.

The type rational is a supertype of the following types which are an ex
haustive partition of it:

integer
ratio

This type specifier can be used in either symbol or list form. Used in list
form, rational allows the declaration and creation of specialized rational
numbers, whose range is restricted to low and high.

low and high must each be a rational, a list of rational numbers, or un
specified. If these limits are expressed as rationals, they are inclusive; if
they are expressed as a list of rationals, they are exclusive; * means that a
limit does not exist, and so effectively denotes minus or plus infinity,
respectively.

Examples:

427

(typep #3r1B2/21 'rational) => T
(typep 4 '(rational 3 4» => T
(typep 5 '(rational 3 4» => NIL
(typep 2354 '(rational *» => T
(zl:typep 2/3) => :RATIONAL

zl :rational

(subtypep 'rational 'number) => T and T ;subtype and certain
(subtypep 'integer 'rational) => T and T
(subtypep 'ratio 'rational) => T and T
(subtypep '(rational -4 98) '(rational *» => T and T
(typep 17/89 'common) => T
(rationalp 6/3) => T
(rationalp (+ #2r1B1 #2r11» => T
(sys:type-arglist ':rational) => NIL
(sys:type-arglist 'rational)
=> (&OPTIONAL (LOW '*) (HIGH '*» and T
(subtypep '(rational B 9) 'rational) => T and T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the section "Numbers" in Symbolics Common
Lisp: Language Concepts.

zl:rational number Function
Converts any noncomplex number to an equivalent rational number. If
number is a floating-point number, zl:rational returns the rational number
of least denominator, which when converted back to the same floating-point
precision, is equal to number.

The following function is a synonym of zl:rational:

rationalize

For a table of related items: See the section "Functions That Convert N on
complex to Rational Numbers" in Symbolics Common Lisp: Language Con
cepts.

rationalize number Function
rationalize accepts any non-complex number and converts it to a rational
number in canonical form. If the argument is already rational, it is
returned. If number is in floating-point form, rationalize assumes that it
is accurate only to the precision of the floating-point representation. Hence
the returned value can be any rational number for which the floating-point
argument is the best available approximation. The aim is to keep both
numerator and denominator as small as possible. rationalize is guaranteed
to return the number with the smallest denominator, such that the follow
ing expression is true:

(float (rationalize x) x) == x

I

I

rationalp

Examples:

(rationalize B.2) => 1/5

(rationalize 3.95) => 79/28

428

For a table of related items: See the section "Functions That Convert Non
complex to Rational Numbers" in Symbolics Common Lisp: Language Con
cepts.

rationalp object Function
This predicate is true if object is a rational number (a ratio or an integer)
after conversion to canonical form; it is false otherwise.

Examples:

(rationa1p 3.B) => NIL
(rationalp 2) => T
(rationa1p #c(3 4)) => NIL
(rationalp (I 22 7)) => T
(rationa1p #c(4 B)) => T ;comp1ex canonica1ization

For a table of related items: See the section "Numeric Type-checking
Predicates" in Symbolics Common Lisp: Language Concepts.

zl:rationalp object Function
Returns t if object is a ratio. Returns nil if object is an integer or other
type of object.

Examples:

(zl :rationa1p (I 8 7)) => T
(zl :rationalp 9/16) => T
(zl :rationa1p 4) => NIL
(zl :rationalp (I 9 3)) => NIL
(zl :rationalp 16/4) => NIL

For a table of related items: See the section "Numeric Type-checking
Predicates" in Symbolics Common Lisp: Language Concepts.

read-base Variable
The value of *read-base* is a number controlling the radix in which in
tegers and ratios are read. Valid values are between 2 and 36, inclusive;
the default is 10 (decimal radix).

The value of *read-base* does not affect rational numbers whose radix is
explicitly indicated by a radix specifier, or by a trailing decimal point. See
the section "Radix Specifier Format" in Symbolics Common Lisp: Language
Concepts.

429 *read-default-float-format*

The reader uses letters to represent digits greater than 10. Thus, when
read-base is greater than 10 and no radix specifier is present, some
tokens could be read as either integers, floating-point numbers, or symbols.
The reader's action on such tokens is determined by the value of
si:*read-extended-ibase-unsigned-number* and
si:*read-extended-ibase-signed-number*. Setting these variables to t
causes the tokens to be always interpreted as numbers.

Note: This is an incompatible difference from the language specification in
Steele's Common Lisp manual.

Related Variables: See the section " Control Variables for Reading
Numbers" in Symbolics Common Lisp: Language Concepts.

read-default-float-format Variable
Controls the printing and reading of floating-point numbers. This variable
takes on one of four possible values, namely short-float, single-float,
long-float, or double-float.

For printing floating-point numbers:

The printer checks the value of *read-default-float-format* and applies the
following rules to decide whether to print an exponent character with the
number, and if so, which character.

Notation
used

Ordinary

Exponential

Does number's format
match current value of
cl:*read-default-float-format*?

Yes

No

Yes
No

Exponent
marker

Don't print
marker

Print marker
and zero

Print e
Print marker

See the section "Printed Representation of Floating-point Numbers" in
Symbolics Common Lisp: Language Concepts.

For reading floating-point numbers:

I

I

si :*read-extended-i base-signed-nu mber* 430

read-default-float-format controls how floating-point numbers with no
exponent or an exponent preceded by "E" or "e" are read. Following is a
summary of the way possible values cause these numbers to be read.

Value Floating-point precision

single-float single-precision

short-float single-precision

double-float double-precision

long-float double-precision

The default value is single-float.

See the section "How the Reader Recognizes Floating-point Numbers" in
Symbolics Common Lisp: Language Concepts.

si:*read-extended-ibase-signed-number* Variable
Controls how a token that could be an integer, floating-point number, or
symbol and starts with a + or - sign, is interpreted when *read-base* (or
zl:ibase) is greater than ten. Here are the possible values of this variable
and their effect on the token read.'

nil
t
:sharpsign

: single

It is never an integer.
It is always an integer.
It is a symbol or floating-point number at top level, but
an integer after #X or #nR.
It is a symbol or floating-point number except im-'
mediately after #X or #nR.

The default value is :sharpsign.

In the table below, the token FACE for each case could be a symbol or a
hexadecimal number. :single makes it an integer on the second line, but a
symbol on the first and third lines. :sharpsign makes it an integer on
both the second and third lines.

nil t :single :sharpsign

+FACE symbol integer symbol symbol

#x+FACE symbol integer integer integer

#x(+FACE +FF 1234 +5COO) symbol integer symbol integer

431 si :*read-extended-ibase-unsig ned-n u mber*

+1dO float integer float

Related Topics:

si:*read-extended-ibase-unsigned-number*

float

si:*read-extended-ibase-unsigned-number* Variable
Controls how a token that could be an integer, floating-point number, or
symbol and does not start with a + or - sign, is interpreted when
read-base (or zl:ibase) is greater than ten. Here are the possible values
of this variable and the their effect on the token read.

nil
t
:sharpsign

: single

It is never an integer.
It is always an integer.
It is a symbol or floating-point number at top level, 1?ut
an integer after #X or #nR.
It is a symbol or floating-point number except im
mediately after #X or #nR.

The default value is : single.

In the table below, the token FACE for each case could be a symbol or a
hexadecimal number. :single makes it an integer on the second line, but a
symbol on the Ilrst and third lines. :sharpsign makes it an integer on
both the second and third lines.

nil t :single :sharpsign

FACE symbol integer symbol symbol

#xFACE symbol integer integer integer

#X(FACE FF 1234 5COO) symbol integer symbol integer

1dO float integer float float

Related Topics:

si:*read-extended-ibase-signed-number*

si:*read-multi-dot-tokens-as-symbols* Variable
When t, for Zeta1isp, tokens containing more than one dot, but no other
characters, are read as symbols. When nil, for Common Lisp, tokens con
taining more than one dot but no other characters signal an error when
read. Default: t.

I

I

readtable 432

readtable Type Specifier
readtable is the type specifier symbol for the predefined Lisp data struc
ture, hash table.

The types readtable, hash-table, package, pathname, stream and
random-state are pairwise disjoint.

Examples:

(typep *readtable* 'readtable) => T
(zl :typep *readtable*) => ZL:READTABLE
(subtypep 'readtable 'common) => T and T
(sys:type-arglist 'readtable) => NIL and T
(readtablep *readtable*) => T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the section "The Readtable" in Reference
Guide to Streams, Files, and 110.

realpart number Function
If number is a complex number, realpart returns the real part of number.
If number is a noncomplex number, realpart returns number.

Examples:

(real part #c(3 4)) => 3
(real part 4) => 4

Related Functions:

complex
imagpart

For a table of related items: See the section "Functions That Decompose
and Construct Complex Numbers" in Symbolics Common Lisp: Language
Concepts.

recompile-flavor flavor &key generic ignore-existing-methods Function
(do-dependents t)

recompile-flavor updates the internal data of flavor and any flavors that
depend on it, such as regenerating inherited information about methods.
Normally the Flavors system does the equivalent of recompile-flavor when
ever it is needed.

recompile-flavor is provided so you can recover from unusual situations
where the Flavors system does not automatically update the inherited infor
mation. These situations include: redefining a function called as part of
expanding a wrapper, and recovering from a bug in a method combination
routine. If for any reason you suspect that the inherited methods have not
been calculated and combined properly, you can use recompile-flavor.

433 record-source-file-name

If you supply a non-nil value to generic, only the methods for that generic
function are changed. The system does this when you define a new method
or redefine a wrapper (when the new dermition is not equal to the old).
Otherwise, all generic functions are updated.

If you supply a non-nil value to ignore-existing-methods, all combined
methods are regenerated. Otherwise, new combined methods are generated
only if the set of methods to be called has changed. This is the default.

do-dependents controls whether flavors that depend on the given flavor are
also recompiled. By default, all flavors that depend on it are recompiled.
You can specify nil for do-dependents to prevent the dependent flavors from
being recompiled.

recompile-flavor affects only flavors that have already been compiled.
Typically this means it affects flavors that have been instantiated, and does
not affect mixins.

record-source-file-name function-spec &optional (type 'defun) Function
(no-query (eq sys:inhibit-fdefine-warnings t»

record-source-file-name associates the definition of a function with' its
source files, so that tools such as Edit Definition (M-.) can find the source
file of a function. It also detects when two different files both try to
define the same function, and warns the user.

record-source-file-name is called automatically by defun, defmacro,
defstruct, defflavor, and other such derming special forms. Normally you
do not invoke it explicitly. If you have your own defining macro, however,
that does not expand into one of the above, then you can make its expan
sion include a record-source-file-name form.

Normally, record-source-file-name returns t. If a definition of the same
name and type was already made by another file, the user is asked whether
the definition should be performed. If the user answers "no",
record-source-file-name returns nil. When nil is returned the caller
should not perform the definition.

function-spec The function spec for the entity being deimed.
type The type of entity being defined, with defun as the

default. type can be any symbol, typically the name of
the corresponding special form for defining the entity.
Some standard examples:

defun
defvar
defflavor
defstruct

Both macros and substs are subsumed under the type

I

I

reduce

no-query

defun, because you cannot have a function named x in
one file and a macro named x in another file.

434

Controls queries about redefInitions. t means to suppress
queries about redefining. The default value of no-query
depends on the value of sys:inhibit-fdefine-warnings.
When sys:inhibit-fdefine-warnings is t, no-query is tj
otherwise it is nil. Regardless of the value for no-query,
queries are suppressed when the definition is happening
in a patch file.

You cannot specify the source file name with this function. The function is
always associated with the pathname for the file being loaded
(sys:fdefine-file-pathname).

When redefining functions, some users try to avoid redefinition warnings
and queries by using the form (zl:remprop symbol :source-file-name). The
preferred way to do this is to use the form (record-source-file-name
function-spec 'defun t). The former method causes the system to forget
both the original definition and other definitions for the same symbol (as a
variable, flavor, structure, and so forth). record-source-file-name lets the
system know that the function is defined in two places, and it avoids
redefinition warnings and queries.

Of course, if you are redefming something other than a function, use the
appropriate definition type symbol instead of defun as the second argument
to record-source-file-name. For example, if you are redefining a flavor,
use defflavor as the second argument. See the section "Using The
sys:function-parent Declaration" in Symbolics Common Lisp: Language
Concepts.

reduce function sequence &key from-end (start 0) end (initial-value Function
nil initial-value-p)

reduce combines all of the elements of a sequence using a binary opera
tion, for example, using + to sum all of the elements.

sequence is combined or "reduced" using function, which must accept two
arguments. The reduction is left-associative, unless the value of the
:from-end keyword argument is t, in which case it is right-associative. If
the :initial-value argument is specified, it is logically placed before se
quence (or after, if the value of the :from-end argument is t) and it is in
cluded in the reduction operation.

If the specified subsequence contains exactly one element and no
:initial-value argument is specified, then that element is returned and
function is not called. If the :start and :end arguments are specified and
the subsequence is empty, and the :initial-value argument is specified, then
the :initial-value is returned and function is not called. If the subsequence

435 rem

is empty and no :initial-value is specified, then function is called with zero
arguments, and reduce returns whatever the function returns. (This is the
only case where function is called with other than two arguments.)

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

For example:

(reduce #'+ '(1 2 3 4» => 19

(reduce #'- '(1 234) :fram-end t) => -2

(reduce #'+ '(» => 9

(reduce #'+ #(1 1 1 1 1) :start 2 :end 5) => 3

(reduce #'list '(1 2 3 4» => «(1 2) 3) 4)

(reduce #'list '(1 234) :initial-value 'faa :fram-end t) =>

(1 (2 (3 (4 FDD»»

For a table of related items: See the section "Mapping Sequences" in Sym
bolics Common Lisp: Language Concepts.

rem number divisor Function
rem divides number by divisor, truncating the quotient toward zero, and
returns the remainder. This is the same as the second value of (truncate
number divisor). If q and r denote, respectively, the quotient and
remainder, then: q III divisor + r = number.

The arguments can be rational or floating-point numbers. The returned
value, r is rational if both arguments are rational; it is floating-point if ei
ther argument is floating-point.

Examples:

(rem 3 2) => 1
(rem 3 -2) => 1
(rem -3 2) => -1
(rem -3 -2) => -1
(rem 4 2) => 9
(rem 3.8 2) => 1.8
(rem -3.8 2) => -1.8
(rem 19/5 2) => 9/5

The following functions are synonyms of rem:

•

I

zl:rem

zl:\\
zl:remainder

Related Functions:

truncate
mod

For a table of related items: See the section "Arithmetic Functions" in
Symbolics Common Lisp: Language Concepts.

436

zl:rem predicate item list &optional n Function
(zl:rem item list) returns a copy of list with all occurrences of item
removed. predicate is used for the comparison. (zl:rem 6eq a b) is the
same as (zl:remq a b). See the function zl:mem, page 345.

i[n] instances of item are deleted. n is allowed to be zero. If n is greater
than or equal to the number of occurrences of item in the list, all occur
rences of item in the list are deleted.

This Zetalisp function is shadowed by the Common Lisp function of the
same name. Common Lisp zl:rem is the remainder function.

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

zl:remainder x y Function
Returns the remainder of x divided by y. x and y must be integers. The
exact rules for the meaning of the quotient and remainder of two integers
in Zetalisp are given in another section. See the section "Integer Division
in Zetalisp" in Symbolics Common Lisp: Language Concepts.

Examples:

(zl:remainder 3 2) => 1
(zl : remainder -3 2) => -1
(zl : remainder 3 -2) => 1
(zl:remainder -3 -2) => -1

The following functions are synonyms of zl:remainder:

rem
zl:\\

remf place indicator Macro
Removes indicator from the property list stored in place. If it cannot find
indicator, it returns nil. See the section "Functions Relating to the
Property List of a Symbol" in Symbolics Common Lisp: Language Concepts.

437 :rem-hash

:rem-hash key Message
Remove any entry for key in the hash table. Returns t if there was an
entry or nil if there was not. This message will be removed in the future
- use remhash instead.

remhash key table Function
Remove any entry for key in table. Returns t if there was an entry or nil
if there was not.

For a table of related items: See the section "Table Functions" in Sym
bolics Common Lisp: Language Concepts.

zl:remhash-equal key hash-table Function
Remove any entry for key in hash-table. Returns t if there was an entry' or
nil if there was not. This function will be removed in the future - use
remhash instead.

zl:rem-if predicate list &rest extra-lists Function
zl:subset-not and zl:rem-if do the same thing, but they are used in dif
ferent contexts. zl:rem-if means "remove if this condition is true".
zl:subset-not refers to the function's action if list is considered to
represent a mathematical set.

predicate should be a function of one argument, if there are no extra-lists
arguments. A new list is made by applying predicate to all the elements of
list and removing the ones for which the predicate returns non-nil.

If extra-lists is present, each element of extra-lists (that is, each further ar
gument to zl:subset-not or zl:rem-if) is a list of objects to be passed to
predicate as predicate's second argument, third argument, and so on. The
reason for this is that predicate might be a function of many arguments;
extra-lists lets you control what values are passed as additional arguments
to predicate. However, the list returned by zl:subset-not or zl:rem-if is
still a "subset" of those values that Wffi"e passed as the first argument in
the various calls to predicate.

For a table of related items: See the sectirn "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

zl:rem-if-not predicate list &rest extra-Usts Function
zl:subset and zl:rem-if-not do the same thing, but they are used in dif
ferent contexts. zl:rem-if-not means "remove if this condition is not true";
that is, it keeps the elements for which predicate is true. zl:subset refers
to the function's action if list is considered to represent a mathematical set.

•

I

zl:remob 438

predicate should be a function of one argument, if there are no extra-lists
arguments. A new list is made by applying predicate to all of the elements
of list and removing the ones for which the predicate returns nil.

If extra-lists is present, each element of extra-lists (that is, each further ar
gument to zl~subset or zl:rem-if-not) is a list of objects to be passed to
predicate as predicate's second argument, third argument, and so on. The
reason for this is that predicate might be a function of many arguments;
extra-lists lets you control what values are passed as additional arguments
to predicate. However, the list returned by zl:subset or zl:rem-if-not is
still a "subset" of those values that were passed as the first argument in
the various calls to predicate.

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

zl:remob symbol &optional package Function
zl:remob removes symbol from package (the name is historical and means
"REMove from OBlist"). symbol itself is unaffected, but zl:intern no
longer finds it in package. Removing a symbol from its home package sets
its home package to nil; removing a symbol from a package different from
its home package leaves the symbol's home package unchanged.

zl:remob returns t if the symbol was found and removed, or nil if it was
not found.

zl:remob is always "local", in that it removes only from the specified pack
age and not from any other packages. Thus zl:remob has no effect unless
the symbol is present in the specified package, even if it is accessible from
that package via inheritance.

If package is unspecified it defaults to the symbol's home package. Note
this exception well: the default value of zl:remob's package argument is not
the current package.

The equivalent function in Common Lisp is unintern.

remove item sequence &key (test #'eql) test-not (key #'identity) Function
from-end (start 0) end count

remove returns a sequence of the same type as sequence that has the same
elements, except that those in the subsequence delimited by :start and :end
and satisfying the predicate specified by the :test keyword have been
removed. This is a non-destructive operation. The returned sequence is a
copy of sequence, save that some elements are not copied. Elements that
are not removed occur in the same order in the result as they did in se
quence.

439

For example:

(setq nums '(1 2 3» => (1 2 3)

(remove 1 nums) => (2 3)
nums => (1 2 3)

(remove 2 nums) => (1 ~)

nums => (1 2 3)

remove

item is matched against the elements specified by the test keyword. The
item can be any Symbolics Common Lisp object.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

:test specifies the test to be performed. An element of sequence satisfies
the test if (funcall testfun item (keyfn x» is true. Where test fun is the test
function specified by :test, keyfn is the function specified by :key and x is I
an element of the sequence. The default test is eqI. •

For example:

(remove 4 #(6 1 6 4) :test #'» => #(6 6 4)

:test-not is similar to :test, except that the sense of the test is inverted.
An element of sequence satisfies the test if (funcall test fun item (keyfn x»
is false.

The value of the keyword argument :key, if non-nil, is a function that
takes one argument. This function extracts from each element the part to
be tested in place of the whole element.

For example:

(remove B '«B 1) (B 1) (1 B» :key #'second)
=> «B 1) (B 1»

If the value of the :from-end argument is non-nil, it only affects the result
when the :count argument is specified. In that case only the rightmost
:count elements that satisfy the predicate are removed.

For example:

(remove 4 '(4 2 4 1) :count 1) => (2 4 1)

(remove 4 #(4 2 4 1) :count 1 :from-end t) => #(4 2 1)

Use the keyword arguments :start and :end to delimit the portion of the
sequence to be operated on.

:start and :end must be non-negative integer indices into the sequence.
:start must be less than or equal to :end, else an error is signalled. It
defaults to zero (the start of the sequence).

I

zl:remove 440

:start indicates the start position for the operation within the sequence.
:end indicates the position of the first element in the sequence beyond the
end of the operation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by
default.

For example:

(remove 'a #(b a a c» => #(8 C)

(remove 4 ' (4 4 1» => (1)

(remove 4 ' (4 1 4) :start 1 :end 2) => (4 1 4)

(remove 4 J (4 4) :start 9 :end 3) => (1)

The :count argument, if supplied, limits the number of elements removed.
If more than :count elements of sequence satisfy the predicate, then only
the leftmost :count of those elements are deleted.

For example:

(remove 4 '(4 2 4 1) :count 1) => (2 4 1)

remove is the non-destructive version of delete.

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

For a table of related items: See the section "Sequence Modification" in
Symbolics Common Lisp: Language Concepts.

zl:remove item list &optional n Function
(zl:remove item list) returns a copy of list with all occurrences of item
removed. zl:equal is used for the comparison. zl:remove is the non
destructive version of zl:delete.

i[n] instances of item are deleted. n is allowed to be zero. If n is greater
than or equal to the number of occurrences of item in the list, all occur
rences of item in the list are deleted.

This Zetalisp function is shadowed by the Common Lisp function of the
same name.

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

For a table of related items: See the section "Sequence Modification" in
Symbolics Common Lisp: Language Concepts.

441 remove-duplicates

remove-duplicates sequence &key from-end (test #'eql) test-not Function
(start 0) end key

remove-duplicates compares the elements of sequence pairwise, and if any
two match, then the one occurring earlier in the sequence is discarded.
The returned form is sequence, with enough elements removed such that no
two of the remaining elements match. remove-duplicates is a non
destructive function.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

The function normally processes the sequence in the forward direction, but
if a non-nil value is specified for : from-end, processing starts from the
reverse direction. If the :from-end argument is true, then the one later in
the sequence is discarded.

:test specifies the test to be performed. An element of sequence satisfies
the test if (funcall testfun item (keyfn x» is true. Where testfun is the test
function specified by :test, keyfn is the function specified by :key and x is
an element of the sequence. The default test is eql.

For example:

I
(remove-duplicates J(1 2 2 2 3 3 3) :test #J» => (1 1 1 2 2 2 3 3 3)

(remove-duplicates J(1 1 2 2 2 333) :test #J=) => (1 2 3)

:test-not is similar to :test, except that the sense of the test is inverted.
An element of sequence satisfies the test if (funcall testfun item (keyfn x»
is false.

Use the keyword arguments :start and :end to delimit the portion of the
sequence to be operated on.

:start and :end must be non-negative integer indices into the sequence.
:start must be less than or equal to :end, else an error is signalled. It
defaults to zero (the start of the sequence).

:start indicates the start position for the operation within the sequence.
:end indicates the position of the first element in the sequence beyond the
end of the operation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by
default.

For example:

(remove-duplicates J(a a b b» => (A 8)

(remove-duplicates #(1 1 1 1 1 1» => #(1)

I

flavor:remove-flavor 442

(remove-duplicates #(1 1 1 2 2 2) :start 3) => #(1 1 1 2)

(remove-duplicates #(1 1 1 2 2 2) :start 2 :end 4) => #(1 1 1 2 2 2)

The value of the keyword argument : key, if non-nil, is a function that
takes one argument. This function extracts from each element the part to
be tested in place of the whole element.

For example:

(remove-duplicates '«Smith S) (Jones J) (Taylor T) (Smith S)) :key #'second)
=> «JONES J) (TAYLOR T) (SMITH S))

The value returned by remove-duplicates can share elements with se
quence. A list may share a tail with an input list, and the result can be
eq to the input sequence if not elements are removed.

remove-duplicates is the non-destructive version of delete-duplicates.

For a table of related items: See the section "Sequence Modification" in
Symbolics Common Lisp: Language Concepts.

flavor: remove-flavor flavor-name Function
Removes the defmition of the flavor named by flavor-name. Any accessor
functions are also removed from the world.

remove-if predicate sequence &key key from-end (start 0) end count Function
remove-if returns a sequence of the same type as sequence that has the
same elements, except that those in the subsequence delimited by :start
and :end and satisfying predicate have been removed. This is a non
destructive operation. The returned sequence is a copy of sequence, save
that some elements are not copied. Elements that are not removed occur
in the same order in the result as they did in sequence.

For example:

(setq a-list '(1 a b c)) => (1 A B C)

(remove-if #'numberp a-list) => (A B C)
a-list => (1 A B C)

(setq my-list '(8 1 8)) => (8 1 8)
(remove-if #'zerop my-list) => (1)
my-list => (8 1 8)

predicate is the test to be performed on each element.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

flavor:remove-flavor

The value of the keyword argument :key, if non-nil, is a function that
takes one argument. This function extracts from each element the part to
be tested in place of the whole element.

For example:

(remove-if #'atom , «book 1) (math (room c» (text 3» :key #'second)
=> «MATH (ROOM C»)

If the value of the :from-end argument is non-nil, it only affects the result
when the :count argument is specified. In that case only the rightmost
:count elements that satisfy the predicate are deleted.

For example:

(remove-if #'numberp '(4 2 4 1) :count 1) => (2 4 1)

(remove-if #'numberp '(4 2 4 1) :count 1 :from-end t) => (4 2 4)

Use the keyword arguments :start and :end to delimit the portion of the
sequence to be operated on.

:start and :end must be non-negative integer indices into the sequence.
:start must be less than or equal to : end, else an error is signalled. It
defaults to zero (the start of the sequence).

:start indicates the start position for the operation within the sequence.
:end indicates the position of the Irrst element in the sequence beyond the
end of the operation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by
default.

For example:

(remove-if #'atom '('a 1 ulist U » => ('A)

(remove-if #'numberp '(4 1 4) :start 1 :end 2) => (4 4)

(remove-if #'evenp '(4 1 4) :start e :end 3) => (1)

The :count argument, if supplied, limits the number of elements deleted.
If more than :count elements of sequence satisfy the predicate, then only
the leftmost :count of those elements are deleted.

For example:

(remove-if #'oddp '(1 1 2 2) :count 1) => (1 2 2)

remove-if is the non-destructive version of delete-if.

For a table of related items: See the section "Sequence Modification" in
Symbolics Common Lisp: Language Concepts.

I

I

remove-if-not 444

remove-if-not predicate sequence &key key from-end (start 0) end Function
count

remove-if-not returns a sequence of the same type as sequence that has the
same elements, except that those in the subsequence delimited by :start
and :end which do not satisfy predicate have been removed. The returned
sequence is a copy of sequence, save that some elements are not copied.
Elements that are not removed occur in the same order in the result as
they did in sequence. This is a non-destructive operation.

For example:

(setq a-list J(1 a be» => (1 A B C)
(remove-if-not #Jnumberp a-list) => (1)
a-list => (1 A B C)

(setq my-list J(8 1 8» => (8 1 8)
(remove-if-not #Jzerop my-list) => (8 8)
my-list => (8 1 8)

predicate is the test to be performed on each element.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

The value of the keyword argument :key, if non-nil, is a function that
takes one argument. This function extracts from each element the part to
be tested in place of the whole element.

For example:

(remove-if-not #Jatom J«book 1) (math (room c» (text 3» :key #Jsecond)
=> «BOOK 1) (TEXT 3»

If the value of the :from-end argument is non-nil, it only affects the result
when the :count argument is specified. In that case only the rightmost
:count elements that satisfy the predicate are removed.

For example:

(remove-if-not #Jnumberp J(4 Ja Jb 1) :count 1)
=> (4 J B 1)

(remove-if-not #Jnumberp J(J c 4 2 4 Ja) :count 1 :from-end t)
=> (J C 4 2 4)

Use the keyword arguments :start and :end to delimit the portion of the
sequence to be operated on.

:start and :end must be non-negative integer indices into the sequence.
:start must be less than or equal to :end, else an error is signalled. It
defaults to zero (the start of the sequence).

445 remprop

:start indicates the start position for the operation within the sequence.
:end indicates the position of the first element in the sequence beyond the
end of the operation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by
default.

For example:

(remove-if-not #'atom '('a 1 "list")) => (1 "list")

(remove-if-not #'numberp '('a 'b 'c) :start 1 :end 2) => ('A 'e)

(remove-if-not #'evenp '(1 235) :start B :end 3) => (2 5)

The :count argument, if supplied, limits the number of elements deleted.
If more than :count elements of sequence satisfy the predicate, then only
the leftmost :count of those elements are deleted.

For example:

(remove-if-not #'oddp '(1 1 2 2) :count 1) => (1 1 2)

remove-if-not is the non-destructive version of delete-if-not.

For a table of related items: See the section "Sequence Modification" in
Symbolics Common Lisp: Language Concepts.

:remove of si:heap Method
Removes the top item from the heap and returns it and its key as values.
The third value is nil if the heap was empty; otherwise it is t.

For a table of related items: See the section "Heap Functions and Methods"
in Symbolics Common Lisp: Language Concepts.

remprop symbol indicator Function
The remprop function removes from the property list in symbol a property
with an indicator eq to indicator. For example, if the property list of foo
was:

(color blue height six-three near-to bar)

then:

(remprop 'faa 'height) => (six-three near-to bar)

and foo's property list would be:

I

I

zl:remprop

(color blue near-to bar)

If plist has no indicator-property, then remprop has no side-effect and
returns nil.

446

zl:remprop plist indicator Function
This removes plist's indicator property, by splicing it out of the property
list. It returns that portion of the list inside plist of which the former
indicator-property was the car. The car of what zl:remprop returns is
what zl:get would have returned with the same arguments. If plist is a
symbol, the symbol's associated property list is used. For example, if the
property list of foo was:

(color blue height six-three near-to bar)

then:

(zl:remprop 'faa 'height) => (six-three near-to bar)

and foo's property list would be:

(color blue near-to bar)

If plist has no indicator-property, then zl:remprop has no side-effect and
returns nil.

For a table of related items: See the section "Functions That Operate on
Property Lists" in Symbolics Common Lisp: Language Concepts.

zl:remq item list &optional n Function
(zl:remq item list) returns a copy of list with all occurrences of item
removed. eq is used for the comparison. zl:remq is the non-destructive
version of zl:delq. Examples:

(setq x '(a b c d e f»
(zl :remq 'b x) => (a c d e f)

x => (a b c d e f)

(zl :remq ~b '(a b c b a b) 2) => (a c a b)

i[n] instances of item are deleted. n is allowed to be zero. If n is greater
than or equal to the number of occurrences of item in the list, all occur
rences of item in the list are deleted.

For a table of related items: See the section "Functions for Modifying
Lis~s" in Symbolics Common Lisp: Language Concepts.

flavor:rename-instance-variable flavor-name old new Function
Renames an instance variable old to a new name new for the given
flavor-name. When this is done, the value of the old instance variable is
carried over to the new instance variable. Any old instances are updated to

447 rename-package

reflect the new name of the instance variable. Often you use
flavor:rename-instance-variable first, which ensures that the value of the
instance variable is carried over. You might then use defflavor to add op
tions such as :readable-instance-variables, or change the default initial
value.

(flavor:rename-instance-variable 'ship 'captain 'skipper)

rename-package pkg new-name &optional new-nicknames Function
Replaces the old name and all old nicknames of pkg with new-name and
new-nicknames. new-name is a string or a symbol. new-nicknames is a list
of strings or symbols. new-nicknames defaults to nil. See the section
"Mapping Between Names and Packages" in Symbolics Common Lisp: Lan-
guage Concepts. .

si:rename-within-new-definition-maybe function definition Function
Given new-structure that is going to become a part of the definition of
function-spec, perform on it the replacements described by the
si:rename-within encapsulation in the definition of function-spec, if there is
one. The altered (copied) list structure is returned.

It is not necessary to call this function yourself when you replace the basic
definition because fdefine with carefully supplied as t does it for you.
si:encapsulate does this to the body of the new encapsulation. So you only
need to call si:rename-within-new-definition-maybe yourself if you are
rplac'ing part of the definition.

For proper results, function-spec must be the outer-level function spec.
That is, the value returned by si:unencapsulate-function-spec is not the
right thing to use. It has had one or more encapsulations stripped off, in
cluding the si:rename-within encapsulation if any, and so no renamings are
done.

repeat Keyword For loop

Repeat is one of the iteration-driving clauses for loop.

repeat expression
Evaluates expression (during the variable-binding phase), and causes the
loop to iterate that many times. expression is expected to evaluate to an
integer. If expression evaluates to a 0 or negative result, the body code is
not executed.

Examples:

I

I

replace

(defun loop1 (how-far)
(loop repeat how-far

for x from 1 to 1000 by 2
do

(prine x) (prine " "») => LOOP1
(loop1 5) => 1 3 5 7 9 NIL
(loop1 9) => 1 3 5 7 9 11 13 15 17 NIL

See the section "loop Clauses", page 310.

448

replace sequencel sequence2 &key (startl 0) endl (start2 0) end2 Function
replace destructively modifies sequencel by copying into it successive ele
ments from sequence2.

sequences can be either a list or a vector (one-dimensional array). Note
that nil is considered to be a sequence, of length zero. The elements of
sequence2 must be of a type that can be stored into sequencel.

The keyword arguments :startl, :endl, :start2, and :end2 are used to
specify subsequences of sequencel and sequence2.

:startl and :endl must be non-negative integer indices into the sequence.
:start must be less than or equal to :endl, else an error is signalled. It
defaults to zero (the start of the sequence).

:startl indicates the start position for the operation within the sequence.
:endl indicates the position of the first element in the sequence beyond the
end of the operation. It defaults to nil (the length of the sequence). If
both :startl and :endl are omitted, the entire sequence is processed by
default.

:start2 and :end2 operate the same as :startl and :endl.

If the subsequences delimited by :startl, :start2, :endl and :end2 are not
of the same length, then the shorter length determines how many elements
are copied. The extra elements near the end of the longer subsequence are
not involved in the operation. The number of elements copied can be ex
pressed as:

(min (- end1 start1) (- end2 start2»

If sequencel and sequence2 are the same (eq) object and the region being
modified overlaps the region being copied from, then it is as if the entire
source region were copied to another place, and only then copied back into
the target region. However, if sequencel and sequence2 are not the same,
but the region begin modified overlaps the region being copied from, then
after the replace operation the subsequence of sequencel being modified
will have unpredictable contents.

449

For example:

(setq bird-list '(heron flamingo loon owl» =>
(HERON FLAMINGO LOON OWL)

(replace bird-list bird-list :start2 2 :end2 3) =>
(LOON FLAMINGO LOON OWL)

bird-list => (LOON FLAMINGO LOON OWL)

(setq bird-list '(heron flamingo loon owl» =>
(HERON FLAMINGO LOON OWL)

dbg:report

(replace bird-list '(hawk turkey) :start1 1 :end1 3) =>
(HERON HAWK TURKEY OWL)

For a table of related items: See the section "Sequence Modification" in
Symbolics Common Lisp: Language Concepts.

dbg:report condition stream Generic Function
Prints the text message associated with this object onto stream. The con
dition flavor does not support this itself, but you must provide a handler,
and any flavor built on condition that is instantiated must support this
function.

The compatible message for dbg:report is:

:report

For a table of related items: See the section "Basic Condition Methods and
Init Options" in Symbolics Common Lisp: Language Concepts.

dbg:report-string condition Generic Function
Returns a string containing the report message associated with this object.
It works by sending :report to the object.

The compatible message for dbg:report-string is:

: report-string

For a table of related items: See the section "Basic Condition Methods and
Init Options" in Symbolics Common Lisp: Language Concepts.

require module-name &optional pathname Function

I

I

&rest 450

&rest

rest

Lambda List Keyword
If the lambda-list keyword &rest is present, the following specifier is a
single rest parameter specifier. There can only be one &rest argument.

It is important to realize that the list of arguments to which a rest
parameter is bound is set up in whatever way is most efficiently imple
mented, rather than in the way that is most convenient for the function
receiving the arguments. It is not guaranteed to be a "real" list. Some
times the rest-args list is stored in the function-calling stack, and loses its
validity when the function returns. If a rest-argument is to be returned or
made part of permanent list-structure, it must first be copied, as you must
always assume that it is one of these special lists. See the function
sys:copy-if-necessary, page 114.

The system does not detect the error of omitting to copy a rest-argument;
you simply find that you have a value that seems to change behind your
back. At other times the rest-args list is an argument that was given to
apply; therefore it is not safe to rplaca this list as you might modify per
manent data structure. An attempt to rplacd a rest-args list is unsafe in
this case, while in the first case it causes an error, since lists in the stack
are impossible to rplacd.

x Function
rest performs the same function as cdr, but it mnemonically complements
the function first. setf can be used with rest to replace the cdr of a list
with a new value. For example:

(setq item-list '(loon eagle)) => (LOON EAGLE)

(setf (rest item-list) 'heron) => HERON

item-list => (LOON. HERON)

For a table of related items: See the section "Functions for Extracting
From Lists" in Symbolics Common Lisp: Language Concepts.

zI:restl list Function
zl:restl returns the rest of the elements of a list, starting with element 1
(counting the first element as the zeroth). Thus zl:restl is identical to
cdr. The reason these names are provided is that they make more sense
when you are thinking of the argument as a list rather than just as a cons.

For a table of related items: See the section "Functions for Extracting
From Lists" in Symbolics Common Lisp: Language Concepts.

451 zl:rest2

zl:rest2 list Function
zl:rest2 returns the rest of the elements of a list, starting with element 2
(counting the first element as the zeroth). Thus zl:rest2 is identical to
cddr. The reason these names are provided is that they make more sense
when you are thinking of the argument as a list rather than just as a cons.

For a table of related items: See the section "Functions for Extracting
From Lists" in Symbolics Common Lisp: Language Concepts.

zl:rest3 list Function
zl:rest3 returns the rest of the elements of a list, starting with element 3
(counting the fIrst element as the zeroth). The reason these names are
provided is that they make more sense when you are thinking of the ar
gument as a list rather than just as a cons.

For a table of related items: See the section "Functions for Extracting
From Lists" in Symbolics Common Lisp: Language Concepts.

zl:rest4 list Function
zl:rest4 returns the rest of the elements of a list, starting with element 4
(counting the fIrst element as the zeroth). The reason these names are
provided is that they make more sense when you are thinking of the ar
gument as a list rather than just as a cons.

For a table of related items: See the section "Functions for Extracting
From Lists" in Symbolics Common Lisp: Language Concepts.

return &optional values Special Form
Can be used to exit from a construct like do or an unnamed prog that es
tablishes an implicit block around its body. In this case the name of the
block is nil, and (return value ...) is the same as <return-from nil value ...).
See the special form return-from, page 454.

Examples:

(dolist (j '(12 3 4» (princ (- 1 j» (if (= j 3)(return»)
=> B-1-2NIL

(dotimes (j 5 t)
(princ j)(if (= j 3) (return») => B123NIL

I

I

return

(do «j B (+ 1»)
(nil)

(format t "-%Input -0: " j)

(let «item (read»)

452

Do forever

(if (null item)(return) ; Process items until nil seen.
(format t "-&Output -0: -5" j (print item»»)

=> Input B:
ABCOEF
Output B: ABCOEF
Input 1: NIL

The following are equivalent

(prog «var1 1) var2 (end1 4»
(return end1» => 4

(prog «var1 1) var2 (end1 4»
(return-from nil end1» => 4

In addition, break recognizes the typed-in form (return value) specially. If
this form is typed at a break, value is evaluated and returned as the value
of break. Only the result of the first value form is returned, but if this
form itself returns multiple values, they are all returned as the value of
break. That is, (return 'foo 'bar) returns only foo, but (return (values
'foo 'bar» returns both foo and bar. See the function break in Program
Development Utilities.

It is valid to write simply (return), which exits from the block or from a
break loop and returns nil.

Example:

(block ni 1
(print "clear")
(return)
(print "open"» => "clear" NIL

If not specially recognized by break and not inside a block, return signals
an error.

Zetalisp note: The form (return forml form2 form3 ...) is no longer legal
and generates a compiler message to that effect. Use the form (return
(values forml form2 form3 ... » to have multiple values returned.

Similarly, if you omit value, return now defaults to nil, rather than return
ing with zero values as formerly; the compiler generates a message to that
effect also. Use return (values) if you want zero values returned.

453 sys:return-array

The variable compiler:*return-style-checker-on* controls compiler mes
sages for these invalid formats of return To disable the compiler messages
specify nil for the value of compiler:*return-style-checker-on*.

For a table of related items: See the section "Blocks and Exits Functions
and Variables" in Symbolics Common Lisp: Language Concepts.

return Keyword For loop

return expression

Immediately returns the value of expression as the value of the loop, without
running the epilogue code. This is most useful with some sort of
conditionalization, as discussed in the previous section. Unlike most of the other
clauses, return is not considered to "generate body code", so it is allowed to occur
between iteration clauses, as in:

(loop for entry in list
when (not (numberp entry))

return (error ...)
as from = (times entry 2)

...)

If you instead want the loop to have some return value when it finishes normally,
you can place a call to the return function in the epilogue (with the finally
clause).

See the section "loop Clauses", page 310.

sys:return-array array Function
sys:return-array is a subtle and dangerous feature that should be avoided
by most users. This function attempts to return array to free storage. If
it is displaced, this returns the displaced array itself, not the data that the
array points to. Because of the way storage allocation works,
sys:return-array does nothing if the array is not at the end of its region,
that is, if it was not the most recently allocated non-list object in its area.
sys:return-array returns t if storage was really recl~imed, or nil if it was
not.

I t is the responsibility of any program that calls sys:return-array to en
sure that there are no references to array anywhere in the Lisp world.
This includes locative pointers to array elements, such as you might create
with zl:aloc. The results of attempting to use such a reference to the
returned array are unpredictable. Simply holding such a reference in a
local variable, without attempting to access it or to print it out, is allowed,
although it may thwart the garbage collector.

Other tools are available for manually allocating and freeing arrays. See
the special form sys:with-stack-array in Internals, Processes, and Storage
Management.

I

I

return-from 454

return-from block-name values Special Form
Exits from a block or a construct like do or prog that establishes an im
plicit block around its body.

The value subforms are optional. Any value forms are evaluated, and the
resulting values (possibly multiple, possibly none) are returned from the in
nermost block that has the same name and that lexically contains the
return-from form. The returned values depend on how many value sub
forms are provided and on the syntax used as shown below:

Value Values returned
subforms Syntax from block

None (return-from name) nil

None (return-from name (values» None

1 (return-from name value) All values that result
from evaluating
the value subform

>1 (return-from name (values value» One value from each
value subform

Zetalisp note: The form (return forml form2 form3 ...) is no longer legal
and generates a compiler message to that effect. Use the form (return
(values forml form2 form3 ... » to have multiple values returned.

Similarly, if you omit value, return now defaults to nil, rather than return
ing with zero values as formerly; the compiler generates a message to that
effect also. Use return (values) if you want zero values returned.

The variable compiler:*return-style-checker-on* controls compiler mes
sages for these invalid formats of return To disable the compiler messages
specify a nil value for compiler:*return-style-checker-on*.

block-name is not evaluated. It must be a symbol.

The scope of name is lexical. That is, the return-from form must be in
side the block itself (or inside a block that that block lexically contains),
not inside a function called from the block.

When a construct like do or an unnamed prog establishes an implicit
block, its name is nil. You can use either (return-from nil value ...) or the
equivalent (return value ...) to exit from such a construct.

455 return-from

The return-from form is unusual: It never returns a value itself, in the
conventional sense. It is not useful to write (setq a (return-from name
3», because when the return-from form is evaluated, the containing block
is immediately exited, and the setq never happens.

Examples:

(block faa
(print "enter faa")
(when « 1 2)

(return-from faa (values 1 2 3 4»)
(print "leave faa"» => "enter faa" 1 and 2 and 3 and 4

(block state-of
(princ "H-2-0 ")
(return-from state-of (values-list '(Ice Water Steam»)
(princ "ice-cream"» => H-2-0 ICE and WATER and STEAM

(setq stuff '(north east south west right left up down»
=> (NORTH EAST SOUTH WEST RIGHT LEFT UP DOWN)

(de fun index-of-thing (thing stuff)
(do ((count 1 (+ count 1»)

«= count (length stuff»)
(if (eq thing (car stuff»

(return-from index-of-thing count»
(setq stuff (cdr stuff»» => INOEX-OF-THING

(index-of-thing 'south stuff) => 3

(do «j B (+ 1»)
(nil)

(format t "-Xlnput -0: " j)
(let «item (read»)

Do forever

I

(if (null item) (return-from nil)
(format t "-&Output -0: -S" j

jProcess items until nil see
(pri nt item»»)

=> Input B:
ABCOEF
Output B: ABCOEF
Input 1: NIL

For an explanation of named dOB and progs in Zetalisp: See the special
form zl:do-named, page 189.

Following is an example, returning a single value from an implicit block
named nil:

I

zl :return-list

Examples:

Or

(do «x x (cdr x»
(n 8 (* n 2»)

«null x) n)
(cond «atom (car x»

(setq n (1+ n»)
«memq (caar x) '(sys boom bleah»
(return-from nil n»»

(Block nil
(print "rivers hills")
(if (= 3 3.) (return-from nil "five"»
(print "water trees"» => "rivers hills" "five"

Following is another example, returning multiple values. The function
below is like assoc, but it returns an additional value, the index in the
table of the entry it found:

(de fun assocn (x table)
(do «1 table (cdr 1»

(n e (1+ n»)
«null 1) nil)

(if (eql (caar 1) x)
(return-from nil (values (car 1) n»»)

For a table of related items: See the section "Blocks and Exits Functions
and Variables" in Symbolics Common Lisp: Language Concepts.

456

zl:return-list form Special Form
An obsolete function supported for compatibility with earlier releases. It is
like return except that the block returns all of the elements of list as mul
tiple values. This means that the following two forms are equivalent:

(zl:return-list list)

(return (values-list list»

Examples:

457 compiler:*return-style-checker-on*

(block nil

1
2

3

4

(print Nenter faa")
(when « 1 2)

(zl:return-1ist '(1 234»)
(print "leave faa"» => "enter faa"

(block nil

1
2
3

4

(print "enter fooN)
(when « 1 2)

(return (values-list '(1 2 3 4» »
(print "leave faa"» => "enter faa"

The latter form is the preferred way to return list elements as multiple
values from a bloclt named nil. To direct the returned values to a named
block, use:

(return-from name (values-list list».

Example:

(block state-of
(princ "H-2-0 ")
(return-from state-of (values-list '(Ice Water Steam»)
(princ "ice-cream"» => H-2-0

ICE
WATER
STEAM

For a table of related items: See the section "Blocks and Exits Functions
and Variables" in Symbolics Common Lisp: Language Concepts.

compiler:*return-style-checker-on* Variable
This style-checker variable is associated with to functions return and
return-from and controls the display of compiler messages for invalid for
mats of these functions. The documentation for return and return-from
describes the specific formats activating the style-checker.

I

I

revappend

compiler:*return-style-checker-on* is set to t by default; set it to nil to
disable the compiler messages.

For a table of related items: See the section "Blocks and Exits Functions
and Variables" in Symbolics Common Lisp: Language Concepts.

458

revappend x y Function
(revappend x y) is functionally the same as (append (reverse x) y), except
that it is potentially more efficient. The values of both x and y should be
lists. The value of the x argument is copied, not destroyed. For example:

(setq a-list '(a be)) => (A B C)

(setq b-list '(x y z)) => (X y Z)

(revappend a-list b-list) => (C B A X Y Z)

a-list => (A B C)

For a table of related items: See the section "Functions for Constructing
Lists and Conses" in Symbolics Common Lisp: Language Concepts.

reverse sequence Function
reverse returns a new sequence of the same type as sequence, containing
the same elements in reverse order. This operation is non-destructive.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

For example:

(reverse '(heron flamingo loon)) => (LOON FLAMINGO HERON)

(reverse #(1 2 3)) => #(3 2 1)

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

For a table of related items: See the section "Sequence Modification" in
Symbolics Common Lisp: Language Concepts.

zl:reverse list Function
zl:reverse creates a new list whose elements are the elements of list taken
in reverse order. zl:reverse does not modify its argument, unlike
zl:nreverse, which is faster but does modify its argument. The list created
by zl:reverse is not cdr-coded. Example:

459

(zl : reverse '(a b (c d) e)) => (e (c d) b a)

zl:reverse could have been defined by:

(defun reverse (x)
(do «1 x (cdr 1))

(r nil
(cons (car 1) .r)))

«null 1) r)))

scan down argument,
putting each element
into list, until
no more elements.

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

rot

rot x y Function
Returns x rotated left y bits if y is positive or zero, or x rotated right lYl
bits if y is negative. The rotation considers x as a 32-bit number. x and y
must be flXIlums. (There is no function for rotating bignums.)
Examples:

(rot 1 2) => #04
(rot 1 -2) => #01eeeeeeeeee
(rot -1 7) => #0-1
(rot #015 32.) => #015

For a table of related items: See the section "Machine-dependent Arith
metic Functions" in Symbolics Common Lisp: Language Concepts.

rotatef &rest references Macro
Each of the references can be any form acceptable as a generalized variable
to setf. All the references form an end-around shift register that is rotated
one place to the left, with the value of referencel being shifted around to
references. rotatef always returns nil.

Here is an example as seen in a Lisp Listener:

(setq circus (list 'ringling-brothers 'barnum 'bailey))
(RINGLING-BROTHERS BARNUM BAILEY)
(rotatef (first circus) (second circus) (third circus)
NIL
circus
(BARNUM BAILEY RINGLING-BROTHERS)

Here is another example as seen in a Lisp Listener:

•

I

round

(setq alpha (list 'able 'baker 'charlie 'dog 'easy 'fox»
(ABLE BAKER CHARLIE DOG EASY FOX)
(rotatef (first alpha) (third alpha) (fifth alpha»
NIL
alpha
(CHARLIE BAKER EASY DOG ABLE FOX)

Finally:

(setq trio (list 'adam 'eve 'pinch-me-tight»
(ADAH EVE PINCH-HE-TIGHT)
(rotatef (first trio) (third trio»
NIL
trio
(PINCH-HE-TIGHT EVE ADAH)

That is, given two references, rotatef swaps them.

460

round number &optional (divisor 1) Function
Divides number by divisor, and rounds the result toward the nearest in
teger. The rounded result and the remainder are the returned values.

Using round with one argument is similar to the zl:ilXl" function, except
when the quotient is exactly halfway between two integers. In that case,
zl:ilXl" chooses the larger one, while round chooses the even one.

number and divisor must each be a noncomplex number. Not specifying a
divisor is exactly the same as specifying a divisor of 1.

If the two returned values are Q and R, then (+ (* Q divisor) R) equals
number. If divisor is 1, then Q and R add up to number. If divisor is 1
and number is an integer, then the returned values are number and o.
The first returned value is always an integer. The second returned value
is integral if both arguments are integers, is rational if both arguments are
rational, and is floating-point if either argument is floating-point. If only
one argument is specified, then the second returned value is always a num
ber of the same type as the argument.

Examples:

461

(round 5) => 5 and B
(round -5) => -5 and B
(round 5.2) => 5 and B.19999981
(round -5.2) => -5 and -B.19999981
(round 5.8) => 6 and -B.19999981
(round -5.8) => -6 and B.19999981
(round 5 3) => 2 and -1
(round -5 3) => -2 and 1
(round 5 4) => 1 and 1
(round -5 4) => -1 and -1
(round 5.2 3) => 2 and -B.8BBBBB2
(round -5.2 3) => -2 and B.8BBBBB2
(round 5.2 4) => 1 and 1.1999998
(round -5.2 4) => -1 and -1.1999998
(round 5.8 3) => 2 and -B.19999981
(round -5.8 3) => -2 and B.19999981
(round 5.8 4) => 1 and 1.8BBBBB2
(round -5.8 4) => -1 and -1.8BBBBB2

rplaca

For a table of related items: See the section "Functions That Divide and
Convert Quotient to Integer" in Symbolics Common Lisp: Language Con
cepts.

rplaca x y Function
(rplaca x y) changes the car of x to y and returns (the modified) x. x must
be a cons or a locative. y can be any Lisp object. Example:

(setq 9 '(a b c»
(rplaca (cdr g) 'd) => (d c)
Now 9 => (a d c)

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

rplacd x y Function
(rplacd x y) changes the cdr of x to y and returns (the modified) x. x
must be a cons or a locative. y can be any Lisp object. Example:

•

I

rplaca

(setq x '(a be»
(rplacd x'd) => (a . d)
Now x => (a . d)

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

462

463 zl :samepnamep

zl:samepnamep syml sym2 Function
Returns t if the two symbols syml and sym2 have string= print-names, that
is, if their printed representation is the same. If either or both of the ar
guments is a string instead of a symbol, then that string is used in place
of the print-name. zl:samepnamep is useful for determining if two sym
bols would be the same except that for being in different packages. Ex
amples:

(zl:samepnamep 'xyz (maknam '(x y z» => t

(zl:samepnamep 'xyz (maknam '(w x y» => nil

(zl:samepnamep 'xyz NxyZ") => t

This is the same function as string=. zl:samepnamep is provided mainly
for compatibility with older dialects of Lisp. In new programs, you just use
string=.

zl:sassoc item alist function Function
(zl:sassoc item alist> looks up item in the association list (list of conses)
alist. The value is the fIrst cons whose car is zl:equal to x, or, if there is
none such, zl:sassoc calls the function function with no arguments.
zl:sassoc could have been defined by:

(defun sassoc (item a1ist function)
(or (assoc item a1ist)

(apply function nil»)

zl:sassoc is of limited use. It is primarily a leftover from earlier im
plementations of Lisp.

For a table of related items: See the section "Functions That Operate on
Association Lists" in Symbolics Common Lisp: Language Concepts.

zl:sassq item alist function Function
(zl:assq item alist) looks up item in the association list (list of conses) alist.
The value is the first cons whose car is eq to x, or, if there is none such,
zl:sassq calls the function function with no arguments. zl:sassq could have
been defined by:

(de fun sassq (item a1ist function)
(or (assq item a1ist)

(apply function nil»)

zl:sassq is of limited use. It is primarily a leftover from earlier implemen
tations of Lisp.

I

I-• •

satisfies 464

satisfies predicate &rest predicate-args Type Specifier
A type specifier list of the form (satisfies predicate) denotes the set of all
objects that satisfy the argument predicate. Thus satisfies makes it pos
sible to extend the type hierarchy to objects that cannot be defined as com
posites of other types.

predicate can be a symbol whose global function definition is a one
argument predicate. In Symbolics Common Lisp predicate can also be a
lambda-expression. This is an extension to Common Lisp.

For example, the type (satisfies numberp) is the same as the type num
ber. The call

(typep x '(satisfies p))

results in applying p to x and returning t if the result is true and nil if
the result is false.

When applying satisfies avoid using predicates that can cause side effects
when invoked.

Examples:

(typep 3 '(satisfies numberp)) => T

(deftype odd-integer ()
'(and integer (satisfies oddp))) => "a odd integer"

(typep 3 'odd-integer) => T
(typep 4 'odd-integer) => NIL

(sys:type-arglist 'satisfies)
=> (PREDICATE &REST PREDICATE-ARGS) and T

See the section "Data Types and Type Specifiers" in Symbolics Common
. Lisp: Language Concepts.

sbit array &rest subscripts Function
Returns the element of array selected by the sUbscripts. The subscripts
must be integers and their number must match the dimensionality of array.
sbit is like bit, but for sbit, the array must be a simple array of bits.

scale-float float integer
scale-float computes and returns (* float 2intege,).

Function

Although the same result can be obtained by using exponentiation and mul
tiplication, the use of scale-float can be much more efficient and avoids the
intermediate overflow and underflow if the final result is representable.

Examples:

465

(scale-float .5 2) => 2.B
(scale-float .5 3) => 4.B
(scale-float .5 4) => 8.B
(scale-float .75 2) => 3.B

schar

For a table of related items: See the section "Functions That Decompose
and Construct Floating-point Numbers" in Symbolics Common Lisp: Lan
guage Concepts.

schar array &rest subscripts Function
The function schar returns the character at position subscripts of array.
The count is from zero. The character is returned as a character object.

array must be a string array.

subscripts must be a non-negative integer less than the length of array.

Note that the array-specific function aref and the general sequence func
tion elt also work on strings.

To destructively replace a character within a string, use schar in conjunc
tion with the generic function setf.

(schar "a string" B) => #\a
(string-char-p (schar "a string" 3)) => T

(schar "a string" 1) => #\Space

(schar (make-array 4 :element-type 'character
:initial-element #\y) 3) => #\y

(string-char-p (schar (make-array 4 :element-type 'character
:initial-element #\.) 2))

(string-char-p (schar (make-array 4 :element-type 'character
:initial-element #\.
:fill-pointer 2) 1)) => T

For a table of related items: See the section "String Access and
Information" in Symbolics Common Lisp: Language Concepts.

=> T

search sequencel sequence2 &key from-end (test #'eql) test-not key Function
(startl 0) (start2 0) endl end2

search looks for a subsequence of sequence2 that element-wise matches
sequencel. If no such subsequence exists, search returns nil. If such a
subsequence exists, search returns the index into sequence2 of the leftmost
element of the leftmost such matching subsequence.

I

I

schar

sequencel and sequence2 can be either a list or a vector (one-dimensional
array). Note that nil is considered to be a sequence, of length zero.

466

If the value of the :from-end keyword is non-nil, the index of the leftmost
element of the rightmost matching subsequence is returned. For example:

(search '(1 2) '(3 4 1 261 2 5» => 2

(search '(1 2) '(3 4 1 261 2 5) :from-end t) => 5

:test specifies the test to be performed. An element of sequence satisfies
the test if (funcall testfun item (keyfn x» is true. Where testfun is the test
function specified by :test, keyfn is the function specified by :key and x is
an element of the sequence. The default test is eql.

:test-not is similar to :test, except that the sense of the test is inverted.
An element of sequence satisfies the test if (funcall testfun item (keyfn x»
is false.

For example:

(search '(2) '(1 223) :test-not #'» => 1

The value of the keyword argument :key, if non-nil, is a function that
takes one argument. This function extracts from each element the part to
be tested in place of the whole element.

The keyword arguments :startl, :endl, :start2, and :end2 are used to
specify subsequences for each separate sequence

:startl and :endl must be non-negative integer indices into the sequence.
:start must be less than or equal to :endl, else an error is signalled. It
defaults to zero (the start of the sequence).

:startl indicates the start position for the operation within the sequence.
:endl indicates the position of the first element in the sequence beyond the
end of the operation. It defaults to nil (the length of the sequence). If
both :startl and :endl are omitted, the entire sequence is processed by
default.

:start2 and :end2 operate the same as :startl and :endl.

For example:

(search #(a b) #(a b c d a b) :start2 3)
=> 4

(search #(1 2 3) #(1 2 3 1 2 3 1 2 3) :start1 2 :start2 4)
=> 5

467 second

(search #(1 2 3) #(1 2 3 1 2 3 1 2 3) :start1 2 :end1 3 :start2 4 :end2 9)
=> 5

For a table of related items: See the section "Searching for Sequence
Items" in Symbolics Common Lisp: Language Concepts.

second list Function
This function takes a list as an argument, and returns the second element
of the list. second is identical to cadr. It is also identical to

(nth 1 1 ist)

The reason this name is provided is that it makes more sense when you
are thinking of the argument as a list rather than just as a cons.

For a table of related items: See the section "Functions for Extracting
From Lists" in Symbolics Common Lisp: Language Concepts.

select test-object &body clauses Special Form
A conditional that chooses one of its clauses to execute by comparing the
value of a form against various constants, which are typically keyword sym
bols. Its form is as· follows:

(sel ect key-form
(test consequent consequent ...)
(test consequent consequent ...)
(test consequent consequent ...)
...)

The first thing select does is to evaluate key-form; call the resulting value
key. Then select considers each of the clauses in turn. If key matches the
clause's test, the consequents of this clause are evaluated, and select
returns the value of the last consequent. If there are no matches, select
returns nil.

A test can be any of the following:

A symbol
A number

A list

t or otherwise

If the key is eq to the symbol, it matches.
If the key is eq to the number, it matches. Only small
numbers (integers) work.
If the key is eq to one of the elements of the list, then it
matches. The elements of the list should be symbols or
integers.
The symbols t and otherwise are special keywords that
match anything. Either symbol can be used; t is mainly
for compatibility with Maclisp's zl:caseq construct. To
be useful, this should be the last clause in the select.

I

•

selector

select is the same as zl:selectq, except that the test elements are
evaluated before they are used.

468

This creates a syntactic ambiguity: if (bar baz) is seen the first element of
a clause, is it a list of two forms, or is it one form? select interprets it as
a list of two forms. If you want to have a clause whose test is a single
form, and that form is a list, you have to write it as a list of one form.

Examples:

(select (+ 1 2)
("four" "four")

Where

((5 6 7) "five six seven")
(3 "three")
(t "drop out"» => "three"

(select (frob x)
(foo 1)

((bar baz) 2)

(((current-frob» 4)

(otherwise 3»

is equivalent to:

(let ((var (frob x»)
(cond ((eq var foo) 1)

((or (eq var bar) (eq var baz» 2)

((eq var (current-frob» 4)

(t 3»)

For a table of related items: See the section "Conditional Functions" in
Symbolics Common Lisp: Language Concepts.

selector test-object test-function &body clauses Special Form
A conditional that chooses one of its clauses to execute by comparing the
value of a form against various constants, which are typically keyword sym
bols. I ts form is as follows:

(sel ector key-form test-function
(test consequent consequent ...)
(test consequent consequent ...)
(test consequent consequent ...)
...)

The first thing selector does is to evaluate key-form; call the resulting
value key. Then selector considers each of the clauses in turn. If
test-function applied to key satisfies the clause's test, the consequents of this

469 zl:selectq

clause are evaluated, and selector returns the value of the last consequent.
If no clause is satisfied, selector returns nil.

test can be a symbol, a number, or a list whose elements are symbols or
numbers. In place of a test selector also accepts a t or otherwise clause.
t is mainly for compatibility with Maclisp's zl:caseq construct. To be use
ful, this should be the last clause in the selector.

test-function can be any user-specified function.

selector is the same as select, except that you get to specify the function
used for the comparison instead of eq.

Examples:

(let «arg -14»

Where

(selector (abs arg) >
(10 "greater than 10")
(1 "greater than 1"») => "greater than 10"

(selector (frob x) equal
«'(one. two» (frob-one x»
«'(three. four» (frob-three x»
(otherwise (frob-any x»)

is equivalent to:

(let «var (frob x»)
(cond «equal var '(one. two» (frob-one x»

«equal var '(three. four» (frob-three x»
(t (frob-any x»»

For a table of related items: See the section "Conditional Functions" in
Symbolics Common Lisp: Language Concepts.

zl:selectq test-object &body clauses Special Form
A conditional that chooses one of its clauses to execute by comparing the
value of a form against various constants, which are typically keyword sym
bols. Its form is as follows:

(21 : sel ectq key-form
(test consequent consequent ...)
(test consequent consequent ...)
(test consequent consequent ...)
...)

The first thing zl:selectq does is to evaluate key-form; call the resulting
value key. Then zl:selectq considers each of the clauses in turn. If key

I

I

zl:selectq 470

matches the clause's test, the consequents of this clause are evaluated, and
zl:selectq returns the value of the last consequent. If there are no
matches, zl:selectq returns nil.

A test can be any of the following:

A symbol If the key is eq to the symbol, it matches.
A number If the key is eq to the number, it matches. Only small

numbers (integers) work.
A list If the key is eq to one of the elements of the list, then it

matches. The elements of the list should be symbols or
integers.

t or otherwise The symbols t and otherwise are special keywords that
match anything. Either symbol can be used; t is mainly
for compatibility with Maclisp's zl:caseq construct. To
be useful, this should be the last clause in the zl:selectq.

Note that the test elements are not evaluated; if you want them to be
evaluated, use select rather than zl:selectq.

Examples:

(let «voice 'tenor»
(zl :selectq voice

(bass "Barber of Seville")
(Mezzo "Carmen"») => NIL

(setq a 2) => 2
(zl :selectq a

(1 "one")
(2 "two")
«one two) "1 2")
(otherwise "not one or two"» => "two"

(let « a 'big-bang»

Where

(zl:selectq a
(light "day")
(dark "night")
(t "night and day"») => "night and day"

471

(let «x 'Bird»
(zl:selectq x

(foo (do-this»
(bar (do-that»
«baz quux mum) (do-the-other-thing»

selectq-every

(otherwise (zl:ferror nil "Hey there, never heard of -5" x»»
=> Error: Hey there, never heard of BIRO

is equivalent to:

(let «x 'Bird»
(cond «eq x 'foo) (do-this»

«eq x 'bar) (do-that»
«zl:memq x '(baz quux mum» (do-the-other-thing»
(t (zl:ferror nil "Hey there, never heard of -5" x»»

=> Error: Hey there, never heard of BIRO

For a table of related items: See the section "Conditional Functions" in
Symbolics Common Lisp: Language Concepts.

selectq-every obj &body clauses Special Form
A 'conditional that chooses one of its clauses to execute by comparing the I
value of a form against various constants, which are typically keyword sym- ",
boIs. I ts form is as follows:

(sel ectq-every key-form
(test consequent consequent ...)
(test consequent consequent ...)
(test consequent consequent ...)
...)

The Irrst thing selectq-every does is to evaluate key-form; call the result
ing value key. Then selectq-every considers each of the clauses in turn.
If key matches the clause's test, the consequents of this clause are
evaluated, and selectq-every returns the value of the last consequent. If
there are no matches, selectq-every returns nil.

A test can be any of the following:

A symbol If the key is eq to the symbol, it matches.
A number If the key is eq to the number, it matches. Only small

numbers (integers) work.
A list If the key is eq to one of the elements of the list, then it

matches. The elements of the list should be symbols or
integers.

t or otherwise The symbols t and otherwise are special keywords that
match anything. Either symbol can be used; t is mainly

I

self

self

472

for compatibility with Maclisp's zl:caseq construct. To
be useful, this should be the last clause in the zl:selectq.

selectq-every is like zl:selectq, but like cond-every, selectq-every executes
every selected clause, instead of just the first one. If an otherwise clause is
present, it is selected if and only if no preceding clause is selected. The
value returned is the value of the last form in the last selected clause.
Multiple values are not returned.

Note that the test elements are not evaluated.

Examples:

(let «book 'Lisp»)
(selectq-every book

«mystery fantasy science-fiction) (setq type 'fun»
«Lisp Pascal Fortran APL) (setq type 'Languages»
«Lisp History Math) (setq school 'homework»
(otherwise (setq type 'unknown»» => HOMEWORK

type => LANGUAGES

(selectq-every animal
«cat dog) (setq legs 4»
«bird man) (setq legs 2»
«cat bird) (put-in-oven animal»
«cat dog man) (beware-of animal»)

For a table of related items: See the section "Conditional Functions" in
Symbolics Common Lisp: Language Concepts.

Variable
When a generic function is called on an object, the variable self is
automatically bound to that object. This enables the methods to lexically
manipulate the object itself (as opposed to its instance variables).

send object message-name &rest arguments Function
Sends the message named message-name to the object. arguments are the
arguments passed. send does exactly the same thing as funcall. For
stylistic reasons, it is preferable to use send instead of funcall when send
ing messages because send clarifies the programmer's intent.

send is supported for compatibility with previous versions of the flavor sys
tem. When writing new programs, it is good practice to use generic func
tions instead of message-passing.

473 send-if-handles

send-if-handles object message &rest arguments Function
Sends the message named message to object if the flavor associated with ob
ject has a method defined for message. If it does not have a method
defined, nil is returned. message is a message name and arguments is a
list of arguments for that message.

:send-if-handles operation &rest arguments Message
operation is a generic function or message name and arguments is a list of
arguments for the operation.

If a generic function is given, the object should perform the generic func
tion if it has a method for it.

If a message is given, the object should send itself that message with those
arguments if it handles the message.

If no method for the generic function or message is available, nil is
returned.

flavor:vanilla provides a method for :send-if-handles.

Instead of sending this message, you can use the send-if-handles function.
See the function send-if-handles, page 473.

sequence &optional (type '*) Type Specifier
sequence is the type specifier symbol for the predefined Lisp structure of
that name.

The type sequence is a supertype of the types vector and list. These two
types are an exhaustive partition of the type sequence.

The type specifier sequence can be used in either symbol or list form.
Used in list form, ~equence defines the set of sequences whose elements
are of type type. type must be one of the standard data types. For stan
dard Symbolics Common Lisp type specifiers: See the section "Type
Specifiers" in Symbolics Common Lisp: Language Concepts.

Examples:

(typep '(a b c d e) 'sequence) => T
(typep '(mom 25 dad 28) '(sequence list)) => T
(subtypep 'list 'sequence) => T and T
(subtypep 'vector 'sequence) => T and T
(sys:type-arglist 'sequence) => (&OPTIONAL (TYPE '*)) and T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the section "Sequences" in Symbolics Com
mon Lisp: Language Concepts.

I

I

set symbol value Function
set is the primitive for assignment of a value to a dynamic (special) vari
able. The symbol's value is changed to value; value can be any Lisp object.
set only changes the value of the current dynamic binding. If symbol has
no current binding in effect, its most global value is changed. set returns
value. Example:

(set (eond «eq a b) 'e)
(t 'd»

'faa)

either sets c to foo or sets d to foo.

set does not work on local (lexically bound) variables.

zl:setarg i x Function
Used only during the application of a lexpr. (setarg i x) sets the lexpr's
i'th argument to x. i must be greater than zero and not greater than the
number of arguments passed to the lexpr. After (setarg i x) has been
done, (arg i) returns x.

zl:setarg exists only for compatibility with Maclisp lexprs. To write func
tions that can accept variable numbers of arguments, use the &optional
and &rest keywords. See the section "Evaluating a Function Form" in
Symbolics Common Lisp: Language Concepts.

set-char-bit char name value Function
Changes the bit named name in char and returns the new character. value
is nil to clear the bit or non-nil to set it.

(set-ehar-bit #\A :meta T) => #\m-A
(set-ehar-bit #\h-e-A :eontrol NIL) => #\h-A

set-difference listl list2 &key (test #'eql) test-not (key #'identity) Function
set-difference is a non-destructive function which returns a list of elements
of listl that do not appear in list2. Note that there is no guarantee that
the order of elements in the result will reflect the ordering of the ar
guments in any particular way. The keywords are:

:test

:test-not

Any predicate specifying a binary operation to be applied
to a supplied argument and an element of a target list.
The item matches the specification only if the predicate
returns t. If :test is not supplied the default operation is
eql.
Similar to :test, except the item matches the specification
only if there is an element of the list for which the
predicate returns nil.

475

:key

set-exclusive-or

If not nil, should be a function of one argument that will
extract from an element the part to be tested in place of
the whole element.

For all possible ordered pairs consisting of one element from listl and one
element from list2, the predicate is used to determine whether they match.
An element of listl appears in the result if and only if it does not match
any element of list2. For example:

(setq a-list '(eagle hawk loon pelican)) =>
(EAGLE HAWK LOON PELICAN)

(setq b-list '(owl hawk stork)) => (OWL HAWK STORK)

(set-difference a-list b-list) => (EAGLE LOON PELICAN)

(set-difference b-list a-list) => (OWL STORK)

It is also possible to perform applications such as removing from a list of
strings all of those strings containing one of a given list of characters. In
this example, we remove all flavor names that contain the characters "c"
or "w".

(set-difference '("strawberry" "chocolate" "banana" "lemon"
"pistachio" "rhubarb") , (#\c #\w)

:test #'(lambda (s c) (find c s))) =>
("banana" "lemon" "rhubarb")

For a table of related items: See the section "Functions for Comparing
Lists" in Symbolics Common Lisp: Language Concepts.

set-exclusive-or listl list2 &key (test #'eql) test-not (key #'identity) Function
set-exclusive-or is a non-destructive function which returns a list of ele
ments that appear in exactly one of listl and list2. Note that there is no
guarantee that the order of elements in the result will reflect the ordering
of the arguments in any particular way. The keywords are:

:test Any predicate specifying a binary operation to be applied
to a supplied argument and an element of a target list.
The item matches the specification only if the predicate
returns t. If :test is not supplied the default operation is
eql.

:test-not Similar to :test, except the item matches the specification
only if there is an element of the list for which the
predicate returns nil.

:key If not nil, should be a function of one argument that will
extract from an element the part to be tested in place of
the whole element.

I

I

setf 476

For all possible ordered pairs consisting of one element from listl and one
element from list2, the predicate is used to determine whether they match.
The result contains precisely those elements of listl and list2 which appear
in no matching pair. For example:

(setq a-list '(eagle hawk loon pelican)) =>
(EAGLE HAWK LOON PELICAN)

(setq b-list '(owl hawk stork)) => (OWL HAWK STORK)

(set-exclusive-or a-list b-list) => (EAGLE LOON PELICAN OWL STORK)

For a table of related items: See the section "Functions for Comparing
Lists" in Symbolics Common Lisp: Language Concepts.

setf reference value &rest more-pairs Macro
Takes a form that accesses something, and "inverts" it to produce a cor
responding form to update the thing. A setf expands into an update form,
which stores the result of evaluating the form value into the place
referenced by the reference. If you supply more than one reference value
pair, the pairs are processed sequentially.

The form of reference can be any of the following:

• The name of a variable (either local or global).
• A function call to any of the following functions:

aref car svref
nth cdr get
elt caar getf symbol-value
rest cadr gethash symbol-function
first cdar documentation symbol-plist
second cddr fill-pointer macro-function
third caaar caaaar cdaaar
fourth caadr caaadr cdaadr
fifth cadar caadar cdadar
sixth caddr caaddr cdaddr
seventh cdaar cadaar cddaar
eighth cdadr cadadr cddadr
ninth cd dar cad dar cdddar
tenth cdddr cadddr cddddr

• A function call whose first element is the name of a selector function
created by defstruct .

• A function call to one of the following functions paired with a value
of the specified type so that it can be used to replace the specified
"place":

477

Function name

char
schar
bit
sbit
subseq

Required type

string-char
string-char
bit
bit
sequence

zl:setf

In the case of subseq, the replacement value must be a sequence
whose elements can be contained by the sequence argument to sub
seq. If the length of the replacement value does not equal the length
of the subsequence to be replaced, then the shorter length determines
the number of elements to be stored. See the function replace, page
448.

o A function call to any of the following functions with an argument to
that function in turn being a "place" form. The result of applying
the specified update function is then stored back into this new place.

Function name Argument that Update function used
is a place

char-bit
ldb
mask-field

first
second
second

set-char-bit
dpb
deposit-field

o A the type declaration form, in which case the declaration is trans
ferred to the value form and the resulting setf form is analyzed. For
example,

(setf (the integer (cadr x» (+ y 3»

is processed as if it were

(setf (cadr x) (the integer (+ y 3»)

See the section "Generalized Variables" in Symbolics Common Lisp: Lan
guage Concepts.

zl:setf access-form value Macro
Takes a form that accesses something, and "inverts" it to produce a cor
responding form to update the thing. A zl:setf expands into an update
form, which stores the result of evaluating the form value into the place
referenced by the access-form. Examples:

I

I-• •

zl:set-globally

{setf (array-leader faa 3) 'bar)
==> (store-array-leader 'bar faa 3)

(setf a 3) ==> (setq a 3)

(setf (plist 'a) '(faa bar» ==> (setplist 'a '(faa bar»
(setf (aref q 2) 56) ==> (aset 56 q 2)
(setf (cadr w) x) ==> (rplaca (cdr w) x)

478

If access-form invokes a macro or a substitutable function, then zl:setf ex
pands the access-form and starts over again. This lets you use zl:setf
together with defstruct accessors.

For the sake of efficiency, the code produced by zl:setf does not preserve
order of eyaluation of the argument forms. This is only a problem if the
argument forms have interacting side effects. For example, if you evaluate:

(setq x 3)
Csetf Carefax) (setq x 4»

the form might set element 3 or element 4 of the array. We do not
guarantee which one it will do; do not just try it and see and then depend
on it, because it is subject to change without notice.

Furthermore, the value produced by zl:setf depends on the structure type
and is not guaranteed; zl:setf should be used for side effect only. If you
want well-defined semantics, you can use zl:setf in your Symbolics Common
Lisp programs.

See the section "Generalized Variables" in Symbolics Common Lisp: Lan
guage Concepts.

zl:set-globally var value Function
Works like set but sets the global value regardless of any bindings cur
rently in effect.

zl:set-globally operates on the global value of a special variable; it bypasses
any bindings of the variable in the current stack group. It resides in the
global package.

zl:set-globally does not work on local variables.

zl:set-in-closure closure symbol x Function
This sets the binding of symbol in the environment of closure to x; that is,
it does what would happen if you restored the value cells known about by
closure and then set symbol to x. This allows you to change the contents of
the value cells known about by a dynamic closure. If symbol is not closed
over by closure, this is just like set. See the section "Dynamic Closure
Manipulating Functions" in Symbolics Common Lisp: Language Concepts.

479 zl :set-in-instance

zl:set-in-instance instance symbol value Function
Alters the value of an instance variable inside a particular instance, regard
less of whether the instance variable was declared a
:writable-instance-variable or a :settable-instance-variable. instance is
the instance to be altered, symbol is the instance variable whose value
should be set, and value is the new value. If there is no such instance
variable, an error is signalled.

In Symbolics Common Lisp, this operation is performed by:

(setf (scl :symbol-value-in-instance instance symbol) value)

zl:setplist symbol list Function
Sets the list that represents the property list of symbol to list. Use
zl:setplist with extreme caution, since property lists sometimes contain in
ternal system properties, which are used by many useful system functions.
Also, it is inadvisable to have the property lists of two different symbols be
eq, since the shared list structure causes unexpected effects on one symbol
if zl:putprop or zl:remprop is done to the other.

dbg:set-proceed-types condition new-proceed-types Generic Function
Sets the list of valid proceed types for this condition to new-proceed-types.

The compatible message for dbg:set-proceed-types is:

:set-proceed-types

For a table of related items: See the section "Basic Condition Methods and
Init Options" in Symbolics Common Lisp: Language Concepts.

setq {variable value}... Special Form
Used to set the value of one or more variables. The first value is
evaluated, and the first variable is set to the result. Then the second value
is evaluated, the second variable is set to the result, and so on for all the
variable/value pairs. setq returns the last value, that is, the result of the
evaluation of its last subform. Example:

(setq x (+ 3 2 1) Y (cons x nil))

x is set to 6, y is set to (6), and the setq form returns (6). Note that the
first variable was set before the second value form was evaluated, allowing
that form to use the new value of x.

zl:setq-globally &rest vars-and-vals Special Form
zl:setq-globally has been superseded by symbol-value-globally. You use
setf with symbol-value-globally to set global values in your init file.

I

I-• •

zl :setq-standard-value 480

zI:setq-standard-value name form &optional (setq-p t) (globally-p Special Form
t) (error-p t)

Sets the standard value of name to the value of form. If you want to
change your default zl:base to 8 (octal), do this:

(setq-standard-value base 8)
(setq-standard-value ibase 8)

zl:setq-standard-value runs the validation function associated with the
symbol and signals an error if the validation function fails. You can only
use zl:setq-standard-value on symbols defined with sys:defvar-standard.
zI:setq-standard-value and zl:setq-globally work with login-forms and are
recommended for use in init files where you want your customizations to be
undone when you log out.

For programs, zI:setq-standard-value has been superceded by setf of
sys:standard-value.

seventh list Function
This function takes a list as an argument; and returns the seventh element
of the list. seventh is identical to

(nth 6 list)

. The reason this name is provided is that it makes more sense when you
are thinking of the argument as a list rather than just as a cons.

For a table of related items: See the section "Functions for Extracting
From Lists" in Symbolics Common Lisp: Language Concepts.

shadow symbols &optional package Function
The symbols argument should be a list of symbols or a single symbol. If
symbols is nil, it is treated like an empty list. The name of each symbol is
extracted, and package is searched for a symbol of that name. If no such
symbol is present in this package (directly, not by inheritance), a new sym
bol is created with this name and inserted in package as an internal sym
bol. The symbol is also placed on the shadowing-symbols list of package.

package can be a package object or the name of a package (a symbol or a
string). If unspecified, package defaults to the value of *package*.
Returns t.

shadow should be used with caution. It changes the state of the package
system in such a way that the consistency rules do not hold across the
change.

481 shadowing-import

shadowing-import symbols &optional package Function
This is like import, but it does not signal an error even if the importation
of a symbol would shadow some symbol already available in the package. If
a distinct symbol with the, same name is already present in the package, it
is removed (using unintern). The imported symbol is placed on the
shadowing-symbols list of package.

The symbols argument should be a list of symbols or a single symbol. If
symbols is nil, it is treated like an empty list. package can be a package
object or the name of a package (a symbol or a string). If unspecified,
package defaults to the value of *package*. Returns t.

shadowing-import should be used with caution. It changes the state of
the package system in such a way that the consistency rules do not hold
across the change.

shiftf &rest references-and-values Macro
Each references-and-values can be any form acceptable as a generalized vari
able to setf. All the forms are treated as a shift register; the last
references-and-values is shifted in from the right, all values shift over to
the left one place, and the value shifted out of the first
references-and-values position is returned.

For example as seen in a Lisp Listener:

(setq forces (list army navy air-force marines»
(ARMY NAVY AIR-FORCE MARINES)
(shiftf (car forces) (cadr forces 'new-york-cops»
ARMY
forces
(NAVY NEW-YORK-COPS AIR-FORCE MARINES)
(shiftf (cadr forces) (cddr forces) 'monterey-lifeguards)
NEW-YORK-COPS
forces
(NAVY (AIR-FORCE MARINES) . MONTEREY-LIFEGUARDS)

short-float Type Specifier
short-float is the type specifier symbol for the predefined Lisp single
precision floating-point number type.

The type short-float is a subtype of the type float. In Symbolics Common
Lisp short-float is identical with single-float.

The type short-float is disjoint with the types long-float and double-float.

Examples:

I

I-, .

short-float-epsilon 482

(typep B.B 'short-float) => T

(subtypep 'short-float 'float) => T and T ;subtype and certain

(commonp 1.B) => T

(equal-typep 'short-float 'single-float) => T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the section "Numbers" in Symbolics Common
Lisp: Language Concepts.

short-float-epsilon Constant
The value of this constant is the smallest positive floating-point number e
of a format such that it satisfies the expression:

(not (= (float 1 e) (+ (float 1 e) e»)

In Symbolics Common Lisp short-float-epsilon has the same value as
single-float-epsilon, namely: 5.960465e-S.

short-float-negative-epsilon Constant
The value of this constant is the smallest positive floating-point number e
of a format such that it satisfies the expression:

(not (= (float 1 e) (- (float 1 e) e»)

In Symbolics Common Lisp the value of short-float-negative-epsilon is the
same as that of single-float-negative-epsilon, namely: 2.9S02326e-S.

signal flavor &rest init-options Function
signal is the primitive function for signalling a condition. The argument
flavor is a condition flavor symbol. The init-options are the init options
when the condition-object is created; they are passed in the :init message
to the instance. (See the generic function make-instance, page 32S.) sig
nal creates a new condition object of the specified flavor, and signals it. If
no handler handles the condition and the object is not an error object, sig
nal returns nil. If no handler handles the condition and the object is an
error object, the Debugger assumes control.

In a more advanced form of signal, flavor can be a condition object that
has been created with make-condition but not yet signalled. In this case,
init-options is ignored.

For a table of related items: See the section "Condition-Checking and Sig
nalling Functions and Variables" in Symbolics Common Lisp: Language
Concepts.

483 signal-proceed-case

signal-proceed-case Special Form
signal-proceed-case signals a proceedable condition. It has a clause to
handle each proceed type of the condition. It has a slightly more compli
cated syntax than most special forms: you provide some variables, some ar
gument forms, and some clauses:

(5; gnal-proceed-case «var1 var2 ...) arg1 arg2 ...)
(proceed-type-1 body1 ...)
(proceed-type-2 body2 ...)
...)

The first thing this form does is to call signal, evaluating each arg form to
pass as an argument to signal. In addition to the arguments you supply,
signal-proceed-case also specifies the dbg:proceed-types init option, which
it builds based on the proceed-type-i clauses.

When signal returns, signal-proceed-case treats the first returned value as
the symbol for a proceed type. I t then picks a proceed-type-i clause to run,
based on that value. It works in the style of case: each clause starts with
a proceed type (a keyword symbol), or a list of proceed types, and the rest
of the clause is a list of forms to be evaluated. signal-proceed-case
returns the values produced by the last form.

var1, var2, and so on, are bound to successive values returned from signal
for use in the body of the proceed-type-i clause selected.

One proceed-type-i can be nil. If signal returns nil, meaning that the con
dition was not handled, signal-proceed-case runs the nil clause if one ex
ists, or simply returns nil itself if no nil clause exists. Unlike case, no
otherwise clause is available for signal-proceed-case.

The value passed as the dbg:proceed-types option to signal lists the
various proceed types in the same order as the clauses, so that the Debug
ger displays them in that order to the user and the RESUME command runs
the first one.

signed-byte &optional (8 '*) Type Specifier
signed-byte is the type specifier symbol for the predefined Lisp signed byte
data type.

This type specifier can be used in either symbol or list form. Used in list
form, signed-byte defines the set of integers that can be represented in
two's-complement form in a byte of 8 bits. This is equivalent to

(integer _25 - 1 25
-

1 - 1)

Simply signed-byte or (signed-byte 'II) is the same as integer.

Examples:

I

I

zl:signp

(typep B '(signed-byte 3)) => T

(subtypep 'signed-byte 'bit)
=> NIL and T ;not a subtype and certain

(commonp 3) => T

(sys:type-arglist 'signed-byte) => (&OPTIONAL (5 '*)) and T

484

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the section "Numbers" in Symbolics Common
Lisp: Language Concepts.

zI:signp test x Special Form
signp is used to test the sign of a number. It is present only for com
patibility with older versions of Lisp, and is not recommended for use in
new programs. zI:signp returns t if x is a number that satisfies the test,
nil if it is not a number or does not meet the test. test is not evaluated,
but x is. test can be one of the following:

I x<O
Ie x~O

e x=O
n x;tO
ge x~O

g x>O

Examples:

(zl :signp ge 12) => t
(zl :signp le 12) => nil
(zl :signp n B) => nil
(zl :signp 9 'foo) => nil

For a table of related items: See the section "Numeric Property-checking
Predicates" in Symbolics Common Lisp: Language Concepts.

signum number Function
signum is a function for determining the sign of its argument.

For a rational argument, signum returns -1, 0, or 1, depending on whether
the argument is negative, zero, or positive.

If the argument is a floating-point number, the result is a floating-point
number of the same format whose value is minus one, zero, or one.

For a non-zero complex argument z, (signum z) returns a complex number
of the same phase as z but with unit magnitude. If z is a complex zero,
signum returns zero.

Examples:

485

(signum -2.5) => -1.9
(signum 3.9) => 1.9
(signum 9) => 9
(signum 59) => 1
(signum #C(3 4» => #C(9.6 9.8)

simple-array

For a table of related items: See the section "Arithmetic Functions" in
Symbolics Common Lisp: Language Concepts.

simple-array &optional (element-type 'Ife) (dimensions 'Ife) Type Specifier
simple-array is the type specifier symbol for the Lisp data structure of
that name.

The type simple-array is a subtype of the type array.

The types simple-vector, simple-string, and simple-bit-vector are disjoint
subtypes of the type simple-array: simple-vector means (simple-array t
(*»; simple-string means (si mpl e-array stri ng-char) or (simpl e-array
character); simple-vector means (si mpl e-array bi t (*».

This type specifier can be used in either symbol or list form. U sed in list I.
form, simple-array allows the declaration and creation of specialized simple
arrays whose members are all members of the type element-type and whose
dimensions match dimensions. This is equivalent to

(array element-type dimensions)

except that it additionally specifies that objects of the type are ~imple ar
rays. (A simple array is an array that has no fill pointer, whose contents
are not shared with another array, and whose size is not adjusted dynami
cally after creation.)

element-type must be a valid type specifier, or unspecified. For standard
Symbolics Common Lisp type specifiers: See the section "Type Specifiers"
in Symbolics Common Lisp: Language Concepts.

dimensions can be a non-negative integer, which is the number of dimen
sions, or it can be a list of non-negative integers representing the length of
each dimension (any of which can be unspecified). dimensions can also be
unspecified.

Examples:

(setq example-array (make-array '(3) :fill-pointer 2»
=> #<ART-Q-3 1321277>

I

simple-bit-vector 486

(setq example-simple-array (make-array '(3») => #<ART-Q-3 133B466>

(typep example-simple-array 'simple-array) => T

(zl:typep example-simple-array) => :ARRAY

(subtypep 'simple-array 'array) => T and T

(sys:type-arglist 'simple-array)
=> (&OPTIONAL (ELEMENT-TYPE '*) (DIMENSIONS '*» and T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the section "Arrays" in Symbolics Common
Lisp: Language Concepts.

simple-bit-vector &optional (size '*) Type Specifier
simple-bit-vector is the type specifier symbol for the Lisp data structure of
that name.

simple-vector, simple-string, and simple-bit-vector are disjoint subtypes of
. the type simple-array: simple-vector means (simple-array t (*»;
simple-string means (simple-array string-char) or (simple-array
character); simple-bit-vector means (simple-array bit (*».

This type specifier can be used in either symbol or list form. Used in list
form, simple-bit-vector dermes the set of bit-vectors of the indicated size.
This means the same as (simple-array bit (size».

Examples:

(setq array-bit-vector-not-simple
(make-array '(3) :element-type 'bit :fill-pointer 2»

=> #<ART-1B-3 43B351B6>

(setq array-bit-vector-simple
(make-array '(3) :element-type 'bit»

=> #<ART-1B-3 43B54543>

(typep array-bit-vector-simple 'simple-array) => T

(typep array-bit-vector-not-simple 'simple-array) => NIL

(typep #*1 '(simple-bit-vector 1» => T

(subtypep 'simple-bit-vector 'simple-array) => T and T

(subtypep 'simple-bit-vector 'bit-vector) => T and T

(simple-bit-vector-p array-bit-vector-simple) => T

487

(sys:type-arglist 'simple-bit-vector)
=> (&OPTIONAL (SIZE '*» and T

simple-bit-vector-p

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the section "Arrays" in Symbolics Common
Lisp: Language Concepts.

simple-bit-vector-p object Function
Tests whether the given object is a simple bit vector. A simple bit vector
is a one-dimensional array whose elements are required to be bits; the ar
ray is not displaced to another array and has no fill pointer. See the type
specifier simple-bit-vector, page 486.

(simple-bit-vector-p
(make-array 3 :element-type 'bit»
=> T

(simple-bit-vector-p
(make-array 5 :element-type 'bit :fill-pointer 2»

=> NIL

simple-string &optional (size '.) Type Specifier I.
simple-string is the type specifier symbol for the predefined Lisp data type,
simple string.

The type simple-strin~ is a subtype of the type string.

Note: Although string is a subtype of vector, simple-string is not a sub
type of simple-vector.

The types simple-vector, simple-string, and simple-bit-vector are disjoint
subtypes of the type simple-array: simple-vector means (simpl e-array t
(*»; simple-string means (simple-array string-char) or (simple-array
character); simple-bit-vector means (si mpl e-array bi t (*».

This type specifier can be used in either symbol or list form. Used in list
form, simple-string defines the set of simple strings whose size is
restricted to size. This means the same as (si mpl e-array stri ng-char
(size», or (simpl e-array character (size».

Examples:

(setq string-one (make-string 5 :initial-element #\.» =>
; a thin, simple string

(setq string-two (make-array 3 :element-type 'character
:initial-element #\x» => "xxx"

; a fat, simple string

I

simple-string-p 488

(typep string-one Jsimple-string) => T
(typep string-two Jsimple-string) => T

(simple-string-p string-one) => T
(simple-string-p string-two) => T

(subtypep Jsimple-string Jstring) => T and T
(subtypep Jsimple-string Jvector) => T and T
(subtypep Jsimple-string Jsimple-array) => T and T

(commonp string-two) => T

(sys:type-arglist Jsimple-string) => (&OPTIONAL (SIZE J*)) and T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the section "Strings" in Symbolics Common
Lisp: Language Concepts.

simple-string-p object Function
The predicate simple-string-p is true if its argument is a simple string; it
is false otherwise. A simple string is a one-dimensional array; its elements
can be characters of type string-char or character, but the array must
have no fill pointer or displacement.

simple-string is a subtype of type string. simple-string-p is always t for
strings built with make-string.

Examples:

(simple-string-p "fred") => T

(simple-string-p (make-string 3 :initial-element #\z)) => T

(simple-string-p (make-string 4 :initial-element #\hyper-a)) => T

(simple-string-p (make-array 5 :element-type Jstring-char
:fill-pointer t)) => NIL

(simple-string-p (make-array 2 :element-type Jcharacter
:initial-element #\b)) => T

For a table of related items: See the section "String Type-Checking
Predicates" in Symbolics Common Lisp: Language Concepts.

489 simple-vector

simple-vector &optional (size '.) Type Specifier
simple-vector is the type specifier symbol for the Lisp data structure of
that name.

The type simple-vector is a subtype of the types:

vector
(vector t)

Note: Although string is a subtype of vector, simple-string is not a sub
type of simple-vector.

The types simple-vector, simple-string, and simple-bit-vector are disjoint
subtypes of the type simple-array: simple-vector means (simpl e-array t
(*»; simple-string means (si mpl e-array stri ng-char) or (simpl e-array
character); simple-bit-vector means (si mpl e-array bi t (*».

This type specifier can be used in either symbol or list form. Used in list
form, simple-vector defines the set of specialized one-dimensional arrays of
size size. This is the same as (vector t size), except that it additionally
specifies that its elements are simple general vectors.

Examples:

(typep #(13 3 B) Jsimple-vector) => T

(subtypep Jsimple-vector Jvector) => T and T

(sys:type-arglist Jsimple-vector) => (&OPTIONAL (SIZE J*» and T

(simple-vector-p #(a b c» => T

(typep #(1 1 2) J(simple-vector 3» => T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the section "Arrays" in Symbolics Common
Lisp: Language Concepts.

simple-vector-p object Function
Tests whether the given object is a simple general vector. A simple
general vector is a one-dimensional array whose elements have no type con
straints; the array is not displaced to another array and has no fill pointer.
See the type specifier simple-vector, page 489.

(simple-vector-p (make-array 3»
=> T

(simple-vector-p
(make-array 5 :element-type Jbit :fill-pointer 2»
=> NIL

I

I

sin 490

sin radians Function
Returns the sine of radians. Examples:

(sin 8) => 8.8
(sin (/ pi 2» => 8.9999999999999999d8

For a table of related items: See the section "Trigonometric and Related
Functions" in Symbolics Common Lisp: Language Concepts.

sind degrees
Returns the sine of degrees. degrees can be any numeric type.

Examples:

(sind #C(38 48» => #C(8.62687695 8.65492296)
(sind 38.8) => 8.5
(sind 38) => 8.5
(sind #C(8.8 38.8» => #C(8.8 8.5478535)

Function

For a table of related items: See the section "Trigonometric and Related
Functions" in Symbolics Common Lisp: Language Concepts.

single-float Type Specifier
single-float is the type specifier symbol for the predefined Lisp single
precision floating-point number type.

The type single-float is a subtype of the type float. In Symbolics Common
Lisp single-float is equivalent to short-float.

The type single-float is disjoint with the types long-float and double-float.

Examples:

(typep .88788 'single-float) => T

(subtypep 'single-float 'float) => T and T ;subtype and certain

(21 :typep .123456) => :SINGLE-FLOAT

(typep -8.3 'common) => T

(sys:single-float-p 1.e3) => T

(equal-typep 'single-float 'short-float) => T

(sys:type-arglist 'single-float) => NIL and T

(type-of 63e8) => SINGLE-FLOAT

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the section "Numbers" in Symbolics Common
Lisp: Language Concepts.

491 single-float-epsilon

single-float-epsilon Constant
The value of this constant is the smallest positive floating-point number e
of a format such that it satisfies the expression:

(not (= (float 1 e) (+ (float 1 e) e»)

The current value of single-float-epsilon is: 5.960465e-8.

single-float-negative-epsilon Constant
The value of this constant is the smallest positive floating-point number e
of a format such that it satisfies the expression:

(not (= (float 1 e) (- (float 1 e) e»)

The current value of single-float-negative-epsilon is: 2.9802326e-8

sys:single-float-p object Function
Returns t if object is a single-precision floating-point number, otherwise nil.

For a table of related items: See the section "Numeric Type-checking
Predicates" in Symbolics Common Lisp: Language Concepts.

sinh radians Function
Returns the hyperbolic sine of radians. Example:

(sinh B) => B.B

For a table of related items: See the section "Hyperbolic Functions" in
Symbolics Common Lisp: Language Concepts.

sixth list Function
This function takes a list as an argument, and returns the sixth element of
the list. sixth is identical to

(nth 5 1 ist)

. The reason this name is provided is that it makes more sense when you
are thinking of the argument as a list rather than just as a cons.

For a table of related items: See the section "Functions for Extracting
From Lists" in Symbolics Common Lisp: Language Concepts.

math: solve lu ps b &optional x Function
This function takes the LU decomposition and associated permutation array
produced by math:decompose, and solves the set of simultaneous equations
defined by the original matrix a and the right-hand sides in the vector b.
If x is supplied, the solutions are stored into it and it is returned; other
wise, an array is created to hold the solutions and that is returned. b must
be a one-dimensional array.

I

I-, .

some 492

some predicate &rest sequences Function
some is a predicate which returns a non-nil value as soon as any invoca
tion of predicate returns a non-nil value. predicate must take as manyar
guments as there are sequences provided. predicate is irrst applied to the
elements of the sequences with an index of 0, then with an index of 1, and
so on, until a termination criterion is reached or the end of the shortest of
the sequences is reached. If the end of a sequence is reached, some
returns nil. Thus considered as a predicate, it is true if some invocation of
predicate is true.

If predicate has side effects, it can count on being called first on all those
elements with an index of 0, then all those with an index of 1, and so on.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

For example:

(some #'oddp '(1 2 5» => T

(some #'equal '(B 1 2 3) '(3 2 1 B» => NIL

However since it returns whatever the predicate returns it does not have to
be t.

For example:

(some #'(lambda (x) (if (oddp x) x)) '(2 4 3)) => 3

For a table of related items: See the section "Predicates That Operate on
Lists" in Symbolics Common Lisp: Language Concepts.

For a table of related items: See the section "Functions for Extracting
From Lists" in Symbolics Common Lisp: Language Concepts.

For a table of related items: See the section "Predicates That Operate on
Sequences" in Symbolics Common Lisp: Language Concepts.

zl:some list predicate &optional step-function Function
zl:some returns a tail of list such that the car of the tail is the first ele
ment that the predicate returns non-nil when applied to, or nil if predicate
returns nil for every element. If step-function is present, it replaces cdr as
the function used to get to the next element of the list; cddr is a typical
function to use here. Example

(setq list '(a b 1 2)) => (A 8 1 2)
(zl :some list #'numberp) => (1 2)

This Zetalisp function is shadowed by the Common Lisp function of the
same name.

493 sort

For a table of related items: See the section "Predicates That Operate on
Sequences" in Symbolics Common Lisp: Language Concepts.

sort sequence predicate &key key Function
sort destructively modifies sequence by sorting it according to an order
determined by predicate. predicate should take two arguments and return a
non-nil value if and only if the first argument is strictly less than the
second (in some appropriate sense). If the first argument is greater than
or equal to the second (in the appropriate sense), then predicate should
return nil.

The sort function determines the relationship between two elements by
giving keys extracted from the elements to predicate. The :key argument,
when applied to an element, should return the key for that element. It
defaults to the identity function, thereby making the element itself the key.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

The :key function should not have any side effects. A useful example of a
:key function would be a component selector function for a defstruct struc
ture, used in sorting a sequence of structures.

If the :key and predicate functions always return, then the sorting opera
tion will always terminate, producing a sequence containing the same ele
ments as the original sequence (that is, the result is a permutation of
sequence). This is guaranteed even if predicate does not really consistently
represent a total order (in which case the elements will be scrambled in
some unpredictable way, but no element will be lost). If the :key function
consistently returns meaningful keys, and the predicate does reflect some
total ordering criterion on those keys, then the elements of the result se
quence will be properly sorted according to that ordering.

For example:

(sort #(1 3 2 4 3 5) #'» => #(5 4 3 3 2 1)

(sort '«up 2) (down 1) (west 4) (south 3)) #'< :key #'cadr)
=> «DOWN 1) (UP 2) (SOUTH 3) (WEST 4))

The sorting operation performed by sort is not guaranteed stable. Ele
ments considered equal by predicate mayor may not be stay in their
original order. predicate is assumed to consider two elements x and y to be
equal if (funcall predicate x y) and (funcall predicate y x) are both false.
The function stable-sort guarantees stability, but may be slower than sort
in some situations.

The sorting operation is destructive, so in the cases where the argument
should not be destroyed, you must sort a copy of the argument. When the

•

I· • •

zl:sort 494

argument is an vector, the sort is accomplished by permuting the elements
in place. When the argument is a list, the sort is accomplished by destruc
tive reordering in the same manner as nreverse.

If the execution of either the :key or predicate functions causes an error,
the state of the list or vector being sorted is undefined. However, if the
error ,is corrected, the sort will proceed correctly.

Note that since sorting requires many comparisons, and thus many calls to
predicate, sorting will be much faster if predicate is a compiled function
rather than interpreted.

For example:

(setq bird-list '(heron stork loon owl flamingo turkey)) =>
(HERON STORK LOON OWL FLAMINGO TURKEY)

(sort bird-list #'string-lessp) =>
(FLAMINGO HERON LOON OWL STORK TURKEY)

For a table of related items: See the section "Functions for Sorting Lists"
in Symbolics Common Lisp: Language Concepts.

For a table of related items: See the section "Sorting and Merging
Sequences" in Symbolics Common Lisp: Language Concepts.

zl:sort x sort-lessp-predicate Function
The first argument to zl:sort is an array or a list. The second is a predi
cate, which must be applicable to all the objects in the array or list. The
predicate should take two arguments, and return non-nil if and only if th~
first argument is strictly less than the second (in some appropriate sense).
The predicate should return nil if its arguments are equal. For example,
to sort in the opposite direction from <, use >, not~. This is because the
quicksort algorithm used to sort arrays and cdr-coded lists becomes very
much slower when the predicate returns non-nil for equal elements while
sorting many of them.

The zl:sort function proceeds to sort the contents of the array or list under
the ordering imposed by the predicate, and returns the array or list
modified into sorted order. Note that since sorting requires many com
parisons, and thus many calls to the predicate, sorting is much faster if the
predicate is a compiled function rather than interpreted. Example:

(defun mostcar (x)
(cond «symbolp x) x)

«mostcar (car x)))))

495

(2l:sort fooarray
(function (lambda (x y)

(alphalessp (mostcar x) (mostcar y»»)

If fooarray contained these items before the sort:

(Tokens (The lion sleeps tonight»
(Carpenters (Close to you»
«Rolling Stones) (Brown sugar»
«Beach Boys) (I get around»
(Beatles (I want to hold your hand»

then after the sort fooarray would contain:

«Beach Boys) (I get around»
(Beatles (I want to hold your hand»
(Carpenters (Close to you»
«Rolling Stones) (Brown sugar»
(Tokens (The lion sleeps tonight»

zl:sortcar

When zl:sort is given a . list, it can change the order of the conses of the
list (using rplacd), and so it cannot be used merely for side effect; only the •
returned value of zl:sort is the sorted list. This changes the original list; if ",
you need both the original list and the sorted list, you must copy the
original and sort the copy. See the function zl:copylist, page 115.

Sorting an array just moves the elements of the array into different places,
and so sorting an array for side effect only is all right.

If the argument to zl:sort is an array with a fill pointer, note that, like
most' functions, zl:sort considers the active length of the array to be the
length, and so only the active part of the array is sorted. See the function
zl:array-active-length, page 29.

This Zetalisp function is shadowed by the Common Lisp function of the
same name.

For a table of related items: See the section "Functions for Sorting Lists"
in Symbolics Common Lisp: Language Concepts.

For a table of related items: See the se'ction "Sorting and Merging
Sequences" in Symbolics Common Lisp: Language Concepts.

zl:sortcar x predicate Function
zl:sortcar is the same as zl:sort except that the predicate is applied to the
cars of the elements of x, instead of directly to the elements of x. Ex-
ample: .

1-, .

sort-g rou ped-array 496

(zl : sortcar '((3 . dog) (1 . cat) (2 . bi rd)) #' <)

=> «1. cat) (2 . bird) (3 . dog))

Remember that zl:sortcar, when given a list, can change the order of the
conses of the list (using rplacd), and so it cannot be used merely for side
effect; only the returned value of zl:sortcar is the sorted list.

For a table of related items: See the section "Functions for Sorting Lists"
in Symbolics Common Lisp: Language Concepts.

sort-grouped-array array group-size predicate Function
sort-group ed-array considers its array argument to be composed of records
of group-size elements each. These records are considered as units, and are
sorted with respect to one another. The predicate is applied to the first
element of each record, so the first elements act as the keys on which the
records are sorted.

sort-grouped-array is a Symbolics extension to Common Lisp.

sort-grouped-array-group-key array group-size predicate Function
This is like sort-grouped-array except that the predicate is applied to four
arguments: an array, an index into that array, a second array, and an in
dex into the second array. predicate should consider each index as the sub
script of the first element of a record in the corresponding array, and com
pare the two records. This is more general than sort-group ed-array since
the function can get at all of the elements of the relevant records, instead
of only the first element.

sort-grouped-array-group-key is a Symbolics extension to Common Lisp.

dbg:special-command condition &rest per-command-args Generic Function
dbg:special-command is sent when the user invokes the special command.
It uses :case method-combination and dispatches on the name of the special
command. No arguments are passed. The syntax is:

(defmethod (dbg: speci a1-command my-flavor :my-command-keyword) 0
"documentation"
body ...)

Any communication with the user should take place over the *query-io*
stream. The method can return nil to return control to the Debugger or it
can return the same thing that any of the sys:proceed methods would have
returned in order to proceed in that manner.

The compatible message for dbg:special-command is:

: special-command

For a table of related items: See the section "Debugger Special Command
Functions" in Symbolics Common Lisp: Language Concepts.

497 dbg :special-com man d-p

dbg:special-command-p condition special-command Generic Function
Returns t if command-type is a valid Debugger special command for this
condition object; otherwise, returns nil.

The compatible message for dbg:special-command-p is:

:special-command-p

For a table of related items: See the section "Basic Condition Methods and
Init Options" in Symbolics Common Lisp: Language Concepts.

dbg:special-commands condition Generic Function
Returns a list of all Debugger special commands for this condition. See
the section "Debugger Special Commands" in Symbolics Common Lisp: Lan
guage Concepts.

The compatible message for dbg:special-commands is:

:special-commands

For a table of related items: See the section "Basic Condition Methods and
Init Options" in Symbolics Common Lisp: Language Concepts.

dbg:*special-command-special-keys* Variable I
The value of this variable should be an alist associating names of special -.
commands with characters. . When an error supplies any of these special
commands, the Debugger assigns that special command to the specified key.
For example, this is the mechanism by which the :package-dwim special
command is offered on the c-sh-P keystroke.

For a table of related items: See the section "Debugger Special Key
Variables" in Symbolics Common Lisp: Language Concepts.

special-form-p function Function
If function globally names a special form, then a non-nil value is returned;
otherwise nil is returned.

It is possible for both special-form-p and macro-function to be true for a
given symbol. This is possible because implementors of Common Lisp
dialects are permitted to implement any macro as a special form for speed.

sqrt number Function
sqrt computes and returns the principal square root of number. If number
is not complex but is negative, the result will be a complex number.

Examples:

I-t •

zl:sqrt
,,' "", r

(sqrt 16) => 4
(sqrt -16) => #C(9 4)
(sqrt 2) => 1.4142135
(sqrt 2.9d9) => 1.414213562373995d9
(sqrt #C(3 4)) => #C(2.9 1.9)

For a table of related items: See the section "Arithmetic Functions" in
Symbolics Common Lisp: Language Concepts.

498

zl:sqrt n Function
Returns the square root of n. n must be a non-negative number.

Example:

(zl:sqrt 4) => 2.9

For a table' of related items: See the section "Arithmetic Functions" in
Symbolics Common Lisp: Language Concepts.

stable-sort sequence predicate &key key Function
stable-sort destructively modifies sequence by sorting it according to an or
der determined by predicate. stable-sort is the stable version of sort.
stable-sort guarantees that elements considered equal by predicate will
remain in their original order. predicate is assumed to consider two ele
ments x and y to be equal if (funcall predicate x y)' and
(funcall predicate y x) are both false. stable-sort may be slower than sort
in some situations.

See the function sort, page 493.

For a table of related items: See the section "Functions for Sorting Lists"
in Symbolics Common Lisp: Language Concepts.

For a table of related items: See the section "Sorting and Merging
Sequences" in Symbolics Common Lisp: Language Concepts.

zl:stable-sort x predicate Function
zl:stable-sort is like zl:sort, but if two elements of x are equal, that is,
predicate returns nil when applied to them in either order, then those two
elements remain in their' original order.

For a table of related items: See the section "Functions for Sorting Lists"
in Symbolics Common Lisp: Language Concepts.

For a table of related items: See the section "Sorting and Merging
Sequences" in Symbolics Common Lisp: Language Concepts.

499 zl :stable-sortcar

zl:stable-sortcar x predicate Function
zl:stable-sortcar is like zl:sortcar, but if two elements of x are equal, that
is, predicate returns nil when applied to their cars in either order, then
those two elements remain in their original order.

For a table of related items: See the section "Functions for Sorting Lists"
in Symbolics Common Lisp: Language Concepts.

standard-char Type Specifier
standard-char is the type specifier symbol for the predefined Lisp standard
character data type.

The type standard-char is a subtype of the type string-char.

Examples:

(setq a-string (make-array 4 :element-type 'standard-char
:initial-element #\00» => ''00000000''

(typep #\> 'standard-char) => T
(subtypep 'standard-char 'string-char) => T and T
(string-char-p (char a-string 1» => T
(standard-char~p '#\!) => T
(sys:type-arglist 'standard-char) => NIL and T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the section "Characters" in Symbolics Com
mon Lisp: Language Concepts.

standard-char-p char Function
Returns t if char is one of the Common Lisp standard characters. char
must be a character object.

The Common Lisp standard character set includes:

!" #$%&'()*+,-./0123456789: ;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\] "
abc d e f g h ij kim n 0 p q r stu v w x y z {I} ..

See the section "Type Specifiers and Type Hierarchy for Characters" in
Symbolics Common Lisp: Language Concepts.

sys:standard-value symbol &key (listener nil) (global-p nil) Function
Returns the standard value associated with symbol If global-p is t, then it
returns the standard value independent of any standard value bindings
made with sys:standard-value-Iet or sys:standard-value-progv. If listener
is non-nil, it must be a flavor instance that supports the standard value
binding environment protocol. The value returned will be the binding
specific to that environment.

I

I

sys:standard-value-Iet 500

You change the standard value of symbol with (setf (sys:standard-value
symbol &key (listener nil) (global-p nil) (setq-p nil)). Note that if there is
a standard value binding for symbol, then only the bound value is changed.
The usual constraints apply to the values of listener.

If setq-p is t, then the value cell of symbol is set to the same value as the
standard value.

If global-p is t, then both the standard value setting and the value cell set
ting, if any, are set in the global environment rather than in any exisitng
binding environment.

Ordinary Symbol
(setq foo t)
(zl:set-globally 'foo t)

Standard Value Symbol
(setf (sys:standard-value foo :setq-p t) t)
(setf (sys:standard-value foo :global-p t :setq-p
t) t)

See the section "Standard Variables" in Symbolics Common Lisp: Language
Concepts.

sys:standard-value-Iet vars-and-vals &body body Macro
Like let except that it also pushes the values in vals onto the
si:*interactive-bindings* alist, causing them to become the new standard
bindings. All the symbols in vars are then bound to vals (with a let) and
body is executed in this context.

Example:

(defun octal-top-level ()
(standard-value-let

«base 8)
(ibase 8)
(package (pkg-find-package 'new-command-loop)))

(let «standard-io 'terminal-io))
(loop

as form = (read)
do (print (eval form))))))

See the section "Standard Variables" in Symbolics Common Lisp: Language
Concepts.

sys:standard-value-Iet* vars-and-vals &body body Macro
Like let* except that it also pushes the values in vals onto the
si:*interactive-bindings* alist, causing them to become the new standard
bindings. All the symbols in vars are then bound to vals (with a let*) and
body is executed in this context. See the section "Standard Variables" in
Symbolics Common Lisp: Language Concepts.

501 sys:standard-value-p

sys:standard-value-p symbol Function
Returns t if symbol has a standard value. See the section "Standard
Variables" in Symbolics Common Lisp: Language Concepts.

sys:standard-value-progv vars vals &body body Macro
Causes all of the symbols in vars to have their corresponding value in vals
pushed onto the si:*interactive-bindings* alist (that is, those values be
come the new standard bindings). All the symbols in vars are then bound
to vals (with a zl:progv) and body is executed in this context. This is use
ful for writing Lisp style command loops. See the section "Standard
Variables" in Symbolics Common Lisp: Language Concepts.

zl:store-array-Ieader value array index Function
Stores value in the indexed element of array's leader. array should be an
array with a leader, and index should be an integer. value can be anyob
ject. zl:store-array-Ieader returns value.

However, the preferred method is to use setf and array-leader, as shown
in the following example:

(make-array '(2 3) :leader-list '(t nil»
(setf (array-leader array 1) 'x)

•

I

stream 502

stream Type Specifier
stream is the type specifier symbol for the predefined Lisp object of that
name.

The types stream, hash-table, readtable, package, pathname, and
random-state are pairwise disjoint.

Examples:

(typep *standard-input* 'stream) => T
(streamp *standard-output*) => T
(input-stream-p *standard-input*) => T
(sys:type-arglist 'stream) => NIL and T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the section "Streams" in Reference Guide to
Streams, Files, and I/O.

string x Function
string coerces x into a string. Most of the string functions apply this to
their string arguments.

If x is a string, it is returned.

If x is a symbol, its print name is returned.

If x is a character, a string containing that character is returned.

If x is a pathname, the "string for printing" is returned. See the section
"Pathname Messages".

If x is any instance that handles the :string-for-printing message, a "string
for printing" is returned. See the section "Pathname Messages".

string does not convert a list or other sequence of characters to be a
string. Use the function coerce for that purpose. (Unlike string, coerce
does not work for symbols, though.)

If you want to get the string representation of a number or any other Lisp
object, string is not what you should use. You can use format, passing a
first argument of nil. You might also want to use with-output-to-string,
prinl-to-string, or princ-to-string.

Examples:

(string "a string") => "a string"
(string 'symbol) => "SYMBOL"
(string #\e) => "e"

The following are equivalent:

503

(string (si:patch-system-pathname "LHFS" :system-directory»
=> "SYS:LHFS;PATCH;LHFS.SYSTEH-DIR.NEWEST"

(send

string

(si:patch-system-pathname "LHFS" :system-directory) :string-for-printing)
=> "SYS:LHFS;PATCH;LHFS.SYSTEH-DIR.NEWEST"

For a table of related items: See the section "String Construction" in Sym
bolics Common Lisp: Language Concepts.

string &optional (size 'lie) Type Specifier
string is the type specifier symbol for the predefined Lisp string data type.

This type specifier can be used in either symbol or list form. Used in list
form, string allows the declaration and creation of specialized types of
strings whose size is restricted to size.

The type string is a subtype of the type vector; string means (vector
string-char) or (vector character).

The types string, (vector t), and bit-vector are disjoint.

The type string is a supertype of the type simple-string.

Note that for purposes of type-checking, typep and subtypep are currently
inconsistent in the kinds of strings they recognize. typep returns t for
both thin strings (vector stri ng-char), and fat strings (vector character).
For example:

(equal-typep 'string '(vector string-char» => T

(typep (make-array 1 :element-type 'character
:initial-element #\control-a) 'string) => T

subtypep on the other hand, currently recognizes only (vector string
char) as a string.

(subtypep 'string '(vector string-char» => T and T
(subtypep 'string '(vector character» => NIL and NIL

The two functions will be made congruent in the next release.

Examples:

I

I

string;e

(typep "1;oi498f" 'string) => T
(typep "123" 1 (string 3» => T
(typep "123" 1 (string 5» => NIL
(zl :typep "U.S. Telephone Area Codes") => :STRING
(subtypep 'string Ivector) => T and T
(stringp "artificial intelligence") => T
(stringp (make-array 3 :element-type 'string-char

:initial-element #\s
:fill-pointer 2» => T

(sys:type-arglist 'string) => (&OPTIONAL (SIZE 1*» and T

504

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the section "Strings" in Symbolics Common
Lisp: Language Concepts.

string:;t: stringl string2 &key (startl 0) (endl nil) (start2 0) (end2 Function
nil)

This is a comparison predicate that compares two strings or substrings of
them, exactly, depending on all fields including modifier bits, character set,
character style, and alphabetic case.

string:;t: returns nil unless stringl is not equal to string2. If the condition
is satisfied, string:;t: returns the position within the strings of the first
character at which the strings fail to match; this index is equivalent to the
length of the longest common portion of the strings.

stringl and string2 must be strings, or objects that can be coerced to
strings. See the function string, page 502.

The keywords let you specify substrings of the two string arguments for
comparison. These keyword arguments must be non-negative integer in
dices into the string array.

:startl

:endl

:start2 and :end2

Specifies the position within stringl from which to
begin the comparison (counting from 0). Default
is 0, the first character in the string. :startl
must be ~ :endl.
Specifies the position within stringl of the first
character beyond the end of the comparison.
Default is nil, that is, the operation continues to
the end of the string.
Work in analogous fashion for string2.

The case-insensitive version of string:;t: is the function string-not-equal.

Examples:

505

(string~ "apple" "apple") => NIL
(string~ "apple" 'apple) => 0
(string~ "apple" "apply") => 4
(string¢ "apple" "apropos") => 2

zl:string*

(string¢ "banana" "anachronism" :start1 1 :end1 4) => 3
(string¢ "banana" "anachronism" :start1 :end1 4 :end2 3) => NIL

The following function is a synonym of string;t:

string/=

For a table of related items: See the section "Case-Sensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

zl:string;t string1 string2 &optional (idx1 0) (idx2 0) lim1 lim2 Function
This is a comparison predicate that compares two strings or substrings of
them, exactly, depending on all fields including bits, style, and alphabetic
case.

The optional arguments let you specify substrings of the two string ar
guments for comparison.

idx1 Specifies the position within string1 from which to begin the
comparison (counting from 0). Default is 0, the first character
in the string.

idx2 Specifies the position within string2 from which to begin the
comparison. Default is o.

lim1 Specifies the position within string1 of the first character beyond I
the end of the comparison. Default is nil, that is, the operation
continues to the end of the string.

lim2 Specifies the position within string2 of the first character beyond
the end of the comparison. Default is nil.

Examples:

(zl :string¢ "apple" "apple") => NIL
(zl :string¢ "apple" 'apple) => T
(zl :string¢ "apple" "apply") => T
(zl :string¢ "apple" "apropos") => T
(zl:string~ "banana" "anachronism" 1 0 4) => T
(zl :string¢ "banana" "anachronism" 1 0 4 3) => NIL

The following functions are synonyms of zl:string¢:

string;t
string/=

For a table of related items: See the section "Case-Sensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

I

string< 506

string$; stringl string2 &key (startl 0) (endl nil) (start2 0) (end2 Function
nil)

This is a comparison predicate that compares two strings or substrings of
them, exactly, depending on all fields including modifier bits, character set,
character style, and alphabetic case.

strin~ returns nil unless stringl is less than or equal to string2. If the
condition ~s satisfied, strin~ returns the position within the strings of the
first character at which the strings fail to match; this index is equivalent
to the length of the longest common portion of the strings.

stringl and string2 must be strings, or objects that can be coerced to
strings. See the function string, page 502.

The keywords let you specify substrings of the two string arguments for
comparison. These keyword arguments must be non-negative integer indices
into the string array.

:startl

:endl

Specifies the position within stringl from which to
begin the comparison (counting from 0). Default
is 0, the first character in the string. :startl
must be $; :endl.
Specifies the position within stringl of the first
character beyond the end of the comparison.
Default is nil, that is, the operation continues to
the end of the string.

:start2 and :end2 Work in analogous fashion for string2.

The case-insensitive version of string$; is the predicate string-not-greaterp.

(string$; "apple" "apple") => 5
(string$; "apple" 'apple) => NIL
(string$; "sneeze" "snow") => 2
(string$; "elephant" "aardvark") => NIL
(string$; "ZY" nab") => 0
(string$; "painting" "interest" :start1 2 :end1 5) => 5

The following function is a synonym of string$;:

string<=

For a table of related items: See the section "Case-Sensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

z1:strin~ stringl string2 &optional (idxl 0) (idx2 0) liml lim2 Function
This is a comparison predicate that compares two strings or substrings of
them, exactly, depending on all fields including bits, style, and alphabetic
case.

507 string>

The optional arguments let you specify substrings of the two string ar
guments for comparison.

idxl Specifies the position within stringl from which to begin the
comparison (counting from 0). Default is 0, the first character
in the string.

idx2 Specifies the position within string2 from which to begin the
comparison. Default is O.

liml Specifies the position within stringl of the first character beyond
the end of the comparison. Default is nil, that is, the operation
continues to the end of the string.

lim2 Specifies the position within string2 of the first character beyond
the end of the comparison. Default is nil.

Examples:

(zl:string~ "apple" "apple") => T
(zl:string~ "apple" Jappl e) => NIL
(zl:string~ "sneeze" "snow") => T
(zl :string~ "elephant" "aardvark") => NIL
(zl:string~ "ZY" nab") => T
(zl:string~ "painting" "interest" 2 0 5) => T

For a table of related items: See the section "Case-Sensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

string~ stringl string2 &key (startl 0) (endl nil) (start2 0) (end2 Function I
nil)

This is a comparison predicate that compares two strings or substrings of
them, exactly, depending on all fields including modifier bits, character set,
character style, and alphabetic case.

string~ returns nil unless stringl is greater than or equal to string2. If
the condition is satisfied, string~ returns the position within the strings of
the first character at which the strings fail to match; this index is equiv
alent to the length of the longest common portion of the strings.

stringl and string2 must be strings, or objects that can be coerced to
strings. See the function string, page 502.

The keywords let you specify substrings of the two string arguments for
comparison. These keyword arguments must be non-negative integer indices
into the string array.

:startl Specifies the position within stringl from which to
begin the comparison (counting from 0). Default
is 0, the first character in the string. :startl
must be ~ :endl.

I

zl:string> 508

:endl Specifies the position within stringl of the first
character beyond the end of the comparison.
Default is nil, that is, the operation continues to
the end of the string.

:start2 and :end2 Work in analogous fashion for string2.

The case-insensitive version of string~ is the predicate string-not-Iessp.

Examples:

(string~ "apple" "apple") => 5
(string~ "dog" "DOG") => B
(string~ "flat" "flush") => NIL
(string~ nab" "ZY") => B
(string~ "detonate" "unnatural" :start1 4 :start2 2 :end2 5) => 7
(string~ "dog" "elephant" :start2 3) => NIL

The following function is a synonym of string~:

string>=

For a table of related items: See the section "Case-Sensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

zl:string~ stringl string2 &optional (idxl 0) (idx2 0) liml lim2 Function
This is a comparison predicate that compares two strings or substrings of
them, exactly, depending on all fields including bits, style, and alphabetic
case.

The optional arguments let you specify substrings of the two string ar
guments for comparison.

idxl Specifies the position within stringl from which to begin the
comparison (counting from 0). Default is 0, the first character
in the string.

idx2 Specifies the position within string2 from which to begin the
comparison. Default is O.

liml Specifies the position within stringl of the first character beyond
the end of the comparison. Default is nil, that is, the operation
continues to the end of the string.

lim2 Specifies the position within string2 of the first character beyond
the end of the comparison. Default is nil.

Examples:

509

(zl :string~ "apple" "apple") => T
(zl :string~ "dog" "DOG") => T
(zl :string~ "flat" "flush") => NIL
(zl :string~ "ab" "ZY") => T
(zl :string~ "detonate" "unnatural" 4 2 nil 5) => T
(zl :string~ "dog" "elephant" 0 3) => NIL

string/=

For a table of related items: See the section "Case-Sensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

string/= stringl string2 &key (startl 0) (endl nil) (start2 0) (end2 Function
nil)

This is a comparison predicate that compares two strings or substrings of
them, exactly, depending on all fields including modifier bits, character set,
character style, and alphabetic case.

string/= returns nil unless stringl is not equal to string2. If the condition
is satisfied, string/= returns the position within the strings of the first
character at which the strings fail to match; this index is equivalent to the
length of the longest common portion of the strings.

stringl and string2 must be strings, or objects that can be coerced to
strings. See the function string, page 502.

The keywords let you specify substrings of the two string arguments for
comparison. These keyword arguments must be non-negative integer in
dices into the string array.

:startl Specifies the position within stringl from which to
begin the comparison (counting from 0). Default
is 0, the first character in the string. :startl
must be ~ :endl.

:endl Specifies the position within stringl of the first
character beyond the end of the comparison.
Default is nil, that is, the operation continues to
the end of the string.

:start2 and :end2 Work in analogous fashion for string2.

The case-insensitive version of string/= is the function string-not-equal.

Examples:

(string/= "apple" "apple") => NIL
(string/= "apple" Jappl e) => 0
(string/= "apple" "apply") => 4
(string/= "apple" "apropos") => 2
(string/= "banana" "anachronism" :start1
(string/= "banana" "anachronism" :start1

:end1 4) => 3
:end1 4 :end2 3) => NIL

I

I

string< 510

The following function is a synonym of string/=:

stringt:

For a table of related items: See the section "Case-Sensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

string< stringl string2 &key (startl 0) (endl nil) (start2 0) (end2 Function
nil)

This is a comparison predicate that compares two strings or substrings of
them, exactly, depending on all fields including modifier bits, character set,
character style, and alphabetic case.

string< returns nil unless stringl is less than string2. If the condition is
satisfied, string< returns the position within the strings of the first charac
ter at which the strings fail to match; this index is equivalent to the
length of the longest common portion of the strings.

stringl is less than string2 if the first characters that differ satisfy char<,
or if stringl is a proper subset of string2 (of shorter length and matches in
all characters of string!).

stringl and string2 must be strings, or objects that can be coerced to
strings. See the function string, page 502.

The keywords let you specify substrings of the two string arguments for
comparison. These keyword arguments must be non-negative integer indices
into the string array. -

:startl

:endl

:start2 and :end2

Specifies the position within stringl from which to
begin the comparison (counting from 0). Default
is 0, the first character in the string. :startl
must be ~ :endl.
Specifies the position within stringl of the first
character beyond the end of the comparison.
Default is nil, that is, the operation continues to
the end of the string.
Work in analogous fashion for string2.

The case-insensitive version of string< is the function string-Iessp.

Examples:

511

(string< "ostrich" "giraffe") => NIL
(string< "demo" "demonstrate") => 4
(string< "abcd" "bazy") => e
(string< "fred" "Fred") => NIL
(string< "Chicken" "chicken") => e
(string< "apple" "nap" :start2 1) => NIL

zl:string<

(string< "test" "overestimate" :start1 1 :start2 4) => 5

For a table of related items: See the section "Case-Sensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

zl:string< stringl string2 &optional (idxl 0) (idx2 0) liml lim2 Function
This is a comparison predicate that compares two strings or substrings of
them, exactly, depending on all fields including bits, style, and alphabetic
case.

The optional arguments let you specify substrings of the two string ar
guments for comparison.

idxl Specifies the position within stringl from which to begin the
comparison (counting from 0). Default is 0, the first character
in the string.

idx2 Specifies the position within string2 from which to begin the
comparison. Default is .0.

liml Specifies the position within stringl of the first character beyond
the end of the comparison. Default is nil, that is, the operation
continues to the end of the string. I

lim2 Specifies the position within string2 of the first character beyond
the end of the comparison. Default is nil.

Examples:

(zl :string< "ostrich" "giraffe") => NIL
(zl :string< "demo" "demonstrate") => T
(zl :string< "abcd" "bazy") => T
(zl :string< "fred" "Fred") => NIL
(zl :string< "Chicken" "chicken") => T
(zl :string< "apple" "nap" e 1) => NIL
(zl:string< "test" "overestimate" 1 4) => T

For a table of related items: See the section "Case-Sensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

string<= stringl string2 &key (startl 0) (endl nil) (start2 0) (end2 Function
nil)

This is a comparison predicate that compares two strings or substrings of
them, exactly, depending on all fields including modifier bits, character set,
character style, and alphabetic case.

I

string= 512

string<= returns nil unless stringl is less than string2. If the condition is
satisfied, string<= returns the position within the strings of the first

. character at which the strings fail to match; this index is equivalent to the
length of the longest common portion of the strings.

stringl and string2 must be strings, or objects that can be coerced to
strings. See the function string, page 502.

The keywords let you specify substrings of the two string arguments for
comparison. These keyword arguments must be non-negative integer indices
into the string array.

:startl

:endl

Specifies the position within stringl from which to
begin the comparison (counting from 0). Default
is 0, the first character in the string. :startl
must be ~ :endl.
Specifies the position within stringl of the first
character beyond the end of the comparison.
Default is nil, that is, the operation continues to
the end of the string.

:start2 and :end2 Work in analogous fashion for string2.

The case-insensitive version of string<= is the predicate
string-not-greaterp.

(string<= "appl e" "apple") => 5
(string<= "apple" 'apple) => NIL
(string<= "sneeze" "snow") => 2
(string<= "elephant" "aardvark") => NIL
(string<= "ZY" "ab") => 0
(string<= "painting" "interest" :start1 2

The following function is a synonym of string<=:

string~

:end1 5) => 5

For a table of related items: See the section "Case-Sensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

string= stringl string2 &key (startl 0) (endl nil) (start2 0) (end2 Function
nil)

This is a comparison predicate that compares two strings or substrings of
them, exactly. string= returns t if corresponding characters in the two
strings are identical in all character fields, including modifier bits, charac
ter set, character style, and alphabetic case; it is false otherwise.

If the (sub)strings compared are of unequal length, string= is false.

513

stringl and string2 must be strings, or objects that can be coerced to
strings. See the function string, page 502.

The keywords let you specify substrings of the two string arguments for
comparison. These keyword arguments must be non-negative integer indices
into the string array.

:startl

:endl

:start2 and :end2

Specifies the position within stringl from which to
begin the comparison (counting from 0). Default
is 0, the first character in the string. :startl
must be ~ :endl.
Specifies the position within stringl of the first
character beyond the end of the comparison.
Default is nil, that is, the operation continues to
the end of the string.
Work in analogous fashion for string2.

The case-insensitive version of string= is the function string-equal.

Example:

(string= 'symbol "SYMBOL") => T
(string= "apple" "orange") => NIL
(string= "appl e" "please" :start1 2 :end2 3) => T
(string= "apple" "APPLE") => NIL
(string= "apple" "apply") => NIL
(string= "appl e" "applesauce") => NIL

For a table of related items: See the section "Case-Sensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

sys:%string= stringl indexl string2 index2 count Function
This is a low-level string comparison, possibly more efficient than the other
comparisons. Its only current efficiency advantage is its simplified ar
guments and minimized type-checking.

The function compares two strings or substrings of them, exactly.
sys:%string= returns t if corresponding characters in the two strings are
identical in all character fields, including modifier bits, character set,
character style, and alphabetic case; otherwise it returns nil.

If the (sub)strings compared are of unequal length, sys:%string= is false.

stringl and string2 must be strings.

indexl and index2 specify the starting position for the search within stringl
and string2 respectively.

count specifies the number of characters to be compared in both strings.

I

I

zl:string=

Examples:

(sys:%string= "apple" 9 "apple" 9 nil) => T

(sys:%string= "apple" 9 "APPLE" 9 nil) => NIL
(sys:%string= "eee" 9 "ecce" 9 nil) => NIL
(sys:%string= "eee" 9 "ecce" 9 3) => T

(sys:%string= "anything" 3 "third" 9 3) => T

(sys:%string= "anything" 3 "third" 1 3) => NIL
(sys:%string= "moooo" 3 (make-array 5

514

:element-type 'character
:initial-element #\0) 3 nil) => T

The case-insensitive version of sys:%string= is the function

sys:%string-equal

For a table of related items: See the section "Case-Sensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

zl:string= stringl string2 &optional (idxl 0) (idx2 0) liml lim2 Function
This is a comparison predicate that compares two strings or substrings of
them, exactly, depending on all fields including bits, style, and alphabetic
case.

The optional arguments let you specify substrings of the two string ar
guments for comparison.

idxl

idx2

liml

lim2

Specifies the position within stringl from which to begin the
comparison (counting from 0). Default is 0, the first character
in the string.
Specifies the position within string2 from which to begin the
comparison. Default is O.
Specifies the position within stringl of the first character beyond
the end of the comparison. Default is nil, that is, the operation
continues to the end of the string.
Specifies the position within string2 of the first character beyond
the end of the comparison. Default is nil.

Examples:

(21 :string= 'symbol "SYMBOL") => T
(zl :string= "apple" "orange") => NIL
(zl :string= "apple" "please" 2 9 nil 3) => T

(21 :string= "apple" "APPLE") => NIL
(21 :string= "apple" "apply") => NIL

For a table of related items: See the section "Case-Sensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

515

The Common Lisp equivalent to zl:string= is the function:

string:

string>

string> stringl string2 &key (startl 0) (endl nil) (start2 0) (end2 Function
nil)

This is a comparison predicate that compares two strings or substrings of
them, exactly, depending on all fields including modifier bits, character set,
character style, and alphabetic case.

string> returns nil unless stringl is greater than string2. If the condition
is satisfied, string> returns the position within the strings of the first
character at which the strings fail to match; this index is equivalent to the
length of the longest common portion of the strings.

stringl and string2 must be strings, or objects that can be coerced to
strings. See the function string, page 502.

The keywords let you specify substrings of the two string arguments for
comparison. These keyword arguments must be non-negative integer indices
into the string array.

:startl Specifies the position within stringl from which to
begin the comparison (counting from 0). Default
is 0, the first character in the string. :startl
must be S :endl.

:endl Specifies the position within stringl of the first
character beyond the end of the comparison.
Default is nil, that is, the operation continues to
the end of the string.

:start2 and :end2 Work in analogous fashion for string2.

The case-insensitive version of string> is the predicate string-greaterp.

Examples:

(string> "apple" "apple") => NIL
(string> "true" "TRUE") => e
(string> "arm" "aim") => 1
(string> "puppet" "puzzle") => NIL
(string> "book" "ball" :start1 1 :start2 2 :end2 3) => 1

For a table of related items: See the section "Case-Sensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

zl:string> stringl string2 &optional (idxl 0) (idx2 0) liml lim2 Function
This is a comparison predicate that compares two strings or substrings of
them, exactly, depending on all fields including bits, style, and alphabetic
case.

•

string>=

The optional arguments let you specify substrings of the two string ar
guments for comparison.

516

idxl Specifies the position within stringl from which to begin the
comparison (counting from 0). Default is 0, the first character
in the string.

idx2 Specifies the position within string2 from which to begin the
comparison. Default is o.

liml Specifies the position within stringl of the first character beyond
the end of the comparison. Default is nil, that is, the operation
continues to the end of the string.

lim2 Specifies the position within string2 of the first character beyond
the end of the comparison. Default is nil.

Examples:

(zl :string> "apple" "apple") => NIL
(zl :string> "true" "TRUE") => T
(zl :string> "arm" "aim") => T
(zl :string> "puppet" "puzzle") => NIL
(zl :string> "book" "ball" 1 2 nil 3) => T

For a table of related items: See the section "Case-Sensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

string>= stringl string2 &key (startl 0) (endl nil) (start2 0) (end2 Function
nil)

This is a comparison predicate that compares two strings or substrings of
them, exactly, depending on all fields including modifier bits, character s~t,
character style, and alphabetic case.

string>= returns nil unless stringl is greater than or equal to string2. If
the condition is satisfied, string>= returns the position within the strings
of the first character at which the strings fail to match; this index is
equivalent to the length of the longest common portion of the strings.

stringl and string2 must be strings, or objects that can be coerced to
strings. See the function string, page 502.

The keywords let you specify substrings of the two string arguments for
comparison. These keyword arguments must be non-negative integer indices
into the string array.

:startl

:endl

Specifies the position within stringl from which to
begin the comparison (counting from 0). Default
is 0, the first character in the string. :startl
must be ~ :endl.
Specifies the position within stringl of the first

517 string-append

character beyond the end of the comparison.
Default is nil, that is, the operation continues to
the end of the string.

:start2 and :end2 Work in analogous fashion for string2.

The case-insensitive version of string>= is the predicate string-not-Iessp.

Examples:

(string>= "apple" "apple") => 5
(string>= "dog" "DOG") => B
(string>= "flat" "flush") => NIL
(string>= "ab" "ZY") => B
(string>= "detonate" "unnatural" :start1 4 :start2 2 :end2 5)' =? 7
(string>= "dog" "elephant" :start2 3) => NIL

The following function is a synonym of string>=:

string~

For a table of related items: See the section "Case-Sensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

string-append &rest strings Function
Copies and concatenates any number of strings into a single string.

strings are strings or objects that can be coerced to strings. See the func
tion string, page 502.

With a single argument, string-append simply copies it.

string-append returns an array of the same type as the argument with the
greatest number of bits per element. For example, if the arguments are
arrays with elements of type string-char and of type character, an array
with elements of type character is returned.

The destructive version of string-append is the function string-nconc.

Example:

(string-append "Hell" "0") => "Hello"
(stri ng-append #\1 "faa" #\!) => "! faa!"
(string-append #\1 'faa #\!) => "!FOO!"
(string-append #\1 "2") => "12"
(string-append) =>

(setq string (make-array 5 :element-type 'string-char
:initial-contents "hello" :fill-pointer t» => "hello"

(string-append string" there") => "hello there"
(string-append string #\!) => "hello!"

I

I

string-capitalize

(setq thin-string (make-string 3» => ""
(setq fat-string (make-array 3 :element-type 'character

:initial-element #\A» => "AAA"
(setq new (string-append thin-string fat-string» => "AAA"
(string-fat-p new) => T

518

For a table of related items: See the section "String Construction" in Sym
bolies Common Lisp: Language Concepts.

string-capitalize string &key (start 0) (end nil) Function
Returns a copy of string; for every word in the copy, the initial character,
if case-modifiable, is uppercased. All other case-modifiable characters in
the word are lowercased.

For the purposes of string-capitalize, a word is defined as a consecutive
subsequence of alphanumeric characters or digits, delimited at each end ei
ther by a non-alphanumeric character, or by an end of string.

The ke~ords let you select portions of the string argument for uppercas
ing. These keyword arguments must be non-negative integer indices into
the string array. The result is always the same length as string, however.

:start Specifies the position within string from which to begin uppercasing
(counting from 0). Default is 0, the first character in the string.
:start must be ~ :end.

:end Specifies the position within string of the first character beyond the
end of the uppercasing operation. Default is nil, that is, the opera
tion continues to the end of the string.

The destructive version of string-capitalize is the function
nstring-capitalize.

Examples:

(string-capitalize "lexington") => "Lexington"
(string-capitalize 'symbol) => "Symbol"
(string-capitalize "one two three" :start 5) => "one tWo Three"
(string-capitalize "a MIxeD-Up sTrinG" :start 2) => "a Mixed-Up String"
(string-capitalize "a MIxeD-Up sTrinG" :start 2 :end 19) => "a Mixed-Up sTrinG"
(string-capitalize "tom&jerry arenJt in room 15d")
=> "Tom&Jerry ArenJT In Room 15d"

For a table of related items: See the section "String Conversion" in Sym
bolies Common Lisp: Language Concepts.

519 string-capitalize-words

string-capitalize-words string &key (start 0) (end nil) Function
Returns a copy of string, such that hyphens are changed to spaces and in
itial characters of each word are capitalized if they are case-modifiable.

string is a string or an object that can be coerced to a string. See the
function string, page 502.

The keywords let you select portions of the string argument for uppercas
ing. These keyword arguments must be non-negative integer indices into
the string array. The result is always the same length as string, however.

:start Specifies the position within string from which to begin uppercasing
(counting from 0). Default is 0, the first character in the string.
:start must be $; :end.

:end Specifies the position within string of the first character beyond the
end of the uppercasing operation. Default is nil, that is, the opera
tion continues to the end of the string.

The destructive version of string-capitalize-words is the function
nstring-capitalize-words.

Examples:

(string-capitalize-words "string-capitalize-words")
=> "String Capitalize Words"

(string-capitalize-words "three-hyphenated-words" :start 6 :end 8)
=> "three-Hyphenated-words"

For a table of related items: See the section "String Conversion" in Sym
bolics Common Lisp: Language Concepts.

zl:string-capitalize-words string &optional (copy-p t) keep-hyphen Function
This function changes hyphens to spaces and capitalizes each word in the
argument string. The effect on the original argument depends on the value
of copy-p: if copy-p is not nil, a copy of string is returned; this is the
default; if copy-p is nil, string itself is modified and returned.

string is a string or an object that can be coerced to a string. See the
function string, page 502.

You can retain hyphens in string by setting keep-hyphen to a non-nil value.

I

I

string-char

Examples:

(zl :string-capitalize-words "Lisp-listener")
=> "Lisp Listener"

(zl :string-capitalize-words "LISP-LISTENER")
=> "Lisp Listener"

(zl :string-capitalize-words "lisp--listener")
=> "Lisp Listener"

(zl :string-capitalize-words "symbol-processor-3" t t)
=> "Symbol-Processor-3"

(zl :string-capitalize-words "use--some-hyphens" nil)
=> "Use Some Hyphens"

(zl :string-capitalize-words "use--some-hyphens" nil t)
=> "Use Some Hyphens"

The Symbolics Common Lisp equivalent to zl:string-capitalize-words are
the functions:

nstring-capitalize-words
string-capitalize-words

520

For a table of related items: See the section "String Conversion" in Sym
bolics Common Lisp: Language Concepts.

string-char Type Specifier
string-char is the type specifier symbol for the predefined Lisp string
character data type.

The type string-char is a subtype of the type character.

The type string-char is a supertype of the type standard-char.

Examples:

(setq a-string (make-array 3 :element-type Jstring-char
:initial-element #\J» => JJJ

(typep (char a-string 2) Jstring-char) => T

(setq b-string (make-string 9 :initial-element #\.» =>

(typep (char b-string 4) Jstring-char) => T

(subtypep Jstring-char Jcharacter) => T and T

521 string-char-p

(subtypep 'standard-char 'string-char) => T and T

(sys:type-arglist 'string-char) => NIL and T

(string-char-p #\g) => T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. For a discussion of characters: See the section
"Characters" in Symbolics Common Lisp: Language Concepts. For a discus
sion of strings: See the section "Strings" in Symbolics Common Lisp: Lan
guage Concepts.

string-char-p char Function
Returns t if char can be stored into a thin string. char must be a charac
ter object. Any character that is a standard character satisfies this test.

Examples:

(string-char-p UrU) ;signals an error; char must be a character
(string-char-p #\~) => T
(string-char-p #\meta-m) => NIL

For a table of related items: See the section "String Type-Checking
Predicates" in Symbolics Common Lisp: Language Concepts.

string-compare stringl string2 &key (startl 0) (start2 0) (endl nil) Function I
(end2 nil)

Compares two strings, or substrings of them. The comparison is case
insensitive, ignoring character style and alphabetic case.

string-compare returns:

• a positive number if stringl > string2
• zero if stringl = string2
• a negative number if stringl < string2

If the strings are not equal, the absolute value of the number returned is
one more than the index (in stringl) at which the difference occurred.

The keywords let you specify substrings of the two string arguments for
comparison. These keyword arguments must be non-negative integer indices
into the string array.

:startl

:endl

Specifies the position within stringl from which to
begin the comparison (counting from 0). Default
is 0, the first character in the string. :startl
must be S; :endl.
Specifies the position within stringl of the first

I

sys:%string-compare 522

character beyond the end of the comparison.
Default is nil, that is, the operation continues to
the end of the string.

:start2 and :end2 Work in analogous fashion for string2.

Examples:

(string-compare "one" "one") => 0
(string-compare "puppet" "puppet" :start1 3 :start2 3) => 0
(string-compare "puppet" "PUPPET") => 0
(string-compare 'symbol 'fool => 1
(string-compare "alabaster" "alas!") => -4
(string-compare "george" "forgery" :start1 2 :start2 1 :end2 5)
=> 0

For a table of related items: See the section "Case-Insensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

The case-sensitive version of string-compare is the function:

string-exact-compare

sys:%string-compare stringl indexl string2 index2 count Function
This is a low-level, case-insensitive string comparison, possibly more ef
ficient than the other comparisons. Its only current efficiency advantage is
its simplified arguments and minimized type-checking.

indexl and index2 specify the starting position for the search within stringl
and string2 respectively.

count specifies the number of characters to be compared in both strings. If
count is nil (unspecified), the entire length of the (sub)strings is compared.

sys:%string-compare returns:

• 0 if string 1 is equal to string2
• a positive number if stringl > string2
• a negative number if stringl < string2

If the strings are not equal, the absolute value of the number returned is
one more than the index in stringl at which the difference occurred.

Examples:

523 zl :string-compare

(sys:%string-compare "tom" 0 "toM" o nil) => 0

(sys:%string-compare "feeding" 3 "dinner" 0 3) => 0

(sys:%string-compare lib" 0 "a" o nil) => 1
(sys:%string-compare "a" 0 "b" o nil) => -1
(sys:%string-compare "word" 0 "words" o nil) => -5
(sys:%string-compare "words" 0 "word" o nil) => 5
(sys:%string-compare " " 8 (make-array 4

:element-type 'character
:initial-element #\.) 0 nil) => 0

The case-sensitive version of sys:%string-compare is
sys:%string-exact-compare.

For a table of related items: See the section "Case-Insensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

zl:string-compare stringl string2 &optional (idxl 0) (idx2 0) liml Function
lim2

Compares the characters of stringl starting at idxl and ending just below
liml with the characters of string2 starting at idx2 and ending just below
lim2. The comparison is in alphabetical order. stringl and string2 are
strings or objects that can be coerced to strings. See the function string,
page 502. liml and lim2 default to the lengths of the strings.
string-compare returns:

• a positive number if stringl > string2
o zero if stringl = string2
• a negative number if stringl < string2

If the strings are not equal, the absolute value of the number returned is
one more than the index (in stringl) at which the difference occurred.

Examples:

(zl :string-compare "one" "one") => 8
(zl : string-compare "puppet" "puppet" 3 3) => 0
(zl :string-compare "puppet" "PUPPET") => 0
(zl:string-compare 'symbol 'faa) => 1
(zl :string-compare "alabaster" "alas!") => -4
(zl :string-compare "abcd" "abce" 1 1) => -3

For a table of related items: See the section "Case-Insensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

The Symbolics Common Lisp equivalent to zl:string-compare is the func
tion:

string-compare

•

I

string-downcase 524

string-downcase string &key (start 0) (end nil) Function
Returns a copy of string, with uppercase alphabetic characters replaced by
the corresponding lowercase characters. (char-downcase is applied to each
character of string.)

string is a string or an object that can be coerced to a string. See the
function string, page 502.

The keywords let you select portions of the string argument for uppercas
ing. These keyword arguments must be non-negative integer indices into
the string array. The result is always the same length as string, however.

:start Specifies the position within string from which to begin uppercasing
(counting from 0). Default is 0, the first character in the string.
:start must be ~ :end.

:end Specifies the position within string of the first character beyond the
end of the uppercasing operation. Default is nil, that is, the opera
tion continues to the end of the string.

Examples:

(string-downcase "A TITLE") => "a title"
(string-downcase "A BUNCH OF WORDS" :start 10) => "A BUNCH OF words"
(string-downcase "A BUNCH OF WORDS" :start 0 :end 1)
=> "a BUNCH OF WORDS"
(setq string "THREE UPPERCASE WORDS") => "THREE UPPERCASE WORDS"
(string-downcase string :start e :end 5) => "three UPPERCASE WORDS"
(string-downcase string :start 16 :end nil) => "THREE UPPERCASE words"
string => "THREE UPPERCASE WORDS"

The destructive version of string-downcase is the function
nstring-downcase.

For a table of related items: See the section "String Conversion" in Sym
bolics Common Lisp: Language Concepts.

zl:string-downcase string &optional (from 0) to (copy-p t) Function
This function replaces uppercase alphabetic characters in argument string
with the corresponding lowercase characters. The effect on the original ar
gument depends on the value of copy-p: if copy-p is not nil, a copy of string
is returned; if copy-p is nil, string itself is modified and returned.

string is a string or an object that can be coerced to a string. See the
function string, page 502.

from is the index in string at which to begin lowercasing characters. If to
is supplied, it is used in place of <array-active-Iength string) as the index
one greater than the last character to be lowercased.

525 string-equal

Examples:

(zl :string-downcase "A TITLE") => "a title"
(zl:string-downcase "A BUNCH OF WORDS" 10) => "A BUNCH OF words"
(zl :string-downcase "A BUNCH OF WORDS" 0 1) => "a BUNCH OF WORDS"
(setq string "THREE UPPERCASE WORDS") => "THREE UPPERCASE WORDS"
(zl :string-downcase string B 5 nil) => "three UPPERCASE WORDS"
(zl :string-downcase string 16 nil nil) => "three UPPERCASE words"
string => "three UPPERCASE words"

The Common Lisp equivalents to zl:string-downcase are the functions:

nstring-downcase
string-downcase

For a table of related items: See the section "String Conversion" in Sym
bolics Common Lisp: Language Concepts.

string-equal stringl string2 &key (startl 0) (endl nil) (start2 0) Function
(end2 nil)

string-equal compares two strings, or substrings of them. The comparison
ignores the character fields for character style and alphabetic case. Two
characters are considered to be the same if char-equal is tru~ of them.

string-equal returns t if the strings are the same, and nil otherwise. If
the (sub)strings compared are of unequal length, string-equal is false .

stringl and string2 are strings or objects that can be coerced to strings.
See the function string, page 502.

The keywords let you specify substrings of the two string arguments for
comparison. These keyword arguments must be non-negative integer indices
into the string array.

:startl

:endl

:start2 and :end2

Specifies the position within stringl from which to
begin the comparison (counting from 0). Default
is 0, the first character in the string. :startl
must be ~ :endl.
Specifies the position within stringl of the first
character beyond the end of the comparison.
Default is nil, that is, the operation continues to
the end of the string.
Work in analogous fashion for string2.

The case-sensitive version of string-equal is the predicate string:.

Examples:

•

I

sys:%string-equal 526

(stri ng-equal 'symbol "SYMBOL") => T
(string-equal "apple" "orange") => NIL
(stri ng-equal "apple" "please" :start1 2 :end2 3) => T
(string-equal "apple" "APPLE") => T
(string-equal "apple" "apply") => NIL

For a table of related items: See the section "Case-Insensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

sys:%string-equal stringl indexl string2 index2 count Function
This is a low-level, case-insensitive string comparison, possibly more ef
ficient than the other comparisons. Its only current efficiency advantage is
its simplified arguments and minimized type-checking. sys:%string-equal
returns t if the count characters of stringl starting at idxl are char-equal
to the count characters of string2 starting at idx2, or nil if the characters
are not equal or if count runs off the length of either array.

Instead of an integer, count can also be nil. In this case,
sys:%string-equal compares the substring from idxl to (string-length
stringl) against the substring from idx2 to (string-length string2). If the
lengths of these substrings differ, then they are not equal and nil is
returned.

Note that stringl and string2 must really be strings; the usual coercion of
symbols and characters to strings is not performed. This function is docu
mented because certain programs that require high efficiency and are will
ing to pay the price of less generality might want to use sys:%string-equal
in place of string-equal.

Examples:

To compare the two strings "hat" and "hat":

(sys:%string-equal "hat" B "hat" B nil) => T

To see if the string "Dante" starts with the characters "dan":

(sys:%string~equal "Dante" B "dan" B 3) => T

(setq fat-string (make-array 4 :element-type 'character
:initial-element #\a» => "aaaa"

(sys:%string-equal fat-string B "aaaa" B nil) => T

The case-sensitive version of sys:%string-equal is the function:

sys:%string=

For a table of related items: See the section "Case-Insensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

527 zl :string-equal

zl:string-equal stringl string2 &optional (idxl 0) (idx2 0) liml lim2 Function
string-equal compares two strings, returning t if they are equal and nil if
they are not. The comparison ignores character fields for character style
and alphabetic case.

zl:equal calls zl:string-equal if applied to two strings. stringl and string2
are strings or objects that can be coerced to strings. See the function
string, page 502.

The optional arguments let you specify substrings of the two string ar
guments for comparison.

idxl Specifies the position within stringl from which to begin the
comparison (counting from 0). Default is 0, the first character
in the string.

idx2 Specifies the position within string2 from which to begin the
comparison. Default is O.

liml Specifies the position within stringl of the first character beyond
the end of the comparison. Default is nil, that is, the operation
continues to the end of the string.

lim2 Specifies the position within string2 of the first character beyond
the end of the comparison. Default is nil.

Examples:

(zl :string-equal "Faa" "faa") => T
(zl :string-equal "faa" "bar") => NIL
(zl :string-equal "element" "select" 0 1 3 4) => T
(zl :string-equal 'symbol "SYMBOL") => T
(zl : string-equal "apple" "orange") => NIL
(zl :string-equal "apple" "please" 2 0 nil 3) => T
(zl :string-equal "apple" "APPLE") => T
(zl:string-equal "apple" "apply") => NIL

For a table of related items: See the section "Case-Insensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

The Common Lisp equivalent to zl:string-equal is the function:

string-equal

string-exact-compare stringl string2 &key (startl 0) (start2 0) Function
(endl nil) (end2 nil)

This is a comparison predicate that compares two strings or substrings of
them, exactly including the character fields for character style and al
phabetic case.

string-exact-compare returns:

I

I

sys:%string-exact-compare 528

• a positive number if stringl > string2
• zero if stringl = string2
• a negative number if stringl < string2

If the strings are not equal, the absolute value of the number returned is
one more than the index (in stringl) at which the difference occurred.

The keywords let you specify substrings of the two string arguments for
comparison. These keyword arguments must be non-negative integer indices
into the string array.

:startl Specifies the position within stringl from which to
begin the comparison (counting from 0). Default
is 0, the first character in the string. :startl
must be =:;;; :endl.

:endl Specifies the position within stringl of the first
character beyond the end of the comparison.
Default is nil, that is, the operation continues to
the end of the string.

:start2 and :end2 Work in analogous fashion for string2.

Examples:

(string-exact-compare "aaa" "aaa") => B

(string-exact-compare "yo" "YO") => 1

(string-exact-compare "this is it" "This Is it") => 1

(setq fat-string (make-string 3 :initial-element #\k
:element-type Jcharacter» => "kkk"

(string-exact-compare fat-string "kkk") => B
(string-exact-compare fat-string "asdjf") => 1

(string-exact-compare #\d "mmmm .. ") => -1

The case-insensitive version of string-exact-compare is the predicate:

string-compare

For a table of related items: See the section "Case-Sensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

sys:%string-exact-compare ·stringl indexl string2 index2 count Function
This is a low-level string comparison, possibly more efficient than the other
comparisons. Its only current efficiency advantage is its simplified ar
guments and minimized type-checking.

529 zl :string-exact-compare

sys:%string-exact-compare returns:

• a positive number if stringl > string2
• zero if stringl = string2
• a negative number if stringl < string2

stringl and string2 must be strings.

indexl and index2 specify the starting position for the search within stringl
and string2 respectively.

count specifies the number of characters to be compared in both strings.

Examples:

(sys:%string-exact-compare "apple" e "apple" e nil) => e
(sys:%string-exact-compare "apple" e "APPLE" e nil) => 1
(sys:%string-exact-compare "orange" e "organ" e nil) => -3
(sys:%string-exact-compare "orange" 1 "organ" B 3) => 1
(sys:%string-exact-compare "hello" 1 "yelp!" 1 2) => e
(sys:%string-exact-compare "hello" 1 "yelp!" 1 3) => -3
(sys:%string-exact-compare "aaaa" B (make-array 4

:element-type 'character
:initial-element #\a) B nil) => e

The case-insensitive version of sys:%string-exact-compare is the function
sys:%string-compare.

For a table of related items: See the section "Case-Sensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

zl:string-exact-compare stringl string2 &optional (idxl 0) (idx2 0) Function I
liml lim2

This is a comparison predicate that compares two strings or substrings of
them, exactly, depending on all fields including character style and al
phabetic case.

zl:string-exact-compare returns:

• a positive number if stringl > string2
• zero if stringl = string2
• a negative number if stringl < string2

stringl and string2 must be strings, or objects that can be coerced to
strings. See the function string, page 502.

The optional arguments let you specify substrings of the two string ar
guments for comparison.

idxl Specifies the position within stringl from which to begin the
comparison (counting from 0). Default is 0, the first character
in the string.

I

string-fat-p 530

idx2 Specifies the position within string2 from which to begin the
comparison. Default is o.

liml Specifies the position within stringl of the first character beyond
the end of the comparison. Default is nil, that is, the operation
continues to the end of the string.

lim2 Specifies the position within string2 of the first character beyond
the end of the comparison. Default is nil.

Examples:

(zl :string-exact-compare "apple" "apple") => 9
(zl :string-exact-compare "APPLE" "apple") => -1
(zl :string-exact-compare "orange" "organ") => -3
(zl :string-exact-compare "airplane" "aardvark") => 2
(zl :string-exact-compare "baseball" "seven" 2) => -3

(zl :string-exact-compare "flight" "salient" 1 2 nil 5) => 3

For a table of related items: See the section "Case-Sensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

string-fat-p string Function
The predicate string-fat-p returns t if its argument is a string array whose
elements are of type character rather than of type string-char. Array
elements of type character are wider characters with bits holding infor
mation about modifier bits, character set, and character style.

I t is an error if the argument is not a string.

Examples:

(string-fat-p "string") => NIL

(string-fat-p "string") => T

(string-fat-p (string-append "fred" #\meta-q» => T

(string-fat-p (make-string 3 :initial-element #\hyper-super-a» => T

(string-fat-p (make-string 3 :element-type 'character» => T

(string-fat-p (make-array 4 :element-type 'character
:initial-element #\a» => T

(string-fat-p 4) => NIL

For a table of related items: See the section "String Type-Checking
Predicates" in Symbolics Common Lisp: Language Concepts.

531 string-flipcase

string-flip case string &key (start 0) (end nil) Function
The function string-flip case returns a copy of string, with uppercase al
phabetic characters replaced by the corresponding lowercase characters, and
with lowercase alphabetic characters replaced by the corresponding upper
case characters.

string is a string or an object that can be coerced to a string. See the
function string, page 502.

The keywords let you select portions of the string argument for case chang
ing. These keyword arguments must be non-negative integer indices into
the string array. The result is always the same length as string, however.

:start Specifies the position within string from which to begin case chang-
ing (counting from 0). Default is 0, the first character in the
string. :start must be ::;; :end.

:end Specifies the position within string of the first character beyond the
end of the case changing operation. Default is nil, that is, the
operation continues to the end of the string.

Examples:

(string-flipcase "a sTrANGe UsE OF CaPitalS")
=> "A StRangE uSe of cApITAls"

(string-flipcase 'symbol) => "symbol"
(string-flipcase 'symbol :start 2 :end 4) => "SYmbOL"
(string-flipcase "End" :start 2) => "EnD"
(string-flipcase "STRing") => "strING"

The destructive version of string-flipcase is the function:

nstring-flipcase

For a table of related items: See the section "String Conversion" in Sym
bolics Common Lisp: Language Concepts.

zl:string-flipcase string &optional (from 0) to (copy-p t) Function
This function reverses the alphabetic case in its argument: it changes up
percase alphabetic characters to lowercase and lowercase characters to up
percase. The effect on the original argument depends on the value of
copy-p: if copy-p is not nil, a copy of string is returned; this is the default;
if copy-p is nil, string itself is modified and returned.

string is a string or an object that can be coerced to a string. See the
function string, page 502.

from is the index in string at which to begin exchanging the case of

I

I

string-greaterp 532

characters. If to is supplied, it is used in place of <array-active-length
string) as the index one greater than the last character whose case is to be
exchanged.

Examples:

(zl:string-flipcase "small LARGE") => "SMALL large"
(zl :string-flipcase "small LARGE" 6) => "small large"
(zl:string-flipcase "small LARGE" 1 3) => "sMAll LARGE"
(setq string "STRing") => "STRing"
(zl:string-flipcase string 0 nil nil) => "strING"
(zl :string-flipcase string 0 nil nil) => "STRing"

The Symbolics Common Lisp equivalents to zl:string-flipcase are the func
tions:

string-flipcase
nstring-flipcase

For a table of related items: See the section "String Conversion" in Sym
bolics Common Lisp: Language Concepts.

string-greaterp stringl string2 &key (startl 0) (endl nil) (start2 0) Function
(end2 nil)

This is a comparison predicate that compares two strings, or substrings of
them. The comparison ignores character fields for character style and al
phabetic case.

string-greaterp returns nil unless stringl is greater than string2. If the
condition is satisfied, string-greaterp returns the position within the
strings of the first character at which the strings fail to match; this index
is equivalent to the length of the longest common portion of the strings.

stringl and string2 must be strings, or objects that can be coerced to
strings. See the function string, page 502.

The keywords let you specify substrings of the two string arguments for
comparison. These keyword arguments must be non-negative integer indices
into the string array.

:startl

:endl

Specifies the position within stringl from which to
begin the comparison (counting from 0). Default
is 0, the first character in the string. :startl
must be ~ :endl.
Specifies the position within stringl of the first
character beyond the end of the comparison.
Default is nil, that is, the operation continues to
the end of the string.

533 zl :string-greaterp

:start2 and :end2 Work in analogous fashion for string2.

The case-sensitive version of string-greaterp is the predicate string>.

Examples:

(string-greaterp "apple" "apple") => NIL
(string-greaterp "true" "TRUE") => NIL
(string-greaterp "arm" "aim") => 1
(string-greaterp "puppet" "puzzle") => NIL
(string-greaterp "book" "ball" :start1 1 :start2 2 :end2 3) => 1

For a table of related items: See the section "Case-Insensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

zl:string-greaterp stringl string2 &optional (idxl 0) (idx2 0) liml
lim2

Function

This compares two strings or substrings of them. The comparison ignores
the character fields for character style and alphabetic case.

The optional arguments let you specify substrings of the two string ar
guments for comparison.

idxl

idx2

liml

lim2

Specifies the position within stringl from which to begin the
comparison (counting from 0). Default is 0, the first character
in the string.
Specifies the position within string2 from which to begin the
comparison. Default is O.
Specifies the position within stringl of the Irrst character beyond
the end of the comparison. Default is nil, that is, the operation
continues to the end of the string.'
Specifies the position within string2 of the first character beyond
the end of the comparison. Default is nil.

Examples:

(zl :string-greaterp "apple" "apple") => NIL
(zl :string-greaterp "true" "TRUE") => NIL
(zl :string-greaterp "arm" "aim") => T
(zl :string-greaterp "puppet" "puzzle") => NIL
(zl :string-greaterp "book" "ball" 1 2 8 3) => T

For a table of related items: See the section "Case-Insensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

I

I

string-left-trim 534

string-left-trim char-set string Function
This returns a substring of string, with all characters in char-set stripped
off the beginning.

string is a string or an object that can be coerced to a string. See the
function string, page 502.

char-set is a set of characters, that can be represented as a list of charac
ters, an array of characters, or a string of characters.

Examples:

(string-left-trim '(#\p) "pop") => HOp"
(string-left-trim #(#\sp)" spaces ") => "spaces
(string-left-trim "atn" "attack at dawn") => "ck at dawn"

For a table of related items: See the section "String Manipulation" in 8ym
bolics Common Lisp: Language Concepts.

zl:string-Ieft-trim char-set string Function
This returns a substring of string, with all characters in char-set stripped
off the beginning.

string is a string or an object that can be coerced to a string. See the
function string, page 502.

char-set is a set of characters, that can be represented as a list of charac
ters, or a string of characters.

Examples:

(21 :string-left-trim '(#/p) "pop") => HOp"
(21 :string-left-trim "atn" "attack at dawn") => "ck at dawn"

The Common Lisp equivalent to zl:string-Ieft-trim is the function:

string-left-trim

For a table of related items: See the section "String Manipulation" in 8ym
bolics Common Lisp: Language Concepts.

string-length string Function
string-length returns the number of characters in string.

string must be a string or an object that can be coerced into a string. See
the function string, page 502.

string-length returns the zl:array-active-Iength if string is a string, or the
zl:array-active-Iength of the print name if string is a symbol.

Examples:

535

(string-length "mississippi") => 11
(string-length 'alabama) => 7
(string-length

string-Iessp

(make-array 10 :element-type 'string-char :fill-pointer 7» => 7
(string-length #\4) => 1

For a table of related items: See the section "String Access and
Information" in Symbolics Common Lisp: Language Concepts.

string-Iessp stringl string2 &key (startl 0) (endl nil) (start2 0) Function
(end2 nil)

This is a comparison predicate that compares two strings, or substrings of
them. The comparison ignores character fields for character style and al
phabetic case.

string-Iessp returns nil unless stringl is less than string2. If the condition
is satisfied, string-Iessp returns the position within the strings of the first
character at which the strings fail to match; this index is equivalent to the
length of the longest common portion of the strings.

stringl is less than string2 if the first characters that differ satisfy
cbar-Iessp, or if stringl is a proper subset of string2 (of shorter length and
matches in all characters of string!).

stringl and string2 must be strings, or objects that can be coerced to
strings. See the function string, page 502.

The keywords let you specify substrings of the two string arguments for I
comparison. These keyword arguments must be non-negative integer indices
into the string array.

:startl

:endl

:start2 and :end2

Specifies the position within stringl from which to
begin the comparison (counting from 0). Default
is 0, the first character in the string. :startl
must be ~ :endl.
Specifies the position within stringl of the first
character beyond the end of the comparison.
Default is nil, that is, the operation continues to
the end of the string.
Work in analogous fashion for string2.

The case-sensitive version of string-Iessp is the predicate string<.

Examples:

I

zl :string-Iessp

(string-lessp "ostrich" "giraffe") => NIL
(string-lessp "demo" "demonstrate") => 4
(string-lessp "abcd" "bazy") => B
(string-lessp "fred" "Fred") => NIL
(string-lessp "Chicken" "chicken") => NIL
(string-lessp "apple" "nap" :start2 1) => NIL
(string-lessp "test" "overestimate" :start1 1 :start2 4) => 5

536

For a table of related items: See the section "Case-Insensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

zl:string-Iessp stringl string2 &optional (idxl 0) (idx2 0) liml lim2 Function
This compares two strings using alphabetical order (as defined by
char-Iessp). The result is t if stringl is the lesser, or nil if they are equal
or string2 is the lesser.

The optional arguments let you specify substrings of the two string ar
guments for comparison.

idxl Specifies the position within stringl from which to begin the
comparison (counting from 0). Default is 0, the first character
in the string.

idx2 Specifies the position within string2 from which to begin the
comparison. Default is O.

liml Specifies the position within stringl of the first character beyond
the end of the comparison. Default is nil, that is, the operation
continues to the end of the string.

lim2 Specifies the position within string2 of the first character beyond
the end of the comparison. Default is nil.

Examples:

(zl:string-lessp "ostrich" "giraffe") => NIL
(zl:string-lessp "demo" "demonstrate") => T
(zl :string-lessp "abcd" "bazy") => T
(zl :string-lessp "fred" "Fred") => NIL
(zl:string-lessp "Chicken" "chicken") => NIL
(zl :string-lessp "apple" "nap" B 1) => NIL
(zl :string-lessp "test" "overestimate" 1 4) => T

For a table of related items: See the section "Case-Insensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

537 string-nconc

string-neone modified-string &rest strings Function
string-neone is the destructive version of string-append. Instead of
making a new string containing the concatenation of its arguments,
string-neone modifies its first argument.

modified-string must be a string with a fill-pointer so that additional
characters can be tacked onto it.

The value of string-neone is modified-string or a new, longer copy of it if
the strings don't fit; in the latter case the original copy is forwarded to the
new copy. See the function adjust-array, page 16.

Unlike neone, string-neone with more than two arguments modifies only
its first argument, not every argument but the last.

Examples:

(setq string (make-array 5 :element-type 'string-char
:initial-contents "hello" :fill-pointer 5)) => "hello"

(string-nconc string" there") => "hello there"
(string-nconc string #\!) => "hello there!"
string => "hello there!"

For a table of related items: See the section "String Construction" in Sym
bolics Common Lisp: Language Concepts.

zl:string-neone to-string &rest strings Function
zl:string-neone is like string-append except that instead of making a new
string containing the concatenation of its arguments, zl:string-neone I
modifies its first argument.

to-string must be a string with a fill-pointer so that additional characters
can be tacked onto it. See the function zl:array-push-extend, page 33.

The value of zl:string-neone is to-string or a new, longer copy of it; in the
latter case the original copy is forwarded to the new copy. See the function
zl:adjust-array-size, page 16.

Unlike neone, zl:string-neone with more than two arguments modifies only
its first argument, not every argument but the last.

The Symbolics Common Lisp equivalent to zl:string-neone is the function:

string-neone

For a table of related items: See the section "String Construction" in Sym
bolics Common Lisp: Language Concepts.

•

string-nconc-portion 538

string-nconc-portion to-string {from-string from to} ... Function
Adds information onto a string without allocating intermediate substrings.

to-string must be a string with a fill-pointer so that additional characters
can be added onto it. The remaining arguments can be any number of
"string portion specs", which are string/from/to triples. from and to are re
quired but can be nil and nil. Even though the arguments are called
strings, they can be anything that can be coerced to a string with string
(for example, symbols or characters).

The value of string-nconc-portion is to-string or a new, longer copy of it;
in the latter case the original copy is forwarded to the new copy (see
zl:adjust-array-size).

string-nconc-portion is like string-nconc except that it takes parts of
strings without consing substrings.

Example:

(let «a (make-array 19 :element-type 'string-char :fill-pointer 9»)
(21 :string-nconc-portion a 'xxxfoobar 3 nil

#\sp ni 1 nil
"tempstuff" 9 4» => "FOOBAR temp"

string-nconc-portion uses zl:array-push-portion-extend internally, which
uses zl:adjust-array-size to take care of growing the to-string if necessary.

For a table of related items: See the section "String Construction" in Sym
bolics Common Lisp: Language Concepts.

string-not-equal stringl string2 &key (startl 0) (endl nil) (start2 0) Function
(end2 nil)

This is a comparison predicate that compares two strings, or substrings of
them. The comparison ignores character fields for character style and al
phabetic case.

string-not-equal returns nil unless stringl is not equal to string2. If the
condition is satisfied, string-not-equal returns the position within the
strings of the first character at which the strings fail to match; this index
is equivalent to the length of the longest common portion of the strings.

stringl and string2 must be strings, or objects that can be coerced to
strings. See the function string, page 502.

The keywords let you specify substrings of the two string arguments for
comparison. These keyword arguments must be non-negative integer indices
into the string array.

:startl Specifies the position within stringl from which to

539

:endl

:start2 and :end2

zl :string-not-equal

begin the comparison (counting from 0). Default
is 0, the first character in the string. :startl
must be ~ :endl.
Specifies the position within stringl of the first
character beyond the end of the comparison.
Default is nil, that is, the operation continues to
the end of the string.
Work in analogous fashion for string2.

The case-sensitive version of string-not-equal is the predicate stringt:.

Examples:

(string-not-equal "appl e" "apple") => NIL
(string-not-equal "apple" J appl e) => NIL
(string-not-equal "apple" "apply") => 4
(string-nat-equal "apple" "apropos") => 2
(string-not-equal "banana" "anachronism" :start1 1 :end1 4) => 3
(string-nat-equal "banana" "anachronism" : start1 1 :end1 4 :end2 3) => NIL

For a table of related items: See the section "Case-Insensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

zl:string-not-equal stringl string2 &optional (idxl 0) (idx2 0) liml Function
lim2

This compares two strings or substrings of them. The comparison ignores
character fields for character style and alphabetic case.

The optional arguments let you specify substrings of the two string ar
guments for comparison.

idxl Specifies the position within stringl from which to begin the
comparison (counting from 0). Default is 0, the first character
in the string.

idx2 Specifies the position within string2 from which to begin the
comparison. Default is o.

liml Specifies the position within stringl of the first character beyond
the end of the comparison. Default is nil, that is, the operation
continues to the end of the string.

lim2 Specifies the position within string2 of the IITst character beyond
the end of the comparison. Default is nil.

Examples:

•

I

string-not-greaterp 540

(zl :string-not-equal "apple" "apple") => NIL
(zl:string-not-equal "apple" Jappl e) => NIL
(zl :string-not-equal "apple" "apply") => T
(zl :string-not-equal "apple" "apropos") => T
(zl :string-not-equal "banana" "anachronism" 1 8 4) => T
(zl :string-not-equal "banana" "anachronism" 1 8 4 3) => NIL

For a table of related items: See the section "Case-Insensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

string-not-greaterp stringl string2 &key (startl 0) (endl nil) Function
(start2 0) (end2 nil)

This is a comparison predicate that compares two strings, or substrings of
them. The comparison ignores character fields for character style and al
phabetic case.

string-not-greaterp returns nil unless stringl is less than or equal to
string2. If the condition is satisfied, string-not-greaterp returns the posi
tion within the strings of the first character at which the strings fail to
match; this index is equivalent to the length of the longest common portion
of the stri~gs.

stringl and string2 must be strings, or objects that can be coerced to
strings. See the function string, page 502.

The keywords let you specify substrings of the two string arguments for
comparison. These keyword arguments must be non-negative integer indices
into the string array.

:startl

:endl

:start2 and :end2

Specifies the position within stringl from which to
begin the comparison (counting from 0). Default
is 0, the first character in the string. :startl
must be ~ :endl.
Specifies the position within stringl of the first
character beyond the end of the comparison.
Default is nil, that is, the operation continues to
the end of the string.
Work in analogous fashion for string2.

The case-sensitive version of string-not-greaterp is the predicate string~.

Examples:

541 zl:string-not-greaterp

(string-not-greaterp "apple" "apple") => 5
(string-not-greaterp "apple" 'apple) => 5
(string-not-greaterp "sneeze" "snow") => 2
(string-not-greater~ "elephant" "aardvark") => NIL
(string-not-greaterp "ZY" nab") => NIL
(string-not-greaterp "painting" "interest" :start1 2 :end1 5) => 5

For a table of related items: See the section "Case-Insensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

zl:string-not-greaterp stringl string2 &optional (idxl 0) (idx2 0)
liml lim2

Function

This compares two strings or substrings of them. The comparison ignores
character fields for character style and alphabetic case.

The optional arguments let you specify substrings of the two string ar
guments for comparison.

idxl Specifies the position within stringl from which to begin the
comparison (counting from 0). Default is 0, the first character
in the string.

idx2 Specifies the position within string2 from which to begin the
comparison. Default is o.

liml Specifies the position within stringl of the first character beyond
the end of the comparison. Default is nil, that is, the operation
continues to the end of the string. I

lim2 Specifies the position within string2 of the first character beyond
the end of the comparison. Default is nil.

Examples:

(zl :string-not-greaterp "apple" "apple") => T
(zl :string-not-greaterp "apple" 'apple) => T
(zl :string-not-greaterp "sneeze" "snow") => T
(zl :string-not-greaterp "elephant" "aardvark") => NIL
(zl :string-not-greaterp "ZY" nab") => NIL
(zl :string-not-greaterp "painting" "interest" 2 B 5) => T

For a table of related items: See the section "Case-Insensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

string-not-Iessp stringl string2 &key (startl 0) (endl nil) (start2 0) Function
(end2 nil)

This is a comparison predicate that compares two strings, or substrings of
them. The comparison ignores character fields for character style and al
phabetic case.

I

zl :string~not-Iessp 542

string-not-Iessp returns nil unless stringl is greater than or equal to
string2. If the condition is satisfied, string-not-Iessp returns the position
within the strings of the first character at which the strings fail to match;
this index is equivalent to the length of the longest common portion of the
strings.

stringl and string2 must be strings, or objects that can be coerced to
strings. See the function string, page 502.

The keywords let you specify substrings of the two string arguments for
comparison. These keyword arguments must be non-negative integer indices
into the string array.

:startl

:endl

Specifies the position within stringl from which to
begin the comparison (counting from 0). Default
is 0, the Irrst character in the string. :startl
must be ~ :endl.
Specifies the position within stringl of the first
character beyond the end of the comparison.
Default is nil, that is, the operation continues to
the end of the string.

:start2 and :end2 Work in analogous fashion for string2.

The case-sensitive version of string-not-Iessp is the predicate string~.

Examples:

(string-not-lessp "apple" "apple") => 5
(string-not-lessp "dog" "DOG") => 3
(string-not-lessp "flat" "flush") => NIL
(string-not-lessp nab" "ZY") => NIL
(string-not-lessp "detonate" "unnatural" :start1 4 :start2 2 :end2 5) => 7
(string-not-lessp "dog" "elephant" :start2 3) => NIL

For a table of related items: See the section "Case-Insensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

zl:string-not-Iessp stringl string2 &optional (idxl 0) (idx2 0) liml Function
lim2

This is a comparison predicate that compares two strings, or substrings of
them. The comparison ignores character fields for character style and al
phabetic case.

The optional arguments let you specify substrings of the two string ar
guments for comparison.

idxl Specifies the position within stringl from which to begin the
comparison (counting from 0). Default is 0, the Irrst character
in the string.

543 string-nreverse

idx2 Specifies the position within string2 from which to begin the
comparison. Default is O.

liml Specifies the position within stringl of the first character beyond
the end of the comparison. Default is nil, that is, the operation
continues to the end of the string.

lim2 Specifies the position within string2 of the first character beyond
the end of the comparison. Default is nil.

Examples:

(zl :string-not-lessp "apple" "apple") => T
(zl :string-not-lessp "dog" "DOG") => T
(zl :string-not-lessp "flat" "flush") => NIL
(zl :string-not-lessp "ab" "ZY") => NIL
(zl :string-not-lessp "detonate" "unnatural" 4 2 8 5) => NIL
(zl :string-not-lessp "dog" "elephant" 8 3) => NIL

For a table of related items: See the section "Case-Insensitive String Com
parison Predicates" in Symbolics Common Lisp: Language Concepts.

string-nreverse string &key (start 0) (end nil) Function
Returns string with the order of characters reversed, modifying the original
string, rather than creating a new one. This reverses a one-dimensional
array of any type. If string is a character, it is simply returned.

If string is not a string or another one-dimensional array, it is coerced into
a string. Since string-nreverse is destructive, coercion should be used
with care since a string internal to the object might be modified. See the
function string, page 502.

The keywords let you select portions of the string argument for reversing.
These keyword arguments must be non-negative integer indices into the
string array. The entire argument, string, is returned, however.

:start Specifies the position within string from which to begin reversing
(counting from 0). Default is 0, the first character in the string.
:start must be ~ :end.

:end Specifies the position within string of the first character beyond the
end of the reversing operation. Default is nil, that is, the operation
continues to the end of the string.

The nondestructive version of string-nreverse is the function
string-reverse.

Examples:

I

I

zl :string-nreverse

(setq a "bloom") => "bloom"
(string-nreverse a) => "moolb"
a => "moo1b"

544

(string-nreverse "mysbolics" :start e :end 3) => "symbo1ics"

For a table of related items: See the section "String Manipulation" in Sym
bolics Common Lisp: Language Concepts.

zl:string-nreverse string Function
Returns string with the order of characters reversed, modifying the original
string, rather than creating a new one. This reverses a one-dimensional
array of any type. If string is a character, it is simply returned.

If string is not a string or another one-dimensional array, it is coerced into
a string. Note that because of its destructive nature, zl:nreverse does not
accept symbol arguments. Since string-nreverse is destructive, coercion
should be used with care since a string internal to the object might be
modified. See the function string, page 502.

Examples:

(zl :string-nreverse 'symbol)
;signals an error: "illegal to modify the pname of a symbol"

(zl :string-nreverse "word") => "drow"
(setq string "two words") => "two words"
(zl :string-nreverse string) => "sdrow owt"
string => "sdrow owt"

The Symbolics Common Lisp equivalent to zl:string-nreverse is the func
tion:

string-nreverse

For a table of related items: See the section "String Manipulation" in Sym
bolics Common Lisp: Language Concepts.

stringp object Function
stringp returns t if its argument is a string, otherwise nil.

A string is a one-dimensional array whose elements can be of type
string-char or character; since stringp is a supertype of simple-string-p,
it always returns t for any object of which simple-string-p is t.

Unlike arrays of type simple-string, an array of type string can have a fill
pointer and displacement (that is, it can be extended, and its contents can
be shared with other array objects).

The function stringp is an extension of its Common Lisp counterpart, since
it returns t for arrays with elements of type character as well as for ar
rays of type string-char.

545 string-pluralize

Examples:

(stringp "string") => T

(stringp 'symbol) => NIL

(stringp 123) => NIL

(stringp (make-string 3 :initial-element #\a» => T

(stringp (make-string 3 :initial-element #\a
:element-type 'character» => T

(stringp (make-array 5 :element-type 'string-char
:fill-pointer 8) => T

(stringp (make-array 4 :element-type 'character
:fill-pointer 3» => T

(simple-string-p (make-array 5 :element-type 'string-char
:fill-pointer 8» => NIL

For a table of related items: See the section "String Type-Checking
Predicates" in Symbolics Common Lisp: Language Concepts.

string-pluralize string Function
string-pluralize returns a copy of its string argument containing the plural
of the word in string. Any added characters go in the same case as the
last character of string.

string is a string or an object that can be coerced to a string. See the
function string, page 502.

Examples:

(string-pluralize "event") => "events"
(string-pluralize "Man") => "Men"
(string-pluralize "Can") => "Cans"
(string-pluralize "key") => "keys"
(string-pluralize "TRY") => "TRIES"
(string-pluralize 'part) => "PARTS"

For words with multiple plural forms depending on the meaning,
string-pluralize cannot always do the right thing.

For a table of related items: See the section "String Conversion" in Sym
bolics Common Lisp: Language Concepts.

•

I

zl :string-pluralize 546

zl:string-pluralize string Function
zl:string-pluralize returns a copy of its string argument containing the
plural of the word in string. Any added characters go in the same case as
the last character of string.

string is a string or an object that can be coerced to a string. See the
function string, page 502.

Examples:

(zl :string-pluralize "event") => "events"
(zl :string-pluralize "Man") => "Men"
(zl:string-pluralize "Can") => "Cans"
(zl :string-pluralize "key") => "keys"
(zl :string-pluralize "TRY") => "TRIES"
(zl :string-pluralize "child") => "children"

For words with multiple plural forms depending on the meaning,
zl:string-pluralize cannot always do the right thing.

The Symbolics Common Lisp equivalent to zl:string-pluralize is the func
tion:

string-pluralize

string-reverse string &key (start 0) (end nil) Function
Returns a copy of string with the order of characters reversed. This
reverses a one-dimensional array of any type. If string is not a string or
another one-dimensional array, it is coerced into a string. See the function
string, page 502.

The keywords let you select portions of the string argument for reversing.
These keyword arguments must be non-negative integer indices into the
string array. The entire argument, string, is returned, however.

:start Specifies the position within string from which to begin reversing
(counting from 0). Default is 0, the first character in the string.
:start must be ::;; :end.

:end Specifies the position within string of the first character beyond the
end of the reversing operation. Default is nil, that is, the operation
continues to the end of the string.

The generic function reverse also works on strings.

The destructive version of string-reverse is string-nreverse.

Examples:

547 zl :stri ng -reverse

(string-reverse #\a) => "a"
(string-reverse 'symbol) => "LOBHYS"
(string-reverse "a stringM) => "gnirts a"
(string-reverse Mend" :start 1) => "edn"
(string-reverse "start" :end 3) => "atsrt"
(string-reverse "middle" :start 1 :end 5) => "mlddie"

For a table of related items: See the section "String Manipulation" in Sym
bolics Common Lisp: Language Concepts.

zl:string-reverse string Function
Returns a copy of string with the order of characters reversed. This
reverses a one-dimensional array of any type. If string is not a string or
another one-dimensional array, it is coerced into a string. See the function
string, page 502.

Examples:

(zl:string-reverse #/a) => "a"
(zl:string-reverse 'symbol) => "LOBHYS"
(zl:string-reverse "a string") => "gnirts a"
(zl:string-reverse "end" 1) ;signals an error

The Symbolics Common Lisp equivalent to zl:string-reverse is the function:

string-reverse

For a table of related items: See the section "String Manipulation" in Sym
bolics Common Lisp: Language Concepts.

zl:string-reverse-search key string &optional from (to 0) (key-start Function
0) key-end

zl:string-reverse-search searches for the string key in the string string,
using string-equal to do the comparison. The search proceeds in reverse
order, starting from the index one less than from, which defaults to the
length of string, and returns the index of the first (leftmost) character of
the first instance found, or nil if none is found. Note that the index
returned is from the beginning of the string, although the search starts
from the end. The from condition, restated, is that the instance of key
found is the rightmost one whose rightmost character is before the from'th
character of string. If the to argument is supplied, it limits the extent of
the search. string is a string or an object that can be coerced to a string.
See the function string, page 502. Example:

(zl:string-reverse-search "na" "banana") => 4

For a table of related items: See the section "Case-Insensitive String
Searches" in Symbolics Common Lisp: Language Concepts.

I

I

zl :string-reverse-search-char 548

zl:string-reverse-search-char char string &optional from (to 0) Function
zl:string-reverse-search-char searches through string in reverse order,
starting from the index one less than from, which defaults to the length of
string, and returns the index of the first character that is char-equal to
char, or nil if none is found. Note that the index returned is from the
beginning of the string, although the search starts from the end. If the to
argument is supplied, it limits the extent of the search. string is a string
or an object that can be coerced to a string. See the function string, page
502. Example:

(zl :string-reverse-search-char #/n "banana") => 4

For a table of related items: See the section "Case-Insensitive String
Searches" in Symbolics Common Lisp: Language Concepts.

zl:string-reverse-search-exact key string &optional from (to 0) Function
(key-start 0) key-end

This searches one string for another, comparing characters exactly and
depending on all fields including bits, style, and alphabetic case. Substr
ings of either argument can be specified.

For a table of related items: See the section "Case-Sensitive String
Searches" in Symbolics Common Lisp: Language Concepts.

zl:string-reverse-search-exact-char char string &optional from (to
0)

Function

Searches a string or a substring for the specified character, starting from
the end of the string. In other words, it searches the string for the last
occurrence of the specified character. It compares all fields of the charac
ter, including bits, style, and alphabetic case. Use the optional from ar
gument to end the search at the specified position.

zl:string-reverse-search-exact-char returns:

• The position of the last occurrence of the character if the character
is found.

• nil if the character is not contained within the string.

For example:

(zl :string-reverse-search-exact-char #/a "bbab") => 2

(zl :string-reverse-search-exact-char #/a "bbaba") => 4

(zl :string-reverse-search-exact-char #/a "bbb") => NIL

(zl :string-reverse-search-exact-char #/a "bAcBA") => NIL

549 21: stri ng-reverse-search-not-char

For a table of related items: See the section "Case-Sensitive String
Searches" in Symbolics Common Lisp: Language Concepts.

zl:string-reverse-search-not-char char string &optional from (to 0) Function
zl:string-reverse-search-not-char searches through string in reverse order,
starting from the index one less than from, which defaults to the length of
string, and returns the index of the first character that is not char-equal
to char, or nil if none is found. Note that the index returned is from the
beginning of the string, although the search starts from the end. If the to
argument is supplied, it limits the extent of the search. string is a string
or an object that can be coerced to a string. See the function string, page
502. Example:

(zl:string-reverse-search-not-char #fa "banana") => 4

For a table of related items: See the section "Case-Insensitive String
Searches" in Symbolics Common Lisp: Language Concepts.

zl:string-reverse-search-not-exact-char char string &optional from Function
(to 0)

Searches a string or a substring for occurrences of any character other
than the speCified character, starting from the end of the string. It com
pares all fields of the character, including bits, style, and alphabetic case.
Use the optional from argument to end the search at the specified position .

zl:string-reverse-search-not-exact-char returns:

o The position of the last occurrence of a character that does not match
the specified character.

o nil if the string contains only the specified character.

For example:

(zl :string-reverse-search-not-exact-char #fa "aaa") => nil

(zl :string-reverse-search-not-exact-char #fa "bbab") => 3

(zl :string-reverse-search-not-exact-char #fa "bbaba") => 3

(zl :string-reverse-search-not-exact-char #fa "bbb") => 2

(zl :string-reverse-search-not-exact-char #fa "bAcBA") => 4

For a table of related items: See the section "Case-Sensitive String
Searches" in Symbolics Common Lisp: Language Concepts.

•

I

zl :string-reverse-search-not-set 550

zl:string-reverse-search-not-set char-set string &optional from (to Function
0)

zl:string-reverse-search-not-set searches through string in reverse order,
starting from the index one less than from, which defaults to the length of
string, and returns the index of the first character that is not char-equal
to any element of char-set, or nil if none is found. Note that the index
returned is from the beginning of the string, although the search starts
from the end. If the to argument is supplied, it limits the extent of the
search. char-set is a set of characters, which can be represented as a list
of characters or a string of characters. string is a string or an object that
can be coerced to a string. See the function string, page 502.

(zl:string-reverse-search-not-set '(#/a #/n) "banana") => B

For a table of related items: See the section "Case-Insensitive String
Searches" in Symbolics Common Lisp: Language Concepts.

zl:string-reverse-search-set char-set string &optional from (to 0) Function
zl:string-reverse-search-set searches through string in reverse order, start
ing from the index one less than from, which defaults to the length of
string, and returns the index of the first character that is char-equal to
some element of char-set, or nil if none is found. Note that the index
returned is from the beginning of the string, although the search starts
from the end. If the to argument is supplied, it limits the extent of the
search. char-set is a set of characters, which can be represented as a list
of characters or a string of characters. string is a string or an object that
can be coerced to a string. See the function string, page 502.

(zl :string-reverse-search-set "ab" "banana") => 5

For a table of related items: See the section "Case-Insensitive String
Searches" in Symbolics Common Lisp: Language Concepts.

string-right-trim char-set string Function
This returns a substring of string, with all characters in char-set stripped
off the end.

string is a string or an object that can be coerced to a string. See the
function string, page 502.

char-set is a set of characters, that can be represented as a list of charac
ters, an array of characters, or a string of characters.

Examples:

(string-right-trim '(#\4) "456454") => "45645"
(string-right-trim #(#\t #\h) "that tooth") => "that too"
(string-right-trim "0" "otto") => "ott"

551

Related Functions:

string-trim
string-left-trim

zl :string-right-tri m

For a table of related items: See the section "String Manipulation" in Sym
bolics Common Lisp: Language Concepts.

zl:string-right-trim char-set string Function
This returns a substring of string, with all characters in char-set stripped
off the end.

string is a string or an object that can be coerced to a string. See the
function string, page 502.

char-set is a set of characters, that can be represented as a list of charac
ters, or a string of characters.

Examples:

(zl:string-right-trim '(#/4) "456454") => "45645"
(zl:string-right-trim "0" "otto") => "ott"

The Common Lisp equivalent to zl:string-right-trim is the function:

string-right-trim

For a table of related items: See the section "String Manipulation" in Sym
bolics Common Lisp: Language Concepts.

string-search key string &key from-end (startl 0) (endl nil) (start2 Function
0) (end2 nil)

Searches string looking for occurrences of key. The search uses char-equal
which ignores character fields for character style and alphabetic case.

string-search returns nil, or the position of the first character of key oc
curring in the (sub) string. To reverse the search, returning the position of
the last occurrence of the initial key character in the (sub)string searched,
specify a non-nil value for :from-end.

key and string must be strings, or objects that can be coerced to a string.
See the function string, page 502.

The keywords let you specify the parts of string to be searched, as well as
the parts of key to search for. These keyword arguments must be non
negative integer indices into the string array.

:from-end If a non-nil value is specified, returns the position
of the first character of the last occurrence of key
in the string or the specified substring.

I

I

zl :string-search 552

:startl Specifies the position within key from which to
begin the search (counting from 0). Default is 0,
the first character in the string. :startl must be
=:;; :endl.

:endl Specifies the position within key of the first
character beyond the end of the search. Default is
nil, that is the entire length of key is used.

:start2 and :end2

Examples:

Work analogously for string.

(string-search
(string-search

"es"
"es"

"witches") => 5
"tresses") => 2

(string-search "es"
(string-search "er"

"tresses" :from-end t) => 5
"tresses") => NIL

(string-search
(string-search

"er"
"es"

"tresses" :from-end t) => NIL
"tresses" :start2 3) => 5

(string-search #\a "banana") => 1

(string-search 'symbol "abolish" :start1 3) => 1
(string-search 'symbol "abolish" :start1 3 :end2 3) => NIL

The case-sensitive version of string-search is the function:

string-search-exact

For a table of related items: See the section "Case-Insensitive String
Searches" in Symbolics Common Lisp: Language Concepts.

zl:string-search key string &optional (from 0) to (key-start 0) Function
key-end

zl:string-search searches for the string key in the string string, using
string-equal to do the comparison. The search begins at from, which
defaults to the beginning of string. The value returned is the index of the
first character of the first instance of key, or nil if none is found. If the to
argument is supplied, it is used in place of (string-length string) to limit
the extent of the search. string is a string or an object that can be coerced
to a string. See the function string, page 502. Example:

(21 :string-search "an" "banana") => 1
(21 :string-search "an" "banana" 2) => 3
(21 :string-search "es" "witches") => 5
(21 : string-search "es" "tresses") => 2
(21 :string-search "er" "tresses") => NIL

553 string-search-char

The Symbolics Common Lisp equivalent to zl:string-search is the function:

string-search

For a table of related items: See the section "Case-Insensitive String
Searches" in Symbolics Common Lisp: Language Concepts.

string-search-char char string &key from-end (start 0) (end nil) Function
Searches string looking for the character char. The search uses
char-equal, which ignores the character fields for character style and al
phabetic case.

string-search-char returns nil if it does not find char; if successful, it
returns the position of the first occurrence of char. To reverse the search,
returning the position of the last occurrence of char in the (sub)string
searched, set :from-end to t.

char must be a character object.

string must be a string, or an object that can be coerced to a string. See
the function string, page 502.

The keywords let you specify the parts of string to be searched. These
keyword arguments must be non-negative integer indices into the string ar
ray.

:from-end If set to a non-nil value, returns the position of
the last occurrence of char in the string or the
specified substring.

:start

:end

Specifies the position within string from which to
begin the search (counting from 0). Default is 0,
the first character in the string. :start must be ~
:end.
Specifies the position within string of the first
character beyond the end of the search. Default is
nil, that is the entire length of string is searched.

Examples:

(string-search #\1 "banana") => NIL
(string-search-char #\a "banana") => 1

(string-search-char #\a "banana" :from-end t) => 5
(string-search-char #\a "banana" :start 1 :end 3) =>

(string-search-char #\a "banana" :start 1 :end 4 : from-end "t) => 3
(string-search-char #\A "banana") => 1

The case-sensitive version of string-search-char is the function:

string-search-exact-char

•

I

sys:%string-search-char

For a table of related items: See the section "Case-Insensitive String
Searches" in Symbolics Common Lisp: Language Concepts.

554

sys:%string-search-char char string start end Function
This is a low-level string search, possibly more efficient than the other
searching functions. Its only current efficiency advantage is its simplified
arguments and minimized type-checking.

string must be an array;

char must be a character;

from, and to must be integers.

Except for this lack of type-coercion, and the fact that none of the ar
guments is optional, sys:%string-search-char is the same as
zl:string-search-char. This function is documented for the benefit of those
who require the maximum possible efficiency in string searching.

Examples:

(sys:%string-search-char #\a
(make-array 4 :e1ement-type Jcharacter

:initia1-e1ement #\a) 2 4) => 2
(sys:%string-search-char #\p "zippy" 9 99) => 2

For a table of related items: See the section "Case-Insensitive String
Searches" in Symbolics Common Lisp: Language Concepts.

zl:string-search-char char string &optional (from 0) to Function
zl:string-search-char searches through string starting at the index from,
which defaults to the beginning, and returns the index of the first charac
ter that is char-equal to char, or nil if none is found. If the to argument
is supplied, it is used in place of <string-length string) to limit the extent
of the search. string is a string or an object that can be coerced to a
string. See the function string, page 502.

Example:

(zl :string-search #\1 "banana") => NIL
(zl:string-search-char #\a "banana") => 1
(zl:string-search-char #\a "banana") => 1
(zl :string-search-char #\a "banana" 3) => 1
(zl:string-search-char #\a "banana" 1 4) => 1

The Symbolics Common Lisp equivalent to zl:string-search-char is the
function:

string-search-char

For a table of related items: See the section "Case-Insensitive String
Searches" in Symbolics Common Lisp: Language Concepts.

555 stri ng-search-exact

string-search-exact key string &key from-end (startl 0) (endl nil) Function
(start2 0) (end2 nil)

Searches string looking for occurrences of key. The search compares all
characters exactly, using all character fields including character style and
alphabetic case.

string-search-exact returns nil, or the position of the first character of key
occurring in the (sub) string. To reverse the search, returning the position
of the last occurrence of the initial key character in the (sub)string
searched, specify a non-nil value for :from-end.

key and string must be strings, or objects that can be coerced to a string.
See the function string, page 502.

The keywords let you specify the parts of string to be searched, as well as
the parts of key to search for. These keyword arguments must be non
negative integer indices into the string array.

:from-end If a non-nil value is specified, returns the position
of the first character of the last occurrence of key
in the string or the specified substring.

:startl Specifies the position within key from which to
begin the search (counting from 0). Default is 0,
the first character in the string. :startl must be
::; :endl.

:endl Specifies the position within key of the first
character beyond the end of the search. Default is
nil, that is the entire length of key is used.

:start2 and :end2

Examples:

Work analogously for string.

(setq a-string (make-string 3 :initial-element #\a» => "aaa"
(string-search-exact #\a a-string) => 9

(string-search-exact #\a "AAA") => NIL

(string-search-exact #\a "bbbabba") => 3

(string-search-exact #\a "aaabAcBA") => 9

(string-search-exact #\a "abbbacccbaddda" :from-end 2) => 13

The case-insensitive version of string-search-exact is the function:

string-search

I

I

zl :string-search-exact

For a table of related items: See the section "Case-Sensitive String
Searches" in Symbolics Common Lisp: Language Concepts.

556

zl:string-search-exact key string &optional (from 0) to (key-start 0) Function
key-end

This searches one string for another, comparing characters exactly and
depending on all fields including bits, style, and alphabetic case. Substr
ings of either argument can be specified.

Examples:

(setq a-string (make-string 3 :initial-element #\a) => "aaa"
(zl:string-search-exact #\a a-string) => B

(zl:string-search-exact #\a "AAA") => NIL

(zl :string-search-exact #\a "bbbabba") => 3

(zl:string-search-exact #\a "aaabAcBA") => B

The Symbolics Common Lisp equivalent to zl:string-search-exact is the
function:

string-search-exact

For a table of related items: See the section "Case-Sensitive String
Searches" in Symbolics Common Lisp: Language Concepts.

string-search-exact-char char string &key from-end (start 0) (end Function
nil)

Searches string looking for the character, char. The search compares all
characters exactly, using all character fields including character style and
alphabetic case.

string-search-exact-char returns nil if it does not find char; if successful,
it returns the position of the first occurrence of char in the string or sub
string searched. To reverse the search returning the position of the last
occurrence of char in the (sub)string searched, specify a non-nil value for
the keyword :from-end.

char must be a character object.

string must be a string, or an object that can be coerced to a string. See
the function string, page 502.

The keywords let you specify the parts of string to be searched. These
keyword arguments must be non-negative integer indices into the string ar
ray.

557 sys:%string-search-exact-char

:from-end If set to a non-nil value, returns the position of
the last occurrence of char in the string or the
specified substring.

:start

:end

Specifies the position within string from which to
begin the search (counting from 0). Default is 0,
the first character in the string. :start must be ~
:end.
Specifies the position within string of the first
character beyond the end of the search. Default is
nil, that is the entire length of string is searched.

Examples:

(string-search-exact-char #\a "bbab") => 2

(string-search-exact-char #\a "abbaba") => 0

(string-search-exact-char #\a "bbAAaAAab") => 4

(string-search-exact-char #\a "bAcBA") => NIL

(string-search-exact-char #\a "abbababba"
:from-end 2 :start 3 :end 9) => 8

The case-insensitive version of string-search-exact-char is the function:

string-search-char

For a table of related items: See the section "Case-Sensitive String
Searches" in Symbolics Common Lisp: Language Concepts.

sys:%string-search-exact-char char string start end Function
This is a low-level string search, possibly more efficient than the other
searching functions. Its only current efficiency advantage is its simplified
arguments and minimized type-checking.

The function returns nil if unsuccessful, or the position in the string of the
character sought for. Count starts at zero.

Examples:

(sys:%string-search-exact-char #\a
(make-array 4 :element-type Jcharacter :initial-element #\a) 0 9)

=> 0

(sys:%string-search-exact-char #\i "Garfield" 0 6) => 4

I

zl :string-search-exact-char 558

(sys:%string-search-exact-char #\1 "Garfield" B 6) => NIL

For a table of related items: See the section "Case-Sensitive String
Searches" in Symbolics Common Lisp: Language Concepts.

zl:string-search-exact-char char string &optional (from 0) to Function
Searches a string or a substring for the specified character, comparing all
fields of the character, including, style, and alphabetic case. Use the op
tional to argument to end the search at the specified position.

zl:string-search-exact-char returns:

• The position of the first occurrence of the character in the string .
• nil if the character is not contained within the string.

For example:

(zl :string-search-exact-char #\a "bbab") => 2
(zl:string-search-exact-char #\A "abattoir") => NIL

(zl :string-search-exact-char #\a "abbaba") => B

(zl :string-search-exact-char #\a "bbAAaAAab") => 4

(zl :string-search-exact-char #\meta-A "bAcBA") => NIL

The Symbolics Common Lisp equivalent to zl:string-search-exact-char is
the function:

string-search-exact-char

For a table of related items: See the section "Case-Sensitive String
Searches" in Symbolics Common Lisp: Language Concepts.

string-search-not-char char string &key from-end (start 0) (end Function
nil)

Searches string looking for occurrences of any character other than char.
The search uses char-equal, which ignores the character fields for charac
ter style and alphabetic case.

string-search-not-char returns nil, or the position of the first occurrence
of any character that is not char. To reverse the search, returning the
position of the last occurrence of a character other than char in the
(sub)string searched, specify t for the keyword argument :from-end.

char must be a character object.

559 zl :string-search-not-char

string must be a string, or an object that can be coerced to a string. See
the function string, page 502.

The keywords let you specify the parts of string to be searched. These
keyword arguments must be non-negative integer indices into the string ar
ray.

:from-end

:start

: end

Examples:

If it has a non-nil value, returns the position of
the last occurrence of a character that does not
match char in the string or the specified substr
ing.
Specifies the position within string from which to
begin the search (counting from 0). Default is 0,
the first character in the string. :start must be ~
:end.
Specifies the position within string of the first
character beyond the end of the search. Default is
nil, that is the entire length of string is searched.

(string-search-not-char #\E "eel") => 2
(string-search-not-char #\1 "oscillate") => B
(string-search-not-char #\1 "oscillate" :start 5) => 6
(string-search-not-char #\1 "oscillate" :start 5 :from-end t) => 8
(string-search-not-char #\1 "oscillate" :start 2 :end 5 :from-end t) => 3

The case-sensitive version of string-search-not-char is the function:

string-search-not-exact-char

For a table of related items: See the section "Case-Insensitive String
Searches" in Symbolics Common Lisp: Language Concepts.

I
zl:string-search-not-char char string &optional (from 0) to Function

zl:string-search-not-char searches through string starting at the index
from, which defaults to the beginning, and returns the index of the first
character which is not char-equal to char, or nil if none is found. If the
to argument is supplied, it is used in place of <string-length string) to limit
the extent of the search. string is a string or an object that can be coerced
to a string. See the function string, page 502. Example:

/

I

string-search-not-exact-char 560

(zl :string-search-not-char #\b "banana") => 1
(zl :string-search-not-char #\n "banana" 2) => 3
(zl :string-search-not-char #\n "banana" 2 3) => NIL
(zl :string-search-not-char #\E "eel") => 2
(zl :string-search-not-char #\1 "oscillate") => 0
(zl :string-search-not-char #\1 "oscillate" 5) => 6
(zl :string-search-not-char #\1 "oscillate" 2 5) => 2

The Symbolics Common Lisp equivalent to zl:string-search-not-char is the
function:

string-search-not-char

For a table of related items: See the section "Case-Insensitive String
Searches" in Symbolics Comm,on Lisp: Language Concepts.

string-search-not-exact-char char string &key from-end (start 0) Function
(end nil)

Searches string looking for occurrences of any character other than char.
The search compares all characters exactly, using all character fields in
cluding character style and alphabetic case.

string-search-not-exact-char returns nil, or the position of the first occur
rence of any character that is not char. To reverse the search, returning
the position of the last occurrence of a character other than char in the
(sub)string searched, specify t for the keyword argument :from-end.

char must be a character object.

string must be a string, or an object that can be coerced to a string. See
the function string, page 502.

The keywords let you specify the parts of string to be searched. These
keyword arguments must be non-negative integer indices into the string ar
ray.

:from-end

:start

:end

Examples:

If it has a non-nil value, returns the position of
the last occurrence of a character that does not
match char in the string or the specified substr
ing.
Specifies the position within string from which to
begin the search (counting from 0). Default is 0,
the first character in the string. :start must be :=:;;

:end.
Specifies the position within string of the first
character beyond the end of the search. Default is
nil, that is the entire length of string is searched.

561 zl :stri ng-search-not-exact-char

(setq a-string (make-string 3 :initia1-e1ement #\a)) => "aaa"
(string-search-not~exact-char #\a a-string) => NIL

(string-search-not-exact-char #\a "AAA") => e

(string-search-not-exact-char #\a "bbba") => e

(string-search-not-exact-char #\a "aaabAcBA") => 3

(string-search-not-exact-char #\a
"abbacccaccca" :from-end 3 :start 2 :end 9) => 8

The case-insensitive version of string-search-not-exact-char is the func
tion:

string-search-not-char

For a table of related items: See the section "Case-Sensitive String
Searches" in Symbolics Common Lisp: Language Concepts.

zl:string-search-not-exact-char char string &optional (from 0) to Function
Searches a string or a substring for the first occurrence of any character
other than the specified character. It compares all fields of the character,
including bits, style, and alphabetic case. Use the optional to argument to
end the search at the specified position.

zl:string-search-not-exact-char returns:

• The position of the first character in the string that does not match
the specified character.

• nil if the string contains only the specified character.

For example:

(setq a-string (make-string 3 :initia1-e1ement #\a)) => "aaa"
(zl :string-search-not-exact-char #\a a-string) => NIL

(zl :string-search-not-exact-char #\a "AAA") => e

(zl :string-search-not-exact-char #\a "bbba") => e

(zl :string-search-not-exact-char #\a "aaabAcBA") => 3

The Symbolics Common Lisp equivalent to zl:string-search-not-exact-char
is the function:

string-search-not-exact-char

I

I

string-search-not-set 562

For a table of related items: See the section "Case-Sensitive String
Searches" in Symbolics Common Lisp: Language Concepts.

string-search-not-set char-set string &key from-end (start 0) (end Function
nil)

Searches string looking for a character that is not in char-set. The search
uses char-equal, which ignores the character fields for character style and
alphabetic case.

string-search-not-set returns nil, or the position of the first character that
is not char-equal to some element of the char-set. To reverse the search,
returning the position of the last occurrence of a character not in char-set
in the (sub)string searched, specify t for the keyword argument :from-end.

char-set is a set of characters which can be represented as a list of charac
ters, an array of characters, or a string of characters.

string must be a string, or an object that can be coerced to a string. See
the function string, page 502.

The keywords let you specify the parts of string to be searched. These
keyword arguments must be non-negative integer indices into the string ar
ray.

:from-end If a non-nil value is specified, returns the position
of the last occurrence of a character not in
char-set in the (sub)string searched.

:start

:end

Specifies the position within string from wh~ch to
begin the search (counting from 0). Default is 0,
the first character in the string. :start must be ::;;
:end.
Specifies the position within string of the first
character beyond the end of the search. Default is
nil, that is the entire length of string is searched.

Examples:

(string-search-not-set #(#\a) "aaa") => NIL
(string-search-not-set '(#\h #\i) "hi") => NIL
(string-search-not-set '(#\a) "bcaa") => 9
(string-search-not-set '(#\a #\b #\c) "abcdefabc") => 3

For a table of related items:' See the section "Case-Insensitive String
Searches" in Symbolics Common Lisp: Language Concepts.

563 21 :string-search-not-set

zl:string-search-not-set char-set string &optional (from 0) to Function
zl:string-search-not-set searches through string looking for a character
that is not in char-set. The search begins at the index from, which defaults
to the beginning. It returns the index of the first character that is not
char-equal to any element of char-set, or nil if none is found. If the to ar
gument is supplied, it is used in place of (string-length string) to limit the
extent of the search. char-set is a set of characters, which can be
represented as a list of characters or a string of characters. string is a
string or an object that can be coerced to a string. See the function
string, page 502. Example:

(z1 :string-search-not-set '(#\a #\b) "banana") => 2
(z1 :string-search-not-set '(#\h #\i) "hi") => NIL
(z1 :string-search-not-set '(#\a) "bcaa") => B
(z1 :string-search-not-set '(#\a #\b #\c) "abcdefabc") => 3

The Symbolics Common Lisp equivalent to zl:string-search-not-set is the
function:

string-search-not-set

For a table of related items: See the section "Case-Insensitive String
Searches" in Symbolics Common Lisp: Language Concepts.

string-search-set char-set string &key from-end (start 0) (end nil) Function
Searches string looking for a character that is in char-set. The search uses
char-equal, which ignores the character fields for character style and al
phabetic case.

string-search-set returns nil, or the position of the first character that is
char-equal to some element of the char-set. To reverse the search, return
ing the position of the last occurrence of the initial character of char-set in
the (sub)string searched, set :from-end to t.

char-set is a set of characters which can be represented as a list of charac
ters, an array of characters, or a string of characters.

string must be a string, or an object that can be coerced to a string. See
the function string, page 502.

The keywords let you specify the parts of string to be searched. These
keyword arguments must be non-negative integer indices into the string ar
ray.

:from-end

:start

If set to a non-nil value, returns the position of
the last occurrence of the first character of
char-set in the string or the specified substring.
Specifies the position within string from which to
begin the search (counting from 0). Default is 0,

I

I

zl :string-search-set 564

the first character in the string. :start must be ~
: end.

: end Specifies the position within string of the first
character beyond the end of the search. Default is
nil, that is the entire length of string is searched.

Examples:

(string-search-set #(#\a) "aaa") => e
(string-search-set '(#\h #\i) "hi") => e
(string-search-set '(#\a) "bcaa") => 2
(string-search-set '(#\a #\b #\c) "abcdefabc") => B
(string-search-set #(#\a #\. #\h) "ping ... ahh ... haaa") => 4

For a table of related items: See the section "Case-Insensitive String
Searches" in Symbolics Common Lisp: Language Concepts.

zl:string-search-set char-set string &optional (from 0) to Function
zl:string-search-set searches through string looking for a character that is
in char-set. The search begins at the index from, which defaults to the
beginning. It returns the index of the first character that is char-equal to
some element of char-set, or nil if none is found. If the to argument is
supplied, it is used in place of (string-length string) to limit the extent of
the search.

char-set is a set of characters, which can be represented as a list of charac
ters or a string of characters.

string is a string or an object that can be coerced to a string. See the
function string, page 502. Example:

(zl:string-search-set '(#\h #\i) "hi") => e
(zl :string-search-set '(#\a) "bcaa") => 2
(zl :string-search-set '(#\a #\b #\c) "abcdefabc") => e

The Symbolics Common Lisp equivalent to zl:string-search-set is the func
tion:

string-search-set

For a table of related items: See the section "Case-Insensitive String
Searches" in Symbolics Common Lisp: Language Concepts.

string-to-ascii lis pm-string Function
Converts lis pm-string to an sys:art-8b array containing ASCII character
codes. See the section "ASCII Characters" in Symbolics Common Lisp:
Language Concepts.

565 string-trim

Example:

(string-to-ascii "hello") => #<ART-8B-5 24443106>

For a table of related items: See the section "ASCII String Functions" In
Symbolics Common Lisp: Language Concepts.

string-trim char-set string Function
This returns a substring of string, with all characters in char-set stripped
off the beginning and end. string itself is not modified.

string is a string or an object that can be coerced to a string. See the
function string, page 502.

char-set is a set of characters, that can be represented as a list of charac
ters, an array of characters, or a string of characters.

Examples:

(string-trim '(#\sp)" Dr. No ") => "Dr. No"
(string-trim #(#\a #\b) "abbafooabb") => "foo"
(string-trim nab" "abbafooabb") => "foo"

For a table of related items: See the section "String Manipulation" in Sym
bolics Common Lisp: Language Concepts.

zl:string-trim char-set string Function
This returns a substring of string, with all characters in char-set stripped
off the qeginning and end. string itself is not modified.

string is a string or an object that can be coerced to a string. See the
function string, page 502.

char-set is a set of characters, that can be represented as a list of charac
ters, or a string of characters.

Examples:

(zl :string-trim '(#\sp)" blank ") => "blank"
(zl:string-trim nab" "abbafooabb") => "foo"

The Common Lisp equivalent to zl:string-trim is the function:

string-trim

For a table of related items: See the section "String Manipulation" in Sym
bolics Common Lisp: Language Concepts.

string-upcase string &key (start 0) (end nil) Function
Returns a copy of string, with lowercase alphabetic characters replaced by
the corresponding uppercase characters. (char-upcase is applied to each
character of string.)

I

I

zl :string-upcase

string is a string or an object that can be coerced to a string. See the
function string, page 502.

566

The keywords let you select portions of the string argument for uppercas
ing. These keyword arguments must be non-negative integer indices into
the string array. The result is always the same length as string, however.

:start Specifies the position within string from which to begin uppercasing
(counting from 0). Default is 0, the first character in the string.
:start must be ::;; :end.

:end Specifies the position within string of the first character beyond the
end of the uppercasing operation. Default is nil, that is, the opera
tion continues to the end of the string.

The destructive version string-upcase is the function nstring-upcase.

Examples:

(string-upcase 'fred) => "FRED"
(string-upcase "window") => "WINDOW"
(string-upcase "miXEd-uP") => "MIXED-UP"
(string-upcase un) => ""
(string-upcase "17.t~ah") => "17.·~aH"
(string-upcase "end" :start 1) => "eND"
(string-upcase "middle" :start 2 :end 4) => "miDDle"
(zl:string-upcase a 2 4) => "a STring"
(zl :string-upcase a 5 7) => "a strINg"
(zl :string-upcase a 2 4 nil) => "a STring"
(zl :string-upcase a 5 7 nil) => "a STrINg"
(setq a "a string") =>"a string"
(string-upcase a :start 2 :end 4) => "a STring"

For a table of related items: See the section "String Conversion" in Sym
bolics Common Lisp: Language Concepts.

zl:string-upcase string &optional (from 0) to (copy-p t) Function
This function replaces lowercase alphabetic characters in argument string
with the corresponding uppercase characters. The effect on the original ar
gument depends on the value of copy-p: if copy-p is not nil, a copy of string
is returned; if copy-p is nil, string itself is modified and returned.

string is a string or an object that can be coerced to a string. See the
function string, page 502.

from is the index in string at which to begin uppercasing characters. If to
is supplied, it is used in place of <array-active-Iength string) as the index
one greater than the last character to be uppercased.

567

Examples:

(zl :string-upcase 'fred) => "FRED"
(zl :string-upcase "window") => "WINDOW"
(zl:string-upcase "miXEd-uP") => "MIXED-UP"
(zl :string-upcase UN) => ""
(zl : stri ng-upcase "17.' Sa.h") => "17.' Sa.H"
(zl :string-upcase "end" 1) => "eND"
(zl :string-upcase "middle" 2 4) => "miDDle"
(zl :string-upcase "mixed up fonts") => "MIXED UP FONTS"
(setq a "a string") => "a string"
(zl :string-upcase a 2 4) => "a STring"
(zl :string-upcase a 5 7) => "a strINg"
(zl :string-upcase a 2 4 nil) => "a STring"
(zl :string-upcase a 5 7 nil) => "a STrINg"

structure

The Common Lisp equivalent to zl:string-upcase are the functions:

string-upcase
nstring-upcase

For a table of related items: See the section "String Conversion" in Sym
bolics Common Lisp: Language Concepts.

structure &optional (name '*) Type Specifier
structure is the type specifier symbol denoting instances of a structure. I
When a new structure is defined with defstruct, the name of the structure
type becomes a valid type symbol, and individual instances of that structure
become valid types of structure that can be tested with typep.

structure is a subtype of t.

Examples:

(defstruct ship
x-position
y-position) => SHIP

(setq my-boat (make-ship» => #S(SHIP :X-POSITION NIL
:Y-POSITION NIL)

(typep my-boat '(structure ship» => T
(zl :typep my-boat) => SHIP
(type-of my-boat) => SHIP
(sys:type-arglist 'structure) => (&OPTIONAL (NAME '*» and T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the section "Structure Macros" in Symbolics
Common Lisp: Language Concepts.

I

zl:sub1 568

zl:sub1 x Function
(zl:sub1 X) is the same as (- x 1).
The following functions are synonyms of zl:sub1:

1-
zl:1-$

sublis alist tree &rest args &key (test #' eq 1) test-not (key Function
#'identity)

sub lis makes non-destructive substitutions for objects in a tree (a structure
of conses). The first argument to sub lis is an association list, or alist.
The second argument is the tree in which the substitutions are to be made,
as for subst. sub lis looks at all the subtrees and leaves of the tree. If a
subtree or leaf appears as a key in the association list (that is, t~e key and
the subtree or leaf satisfy the predicate specified by the :test keyword), it
is replaced by the datum it is associated with. The keywords are:

:test

:test-not

: key

Any predicate specifying a binary operation to be applied
to a supplied argument and an element of a target list.
The item matches the specification only if the predicate
returns t. If :test is not supplied the default operation is
eql.
Similar to :test, except the item matches the specification
only if there is an element of the list for which the
predicate returns nil.
If not nil, should be a function of one argument that will
extract from an element the part to be tested in place of
the whole element.

In effect, sublis can perform several subst operations simultaneously. For
example:

(setq exp '«* x y) (+ x y») => «* X Y) (+ X v»~

(sublis '«x. 199» exp) => «* 199 Y) (+ 199 V»~

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

zl:sublis alist tree Function
zl:sublis makes substitutions for symbols in a tree. The first argument to
zl:sublis is an association list. See the section "Association Lists" in Sym
bolics Common Lisp: Language Concepts. The second argument is the tree
in which substitutions are to be made. zl:sublis looks at all symbols in the
fringe of the tree; if a symbol appears in the association list, occurrences of
it are replaced by the object with which it is associated. The argument is
not modified; new conses are created where necessary and only where

569 zl:subrp

necessary, so the newly created tree shares as much of its substructure as
possible with the old. For example, if no substitutions are made, the result
is just the old tree. Example:

(zl : subl is' «x . H.I9) (z . zpri me))
'(plus x (minus 9 z x p) 4))

=> (plus 1aa (minus 9 zprime 1aa p) 4)

zl:sublis could have been defined by:

(defun sublis (alist sexp)
(cond «symbolp sexp)

(let «tem (assq sexp alist)))
(if tem (cdr tem) sexp)))

«listp sexp)
(let «car (sublis alist (car sexp)))

(cdr (sublis alist (cdr sexp))))
(if (and (eq (car sexp) car) (eq (cdr sexp) cdr))

sexp
(cons car cdr))))

(t
(sexp))))

This Zetalisp function is shadowed by the Common Lisp function of the
same name.

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

zl:subrp arg Function
zl:subrp returns t if its argument is any compiled code object, otherwise
nil. The Symbolics Common Lisp does not use the term "subr"; the name
of this function comes from Maclisp.

subseq sequence start &optional end Function
subseq returns the subsequence of sequence specified by :start and :end.
subseq always allocates a new sequence for a result, and never shares
storage with an old sequence. The result subsequence is always of the
same type as sequence.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

For example:

•

I

zl:subset

(subseq #(1 2 3 4 5) 3 5) => #(4 5)

Note start and end are not keywords.

570

setf can be used with subseq to destructively replace a subsequence with a
sequence of ~ew values. See the function replace, page 448. See the func
tion substitute, page 574. For example:

(setq num-list '(1 234 5)) => (1 2 345)

(setf (subseq num-list 2 4) '(~ ~)) => (~ B)

num-list => (1 2 ~ B 5)

For a table of related items: See the section "Sequence Construction and
Access" in Symbolics Common Lisp: Language Concepts.

zl:subset predicate list &rest extra-lists Function
zl:subset and zl:rem-if-not do the same thing, but they are used in dif
ferent contexts. zl:rem-if-not means "remove if this condition is not true";
that is, it keeps the elements for which predicate is true. zl:subset refers
to the function's action if list is considered to represent a mathematical set.

predicate should be a function of one argument, if there are no extra-lists
arguments. A new list is made by applying predicate to all of the elements
of list and removing the ones for which the predicate returns nil.

If extra-lists is present, each element of extra-lists (that is, each further ar
gument to zl:subset or zl:rem-if-not) is a list of objects to be passed to
predicate as predicate'S second argument, third argument, and so on. The
reason for this is that predicate might be a function of many' arguments;
extra-lists lets you control what values are passed as additional arguments
to predicate. However, the list returned by zl:subset or zl:rem-if-not is
still a "subset" of those values that were passed as the first argument in
the various calls to predicate.

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

zl:subset-not predicate list &rest extra-lists Function
zl:subset-not and zl:rem-if do the same thing, but they are used in dif
ferent contexts. zl:rem-if means "remove if this condition is true".
zl:subset-not refers to the function's action if list is considered to
represent a mathematical set.

predicate should be a function of one argument, if there are no extra-lists
arguments. A new list is made by applying predicate to all the elements of
list and removing the ones for which the predicate returns non-nil.

571 subsetp

If extra-lists is present, each element of extra-lists (that is, each further ar
gument to zl:subset-not or zl:rem-if) is a list of objects to be passed to
predicate as predicate's second argument, third argument, and so on. The
reason for this is that predicate might be a function of many arguments;
extra-lists lets you control what values are passed as additional arguments
to predicate. However, the list returned by zl:subset-not or zl:rem-if is
still a "subset" of those values that were passed as the first argument in
the various calls to predicate.

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

subsetp listl list2 &key (test #'eql) test-not (key #'identity) Function
subsetp is a predicate that is true if every element of listl appears in list2,
and false otherwise.

(setq a-list '(loon stork heron» => (LOON STORK HERON)

(setq b-list '(loon owl stork eagle heron» =>
(LOON OWL STORK EAGLE HERON)

(subsetp a-list b-list) => T

(subsetp b-list a-list) => NIL

The keywords are:

:test

: test-not

:key

Any predicate specifying a binary operation to be applied
to a supplied argument and an element of a target list.
The item matches the specification only if the predicate
returns t. If :test is not supplied the default operation is

eql. I Similar to :test, except the item matches the specification
only if there is an element of the list for which the
predicate returns nil.
If not nil, should be a function of one argument that will
extract from an element the part to be tested in place of
the whole element.

For a table of related items: See the section "Predicates That Operate on
Lists" in Symbolics Common Lisp: Language Concepts.

subst new old tree &rest args &key (test #'eqI) test-not (key Function
#'identity)

subst makes a copy of tree, substituting new for every subtree or leaf of
tree (whether the subtree or leaf is a car or cdr of its parent) such that old
and the subtree or leaf satisfy the predicate specified by the :test keyword ..

I

zl:subst 572

It returns the modified copy of tree, and the original tree is unchanged, al
though it may share with parts of the result tree. For example:

(setq bird-list '(waders (flamingo stork) raptors (eagle hawk») =>
(WADERS (FLAMINGO STORK) RAPTORS (EAGLE HAWK»

(subst 'heron 'stork bird-list) =>
(WADERS (FLAMINGO HERON) RAPTORS (EAGLE HAWK»

The keywords are:

:test

:test-not

:key

Any predicate specifying a binary operation to be applied
to a supplied argument and an element of a target list.
The item matches the specification only if the predicate
returns t. If :test is not supplied the default operation is
eqI.
Similar to :test, except the item matches the specification
only if there is an element of the list for which the
predicate returns nil.
If not nil, should be a function of one argument that will
extract from an element the part to be tested in place of
the whole element.

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

zl:subst new old tree Function
(zl:subst new old tree) substitutes new for all occurrences of old in tree,
and returns the modified copy of tree. The original tree is unchanged, as
zl:subst recursively copies all of tree replacing elements zl:equal to old as
it goes. Example:

(zl :subst 'Tempest 'Hurricane
'(Shakespeare wrote (The Hurricane»)

=> (Shakespeare wrote (The Tempest»

zl:subst could have been defined by:

(defun subst (new old tree)
(cond «equal tree old) new) ;if item equal to old, replace.

«atom tree) tree) ;if no substructure, return argo
«cons (subst new old (car tree» ;otherwise recurse.

(subst new old (cdr tree»»»

Note that this function is not "destructive"; that is, it does not change the
car or cdr of any existing list structure.

To copy a tree, use zl:copytree; the old practice of using zl:subst to copy
trees is unclear and obsolete.

573 subst-if

This Zetalisp function is shadowed by the Common Lisp function of the
same name.

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

subst-if new predicate tree &rest args &key key Function
subst-if makes a copy of tree, substituting new for every subtree or leaf of
tree such that old and the subtree or leaf satisfy the test specified by predi
cate. It returns the modified copy of tree, and the original tree is un
changed, although it may share with parts of the result tree. For example:

(setq item-list '(numbers (1.8 2 5/3) symbols (faa bar») =>
(NUMBERS (1.8 2 5/3) SYMBOLS (FOO BAR»

(subst-if '3.1415 #'numberp item-list) =>
(NUMBERS (3.1415 3.1415 3.1415) SYMBOLS (FOO BAR»

item-list => (NUMBERS (1.8 2 5/3) SYMBOLS (FOO BAR»

The keyword is:

:key If not nil, should be a function of one argument that will
extract from an element the part to be tested in place of
the whole element.

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

subst-if-not new predicate tree &rest args &key key Function
subst-if-not makes a copy of tree, substituting new for every subtree or leaf
of tree such that old and the subtree or leaf do not satisfy the test specified
by predicate. It returns the modified copy of tree, and the original tree is I
unchanged, although it may share with parts of the result tree. For ex-
ample:

(setq item-list '(numbers (1.8 2 5/3) symbols (faa bar») =>
(NUMBERS (1.8 2 5/3) SYMBOLS (FOO BAR»

(subst-if-not '3.1415 #'numberp item-list) =>
(3.1415 (1.8 2 5/3) 3.1415 (3.1415 3.1415»

item-list => (NUMBERS (1.8 2 5/3) SYMBOLS (FOO BAR»

The keyword is:

:key If not nil, should be a function of one argument that will
extract from an element the part to be tested in place of
the whole element.

I

substitute

For a table of related items: See the section "Functions for Modifying
Lists" in Symbolics Common Lisp: Language Concepts.

574

substitute newitem olditem sequence &key (test #'eql) test-not (key Function
#'identity) from-end (start 0) end count

substitute returns a sequence of the same type as sequence that has the
same elements, except that those in the subsequence delimited by :start
and :end and satisfying the predicate specified by the :test keyword are
replaced by new item. This is a non-destructive operation, and the result is
a copy of sequence with some elements changed.

For example:

(setq letters '(a be» => (A 8 C)
(substitute 'a 'b '(a be» => (A A C)
letters => (A 8 C)

(substitute 'b 'e letters) => (A 8 B)
letters => (A B C)

newitem and olditem can be any Symbolics Common Lisp object but must be
a suitable element for the sequence.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

:test specifies the test to be performed. An element of sequence satisfies
the test if (funcall testfun item (keyfn x» is true. Where testfun is the test
function specified by :test, keyfn is the function specified by :key and x is
an element of the sequence. The default test is eql.

For example:

(substitute e 3 '(1 1 442) :test #'<) => (1 1 e e 2)

:test-not is similar to :test, except that the sense of the test is inverted.
An element of sequence satisfies the test if (funcall testfun item (keyfn x»
is false.

The value of the keyword argument : key, if non-nil, is a function that
takes one argument. This function extracts from each element the part to
be tested in place of the whole element.

For example:

(substitute 1 2 ' «1 1) (1 2) (4 3» :key #'seeond) => «1 1) 1 (4 3»

(substitute 'a 'b '«a b) (b e) (b b» :key #'eadr) => (A (8 C) A)

A non-nil :from-end specification matters only when the :count argument
is provided; in that case only the rightmost :count elements satisfying the
test are replaced.

575 su bstitute-if

For example:

(substitute 'hi 'b '(b a b) :from-end t :count 1)
=> (8 A HI)

Use the keyword arguments :start and :end to delimit the portion of the
sequence to be operated on.

:start and :end must be non-negative integer indices into the sequence.
:start must be less than or equal to :end, else an error is signalled. It
defaults to zero (the start of the sequence).

:start indicates the start position for the operation within the sequence.
:end indicates the position of the first element in the sequence beyond the
end of the operation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by
default.

For example:

(substitute 'a 'b '(b a b) :start 1 :end 3) => (8 A A)

(substitute 'a 'b '(b a b) :end 2) => (A A 8)

(substitute 'a 'b '(b a b) :end 3) => (A A A)

The :count argument, if specified, limits the number of elements altered.
If more than :count elements satisfy the predicate, then only the leftmost
:count elements are replaced.

For example:

(substitute 'a 'b '(b b a b b) :count 3) => (A A A A 8)

. The result of the substitute function can share cells with the argument se- I
quence. A list can share a tail with an input list, and the result can be eq
to the input sequence if no elements need to be changed.

See the function subst, page 571.

substitute is the non-destructive version of nsubstitute.

For a table of related items: See the section "Sequence Modification" in
Symbolics Common Lisp: Language Concepts.

substitute-if newitem predicate sequence &key key from-end (start Function
0) end count

substitute-if returns a sequence of the same type as sequence that has the
same elements, except that those in the subsequence delimited by :start
and :end and satisfying predicate are replaced by newitem. This is a non
destructive operation, and the result is a copy of sequence with some ele
ments changed.

I

substitute-if

For example:

(setq numbers '(8 1 19» => (8 1 19)
(substitute-if #'zerop numbers) => (1 1 19)
numbers => (8 1 19)

(substitute-if 2 #'numberp numbers) => (2 2 2)
numbers => (8 1 19)

576

newitem can be any Symbolics Common Lisp object but must be a suitable
element for the sequence.

predicate is the test to be performed on each element.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

The value of the keyword argument : key, if non-nil, is a function that
takes one argument. This function extracts from each element the part to
be tested in place of the whole element.

For example:

(substitute-if 1 #'oddp '«1 1) (1 2) (4 3» :key #'second)
=> (1 (1 2) 1)

A non-nil :from-end specification matters only when the :count argument
is provided; in that case only the rightmost :count elements satisfying the
test are replaced.

For example:

(substitute-if 'hi #'atom '(b 'a b) :from-end t :count 1)
=> (8 'A HI)

Use the keyword arguments :start and :end to delimit the portion of the
sequence to be operated on.

:start and :end must be non-negative integer indices into the sequence.
:start must be less than or equal to :end, else an error is signalled. It
defaults to zero (the start of the sequence).

:start indicates the start position for the operation within the sequence.
:end indicates the position of the first element in the sequence beyond the
end of the operation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by
default.

For example:

577 su bstitute-if-not

(substitute-if 1 #'zerop '(9 1 9) :start 1 :end 3)
=> (9 1 1)

(substitute-if 1 #'zerop '(9 1 9) :start 9 :end 2)
=> (1 1 9)

(substitute-if 1 #'zerop '(9 1 9) :end 1)
=> (1 1 9)

A non-nil : count, if supplied, limits the number of elements altered; if
more than :count elements satisfy the test, then of these elements only the
leftmost are replaced, as many as specified by :count

For example:

(substitute-if 'see 'atom '(b b a b b) :count 3)
=> (SEE SEE SEE 8 8)

substitute-if is the non-destructive version of nsubstitute-if.

For a table of related items: See the section "Sequence Modification" in
Symbolics Common Lisp: Language Concepts.

substitute-if-not newitem predicate sequence &key key from-end Function
(start 0) end count

substitute-if-not returns a sequence of the same type as sequence that has
the same elements, except that those in the subsequence delimited by :start
and :end that do not satisfy predicate are replaced by newitem. This is a
non-destructive operation, and the result is a copy of sequence with some
elements changed.

For example:

(setq numbers '(9 9 9»=> (9 9 9)
(substitute-if-not 1 #'numberp numbers) => (9 9 9)
numbers => (9 9 9)

(substitute-if-not 2 #'consp numbers) => (2 2 2)
numbers => (9 9 9)

new item can be any Symbolics Common Lisp object but must be a suitable
element for the sequence.

predicate is the test to be performed on each element.

sequence can be either a list or a vector (one-dimensional array). Note that
nil is considered to be a sequence, of length zero.

The value of the keyword argument :key, if non-nil, is a function that
takes one argument. This function extracts from each element the part to
be tested in place of the whole element.

I

I

sUbstitute-if-not 578

For example:

(substitute-if-not 1 #'oddp '((1 1) (1 2) (4 3» :key #'second)
=> ((1 1) 1 (4 3»

A non-nil :from-end specification matters only when the :count argument
is provided; in that case only the rightmost :count elements satisfying the
test are replaced.

For example:

(substitute-if-not 'hi #'atom '('b a 'b) :from-end t :count 1)
=> ('8 A HI)

Use the keyword arguments :start and :end to delimit the portion of the
sequence to be operated on.

:start and :end must be non-negative integer indices into the sequence.
:start must be less than or equal to :end, else an error is signalled. It
defaults to zero (the start of the sequence).

:start indicates the start position for the operation within the sequence.
:end indicates the position of the first element in the sequence beyond the
end of the operation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by
default.

For example:

(substitute-if-not 1 #'zerop '(3 B 2) :start 1 :end 3)
=> (3 B 1)

(substitute-if-not 1 #'zerop '(3 B 2) :start B :end 2)
=> (1 B 2)

(subst i tute-i f-not 1 #' zerop '(3 B 2) : end 1)
=> (1 B 2)

A non-nil : count, if supplied, limits the number of elements altered; if
more than :count elements satisfy the test, then of these elements only the
leftmost are replaced, as many as specified by :count

For example:

(substitute-if-not 'see 'consp '(b b a b b) :count 3)
=> (SEE SEE SEE 8 8)

substitute-if-not is the non-destructive version of nsubstitute-if-not.

For a table of related items: See the section "Sequence Modification" in
Symbolics Common Lisp: Language Concepts.

579 substring

substring string from &optional to (area nil) Function
This extracts a substring of string, starting at the character specified by
from and going up to but not including the character specified by to.

string is a string or an object that can be coerced to a string. See the
function string, page 502.

from and to are O-origin indices. The length of the returned string is to
minus from. If to is not specified it defaults to the length of string. The
area in which the result is to be consed can be optionally specified.

The destructive version of substring is the function nsubstring.

Examples:

(substring "Nebuchadnezzar" 4 8) => "chad"
(substring "Nebuchadnezzar" 4) => "chadnezzar"
(substring 'string 1 4) => "TRI"
(setq a "Aloysius") => "Aloysius"
(setq b (substring a 2 4» => Hoy"
(nstring-upcase b) => HOY"
(substring a 9) => "Aloysius"

For a table of related items: See the section "String Access and
Information" in Symbolics Common Lisp: Language Concepts.

subtypep typel type2 Function
Compares the two type specifiers, typel and type2. subtypep is true if
typel is definitely a subtype of type2. If the result is nil, however, typel
mayor may not be a subtype of type2 (sometimes it is impossible to tell,
especially when satisfies type specifiers are involved). A second returned
value indicates the certainty of the result; if it is true, then the Irrst value
is an accurate indication of the subtype relationship. Thus, subtypep
returns one of three possible result combinations:

t t
nil t
nil nil

typel is definitely a subtype of type2.
typel is definitely not a subtype of type2.
subtypep could not determine the relationship.

The arguments typel and type2 must be type specifiers that are acceptable
to typep. For standard Symbolics Common Lisp type specifiers: See the
section "Type Specifiers" in Symbolics Common Lisp: Language Concepts.

Examples:

•

I

sum

(subtypep 'single-float 'float) => T and T subtype and certain
(subtypep 'bit '(number B 4» => T and T
(subtypep 'array t) => T and T
(subtypep 'common t) => T and T
(subtypep 'signed-byte 'bit) => NIL and T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

sum Keyword For loop

sum expr {data-type} {into var}

580

Evaluates expr on each iteration, and accumulates the sum of all the values.
data-type defaults to number, which for all practical purposes is notype. Note
that specifying data-type implies that both the sum and the number being summed
(the value of expr) is of that type. When the epilogue of the loop is reached, var
has been set to the accumulated result and can be used by the epilogue code.

It is safe to reference the values in var during the loop, but they should not be
modified until the epilogue code for the loop is reached.

The forms sum. and summing are synonymous.

Examples:

(defun geometric-s (num)
(loop for i from 1 to num

sum i into sum-var
finally (print sum-var») => GEOMETRIC-S

(geometric-s 5) =>
15 NIL

Is equivalent to

(defun geometric-s (num)
(loop for i from 1 to num

summing i into sum-var
finally (print sum-var») => GEOMETRIC-S

(geometric-s 5) =>
15 NIL

Not only can there be multiple accumulations in a loop, but a single accumulation
can come from multiple places within the same loop form, if the types of the
collections are compatible. sum. and count are compatible.

See the. section "loop Clauses", page 310.

581 svref

svref array &rest subscript Function
Returns the element of the vector selected by subscript. The first ar
gument must be a simple vector. The subscript must be an integer.

zl:swapf a b Macro
Exchanges the value of one generalized variable with that of another. a
and b are access-forms suitable for setf. The returned value is not defined.
All the caveats that apply to incf apply to zl:swapf as well: Forms within
a and b can be evaluated more than once. (rotatef does not evaluate any
form within a and b more than once.)

Examples:

(swapf a b)

==> (setf a (prog1 b (setf b a)))

==> (setq a (prog1 b (setq b a)))

(swapf (car (faa)) (car (bar)))

==> (setf (car (faa)) (prog1 (car (bar)) (setf (car (bar)) (car (faa)))))

==> (rplaca (faa) (prog1 (car (bar)) (rplaca (bar) (car (faa)))))

Note that in the second example the functions foo and bar are called
twice.

See the section "Generalized Variables" in Symbolics Common Lisp: Lan
guage Concepts.

:swap-hash key value Message
This does the same thing as zl:puthash, but returns different values. If
there was an existing entry in the hash table whose key was key, then it
returns the old associated value as its first returned value, and t as its
second returned value. Otherwise it returns two values, nil and nil. This
message will be removed in the future - use swaphash instead.

swaphash key value hash-table Function
This does the same thing as zl:puthash, but returns different values. If
there was an existing entry in hash-table whose key was key, then it
returns the old associated value as its first returned value, and t as its
second returned value. Otherwise it returns two values, nil and nil.

For a table of related items: See the section "Table Functions" in Sym
bolics Common Lisp: Language Concepts.

zl:swaphash-equal key value hash-table Function
This does the same thing as zl:puthash, but returns different values. If
there was an existing entry in hash-table whose key was key, then it
returns the old associated value as its first returned value, and t as its

I

I

sxhash 582

second returned value. Otherwise it returns two values, nil and nil. This
function will be removed in the future - use swaphash instead.

smash x Function
smash computes a hash code of an object, and returns it as a Il.XI1um. A
property of smash is that (equal x y) always implies (= (smash x)
(smash y». The number returned by smash is always a nonnegative iIx
num, possibly a large one. smash tries to compute its hash code in such a
way that common permutations of an object, such as interchanging two ele
ments of a list or changing one character in a string, always changes the
hash code.

smash is the same as si:equal-hash, except that smash returns 0 as the
hash value for objects with data types like arrays, stack groups, or closures.
As a result, hashing such structures could degenerate to the case of linear
search.

symbol Type Specifier
symbol is the type specifier symbol for the predefined Lisp symbol data
type.

The types symbol, cons, array, number, and character are pairwise dis
joint.

The type symbol is a supertype of the type null.

Examples:

(typep 'word 'symbol) => T
(zl:typep t) => :SYMBOL
(subtypep 'symbol 'common) => T and T
(sys:type-arglist 'symbol) => NIL and T
(symbolp 'time) => T
(nsymbolp 'it) => NIL
(symbol-package nil) => #<Package COMMON-LISP 35478675>

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the section "Symbols and Keywords" in Sym
bolics Common Lisp: Language Concepts.

symbol-function symbol Function
Returns the current global function definition named by symbol. If symbol
has no function definition, signals an error. The deiInition can be a func
tion or an object representing a special form or macro. If the definition is
an object representing special form or a macro, it is an error to try to in
voke the object as a function. See the section "Functions Relating to the
Function Cell of a Symbol" in Symbolics Common Lisp: Language Concepts.

583 symbol-name

symbol-name symbol Function
Returns the print name of symbol.

symbolp arg Function
symbolp returns t if its argument is a symbol, otherwise nil.

symbol-package symbol Function
Returns the contents of symbol's package cell, which is the package that
owns symbol, or nil if symbol is uninterned.

symbol-plist symbol Function
Returns the list that represents the property list of symbol. Note that this
is not th~ property list itself; you cannot do get on it. You must give the
symbol itself to get or use getf.

You can use setf to destructively replace the entire property list of a sym
bol; however, this is potentially dangerous since it may destroy information
that the Lisp system has stored on the property list. You also must be
careful to make the new property list a list of even length.

See the section "Functions Relating to the Property List of a Symbol" in
Symbolics Common Lisp: Language Concepts.

symbol-value symbol Function
Returns the current value of the dynamic (special) variable named symbol.
This is the function called by eval when it is given a symbol to evaluate.
If the symbol is unbound, then symbol-value causes an error. Constant
symbols are really variables whose values cannot be changed. You can use
symbol-value to get the value of such a constant. symbol-value of a
keyword returns that keyword.

symbol-value works only on special variables. It cannot find the value of a
lexical variable.

See the section "Functions Relating to the Value of a Symbol" in Symbolics
Common Lisp: Language Concepts.

symbol-value-globally var Function
Works like symbol-value but returns the global value of a special variable
regardless of any bindings currently in effect (in the current stack group).

symbol-value-globally does not work on local (lexical) variables.

You can use setf with symbol-value-globally to bind the global value of a
special variable. (setf (symbol-value-globally function» ...) is the same
as zl:set-globally and supersedes zl:setq-globally.

See the section "Functions Relating to the Value of a Symbol" in Symbolics
Common Lisp: Language Concepts.

I

I

symbol-value-in-closure 584

symbol-value-in-closure closure ptr Function
This returns the binding of symbol in the environment of closure; that is, it
returns what you would get if you restored the value cells known about by
closure and then evaluated symbol. This allows you to "look around inside"
a dynamic closure. If symbol is not closed over by closure, this is just like
user::symvol-value.

See the section "Dynamic Closure-Manipulating Functions" in Symbolics
Common Lisp: Language Concepts.

symbol-value-in-instance instance symbol &optional no-error-p Function
You can use this function to read, alter, or locate an instance variable in
side a particular instance, regardless of whether the instance variable was
declared in the defflavor form to be a :readable-instance-variable,
:gettable-instance-variable, :writable-instance-variable,
:settable-instance-variable, or a :locatable-instance-variable.

instance is the instance to be examined, and symbol is the instance vari
able. If there is no such instance variable, an error is signalled, unless
no-error-p is non-nil, in which case nil is returned.

To read the value of an instance variable:

(scl:symbol-value-in-instance instance symbol))

To alter the value of an instance variable:

(setf (scl : symbol-val ue-in-instance instance symbol) value)

To get a locative pointer to the cell inside an instance that holds the value
of an instance variable:

(locf (scl :symbol-value-in-instance instance symbol))

zl:symeval symbol Function
zl:symeval is the basic primitive for retrieving a symbol's value.
(zl:symeval symbol) returns symbol's current binding. This is the function
called byeval when it is given a symbol to evaluate. If the symbol is un
bound, then zl:symeval causes an error.

The Common Lisp equivalent of this function is symbol-value.

zl:symeval-globally var Function
Works like zl:symeval but returns the global value regardless of any bind
ings currently in effect.

zl:symeval-globally operates on the global value of a special variable; it
bypasses any bindings of the variable in the current stack group. It resides
in the global package.

zl:symeval-globally does not work on local variables.

585 zl :symeval-in-closure

The Symbolics Common Lisp equivalent of this function is
symbol-value-globally.

zl:symeval-in-closure closure symbol Function
This returns the binding of symbol in the environment of closure; that is, it
returns what you would get if you restored the value cells known about by
closure and then evaluated symbol. This allows you to "look around inside"
a dynamic closure. If symbol is not closed over by closure, this is just like
zl:symeval. See the section "Dynamic Closure-Manipulating Functions" in
Symbolics Common Lisp: Language Concepts.

z!:symeval-in-instance instance symbol &optional no-error-p Function
Finds the value of an instance variable inside a particular instance, regard
less of whether the instance variable was declared a
:readable-instance-variable or a :gettable-instance-variable. instance is
the instance to be examined, and symbol is the instance variable whose
value should be returned. If there is no such instance variable, an error is
signalled, unless no-error-p is non-nil, in which case nil is returned.

The Symbolics Common Lisp function symbol-value-in-instance has the
same syntax and functionality as the Zetalisp function
zl:symeval-in-instance.

I

I

t ~6

t Type Specifier
t is the type specifier symbol for the predefined Lisp data type, t.

The type t is a supertype of every type whatsoever. Every Lisp object
belongs to type t.

Examples:

(typep nil 't) => T
(zl:typep t) => :SYMBOL
(type-of t) => SYMBOL
(constantp pi) => T
(constantp t) => T
(equa1-typep (not nil) t) => T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

table-size table Function
Returns the total number of entries in table. Note that this does not in
clude the number of entries that are deleted but not removed from the
table.

For a table of related items: See the section "Table Functions" in Sym
bolics Common Lisp: Language Concepts.

tagbody tag-or-statement... Special Form
The body of a tagbody form is a series of tags or statements. A tag can be
a symbol or an integer; a statement is a list. tagbody processes each ele
ment of the body in sequence. It ignores tags and evaluates statements,- dis
carding the results. If it reaches the end of the body, it returns nil.

If a (go tag) form is evaluated during evaluation of a statement, tagbody
searches its body and the bodies of any tagbody forms that lexically con
tain it. Control is transferred to the innermost tag that is eql to the tag in
the go form. Processing continues with the next tag or statement that fol
lows the tag to which control is transferred.

The scope of the tag is lexical. That is, the go form must be inside the
tagbody construct itself (or inside a tagbody form that that tagbody lex
ically contains), not inside a function called from the tagbody.

do, prog, and their variants use implicit tagbody constructs. You can
provide tags within their bodies and use go forms to transfer control to the
tags.

Examples:

587

(let ((x 'hello»
(tagbody

(catch 'stuff
(if (numberp x)

(princ Na number")
(go trouble»)

(return)
trouble

(princ "trouble trouble") (terpri») => trouble trouble
NIL

The following two forms are equivalent:

(dotimes (i n) (print i»

(let ((i 8»
(when (plusp n)

(tagbody
loop
(print i)
(setq i (1+ i»
(when « i n) (go loop»»)

For a table of related items: See the section "Transfer of Control
Functions" in Symbolics Common Lisp: Language Concepts.

tailp

tailp sublist list Function
tailp returns t if sublist is an ending sublist of list (that is, a subset of the
conses that make up list) and otherwise returns nil. Another way to look at
this is that tailp returns t if (nthcdr n list) returns sub list for all n. For
example:

(setq item-list '(a b c» => (A B C)

(tailp (cdr item-list) item-list) => T

(tailp (car item-list) item-list) => NIL

(tailp (nthcdr 2 item-list) item-list) => T

(tailp nil item-list) => T

tailp could have been defmed by:

I

I

tan

(defun tailp (tail list)
(do 0 «eq tail list) t)

(if (atom list)
(return nil)
(setf list (cdr list»»)

588

For a table of related items: See the section "Predicates That Operate on
Lists" in Symbolics Common Lisp: Language Concepts.

tan radians Function
Returns the tangent of radians. Examples:

(tan a) => a.a
(tan (/ pi 4» => 1.ada

For a table of related items: See the section "Trigonometric and Related
Functions" in Symbolics Common Lisp: Language Concepts.

tand degrees Function
Returns the tangent of degrees.

For a table of related items: See the section "Trigonometric and Related
Functions" in Symbolics Common Lisp: Language Concepts.

tanh radians Function
Returns the hyperbolic tangent of radians. Example:

(tanh a) => a.a

For a table of related items: See the section "Hyperbolic Functions" in
Symbolics Common Lisp: Language Concepts.

tenth list Function
tenth takes a list as an argument, and returns the tenth element of list.
tenth is identical to

(nth 9 list)

This function is provided because it makes more sense than using nth
when you are thinking of the argument as a list rather than just as a cons.

For a table of related items: See the section "Functions for Extracting
From Lists" in Symbolics Common Lisp: Language Concepts.

therels Keyword For loop

thereis expr

If expr evaluates non-null, the iteration is terminated and that value is returned,

589 third

without running the epilogue code. If the loop terminates before expr is ever
evaluated, the epilogue code is run and the loop returns nil.

thereis expr is like (or exprl expr2 ...). If the loop terminates before expr is ever
evaluated, thereis is like (or).

If you want a similar test, except that you want the epilogue code to run if expr
evaluates non-null, use until.

Examples:

(defun loop-thereis (my-list)
(loop for x in my-list

finally (print "what you going to do next 1")
do

(pri nc x) (pri nc " H)

do
and thereis (equal x 'a») => LOOP-THEREIS

(loop-thereis '(b c a e» => B CAT

(loop-thereis '(a a» => A T

See the section "loop Clauses", page 310.

third list Function
This function takes a list as an argument, and returns the third element of
the list. third is identical to

(nth 2 list)

The reason this name is provided is that it makes more sense when you
are thinking of the argument as a list rather than just as a cons.

For a table of related items: See the section "Functions for Extracting
From Lists" in Symbolics Common Lisp: Language Concepts.

throw tag value Special Form
Used with catch to make nonlocal exits. It flIst evaluates tag to obtain an I
object that is the "tag" of the throw. It next evaluates form and saves the
(possibly multiple) values. It then finds the innermost catch (or zl:*catch)
whose "tag" is eq to the "tag" that results from evaluating tag. It causes
the catch (or zl:*catch) to abort the evaluation of its body forms and to
return all values that result from evaluating form. In the process, dynamic
variable bindings are undone back to the point of the catch, and any
unwind-protect cleanup forms are executed. An error is signalled if no
suitable catch is found.

I

zl:*throw 590

The scope of the tags is dynamic. That is, the throw does not have to be
lexically within the catch form; it is possible to throw out of a function
that is called from inside a catch form.

The value of tag cannot be the symbol sys:unwind-protect-tag; that is
reserved for internal use.

For example:

(catch 'done
(ask-database <pattern>

#'(lambda (x) (when (n;ce-p x)
(throw 'done x)))))

For a table of related items: See the section "Nonlocal Exit Functions" in
Symbolics Common Lisp: Language Concepts.

zl:*throw tag value Function
An obsolete version of throw that is supported for compatibility with
Maclisp. It is equivalent to throw except that it causes the catch or
zl:*catch to return only two values: the first is the result of evaluating
form, and the second is the result of evaluating tag (the tag thrown to).
See the special form throw, page 589.

For a table of related items: See the section "Nonlocal Exit Functions" in
Symbolics Common Lisp: Language Concepts.

zl:times &rest args Function
Returns the product of its arguments. If there are no arguments, it
returns 1, which is the identity for this operation.

The following functions are synonyms of zl:times:

•
zl:*$

:top of si:heap Method
Returns the value and key of the top item on the heap. The third value is
nil if the heap was empty; otherwise it is t.

For a table of related items: See the section "Heap Functions and Methods"
in Symbolics Common Lisp: Language Concepts.

sys:trace-conditions Variable
The value of this variable is a condition or a list of conditions. It can also
be t, meaning all conditions, or nil, meaning none.

If any condition is signalled that is built on the specified flavor (or flavors),
the Debugger immediately assumes control, before any handlers are
searched or called.

591 flavor:transform-instance

If the user proceeds, by using RESUME, signalling continues as usual. This
might in fact revert control to the Debugger again. This variable is
provided for debugging purposes only. It lets you trace the signalling of
any condition so that you can figure out what conditions are being sig
nalled and by what function. You can set this variable to error to trace all
error conditions, for example, or you can be more specific.

This variable replaces the zl:errset variable from earlier releases.

flavor:transform-instance Generic Function
flavor:transform-instance offers a way for you to specify code that should
be run when an instance is changed to new-flavor. Because
flavor:transform-instance is a generic function, you can write a methDd
for it. This generic function is not intended to be called directly; instead,
you take advantage of it by writing methods for it. If any methods for the
flavor:transform-instance generic function are defined for a given flavor,
those methods are applied to an instance in two cases:

• When the function change-instance-flavor is used on the instance .
• When the flavor of the instance has been redefined (with defflavor)

and the stored representation of the instance is changed.

It is sometimes desirable to perform some action to update each instance as
it is transformed to the new flavor (when change-instance-flavor is used)
or as it is transformed to the new definition of the flavor (when defflavor
is used to redefme a flavor), beyond the actions the system ordinarily takes.
For example, newly-added instance variables are initialized to the same
values they would receive in newly-created instances. Sometimes this is
not the appropriate value, and you need to compute a value for the vari
able. To do this, you can define a method for the generic function
flavor: transform-instance, with no arguments.

Note that methods for flavor:transform-instance cannot access any in
stance variables that are deleted. By the time the methods are run, any
deleted instance variables have been removed from the instance. In this
example, the "old" instance variables are ones that existed both in the the
old and the new format of the instance.

(defmethod (flavor:transform-instance my-flavor) ()
(unless (variable-boundp new-instance-variable)

(setq new-instance-variable
(f old-instance-variable-1 old-instance-variable-2))))

By default, flavor:transform-instance uses :daemon method combination.
You can specify a different type of method combination for this generic
function by giving the :method-combination option to the defflavor of the
flavor involved. If you want all the methods defined by the various com
ponent flavors to run, you can either specify :progn method combination or
use :after methods with the -default :daemon method combination.

•

I

math :transpose-matrix 592

Note: You should be careful to allow for your method being called more
than once, if the flavor is redefined several times. A method intended to
be used for one particular redefinition of the flavor remains in the system
and is used for all future redefinitions, unless you use Kill Definition (M-X)
or fundefine to remove the definition of the method.

Depending on the purpose of the method, it might be necessary to redefine
the flavor before compiling the method for flavor: transform-instance. For
example, a method that initializes a new instance variable cannot be com
piled until the flavor is redefined to contain that instance variable.

Note that if an instance is accessed after its flavor has been redefined and
before you have defined a method for flavor:transform-instance, the
method is not executed on that instance.

math:transpose-matrix matrix &optional into-matrix Function
Transposes matrix. If into-matrix is supplied, stores the result into it and
returns it; otherwise it creates an array to hold the result, and returns
that. matrix must be a two-dimensional array. into-matrix, if provided,
must be two-dimensional and have sufficient dimensions to hold the trans
pose of matrix.

tree-equal x y &key test test-not Function
This is a predicate that is true if x and yare isomorphic trees with iden
tical leaves, that is, if x and yare atoms that satisfy the predicate specified
by the :test keyword, or if they are both conses and their cars are
tree-equal and their cdrs are tree-equal. Thus tree-equal recursively com
pares conses, but not any other objects that have components. The equal
function compares certain other structured objects, such as strings. For
example:

(tree-equal '(a b c) '(a be» => T

(tree-equal '(a b c) '(b c a» => NIL

The keywords are:

:test Any pred~cate specifying a binary operation to be applied
to a supplied argument and an element of a target list.
The item matches the specification only if the predicate
returns t. If :test is not supplied the default operation is
eql.

:test-not Similar to :test, except the item matches the specification
only if there is an element of the list for which the
predicate returns nil.

For a table of related items: See the section "Predicates That Operate on
Lists" in Symbolics Common Lisp: Language Concepts.

593 true

true &rest ignore Function
Takes no arguments and returns t. See the section "Functions and Special
Forms for Constant Values" in Symbolics Common Lisp: Language Concepts.

truncate number &optional (divisor 1) Function
Divides number by divisor, and truncates the result toward zero. The trun
cated result and the remainder are the returned values.

number and divisor must each be a noncomplex number. Not specifying a
divisor is exactly the same as specifying a divisor of 1.

If the two returned values are Q and R, then (+ (* Q divisor) R) equals
number. If divisor is 1, then Q and R add up to number. If divisor is 1
and number is an integer, then the returned values are number and O.

The first returned value is always an integer. The second returned value
is integral if both arguments are integers, is rational if both arguments are
rational, and is floating-point if either argument is floating-point. If only
one argument is specified, then the second returned value is always a num
ber of the same type as the argument.

Examples:

(truncate 5) => 5 and 9
(truncate -5) => -5 and 9
(truncate 5.2) => 5 and 9.19999981
(truncate -5.2) => -5 and -9.19999981
(truncate 5.8) => 5 and 9.8999992
(truncate -5.8) => -5 and -9.8999992
(truncate 5 3) => 1 and 2
(truncate -5 3) => -1 and -2
(truncate 5 4) => 1 and 1
(truncate -5 4) => -1 and -1
(truncate 5.2 3) => 1 and 2.1999998
(truncate -5.2 3) => -1 and -2.1999998
(truncate 5.2 4) => 1 and 1.1999998
(truncate -5.2 4) => -1 and -1.1999998
(truncate 5.8 3) => 1 and 2.8999992
(truncate -5.8 3) => -1 and -2.8998882
(truncate 5.8 4) => 1 and 1.8999992
(truncate -5.8 4) => -1 and -1.8899982 •

I

sys:type-arglist

For a table of related items: See the section "Functions That Divide and
Convert Quotient to Integer" in Symbolics Common Lisp: Language Con
cepts.

594

sys:type-arglist type Function
This function takes a data type as its argument and checks whether type is
a defined Common Lisp type.

sys:type-arglist returns two values: if type is a defined Common Lisp type,
the first value is the lambda-list of specifiers for that type, if any, or nil;
the second value is t. If type is not a defined Common Lisp type, both
values are nil.

sys:type-arglist is useful if you are building software to run on top of the
Common Lisp type system.

Examples:

(sys:type-arglist 'integer)
=> (&OPTIONAL (LOW '*) (HIGH '*)) and T

(sys:type-arglist 'array)
=> (&OPTIONAL (ELEMENT-TYPE '*) (DIMENSIONS '*)) and T

(sys:type-arglist 'single-flo~t) => NIL and T
(sys:type-arglist 'faa) => NIL

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

typecase object &body body Special Form
typecase is a conditional that chooses one of its clauses by examining the
type of an object. Structurally typecase is much like cond or case, and it
behaves like them in selecting one clause and then executing all con
sequences of that clause. It differs in the mechanism of clause selection.

Its form is as follows:

(typecase form
(types consequent consequent ...)
(types consequent consequent ...)

First typecase evaluates form, producing an object. typecase then ex
amines each clause in sequence. types in each clause is a type specifier in
either symbol or list form, or a list of type specifiers. The type specifier is
not evaluated. If the object is of that type, or of one of those types, then
the consequents are evaluated and the result of the last one is returned (or
nil if there are no consequents in that clause). Otherwise, typecase moves
on to the next clause. If no clause is satisfied, typecase returns nil.

595 zl :typecase

For an object to be of a given type means that if typep is applied to the
object and the type, it returns t. That is, a type is something meaningful
as a second argument to typep. A chart of supported data types appears
elsewhere. See the section "Data Types and Type Specifiers" in Symbolics
Common Lisp: Language Concepts.

As a special case, types can be otherwise; in this case, the clause is always
executed, so this should be used only in the last clause.

It is permissible for more than one clause to specify a given type, par
ticularly if one is a subtype of another; the earliest applicable clause is
chosen. Thus, for typecase, the order of the clauses can affect the be
havior of the construct.

For a table of related items: See the section "Conditional Functions" in
Symbolics Common Lisp: Language Concepts.

zl:typecase object &body body Special Form
Selects various forms to be evaluated depending on the type of some object.
It is something like select. A zl:typecase form looks like:

(zl :typecase form
(types consequent consequent ...)
(types consequent consequent ...)

form is evaluated, producing an object. zl:typecase examines each clause
in sequence. types in each clause is either a single type (if it is a symbol)
or a list of types. If the object is of that type, or of one of those types,
then the consequents are evaluated and the result of the last one is
returned. Otherwise, zl:typecase moves on to the next clause. As a spe
cial case, types can be otherwise; in this case, the clause is always ex
ecuted, so this should be used only in the last clause. For an object to be
of a given type means that if z1:typep is applied to the object and the type,
it returns t. That is, a type is something meaningful as a second ar
gument to zl:typep.

Examples:

(defun tell-about-car (x)

(zl:typecase (car x)
(string "string"))) => TELL-ABOUT-CAR

(tell-about-car '("word" "more")) => "string"
(tell-about-car 'ea 1)) => NIL

•

I

type-of

(defun tell-about-car (x)
(zl:typecase (car x)

(fixnum "number.")
«or string symbol) "string or symbol.")
(otherwise "I donJt know."))) => TELL-ABOUT-CAR

(tell-about-car J(1 a)) => "number."
(tell-about-car J(a 1)) => "string or symbol."
(tell-about-car J("word" "more")) => "string or symbol."
(tell-about-car J(1.9)) =>"1 donJt know."

For a table of related items: See the section "Conditional Functions" in
Symbolics Common Lisp: Language Concepts.

See the special form typecase, page 594.

596

type-of object Function
Returns a type of which object is a member. type-of returns the most
specific type that can be conveniently computed and is likely to be useful to
the user. If the argument is a user-defined structure created by defstruct,
then type-of returns the name of that structure. If the argument is a
user-created structure created by defflavor then type-of returns the type
symbol. (type-of instance) returns the symbol that is the name of the
instance's flavor.

Examples:

(type-of 4) => FIXNUM

(type-of "AriadneJs thread") => STRING

(type-of 5/7) => RATIO

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

typep object type Function
The predicate typep is true if object is of type type, and is false otherwise.
Note that an object can be "of' more than one type, since one type can in
clude another, or the types can overlap without inclusion.

type can be any of the type specifiers discussed in the chapter on Data
Types. See the section "Type Specifiers" in Symbolics Common Lisp: Lan
guage Concepts. The exception is that type cannot be or contain a type
specifier list whose first element is function or values. A specifier of the

597 zl:typep

form (satisfies fn) is handled simply by applying the function fn to object
(see funcall); the object is considered to be of the specified type if the
result is not nil.

(typep instance 'flavor-name) returns t if the flavor of instance is named
flavor-name or contains that flavor as a direct of indirect component; it
returns nil otherwise.

Examples:

(typep 'my-dog-rover 'common) => T
(typep 'a 'atom) => T
(typep 9 'hit) => T

(defstruct ship
x-postion
y-postion) => SHIP

(setq my-boat (make-ship» => #S (SHIP :X-POSTION NIL
:Y-POSTION NIL)

(typep my-boat '(structure ship» => T
(typep my-boat 'vector) => T

(typep #(a b c) 'vector) => T
(typep #*1919 'bit-vector) => T
(typep 4 'number) => T
(typep #c(3 4) 'complex) => T
(typep 4 'bit-vector) => NIL

See the section "Type-checking Differences Between Symbolics Common
Lisp and Zetalisp" in Symbolics Common Lisp: Language Concepts. See the
section "Data Types and Type Specifiers" in Symbolics Common Lisp: Lan
guage Concepts.

zl:typep x &optional type Function
zl:typep is really two different functions. With one argument, zl:typep is •
not really a predicate; it returns a symbol describing the type of its ar-
gument. With two arguments, zl:typep is a predicate that returns t if arg
is of type type, and nil otherwise. Note that an object can be "of' more
than one type, since one type can be a subset of another.

The symbols that can be returned by zl:typep of one argument are:

: symbol arg is a symbol.
:ilXllum arg is a IlXIlum (not a bignum).
: bignum arg is a bignum.

I

zl:typep

: rational arg is a ratio.
: single-float arg is a single-precision floating-point number.
: double-float arg is a double-precision floating-point number.
: complex arg is a complex number.
:list arg is a cons.
: locative arg is a locative pointer.
: compiled-function

arg is the machine code for a compiled function.
: closure arg is a closure.
: select-method arg is a select-method table.
: stack-group
: string
: array

arg is a stack-group.
arg is a string.
arg is an array that is not a string.

598

: random Returned for any built-in data type that does not fit into
one of the above categories.

{oo An object of user-defined data type {oo (any symbol).
The primitive type of the object could be array, or in-
stance.

(zl:typep instance) returns the symbol that is the name of the instance's
flavor.

(zl:typep instance 'flavor-name returns t if the flavor of instance is named
flavor-name or contains that flavor as a direct or indirect component, nil
otherwise.

Examples:

(zl:typep 'common :SYMBOL) => T
(zl :typep 4) => :FIXNUM
(zl:typep .BBBB1) => :SINGLE-FLOAT
(zl :typep BdB :DOUBLE-FLOAT) => T
(zl:typep #c(1.2 3.3)) => :COMPLEX
(zl :typep "good day sunshine" :STRING) => T
(zl :typep #(a b c)) => :ARRAY

The type argument to zl:typep of two arguments can be any of the above
keyword symbols (except for :random), the name of a user-defined data
type (either a named structure or a flavor), or one of the following ad
ditional symbols:

:atom
:ilX
:float

Any atom (as determined by the atom predicate).
Any kind of fixed-point number (fumum or bignum).
Any kind of floating-point number (single- or double-
precision).

: numb er Any kind of number.
:non-complex-number

Any noncomplex number.

599

:instance
: null
:list-or-nil

Examples:

An instance of any flavor.
nil is the only value that has this type.
A cons or nil.

(zl:typep 3 :number) => T
(zl : typep ni 1 : nUll) => T
(zl :typep '(a b c) :list-or-nil) => T

unbreakon

Note that (zl:typep nil) => : symb 01, and (zl:typep nil :list) => nil; the lat
ter might be changed.

(zl:typep nil :list) => NIL

(defflavor ship
(name x-velocity y-velocity z-velocity mass)
o ; no component fl avors

:readable-instance-variables
:writable-instance-variables
:initable-instance-variables) => SHIP

(setq my-ship
(make-instance 'ship :name "Enterprise"

:mass 4534
:x-velocity 24
:y-velocity 2
:z-velocity 45» => #<SHIP 43994623>

(typep my-ship :instance) => T
(typep my-ship) => SHIP
(type-of my-ship) => SHIP

See the section "Type-checking Differences Between Symbolics Common
Lisp and Zetalisp" in Symbolics Common Lisp: Language Concepts.

unbreakon &optional function (condition t) Function
Turns off a breakpoint set by breakon. If function-spec is not provided, all
breakpoints set by breakon are turned off. If condition-form is provided, it
turns off only that condition, leaving any others. If condition-form is not
provided, the entire breakpoint is turned off for that function.

For a table of related items: See the section "Breakpoint Functions" in
Symbolics Common Lisp: Language Concepts.

:unclaimed-message operation &rest arguments Message
When an operation is performed on a flavor instance, whether the operation
is a generic function or a message, the Flavors system checks to be sure
that a method exists for performing the operation on the object. If no
method is found, it checks for a method for the :unclaimed-message mes-

I

I

undefine-global-handler 600

sage. If such a method exists, it is invoked with arguments operation and
any arguments that were given to the operation.

This is equivalent to using the :default-handler option to defflavor.

flavor:vanilla does not provide a method for :unclaimed-message. If no
method for :unclaimed-message exists, and the :default-handler option
was not used, then the default action of the Flavors system is to signal an
error.

undefine-global-handler name Macro
Removes a global handler defined with define-global-handler.

name is the name of the global handler to be removed.

undefine-global-handler returns t if it finds the named handler. Other
wise it signals a proceedable error, and, if the condition proceeds, returns
nil.

Examples:

(define-global-handler infinity-is-three sys:divide-by-zero
(error)

(values :return-values '(3)))

(undefine-global-handler infinity-is-three)

For a table of related items: See the section "Basic Forms for Global
Handlers" in Symbolics Common Lisp: Language Concepts.

undefun function-spec Function
If function-spec has a saved previous basic definition, this interchanges the
current and previous basic definitions, leaving the encapsulations alone.
This undoes the effect of a defun, compile, and so on. (See the function
uncompile in Program Development Utilities.)

si:unencapsulate-function-spec function-spec &optional Function
encapsulation-types

This takes one function spec and returns another. If the original function
spec is undefined, or has only a basic definition (that is, its definition is
not an encapsulation), then the original function spec is returned un
changed.

If the definition of function-spec is an encapsulation, then its debugging
info is examined to imd the uninterned symbol that holds the encapsulated
de imition, and also the encapsulation type. If the encapsulation is of a
type that is to be skipped over, the uninterned symbol replaces the original
function spec and the process repeats.

601 si :unencapsulate-function-spec

The value returned is the uninterned symbol from inside the last encap
sulation skipped. This uninterned symbol is the flrst one that does not
have a deflnition that is an encapSUlation that should be skipped. Or the
value can be function-spec if function-spec's deflnition is not an encapsula
tion that should be skipped.

The types of encapsulations to be skipped over are specilled by
encapSUlation-types. This can be a list of the types to be skipped, or nil,
meaning skip all encapsulations (this is the default). Skipping all encap
sulations means returning the uninterned symbol that holds the basic
deflnition of function-spec. That is, the definition of the function spec
returned is the basic definition of the function spec supplied. Thus:

(fdefinition (si:unencapsulate-function-spec 'faa»

returns the basic definition of foo, and:

(fdefine (si:unencapsulate-function-spec 'faa) 'bar)

sets the basic deimition (just like using fdefine with carefully supplied as
t).

encapSUlation-types can also be a symbol, which should be an encapsulation
type; then we skip all types that are supposed to come outside of the
specilled type. For example, if encapsulation-types is trace, then we skip
all types of encapsulations that come outside of trace encapsulations, but
we do not skip trace encapsulations themselves. The result is a function
spec that is where the trace encapsulation ought to be, if there is one. Ei
ther the definition of this function spec is a trace encapsulation, or there
is no trace encapsulation anywhere in the definition of function-spec, and
this function spec is where it would belong if there were one. For ex
ample:

(let «tern (si:unencapsulate-function-spec spec 'trace»)
(and (eq tern (si:unencapsulate-function-spec tern '(trace»)

(si:encapsulate tern spec 'trace '(. .. body .. . »»

flnds the place where a trace encapsulation ought to go, and makes one
unless there is already one there.

(let «tern (si:unencapsulate-function-spec spec 'trace»)
(fdefine tern (fdefinition (si:unencapsulate-function-spec

tern '(trace»»)

eliminates any trace encapSUlation by replacing it by whatever it encap
sulates. (If there is no trace encapSUlation, this code changes nothing.)

These examples show how a subsystem can insert its own type of encap
sulation in the proper sequence without knowing the names of any other
types of encapSUlations. Only the si:encapsulation-standard-order vari
able, which is used by si:unencapsulate-function-spec, knows the order.

I

•

unexport 602

unexport symbols &optional package Function
The symbols argument should be a list of symbols or a single symbol. If
symbols is nil, it is treated like an empty list. These symbols become in
ternal symbols in package. package can be a package object or the name of
a package (a symbol or a string). If unspecified, package defaults to the
value of *package*. Returns t. I t is an error to unexport a symbol from
the keyword package.

unintern sym &optional (Pkg (symbol-package si:sym» Function
Removes sym from pkg and from pkg's shadowing-symbols list. If pkg is
the home package for sym, then sym is made to have no home package. In
some circumstances, sym may continue to be accessible by inheritance.
unintern returns t if it removes a symbol and nil if it fails to remove a
symbol. unintern should be used with caution since it changes the state of
the package system and affects the consistency rules (See the section
"Consistency Rules for Packages" in Symbolics Common Lisp: Language
Concepts.).

union listl list2 &key (test #'eql) test-not (key #'identity) Function
union takes two lists and returns a new list containing everything that is
an element of either of the lists. If there is a duplication between the two
lists, only one of the duplicate instances will be in the result. If either of
the arguments has duplicate entries within it, the redundant entries mayor
may not appear in the result. There is no guarantee that the order of the
elements in the result reflect the ordering of the arguments in any par
ticular way. The keywords are

:test Any predicate specifying a binary operation to be applied
to a supplied argument and an element of a target list.
The item matches the specification only if the predicate
returns t. If :test is not supplied the default operation is
eqI.

: test-not Similar to :test, except the item matches the specification
only if there is an element of the list for which the
predicate returns nil.

For all possible ordered pairs consisting of one element from listl and one
element from list2, the predicate is used to determine whether they match.
For every matching pair, at least one of the two elements of the pair will
be in the result. Moreover, any element from either list that matches no
element of the other will appear in the result.

(union J(a b c) J(f a d a» => (0 F A B C)

(union J«x 5) (y 6) (x 3» J«z 2) (x 4» :key #J car) =>
«Z 2) (X 5) (Y 6) (X 3»

603 zl:union

For a table of related items: See the section "Functions for Comparing
Lists" in Symbolics Common Lisp: Language Concepts.

zI:union &rest lists Function
Takes any number of lists that represent sets and creates. and returns a
new list that represents the union of all the sets it is given. zI:union uses
eq for its comparisons. You cannot change the function used for the com
parison. (zI:union) returns nil.

This Zetalisp function is shadowed by the Common Lisp function of the
same name.

For a table of related items: See the section "Functions for Comparing
Lists" in Symbolics Common Lisp: Language Concepts.

unless condition &rest body Macro
The forms in body are evaluated when condition returns nil. It returns the
value of the last form evaluated. When condition returns something other
than nil, unless returns nil.

Examples:

(unless) => error

(unless nil "rain, rain, rain") => "rain, rain, rain"

(unless (eq 1 1) (setq a b) "faa") => NIL

(unless (eq 1 2) (setq a 4) "faa") => "foo"
a => 4

When body is empty, unless always returns nil.

For a table of related items: See the section "Conditional Functions" in
Symbolics Common Lisp: Language Concepts.

See the section "loop Clauses", page 310.

unless Keyword For loop

unless expr
If expr evaluates to t, the following clause is skipped, otherwise not. This
is equivalent to when (not expr).

Examples:
I

I

unsigned-byte

(defun loop1 0
(loop for i from B to 9

unless (> ; 5) collect;
finally (print" so long, goodbye "))) => LOOP1

(loop1) =>
" so long, goodbye " (B 12 3 4 5)

While the keyword when would do the following.

(defun loop1 0
(loop for i from B to 9

when (> i 5) collect i
finally (print" so long, goodbye "))) => LOOP1

(loop1) =>
" so long, goodbye " (6 7 8 9)

604

Multiple conditionalization clauses can appear in sequence. If one test fails, then
any following tests in the immediate sequence, and the clause being
conditionalized, are skipped.

In the typical format of a conditionalized clause such as

when exprl keyword expr2

expr2 can be the keyword it. If that is the· case, then a variable is generated to
hold the value of exprl, and that variable gets substituted for expr2. Thus, the
composition:

when expr return it

is equivalent to the clause:

thereis expr

and one can collect all non-null values in an iteration by saying:

when expression collect it

If mUltiple clauses are joined with and, the it keyword can only be used in the
first. If multiple whens, unlesses, and/or ifs occur in sequence, the value
substituted for it is that of the last test performed. The it keyword is not
recognized in an else-phrase.

Conditionals can be nested.

See the section "loop Clauses", page 310.

unsigned-byte &optional (s '*) Type Specifier
unsigned-byte is the type specifier symbol for the predefined Lisp unsigned
byte data type.

This type specifier can be used in either symbol or list form. Used in list
form, unsigned-byte allows the declaration and creation of a specialized set
of non-negative integers that can be represented in a byte of s bits.

605 until

(unsigned-byte 5) = (integer 9 25 _1); (unsigned-byte *) = (integer 9 *),
the set of non-negative integers.

The type unsigned-byte is a subtype of the type signed-byte.

The type unsigned-byte is a supertype of the type bit.

Examples:

(typep 778 Junsigned-byte) => T

(typep 1 J(unsigned-byte 1» => T

(subtypep Junsigned-byte Jsigned-byte)
=> T and T ;subtype and certain

(equal-typep Jbit J(unsigned-byte 1» => T

(sys:type-arglist Junsigned-byte) => (&OPTIONAL (5 J*» and T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the section "Numbers" in Symbolics Common
Lisp: Language Concepts.

until Keyword For loop

until expr
If expr evaluates to t, the loop is exited, performing exit code (if any), and
returning any accumulated value. The test is placed in the body of the
loop where it is written. It can appear between sequential for clauses.

Examples:

(de fun trivial-loop ()
(loop for i from 9 until (= i 12)

do
(princ i)(princ U H»~) => TRIVIAL-LOOP

(TRIVIAL-LOOP) => 9 1 2 3 4 5 6 7 8 9 19 11 NIL

See the section "loop Clauses", page 310.

unuse-package packages-to-unuse &optional package Function
The packages-to-unuse argument should be a list of packages or package
names, or a single package or package name. These packages are removed
from the use-list of package and their external symbols are no longer acces
sible, unless they are accessible through another path. package can be a
package object or the name of a package (a symbol or a string). If un
specified, package defaults to the value of *package*. Returns t.

•

I

unwind-protect 606

unwind-protect protected-form &rest cleanup-forms Special Form
Sometimes it is necessary to evaluate a form and make sure that certain
side effects take place after the form is evaluated. A typical example is:

(progn
(turn-on-water-faucet)
(hairy-function 3 nil 'faa)
(turn-off-water-faucet»

The nonlocal exit facility of Lisp creates a situation in which the above
code does not work. However, if hairy-function should do a throw to a
catch that is outside of the progn form, (turn-off-water-faucet) is never
evaluated (and the faucet is presumably left running). This is particularly
likely if hairy-function gets an error and the user tells the Debugger to
give up and abort the computation.

In order to allow the above program to work, it can be rewritten using
unwind-protect as follows:

(unwind-protect
(progn (turn-on-water-faucet)

(hairy-function 3 nil 'faa»
(turn-off-water-faucet»

If hairy-function does a throw that attempts to quit out of the evaluation
of the unwind-protect, the (turn-off-water-faucet) form is evaluated in be
tween the time of the throw and the time at which the catch returns. If
the progn returns normally, then the (turn-off-water-faucet) is evaluated,
and the unwind-protect returns the result of the progn.

Examples:

(tagbody
(let «num 4»

(unwind-protect

home

(if (= num 4) (go home»
(prine "reach out"»)

(prine" and H»~ => reach out and NIL

(unwind-protect
(progn (start-car)

(dri ve-car»
(stop-car»

The general form of unwind-protect looks like:

607

(unwi nd-protect protected-form
cleanup-form1
cleanup-form2
...)

unwind-protect-case

protected-form is evaluated, and when it returns or when it attempts to quit
out of the unwind-protect, the cleanup-forms are evaluated. To ensure
that unwind-protect does not return without completely executing its
cleanup forms, macro sys:without-aborts is automatically and atomically
wrapped around all cleanup-forms, preventing them from being aborted by
user action.

unwind-protect catches exits caused by return-from or go as well as .those
caused by throw. The value of the unwind-protect is the value of
protected-form. Multiple values returned by the protected-form are
propagated back through the unwind-protect.

The cleanup forms are run in the variable-binding environment that you
would expect: that is, variables bound outside the scope of the
unwind-protect special form can be accessed, but variables bound inside
the protected-form cannot be. In other words, the stack is unwound to the
point just outside the protected-form, then the cleanup handler is run, and
then the stack is unwound some more .

. Note: It is almost never adequate to do something of the form

(unwind-protect (progn (faa) ... code ...)
(undo-faa»

Nearly always you should write

(let «old-faa-state (read-faa-state»)
(unwind-protect (progn (faa) ... code ...)

(set-faa-state old-faa-state»)

You should also consider that other processes may see your data structure
in the modified state. If you have a shared structure, you may need to use
a lock to only allow one process to use it while it is modified.

For a table of related items: See the section "N onlocal Exit Functions" in
Symbolics Common Lisp: Language Concepts.

unwind-protect-case (&optional aborted-p-var) body-form &rest Macro
cleanup-clauses

body-form is executed inside an unwind-protect form. The cleanup forms of
the unwind-protect are generated from cleanup-clauses. Each cleanup
clause is considered in order of appearance and has the form (keyword
forms ... J. keyword can be :normal, :abort or : always. The forms in a
:normal clause are executed only if body-form finished normally. The

I

I

upper-case-p

forms in an :abort clause are executed only if body-form exited before
completion. The forms in an :always clause are always executed. The
values returned are the values of body-form, if it completed normally.

608

To ensure that unwind-protect-case does not return without completely ex
ecuting its cleanup forms, macro sys:without-aborts is automatically and
atomically wrapped around all cleanup-forms, preventing them from being
aborted by user action.

aborted-p-var, if supplied, is t if the body-form was aborted, and nil if it
finished normally. ahorted-p-var can be used in forms within
cleanup-clauses as a condition for executing abort instead of normal cleanup
code. It can be set within body-form, but should be done so with great
care. It should only be set to nil if the remaining subforms of body-form
do not need protecting.

For a table of related items: See the section "Nonlocal Exit Functions" in
Symbolics Common Lisp: Language Concepts.

upper-case-p char
Returns t if char is an upper-case letter.

(upper-case-p #\A) => T
(upper-case-p #\a) => T

Function

use-package packages-to-use &optional package Function
The packages-to-use argument should be a list of packages or package
names, or a single package or package name. These packages are added to
the use-list of package if they are not there already. All external symbols
in the packages to use become accessible in package. package can be a
package object or the name of a package (a symbol or a string). If un
specified, package defaults to the value of ·package*. Returns t.

609 zl :value-cell-Iocation

zl:value-cell-Iocation sym Function
This function is obsolete on local and instance variables; use
zl:variable-Iocation instead.

zl:value-cell-Iocation returns a locative pointer to sym's internal value cell.
See the section "Cells and Locatives". It is preferable to write:

(locf (symeval sym»

instead of calling this function explicitly.

(value-cell-Iocation 'a) is still useful when a is a special variable. It be
haves slightly differently from the form (variable-location a), in the case
that a is a variable "closed over" by some closure. See the section
"Dynamic Closures" in Symbolics Common Lisp: Language Concepts.
zl:value-cell-Iocation returns a locative pointer to the internal value cell of
the symbol (the one that holds the invisible pointer, which is the real value
cell of the symbol), whereas zl:variable-Iocation returns a locative pointer
to the external value cell of the symbol (the one pointed to by the invisible
pointer, which holds the actual value of the variable).

values valuel-type value2-type... Type Specifier
This type specifier can be used only as the value type in a function type
specifier or in a the special form. It is used to specify individual types
when multiple values are involved.

Examples:

(defun faa (x)
(the (values integer integer)

(floor x 2») => FDD
(faa 8) => 4 and B

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts.

values &rest args Function
Returns multiple values, its arguments. This is the primitive function for
producing mUltiple values. It is valid to call values with no arguments; it
returns no values in that case.

flavor:vanilla Flavor
This flavor is included in all flavors by default. flavor:vanilla has no in- I
stance variables, but it provides several basic useful methods, some of
which are used by the Flavor tools.

Every flavor has flavor:vanilla as a component flavor, unless you specify
not to include flavor:vanilla by providing the :no-vanilla-flavor option to
defflavor. It is unusual to exclude flavor:vanilla.

I

variable-boundp 610

variable-boundp variable Special Form
Returns t if the variable is bound and nil if the variable is not bound.
variable should be any kind of variable (it is not evaluated): local, special,
or instance. Note: local variables are always bound; if variable is local, the
compiler issues a warning and replaces this form with t.

If a is a special variable, (boundp 'a) is the same as (variable-boundp a).

zl:variable-Iocation variable Special Form
Returns a locative pointer to the memory cell that holds the value of the
variable. variable can be any kind of variable (it is not evaluated): local,
special, or instance.

zl:variable-Iocation should be used in almost all cases instead of
zl:value-cell-Iocation; zl:value-cell-Iocation should only be used when
referring to the internal value cell. For more information on internal value
cells: See the section "What is a Dynamic Closure?" in Symbolics Common
Lisp: Language Concepts.

You can also use locf on variables. (locf zl-user:a) expands into
(zl:variable-Iocation zl-user:a).

variable-makunbound variable Special Form
Makes the variable be unbound and returns variable. variable should be
any kind of variable (it is not evaluated): local, special, or instance. Note:
since local variables are always bound, they cannot be made unbound; if
variable is local, the compiler issues a warning.

If a is a special variable, (makunbound 'zl-user:a) is the same as
(variable-makunbound 'a).

vector &rest objects Function
Creates a simple vector with specified initial contents. For example:

(vector 3 4 5)

vector &optional (element-type 'lie) (size '*) Type Specifier
vector is the type specifier symbol for the predefined Lisp structure of that
name.

The type vector is a subtype of the type array: for all types of x, the type
(vector x) is the same as the type (array x (*)).

The types vector and list are disjoint subtypes of the type sequence.

The type vector is a supertype of the types string, bit-vector,
simple-vector;

611 sys :vector-bitblt

string means (vector string-char), or (vector character)
bit-vector means (vector bi t)
sinnple-vector means (simple-array t (*»

The types vector t, string, and bit-vector are disjoint.

This type specifier can be used in either symbol or list form. Used in list
form, vector allows the declaration and creation of specialized one
dimensional arrays whose elements are all of type element-type and whose
lengths match size. This is entirely equivalent to

(array (element-type size».

element-type must be a valid type specifier, or unspecified. For standard
Symbolics Common Lisp type specifiers: See the section "Type Specifiers"
in Symbolics Common Lisp: Language Concepts.

size can be a non-negative integer, or it can be a list of non-negative in
tegers, or it can be unspecified.

The specialized types (vector stri ng-char) and (vector· bi t) are so useful
. that they have the special names string and bit-vector.

Examples:

(typep #(a b c) 'vector) => T

(subtypep 'vector 'array) => T and T

(subtypep 'vector 'sequence) => T and T

(sys:type-arglist 'vector)
=> (&OPTIONAL (ELEMENT-TYPE '*) (SIZE '*» and T

(vectorp #(» => T

(typep #*010 '(vector bit 3» => T

See the section "Data Types and Type Specifiers" in Symbolics Common
Lisp: Language Concepts. See the section "Arrays" in Symbolics Common
Lisp: Language Concepts.

sys:vector-bitblt alu size from-array from-index to-array to-index Function
sys:vector-bitblt copies a linear portion of from-array of length size start
ing at from-index into a linear portion of to-array starting at to-index. The
value stored can be a Boolean function of the new value and the value al
ready there, under the control of alu. This function is a one-dimensional
bitblt. See the function bitblt, page 48.

from-raster and to-raster are allowed to be the same array. If size is nega
tive, then the processing is done backwards, using (abs size) as the number

I

I

vectorp 612

of elements. For arrays of different elements it works bitwise, and size is
in units of to-array.

sys:vector-bitblt might not work well if from-array is indirected with an
index-offset.

vectorp object Function
Tests whether the given object is a vector. A vector is a one-dimensional
array. See the type specifier vector, page 610.

(vectorp (make-array 5 :element-type 'bit :fill-pointer 2»
=> T

(vectorp (make-array '(5 2»)
=> NIL

vector-pop array Function
Decreases the fill pointer by one and returns the vector element designated
by the new value of the fill pointer. vector must be a one-dimensional ar
ray with a fill pointer.

vector-push new-element vector Function
Stores new-element in the element designated by the fill pointer and incre
ments the fill pointer by one. vector must be a one-dimensional array with
a fill pointer, and new-element can be any object allowed to be stored in the
array.

If the fill pointer does not designate an element of the array (specifically,
when it gets too big), it is unaffected and vector-push returns nil. Other
wise, the two actions (storing and incrementing) happen uninterruptibly,
and vector-push returns the former value of the fill pointer, that is, the ar
ray index in which it stored new-element.

vector-push-extend new-element vector &optional extension Function
Stores new-element in the element designated by the fill pointer and incre
ments the fill pointer by one. If the vector is not . large enough,
vector-push-extend extends the vector if the array is adjustable. However,
if the array is not adjustable, vector-push-eIdend signals an error.

vector-push-portion-extend to-al'rayfrom-array &optional Function
(from-start 0) from-end

Copies a portion of one array to the end of another, updating the fill
pointer of the second to reflect the new contents. The destination array
must have a fill pointer. The source array need not.

vector-push-portion-extend returns the to-array and the index of the next
location to be filled.

613

Example:

(setq to-string
(array-push-portion-extend

to-string from-string (or from B) to»

warn

If the optional arguments are not provided, the default is to copy all of
from-array to the end of to-array.

warn optional-options optional-condition-name format-string &rest Function
format-args

If the flag *break-on-warnings* is nil, warn prints a warning message
without entering the Debugger. .

If the flag, *break-on-warnings* is not nil, warn enters the Debugger and
prints the warning message. If you continue from the error, warn returns
args.

The optional arguments optional-options and optional-condition-name can be
omitted. They represent more advanced features of warn, the documen
tation of which is being deferred.

format-string is an error message string.

format-args are additional arguments; these are evaluated only if a con
dition is signalled.

Examples:

(defun sum-numbers (list-of-numbers)
(when « (length list-of-numbers) 2)

(warn ·You are trying to only add -0 number-:P.
(length list-of-numbers»)

(reduce #'+ list-of-numbers» => SUM-NUMBERS

(sum-numbers '(1»
=> Warning: You are trying to only add 1 number.

(setq *break-on-warnings* t) => T

(sum-numbers '(1»=>
Warning: You are trying to only add 1 number

I

I

when

SUM-NUMBERS:
Arg 9 (LIST-OF-NUMBERS): (1)

Debugger was entered because *BREAK-ON-WARNINGS* is set
s-A, <RESUME>: Return from WARN
s-B: Proceed without any special action

614

s-C, <ABORT>: Return to Lisp Top Level in Dynamic Lisp Listener 1
~ Return from WARN
1

For a table of related items: See the section "Condition-Checking and Sig
nalling Functions and Variables" in Symbolics Common Lisp: Language
Concepts.

when condition &rest body Macro
The forms in body are evaluated when condition returns non-null. In that
case, it returns the value(s) of the last form evaluated. When condition
returns nil, when returns nil.

Examples:

(when) => error

(when t "Climb Tree") => "Climb Tree"

(when (atom 'x) (setq a 1) "foo") => "foo"
a => 1

(when (eq 1 2) "day" "night") => NIL

When body is empty, when always returns nil.

For a table of related items: See the section "Conditional Functions" in
Symbolics Common Lisp: Language Concepts.

when Keyword For loop

when exprlf expr evaluates to nil, the following clause is skipped, otherwise not.
Examples:

(defun loop1 0
(loop for i from 1 to 19

when (= i 5) return i
finally (print "Finally triggered"») => LOOP1

(loop1) => 5

615

(defun loop1 0
(loop for i from

when (> i 5) collect i
until (> i 28») => LOOP1

where-is

(loop1) => (6 7 8 9 18 11 12 13 14 15 16 17 18 19 28 21)

Multiple conditionalization clauses can appear in sequence. If one test fails, then
any following tests in the immediate sequence, and the clause being
conditionalized, are skipped.

In the typical format of a conditionalized clause such as

when exprl keyword expr2

expr2 can be the keyword it. If that is the case, then a variable is generated to
hold the value of exprl, and that variable gets substituted for expr2. Thus, the
composition:

when expr return it

is equivalent to the clause:

thereis expr

and one can collect all non-null values in an iteration by saying:

when expression collect it

If multiple clauses are joined with and, the it keyword can only be used in the
first. If multiple whens, unlesses, and/or ifs occur in sequence, the value
substituted for it is that of the last test performed. The it keyword is not
recognized in an else-phrase.

Conditionals can be nested.

See the section "loop Clauses", page 310.

where-is pname Function
Finds all symbols named pname and prints on zl:standard-output a
description of each symbol. The symbol's home package and name are
printed. If the symbol is present in a different package than its home
package (that is, it has been imported), that fact is printed. A list of the
packages from which the symbol is accessible is printed, in alphabetical or
der. where-is searches all packages that exist, except for invisible
packages.

If pname is a string it is converted to uppercase, since most symbols'
names use uppercase letters. If pname is a symbol, its exact name is used.

where-is returns a list of the symbols it found.

The find-aIl-symbols function is the primitive that does what where-is
does without printing anything.

I

I

:which-operations 616

: which-operations Message
The object should return a list of the messages and generic functions it
supports with methods.

The :which-operations method supplied by flavor:vanilla generates the list
once per flavor and remembers it, minimizing consing and compute time.
The list is regenerated when a new method is added.

while Keyword For loop

while expr
If expr evaluates to nil, the loop is exited, performing exit code (if any),
and returning any accumulated value. The test is placed in the body of the
loop where it is written. It can appear between sequential for clauses.

Examples:

(defun x-power (x)
(loop for stepper = x then (* stepper x)

while « stepper 1BB)
do

(print stepper») => X-POWER
(x-power 3) =>
3

9
27
81 NIL

&whole Lambda List Keyword
This keyword is used with macros only. It should be followed by a single
variable that is bound to the entire macro-call form or subform. This vari
able is the value that the macro-expander function receives as its first ar
gument. &whole and its following variable should appear first in the
lambda-list, before any other parameter or lambda-list keyword.

with Keyword For loop

with uarl {data-type} {= exprl} {and uar2 {data-type} {= expr2} } •••
The with keyword can be used to establish initial bindings, that is, vari
ables that are local to the loop but are only set once, rather than on each
iteration.
The optional argument, data-type, is reserved for data type declarations. It
is currently ignored.
If no expr is given, the variable is initialized to the appropriate value for
its data type, usually nil. with bindings linked by and are performed in
parallel; those not linked are performed sequentially. That is:

617

(loop with a = (faa) and b = (bar) and c
...)

binds the variables like:

«1 ambda (a b c) ...)
(faa) (bar) nil)

whereas:

(loop with a = (faa) with b = (bar a) with c ...)

binds the variables like:

«lambda (a)
«lambda (b)

«lambda (c) ...)
nil»

(bar a»)
(faa»

with

All expr's in with clauses are evaluated in the order they are written, in
lambda-expressions surrounding the generated prog. The loop expression:

(loop with a = xa and b = xb
with c = xc
for d = xd then (f d)
and e = xe then (9 e. d)
for p in xp
with q = xq

...)
produces the following binding contour, where tl is a loop-generated tem
porary:

«1 ambda (a b)
«lambda (c)

«lambda (d e)

xc»
xa xb)

«lambda (p t1)
«lambda (q) ...)
xq))

nil xp»
xd xe»

Because all expressions in with clauses are evaluated during the variable
binding phase, they are best placed near the front of the loop form for
stylistic reasons.

I

I

sys:with-aborts-enabled

For binding more than one variable with no particular initialization, one
can use the construct:

with variable-list {data-type-list} {and ••• }

as in:

with (i j k t1 t2) (fixnum fixnum fixnum)

A slightly shorter way of writing this is:

with (i j k) fixnum and (t1 t2) ...

618

These are cases of destructuring which loop handles specially. See the sec
tion "Destructuring", page 316.
Examples:

(defun 100p1 0
(loop for x from 9 to 3

with (a b)
with c = '(its constant)
~ith d = '(another constant)
do

(setq a (+ x 19»
(setq b (+ x 29»
(print (list abc d»» => LOOP1

(loop1) =>
(19 29 (ITS CONSTANT) (ANOTHER CONSTANT»
(11 21 (ITS CONSTANT) (ANOTHER CONSTANT»
(12 22 (ITS CONSTANT) (ANOTHER CONSTANT»
(13 23 (ITS CONSTANT) (ANOTHER CONSTANT» NIL

See the macro loop, page 309.

sys:with-aborts-enabled (identifiers ...) body... Macro
sys:with-aborts-enabled cancels the effect of one or more invocations of
sys:without-aborts.

Each of the identifiers is a symbol that relates this invocation of
sys:with-aborts-enabled to a matching invocation of sys:without-aborts.
The innermost sys:without-aborts with a matching identifier is nullified
for the duration of body. The identifier unwind-protect identifies the
automatic sys:without-aborts created by unwind-protect. It is not pos
sible to nullify a sys:without-aborts without an identifier.

Use sys:with-aborts-enabled when an operation that is generally unsafe to
abort contains an interval during which the state is consistent and aborting
is safe, especially if an error can be signalled during that interval. In the
case of an error, sys:with-aborts-enabled allows the user to abort without
having to interact further with the Debugger.

619 dbg :with-erri ng-frame

You also use sys:with-aborts-enabled when you don't need the automatic
sys:without-aborts created by unwind-protect. For example,

(unwind-protect (do-something)
(sys:with-aborts-enabled (unwind-protect)

(clean-up-something»)

If the cleanup form contained an explicit sys:without-aborts, to specify. a
specific reason why it should not be aborted instead of the default generic
reason, the sys:with-aborts-enabled must specify the identifiers of both the
explicit and the implicit sys:without-aborts. For example,

(unwind-protect (do-something)
(sys:without-aborts

(faa HThe floor is being cleaned up.
Aborting now could leave a serious mess that will cause
trouble if you enter this room again later. H)

(do-something-not-abortable)
(sys:with-aborts-enabled (faa unwind-protect)

(do-something-abortable»»

See the macro sys:without-aborts, page 620.

For a table of related items: See the section "Nonlocal Exit Functions" in
Symbolics Common Lisp: Language Concepts.

dbg:with-erring-frame (frame-uar condition) &body body Macro
dbg:with-erring-frame sets up an environment with appropriate bindings
for using the rest of the functions that examine the stack. It binds
frame-uar with the frame pointer to the stack frame that signalled the er
ror.

frame-uar is always a pointer to an interesting stack frame.

condition is the condition object for the error, which was the first ar
gument given to the condition-bind handler.

(defun my-handler (condition-object)
(dbg:with-erring-frame (frame-ptr condition-object)

body ...))

Inside body, the variable frame-var is bound to the frame pointer of the
frame that got the error.

Sometimes, you might want to use the special variable
dbg:*current-frame* as frame-uar because some functions expect this spe
cial variable to be bound to the stack frame that signalled the error.

You would use this special variable if you are sending the
:bug-report-description message to the condition object, which calls stack- •

I

sys:without-aborts

examination routines that depend on the idea of a current frame, in ad
dition to the other things that dbg:with-erring-frame sets up.
:bug-report-description is the message that generates the text that the
:Mail Bug Report command (c-M) puts in the mail composition window.
See the generic function dbg:bug-report-description, page 59.

For a table of related items: See the section "Functions for Examining
Stack Frames" in Symbolics Common Lisp: Language Concepts.

620

sys:without-aborts ([identifier] reason format-args ...) body... Macro
This macro encloses code that should not be aborted. sys:without-aborts
intercepts abort attempts by user action (such as c-ABORT), but not abort
attempts by program action (such as throw).

When the macro is activated, it uses reason, a format-control string, and
format-args, additional arguments, to display an. explanation of why it is
sensitive to the current abort request and what the consequences of abort
ing now would be. Phrase this explanation so that it is as useful and
meaningful as possible to the user who is trying to abort the program.
Giving the user the information needed to decide whether to leave the
program running or to force it to abort is more important than conciseness.
See the example given below.

identifier is optional and usually omitted. If present, identifier is a symbol
that relates this invocation of sys:without-aborts to a matching invocation
of sys:with-aborts-enabled. See the macro sys:with-aborts-enabled, page
618.

Use sys:without-aborts to protect those parts of your program, such as
manipulations of global data structures, that cannot be aborted partway
through their execution without damaging the program. You don't need
sys:without-aborts if aborting the program would not cause a future ex
ecution of it to operate incorrectly.

If a program remains unsafe to abort for only a brief time, c-ABORT simply
waits until the program leaves the body of sys:without-aborts and then
aborts it. c-ABORT displays reason and queries the user only if the program
remains inside sys:without-aborts for too long.

If a program enters the Debugger while inside sys:without-aborts, and you
invoke a restart option that would throw through the sys:without-aborts,
aborting the execution of body, the Debugger displays reason and queries
you. In this case waiting until the program leaves body is not possible be
cause the program is already stopped and sitting in the Debugger.

sys:without-aborts is automatically wrapped around all unwind-protect
cleanup forms; this decreases the probability of leaving an unwind-protect
without completely executing its cleanup forms. When sys:without-aborts

621 sys:without-aborts

is invoked during an unwind-protect, identifier is unwind-protect and
reason is a generic explanation supplied by the system.

You can specify a more precise description of why the cleanup forms of this
unwind-protect are not safe to abort by invoking sys:without-aborts ex
plicitly. You can also specify that the cleanup forms are safe to abort by
invoking sys:with-aborts-enabled with unwind-protect as an identifier.

The function process-abort, used by the various abort keys, respects
sys:without-aborts, waiting until the process is abortable, and asking the
user what to do if the process is still not abortable after a timeout. See
the section "Process Functions" in Internals, Processes, and Storage
Management.

Example:

(sys:without-aborts
("The -:R widget data base is being -(-A-)d.-@

Aborting this could leave the data base in an inconsistent state,-@
and future operations on widgets might fail in unpredictable ways."

2 :update)
(+ 1 'fool)

Trap: The second argument ...
s-A, <RESUME>: Supply replacement argument
s-B: Return a value from the +-INTERNAL instruction
s-C: Retry the +-INTERNAL instruction
s-D, <ABORT>:
s-E:
-->Abort Abort

Return to Dynamic Lisp Top Level in Dynamic Lisp Listener 2
Restart process Dynamic Lisp Listener 2

Return to Dynamic Lisp Top Level in Dynamic Lisp Listener 2

The program cannot safely be aborted at this time.
The second widget data base is being updated.
Aborting this could leave the data base in an inconsistent state,
and future operations on widgets might fail in unpredictable ways.

Do you want to Skip or Abort? (press <HELP> for help) <HELP>
The current program operation is one that the programmer expected
to run to completion. Aborting this operation partway through
could leave the program in an inconsistent state~and interfere
with its proper operation.
Your choices are:

Skip Abandons this attempt to abort the program.
Abort Aborts the program by force, accepting the risk of damage .

. Do you want to Skip or Abort? Abort
•

I

without-floating-underflow-traps 622

Back to Dynamic Lisp Top Level in Dynamic Lisp Listener 2.

The example assumes the user of this program knows what widgets are and
what a widget data base is. If this is not the case, the reason string
should include a brief explanation.

In this example, the Debugger offers you two choices. If you select Skip,
you can use one of the first two proceed options to correct the error in the
program and continue execution. If you select Abort, you accept the pos
sibility that the program won't work correctly in the future.

If the program had been aborted with c-ABORT, you would have been of
fered additional choices, as follows:

Skip
Wait

Abandons this attempt to abort the process.
Waits until the process reaches a point where it can
safely be aborted. Offers these choices again if 5
seconds elapse and it still cannot be aborted.

Wait indefinitely Keeps waiting for as long as it takes. Another attempt

Abort
to abort stops waiting and offers these choices again.
Aborts the process by force, accepting the risk of
damage.

Debug Enters the Debugger for detailed investigation.

For a table of related items: See the section "Nonlocal Exit Functions" in
Symbolics Common Lisp: Language Concepts.

without-floating-underflow-traps body... Special Form
Inhibits trapping of floating-point exponent underflow traps within the body
of the form. The result of a computation which would otherwise underflow
is a denormalized number or zero, whichever is closest to the mathematical
result.

Example:

(describe (without-floating-underflow-traps (expt .1 40))) =>
1.0e-40 is a single-precision floating-point number.

Sign 0, exponent 0, 23-bit fraction 213302 (denormalized)
1.0e-40

xcons X Y Function
xcons ("exchanged cons")creates a cons, whose car is y and whose cdr is y.
Example:

623 xcons-in-area

(xcons 'a 'b) => (b . a)

xcons is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions for Constructing
Lists and Conses" in Symbolics Common Lisp: Language Concepts.

xcons-in-area x y area-number Function
xcons-in-area creates a cons, whose car is y and whose cdr is x, in the
specified area. (Areas are an advanced feature of storage management.)
See the section "Areas" in Internals, Processes, and Storage Management.

xcons-in-area is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions for Constructing
Lists and Conses" in Symbolics Common Lisp: Language Concepts.

zerop number Function
Returns t if number is zero. Otherwise it returns nil. If number is not a
number, zerop signals an error.

For floating-point numbers, this only returns t for exactly 0.0, -0.0, O.OdO
or -O.OdOj there is no "fuzz". For complex numbers, both real and imagi
nary parts must be zero.

For a table of related items: See the section "Numeric Property-checking
Predicates" in Symbolic8 Common Lisp: Language Concepts.

I

