

symbolics™

5 Reference Guide to
Streams, Files, and liD

Reference Guide to Streams, Files, and I/O
999006

August 1986

This document corresponds to Genera 7.0 and later releases.

The software, data, and information contained herein are proprietary to, and comprise
valuable trade secrets of, Symbolics, Inc. They are given in confidence by Symbolics
pursuant to a written license agreement, and may be used, copied, transmitted, and
stored only in accordance with the terms of such license. This document may not be
reproduced in whole or in part without the prior written consent of Symbolics, Inc.

Copyright © 1986, 1985, 1984, 1983, 1982, 1981, 1980 Symbolics, Inc. All Rights
Reserved.
Portions of font library Copyright © 1984 Bitstream Inc. All Rights Reserved.
Portions Copyright © 1980 Massachusetts Institute of Technology. All Rights Reserved.

Symbollcs, Symbollcs 3600, Symbollcs 3670, Symbollcs 3675, Symbolics 3640,
Symbollcs 3645, Symbollcs 3610, Symbolics 3620, Symbolics 3650, Genera,
Symbollcs-L1sp®, Wheels, Symbolics Common LIsp, Zetalisp®, Dynamic Windows,
Document Examiner, Showcase, SmartStore, SemantiCue, Frame-Up, Firewall,
S-DYNAMICS®, S-GEOMETRY, S-PAINT, S-RENDER®, MACSYMA, COMMON LISP
MACSYMA, CL-MACSYMA, LISP MACHINE MACSYMA, MACSYMA Newsletter and
Your Next Step In Computing are trademarks of Symbolics, Inc.

DEC, TOPS-20, ULTRIX, UNIBUS, VAX, and VMS are trademarks of Digital Equipment
Corporation.

UNIX is a trademark of AT&T Bell Laboratories.

MS-DOS is a trademark of Microsoft, Inc.

TENEX is a registered trademark of Bolt, Beranek and Newman, Inc.

Restricted Rights Legend
Use, duplication, and disclosure by the Government are subject to restrictions as set
forth in subdivision (b)(3)(ii) of the Rights in Technical Data and Computer Software
Clause at FAR 52.227-7013.

Symbolics, Inc.
4 New England Tech Center
555 Virginia Road
Concord, MA 01742

Text written and produced on Symbolics 3600-family computers by the Documentation
Group of Symbolics, Inc.
Text masters produced on Symbolics 3600-family computers and printed on Symbolics
LGP2 Laser Graphics Printers.
Cover Design: SchaferlLaCasse
Printer: CSA Press
Printed in the United States of America.

Printing year and number: 88 87 86 9 8 7 6 5 4 3 2 1

iii

August 1986 Reference Guide to Streams, Files, and 110

Table of Contents

Page

I. Introduction to the 110 System 1

II. Streams 3

1. Introduction to Streams 5

2. Types of Streams 7

2.1 Standard Common Lisp Streams 7
2.2 Standard Zetalisp Streams 8
2.3 Coroutine Streams 10
2.4 Direct Access File Streams 13

2.4.1 Stream Messages 14
2.4.2 Direct Access Output File Streams 14
2.4.3 Direct Access Bidirectional File Streams 15
2.4.4 Effect of Character Set Translation on Direct Access File 15

Streams
2.5 Hardcopy Streams

2.5.1 Supported Hardcopy Devices
2.5.2 The Hardcopy Stream Model
2.5.3 Making Hardcopy Streams
2.5.4 Using Hardcopy Streams
2.5.5 Hardcopy Streams Reference Information

3. Stream Operations

3.1 Making Your Own Stream
3.2 General Stream Functions
3.3 General-Purpose Stream Operations
3.4 Special-Purpose Stream Operations
3.5 File Stream Operations
3.6 Network Stream Operations
3.7 The :read And :print Stream Operations

4. Naming of Files

4.1 Pathnames

III. Files

16
16
16
17
19
25

29

29
33
33
41
44
46
47

49

51

51

iv

Reference Guide to Streams, Files, and 110 August 1986

4.1.1 Simple Usage of the Pathname System 53
4.1.2 Host Determination in Pathnames 62
4.1.3 Interning of Pathnames 64
4.1.4 Printing Pathnames 64
4.1.5 Values of Pathname Components 66
4.1.6 Directory Pathnames and Directory Pathnames as Files 68
4.1.7 Case in Pathnames 71

4.2 Defaults and Merging 73
4.3 Generic Pathnames 75
4.4 Relative Pathnames 75
4.5 Canonical Types in Pathnames 77

4.5.1 Correspondence of Canonical Types and Editor Modes 79
4.6 Wildcard Pathname Mapping 79

4.6.1 Wildcard Directory Mapping 81
4.7 Pathname Functions 83
4.8 Pathname Messages 92
4.9 Pathnames on Supported Host File Systems 101

4.9.1 LMFS Pathnames 101
4.9.2 FEP File System Pathnames 103
4.9.3 UNIX Pathnames 104
4.9.4 UNIX 4.2 Pathnames 105
4.9.5 V AXNMS Pathnames 107
4.9.6 TOPS-20 and TENEX Pathnames 110
4.9.7 Multics Pathnames 111
4.9.8 ITS Pathnames 112
4.9.9 MS-DOS Pathnames 113
4.9.10 Logical Pathnames 113

4.10 Init File Naming Conventions 127

5. File and Directory Access 129

5.1 Accessing Files 129
5.1.1 Loading Files 155
5.1.2 File Attribute Lists 156

5.2 Accessing Directories 160
5.2.1 Functions for Accessing Directories 161

5.3 Access Control Lists 170
5.3.1 Introduction to Access Control 170
5.3.2 Access Control Model: What You Can and Cannot Protect 171
5.3.3 Configuring a File Server 173
5.3.4 Administering Names, Capabilities, and Passwords 174
5.3.5 The File Server Activity 174

v

August 1986 Reference Guide to Streams, Files, and I/O

6. Lisp Machine File System 181

6.1 Introduction to LMFS 181
6.2 Concepts 181
6.3 Properties 182
6.4 Deletion, Expunging, and Versions 187
6.5 LMFS Links 189
6.6 LMFS Backup 190
6.7 Multiple Partitions 191

6.7.1 Free Records 192
6.7.2 Salvager 194
6.7.3 Adding a Partition to LMFS 197

7. FEP File System 199

7.1 Naming of FEP Files 200
7.2 FEP File Types 201
7.3 Configuration Files 202
7.4 FEP File Comment Properties 203
7.5 Accessing FEP Files 204
7.6 Operating on Disk Streams 204
7.7 Input and Output Disk Streams 206
7.8 Block Disk Streams 206
7.9 FEP File Properties 207
7.10 FEP File Locks 208
7.11 Installing Microcode 208
7.12 Using a Spare World Load for Paging 209
7.13 Adding a Spare World Load as LMFS File Space 210

8. FSEdit 211

8.1 File SysteQI Editor 211
8.1.1 Entering the File System Editor 211
8.1.2 U sing the File System Editor 212
8.1.3 Opening and Closing a Directory 212
8.1.4 Using FSEdit Commands 213

8.2 How to Interpret Directory Listings 216

9. Creating More Room on the Local Disk 219

9.1 Allocating Extra Paging Space 220
9.2 Adding a Paging File From Lisp 221

10. Putting Data in Compiled Code Files 223

vi

Reference Guide to Streams, Files, and 110 August 1986

IV. Input/Output Facilities 225

11. How the Reader Works 227

11.1 What the Reader Recognizes 227
11.1.1 How the Reader Recognizes Symbols 227
11.1.2 How the Reader Recognizes Macro Characters 228

11.2 Sharp-sign Reader Macros 229
11.3 Special Character Names 234
11.4 The Readtable 235

11.4.1 Functions That Create New Readtables 236
11.4.2 Functions That Change Character Syntax 236
11.4.3 Functions That Change Characters Into Macro Characters 238
11.4.4 Readtable Functions for Maclisp Compatibility 241

12. Input Functions

12.1 Input Functions That Work on Streams
12.2 Non-stream Input Functions
12.3 Read Control Variables

13. The Input Editor Program Interface

13.1 How the Input Editor Works
13.2 Invoking the Input Editor
13.3 Input Editor Options
13.4 Displaying Prompts in the Input Editor
13.5 Displaying Help Messages in the Input Editor
13.6 Examples of Use of the Input Editor
13.7 Input Editor Messages to Interactive Streams

243

244
259
261

265

265
266
272
278
279
279
283

14. Printed Representation 287

14.1 How the Printer Works 287
14.2 Effects of Slashification on Printing 287
14.3 What the Printer Produces 288

14.3.1 Printed Representation of Symbols 288
14.3.2 Printed Representation of Common Lisp Character Objects 288
14.3.3 Printed Representation of Strings 288
14.3.4 Printed Representation of Instances 288
14.3.5 Printed Representation of Arrays That Are Named 289

Structures
14.3.6 Printed Representation of Arrays That Are Not Named 289

Structures
14.3.7 Printed Representation of Miscellaneous Data Types 289

vii

August 1986 Reference Guide to Streams, Files, and 110

14.4 Controlling the Printed Representation of an Object 291

15. Output Functions

15.1 Print Control Variables

16. Formatted Output

17. Formatting Lisp Code

18. The Serial I/O Facility

18.1 Introduction to Serial I/O
18.2 Hardware Description for Serial I/O

18.2.1 Overview of Serial I/O Hardware
18.2.2 Console Serial I/O Port
18.2.3 Bulkhead Serial I/O Ports

18.3 The Serial I/O Stream
18.4 Parameters for Serial I/O
18.5 Simple Examples: Serial I/O
18.6 Troubleshooting: Serial I/O
18.7 Notes on Serial I/O
18.8 HDLC Serial I/O

293

297

309

329

331

331
331
331
332
333
335
337
341
342
343
344

18.9 Using the Terminal Program with Hosts Connected to the Serial 344
Line

19. Writing Programs That Use Magnetic Tape 347

19.1 The tape:make-stream Function 347
19.2 Messages to Tape Streams 350
19.3 Tape Error Flavors 353

APPENDIX A. The Character Set 355

Index 359

viii

Reference Guide to Streams, Files, and 110

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Table 1.
Table 2.

Table 3.
Table 4.

List of Figures

The Hardcopy Stream Model
An Instance of a Hardcopy Stream
File Server Activity Window
Access Control List Editor
Salvager Options
FEP File Comment Properties

List of Tables

Assignment of RS-232 Signals to Pins
Assignment of RS-232 Signals to Pins in Asynchronous Null
Terminals
Assignment of RS-232 Signals to Pins
Assignment of RS-232 Signals to Pins in Asynchronous Null
Modems

August 1986

17
19

175
178
195
203

332
333

334
334

August 1986 Introduction to the 110 System

PART I.

Introduction to the 1/0 System

Symbolics Common Lisp provides a powerful and flexible system for performing
input and output to peripheral devices. To allow device-independent I/O (that is,
to allow programs to be written in a general way so that the program's input and
output may be connected with any device), the I/O system provides the concept of
an "I/O stream". What streams are, the way they work, and the functions to
create and manipulate streams, are described in this document. This document
also describes the Lisp "I/O" operations read and print.

2

Reference Guide to Streams, Files, and VO August 1986

3

August 1986 Streams

PART II.

Streams

4

Reference Guide to Streams, Files, and 110 August 1986

5

August 1986 Streams

1. Introduction to Streams

Many programs accept input characters and produce output characters. Methods
for performing input and output vary greatly from one device to another.
Programs should be able to use any device available without each program having
to know about each device.

The concept of streams solves this problem. A stream is a source and/or sink of
data. A set of operations is available with every stream; operations include such
actions as "output a character" and "input a character". The way to perform an
operation to a stream is the same for all streams, although what happens inside a
stream depends on the kind of stream it is. Thus a program needs to know only
how to deal with streams in general.

In Genera, streams are implemented as flavors. You can operate on a stream by
using generic functions or by sending it messages, depending on what type of
operations the stream supports. Flavors, generic functions, and message-passing
are described elsewhere: See the section "Flavors" in Symbolics Common Lisp:
Language Concepts.

Some streams can do only input, some only output, and some can do both. Some
streams support only some operations; however, unsupported operations might
work, although slowly, because the sys:stream-default-handler can handle them.
An operation called :which-operations returns a list of the names of all operations
that are supported "natively" by a stream. (All streams support
:which-operations, so it might not be in the list itself.)

6

Reference Guide to Streams, Files, and 110 August 1986

7

August 1986 Streams

2. Types of Streams

2.1 Standard Common Lisp Streams

Several variables whose values are streams are used by many functions in the Lisp
system. By convention, variables that are expected to hold a stream capable of
input have names ending with -input. Similarly, variables expected to hold a
stream capable of output have names ending with -output. Those expected to hold
a bidirectional stream have names ending with -io.

The variables *standard-input*, *standard-output*, *error-output*,
trace-output, * query-io* , and *debug-io* are initially bound to synonym streams
that pass all operations on to the stream that is the value of *terminal-io*. Thus
any operation performed on those streams goes to the terminal.

No user program should ever change the value of *terminal-io*. For example, a
program to divert output to a file should do so by binding the value of
standard-output; that way, error messages sent to *error-output* can still get
to the user by going through *terminal-io*, which is usually what is desired.

standard-input Variable
In the normal Lisp top-level loop, input is read from whatever stream is
the value of *standard-input*. Many input functions, including read and
read-char, take a stream argument that defaults to *standard-input*.

standard-output Variable
In the normal Lisp top-level loop, output is sent to whatever stream is the
value of *standard-output*. Many input functions, including write and
write-char, take a stream argument that defaults to *standard-output*.

error-output Variable
The value of *error-output* is a stream to which error messages should be
sent. Normally, this is the same as *standard-output*, but
standard-output might be bound to a file and *error-output* left going
to the terminal or a separate file of error messages.

terminal-io Variable
The value of *terminal-io* is ordinarily the stream that connects to the
user's console. In an "interactive" program, it is the window from which
the program is being run; I/O on this stream reads from the keyboard and
displays on the terminal. However, in a "background" program that
normally does not talk to the user, *terminal-io* defaults to a stream that
does not expect to be used. If it is used, perhaps by an error notification,
it turns into a "background" window and requests the user's attention.

8

Reference Guide to Streams, Flies, and VO August 1986

query-io Variable
The value of *query-io* is a stream to be used when asking questions of
the user. The question should be output to this stream, and the answer
read from it. When the normal input to a program comes from a file,
questions such as "Do you really want to delete all of the files in your
directory?" should be sent directly to the user and the answer should come
from the user also, not from the data file. For these purposes, *query-io*
should be used instead of *standard-input* and *standard-output*.
query-io is used by such functions as yes-or-no-p.

debug-io Variable
The value of *debug-io* is a stream to be used for interactive debugging
purposes.

trace-output Variable
The value of *trace-output* is the stream on which the trace function
prints its output.

2.2 Standard Zetalisp Streams

The variables zl:standard-input, zl:standard-output, zl:error-output,
zl:trace-output, and zl:query-io are initially bound to synonym streams that pass
all operations on to the stream that is the value of zl:terminal-io. Thus any
operation performed on those streams goes to the terminal.

These variables are synonyms for the Common Lisp variables with similar names.
For example, zl:standard-input is a synonym for *standard-input*. When writing
new programs, you should use the Common Lisp variables instead of the Zetalisp
variables.

zl:standard-input Variable
In the normal Lisp top-level loop, input is read from zl:standard-input
(that is, whatever stream is the value of zl:standard-input). Many input
functions, including zl:tyi and zl:read, take a stream argument that
defaults to zl:standard-input. zl:standard-input is equivalent to
standard-input.

zl:standard-output Variable
In the normal Lisp top-level loop, output is sent to zl:standard-output
(that is, whatever stream is the value of zl:standard-output). Many
output functions, including zl:tyo and print, take a stream argument that
defaults to zl:standard-output. zl:standard-output is equivalent to
standard-output .

9

August 1986 Streams

zl:error-output Variable
The value of zl:error-output is a stream to which error messages should
be sent. Normally this is the same as zl:standard-output, but
zl:standard-output might be bound to a file and zl:error-output left going
to the terminal. zl:error-output is equivalent to *error-output*.

~~~~ fu~k 
The value of zl:query-io is a stream that should be used when asking 
questions of the user. The question should be output to this stream, and 
the answer read from it. The reason for this is that when the normal 
input to a program might be coming from a file, questions such as "Do you 
really want to delete all of the files in your directory??" should be sent 
directly to the user, and the answer should come from the user, not from 
the data file. zl:query-io is used by fquery and related functions. 
zl:query-io is equivalent to *query-io*. 

zl:terminal-io Variable 
The value of zl:terminal-io is the stream that connects to the user's 
console. In an "interactive" program, it is the window from which the 
program is being run; I/O on this stream reads from the keyboard and 
displays on the terminal. However, in a "background" program that does 
not normally talk to the user, zl:terminal-io defaults to a stream that does 
not ever expect to be used. If it is used, perhaps by an error notification, 
it turns into a "background" window and requests the user's attention. 
zl:terminal-io is equivalent to *terminal-io*. 

zl:trace-output Variable 
The value of zl:trace-output is the stream on which the trace function 
prints its output. zl:trace-output is equivalent to *trace-output*. 

zl:debug-io Variable 
If not nil, this is the stream that the Debugger should use. The default 
value is a synonym stream that is synonymous with zl:terminal-io. If the 
value of dbg:*debug-io-override* is not nil, the Debugger uses the value of 
that variable as the stream instead of the value of zl:debug-io. 

The value of zl:debug-io can also be a string. This causes the debugger to 
use the cold-load stream; the string is the reason why the cold-load stream 
should be used. 

No program other than the Debugger should do stream operations on the 
value of zl:debug-io, since the value cannot be a stream. Other programs 
should use zl:query-io, zl:error-output, or zl:trace-output. zl:debug-io is 
equivalent to *debug-io*. 



10 

Reference Guide to Streams, Files, and liD August 1986 

dbg:*debug-io-override* Variable 
This is used during debugging to divert the Debugger to a stream that is 
known to work. If the value of this variable is nil (the default), the 
Debugger uses the stream that is the value of zl:debug-io. But if the 
value of dbg:*debug-io-override* is not nil, the Debugger uses the stream 
that is the value of this variable instead. This variable should always be 
set (using setq), not bound, so all processes and stack groups can see it. 

2.3 Coroutine Streams 

Functions that produce data as output (output functions) are written in terms of 
:tyo and other output operations. Functions that receive data as input (input 
functions) are written in terms of :tyi and other input operations. Output 
functions operate on output streams, which handle the :tyo message. Input 
functions operate on input streams, which handle the :tyi message. Sometimes it 
is desirable to view an output function as an input stream, or an input function as 
an output stream. You can do this with coroutine streams. 

Here is a simplified explanation of how coroutine streams work. A coroutine input 
stream can be built from an output function. Whenever that stream receives a 
:tyi message, it invokes the output function in a separate stack group so that the 
function can produce the data that the :tyi message returns. A coroutine output 
stream can be built out of an input function; it works in the opposite fashion. 
Whenever the output stream receives a :tyo message, it invokes the input function 
in a separate stack group so that the function can receive the data transmitted by 
the :tyo message. It is also possible to connect functions that do both input and 
output, by using bidirectional coroutine streams. Since you can use coroutine 
streams to connect two functions, they are the logical inverse of 
stream-copy-until-eof, a function used to connect two streams. 

To create a coroutine stream, use one of three functions. 

• If you want to make an input stream from an output function, use 
si:make-coroutine-input-stream. 

• If you want to make an output stream to an input function, use 
si:make-coroutine-output-stream. 

• If you want to make a bidirectional stream for a function that does both 
input and output, use sys:make-coroutine-bidirectional-stream. 

Following is an example using a coroutine input stream: 

(setq input-stream 
(si:make-coroutine-input-stream 

#'(lambda (stream) (print-disk-label e stream»» 



11 

August 1986 Streams 

(send input-stream ':line-in) -7 

"1645 free, 2604991/262144 used (99%)" 

Following is an example using a coroutine output stream: 

(setq output-stream 
(si:make-coroutine-output-stream 

#'(lambda (stream) (setq x (read stream»») 

(send output-stream ':string-out "(a be)") 

(send output-stream ':force-output) 

X -7 (A B C) 

Coroutine streams are implemented as buffered character streams. Each function 
that makes a coroutine stream actually creates two streams and one new stack 
group. One stream is associated with the new stack group and the other stream 
with the stack group that is current when the stream-making function is called. 
If you use si:make-coroutine-input-stream or si:make-coroutine-output-stream, 
one stream is an input stream and the other is an output stream; they share a 
common buffer. If you use sys:make-coroutine-bidirectional-stream, both 
streams are bidirectional; the input buffer of each stream is the output buffer of 
the other. 

With si:make-coroutine-input-stream, the output function runs in the new stack 
group. With si:make-coroutine-output-stream, the input function runs in the 
new stack group. With bidirectional streams, the function that does input or 
output runs in the new stack group. 

In the case of si:make-coroutine-input-stream, for example, you typically send 
:tyi messages to the input stream that si:make-coroutine-input-stream returns. 
The input stream is associated with the new stack group. When the input stream 
receives a :tyi message, the new stack group is resumed, and the output function 
runs in that stack group. The output function typically sends :tyo messages to 
the output stream associated with the stack group from which 
si:make-coroutine-input-stream was called. When the output stream receives a 
:tyo message, the associated stack group is resumed. The data transmitted to the 
output stream become input to :tyi via the buffer that the two streams share. 
si:make-coroutine-output-stream and sys:make-coroutine-bidirectional-stream 
work in analogous fashion. 

In addition to :tyi and :tyo, coroutine streams support other standard input and 
output operations, such as :line-in and :string-out. Actually, the 
:next-input-buffer method of the input stream and the :send-output-buffer 
method of the output stream resume the new stack group, not the receipt of :tyi 



12 

Reference Guide to Streams, Files, and 110 August 1986 

and :tyo messages. Because the streams are buffered, you must send a 
:force-output message to an output stream to cause the new stack group to be 
resumed. 

The instantiable flavors of coroutine streams are si:coroutine-input-stream, 
si:coroutine-output-stream, and si:coroutine-bidirectional-stream. 

Do not confuse coroutine streams with pipes. Coroutine streams are used for 
intraprocess communication; pipes are used for interprocess communication. 3600-
family machines do not currently support pipes. 

si:make-coroutine-input-stream function &rest arguments Function 
Creates two coroutine streams, an input stream and an output stream, with 
a shared buffer. si:make-coroutine-input-stream returns the input stream. 
The input stream is associated with a new stack group and the output 
stream with the stack group that is current when 
si:make-coroutine-input-stream is called. :tyi messages to the input 
stream cause the new stack group to be resumed and function to be called 
from that stack group. The first argument to function is the output 
stream; any additional arguments come from arguments. function should 
send :tyo messages to the output stream. These messages resume the 
stack group in which si:make-coroutine-input-stream was called. In this 
way, output from function becomes input to the caller of 
si:make-coroutine-input-stream through the shared buffer. 

si:make-coroutine-output-stream function &rest arguments Function 
Creates two coroutine streams, an output stream and an input stream, with 
a shared buffer. si:make-coroutine-output-stream returns the output 
stream. The output stream is associated with a new stack group and the 
input stream with the stack group that is current when 
si:make-coroutine-output-stream is called. :tyo messages to the output 
stream cause the new stack group to be resumed and function to be called 
from that stack group. The first argument to function is the input stream; 
any additional arguments come from arguments. function should send :tyi 
messages to the input stream. These messages resume the stack group in 
which si:make-coroutine-output-stream was called. In this way, output 
from the caller of si:make-coroutine-output-stream becomes input to 
function through the shared buffer. 

sys:make-coroutine-bidirectional-stream function &rest arguments Function 
Creates two bidirectional coroutine streams. The input buffer of each 
stream is the output buffer of the other. One stream is associated with a 
new stack group and the other with the stack group that is current when 
sys:make-coroutine-bidirectional-stream is called. 
sys:make-coroutine-bidirectional-stream returns the stream associated 
with the new stack group. 



13 

August 1986 Streams 

:tyi and :tyo messages to the stream associated with the new stack group 
cause that stack group to be resumed and function to be called from that 
stack group. The first argument to function is the stream associated with 
the stack group from which sys:make-coroutine-bidirectional-stream was 
called. Any additional arguments come from arguments. function should 
send :tyi or :tyo messages to the stream that is its first argument. These 
messages resume the stack group in which 
si:make-coroutine-output-stream was called. In this way function and the 
caller of sys:make-coroutine-bidirectional-stream communicate through 
the shared buffers; output from one function becomes input to the other. 

si:coroutine-input-stream Flavor 
Coroutine input stream. Defines a :next-input-buffer method. Use this to 
construct an input stream from a function written in terms of output 
operations. 

si:coroutine-output-stream Flavor 
Coroutine output stream. Defines :new-output-buffer and 
:send-output-buffer methods. Use this to construct an output stream to a 
function written in terms of input operations. 

si: coroutine-bidirectional-stream Flavor 
Bidirectional coroutine stream. Defines :next-input-buffer, 
:new-output-buffer, and :send-output-buffer methods. Use this to 
construct a bidirectional stream to a function written in terms of input and 
output operations. 

2.4 Direct Access File Streams 

Direct access file streams are supported by LMFS. They are designed to facilitate 
reading and writing data from many different points in a file. They are typically 
used to construct files organized into discrete extents or records, whose positions 
within a file are known by programs that access them in nonsequential order. 
Although this could be done with the :set-pointer message to input file streams, 
the direct access facility provides the following additional functions: 

• Direct access to output files . 

• Bidirectional file streams, which allow interspersed reading and writing of 
data to and from varied locations in a file . 

• No use of network connections or file buffers during the time between data 
reading and the next call to position. In contrast, using the :set-pointer 



14 

Reference Guide to Streams, Files, and 110 August 1986 

message with ordinary ("sequential") input file streams incurs a significant 
network and data transfer overhead if the program repeatedly positions, 
reads several bytes, and then computes for a time. 

2.4.1 Stream Messages 

The following messages are relevant to direct access file streams. 

:read-bytes n-bytes file-position Message 
Sent to a direct access input or bidirectional file stream, this requests the 
transfer of n-bytes bytes from position file-position of the file. The message 
itself does not return any data to the caller. It causes the stream to be 
positioned to that point in the file, and the transfer of n-bytes bytes to 
begin. An EOF is sent following the requested bytes. The bytes can then 
be read using :tyi, : string-in, or any of the standard input messages or 
functions. 

The stream enforces the byte limit, and presents an EOF if you attempt to 
read bytes beyond that limit. You must actually read all the bytes and 
read past (that is, consume from the stream) the EOF. 

I t is also possible, before all the bytes have been read, to perform stream 
operations other than reading bytes. For example, an application might 
read several records at a time, to optimize transfer and buffering, and 
decide, after reading the first record, to position somewhere else. Direct 
access file streams handle this properly. Nevertheless, network and 
buffering resources allocated to the stream (both on the local machine and 
server machine) are not freed unless all the requested bytes (of the last 
:read-bytes request) and the EOF following them are read. 

If you request more bytes than remain in the file, you receive the 
remaining bytes followed by EOF. 

2.4.2 Direct Access Output File Streams 

You create direct access output to output and bidirectional direct access file 
streams by sending a :set-pointer message to the stream, and beginning to write 
bytes using standard messages, such as :tyo, : string-out, and so forth. The bytes 
are written to the file starting at the location requested, at successive file 
positions. Although you can extend the file in this manner, you cannot do a 
:set-pointer to beyond the current end of the file. 

Direct access output, therefore, consists of sequences of :set-pointer messages and 
data output. Data are not guaranteed to actually appear in the file until either 
the stream is closed or a :finish message is sent to the stream. See the message 
:finish, page 41. 



15 

August 1986 Streams 

2.4.3 Direct Access Bidirectional File Streams 

Bidirectional direct access file streams combine the features of direct access input 
and output file streams. Sequences of :read-bytes messages and reading data can 
be interspersed with sequences of :set-pointer messages and writing data. The 
stream is effectively switched between "input" and "output" states by the 
:read-bytes and :set-pointer messages. You cannot read data with :tyi or similar 
messages if a :set-pointer message has been sent to the stream since the last 
:read-bytes message. Similarly, you cannot write data with :tyo or similar 
messages unless a :set-pointer message has been sent to the stream since the last 
:read-bytes or :tyi messages, or similar operation. 

When the EOF of a byte sequence requested with a :read-bytes message has been 
read for a bidirectional stream, the system frees network and buffering resources. 

2.4.4 Effect of Character Set Translation on Direct Access File Streams 

The Symbolics generic file access protocol was designed to provide access to 
ASCII-based file systems for Symbolics computers. Symbolics machines support 8-
bit characters and have 256 characters in their character set. This results in 
difficulties when communicating with ASCII machines that have 7-bit characters. 

The file server, on machines not using the Symbolics character set, is required to 
perform character translations for any character (not binary) opening. Some 
Symbolics characters expand to more than one ASCII character. Thus, for 
character files, when we speak of a given position in a file or the length of a file, 
we must specify whether we are speaking in Symbolics units or server units. 

This causes major problems in file position reckoning. It is useless for the 
Symbolics machine (or other user side) to carefully monitor file position, counting 
characters, during output, when character translation is in effect. This is because 
the operating system interface for "position to point x in a file", which the server 
must use, operates in server units, but the Symbolics machine (or other user end) 
has counted in Symbolics units. The user end cannot try to second-guess the 
translation-counting process without losing host independence. 

Since direct access file streams are designed for organized file position 
management, they are particularly susceptible to this problem. As with other file 
streams, it is only a problem when character files are used. 

You can avoid this problem by always using binary files. If you must use 
character files, consider doing one of the following: 

• Know the expansions of the Symbolics machine, that is, characters such as 
Return that do not expand into single host characters. Note that this 
sacrifices host independence. 



16 

Reference Guide to Streams, Files, and liD August 1986 

• Do not use these characters. See the section "NFILE Character Set 
Translation" in Networks. This section explains which characters are 
expanded on the Symbolics computer. 

2.5 Hardcopy Streams 

The functions in this chapter are provided so that you can write an interface 
between an applications program and a supported printer. That is, they handle 
the process of getting the thing to be hardcopied to the printer. They assume 
that you have one of the printers supported by Symbolics; documentation is not 
provided to write the support for a different type of printer. 

2.5.1 Supported Hardcopy Devices 

Symbolics currently supports three types of hardcopy devices: LGP1, LGP2, and 
DMP1. 

The Symbolics LGP1 printer is a laser-beam printer using a Canon print engine 
and Symbolics proprietary software. 

The Symbolics LGP2 laser graphics printer is a table-top laser-beam printer based 
on the Apple LaserWriter, extended with proprietary Symbolics software. 

The Symbolics DMP1 Dot-Matrix Printer is a compact, heavy-duty, impact dot
matrix printer with 24-wire print head. 

2.5.2 The Hardcopy Stream Model 

The interface between a 3600-family computer and a particular printing device is 
implemented using a hardcopy stream. A hardcopy stream is an output stream. 
(See the section "Types of Streams", page 7.) It handles the usual output 
operations, such as :tyo, :line-out, and :string-out. In addition it handles 
operations such as :set-cursorpos and : allocate-margins. (See the section "Using 
Hardcopy Streams", page 19.) It can handle page breaks and formatting 
information that you specify when the stream is created. 

The various hardcopy menus and commands accept a pathname as an argument. 
hardcopy:hardcopy-text-file or press:hardcopy-press-file is then called, 
depending on the type of file, as determined from the file-type extension in the 
pathname or as specified by the user. hardcopy:hardcopy-text-file and 
press:hardcopy-press-file are the front end functions that make sure the 
appropriate file type and format keywords are included with the file. These 
functions call hardcopy: hardcopy-file, which opens the file and then calls the 
appropriate formatting function, hardcopy:hardcopy-from-stream or 
press:hardcopy-press-stream, to handle the creation of a hardcopy stream and the 
actual sending of escape codes to a printer object. 



17 

August 1986 Streams 

Figure 1. The Hardcopy Stream Model 

2.5.3 Making Hardcopy Streams 

The functions that create and manipulate hardcopy streams live in the package 
zl-user:hardcopy, with the exception of those functions that handle press format 
files, which live in the package zl-user:press. 

The basic function to create a hardcopy stream is 
hardcopy:make-hardcopy-stream: 

hardcopy:make-hardcopy-stream device &rest options Function 
Returns a hardcopy stream to the given device. options can be any of the 
hardcopy option keywords. See the section "Hardcopy Options", page 26. 
hardcopy:make-hardcopy-stream creates a stream built on 
hardcopy: basic-hardcopy-stream with characteristics determined by the 
keyword options you specify. This stream accepts the normal output 
stream messages, such as :tyo, :string-out, and some specific hardcopy 
messages. 



18 

Reference Guide to Streams, Files, and 110 August 1986 

For example: 
(with-open-stream 

(stream (hardcopy:make-hardcopy-stream hardcopy:*default-text-printer*» 
(send stream :string-out "this is a test 

of the hardcopy system."» 

hardcopy:get-hardcopy-device device &optional (error-p t) Function 
Returns a software object named by device that can send data to a hardcopy 
device. Typical hardcopy devices are printers, files, and windows. 

(with-open-stream 

device can be: 

(stream (hardcopy:make-hardcopy-stream 
(hardcopy:get-hardcopy-device device») 

(send stream :string-out "this is a test."» 

• A string treated as the name of a printer. For example: "Tattl er". 

• A form that evaluates to a printer. For example: 
hardcopy:*default-text-printer* 

• A list of '(:window window) representing a particular window to 
which to send the output. For example: 

'(:window (make-window tv:window :expose-p t» 

See the section "Getting a Window to Use" in Programming the User 
Interface, Volume B. A list of '(:file pathname &optional 
canonical-type) that sends bytes to pathname in the appropriate 
format. For example: 

J(:file "q:>kjones>my-output.text" :lgp2) 

Creates a file suitable for printing on an LGP2. 

• : debug, which means print the a description of each message sent to 
the hardcopy stream to terminal-io. For example: 

(with-open-stream 
(stream (hardcopy:make-hardcopy-stream 

(hardcopy:get-hardcopy-device :debug») 
(send stream :string-out "this is a test."» 



August 1986 

Produces: 
Set font 0 (#<FONT CPTFONT 107216574». 
Set cursorpos X=0. micas, Y= 26940 micas. 
this is a test. 
Eject page (eof). 
NIL 

19 

Streams 

• :window, which means create a special window to accept the output. 

2.5.4 Using Hardcopy Streams 

hardcopy: basic-hardcopy-stream 
The basic flavor upon which all hardcopy streams are built. 
stream handles the operations defined by the methods of 
hardcopy: basic-hardcopy-stream. 

Flavor 
Any hardcopy 

I APPLICATIONl 
basic·hardcopy-stream ESCAPE CODES 

EXTERNAL 
HARDCOPY 
PROTOCOL 

INTERNAL DEVICE-SPECIFIC 
HARDCOPY PROTOCOL 
PROTOCOL 

Figure 2. An Instance of a Hardcopy Stream 

LGP2 

Hardcopy stream operations measure distances in pixels and micas. A pixel is a 
device-dependent measurement. It is one dot on a printer and how large it is 
depends on the resolution of the device. Device-dependent distances are expressed 
in pixels. 



20 

Reference Guide to Streams, Files, and 110 August 1986 

A mica is a unit of distance equal to 10 microns. Absolute distances are expressed 
in micas. 

The operations handled by hardcopy streams are: 

:show-rectangle width height of hardcopy:basic-hardcopy-stream Method 
Draws a filled-in rectangle on the page with the lower left corner at the 
current cursor position of size width by height. If you are not sure of the 
current cursor position, use :set-cursorpos before :show-rectangle. You 
should not depend on the cursor position after using :show-rectangle. If 
you need the cursor position, do a :set-cursorpos after this operation. 

width and height are always in device-dependent units. Use 
:convert-to-device-units to convert from other units. 

:show-line to-x to-y of hardcopy:basic-hardcopy-stream Method 
Draws a line on the page from the current position to the position 
designated by to-x, to-yo You should not depend on the cursor position after 
using : show-line. If you need the cursor position, do a :set-cursorpos after 
this operation. 

The coordinates given to this message are absolute coordinates. If you 
have coordinates relative to the page margins, for instance arguments to 
:set-cursorpos, use :un-relative-coordinates to convert. 

:read-cursorpos &optional (units ':device) of Method 
hardcopy: basic-hardcopy-stream 

Returns the current position of the cursor in units, either :micas or 
: device. The default is : device, meaning the units are device dependent. 

:set-cursorpos x y &optional (units ':device) of Method 
hardcopy: basic-hardcopy-stream 

Moves the place where printing occurs on the page to a new position. 
Unlike the Symbolics console display, the 0,0 point of hardcopy streams is 
in the lower left corner, the first (x) coordinate increasing toward the right 
of the page, the second (y) coordinate increasing toward the top of the 
page. The coordinates are relative to the margins of the page. If you need 
absolute coordinates, use :un-relative-coordinates to convert. 

units specifies the format of x and y. :device means that the interpretation 
is device dependent. :micas means x and yare in micas. 

A value of nil for a coordinate means do not set that coordinate. For 
example, 



21 

August 1986 Streams 

(send stream :set-cursorpos nil 10) 

sets the cursor position 10 device units above the bottom of the page and 
leaves its horizontal position unchanged. 

:increment-cursorpos dx dy &optional units of Method 
hardcopy: basic-hardcopy-stream 

Changes the point on the page where printing occurs with respect to the 
current position. Unlike the Symbolics console display, the 0,0 point of 
hardcopy streams is in the lower left corner, the first (x) coordinate 
increasing toward the right of the page, the second (y) coordinate 
increasing toward the top of the page. 

units specifies the format of x and y. The default is :device. 

A value of 0 for a coordinate means do not change that coordinate. For 
example, 

(send stream :;ncrement-cursorpos 0 10) 

raises the cursor position 10 device units above where it was and leaves its 
horizontal position unchanged. 

:un-relative-coordinates x y &optional (units ':device) of Method 
hardcopy: basic-hardcopy-stream 

Converts the point x,y given to messages like :set-cursorpos that take 
coordinates relative to the page margins to absolute coordinates for use 
with messages like : show-line. 

:convert-to-device-units quantity units direction of Method 
hardcopy: basic-hardcopy-stream 

Converts quantity in units into the corresponding quantity in device 
dependent units." units may be :micas or :pixel. direction is either 
:horizontal or :vertical. 

:convert-from-device-units quantity units direction of Method 
hardcopy: basic-hardcopy-stream 

Converts quantity from device units into units. direction is either 
:horizontal or :vertical. 

:home-cursor of hardcopy:basic-hardcopy-stream Method 
Positions the cursor at the upper left hand corner of the page. 

:size &optional (units ':device) of Method 
hardcopy: basic-hardcopy-stream 

Returns the size of the paper in units. units may be :micas, :pixel, or 
:device. :device is the default and means in device-dependent units. 



22 

Reference Guide to Streams, Files, and 110 August 1986 

:inside-size &optional (units (':device» of Method 
hardcopy: basic-hardcopy-stream 

Returns the size of the area on the paper (the box) within which printing 
can occur, in units. :device means the units are device dependent. 

:allocate-margin size margin &optional (units ':device) of Method 
hardcopy: basic-hardcopy-stream 

Adds the amount of space specified by size to the margin specified by 
margin in units. :device means the units are device dependent. Use of 
:allocate-margin increases the margin, making :inside-size smaller. 

:string-Iength string &optional (start 0) end of Method 
hardcopy: basic-hardcopy-stream 

Returns the length of string, which is the horizontal distance the cursor 
would have to move to print string, in device units. 

Example of a Hardcopy Stream 

" , 

" , 
" , 

-*- Mode: LISP; Syntax: Zetalisp; Package: USER; Base: 18 -*-

Print characters in the character set, 
alternating roman and some other font. 

(de fun font-catalog-page (font &optional 
(printer hardcopy:*default-text-printer*)) 

(setq printer (hardcopy:get-hardcopy-device printer)) 
(with-open-stream (stream (hardcopy:make-hardcopy-stream 

printer)) 
(let «fix-font (send stream :maybe-add-font "FIX9")) 

(catalog-font (send stream :maybe-add-font font))) 
(flet «send-to-stream-in-font (new-font message &rest args) 

(send stream :set-font new-font) 
(lexpr-send stream message args)) 

(draw-line (from-x from-y to-x to-y) 
(send stream :set-cursorpos from-x from-y) 
(multiple-value-bind (x y) 

;; Note: :SHOW-LINE takes outside coordinates while 
;; :SET-CURSORPOS takes inside coordinates. 
(send stream :un-relative-coordinates to-x to-y) 

(send stream :show-line x y»))) 



August 1986 

23 

Streams 

(multiple-value-bind (x-size y-size) (send stream :inside-size) 
(deef x-size) (deef y-size) ;Leave room for drawing box 
(let* «line-height-8 (send stream :eonvert-to-deviee-units 

:eharaeter :vertieal» 
(line-height-both (* 2 line-height-8» 
(x 18) 
(y (- y-size (* 1.3 line-height-both») 
(max-x x) 
(deviee-units-rounded? 

;;If the device units are bigger than 8.81 inch, assume they 
; ; are flonums 
(> (send stream :eonvert-to-deviee-units 2548. :mieas :vertieal) 

188.8») 
(1 abel s 

«round-deviee-units (y) 
(if deviee-units-rounded? (round y) y» 

(draw-box 0 
(deef y line-height-8) 
(draw-line 8 y 8 y-size) 
(draw-line 8 y max-x y) 
(draw-line max-x y max-x y-size) 
(draw-line 8 y-size max-x y-size) 
(send stream :set-eursorpos 8 (- Y line-height-both» 
(send-to-stream-in-font 

fix-font 
:string-out (format nil "Font -A catalog" font») 

(new-page 0 
(send stream : new-page) 
(setq x 18 y (- y-size line-height-both) 

max-x x» 
(new-l i ne 0 

(setq y (round-deviee-units 
(- y (* 1.3 line-height-both»» 

(setq max-x (max x max-x» 
(setq x 18) 
(when « y line-height-both) 

(draw-box) 
(new-page») 



24 

Reference Guide to Streams, Files, and 110 August 1986 

(new-character (character) 
(send stream :set-cursorpos x y) 
(send-to-stream-in-font fix-font :tyo character) 
(send stream :set-cursorpos x (+ y line-height-0)) 
(send-to-stream-in-font catalog-font :tyo character) 
(incf x 

(+ (max (send-to-stream-in-font fix-font 
:character-width character) 

(send-to-stream-in-font catalog-font 
:character-width character)) 

10)) 
(when (> x (- x-size 10)) (new-line)))) 

(setq y (round-device-units y)) 
(loop for char from 32 below 127 

and character = (code-char char) 
do 

(new-character character) 
when (= 15 (mod char 16)) 

do (new-line)) 
(draw-box)))))))) 

(zl-user:font-catalog-page "centuryschoolbook105") 



August 1986 

Output: 

$ % & 
, 

( ) * 
II # $ % & ( ) * + 

/ 0 1 2 3 4 5 6 7 8 9 
/ 0 1 2 3 4 5 6 7 8 9 ; < > 

? A B C D E F G H I J K L M N 
? @ A B C D E F G H I J K L M N 

0 p Q R S T U V W X y Z [ ] 
,. , 

0 P Q R S T U V W X Y Z [ \ ] 

a b c d e f g h i j k I m n 
a b c d e f g h i j k 1 m n 

0 p q r s t u V w X y Z 
0 P q r s t u v w x y z 

Font CENTURYSCHOOLBOOK105 catalog 

rhe code for this example can be found in sys:examples;hardcopy-stream
example. lisp. 

2.5.5 Hardcopy Streams Reference Information 

2.5.5.1 Hardcopy Front End and Formatting Functions 

25 

Streams 

hardcopy:hardcopy-text-file file-name device &rest options Function 
Called by the various hardcopy commands when the file to be hardcopied is 
just text (as opposed to press format or other format produced by a text 
formatting program) or is in an unspecified format. 

hardcopy:hardcopy-text-file calls hardcopy:hardcopy-file and 
hardcopy:hardcopy-from-stream to do its work. 

press:hardcopy-press-file filename device &rest options Function 
Called by the various hardcopy commands when the file to be hardcopied is 
in press format. 



26 

Reference Guide to Streams, Files, and liD August 1986 

hardcopy:hardcopy-file file-name device &rest options &key format Function 
formatter {ile-open-options &allow-other-keys 

Determines the format of the input file, opens it, and passes the input 
stream to the appropriate formatter function, 
hardcopy:hardcopy-from-stream or press:hardcopy-press-stream. 

hardcopy:hardcopy-from-stream stream device &rest options &key Function 
(page-headings t) starting-page ending-page 
&allow-other-keys 

The formatting function for text files. It recognizes character styles in files 
written by Zmacs. If the file has a -*- Defaul t Character Styl e ... 
attribute, that style is used as the base for character style merging. 

press:hardcopy-press-stream stream device &rest options &key Function 
starting-page ending-page copies 
&allow-other-keys 

The formatting function for press files. It recognizes press format, that is 
a description of formatted text, and generates the appropriate escape codes 
for the printing device specified. 

2.5.5.2 Hardcopy Options 

The functions that do the actual work of hardcopying files, creating hardcopy 
streams and sending characters to those streams, take a number of keyword 
options. Each function handles some keywords and passes the remainder along to 
the function that it calls. As a result, these same keywords are used by 
hardcopy:hardcopy-text-file, hardcopy: hardcopy-file, 
hardcopy:hardcopy-from-stream and hardcopy:make-hardcopy-stream. Some of 
the keyword options determine formatter options, some of them are handled 
directly by the hardcopy stream, and others are passed along to the spooler. 

Keyword Options for Formatting 

Keyword 

:copies 

: margins 

Explanation 

How many times the formatting function should print the file. 

A list of left margin, top margin, right margin, and bottom 
margin in micas. 

:page-headings Whether to put headings on each page. The default is t, which 
puts headings on each page. 

:page-heading The heading to put on the top of each page. The default is the 
value of :banner-file-name. 

:page-heading-date 
The date to put in the heading. The default is the value of 
: banner-creation-date. 



27 

August 1986 Streams 

:output-stream The destination of bytes for the output device. The formatting 
function creates an output stream by looking at the options it is 
given. 

:keep-output-stream-open-p 
Whether to suppress closing the output stream. 

:new-page-hook A function to call at the start of each page. It receives two 
arguments, the hardcopy stream and the page number. It can 
be used to print page headings, for example. 

:starting-page 

: ending-page 

:page-number 

The first physical page to print. The default is the first page of 
the file. A page is defined by the presence of a PAGE character 
or form feed in the file. Thus plain text files with no page 
markers in them are single page files. It is important to 
remember for both :starting-page and :ending-page that this is 
physical page and does not use the page number, if any, 
supplied by a text formatting program. 

The last physical page to print. The default is the last page of 
the file. 

The number to start with when printing numbers on paper. 
This is a hardcopy stream option. The default is 1. This is 
determined by :starting-page and : ending-page. 

Keyword Options for Formatting and Spooling 

Keyword Explanation 

: body-character-style 
The character style to use in printing the main text of the file. 

:heading-character-style 
The character style to use in printing page headings. 

: banner-creation-date 
The creation date to print on the banner page and in page 
headings, in universal time format. 

:banner-file-nameThe file name to print after fil e: on the banner page and in 
page headings. 

Keyword Options for the Spooler 

Keyword Explanation 

:spooler-copies How many times the request should be printed. 

:no-banner-page Whether or not to print a cover (or banner) page. If it is nil 



28 

Reference Guide to Streams, Files, and 110 August 1986 

(the default), a banner page is printed. If it is set to t, then no 
banner page is printed. 

: notify Whether or not to notify the user upon completion of printing. 
If it is nil (the default), no notification is given. If it is set to 
T, a message is sent to the originator of the hardcopy request 
as derived from :user-name. 

:user-name The user name of the requestor. 

:personal-name The personal name of the requestor. 

:host The host of the requestor. 

: banner-user-name 
User name to print on the banner page. 

:direct Whether to print directly on the device without spooling. This 
is discouraged. 

: banner-string An additional message to put on the banner page. 



29 

August 1986 Streams 

3. Stream Operations 

3.1 Making Your Own Stream 

There are some standard functions that make streams for you, such as 
make-synonym-stream and make-two-way-stream. There are also forms that 
allow you to evaluate Lisp forms while performing input or output on a stream, 
such as with-open-stream and with-input-from-stream. For more information on 
with-open-••• forms: See the section "Accessing Files", page 129. 

make-broadcast-stream &rest streams Function 
Returns a stream that works only in the output direction. Any output sent 
to this stream is sent to all of the streams given. The :which-operations 
is the intersection of the :which-operations of all of the streams. The 
value(s) returned by a stream operation are the values returned by the last 
stream in streams. 

make-concatenated-stream &rest streams Function 
Returns a stream that only works in the input direction. Input is taken 
from the first of the streams until it reaches EOF (end-of-file); then that 
stream is discarded, and input is taken from the next of the streams, and 
so on. If no arguments are given, the result is a stream with no content; 
any input attempt will result in EOF. 

make-echo-stream input-stream output-stream Function 
This function, which is part of the Common Lisp standard, is not currently 
available in the Symbolics implementation of Common Lisp. 

make-string-input-stream string &optional (start 0) end Function 
Returns an input stream. The input stream will supply, in order, the 
characters in the substring of string delimited by start and end. After the 
last character has been supplied, the stream will then be at end-of-file. 

(make-string-input-stream "Hello") 
=> #<lEXICAl-ClOSURE ClI: :STRING-INPUT-STREAM 10223204> 

(make-string-input-stream "Hello" 1 3) 
=> #<lEXICAl-ClOSURE ClI::STRING-INPUT-STREAM 10224324> 

make-string-output-stream Function 
Returns an output stream that will accumulate all string output given it 
for the benefit of the function get-output-stream-string. 



30 

Reference Guide to Streams, Files, and 110 August 1986 

(setq stream (make-string-output-stream)) 
=> #<LEXICAL-CLOSURE CLI: :STRING-OUTPUT-STREAM 44310040> 

(setq output-string 'hello) => HELLO 

(write output-string :stream stream) => HELLO 

(g~t-output-stream-string stream) => "HELLO" 

get-output-stream-string stream Function 
Returns a string containing all of the characters output to stream so far. 
Works in conjunction with make-string-output-stream. stream is reset 
after each call, thus each call to get-output-stream-string gets only the 
characters that have been output to the stream since the last such call (or 
the creation of stream, if no such previous call has been made). 

(setq s (make~string-output-stream)) 

=> #<LEXICAL-CLOSURE CLI: :STRING-OUTPUT-STREAM 10602460> 

(write-string "Hello" s) => "Hello" 

(get-output-stream-string s) => "Hello" 

(write-string "Goodbye" s) => "Goodbye" 

(get-output-stream-string s) => "Goodbye" 

make-synonym-stream stream-symbol Function 
Creates and returns a "synonym stream". Any operations on the new 
stream will be performed on the stream that is then the value of the 
dynamic variable named by stream-symbol. If the value of the variable 
should change or be bound, then the synonym stream will operate on the 
new stream. 

zl:make-syn-stream symbol Function 
zl:make-syn-stream creates and returns a "synonym stream" (syn for 
short). symbol can be either a symbol or a locative. 

If symbol is a symbol, the synonym stream is actually an uninterned symbol 
named #:symbol-syn-stream. This generated symbol has a property that 
declares it to be a legitimate stream. This symbol is the value of symbol's 
si:syn-stream property, and its function definition is forwarded to the value 
cell of symbol using a sys:dtp-external-value-cell-pointer. Any operations 
sent to this stream are redirected to the stream that is the value of symbol. 

If symbol is a locative, the synonym stream is an uninterned symbol named 



31 

August 1986 Streams 

#:syn-stream. This generated symbol has a property that declares it to be 
a legitimate stream. The function definition of this symbol is forwarded to 
the cell designated by symbol. Any operations sent to this stream are 
redirected to the stream that is the contents of the cell to which symbol 
points. 

Synonym streams should not be passed between processes, since the 
streams to which they redirect operations are specific to a process. 

make-two-way-stream input-stream output-stream Function 
Returns a bidirectional stream that gets its input from input-stream and 
sends its output to output-stream. 

You can also write your own streams. Here is a sample output stream that 
accepts characters and conses them onto a list. 

(defvar the-list nil) 
(defun list-output-stream (op &optional arg1 &rest rest) 

(selectq op 
( :tyo 
(setq the-list (cons arg1 the-list))) 

(:which-operations '(:tyo)) 
(otherwise 

(stream-default-handler (function list-output-stream) 
op arg1 rest)))) 

The lambda-list for a stream must always have one required parameter (op), one 
optional parameter (argl), and a rest parameter (rest). This allows an arbitrary 
number of arguments to be passed to the default handler. This is an output 
stream, so it supports the :tyo operation. Note that all streams must support 
:which-operations. If the operation is not one that the stream understands (for 
example, : string-out) , it calls the sys:stream-default-handler. The calling of the 
default handler is required, since the willingness to accept :tyo indicates to the 
caller that :string-out will work. 

Here is a typical input stream that generates successive characters of a list. 



32 

Reference Guide to Streams, Files, and I/O August 1986 

(defvar the-list) ;Put your input list here 
(defvar untyied-char nil) 
(defun list-input-stream (op &optional arg1 &rest rest) 

(selectq op 
(: tyi 
(cond «not (null untyied-char» 

(:untyi 

(prog1 untyied-char (setq untyied-char nil») 
«null the-list) 
(and arg1 (error arg1») 

(t (prog1 (car the-list) 
(setq the-list (cdr the-list»»» 

(setq untyied-char arg1» 
( : wh i ch-operat ions ' ( : tyi : untyi ) ) 
(otherwise 

(stream-default-handler (function list-input-stream) 
op arg1 rest»» 

The important things to note are that :untyi must be supported, and that the 
stream must check for having reached the end of the information and do the right 
thing with the argument to the :tyi operation. 

The above stream uses a free variable (the-list) to hold the list of characters, and 
another one (untyied-char) to hold the :untyied character (if any). You might 
want to have several instances of this type of stream, without their interfering 
with one another. This is a typical example of the usefulness of closures in 
defining streams. The following function will take a list and return a stream that 
generates successive characters of that list. 

(defun make-a-list-input-stream (list) 
(let-closed «list list) (untyied-char nil» 

(function list-input-stream») 

The above streams are very simple. When designing a more complex stream, it is 
useful to have some tools to aid in the task. The defselect function aids in 
defining message-receiving functions. The Flavor System provides powerful and 
elaborate facilities for programming message-receiving objects. See the section 
"Flavors" in Symbolics Common Lisp: Language Concepts. 

sys:stream-default-handler stream op argl rest Function 
Tries to handle the op operation on stream, given arguments of argl and 
the elements of rest. The action taken for each of the defined operations is 
explained with the documentation on that operation. The handler sends the 
:any-tyi message for :line-in messages to streams that do not handle 
:line-in themselves. 



33 

August 1986 Streams 

sys:null-stream op &rest args Function 
Can be used as a dummy stream object. As an input stream, it 
immediately reports end-of-file; as an output stream, it absorbs and discards 
arbitrary amounts of output. Note: sys:null-stream is not a variable; it is 
defined as a function. Use its definition (or the symbol itself) as a stream, 
not its value. Examples: 

(stream-copy-until-eof a 'si:null-stream) 
(stream-copy-until-eof a #'si:null-stream) 

Either of the above two forms reads characters out of the stream that is 
the value of a and throws them away, until a reaches the end-of-file. 

3.2 General Stream Functions 

streamp x Function 
Returns t if x is a stream, and otherwise it returns nil. 

input-stream-p stream Function 
Returns t if stream can handle input operations, and otherwise it returns 
nil. 

output-stream-p stream Function 
Returns t if stream can handle output operations, and otherwise it returns 
nil. 

stream-element-type stream Function 
Returns a type specifier which indicates what objects can be read from or 
written to stream. Streams created by open will have an element type 
restricted to a subset of chara"~ter or integer, but in principal a stream 
may transfer any Lisp object. 

3.3 General-Purpose Stream Operations 

:tyo char Message 
The stream will output the character char. For example, if s is bound to a 
stream, then the following form will output a "B" to the stream: 

(send s :tyo #\8) 

For binary output streams, the argument is a nonnegative number rather 
than specifically a character. 



34 

Reference Guide to Streams, Files, and 110 August 1986 

:tyi &optional eaf Message 
The stream will input one character and return it. For example, if the 
next character to be read in by the stream is a "e", then the following 
form returns the value of #\c (that is, 103 octal): 

(send s : ty;) 

Note that the :tyi operation does not "echo" the character in any fashion; 
it only does the input. The zl:tyi function echoes when reading from the 
terminal. 

The optional eaf argument to the :tyi message tells the stream what to do 
if it reaches the end of the file. If the argument is not provided or is nil, 
the stream returns nil at the end of file. Otherwise it signals an error and 
prints out the argument as the error message. Note that this is not the 
same as the eaf-aption argument to read, zl:tyi, and related functions. 

The :tyi operation on a binary input stream returns a nonnegative number, 
not necessarily to be interpreted as a character. 

An EOF can be forced into the currently selected I/O buffer with the 
keystrokes FUNCT I ON END. The next :tyi message sent to a window taking 
input from that I/O buffer will return nil. 

The EOF indicator is not "sticky," in that the next :tyi will take the next 
character from the I/O buffer. The reason for this is that some programs 
which read only from the terminal might not be prepared to encounter an 
EOF, and might loop trying to read input. 

This EOF feature makes it possible to fully test programs which use the 
:line-in, :string-in, and :string-line-in operations by taking input from a 
window instead of from a file. Typing FUNCT I ON END causes each of these 
operations to return. This is especially important when debugging 
programs which use the :string-in operation, since :string-in returns only 
when its buffer is full or an EOF is encountered. 

FUNCTION END activates any input buffered in the input editor, since there 
is no representation for the EOF indicator within text strings. 

:untyi char Message 
The stream will remember the character char, and the next time a 
character is input, it will return the saved character. In other words, 
:untyi means "put this character back into the input source". For 
example: 

(send s :unty; 120) 
(send s :ty;) ==> 120 

This operation is used by read, and any stream that supports :tyi must 
support :untyi as well. Note that you are allowed to :untyi only one 



35 

August 1986 Streams 

character before doing a :tyi, and you can :untyi only the last character 
you read from the stream. Some streams implement :untyi by saving the 
character, while others implement it by backing up the pointer to a buffer. 
You also cannot :untyi after you have peeked ahead with :tyipeek. 

:which-operations Message 
The object should return a list of the messages and generic functions it 
can handle. 

The :which-operations method supplied by flavor:vanilla generates the list 
once per flavor and remembers it, minimizing consing and compute time. 
The list is regenerated when a new method is added. 

:operation-handled-p operation Message 
operation is a generic function or message name. The object should return 
t if it has a handler for the specified operation, nil if it does not. 

flavor:vanilla provides a method for :operation-handled-p. 

Instead of sending this message, you can use the operation-handled-p 
function. See the function operation-handled-p in Symbolics Common 
Lisp: Language Dictionary. 

:send-if-handles operation &rest arguments Message 
operation is a generic function or message name and arguments is a list of 
arguments for the operation. 

If a generic function is given, the object should perform the generic 
function if it has a method for it. 

If a message is given, the object should send itself that message with those 
arguments if it handles the message. 

If no method for the generic function or message is available, nil is 
returned. 

flavor:vanilla provides a method for :send-if-handles. 

Instead of sending this message, you can use the send-if-handles function. 
See the function send-if-handles in Symbolics Common Lisp: Language 
Dictionary. 

: characters Message 
Returns t if the stream is a character stream, nil if it is a binary stream. 

:direction Message 
Returns one of the keyword symbols :input, : output, or :bidirectional. 



36 

Reference Guide to Streams, Files, and 110 August 1986 

: interactive Message 
The :interactive message to a stream returns t if the stream is interactive 
and nil if it is not. Interactive streams, built on si:interactive-stream, are 
streams designed for interaction with human users. They support input 
editing. Use the :interactive message to find out whether a stream 
supports the :input-editor message. 

Any stream must either support :tyo or support both :tyi and :untyi. Several 
more advanced input and output operations work on any stream that can do input 
or output (respectively). Some streams support these operations themselves; you 
can tell by looking at the list returned by the :which-operations operation. 
Others are handled by the "stream default handler" even if the stream does not 
know. about the operation itself. However, in order for the default handler to do 
one of the more advanced output operations, the stream must support :tyo, and for 
the input operations the stream must support :tyi (and :untyi). 

Here is the list of such operations: 

:input-wait &optional whostate function &rest arguments Message 
This message to an input stream causes the stream to process-wait with 
whostate until either of the following conditions is met: 

• Applying function to arguments returns non-nil. 

• The stream enters a state in which sending it a :tyi message would 
immediately return a value or signal an error. 

When either of these conditions is met, :input-wait returns. If the stream 
enters a state in which sending it a :tyi message would signal an error, 
:input-wait returns instead of signalling the error. The returned value is 
not defined. 

whostate is what to display in the status line while process-waiting. It can 
be a string or nil. A value of nil means to use the normal who state for 
this stream, such as "Tyi", "Net In", or "Serial In". For interactive 
streams, the default who state is "Tyi". 

function can be a function or nil. A value of nil means that the stream 
just waits until sending it a :tyi message would immediately return a value 
or signal an error. 

This message is intended for programs that need to wait until either input 
is available from some interactive stream or some other condition, such as 
the arrival of a notification, occurs. Any stream that can become the value 
of zl:terminal-io must support : input-wait. 

Following is a simple example of the use of :input-wait to wait for input or 
a notification to an interactive stream.. The function just displays 



37 

August 1986 Streams 

notifications and prints representations of characters or blips received as 
input. 

(defun my-tap-level (stream) 
(error-restart-loop «error sys:abort) "My top level") 

(send stream :input-wait nil 
#'(lambda (note-cell) 

(not (null (location-contents note-cell»» 
(send stream :notification-cell» 

(let «note (send stream :receive-notification») 
(if note 

(sys:display-notification stream note :stream) 
(let «char (send stream :any-tyi-no-hang») 

(cond «null char» 
«fixp char) 
(format stream "-&Character: -C" char» 

«1 i stp char) 
(format stream "-&81ip: -5" char» 

(t (format stream "-&Unknown object: -S" char»»»» 

: listen Message 
On an interactive device, returns non-nil if any input characters are 
immediately available, or nil if no input is immediately available. On a 
noninteractive device, the operation always returns non-nil except at end-of
file, by virtue of the default handler. The main purpose of :listen is to test 
whether the user has pressed a key, perhaps trying to stop a program in 
progress. 

:tyipeek &optional eof Message 
On an input stream, returns the next character that is about to be read, or 
nil if the stream is at end-of-file. The eof argument has the same meaning 
as it does for :tyi. :tyipeek is defined to have the same effect as a :tyi 
operation, followed by a :untyi operation if end-of-file is not reached. Note 
that this means that you cannot read some character, do a :tyipeek to look 
at the next character, and then :untyi the original character. 

:fresh-line Message 
Tells the stream to position itself at the beginning of a new line. If the 
stream is already at the beginning of a fresh line it does nothing; 
otherwise it outputs a carriage return. For streams that do not support 
this, the default handler always outputs a carriage return. 

: clear-rest-of-line Message 
Erases from the current position to the end of the current line. 



38 

Reference Guide to Streams, Files, and liD August 1986 

:string-out string &optional start end Message 
The characters of string are successively output to the stream. This 
operation is provided for two reasons: it saves the writing of a frequently 
used loop, and many streams can perform this operation much more 
efficiently than the equivalent sequence of :tyo operations. If the stream 
does not support :string-out itself, the default handler converts it to :tyos. 

If start and end are not supplied, the entire string is output. Otherwise a 
substring is output; start is the index of the first character to be output 
(defaulting to 0), and end is one greater than the index of the last 
character to be output (defaulting to the length of the string). Callers 
need not pass these arguments, but all streams that handle :string-out 
must check for them and interpret them appropriately. 

:line-out string &optional start end Message 
The characters of string, followed by a carriage return character, are 
output to the stream. start and end optionally specify a substring, as with 
: string-out. If the stream does not support :line-out itself, the default 
handler converts it to :tyos. 

:string-in ear-option string &optional (start 0) end Message 
Reads characters from an input stream into string, using the substring 
delimited with start and end. 

As is usual with strings, start defaults to 0 and end defaults to the length 
of the string. The difference between end and start constitutes a character 
count for this operation. 

ear-option specifies stopping actions. 

Value 

nil 

not nil 

Meaning 

Reading characters into the string stops either when it 
has transferred the specified character count or when it 
reaches end-of-file, whichever happens first. For strings 
with a fill pointer, it sets the fill pointer to point to the 
location following the last one filled by the read. 

If the end-of-file is encountered while trying to transfer a 
specific number of characters, it signals sys:end-of-file, 
with the value of ear as the report string. 

:string-in returns two values. The first value is one greater than the last 
location of string into which it stored a character. The second value is t if 
it reached end-of-file and nil if it did not. Using :string-in at the end of a 
file returns 0 and t and sets the fill pointer of string to start (if string has 
a fill pointer). 



39 

August 1986 Streams 

For example, suppose the file my-host:>george>tiny. text contains "Here is 
some tiny text.". 

(setq string (make-array 100 ':type 'art-string ':fill-pointer 0» 

(with-open-file (stream "my-host:>george>tiny.text") 
(send stream ':string-in nil string» 

23 

string => "Here is some tiny text." 

If string has an array-leader, the fill pointer is adjusted to start plus the 
number of characters stored into string. 

string can be any kind of array, not necessarily a string; this is useful 
when reading from a binary input stream. 

The :string-in message can be sent to windows. It interacts correctly with 
the input editor, including correct handling of activation characters. 

The interface to this method for windows and the returned value is exactly 
the same as the equivalent methods for si:input-stream and 
si:unbuffered-line-input-stream. 

:line-in &optional leader Message 
The stream should input one line from the input source and return it as a 
string with the carriage return character stripped off. Despite its name, 
this operation is not much like the zl:readline function. 

Many streams have a string that is used as a buffer for lines. If this 
string itself were returned, there would be problems if the caller of the 
stream attempted to save the string away somewhere, because the contents 
of the string would change when the next line was read in. To solve this 
problem, the string must be copied. On the other hand, some streams do 
not reuse the string, and it would be wasteful to copy it on every :line-in 
operation. This problem is solved by using the leader argument to :line-in. 
If leader is nil (the default), the stream does not copy the string, and the 
caller should not rely on the contents of that string after the next 
operation on the stream. If leader is t, the stream makes a copy. If leader 
is an integer then the stream makes a copy with an array-leader leader 
elements long. (This is used by the editor, which represents lines of 
buffers as strings with additional information in their array-leaders, to 
eliminate an extra copy operation.) 

If the stream reaches the end-of-file while reading in characters, it returns 
the characters it has read in as a string, and returns a second value of t. 
The caller of the stream should therefore arrange to receive the second 



40 

Reference Guide to Streams, Files, and liD August 1986 

value, and check it to see whether the string returned was an whole line or 
only the trailing characters after the last carriage return in the input 
source. 

The :line-in message can be sent to windows. It interacts correctly with 
the input editor, including correct handling of activation characters. 

:string-line-in ear string &optional (start 0) end Message 
:string-line-in is a combination of :string-in and :line-in. It allows you to 
read many lines successively into the same buffer without creating strings. 
:string-line-in reads a line from a file into a string (or other array) 
supplied by the user. It returns the array index plus one, whether an ear 
was encountered and whether the entire line was read into the buffer. 

This message fills up a string as does : string-in, but reads only one line, 
as does : line-in. As with : line-in, the carriage return character at the end 
of the line is not stored into your buffer. :line-in reads a line from a 
stream and creates a string with that line in it. :string-line-in is given a 
string; it fills in the string (or other array) that you give it from the 
stream. 

:string-line-in reads a line from a stream and fills the supplied array with 
that line. As with : string-in, if the string (or other array) has a fill 
pointer, it is set to the number of characters placed into the buffer plus 
the start offset. 

:string-line-in returns three values: 

• The number of active characters in the string or array. The number 
is calculated as one plus the array index into the buffer of the last 
item added to the string by this call. 

• Whether the end of the input stream was encountered while trying to 
read in the string. ear is identical to the eat-option argument in 
:string-in. 

• nil if the entire line fit in the buffer supplied, otherwise t. If t is 
returned for this value, as much of the line as could fit was stored in 
the buffer and more of the line is waiting to be read. 

If the second and third values are both nil, a carriage return was read. If 
either is t, no carriage return was read from the stream. 

: clear-input Message 
The stream clears any buffered input. If the stream does not handle this, 
the default handler ignores it. 



41 

August 1986 Streams 

: clear-output Message 
The stream clears any buffered output. If the stream does not handle this, 
the default handler ignores it. 

:force-output Message 
Causes any buffered output to be sent to a buffered asynchronous device, 
such as the Chaosnet. It does not wait for it to complete; use :finish for 
that. If a stream supports : force-output, then :tyo, :string-out, and 
:line-out might have no visible effect until a :force-output is done. If the 
stream does not handle this, the default handler ignores it. " 

:finish Message 
Does a :force-output to a buffered asynchronous device, such as the 
Chaosnet, then waits until the currently pending I/O operation has been 
completed. If the stream does not handle this, the default handler ignores 
it. 

For file output streams, :finish finalizes file content. It ensures that all 
data have actually been written to the file, and sets the byte count. It 
converts non-direct output openings into append openings. It allows other 
users to access the data that have been written before the :finish message 
was sent. 

:close &optional mode Message 
The stream is "closed", and no further operations should be performed on 
it; you can, however, :close a closed stream. If the stream does not handle 
:close, the default handler ignores it. 

The mode argument is normally not supplied. If it is :abort, we are 
abnormally exiting from the use of this stream. If the stream is outputting 
to a file, and has not been closed already, the stream's newly created file is 
deleted, as if it were never opened in the first place. Any previously 
existing file with the same name remains, undisturbed. 

:eof Message 
Indicates the end of data on an output stream. This is different from 
:close because some devices allow multiple data files to be transmitted 
without closing. :close implies :eof when the stream is an output stream 
and the close mode is not :abort. 

3.4 Special-Purpose Stream Operations 

See the section "General-Purpose Stream Operations", page 33. There are several 
other defined operations that the default handler cannot deal with; if the stream 



42 

Reference Guide to Streams, Files, and 110 August 1986 

does not support the operation itself, sending that message causes an error. This 
section describes the most commonly used, least device-dependent stream 
operations. Windows, files, and Chaosnet connections have their own special 
stream operations, which are documented separately. 

:input-editor function &rest arguments Message 
This is supported by interactive streams such as windows. It is described 
in its own section: See the section "The Input Editor Program Interface", 
page 265. 

Most programs should not send this message directly. See the special form 
with-input-editing, page 270. 

: beep &optional type Message 
This is supported by interactive streams. It attracts the attention of the 
user by making an audible beep and/or flashing the screen. type is a 
keyword selecting among several different beeping noises. The allowed 
types have not yet been defined; type is currently ignored and should 
always be nil. 

:tyi-no-hang &optional eof Message 
Identical to :tyi except that if it would be necessary to wait in order to get 
the character, returns nil instead. This lets the caller efficiently check for 
input being available and get the input if there is any. :tyi-no-hang is 
different from :listen because it reads a character and because it is not 
simulated by the default handler for streams that do not support it. 

:untyo-mark Message 
This is used by the grinder if the output stream supports it. See the 
special form grindef, page 329. It takes no arguments. The stream should 
return some object that indicates where output has reached in the stream. 

:untyo mark Message 
This is used by the grinder in conjunction with :untyo-mark. See the 
special form grindef, page 329. It takes one argument, which is something 
returned by the :untyo-mark operation of the stream. The stream should 
back up output to the point at which the object was returned. 

The following operations are only implemented by window streams. There are 
many other special-purpose stream operations for graphics. See the section "Using 
the Window System" in Programming the User Interface, Volume B. 

:read-cursorpos &optional (units ':pixel) Message 
This operation is supported by windows. It returns two values, the current 
x and y coordinates of the cursor. It takes one optional argument, which is 
a symbol indicating in what units x and y should be; the symbols :pixel and 



43 

August 1986 Streams 

:character are understood. :pixel means that the coordinates are measured 
in display pixels (bits), while :character means that the coordinates are 
measured in characters horizontally and lines vertically. 

This operation and :set-cursorpos are used by the zl:format ""'t" request, 
which is why ""'t" does not work on all streams. Any stream that supports 
this operation must support :set-cursorpos as well. 

:set-cursorpos x y &optional (units ':pixel) Message 
This operation is supported by the same streams that support 
:read-cursorpos. It sets the position of the cursor. x and yare similar to 
the values of :read-cursorpos and units is the same as the units argument 
to :read-cursorpos. 

: clear-window Message 
Erases the window on which this stream displays. Non-window streams do 
not support this operation. 

The following operations are only implemented by streams to random-access 
devices, principally files. 

:read-pointer Message 
Returns the current position within the file, in characters (bytes in fixnum 
mode). For text files on PDP-IO file servers, this is the number of 
Symbolics characters, not PDP-IO characters. The numbers are different 
because of character-set translation. 

:set-pointer new-pointer Message 
Sets the reading position within the file to new-pointer (bytes in furnum 
mode). For text files on PDP-IO file servers, this does not do anything 
reasonable unless new-pointer is 0, because of character-set translation. 
This operation is for input streams only. 

The following operations are implemented by buffered input streams. They allow 
increased efficiency by making the stream's internal buffer available to the user. 

:read-input-buffer &optional eat no-hang-p Message 
Returns three values: a buffer array, the index in that array of the next 
input byte, and the index in that array just past the last available input 
byte. These values are similar to the string, start, end arguments taken by 
many functions and stream operations. 

If the end of the file has been reached and no input bytes are available, the 
stream returns nil or signals an error, based on the eat argument, just like 
the :tyi message. If the argument no-hang-p is t and no input is available, 
the call returns nil and nil. 



44 

Reference Guide to Streams, Files, and 110 August 1986 

After reading as many bytes from the array as you care to, you must send 
the :advance-input-buffer message. The data in the buffer is valid only 
until the :advance-input-buffer message is given. At that point, the 
stream may reuse the buffer for other storage. 

:advance-input-buffer &optional new-pointer Message 
If new-pointer is non-nil, it is the index in the buffer array of the next byte 
to be read. If new-pointer is nil, the entire buffer has been used up. 

The following operations are provided for buffered output streams. They allow you 
to hand the stream's output buffer to a function that can fill it up. 

: get-output-buffer Message 
Returns an array and starting and ending indices. 

:advance-output-buffer &optional index Message 
Says that the array returned by the last :get-output-buffer operation was 
filled up through index. If index is omitted, the array was filled 
completely. 

The following stream operations are obsolete and should no longer be used: 

: rewind 
: get~ input-buffer 

3.5 File Stream Operations 

The following messages can be sent to file streams, in addition to the normal 1/0 
messages that work on all streams. Note that several of these messages are 
useful to send to a file stream which has been closed. Some of these messages 
use pathnames. See the section "Naming of Files", page 51. 

:pathname Message 
Returns the pathname that was opened to get this stream. This might not 
be identical to the argument to open, since missing components will have 
been filled in from defaults, and the pathname might have been replaced 
wholesale if an error occurred in the attempt to open the original 
pathname. 

: true name Message 
Returns the pathname of the file actually open on this stream. This can be 
different from what :pathname returns because of file links, logical 
devices, mapping of "newest" version to a particular version number, and 
so on. For some systems (such as ITS) the true name of an output stream 



45 

August 1986 Streams 

is not meaningful until after the stream has been closed, at least on an 
ITS file server. 

:length Message 
Returns the length of the file, in bytes or characters. For text files on 
PDP-10 file servers, this is the number of PDP-10 characters, not Symbolics 
characters. The numbers are different because of character-set translation. 
(See the section "The Character Set", page 355.) For an output stream the 
length is not meaningful until after the stream has been closed, at least on 
an ITS file server. 

: characters Message 
Returns t if the stream is a character stream, nil if it is a binary stream. 

:creation-date Message 
Returns the creation date of the file, as a number which is a universal 
time. See the section "Dates and Times" in Programming the User 
Interface, Volume B. See the function fs:directory-list, page 161. 

: info Message 
Returns a cons of the true name and creation date of the file. The creation 
date is a number that is a universal time. This can be used to tell if the 
file has been modified between two opens. For an output stream the info 
is not meaningful until after the stream has been closed, at least on an 
ITS file server. 

:delete Message 
Deletes the file open on this stream. The file does not really go away until 
the stream is closed. You should not use :delete. Instead, use zl:deletef. 

:rename new-name Message 
Renames the file open on this stream. You should not use :rename. 
Instead, use zl:renamef. 

:properties Message 
Returns two values: 

o A list whose car is the pathname of the file and whose cdr is a list of 
the properties of the file; thus the element is a "disembodied" 
property list and zl:get can be used to access the file's properties . 

• A list of what properties of this file are "changeable". 



46 

Reference Guide to Streams, Files, and 110 August 1986 

: change-properties Message 
Changes the file properties of the file open on this stream. 
:change-properties signals an error rather than returning one. 

:finish Message 
Does a :force-output to a buffered asynchronous device, such as the 
Chaosnet, then waits until the currently pending I/O operation has been 
completed. If the stream does not handle this, the default handler ignores 
it. 

For file output streams, :finish finalizes file content. It ensures that all 
data have actually been written to the file, and sets the byte count. It 
converts non-direct output openings into append openings. It allows other 
users to access the data that have been written before the :finish message 
was sent. 

File output streams implement the :finish and :force-output messages. 

3.6 Network Stream Operations 

:connected-p Message 
Returns t if the stream is fully connected to an active network connection, 
nil otherwise. If the stream is in a transitory state that is not completely 
connected, :connected-p returns nil. 

:connected-p must be callable in a scheduler context. That is, it cannot 
call :process-wait. 

:start-open-auxiliary-stream active-p &key local-id foreign-id Message 
stream-options application-id 

This message is sent to a stream to establish another stream, via another 
connection, over the same network medium, to the same host. It is used 
for either end of the connection. 

If active-p is t, it means this side will connect and the remote side should 
listen; if active-p is nil, the remote side will connect and this side will 
listen. 

If this side is active, foreign-id is the foreign contact identifier to connect 
to. 

If this side is not active, local-id is the local identifier to listen on. The 
content of foreign-id and local-id depends on the network implementation. 
If this side is not active, and no local-id is supplied, application-id must be 
supplied. application-id is a string that the network uses as part of the the 
contact identifier it will create and return. 



47 

August 1986 Streams 

Returns stream and contact-identifier. 

stream is a new stream. It is not yet usable. You can do one of two 
things with it: 

• Terminate the establishment of the new connection by sending the 
message :close :abort or :close-with-reason :abort to the stream. 

• Wait for the connection to be fully established, by sending 
:complete-connection to the stream. 

contact-identifier is a string representing the contact name actually being 
listened to, in the case that this side is not active. This is the string to 
convey to the other side, so that the other side can supply it as the 
foreign-id argument of :start-open-auxiliary-stream, to connect back to this 
side. 

:complete-connection &key (timeout (* 60. 6.)) Message 
This message is sent to a new stream created by 
:start-open-auxiliary-stream, in order to wait for the connection to be fully 
established. :complete-connection is used whether or not this side is 
active. 

Timeout is interpreted as the number of sixtieths of a second to wait before 
timing out. 

When :complete-connection returns, the stream is fully connected to an 
active network connection. At this point, :connected-p to that stream 
returns t. 

:complete-connection signals an error if the connection times out or does 
not complete for another reason. 

:set-input-interrupt-function function &rest args Message 
This message assigns a function to be applied to any args whenever input 
becomes available on the connection, or the connection goes into an 
unusable state. The function is called in a non-simple process, and 
therefore can use :process-wait. 

3.7 The :read And :print Stream Operations 

A stream can specially handle the reading and printing of objects by handling the 
:read and :print stream operations. Note that these operations are optional and 
that most streams do not support them. 

If the read function is given a stream that has :read in its which-operations, then 



48 

Reference Guide to Streams, Files, and 110 August 1986 

instead of reading in the normal way it sends the :read message to the stream 
with one argument, read's eot-option if it had one or a magic internal marker if it 
did not. Whatever the stream returns is what read returns. If the stream wants 
to implement the :read operation by internally calling read, it must use a 
different stream that does not have :read in its which-operations. 

If a stream has :print in its which-operations, it can intercept all object printing 
operations, including those due to the print, print, and prine functions, those due 
to zl:format, and those used internally, for instance in printing the elements of a 
list. The stream receives the :print message with three arguments: the object 
being printed, the prindepth (for comparison against the zl:prinlevel variable), and 
slashify-p (t for print, nil for prine). If the stream returns nil, then normal 
printing takes place as usual. If the stream returns non-nil, then print does 
nothing; the stream is assumed to have output an appropriate printed 
representation for the object. The two following functions are useful in this 
connection; however, they are in the system-internals package and might be 
changed without much notice. 



49 

August 1986 Files 

PART III. 

Files 



50 

Reference Guide to Streams, Files, and I/O August 1986 



51 

August 1986 Files 

4. Naming of Files 

A Symbolics computer generally has access to many file systems. While it can 
have its own file system on its own disks, a community of Symbolics users often 
has many shared file systems accessible by any of the Symbolics computers over a 
network. These shared file systems can be implemented by any computers that 
are capable of providing file system service. A file server computer might be a 
special-purpose computer that does nothing but service file system requests from 
computers on a network, or it might be an existing timesharing system. 

Programs, at the behest of users, need to use names to designate files within 
these file systems. The main difficulty in dealing with names of files is that 
different file systems have different naming conventions and formats for files. For 
example, in the UNIX system, a typical name looks like: 

/usr2/george/foo.bn 

In this example, /usr2/george is the directory name, foo is the file name and bn is 
the file type. However, in TOPS-20, a similar file name is expressed as follows: 

PS:<GEORGE>FOO.BIN 

It would be unreasonable for each program that deals with file names to be 
expected to know about each different file name format that exists; in fact, new 
formats could be added in the future, and existing programs should retain their 
abilities to manipUlate files in a system-independent fashion. 

The functions, flavors, and messages described in this chapter exist to solve this 
problem. They provide an interface through which a program can deal with files 
and manipulate them without depending on their syntax. This lets a program deal 
with multiple remote file systems simultaneously, using a uniform set of 
conventions. 

4.1 Pathnames 

All file systems dealt with by the Symbolics computer are mapped into a common 
model, in which files are named by a conceptual object called a pathname. The 
Symbolics computer system, in fact, represents pathnames by objects of flavor 
pathname, and the flavors built upon it. A pathname always has six conceptual 
components, described below. These components provide the common interface 
that allows programs to work the same way with different file systems; the 
mapping of the pathname components into the concepts peculiar to each file 
system is taken care of by the pathname software. This mapping is described 
elsewhere for each file system. See the section "The Character Set", page 355. 



52 

Reference Guide to Streams, Files, and 110 August 1986 

The following are the conceptual components of a pathname. They will be 
clarified by examples below. 

Host 

Device 

Directory 

Name 

Type 

Version 

The computer system, the machine, on which the file resides. 

Corresponds to the "device" or "file structure" concept in many 
host file systems. Often, it designates a group of disks, or 
removable storage media, or one of several different media of 
differing storage densities or costs. 

An organizational structure in which files are "contained" on 
almost all file systems. Files are "stored in", or "reside in" 
directories. The directories have names; the files' names are 
only valid within the context of a given directory. Some systems 
(hierarchical file systems) allow directories to be contained in 
other directories; others do not. 

The name of a group of files that can be thought of as 
conceptually the "same" file. In many systems, this is the "first 
name" of the file. For instance, source and object files for the 
sam~ program generally have the same name, but differing type. 

Corresponds to the "filetype" or "extension" concept in many 
host file systems. This usually indicates the kind of data stored 
in the file, for example, binary object code, a Lisp source 
program, a FORTRAN source program, and so forth. 

Corresponds to the "version number" concept in many host file 
systems. Some systems implement this concept, others do not. 
A version number is a number, part of the conceptual name of 
the file, that distinguishes succeeding versions of a file from 
each other. When a user of such a file system writes out a file 
he or she does not modify the file on the host computer but 
writes a new version, that is, one with a higher version number, 
automatically. 

The Symbolics computer system allows a version component of 
"newest" or "oldest", represented by the keyword symbols 
:newest and :oldest, respectively, to designate "the newest 
(oldest) version of the file, whichever that might be". 

As an example, consider a TOPS-20 user named "George", who writes a Lisp 
program that he thinks of as being named "conch". If George uses the TOPS-20 
host named FISH, the source for his program might be in a file on the host FISH 
with the following name: 



53 

August 1986 Files 

<GEORGE>CONCH.LISP.17 

In this case, the host is FISH, the device would be some appropriate default, and 
the directory would be <GEORGE>. This directory would probably contain a 
number of files related to the "conch" program. The source code for this program 
would live in a file with name CONCH, type LISP, and versions 1, 2, 3, and so on. 
The compiled form of the program would live in a file named CONCH with type 
BIN. 

Now suppose George is a UNIX user, using the UNIX host BIRD. The source for 
his program would probably be in a file on the host BIRD with the following 
name: 

/usr2/george/conch.l 

In this case, the host is BIRD, and the directory would be /usr2/george. This 
directory would probably contain a number of files related to the "conch" program. 
The source code for this program would live in a file with name conch, type 1. The 
compiled form of the program would live in a file named conch, with type bn. 
There are no version numbers on UNIX. 

Note that a pathname is not necessarily the name of a specific file. Rather, it is 
a way to get to a file; a pathname need not correspond to any file that actually 
exists; and more than one pathname can refer to the same file. For example, the 
pathname with a version of "newest" will refer to the same file as a pathname 
with the same components except a certain number as the version. In systems 
with links, multiple file names, logical devices, and so forth, two pathnames that 
look quite different can turn out to designate the same file. To get from a 
pathname to a file requires doing a file system operation such as open. 

4.1.1 Simple Usage of the Pathname System 

The pathname system can be very easy to use if you know a few simple 
techniques. It often seems that there are many different ways to do anything, and 
that only one of the is right for any circumstance, but most of these features only 
exist for special needs. This section shows you how to easily do some of the 
simple things. . 

4.1.1.1 Getting a Filename From the User 

The simplest and most common application for using a pathname is simply to read 
or write a file. For example, a program to do some very simple processing of a 
database (it reads the file and ignores it): 



54 

Reference Guide to Streams, Files, and 110 August 1986 

(defun process-example-database (database-pathname) 
(with-open-file (database-stream database-pathname) 

(format t "-&Ignoring database -A ... " (send database-stream :truename» 
(stream-copy-until-eof stream #Jsi:null-stream) 
(format t " ignored.-%"») 

This simple example is adequate for a program interface, but for a user, it is 
rather awkward. The user must supply all components of the pathname, plus the 
quotation marks around the strings. Also, the user has no completion available. 
In this example, the user does not have to parse the pathname; open will do that 
for him. (Sometimes we will not be so lucky). 

The user's job can be made easier by providing a function to read a pathname and 
pass it to process-example-database. To do this, prompt-and-read is used. See 
the function prompt-and-read in Programming the User Interface, Volume B. 

In our first version, we will just ask the user for the pathname. 

(defun run-example () 
(let «pathname (prompt-and-read :pathname "Where is your database? H»~) 

(process-example-database pathname») 

Where is your database? Y:>user>databases>dummy.database 
Ignoring Y:>user>databases>dummy.database.7 ... ignored. 

prompt-and-read does much of what we are looking for. It provides the 
following: 

• Prompting, including reprompting when the user presses REFRESH 

• Parsing 

• Completion 

• Merging with defaults 

In this case, we supplied no default, so the "default default", 
fs:*default-pathname-defaults* is used. But this default is not very helpful to 
the user, because it is not visible; it could even be confusing if the user expected 
one default and got another. Good practice dictates telling the user what the 
default is. prompt-and-read makes this easy with the :visible-default suboption 
to :pathname, :pathname-or-nil, and :pathname-list. 



55 

August 1986 Files 

(defun run-example () 
(let «pathname (prompt-and-read 

'(:pathname :visible-default Jfs:*default-pathname-default~ 
"Where is your database? H))) 

(process-example-database pathname))) 
Where is your database? (Default Y:>user>foo.lisp) databases>dummy.database 
Ignoring Y:>user>databases>dummy.database.7 ... ignored. 

Now that the user can see the defaults, he or she can make use of them. Note 
that in the above example, the user did not have to type the "Y:>user>", because 
the default was available. 

Tailoring Pathname Defaults 

fs:*default-pathname-defaults* is a global default, with nothing particularly 
appropriate to any specific application. Often, when an application is writing or 
reading a file, it knows more about the file than is implied by 
fs:*default-pathname-defaults*. This information can be used to help prompt the 
user for a suitable filename and help reduce the amount of typing needed to 
specify a suitable filename. 

For example, consider our example of reading a database. (See the section 
"Getting a Filename From the User", page 53.) In this example, we are just 
prompting for the filename and ignoring the actual database. 

(defun run-example () 
(let «(pathname (prompt-and-read 

'(:pathname :visible-default Jfs:*default-pathname-default 
"Where is your database? H)~) 

(process-example-database pathname))) 
Where is your database? (Default Y:>user>foo.lisp) databases>dummy.database 
Ignoring Y:>user>databases>dummy.database.7 ... ignored. 

First, if we are going to seriously use our own special file type, we need to define 
the type so that it can be used successfully on different systems. See the special 
form fs:define-canonical-type, page 90. 

(fs:define-canonical-type :database "DATABASE" 
((:vms :vms4) "OBS") 
(:unix "DB") 

Now this type can be used as the default type for our example databases. 



56 

Reference Guide to Streams, Files, and liD August 1986 

(defun run-example () 
(let* «default (fs:default-pathname fs:*default-pathname-defaults* 

nil 
:database» 

;Host 
;Type 

(pathname (prompt-and-read '(:pathname :visible-default Jdefault) 
"Where is your database?-X"») 

(process-example-database pathname») 

Where is your database? (Default Y:>user>foo.database) databases>dummy 
Ignoring Y:>user>databases>dummy.database.7 ... ignored. 

4.1.1.2 More About Defaults 

Most simple programs use fs:*default-pathname-defaults* as the source for their 
defaults. However, as a program makes more use of pathname reading and 
defaults, there are some things we can do to make things easier for the user. 

• Provide a default based on other files in an operation, for example, 
. defaulting an output file pathname from the input file. 

• Provide "sticky" defaults, where the new default is based on the last file the 
user gave. 

• Provide a default based on the current context, as in "pathname of the 
current buffer" in Zmacs. 

Defaulting an Output File Pathname From an Input File 

Perhaps the most common defaulting situation is that of defaulting an output file 
pathname from the input file. Usually, the output file differs from the input file 
only in file type and version, and we would like to have the user provide explicit 
information only when his or her desires differ from the usual case. 

(defun my-compile-file (input-file output-file) 
(format t "-&Compiling -A into -A.-X" 

input-file output-file) 
(compiler:compile-file input-file output-file» 



57 

August 1986 Files 

(defun comp-it () 
(let* «input-default (fs:default-pathname nil nil :lisp :newest)) 

(input-file (prompt-and-read 
'(:pathname :visible-default ,input-default) 
" Input fil e: ")) 

(output-default (fs:default-pathname input-file nil :bin :newest)) 
(output-file (prompt-and-read 

'(:pathname :visible-default ,output-default) 
"Output file: "))) 

(my-compile-file input-file output-file))) 

The above example works well for single files, but it does not handle wildcards. 
To handle wildcards, we need to introduce the use of :translate-wild-pathname 
and fs:directory-link-opaque-dirlist. :translate-wild-pathname does the work of 
interpreting how a given input file is to be mapped to its corresponding output 
file, and fs:directory-link-opaque-dirlist takes care of finding all the input files. 

Note that we use fs:directory-link-opaque-dirlist rather than fs:directory-list. In 
general, this is necessary whenever the :translate-wild-pathname message is 
used. :translate-wild-pathname expects the input pathname to match the input 
pattern. fs:directory-list, in the presence of directory links or V AXNMS logical 
devices, can have a different directory or a different device. 

If the input pattern has wildcards in its directory component, 
fs:directory-link-opaque-dirlist currently does no better than fs:directory-list. 
This is a difficult problem still under investigation. 

(defun comp-one-file (input-file-pattern output-file-pattern input-file) 
(let «output-file (send input-file-pattern :translate-wild-pathname 

output-file-pattern input-file))) 
(my-compile-file input-file output-file))) 



58 

Reference Guide to Streams, Files, and 110 August 1986 

(defun camp-files () 
(let* ((input-default (fs:default-pathname nil nil :lisp :newest» 

(input-pattern (prompt-and-read 
'(:pathname :visible-default ,input-default) 
" Input fi 1 e: " ) ) 

(output-default (fs:default-pathname input-file nil :bin :newest» 
(output-pattern (prompt-and-read 

'(:pathname :visible-default ,output-default) 
"Output file: "») 

(if (not (send input-file :wild-p» 
(comp-one-file input-pattern output-pattern input-pattern) 

(loop for (file) in (cdr (fs:directory-link-opaque-dirlist 
input-pattern :fast» 

do (comp-one-file input-pattern output-pattern file»») 

Note that in the above example, we just call comp-one-file directly if the input 
pathname is not wild. While it is not strictly necessary to do this 
(fs:directory-link-opaque-dirlist works on non-wildcard pathnames), it does 
eliminate an unneeded operation. 

Sticky Path name Defaults 

Often, when a single command or a related set of commands are to be repeated, 
the next command should operate on a file related to the one the current 
command is operating on. In this case, it would be most convenient for the 
default to be the previous pathname. This is called sticky defaulting. 

For example, consider a simple user-written tool to either show or delete files. 



August 1986 

(defun show-or-delete () 
(loop with default = (fs:default-pathname) 

for ch = (prompt-and-read :character "Cmd>") 
do (multiple-value-bind (prompt function) 

(selector char-equal ch 
(#\5 (values "Show File" #'viewf)) 
(#\0 (values "Delete File" #'deletef)) 
(#\Q (return nil)) 
(#\Help (format t "-&5 = Show File-@ 

(values nil nil)) 
(otherwise 
(tv:beep) 

o = Delete File-@ 
Q = Quit-7.") 

(format t "-&-:C is an unknown command.-7." ch))) 
(when prompt 

(let «file (prompt-and-read 
• (:pathname :visible-default ,default) 
prompt))) 

; The following is done for us by prompt-and-read 
; (setq default (fs:merge-pathnames file default)) 
(funcall function file)))))) 

Each time around the loop, when the user specifies a file, it is remembered to 
serve as the default the next time around. Note the commented out 

59 

Files 

(setq default (fs:merge-pathnames file default». This isn't needed in this 
example, since prompt-and-read does this for us, but if we were reading 
pathnames via some other mechanism, it is important to keep the default as a 
fully specified pathname. Otherwise, the second time around the loop, we could 
end up with defaults like "Q:", which is not of much use if the user is then forced 
to type all the components of the pathname and may get an error if he or she 
does not. 

If you wish to use a default such as this and not keep it in a local variable, you 
should use a defaults alist. This serves as a registered place to remember a 
pathname, so that if the world is moved to another site, it can be reset. Defaults 
alists can be passed to fs:default-pathname to extract a fully-merged default. See 
the function fs:set-default-pathname, page 89. See the function 
fs:make-pathname-defaults, page 89. 

Pathname Defaulting From the Current Context 

Often, an application program involves the user working on a single context for an 
extended time. For example, in the editor, the user is working on a single named 
buffer. In the font editor, the user is working on a single named font. 



60 

Reference Guide to Streams, Files, and 110 August 1986 

Often, the object being worked on was read in from a file. This file can serve as 
a default for further file operations, such as listing the directory, or resaYing the 
object. Consider a picture editor, which lets the user edit multiple pictures, as the 
Zmacs editor lets the user edit multiple buffers. This picture editor stores its 
files in .BIN files. 

(defflavor picture (name 
(pathname sys:fdefine-file-pathname) 
(array (make-array '(100. 100.) :type 'art-1b))) 

o 
: gettable-instance-variables 
: settable-instance-variables 
:initable-instance-variables) 

(defvar *pictures* nil 
"List of pictures being edited") 

(defvar *current-picture* nil) 

(defvar *picture-defaults* (fs:make-pathname-defaults)) 

(defun add-picture (picture) 
(setq *pictures* (del #'(lambda (p1 p2) 

(string-equal (send p1 :name) (send p2 :name))) 
picture 
*pictures*)) 

(push picture *pictures*) 
(setq *current-picture* picture)) 

(defmethod (picture :fasd-form) () 
'(make-instance' , (typep self) 

: name ',name 
: array ',array)) 



61 

August 1986 Files 

(defun picture-default-pathname (&key type (version :newest)) 
(let «bare-default (fs:default-pathname *picture-defaults* 

nil type version)) 
(path (when *current-picture* 

(send *current-picture* :pathname)))) 
(if (not *current-picture*) 

bare-default 
(if path 

(setq path (fs:merge-pathnames path bare-default version)) 
;; A new picture, so no pathname. Let's make a guess from the name. 
(let «name (send *current-picture* :name))) 

(setq path 

path))) 

(condition-case () 
(fs:merge-pathnames name bare-default version) 

;; If name isn't parsable, just use the bare default. 
(error bare-default))))) 

(defun com-create-picture () 
(let «name (prompt-and-read :string "Picture name: H))) 

(add-picture (make-instance 'picture :name name)))) 

(defun com-save-picture () 
(let* «default (picture-default-pathname :type :bin)) 

(file (prompt-and-read 
l(:pathname :visible-default ,default) 
"Save to picture file: H))) 

;; Remember the pathname given, so the next time we 
;; get a new picture, we can have a better default. 
(fs:set-default-pathname file *picture-defaults*) 
(sys:dump-forms-to-file 

fil e 
l«add-picture ',*current-picture*))))) 

In this example, picture-default-pathname computes the default. If the current 
picture has a file associated with it, that serves as the default. If there is no 
pathname with the current picture, we attempt to make a pathname using the 
name. If that fails (or if there is no current picture), we just use the bare 
default. 

Finally, the pathname we read is remembered, so the next time a default is 
needed for a new picture, we will have a more recent default. 



62 

Reference Guide to Streams, Files, and 110 August 1986 

Note that when the picture is loaded, sys:fdefine-file-pathname is used to get the 
file being loaded. This works well when the file being loaded is a . bin file, since 
zl:load binds this variable. However, in other situations, you need to make other 
arrangements to set the pathname. 

4.1.2 Host Determination in Pathnames 

Two important operations of the pathname system are parsing and merging. 
Parsing is the conversion of a string, which might have been typed by the user 
when asked to supply the name of a file, into a pathname object. This involves 
finding out for which host the pathname is intended, using the file name syntax 
conventions of that host to parse the string into the standard pathname 
components, and constructing such a pathname. Merging is the operation that 
takes a pathname with missing components and supplies values for those 
components from a set of defaults. 

Since each kind of file system has its own character string representation of 
names of its files, there has to be a different parser for each of these 
representations, capable of examining such a character string and determining the 
value of each component. The parsers, therefore, all work differently. How does 
the parsing operation know which parser to use? It determines for which host the 
pathname is intended, and uses the appropriate parser. A filename character 
string can specify a host explicitly, by having the name of the host, followed by a 
colon, at the beginning of the string, or it can assume a default, if there is no 
host name followed by a colon at the beginning of the string. 

Here is how the pathname system determines for which host a pathname being 
parsed is intended. The first colon in a pathname being parsed always delimits 
the host name. You can also enter pathname strings that are for a specific host 
and do not contain any host name. In that case, a default host is used. Normally, 
the identity of the default host is displayed to the user entering a pathname. See 
the section "Pathname Defaults and Merging", page 73. 

However, pathnames can have colons in them that do not designate hosts, such as 
filenames constructed from clock times, and the like. Some systems use the colon 
character to delimit devices. This creates a problem in parsing such pathnames. 
See the function fs:parse-pathname, page 83. The standard Symbolics computer 
user interface does not use such pathnames, but they can be used by other 
programs, particularly those that deal with files whose format is defined by a 
foreign operating system. 

The rule for parsing file names containing colons is, again, that any string used 
before a colon is unconditionally interpreted as a file computer. If the string 
cannot be interpreted as a host, an error is signalled. 

If you must type a pathname that has an embedded colon not meaning a host, you 
omit the host and place a colon at the beginning of the string. This" null host" 



63 

August 1986 Files 

tells the parser that it should not look further for a colon, but instead assume the 
host from the defaults. Examples: 

• SS:<FOO>BAR refers to a host named "SS". :SS:<FOO>BAR refers to no 
explicit host; if parsed relative to a TOPS-20 default, "SS" probably refers to 
a device. 

• 09:25:14.data refers to a host named "09". :09:25:14.data refers to no explicit 
host. 

• AI: COMMON; GEE WHIZ refers to a host named "AI". 

• AI: ARC: USERS1; FOO BAR refers to a host named "AI". "ARC" is the 
name of a device in the ITS operating system. 

• EE:PS:<COMMON>GEE.WHIZ.5 specifies host EE (TOPS-20). 

• PS:<COMMON>GEE.WHIZ.5 specifies a host named PS, which is almost 
certainly not what is intended! The user probably intended the "PS" device 
on some TOPS-20 host. 

• :PS:<COMMON>GEE.WHIZ.5, assuming that the default host is some 
TOPS-20, specifies a device named "PS" on that host. 

There are a few "pseudohost" names, which are recognized as host names even 
though they are not actually the names of hosts: 

"local" 

"FEP" 

"FEPn" 

"hostIFEPn" 

This pseudohost name always refers to the local file system 
(LMFS) of the machine that you are using. It does not matter 
whether or not a local file system actually exists on that 
machine; an attempt will be made to reference it. "Local" is 
always equivalent to the name of the local host. 

This pseudohost name always refers to a FEP (front-end 
processor) file system on the machine you are using, specifically, 
the one on the disk unit from which the system was booted. 

This pseudo name always refers to a FEP file system on the 
machine you are using. The single digit n specifies the disk 
unit number; there is a separate FEP file system on each drive. 
This can access the boot unit, or any other disk unit, when 
multiple units are present. 

host must be a valid host name. This pseudo host name refers to 
a FEP file system on a remote 3600-family computer. The 
syntax "hostIFEP" is not acceptable: you cannot access the 



64 

Reference Guide to Streams, Files, and I/O August 1986 

"boot unit" of a remote machine in this fashion. You must 
know the disk unit number. The disk unit number of a host 
having only one disk unit is o. 

If the string to be parsed does not specify a host explicitly, the parser assumes 
that some particular host is the one in question, and it uses the parser for that 
host's file system. The optional arguments passed to the parsing function 
(fs:parse-pathname) tell it which host to assume. 

4.1.3 Interning of Path names 

Pathnames, like symbols, are interned. This means that there is only one 
pathname object with a given set of components. If a character string is parsed 
into components, and some pathname object with exactly those components already 
exists, then the parser returns the existing pathname object rather than creating a 
new one. The main reason for this is that a pathname has a property list. See 
the section "Property Lists" in Symbolics Common Lisp: Language Concepts. The 
system stores properties on pathnames to remember information about the file or 
family of files to which that pathname refers. (In fact, some of the properties 
stored on a generic pathname come from the file's attribute list when the file is 
edited or loaded, so they can be retrieved later without having to perform I/O on 
the file.) So you can parse a character string that represents a filename, and then 
look at its property list to get various information known about that pathname. 
The components of a pathname are never modified once the pathname has been 
created, just as the print name of a symbol is never modified. The only thing that 
can be modified is the property list. 

When using property lists of pathnames, you have to be very careful which 
pathname you use to hold properties, in order to avoid a subtle problem: many 
different pathnames can refer to the same file, because of the :newest component, 
file system links, multiple naming in the file system, and so on. If you put a 
property on one of these pathnames because you want to associate some 
information with the file itself, somebody else might look at another pathname 
that refers to the same file, and not find the information there. If you really want 
to associate information with the file itself rather than some particular pathname, 
you can get a canonical pathname for the file by using the :truename message to 
a stream opened to that file. See the message :truename, page 44. You might 
also want to store properties on "generic" pathnames. See the section "Generic 
Pathnames" , page 75. 

4.1.4 Printing Pathnames 

A pathname can be converted back into a string, which is in the file name syntax 
of its host's file system. Although such a string (the string for host) can be 
produced from a pathname (by sending it the :string-for-host message), we 



65 

August 1986 Files 

discourage this practice. The Genera user interface prefers a string called the 
string for printing, which is the same as the string for host, except that it is 
preceded by the host name and a colon. This leaves no ambiguity about the host 
on which the file resides, when seen by a user. It is also capable of being 
reparsed, unambiguously, back into a pathname. prinl of a pathname (-s in 
format) prints it like a Lisp object (using the usual "#<" syntax), while prine of a 
pathname (-a in format) prints the string for printing. The string function, 
applied to a pathname, also returns the string for printing. 

Not all the components of a pathname need to be specified. If a component 
pathname is missing, its value is nil. Before a file server can utilize a pathname 
to manipulate or otherwise access a file, all the pathname's missing components 
must be filled in from appropriate defaults. Pathnames with missing components 
are nevertheless often passed around by programs, since almost all pathnames 
typed by users do not specify all the components explicitly. The host is not 
allowed to be missing from any pathname; since the behavior of a pathname is 
host-dependent to some extent, it has to explicitly designate a host. Every 
pathname has a host attribute, even if the string that was parsed to create it did 
not specify one explicitly. 

All pathname parsers support the cross-system convention that the double-shafted 
arrow character (H) can be used to specify a null directory, name, type, or version 
component explicitly. Thus, for LMFS or TOPS-20, you can type the following: 

H.H.5 

This example specifies a version of 5, but no name or type. This is useful when 
typing against the default and attempting to change just the version of that 
default. 

The keyword symbol :unspeeifie can also be a component of a pathname. This 
means that the component is not meaningful on the type of file system concerned. 
For example, UNIX pathnames do not have a concept of "version", so the version 
component of every UNIX pathname is :unspeeifie. When a pathname is 
converted to a string, nil and :unspeeifie both cause the component not to appear 
in the string. The difference occurs in the merging operation, where nil is 
replaced with the default for that component, while :unspeeifie is left alone. 

The special symbol :wild can also be a component of a pathname. This is only 
useful when the pathname is being used with a directory listing primitive such as 
fs:direetory-list or fs:all-direetories, where it means that this pathname 
component matches anything. See the function fs:direetory-list, page 161. The 
printed representation of a pathname usually designates :wild with an asterisk; 
however, this is host-dependent. 

:wild is one of several possible wildcard components, which are given to directory
listing primitives to filter file names. Many systems support other wildcard 
components, such as the string "foo*". This string, when supplied as a file name 



66 

Reference Guide to Streams, Files, and 110 August 1986 

to a directory list operation on any of several system types, specifies all files 
whose name starts with "foo". In other contexts, it might not represent a 
wildcard at all. The component :wild matches all possible values for any 
component for which it appears. Other wildcard possibilities for directories exist, 
but they are more complicated, and are explained elsewhere. See the section 
"Values of Pathname Components", page 66. See the section "Directory 
Pathnames and Directory Pathnames as Files", page 68. 

4.1.5 Values of Path name Components 

The set of permissible values for components of a pathname depends, in general, 
on the pathname's host. However, in order for pathnames to be usable in a 
system-independent way certain global conventions are adhered to. These 
conventions are stronger for the type and version than for the other components, 
since the type and version are actually understood by many programs, while the 
other components are usually treated as things chosen by the user that need to be 
preserved and passed around. 

Most programs do not use or specify the components of a pathname explicitly, or 
only in a very limited way. In this way, they can remain operating-system
independent, while letting the pathname system take care of most issues of 
compatibility. In general, you should avoid where possible using specific values of 
pathname components in your programs. The descriptions here are illustrative but 
not complete, and programs should be written to expect component values other 
than those given here. 

It is important to remember that not all pathname flavors accept all the values 
indicated here. For example, UNIX pathnames accept a type or version of 
:unspecific; few other pathnames do. Some systems do not allow certain 
characters or limit certain fields to a certain length. 

It is generally not possible to simply copy components from one flavor of pathname 
to another. It is often necessary to perform substitutions in order to produce a 
legal pathname. The :new-default-pathname message can be used instead of 
:new-pathname to get this substitution where necessary. The 
:new-default-pathname message attempts to substitute something as close as 
possible in meaning to the original component; however, the substitution can lie 
arbitrary if necessary. For this reason, it is better to avoid copying components 
between pathnames of differing flavor, where possible. 

The type is always a string (unless it is one of the special symbols nil, 
:unspecific, or :wild). Many programs that deal with files have an idea of what 
type they want to use. For example, Lisp source programs are "lisp", compiled 
Lisp programs (on, for example, a LMFS host) are "bin", text files are "text", and 
so on. The set of characters allowed in the type, and the number of characters, 
are system-dependent. In order to process file types in a system-independent way, 
the canonical type mechanism has been devised. A canonical type is a system-



67 

August 1986 Files 

independent keyword symbol representing the conceptual type of a file. For 
instance, a Lisp source file on VMS has a file type of "LSP", and one on UNIX 
has a file type of "1". When we ask pathnames of either of these natures for their 
canonical type, we receive the keyword symbol :lisp. See the section "Canonical 
Types in Pathnames", page 77. 

The version is either a number (specifically, a positive fumum) , or one of the 
symbols nil, :unspecific, :wild, :newest, or : oldest. nil, :unspecific, and :wild 
have been explained above. :newest refers to the largest version number that 
exists when reading a file, or that number plus one when writing a new file. 
:oldest refers to the smallest existing version number. 

The host component of a pathname is always a host object. See the section 
"Namespace System Host Objects" in Networks. 

The device component of a pathname can be one of the symbols nil or :unspecific, 
or a string designating some device, for those file systems that support such a 
notion. 

The file name can be nil or a string, or : wild. 

The directory component is highly system-specific. While it can be nil for any 
type of host, values designating actual directories, or partially wild specifications 
for directories, are more complicated. On nonhierarchical file systems, the 
directory component is usually a string such as "LMDOC", designating the name 
of the directory. 

On hierarchical file systems, the directory component, when not nil, is a list of 
directory level components. For example: 

LMFS pathname Directory component 

>sys>io>qfile.lisp.2357 ("sys" "io") 

"sys" and "io" are the directory level components. Since the "root directory" of 
hierarchical file systems has no directory level components, it would be 
represented as nil, but this is impermissible, since nil already means that the 
directory component has not been specified. Thus, :root is used as the directory 
component in that case. 

Relative pathnames on hierarchical file systems are represented by directory 
components having the level component : relative, followed by a number of 
occurrences of the symbol :up equal to the number of "upward relativization 
symbols", followed by the remaining directory level components. For example: 

LMFS relative pathname 

«x>y>z.lisp 

Directory component 

(:relative :up :up "x" "y") 

Directory components of pathnames for hierarchical file systems, on some systems, 



68 

Reference Guide to Streams, Files, and I/O August 1986 

can also have the symbol :wild or a partially wild string (such as "foo*") as 
directory level components, to do level-by-Ievel matching of level components. 
Also, on some systems, the level component :wild-inferiors (which is printed as 
"**" on LMFS and logical pathnames, and " ... " on VMS, currently the only ones 
supporting it) to designate "any number, including zero of directory levels" to a 
directory list operation. 

Note that some systems (currently VMS) do not allow using zero directory levels 
to denote their root directory. In this case, :wild-inferiors cannot stand alone, but 
must follow some other directory spec. For example: "[FOO ... J" or "[* ... J". 

4.1.6 Directory Pathnames and Directory Path names as Files 

In almost all systems having hierarchical directories, and certainly all the ones 
supported by the Symbolics computer as file server systems, the directories are 
implemented internally as special files, known about by the operating system. The 
data in these files is not accessible to the user except through the defined 
operating system interfaces for dealing with directories. 

Typically, listings of the contents of directories on hierarchical directory systems 
display names of both files and directories contained in the listed directory (as 
well as of links, on systems that support links). 

Directories on hierarchical directory systems and files thus some things have in 
common. Appearing in directories is one. Another is that directories can usually 
be renamed, as can files, or, when the appropriate restrictions of the operating 
system are met (for instance, being empty), deleted. You can ask about the 
properties of a directory, or change some of them, with fs:file-properties and 
fs:change-file-properties, respectively, just as you do with a file. 

Using LMFS as an example, consider the directory named "bar", which is 
contained in the directory named "foo", which itself is contained in the ROOT. A 
file in this directory named "tables.lisp.6" would have the following pathname: 

>foo>bar>tables.lisp.6 

The directory in which it is contained, bar, has the following pathname: 

>foo>bar.directory.1 

The file type of a directory, on LMFS, is "directory", and the version number of 
all directories is 1. The file types of directories, and their versions, if appropriate, 
vary among operating systems. If you wanted to rename, delete, or deal with the 
properties of the directory bar, you would have to present the above filename for 
this directory. A pathname of this type, which names a directory, as though it 
were a file, is called a directory pathname as file. 

Directory pathnames as files are appropriate only to systems with hierarchical 
directories. On other systems, you cannot address directories directly. 



69 

August 1986 Files 

The most cOInmon use of directories, however, is to reference files in them. The 
following pathname mentions the directory "bar" in this way: 

>foo>bar>tables.lisp.6 

This filename, when parsed into a pathname for the appropriate LMFS host, has a 
name component of "tables", a type component of "lisp", a version component of 6, 
and a directory component (in fact ("foo" "bar"» that designates the directory 
bar, inferior of foo, inferior of the ROOT. Such a pathname, which designates a 
given directory via its directory component, is called a pathname as directory for 
that directory. Of course, since the file name, type, and version are irrelevant to 
the specification of the directory, it is only one of many possible "pathnames as 
directory" for the directory bar. 

The concept of pathname as directory is more general than the concept of 
directory pathname as file, since directories on nonhierarchical systems be 
described by their pathnames as directories as well. For instance, the following 
TENEX pathname, which describes a file in the "LMDOC" directory, is a 
pathname as directory for the LMDOC directory: 

<LMDOC>CHFILE.TEXT;7 

Note, also, that any pathname whose directory component is not nil is a pathname 
as directory for some directory. 

Therefore, the Symbolics Common Lisp primitives and operations that deal with 
directories explicitly (for example, fs:expunge-directory and fs:all-directories) 
expect pathnames of directories to be represented in the "pathname as directory" 
form. It is the canonical, system-independent way to represent pathnames of 
directories in the Symbolics system. 

The following two messages convert between directory pathnames as files and 
pathnames as directories: 

:directory-pathname-as-file of pathname Method 
Every pathname whose directory component is not nil is a pathname as 
directory for some directory. This method returns the directory pathname 
as file for that directory. 

(setq p (fs:parse-pathname "Quabbin:>sys>lmfs>fsstr.lisp.243"» 
#<LMFS-PATHNAME "Q:>sys>lmfs>fsstr.lisp.243"> 
(send p J :di rectory-pathname-as-fil e) 
#<LMFS~PATHNAME "Q:>sys>lmfs.directory.1"> 

:pathname-as-directory of pathname Method 
This method is intended to be sent to a pathname that is the valid 
directory pathname as file for some directory. It produces one of many 
possible pathnames as directory for that directory, namely, the one whose 
name, type, and version are all nil. 



70 

Reference Guide to Streams, Files, and 110 

(setq p1 (fs:parse-pathname "Quabbin:>sys>io.directory.1"» 
#<LMFS-PATHNAME "Q:>sys>io.directory.1"> 
(setq p2 (send p1 ':pathname-as-directory» 
#<LMFS-PATHNAME "Q:>sys>io>"> 
(send p2 ':directory-pathname-as-file) 
#<LMFS-PATHNAME "Q:>sys>io.directory.1"> 

August 1986 

If you are used to other systems' file-naming conventions, you may be confused by 
pathnames that have real directory components, but no name, type, or version. 
When typed in or printed, they look like the following: 

>jones>book>examples> 

Users who are familiar with Multics or UNIX immediately see such pathnames as 
invalid, even though they are often used on the Symbolics computer to access 
Multics and UNIX. When parsed for LMFS or Multics, the above filename string 
produces a pathname whose directory component designates the directory 
"examples", which is contained in "book", which itself is contained in "jones", an 
inferior of the ROOT. The name, type, and version components of this pathname 
are nil. This pathname is equivalent to the following: 

>jones>book>examples>~.~.~ 

Either of these is a canonical pathname as directory for the directory" examples". 
Typing such pathnames as input is exceedingly common, since the merging 
process, given such a pathname as its unmerged input, replaces the directory 
component of the default with a directory component specifying the directory 
named by the "pathname as directory". See the section "Pathname Defaults and 
Merging", page 73. For example: 

Default: Q:>abel>baker>cakes.list 
User Typein: >Romanoli>weddings> 
Merged output: >Romanoli>weddings>cakes.list 

Compare this with the following: 

Default: 
User Typein: 
Merged output: 

Default: 
User Typein: 
Merged output: 

Q:>abel>baker>cakes.list 
>Romanoli>weddings 
>Romanoli>weddings.list 

Q:>abel>baker>cakes.list 
>Romanoli>weddings>~.~.73 

>Romanoli>weddings>cakes.list.73 

All the Symbolics hierarchical directory parsers recognize a trailing directory 
delimiter as an instruction to construct a pathname with nil name, type, and 
version, for the directory designated-a "pathname as directory". (The version 
component, however, remains :unspecific for systems not supporting file versions.) 
This is true even of the parsers for UNIX and Multics, on which systems such 
syntax is never seen. 



71 

August 1986 Files 

This mode of directory naming is usually familiar to users of nonhierarchical 
systems. The following TENEX pathname results, when parsed, in a pathname as 
directory for the LMDOC directory (on the appropriate TENEX host), with name, 
type, and version of nil, that can be used in merging operations in a way similar 
to that shown in the above LMFS example. 

<LHDOC> 

As a side-effect of these conventions, the following kinds of pathnames occasionally 
occur on LMFS or Multics: 

<lmdoc> 

As explained above, thi sis a valid way of entering the following relative 
pathname: 

<lmdoc>H.H.H 

4.1.7 Case in Path names 

The pathname system handles alphabetic case in pathnames and transferring of 
pathname components between hosts with different preferred alphabetic cases. 

The components of a pathname (directory, name, type, and so on) have two 
possible representations for case, raw (also called native) and interchange. The 
raw case representation keeps the case in whatever form is normal for that system 
(for example, lowercase for UNIX, uppercase for TOPS-20). Interchange 
representation is a format for manipulating pathname components in a host
independent manner. All pathname defaulting and cross-host translation functions 
use the interchange form of pathname messages. 

All the standard messages to pathnames (for example, : directory, :name) return 
pathname components in interchange case rather than raw case. 

The components are stored internally in raw case, that is, the actual alphabetic 
case in which the names of the files are stored, or to be stored, in the host's file 
system. It is possible to access the raw case representation via the set of 
messages :raw-directory, : raw-name, and so forth. However, programs seeking to 
be system-independent should not use these messages, but the standard ones, 
: directory, :name, and so forth. Doing so ensures that pathname components 
transferred between system types stay in the preferred case for each of the 
systems concerned. 

The raw forms of the messages are provided for writing host-specific code or for 
manipulating several pathname objects known to be on the same host. 

Interchange case form 
:device 
:directory 
:name 
:type 

Raw case form 
: raw-device 
: raw-directory 
:raw-name 
: raw-type 



72 

Reference Guide to Streams, Files, and 110 

The interchange form of the message specifies the following effect: 

Case of component 
System default 
Mixed case 
Opposite to default 

Translated case returned 
Uppercase 
Mixed case 
Lowercase 

August 1986 

Uppercase was chosen as the interchange case because strings like "LISP", 
representing pathname components, appear in many programs. Either choice 
(upper or lower) would have been natural for some hosts and not for others. 

This facility provides more features for dealing with pathname components 
independent of the case-sensitivity of file names of different hosts. The following 
table shows some examples for different host types. 

Host Message 
UNIX :name 

:name 
:name 

Lisp Machine :name 
File System :name 

:name 

TOPS-20 :name 

VMS 4 

:name 
: name 

:name 

Applied to raw form 
" foo-bar.baz" 
"FOO-BAR.BAZ" 
"Foo-Bar.Baz" 

"foo-bar.baz" 
"FOO-BAR.BAZ" 
"Foo-Bar.Baz" 

"FOO-BAR.BAZ" 
"foo-bar.baz" 
"Foo-Bar.Baz" 

"FOO_BAR.BAZ" 

Returns interchange form 
"FOO-BAR" 
"foo-bar" 
"Foo-Bar" 

"FOO-BAR" 
"FOO-BAR" 
"FOO-BAR" 

"FOO-BAR" 
"foo-bar" 
"Foo-Bar" 

"FOO-BAR" 

Note that VMS has only one example; that is because VMS supports upper-case 
only. VMS uses the underscore character "_" where other operating systems use 
the hyphen "-". 

Note that the Lisp Machine File System (LMFS) appears not to follow the 
interchange case rules. This is because, for LMFS, case is usually maintained but 
is not significant ("foo", "Foo", and "FOO" are all the same). Thus any mixture 
of cases in a file name satisfies the "system default" condition and returns all 
uppercase for the interchange form. 

Function::; that manipulate pathnames, such as fs:make-pathname, 
fs:merge-pathnames, and fs:merge-pathname-and-set-defaults, manipulate 
components in interchange case. 



73 

August 1986 Files 

Pathname-constructing functions such as fs:make-pathname and pathname 
messages such as :new-pathname and :new-default-pathname accept both 
:directory and : raw-directory, to allow specification of components in either 
interchange case or raw case. 

4.2 Defaults and Merging 

It is unreasonable to require the user to type a complete pathname, containing all 
components. Instead the program is expected to supply a default pathname, from 
which values of components not specified by the user can be taken. 

Every program that prompts the user for a pathname should maintain some 
default pathname, display it to the user when prompting for a pathname, and 
merge the parsed input from the user with that default. The function 
prompt-and-read provides easy ways to do all of these things. See the function 
prompt-and-read in Programming the User Interface, Volume B. No program 
should use any pathname obtained from user input without merging it against 
some default. Since it is impossible for a user to type a pathname correctly 
without knowing against which default it will be merged, the default must be 
displayed to the user. 

A default default is available for programs that have no better idea of a default 
pathname, and a function (fs:default-pathname) for customizing default 
pathnames. 

Typically, a program might take the default default, customize it, perhaps by 
supplying a specific file type (usually via the canonical type mechanism), prompt 
the user for the name of a file, displaying that default, and merge the user's 
parsed input against that default. 

A more complex program, one that requires an input file and an output file, might 
proceed as follows: It obtains the pathname of its input file as above, and 
prepares a default pathname for its output file by customizing the input file 
pathname, usually by supplying a new type, and presents and uses that as a 
default for the prompt for the output file pathname. 

The merging operation is performed by the function fs:merge-pathnames. It 
takes as input an unmerged pathname and a default pathname and returns a 
merged pathname, which has no missing components. Basically, the missing 
components in the unmerged pathname are filled in from the default pathname. 
The merging operation also takes a default version argument, which specifies the 
version number of the output pathname, if there is no version mentioned in the 
unmerged pathname. That is, the version number is almost never defaulted from 
the default pathname. If the default version argument is not supplied, it is 
assumed to be : newest. The version number of the default is used as a default 
version in the following cases: 



74 

Reference Guide to Streams, Files, and 110 August 1986 

• Neither name, type, nor version is specified by the unmerged pathname . 

• The unmerged pathname does not have a version, and the value of the 
default version argument is : default. 

The full details of the merging rules are as follows. 

1. If the unmerged pathname does not supply a device, the device is the default 
file device for that host. 

2. If the unmerged pathname does not specify a host, device, directory, name, 
or type, that component comes from the defaults. 

3. If the unmerged pathname supplies a version, it is used. 

4. If it does not supply a version, the default version as explained above is 
used. 

Thus, if the user supplies just a name, the host, device, directory and type will 
come from the default, with the default version argument (or :newest if there was 
none). If the user supplies nothing, or just a directory, the name, type, and 
version comes over from the default together. If the host's file name syntax 
provides a way to input a type or version without a name, the user can let the 
name default but supply a different type or ve!'sion than the ones in the default. 

The system also defines an object called a defaults alist. Functions are provided to 
create one, get the default pathname out of one, merge a pathname with one, and 
store a pathname back into one. A defaults alist is basically an object containing 
a replaceable pathname. fs:merge-pathnames accepts a defaults alist as its 
default pathname argument as well as a pathname. 
fs:merge-pathnames-and-set-defaults is like fs:merge-pathnames but requires a 
defaults alist as its default pathname argument. When it has completed its 
merge, it stores the result back into the defaults alist before returning it. See the 
function fs:merge-pathnames-and-set-defaults, page 84. It is important that you 
do not attempt to construct a defaults alist, but instead use the primitives 
provided. See the function fs:make-pathname-defaults, page 89. See the 
function fs:copy-pathname-defaults, page 89. See the function 
fs:set-default-pathname, page 89. 

The following special variables are parts of the pathname interface that are 
relevant to defaults. 

fs:*default-pathname-defaults* Variable 
The default defaults alist; if the pathname primitives that need a set of 
defaults are not given one, they use this one. Most programs, however, 
should have their own defaults rather than using these. 



75 

August 1986 Files 

fs:load-pathname-defaults Variable 
The defaults alist for the zl:load and compiler:compile-file functions. 
Other functions can share these defaults. 

4.3 Generic Pathnames 

A generic pathname stands for a whole family of files. The property list of a 
generic pathname is used to remember information about the family, some of 
which (such as the package) comes from the file attribute list line of a source file 
in the family. See the section "File Attribute Lists", page 156. All types of files 
with that name, in that directory, belong together. They are different members of 
the same family; for example, they might be source code, compiled code, and 
documentation for a program. All versions of files with that name, in that 
directory, belong together. 

The generic pathname of pathname p has the same host, device, directory, and 
name as p does. However, it has a version of nil. Furthermore, if the canonical 
type of p is one of the elements of fs:*known-types*, then it has a type of nil; 
otherwise it has the same type as p. The reason that the type of the generic 
pathname works this way is that in some file systems, such as that of ITS, the 
type component can actually be part of the file name; ITS files named "DIRECT 
IONS" and "DIRECT ORY" do not belong together. 

The :generic-pathname message to a pathname returns its corresponding generic 
pathname. See the method (flavor:method :generic-pathname pathname), page 
98. 

fs:*known-types* Variable 
This is a list of the canonical file types that are "not important"; 
constructing a generic pathname will strip off the file type if it is in this 
list. File types not in this list are really part of the name in some sense. 
The following is the initial list: 

(:LISP :QBIN :BIN NIL :UNSPECIFIC) 

Some users might need to add to this list. See the section "Canonical 
Types in Pathnames", page 77. 

4.4 Relative Pathnames 

Many operating systems support a notion called relative pathnames in order to 
simplify the typing of filenames by their users. Typically, a user on a system such 
as Multics or UNIX tells the system what directory on the system is his or her 



76 

Reference Guide to Streams, Files, and 110 August 1986 

working directory. These operating systems assume the working directory as the 
default directory for filenames whose directory is not specified. For example, 
when the user types a filename, perhaps as an argument to a command (such as 
"print foo") the system assumes that the name foo refers to a file named foo in 
the working directory, as long as the user did not specify another directory (for 
instance, by saying "print >sources>c>foo"). 

On hierarchical systems, such as UNIX and Multics, the working directory can 
often be several levels deep, and have a full name that is therefore cumbersome to 
type. The concept of working directory is all the more powerful in these cases. 
Since the hierarchical organization of directories exists to facilitate relating files 
by placing them in directories in common subtrees, it is common for users 
working on such systems to want to reference files in "siblings" of their working 
directory, or "uncles", or even "inferiors" or "inferiors of inferiors", that is, 
directories near in the directory hierarchy to their working directory. 

In order to facilitate the referencing of files in directories "near" the working 
directory, without having to type full pathnames of directories, these systems 
support relative pathnames, which are interpreted relative to the working directory. 
Relative pathnames are always syntactically distinguishable from other pathnames. 
For instance, on Multics, if the working directory is >udd>Proj>Username, the 
pathname 

<Othername>stuff>x.p11 

refers to the file 

>udd>Proj>Othername>stuff>x.p11 

Although it supports relative pathnames, the Lisp Machine File System does not 
support a concept of working directory. One rationale for this is the fact that the 
user might be communicating with many systems at once, and might have several 
working directories to remember. The merging and defaulting system takes the 
place of the working directory concept. See the section "Pathname Defaults and 
Merging", page 73. The default pathname, which is displayed when a user is asked 
to enter a pathname, determines the default directory for a pathname having no 
directory explicitly specified. What is more, it specifies the default values of other 
components as well. 

Systems supporting relative pathnames usually have some special syntax to 
indicate a pathname that is relative to a superior of the working directory, and 
another to indicate pathnames relative to superiors of the working directory. We 
call these "upward relativization" and "downward relativization". In this context, 
a pathname with an explicit directory specified is called an absolute pathname, and 
one without an explicit directory, a relative pathname. However, since 
specification of no directory at all is a very common case handled by systems that 
do not otherwise support relative directories, namely, by simply defaulting an 
entire directory component, this is not considered a relative pathname by the 
Symbolics system. 



77 

August 1986 Files 

The Symbolics system supports relative directories for those hierarchical systems 
that support it themselves. As might be expected, the "resolution" of relative 
pathnames entered by the user is performed relative to the default pathname, as 
opposed to any working directory. Resolution of relative pathnames is performed 
by fs:merge-pathnames as part of its normal operation. 

The following examples, using LMFS pathnames, show some examples of relative 
pathnames and their resolution via merging: 

Default: 
Unmerged: 
Merged: 

Default: 
Unmerged: 
Merged: 

Default: 
Unmerged: 
Merged: 

Default: 
Unmerged: 
Merged: 

Default: 
Unmerged: 
Merged: 

Default: 
Unmerged: 
Merged: 

>sys>lmfs>new>xst.lisp 
test>xst.lisp 
>sys>lmfs>new>test>xst.lisp 

>sys>lmfs>new>xst.lisp 
<test>thing.lisp 
>sys>lmfs>test>thing.lisp 

>sys>lmfs>new>xst.lisp 
«test> 
>sys>test>xst.lisp 

>sys>lmfs>new>xst.lisp 
test>best> 
>sys>new>test>best>xst.lisp 

>sys>lmfs>new>xst.lisp 
<xst.lisp 
>sys>lmfs>xst.lisp 

>sys>lmfs>new>xst.lisp 
«abel>baker>foo.lisp 
>sys>abel>baker>foo.lisp 

;upward relativization 

;upward relativization 

;downward relativization 

4.5 Canonical Types in Path names 

A canonical type for a pathname is a symbol that indicates the nature of a file's 
contents. To compare the types of two files, particularly when they could be on 
different kinds of hosts, you compare their canonical types. 
(fs:*default-canonical-types* and fs:*canonical-types-alist* show the canonical 
types and the default surface types for various hosts.) 

Some terminology: 

canonical type A host-independent name for a certain type of file, for example, 



78 

Reference Guide to Streams, Files, and 110 August 1986 

Lisp compiled code files or LGP font files. A canonical type is a 
keyword symbol. 

file specification What you type when you are prompted to supply a string for the 
system to build a pathname object. 

surface type The appearance of the type component in a file specification. 
This is a string in native case. 

default surface type 
Each canonical type has as part of its definition a representation 
for the type when it has to be used in a string. Default surface 
type is the string (in interchange case) that would be used in a 
string being generated by the system and shown to the user. 
See the special form fs:define-canonical-type, page 90. 

preferred surface type 
Some canonical types have several different possible surface 
representations. The definition for the type designates one of 
these as the preferred surface type. It is a string in 
interchange case. ("Default surface type" implies "preferred 
surface type" when one has been defined.) 

Each canonical type has a default surface representation, which can be different 
from the surface file type actually appearing in a file specification. :lisp is a 
canonical type for files containing Lisp source code. For example, on UNIX, the 
default surface representation of the type for :lisp files is "L". (Remember, the 
default surface representation is kept in interchange case.) The surface type in a 
file specification containing lisp code is different on different systems, "LISP" for 
Lisp Machine file system, "1" for UNIX. You can find out from a pathname object 
both the canonical type for the pathname and the surface form of the type for the 
pathname by using the :canonical-type message. See the method 
(flavor:method :canonical-type pathname), page 93. 

The following tables illustrate the terminology. 

UNIX 
Surface type "1" "lisp" "faa" 
Raw type "1" "lisp" "faa" 
Type ilL" "LISP" "FOO" 
Canonical type : lisp : lisp "FOO" 
Original type nil "LISP" "FOO" 



79 

August 1986 Files 

Lisp machine 
Surface type "1" "lisp" "foo" 
Raw type " 1" "lisp" "foo" 
Type ilL" "LISP" "FOO" 
Canonical type "L" : lisp "FOO" 
Original type "L" nil "FOO" 

To translate the type field of a pathname from one host to another, determine the 
canonical type, using the surface type on the original host. Then find a surface 
type on the new host for that canonical type. 

Copying operations can preserve the surface type of the file through translations 
and defaulting rather than by converting it to the surface form for the canonical 
type. For example: 

(multiple-value-bind (ctype otype) 
(send p ':canonical-type) 

(send p ':new-pathname 
':canonical-type ctype 
':original-type otype 
':name "temp-pUll 

4.5.1 Correspondence of Canonical Types and Editor Modes 

fs:*file-type-mode-alist* is an alist that associates canonical types (in the car) 
with editor major modes (in the cdr). 

«:LISP . :LISP) (:SYSTEM . :LISP) (:TEXT . :TEXT) ... ) 

4.6 Wildcard Pathname Mapping 

In the Symbolics system, as in some other systems, wildcard pathnames are used 
not only to specify groups of files, but to specify mappings between pairs of 
pathnames, for operations such as renaming and copying files. 

For example, you might ask to copy *foo* .lisp to *bar* .lisp. All the files to be 
copied match the wildcard name *foo* .lisp. *bar* .lisp is a specification of how to 
construct the pathname of the new file. The two wildcard pathnames, as in the 
above example, are called the source pattern and target pattern. The original name 
of any file to be copied is called the starting instance. Here is an example: 

Source pattern: 
Target pattern: 
Starting instance: 
Target instance: 

f:>fie>*old*.lisp 
vx:/usr2/fum/*older*.1 
f:>fie>--oldfoo.lisp 
vx:/usr2/fum/--olderfoo.l 



80 

Reference Guide to Streams, Files, and 110 August 1986 

A more abstract description of this terminology: 

Source pattern A pathname containing wild components. 

Target pattern A pathname containing wild components. 

Source instance A pathname that matches the source pattern. 

Target instance A pathname specified by applying the common sequences 
between the source and target patterns to the source instance. 

Two Zmacs commands accept pairs of wildcard file specifications: 

Copy File (M-X) 

Rename File (M-X) 

The components of the target instance are determined component-by-component for 
all components except the host. (The host component is always determined 
literally from the source and target patterns; it cannot be wild.) The mapping of 
pathnames is done in the native case of the target host. The source pattern and 
source instance are coerced to the target host via the :new-default-pathname 
message before the mapping takes place. See the method 
(flavor:method :new-default-pathname pathname), page 97. 

When the type of the target pattern is :wild, it uses the canonical type for the 
target, regardless of the surface form for the type in the source pattern and 
instance. 

NOTE 

In the Lisp Machine File System, * as the directory portion of a file 
specification specifies a relative pathname. You must use >** to 
indicate a wild directory component that matches any directory at all. 
See the section "LMFS Pathnames", page 101. 

Here are the rules used in constructing a target instance, given the source and 
target patterns and a particular source instance. This set of rules is applied 
separately to each component in the pathname. In the mapping rules, a * 
character as the only contents of a component of a file spec is considered to be 
the same as the keyword symbol :wild. The rule uses the patterns from the 
example above. 

1. If the target pattern does not contain *, copy the target pattern component 
literally to the target instance. 

2. If the target pattern is :wild, copy the source component to the target 
literally with no further analysis. The type component is handled somewhat 
differently - when source and target hosts are of different system types, it 
uses the canonical-type mechanism to translate the type. This does not 
apply when the target pattern is :wild-inferiors, in directory specifications. 



August 1986 

3. Find the positions of all * characters in the source and target patterns. 
Take the characters intervening between * characters as a literal value. 
Literal values for the name component: 

Source: old 
Target: 01 der 

81 

Files 

4. Find each literal value from the source pattern in the source instance. Take 
the characters intervening between literal values as a matching value for the 
* from the source pattern. The matching value could be any number of 
characters, including zero. Matching values for the name component: 

-- and foo 

5. Create the component by assembling the literal and matching values in left 
to right order, SUbstituting the matching values where * appears in the 
target pattern. For the name component: 

--olderfoo 

When not enough matching values are available (due to too few * in the 
source pattern) use the null string as the matching value. When the source 
pattern has too many *, ignore the first extra * and everything following it. 

Some examples: 

Source pattern Source instance Target pattern Target instance 

*report 6802-report *summary 6802-summary 
1 mfs-* lmfs-errors * lmfs-errors 
1* 1 1* 1 
1* 1 i sp 1* lisp 
OLO-OIR OLO-OIR NEW-PLACE NEW-PLACE 

* doc *-extract doc-extract 
doc doc doc-extract doc-extract 

4.6.1 Wildcard Directory Mapping 

The rules for mapping directory components between two wildcard pathnames and 
a starting instance are parallel to the rules for single names. Directory-level 
components play roughly the roles of characters in the name-translating algorithm. 
See the section "Wildcard Pathname Mapping", page 79. 

Consider a directory component as a sequence of directory level components. The 
levels are separated by level delimiters (> in LMFS). Example: In the pathname 
>foo>bar>*>mumble*>x>**>y>a.b.3, the directory-level components are foo, bar, *, 
mumble*, x, **, and y. The source and target patterns, as well as the starting 
instance, are considered as sequences of directory-level components, and are 
matched and translated level by level. 



82 

Reference Guide to Streams, Files, and 110 August 1986 

For this purpose, each directory-level component can be classified as one of three 
types: 

Type 

constant 

wild-inferiors 

must-match 

Directory representation 

String containing no *'s 

** in LMFS, ... in VMS 

* or string containing at least one * (but not the string 
representing wild-inferiors) 

The matching and mapping of constant and wild-inferiors levels proceeds in a 
manner identical to the matching and mapping of constant substrings and *s for 
single names. See the section "Wildcard Pathname Mapping", page 79. Constant 
directory level components act as constant substrings in that algorithm, and wild
inferiors levels as *s. That is, wild-inferiors level components match and, on the 
target side, carry, zero to any number of constant directory-level components. 
Examples: . 

Source pattern: 
Target pattern: 
Starting instance: 
Target instance: 

Source pattern: 
Target pattern: 
Starting instance: 
Target instance: 

>sys>**>*.*.newest 
>old-systems>release-5>**>*.*.* 
>sys>lmfs>patch>lmfs-33.patch-dir.66 
>old-systems>release-5>lmfs>patch>lmfs-33.patch-dir.66 

>a>b>c>**>d>e>**>x.y.* 
>t>u>**>m>**>w>*.*.* 
>a>b>c>p>q>d>e>f>g>x.y.1 
>t>u>p>q>m>f>g>w>x.y.1 

Must-match components are matched with exactly one directory-level component, 
which must be present. They are mapped according to the string-mapping rules in 
the name-translating algorithm. See the section "Wildcard Pathname Mapping", 
page 79. 

Example: 

Source pattern: 
Target pattern: 
Starting instance: 
Target instance: 

>a>b>c>foo*>d>*>*.*.* 
>x>*bar>y>*man>*.*.* 
>a>b>c>foolish>d>yow>a.lisp.1 
>x>lishbar>y>yowman>a.lisp.1 

You can intersperse constants, must-matches, and wild-inferiors directory-level 
components, as long as the sequence of wildcard types is the same in both 
patterns. 



83 

August 1986 Files 

Example: 

Source pattern: 
Target pattern: 
Starting instance: 
Target instance: 

>a>*>c>**>*.lisp.* 
>bsg>sub>new-*>q>**>*.*.* 
>a>bb>c>d>e>p1.1isp.6 
>bsg>sub>new-bb>q>d>e>p1.1isp.6 

4.7 Pathname Functions 

The following functions are what programs use to parse and default file names 
that have been typed in or otherwise supplied by the user. 

fs:parse-pathname thing &optional with-respect-to (defaults Function 
fs:*default-pathname-defaults*) 

Turns thing, which can be a pathname, a string, or a Maclisp-style name 
list, into a pathname. Most functions that take a pathname argument call 
fs:parse-pathname on it so that they accept anything that can be turned 
into a pathname. Some, however, do it indirectly, by calling 
fs:merge-pathnames. 

This function does not do defaulting, even though it has an argument 
named defaults; it only does parsing. The with-respect-to and defaults 
arguments are there because in order to parse a string into a pathname, it 
is necessary to know what host it is for so that it can be parsed with the 
file name syntax peculiar to that host. 

If with-respect-to is supplied, it should be a host or a string to be parsed as 
the name of a host. If thing is a string, it is then parsed as a true string 
for that host; host names specified as part of thing are not removed. Thus, 
when with-respect-to is not nil, thing should not contain a host name. 

If with-respect-to is not supplied or is nil, any host name inside thing is 
parsed and used as the host. If with-respect-to is nil and no host is 
specified as part of thing, the host is taken from defaults. 

Examples, using a LMFS host named Q: 

(fs:parse-pathname "a:>b.c" "q") => #<LMFS-PATHNAME "Q:a:>b.c"> 
(fs:parse-pathname "q:>b.c" "q") => #<LMFS-PATHNAME "Q:q:>b.c"> 
(fs:parse-pathname "q:>b.c") => #<LMFS-PATHNAME "Q:>b.c"> 
(fs:parse-pathname ">b.c" "q") => #<LMFS-PATHNAME "Q:>b.c"> 

Note that this causes correct parsing of a TOPS-20 pathname when thing 
contains a device but no host and when with-respect-to is not nil. 
(Warning: If thing contains a device but no host and if with-respect-to is 
nil or not supplied, the device is interpreted as a host.) In the following 
example, X is a TOPS-20 host and A is a device: 

; (wrong) 
; (wrong) 



84 

Reference Guide to Streams, Files, and 110 August 1986 

(fs:parse-pathname "a:<b>c.d" "x") => #<TOPS20-PATHNAME "X:A:<B>C.O"> 
(fs:parse-pathname "a:<b>c.d") => Error: "a" is not a known file 

server host. 

In the same TOPS-20 example, if with-respect-to is nil and the host is to 
taken from defaults, the pathname string must be preceded by a colon to be 
parsed correctly: 

(fs:parse-pathname ":a:<b>c.d" nil "x:") => #<TOPS20-PATHNAME "X:A:<B>C.O"> 
(fs:parse-pathname "a:<b>c.d" nil "x:") => Error: "a" is not a known file 

server host. 

If thing is a list, with-respect-to is specified, and thing contains a host 
name, an error is signalled if the hosts from with-respect-to and thing are 
not the same. 

fs:merge-pathnames pathname &optional (defaults Function 
fs:*default-pathname-defaults*) 
(default-version ':newest) 

Fills in unspecified components of pathname from the defaults, and returns 
a new pathname. This is the function that most programs should call to 
process a file name supplied by the user. pathname can be a pathname, a 
string, or a Maclisp name list. The returned value is always a pathname. 
The merging rules are documented elsewhere: See the section "Pathname 
Defaults and Merging", page 73. 

If pathname is a string, it is parsed before merging. The default pathname 
is presented to fs:parse-pathname as a default pathname, from which the 
latter defaults the host if there is no explicit host named in the string. 

defaults can be a pathname, a defaults alist, or a string. If it is a string, 
it is parsed against the default defaults. defaults defaults to the value of 
fs:*default-pathname-defaults* if unsupplied. 

fs:merge-pathnames-and-set-defaults pathname &optional (defaults Function 
fs:*default-pathname-defaults*) 
(default-version ':newest) 

The same as fs:merge-pathnames except that after it is done the result is 
stored back into defaults. This is handy for programs that have "sticky" 
defaults. (If defaults is a pathname rather than a defaults alist, then no 
storing back is done.) The optional arguments default the same way as in 
fs:merge-pathnames. 

The following function is what programs use to complete a partially typed-in 
pathname. 



85 

August 1986 Files 

fs:complete-pathname defaults string type version &rest options Function 
string is a partially specified file name. (Presumably it was typed in by a 
user and terminated with the COMPLET E or END to request completion.) 
fs:complete-pathname looks in the file system on the appropriate host and 
returns a new, possibly more specific string. Any unambiguous 
abbreviations are expanded in a host-dependent fashion. 

string is completed relative to a default pathname constructed from 
defaults, the host (if any) specified by string, type, and version, using the 
function fs:default-pathname. See the function fs:default-pathname, page 
89. If string does not contain a colon, the host comes from defaults; 
otherwise the host name precedes the first colon in string. 

options are keywords (without following values) that control how the 
completion will be performed. The following option keywords are allowed. 
Their meanings are explained more fully below. 

: deleted 

:read or :in 

Look for files that have been deleted but not yet 
expunged. The default is to ignore such files. 

The file is going to be read. This is the default. The 
name :in is obsolete and should not be used in new 
programs. 

:write or :print or :out 
The file is going to be written (that is, a new version is 
going to be created). The names :print and :out are 
obsolete and should not be used in new programs. 

:old Look only for files that already exist. This is the 
default. :old is not meaningful when :write is specified. 

: new-ok Allow either a file that already exists, or a file that does 
not yet exist. :new-ok is not meaningful when :write is 
specified. The :new-ok option is no longer used by any 
system software, because users found its effects (in the 
Zmacs command Find File (c-X c-F» to be too confusing. 
It remains available, but programmers should consider 
this experience when deciding whether to use it. 

The first value returned is always a string containing a file name; either 
the original string, or a new, more specific string. The second value 
returned indicates the status of the completion. It is non-nil if it was 
completely successful. The following values are possible: 

:old 

:new 

The string completed to the name of a file that exists. 

The string completed to the name of a file that could be 
created. 



86 

Reference Guide to Streams, Files, and 110 August 1986 

nil The operation failed for one of the following reasons: 

• The file is on a., file system that does not support 
completion. The original string is returned 
unchanged. 

• There is no possible completion. The original 
string is returned unchanged. 

• There is more than one possible completion. The 
string is completed up to the first point of 
ambiguity. 

• A directory name was completed. Completion was 
not successful because additional components to the 
right of this directory remain to be specified. The 
string is completed through the directory name and 
the delimiter that follows it. 

Although completion is a host-dependent operation, the following guidelines 
are generally followed: 

When a pathname component is left completely unspecified by string, it is 
generally taken from the default pathname. However, the name and type 
are defaulted in a special way described below and the version is not 
defaulted at all; it remains unspecified. 

When a. pathname component is specified by string, it can be recognized as 
an abbreviation and completed by replacing it with the expansion of the 
abbreviation. This usually occurs only in the rightmost specified 
component of string. All files that exist in a certain portion of the file 
system and match this component are considered. The portion of the file 
system is determined by the specified, defaulted, or completed components 
to the left of this component. A file's component x matches a specified 
component y if x consists of the charac~J's in y followed by zero or more 
additional characters; in other words, y is a left substring of x. If no 
matching files are found, completion fails. If all matching files have the 
same. component x, it is the completion. If there is more than one possible 
completion, that is, more than one distinct value of x, there is an ambiguity 
and completion fails unless one of the possible values of x is equal to y. 

If completion of a component succeeds, the system attempts to complete 
any additional components to the right. If completion of a component fails, 
additional components to the right are not completed. 

A blank component is generally treated the same as a missing component; 
for example, if the host is a LMFS, completion of the strings "foo" and 



87 

August 1986 Files 

"foo. " deals with the type component in the same way. The strings are 
not completed identically; completion of "foo" attempts to complete the 
name component, but completion of "foo." leaves the name component alone 
since it is not the rightmost. 

If string does not specify a name, then the name of the default pathname is 
preferred but is not necessarily used. The exact meaning of this depends 
on options: 

• With the default options, if any files with the default name exist in 
the specified, defaulted, or completed directory, the default name is 
used. If no such files exist, but all files in the directory have the 
same name, that name is used instead. Otherwise, completion fails. 

• With the :write option, the default name is always used when string 
does not specify a name, regardless of what files exist. 

• With the :new-ok option, if any files with the default name exist in 
the specified, defaulted, or completed directory, the default name is 
used. If no such files exist, but all files in the directory have the 
same name, that name is used instead. Otherwise, the default name 
is used. 

The special treatment of the case where all files in the directory have the 
same name is not very useful and is not implemented by all file systems. 

If string does not specify a type, then the type of the default pathname is 
preferred but is not necessarily used. The exact meaning of this depends 
on options: 

• With the default options, if a file with the specified, defaulted, or 
completed name and the default type exists, the default type is used. 
If no such file exists, but one or more files with that name and some 
other type do exist and all such files have the same type, that type is 
used instead. Otherwise, completion fails. 

• With the :write option, the default type is always used when string 
does not specify a type, regardless of what files exist. 

• With the :new-ok option, if a file with the specified, defaulted, or 
completed name and the default type exists, the default type is used. 
If no such file exists, but one or more files with that name and some 
other type do exist and all such files have the same type, that type is 
used instead. Otherwise, the default type is used. 

In file systems such as LMFS and UNIX that require a trailing delimiter 



88 

Reference Guide to Streams, Files, and liD August 1986 

(> or /.) to distinguish a directory component from a name component, the 
system heuristically decides whether the rightmost component was meant to 
be a directory or a name, and inserts the directory delimiter if necessary. 

If string contains a relative directory specification for a host with a 
hierarchical file system, it is assumed to be relative to the directory in the 
default pathname and is expanded into an absolute directory specification. 

The host and device components generally are not completed; they must be 
fully specified if they are specified at all. This might change in the future. 

If string does not specify a version, the returned string does not specify a 
version either. This differs from file name completion in TOPS-20; 
TOPS-20 completes an implied version of "newest" to a specific number. 
This is possible in TOPS-20 because completing a file name also attaches a 
"handle" to a file. In Genera, the version number of the newest file might 
change between the time the file name is completed and the time the 
actual file operation (open, rename, or delete) is performed. 

A pathname component must satisfy the following rules in order to appear 
in a successful completion: 

• The host, device, and directory must actually exist. 

• The name must be the name of an existing file in the specified 
directory, unless :write or :new-ok is included in options. 

• The type must be the type of an existing file with the specified name 
in the specified directory, unless :write or :new-ok is included in 
options. 

• A pathname component always completes successfully if it is :wild. 

When the rules are not satisfied by a component taken from the default 
pathname, completion fails and that component remains unspecified in the 
resulting string. When the rules are not satisfied by a component taken 
from string, completion fails and that part of string remains unchanged 
(other components of string can still be expanded). 

This function yields a pathname, given its components. 

fs:make-pathname &rest options Function 
options are alternating keywords and values that specify the components of 
the pathname. Missing components default to nil, except the host (all 
pathnames must have a host). The :defaults option specifies the defaults 
to get the host from if none are specified. The other options allowed are 
:host, : device, : directory, :name, :type, :version, : raw-device, 
: raw-directory, : raw-name, : raw-type, : canonical-type. 



89 

August 1986 Files 

The following functions are used to manipulate defaults alists directly. 

fs:make-pathname-defaults Function 
Creates a defaults alist initially containing no defaults. Asking this empty 
set of defaults for its default pathname before anything has been stored 
into it returns the file Faa on the user's home directory on the host to 
which the user logged in. 

Defaults alists created with fs:make-pathname-defaults are remembered, 
and reset whenever the site is changed. This prevents remembered 
defaults from pointing to unknown hosts when world load files are moved 
between sites. 

fs:copy-pathname-defaults defaults Function 
Creates a defaults alist, initially a copy of defaults. 

fs:default-pathname &optional defaults host default-type Function 
default-version sample-p 

Obtains a pathname suitable for use as a default pathname and customizes 
it by modification of its type and version. It also extracts pathnames out of 
default alists. 

The pathname returned by fs:default-pathname is always fully specified; 
that is, all components have non-nil values. This is needed when 
defaulting a pathname with fs:merge-pathnames to pass to open or other 
file-system operations, as these operations should always receive fully 
specified pathnames. 

Specifying the optional arguments host, default-type, and default-version as 
not nil forces those fields of the returned pathname to contain those 
values. If defaults, which can be a pathname or a defaults alist, is not 
specified, the default defaults are used. 

If default-type is a symbol representing a canonical type, that canonical type 
is used as the canonical type of the pathname returned. That is, the 
pathname has a type component that is the correct representation of that 
canonical type for the host. 

Users should never supply the optional argument sample-po 

fs:set-default-pathname pathname &optional defaults Function 
Updates a defaults alist. It stores pathname into defaults. If defaults is 
not specified, the default defaults are used. 

The following functions return useful information. 



90 

Reference Guide to Streams, Files, and I/O August 1986 

fs:user-homedir &optional (host fs:user-Iogin-machine) Function 
Returns the pathname of the logged-in user's home directory on host, which 
defaults to the host the user logged in to. For a registered user (one who 
logged in without using the :host argument to login), the host is the user's 
home-host attribute. Home directory is a somewhat system-dependent 
concept, but from the point of view of the Symbolics computer it is usually 
the directory where the user keeps personal files such as init files and 
mail. This function returns a pathname without any name, type, or version 
component (those components are all nil). 

fs:init-file-pathname program-name &optional (canonical-type nil) Function 
(host fs:user-Iogin-machine) 

Returns the pathname of the logged-in user's init file for the program 
program-name, on the host, which defaults to the host the user logged in 
to. Programs that load init files containing user customizations call this 
function to find where to look for the file, so that they need not know the 
separate init file name conventions of each host operating system. The 
program-name "LISPM" is used by the login function. canonical-type is the 
canonical type of the init file. It should be nil when the returned 
pathname is being passed to load so that load can look for a file of the 
appropriate type. 

The following function defines a canonical file type. 

fs:define-canonical-type canonical-type default &body specs Special Form 
Defines a new canonical type. canonical-type is the symbol for the new 
type; default is a string containing the default surface type for any kind of 
host not mentioned explicitly. The body contains a list of specs that define 
the surface types that indicate the new canonical type for each host. The 
following example would define the canonical type :lisp. 

(fs:define-canonical-type :lisp "LISP" 
«:tops-20 :tenex) "LISP" "LSP") 
(:unix "L" "LISP") 
(:vms "LSP"» 

For systems with more than one possible default surface form, the form 
that appears first becomes the preferred form for the type. Always use the 
interchange case. 

Define new canonical types carefully so that they are valid for all host 
types. For example "com-map" would not be valid on VMS because it is 
both too long and contains an invalid character. You must define them so 
that the surface types are unique. That is, the same surface type cannot 
be defined to mean two different canonical types. 

Canonical types that specify binary files must specify the byte size for files 



91 

August 1986 Files 

of the type. This helps zl:copyf and other system tools determine the 
correct byte size and character mode for files. You specify the byte size by 
attaching a :binary-file-byte-size property to the canonical type symbol. 
For example, the system defines the byte size of press files a's follows. 

(defprop : press 8. : bi nary-fil e-byte-si ze) 

The following function is useful when dealing with canonical types. Unlike other 
functions described here, this function actually accesses and searches a host file 
system. This description is provided here for completeness. For functions and 
messages that actually access host file systems: See the section "Streams", page 
3. 

fs:find-file-with-type pathname canonical-type . Function 
Searches the file system to determine the actual surface form\~for a 
pathname object. Like probef, it returns the true name for pathname. 
When no file can be found to correspond to a pathname, it returns nil. 

If pathname is a string, it is parsed against the default defaults to obtain 
an actual pathname object before processing. 

c:".\ '.> '.;. 

canonical-type applies only when pathname has nil as its type component. 
fs:find-file-with-type searches the file system for any matching file with 
canonical-type. For example, on a TOPS-20 host, this would look first for 
ps:<gcw>toolkit.lisp and then for ps:<gcw>toolkit.lsp: 

(fs:find-file-with-type (fs:parse-pathname "sc:<gcw>toolkit") ':lisp) 

If it finds more than one file, it returns the one with the preferred surface 
type for canonical-type (or chooses arbitrarily if none of the files' has the 
preferred surface type). 

If pathname already had a type supplied explicitly, that overrides 
canonical-type. You can ensure that canonical-type applies by first setting 
the type explicitly: 

(fs:find-file-with-type (send p ':new-type nil) ':lisp) 

System programs that supply a default type for input files (for example, 
load) could use this mechanism for finding their input files. 

The following functions are useful for poking around. 

fs:describe-pathname pathname Function 
If pathname is a pathname object, this describes it, showing you its 
properties (if any) and information about files with that name th'at have 
been loaded into the machine. If pathname is a string, this describes all 
interned pathnames that match that string, ignoring components not 
specified in the string. This is useful for finding the directory of a file 

...... 



92 

Reference Guide to Streams, Files, and 110 August 1986 

whose name you remember. Giving describe a pathname object does the 
same thing as this function. 

fs:pathname-plist pathname Function 
Parses and defaults pathname then returns the list of properties of that 
pathname. 

4.8 Path name Messages 

This section documents some of the messages a user can send to a pathname 
object. These messages are known as the passive messages to pathnames. They 
deal with inspecting and extracting components, constructing new pathnames 
based on old pathnames and new components, matching pathnames, and so forth. 
None of these messages actually interact with any host file system; they deal only 
with pathname objects within the Symbolics computer. 

The other common, useful class of messages to pathnames are those that open, 
delete, and rename files, list directories, find and change file properties, and so 
forth. These are the active messages to pathnames. You usually do not send these 
messages directly, but use interface functions, such as open, zl:probef, zl:deletef, 
zl:renamef, fs:directory-list, fs:file-properties, and fs:change-file-properties. 
N either these functions and messages, nor additional similar ones, are documented 
here. See the section "Streams", page 3. 

Pathnames handle some additional messages that are intended to be sent only by 
the pathname system itself, and therefore are not documented here. Only someone 
who wanted to add a new type of file host to the system would need to understand 
those internal messages. This section also does not document messages that are 
peculiar to pathnames of a particular type of host. 

:host of pathname Method 
Returns the host component of the pathname. The returned value is 
always a host object. If the pathname is a logical pathname, the logical 
host is returned. It is an error to send :host to a logical host. 

:device of pathname Method 
Returns the device component of the pathname. The returned value can be 
nil, : unspecific, or a string. The string is in interchange case. 

:directory of pathname Method 
Returns the directory component of the pathname. The returned value can 
be nil, :wild, or a list of strings and symbols, each representing a directory 
level. These symbols can be :wild or :wild-inferiors. Single names of 
directories in nonhierarchical file systems are returned as single element 
lists. The strings are in interchange case. 



93 

August 1986 Files 

:name of pathname Method 
Returns the name component of the pathname. The returned value can be 
nil, :wild, or a string. The string is in interchange case. 

:type of pathname Method 
Returns the type component of the pathname. The returned value is 
always be nil, :unspecific, :wild, or a string. The string is in interchange 
case. 

:version of pathname Method 
Returns the version component of the pathname. The returned value is 
always be nil, :wild, :unspecific, :oldest, :newest, or a number. 

:raw-device of pathname Method 
Returns the device component of the pathname. The returned value can be 
nil, :unspecific, or a string. The string is in its raw case. 

:raw-directory of pathname Method 
Returns the directory component of the pathname. The returned value can 
be nil, :wild, or a list of strings and symbols, each representing a directory 
level. These symbols can be :wild or :wild-inferiors. Single names of 
directories in nonhierarchical file systems will be returned as single 
element lists. The strings are in their raw case. 

:raw-name of pathname Method 
Returns the name component of the pathname. The returned value can be 
nil, :wild, or a string. The string is in its raw case. 

:raw-type of pathname Method 
Returns the type component of the pathname. The returned value is 
always nil, : unspecific, :wild, or a string. The string is in its raw case. 

:canonical-type of pathname Method 
Determines the canonical type of a pathname and a surface representation 
for the type. It returns two values: 

Value 

canonical type 

original type 

Meaning 

This is either a keyword symbol from the set of known 
canonical types or a string (when the type component of 
the pathname is not a known canonical type). The string 
contains the type component from the pathname, in 
interchange case. 
This is nil when the type of the pathname is the same as 
the preferred surface type for the canonical type. See 



94 

Reference Guide to Streams, Files, and 110 August 1986 

the special form fs:define-canonical-type, page 90. 
Otherwise, when the type differs from the preferred or 
default surface type, it is the original type in interchange 
case. 

For example, for a UNIX pathname, sending the message :canonical-type 
to the following pathnames has these results: 

Pathname 
foo.1 
foo.1isp 
foo.L 
foo.LISP 

Results from :canonical-type message 
: lisp nil Preferred surface type 
: lisp "LISP" Alternate surface type 
"1" "I" Not recognized 
"lisp" "lisp" Not recognized 

Keep in mind that the :canonical-type message returns the type string in 
the interchange case rather than in the raw case. 

:new-device new-device of pathname Method 
Returns a new pathname that is the same as the pathname it is sent to 
except that the value of the device component has been changed. The valid 
set of arguments to the :new-device message is the set of possible outputs 
of :device. See the method (flavor:method :device pathname), page 92. A 
string value is expected to be in interchange case. 

:new-directory new-directory of pathname Method 
Returns a new pathname which is the same as the pathname it is sent to 
except that the value of the directory component has been changed. The 
valid set of arguments' to the :new-directory message is the set of possible 
outputs of :directory. See the method 
(flavor:method :directory pathname), page 92. String values are expected 
to be in interchange case. 

:new-name new-name of pathname Method 
Returns a new pathname which is the same as the pathname it is sent to 
except that the value of the name component has been changed. The valid 
set of arguments to the :new-name message is the set of possible outputs 
of :name. See the method (flavor:method :name pathname), page 93. 
String values are expected to be in interchange case. 

:new-type new-type of pathname Method 
Returns a new pathname that is the same as the pathname it is sent to 
except that the value of the type component has been changed. The valid 
set of arguments to the :new-type message is the set of possible outputs of 
:type. See the method (flavor:method :type pathname), page 93. String 
values are expected to be in interchange case. 



95 

August 1986 Files 

:new-version new-version of pathname Method 
Returns a new pathname that is the same as the pathname it is sent to 
except that the value of the version component has been changed. The 
valid set of arguments to the :new-version message is the set of possible 
outputs of :version. See the method (flavor:method :version pathname), 
page 93. 

:system-type of pathname Method 
Returns the type of host that the pathname is intended for. This value is 
a keyword from the following set: 

:its, :lispm, :multics, :tenex, :tops-20, :unix, :vms, :logical 
This is the same set as returned by the :system-type message to a host 
object. It is not likely that you need to use this message directly. 

:new-raw-device dev of pathname Method 
Returns a new pathname that is the same as the pathname it is sent to 
except that the value of the device component has been changed. The valid 
set of arguments to the :new-raw-device message is the set of possible 
outputs of :raw-device. See the method 
(flavor:method :raw-device pathname), page 93. A string value is 
expected to be in its raw case. 

:new-raw-directory new-directory of pathname Method 
Returns a new pathname that is the same as the pathname it is sent to 
except that the value of the directory component has been changed. The 
valid set of arguments to the :new-raw-directory message is the set of 
possible outputs of :raw-directory. See the method 
(flavor:method :raw-directory pathname), page 93. String values are 
expected to be in their raw case. 

:new-raw-name new-name of pathname Method 
Returns a new pathname which is the same as the pathname it is sent to 
except that the value of the name component has been changed. The valid 
set of arguments to the :new-raw-name message is the set of possible 
outputs of : raw-name. See the method 
(flavor:method :raw-name pathname), page 93. String values are expected 
to be in their raw case. 

:new-raw-type new-type of pathname Method 
Returns a new pathname that is the same as the pathname it is sent to 
except that the value of the type component has been changed. The valid 
set of arguments to the :new-raw-type message is the set of possible 
outputs of :raw-type. See the method 
(flavor:method :raw-type pathname), page 93. String values are expected 
to be in their raw case. 



96 

Reference Guide to Streams, Files, and liD August 1986 

:new-canonical-type canonical-type &optional original-type of Method 
pathname 

Returns a new pathname based on the old one but with a new canonical 
type. canonical-type specifies the canonical type for the new pathname. 
The surface type of the new pathname is based on the default surface type 
of the canonical type, unless the pathname already had the correct type. 

When the pathname object receiving the message already has the correct 
canonical type, the surface type in the new pathname depends on the 
presence of original-type. When original-type is omitted, the new pathname 
type has the same surface type as the old pathname. When original-type is 
supplied, the surface type for the new pathname is original-type. This 
assumes that original-type is a valid representation for canonical-type; if 
that assumption is not met, the canonical-type prevails and its default 
surface type is used. 

canonical-type is a symbol for a known type, :unspecific, nil, or a string. 
Use a string for canonical-type to make pathnames with types that are not 
known canonical types. 

The following examples assume that a pathname object for the file 
specification "vixen:/usr2/jwalker/mild.new" is the value of zl-user:m. 

(send m J:new-canonical-type J:lisp) => 
#<UNIX-PATHNAME "VIXEN: I lusr21 Ijwal kerl Imil d. 1 "> 
(send m J:new-canonical-type J:lisp "LISP") => 
#<UNIX-PATHNAME "VIXEN: Ilusr21Ijwalkerllmild.lisp"> 
(send m J:new-canonical-type J:lisp "MSS") => 
#<UNIX-PATHNAME "VIXEN: Ilusr21ljwalkerllmild.l "> 
(send m J:new-canonical-type "BAR" "BAR") => 
#<UNIX-PATHNAME "VIXEN: Ilusr21Ijwalkerllmild.bar"> 
(send m J:new-canonical-type J:lisp "lisp") => 
#<UNIX-PATHNAME "VIXEN: Ilusr21Ijwalkerllmild.l"> 
(send m J:new-canonical-type J:lisp nil) => 
#<UNIX-PATHNAME "VIXEN: Ilusr21Ijwalkerllmild.l"> 

:types-for-canonical-type canonical-type of pathname Method 
The internal primitive for finding which surface types correspond to 
canonical-type. Normally you would not use this directly. To determine 
what form of a pathname exists in a file system: See the function 
fs:find-file-with-type, page 91. 

:new-pathname &rest options of pathname Method 
Returns a new path name that is the same as the pathname it is sent to 
except that the values of some of the components have been changed. 
options is a list of alternating keywords and values. The keywords all 



97 

August 1986 Files 

specify values of pathname components; they are :host, : device, :directory, 
:name, :type, :version, : raw-name, : raw-device, : raw-type, :raw-directory, 
and : canonical-type. The :type argument also accepts a symbol as an 
argument, implying canonical type. See the section "Canonical Types in 
Pathnames", page 77. 

:new-default-pathname &rest options of pathname Method 
Returns a new valid pathname based on the one receiving the message, 
using the pathname components supplied by options. The components do 
not need to be known to be valid on a particular host. The method uses 
the components "as suggestions" for building the new pathname; it is free 
to make substitutions as necessary to create a valid pathname. It is 
heuristic, not algorithmic, so it does not necessarily yield valid semantics. 
The heuristics used, however, seem to produce pathnames that match what 
many people expect from cross-host defaulting. 

It always produces a pathname with valid syntax but not necessarily valid 
semantics. For example, when it tries to map between a hierarchical file 
system and a nonhierarchical file system, it uses the least significant of the 
hierarchical components as the directory component. Sometimes this is not 
correct, but in all cases it is syntactically valid. The main applications for 
:new-default-pathname are in producing defaults to offer to the user and 
in copying components from one kind of pathname to another. 

Application notes: :new-pathname always does what its arguments specify; 
it never uses heuristics. Thus :new-pathname could signal an error in 
certain cross-host situations where :new-default-pathname would not have 
any problems. Usually, user programs should use fs:default-pathname, 
which sends :new-default-pathname as part of its operation. However, if 
you are copying a single component from one kind of pathname to another, 
:new-default-pathname is the right tool. 

For example, the right way to copy the version from an input pathname to 
an output pathname is as follows: 

(defun copy-version (;nput-pathname output-pathname) 
(send output-pathname :new-default-pathname 

:vers;on (send ;nput-pathname :vers;on))) 

If the above example used :new-pathname or : new-version, the input 
pathname were a UNIX pathname, and the output were a LMFS pathname, 
this example would signal an error, since :unspecific is not a valid version 
in a LMFS pathname. However, using :new-default-pathname, the closest 
equivalent is substituted, namely :newest. 



98 

Reference Guide to Streams, Files, and 110 August 1986 

:parse-truename string &optional (from-filesystem t) of pathname Method 
Returns the pathname corresponding to the string argument. The string is 
parsed, with the pathname supplying the defaults (notably, the host). The 
method is useful when, for example, a remote file system produces a string 
naming a file, and you want the corresponding pathname. 

:generie-pathname of pathname Method 
Returns the generic pathname for the family of files of which this 
pathname is a member. See the section "Generic Pathnames", page 75. 

The following messages get a pathname string out of a pathname object: 

:string-for-printing of pathname Method 
Returns a string that is the printed representation of the pathname. This 
is the same as what you get if use prine or string on the pathname. It is 
the native host form of the pathname string, preceded by the name of the 
host and colon. This is the preferred user-visible printed representation of 
pathnames. 

:string-for-wholine of pathname Method 
Returns a string that can be compressed in order to fit in the status line. 

:string-for-editor of pathname Method 
Returns a string that is the pathname with its components rearranged so 
that the name is first. The editor uses this form to name its buffers. 

:string-for-dired of pathname Method 
Returns a string to be used by the directory editor. The string contains 
only the name, type, and version. 

:string-for-host of pathname Method 
Returns a string that is the pathname in the form preferred by the host 
file system. 

:string-for-direetory of pathname Method 
Returns a string suitable for describing the directory portion of the 
pathname, in the format that users of the host system are used to seeing 
it. The host name is not included. 

The following messages manipulate the property list of a pathname: 

:get indicator of pathname Method 
Manipulates the pathname's property list analogously to the function of the 
same name, which does not (currently) work on instances. See the section 
"Property Lists" in Symbolics Common Lisp: Language Concepts. Be 



99 

August 1986 Files 

careful using property lists of pathnames. See the section "Pathnames", 
page 51. 

:getl list-of-indicators of pathname Method 
This manipulates the pathname's property list analogously to the function 
of the same name, which does not (currently) work on instances. See the 
section "Property Lists" in Symbolics Common Lisp: Language Concepts. 
Please take care in using property lists of pathnames. See the section 
"Pathnames", page 51. 

:putprop value indicator of pathname Method 
This manipulates the pathname's property list analogously to the function 
of the same name, which does not (currently) work on instances. See the 
section "Property Lists" in Symbolics Common Lisp: Language Concepts. 
Please take care in using property lists of pathnames. See the section 
"Pathnames", page 51. 

:remprop indicator of pathname Method 
This manipulates the pathname's property list analogously to the function 
of the same name, which does not (currently) work on instances. See the 
section "Property Lists" in Symbolics Common Lisp: Language Concepts. 
Please take care in using property lists of pathnames. See the section 
"Pathnames", page 51. 

:plist of pathname Method 
This manipulates the pathname's property list analogously to the function 
of the same name, which does not (currently) work on instances. See the 
section "Property Lists" in Symbolics Common Lisp: Language Concepts. 

The following messages can be sent to pathnames having wildcard components or 
suspected of having wildcard components: 

:pathname-match candidate-pathname &optional (match-host t) Method 
of pathname 

Determines whether candidate-pathname would satisfy the wildcard pattern 
of the pathname receiving the message. (The pathname receiving the 
message is assumed to be one that would satisfy :wild-p.) It compares 
corresponding components in the pattern pathname and candidate-pathname. 
I t returns nil when candidate-pathname does not satisfy the pattern; 
otherwise it returns something other than nil. 

match-host determines whether it requires the host component of the 
pattern to match as well. When match-host is nil, it ignores the host 
component. By default, it does require that the host component match. 

A pattern pathname containing no wild components matches only itself. 



100 

Reference Guide to Streams, Files, and 110 August 1986 

If the candidate-pathname specifies a physical host, and the message is sent 
to a logical pathname, the physical host is "back-translated," if possible. 

:wild-p of pathname Method 
A predicate that determines whether the pathname is syntactically a 
wildcard pathname. This means that any component is :wild, or, for most 
systems, contains the character *, or that the directory component has any 
of the valid forms of directory wildcard in it. See the method 
(flavor:method :directory-wild-p pathname), page 100. 

Value 

nil 

not nil 

Meaning 

No component of the name is syntactically a wildcard. 

One or more components of the name are syntactically 
wild. The actual value in this case is the symbol for the 
most significant wild component: : device, : directory, and 
so on. 

:device-wild-p of pathname Method 
If the device component of this pathname is a recognized wildcard for the 
system type concerned, or :wild, a non-nil is returned. 

:directory-wild-p of pathname Method 
If the directory component of this pathname is a recognized wildcard for 
the system type concerned, or :wild, a non-nil is returned. All forms of 
wildcard at each directory level for hierarchical file systems, as well as 
:wild-inferiors, are recognized as constituting a wildcard directory 
component. Otherwise, nil is returned. 

:name-wild-p of pathname Method 
If the name component of this pathname is a recognized wildcard for the 
system type concerned, or :wild, a non-nil is returned. Otherwise, nil is 
returned. 

:type-wild-p of pathname Method 
If the type component of this pathname is a recognized wildcard for the 
system type concerned, or :wild, a non-nil is returned. Otherwise, nil is 
returned. 

:version-wild-p of pathname Method 
If the version component of this pathname is a recognized wildcard for the 
system type concerned, or :wild, a non-nil is returned. Otherwise, nil is 
returned. 



101 

August 1986 Files 

:transla te-wild-pathname target-pattern-pathname Method 
starting-pathname of pathname 

Produces a new pathname based on starting-pathname and the analogies 
between the pathname receiving the message and target-pattern-pathname. 

:translate-wild-pathname examines the correspondences between 
target-pattern-pathname and the pathname receiving the message. It then 
does whatever is necessary to starting-pathname to transform it into the 
target pathname. 

It checks to be sure starting-pathname matches the pathname receiving the 
message and signals zl:ferror if they do not match. A standard way for 
generating starting-pathname is to send :directory-list to the source pattern 
pathname to generate a set of starting pathnames. 

4.9 Pathnames on Supported Host File Systems 

This section lists the host file systems supported, gives an example of the 
pathname syntax for each system, and discusses any special idiosyncrasies. 

4.9.1 LMFS Pathnames 

LMFS is an acronym for Lisp Machine File System, which is the native file system 
of the Symbolics computer. It is only one of many possible file systems accessible 
from the Symbolics computer. 

LMFS is a hierarchical file system. It supports file versions. Every file has a 
name, type, and version. Names are virtually unlimited in length (hundreds of 
characters), but a performance penalty is imposed for names of over 30 characters. 
Types are limited to 14 characters. There is no limit to the depth of directories. 
There are no devices (:device to a LMFS pathname always returns :unspecific). 

A LMFS pathname looks as follows: 

>dir>ectory>name.type.version 

The greater-than (">") character separates directory levels. Absolute pathnames 
always start with greater-than's. Pathnames that specify no directory, relative or 
otherwise, contain no greater-than's, for example: 

foo.bar.7 

The topmost directory of the directory tree (the ROOT directory) is indicated by 
the absence of directory names but the continued presence of a greater-than. For 
example, the following is a file named foo.bar, version 7, in the ROOT directory: 

>foo.bar.7 



102 

Reference Guide to Streams, Files, and liD August 1986 

No file type abbreviations are needed for LMFS. 

File and directory names in LMFS can be stored in upper, lower, or mixed case. 
Lowercase is the preferred case. Case is ignored on lookup. 

Due to problems with interning of pathnames it is sometimes difficult to control 
the casing of a LMFS pathname, and it is almost always impossible to change it 
once established. See the section "Interning of Pathnames", page 64. 

A version component of :newest is represented by the string "newest". A version 
component of :oldest is represented by the string "oldest". 

Upward relativization in relative directory specifications is designated by a 
pathname starting with the character less-than ("<"). All and only all absolute 
pathnames start with the character greater-than (">"). Downward relativization is 
indicated by a pathname, which although it contains greater-than's, does not start 
with one. For example, the following specifies a directory named foo, inferior to 
the superior directory of the directory of the default pathname with which it is 
merged. 

<foo>x.y 

LMFS directories, when referenced as files, have a file type of "directory" and a 
version of 1. See the section "Directory Pathnames and Directory Pathnames as 
Files", page 68. 

The following example specifies a directory named bar, inferior to the directory of 
the default pathname with which it is merged. 

bar>x.y 

LMFS supports recursive directory level matching (:wild-inferiors). The 
representation of :wild-inferiors in LMFS is **. Any number of ** components 
can appear in wildcard pathnames as directory levels, and need not be in trailing 
positions. (The further it gets from the trailing end of the directory name, 
however, the more expensive it gets to compute.) Here are some examples of the 
use of **: 

Pathname What it means 

>**>* .lisp. newest All the newest lisp files on the whole file system. 

>**>*>secret>*. *. * All files in subdirectories (but not top-level directories) named 
"secret" . 

>lmach>**>*. * .newest 
All the newest files in >lmach and all its subdirectories. 

A component of :wild, in any component except the directory component, is 



103 

August 1986 Files 

represented by *. *, when accompanied by other characters, such as in foo::<bar::<, 
matches zero or more characters, as a wildcard. Although * or names containing 
* are valid as directory-level component names, a directory component of :wild 
cannot be specified through pathname syntax. This i'" hc-"p' se "any directory at 
all" is represented by (:wild-inferiors). A directory 11. ·.n as * is a 
specification for a relative pathname, any subdirector~ jirectory of the 
pathname which is merged. That is represented int€;L :d (:wild), not :wild. 

The name of the ROOT directory, as a file (its "directory pathname as file") is 

>The Root Directory.directory.1 

Names of files stored in the Lisp Machine File System can not contain *. This 
restriction is necessary because * is used consistently to indicate wildcards in 
pathnames. 

You can not access files whose names contain * as a character. A special function 
allows you to rename any file or directories whose names contain *. 

lmfs:rename-Iocal-file-tool from-path to-path Function 
Renames a file in which * appears in one of the pathname components. 
This function works locally only; you must run it on the machine in whose 
file system the file is stored. It does not rename a file across the network. 

from-path and to-path must be pathnames or strings coercible to pathnames. 
from-path is parsed against a default on the local host. to-path is parsed 
against from-path as the default. The version number for to-path is 
inherited from the file being renamed. Any version number appearing in 
to-path is ignored. 

(lmfs:rename-local-file-tool ">AUser>*secret-stuff*" "-secret-stuff-") 
(lmfs:rename-local-file-tool ">*special*.directory.1" "-special-H) 

4.9.2 FEP File System Path names 

The syntax of FEP file system pathnames is identical to that of LMFS pathnames, 
and the semantics are the same as well. The following differences are to be 
noted. 

• The maximum length of a file name is 32 characters. 

• The maximum length of file types is 4 characters. 

• The type of directories is "DIR". 

• Recursive wildcards (:wild-inferiors) are not supported. 

The name of the ROOT directory, as a file (its "directory pathname as file") is: 

>ROOT-DIRECTORY.DIRECTORY.1 



104 

Reference Guide to Streams, Files, and 110 August 1986 

4.9.3 UNIX Pathnames 

Since UNIX file names can only be 14 characters long, the representations of most 
canonical types are stored in abbreviated form, according to the following table. 
Other values are represented as they are. 

Canonical type 
:LISP 
:TEXT 
: MIDAS 
:QFASL 
:QBIN 
:BIN 

UNIX abbreviation(s) 
"1" "lisp" 
"tx" "text" "txt" 
"md" 
"qfl "qfasl" 
"qb" "qbin:I 
"bn" "bin" 

:PRESS "pr" "press" 
:LGP "lg" "lgp" 
:PATCH-SYSTEM-DIRECTORY 

"sd" 
:PATCI-I-VERSION-DIRECTORY 

"pd" 
:BABYL "bb" "babyl" 
:XMAIL "xm" "xmail" 
:MAIL "rna" "mail" 
:RMAIL "rm" 
:ZMAIL-TEMP " _z" " z mail " -
:GMSGS-TEMP "~" "~msgs" 
:UNFASL "ufl "unfasl" 
:OUTPUT "ot" "output" 
:ULOAD "ul" "uload" 
:MCR "mc" "mcr" 
:SYM "sm" "sym" 
:TBL "tb" "tbl" 
:MICROCODE "mic" 
: ERROR-TABLE "err" 
:FEP-LOAD "flod" 
:SYNC-PROGRAM"sn" "sync" 
:CWARNS "cw" "cwarns" 
: SYSTEM "sy" "system" 
:FONT-WIDTHS "wd" "widths" 
:BFD "bfd" 
:KST "kt" "kst" 
:AST "at" "ast" 



August 1986 

:PLT "pI" "pIt" 
:DRW "drw" 
:WD "wd" 
:DIP "dip" 
:SAV "sav" 
: MAP "map" 
: CONSOLIDATED-MAP 

"cm" 
: TAGS "tg" "tags" 
:PALX-BIN "pb" "pbin" 
:XGP "xg" "xgp" 
:LIL "11" "lil" 
:SAR "sar" 
:SAB "sab" 
:MSS "mss" "ms" 
:FORTRAN "f' 
:LOGICAL-PATHNAME-TRANSLATIONS 

''It'' "logtran" 
: LOGICAL-PATHNAME-DIRECTORY-TRANSLATIONS 

: NULL-TYPE 
:FILES 
: COLD-LOAD 
:PXL 
: IMAGE 
: DUMP 

"ld" "logdir" 
:unspecific "" 
"fl." 
"load" 
"px" "pxl" 
"im" "image" 
"dm" "dump" 

105 

Files 

As is true with the canonical type mechanism in general, files having the 
canonical type spelled in full are also recognized as being of that canonical type. 

Logical pathname translation must get around the restrictions in UNIX 
pathnames. When translating logical pathnames an extra translation step is 
invoked, in some cases, as for V AXNMS pathnames. 

The preferred case on UNIX is lowercase. Pathname components presented to 
: new-directory, : new-name, and so forth, are case-inverted in most instances. See 
the section "Case in Pathnames", page 71. 

4.9.4 UNIX 4.2 Pathnames 

UNIX 4.2 uses slightly different representations of some canonical types than do 
other versions of UNIX. In most cases, the representations are the same as for 
LMFS, but the UNIX versions are also allowed. 



106 

Reference Guide to Streams, Files, and I/O 

Canonical type 

:LISP 

UNIX 4.2 abbreviation(s) 

"lisp" "1" 
: TEXT "text" "tx" "txt" 
: MIDAS "midas" "md" 
:QFASL "qfasl" "qfl 
:QBIN "qbin" "qb" 
:BIN "bin" "bn" 
: PRESS "pr" "press" 
:LGP "lgp" "lg" 
:PATCH-SYSTEM-DIRECTORY 

"system-dir" "sd" 
:PATCH-VERSION-DIRECTORY 

:BABYL 
:XMAIL 
: MAIL 
:RMAIL 
:ZMAIL-TEMP 
:GMSGS-TEMP 
:UNFASL 
: OUTPUT 
:ULOAD 
:MCR 
:SYM 
:TBL 
:MICROCODE 
: ERROR-TABLE 
:FEP-LOAD 

"pateh-dir" "pd" 
"babyl" "bb" 
"xmail" "xm" 
"mail" "ma" 
"rmail" "rm" 
"_zmail" "_z" 
"~msgs" "~" 
"unfasl" "ufl 
"output" "ot" 
"uload" "ul" 
"mer" "me" 
"sym" "sm" 
"tbl" "th" 
"mie" 
"err" 
"flod" 

:SYNC-PROGRAM"syne" "sn" 
:CWARNS "ewarns" "ew" 
: SYSTEM "system" "sy" 
:FONT-WIDTHS "widths" "wd" 
:BFD "bfd" 
:AC "ae" 
:AL "al" 
:KS "ks" 
:KST "kst" "kt" 
:AST "ast" "at" 
:PLT "pI" "pIt" 
:DRW "drw" 
:WD "wd" 
:DIP 
:SAV 
: MAP 

"dip" 
"sav" 
"map" 

August 1986 



August 1986 

: CONSOLIDATED-MAP 
"con-map" "cm" 

:TAGS "tags" "tg" 
:PALX-BIN "palx_bin" "pbin" "pb" 
:XGP "xgp" "xg" 
:LIL "lil" "11" 
:FORTRAN "f' 
:SAR "sar" 
:SAB "sab" 
:MSS "mss" "ms" 
:LOGICAL-PATHNAME-TRANSLATIONS 

"logtran" "It" 
:LOGICAL-PATHNAME-DIRECTORY-TRANSLATIONS 

"translations" "logdir" "ld" 
: NULL-TYPE 
:COLD-LOAD 
:FILES 
:PXL 
: IMAGE 
:DUMP 

:unspecific "" 
"load" 
"files" "fl." 
"pxl" "px" 
"image" "im" 
"dump" "dm" 

107 

Files 

As is true with the canonical type mechanism in general, files having the 
canonical type spelled in full are also recognized as being of that canonical type. 

Logical pathname translation must get around the restrictions in UNIX 
pathnames. When translating logical pathnames, an extra translation step is 
invoked as for V AXNMS pathnames. 

The preferred case on UNIX is lowercase. Pathname components presented to 
:new-directory, :new-name, and so forth, are case-inverted in most instances. See 
the section "Case in Pathnames", page 71. 

4.9.5 VAX/VMS Pathnames 

A V AXNMS V 4 pathname looks as follows: 

[DIR.ECTORV.COM.PONENTS]NAME.TVP;VERSION 

The semicolon character is the standard delimiter for the version number. 
Because of it, a version can be specified even though the name and type are 
omitted. For compatibility with other Digital Equipment Corporation systems, 
however, a period is also accepted as a version delimiter when name and type are 
supplied. 

Device is specified by a device name followed a colon preceding the pathname. 
You must take great caution with pathnames specifying devices so as not to 



108 

Reference Guide to Streams, Files, and I/O August 1986 

confuse the pathname parser about host identity. See the section "Host 
Determination in Pathnames", page 62. 

Uppercase is the only supported alphabetic case. Pathnames typed in lowercase 
are converted to uppercase on input. 

Filenames cannot contain hyphens, so the underscore character is used in place of 
a hyphen. 

Here is a list of canonical types, their VMS representations, their default byte-size 
used for a binary transfer, and whether records are stored in flxed- or variable
length format: 

Canonical type VMS representation Byte-size Format 

:LISP "LSP" 
:TEXT "TXT" 
: MIDAS "MID" 
:QFASL "QFS" 16 var 
:QBIN "QBN" 16 var 
:BIN "BIN" 16 var 
:PRESS "PRS" 8 flx 
:PATCH-SYSTEM-DIRECTORY "SPD" 
:PATCH-VERSION-DIRECTORY "VPD" 
:BABYL "BAB" 
:XMAIL "XML" 
: MAIL "MAI" 
:RMAIL "RML" 
:ZMAIL-TEMP "ZMT" 
:GMSGS-TEMP "GMT" 
:UNFASL "UNF" 
:OUTPUT "OUT" 
:ULOAD "ULD" 
:MCR "MCR" 
:SYM "SYM" 
:TBL "TBL" 
:MICROCODE "MIC" 8 var 
: ERROR-TABLE "ERR" 
:FEP-LOAD "FLD" 
: SYNC-PROGRAM "SYN" 
:CWARNS "CWN" 
: SYSTEM "SYD" 
: FONT-WIDTHS "WID" 16 flx 
:BFD "BFD" 16 var 



109 

August 1986 Files 

:KST "KST" 9 
:AC "AC" 16 
:AL "AL" 16 
:KS "KS" 16 
:AST "AST" 
:PLT "PLT" 9 
:DRW "DRW" 12 
:WD "WD" 12 
:DIP "DIP" 12 
:SAV "SAV" 12 
: MAP "MAP" 
: CONSOLIDATED-MAP "CON" 
:TAGS "TAG" 
:PALX-BIN "PXB" 8 var 
:XGP "XGP" 
:LIL "LIL" 
:FOR "FOR" 
:SAR "SAR" 
:SAB "SAB" 8 
:MSS "MSS" 
:LOGICAL-PATHNAME-TRANSLATIONS "LTR" 
:LOGICAL-PATHNAME-DIRECTORY-TRANSLATIONS "LDT" 
: NULL-TYPE 
:COLD-LOAD "LOD" 16 var 
:FILES "FLS" 
:PXL "PXL" 8 
: IMAGE "IMG" 
: DUMP "IDM" 16 

Logical pathname translation must get around the restrictions in VMS pathnames, 
including the prohibition against hyphens. Wherever a hyphen appears in the 
logical pathname, the underscore character is substituted. 

When translating logical pathnames for V AXNMS, an extra translation step is 
performed before trying the usual translations. See the file sys:sys;sys.logtran. 

The VMS pathname mechanism supports recursive directory matching 
(:wild-inferiors). The representation for a directory level component of 
:wild-inferiors is " .. "; however it can appear only at the end of a directory name. 
Thus, the following matches any file in [A.B], or any subdirectory thereof: 



110 

Reference Guide to Streams, Files, and 110 August 1986 

[A . B ... ] * . * . * 
Upward relativization in pathnames is specified by one or more minuses ("_") as 
the first directory name. Downward relativization is represented by a null (0-
character) first directory name. For example, the following specifies a directory 
named FOO, inferior to the superior directory of the directory of the default 
pathname with which it is merged. 

[-.FOO]X.Y 

A pathname version component of :newest is specified by a version of 0 in the 
filename string. There is no VMS implementation of :oldest. 

The percent sign (%) can be used in VMS wildcards to specify the matching of a 
single character. 

The pathname system does not recognize logical device names. They are specified 
as device names, and are resolved by VMS, not the pathname system. There may 
be problems defaulting the directory specification of V AXNMS pathnames when 
logical devices are used. 

VMS directories, when referenced as files, have a type of "DIR", and a version of 
1. See the section II Directory Pathnames and Directory Pathnames as Files ", page 
68. 

4.9.6 TOPS-20 and TENEX Pathnames 

A TOPS-20 pathname has the form: 

HOST:DEVICE:<DIRECTORY>NAME.TYPE.VERSION 

The default device is PS:. 

TOPS-20 pathnames are mapped to uppercase. Special characters (including 
lowercase letters) are quoted with the circle-X (®) character, which has the same 
character code in the Symbolics character set as control-V in the TOPS-20 
character set. 

TOPS-20 pathnames represent versions of :oldest and :newest by the strings II •• -2" 
and" .. 0", respectively. 

The directory component of a TOPS-20 pathname is a list of directory level 
components. The directory <FOO.BAR> is represented as the list ("FOO" "BAR"). 

The TOPS-20 init file naming convention is "<user>program.INIT". 

When there not enough room in the status line to display an entire TOPS-20 file 
name, the name is truncated and followed by a center-dot character to indicate 
that there is more to the name than can be displayed. 

TENEX pathnames are almost the same as TOPS-20 pathnames, except that the 
version is preceded by a semicolon instead of a period, the default device is DSK 
instead of PS, and the quoting requirements are slightly different. 



111 

August 1986 Files 

4.9.7 Multlcs Pathnames 

Multics possesses a hierarchical file system. Every file has a name, and mayor 
may not have a type. Multics does not support file versions. The sum of the 
lengths of name and type and the period required to separate them must not 
exceed 32 characters. A maximum of 16 directory levels is supported. There are 
no devices (:device to a Multics pathname always returns :unspecific). A Multics 
pathname looks as follows: 

>dir>ectory>name.type 

The greater-than (">") character separates directory levels. Absolute pathnames 
always start with greater-than's. Pathnames that specify no directory, relative or 
otherwise, contain no greater-than's, for example: 

foo.bar 

The topmost directory of the directory tree (the ROOT directory) is indicated by 
the absence of directory names but the continued presence of a greater-than. For 
example, the following is a file named foo.bar, in the ROOT directory: 

>foo.bar 

There are no file type abbreviations needed for Multics. 

File and directory names can be stored in upper, lower, or mixed case. Lower 
case is the preferred case. Case is significant. Foo, FOO, and foo could well be 
the names of three different files in the same directory. 

Upward relativization in relative directory specifications is designated by a 
pathname starting with the character less-than ("<"). All and only all absolute 
pathnames start with the character greater-than (">"). Downward relativization is 
indicated by a pathname, which although it contains greater-than's, does not start 
with one. For example, the following specifies a directory named foo, inferior to 
the superior directory of the directory of the default pathname with which it is 
merged. 

<foo>x.y 

Multics directories, when referenced as files, have no specific type; they need not 
have any type at all. See the section "Directory Pathnames and Directory 
Pathnames as Files", page 68. 

The following example specifies a directory named bar, inferior to the directory of 
the default pathname with which it is merged. 

bar>x.y 

Multics does not support :wild-inferiors, that is, recursive directory-level 
matching. For that matter, Multics does not support any form of wildcard in the 
directory component of a pathname. (Although :pathname-match matches such 
components, Multics does not support them in directory lists.) A component of 



112 

Reference Guide to Streams, Files, and liD August 1986 

:wild, in any component except the directory component, is represented by *. *, 
when accompanied by other characters, such as in foo*bar*, matches zero or more 
characters, as a wildcard. 

4.9.8 ITS Pathnames 

An ITS pathname looks like "HOST: DEVICE: DIR; FOO 69". The default device 
is DSK: but other devices such as ML:, ARC:, DVR:, or PTR: can be used. 

ITS does not exactly fit the virtual file system model, in that a file name has two 
components (FNI and FN2) rather than three (name, type, and version). 
Consequently to map any virtual pathname into an ITS filename, it is necessary to 
choose whether the FN2 will be the type or the version. The rule is that usually 
the type goes in the FN2 and the version is ignored; however, certain types (LISP 
and TEXT) are ignored and instead the version goes in the FN2. Also if the type 
is :unspecific the FN2 is the version. 

An ITS filename is converted into a pathname by making the FN2 the version if it 
is "<", ">", or a number. Otherwise the FN2 becomes the type. ITS pathnames 
allow the special version symbols :oldest and :newest, which correspond to "<" 
and ">" respectively. If a version is specified, the type is always :unspecific. If a 
type is specified, the version is :unspecific so that it does not override the type. 

Each component of an ITS pathname is mapped to uppercase and truncated to six 
characters. 

Special characters (space, colon, and semicolon) in a component of an ITS 
pathname can be quoted by prefixing them with right horseshoe (=» or equivalence 
sign (=). Right horseshoe is the same character code in the Symbolics character 
set as control-Q in the ITS character set. 

The ITS init file naming convention is "homedir; user program". 

fs:*its-uninteresting-types* Variable 
The ITS file system does not have separate file types and version numbers; 
both components are stored in the "FN2". This variable is a list of the file 
types that are "not important"; files with these types use the FN2 for a 
version number. Files with other types use the FN2 for the type and do 
not have a version number. 

It is not possible to have two ITS pathnames with the same meaning that differ in 
an ignored component. fs:*its-uninteresting-types* controls which types are 
ignored in favor of retaining version numbers. The following table summarizes 
the interaction of type and version components for ITS pathnames. 



August 1986 

Type 
supplied 
omitted 
" interesting" 
" uninteresting" 

Version 
omitted 
supplied 
supplied 
supplied 

113 

Files 

Result 
type is retained, version is :unspecific 
type is :unspecific, version is retained 
type is retained, version is :unspecific 
type is :unspecific, version is retained 

:fnl of fs:its-pathname Method 
This message returns a string that is the FNl host-dependent component of 
the pathname. 

:fn2 of fs:its-pathname Method 
This message returns a string that is the FN2 host-dependent component of 
the pathname. 

4.9.9 MS-DOS Pathnames 

An MS-DOS pathname looks like this: 

HOST:DEVICE:\DIR\ECTORY\NAME.TYPE 

The default device is C:. Uppercase is the only supported case. Pathnames typed 
in lowercase are converted to uppercase on input. 

File names and directory components are restricted to eight characters. File types 
are restricted to three characters. The canonical types for MS-DOS are the same 
as for V AXNMS. 

Relative pathnames are permitted. Upward-level changes are signalled with " .. ". 
For example: 

PC:A: .. \ .. \DIR\FILE.LSP 

4.9.10 logical Path names 

A logical pathname does not correspond to a particular file server; its host is 
called a logical host. Every logical pathname can be translated into a 
corresponding "physical" pathname; a mapping from logical hosts into physical 
hosts is used to effect this translation. 

Logical pathnames make it easy to move bodies of software to more than one file 
system. An important example is the body of software that constitutes Genera. 
Any site can have a copy of all of the sources of the programs that are loaded into 
the initial Lisp environment. Some sites store the sources on a LMFS file system, 
while others store them on a V AXNMS system. However, other software in the 
system must use pathnames for these files in such a way that the software will 
work correctly at all sites. This is accomplished with a logical host called SYS; all 
pathnames for system software files are actually logical pathnames with host SYS. 
At each site, SYS is defined as a logical host, but translation is different at each 
site. For example, at a site where the sources are stored on a certain V AXNMS 
system, pathnames of the SYS host are translated into pathnames for that system. 



114 

Reference Guide to Streams, Files, and 110 August 1986 

You usually use logical pathnames when you are defining a system that you wish 
to be portable to other sites. All logical pathnames in your system should 
translate to a valid pathname on any kind of host to which the system might be 
distributed. (Currently, this includes LMFS (Symbolics), VAXNMS, UNIX, and 
TOPS·20). The converse is not true; logical pathnames make no attempt to 
provide a way to represent all pathnames on a particular host. For this reason, no 
way is provided to distinguish between between "foo" and "foo.", or "foo" and 
"FOO" on UNIX. Your software will be much more portable if you choose good 
logical pathnames for your files rather than trying to make the logical pathnames 
conform to the limitations of whatever filesystem you happen to store your system 
on. For example, even though logical pathnames have a quoting character, it is 
good practice to avoid using it. 

Here, roughly, is how translation is done: To translate a logical pathname, the 
system finds the mapping for that pathname's host and looks up that pathname's 
directory in the mapping. If the directory is found, a new pathname is created 
whose host is the physical host, and whose device and directory come from the 
mapping. The other components of the new pathname are left the same. 

This means that when you invent a new logical host for a certain set of files, you 
also make up a set of logical directory names, one for each of the directories that 
the set of files is stored in. Now when you create the mappings at particular 
sites, you can choose any physical host for the files to reside on, and for each of 
your logical directory names, you can specify the actual directory name to use on 
the physical host. This gives you flexibility in setting up your directory names; if 
you used a logical directory name called fred and you want to move your set of 
files to a new file server that already has a directory called fred, being used by 
someone else, you can translate fred to some other name and so avoid getting in 
the way of the existing directory. Furthermore, you can set up your directories on 
each host to conform to the local naming conventions of that host. 

However, a logical pathname host can have the same name as a physical host: See 
the section "Specifying a New Logical Host Name". 

A logical pathname has the form HOST: DIRECTORY; NAME. TYPE. VERSION. 
On input, spaces can separate the name, type, and version. There is no way to 
specify a device; parsing a logical pathname always returns a pathname whose 
device component is :unspecific. This is because devices have no meaning in 
logical pathnames. Logical pathnames can be hierarchical; directory levels are 
separated by semicolons. 

Logical pathnames can be relative. That is, a pathname can have a directory 
component whose meaning is "when merging against a default, append these 
directories onto the end of any default directories." The syntax for this is 
HOST: ; DIRECTORY; NAME. TYPE.VERSION, that is, a leading bare ; before the 
directory component. Thus, the above pathname, merged against a default of 
HOST: USER; FOO.LISP.NEWEST gives 
HOST: USER; DIRECTORY; NAME. TYPE.VERSION. 



115 

August 1986 Files 

The equivalence-sign character (=) can be used for quoting special characters such 
as spaces and semicolons. (The use of this character is discouraged, however, as 
such files are unlikely to be transportable). The double-arrow character (H) can 
be used as a place-holder for unspecified components. Components are not mapped 
to uppercase. The : newest, :oldest, and :wild values for versions are specified 
with the strings NEWEST, OLDEST, and * respectively. On input, :newest can 
be represented by > and :oldest by <. 

There is no init file naming convention for logical hosts; you cannot log into them. 
The :string-for-host, :string-for-wholine, :string-for-dired, and :string-for-editor 
messages are all passed on to the translated pathname, but the 
:string-for-printing is handled by the fs:logical-pathname flavor itself and shows 
the logical name. 

4.9.10.1 Logical Pathname Wildcard Syntax 

Logical pathnames support a wildcard syntax meaning "Match any directory, and 
any subdirectory, to any level." For example: 

Show Directory SYS:**;*.BFD.* 

Here, the Show Directory command lists all font files anywhere in the SYS 
hierarchy, to any level. 

This corresponds to the >**> syntax for LMFS pathnames, and the [name ... ] syntax 
for VAXNMS file specifications. See the section "LMFS Pathnames", page 101. 
See the section "V AXNMS Pathnames", page 107. 

This makes it easy to specify logical pathname translations on Lisp Machines and 
V AXNMS. For example: 

(fs:set-logical-pathname-host "SYS" 
:translations '«"SYS:**:*.*.*" "ACHE-LISPH:>Rel-6>**>*.*.*")) 

(fs:set-logical-pathname-host "SYS" 
:translations 
'(("SYS:**;*.*.*" "ACHE-VHS:SYHBOLICS:[REL6 ... ]*.*;*")) 
:no-translate nil) 

It is important to note that wherever a "1It*;" appears in the logical-host pathname, 
there must be a corresponding "wild-inferiors" pathname on the physical-host 
pathname. 

UNIX and TOPS-20 do not have a syntax with this meaning. For these hosts, it 
is necessary to list explicitly each level of directory to be translated. For example: 



116 

Reference Guide to Streams, Files, and 110 

(fs:set-logical-pathname-host "SYS" 
:translations 
J(("SYS:*;*.*.*" 

"ACHE-UNIX:llusrllsymbolicsllrel-611*11*.*.*") 
("SYS:*;*;*.*.*" 
"ACHE-UNIX:llusrllsymbolicsllrel-611*11*11*.*.*") 

("SYS:*;*;*;*.*.*" 
"ACHE-UNIX:llusrllsymbolicsllrel-611*11*11*11*.*.*") 

("SYS:*;*;*;*;*.*.*" 
"ACHE-UNIX:llusrllsymbolicsllrel-611*11*11*11*11*.*.*" )) 

:no-translate nil) 

4.9.10.2 Translation Rules 

August 1986 

The logical system host sys comes preloaded with heuristics that eliminate 
characters illegal in V AXJVMS file specifications, such as "-". 

The heuristics also deal with limitations in the lengths of file specifications on 
foreign hosts. For example, some file names can be shortened and contracted 
without changing their meanings. Thus, sys:io;pathnm-cometh.lisp may translate 
to acmevax:symbolics[reI6.io]pthnmcmth.lsp on a V AXJVMS physical host. 

The system keeps careful track of these changes and does not allow two logical 
pathnames to translate to the same thing. On the attempt to translate a second 
logical pathname to a physical pathname already found as the result of a logical
pathname translation, an error is signalled. If the first attempt was due to a 
typographical error made by the user, and the second was due to the system 
translating a logical pathname, for example in response to the M-. command, the 
error is signalled. However, when :no-translate nil is used in the 
fs:set-Iogical-pathname-host form, the system translates all its logical pathnames 
when setting the logical system host; then, incorrect translations cannot be 
entered by mistake. 

There also are special translation rules for microcode files, font files, and others, 
which retain the special characteristics of these file names. 

4.9.10.3 Splitting Logical Hosts Across Physical Hosts 

It is possible to have a logical host translate to more than one physical host. All 
that is needed is an explicit specification of the hosts involved, in the translation 
list given to fs:set-Iogical-pathname-host. For example: 

(fs:set-logical-pathname-host "SYS" 
:translations J(("SYS:DOC;**;*.*.*" "ACHE-LISPH:>Rel-6>doc>**>*.*.*") 

("SYS:**;*.*.*" "ACHEVAX:SYHBOLICS:[REL6 ... ]*.*.*")) 
:no-translate nil) 

Note that it is not necessary to specify the :physical-host argument to 



117 

August 1986 Files 

fs:set-Iogical-pathname-host as long as the host names are specified in the 
translation list. If the argument is specified, it serves as a default when parsing 
those pathnames. 

4.9.10.4 Logical Pathname Translation 

This section explains the format of the "translations" list of logical pathnames and 
the rules for translating a logical pathname to a physical pathname. 

Each element of the list (one translation) specifies two wildcard pathnames, the 
first on the logical host and the second on the physical. In the Lisp form (in the 
file sys:site;host. translations) that specifies this form, they are given as strings to 
be parsed against these respective hosts. As they are parsed, they are merged 
with a pathname of wild name, wild type, and wild version. 

Following is an example of a translations list. This is a sample LMFS translation 
table for the SYS host, slightly more complex than the default: 

'«"SYS:DOC;**;*.*.*" "ACME-S:>Rel-6>doc>**>*.*.*") 
("SYS:**;*.*.*" "ACME-Q:>Rel-6>**>*.*.*")) 

There are two phases to the translation process. In the first phase, a 
logical/physical pathname pair is found in the translation table. This pair is called 
the translation pair. 

In the second phase, this pair is presented to a 'translation rule to be processed. 
Normally, this rule uses :translate-wild-pathname to translate the pathname 
using the translation pair, but there is a wide variety of translation rules. 

The first phase consists of matching the pathname to be translated against each 
first element of each translation, in succession. (The :pathname-match message 
is used.) The order in the list is thus very important. The first match is then 
taken to be the translation pair for the second phase. 

When the physical host supports a syntax for :wild-inferiors (for example, >**> on 
LMFS), that syntax can be used to have a translation that matches "everything 
else", as in the example above. If no equivalent syntax is supported, a separate 
wild-card directory for each level of directory likely to be encountered serves the 
same purpose, as in the example below. 

'«"SYS:*;*.*.*" "ACME-UNIX:llusrllrel-611*11*.*") 
("SYS:*;*;*.*.*" "ACME-UNIX:llusrllrel-611*11*11*.*") 
("SYS:*;*;*;*.*.*" "ACME-UNIX:llusrllrel-611*11*11*11*.*")) 

This example handles any SYS pathname with up to three directory levels. In the 
presence of such a translation, it is impossible to have an undefined translation. 

The second phase is potentially more complex. In its simplest form, it reduces to 
producing the translated pathname by sending the 
:translate-wild-pathname-reversible message to the logical pathname, with the 
first element of the translation as the source pattern and the second element of 



118 

Reference Guide to Streams, Files, and lID August 1986 

the translation as the target pattern. See the section "Wildcard Pathname 
Mapping", page 79. See the section "Wildcard Directory Mapping", page 81. See 
the section "Reversible Wildcard Pathname Translation", page 118. 

However, before deciding to using :translate-wild-pathname-reversible, a search 
is done to find a more suitable rule for performing the translation. With each 
logical host, there are three sets of translation rules. In addition, there is a 
global set of rules, and a default. 

Here is the order in which these rules are searched: 

Permanent 

Site 

Supplied 

Global 

Default 

The permanent translation rules are special purpose rules that 
cannot be overridden. They provide for such things as the 
translation of patch file pathnames. This table is searched first. 

The site translation rules are provided to override the supplied 
translation rules at a specific site. 

The normal, supplied translation rules are normally supplied by 
the author of the software using the logical host. 

This is a set of rules independent of any particular host. This 
table is not currently used for anything, but it is provided for 
future extension. 

This is the rule used when no other rule is found. This is the 
:translate-wild rule, which uses 
:translate-wild-pathname-reversible to translate according to 
the translation pair found in phase 1 of the translation process. 

Back-translation is performed by searching the second elements of the translations 
list, and translating in the other direction. :translate-wild-pathname-reversible 
is always used for this, so it is not guaranteed to come up with the same logical 
pathname as might be expected. 

Reversible Wildcard Pathname Translation 

A special version of wild pathname translation, called "reversible wild pathname 
translation," is used. The difference between regular wild pathname translation 
and reversible translation is in the treatment of a target wildcard pattern 
consisting solely of *. In regular translation, a target pattern of :wild causes the 
source component to be copied verbatim. This is a useful user-interface feature, 
but it causes dropping of information and resultant noninvertibility of the 
transformation. In reversible mapping, this feature is not present. Logical 
pathname translation and back-translation is done in this mode. 



119 

August 1986 Files 

Example: 
Source Source Target 

Type pattern instance pattern Result 
Regular foo* foolish * foolish 
Reversible foo* foolish * lish 
Either * bar foo-* foo-bar 

Note that the inverse translation of foo-bar to bar cannot be accomplished under 
regular translation. 

Defining a Translation Rule 

Translation rules are defined using the fs:set-Iogical-pathname-host function, 
using the :rules or :site-rules argument. (The other rule tables are not normally 
set by the user). These arguments should be an alist of system type and 
translation rule specifications. 

« :vms VMS rule specifications ... ) 
( : vms4 VMS4 rule specifications ... ) 
( : un; x UNIX rule specifications ... » 

Each rule specification consists of a pattern, a rule type, and optional arguments, 
as in the following example. 

("PICTURE:EDITOR;LINE-DRAWING-COMMANDS.*.*" :vms-new-pathname :name "LINECMNDS") 

In this example, "picture:editor;line-drawing-commands.*.*" is the pattern, 
:vms-new-pathname is the rule type, and :name and "linecmnds" form a 
keyword/value pair of arguments to the :vms-new-pathname rule type. 

Normally, translation rules are defined in the system definition file before a 
defsystem form, so that the rules are loaded before they are needed. If you wish 
to override the translation rules provided either by Symbolics or another vendor, 
you can use the :site-rules argument to the call to fs:set-Iogical-pathname-host, 
normally placed in the translation file. 

The following sections describe the various rule types that exist and their 
arguments. 

:translate-wild &rest options Translation rule 

The default translation rule's type is : translate-wild. This simply sends the 
source pattern a :translate-wild-pathname-reversible with the target pattern as 
target and the pathname being translated as the source pathname. For example: 

contents of sys. translations file: 
(fs:set-logical-pathname-host "SYS" 

:translations J«"SYS:DOC;**;*.*.*" "S:>Rel-6>doc>*.*.*") 
("SYS:**;*.*.*" "Q:>Rel-6>**>*.*.*"») 



120 

Reference Guide to Streams, Files, and liD 

pathname to translate: 
SYS:IO;PATHNM.LISP.23 

translation pair found in phase 1: 
("SYS:**;*.*.*" "ACME:>Rel-6>**>*.*.*") 

result of translation: 
ACME:>Rel-6>;o>pathnm.l;sp.23 

August 1986 

In other words, the default is for the translation to occur according to the 
wildcard mapping given in the translations. 

:new-pathname &key device directory name type version Translation rule 

The :new-pathname translation rule type is similar to : translate-wild, but 
replaces the directory, name, type, or version. Any components not specified in the 
argument list will not be replaced, and will be derived via 
:translate-wild-pathname-reversible as for the :translate-wild translation rule 
type. 

:vms-heuristicate &optional substitute Translation rule 

This translation rule tries hard to make understandable VMS pathnames out of 
longer, hyphenated filenames. It works for both :VMS and :VMS4 hosts. It 
produces usually understandable, hopefully unique, legal names and directories. In 
operation, it is similar to the :translate-wild type, but the components translated 
by wildcards are subjected to heuristics if needed to fit VMS's pathname syntax. 

The substitute argument is used to perform character substitutions. For example, 
for VMS4, it can be used to substitute II _" for II -" • 

("SYS:**;*.*.*" :vms-heur;st;cate «#\- #\_))) 

:vms-heuristicate-name &optional substitute Translation rule 

:vms-heuristicate-name is like :vms-heuristicate, but heuristicates only the name. 

:vms-heuristicate-directory &optional substitute Translation rule 

:vms-heuristicate-directory is like :vms-heuristicate, but heuristicates only the 
directory name. 

:vms-new-pathname &key device directory name type version Translation rule 

The :vms-new-pathname translation rule is a cross between :new-pathname and 
:vms-heuristicate. Components not explicitly specified in the argument list are 
supplied by wildcard mapping plus heuristics as for :vms-heuristicate. 

:vms-font &optional renamings Translation Rule 

The :vms-font translation rule parses the name component of the logical pathname 



121 

August 1986 Files 

as a font spec. For example, in fix.roman.normal, the family is roman, the size 
is normal, and the style is fix. (The style is optional). The font family is 
subjected to the VMS heuristics to fit in a smaller space (to allow room for the 
size and style). The result is concatenated with the size and style to construct a 
new name. 

If the renamings argument is supplied, it is an alist of font names and 
replacement to be used instead of the one produced by the heuristics. This is 
useful in cases where the heuristic produces a confusing name, or where there 
would otherwise be name conflicts. For example, the following translation rule is 
used with the SYS: host for VMS hosts. 

("SYS: FONTS; LGP-1; *.BFD.*" :vrns-font 
«"DANG-MATH" "DANGM") 

("GHELVETICA" "GHLVT") 
("HELVETICA" "HELVT") 
("TIMESROMAN" "TIMSR") 
("XGP-VGV" "XGPVV"») 

This translation rule serves to encode the relevant information that makes each 
font distinct. 

In addition, :vms-font performs full VMS heuristics on the directory. 

:vms-microcode Translation rule 

This translation rule encodes the microcode names in such a way as to be sure to 
retain the information that distinguishes different microcodes. 

The name component of the logical pathname is parsed into words. Each word is 
looked up in the alist fs:*vms-microcode-translation-alist*. (The alist is shared 
with the equivalent translation for UNIX). If found, it is replaced with the 
replacement (a single character, except "MIe" maps to II ") found in the second 
element of the alist bucket. This sequence of characters is then concatenated to 
produce the new filename. 

The directory component is subject to full heuristication. 

:tops20-heuristicate-directory &optional (levels 
fs:*default-tops20-directory-Ievels*) Translation rule 

The :tops20-heuristicate-directory translation rule compensates for the fact that 
TOPS20 directories are limited to a size of fs:*tops-20-max-field-size*, including 
the "." characters as directory-level separators. Each level of directory is allocated 
a share of the available space, and is compressed to fit in that space as needed. 
In determining how much space to allocate to each level, the rule assumes that no 
more than levels directory levels will be needed. The default is 
fs:*default-tops20-directory-Ievels*, or 3 levels. 



122 

Reference Guide to Streams, Files, and 110 August 1986 

:unix-microcode Translation rule 

This translation rule encodes the microcode names in such a way as to be sure to 
retain the information that distinguishes different microcodes. 

The name component of the logical pathname is parsed into words. Each word is 
looked up in the alist fs:*unix-microcode-translation-alist*. (The alist is shared 
with the equivalent translation for VMS). If found, it is replaced with the 
replacement (a single character, except "MIe" maps to "") found in the second 
element of the alist bucket. This sequence of characters is then concatenated to 
produce the new filename. 

:unix-font &optional renamings Translation rule 

The :unix-font translation rule parses the name component of the logical 
pathname as a font spec. For example, in fix.roman.normal, the family is roman, 
the size is normal, and the style is fix. (The style is optional). The font family is 
subjected to the VMS heuristics to fit in a smaller space (to allow room for the 
size and style). The result is concatenated with the size and style to construct a 
new name. 

If the renamings argument is supplied, it is an alist of font names and 
replacement to be used instead of the one produced by the heuristics. This is 
useful in cases where the heuristic produces a confusing name, or where there 
would otherwise be name conflicts. For example, the following translation rule is 
used with the SYS: host for UNIX hosts. 

("SYS: FONTS; LGP-1; *.BFD.*" :unix-font 
«"DANG-MATH" "DANGMT") 

("GHELVETICA" "GHELVT") 
("HELVETICA" "HELVET") 
("TIHESROHAN" "TIHESR") 
("XGP-VGV" "XGPVGV"))) 

This translation rule serves to encode the relevant information that makes each 
font distinct. 

:unix-type-and-version &optional renamings Translation rule 

The :unix-type-and-version translation rule is used for situations where you need 
to retain both the type and version. This is usually needed where differing 
versions of the file need to coexist. 

The name component is matched against the renamings alist. If it is found, the 
second element of the alist bucket is used instead. Then, if the last character of 
the name (or the replacement) is a digit, a "+" is added to the end. Then, the 
version number (or"" if nil or "iii" if :wild) is added to the end. This is then 
used as the name component. The type is handled via the normal mechanisms. 

The version is added to the name rather than the end of the type, so that the type 
field can be recognized by programs that look at the type (or canonical type). 



123 

August 1986 Files 

:site-directory &key device directory name type version Translation rule 

The :site-directory translation rule substitutes the :site-directory attribute from 
the local site object for the host and directory. The arglist is like for 
:new-pathname. This is used to translate SYS:SITE;. 

As a special feature, this rule can be overridden by an explicit entry for SYS: 
SITE; in the translations. This can be useful when debugging, to get a different 
site directory without modifying your site namespace object. 

fs:patch-file system-name &optional file-type Translation rule 

fs:patch-file rules, which will often be seen when doing a fs:describe-Iogical-host, 
are internal to the patch system. They provide for the translation of patch file 
logical names to physical files, in a system-dependent manner. These rules are 
added as a result of defining a system to be patchable. 

fs:describe-Iogical-host host Function 
The fs:describe-Iogical-host function takes a logical host (or the name of a 
logical host) and provides various information about the host, including: 

• Default physical host. 

• Translations. 

• Translation rules sorted by search order. 

• Translation rules sorted by group. 

It is often useful for determining what went wrong with a translation file. 

fs:make-logical-pathname-host name &key Function 
no-search-for-shadowed-physical 

Defines name, which should be a string or symbol, to be the name of a 
logical pathname host. name should not conflict with the name of any 
existing host, logical or physical. 

fs:make-logical-pathname-host also loads the file sys:site;name. translations 
and arranges for that file to be reloaded in the future. load-patches 
checks the translations file for each logical host that is defined in the 
current world; if any file has been changed it is reloaded. load-patches 
does this if and only if no specific systems are specified in its arguments. 

fs:make-logical-pathname-host alters the 
logical-pathnames-translation-files system so that it contains the 
translations files for all logical hosts defined in the current world. 
load-patches loads updated translations files by calling the Compile System 
command on this system. 



124 

Reference Guide to Streams, Files, and 110 August 1986 

An fs:make-Iogical-pathname-host form often appears in the file 
sys:site;system-name.system. The Compile System command looks for this 
file when given the name of an unknown system. The 
fs:make-Iogical-pathname-host form must be the first form in the file, as 
the second form, a call to si:set-system-source-file, depends on the 
previous definition of the logical host. 

Example: Following are the contents of the file sys:site;cube.system: 

;;; -*- Mode: LISP; Package: USER -*-

(fs:make-logical-pathname-host "cube") 
(si:set-system-source-file "cube" "cube: cube; cubpkg") 

The argument :no-search-for-shadowed-physical (default nil) means to 
look only in the existing pathname hosts for a host with the same name as 
the logical host. This saves time by not asking the namespace server 
whether the name of the newly defined logical host conflicts with the 
names of any physical hosts, but it prevents you from seeing the following 
warnings: 

Warning: the host -A must now be referred to as -A: in pathnames, 
since -A is now a logical pathname host. 
This affects -[no-: ;-:*-O-J extant pathnames. 

Warning: the nickname -A: for the physical host -A 
will now refer instead to the 
logical pathname host -A. 
Use -A: in pathnames. 

fs:add-Iogical-pathname-host is an obsolete name for this function. 

fs:set-Iogical-pathname-host logical-host &key physical-host Function 
translations rules site-rules (no-translate t) 

no-search-for-shadowed-physical 
Creates a logical host named logical-host if it does not already exist. It 
then establishes translations of logical directories on logical-host to physical 
directories on various hosts. (physical-host serves as a default.) 
translations is a "translations" list of two-element lists of strings 
representing associated logical directories (source patterns) and physical 
directories (target patterns). For the format of the lists and the 
translation rules: See the section "Logical Pathname Translation", page 
117. 

Source patterns are logical pathnames that are matched against the 
pathname being translated. The target patterns are physical pathnames 
and can be on any host. 



125 

August 1986 Files 

If the physical pathname is on a TOPS-20 or V AXNMS host, you should 
include the device name. In the case of V AXNMS, it is important that 
this device name be either a physical device name or the name of a 
"concealed device." The simplest way to choose a device name is to 
connect to the V AXNMS system in question. If you want to use 
FOO:[BAR .. .J*.*.* as the target, where FOO is a VAXNMS system-wide 
logical name, connect to V AXNMS and do the following: 

$ DIRECTORY FOO:[BAR ... ]*.*.* 

Directory USER$DISK:[BAR ... ] 

In this example, you should use USER$DISK: [BAR ... ] instead of 
FOO: [BAR ... ] in your translations. 

If no-translate is nil, the translation of every interned logical pathname is 
checked. Properties are copied from the old physical pathname to the the 
new one, and logical pathnames that now have no corresponding physical 
pathnames are uninterned. If no-translate is not nil or not supplied, this 
mapping is suppressed, and some physical pathnames might not get the 
properties of the logical pathname. This is not normally of any 
consequence, so no-translate defaults to t. 

A call to fs:set-Iogical-pathname-host is usually the only form in the file 
sys:site;logical-host.translations. This file is loaded by 
fs:make-Iogical-pathname-host (always in the file-system package), which 
also arranges for it to be reloaded in the future. load-patches checks this 
file for all logical hosts in the current world and reloads the file if it has 
changed. Similarly, changing the site object will cause each translation file 
to be reloaded from the new site directory. 

The argument no-search-for-shadowed-physical (default nil) means to look 
only in the existing pathname hosts for a host with the same name as the 
logical host. This saves time by not asking the namespace server whether 
the name of the newly defined logical host conflicts with the names of any 
physical hosts, but it prevents you from seeing the following warnings: 

Warning: the host -A must now be referred to as -A: in pathnames, 
since -A is now a logical pathname host. 
This affects -[no-: ;-:*-0-] extant pathnames. 

Warning: the nickname -A: for the physical host -A 
will now refer instead to the 
logical pathname host -A. 
Use -A: in pathnames. 



126 

Reference Guide to Streams, Files, and liD August 1986 

Example: 

Following is a typical content of the file sys:site;sys. translations: 

;;; -*- Mode: LISP; Package: FILE-SYSTEM -*-

(set-logical-pathname-host "sys" 
:translations '«"**;*.*.*" ">Rel-6>**>"))) 

:translated-pathname of fs:logical-pathname Method 
Converts a logical pathname to a physical pathname. It returns the 
translated pathname of this instance: a pathname whose :host component is 
the physical host that corresponds to this instance's logical host. See the 
section "Logical Pathnames", page 113. 

If this message is sent to a physical pathname, it simply returns itself. 

: back-translated-pathname pathname of fs:logical-pathname Method 
Converts a physical pathname to a logical pathname. pathname should be a 
pathname whose host is the physical host corresponding to this instance's 
logical host. This returns a pathname whose host is the logical host and 
whose translation is pathname. See the section "Logical Pathnames", page 
113. 

This message might be used in connection with truenames. Given a 
stream that was obtained by opening a logical pathname, 

(send stream :pathname) 

returns the logical pathname that was opened. 

(send stream :truename) 

returns the true name of the file that is open, which of course is a 
pathname on the physical host. To get this in the form of a logical 
pathname, one would do the following: 

(send (send stream :pathname) 
: back-translated-pathname 
(send stream :truename)) 

If this message is sent to a physical pathname, it simply returns its 
argument. Thus the above example works no matter what kind of 
pathname was opened to create the stream. However, it is important to 
note two situations in which back translation can fail to do what you 
expect: 

Links If opening the file involved following a link, the 
true name will no longer match, and back translation 



127 

August 1986 Files 

might not be able to convert it to a physical pathname at 
all. 

File-system restrictions 
If the translation involved compressing or modifying a 
name to adapt to a file-system's rules, the physical 
pathname may be translated to a logical pathname 
different from the one originally used. 

Back translation is useful only in cases where the logical pathname is 
wanted for informational, not operational, purposes. For example, if you 
remember a back translation to reopen the file, you may end up with 
physical instead of logical pathnames in your program. Physical pathnames 
are not transportable between sites. 

One way to avoid this problem is to avoid back translation. Often, all that 
is needed is the version number, in which case the following code will 
serve: 

(send (send stream :pathname) 
:new-default-pathname 
:version (send (send stream :truename) :version)) 

Note that :new-default-pathname is used rather than :new-pathname. 
This is necessary because the logical host and the physical host are of 
different types. When copying components between host types, you need to 
allow for certain substitutions. In this case, if the physical host is a UNIX 
system, the version will be :unspecific, and :new-default-pathname will 
convert this to the nearest equivalent for logical pathnames: :newest. 

4.10 Init File Naming Conventions 

Init files are of canonical type :lisp for source files and : bin for compiled files. 
For hosts that support long file names, the init file name consists of 
program-name with "-INIT" appended. Thus, the standard file name for a Genera 
init file is LISPM-INIT; for a Zmail init file, it is ZMAIL-INIT. Hosts that do not 
support long file names have conventions peculiar to each system. 

Following are the names of lispm init source files on some hosts: 

Host system File name 

LMFS/TOPS-20 LISPM-INIT.LISP 

UNIX lispm-init.l 

VMS LISPMINI.LSP 



128 

Reference Guide to Streams, Files, and VO August 1986 

Multics 

ITS 

lispm-init.lisp 

If user has own directory: LISPM >. If user does not have own 
directory: USER LISPM. 



129 

August 1986 Files 

5. File and Directory Access 

5.1 Accessing Files 

Genera lets you access files on a variety of remote file servers, which are typically 
(but not necessarily) accessed through the Chaosnet, as well as accessing files on 
the Symbolics computer itself, if the machine has its own file system. This 
section tells you how to get a stream that reads or writes a given file, and what 
the device-dependent operations on that stream are. Files are named with 
pathnames. Since pathnames are quite complex they have their own chapter. See 
the section "Naming of Files", page 51. 

The options used when opening a file are normally alternating keywords and 
values, like any other function that takes keyword arguments. The file-opening 
options control whether the stream is for input from a existing file or output to a 
new file, whether the file is text or binary, and so on. 

The following option keywords are recognized. Unless otherwise noted, they are 
supported generically. Additional keywords can be implemented by particular file 
system hosts. 

:byte-size 

: characters 

The possible values are nil (the default), a number in the range 
1 to 16 inclusive, which is the number of bits per byte, and 
: default, which means that the file system should choose the 
byte size based on attributes of the file. If the file is being 
opened as characters, nil selects the appropriate system
dependent byte size for text files; it is usually not useful to use 
a different byte size. If the file is being opened as binary, nil 
selects the default byte size of 16 bits. The preferred way to 
specify the byte-size for files is to use the :element-type 
keyword. 

This option specifies whether the objects contained in the file 
are characters or flXnums. The preferred way to specify 
character files is to use the :element-type keyword. 

Value 

t 

nil 

: default 

Meaning 

Specifies that the file contains character 
objects. This is the default. 

Specifies that the file is a binary file. 

On output, :default is always t, as character 
files are created by default. On input, 



130 

Reference Guide to Streams, Files, and 110 August 1986 

:deleted 

:direct 

:direction 

:default specifies that the file system 
determine from the file properties for LMFS 
files and the canonical type definition for 
other files what type of objects are stored in 
the file; then open opens it in the appropriate 
mode. 

The default is nil. If t is specified, and the file system has the 
concept of deleted but not expunged files, it is possible to open 
a deleted file. Otherwise deleted files are invisible. 

The default is nil. t specifies a direct access stream. See the 
section "Direct Access File Streams", page 13. 

The :direction option allows the following values: 

: input 

: output 

:block 

:io 

:probe 

:probe-link 

The file is being opened for input. This is 
the default. 

The file is being opened for output. 

This is a special case of :output that is used 
for the FEP File System. 

The file is being opened for intermixed input 
and output. Bidirectionality is supported only 
if the stream is to be a direct stream, that is, 
:direct t is given as well. See the section 
"Direct Access File Streams", page 13. 

A "probe" opening; no data are to be 
transferred, and the file is being opened to 
determine whether the file exists, or to gain 
access to or change its properties. Returns 
the true name of the object at the end of a 
link or chain of links. If the value of 
:direction is :probe and the value of :error is 
nil, then open will return the error object 
instead of nil. If the value of 
:if-does-not-exist is nil, the error object will 
still be returned. 

The same as :probe except that links are not 
chased. Returns the true name of the object 
named, even if it is a link. 

:probe-directory The pathname is being opened to find out 
about the existence of its directory component. 



August 1986 

: element-type 

nil 

131 

Files 

Otherwise, the semantics are the same as 
:probe. If the directory is not found, a file 
lookup error is signalled. 

This is the same as probe. No data are 
transferred, and the file is being opened only 
to gain access to or change its properties. If 
the value of :direction is nil and the value of 
:error is nil, then open will return the error 
object instead of nil. If the value of 
:if-does-not-exist is nil, the error object will 
still be returned. 

This argument specifies the type of Lisp object transferred by 
the stream. Anything that can be recognized as being a finite 
subtype of character or integer is acceptable. In particular, the 
following types are recognized: 

string-char 

character 

The object being transferred is a string
character. The functions read-char and/or 
write-char can be used on the stream. This 
is the default. 

The object being transferred is any character, 
not just a string-character. The functions 
read-char and/or write-char can be used on 
the stream. 

(unsigned-byte n)The object being transferred is an unsigned 
byte (a non-negative integer) of size n. The 
functions read-byte and/or write-byte can be 
used on the stream. 

unsigned-byte The object being transferred is an unsigned 
byte (a non-negative integer) whose size is 
determined by the file system. The functions 
read-byte and/or write-byte can be used on 
the stream. 

(signed-byte n) The object being transferred is a signed byte 
of size n. The functions read-byte and/or 
write-byte can be used on the stream. 

signed-byte The object being transferred is a signed byte 
whose size is determined by the file system. 
The functions read-byte and/or write-byte 
can be used on the stream. 



132 

Reference Guide to Streams, Files, and 110 August 1986 

: error 

bit 

(mod n) 

: default 

The object being transferred is a bit (values 0 
and 1). The functions read-byte and/or 
write-byte can be used on the stream. 

The object being transferred is a non-negative 
integer less than n. The functions read-byte 
and/or write-byte can be used on the stream. 

On output, :default is always character, as 
character files are created by default. On 
input, :default specifies that the file system 
determine from the file properties for LMFS 
files and the canonical type definition for 
other files what type of objects are stored in 
the file; then open opens it in the appropriate 
mode. 

This option controls what happens when any 
fs:file-operation-failure condition is signalled. t is the 
recommended value for this option. The others have been 
provided for compatibility with previous systems to aid in 
converting programs. See the section "File-System Errors" in 
Symbolics Common Lisp: Language Concepts. 

The option has three possible values: 

Value 

t 

nil 

:reprompt 

Meaning 

Signals the error normally. t is both the 
default and the recommended value. 

Returns the error object. If the value of 
either :if-exists or :if-does-not-exist is nil, the 
error object is still returned. 

Reprompts the user for another file name and 
tries open again. When you use this option, 
remember that the :pathname message sent 
to the stream finds out what file name was 
really opened. The alternative to :reprompt 
is to use :error t and set up a condition 
handler for fs:file-operation-failure that 
explains the condition and prompts the user. 

:estimated-Iength The value of the :estimated-Iength option can be nil (the 
default), which means there is no estimated length, or a number 
of bytes indicating the estimated length of a file to be written. 
Some file systems use this to optimize disk allocation. 



133 

August 1986 Files 

:if-does-not-exist Specifies the action to be taken if the file does not already exist. 

: if-exists 

The following values are allowed: 

:error 

:create 

nil 

Signals an error. This is the default if the 
:direction is : input, :probe, or any of the 
:probe-like modes, or if the :if-exists 
argument is : overwrite, :truncate, or 
: append. 

Creates an empty file with the specified name, 
and then proceeds as if it had already existed. 
This is the default if the :direction is :output 
and the :if-exists argument is anything but 
: overwrite, : truncate, or :append. 

Does not create a file or even a stream. 
Instead, simply returns nil to indicate failure. 
This is overridden when the value of 
:direction is either nil or :probe and the 
value of :error is nil. In this case, the error 
object is returned instead of nil. 

Specifies the action to be taken if the :direction is :output and 
a file of the specified name already exists. If the direction is 
:input or :probe (or any of the :probe-like directions), this 
argument is ignored. 

The following values are allowed: 

:error 

: new-version 

:rename 

Signals an error. This is the default when 
the version component of the filename is not 
either :newest or :unspecific. 

Creates a new file with the same file name 
but a larger version number. This is the 
default when the version component of the 
filename is either :newest or :unspecific. 
File systems without version numbers can 
choose to implement this by effectively 
treating it as :supersede. 

Renames the existing file to some other name, 
and then creates a new file with the specified 
name. On most file systems, this renaming 
happens at the time of a successful close. 



134 

Reference Guide to Streams, Files, and 110 August 1986 

:rename-and-delete 

: overwrite 

: truncate 

:append 

:supersede 

nil 

Renames the existing file to some other name 
and then deletes it (but does not expunge it, 
on those systems that distinguish deletion 
from expunging). Then creates a new file 
with the specified name. On most file 
systems, this renaming happens at the time of 
a successful close. 

The existing file is used, and output 
operations on the stream destructively modify 
the file. The file pointer is initially positioned 
at the beginning of the file; however, the file 
is not truncated back to length zero when it 
is opened. 

The existing file is used, and output 
operations on the stream destructively modify 
the file. The file pointer is initially positioned 
at the beginning of the file; at that time, the 
file is truncated to length zero, and disk 
storage occupied by it is freed. 

The existing file is used, and output 
operations on the stream modify the file. The 
flie pointer is initially positioned at the 
current end of the file. 

Supersedes the existing file. If possible, the 
file system does not destroy the old file until 
the new stream is closed, against the 
possibility that the stream will be closed in 
"abort" mode. This differs from :new-version 
in that :supersede creates a new file with the 
same name as the old one, rather than a file 
name with a higher version number. 

Does not create a file or even a stream. 
Instead, simply returns nil to indicate failure. 
This is overridden when the value of 
:direction is either nil or :probe and the 
value of :error is nil. In this case, the error 
object is returned instead of nil. 

:preserve-dates The default is nil. If t is specified, the file's reference and 
modification dates are not updated. 



135 

August 1986 Files 

:raw 

: submit 

The value can be nil (the default) or t, which disables all 
character set translation in ASCII files. 

This is an option to open used to get batch jobs. Currently, 
this is implemented only for V AXNMS. When the file you are 
writing is closed, the file is submitted as a batch job by using 
this option. 

: super-image The value can be nil (the default), or t which disables the 
special treatment of Rubout in ASCII files. Normally Rubout is 
an escape that causes the following character to be interpreted 
specially, allowing all characters from 0 through 376 to be 
stored. This applies to PDP-10 file servers only. 

:temporary The default is nil. If t is specified, the file is marked as 
temporary, if the file system has that concept. 

with-open-file (stream-variable filename . options ... ) &body body... Special Form 
Evaluates the body forms with the variable stream-variable bound to a 
stream that reads or writes the file named by the value of filename. The 
options forms evaluate to the file-opening options to be used. 

When control leaves the body, either normally or abnormally (via throw), 
the file is closed. If a new output file is being written, and control leaves 
abnormally, the fi~e is aborted and it is as if it were never written. 
Because it always closes the file, even when an error exit is taken, 
with-open-file is preferred over open. Opening a large number of files and 
forgetting to close them tends to break some remote file servers, ITS's for 
example. 

filename is the name of the file to be opened; it can be a pathname object, 
a string, or a symbol. It can be anything acceptable to fs:parse-pathname. 
See the section "Naming of Files", page 51. The complete rules for parsing 
pathnames are explained there. 

If an error occurs, such as file not found, the user is asked to supply an 
alternate pathname, unless this is overridden by options. At that point, the 
user can quit out or enter the Debugger, if the error was not due to a 
misspelled pathname. 

If you are opening the file to read it with read, and you want to bind the 
package and so forth, see the special functions for handling file attributes. 
See the function fs:read-attribute-list, page 158. See the function 
fs:file-attribute-bindings, page 159. 

with-open-file-case (var pathname . options) &body clauses Special Form 
Opens a file, binding the input stream to var, using the pathname and 
options given in the arguments. In the following example, it executes the 



136 

Reference Guide to Streams, Files, and 110 August 1986 

first clause when the file is not found. When the file is found without 
error, it executes the second clause, which is the real reason for trying to 
open the file in the first place. 

(with-open-file-case (x "f:>dla>foo.lisp" ':direction ':input) 
(fs:file-not-found (send x ':report error-output» 
(:no-error (stream-copy-until-eof x standard-output») 

Any errors other than file-not-found (for example, access violations or an 
unresponsive host) cause an error to be signalled normally. 

with-open-file-case-if cond (var pathname . options) &body clauses Special Form 
Opens a file, binding the input stream to var, using pathname and options 
given in the arguments. All clauses are evaluated, but the error handling 
for the body is performed only if the predicate specified by cond returns t. 

Any errors other than file-not-found (for example, access violations or an 
unresponsive host) cause an error to be signalled normally. 

with-open-stream (stream-variable construction-form) &body body Special Form 
Like with-open-file except that you specify a form whose value is the 
stream, rather than arguments to open. This is used with nonfile streams. 
See the special form with-open-file, page 135. 

with-open-stream-case (var construction-form) &body clauses Special Form 
Opens a stream and binds it to var, using construction-form to create it. It 
then executes whichever clause is appropriate, given the condition that 
resulted from the attempt to create the stream. Refer to the example 
shown for with-open-file-case. 

with-open-stream-case-if cond (var construction-form) &body clauses Special Form 
Opens a stream and binds it to var, using construction-form to create it. 
All clauses are evaluated, but the error handling for the body is performed 
only if the predicate specified by cond returns t. 

with-standard-io-environment &body body Special Form 
All output in body is printed with *package*, *readtable*, and other 
variables bound to consistent values. This is useful when you wish to write 
some data the you will use read to retrieve later. This is a custom 
environment that you create, passing all variables and values that are 
important before body. 

with-standard-io-environment inhibits the effect of #. while reading. This 
prevents other forms being read and used as trojan horses. This can be 
inhibited by rebinding si:*suppress-read-eval to nil. 



137 

August 1986 Files 

with-input-from-string (stream string &key index (start 0) end) Special Form 
&body body 

body is executed as an explicit progn with the variable stream bound to a 
character input stream that supplies successive characters from the value 
of the form string. with-input-from-string returns the results from the 
last form of the body. 

The input stream is automatically closed on exit from the 
with-input-from-string form, no matter whether the exit is normal or 
abnormal. The stream should be regarded as having dynamic extent. The 
following keywords can be used: 

keyword 

:index 

:start 

:end 

Examples: 

value 

The form after the :index keyword should be a place 
acceptable to setf. If the form is exited normally, then 
the place will have stored into it the index into string 
indicating the first character not read, or the length of 
the string if all characters were used. The place is not 
updated as reading progresses, but only at the end of the 
operation. 

An argument indicating the beginning of a substring of 
string to be used. :start defaults to O. 

An argument indicating the end of a substring of string 
to be used. :end defaults to the length of the string. 

(values (with-input-from-string 
(stream "A long boring string" :index i) 
(read stream)) i) => A and 2 

(values (with-input-from-string 
(stream "A long boring string" :index :start 2) 
(read stream)) i) => LONG and 7 

(values (with-input-from-string 
(stream "A long boring string" :index :start 9 :end 12) 
(read stream)) i) => RIN and 12 

zl:with-input-from-string (var string &optional index limit) &body 
body 

Special Form 



138 

Reference Guide to Streams, Files, and 110 August 1986 

The form: 
(with-input-from-string (var string) 

body) 

evaluates the forms in body with the variable var bound to a stream that 
reads characters from the string which is the value of the form string. 
The value of the special form is the value of the last form in its body. 

The stream is a function that only works inside the with-input-from-string 
special form, so be careful what you do with it. You cannot use it after 
control leaves the body, and you cannot nest two with-input-from-string 
special forms and use both streams since the special-variable bindings 
associated with the streams conflict. It is done this way to avoid any 
allocation of memory. 

After string you can optionally specify two additional "arguments". The 
first is index: 

(wi th-i nput-from-stri ng (var string index) 
body) 

uses index as the starting index into the string, and sets index to the index 
of the first character not read when with-input-from-string returns. If the 
whole string is read, it is set to the length of the string. Since index is 
updated it cannot be a general expression; it must be a variable or a 
setfable reference. The index is not updated in the event of an abnormal 
exit from the body, such as a throw. The value of index is not updated 
until with-input-from-string returns, so you cannot use its value within 
the body to see how far the reading has proceeded. 

Use of the index feature prevents multiple values from being returned out 
of the body, currently. 

(wi th-i nput-from-stri ng (var string index limit) 
body) 

uses the value of the form limit, if the value is not nil, in place of the 
length of the string. If you want to specify a limit but not an index, write 
nil for index. Examples: 

(setq i 0) => 0 
(values (zl :with-input-from-string 

(stream "A long boring string" i) 
(read stream)) i) => A and 2 

(values (zl :with-input-from-string 
(stream "A long boring string" i) 
(read stream)) i) => LONG and 7 



August 1986 

(values (21 :with-input-from-string 
(stream "A long boring string" i 12) 
(read stream» i) => BORIN and 12 

139 

Files 

with-output-to-string (stream &optional string &key index) &body Special Form 
body 

body is executed as an explicit progn with the variable stream bound to a 
character output stream that saves characters in string. If string is not 
specified, with-output-to-string returns the results from the last form of 
the body as a string. 

If string is specified, it must be a string with a fill pointer. The output is 
incrementally appended to the string, as if using vector-push-extend if the 
string is adjustable, and as if using vector-push otherwise. In this case, 
with-output-to-string returns the results from the last form of the body. 

The output stream is automatically closed on exit from the 
with-output-to-string form, no matter whether the exit is normal or 
abnormal. The stream should be regarded as having dynamic extent. 

The form after the :index keyword should be a place acceptable to setf. If 
the form is exited normally, then the place will have stored into it the 
index into string indicating the first character not read, or the length of 
the string if all characters were used. The place is not updated as reading 
progresses, but only at the end of the operation. 

Examples: 

(setq string (make-array 2 :element-type 'string-char 
:fill-pointer t» => .. 

(val ues (wi th-output-to-stri ng (stream ni 1 : index i) 
(write-string "a happy day" stream :start 2 :end 7» 

string i) => "happy" and .. and 17 

(values (with-output-to-string (stream string :index i) 
(write-string "a happy day" stream :start 2 :end 7» 

stri ng i) => "a happy day" and .. and 22 

zl:with-output-to-string (var &optional (string nil string-p) index) Special Form 
&body body 

This special form provides a variety of ways to send output to a string 
through an I/O stream. 



140 

Reference Guide to Streams, Files, and 110 August 1986 

(with-output-to-string (var) 
body) 

evaluates the forms in body with var bound to a stream that saves the 
characters output to it in a string. The value of the special form is the 
string. 

(wi th-output-to-stri ng (var string) 
body) 

appends its output to the string that is the value of the form string. (This 
is like the string-nconc function). The value returned is the value of the 
last form in the body, rather than the string. Multiple values are not 
returned. string must have an array-leader; element 0 of the array-leader 
is used as the fill-pointer. If string is too small to contain all the output, 
zl:adjust-array-size is used to make it bigger. 

If characters with font information are output, string must be of type 
sys:art-fat-string. See the section "sys:art-fat-string Array Type" in 
Symbolics Common Lisp: Language Concepts. 

(wi th-output-to-stri ng (var string index) 
body) 

is similar to the above except that index is a variable or setfable reference 
that contains the index of the next character to be stored into. It must be 
initialized outside the with-output-to-string and is updated upon normal 
exit. The value of index is not updated until with-output-to-string 
returns, so you cannot use its value within the body to see how far the 
writing has gotten. The presence of index means that string is not 
required to have a fill-pointer; if it does have one it is updated. 

The stream is a "downward closure" simulated with special variables, so be 
careful what you do with it. You cannot use it after control leaves the 
body, and you cannot nest two with-output-to-string special forms and use 
both streams since the special-variable bindings associated with the streams 
conflict. It is done this way to avoid any allocation of memory. Examples: 

(setq string (zl :make-array 2 :type Jzl :art-string :fill-pointer 2» => ., 
(setq i 0) => 0 
(values (zl :with-output-to-string (stream nil i) 

(write-string "a happy day" stream :start 2 :end 7» 
string i) => "happy" and .. and 0 

(values (zl :with-output-to-string (stream string i) 
(write-string "a happy day" stream :start 2 :end 7» 

string i) => "a happy day" and "han and 5 



August 1986 

(values (zl :with-output-to-string (stream string i) 
(write-string "a happy day" stream :start 2 :end 7)) 

string i) => "a happy day" and "han and 10 
(values (zl:with-output-to-string (stream string) 

(write-string "a happy day" stream :start 2 :end 7)) 
string i) => "a happy day" and "hahappy" and 10 

141 

Files 

sys:with-open-file-search (stream-variable Special Form 
(operation defaults auto-retry) (type-list-function pathname • type-list-args) . 
open-options) body ... 

Performs a with-open-file, searching for a file with one of the types in a 
list of file types. load uses this special form when not given a specific file 
type to search first for a binary file and then for a source file. 

The body is evaluated with stream-variable bound to a stream that reads or 
writes the file. open-options are alternating keywords and values to be 
passed to open. 

type-list-function should be a function whose first argument is pathname 
and whose remaining arguments are type-list-args. The function should 
return two values: a list of file types to be searched, in order of 
preference, and a base pathname to be merged with the types and defaults 
in searching for the file. defaults can be a pathname or a defaults alist; if 
omitted, the defaults come from fs:*default-pathname-defaults*. The 
special form uses fs:merge-pathname-defaults for merging. 

If no file is found with any of the types in the list of types, 
fs:multiple-file-not-found is signalled. operation is the name of the 
operation that failed; usually this is the name of the function that contains 
the sys:with-open-file-search form. If auto-retry is not nil and the 
condition is not handled, the user is prompted for a new pathname. 

open pathname &rest options Function 
Returns a stream that is connected to the specified file. The open function 
only creates streams for files; streams for other devices are created by 
other functions. If an error occurs, such as file not found, the user is 
asked to supply an alternate pathname, unless this is overridden by options. 

When the caller is finished with the stream, it should close the file by 
using the :close operation or the close function. The with-open-file special 
form does this automatically, and so is usually preferred. open should be 
used only when the control structure of the program necessitates opening 
and closing of a file in some way more complex than the simple way 
provided by with-open-file. Any program that uses open should set up 
unwind-protect handlers to close its files in the event of an abnormal exit. 



142 

Reference Guide to Streams, Files, and 110 August 1986 

See the special form unwind-protect in Symbolics Common Lisp: Language 
Dictionary. 
For example: 

(defun bliss-compile (file) 
(setq file (fs:parse-pathname file)) 
(with-open-file (str "comet:usrd$:[mydir]tempfile.com" 

':direction ':output 
':characters t 
, : submi t t) 

(send str ':line-out (format nil "$ BLISS -A" (send file ':string-for-host))) 

The options used when opening a file are normally alternating keywords 
and values, like any other function that takes keyword arguments. The 
file-opening options control whether the stream is for input from a existing 
file or output to a new file, whether the file is text or binary, and so on. 

The following option keywords are recognized. Unless otherwise noted, 
they are supported generically. Additional keywords can be implemented by 
particular file system hosts. 

:byte-size 

:characters 

The possible values are nil (the default), a number in the 
range 1 to 16 inclusive, which is the number of bits per 
byte, and : default, which means that the file system 
should choose the byte size based on attributes of the 
file. If the file is being opened as characters, nil selects 
the appropriate system-dependent byte size for text files; 
it is usually not useful to use a different byte size. If 
the file is being opened as binary, nil selects the default 
byte size of 16 bits. The preferred way to specify the 
byte-size for files is to use the :element-type keyword. 

This option specifies whether the objects contained in the 
file are characters or fumums. The preferred way to 
specify character files is to use the :element-type 
keyword. 

Value 

t 

nil 

: default 

Meaning 

Specifies that the file contains 
character objects. This is the default. 

Specifies that the file is a binary file. 

On output, :default is always t, as 
character files are created by default. 
On input, :default specifies that the 



August 1986 

:deleted 

:direct 

:direction 

143 

Files 

file system determine from the file 
properties for LMFS files and the 
canonical type definition for other files 
what type of objects are stored in the 
file; then open opens it in the 
appropriate mode. 

The default is nil. If t is specified, and the file system 
has the concept of deleted but not expunged files, it is 
possible to open a deleted file. Otherwise deleted files 
are invisible. 

The default is nil. t specifies a direct access stream. 
See the section "Direct Access File Streams", page 13. 

The :direction option allows the following values: 

: input 

: output 

:block 

:io 

:probe 

:probe-link 

The file is being opened for input. 
This is the default. 

The file is being opened for output. 

This is a special case of :output that 
is used for the FEP File System. 

The file is being opened for intermixed 
input and output. Bidirectionality is 
supported only if the stream is to be a 
direct stream, that is, :direct t is 
given as well. See the section "Direct 
Access File Streams", page 13. 

A "probe" opening; no data are to be 
transferred, and the file is being 
opened to determine whether the file 
exists, or to gain access to or change 
its properties. Returns the true name 
of the object at the end of a link or 
chain of links. If the value of 
:direction is :probe and the value of 
:error is nil, then open will return the 
error object instead of nil. If the 
value of :if-does-not-exist is nil, the 
error object will still be returned. 

The same as :probe except that links 
are not chased. Returns the true name 



144 

Reference Guide to Streams, Files, and 110 August 1986 

: element-type 

of the object named, even if it is a 
link. 

:probe-directory The pathname is being opened to find 
out about the existence of its directory 
component. Otherwise, the semantics 
are the same as :probe. If the 
directory is not found, a file lookup 
error is signalled. 

nil This is the same as probe. No data 
are transferred, and the file is being 
opened only to gain access to or 
change its properties. If the value of 
:direction is nil and the value of 
:error is nil, then open will return the 
error object instead of nil. If the 
value of :if-does-not-exist is nil, the 
error object will still be returned. 

This argument specifies the type of Lisp object 
transferred by the stream. Anything that can be 
recognized as being a finite subtype of character or 
integer is acceptable. In particular, the following types 
are recognized: 

string-char 

character 

The object being transferred is a 
string-character. The functions 
read-char and/or write-char can be 
used on the stream. This is the 
default. 

The object being transferred is any 
character, not just a string-character. 
The functions read-char and/or 
write-char can be used on the stream. 

(unsigned-byte n)The object being transferred is an 
unsigned byte (a non-negative integer) 
of size n. The functions read-byte 
and/or write-byte can be used on the 
stream. 

unsigned-byte The object being transferred is an 
unsigned byte (a non-negative integer) 
whose size is determined by the file 



August 1986 

:error 

'i 

145 

Files 

system. The functions read-byte 
and/or write-byte can be used on the 
stream. 

(signed-byte n) The object being transferred is a 
signed byte of size n. The functions 
read-byte and/or write-byte can be 
used on the stream. 

signed-byte The object being transferred is a 
signed byte whose size is determined 
by the file system. The functions 
read-byte and/or write-byte can be 
used on the stream. 

bit The object being transferred is a bit 
(values 0 and 1). The functions 
read-byte and/or write-byte can be 
used on the stream. 

(mod n) The object being transferred is a non
negative integer less than n. The 
functions read-byte and/or write-byte 
can be used on the stream. 

: default On output, :default is always 
character, as character files are 
created by default. On input, :default 
specifies that the file system determine 
from the file properties for LMFS files 
and the canonical type definition for 
other files what type of objects are 
stored in the file; then open opens it 
in the appropriate mode. 

This option controls what happens when any 
fs:file-operation-failure condition is signalled. t is the 
recommended value for this option. The others have 
been provided for compatibility with previous systems to 
aid in converting programs. See the section "File-System 
Errors" in Symbolics Common Lisp: Language Concepts. 

The option has three possible values: 

Value Meaning 

t Signals the error normally. t is both 



146 

Reference Guide to Streams, Files, and I/O August 1986 

nil 

:reprompt 

the default and the recommended 
value. 

Returns the error object. If the value 
of either :if-exists or :if-does-not-exist 
is nil, the error object is still returned. 

Reprompts the user for another file 
name and tries open again. When you 
use this option, remember that the 
:pathname message sent to the stream 
finds out what file name was really 
opened. The alternative to :reprompt 
is to use :error t and set up a 
condition handler for 
fs:file-operation-failure that explains 
the condition and prompts the user. 

:estimated-Iength The value of the :estimated-Iength option can be nil (the 
default), which means there is no estimated length, or a 
number of bytes indicating the estimated length of a file 
to be written. Some file systems use this to optimize 
disk allocation. 

:if-does-not-exist Specifies the action to be taken if the file does not 
already exist. The following values are allowed: 

:error 

:create 

nil 

Signals an error. This is the default if 
the :direction is : input, :probe, or any 
of the :probe-like modes, or if the 
:if-exists argument is : overwrite, 
: truncate, or :append. 

Creates an empty file with the 
specified name, and then proceeds as if 
it had already existed. This is the 
default if the :direction is :output and 
the :if-exists argument is anything but 
: overwrite, : truncate, or :append. 

Does not create a file or even a 
stream. Instead, simply returns nil to 
indicate failure. This is overridden 
when the value of :direction is either 
nil or :probe and the value of :error is 
nil. In this case, the error object is 
returned instead of nil. 



August 1986 

: if-exists 

147 

Files 

Specifies the action to be taken if the :direction is 
:output and a file of the specified name already exists. 
If the direction is :input or :probe (or any of the 
:probe-like directions), this argument is ignored. 

The following values are allowed: 

:error 

: new-version 

:rename 

Signals an error. This is the default 
when the version component of the 
filename is not either :newest or 
:unspecific. 

Creates a new file with the same file 
name but a larger version number. 
This is the default when the version 
component of the filename is either 
:newest or :unspecific. File systems 
without version numbers can choose to 
implement this by effectively treating 
it as :supersede. 

Renames the existing file to some 
other name, and then creates a new 
file with the specified name. On most 
file systems, this renaming happens at 
the time of a successful close. 

:rename-and -delete 

: overwrite 

: truncate 

Renames the existing file to some 
other name and then deletes it (but 
does not expunge it, on those systems 
that distinguish deletion from 
expunging). Then creates a new file 
with the specified name. On most file 
systems, this renaming happens at the 
time of a successful close. 

The existing file is used, and output 
operations on the stream destructively 
modify the file. The file pointer is 
initially positioned at the beginning of 
the file; however, the file is not 
truncated back to length zero when it 
is opened. 

The existing file is used, and output 



148 

Reference Guide to Streams, Files, and 110 August 1986 

:append 

:supersede 

nil 

operations on the stream destructively 
modify the file. The file pointer is 
initially positioned at the beginning of 
the file; at that time, the file is 
truncated to length zero, and disk 
storage occupied by it is freed. 

The existing file is used, and output 
operations on the stream modify the 
file. The file pointer is initially 
positioned at the current end of the 
file. 

Supersedes the existing file. If 
possible, the file system does not 
destroy the old file until the new 
stream is closed, against the possibility 
that the stream will be closed in 
"abort" mode. This differs from 
:new-version in that :supersede 
creates a new file with the same name 
as the old one, rather than a file name 
with a higher version number. 

Does not create a file or even a 
stream. Instead, simply returns nil to 
indicate failure. This is overridden 
when the value of :direction is either 
nil or :probe and the value of :error is 
nil. In this case, the error object is 
returned instead of nil. 

:preserve-dates The default is nil. If t is specified, the file's reference 
and modification dates are not updated. 

:raw The value can be nil (the default) or t, which disables all 
character set translation in ASCII files. 

:submit This is an option to open used to get batch jobs. 
Currently, this is implemented only for V AXNMS. When 
the file you are writing is closed, the file is submitted as 
a batch job by using this option. 

:super-image The value can be nil (the default), or t which disables 
the special treatment of Rubout in ASCII files. Normally 
Rubout is an escape that causes the following character 



August 1986 

:temporary 

149 

Files 

to be interpreted specially, allowing all characters from 0 
through 376 to be stored. This applies to PDP-IO file 
servers only. 

The default is nil. If t is specified, the file is marked as 
temporary, if the file system has that concept. 

close stream &key abort Function 
stream is closed and no further input or output operations can be 
performed on it. However, certain inquiry operations can still be 
performed. It is permissible to close an already closed stream. 

If the :abort parameter is non-nil (the default is nil), it indicates an 
abnormal termination of the use of the stream. An attempt is made to 
clean up any side effects of having created the stream. For example, if the 
stream performs output to a file that was newly created when the stream 
was created, then if possible the file is deleted and any previously existing 
file is not superseded. 

zl:close stream &optional abortp Function 
Sends the :close message to stream. 

The abortp argument is normally not supplied. If it is t, we are abnormally 
exiting from the use of this stream. If the stream is outputting to a file, 
and has not been closed already, the stream's newly created file is deleted, 
as if it were never opened in the first place. Any previously existing file 
with the same name remains, undisturbed. 

zl:renamef file new-name &optional (error-p t) Function 
Renames one file. The Rename File (M-X) command in the editor uses this 
function. 

file can be a pathname, a string, or a stream that is open to a file. The 
specified file is renamed to new-name (a pathname or string). If error-p is 
t, when an error occurs it is signalled as a Lisp error. If error-p is nil and 
an error occurs, the error object is returned; otherwise the three values 
described below are returned. 

file must refer to a unique file; it cannot contain any wild components. 
new-name can contain wild components, which are eliminated after merging 
the defaults by means of :translate-wild-pathname. zl:renamef first 
attempts to open file. When that has happened successfully, it parses 
new-name and merges it (using fs:merge-pathnames) against the 
link-opaque truename of file and version of :newest. This has the following 
result for version numbers. 



150 

Reference Guide to Streams, Files, and 110 August 1986 

Source 
>foo>a. b.newest 
>foo>a. b.newest 

Target 

>bar> 
>bar>x 

Result 
Retains the version number 
Makes a new version of >bar>x. b 

The defaults for new-name come from the link-opaque true name of file. 
For systems without links, this is indistinguishable from the truename. 
Otherwise, the link-opaque true name depends on whether file contains an 
:oldest or :newest version. If it does not and if it is fully defaulted, with 
no wild components, the pathname is its own link-opaque truen3;me. If a 
pathname x contains an :oldest or :newest version, the link-opaque 
true name is the pathname of the file or link that corresponds to x, with the 
version number filled in. For example, renaming the LMFS file >a>p1 . 1 i sp 
to >b> results in >b>p1 . 1 i sp, with the version of >a>p1 . 1 i sp. newest 
inherited. This is so whether >a>p1 . 1 i sp . newest is a real file, a link, or a 
rename-through link. 

zl:renamef returns three values: 

1. The pathname produced by merging and defaulting new-name. This 
is the attempted result of the renaming. 

2. The pathname of the object that was actually renamed. This might 
not be the same as file. For example, file might have an :oldest or 
:newest version, or LMFS rename-through links might be involved. 
This pathname never has an :oldest or :newest version. 

3. The actual pathname that resulted from the renaming. This might 
not be the same as new-name. For example, new-name might have an 
:oldest or :newest version, or LMFS create-through links might be 
involved. 

The :rename message to streams and pathnames returns the second and 
third of these values. 

Examples: 

This example is as simple as possible. Using LMFS, on host johnny, with 
no links involved: 

(renamef "johnny:>a>foo.lisp" "bar") => 
#<LMFS-PATHNAME "johnny:>a>bar.lisp"> 
#<LMFS-PATHNAME "johnny:>a>foo.lisp.17"> 
#<LMFS-PATHNAME "johnny:>a>bar.lisp.1"> 

This example is as complex as possible. Using LMFS, on host eddi e, with 
links 



August 1986 

>abel >moe. 1 i sp. 4 => >baker> 1 arry. 1 i sp (rename-through) (latest) 
>baker>larry.lisp.4 => 

>charl i e>sam. 1 i sp. 19 (not rename- or create-through) (latest) 
>davi d>j erry. 1 i sp. 5 => >earl >ted. 1 i sp (create-through) (latest) 

(renamef "eddie:>abel>moe.lisp.4" "eddie:>david>jerry") => 
#<LMFS-PATHNAME "eddie:>david>jerry.lisp"> 
#<LMFS-PATHNAME "eddie:>baker>larry.lisp.4"> 
#<LMFS-PATHNAME "eddie:>earl>ted.lisp.1"> 

151 

Files 

zl:deletef file &optional (error-p t) Function 
Deletes the specified file. file can be a pathname or a stream that is open 
to a file. If error-p is t, then if an error occurs it is signalled as a Lisp 
error. If error-p is nil and an error occurs, the error object is returned; 
otherwise t is returned. 

undelete-file pathname &optional (error-p t) Function 
Undeletes the specified file. file can be a pathname or a stream that is 
open to a file. If error-p is t and an error occurs, it is signalled as a Lisp 
error. If error-p is nil and an error occurs, the error object is returned; 
otherwise t is returned. undelete-file is like zl:deletef except that it 
undeletes the file instead of deleting it. undelete-file is meaningful only 
for files in file systems that support undeletion, such as TOPS-20 and the 
Lisp Machine File System. 

zl:undeletef file &optional (error-p t) Function 
Undeletes the specified file. file can be a pathname or a stream that is 
open to a file. If error-p is t and an error occurs, it is signalled as a Lisp 
error. If error-p is nil and an error occurs, the error. object is returned; 
otherwise t is returned. zl:undeletef is like zl:deletef except that it 
undeletes the file instead of deleting it. zl:undeletef is meaningful only 
for files in file systems that support undeletion, such as TOPS-20 and the 
Lisp Machine File System. 

fs:file-properties pathname &optional (error-p t) Function 
Returns a disembodied property list for a single file (compare this to 
fs:directory-list). The car of the returned list is the true name of the file 
and the cdr is an alternating list of indicators and values. If error-p is t 
(the default) a Lisp error is signalled. If error-p is nil and an error occurs, 
the error object is returned. 

fs:change-file-properties pathname error-p &rest properties Function 
Some of the properties of a file can be changed, such as its creation date 
or its author. The properties that can be changed depend on the host file 
system; a list of the changeable property names is the :settable-properties 



152 

Reference Guide to Streams, Files, and 110 August 1986 

property of the file system as a whole, returned by fs:directory-list. See 
the function fs:directory-list, page 161. 

fs:change-file-properties changes one or more properties of a file. 
pathname names the file. The properties arguments are alternating 
keywords and values. If the error-p argument is t, a Lisp error is 
signalled. If error-p is nil and an error occurs, the error object is returned. 
If no error occurs, fs:change-file-properties returns t. 

zl:viewf pathname &optional (stream zl:standard-output) leader Function 
Prints the file named by pathname onto the stream. (The optional third 
argument is passed as the leader argument to stream-copy-until-eof.) The 
name zl:viewf is analogous with zl:deletef, zl:renamef, and so on. Note: 
zl:viewf should not be used for copying files; its output is not the same as 
the contents of the file (for example, it does a :fresh-line operation on the 
stream before printing the file). 

zl:copyf from-path to-path &key (characters ':default) (byte-size nil) Function 
(copy-creation-date t) (copy-author t) 

(report-stream nil) (create-directories ':query) 
Copies one file to another. Copy File (M-H) in the editor uses this function. 

from-path and to-path are the source and destination pathnames, which can 
be file specifications. from-path must refer to a unique file; it cannot 
contain any wild components. to-path can contain wild components, which 
are eliminated after merging the defaults by means of 
:translate-wild-pathname. zl:copyf first attempts to open from-path. 
When that has happened successfully, it parses to-path and merges it (using 
fs:merge-pathnames) against the link-opaque truename of from-path and 
version of :newest. The output file specified by to-path is opened with 
:if-exists :supersede. The processing of to-path has the following result 
for version numbers. 

Source 
>foo>a. b.newest 
>foo>a.b.newest 

Target 
>bar> 
>bar>x 

Result 
Retains the version number 
Makes a new version of >bar>x. b 

The defaults for to-path come from the link-opaque truename of from-path. 
For systems without links, this is indistinguishable from the truename. 
Otherwise, the link-opaque true name depends on whether from-path 
contains an :oldest or :newest version. If it does not and if it is fully 
defaulted, with no wild components, the pathname is its own link-opaque 
truename. If a pathname x contains an :oldest or :newest version, the 
link-opaque true name is the pathname of the file or link that corresponds 
to x, with the version number filled in. For example, copying the LMFS 
file >a>p1. 1 ; sp to >b> results in >b>p1 . 1 ; sp, with the version of 



153 

August 1986 Files 

>a>p1 . 1 i sp . newest inherited. This is so whether >a>p1 . 1 i sp . newest is a 
real file, a link, or a rename-through link. 

By default, zl:copyf copies the creation date and author of the file. 

Following is a description of the other options: 

: characters Possible values: 
: default 

t 

nil 

zl:copyf decides whether this is a 
binary or character transfer according 
to the canonical type of from-path. 
You do not need to supply this 
argument for standard file types. For 
types that are not known canonical 
types, it opens from-path in :default 
mode. In that case, the server for the 
file system containing from-path makes 
the character-or-binary decision. 

Specifies that the transfer must be in 
character mode. 

Specifies that the transfer must be 
binary mode (in this case, you must 
supply byte-size if using a byte size 
other than 16). 

:byte-size Specifies the byte size with which both files are opened 
for binary transfers. You must supply : byte-size when 
:characters is nil and the byte size is other than 16. 
Otherwise, zl:copyf determines the byte size from the 
file type for from-path. When from-path is a binary file 
with a known canonical type, it determines the byte size 
from the : binary-file-byte-size property of the type. 
When the file does not have a known type, it requests 
the byte size for from-path from the file server. When 
the server for the file system containing from-path 
cannot supply the byte size, it assumes that the byte size 
is 16. 

:report-stream When :report-stream is nil (the default), the copying 
takes place with no messages. Otherwise, the value must 
be a stream for reporting the start and successful 
completion of the copying. The completion message 
contains the true name of to-path. 



154 

Reference Guide to Streams, Files, and I/O August 1986 

:crea te-directories 
Determines whether directories should be created, if 
needed, for the target of the copy. Permissible values 
are as follows: 
t Try to create the target directory of 

the copy and all superiors. Report 
directory creation to 
zl:standard-output. 

nil 

: query 

Do not try to create directories. If the 
directory does not exist, handle this 
condition like any other error. 

If the directory does not exist, ask 
whether or not to create it. This is 
the default. 

zl:probef pathname Function 
Returns nil if there is no file named pathname, or signals an error if 
anything else goes wrong (such as sys:host-not-responding). Otherwise, 
zl:probef returns a pathname that is the true name of the file, which can 
be different from pathname because of file links, version numbers, and so 
on. 

fs:close-all-files Function 
Closes all open files. This is useful when a program has run wild opening 
files and not closing them. It closes all the files in :abort mode, which 
means that files open for output will be deleted. U sing this function is 
dangerous, because you might close files out from under various programs 
such as Zmacs and Zmail; only use it if you have to and if you feel that 
you know what you're doing. 

fs:*remember-passwords* Variable 
If not nil, causes the first password for each file access path to be 
remembered. This suppresses prompting for passwords on subsequent 
attempts by the same user to use that access path. The default value is 
nil. 

Note that if you set this variable in an init file, your first login password, 
typed before the init file is loaded, is not remembered. 

Caution: Remembered passwords are accessible. Even after you log out 
the remembered password for each access path is accessible. If password 
security is important, you probably should not set this variable to a non-nil 
value. 



155 

August 1986 Files 

5.1.1 Loading Flies 

To load a file is to read through the file, evaluating each form in it. Programs 
are typically stored in files; the expressions in the file are mostly special forms 
such as defun and defvar that define the functions and variables of the program. 

Loading a compiled (or BIN) file is similar, except that the file does not contain 
text but rather predigested expressions created by the compiler that can be loaded 
more quickly. 

These functions are for loading single files. There is a system for keeping track 
of programs that consist of more than one file: See the section "Maintaining 
Large Programs" in Program Development Utilities. 

zl:load pathname &optional pkg nonexistent-ok-flag dont-set-default-p Function 
no-msg-p 

Loads the file named by pathname into the Lisp environment. The file can 
be either a Lisp source file or a binary file. If the pathname specifies the 
type, it is used; otherwise, zl:load looks first for a binary file, then for a 
Lisp file. Normally, the file is read into its "home" package, but pkg can 
be supplied to specify the package. pkg can be either a package or the 
name of a package as a string or a symbol. If pkg is not specified, zl:load 
prints a message saying what package the file is being loaded into. 

nonexistent-ok controls the action of zl:load if none of the files is found. If 
it is nil (the default), you are prompted for a new file unless the 
corresponding condition (fs:multiple-file-not-found) is handled. If it is not 
nil, it is the returned value if the file is not found. Other reasons for not 
finding the file, such as the host being down or the directory not existing, 
are signalled as different errors. For example, zl:load fails when the host 
is down even when you specified the nonexistent-ok argument. 

pathname can be anything acceptable to fs:parse-pathname. See the 
section "Naming of Files", page 51. pathname is defaulted from 
fs:load-pathname-defaults, which is the set of defaults used by zl:load and 
similar functions. See the variable fs:load-pathname-defaults, page 75. 
Normally zl:load updates the pathname defaults from pathname, but if 
dont-set-default is specified this is suppressed. 

If an ITS pathname contains an FNl but no FN2, zl:load first looks for the 
file with an FN2 of BIN, then it looks for an FN2 of >. For non-ITS file 
systems, this generalizes to: if pathname specifies a type and/or a version, 
zl:load loads that file. Otherwise it first looks for a binary file, then a 
Lisp file, in both cases looking for the newest version. 

If the value of no-msg-p is t (it defaults to nil), then zl:load does not print 
out the message that it usually prints (that is, the message that tells you 
that a certain file is being loaded into a certain package). 



156 

Reference Guide to Streams, Flies, and 110 August 1986 

zl:readfile pathname &optional pkg no-msg-p Function 
zl:readfile is the version of zl:load for text files. It reads and evaluates 
each expression in the file. As with zl:load, pkg can specify what package 
to read the file into. Unless no-msg-p is t, a message is printed indicating 
what file is being read into what package. The defaulting of pathname is 
the same as in zl:load. 

5.1.2 File Attribute Lists 

Any text file can contain an attribute list that specifies several attribute,s of the 
file. The functions that load files, the compiler, and the editor look at this 
attribute list. File attribute lists are especially useful in program source files, 
that is, a file that is intended to be loaded (or compiled and then loaded). 

If the first nonblank line in the file contains the three characters" -lk-", some 
text, and" -lk-" again, the text is recognized as the file's attribute list. Each 
attribute consists of the attribute name, a colon, and the attribute value. If there 
is more than one attribute they are separated by semicolons. An example of such 
an attribute list is: 

; -lk- Mode:Lisp; Syntax:Zetalisp; Package:User; Base:10 -lk-

The semicolon makes this line look like a comment rather than a Lisp expression. 
This example defines four attributes: mode, syntax, package, and base. 

The term attribute list applies not only to the -*- line in character files, but also to 
an analogous data structure in compiled files. For example, in both cases the 
attribute list tells zl:load what package to load the file into. 

An attribute name is made up of letters, numbers, and otherwise-undefined 
punctuation characters such as hyphens. An attribute value can be such a name, 
or a decimal number, or several such items separated by commas. Spaces can be 
used freely to separate tokens. Upper and lowercase letters are not distinguished. 
There is no quoting convention for special characters such as colons and 
semicolons. File attribute lists are different from Lisp property lists; attribute 
lists correspond to the text inside a file, while file properties are characteristics of 
the file itself, such as the creation date. 

The file attribute list format actually has nothing to do with Lisp; it is just a 
convention for placing some information into a file that is easy for a program to 
interpret. 

Symbolics Common Lisp has a parser for file attribute lists that creates some Lisp 
data structure that corresponds to the file attribute list. When a file attribute list 
is read in and given to the parser (the fs:read-attribute-list function), it is 
converted into Lisp objects as follows: Attribute names are interpreted as Lisp 
symbols, and interned on the keyword package. Numbers are interpreted as Lisp 
fumums, and are read in decimal. If an attribute value contains any commas, 
then the commas separate several expressions that are formed into a list. 



157 

August 1986 Files 

When a file is edited, loaded, or compiled, its file attribute list is read in and the 
attributes are stored on the attribute list of the generic pathname for that file, 
where they can be retrieved with the :get and :plist messages. See the section 
"Generic Pathnames", page 75. So, to examine the attributes of a file, you usually 
use messages to a pathname object that represents the generic pathname of a file. 
Note that there other attributes there, too. The function fs:read-attribute-list 
reads the file attribute list of a file and sets up the attributes on the generic 
pathname; editing, loading, or compiling a file calls this function, but you can call 
it yourself if you want to examine the attributes of an arbitrary file. 

If the attribute list text contains no colons, it is an old EMACS format, containing 
only the value of the Mode attribute. 

The following are some of the attribute names allowed and what they mean. 

Mode 

Package 

Base 

Syntax 

Lowercase 

The editor major mode to be used when editing this file. This 
is typically the name of the language in which the file is 
written. The most common values are Lisp and Text. 

The name of the package into which the file is to be loaded. 
See the section " The Need for Packages" in Symbolics Common 
Lisp: Language Concepts. 

The number base in which the file is written. This affects both 
zl:ibase and zl: base, since it is confusing to have different 
input and output bases. The most common values are 8 and 10. 
If a file has no Base attribute, the value of the Syntax attribute 
affects the default of Base. See the Syntax attribute below. 

The syntax of the programs contained in the file can be either 
Zetalisp or Common-Lisp. If a file has no Syntax attribute, the 
value of the Base attribute affects the default of Syntax. 

• If there is a Base attribute, but no Syntax attribute, the 
syntax is assumed to be Zetalisp. 

• If there is a Syntax: Common-Lisp attribute, and no Base 
attribute, the base is assumed to be 10. 

• If there is neither a Base nor a Syntax attribute, Base is 
assumed to be the default base (10) and the syntax is 
assumed to be Zetalisp. Furthermore, a warning is issued 
(upon beginning an editing session on the file) to the 
effect that there is neither a Syntax nor a Base attribute. 
You should edit your program accordingly. 

If the attribute value is not nil, the file is written in lowercase 



158 

Reference Guide to Streams, Files, and 110 August 1986 

Fonts 

letters and the editor does not translate to uppercase. (The 
editor does not translate to uppercase by default unless the user 
selects "Electric Shift Lock" mode.) 

The attribute value is a list of font names, separated by 
commas. The editor uses this for files that are written in more 
than one font. 

Backspace If the attribute value is not nil, the file can contain backspaces 
that cause characters to overprint on each other. The default is 
to disallow overprinting and display backspaces the way other 
special function keys are displayed. This default is to prevent 
the confusion that can be engendered by overstruck text. 

Patch-File If the attribute value is not nil, the file is a "patch file". When 
it is loaded, the system does not complain about function 
redefinitions. Furthermore, the remembered source file names 
for functions defined in this file are changed to this file, but are 

. left as whatever file the function came from originally. In a 
patch file, the defvar special-form turns into zl:defconst; thus 
patch files always reinitialize variables. 

YQu are free to define additional file attributes of your own. However, you should 
choose names that are different from all the names above, and from any names 
likely to be defined by anybody else's programs, to avoid accidenta~ name conflicts. 

The function fs:pathname-attribute-list is generally the most useful function for 
obtaining a file's attributes. 

fs:pathname-attribute-list pathname Function 
Returns the attribute list for a file designated by pathname. 

fs:read-attribute-list pathname stream Function 
Parses file attribute lists. pathname should be a pathname object (not a 
string or namelist, but an actual pathname); usually it is a generic 
pathname. See the section "Generic Pathnames", page 75. 

stream should be a stream that has been opened and is pointing to the 
beginning of the file whose file attribute list is to be parsed. This function 
reads from the stream until it gets the file attribute list, parses it, puts 
corresponding attributes onto the attribute list of pathname, and finally sets 
the stream back to the beginning of the file by using the :set-pointer file 
stream operation. See the message : set-pointer, page 43. 

The obsolete name of this function is fs:file-read-property-list. 

Programs in Symbolics Common Lisp generally react to the presence of attributes 



159 

August 1986 Files 

on a file's file attribute list by examining the attribute list in the generic 
pathname's property list. However, file attributes can also cause special variables 
to be bound whenever Lisp expressions are being read from the file-when the file 
is being loaded, when it is being compiled, when it is being read from by the 
editor, and when its QFASL file is being loaded. This is how the Package and 
Base attributes work. You can also deal with attributes this way, by using the 
following function. 

fs:file-attribute-bindings pathname Function 
Examines the property list of pathname and finds all those property names 
that have file-attribute bindings. Its obsolete name is 
fs:file-property-bindings. 

Each such pathname-property name specifies a set of variables to bind and 
a set of values to which to bind them. This function returns two values: a 
list of all the variables, and a list of all the corresponding values. Usually 
you call this function on a generic pathname whose attribute list has been 
parsed with fs:read-attribute-list. Then you use the two returned values 
as the first two subforms to a zl:progv special form. Inside the body of 
the zl:progv the specified bindings will be in effect. 

Usually, pathname is a generic pathname. It can also be a locative, in 
which case it is interpreted to be the property list itself. 

Of the standard names, the following ones have file-attribute bindings, with 
the following effects: 

• zl:package binds the variable zl:package to the package. See the 
variable zl:package in Symbolics Common Lisp: Language Dictionary. 

• zl: base binds the variables zl: base and zl:ibase to the value. See the 
variable zl: base in Symbolics Common Lisp: Language Dictionary. 
See the variable zl:ibase in Symbolics Common Lisp: Language 
Dictionary. 

• fs:patch-file binds fs:this-is-a-patch-file to the value. 

Any properties whose names do not have file-attribute bindings are ignored 
completely. 

You can also add your own pathname-property names that affect bindings. 
If an indicator symbol has a file-attribute binding, the value of that 
property is a function that is called when a file with a file attribute of that 
name is going to be read from. The function is given three arguments: the 
file pathname, the attribute name, and the attribute value. It must return 
two values: a list of variables to be bound and a list of values to bind them 
to. Both these lists must be freshly consed (using list or ncons). The 
function for the zl: base keyword could have been defined by: 



160 

Reference Guide to Streams, Files, and VO August 1986 

(defun (:base file-attribute-bindings) (file ignore bse) 
(if (not (and (typep bse 'fixnum) 

(> bse 1) 
« bse 37.») 

(ferror nil "File -A has an illegal -*- Base:-s -*-" 
file bse» 

(values (list 'base 'ibase) (list bse bse») 

Finally, the function sys:dump-forms-to-file offers, among other things, the option 
of manipulating the attribute list of a binary iIle. See the section "Putting Data 
in Compiled Code Files", page 223. 

For example, the following form converts a Lisp file to a binary iIle, without 
compiling. The attribute list is obtained from the input stream and cached in the 
generic pathname. The function fs:file-attribute-bindings obtains the list of 
variables to bind from the generic pathname; these bindings are necessary to 
ensure that the file is read in the right base, syntax, and package. The zl:progv 
actually accomplishes the binding of the variables. 

(defun binify-file-internal (input-file output-file) 
(setq input-file (fs:parse-pathname input-file» 
(with-open-file (input input-file :direction :input :characters t) 

(let* «generic-pathname (send input-file :generic-pathname» 
(attribute-list (fs:read-attribute-list generic-pathname input») 

(multiple-value-bind (variables-list values-list) 
(fs:file-attribute-bindings generic-pathname) 

(progv variables-list values-list 
(loop with eof-val = (ncons 'eof) 

for form = (read input eof-val) 
while (neq form eof-val) 
collect form into forms 
finally 

(sys:dump-forms-to-file output-file forms 
attribute-list»»») 

5.2 Accessing Directories 

To understand the functions in this section, it is imperative that you read some 
other documentation. See the section "Naming of Files", page 51. 



161 

August 1986 Files 

5.2.1 Functions for Accessing Directories 

fs:directory-list pathname &rest options Function 
,Finds all the files that match pathname and returns a freshly consed list 
with one element for each file. options are a list of keywords, with no 
values, that modify the operation. Each element in the returned list is a 
list whose car is the pathname of the file and whose cdr is a list of the 
properties of the file; thus the element is a "disembodied" property list and 
get can be used to access the file's properties. The car of one ~lement is 
nil; the properties in this element are properties of the file system as a 
whole rather than of a specific file. 

The matching is done using both host-independent and host-dependent 
conventions. Any component of pathname that is :wild matches anything; 
all files that match the remaining components of pathname are listed 
regardless of their values for the wild component. In addition, there is 
host-dependent matching. Typically, this uses the asterisk character (*) as 
a wild-card character. A pathname component that consists of just a lie 

matches any value of that component (the same as :wild). all, appearing in 
a pathname component that contains other characters, matches any 
character (on ITS) or any string of characters (on TOPS-20, LMFS, UNIX, 
and Multics) in the starred positions and requires the specified characters 
otherwise. Other hosts follow similar but not necessarily identical 
conventions. 

The options are keywords that modify the operation. These keywords do 
not take values. The following options are currently defined: 

:noerror 

: deleted 

:no-extra-info 

:sorted 

If a file-system error (for example, no such directory) 
occurs during the operation, an error is normally 
signalled and the user is asked to supply a new 
pathname. However, if :noerror is specified and an 
error occurs, an error object describing the error is 
returned as the result of fs:directory-list. This is 
identical to the :noerror option to open. 

This is for file servers with soft deletion, such as 
TOPS-20, LMFS, and FEP. It specifies that deleted (but 
not yet expunged) files are to be included in the 
directory listing. Normally, they are not included. 

This results in only enough information for listing the 
directory as in Dired. 

This causes the directory to be sorted so that at least 
multiple versions of a file are consecutive in increasing 
version number. 



162 

Reference Guide to Streams, Files, and VO August 1986 

The properties that might appear in the list of property lists returned by 
fs:directory-list are host-dependent to some extent. The following 
properties are defined for most file servers. 

:length-in-bytes The length of the file expressed in terms of the basic 
units in which it is written (characters in the case of a 
text file and binary bytes for a binary file). 

: byte-size The number of bits in a byte. 

:length-in-blocks The length of the file in terms of the file system's unit 
of storage allocation. 

: block-size 

:creation-date 

The number of bits in a block. 

The date the file was created, as a universal time. This 
does not necessarily mean the time that the file itself 
was created, but rather, the time that the data in it were 
created. This property corresponds to the concept of 
"modification date" on many systems. See the section 
"Dates and Times" in Programming the User Interface, 
Volume B. 

:modification-date 

: directory 

The most recent time at which this file was modified, 
expressed in Universal Time. This is the same as the 
creation date if the file has been opened for appending. 
Operations such as renaming and property changing 
update this property, but do not update creation date. 
The dumper, for instance, is driven off this property. 
See the section "Dates and Times" in Programming the 
User Interface, Volume B. 

A boolean. If t, the object in question is a directory, as 
opposed to a file or a link. This property can only be 
returned as t in a hierarchical file system. 

:auto-expunge-interval 
For directories, the time interval between automatic 
expungings of this directory. If, on a file system that 
supports this feature (such as TOPS-20 or LMFS) , a 
directory is never automatically expunged, the value of 
the property will be nil. The time interval, when 
supplied, is expressed as a positive integer, in seconds. 

:last-expunge-time 
For directories, the date that the directory was last 
expunged. I t is nil if the directory has never been 
expunged. 



163 

August 1986 Files 

:reference-date The most recent date that the file was used, as a 
universal time. 

: author The name of the person who created the data in the file, 
as a string. 

: account A string. Highly system-dependent in format. 

:deleted A boolean. t for a "deleted" file, in file systems 
supporting "soft deletion". 

:dont-delete A boolean. If it is t, an error results if an attempt is 
made to delete the file. 

:dont-dump A boolean. Suppresses backup dumping. 

:dont-reap A boolean. A flag used by directory maintenance tools. 

: dumped A boolean. t if and only if the file has been dumped to 
backup tape. 

:generation-retention-count 

: link-to 

: offline 

A number that specifies how many versions of a file 
should be saved. 

A string. This is the target pathname of a link, as a 
string. 

A boolean. t if the file has been moved to archival 
storage. 

:physical-volume A string. The volume on which the file is mounted. 

:protection 

:reader 

A string. What protections have been set for the file. 

A string. The last person to have read the file. 

:settable-properties 
A list of the properties that may be changed for the file 
using fs:change-file-properties. 

:temporary A boolean. t if the file is temporary. 

fs:multiple-file-plists filenames &rest options Function 
For each file in filenames, fs:multiple-file-plists returns a corresponding 
property list. For example: 

(fs:multiple-file-plists 
(list "sys: doc; str; str1.sar" "sys: sys2; table.lisp")) => 



164 

Reference Guide to Streams, Files, and 110 August 1986 

«#P"SYS:SYS2;TABLE.LISP.NEWEST" :TRUENAME 
#P"Q:>rel-7>sys>sys2>table.lisp.43" :LENGTH 97847 :AUTHOR "Moon" 
:BYTE-SIZE NIL :CREATION-DATE 2729141698) 
(#P"SYS:DOC;STR;STR1.SAR.NEWEST" :TRUENAME 
#P"Q:>rel-7>sys>doc>str>str1.sar.45" :LENGTH 15625 :AUTHOR "nancy" 
:BYTE-SIZE NIL :CREATION-DATE 2728753545» 

options should either be :characters or : element-type, and it specifies 
whether the objects contained in the file are characters or IlXIlums. The 
possible values for :characters are: 

Value 

t 

nil 

: default 

Meaning 

Specifies that the file contains character objects. This is 
the default. 

Specifies that the file is a binary file. 

On output, :default is always t, as character files are 
created by default. On input, :default specifies that the 
file system determine from the file properties for LMFS 
files and the canonical type definition for other files what 
type of objects are stored in the file; then open opens it 
in the appropriate mode. 

:element-type specifies the type of Lisp object transferred by the stream. 
Anything that can be recognized as being a finite subtype of character or 
integer is acceptable. In particular, the following types are recognized: 

string-char 

character 

The object being transferred is a string-character. The 
functions read-char and/or write-char can be used on 
the stream. This is the default. 

The object being transferred is any character, not just a 
string-character. The functions read-char and/or 
write-char can be used on the stream. 

(unsigned-byte n)The object being transferred is an unsigned byte (a non
negative integer) of size n. The functions read-byte 
and/or write-byte can be used on the stream. 

unsigned-byte The object being transferred is an unsigned byte (a non
negative integer) whose size is determined by the file 
system. The functions read-byte and/or write-byte can 
be used on the stream. 

(signed-byte n) The object being transferred is a signed byte of size n. 



August 1986 

signed-byte 

bit 

(mod n) 

: default 

165 

Files 

The functions read-byte and/or write-byte can be used 
on the stream. 

The object being transferred is a signed byte whose size 
is determined by the file system. The functions 
read-byte and/or write-byte can be used on the stream. 

The object being transferred is a bit (values 0 and 1). 
The functions read-byte and/or write-byte can be used 
on the stream. 

The object being transferred is a non-negative integer 
less than n. The functions read-byte and/or write-byte 
can be used on the stream. 

On output, :default is always character, as character 
files are created by default. On input, :default specifies 
that the file system determine from the file properties 
for LMFS files and the canonical type definition for other 
files what type of objects are stored in the file; then 
open opens it in the appropriate mode. 

The properties that might appear in the list of property lists returned by 
fs:multiple-file-plists are host-dependent to some extent. The following 
properties are defined for most file servers: 

:truename 

: length 

: author 

:byte-size 

: creation-date 

Returns the pathname of the file actually open on this 
stream. This can be different from what :pathname 
returns because of file links, logical devices, mapping of 
"newest" version to a particular version number, and so 
on. 

The length of the file expressed in terms of the basic 
units in which it is written (characters in the case of a 
text file and binary bytes for a binary file). 

The name of the person who created the data in the file, 
as a string. 

The number of bits in a byte. 

The date the file was created, as a universal time. This 
does not necessarily mean the time that the file itself 
was created, but rather, the time that the data in it were 
created. This property corresponds to the concept of 
"modification date" on many systems. See the section 
"Dates and Times" in Programming the User Interface, 
Volume B. 



166 

Reference Guide to Streams, Files, and VO August 1986 

fs:change-file-properties pathname error-p &rest properties Function 
Some of the properties of a file can be changed, such as its creation date 
or its author. The properties that can be changed depend on the host file 
system; a list of the changeable property names is the :settable-properties 
property of the file system as a whole, returned by fs:directory-list. See 
the function fs:directory-list, page 161. 

fs:change-iIle-properties changes one or more properties of a file. 
pathname names the file. The properties arguments are alternating 
keywords and values. If the error-p argument is t, a Lisp error is 
signalled. If error-p is nil and an error occurs, the error object is returned. 
If no error occurs, fs:change-file-properties returns t. 

fs:file-properties pathname &optional (error-p t) Function 
. Returns a disembodied property list for a single file (compare this to 

fs:directory-list). The car of the returned list is the true name of the file 
and the cdr is an alternating list of indicators and values. If error-p is t 
(the default) a Lisp error is signalled. If error-p is nil and an error occurs, 
the error object is returned. 

fs:complete-pathname defaults string type version &rest options Function 
string is a partially specified file name. (Presumably it was typed in by a 
user and terminated with the COMPLET E or END to request completion.) 
fs:complete-pathname looks in the file system on the appropriate host and 
returns a new, possibly more specific string. Any unambiguous 
abbreviations are expanded in a host-dependent fashion. 

string is completed relative to a default pathname constructed from 
defaults, the host (if any) specified by string, type, and version, using the 
function fs:default-pathname. See the function fs:default-pathname, page 
89. If string does not contain a colon, the host comes from defaults; 
otherwise the host name precedes the first colon in string. 

options are keywords (without following values) that control how the 
completion will be performed. The following option keywords are allowed. 
Their meanings are explained more fully below. 

:deleted 

:read or :in 

Look for files that have been deleted but not yet 
expunged. The default is to ignore such files. 

The file is going to be read. This is the default. The 
name :in is obsolete and should not be used in new 

. programs. 

:write or :print or :out 
The file is going to be written (that is, a new version is 
going to be created). The names :print and :out are 
obsolete and should not be used in new programs. 



August 1986 

:old 

: new-ok 

167 

Files 

Look only for files that already exist. This is the 
default. :old is not meaningful when :write is specified. 

Allow either a file that already exists, or a file that does 
not yet exist. :new-ok is not meaningful when :write is 
specified. The :new-ok option is no longer used by any 
system software, because users found its effects (in the 
Zmacs command Find File (c-x c-F» to be too confusing. 
It remains available, but programmers should consider 
this experience when deciding whether to use it. 

The first value returned is always a string containing a file name; either 
the original string, or a new, more specific string. The second value 
returned indicates the status of the completion. It is non-nil if it was 
completely successful. The following values are possible: 

:old 

: new 

nil 

The string completed to the name of a file that exists. 

The string completed to the name of a file that could be 
created. 

The operation failed for one of the following reasons: 

• The file is on a file system that does not support 
completion. The original string is returned 
unchanged. 

• There is no possible completion. The original 
string is returned unchanged. 

• There is more than one possible completion. The 
string is completed up to the first point of 
ambiguity. 

• A directory name was completed. Completion was 
not successful because additional components to the 
right of this directory remain to be specified. The 
string is completed through the directory name and 
the delimiter that follows it. 

Although completion is a host-dependent operation, the following guidelines 
are generally followed: 

When a pathname component is left completely unspecified by string, it is 
generally taken from the default pathname. However, the name and type 
are defaulted in a special way described below and the version is not 
defaulted at all; it remains unspecified. 



168 

Reference Guide to Streams, Files, and 110 August 1986 

When a pathname component is specified by string, it can be recognized as 
an abbreviation and completed by replacing it with the expansion of the 
abbreviation. This usually occurs only in the rightmost specified 
component of string. All files that exist in a certain portion of the ille 
system and match this component are considered. The portion of· the file 
system is determined by the specified, defaulted, or completed components 
to the left of this component. A file's component x matches a specified 
component y if x consists of the characters in y followed by zero or more 
additional characters; in other words, y is a left substring of x. If no 
matching files are found, completion fails. If all matching files have the 
same component x, it is the completion. If there is more than one possible 
completion, that is, more than one distinct value of x, there is an ambiguity 
and completion fails unless one of the possible values of x is equal to y. 

If completion of a component succeeds, the system attempts to complete 
any additional components to the right. If completion of a component fails, 
additional components to the right are not completed. 

A blank component is generally treated the same as a missing component; 
for example, if the host is a LMFS, completion of the strings "foo" and 
"foo. " deals with the type component in the same way. The strings are 
not completed identically; completion of "foo" attempts to complete the 
name component, but completion of "foo." leaves the name component alone 
since it is not the rightmost. 

If string does not specify a name, then the name of the default pathname is 
preferred but is not necessarily used. The exact meaning of this depends 
on options: 

• With the default options, if any files with the default name exist in 
the specified, defaulted, or completed directory, the default name is 
used. If no such files exist, but all files in the directory have the 
same name, that name is used instead. Otherwise, completion fails. 

o With the :write option, the default name is always used when string 
does not specify a name, regardless of what files exist . 

• With the :new-ok option, if any files with the default name exist in 
the specified, defaulted, or completed directory, the default name is 
used. If no such files exist, but all files in the directory have the 
same name, that name is used instead. Otherwise, the default name 
is used. 

The special treatment of the case where all files in the directory have the 
same name is not very useful and is not implemented by all file systems. 

If string does not specify a type, then the type of the default pathname is 



169 

August 1986 Files 

preferred but is not necessarily used. The exact meaning of this depends 
on options: 

o With the default options, if a file with the specified, defaulted, or 
completed name and the default type exists, the default type is used. 
If no such file exists, but one or more files with that name and some 
other type do exist and all such files have the same type, that type is 
used instead. Otherwise, completion fails. 

• With the :write option, the default type is always used when string 
does not specify a type, regardless of what files exist. 

o With the :new-ok option, if a file with the specified, defaulted, or 
completed name and the default type exists, the default type is used. 
If no such file exists, but one or more files with that name and some 
other type do exist and all such files have the same type, that type i is 
used instead. Otherwise, the default type is used. 

In file systems such as LMFS and UNIX that require a trailing delimiter 
(> or /) to distinguish a directory component from a name component, the 
system heuristically decides whether the rightmost component was meant to 
be a directory or a name, and inserts the directory delimiter if necessary. 

If string contains a relative directory specification for a host with a 
hierarchical file system, it is assumed to be relative to the directory in the 
default pathname and is expanded into an absolute directory specification. 

The host and device components generally are not completed; they must be 
fully specified if they are specified at all. This might change in the future. 

If string does not specify a version, the returned string does not specify a 
version either. This differs from file name completion in TOPS-20; 
TOPS-20 completes an implied version of "newest" to a specific number. 
This is possible in TOPS-20 because completing a file name also attaches a 
"handle" to a file. In Genera, the version number of the newest file might 
change between the time the file name is completed and the time the 
actual file operation (open, rename, or delete) is performed. 

A pathname component must satisfy the following rules in order to appear 
in a successful completion: 

o The host, device, and directory must actually exist. 

• The name must be the name of an existing file in the specified 
directory, unless :write or :new-ok is included in options. 

• The type must be the type of an existing file with the specified name 



170 

Reference Guide to Streams, Files, and liD August 1986 

in the specified directory, unless :write or :new-ok is included in 
options . 

• A pathname component always completes successfully if it is :wild. 

When the rules are not satisfied by a component taken from the default 
pathname, completion fails and that component remains unspecified in the 
resulting string. When the rules are not satisfied by a component taken 
from string, completion fails and that part of string remains unchanged 
(other components of string can still be expanded). 

zl:listf path &optional (output-stream standard-output) Function 
zl:listf is a function for displaying an abbreviated directory listing. The 
default for name, type, and version of path is :wild. 

(listf "f:>jwalker>mit-220") 

The format of the listing varies with the operating system. 

5.3 Access Control Lists 

5.3.1 Introduction to Access Control 

The site administrator can configure a Symbolics Lisp Machine file server to 
provide file protection for its LMFS and FEP file system files. The file protection 
mechanisms then control access to files on the protected server machine. They do 
protect files from network file users, but they do not protect files from users with 
physical access to the file server's console. They will protect against mistakes, 
but they will not protect against malicious users. 

There are two steps to protecting files in a LMFS file system using the file 
protection mechanism: 

1. Decide what controls you, as owner, want to impose on access to directories. 
There are six methods of access control available. Details for each level are 
given in another section. See the section "Access Control Model: What You 
Can and Cannot Protect", page 171. 

2. Configure the server machine. There are three steps involved in configuring 
a file server. These steps need only be performed once. See the section 
"Configuring a File Server", page 173. 



171 

August 1986 Files 

5.3.2 Access Control Model: What You Can and Cannot Protect 

The file protection mechanism offers a number of ways to protect your files from 
others. 

1. Protection against network users. The Symbolics Lisp Machine can 
protect local files against inter-machine access. At this level of control, 
users accessing files across the network through the standard protocols 
cannot run arbitrary Lisp programs or access arbitrary data. The .code that 
implements the network servers represents a reference monitor, in the sense 
that all user access to files passes through it. Therefore, a properly 
configured Symbolics Lisp Machine file server can provide a reasonable level 
of assurance that the file protection mechanisms do indeed protect files. 
The site administrator can check this with the file server log described later. 
See the section "The File Server Activity", page 174. 

The Symbolics Lisp Machine has no software architecture to support intra
machine file access protection. The flexible programming environment 
allows any user program to access all data on the machine. No computer 
data security can assure that it is resistant to penetration unless the 
architecture isolates the user and her programs from the data structures 
that define and implement system software and, in particular, its security 
mechanisms. Therefore, the ACL mechanism makes no attempt to protect 
files from a local user. 

2. The file server can require login. In configuring a file server, the site 
administrator can choose whether to require login (identification and 
authentication) of all users of the file server. Login is implemented via user 
names and passwords. If the site administrator does not require login, then 
anyone can establish a file server connection to the server, and access any 
files which are marked as accessible to everyone. If the file server does 
require login, then all users must supply their name and password before 
they are allowed to access the file server. See the section "Administering 
Names, Capabilities, and Passwords", page 174. 

Supplying a name and password 

o demonstrates that the user is an authorized user of the facility, and 
thereby protects all the data on the server from unauthorized access 

o allows the site administrator to create and maintain an audit trail of 
the user's access via log files 

3. The site administrator can define capabilities. The file protection model 
allows the owner of a directory to grant or deny access to data in that 



172 

Reference Guide to Streams, Files, and 110 August 1986 

directory to individuals on the basis of the user name they supply at login 
time. 

In addition, the site administrator can define capabilities. A capability is an 
access identity shared by multiple users that describes some common access 
privileges. For example, she may wish to specify that all of the people on a 
particular project (the Vision project, for example) have access to a set of 
files. Rather than listing all of the people on the project (a list that may 
change over time) when specifying the access, she can grant access to the 
Vision capability, and then grant all of the appropriate users the right to use 
the capability. The site administrator grants a user the right to use a 
capability by giving her a password for the capability. Each user of a 
capability has a different password for the capability. Each user has 
mUltiple passwords: one for her user name, and then one for each capability 
that she has the right to use. 

Users can utilize a capability by turning it on with the Enable Capabilities 
command. It prompts for a password, then turns on that particular 
capability for the requesting user. 

4. The owner can specify which users and capabilities can access the files. 
The owner of a LMFS file can control access to files and directories by using 
the Edit ACL command to edit the Access Control List (ACL) associated with 
each directory. See the section "Edit ACL Command", page 177. The ACL 
for a directory controls access to the directory and all files within the 
directory. An access control list consists of an ordered set of pairs. Each 
pair consists of an access name (a user name or a capability name) and a 
list of access modes. The modes are: 

Access Modes 

Mode The ability to 

:read read, probe, or perform fs:file-properties on files 

: write modify existing files 

:append append to existing files 

:properties delete files, expunge files, or change properties of files 

:list list the file names in the directory 

: supersede create new versions of existing files 



173 

August 1986 Files 

:create create new files (not new versions) 

:owner change the directory's ACL and other properties 

The user's access to a file or directory is determined by looking through the 
list of access names for that file or directory. The system determines a 
user's right to perform an operation by checking her user name and any 
enabled capabilities against the ACL. Whichever currently enabled access 
name first matches a name in the ACL determines the user's access. The 
reserved user name "*" in an ACL matches all access names. 

New directories are initialized with an ACL copied from their parent 
directory. For an example of an ACL: See the section "Edit ACL 
Command", page 177. 

5. The file server initialization determines the interpretation of an empty 
ACL. In configuring the file server, the site administrator chooses whether 
an empty ACL grants access to all users or to no users. Granting access to 
all from an empty ACL is called permissive access. 

5. The file server can control access to the FEP file system. There are no 
ACLs on individual FEP file system directories. There is a single directory 
in the LMFS hierarchy that controls access to all files and directories in the 
FEP file system. 

LOCAL:>File-Server>FEP-File-System-Access> 

6. The site administrator controls access to the physical console. This 
protection scheme does not protect files from users with physical access to 
the file server's console. Therefore, the site administrator must consider 
some method of controlling physical access to all secure consoles. 

5.3.3 Configuring a File Server 

Configuration of a file server requires three steps that are performed only once. 

1. Create the necessary directories. The function fs:setup-file-server creates 
several directories required for the operation of a file server, with or without 
security. These are: 

Directory Contents 

> File-Server> password files 

>File-Server>Server-Logs> 
file server log files 



174 

Reference Guide to Streams, Files, and VO August 1986 

>File-Server>FEP-File-System-Access> 
the ACL for this directory is the protection for the FEP 
file system 

2. Set the access on system directories. Use the Edit ACL command to set 
appropriate access for all of the directories listed above. It is very important 
that the administrator set the protection for these directories. If she does 
not, then this protection scheme can be easily broken. 

3. Set up the file server init file. The fue server init file should contain an 
invocation of the function fs:initialize-secure-server. There is an example 
of this in the file sys:examples;file-server-init-file. text. 

5.3.4 Administering Names, Capabilities, and Passwords 

The database of names, capabilities, and passwords is kept in the file 

>File-Server>passwords.data. 

This file is encrypted. To define a user name, or to change a user's password, or 
to change a user's password for a capability, use the Set Password command in 
the File Server activity. 

To make a user name undefined, or to revoke a user's right to a capability, use 
the Remove Password command in the File Server activity. 

5.3.5 The File Server Activity 

The File Server activity includes commands for setting and removing passwords, 
logging file system activity and errors, and displaying file server status. The 
activity uses a frame accessible via the CP command Select Activity, using the 
File Server argument. The frame is divided up into five smaller panes. File 
Server commands can be entered through type in at the bottom pane, or by clicking 
on commands available in the File Server Command pane. 

There are a few commands available in the File Server Command pane. These 
are: 

[Cancel File Server Shutdown] 
Cancel an already scheduled File Server shutdown. 

[Remove User Password] 
Remove the password for a user, or remove the password for a 
capability for a user. The command prompts for the user's 
name. 



175 

August 1986 Files 

[Reschedule File Server Shutdown] 
Change the time for a scheduled shutdown. The command 
prompts for a new number of minutes to shutdown and a string 
that is used for logging purposes. 

[Set User Password] 
Set the password for a user, or for a capability for a user. The 
command prompts for the user's name. 

[Shutdown File Server] 
Schedules a shutdown of the File Server Activity. The command 
prompts for the number of minutes to shutdown, and for a 
string. The string is used in the log file, and can be used for 
logging the reason for the shutdown. 

File Server 

11:3259 Tod.y Is ~edneod.y, April 16, 198611:32:59 EST 
11 :32 59 ? log Ft Ie setup: Creating TURKEY: >Fi le-Server)Server-Log5>S61'94.116.log.1 
11:3399? log File setup: File server for host lURI<E'r': File server 1nit1.Hlot1on. 
11 :33 91 I in1t1.1 hatton: Re",ote 10g1n enable set to NIL 
11:3393 I 1nlt1.11zatlon: LMfS FSPT pathn""e set to FEP:>fspt.fspt.ncwcet 
11 :33 94 I secure tn1tt.l hatlon: Enab11n9 acccss control checking 
11:3395 t secure: initialh:ation: logtn i& required 
11:3395 I secure inttl.lh:.tion: Access utl1 not be granted by default ror Lf1FS dtrector1e. with tnpty ACL's. 
11:3396 I secure 1nttt.lh.atton: Newly defined servers will not be enabled. 
11:33 B9 I secure initialtr:ation: Servers enabled by default: UNI)(-Rl.IHO, IEN-116, TCP-FTP, TFTP, CHAOS-FOREIGN-INDE)(, RTAPE. CONVERSE, 
SEND, SMTP, CHAOS-MAIL, CONFIGURATION, NFILE, OFILE, NOTIFY, CHAOS-ROUTING-TABLE, CHAOS-STATUS, NAltESPACE-TIMESTAMP, NAMESPACE, SAltD-TIl 
ANSFER, ~HO-AM-I, PRINT-DISK-LABEL, NAME, ASCII-NAME, LISPM-FINCEII, UPTIME-SIMPLE, TIME-SIMPLE-MSS, TIME-SIMPLE 

File Server Log 

No Shutdown scheduled 

lFile Server Commands File Server Statu. 

File Server co"""and: Set Password (User nane) NFU1CY 
Type new password: 
Type password again: 

File Server Error. 

~!~a~:e~~a~~;~ ri 1 e Local: >F11 e-Scrver>passwords.data? (Y 01" 11) Ve •• 
File Server cOMand: Enable C.pabilities (on hoot [default STO/tY-SROOK]) TURKEY (copobll1tl •• [d.roult Heney]) Nancy 
Type paasword for acce.s identity NANCV on host TURKEY, 
tlANCY capabt11ty on TURKEY ts enabled. 
F t 1. Server COl'lft.and: 

Figure 3. File Server Activity Window 

The File Server Status pane shows the current status of the File Server Activity. 
Currently this pane only displays whether a shutdown is scheduled, and if so, how 
many minutes until the shutdown occurs. 

The File Server Errors pane shows any errors that have occurred. This includes 
all errors specified to the :log-error-response-flavors keyword argument to 
fs:initialize-secure-server, such as an unrecognized user trying to log in. 



176 

Reference Guide to Streams, Files, and 110 August 1986 

The File Server Log pane shows any File Server accesses that have occurred. 
This includes all messages specified to the :logging-keywords keyword argument 
to fs:initialize-secure-server, such as users logging in and out. 

There are a number of new functions and CP commands for managing Access 
Control Lists. The CP commands Enable Capabilities and Disable Capabilities are 
user commands which allow access to groups of files. The CP commands Set 
Password and Remove Password are administrative commands which are used to 
control access to capabilities. The CP command Edit ACL is a user command 
which sets the access for directories. The functions fs:initialize-secure-server and 
fs:setup-file-server are initialization forms which are used by the file servers to 
create and maintain the access lists. 

Enable Capabilities Command 

Enable Capabilities host &rest capabilities 

Turns on specified capabilities for host after checking access requirements. The 
host will prompt for your password for capabilities. 

host 

capabilities 

The name of the host on which you want to enable capabilities. 

One or more of the capabilities available for host. Each 
specified capability must be already recognized by the server 
before access can be enabled. 

Disable Capabilities Command 

Disable Capabilities host &rest capabilities 

Turns off specified capabilities for host. 

host 

capabilities 

The name of the host on which you want to disable capabilities. 

The capabilities you want to disable on host. 

Set Password Command 

Set Password user-name &optional capability 

Sets either the password for user-name, or the password for capability for 
user-name. This command must be executed from the File Server activity on the 
console of the host that knows about capability. This should be done by the site 
administrator responsible for assigning passwords. 

user-name The name of the user for whom you want to set a password. 



177 

August 1986 Files 

capability A capability that user-name may have access to. 

Remove Password Command 

Remove Password user-name &optional capability 

Removes either the password for user-name, or the password for capability for 
user-name. This command must be executed from the File Server activity on the 
console of the host that knows about capability. This should be done by the site 
administrator responsible for assigning passwords. 

user-name 

capability 

The name of the user for whom you want to remove a password. 

A capability that user-name may no longer have access to. 

Edit ACL Command 

Edit ACL directory 

Starts up a small window, editing the Access Control List for directory. It is used 
to create, edit or remove access control lists for LMFS directories. This command 
can be executed from any console, by the owner of directory. This should be 
coordinated with the site administrator, so that passwords can be assigned and any 
new capabilities can be set up. 

The window is divided up into four panes: the top displays the name of the 
directory, the next pane displays the existing ACLs, next is a command pane, and 
the bottom pane is minibuffer pane for type in. 

[Help] 

[Edit] 

[Save] 

[View] 

Type out general information about the Access Control List 
editor. 

Prompts for the name of a directory, and starts an edit of its 
ACL. If there is no ACL for that directory, the second pane will 
only contain New ACL entry. Click on this command to add a 
new ACL. To delete an entry, click on the access name of that 
entry. 

Each entry consists of an access name, and a list of modes that 
can be enabled or disabled. Clicking on an mode toggles 
whether or not it is enabled. Modes that are enabled appear in 
boldface type, and modes that are disabled appear in roman 
type. 

Installs the permissions for the host you are editing by changing 
the file properties for that directory. 

Prompts for the name of a directory, and displays its ACL. This 



178 

Reference Guide to Streams, Files, and 110 August 1986 

Editing ACL of TURKEY:)File-Server 
Top 

turkeys: read write append properties list supersede create owner 
non-turkeys: read write append properties list supersede create owner 
Wew ReL entr\ 

Bottom 

Help Edit Save View Copy Clear Revert [Juit 
This is the LMFS directory Access Control List (ACL) editor. It c~n be 
used to cre~te. edit, or reMove ~ccess control lists for reMote or loc~l 
Lisp M~chine file systeMs. Click on [Edit] ~nd enter the p~thn~Me of ~ 
directory whose RCL is to be edited, or on [View] to look ~t it without 
editing it. Click "New RCL Entry" to ~dd ~ new entry, ~nd on the 
~ccess n~Me of ~n RCL entry to delete ~n entry. Click on individu~l 
Modes to ch~nge then. 

Figure 4. Access Control List Editor 

[Copy] 

[Clear] 

[Revert] 

[Quit] 

is done in read-only mode, so you cannot modify the ACL using 
this command. 

Creates a new ACL for a directory by copying the current ACL. 

Disables all modes for the current ACL entry. 

Reverts the ACL to the modes specified in the saved file for this 
directory. If the ACL has never been saved, the editor will ask 
if you want to discard the current ACL information. When you 
confirm, all entries are discarded. 

Return from the Edit ACL command to whatever you were 
previously doing. 

For the example here, the capability named "turkeys" allows all operations on the 
directory TURKEY:>File-Server. The capability named "non-turkeys" only allows 
the reading and listing of files in the directory. 



179 

August 1986 Files 

fs:initialize-secure-server &key access-permissive (login-required t) Function 
(permitted-services fs:*trusted-services*) 
(logging-keywords 
fs:*default-secure-server-Iogging-keywords*) 
(log-error-response-fiavors 
fs:*default-secure-server-error-response-Iog-flavors lll ) 

(lmfs-fspt-pathname lmfs:*fspt-pathname*) 
This function starts up the security functions for the file server. The 
function takes the following keyword arguments. This command should be 
executed from the file server init file. 

:access-permissive 
When the value is t, an empty ACL gives access to all 
users. When the value is nil, an empty ACL gives access 
to no users. 

: login-required Flags whether or not login is required to access files. 
When the value is t (the default), a login is required. 

:permitted-services 
A list of network service keyword names, such as 
:tcp-ftp, : name, and :chaos-status. When running a 
secure server, services that permit a user to get 
arbitrary access to the server machine should not be 
enabled. In particular, the :eval and :login services 
should not be enabled. The variable 
fs:*trusted-services* contains the services that Symbolics 
recommends be enabled. 

: logging-keywords 
These keywords control what information is put into the 
file server log. The currently defined keywords are: 

:login Log a message for each login and 
logout. 

:server-error-response 
Log a message whenever an error 
condition in the server is translated 
into an error response to the user, 
subject to :log-error-response-flavors. 

:untrusted-transaction 
Log all transactions involving users 
who are not on a trusted subnet. 



180 

Reference Guide to Streams, Files, and 110 August 1986 

: server-bug-report 

:server-error 

Log a message each time an automatic 
bug report is sent. 

Log a message every time the server 
takes an error that is not just a user 
error. 

:log-error-response-flavors 
A list of error conditions that should be logged. Only 
those errors that satisfy typep of a flavor in this list are 
logged. 

:lmfs-fspt-pathname 
The pathname of the LMFS File System Partition Table 
for this file server. It is of the form fepn:>fspt.fspt, 
where n is the disk unit where the fspt file resides. 

fs:setup-file-server Function 
This function creates the directories that are required for the operation of 
a file server, with or without security. fs:setup-file-server should be 
executed when setting up a file server. It creates the following directories 
required for the operation of a file server: 

Directory Contents 

>File-Server> password files 

> File-Server>Server-Logs> 
log files 

>File-Server>FEP-File-System-Access> 
the ACL for this directory is the protection for the FEP 
file system 



August 1986 

6. Lisp Machine File System 

6.1 Introduction to LMFS 

The Lisp Machine File System (LMFS) provides a file system that runs on a 
Symbolics computer and stores information on the computer's disks. The 
information can be accessed locally (from that computer itself) or from other 
computers. 

181 

Files 

For information on performing I/O on files: See the section "Streams", page 3. 

This discussion does not describe the internal program logic or organizational 
details of the file system. The methods for performing I/O on files are described 
elsewhere. See the section "Streams", page 3. 

6.2 Concepts 

Files are categorized as character files and binary files. Character files consist of 
a certain number (the byte count) of characters in the Symbolics character set. 
Binary files consist of a number (their byte count) of binary data bytes, which are 
unsigned binary numbers up to sixteen bits in length. 

A file has a name, a type, and a version. The name is a character string of any 
length. The type is a character string of up to fourteen characters in length, and 
the version a positive integer up to 16777215. Names and types can consist of 
upper and lower case characters. However, searching for file names is not 
sensitive to case. This means that if you create a file whose name is "MyFile", 
the file has that name and appears that way in directory listings, but if you ask 
for "myfile" or "MYFILE" or "MYflle", the file is found. The characters ">" and 
"Return" cannot appear in names and types. 

The name is an arbitrary user-chosen string describing the file. The type is 
supposed to indicate what type of data the file contains; a type of "lisp" is the 
system convention for files containing Lisp source programs, "bin" for compiled 
Lisp programs, and so forth. The version number distinguishes successive 
generations of a file; to change a file, you normally read the latest version of the 
file into the Symbolics computer, modify it, and write out a new version with the 
next highest version number. The general scheme for naming files is covered 
elsewhere. See the section " Naming of Files", page 51. 

Files reside in directories. The combination of name, type, and version of any file 
is unique in the directory in which it is contained. With the exception of a single 
directory (the ROOT), directories also reside in other directories. The directory in 



182 

Reference Guide to Streams, Files, and liD August 1986 

which a file or directory resides is called its parent directory, and these files and 
directories are said to be inferior to their parent directory. Directories and files 
thus form a strict tree (hierarchy); the ROOT directory is the root of this tree. 
Directories have a type of "directory" and a version of 1. Thus, the name of a 
directory alone identifies it in its containing (superior) directory. It is not possible 
to "fool" LMFS into thinking a file is a directory by giving it a type of "directory" 
and a version of 1, however. 

Links are the third (and last) kind of object that can live in a directory. A link 
contains the character-string representation of the pathname of something else in 
the same file system, called the target of the link. This pathname specifies a 
directory, a name and a type, and it can specify a version. A link is conceptually 
an indirect pointer to something else; when certain operations are done on a link, 
the operation really gets done to the target instead of the link itself. 

It is possible to have "directory links". See the section "LMFS Links", page 189. 

The specific syntactic conventions, restrictions, and other information about LMFS 
pathnames are described elsewhere.. See the section "LMFS Pathnames", page 
101. 

LMFS also stores and maintains properties of objects. For example, for each file it 
stores the creation date, the author, whether the file has been backed up, and so 
on. Users can also create their own properties; each file has a property list that 
lets you store arbitrary associated information with the file. See the section 
"LMFS Properties", page 182. 

The File System Editor is an interactive program that lets you manipulate the file 
system (the local LMFS system or the system on any host). You can invoke the 
program by typing SELECT F. See the section "File System Editor", page 211. 

Before you use the file system on a machine, you must log into that machine. If 
you are using' the file system locally, it is desirable to log out of the machine 
before you cold boot it or otherwise abandon it. This is especially desirable if you 
have created files on the file system or expunged directories (see below) while 
using it. If you do not follow this recommendation, you will run out free disk 
records at the rate of about 30 to 50 records per cold boot (in which files were 
created), and the free record salvager will have to be run. 

You do not have to take any special action to access the local file system on your 
Symbolics computer. If you use the host name of the machine, or the special 
string "local" as a host name, it is accessed automatically, as with any host. 

6.3 Properties 

Files, directories, and links have various properties. There are system properties, 
which are defined and maintained by the file system itself, and user properties, 



183 

August 1986 Files 

which are defined and maintained by programs and people that use the file 
system. Every property has a name, which is a keyword symbol, and a value, 
which is a Lisp object. The names of all of the system properties are listed below. 
(These properties should not be confused with the file attribute list, the -*- line in 
the beginning of the file. See the section "File Attribute Lists", page 156.) 

You can examine the values of properties by using either the [View Properties] 
command in the File System Editor, or View File Properties (M-H) in Zmacs. 
Users alter the values by using the either the [Edit Properties] command in the 
File System Editor, or Change File Properties (M-H) in Zmacs. See the section 
"File System Editor", page 211. Programs access the values of properties by using 
the fs:directory-list and fs:file-properties functions and alter the values by using 
the fs:change-file-properties function. See the section "Accessing Directories", 
page 160. 

Some system properties apply to files, directories, and links alike; for example, all 
these objects have an author and a creation time. Other system properties are not 
defined for all kinds of object; for example, only files have a length in bytes, only 
directories have an auto-expunge interval, and only links have a link-to. The table 
of system properties tells you which kinds of objects each property applies to. 
User properties can always apply to any object. 

The values of some system properties are determined by the file system and 
cannot be set by the user; for example, you cannot set the length in bytes nor the 
byte size. The values of other properties can be changed arbitrarily; for example, 
you can set the generation retention count or the don't delete property whenever 
you want to. The properties of the latter set are called changeable properties. 
The reason for the distinction is that the properties in the first group reflect facts 
about the file, whereas those in the second group represent the current state of 
user-settable options regarding the file. 

When the fs:change-file-properties function is called for a changeable system 
property, the property is changed. When it is called for a non-changeable system 
property, an error is signalled. When it is called for any property name that is 
not the name of one of the system properties (listed below), it assumes that it is 
the name of a user property, and the property is established or changed. 

When the fs:file-properties function is called for a LMFS file, it returns a second 
value: a list of the names of all the properties of the file that are changeable. 
This function lists all the system properties and all the user properties for the 
object it is given. 

The names of user properties must be symbols on the keyword package, and must 
not be the same as any of the system property names. The value associated with 
a user property must be a string. The combined length of the name of the 
property and its value must not exceed 512 characters. To remove a user property 
from a file, you set the value of the property to nil. fs:file-properties returns all 
the user properties of a file, but fs:directory-list does not return any of them. 



184 

Reference Guide to Streams, Files, and VO August 1986 

You can create new user properties with the [New Property] command in the File 
System Editor; after they are created, you can edit them with [Edit Properties]. 
Programs create and change user properties by using fs:change-file-properties. 

User properties involve a subtle trap. If you misspell or otherwise misconstrue 
the name of a system property, LMFS assumes that you have given the name of a 
user property, and set it. Thus, LMFS can never admit of, nor diagnose, an 
unrecognized, or invalid, property name. 

Here is a list of all of the standard properties that LMFS maintains. The 
standard, generic interpretation and representations of the system standard 
properties among them can be found elsewhere: See the section "Functions for 
Accessing Directories", page 161. Refer to the table below for the rest. 

:length-in-bytes 
:byte-size 
: author 
: creation-date 
:modification-date 
: reference-date 
:deleted 
:not-backed-up 
:dont-delete 
:dont-reap 
:open-for-writing (LMFS-specific) 
:length-in-blocks 
:generation-retention-count 
:directory 
:auto-expunge-interval 
:date-last-expunged 
:default-generation-retention-count 
:default-link-transparencies (LMFS-specific) 
: 1 ink-to 
:link-transparencies (LMFS-specific) 

The following among them are changeable, that is, users can set their values by 
means of fs:change-file-properties: 



August 1986 

:generation-retention-count 
:modification-date 
: reference-date 
: creation-date 
:author 
:deleted 
:dont-reap 
:dont-delete 
:auto-expunge-interval 
:default-generation-retention-count 
:default-link-transparencies 
:link-transparencies 

The following is a list of all the properties supported by LMFS that are either 
specific to LMFS or require other special comment. 

: byte-size (Files) 

185 

Files 

For a character file, 8. For a binary file, the byte size of the file (the 
number of bits in each byte), a Iumum between 1 and 16, inclusive. LMFS 
maintains both the byte size and the binary/character quality of a file 
natively. It is not permitted to open a binary file with a byte size other 
than that with which it was written. This property is not currently a 
changeable one. 

:length-in-blocks (Files, directories, links) 
A LMFS record is 1152 32-bit words. This is the basic allocation unit of 
the file system. The name of the generic system property is confusing in 
the case of LMFS, for a LMFS record is composed of multiple disk blocks. 
This property cannot be meaningful for directories. 

:creation-date (Files, directories, links) (Changeable) 
LMFS allows setting of creation date by user programs. Creation date, 
when not set by a user program, is also updated when a file is appended to. 

:modification-date (Files) (Changeable) 
The most recent time at which this file was modified, expressed in 
Universal Time. This is the same as the creation date if the file has been 
opened for appending. Operations such as renaming and property changing 
update this property, but do not update creation date. The dumper, for 
instance, is driven off this property. 

:author (Files, directories, links) (Changeable) 
This property is user-settable in LMFS. 



186 

Reference Guide to Streams, Files, and 110 August 1986 

:dont-delete (Files, directories, links) (Changeable) 
If t, does not allow this object to be deleted. The purpose of this attribute 
is to prevent the accidental deletion of important files. An error results if 
an attempt is made to delete this file. 

:dont-reap (Files, directories, links) (Changeable) 
This attribute, although maintained internally by LMFS, is not interpreted 
by LMFS. Dired directory maintenance tools use this property. 

:default-generation-retention-count (Directories) (Changeable) 
The default value for the :generation-retention-count property of new 
objects created in this directory. :generation-retention-count is used by 
LMFS to control the number of versions of each file. See the section 
"LMFS Deletion, Expunging, and Versions", page 187. The value should be 
nil or a nonnegative fumum. 

:auto-expunge-interval (Directories) (Changeable) 
LMFS will automatically expunge a directory whenever a file system 
operation is performed, provided the directory in question has this property 
and that amount of time has expired since the last time the directory was 
expunged, whether this previous expunging happened manually, or as a 
result of :auto-expunge-interval. All deleted files will be expunged, and 
the time of their deletion will not be taken into consideration. See the 
section "LMFS Deletion, Expunging, and Versions", page 187. The value 
should be nil or a nonnegative fumum. 

:default-link-transparencies (Directories) (Changeable) 
The initial value for the :link-transparencies attribute of links created in 
this directory. See the section "LMFS Links", page 189. To set this 
property, use the [Link Transparencies] command in the File System Editor 
rather than [Edit Properties]. 

:link-transparencies (Links) (Changeable) 
The transparencies of this link. See the section "LMFS Links", page 189. 
To set this property, use either the [Edit Link Transparencies] or [Edit 
Properties] commands in the File System Editor, or Change File Properties 
(M-H) in Zmacs. 

:complete-dump-date (Files, directories, links) 
The most recent time at which this object was dumped on a complete dump 
tape, expressed in Universal Time. See the section "LMFS Backup", page 
190. A positive bignum. If this object has never been dumped on a 
complete dump tape, this property is not present. This property does not 
appear in directory listings. 

:complete-dump-tape (Files, directories, links) 
The tape reel ID of the complete dump tape on which this object was most 



187 

August 1986 Files 

recently dumped. A string. If this object has never been dumped on a 
complete dump tape, this property is not present. This property does not 
appear in directory listings. 

:incremental-dump-date (Files, directories, links) 
The most recent time at which this object was dumped on an incremental 
or consolidated dump tape, expressed in Universal Time. A positive 
bignum. If this object has never been dumped on an incremental dump 
tape, this property is not present. This property does not appear in 
directory listings. 

:incremental-dump-tape (Files, directories, links) 
The tape reel ID of the incremental or consolidated dump tape on which 
this object was most recently dumped. A string. If this object has never 
been dumped on an incremental dump tape, this property is not present. 
This property does not appear in directory listings. 

6.4 Deletion, Expunging, and Versions 

When an object (file, directory, or link) in LMFS is deleted, it does not really 
cease to exist. Instead, it is marked as "deleted" and continues to reside in the 
directory. If you change your mind about whether the file should be deleted, you 
can undelete the file, which will bring it back. The deleted objects in a directory 
actually go away when the directory is expunged; this can happen by explicit user 
command or by means of the auto-expunge feature (see below). When a directory 
is expunged, the objects in it really disappear, and cannot be brought back (except 
from backup tapes.) See the section "LMFS Backup", page 190. 

When a file is deleted, any attempts to open the file will fail as if the file did not 
exist. It is possible to open a deleted file by supplying the :deleted keyword to 
open, but this is rare. 

Users normally delete and undelete objects with the Zmacs commands Delete File 
(n-X) and Undelete File (n-X), or [Delete] and [Undelete] commands in the File 
System editor, or D and U in Dired. Directories can be expunged with Dired or 
the File System Editor, also, and the Expunge Directory (1'1->0 command in Zmacs. 
See the section "File System Editor", page 211. 

Programs normally delete files using the zl:deletef function. See the function 
zl:deletef, page 151. Whether a file is deleted or not also appears as the :deleted 
property of the file, and programs can delete or undelete files by using 
fs:change-file-properties to set this property to t or nil. 

Directories can optionally be automatically expunged. Every directory has an 
:auto-expunge-interval property, whose value is a time interval. If any file 
system operation is done on a directory and the time since the last expunging of 



188 

Reference Guide to Streams, Files, and 110 August 1986 

the directory is greater than this interval, the directory is immediately expunged. 
The default value for this property is nil, meaning that the directory should never 
be automatically expunged. 

The normal way of writing files in the Genera environment is to create a new 
version of the file each time a file is written. When you edit with Zmacs, for 
example, every so often the Save File command is issued, and a new version is 
written out. After a while, you end up with many versions of the same file, which 
clutters your directory and uses up disk space. Zmacs has some convenient 
commands that make it. easy to identify and automatically delete the old versions. 

LMFS also has a feature that deletes the old versions automatically. A file 
property called the generation retention count says how many generations (that is, 
new versions) of a file should be kept around. Suppose the generation retention 
count of a file is three, and versions 12, 13, and 14 exist. If you write out a new 
version of the file, then version 12 will be deleted, and now versions 13, 14, and 15 
will exist. Actually, version 12 is only deleted and not expunged, so you can still 
get it back by undeleting it. If the generation retention count is zero, that means 
that no automatic deletion should take place. 

The above explanation is simplified. You might wonder what would have happened 
if versions 2, 3, and 14 existed, and what might have happened if the different 
versions of the file had different generation retention counts. To be more exact: 
each file has its own generation retention count. When you create a new version 
of a file and some other version of the file already exists (that is, another file in 
the directory with the same name and type but some other version), then the new 
file's generation retention count is set to the generation retention count of the 
highest existing version of the file. If there is no other version of the file, it is 
set from the default generation retention count of the directory. (When a new 
directory is created, its default generation retention count is zero (no automatic 
deletion).) So if you want to change the generation retention count of a file, you 
should change the count of the highest-numbered version; new versions will 
inherit the new value. When the new file is closed, if the generation retention 
count is not zero, all versions of the file with a number less than or equal to the 
version number of the new file minus the generation retention count will be 
deleted. 

When a file version is being created, it is marked with the property 
:open-for-writing. This property is removed when the file is successfully closed. 
While the file has this property, it is invisible to normal directory operations and 
to attempts to open or list it. Directory list operations that specify :deleted can 
see the file. Files in this state have the "open for writing" property when you use 
View Properties in the file system editor, or Show File Properties (M-H) in Zmacs. 
Files left in this state by crashes have to be removed manually by deleting and 
expunging. For example, suppose versions 3, 4, and 5 exist, but 5 is open in this 
state. An attempt to read :newest would get version 4; an attempt to write 
:newest would create version 6. 



189 

August 1986 Files 

6.5 LMFS Links 

A link is a file system object that points to some other file system object. The 
idea is that if there is a file called >George>Sample.lisp and you want it to appear 
in the >Fred directory, with the name New.lisp, you can create a link by that 
name to the file. Then if you open >Fred>New.lisp, you really get 
>George>Sample.lisp. The object to which a link points is called the target of the 
link, and can be found from the :link-to property of the link. 

The above explanation is simplified. You might wonder what happens if, for 
example, you try to rename >Fred>New.lisp: is the link renamed, or the target? 
Each link has a property called its :link-transparencies. The value of this 
property is a list of keyword symbols. Each symbol specifies an operation to which 
the link is transparent. If the link is transparent to an operation, then when the 
operation is performed, it really happens to the target. If the link is not 
transparent to the operation, the operation happens to the link itself. Here is a 
list of the keywords, and the operations to which they refer: 

:read 

: write 

:create 

: rename 

: delete 

Opening the file for :input. 

Opening the file for appending, via :if-exists :append. 

Opening the file for :output 

Renaming the file. 

Deleting the file. 

You can create new links with the [Create Link] command in the File System 
Editor, or Create Link (£'I-X) in Zmacs. See the section "File System Editor", page 
211. Programs can use the :create-link message to pathnames. See the section 
"Pathname Messages: Naming of Files", page 92. When a new link is created, its 
transparencies are set from the :default-link-transparencies property of its 
superior directory. When a new directory is created, its 
:default-link-transparencies property is set to (:read :write). 

The value of the :link-transparencies property of a link is a list of keywords 
describing the transparency attributes of which this link is possessed. The value 
of the :default-link-transparencies attribute of a directory is, similarly, a list of 
all those transparencies to be possessed by newly created links in this directory. 
When changing the value of either of these properties with 
fs: change-file-properties , the new value of the property is such a list of 
transparency keywords, chosen from the table above. Transparencies not present 
in the new value are turned off, and they are not preserved. There is no way to 
change an individual transparency. 

When you create a new link with the [Create Link] command, you have to specify 
both the name and the type component of the new link; the version defaults to 



190 

Reference Guide to Streams, Files, and 110 August 1986 

being the newest version, as of the time when you create the link. When you 
specify the target, you have to give a complete pathname with the name and the 
type; the version can be left unspecified. Targets of links can have unspecified 
versions; whenever such a link is used, the version is treated as :newest. 

There is a subtle point regarding "create-through" links (links transparent to 
:create): what happens when you try to create a new version of foo.lisp when the 
highest version of foo.lisp is a create-through link? Is a new version of foo 
created, or is a new version created in the directory of the target of the existing 
link? Here is the rule. If a pathname is opened for : output, which means that it 
is being created, and the pathname has version :newest or a version number that 
is, in fact, the newest version, and the newest version is actually a create-through 
link, then the link is transparent and the operation happens in the target's 
directory. If the target pathname has a version, it is as if that exact pathname 
were opened for :output; if the target has no version, it is as if the target 
pathname with a version of :newest were opened. 

A directory link is a link whose type is "directory", whose version is 1, and whose 
target is a real directory or another directory link. The maximum permitted 
length of such chains of directory links is 10. The system respects a directory link 
when looking for a directory. By means of directory links, "indirect pointers," or 
multiple names for directories, can be established. Simply naming a link in this 
fashion is sufficient; no special action need be taken to declare a link to be a 
directory link. Transparencies are not interpreted in directory links. 

6.6 LMFS Backup 

A file system can be damaged or destroyed in any number of ways. Users can 
delete files by accident. To guard against such a disaster, it is wise to dump the 
file system periodically, that is, write out the contents of the files, their 
properties, and the directory information onto magnetic tapes. If the file system is 
destroyed, it can then be reloaded from the tapes. Individual files can also be 
retrieved from tapes, in case a single file is destroyed, or just accidentally deleted 
(and expunged). Dump tapes can also be used to save a copy of all the flies on a 
system for archival storage. 

In a complete dump, all of the files, directories, and links in the flie system are 
written out to tapes. This, obviously, saves all the information needed to reload 
the file system. However, a complete dump can take a long time and use a lot of 
tape, especially if the file system is large. In order to make it practical and 
convenient to dump the file system at short intervals, a second kind of dump can 
he done, called an incremental dump. 

In an incremental dump, only those files and links that have been created or 
modified since the last dump (of either kind) are dumped; things that have stayed 



191 

August 1986 Files 

the same are not dumped. (All directories are always dumped in an incremental 
dump.) Now, if the file system is destroyed, you reload it by first reloading from 
the most recent complete dump and then reloading each of the incremental dump 
tapes made since that complete dump, in the same order in which they were 
created. Therefore, you do not need to retain incremental dump tapes that were 
made before the most recent complete dump was done; you can reuse those tapes 
for future dumps. 

Since all tapes containing incremental dumps done since the last complete 
complete dump must be reloaded in order to restore the file system, doing a 
complete dump regularly makes recovery time faster. Doing complete dumps also 
lets you reuse incremental dump tapes, as described above. The more incremental 
dump tapes you must load at recovery time, the longer it takes to recover, and 
thus the more chance there is that something will go wrong. Thus, it is 
advantageous to perform complete dumps periodically. 

A consolidated dump is like an incremental dump, in that it only dumps files that 
have been created or changed recently. However, a consolidated dump backs up 
only those files that have been created or changed since a specified consolidation 
date. A consolidated dump is the appropriate kind to take if some event destroys 
recent incremental dump tapes, or they are found to be unreadable. If a complete 
dump extends through several days, it is wise to take an incremental dump 
between-tape stopping points as appropriate. 

See the section "Dumping, Reloading, and Retrieving" in Site Operations. 

6.7 Multiple Partitions 

The Lisp Machine File System (LMFS) allows the use of multiple partitions 
residing on one or more disk drives. It utilizes one or more flies of the FEP file 
system as the vessels in which it stores its files and directories. These FEP files 
are called partitions. Normally, there is one large partition, usually called 
LMFS. FILE. 1. All the files created by LMFS actually reside inside this FEP file, 
but the existence of these files is known only to LMFS, whose purpose it is to 
manage them; they are not known to the FEP file system. Since FEP files are 
limited to one particular disk drive, if a LMFS file is to utilize the space available 
on multiple drives, partitions must be created on each drive on which it is desired 
that LMFS store files. Then, LMFS must be instructed to use these partitions. 

The selection of partitions to be used by LMFS is determined by a database called 
the file system partition table (FSPT). It is contained in a FEP flie named 
>fspt.fspt on a boot drive. The FSPT is optional. If it is not present, LMFS uses 
lmfs.file on the FEP boot drive. The FSPT is a simple character database 
containing the actual pathnames (in the FEP file system) of the partitions to be 
used for file system access. 



192 

Reference Guide to Streams, Files, and 110 August 1986 

If any machine at your site has more than one disk, it may be difficult to find the 
disk location of the FSPT. In order to make finding the location of a FSPT easy, 
insert the Set LMFS FSPT Unit command in your Hello.boot file. This command 
looks for the file named >fspt.fspt on the unit (disk unit) specified. For example, 
if you put your FSPT on disk unit 2, put the following in your Hello.boot file: 

Set LMFS FSPT Unit 2 

Each partition in the file system knows how many partitions make up the file 
system. Only the FSPT, which is used only at LMFS startup time, indicates the 
locations of these partitions. That is, the file system databases in the actual 
partitions do not contain drive and partition numbers or FEP pathnames. Thus, 
when LMFS is down, partitions can be moved around using Copy File (M-H); as 
long as the FSPT is edited to indicate their new locations, LMFS comes up (when 
required) using the moved partitions. Note: Since the Copy File (M-H) command 
copies files according to byte size, you may need to edit the byte count of the 
partition for the copy file command to work. To do this, multiply the number of 
blocks by 1152, since partitions were previously created with a byte size of O. For 
example: 

1152 * number of blocks 

The FSPT is edited only to move partitions around or to add a partition. When 
you add partitions to the file system, the file system automatically rewrites the 
FSPT database to include the locations of new partitions. 

6.7.1 Free Records 

The basic unit of allocation in the Lisp Machine File System is the record. A 
record is 1152 32-bit words, or four disk blocks. Each file system object is made 
from an integral number of records. At any time, each record is in use 
(representing an existing file system object) or free (not representing anything and 
free to be used in new objects). When the file system needs to find a new free 
block to create or grow an object, it does not search through the records looking 
for a free one, because that would require many disk operations and be very slow. 
Instead, the file system uses a redundant data structure called the free record map, 
kept in several blocks in a known location in the file system partition. The map 
has one bit for each record in the file system; this bit marks whether the record 
is free or in use. The file system can find a free record quickly by examining this 
map. 

If the file system crashes, or something else goes wrong, the contents of the free 
record map can become inconsistent with the contents of the file system itself. 
For each record, two different errors are conceivable . 

• The record might actually be in use, representing part of an object, but 
marked as "free" in the map. The system is designed so that this cannot 
happen, but hardware problems might cause it to happen anyway. 



193 

August 1986 Files 

o The record might actually be free, but marked as "in use" in the map. 

The first error is much worse than the second; the file system might use the 
record for a new object even though it is currently representing some existing 
object, which could destroy the existing object. If the second error occurs, the 
record simply is not allocated even though it could be. Such a record is said to be 
lost. 

The file system is written so that a crash can only cause the second kind of error. 
While the file system is operating, it maintains a free buffer in its data structures 
in virtual memory. The free buffer is a pool of records that are not actually in 
use, but are marked as being in use in the free record map on the disk. When it 
needs to allocate a record, it draws on one of these; when it frees up a record, it 
adds the record to this buffer. When the buffer gets too big, some records are 
removed from the buffer and marked as "free" in the map on the disk; when the 
buffer runs low, more records are marked as "in use" in the map on the disk, and 
are added to the buffer. So, if the machine is cold booted, or the file system 
crashes, the records that are in the buffer are lost, but no errors of the first kind 
are caused. The size of the buffer is maintained at about 30 records, so each 
crash loses 30 records. To recover, log out of the machine or use the [Flush Free 
Buffer] command to flush the entire free buffer and mark the records as "free" in 
the map on the disk. To use the [Flush Free Buffer] command, press SELECT F to 
enter the File System Editing Program. Click right on [Local LMFS Operations] 
to invoke the second level of the pro gam, where you can click on [Flush Free 
Buffer]. After the buffer has been flushed, you can cold boot the machine without 
losing any blocks. 

Lost records can be found again by the salvager. See the section "Salvager", page 
194. 

You can check the number of free records in the file system by using the File 
System Editing Operations program. First, press SELECT F to select the program. 
Then, click right on [Local LMFS Operations], to invoke the second level of 
operations. In the second level, if you click left on [Free Records], the program 
displays a line for each block of the file map, telling you which records are 
covered by that block, the number of such records, and how many are marked as 
free. It also tells you how many free records (marked as "in use" in the map) are 
in the free buffer, and finally displays a grand total of the number of free, used, 
and total records in the flie system. 

To find out how many records are actually in use, click middle on [Free Records] 
to prepare a printable report of record use throughout the file system. This has 
to pass over every object in the file system, and so it takes some time, especially 
on large file systems. The discrepancy between the answer of this function and 
the answer you get when you click left on [Free Records], tells you how many lost 
records there are; if there are a lot, you might want to run the salvager. 



194 

Reference Guide to Streams, Flies, and VO August 1986 

Clicking right ott [Free Records] displays how many records are in use in each 
partition. This information is necessary for commands such as [Grow Partition] 
that allow you to change the size of partitions, add partitions, or remove 
partitions. 

6.7.2 Salvager 

The salvager is a program that reads every LMFS record of the file system and 
finds and fixes certain inconsistencies and errors. It can fix two classes of 
problems . 

• It can see which records are in use and which are free, and update the free 
record map to reflect the current state of the file system. This is how you 
recover lost records. 

• It can find objects that are stored in a file system partition but are not 
referenced by any directory. Such objects are called orphans; they exist only 
if some problem has occurred, such as a file system crash during the 
creation of a file, or an unanticipated failure of some sort. The salvager 
finds such objects and puts them back into the directory hierarchy 
(repatriates them). 

6.7.2.1 Using the Salvager 

To run the salvager, press SELECT F to select the File System Editing Operations 
program. Click on [Local LMFS Operations] to invoke the second level of the 
program. Next, click on [LMFS Maintenance Operations] to invoke the third level 
of the program. Now click on [Salvage] to obtain a menu of options. If you have 
a local file system of multiple partitions (occupying multiple FEP files), you are 
presented with a menu of partitions to process. This menu, which is an Accept
Values menu, also includes questions about salvager operations. In addition to 
listing the partitions to be salvaged, the menu offers you the options as shown in 
figure 5. 

Here are the options: 

Top-down treewalk record check: yes no 

Check for and repatriate orphans: yes no 

Output recording: Tape File Console only 

File for output: 

The first items on the menu constitute a list of partitions you can select for 
processing by the salvager. You can choose some or all of the partitions for 
processing. 

The second menu option, Top-down treewal k record check, offers to scan all of the 



August 1986 

FilQ system edttinll o~rations 
Tree Edit Root 
Refresh Display 

~wl 2: Local filQ systQm control ~ations 

Tree Edit Any 
Help 

Tree Edit home dlr 
local lMFS Operations 

lisp Wmdow 

195 

Files 

l.ncremental Dump . [om~lete Uump 
Display Tape Map list Backup Tape 
Flush Free Buffer Close All Files 

. [onsolidated Uump 
Compare Backup Tape 
Expunge local lMFS 

Kead ~ack_up Jape 
list FEP FS Root 
Server Shutdown 

t In~ tjac~up LOPles 
Free Records 
Server Errors 

Exit level 2 lMFS Maintenance Operations 
~\lel J: Potentially danJ/Qrous SQrwr and maintenancQ o~rations 

~'1lv~ !mtl'!!.lze ~ecl< I<ecords brow Partition I<emove Partition EXit Level 3 LMt ~ lnternal Tools 
These tools are potentially dllngerousl If used inproperly, you can danage the local 
Lisp Mllchine File Systen (LMFS), and dllta ni9ht be lost irretrievably. Do NOT use 
these tools unless you are knowledgeable about file systen issues, lind fully 
understand the purpose of these too ls and the prob 1 ens they are try i n9 to solve. 
To exit the Level 3 Menu, click on [Exit Level 3]. 

If you have any questions, please call Synbolics Software Support. 
Connllnd: 
Top-down treewa 1 k record check: Yes No 
Check for and replltriate orphllns: Yes No 
Output record i n9: Tape FIle Conso 1 e OnlY 
File for output: FEP9: > sa 1 vager-output> Sa 1 vout-G"G"8G-14: 43. text 
<2IGi!I> aborts, <Qm) uses these va lues 

Lisp Interaction Window 
I d§WH; $ MhW*d¥§ If-

V'lVoke, the partition'sal\lag ... r en hi ... partitions " : "I, "" ,,' /,,';,;.,'" . I ". '"~ 'I 
't}:'-I... {. ". .'. .... ~ t.. .,.. 

J 

Figure 5. Salvager Options 

directories and files in the local LMFS and report any damaged records (hardware 
or software), disappeared files, or any other problems. This search starts at the 
root and goes through all of the file system, directory by directory, and is 
performed after all other salvaging activity. 

Note: If you deselect any partition for repatriation, then the next menu item, 
which offers to check for and repatriate orphans, disappears. This happens 
because it is impossible to construct an accurate model of the hierarchy if each 
partition is not scanned. 

The third menu option, Check for and repatri ate orphans, offers to find orphaned 
objects and put them back into the directory hierarchy. During this scan, the 
salvager also replaces bad directory records with good ones. 

The fourth menu option, Output recordi ngs, offers to log the salvager output 
either to tape, in a file, or only to the console. 

91 



196 

Reference Guide to Streams, Files, and liD August 1986 

• If you choose the T ape option for output recording, every message goes onto 
the tape as soon as it is produced because of a special format that is used. 
Using an industry-compatible tape ensures that all messages appear on tape. 
If you use a cartridge tape, this is not fully guaranteed. The following forms 
may be used to view the tape produced in this way: 

lmfs:print-salvager-output-tape &optional tape-spec (stream Function 
zl:standard-output) 

Prints the contents of the tape created by the salvager. If you do not 
supply any arguments you are prompted for a tape spec, and putput 
prints to the console. 

lmfs:copy-salvager-output-tape-to-file &optional tape-spec Function 
pathname 

Prints the contents of the tape created by the salvager to a file. You 
are prompted for any arguments not given . 

• If you choose the F i 1 e option for output recording, you must supply a file 
name. The default file is a FEP file, on boot unit o. Every time a message 
is written to file a :finish is done to the file, so that even if the system 
crashes, the file is intact with all the messages up to the point of failure. 

If you decide to put the output recording in a FEP file, make sure there is 
enough room, probably about 100 blocks. If you have your output recording 
sent to another host, choose a host that you are sure will stay on the 
network during the logging process. 

Warning: If you only have one Symbolics computer or one file server, you 
can't use the Fi 1 e option because you may not put the output recording in a 
local LMFS file. 

There are currently no tools for automatically processing a file containing a 
log of salvager output . 

• If you choose the Canso 1 e on 1 y option for output recording, note that this is 
not usually the device of choice. You should choose this option when there 
is no other means of logging available . 

• If any problems occur while the log is running, such as a file closing or a 
disrupted network connection, a menu appears. This menu asks what to do 
about continuing the salvager's log. If you enter the debugger while the log 
is being recorded you are offered restart options for discontinuing or re
selecting log options. 



August 1986 

6.7.2.2 What the Salvager Does 

The salvager always reconstructs the free record maps. Running the salvager 
takes about two minutes per thousand records of file partition. 

197 

Files 

When the salvager is repatriating an orphan and it cannot find the directory in 
which the orphan is supposed to reside, it creates a new directory as an inferior of 
the directory >repatriations, with a name like lost-lor lost-2. After a repatriating 
salvager run, you should examine these directories. When the salvager repatriates 
an object, it types out a message saying that it did so. One of these messages 
might cause a **MORE** pause. If you plan to leave your console unattended 
while the salvager is working, you might want to disable **MORE** pauses before 
you start it. 

Note: The salvager always considers storage occupied by orphans to be "in use" 
for purposes of the free record map, even if it is not repatriating the orphans. 
Thus, if many orphans existed, they could use up a great deal of disk space. But 
normally, orphans do not occur at all. When the salvager repatriates it also 
"fixes" disk errors and misplaced records or directories by replacing them with 
fresh, empty ones. By nature of the repatriation process, no files are lost in this 
way. 

6.7.3 Adding a Partition to LMFS 

You can add partitions to LMFS by using the File System Editing Operations 
program. First, press SELECT F to select the menu for that program. Click on 
[Local LMFS Operations] to invoke the second level of the menu. Then, click on 
[LMFS Maintenance Operations] to invoke the third level of the menu. In the 
third level of the menu, clicking right on [Initialize] yields a menu of initialization 
options, which offers [New File System] and [Auxiliary Partition] as choices. 
Choosing [New File System] is similar to clicking left on [Initialize]; it initializes a 
partition to be the basis of a file system. Clicking left on [Initialize] prompts for 
an initial LMFS partition location, offering FEPO:>lmfs.file as a default location. 

When you add a new partition or a partition on another disk, the disk 'should be 
free of errors and properly initialized and formatted, and the partition should 
exist. 

To add another partition, choose [Auxiliary Partition]. Enter the pathname of the 
FEP file to be used as the new partition. (The default pathname presented, which 
is correct for [New File System], is never correct for adding [Auxiliary Partition].) 
Then choose [Do It]. The system then performs much verification and error 
checking, roughly as much as when initializing a new partition. It must not be 
interrupted while performing these actions. When finished, it adds the partition 
and edits the FSPT automatically. 



198 

Reference Guide to Streams, Files, and 110 August 1986 



199 

August 1986 Files 

7. FEP File System 

The Symbolics computer disk has a file system called the FEP file system. The 
entire disk is divided up into FEP files (that is, files of the FEP file system). 
FEP files have names syntactically similar to those of files in the Symbolics 
computer's own local file system. However, the FEP file system and the Lisp 
Machine File System (LMFS) are completely distinct. 

The FEP file system manages the disk space available on a disk pack, grouping 
sets of data into named structures called FEP files. All the available space on a 
disk pack is described by the FEP file system. A single FEP file system cannot 
extend beyond a single disk pack; each disk pack has its own separate FEP file 
system. 

The FEP file system supports all of the generic file system operations. It also 
supports multiple file versions, soft deletion and expunging, and hierarchical 
directories. 

Although "FEP" is an acronym for front-end processor, the FEP file system is 
managed by the main Lisp processor. It is called the FEP file system because the 
FEP can read files stored in the FEP file system. For example, the FEP uses the 
FEP file system for booting the machine and running diagnostics. 

Disk streams access FEP files. A disk stream is an I/O stream that performs 
input and output operations on the disk. (For information about streams: See the 
section "Types of Streams", page 7. See the section "Stream Operations", page 29. 
When disk streams are opened with a :direction keyword of :input or : output, the 
disk stream reads or writes bytes, respectively, buffering the data internally as 
required. When the :direction is : block, the disk stream can both read and write 
the specified disk blocks. Block mode disk streams address blocks with a block 
number relative to the beginning of the file, starting at file block number zero. 
This file block number is internally translated into the corresponding disk address. 
The checkwords of all disk blocks contained in the FEP file system are reserved 
for use by the FEP file system, so block mode transfers should not use the 
checkwords stored in the disk array. See the section "3600-Family Disk System 
Definitions and Constants" in Internals, Processes, and Storage Management. 

The FEP file system is also used by the system for allocating system overhead 
files, such as the paging file. See the section "FEP File Types", page 201. This 
section lists some of these files and what they are used for. 

The need to allow the FEP to access FEP files, and also to allow the system to 
use them imposes some constraints on the design of the FEP file system. The 
internal data structures of the file system must be simple enough to permit the 
FEP to read them, and a small amount of concurrent access by both the FEP and 
Lisp must be tolerated. A FEP file's data blocks should have a high degree of 



200 

Reference Guide to Streams, Files, and 110 August 1986 

locality on the disk to minimize access times. And the FEP flie system must be 
very reliable, since the FEP needs to use the file system for running diagnostics 
and for booting the machine. 

Note: Because of these constraints, the FEP file system is not intended to be a 
replacement for LMFS. (See the section "Lisp Machine File System", page 181.) 
Allocating new blocks for FEP files is slow, so creating many files, especially 
many small files, might impair the performance of the FEP file system, and 
ultimately the virtual memory system, if paging files or world load files become 
highly fragmented. 

7.1 Naming of FEP Files 

The FEP filename format is similar to the LMFS filename format. See the 
section "Lisp Machine File System", page 181. There are differences, however. 
Here are the format details of a FEP filename: 

host 

directory 

name 

type 

version 

The name of the FEP file system host. The format for a FEP 
host is host I FEPdisk-unit, where the host field specifies which 
machine's FEP file system you are referring to, and disk-unit 
specifies the disk unit number on the machine. The host field 
defaults to the local machine if you omit it and the terminating 
vertical bar (I). If you omit both the host and disk-unit fields, 
the FEP host defaults to the disk unit the world was booted 
from on the local machine. For example: 

Herr; mack I FEPB The FEP file system on Merrimack's unit o. 
FEP2 The FEP file system on the local machine's 

unit 2. 

FEP The FEP file system the booted world load 
file resides on. 

The name of the directory. The FEP file system supports 
hierarchical directories in the same format as in LMFS. Each 
directory name is limited to a maximum of 32 characters; there 
is no limit on the total length of a hierarchical directory 
specification. 

The name of the FEP file, which cannot exceed 32 characters. 

The type of the FEP file, which cannot exceed 4 characters. 

The version number of the FEP file, which must be a positive 
integer or the word "newest". 



201 

August 1986 Files 

FEP files can be renamed. For example, if you save a world containing 
MACSYMA, you might want to rename the world file to >macsyma.load or 
>macsymal.load. Be sure to update your boot file if you intend this to be the 
default world. 

7.2 FEP File Types 

By convention, the following file types are used by the FEP file system for files 
used by that system. 

boot 

load 

mic 

fspt 

file 

page 

flod 

fep 

The file contains FEP commands that can be read by the FEP's 
Boot command. boot files are text files, and can be manipulated 
by the editor. See the section "Configuration Files", page 202. 

The file contains a world load image, or band, that is used to 
boot the system. 

The file contains a microcode image, plus the contents of other 
internal high-speed memories that are initialized when the 
computer is booted. For example, >tmc5-io4-row-mic.mic.389 
contains version 389 of the microcode for version 5 of the TMC. 

The file contains a LMFS partition table. It tells LMFS which 
FEP files to use for file space. For example, >fspt.fspt.newest is 
the default partition table used by LMFS. 

The file contains a LMFS partition which holds the machine's 
local file system. The entire Symbolics computer local file 
system normally resides inside one big file of the FEP file 
system. For example, >lmfs.file.newest is the default LMFS file 
partition. 

The file contains disk space that can be used by the virtual 
memory system. To increase the effective size of virtual 
memory, you can add additional paging files. See the section 
"Allocating Extra Paging Space", page 220. For example, 
>page.page.newest is the default file used by the virtual memory 
system as storage for swapping pages in and out of main 
memory. 

The file contains a FEP Load file. FEP Load files contain 
binary code the FEP can load and execute. 

The file contains binary information used by the FEP file 
system. These files should not be written to by user programs. 
Some examples of these files are: 



202 

Reference Guide to Streams, Files, and 110 August 1986 

dir 

>root-directory.dir This is the root directory for the FEP file 
. system. 

>free-pages.fep Describes which blocks on the disk are 
allocated to existing files. 

>bad-blocks.fep Owns all the blocks that contain a media 
defect and should not be used. 

>sequence-number.fep 

>disk-Iabel.fep 

Contains the highest sequence number in use. 
The FEP file system uses sequence numbers 
internally to uniquely identify files. This is to 
assist in rebuilding the file system in case of 
a catastrophic disk failure. 

Contains the disk pack's physical disk label. 
The label is used to identify the pack and 
describe its characteristics. 

The file contains a FEP directory. For example, fepO:>root
directory.dir.newest contains the top-level root directory. The 
directory file for fepO:>dang>examples> would reside in 
fepO:>dang>examples.dir.1. 

7.3 Configuration Files 

Configuration files contain FEP commands tailored for a particular Symbolics 
computer configuration. The commands are executed if you specify the file as 
argument to a Boot command when cold booting the machine. See the section 
"FEP Commands" in Site Operations. 

The configuration file >Boot.boot usually contains FEP commands to: 

• Clear the internal state of the machine 
o Load the microcode 
• Load a world 
• Set the Chaosnet address 
• Start the machine 

To change the selection of microcode and world loads that are booted by default, 
simply use Zmacs to edit the file FEPn>Boot.boot, where FEPn is the disk unit. 
Be careful to avoid typographical errors; otherwise, you might have to type in the 
commands manually in order to boot the machine. Also, be sure that the last 
command in the file is followed by RETURN. 



203 

August 1986 Files 

7.4 FEP File Comment Properties 

Comment properties supply additional information about the contents of FEP files. 
They are listed inside square brackets, where the reference or expunge date 
appears for other file systems. You can list the contents of the FEP file system 
by using the Show FEP Directory command. The Zmacs command Dired (M-~) of 
fepn:>*, or the form Cd; red "fep: n>:t:") (where n is the disk unit) invokes the 
directory editor on the FEP file system. An example of the Show FEP Directory 
command output is shown in figure 6. 

o 6hou FEP Directory (on host [default GULL]) GULL (unit nu"ber [default ALL]) 9 
Host GULL: 
Unit 9: 61433 free, 48727-'119169 used (447.) 
Lines highlighted In bold represent fl lea currently In use. 

Uorld Load Ftlu: 
FEPII:>scrc-systell-34'.1-129.loed.1 39910 [349.129; Exp Urlter Tools 33.3; IP-TCP 51.4; Exp SCRC 19.11] 

FEPII:>server-froll-scrc-sys349-129.Io.d.1 1812 [349.129; Exp Urlter Tools 33.3; IP-TCP 51.4; [xp SCRC 19.11, Server] 

Nicrocod. Itl.,.: 
FEPI: >3641-111 c. IIlc.392 III [3641-nIC 392] 

Boot Itlu: 
FEP9:>boot.boot.71 1 
FEP9: >Hello.Boot.4 1 

Lisp Nachin. Ftl. Syst." Partitions: 
FEP9: >fspt. fspt.1 1 

F.p-sp.cilic lil.,.: 
FEP9: > BAD-BLOCKS. FEP.1 21 [F 11 e of bad blocks] 
FEP9:>DlSK-LABEL.FEP.1 24 [Disk label] 
FEP9:>FREE-PAGES.FEP.l 12 [Free pages "ap] 
FEP9: >Monltern-I04.sync.4 2 
FEP9: >Phl lips-I01. sync.:5 2 
FEP9: >ROOT -DIRECTOR\' • DIR.1 4 [The Root] 
FEP9: >6EQUENCE-NUMBER.FEP.l 1 
FEP9:>v127-bo1.flod.31 45 
FEP9:>vI27-debug.flod.19 59 
FEPII: >vI21-debug. flod. 31 51 
FEPG:>v127-debug.flod.5 48 
FEP9:>v127-dI5k.flod.31 29 
FEPG:>vI27-dlsk.flod.4 27 
FEPII:>vI21-fnfo.ffod.31 13 
FEP9:>v127-lnfo.flod.4 12 
FEP9:>VI27-lnfo.f1od.41 14 
FEP9:>v127-kludge5.f1od.37 1 
FEP9:>vI27-1cons.f1od.1 31 
FEP9:>vI27-1i5p.flod.37 45 
FEP9:>v127-1i5p.flod.4 42 
FEPII:>"121-lfsp.ffod.41 41 
FEP9:>vI27-loaders.flod.37 38 
FEP9:>v127-loaders.f1od.4 34 
nMOREna 

Dynamic Lisp Listener 1 
-«''BAn' $ & fA ;", ¥ !i "i 

Figure 6. FEP File Comment Properties 



204 

Reference Guide to Streams, Files, and 110 August 1986 

7.5 Accessing FEP Files 

FEP files are accessed by open disk streams. A disk stream is opened by the 
open function. (See the section "Accessing Files", page 129. That section 
contains more details on accessing files.) If a FEP file system residing on a 
remote host is referred to, a remote stream is returned with limited operations, as 
specified by the remote file protocol. 

In addition to the normal open options, the following keywords are recognized: 

:if-Iocked This keyword specifies the action to be taken if the specified file 
is locked. This keyword is not supported by the remote file 
protocol. 

: error 

:share 

Signal an error. This is the default. 

Open the specified file even if it is already 
locked, incrementing the file's lock count. 
This mode permits multiple processes to write 
to the same file simultaneously. (See the 
section "FEP File Locks", page 208. That 
section contains more information on file 
locks.) 

: numb er-of-disk-blocks 
The value of this keyword is the number of disk blocks to puffer 
internally if the :direction keyword is :input or : output. This 
keyword is ignored for other values of :direction or for files on 
remote hosts. The default :number-of-disk-blocks is two. 

7.6 Operating on Disk Streams 

All disk streams to a local FEP file system handle the following messages: 

:grow &optional n-blocks &key :map-area :zero-p Message 
This message allocates n-blocks of free disk blocks and appends them to the 
FEP file. The value of n-blocks defaults to one. If :zero-p is true the new 
blocks are filled with zeros; otherwise, they are not modified. The return 
value of :grow is the file's data map (the format of the data map is 
described in :create-data-map's description below). The value of 
:map-area is the area to allocate the data map in, which defaults to 
default-eons-area. 



205 

August 1986 Files 

:allocate n-blocks &key :map-area :zero-p Message 
This message ensures that the FEP file is at least n-blocks long, allocating 
additional free blocks as required. Returns the file's data map (the format 
of the data map is described in :create-data-map's description below). 
:map-area specifies the area to create the data map in, and defaults to 
default-eons-area. The newly allocated blocks are filled with zeros if 
:zero-p is true. :zero-p defaults to nil. 

:file-access-path Message 
This message returns the disk stream's file access path. 

For example, you can find out what unit number a FEP file resides on as 
follows: 

(send (send stream :file-access-path) :unit) 

:map-block-no block-number grow-p Message 
This message translates the relative file block-number into a disk address, 
and returns two values: the first value is the disk address, and the second 
is the total number of disk blocks, starting with block-number, that are in 
consecutive disk addresses. grow-p specifies whether the file should be 
extended if block-number addresses a block that does not exist. When 
grow-p is true, free disk blocks are allocated and appended to the FEP file 
to extend it to include block-number. Otherwise, if grow-p is false, nil is 
returned if block-number addresses a block that does not exist. 

:create-data-map &optional area Message 
This message returns a copy of the FEP file's data map allocated in area 
area, which defaults to default-eons-area. A FEP file data map is a one
dimensional art-q array. Each entry in the file data map describes a 
number of contiguous disk blocks, and requires two array elements. The 
first element is the number of disk blocks described by the entry. The 
second element is the disk address for the first block described by the 
entry. The array's fill-pointer contains the number of active elements in 
the data map times two. 

:write-data-map new-data-map disk-event Message 
This message replaces the file's data map with new-data-map. disk-event is 
the disk event to associate with the disk writes when the disk copy of the 
file's data map is updated. This message overwrites the file's contents and 
should be used with caution. 



206 

Reference Guide to Streams, Files, and 110 August 1986 

7.7 Input and Output Disk Streams 

Input and output disk streams are buffered streams. In addition to the standard 
buffered stream messages, local input and output disk streams also support the 
messages described elsewhere: See the section "Operating on Disk Streams", page 
204. 

Input disk streams read bytes of data starting at the current byte position in the 
FEP file, updating the byte position as the data is read. Output disk streams 
write bytes of data in the same way. 

The bytes of data are stored in buffers internal to the stream. The 
:number-of-disk-blocks open keyword controls how many disk blocks the internal 
buffers can hold. When the current pointer moves beyond a disk block boundary, 
the buffered disk block is written to the file for an output stream, or the next 
unbuffered block is read in from the file for an input stream. Output streams 
also write out all the buffered disk blocks when the stream is sent a :close 
message without an :abort option. 

7.8 Block Disk Streams 

Block disk streams can both read and write disk blocks at specified file block 
numbers. A file block number is the relative block offset into the file. The first 
block in the file is at file block number zero, the second is at file block number 
one, and so on. 

Block disk streams do not buffer any blocks internally and are not supported by 
the remote file protocol. 

See the section "Operating on Disk Streams", page 204. In addition to the 
messages described in that section, block disk streams support the following 
messages: 

:block-Iength Message 
The :block-Iength message returns the length of the FEP file in disk 
blocks. 

:block-in block-number n-blocks disk-arrays &key :hang-p Message 
: disk-event 

The :block-in message causes the disk to start reading data from the disk 
into the disk arrays in disk-arrays, starting with the file block number 
block-number, and continuing for n-blocks. disk-arrays can be a disk array 
or a list of disk arrays. The value of n-blocks is the number of disk blocks 
to read. When n-blocks is greater than one, each disk array is completely 
filled before using the next disk array in disk-arrays. The checkwords 



207 

August 1986 Files 

stored in the disk arrays are reserved for use by the FEP file system. See 
the section "3600-Family Disk System Definitions and Constants" in 
Internals, Processes, and Storage Management. Unused disk arrays or 
portions of disk arrays remain unmodified. 

When the value of :hang-p is true, which it is by default, :block-in waits 
for all the reads to complete before returning. If the value of :hang-p is 
false, :block-in returns immediately upon enqueuing the disk reads without 
waiting for completion. In this case, all disk-arrays and the disk-event 
must be wired before sending the :block-in message, and must remain 
wired until the disk reads complete. 

If the :disk-event keyword is supplied, its value is the disk event to 
associate with the disk reads. Otherwise the :block-in message allocates a 
disk event for its duration. A :disk-event must be supplied when :hang-p 
is false. 

: block-out block-number n-blocks disk-arrays &key :hang-p Message 
: disk-event 

The :block-out message causes the disk to start writing the data in the 
disk arrays in disk-arrays onto the disk, starting with the file block number 
block-number, and continuing for n-blocks. The arguments to the 
:block-out message are identical to those of the :block-in message. 

7.9 FEP File Properties 

In addition to having a name and containing data, FEP files also have properties. 
These properties store information about the file itself, such as when it was last 
written and whether it can be deleted or not. File properties are read by the 
fs:file-properties function, and modified by the fs:change-file-properties function. 
The fs:directory-list function also returns the file properties of several files at 
once. (See the section "Accessing Directories", page 160.) 

The following file properties can be both read and modified: 

: creation-date 

: author 

The universal time the file was last written to. Universal times 
are integers. (See the section "Dates and Times" in 
Programming the User Interface, Volume B.) 

The user-id of the last writer. The user-id must be a string. 

:length-in-bytes The length of the file, expressed as an integer. 

: deleted When t the file is marked as being deleted. A deleted file can 
then be marked as being undeleted by changing this property to 
nil. The disk space used by a deleted file is not actually 
reclaimed until the file is expunged. 



208 

Reference Guide to Streams, Files, and 110 August 1986 

:dont-delete When t, attempting to delete or overwrite the file signals an 
error. nil indicates the file can be deleted or written to. 

: comment A comment to be displayed in brackets in the directory listing. 
The comment must be a string. 

The following file properties are returned by the :properties message, but cannot 
be modified by :change-properties: 

:byte-size The number of bits in a byte. The value of this property is 
always 8. 

:length-in-blocks The block length of the file expressed as an integer. 

: directory If t, the file is a directory; otherwise nil. 

7.10 FEP File Locks 

A FEP file is locked for the interval from when it is opened for reading or writing 
until it is closed. If the :direc'don keyword is : input, the file is read-locked; if the 
:direction keyword is :output or :block, the file is write-locked. 

When the :if-Iocked keyword is :error, which is its default, a file that is read
locked can still be opened for reading but signals an error if opened for writing; a 
file that is write-locked cannot be opened for reading or writing. This permits 
multiple readers to access a file concurrently, while prohibiting writing to the file 
being read. 

When the :if-Iocked keyword is :share in an open call for write, it succeeds in 
opening the file even if it is already read- or write-locked. 

An expunge operation on a file that is either read- or write-locked does not 
expunge the file. If expunging a directory fails to expunge a file, the file must be 
closed and the directory expunged again. 

7.11 Installing Microcode 

Use the Copy Microcode command to retrieve any new microcode from the file 
system of the sys host. 

Copy Microcode Command 

Copy Microcode {version or pathname} destination keywords 

Installs a version of microcode. 



209 

August 1986 Files 

version or pathname 

destination 

keywords 

Microcode version number or pathname to copy. version is a 
microcode version number (in decimal). pathname rarely needs 
to be supplied. It defaults to a file on FEPn:> (where n is unit 
number of the boot disk) whose name is based on the microcode 
name and version. (The file resides in the logical directory 
sys:l-ucode;.) The version actually stands for the file 
appropriate-hardware-MIC.MIC.version on FEPn:>. (See the 
Section "Genera 7.0 Microcode Types" in Software Installation 
Guide) 

FEP file specification. The pathname on your FEPn:> directory. 
The default is created from the microcode version. 

:update boot file 

:update boot flie 
{FEP-file-spec none}. The default is the current default boot 
file name. 

Initially, the Symbolics personnel who install your system establish these 
microcode files for you. 

7.12 Using a Spare World Load for Paging 

You can reuse FEP file space for paging files. You may have a spare world load 
file, which you can transform into a paging file. For example, once you have 
successfully installed a new software release, you can rename the old world load to 
be a paging file. Note: Do not use the world load you are currently running for a 
paging file, as this action overwrites the previous contents of the specified file. 

If your old world load is Release-6-1.load, is resident on FEPO:>, and is 36,000 
blocks in size, and you want to create a new paging flie called FEPO:>page2.page 
(with a block size of 36,000), follow these steps: 

1. You should rename the file FEPO:>release-6-1.load to FEPO:>page2.page using 
the Rename File command. For example, type: 

Rename File FEPB:>release-6-1.load FEPB:>page2.page 

Now the world load has been renamed to a paging file. 

2. Use the Add Paging File command to initialize the paging flie from the Lisp 
environment. 



210 

Reference Guide to Streams, Files, and VO August 1986 

3. Edit your FEPn:>Boot.boot file to declare the new paging file. Use the 
Declare Paging-files command in your boot file to do this. For information 
about the Declare Paging-file command: See the section "FEP System 
Commands: General Usage" in Site Operations. 

You can also create new FEP files and use them for extra paging space: See the 
section "Allocating Extra Paging Space", page 220. 

7.13 Adding a Spare World Load as LMFS File Space 

Partitions can be added to LMFS by following these steps: 

1. Create the partition you wish to add to LMFS prior to entering the File 
system editing operations program. In addition, when you add a new 
partition or a partition on another disk, the disk should be free of errors and 
properly initialized and formatted. 

2. Press SELECT F to select the File system editing operations program. 

3. Click on [Local LMFS Operations] to invoke the second level of the File 
System Maintenance Program. 

4. Click on [LMFS Maintenance Operations] to invoke the third level menu, 
which is a menu of file-system maintenance operations. 

5. Click right on [Initialize] to invoke a menu of initialization options, which 
offers [New File System] and [Auxiliary Partition] as choices. Clicking on 
[New File System] is similar to clicking left on [Initialize]; it initializes a 
partition to be the basis of a file system. 

6. Click on [Auxiliary Partition] to add another partition. 

7. Enter the pathname of the FEP file to be used as the new partition. The 
default presented, which is correct for [New File System], is never correct 
for adding a partition. 

8. Click on [Do It]. The system then performs much verification and error 
checking, roughly as much as when initializing a new partition. I t must not 
be interrupted while performing these actions. 

9. When finished, the File system editing operations program adds the partition 
and edits the FSPT automatically. 



211 

August 1986 Files 

8. FSEdit 

8.1 File System Editor 

The File System Editor (FSEdit) is an interactive program that lets you examine 
and modify the contents of a file system. You can create directories and links, 
view and edit the properties of file system objects, delete objects, and expunge 
directories. The File System Editor is part of the File System Maintenance 
program, and it is the only part that most users ever use. 

8.1.1 Entering the File System Editor 

To get the File System Maintenance program, press SELECT F. At the top of the 
frame is a menu of commands. Three commands in this menu invoke the File 
System Editor: 

o [Tree Edit Root] 

o [Tree Edit Any] 

o [Tree Edit home dir] 

When click on one of these three commands, the big window in the frame displays 
a particular tree of a particular file system; that is, it displays a certain directory 
(the base directory) and some of the objects under that directory. If you use: 

[Tree Edit Root] The base directory is the root directory of the local file system; 
this lets you get at any file in the entire file system. 

[Tree Edit Any] You can specify the base directory by typing in its wildcard 
pathname; after you click on this command you are prompted for 
a wildcard pathname. 

[Tree Edit home dir] 
The base directory is your home directory. [Tree Edit home dir] 
prompts for a host instead of using only the "logged-in" host 
(the one designated during login). If you just want to try out 
the File System Editor, use [Tree Edit home dir]. 

These commands put you in the File System Editor. You never have to get "out" 
of it; if you want to do something unrelated to the file system, just select the 
window you want to use, and if you want to do something else with the File 
System Maintenance program, you just click on the appropriate command in the 
command menu. 



212 

Reference Guide to Streams, Files, and liD August 1986 

8.1.2 Using the File System Editor 

When you use [Tree Edit Root], at the top of the main window is a line reading 
>* . * . *. This line represents the root directory, which usually contains only 
directories. Below the root directory line is a set of indented lines, one 
representing each object in the root directory. 

Move the mouse over anyone of these directory lines and notice that the mouse 
documentation line reflects three actions that you can take: 

(L) 

(M) 

(R) 

Open object: See the section "Opening and Closing a 
Directory", page 212. 

Close containing object: See the section "Opening and Closing a 
Directory", page 212. 

Menu of operations: See the section " Using FSEdit Commands", 
page 213. 

8.1.3 Opening and Closing a Directory 

Now, suppose you move the mouse over the line that represents a directory, for 
instance >sys, and click left. That line changes to read >sys>*. * . *, and several 
lines are inserted just underneath it, one for each object in the >sys directory. 
You have just opened the >sys directory. 

When you open a directory, a line is inserted in the display for each object in the 
directory. For every directory, there is a line with the pathname of the directory 
and nothing else; these directories are all closed. For every file, there is a line 
with the name, type, and version of the file, and other information about the file. 
For every link, there is a line with the name, type, and version of the link, 
followed by => and the pathname of the target of the link, and other information. 
See the section "How to Interpret Directory Listings", page 216. 

Whenever you click left on a closed directory, FSEdit opens it and displays its 
contents. By clicking on successive directories inside other directories, you can 
move around in the file system and see what is there. The base directory is 
automatically opened as soon as you start using the File System Editor. 

When you are finished with a directory, you can close the directory by clicking 
middle on any of the objects inside that directory. So, if you click middle on a 
file, that file and everything at its level disappears from the display. 

U sing these commands, you can get at any part of the file system underneath the 
base directory, and see everything that is there. 

It is easy for the display to become longer than the size of the window when you 
move around in large directories; you can use the usual mouse scrolling commands 
to move the display up and down in the window. See the section "Scrolling with 
the Mouse" in User's Guide to Symbolics Computers. 



213 

August 1986 Files 

8.1.4 Using FSEdlt Commands 

To do something to an object, click right on the object. This pops up a menu of 
commands, each of which specifies an action to take regarding the object. Some 
commands make sense for all three kinds of objects (directories, files and links); 
others are specific to certain kinds of objects. The menu that appears when you 
click right on an object offers only the options that you can apply to that type of 
object on your host type. For example, the menu does not display [Expunge] as an 
option for files or links, only for directories, and it does not display [Expunge] as 
option if the directory in question resides on a host that does not support soft 
deletion. 

The following is a list of all these commands with the kind of object(s) to which 
each command applies: 

[Delete] (Files, directories, links) 
Marks this object for deletion. This command pertains to systems that support 
soft deletion, for example, Symbolics computers. This command is only displayed 
for objects that are not already deleted. You should not delete directories that 
have anything in them. 

[Delete (immediate)] (Files, directories, links) 
Deletes this object. This command pertains to systems that do not support soft 
deletion, for example, UNIX. This command asks for confirmation and then 
immediately removes the deleted object from the display. You should not delete 
directories that have anything in them. 

[Wildcard Delete] (Directories) 
Does wildcard deletion. This command prompts you with a default for deleting 
everything for the line to which the menu applies. It merges what you enter with 
* defaults. It lists the files it intends to delete, asks for confirmation, deletes 
them, reporting any errors, and updates the display. 

[Undelete] (Files, directories, links) 
Undeletes this object. This command pertains to systems that support soft 
deletion, for example, Symbolics computers, and is displayed only for objects that 
are deleted (are marked with a D). 

[Rename] (Files, directories, links) 
Renames this object; prompts for a new name. If the object is not a directory, you 
can optionally type in a whole pathname specifying a new directory, and the file or 
link will be moved to the new directory as well as being given the new name. 

[View Properties] (Files, directories, links) 
Types out one line for each property of the object, giving the name and the value 
of the property. Properties are the qualities of the file that are maintained by the 
file system on which it resides, such as creation date and time, author, time of 
last access, and length. For files on a Lisp Machine file system, this means user-



214 

Reference Guide to Streams, Files, and I/O August 1986 

defined properties as well. It prompts for the name of a file and pops up a 
choose-variable-values window, allowing you to alter various properties of the file. 
The exact properties that can be altered depend on the file system, but they might 
include: 

• Generation (version) retention count 

• Author 

• Creation, modification, and reference dates 

• Protection flags 

• Other file-associated information 

This information types out on top of the display, and prompts you to type any 
character when you are ready to proceed. After you type this character, the 
properties vanish and the FSEdit window is redisplayed. You can also use 
[Flush Typeout] in the command menu to make the typeout vanish; this is 
convenient since you do not have to move from the mouse to the keyboard. 

[Edit Properties] (Files, directories, links) 
Pops up a Choose Variable Values window that lets you change the value of any 
changeable system property or user property of the object. 

[N ew Property] (Files, directories, links) 
Creates a new user property for the object. You are first prompted for the name 
of the property, and then the value. The name is uppercased. To remove a 
property, give an empty string as the value. 

[View] (Files, links) 
Displays the file. The file is typed out on top of the display, and you are 
prompted to type any character when you are ready to proceed. The 
:reference-date of the file of the file is not changed. See the section "LMFS 
Properties", page 182. If the object is a link, it must be transparent to :read and 
its target must be a file; the target is printed. 

[Create Inferior Directory] (Directories) 
Creates a new directory inside this directory. You are prompted for the name 
(just type in the name, not the whole pathname). 

[Create Link] (Directories) 
Creates a new link inside this directory. You are first prompted for the name of 
the link, and then for the full pathname of the target of the link. See the section 
"LMFS Links", page 189. 

[Expunge] (Directories) 
Expunges the directory. See the section "LMFS Deletion, Expunging, and 
Versions", page 187. 



August 1986 

[Open] (Directories) 
Opens the directory. This is the same as clicking left on the directory name. 
This command is only displayed for closed directories. 

[Selective open] (Directories) 

215 

Files 

Prompts for a wildcard name, for example, a file name containing n*n characters 
to indicate a wild-card component. The directory is opened and displays only those 
objects in the directory that match this pattern. Unspecified components default 
to n *n . The normal [Open] command is like a [Selective open] of *. *. *, displaying 
all files. For example, if you do a [Selective open] of n * . 1 ; sp n, only files whose 
type is n 1 ; sp" are displayed. (In this example, the version was unspecified and 
defaulted to n*n.) The line in the display that corresponds to the directory shows 
this wildcard name. 

[Close] (Directories) 
Closes the directory. This is the same as clicking middle on one of the directory's 
inferiors. This command is only displayed for open directories. 

[Link transparencies] (Links, directories) 
Lets you change the :link-transparencies of a link, or the 
:default-link-transparencies of a directory. 

Each link has a property called its : link-transparencies. The value of this 
property is a list of keyword symbols. Each symbol specifies an operation to which 
the link is transparent. If the link is transparent to an operation, that means that 
if the operation is performed, it will really happen to the target. If the link is not 
transparent to the operation, then the operation will happen to the link itself. See 
the section "LMFS Links", page 189. 

This command displays a menu showing all of the operations to which a link can 
or can not be transparent. Each operation to which the link actually is 
transparent is highlighted with reverse video. By clicking on the name of any 
operation, you can turn the highlighting on or off. When you are done changing 
the transparencies, use [Do It], and the transparencies (or default transparencies, 
if this is a directory) are set. You use [Abort] to abort the operation. 

[Decache] (Directories) 
When a directory is opened, the File System Editor examines the directory, sees 
what is there, and remembers it. If another user changes the contents of the 
directory while you are in the middle of editing that directory, the File System 
Editor does not know that anything has changed, and so what it shows you does 
not really correspond to the state of the file system. Using [Decache] tells the 
File System Editor to forget what it thinks it knows about the contents of the 
directory, and makes it go back to the file system to see what is really in the 
directory now. 

[Hardcopy] (Files) 
Hardcopies the file. Clicking on this command causes the system hardcopy menu 
to pop up. 



216 

Reference Guide to Streams, Files, and I/O August 1986 

[Edit] (Files) 
Invokes the Zmacs editor on the file. 

[Load] (Files) 
Loads the file into the Lisp world. 

8.2 How to Interpret Directory Listings 

The system displays the contents of directories of file systems in three contexts: 

• The File System Editor 

• The Show Directory (M-H) and Dired (M-H) Zmacs commands 

• The Show Directory command 

Contents of directories are displayed in a standard format, regardless of the 
context and regardless of what kind of file system (for example, Symbolics 
computer, TOPS·20, UNIX) the directory came from. Since this format is 
designed to express a great deal of information in a single line, it is rather 
abbreviated. Some of the ways it expresses things might not be clear without an 
explanation. 

The basic format usually looks something like the following: 

pal.lisp.65 7 25548(8) 83/12/85 12:42:41 (85/13/85) dlw 

The following is an explanation of the items in this listing: 

item explanation 
pal file name 
1 i sp file type 
65 file version number 
7 length of the file in blocks 
25548 length of the file in bytes 
8 byte-size of the file 
83/12/85 date file created 
12:42:41 time file created 
5/13/85 date file last referred to 
dlw author 

Many other things can appear in such a line; some of these things are seen only 
on certain types of file systems. If the first character in the line is a D, the file 
has been deleted (this makes sense only on file systems that support undeletion, 
such as the Lisp Machine and TOPS-20 file systems). After the D, if any, and 
before the name of the file, is the name of the physical volume that the file is 
stored on (on ITS, this is the disk-pack number). 



217 

August 1986 Files 

On a line that describes a link. rather than a file, the length numbers are replaced 
by an arrow (=», followed by the name of the target of the link.. 

On a line that describes a subdirectory rather than a file, the length-in-blocks 
number is shown (if provided by the file system), but the length-in-bytes is 
replaced by the string DIRECTORY. 

Next, before the dates, the line might contain any of several punctuation 
characters indicating things about the file. Only some of the file systems 
understand these flags. Following is a list of the various characters and the flags 
they indicate: 

character 

@ 

$ 

flag 
not backed up 
do not delete 
do not reap 

For lines indicating subdirectories, the reference date can be replaced with a date 
preceded by X=, the date this directory was last expunged. The dates are followed 
by the file author's name, which is followed by the name of the last user to read 
the file. 

Only certain file systems support certain features. Many file systems do not keep 
track of the last reader's name and do not have something comparable to a "do 
not delete" flag. Therefore, any of the above fields might be omitted on certain 
file systems. However, the same general format is followed for all file systems 
and so you can interpret the meaning of a line in a directory listing, even for a 
file system that you are not familiar with. 



218 

Reference Guide to Streams, Files, and 110 August 1986 



219 

August 1986 Files 

9. Creating More Room on the Local Disk 

There are two file systems available on the Symbolics computer: the Lisp 
Machine File System (LMFS) and the FEP File System (FEP FS). LMFS is a 
general-purpose, highly flexible file system, suitable for everyday use. Currently, 
only the Symbolics processor understands how to operate on LMFS files. The FEP 
FS is a simple, basic file system that both the Symbolics computer and front-end 
processors understand how to access. 

The FEP FS contains two kinds of files. The first kind, called a FEP file is used 
to store information the FEP uses to do things like boot Lisp and manage virtual 
memory; this includes world load files, microcode load files, paging files and boot 
files. The second kind of file is also a FEP file, but it is a very large file and it 
is called a file system partition. One or more partitions are what LMFS uses to 
store its structure and data. User files are stored by LMFS in partitions. 

Sometimes the Save World or Copy World commands might inform you that you 
have run out of FEP file system space, and offers you the option of editing your 
FEP directory. For systems with 167-Mbyte or more of storage, you should delete 
and expunge old, unneeded world loads, and then resume from the Save World 
"out of room" error or retry the Copy World operation. You should not delete any 
world loads from a 140-Mbyte system. See the section "Instructions for Managing 
Disk Space on the 3640 with a 140 Megabyte Disk" in Site Operations. 

It is wise to keep a large (about 40K), noncritical world load or extra paging file 
on the Symbolics computer's disk, so it will be available for the FEP Disk Restore 
command to use in case all world loads become nonfunctional. 

Sometimes, writing a file out to a LMFS produces an "out of room" error. This 
means that the present allocation of that particular LMFS is not large enough to 
accommodate your request for space. It might help to expunge directories with 
deleted files in them to remove unneeded versions of files, using the Zmacs 
command Dired (M-H). 

If you still do not have enough space after you have deleted and expunged 
unnecessary files, consider creating an auxiliary file partition. You should only do 
so, however, on systems that have at least 280 Mbytes of storage. This is because 
140-Mbyte systems have no room at all for an auxiliary file partition, and 
allocating an auxiliary file partition on a 167-Mbyte system can limit your space 
for large world loads. Even for 280-Mbyte systems, you are trading off world load 
space for file space when you create auxiliary partitions. 

Be sure to reserve enough FEP file system space for a two world loads (the 
amount of FEP file space required for this depends on the size of the released 
worlds): a disk copy of your current world and a spare world load for the FEP 
Disk Restore command to use. 



220 

Reference Guide to Streams, Files, and liD August 1986 

For details on how to create auxiliary file partitions: See the section "LMFS 
Multiple Partitions", page 191. 

Warning: Once you have created an auxiliary file partition, you should never 
delete it, because you would lose all the data contained in that partition and make 
the entire Lisp Machine File System unusable. 

If you run out of room while writing a LMFS file and then create a new partition 
to increase the LMFS space, you cannot resume the file operation that failed. 
Instead, you must abort that operation by pressing c-ABORT, and then retry the 
operation. 

9.1 Allocating Extra Paging Space 

Programs that use large amounts of virtual memory might require you to allocate 
additional paging space, to perform better or to perform at all. Only systems with 
at least 280 Mbytes of disk storage have enough room to permit additional paging 
files without adversely affecting the maintenance of worlds on the machine. In 
order to add an extra paging file to your virtual memory set, you must first create 
a FEP file using the Create FEP File command. Then, you can activate the 
paging file from Lisp by using the Add Paging File command. To create a 20-K 
block paging file on unit 0 type: 

Create FEP File fep0:>page1.page 20000 

After creating the extra paging file, any boot files should be modified to use this 
new paging file. Use the Declare Paging-files command in the boot file to load 
any paging files you want to use. A typical boot file before inserting the 
command to load the paging file might look something like this: 

Clear Machine 
Load Microcode >tmc5-row-mi~.mic.384 
Load World >Dist-7-0.load 
Set Chaos-Address 401 
Start 

After creating the new paging file, edit your boot file to include the Declare 
Paging-files command. The new Boot.boot file might look something like this: 

Clear Machine 
Load Microcode >tmc5-row-mic.mic.384 
Declare Paging-files fep0:page1 
Load World >Dist-7-0.load 

Set Chaos-Address 401 
start 



221 

August 1986 Files 

For information about the Declare Paging-files command: See the section "FEP 
System Commands: General Usage" in Site Operations. 

It is safe to delete extra paging files, but only if they are not in active use. You 
cannot change a paging file that is being used, without booting. To change the 
paging area you have set up, first boot without adding the paging file to be 
deleted. Be sure to cold boot by hand, and when you type the Declare Paging
Files command, do not specify the extra paging file that you intend to delete. 
Once you have booted, you can delete the unwanted paging file by editing the FEP 
directory. Be sure to remove any references to the file from your boot file as 
well. 

9.2 Adding a Paging File From Lisp 

If you want to add a paging file from Lisp, use the new command: 

Command: Add Paging File 

Prior to adding the paging file you may have to create the FEP file by using the 
command: 

Create FEP File 

to create the paging file. 

Add Paging File Command 

Add Paging File pathname :prepend 

Adds a pathname as a paging file. 

pathname 

keywords 

:prepend 

The pathname of the new paging file. The default pathname is 
the disk unit from which you most recently booted. For 
example, if you most recently booted from FEP1:>, the default 
paging file might look like: 

FEP1:>.page 

:prepend 

{yes no} Yes means to put the paging file at the beginning of 
the list of swap space to use when new space is needed. This 
makes the new paging file used almost immediately. No, which 
is the default, puts the paging file at the end of the list of 
paging files. Consequently, this new paging file will not be used 
until the previous swap space is completely used. 



222 

Reference Guide to Streams, Files, and 110 August 1986 



223 

August 1986 Files 

10. Putting Data in Compiled Code Files 

A compiled code file can contain data rather than a compiled program. This can 
be useful to speed up loading of a data structure into the machine, as compared 
with reading in a printed representation of that same data structure. Also, certain 
data structures, such as arrays, do not have a convenient printed representation as 
text, but can be saved in compiled code files. 

In compiled programs, the constants are saved in the compiled code file in this 
way. The compiler optimizes by making constants that are zl:equal become eq 
when the file is loaded. This does not happen when you make a data file yourself; 
identity of objects is preserved. Note that when a compiled code file is loaded, 
objects that were eq when the file was written are still eq; this does not normally 
happen with text files. 

The following types of objects can be represented in compiled code files: 

Symbols 
Numbers of all kinds 
Lists 
Strings 
Arrays of all kinds 
Instances (for example, hash tables) 
Compiled function objects 

When an instance is put (dumped) into a compiled code file, it is sent a 
:fasd-form message, which must return a Lisp form that, when evaluated, will 
recreate the equivalent of that instance. This is because instances are often part 
of a large data structure, and simply dumping all of the instance variables and 
making a new instance with those same values is unlikely to work. Instances 
remain eq; the :fasd-form message is sent only the first time a particular 
instance is encountered during writing of a compiled code file. If the instance 
does not accept the :fasd-form message, it cannot be dumped. 

sys:dump-forms-to-file filename forms &optional file-attribute-list Function 
sys:dump-forms-to-file writes data to a file in binary form. forms-list is a 
list of Lisp forms, each of which is dumped in sequence. It dumps the 
forms, not their results. The forms are evaluated when you load the file. 

For example, suppose a is a variable bound to any Lisp object, such as a 
list or array. The following example creates a compiled code file that 
recreates the variable a with the same value: 



224 

Refarence Guide to Streams, Files, and 110 August 1986 

(sys:dump-forms-to-file "f:>foo>aval" 
(list '(setq a ',a») 

For the purposes of understanding what this function does, you can 
consider that it is the same as the following: 

(defun sys:dump-forms-to-file (file forms) 
(with-open-file (s file ':direction ':output) 

(dolist (f forms) 
(print f s»» 

The actual definition (which is more complicated) writes a binary file in a 
more easily parsed format so it will load faster. It can also dump arrays, 
which you cannot write to a Lisp source file. 

attribute-list supplies an optional attribute list for the resulting compiled 
code file. It has basically the same result when loading the binary file as 
the file attribute list does for compiler:compile-file. Its most important 
application is for controlling the package that the file is loaded into. 

(sys:dump-forms-to-file "faa" forms-list , (:package "user"» 

sys:dump-forms-to-file always puts a package attribute into the binary file 
it writes. If you do not specify the attribute-list argument, or if 
attribute-list does not contain a :package attribute, the function uses the 
cl-user or zl-user package, depending on the context. This is to ensure 
that package prefIxes on symbols are always interpreted when they are 
loaded as they were intended when the fIle was dumped. 

The file-attribute-list argument can be used to store useful information 
(such as "headers" for special data structures) in the file's attribute list. 
The information can then be retrieved from the attribute list with 
fs:pathname-attribute-list, without reading the rest of the file. 



225 

August 1986 Input/Output Facilities 

PART IV. 

Input/Output Facilities 



226 

Reference Guide to Streams, Files, and 110 August 1986 



227 

August 1986 Input/Output Facilities 

11. How the Reader Works 

The purpose of the reader is to accept characters, interpret them as the printed 
representation of a Lisp object, and return a corresponding Lisp object. The 
reader cannot accept everything that the printer produces; for example, the 
printed representations of arrays (other than strings), compiled code objects, 
closures, stack groups, and so on cannot be read in. However, it has many 
features that are not seen in the printer at all, such as more flexibility, comments, 
and convenient abbreviations for frequently used unwieldy constructs. 

In general, the reader operates by recognizing tokens in the input stream. Tokens 
can be self-delimiting or can be separated by delimiters such as whites pace. A 
token is the printed representation of an atomic object such as a symbol or a 
number, or a special character such as a parenthesis. The reader reads one or 
more tokens until the complete printed representation of an object has been seen, 
and then constructs and returns that object. 

11.1 What the .. ~eader Recognizes 

11.1.1 How the Reader Recognizes Symbols 

A string of letters, numbers, and "extended alphabetic" characters is recognized by 
the reader as a symbol, provided it cannot be interpreted as a number. Alphabetic 
case is ignored in symbols; lowercase letters are translated to uppercase. When 
the reader sees the printed representation of a symbol, it interns it on a package. 
See the section "Packages" in Symbolics Common Lisp: Language Concepts. 

Symbols can start with digits; for example, zl:read accepts one named "345T". If 
you want to put strange characters (such as lowercase letters, parentheses, or 
reader macro characters) inside the name of a symbol, put a slash before each 
strange character. If you want to have a symbol whose print-name looks like a 
number, put a slash before some character in the name. You can also enclose the 
name of a symbol in vertical bars, which quotes all characters inside, except 
vertical bars and slashes, which must be quoted with slash. 

Examples of symbols: 

foo 
bar/(baz/) 
34w23 
\Frob Sale\ 

When a token could be read as either a symbol or an integer in a base larger than 
ten, the reader's action is determined by the value of 



228 

Reference Guide to Streams, Files, and 110 August 1986 

si:*read-extended-ibase-unsigned-number* and 
si:*read-extended-ibase-signed-number* . 

11.1.2 How the Reader Recognizes Macro Characters 

Certain characters are defined to be macro characters. When the reader sees one 
of these, it calls a function associated with the character. This function reads 
whatever syntax it likes and returns the object represented by that syntax. Macro 
characters are always token delimiters; however, they are not recognized when 
quoted by slash or vertical bar, nor when inside a string. Macro characters are a 
syntax-extension mechanism available to the user. Lisp comes with several 
predefined macro characters: 

Quote (') 

Semicolon (;) 

Backquote (') 

Comma (,) 

Sharp sign (#) 

An abbreviation to make it easier to put constants in programs. 
'roo reads the same as (quote roo). 

Used to enter comments. The semicolon and everything up 
through the next carriage return are ignored. Thus a comment 
can be put at the end of any line without affecting the reader. 

Makes it easier to write programs to construct lists and trees by 
using a template. See the section "Backquote" in Symbolics 
Common Lisp: Language Concepts. 

Part of the syntax of backquote. It is invalid if used other than 
inside the body of a backquote. See the section "Backquote" in 
Symbolics Common Lisp: Language Concepts. 

Introduces a number of other syntax extensions. See the section 
"Sharp-sign Reader Macros", page 229. Unlike the preceding 
characters, sharp sign is not a delimiter. A sharp sign in the 
middle of a symbol is an ordinary character. 

The function zl:set-syntax-macro-char can be used to define your own macro 
characters. 

Reader macros that call a read function should call si:read-recursive. 

si:read-recursive stream Function 
si:read-recursive should be called by reader macros that need to call a 
function to read. It is important to call this function instead of zl:read in 
macros that are written in Zetalisp but used by the Common Lisp 
readtable. In particular, this function must be called by macros used in 
conjunction with the Common Lisp #n= and #n# syntaxes. 

stream is the stream from which to read. This function can be called only 
from inside a zl:read. 



229 

August 1986 Input/Output Facilities 

For example, this is the reader macro called when the reader sees a quote 
('): 

si:(defun xr-quote-macro (list-so-far stream) 
1 i st-so-far ; not used 
(values (list-in-area read-area 

'quote (read-recursive stream» 
'list» 

11.2 Sharp-sign Reader Macros 

The reader's syntax includes several abbreviations introduced by sharp sign (#). 
These take the general form of a sharp sign, a second character that identifies the 
syntax, and following arguments. Certain abbreviations allow a decimal number or 
certain special "modifier" characters between the sharp sign and the second 
character. 

The function zl:set-syntax-#-macro-char can be used to define your own sharp
sign abbreviations. 

#\ or #I#\x (or #Ix in Zetalisp) reads in as the character x. For example, #\a. This 
is the recommended way to include character constants in your code. Note 
that the backslash causes this construct to be parsed correctly by the 
editor. 

As in strings, upper- and lowercase letters are distinguished after #\. Any 
character works after #\, even those that are normally special to read, such 
as parentheses. 

#\name (or #Iname) reads in as the name for the nonprinting character 
symbolized by name. A large number of character names are recognized. 
See the section "Special Character Names", page 234. For example, 
#\return reads in as an integer, being the character code for the Return 
character in the Genera character set. In general, the names that are 
written on the keyboard keys are accepted. The abbreviations #\cr for 
#\return and #\sp for #\space are accepted and generally preferred, since 
these characters are used so frequently. The page separator character is 
called #\page, although #\form and #\clear-screen are also accepted since 
the keyboard has one of those legends on the page key. The rules for 
reading name are the same as those for symbols; thus upper- and lowercase 
letters are not distinguished, and the name must be terminated by a 
delimiter such as a space, a carriage return, or a parenthesis. 

When the system types out the name of a special character, it uses the 
same table as the #\ reader; therefore, any character name typed out is 
acceptable as input. 



230 

Reference Guide to Streams, Files, and 110 August 1986 

#\ (or #/) can also be used to read in the names of characters that have 
control and meta bits set. The syntax looks like #\control-meta-b to get a 
"B" character with the control and meta bits set. You can use any of the 
prefix bit names control, meta, hyper, and super. They can be in any 
order, and upper- and lowercase letters are not distinguished. The last 
hyphen can be followed by a single character, or by any of the special 
character names normally recognized by #\. If it is a single character, it is 
treated the same way the reader normally treats characters in symbols; if 
you want to use a lowercase character or a special character such as a 
parenthesis, you must precede it with a slash character. Examples: 
#\hyper-super-a, #\meta-hyper-roman-i, #\ctrl-meta-/(. 

The character can also be modified with control and meta bits by inserting 
one or more special characters between the # and the \. This syntax is 
obsolete since it is not mnemonic and it generally unclear. However, it is 
used in some old programs, so here is how it is defined. #a.\x generates 
Control-x. #~\x generates Meta-x. #1t\x generates Super-x. #'A\x generates 
Hyper-x. These can be combined, for instance #1t~\& generates Super-Meta
ampersand. Also, #£\x is an abbreviation for #a.~\x. When control bits are 
specified, and x is a lowercase alphabetic character, the character code for 
the uppercase version of the character is produced. 

#" #" x is exactly like #a.lx if the input is being read by Zetalisp; it generates 
Control-x. In Maclisp x is converted to uppercase and then exclusive-or'ed 
with 100 (octal). Thus #"x always generates the character returned by 
zl:tyi if the user holds down the control key and types x. (In Maclisp 
#a.lx sets the bit set by the CONT ROL key when the TTY is open in 
zl:fixnum mode.) 

NOTE: #" Reader Macro is supported in Zetalisp only. 

#' #'foo is an abbreviation for (function foo). foo is the printed 
representation of any object. This abbreviation can be remembered by 
analogy with the ' macro character, since the function and quote special 
forms are somewhat analogous. 

#, #,foo evaluates foo (the printed representation of a Lisp form) at read time, 
unless the compiler is doing the reading, in which case it is arranged that 
foo be evaluated when the QF ASL file is loaded. This is a way, for 
example, to include in your code complex list-structure constants that 
cannot be written with quote. Note that the reader does not put quote 
around the result of the evaluation. You must do this yourself, typically by 
using the ' macro-character. An example of a case where you do not want 
quote around it is when this object is an element of a constant list. 

#. #.foo evaluates foo (the printed representation of a Lisp form) at read time, 
regardless of who is doing the reading. 



231 

August 1986 Input/Output Facilities 

#: #:name reads name as an uninterned symbol. It always creates a new 
symbol. Like all package prefIxes, #: can be followed by any expression. 
Example: #:(a be). 

#b #brational reads rational (an integer or a ratio) in binary (radix 2). 

Examples: 

#81191 <=> 13. 
#81199\199 <=> 3 

#0 #0 number reads number in octal regardless of the setting of zl:ibase. 
Actually, any expression can be preflxed by #0; it is read with zl:ibase 
bound to 8. 

#X #X number reads number in radix 16. (hexadecimal) regardless of the setting 
of ibase. As with #0, any expression can be preflxed by #x. The number 
can contain embedded hexadecimal "digits" A through F as well as the 0 
through 9. See the section "Reading Integers in Bases Greater Than 10" 
in Symbolics Common Lisp: Language Concepts. 

#r #radixR number reads number in radix radix regardless of the setting of 
zl:ibase. As with #0, any expression can be prefIxed by #radixR; it is read 
with zl:ibase bound to radix. radix must consist of only digits, and it is 
read in decimal. number can consist of both numeric and alphabetic digits, 
depending upon radix. 

For example, #3RI02 is another way of writing 11. and #11R32 is another 
way of writing 35. 

#Q #Q foo reads as foo if the input is being read by Zetalisp, otherwise it 
reads as nothing (whitespace). 

Note: #Q is supported only for Zetalisp. 

#M #M foo reads as foo if the input is being read into Maclisp, otherwise it 
reads as nothing (whitespace). 

Note: #M is supported only for Zetalisp. 

#N #N foo reads as foo if the input is being read into NIL or compiled to run 
in NIL, otherwise it reads as nothing (whitespace). Also, during the 
reading of foo, the reader temporarily defInes various NIL-compatible sharp
sign reader macros (such as #1 and #") in order to parse the form correctly, 
even though it is not going to be evaluated. 

Note: #N is supported only for Zetalisp. 

#+ This abbreviation provides a read-time conditionalization facility similar to, 
but more general than, that provided by #m, #n, and #q. I t is used as 
#+feature form. If feature is a symbol, then this is read as form if 



232 

Reference Guide to Streams, Files, and I/O August 1986 

(status feature feature) is t. If (status feature feature) is nil, then this is 
read as whitespace. Alternately, feature can be a boolean expression 
composed of and, or, and not operators and symbols representing items 
which can appear on the (status features) list. (or lispm amber) 
represents evaluation of the predicate 
(or (status feature lispm) (status feature amber» in the read-time 
environment. 

For example, #+lispm form makes form exist if being read by Symbolics 
Common Lisp, and is thus equivalent to #q form. Similarly, 
#+maclisp form is equivalent to #m form. #+( or lispm nil) form makes 
form exist on either Symbolics Common Lisp or in NIL. Note that items 
can be added to the (status features) list by means of 
(sstatus feature feature), thus allowing the user to selectively interpret or 
compile pieces of code by parameterizing this list. See the section 
"zl:status And zl:sstatus" in User's Guide to Symbolics Computers. 

#- #-feature form is equivalent to #+(not feature) form. 

#1 #1 begins a comment for the Lisp reader. The reader ignores everything 
until the next 1#, which closes the comment. Note that if the 1# is inside a 
comment that begins wit~ a semicolon, it is not ignored; it closes the 
comment that began with the preceding #1. #1 and 1# can be on different 
lines, and #1 ••• 1# pairs can be nested. 

Using #1 .•• 1# always works for the Lisp reader. The editor, however, does 
not understand the reader's interpretation of #1 ••. 1#. Instead, the editor 
retains its knowledge of Lisp expressions. Symbols can be named with 
vertical bars, so the editor (not the reader) behaves as if #1 •.• 1# is the name 
of a symbol surrounded by pound signs, instead of a comment. 

Note: Use #11 ••• 11# instead of #1 ••• 1# to comment out Lisp code. 

The reader views #11 ••• 11# as a comment: the comment prologue is #1, the 
comment body is 1 ••• 1, and the comment epilogue is 1#. The editor, however, 
interprets #11 ••• 11# as a pound sign (#), a symbol with a zero-length print 
name (II), Lisp code ( ••• ), another symbol with a zero length print name (II), 

and a stray pound sign (#). Therefore, inside a #11 .•• 11#, the editor commands 
that operate on Lisp code, such as balancing parentheses and indenting 
code, work correctly. 

#< This is not valid reader syntax. It is used in the printed representation of 
objects that cannot be read back in. Attempting to read a #< causes an 
error. 

#0 #0 turns infIx expression syntax into regular Lisp code. It is intended for 
people who like to use traditional arithmetic expressions in Lisp code. It is 



233 

August 1986 Input/Output Facilities 

not intended to be extensible or to be a full programming language. We do 
not intend to extend it into one. 

(defun my-add (a b) 
#Oa+bO) 

The quoting character is backslash. It is necessary for including special 
symbols (such as -) in variable names. 

zl-user:! reads one Lisp expression, which can use this reader-macro inside 
itself. 

#0 supports the following syntax: 

Delimiters Begin the reader macro with #0, complete it with zl-user:O. 

#Oa+b-cO 

Escape characters 

Symbols 

Operators 

Special characters in symbol names must be preceded with 
backslash (\). You can escape to normal Lisp in an infIx 
expression; precede the Lisp form with exclamation point 
(zl-user:!). 

Start symbols with a letter. They can contain digits and 
underscore characters. Any other characters need to be 
quoted with zl:\\. 

It accepts the following classes of operators. Arithmetic 
operator precedence is like that in FORTRAN and PLII. 
Operator Infix Lisp 

Assignment 
Functions 

Array ref 
Unary ops 
Binary ops 
Conditional 

Grouping: 

x:y 
f(x,y) 

a[ij] 
+ - not 
+ - * / ,. = -:t < ~ > ~ and or 
if p then c 
if p then c else a 
(a, b, c) 

Equivalent 
(setf x y) 
(f x y) 

-- also works 
for defstruct 
accessors, 
and so on. 
(aref a i j) 
same 
same 
(if p c) 
(if p c a) 
(progn a b 
c) -- even 
works for 
(1+2)/3 



234 

Reference Guide to Streams, Files, and I/O August 1986 

The following example shows matrix multiplication using an infIx 
expression. 

(defun matrix-multiply (a b) 
(let «n (array-dimension-n 2 a))) 

(unless (= n (array-dimension-n 1 b)) 
(ferror "Matrices -5 and -5 do not have compatible dimensions") a b) 

(let «d1 (array-dimension-n 1 a)) 
(d2 (array-dimension-n 2 b))) 

(let «c #0 make\-array(list(d1, d2), ! :type, art\-float)O )) 
(dotimes (i d1) 

(dotimes (j d2) 
#0 c[i ,j] : ! (loop for k below n sum #0 a[i ,k]*b[k,j] 0)0)) 

c)))) 

The line containing the infIx expression could also have been written like 
this: 

(1 et «sum B)) 
(dotimes (k n) #0 sum:sum+a[i,k]*b[k,j] 0) 
#0 c[i ,j]: sum 0) 

11.3 Special Character Names 

The following are the recognized special character names, in alphabetical order 
except with synonyms together and linked with equal signs. These names can be 
used after a #\ to get the character code for that character. Most of these 
characters type out as this name enclosed in a lozenge. 

The special characters are: 

Null Tab Abort 
Suspend=8reak Line=Linefeed ResuMe 
Clear-!nput=Clear Refresh=Clear-Screen 
Call Page=ForMfeed Status 
Function=TerMinal Return=CR=Newline End 
Macro=8acknext Quote Square=RoMan-! 
Help Hold-Output Circle=RoMan-!! 
Rubout Stop-Output Triangle=RoMan-!!! 
Back-Space=Overstrike ROMan-!V 

Hand-Up 
Hand-Left 
Hand-Right 
Select=SysteM 
Network· 
Escape=AltMode 
COMplete 
SYMbol-Help=Top-Help 

The following are special characters sometimes used to represent single and 
double mouse clicks. The buttons can be called either 1, m, r or 1, 2, 3 depending 
on stylistic preference. 

Mouse-L-l=Mouse-l-l 
Mouse-M-l=Mouse-2-1 
Mouse-R-l=Mouse-3-1 

Mouse-L-2=Mouse-1-2 
Mouse-M-2=Mouse-2-2 
Mouse-R-2=Mouse-3-2 



235 

August 1986 Input/Output Facilities 

11.4 The Readtable 

A data structure called the cl:*readtable* (or readtable) is used to control the 
reader. It contains information about the syntax of each character. Initially it is 
set up to give the standard Lisp meanings to all the characters, but you can 
change the meanings of characters to alter and customize the syntax of characters. 
It is also possible to have several readtables describing different syntaxes and to 
switch from one to another by binding the symbol *readtable*. 

readtablep object Function 
Returns t if object is a readtable, otherwise it returns nil. 

*readtable* Variable 
The value of *readtable* is the current read table. The initial value of this 
is a read table set up for standard Common Lisp syntax. You can bind this 
variable to temporarily change which readtable is being used. 

zl:readtable Variable 
The value of zl:readtable is the current read table. This starts out as a 
copy of si:initial-readtable. You can bind this variable to temporarily 
change the readtable being used. 

si:initial-readtable Variable 
The value of si:initial-readtable is the initial standard readtable. You 
should never change the contents of either this readtable or 
si:initial-readtable; only examine it, by using it as the from-readtable 
argument to zl:copy-readtable or zl:set-syntax-from-char. Change 
zl:readtable instead. 

You can program the reader by changing the readtable in any of three ways. 

o You can create a completely new readtable, using the readtable compiler 
(sys:io;rtc) to define new kinds of syntax and to assign syntax classes to 
characters. Use of the readtable compiler is not documented here. 

o The syntax of a character can be set to one of several predefined 
possibilities. 

o A character can be made into a macro character, whose interpretation is 
controlled by a user-supplied function that is called when the character is 
read. 



236 

Reference Guide to Streams, Files, and liD August 1986 

11 .4.1 Functions That Create New Readtables 

copy-readtable &optional (from-readtable *readtable*) to-readtable Function 
A copy is made of from-readtable, which defaults to the current readtable 
(the value of the global variable *readtable*). If from-readtable' is nil, then 
a copy of a standard Common Lisp read table is made. For example, 

(setq *readtable* (copy-readtable nil» 

will restore the input syntax to standard Common Lisp syntax, even if the 
original readtable has been clobbered. 

If to-readtable is unsupplied or nil, a fresh copy is made. Otherwise, 
to-readtable must be a readtable, which is destructively copied into. 

zl:copy-readtable &optional from-readtable to-readtable Function 
from-readtable, which defaults to the current readtable, is copied. If 
to-readtable is unsupplied or nil, a fresh copy is made. Otherwise 
to-readtable is clobbered with the copy. Use zl:copy-readtable to get a 
private read table before using the other read table functions to change the 
syntax of characters in it. The value of zl:readtable at the start of a 
session is the initial standard readtable, which usually should not be 
modified. 

11 .4.2 Functions That Change Character Syntax 

set-syntax-from-char to-char from-char &optional (to-readtable Function 
*readtable*) from-readtable 

This makes the syntax of to-char in to-readtable be the same as the syntax 
of from-char in from-readtable. The to-readtable defaults to the current 
readtable (the value of the global variable *readtable*), and from-readtable 
defaults to nil, meaning to use the syntaxes from the standard Lisp 
readtable. 

The attributes whitespace, constituent, macro and escape are copied. If a 
macro character is copied, the macro definition is also copied. The 
attributes alphabetic and alphadigit, as well as marker characteristics such 
as plus sign, dot and float exponent marker, are not copied, since they are 
"hard-wired" into the extended-token parser. For example, if the definition 
of s is copied to *, then * will become a constituent that is alphabetic but 
cannot be used as an exponent indicator for short-format floating-point 
number syntax. 

You can copy a macro definition from a character such as " to another 
character and expect it to work properly, since the standard definition for" 
looks for another character that is the same as the character that invoked 
it. You probably don't want to copy the definition of ( to {, since it lets 



237 

August 1986 Input/Output Facilities 

you write lists in the form {a b c), not {a b c}, because the definition 
always looks for a closing parenthesis, not a closing brace. 

zl:set-syntax-from-char to-char from-char &optional to-readtable Function 
from-readtable 

Makes the syntax of to-char in to-readtable be the same as the syntax of 
from-char in from-readtable. to-readtable defaults to the current readtable, 
and from-readtable defaults to the initial standard read table. 

set-character-translation from-char to-char &optional readtable Function 
Changes readtable so that from-char is translated to to-char upon read-in, 
when readtable is the current readtable. This is normally used only for 
translating lowercase letters to uppercase. Character translations are 
turned off by slash, string quotes, and vertical bars. readtable defaults to 
the current readtable. 

zl:set-syntax-from-description char description &optional readtable Function 
Sets the syntax of char in readtable to be that described by the symbol 
description. The following descriptions are defined in the standard 
readtable: 

si:alphabetic 

zl:break 

si:whitespace 

si:single 

si:slash 

si:verticalbar 

si:doublequote 

macro 

si:circlecross 

si: bitscale 

An ordinary character such as "a". 

A token separator such as "(". (Obviously left 
parenthesis has other properties besides being a break.) 

A token separator that can be ignored, such as "@". 

A self-delimiting single-character symbol. The initial 
readtable does not contain any of these. 

The character quater. In the initial readtable this is "/". 

The symbol print-name quoter. In the initial readtable 
this is "I". 

The string quater. In the initial readtable this is "". 

A macro character. Do not use this; use 
zl:set-syntax-macro-char. 

The octal escape for special characters. In the initial 
readtable this is "(8)". (si:circlecross exists only the the 
standard Zetalisp readtable, not the Symbolics Common 
Lisp readtable.) 

A character that causes the integer to its left to be 
doubled the number of times indicated by the integer to 
its right. In the initial readtable this is "_". See the 
section "What the Reader Recognizes", page 227. 



238 

Reference Guide to Streams, Files, and 110 August 1986 

si:digitscale A character that causes the integer to its left to be 
multiplied by zl:ibase the number of times indicated by 
the integer to its right. In the initial read table this is 
""". See the section "What the Reader Recognizes", page 
227. 

si:non-terminating-macro 
A macro character that is not a token separator. This is 
a macro character if seen alone but is just a symbol 
constituent inside a symbol. You can use it as a 
character of a symbol other than the first without 
slashing it. (# would be one of these if it were not built 
into the reader.) 

readtable defaults to the current read table. 

11.4.3 Functions That Change Characters Into Macro Characters 

make-dispatch-macro-character char &optional non-terminating-p Function 
(a-readtable *readtable*) 

Causes char to be a dispatching macro character in readtable. If 
non-terminating-p is non-nil (it defaults to nil), then it will be a non
terminating macro character, which means that it may be embedded within 
extended tokens. make-dispatch-macro-character returns t. 

Initially, every character in the dispatch table has a character-macro 
function that signals an error. Use set-dispatch-macro-character to 
define entries in the dispatch table. 

set-dispatch-macro-character disp-char sub-char function &optional Function 
(a-readtable *readtable*) 

Causes function to be called when the disp-char followed by sub-char is 
read. function is called with three arguments, a stream, sub-char, and the 
non-negative integer whose decimal representation appears between 
disp-char and sub-char, or nil if no decimal integer appeared there. 
set-dispatch-macro-character returns t. 

An error is signalled if sub-char is one of the ten decimal digits, since they 
are reserved for specifying an infix integer argument. Moreover, if 
sub-char is a lowercase character, its uppercase equivalent is used instead. 
This is how the rule is enforced that the case of a dispatch sub-character 
doesn't matter. 

An error is also signalled if the specified disp-char is not a dispatch 
character in the specified read table. It is necessary to use 
make-dispatch-macro-character to set up the dispatch character before 
specifying its sub-characters. 



239 

August 1986 Input/Output Facilities 

AI:, an example, the definition of the sharp-sign single-quote dispatch macro 
character is: 

(defun sharp-single-quote-reader (stream sub-char arg) 
(declare (ignore char arg)) 
(list-in-area Jsys:read-area Jfunction 

(read stream t nil t))) 

(set-dispatch-macro-character #\# #\J #Jsharp-single-quote-reader) 

sharp-single-quote-reader reads an object following the single-quote and 
returns a list of the symbol function and that object. The char and arg 
arguments are ignored for this function. Note that the recursive-p 
argument to read is t, which means that this call to read is imbedded, not 
top-level. 

get-dispatch-macro-character disp-char sub-char &optional Function 
(a-readtable *readtable*) 

Returns the macro-character function for sub-char under disp-char, or nil if 
there is no function associated with sub-char. If sub-char is one of the ten 
decimal digits, get-dispatch-macro-character always returns nil. If 
sub-char is a lowercase character, its uppercase equivalent is always used 
instead. 

An error is signalled if the specified disp-char is not a dispatch character 
in the specified readtable. 

(get-dispatch-macro-character #\# #\J) => 
#<LEXICAL-CLOSURE (:INTERNAL GET-DISPATCH-HACRO-CHARACTER 0) 

36057616> 

(get-dispatch-macro-character #\# #\1) => NIL 

Note that because get-dispatch-macro-character returns a lexical closure, 
subsequent calls will not necessarily return the same object. This may be 
changed in a future release. 

set-Macro-character char function &optional non-terminating-p Function 
(a-readtable *readtable*) 

Causes char to be a macro character that causes function to be called when 
it is seen by the reader. If non-terminating-p is not nil (it defaults to nil), 
then it will be a non-terminating macro character, which means that it may 
be embedded within extended tokens., set-Macro-character returns t. 

function is called with two arguments, stream and char. stream is the input 
stream, and char is the macro character itself. In the simplest case, 
function returns a Lisp object. This object is taken to be that whose 



240 

Reference Guide to Streams, Files, and liD August 1986 

printed representation was the macro character and any following 
characters read by the function. As an example, the definition of the 
single-quote macro character is: 

(defun single-quote-reader (stream char) 
(declare (ignore r.har» 
(list-in-area 'sys:read-area 'quote (read stream t nil t») 

(set-macro-character #\' #'single-quote-reader) 

single-quote-reader reads an object following the single-quote and returns 
a list of the symbol quote and that object. The char argument is ignored 
for this function. Note that the recursive-p argument to read is t, which 
means that this call to read is imbedded, not top-level. 

function should not have any side effects other than on stream. Because of 
backtracking and restarting of the read operation, front ends to the reader, 
such as editors and rub out handlers, can cause function to be called 
repeatedly during the reading of a single expression in which the macro 
character only appears once. 

get-Macro-character char &optional <a-readtable *readtable*) Function 
Returns two values: the function associated with char, and the value of the 
non-terminating-p flag. It returns just the symbol nil if char does not have 
macro-character syntax. For example: 

(get-macro-character #\') => 
#<LEXICAL-CLOSURE (INTERNAL GET-MACRO-CHARACTER B) 1643317B> 
NIL 

(get-macro-character #\-) => NIL 

Note that because get-Macro-character returns a lexical closure, 
subsequent calls will not necessarily return the same object. This may be 
changed in a future release. 

zl:set-syntax-macro-char char function &optional readtable Function 
non-terminating-p 

Changes readtable so that char is a macro character. When char is read, 
function is called. readtable defaults to the current read table. 

function is called with two arguments: list-so-far and the input stream. 
When a list is being read, list-so-far is that list (nil if this is the first 
element). At the "top level" of zl:read, list-so-far is the symbol :toplevel. 
After a dotted-pair dot, list-so-far is the symbol : after-dot. function can 
read any number of characters from the input stream and process them 
however it likes. 



241 

August 1986 Input/Output Facilities 

function should return three values, called thing, type, and splice-po thing is 
the object read. If splice-p is nil, thing is the result. If splice-p is non-nil, 
then when reading a list thing replaces the list being read - often it is 
list-so-far with something else nconc'ed onto the end. At top level and 
after a dot if splice-p is non-nil the thing is ignored and the macro 
character does not contribute anything to the result of zl:read. type is a 
historical artifact and is not really used; nil is a safe value. Most macro 
character functions return just one value and let the other two default to 
nil. 

function should not have any side effects other than on the stream artd 
list-so-far. Because of the way the input editor works, function can be 
called several times during the reading of a single expression in which the 
macro character only appears once. 

char is given the same syntax that single-quote, backquote, and comma 
have in the initial readtable (it is called :macro syntax). 

If non-terminating-p is nil (the default), zl:set-syntax-macro-char makes a 
normal macro character. If it is t, zl:set-syntax-macro-char makes a 
nonterminating macro character. A nonterminating macro character is a 
character that acts as a reader macro if seen between tokens, but if seen 
inside a token it acts as an ordinary letter; it does not terminate the token. 

zl:set-syntax-#-macro-char char function &optional readtable Function 
Causes function to be called when #char is read. readtable defaults to the 
current readtable. The function's arguments and return values are the 
same as for normal macro characters. When function is called, the special 
variable si:xr-sharp-argument contains nil or a number that is the number 
or special bits between the # and char. 

11.4.4 Readtable Functions for Macllsp Compatibility 

zl:setsyntax character arg2 arg3 Function 
This exists only for Maclisp compatibility. The other read table functions 
are preferred in new programs. The syntax of character is altered in the 
current readtable, according to arg2 and arg3. character can be an integer, 
a symbol, or a string, that is, anything acceptable to the character 
function. arg2 is usually a keyword; it can be in any package since this is 
a Maclisp compatibility function. The following values are allowed for 
arg2: 

:macro The character becomes a macro character. arg3 is the 
name of a function to be invoked when this character is 
read. The function takes no arguments, can zl:tyi or 
zl:read from zl:standard-input (that is, can call zl:tyi or 



242 

Reference Guide to Streams, Files, and liD August 1986 

: splicing 

: single 

nil 

a symbol 

zl:read without specifying a stream), and returns an 
object that is taken as the result of the read. 

Like :macro, but the object returned by the macro 
function is a list that is nconced into the list being read. 
If the character is read not inside a list (at top level or 
after a dotted-pair dot), then it can return 0, which 
means it is ignored, or (obj) , which means that obj is 
read. 

The character becomes a self-delimiting single-character 
symbol. If arg3 is an integer, the character is translated 
to that character. 

The syntax of the character is not changed, but if arg3 is 
an integer, the character is translated to that character. 

The syntax of the character is changed to be the same as 
that of the character arg2 in the standard initial 
readtable. arg2 is converted to a character by taking the 
flrst character of its print name. Also if arg3 is an 
integer, the character is translated to that character. 

zl:setsyntax-sharp-macro character type function &optional readtable Function 
This exists only for Maclisp compatibility. zl:set-syntax-#-macro-char is 
preferred. If function is nil, #character is turned off, otherwise it becomes 
a macro that calls function. type can be :macro, :peek-macro, : splicing, or 
:peek-splicing. The splicing part controls whether function returns a 
single object or a list of objects. Specifying peek causes character to 
remain in the input stream when function is called; this is useful if 
character is something like a left parenthesis. function gets one argument, 
which is nil or the number between the # and the character. 



243 

August 1986 Input/Output Facilities 

12. Input Functions 

Most of these functions take an optional argument to specify the stream from 
which to take characters, called input-stream in Common Lisp and stream in 
Zetalisp. input-stream is the stream from which the input is to be read; if 
unsupplied it defaults to the value of *standard-input*. The special 
pseudo streams nil and t are also accepted. nil means the value of 
*standard-input* (that is, the default) and t means the value of *terminal-io* 
(that is, the interactive terminal). See the section "Introduction to Streams", page 
5. Streams are documented in detail in that section. 

These functions also take optional end-of-file arguments. In Common Lisp, the 
options are eof-error-p and eof-value. eof-error-p controls what happens if input is 
from a file (or any other input source that has a definite end) and the end of the 
file is reached. If eof-error-p is t (the default), an error will be signalled at the 
end of a file. If it is nil, then no error is signalled, and instead the function 
returns eof-value. 

In Zetalisp, if no eof-option argument is supplied, an error is signalled. If there is 
an eof-option, it is the value to be returned. Note that an eof-option of nil means 
to return nil if the end of the file is reached; it is not equivalent to supplying no 
eof-option. 

Functions such as read that read an "object" rather than a single character 
always signal an error, regardless of eof-error-p or eof-option, if the file ends in the 
middle of an object. For example, if a file does not contain enough right 
parentheses to balance the left parentheses in it, read complains. If a file ends in 
a symbol or a number immediately followed by end-of-file, read reads the symbol 
or number successfully and when called again, sees the end-of-file and obeys 
eof-error-p. If a file contains ignorable text at the end, such as blank lines and 
comments, read does not consider it to end in the middle of an object and obeys 
eof-error-p. 

Note that all of these functions except zl:readline-no-echo echo their input if used 
on an interactive stream (one that supports the :input-editor operation. The 
functions that input more than one character at a time (zl:read, zl:readline) allow 
the input to be edited using rubout. zl:tyipeek echoes all of the characters that 
were skipped over if zl:tyi would have echoed them; the character not removed 
from the stream is not echoed either. 



244 

Reference Guide to Streams, Files, and liD August 1986 

12.1 Input Functions That Work on Streams 

The following functions work on input or bidirectional streams: 

read &optional input-stream (eof-error-p t) eof-value recursive-p Function 
Reads in the printed representation of a Lisp object from stream, builds a 
corresponding Lisp object, and returns the object. 

The optional arguments input-stream, eof-error-p, eof-value and recursive-p 
affect how read reads and interprets the incoming information. 
input-stream is the stream from which to obtain input. If unsupplied or 
nil, it defaults to the value of the special variable *standard-input*. If t, 
it becomes the value of the special variable *terminal-io*. 

eof-error-p controls what happens if input is from a file (or any other Input 
source that has a definite end) and the end of file is reached. If eof-error-p 
is t (the default), an error is signalled at the end of file (EOF). If it is nil, 
then no error is signalled, and instead read returns eof-value. 

Because read reads the representation of an object rather than a single 
character, it always signals an error, regardless of eof-error-p, if the file 
ends in the middle of an object representation. For example, if a file does 
not contain enough right parentheses to balance the left parentheses in it, 
read will complain. If a file ends in a symbol or a number, immediately 
followed by EOF, read will read the symbol or number successfully and 
when called again will see the EO F and only then act according to 
eof-error-p. If a file contains ignorable text at the end, such as blank lines 
and comments, read will not consider it to end in the middle of an object. 
Thus an eof-error-p argument controls what happens when the file ends 
between objects. 

If recursive-p is specified and non-nil, this argument specifies that this call 
is not a top-level call to read, but an imbedded call. This typically happens 
from the function for a macro character. For more information on how 
recursive-p affects input functions: See the section "Input Functions", page 
243. 

The corresponding output function is write. 

zl:read &optional (stream zl:standard-input) eof-option Function 
Reads in the printed representation of a Lisp object from stream, builds a 
corresponding Lisp object, and returns the object. For details: See the 
section "Input Functions", page 243. 

(This function can take its arguments in the other order, for Maclisp 
compatibility only.) 



245 

August 1986 Input/Output Fadlities 

sys:read-character &optional stream &key (fresh-line t) (any-tyi nil) Function 
(eof nil) (notification t) (prompt nil) (help nil) 
(refresh t) (suspend t) (abort t) (status nil) 

Reads and returns a single character from stream. This function displays 
notifications and help messages and reprompts at appropriate times. It is 
used by fquery and the :character option for prompt-and-read. 

stream must be interactive. It defaults to zl:query-io. 

Following are the permissible keywords: 

:fresh-line 

:any-tyi 

:eof 

: notification 

:prompt 

:help 

:refresh 

: suspend 

If not nil, the function sends the stream a :fresh-line 
message before displaying the prompt. If nil, it does not 
send a :fresh-line message. The default is t. 

If not nil, the function returns blips. If nil, blips are 
treated as the :tyi message to an interactive stream 
treats them. The default is nil. 

If not nil and the function encounters end-of-file, it 
returns nil. If nil and the function encounters end-of
file, it beeps and waits for more input. The default is 
nil. 

If not nil and a notification is received, the function 
displays the notification and reprompts. If nil and a 
notification is received, the notification is ignored. The 
default is t. 

If nil, no prompt is displayed. Otherwise, the value 
should be a prompt option to be displayed at appropriate 
times. See the section "Displaying Prompts in the Input 
Editor", page 278. The default is nil. 

If not nil, the value should be a help option. See the 
section "Displaying Help Messages in the Input Editor", 
page 279. Then, when the user presses HELP, the 
function displays the help option and reprompts. If nil 
and the user presses HELP, the function just returns 
#\help. The default is nil. 

If not nil and the user presses REFRESH, the function 
sends the stream a :clear-window message and 
reprompts. If nil and the user presses REFRESH, the 
function just returns #\refresh. The default is t. 

If not nil and the user types one of the 
sys:kbd-standard-suspend-characters, a zl: break loop is 



246 

Reference Guide to Streams, Files, and 110 August 1986 

: abort 

: status 

entered. If nil and the user types a suspend character, 
the function just returns the character. The default is t. 

If not nil and the user types one of the 
sys:kbd-standard-abort-characters, sys:abort is 
signalled. If nil and the user types an abort character, 
the function just returns the character. The default is t. 

This option takes effect only if the stream is a window. 
If the value is :selected and the window is no longer 
selected, the function returns :status. If the value is 
:exposed and the window is no longer exposed or 
selected, the function returns :status. If the value is nil, 
the function continues to wait for input when the window 
is deexposed or deselected. The default is nil. 

zl:tyi &optional stream eot-option Function 
Inputs one character from stream and returns it. The character is echoed 
if stream is interactive, except that Rubout is not echoed. The Control, 
Meta, and so on shifts echo as prefIx c-, m-, and so on. 

The :tyi stream operation is preferred over the zl:tyi function for some 
purposes. Note that it does not echo. See the message :tyi, page 34. 

(This function can take its arguments in the other order, for Maclisp 
compatibility only) 

sys:read-for-top-Ievel &optional (stream zl:standard-input) Function 
eot-option 

Differs from zl:read only in that it ignores close parentheses seen at top 
level, and it returns the symbol si:eof if the stream reaches end-of-file if 
you have not supplied an eot-option (instead of signalling an error as 
zl:read would). This version of zl:read is used in the system's "read-eval
print" loops. 

zl:read-expression &optional stream &key <completion-alist nil) Function 
(completion-delimiters nil) 

Like sys:read-for-top-Ievel except that if it encounters a top-level end-of
file, it just beeps and waits for more input. This function is used by the 
:expression option for prompt-and-read. 

stream defaults to zl:standard-input. This function is intended to read 
only from interactive streams. 

If completion-alist is not nil, this function also sets up COMPLET E and c-? as 
input editor commands. When the user presses COMPLET E, the input editor 
tries to complete the current symbol over the set of possibilities defined by 



247 

August 1986 Input/Output Facilities 

completion-alist. When the user presses c-?, the input editor displays the 
possible completions of the current symbol. 

The style of completion is the same as that offered by Zwei. 
completion-alist can be nil, an alist, an sys:art-q-list array, or a keyword: 

nil 

alist 

array 

keyword 

No completion is offered. 

The car of each alist element is a string representing 
one possible completion. 

Each element is a list whose car is a string representing 
one possible completion. The array must be sorted 
alphabetically on the cars of the elements. 

If the symbol is :zmacs, completion is offered over the 
definitions in Zmacs buffers. If the symbol is : flavors , 
completion is offered over all flavor names. If the 
symbol is : documentation, completion is offered over all 
documentation topics available to the Document 
Examiner. 

The default for completion-alist is nil. 

completion-delimiters is nil or a list of characters that delimit "chunks" for 
completion. As in Zwei, completion works by matching initial substrings of 
"chunks" of text. If completion-delimiters is nil, the entire text of the 
current symbol is a single "chunk". The default is nil. 

zl:read-form &optional stream &key (edit-trivial-errors-p Function 
zl:*read-form-edit-trivial-errors-p*) 
(completion-alist 
zl:*read-form-completion-alist*) 
(completion-delimiters 
zl:*read-form-completion-delimiters*) 

Like zl:read-expression except that it assumes that the returned value will 
be given immediately to eval. This function is used by the Lisp command 
loop and by the :eval-form and :eval-form-or-end options for 
prompt-and-read. 

stream defaults to zl:standard-input. This function is intended to read 
only from interactive streams. 

If edit-trivial-errors-p is not nil, the function checks for two kinds of errors. 
If a symbol is read, it checks whether the symbol is bound. If a list whose 
first element is a symbol is read, it checks whether the symbol has a 
function definition. If it finds an unbound symbol or undefined function, it 
offers to use a lookalike symbol in another package or calls zl:parse-ferror 



248 

Reference Guide to Streams, Files, and I/O August 1986 

to let the user correct the input. edit-trivial-errors-p defaults to the value 
of zl:*read-form-edit-trivial-errors-p*. The default value is t. 

If completion-alist is not nil, this function also sets up COMPLET E and c-? as 
input editor commands. When the user presses COMPLET E, the input editor 
tries to complete the current symbol over the set of possibilities defined by 
completion-alist. When the user presses c-?, the input editor displays the 
possible completions of the current symbol. 

The style of completion is the same as that offered by Zwei. 
completion-alist can be nil, an alist, an sys:art-q-list array, or a keyword: 

nil 

alist 

array 

keyword 

No completion is offered. 

The car of each alist element is a string representing 
one possible completion. 

Each element is a list whose car is a string representing 
one possible completion. The array must be sorted 
alphabetically on the cars of the elements. 

If the symbol is :zmacs, completion is offered over the 
definitions in Zmacs buffers. If the symbol is : flavors , 
completion is offered over all flavor names. If the 
symbol is : documentation, completion is offered over all 
documentation topics available to the Document 
Examiner. 

The default for completion-alist is the value of 
zl:*read-form-completion-alist*. The default value is :zmacs. 

completion-delimiters is nil or a list of characters that delimit "chunks" for 
completion. As in Zwei, completion works by matching initial substrings of 
" chunks" of text. If completion-delimiters is nil, the entire text of the 
current symbol is a single "chunk". The default is the value of 
zl:*read-form-completion-delimiters*. The default value is 
(#/- #/: #\space). 

read-or-end &optional (stream zl:standard-input) reader Function 
Like zl:read-expression except that if it is reading from an interactive 
stream and the user presses END as the first character or the first 
character after only whitespace characters, it returns two values, nil and 
:end. If it encounters any nonwhitespace characters, it calls the reader 
function with an argument of stream to read the input. reader defaults to 
zl:read-expression. stream defaults to zI:standard-input. 

The :expression-or-end and :eval-form-or-end options for prompt-and-read 
invoke read -or-end. 



249 

August 1986 Input/Output Facilities 

This function is intended to read only from interactive streams. 

zl:read-or-character &optional delimiters stream reader Function 
Like zl:read-expression, except that if it is reading from an interactive 
stream and the user types one of the delimiters as the first character or 
the first character after only whitespace characters, it returns four values: 
nil, : character, the character code of the delimiter, and any numeric 
argument to the delimiter. If it encounters any nonwhitespace characters, 
it calls the reader function with an argument of stream to read the input. 

delimiters is a character, a list of characters, or nil. The default is nil. 
reader defaults to zl:read-expression. stream defaults to 
zl:standard-input. This function is intended to read only from interactive 
streams. 

zl:read-and-eval &optional stream (catch-errors t) Function 
Calls zl:read-expression to read a form, without completion. It then 
evaluates the form and returns the result. If catch-errors is not nil, it calls 
zl:parse-ferror if an error occurs during the evaluation (but not the 
reading) so that the input editor catches the error. 

stream defaults to zl:standard-input. This function is intended to read 
only from interactive streams. 

read-line &optional input-stream (eof-error-p t) eof-value recursive-p Function 
Reads in a line of text terminated by a newline. It returns the line as a 
character string, without the newline character. This function is usually 
used to get a line of input from the user. A second returned value is a 
flag that is considered false if the line was terminated normally, or true if 
end-of-file (EOF) terminated the non-empty line. If EOF is encountered 
immediately (that is, appears to terminate an empty line), then the end-of
file processing is controlled in the usual way by the eof-error-p, eof-value, 
and recursive-p arguments. 

The corresponding output function is write-line. 

zl:readline &optional (stream zl:standard-input) eof-option Function 
Reads in a line of text. If called from inside the input editor or if reading 
from a stream that does not support the input editor, the line is terminated 
by a Newline character. If the stream supports the input editor and 
zl:readline is called from outside the input editor, the line is terminated by 
RET URN, LI NE, or END. 

This function is usually used to get a line of input from the user. If 
stream supports the input editor, zl:readline calls zl:read-delimited-string, 
and input-editor-options is passed as the list of options to the input editor. 



250 

Reference Guide to Streams, Files, and VO August 1986 

zl:readline returns two values: 

• The line as a character string, without the Newline character, or if 
already at end-of-file, nil. 

• An eot flag, if eof-option was nil. This is t if the line was terminated 
because end-of-file was encountered, or nil if it was terminated 
because of a RETURN, LINE, or END character. 

See the function zl:read-delimited-string, page 255. 

read-line-trim &optional input-stream (eof-errorp t) eof-value Function 
recursive-p 

Trims leading and trailing whitespace from string input. "Whitespace" 
means spaces, tabs, or newlines. It takes the same arguments as the 
normal read-line and returns the same values. 

Examples: 

(read-line-trim) exciting option RETU~N => 
"exciting option" 
NIL 
NIL 
NIL 

(readline-trim)RETURN => 

NIL 
NIL 
NIL 

zl:readline-trim &optional (stream zl:standard-input) eof-option Function 
Trims leading and trailing whitespace from string input. "Whitespace" 
means spaces, tabs, or newlines. I t takes the same arguments as the 
normal zl:readline and returns the same values. 

Examples: 

(readline-trim) exciting option RETURN => 
"exciting option" 
NIL 
#/Return 
NIL 



251 

August 1986 Input/Output Facilities 

(readline-trim)RETURN => 

NIL 
#/Return 
NIL 

The :string-trim option for prompt-and-read and the :string-trim 
tv:choose-variable-values keyword use zl:readline-trim. 

zl:readline-or-nil &optional (stream zl:standard-input) eor-option Function 
Like zl:readline-trim, except that it returns a first value of nil instead of 
the empty string if the input string is empty. 

The :string-or-nil option for prompt-and-read and the :string-or-nil 
tv:choose-variable-values keyword use zl:readline-or-nil. 

See the function zl:readline-trim, page 250. 

read-line-no-echo &optional stream &rest keywords &key Function 
(terminators '( #\return #\line #\end») 
(full-rubout nil) (notification t) (prompt nil) 
(help nil) 

Reads a line of input from stream without echoing the input, and returns 
the input as a string, without the terminating character. This function is 
used to read passwords and encryption keys. It does not use the input 
editor but does allow input to be edited using RUBOUT. 

stream must be interactive. It defaults to zl:query-io. 

Following are the permissible keywords: 

: terminators 

: full-rub out 

: notification 

A list of characters that terminate the input. If the user 
types #\return, #\line, or #\end as a terminator, the 
function echoes a NEWLI NE. If the user types any other 
character as a terminator, the function echoes that 
character. The default is (#\return #\line #\end). 

If not nil and the user rubs out all characters on the 
line, the function returns nil. If nil and the user rubs 
out all characters on the line, the function waits for 
more input. The default is nil. 

If not nil and a notification is received, the function 
displays the notification and reprompts. If nil and a 
notification is received, the notification is ignored. The 
default is t. 



252 

Reference Guide to Streams, Files, and I/O August 1986 

:prompt 

:help 

If nil, no prompt is displayed. Otherwise, the value 
should be a prompt option to be displayed at appropriate 
times. See the section "Displaying Prompts in the Input 
Editor", page 278. The default is nil. 

If not nil, the value should be a help option. See the 
section "Displaying Help Messages in the Input Editor", 
page 279. Then, when the user presses HELP, the 
function displays the help option and reprompts. If nil 
and the user presses HELP, the function just returns 
#\help. The default ·is nil. 

zl:readline-no-echo &optional stream &key (terminators Function 
'( #\return #\line #\end» (full-rubout nil) 
(notification t) (prompt nil) (help nil) 

Reads a line of input from stream without echoing the input, and returns 
the input as a string, without the terminating character. This function is 
used to read passwords and encryption keys. It does not use the input 
editor but does allow input to be edited using RUBOUT. 

stream must be interactive. It defaults to zl:query-io. 

Following are the permissible keywords: 

: terminators 

: full-rub out 

:notifica tion 

:prompt 

:help 

A list of characters that terminate the input. If the user 
types #\return, #\line, or #\end as a terminator, the 
function echoes a NEWLI NE. If the user types any other 
character as a terminator, the function echoes that 
character. The default is (#\return #\line #\end). 

If not nil and the user rubs out all characters on the 
line, the function returns nil. If nil and the user rubs 
out all characters on the line, the function waits for 
more input. The default is nil. 

If not nil and a notification is received, the function 
displays the notification and reprompts. If nil and a 
notification is received, the notification is ignored. The 
default is t. 

If nil, no prompt is displayed. Otherwise, the value 
should be a prompt option to be displayed at appropriate 
times. See the section "Displaying Prompts in the Input 
Editor", page 278. The default is nil. 

If not nil, the value should be a help option. See the 
section "Displaying Help Messages in the Input Editor", 



253 

August 1986 Input/Output Facilities 

page 279. Then, when the user presses HELP, the 
function displays the help option and reprompts. If nil 
and the user presses HELP, the function just returns 
#\help. The default is nil. 

read-delimited-list char &optional stream recursive-p Function 
Reads objects from stream until the next character after an object's 
representation (ignoring whitespace characters and comments) is char. 
read-delimited-list returns a list of the objects read. 

To be more precise, read-delimited-list looks ahead at each step for the 
next non-whitespace character and peeks at it as if with peek-char. If it is 
char, then the character is consumed, and the list of objects is returned. If 
it is a constituent or escape character, then read is used to read an object, 
which is added to the end of the list. If it is a macro character, the 
associated macro function is called, and if that function returns a value, 
the returned value is added to the list. Then, the peek-ahead process is 
repeated. 

This function is particularly useful for defining new macro characters. 
Usually it is desirable for the terminating character char to be a 
terminating macro character, so that it may be used to delimit tokens. 
However, read-delimited-list makes no attempt to alter the syntax specified 
for char by the current readtable. You must make any necessary changes 
to the readtable syntax explicitly. The following example illustrates this. 

Suppose you wanted #{ abc ••• z} to read as a list of all pairs of the 
elements a, b, c, •.• z. For example: 

#{p q z a} reads as «p q) (p z) (p a) (q z) (q a) (z a» 

This can be done by specifying a macro-character definition for #{ that does 
two things: reads in all of the items up to the }, and constructs the pairs. 
read-delimited-list performs the first task. 

(defun I#{-readerl (stream char arg) 
(declare (ignore char arg» 
(mapcon #'(lambda (x) 

(mapcar #'(lambda (y) (list (car x) y)) (cdr x))) 
(read-delimited-list #\} stream t»)) 

(set-dispatch-macro-character #\# #{ #' I#{-readerl) 

(set-macro-character #\} (get-macro-character #\) nil) 

I t is necessary to give a macro definition to the character } as well, to 
prevent it from being a constituent, as discussed above. Without the 
definition, the} in the input expression would be considered a constituent 



254 

Reference Guide to Streams, Files, and 110 August 1986 

character; part of the symbol named a}. You could correct for this by 
putting a space before the }, but it is cleaner to simply use the call to 
set-macro-character. 

Giving } the same definition as the standard definition of the character ) 
has the twin benefit of making it terminate tokens for use with 
read-delimited-list, and also making it illegal for use in any other context. 
This means that attempting to read a stray } will signal an error. 

read-delimited-string delimiters &optional stream eof-error-p Function 
eof-value &rest make-array-args 

delimiters is either a character or a list of characters. Characters are read 
from stream until one of the delimiter characters is encountered. The 
characters read up to the delimiter are returned as a string. This function 
can be invoked from inside or outside the input editor. If invoked from 
outside the input editor, the delimiter characters are set up as activation 
characters. make-array-args are arguments to be passed to make-array 
when constructing the string to return. 

eoferror-p controls what happens if input is from a file (or any other input 
source that has a definite end) and the end of file is reached. If eof-error-p 
is t (the default), an error is signalled at the end of file (EOF). If it is nil, 
then no error is signalled, and instead read returns eof-value. 

read-delimited-string returns four values: 

o The string 

o An eof-value, if the eof-error-p parameter was nil 

• The character that delimited the string 
o Any numeric argument given the delimiter character 

This function is used by readline and the :delimited-string option for 
prompt-and-read. 

Examples: 

The following reads characters until END is typed and returns a string at 
least 200 characters long with a leader-length of 3: 

(read-delimited-string #\end *standard-input* nil nil 
200. :leader-length 3) 

The following is the same as (readline), except that it does not echo a 
NEWLI NE after the string is activated: 



255 

August 1986 Input/Output Facilities 

(read-delimited-string J(#\return #\line #\end)) 

A simple word parser: 

(read-delimited-string J(#\space #/J #/. #/7)) 

zl:read-delimited-string &optional (delimiters #\end) (stream Function 
standard-input) (eor nil) (input-editor-options 
nil) &rest (make-array-args 
'(100. :type sys:art-string» 

delimiter is either a character or a list of characters. Characters are read 
from stream until one of the delimiter characters is encountered. The 
characters read up to the delimiter are returned as a string. This function 
can be invoked from inside or outside the input editor. If invoked from 
outside the input editor, the delimiter characters are set up as activation 
characters. The eor argument is treated the same way as the eor argument 
to the :tyi message to non-interactive streams. input-editor-options are 
passed on as the first argument to the :input-editor message, after having 
an :activation entry prepended. make-array-args are arguments to be 
passed to make-array when constructing the string to return. 

zl:read-delimited-string returns four values: 

• The string 

• An eor flag, if the eor parameter was nil 

• The character that delimited the string 

• Any numeric argument given the delimiter character 

This function is used by readline, zl:qsend, and the :delimited-string 
option for prompt-and-read. 

Examples: 

The following reads characters until END is typed and returns a string at 
least 200. characters long with a leader-length of 3: 

(read-delimited-string #\end standard-input nil nil 200. :leader-length~) 

The following is the same as (readline), except that it does not echo a 
Newline after the string is activated: 

(read-delimited-string J(#\return #\line #\end)) 

A simple word parser: 

(read-delimited-string J(#\space #/J #/. #/7)) 

For a more complex example of a sentence parser that uses 
zl:read-delimited-string: See the section "Examples of Use of the Input 
Editor", page 279. 



256 

Reference Guide to Streams, Files, and I/O August 1986 

read-preserving-whitespace &optional input-stream (eof-error-p t) Function 
eof-value recursive-p 

Certain printed representations given to read, notably those of symbols and 
numbers, require a delimiting character after them. (Lists do not, because 
the close parenthesis marks the end of the list.) Normally, read will throw 
away the delimiting character if it is a whitespace character, but will 
preserve the character of the next expression. 

read-preserving-whitespace is provided for some specialized situations 
where it is desirable to determine precisely what character terminated the 
extended token. For example, consider this macro-character definition: 

(defun slash-reader (stream char) 
(declare (ignore char» 

(do «path (list (read-preserving-whitespace stream» 
(cons (progn (read-char stream nil nil t) 

(read-preserving-whitespace stream» 
path») 

«not (char= (peek-char nil stream nil nil t) #\/» 
(cons 'path (nreverse path»») 

(set-macro-character #\/ #'slash-reader) 

Consider calling read now on this expression: 

(zyedh /usr/games/zork /usr/games/boggle) 

The I macro reads objects separated by more I characters, thus 
/usr/games/zork is intended to read as (path usr games zork). The entire 
example expression should therefore be read as: 

(zyedh (path usr games zork) (path usr games boggle» 

However, if read had been used instead of read-preserving-whitespace, 
then after reading the symbol zork, the following space would have been 
discarded, and the next call to peek-char would see the following /. Since 
the I had already been read, the loop would continue, producing the 
expression: 

(zyedh (path usr games zork usr games boggle» 

Note that read-preserving-whitespace behaves exactly like read when the 
recursive-p argument is non-nil. The distinction is established only by calls 
with recursive-p equal to nil or omitted. 

Note also that this is actually a rather dangerous definition to make, 
because expressions such as (/ x 3) will no longer read properly. The 
ability to reprogram the reader syntax is very powerful, and must be used 
with caution. This redefinition of / is shown here purely for the sake of 
example. 



257 

August 1986 Input/Output Facilities 

read-char &optional input-stream (eof-error-p t) eof-value recursive-p Function 
Reads one character from input-stream, and returns it as a character object. 

The corresponding output function is write-char. 

zl:readch &optional stream eof-option Function 
Provided only for Maclisp compatibility, since in Zetalisp characters are 
always represented as integers. zl:readch is just like zl:tyi, except that 
instead of returning an integer character, it returns a symbol whose print 
name is the character read in. The symbol is interned in the current 
package. This is just like a Maclisp "character object". (This function can 
take its arguments in the other order, for Maclisp compatibility only.) 

read-char-no-hang &optional input-stream (eof-error-p t) eof-value Function 
recursive-p 

This function performs the same operation as read-char, but if it would be 
necessary to wait in order to get a character (as from a keyboard), nil is 
immediately returned without waiting. This allows you to check for input 
availability and get the input, if it is available, in the same operation. 
This is different from the listen operation in two ways. First, 
read-char-no-hang potentially reads a character, whereas listen never 
inputs a character. Second, listen does not distinguish between end-of-file 
(EOF) and no input being available, whereas read-char-no-hang does make 
that distinction. read-char-no-hang returns eof-value at EOF (or signalling 
an error of no eof-error-p is true), and always returns nil if no input is 
available. 

unread-char character &optional input-stream Function 
Puts character onto the front of input-stream. character must be the same 
character that was most recently read from input-stream. input-stream 
backs up over this character, so that when a character is next read from 
input-stream it will be the specified character. Successive calls to 
read-char will pick up the previous contents of input-stream, as it was 
before the call to unread-char. unread-char returns nil. 

You can apply unread-char only to the character most recently read from 
input-stream. Moreover, you can not invoke unread-char twice 
consecutively without an intervening read-char operation. The result is 
that you can back up only by one character, and you can not insert any 
characters into the input stream that were not already there. 

read-byte binary-input-stream &optional (eof-error-p t) eof-value Function 
Reads one byte from binary-input-stream and returns it in the form of an 
integer. 

The corresponding output function is write-byte. 



258 

Reference Guide to Streams, Files, and I/O August 1986 

peek-char &optional peek-type input-stream (eof-error-p t) eof-value Function 
recursive-p 

The result of peek-char depends on peek-type, which defaults to nil. The 
affects of peek-type are as follows: 

Value Affect 

nil Returns the next character to be read from input-stream, 
without actually removing it from the stream. The next 
time input is done from input-stream, the character will 
still be there. It is as if you had called read-char, then 
unread-char in succession. 

t Skips over whitespace characters (but not comments), and 
then performs the peeking operation on the next 
character. This is useful for finding the beginning of 
the next printed representation of a Lisp object. The 
last character examined (the one that starts an object) is 
not removed from the input stream. 

character object Skips over input characters until a character that is 
char= to that object is found. That character is left in 
the input stream. 

zl:tyipeek &optional peek-type stream eof-option Function 
Provided mainly for Maclisp compatibility; the :tyipeek stream operation is 
usually clearer. 

What zl:tyipeek does depends on the peek-type, which defaults to nil. With 
a peek-type of nil, zl:tyipeek returns the next character to be read from 
stream, without actually removing it from the input stream. The next time 
input is done from stream the character is still there; in general, 
(= (zl:tyipeek) (zl:tyi» is t. See the message :tyipeek, page 37. 

If peek-type is an integer less than 1000 octal, then zl:tyipeek reads 
characters from stream until it gets one equal to peek-type. That character 
is not removed from the input stream. 

If peek-type is t, then zl:tyipeek skips over input characters until the start 
of the printed representation of a Lisp object is reached. As above, the last 
character (the one that starts an object) is not removed from the input 
stream. 

The form of zl:tyipeek supported by Maclisp, in which peek-type is an 
integer not less than 1000 octal, is not supported, since the readtable 
formats of the Maclisp reader and the Symbolics Common Lisp reader are 
quite different. 



259 

August 1986 Input/Output Facilities 

Characters passed over by zl:tyipeek are echoed if stream is interactive. 

clear-input &optional input-stream Function 
Clears any buffered input associated with input-stream. It is primarily 
useful for removing type-ahead from keyboards when some kind of 
asynchronous error has occurred. If this operation doesn't make sense for 
the stream involved, then clear-input does nothing. clear-input returns 
nil. 

listen &optional input-stream Function 
The predicate listen returns t if there is a character immediately available 
from input-stream, and otherwise it returns nil. This is particularly useful 
when the stream obtains characters from an interactive device such as a 
keyboard. A call to read-char would simply wait until a character was 
available, but listen can sense whether or not to attempt input. On a non
interactive stream, the general rule is that listen returns t except when 
it's at EOF. 

12.2 Non-stream Input Functions 

The following functions are related functions that do not operate on streams: 

read-from-string string &optional (eof-errorp t) eof-value &key (start Function 
0) end preserve-whitespace 

The characters of string are given successively to the reader, and the Lisp 
object built by the reader is returned. Macro characters and so on all take 
effect. If string has a fill-pointer it controls how much can be read. 

The arguments :start and :end delimit a substring of string beginning at 
the character indexed by :start and up to, but not including, the character 
indexed by :end. This is the same as for other string functions. 

The flag :preserve-whitespace, if provided and non-nil, indicates that the 
operation should preserve whitespace as for read-preserving-whitespace. 
I t defaults to nil. 

As with other reading functions, the arguments eof-error-p and eof-value 
control the action of the reader if the end of the string is reached before 
the operation is completed. Reaching the end of the string is treated as 
any other EOF event. 

read-from-string returns two values: The first is the object read and the 
second is the index of the first character in the string not read. If the 
entire string was read, this is the length of the string. For example: 



260 

Reference Guide to Streamsl Filesl and 110 August 1986 

(read-from-string II (a b C)") => (A 8 C) and 7 

zl:read-from-string string &optional (eot-option 'si:no-eof-option) Function 
(start 0) end (preserve-whites pace 
zl:read-preserve-delimiters) 

The characters of string are given successively to the reader, and the Lisp 
object built by the reader is returned. Macro characters and so on all take 
effect. If string has a fill-pointer it controls how much can be read. 

eot-option is what to return if the end of the string is reached, as with 
other reading functions. start is the index in the string of the first 
character to be read. end, if given, is used instead of 
(zl:array-active-Iength string) as the integer that is one greater than the 
index of the last character to be read. 

The flag :preserve-whitespace, if provided and non-nil, indicates that the 
operation should preserve whitespace as for read-preserving-whitespace. 
It defaults to nil. 

zl:read-from-string returns two values: The first is the object read and 
the second is the index of the first character in the string not read. If the 
entire string was read, this is the length of the string. 

Example: 

(read-from-string II (a b C)") => (A 8 C) and 7 

parse-integer string &key (start 0) (end nil) (radix 10) (junk-allowed Function 
nil) (sign-allowed t) 

This function examines the substring of string delimited by :start and :end 
(which default to the beginning and end of the string). It skips over 
whitespace and then attempts to parse an integer. The :radix argument 
defaults to 10, and must be an integer between 2 and 36. 

If :junk-allowed is nil (the default), then the entire substring is scanned. 
The returned value is the value of the number parsed as an integer. An 
error is signalled if the substring does not consist entirely of the 
representation of an integer, possibly surrounded on either side by 
whitespace characters. 

If :junk-allowed is non-nil, then the first value returned is the value of 
the number parsed as an integer, or nil if no syntactically correct integer 
was seen. 

In either case, the second value returned is the index into the string of the 
delimiter that terminated the parse, or it is the index beyond the substring 
if the parse terminated at the end of the substring (as will be the case of 
:junk-allowed is nil). 



261 

August 1986 Input/Output Facilities 

Note that parse-integer does not recognize the syntactic radix-specifier 
prefixes #0, #b, #x, and #nr, nor does it recognize a trailing decimal point. 
It permits only an optional sign (+ or -) followed by a non-empty sequence 
of digits in the specified radix. For example: 

(parse-integer u -1234567890 u :start 3) => 234567890 and 13 

zl:readlist char-list Function 
Provided mainly for Maclisp compatibility. char-list is a list of characters. 
The characters can be represented by anything that the function character 
accepts: integers, strings, or symbols. The characters are given 
successively to the reader, and the Lisp object built by the reader is 
returned. Macro characters and so on all take effect. 

If there are more characters in char-list beyond those needed to define an 
object, the extra characters are ignored. If there are not enough 
characters, an "eof in middle of object" error is signalled. 

See the special form with-input-from-string, page 137. 

12.3 Read Control Variables 

There are a number of reader variables that affect the performance of read 
functions. 

*read-suppress* Variable 
When the value of *read-suppress* is nil, the Lisp reader operates 
normally. When it is non-nil, then most of the interesting operations of 
the reader are suppressed; input characters are parsed, but much of what 
is read is not interpreted. 

The primary purpose of *read-suppress* is to support the operation of the 
read-time conditional constructs #+ and #-. See the section "Sharp-sign 
Reader Macros", page 229. It is important for these constructs to be able to 
skip over the printed representation of a Lisp expression despite the 
possibility that the syntax of the skipped expression may not be legal for 
the current implementation. This is especially useful because a primary 
application of #+ and #- is to allow the same program to be share among 
several Lisp implementations despite small incompatibilities of syntax. 

A non-nil value of *read-suppress* has the following specific effects on the 
Lisp reader: 

• All extended tokens are completely uninterpreted, they are discarded 
and treated as if they were nil. It does not matter whether a token 



262 

Reference Guide to Streams, Files, and I/O August 1986 

looks l~e a valid number, or whether the package markers are 
correct. One consequence of this is that the error concerning 
improper dotted-list syntax will not be signalled . 

• Any standard # macro-character construction that requires, permits, 
or disallows an inflx numerical argument, such as #nr, will not 
enforce any constraint on the presence, absence, or value of such an 
argument. 

• The #\ construction always produces the value nil. It will not signal 
an error even it an unknown character name is seen. 

• Each of the #b, #0, #x, and #r constructions always scans over a 
following token and produces the value nil. It will not signal an 
error even if the token does not have the syntax of a rational 
number. 

• The #* construction always scans over a following token and produces 
the value nil. It will not signal an error even if the token does not 
consist solely of the characters 0 and 1. 

• Each of the #. and #, constructions reads the following form in 
suppressed mode but does not evaluate it. The form is discarded and 
nil is produced. 

• Each of the #a, #s, and #: constructions reads the following form in 
suppressed mode but does not interpret it in any way. It need not be 
a list in the case of #s, or a symbol in the case of #:. The form is 
discarded and nil is produced. 

• The #= construction is totally ignored. It does not read a following 
form. It produces no object, but is treated as whitespace . 

• The ## construction always produces nil. 

Note that, no matter what the value of *read-suppress* is, parentheses 
continue to delimit (and construct) lists, the #( construction continues to 
delimit vectors; and comments, strings, and the quote and backquote 
constructions continue to be interpreted properly. furthermore, such illegal 
constructions as '), #<, #), and #<space> continue to signal errors. 

In some cases, it may be appropriate for a user-written macro-character 
deflnition to check the value of *read-suppress* and avoid certain 
computations or side effects if its value is not nil. 



263 

August 1986 Input/Output Facilities 

zl:read-preserve-delimiters Variable 
Certain printed representations given to zl:read, notably those of symbols 
and numbers, require a delimiting character after them. (Lists do not, 
because the matching close parenthesis serves to mark the end of the list.) 
Normally zl:read throws away the delimiting character if it is 
"whitespace", but preserves it (with a :untyi stream operation) if the 
character is syntactically meaningful, since it might be the start of the 
next expression. 

If zl:read-preserve-delimiters is bound to t around a call to zl:read, no 
delimiting characters are thrown away, even if they are whitespace. This 
might be useful for certain reader macros or special syntaxes. 

zl:*read-form-edit-trivial-errors-p* Variable 
If not nil, zl:read-form checks for two kinds of errors. If a symbol is read, 
it checks whether the symbol is bound. If a list whose first element is a 
symbol is read, it checks whether the symbol has a function definition. If 
it finds an unbound symbol or undefined function, it offers to use a 
lookalike symbol in another package or calls zl:parse-ferror to let the user 
correct the input. The default is t. 

zl:*read-form-completion-alist* Variable 
If not nil, zl:read-form sets up COMPLET E and c-? as input editor 
commands. When the user presses COMPLET E, the input editor tries to 
complete the current symbol over the set of possibilities defined by 
completion-alist. When the user presses c-?, the input editor displays the 
possible completions of the current symbol. 

The style of completion is the same as that offered by Zwei. 
zl:*read-form-completion-alist* can be nil, an alist, an sys:art-q-list array, 
or a keyword: 

nil 

alist 

array 

keyword 

No completion is offered. 

The car of each alist element is a string representing 
one. possible completion. 

Each element is a list whose car is a string representing 
one possible completion. The array must be sorted 
alphabetically on the cars of the elements. 

If the symbol is :zmacs, completion is offered over the 
definitions in Zmacs buffers. If the symbol is : flavors , 
completion is offered over all flavor names. If the 
symbol is : documentation, completion is offered over all 
documentation topics available to the Document 
Examiner. 



264 

Reference Guide to Streams, Files, and I/O August 1986 

The default value is :zmacs. 

zl:*read-form-completion-delimiters* Variable 
The value is nil or a list of characters that delimit "chunks" for completion 
in zl:read-form. As in Zwei, completion works by matching initial 
substrings of "chunks" of text. If zl:*read-form-completion-delimiters* is 
nil, the entire text of the current symbol is a single "chunk". The default 
value is (#/- #!: #\space). 



265 

August 1986 Input/Output Facilities 

13. The Input Editor Program Interface 

13.1 How the Input Editor Works 

The input editor is a feature of all interactive streams, that is, streams that 
connect to terminals. Its purpose is to let you edit minor mistakes in typein. At 
the same time, it is not supposed to get in the way; Lisp is to see the input as 
soon as you have typed a syntactically complete form. The definition of 
"syntactically complete form" depends on the function that is reading from the 
stream; for zl:read, it is a Lisp expression. This section describes the general 
protocol used for communication between the input editor and reading functions 
such as zl:read and zl:readline. 

By reading function we mean a function that reads a number of characters from a 
stream and translates them into an object. For example, zl:read reads a Lisp 
expression and returns an object. zl:readline reads a line of characters and 
returns a string as its first value. Reading functions do not include the more 
primitive :tyi and :any-tyi stream operations, which take and return one character 
or blip from the stream. 

The tricky thing about the input editor is the need for it to figure out when you 
are all done. The idea of an input editor is that as you type in characters, the 
input editor saves them up in an input buffer so that if you change your mind, you 
can edit them and replace them with different characters. However, at some point 
the input editor has to decide that the time has come to stop putting characters 
into the input buffer and let the reading function start processing the characters. 
This is called "activating". 

The right time to activate depends on the function calling the input editor, and 
determining it may be very complicated. If the function is zl:read, figuring out 
when one Lisp expression has been typed requires knowledge of all the various 
printed representations, what all currently defined reader macros do, and so on. 
The input editor should not have to know how to parse the characters in the input 
buffer to figure out what the caller is reading and when to activate; only the 
caller should have to know this. The input editor interface is organized so that 
the calling function can do all the parsing, while the input editor does all the 
handling of editing commands, and the two are kept completely separate. 

Following is a summary of how the input editor works. The input editor used to 
be called the rub out handler, and some operations and variables still have "rubout
handler" in their names. 

When a reading function is called to read from a stream that supports the 
:input-editor operation, that function "enters" the input editor. It then goes 



266 

Reference Guide to Streams, Files, and 110 August 1986 

ahead :tyi'ing characters from the stream. Because control is inside the input 
editor, the stream echoes these characters so the user can see the input. 
(Normally echoing is considered to be a higher-level function outside of the 
province of streams, but when the higher-level function tells the stream to enter 
the input editor it is also handing it the responsibility for echoing). The input 
editor is also saving all these characters in the input buffer, for reasons disclosed 
in the following paragraph. When the reading function decides it has enough 
input, it returns and control "leaves" the input editor. That was the easy case. 

If you press RUBOUT or a keystroke that represents another editing command, the 
input editor processes the command and lets you insert characters before the last 
one in the line. The input editor modifies the input buffer and the screen 
accordingly. Then, when you type the next nonediting character at the end of the 
line, a throw is done, out of all recursive levels of zl:read, reader macros, and so 
forth, back to the point where the input editor was entered. Now the zl:read is 
tried over again, rereading all the characters you had typed and not rubbed out, 
but not echoing them this time. When the saved characters have been exhausted, 
additional input is read from you in the usual fashion. 

The input editor has options that can cause the throw to occur at other times as 
well. With the :activation option, when you type an activation character a throw 
occurs, a rescan is done if necessary, and a final blip is returned to the reading 
function. With the :preemptable and :command options, a blip or special 
character in the input stream causes control to be returned from the input editor 
immediately, without a rescan. These options let you process mouse clicks or 
special keystroke commands as soon as they are read. 

The effect of all this is a complete separation of the functions of input editing and 
parsing, while at the same time mingling the execution of these two functions in 
such a way that input is always "activated" at just the right time. It does mean 
that the parsing function (in the usual case, zl:read and all macro-character 
definitions) must be prepared to be thrown through at any time and should not 
have nontrivial side-effects, since it may be called mUltiple times. 

If an error occurs while inside the input editor, the error message is printed and 
then additional characters are read. When you press RUBOUT, it rubs out the error 
message as well as the last character. You can then proceed to type the corrected 
expression; the input is reparsed from the beginning in the usual fashion. 

13.2 Invoking the Input Editor 

The variable sys:rubout-handler indicates the current state of input editing. This 
variable is not nil if the current process is already inside the input editor. 



267 

August 1986 Input/Output Facilities 

sys:rubout-handler Variable 
Indicates the status of input editing within a process. 

This variable is used internally by the :input-editor method and the input 
editor. It should not be necessary for user programs to examine its value 
since the with-input-editing special form is provided for this purpose. 

The possible values for this variable are: 

Value 

nil 

:read 

:tyi 

Meaning 

The process is outside the input editor. 

The process is inside the :input-editor method. 

The process is inside the editing portion of the :tyi 
method. 

The input editor is invoked on a stream when the stream receives an :input-editor 
message. The :input-editor and :tyi methods of si:interactive-stream contain the 
code of the input editor. The :input-editor method initializes the input editor, 
establishes its catch, and then calls back to the reading function with 
sys:rubout-handler bound to :read. When the reading function sends the :tyi or 
:any-tyi message, input is taken from the input buffer. If no input is available, 
the editing or :tyi portion of the input editor is invoked, and sys:rubout-handler 
is bound to :tyi. 

The first argument to the :input-editor message is the function that the input 
editor should call to do the reading, and the rest of the arguments are passed to 
that function. If the reading function returns normally, the values returned by 
the :input-editor message are just those returned by the reading function. If the 
input editor returns by throwing out of the reading function, the return values 
depend on which option caused the input editor to throw: See the option 
: full-rub out, page 272. See the option :preemptable, page 276. See the option 
:command, page 276. 

The input editor can take a series of options. These are specified dynamically by 
the special forms with-input-editing-options and with-input-editing-options-if. 
For a description of the options: See the section "Input Editor Options", page 
272. 

with-input-editing-options options &body body Special Form 
Specifies input editing options and executes body with those options in 
effect. The scope of the option specifications is dynamic. 

options is a list of input editor option specifications. Each element is a list 
whose car is an option-name specification and whose cdr is a list of forms 
to be evaluated to yield "arguments" for the option. The option-name 
specification is a keyword symbol or a list whose car is a keyword symbol. 
The symbol is the name of the option. 



268 

Reference Guide to Streams, Files, and 110 August 1986 

If the option-name specification is a list and if the symbol :override is an 
element of the cdr of the list, this option specification overrides any higher
level specifications for this option. Otherwise, the specification for each 
option that is dynamically outermost (that is, the specification from the 
highest-level caller) is in effect during the execution of body. 

with-input-editing-options returns whatever values body returns. 

In the following example, the user is prompted for a Lisp expression. Two 
input editor options are specified. The first says that the caller is also 
willing to receive mouse or menu blips. The second specifies a prompt. 

(with-input-editing-options «:preemptable :blip) 
(:prompt "Form: H»~ 

(read» 

In the following example, the user is prompted for a line of text. The text 
may be activated by any of the characters RET URN, END, or T RI ANGLE. This 
might be useful if activating with T RI ANGLE meant something different 
from activating with RET URN. This example also demonstrates the use of 
:override to make this :activation specification override any higher-level 
:activation specifications. 

(with-input-editing-options 
«(:activation :override) 'memq '(#\return #\end #\triangle») 

(prompt-and-read :string "Name: H»~ 

For a list of input editor options: See the section "Input Editor Options", 
page 272. See the special form with-input-editing-options-if, page 268. 

with-input-editing-options-if cond options &body body Special Form 
Executes body, possibly with specified input editing options in effect. The 
scope of the option specifications is dynamic. 

cond is a form to be evaluated at run-time. If cond returns non-nil, the 
specified input editor options are in effect during the execution of body. 

options is a list of input editor option specifications. Each element is a list 
whose car is an option-name specification and whose cdr is a list of forms 
to be evaluated to yield "arguments" for the option. The option-name 
specification is a keyword symbol or a list whose car is a keyword symbol. 
The symbol is the name of the option. 

If the option-name specification is a list and if the symbol :override is an 
element of the cdr of the list, this option specification overrides any higher
level specifications for this option. Otherwise, the specification for each 
option that is dynamically outermost (that is, the specification from the 
highest-level caller) is in effect during the execution of body. 

with-input-editing-options-if returns whatever values body returns. 



269 

August 1986 Input/Output Facilities 

For a list of input editor options: See the section "Input Editor Options", 
page 272. See the special form with-input-editing-options, page 267. 

This example illustrates the use of the :command, :preemptable, and :prompt 
input editor options. It is a simple command loop that reads different kinds of 
commands - typed Lisp expressions, single-keystroke commands, and mouse clicks. 
The Lisp expressions are read using the read-or-end function. You can provide 
four kinds of input: 

Input 

END 

Lisp form 

Mouse click 

Single-key command 

Action 

Exit the command loop 

Print form on next line 

Display type of click and mouse coordinates 

Display keystroke 

The predicate for detecting a single-keystroke command simply checks for the 
Super bit. In a more complex program, it might look up the character in a 
command table. 

(defun command-char-p (c) (char-bit c :super)) 



270 

Reference Guide to Streams, Files, and liD August 1986 

(defun command-loop () 
(loop 

do (multiple-value-bind (value flag) 
(with-input-editing-options 

«:command Jcommand-char-p) 
(:preemptable :blip) 
(:prompt "Command loop input: H)) 

(read-or-end)) 
(selectq flag 

(:end 
(format t "Done") 
(return t)) 

( : bl i P 
(selectq (car value) 

(:mouse-button 
(destructuring-bind (click nil x y) (cdr value) 

(format t "-C click at -OJ -0" click x y))) 

(otherwise (format t "Random blip -- -S" value)))) 
(: command 
(format t "Execute -:C command" (second value))) 

(otherwise 
(format t "-&Value is -S" value)))))) 

To write a reading function that invokes the input editor, you should use the 
with-input-editing special form instead of sending the :input-editor message 
directly. Such functions as zl:read and zl:readline use this special form to 
provide input editing. 

with-input-editing (&optional stream keyword) &body body Special Form 
Provides a convenient way of invoking the input editor for use by a reading 
function. It establishes a context in which input editing should be 
provided. Use with-input-editing instead of sending an :input-editor 
message directly. 

Both "arguments" are optional. stream is the stream from which 
characters are read; if stream is not provided or is nil, *standard-input* is 
used. 

keyword determines the activation characters for the input editor: 

Value 

nil 

Activation characters 

None (unless specified at a higher level). This is the 
default. 



271 

August 1986 Input/Output Facilities 

: end-activation #\end 

: line-activation #\end, #\return, and #\line 

: line #\end, #\return, and #\line. In addition, a Newline is 
echoed after the reading function returns. 

To supply other input editor options: See the special form 
with-input-editing-options, page 267. See the special form 
with-input-editing-options-if, page 268. 

with-input-editing defines an internal lexical closure with body as its body. 
When the With-input-editing form is evaluated from outside the input 
editor, the stream is sent an :input-editor message if it handles it. The 
argument to the :input-editor message is the lexical closure, except that if 
the :line keyword is supplied, with-input-editing also arranges to echo a 
Newline after the lexical closure returns. If the with-input-editing form is 
evaluated from inside the input editor or if the stream does not handle the 
:input-editor message, the lexical closure is called instead. 

with-input-editing returns whatever values body returns. 

The following example defines a simple sentence parser. 

(defun read-sentence (&optional (stream *standard-input*)) 
(with-input-editing-options «:prompt "Type a sentence: H)) 

(with-input-editing (stream) 
(loop named sentence 

with sentence = nil 
for word = (make-array 20. :type art-string :fill-pointer 0) 
do (loop for char = (send stream :tyi) 

do 
(cond «memq char , (#\space #\return #/. #/? #/,)) 

(if (not (equal word "H)) 

(push word sentence)) 
(selectq char 

«#\space #\return #/,) 
(return)) 

(#\. 

(push :period sentence) 
(return-from sentence (nreverse sentence))) 

(#\? 
(push :question-mark sentence) 
(return-from sentence (nreverse sentence))))) 

(t (array-push-extend word char)))))))) 



272 

Reference Guide to Streams, Files, and 110 August 1986 

13.3 Input Editor Options 

The input editor can take a series of options, specified by the special forms 
with-input-editing-options and with-input-editing-options-if. Following are 
descriptions of the options. 

:full-rubout token Option 
If the user rubs out all the characters that were typed, control is returned 
from the input editor immediately. Two values are returned: nil and 
token. If the user does not rub out all the characters, the input editor 
propagates multiple values back from the function that it calls, as usual. 
In the absence of this option, the input editor simply waits for more 
characters to be typed and ignores any additional rubouts. 

:pass-through &rest characters Option 
The characters in characters are not to be treated as special by the input 
editor. This option is used to pass format effectors (such as HELP or CLEAR 
INPUT) through to the reading function instead of interpreting them as 
input editor commands. :pass-through is allowed only for characters with 
no modifier bits set, that is, for character codes 0 through 377 (octal). For 
characters that have modifier bits set and must be visible to the reading 
function, use :do-not-echo or : activation. 

:prompt &rest prompt-option Option 
When it is time for the user to be prompted, the input editor displays 
prompt-option. prompt-option can have one element, which can be nil, a 
string, a function, or a symbol other than nil; or it can have more than one 
element: See the section "Displaying Prompts in the Input Editor", page 
278. 

The difference between :prompt and :reprompt is that the latter does not 
display the prompt when the input editor is first entered, but only when 
the input is redisplayed (for example, after a screen clear). If both options 
are specified, :reprompt overrides :prompt except when the input editor is 
first entered. 

:reprompt &rest prompt-option Option 
When it is time for the user to be reprompted, the input editor displays 
prompt-option. prompt-option can have one element, which can be nil, a 
string, a function, or a symbol other than nil; or it can have more than one 
element: See the section "Displaying Prompts in the Input Editor", page 
278. 

Unlike :prompt, :reprompt displays the prompt only when input is 
redisplayed (for example, after a screen clear), not when the input editor is 



273 

August 1986 Input/Output Facilities 

first entered. If both :prompt and :reprompt are specified, :reprompt 
overrides :prompt except when the input editor is first entered. 

:complete-help &rest help-option Option 
When the user presses HELP, the input editor types out a message 
determined by help-option. None of the standard input editor help is 
displayed. If a :brief-help option has been specified, it overrides 
:complete-help. :complete-help overrides :merged-help and :partial-help. 

help-option can have one element, which can be a string, a function, or a 
symbol; or it can have more than one element. For an explanation: See 
the section "Displaying Help Messages in the Input Editor", page 279. 

This option is intended for programs that supply their own input editor 
help messages. 

:partial-help &rest help-option Option 
When the user presses HELP, the input editor first types out a message 
determined by help-option. It then types out a message describing how to 
invoke input editor commands and other information about the stream. If a 
:brief-help, : complete-help , or :merged-help option has been specified, it 
overrides :partial-help. 

help-option can have one element, which can be a string, a function, or a 
symbol; or it can have more than one element. For an explanation: See 
the section "Displaying Help Messages in the Input Editor", page 279. 

This option is intended for use when inexperienced users might be typing 
to the input editor. Often help-option gives some information about the 
program to which the user is typing and what the user can do to exit from 
it. 

:merged-help function &rest arguments Option 
When the user presses HELP, the input editor types out a message 
determined by the arguments. function is a function that takes at least 
two arguments. The input editor calls the function to print the help 
message. The first argument is the stream. The second argument is a 
continuation (a list) to print a standard message describing how to invoke 
input editor commands and other information about the stream. When ~he 
function wants to print this message, it should apply the car of the 
continuation to the cdr. If any arguments are supplied, they are the 
remaining arguments to the function. 

If a :brief-help or :complete-help option has been specified, it overrides 
: merged-help. :merged-help overrides :partial-help. 

This option is intended for programs that want to decide when and where 
to display their own help messages and the standard help message. 



274 

Reference Guide to Streams, Files, and 110 August 1986 

:brief-help &rest help-option Option 
When the user presses HELP, the input editor displays a message 
determined by help-option on the same line as the type in. The message is 
displayed in the default typeout font, and none of the usual conventions 
about input editor typeout apply. :brief-help overrides : complete-help, 
: merged-help, and :partial-help. 

help-option can have one element, which can be a string, a function, or a 
symbol; or it can have more than one element. For an explanation: See 
the section "Displaying Help Messages in the Input Editor", page 279. 

This option is intended for programs like fquery that need to supply only a 
brief help message, usually about expected type in. 

:initial-input string &optional begin end cursor-position Option 
When the input editor is entered, string is inserted into the input buffer as 
if the user had typed it. The user can edit the string before activating. 
begin and end are indices into string and mark the portion of the string to 
be copied into the input buffer. begin defaults to 0; end defaults to 
(zl:array-active-Iength string). cursor-position is an index into the string 
where the cursor should initially be placed. The default is to place the 
cursor at the end of the portion of the string copied into the input buffer. 
string can be nil, which is the same as not specifying the option. 

In the following example, the user is prompted for a line of text. The 
input buffer initially contains the name of the user, and the cursor is 
placed at the beginning of the input buffer. 

(with-input-editing-options 
«(:initial-input fs:user-personal-name nil nil 9)) 

(prompt-and-read :string "Full name: H)) 

Placing a string in the input buffer is one style of input defaulting. 
Another style leaves the input buffer empty but allows a default to be 
yanked with C-M-Y. See the option :input-history-default, page 274. 

:input-history-default string Option 
Specifies string as the default to be yanked by C-M-Y. string is temporarily 
placed at the head of the input history. If the user types C-M-Y M-Y, the 
true first element of the input history is yanked. c-M-0 C-M-Y shows string 
at the head of the input history, and the entries in the input history are 
shifted down by one. 

In the following example, the user is prompted for a line of text. The 
input buffer is initially empty, but the C-M-Y command yanks a default, 
which is the name of the user. 



275 

August 1986 Input/Output Facilities 

(with-input-editing-options 
«:input-history-default fs:user-personal-name)) 

(prompt-and-read :string uFull name: U)) 

This option is used by the :pathname option for prompt-and-read. 

:blip-handler function Option 
Specifies a function to handle blips received while inside the input editor. 
function must be a function of two arguments. The first argument is the 
blip; the second argument is the stream that received the blip. The 
handler is invoked when the input editor receives a blip. If the handler 
returns non-nil, no further action is taken. If it returns nil and a 
:preemptable option is in effect, the actions specified by that option are 
taken. Otherwise, the default blip handler is invoked. 

In the following example, the user is prompted for a line of text. While 
entering this text, the user may also click the left or middle mouse 
buttons. If the left mouse button is clicked, the coordinates of the mouse 
with respect to the window are inserted into the input buffer. If the 
middle button is clicked, the name of the window is inserted. 

(defun example-blip-handler (blip ignore) 
(destructuring-bind (type click window x y) blip 

(and (eq type :mouse-button) 
(selectq click 

(#\mouse-1-1 
(si:ie-insert-string (format nil U -D -D U x y)) 
t) 

(#\mouse-m-1 
(si:ie-insert-string (format nil U -AU window)) 
t))))) 

(with-input-editing-options «:blip-handler 'example-blip-handler)) 
(prompt-and-read :string uBlip handler test: U)) 

si:ie-insert-string is an internal function for inserting a string into the 
input buffer. Since the language for writing input editor commands has 
not been formalized, this example might not work in a later release. 

:do-not-echo &rest characters Option 
The characters in characters are interpreted as activation characters and 
are not echoed. The comparison is done with char:, not char-equal, so 
that the control and meta bits are not masked off. The characters are not 
inserted into the input buffer and are not interpreted as input editor 
commands. When one of these characters is typed, the final :tyi value 
returned is the character, not a blip .. 



276 

Reference Guide to Streams, Files, and VO August 1986 

This option exists only for compatibility with earlier releases. New 
programs should use the :activation option. 

:activation function &rest arguments Option 
For each character typed, the input editor invokes function with the 
character as the first argument and arguments as the remaining 
arguments. If the function returns nil, the input editor processes the 
character as it normally would. Otherwise, the cursor is moved to the end 
of the input buffer, a rescan of the input is forced (if one is pending), and 
the blip (:activation character numeric-arg) is returned by the final sending 
of the :any-tyi message to the stream. Activation characters are not 
inserted into the input buffer, nor are they echoed by the input editor. It 
is the responsibility of the reading function to do any echoing. For 
instance, zl:readline, not the input editor, types a Newline at the end of 
the input buffer when RET URN, END, or LI NE is pressed. 

:preemptable token Option 
A blip in the input stream causes control to be returned from the input 
editor immediately. Two values are returned: the blip and token, which is 
usually a keyword symbol. Any unscanned input typed before the blip 
remains in the input buffer, available to the next read operation from the 
stream. 

:no-input-save Option 
The input editor does not save the scanned contents of the input buffer on 
the input history when returning from the reading function. This is 
intended for use by functions such as fquery that use the input editor to 
ask simple questions whose responses are not worth saving. zl:yes-or-no-p 
uses :no-input-save by default. 

:command function &rest arguments Option 
This option is used to implement nonediting single-keystroke commands. 
For each character typed, the input editor invokes function with the 
character as the first argument and arguments as the remaining 
arguments. If the function returns nil, the input editor processes the 
character as it normally would. Otherwise, control is returned from the 
input editor immediately. Two values are returned: a blip of the form 
(:command character numeric-arg) and the keyword :command. Any 
unscanned input typed before the command character remains in the input 
buffer, available to the next read operation from the stream. 

:editor-command &rest command-alist Option 
This option lets you specify your own input editor editing commands. Each 
element of command-alist is a cons whose car is a character and whose cdr 
is a symbol or a list. If the cdr is a symbol, it is a function to be called 



277 

August 1986 Input/Output Facilities 

with no arguments when the user types the associated character. If the 
cdr is a list, the car of the list is a function to be applied to the cdr of the 
list when the user types the associated character. The function can 
examine the internal special variables that describe the state of the input 
editor. 

If :editor-command specifies a command that is invoked by the same 
character as one of the standard input editor editing commands, the 
command specified by :editor-command overrides the standard command. 

:ir.put-wait &optional whostate function &rest arguments Option 
When the input editor waits for input, it sends the stream an :input-wait 
message with the arguments to the :input-wait option as arguments. In 
addition, unless the :suppress-notifications option has been specified, 
:input-wait returns when a notification is received. See the message 
: input-wait, page 36. 

:input-wait-handler function &rest arguments Option 
When the input editor is waiting for input it sends the stream an 
:input-wait message. Mter :input-wait returns, the input editor applies 
function to arguments. The input editor does not process the input or 
display the notification until function returns. 

:suppress-notifications flag Option 
If a notification is received while in the input editor, and flag is supplied 
as nil, the input editor itself handles the notification, regardless of any 
other way you have specified that notifications should be handled. If flag is 
t, notifications are handled in the input editor the same way they would be 
handled if you were not in the input editor. That is, the input editor does 
not handle the notification itself. 

:notification-handler function &rest arguments Option 
If a notification is received while in the input editor, function is called to 
handle it. function should take at least one argument, the notification (as 
returned by the :receive-notification message to the stream). arguments 
are the remaining arguments to function. function can do anything it 
wants with the notification. To display the notification, function would 
usually call sys:display-notification. 

If this option is not specified, notifications appear one after the other using 
:insert-style typeout. 

Following are two simple examples of notification handlers. The first 
handler assumes that you want each notification to overwrite the previous 
one. The second handler assumes that you want them to appear one after 
another. *window* should be bound to a window and *stream* to a 
stream where you want the notifications to appear. 



278 

Reference Guide to Streams, Files, and 110 August 1986 

(defun my-notification-handler-1 (notification) 
(send *window* :clear-window) 
(sys:display-notification *window* notification :window» 

(defun my-notification-handler-2 (notification) 
(sys:display-notification *stream* notification :stream» 

13.4 Displaying Prompts in the Input Editor 

The input editor options :prompt and :reprompt and the functions 
zl:readline-no-echo and sys:read-character take prompt arguments that let you 
specify an input editor prompt. prompt can be nil, a string, a function, a symbol 
other than nil, or a list (for the input editor options, the list is an &rest 
argument): 

nil 

string 

No prompt is displayed. 

A zl:format control string to be passed to zl:format with one 
argument, the stream on which the prompt is displayed. 

function or symbol other than nil 

list 

A function to display the prompt. The function should take two 
arguments: the first is the stream on which the prompt is 
displayed, and the second is a keyword that indicates the origin 
of the function call. 

If the first element is nil, no prompt is displayed. If the first 
element is a string, it is a zl:format control string to be passed 
to zl:format with the remaining elements of the list as 
arguments. If the first element is a function or a symbol other 
than nil, it is a function to display the prompt. The first 
argument to the function is the stream on which the prompt is 
displayed. The second argument is a keyword that indicates the 
origin of the function call. The remaining arguments are the 
remaining elements of the list. 

When a function is called to display the prompt, the second argument to the 
function is a keyword that indicates the origin of the function call: 

Keyword 

:prompt 

Function called from 

:input-editor method of si:interactive-stream, when the input 
editor is entered 



279 

August 1986 Input/Output Facilities 

:restore :restore-input-buffer method of si:interactive-stream 

: finish-typeout :finish-typeout method of si:interactive-stream 

: refresh Body of the input editor, when the user presses REFRESH 

: erase-typeout Body of the input editor, when the user presses PAGE 

13.5 Displaying Help Messages in the Input Editor 

The input editor options : brief-help, :partial-help, and :complete-help and the 
functions zl:readline-no-echo and sys:read-character take help arguments that let 
you specify input editor help messages. help can be a string, a function, a symbol, 
or a list (for the input editor options, the list is an &rest argument): 

string A zl:format control string to be passed to zl:format with one 
argument, the stream on which the help message is displayed. 

function or symbol 

list 

A function to display the help message. The function should 
take one argument, the stream on which the help message is 
displayed. 

If the first element is a string, it is a zl:format control string 
to be passed to zl:format with the remaining elements of the 
list as arguments. If the first element is a function or a 
symbol, it is a function to display the help message. The first 
argument to the function is the stream on which the help 
message is displayed, and the remaining arguments are the 
remaining elements of the list. 

13.6 Examples of Use of the Input Editor 

This series of examples shows several different ways of using the input editor, 
gradually increasing in complexity. The examples are also available in the file 
sys: examples; interaction.lisp. 

We refer to functions whose names begin with "read-" as "reading functions" or 
"readers", since they read individual characters and construct a Lisp object as a 
returned value. Examples of readers the Lisp system provides are read, readline, 
and read-deliMited-string. read returns Lisp objects of many types. readline 
and read-delimited-string return strings. 

read-two-lines-! reads two lines of input from the console. You type each line in 



280 

Reference Guide to Streams, Files, and liD August 1986 

its own editing context. After you enter the first line by pressing RET URN, LI NE, 
or END, you can no longer rub out or otherwise edit any of the characters in the 
first line. You can type and edit only the second line at that point. 

(defun read-two-lines-1 () (list (readline) (readline») 

read-two-lines-2 lets you edit both lines in a single context by using the 
with-input-editing special form. Even after entering the first line you can edit it. 
For example, the M-( input editor command moves the cursor to the first 
character of the first line. read-two-lines-2 also adds a stream parameter so that 
you can read from different streams without having to bind *standard-input*. 
You can also use this function for reading from noninteractive streams, such as 
file streams. 

(defun read-two-lines-2 (&optional (stream *standard-input*» 
(with-input-editing (stream) (list (readline stream) (readline stream»» 

read-two-lines-3 demonstrates the use of the :prompt input editor option and the 
:end-activation option for with-input-editing. When you invoke this function on 
an interactive stream you receive a prompt. This prompt is redisplayed if typeout 
to the stream occurs. This might happen if you press HELP or the window 
receives a notification. 

The :end-activation option defines #\end as an activation character. This lets you 
activate previous input to read-two-lines-3, after yanking and editing it, by 
pressing END. The :prompt and :end-activation options have no effect on the 
behavior of the function for noninteractive streams. 

(defun read-two-lines-3 (&optional (stream *standard-input*» 
(with-input-editing-options «:prompt "Type two lines: H»~ 

(with-input-editing (stream :end-activation) 
(list (readline stream) (readline stream»») 

read-n-lines is like read-two-lines except that you specify the number of lines to 
be read using the n-lines argument. It also uses a prompt function instead of a 
string to generate the prompt. 

(defun read-n-lines-prompt (stream ignore n-lines) 
(format stream "Type -R line-:P:-Z" n-lines» 

(de fun read-n-lines (n-lines &optional (stream *standard-input*» 
(with-input-editing-options «:prompt Jread-n-lines-prompt n-lines» 

(with-input-editing (stream :end-activation) 
(loop repeat n-lines collect (readline stream»») 

Next is an example of a simple sentence parser. It builds a list of strings and 
symbols that represent the words and punctuation marks of the sentence. A 
sentence may be any number of lines long. It is delimited by a period or a 
question mark. Words are delimited by a space, newline, or punctuation mark. 



281 

August 1986 Input/Output Facilities 

This is also an example of a reading function written entirely in terms of :tyi as 
the primitive input operation. 

(de fun read-sentence-1 (&optional (stream *standard-input*)) 
(with-input-editing-options «:prompt "Type a sentence: H)) 

(with-input-editing (stream) 
(loop named sentence 

with sentence = nil 
for word = (make-array 28. :type art-string :fill-pointer 8) 
do (loop for char = (send stream :tyi) 

do 
(cond «memq char , (#\space #\return #/. #/? #/,)) 

(if (not (equal word "H)) 

(push word sentence)) 
(selectq char 

«#\space #\return #/,) 
(return)) 

(#\. 
(push :period sentence) 
(return-from sentence (nreverse sentence))) 

(#\? 
(push :question-mark sentence) 
(return-from sentence (nreverse sentence))))) 

(t (array-push-extend word char)))))))) 

Following is a different sentence parser that calls read-delimited-string to 
accumulate characters into a string. It uses the :end-activation option for 
with-input-editing so that previous input to read-sentence-2 can be yanked, 
edited, and activated using the END key. When it detects incorrect uses of 
punctuation, it calls zl:parse-ferror to signal an error caught by the input editor. 



282 

Reference Guide to Streams, Files, and 110 August 1986 

(defun read-sentence-2 (&optional (stream *standard-input*» 
(with-input-editing-options «:prompt "Type a sentence: H»~ 

(with-input-editing (stream :end-activation) 
(loop with sentence = nil 

do (multiple-value-bind (word nil delimiter) 
(read-delimited-string 

, (#\space #\return #/. #/7 #/, #/: #/;) stream) 
(if (not (equal word "H»~ 

(push word sentence» 
(cond «memq delimiter , (#\space #\return») 

«null sentence) 
(if (eq delimiter #\end) 

(return nil) 
(sys:parse-ferror 

"The punctuation mark /"-C/" occurred at the -
beginning of the sentence." 
del i mi ter») 

«symbolp (car sentence» 
(sys:parse-ferror 

"The punctuation mark /"-C/" was typed after a -@A." 

delimiter (car sentence») 
(t (selectq delimiter 

(#/, 

(push ':comma sentence» 
(#/: 

(push ':colon sentence» 
(#/; 

(push ':semicolon sentence» 
(#/. 
(push ':period sentence) 
(return (nreverse sentence») 

(#/7 
(push ':question-mark sentence) 
(return (nreverse sentence»»»»») 

Sometimes an error in parsing is detected not by the function that invokes the 
input editor, but by some function that it calls. In the next example, read-time 
invokes time:parse-universal-time to do its parsing. If we did not use the 
condition-case form in read-time, we would enter the Debugger when 
time:parse-universal-time encountered incorrect input. The condition-case form 
encapsulates the original error in one of flavor zl:parse-ferror so that the input 
editor catches it. Alternately, we could define time:parse-error to be a subflavor 
of sys:parse-error. 



283 

August 1986 Input/Output Facilities 

(defun read-time (&optional (stream *standard-input*)) 
(with-input-editing (stream :line) 

(let «string (readline-or-nil stream))) 
(when string 

(condition-case (error) 
(time:parse-universal-time string) 

(time:parse-error 
(sys:parse-ferror U-AU error))))))) 

13.7 Input Editor Messages to Interactive Streams 

:input-editor read-function &rest read-args of Method 
si:interactive-stream 

Apply read-function to read-args after invoking the input editor. For more 
information: See the section II The Input Editor Program Interface II, page 
265. 

Normally a program does not send this message itself; it uses the special 
form with-input-editing. See the special form with-input-editing, page 
270. 

: start-typ eout type &optional spacing of si:interactive-stream Method 
Informs the input editor that typeout to the window will follow. The word 
II typeoutll is used in the name of this message because this is very similar 
to typeout in the editor, even though typeout windows are not actually 
used. type can be one of the following keywords: 

Keyword 

:insert 

: overwrite 

:append 

:temporary 

: clear-window 

Action 

Typeout is inserted before the current input, as is done 
with notifications or input editor documentation. 

Like :insert, but the next time :insert or :overwrite 
typeout is performed, this typeout is overwritten. 

Typeout appears after the current input, which remains 
visible before the typeout. This is the style used by 
zl:break. 

Typeout appears after the current input and is erased 
after the user types a character. 

The window is cleared, and typeout appears at the top. 

spacing can be one of the following keywords: 



284 

Reference Guide to Streams, Files, and 110 August 1986 

Keyword 

: none 

:fresh-line 

: blank-line 

Action 

No spacing before typeout. 

Typeout begins at the beginning of a line. 

A blank line precedes typeout. 

If spacing is not specified, a default that depends on type is computed. 

si:*typeout-default* Variable 
Controls the style of typeout performed by the input editor. Permissible 
values are the keywords acceptable as the type argument to the 
:start-typeout method of si:interactive-stream. These are : insert, 
: overwrite, :append, : temporary, and : clear-window. The default value is 
: overwrite. 

:finish-typeout &optional spacing erase? of si:interactive-stream Method 
Completes typeout to the window and causes the input buffer to be 
refreshed. In the case of :temporary typeout, the erase? parameter is used 
to indicate whether or not the typeout overwrote part of the current input 
by wrapping around the screen. It is the responsibility of the program 
doing the typeout to keep track of how much is output. 

spacing can be one of the following keywords: 

Keyword 

:none 

: fresh-line 

:blank-line 

Action 

No spacing before typeout. 

Typeout begins at the beginning of a line. 

A blank line precedes typeout. 

If spacing is not specified, a default that depends on the type argument to 
the :start-typeout method is computed. 

:rescanning-p of si:interactive-stream Method 
This message can be sent by a read function that uses the input editor to 
determine whether the next character returned by :tyi will come from the 
input buffer or from the keyboard. If t is returned, the input is being 
rescanned and the next character will come from the input buffer. If nil is 
returned, the next character will come from the keyboard. 

:force-rescan of si:interactive-stream Method 
This message can be sent by a read function that uses the input editor to 
force a rescan of the current input. Before this message is sent, usually 
some global state has changed and the contents of the input buffer are 
interpreted differently. 



285 

August 1986 Input/Output Facilities 

:replace-input n-chars string &optional (begin 0) end (rescan-mode Method 
: ignore) of si:interactive-stream 

This message can be sent by a read function that uses the input editor to 
provide completion of the current input. 

n-chars specifies the number of characters to be removed from the end of 
the input buffer and erased from the screen. It can be an integer, a 
string, or nil: 

integer 

string 

nil 

Remove n-chars characters from immediately before the 
scan pointer 

Remove as many characters as the string contains 

Remove characters from the beginning of the input 
buffer to the scan pointer 

The substring of string determined by begin and end is then displayed on 
the screen. end defaults to <string-length string). The scan pointer is left 
after the string, and a rescan does not take place. If a rescan takes place 
at some later time, the characters in string are seen as input. 

rescan-mode specifies what action to take if the :replace-input message is 
sent when the scan pointer is not at the end of the input buffer: 

:ignore 

: enable 

:error 

Don't perform the :replace-input operation. This is the 
default. 

Perform the operation. 

Signal an error. 

:read-bp of si:interactive-stream Method 
Returns the value of the scan pointer. This is for the benefit of read 
functions that might want to return a pointer into the input buffer when 
signalling an error of type sys:parse-error. 

:noise-string-out string &optional (rescan-mode :ignore) of Method 
si: interactive-stream 

This message can be sent by a read function to display a string that is not 
to be treated as input. For example, the string might prompt the user for 
a particular kind of input. string is displayed on the screen without 
changing the scan pointer, and a rescan does not take place. If a rescan 
takes place at some later time, the characters in string are ignored. 

rescan-mode specifies what action to take if the :noise-string-out message 
is sent when the scan pointer is not at the end of the input buffer: 



286 

Reference Guide to Streams, Flies, and VO August 1986 

: ignore 

: enable 

: error 

Don't perform the :noise-string-out operation. This is 
the default. 

Perform the operation. 

Signal an error. 



287 

August 1986 Input/Output Facilities 

14. Printed Representation 

14.1 How the Printer Works 

People cannot deal directly with Lisp objects, because the objects live inside the 
machine. In order to let us get at and talk about Lisp objects, Lisp provides a 
representation of objects in the form of printed text; this is called the printed 
representation. 

Functions such as print, prinl, and prine take a Lisp object and send the 
characters of its printed representation to a stream. These functions (and the 
internal functions they call) are known as the printer. The zl:read function takes 
characters from a stream, interprets them as a printed representation of a Lisp 
object, builds a corresponding object and returns it; zl:read and its subfunctions 
are known as the reader. See the section "Introduction to Streams", page 5. 

The printed representation of an object depends on its type. For descriptions of 
how different Lisp objects are printed: 

See the section "Printed Representation of Symbols", page 288. 
See the section "Printed Representation of Common Lisp Character Objects", page 288. 
See the section "Printed Representation of Strings", page 288. 
See the section "Printed Representation of Instances", page 288. 
See the section "Printed Representation of Arrays That Are Named Structures", page 289. 
See the section "Printed Representation of Arrays That Are Not Named Structures" 

page 289. 
See the section "Printed Representation of Miscellaneous Data Types", page 289. 
See the section "Controlling the Printed Representation of an Object", page 291. 

14.2 Effects of Slashification on Printing 

, Printing is done either with or without slashification. The unslashified version is 
nicer looking, but zl:read cannot handle it properly. The slashified version, 
however, is carefully set up so that zl:read is able to read it in. 

The primary effects of slashification are: 

• Special characters used with other than their normal meanings (for example, 
a parenthesis appearing in the name of a symbol) are preceded by slashes or 
cause the name of the symbol to be enclosed in vertical bars . 

• Symbols that are not from the current package are printed out with their 
package prefixes. (A package prefix looks like a symbol followed by a colon). 



288 

Reference Guide to Streams, Files, and I/O August 1986 

14.3 What the Printer Produces 

14.3.1 Printed Representation of Symbols 

If slashification is off, the printed representation of a symbol is simply the 
successive characters of the print-name of the symbol. If slashification is on, two 
changes must be made. 

1. The symbol might require a package prefix for zl:read to work correctly, 
assuming that the package into which zl:read reads the symbol is .the one in 
which it. is being printed. (See the section II System Packages II in Symbolics 
Common Lisp: Language Concepts.) 

2. If the printed representation would not read in as a symbol at all (that is, if 
the print-name looks like a number, or contains special characters), the 
printed representation must have one of the following kinds of quoting for 
those characters. 

o Slashes ("/") before each special character 
o Vertical bars ("1") around the whole name 

The decision whether quoting is required is made using the readtable, so it is 
always accurate provided that zl:readtable has the same value when the output is 
read back in as when it was printed. See the variable zl:readtable, page 235. 

Uninterned symbols are printed preceded by #:. You can turn this off by 
evaluating (zl:setf (si:pttbl-uninterned-preIlX zl:readtable) ""). 

14.3.2 Printed Representation of Common Lisp Character Objects 

For Common Lisp, character objects always print as #\char. 

14.3.3 Printed Representation of Strings 

If slashification is off, the printed representation of a string is simply the 
successive characters of the string. If slashification is on, the string is printed 
between double quotes, and any characters inside the string that need to be 
preceded by slashes are. Normally these are just double-quote and slash. 
Compatibly with Maclisp, carriage return is not ignored inside strings and vertical 
bars. 

14.3.4 Printed Representation of Instances 

If the instance has a method for the :print-self message, that message is sent 
with three arguments: the stream to print to, the current depth of list structure, 
and whether slashification is enabled. The object should print a suitable printed 
representation on the stream. (See the section II Flavors II in Symbolics Common 



289 

August 1986 Input/Output Facilities 

Lisp: Language Concepts. Instances are discussed there.) See the section "Printed 
Representation of Miscellaneous Data Types", page 289. Most such objects print as 
described there, except with additional information such as a name. Some objects 
print only their name when slashification is not in effect (when princed). 

14.3.5 Printed Representation of Arrays That Are Named Structures 

If the array has a named structure symbol with a named-structure-invoke 
property that is the name of a function, then that function is called on five 
arguments: 

o The symbol :print-self 
• The object itself 
o The stream to print to 
o The current depth of list structure 
o Whether slashification is enabled 

A suitable printed representation should be sent to the stream. This allows you to 
define your own printed representation for the array's named structures. See the 
section "Named Structures" in Symbolics Common Lisp: Language Concepts. If the 
named structure symbol does not have a named-structure-invoke property, the 
printed representation is like that for miscellaneous data types: a number sign and 
a less-than sign ("<"), the named structure symbol, the numerical address of the 
array, and a greater-than sign (">"). 

14.3.6 Printed Representation of Arrays That Are Not Named Structures 

The printed representation of an array that is not a named structure contains the 
following elements, in order: 

• A number sign and a less-than sign ("<") 

o The "art-" symbol for the array type 

o The dimensions of the array, separated by hyphens 

• A space, the machine address of the array, and a greater-than sign (">") 

14.3.7 Printed Representation of Miscellaneous Data Types 

For a miscellaneous data type, the printed representation starts with a number 
sign and a less-than sign, the "dtp-" symbol for this data type, a space, and the 
octal machine address of the object. Then, if the object is a microcoded function, 
compiled function, or stack group, its name is printed. Finally, a greater-than 
sign is printed. 

Including the machine address in the printed representation makes it possible to 



290 

Reference Guide to Streams, Files, and VO August 1986 

tell two objects of this kind apart without explicitly calling eq on them. This can 
be very useful during debugging. It is important to know that if garbage 
collection is turned on, objects are occasionally moved, and therefore their octal 
machine addresses are changed. It is best to shut off garbage collection 
temporarily when depending on these numbers. 

None of the printed representations beginning with a number sign can be read 
back in, nor, in general, can anything produced by instances and named 
structures. See the section "What the Reader Recognizes", page 227. This can be 
a problem if, for example, you are printing a structure into a file with the intent 
of reading it in later. But by setting the si:print-readably variable, you can make 
sure that what you are printing can indeed be read with the reader. 

si:print-readably Variable 
When si:print-readably is bound to t, the printer signals an error if there 
is an attempt to print an object that cannot be interpreted by zl:read. 
When the printer sends a :print-self or a :print message, it assumes that 
this error checking is done for it. Thus it is possible for these messages 
not to signal an error, if they see fit. 

sys:printing-random-object (object stream. keywords) body... Macro 
The vast majority of objects that define :print-self messages have much in 
common. This macro is provided for convenience, so that users do not 
have to write out that repetitious code. It is also the preferred interface to 
si:print-readably. With no keywords, sys:printing-random-object checks 
the value of si:print-readably and signals an error if it is not nil. It then 
prints a number sign and a less-than sign, evaluates the forms in body, 
then prints a space, the octal machine address of the object, and a greater
than sign. A typical use of this macro might look like: 

(sys:printing-random-object (ship stream) 
(princ (typep ship) stream) 
(tyo #\space stream) 
(prin1 (ship-name ship) stream)) 

This might print #<ship "ralph" 23655126>. 

The following keywords can be used to modify the behavior of 
sys:printing-random-object: 

: no-pointer 

:typep 

This suppresses printing of the octal address of the object. 

This prints the result of (typep object) after the less-than sign. 
In the example above, this option could have been used instead 
of the first two forms in the body. 



291 

August 1986 Input/Output Facilities 

14.4 Controlling the Printed Representation of an Object 

If you want to control the printed representation of an object, usually you make 
the object an array that is a named structure, or an instance of a flavor. See the 
section "Named Structures" in Symbolics Common Lisp: Language Concepts. See 
the section "Flavors" in Symbolics Common Lisp: Language Concepts. Occasionally, 
however, you might want to get control over all printing of objects in order to 
change in some way how they are printed. The best way to do this is to 
customize the behavior of si:print-object, which is the main internal function of 
the printer. All the printing functions, such as print and princ, as well as 
zl:format, go through this function. The way to customize it is by using the 
"advice" facility. See the special form advise in Program Development Utilities. 



292 

Reference Guide to Streams, Files, and liD August 1986 



293 

August 1986 Input/Output Facilities 

15. Output Functions 

These functions all take an optional argument called output-stream, which is where 
to send the output. If unsupplied or nil, output-stream defaults to the value of 
*standard-output*. If it is t, the value of *terminal-io* is used (that is, the 
interactive terminal). See the section "Introduction to Streams", page 5. Streams 
are documented in detail in that section. 

write object &key stream escape radix base circle pretty level length Function 
case gensym array readably array-length 
string-length bit-vector-length structure-contents 
abbreviate-quote 

The printed representation of object is written to the output stream 
specified by :stream, which defaults to the value of *standard-output*. 

The other keyword arguments specify values used to control the generation 
of the printed representation. Each defaults to the corresponding global 
variable: see *print-escape*, *print-radiX", *print-base*, *print-circle*, 
*print-pretty*, *print-Ievel*, *print-Iength*, *print-case*, *print-gensym*, 
*print-array*, *print-readably*, *print-array-Iength*, 
*print-string-Iength*, *print-bit-vector-Iength*, 
*print-structure-contents*, and *print-abbreviate-quote*. Note that the 
printing of symbols is also affected by the value of the variable *package*. 

write returns object. For example: 

(write "A simple string") => "A simple string" 
"A simple string" 

prinl object &optional output-stream Function 
Outputs the printed representation of object to stream, with slashification. 
Roughly speaking, the output from prinl is suitable for input to the 
function read. prinl returns object. See the section "What the Printer 
Produces", page 288. 

For example: 

(prin1 "A simple string") => "A simple string" 
"A simple string" 

zl:prinl-then-space object &optional output-stream Function 
Like prinl except that output is followed by a space. zl:prinl-then-space 
returns object. For example: 



294 

Reference Guide to Streams, Files, and 110 August 1986 

(zl:prin1-then-spaee "A simple string") => "A simple string" 
"A simple string" 

prinl-to-string object Function 
The object is printed as if by prinl, and the characters that would be 
output are made into a string, which is returned. For example: 

(prin1-to-string 'Iredl) => "\"Iredl\"" 

print object &optional output-stream Function 
Like prinl except that output is preceded by a newline and followed' by a 
space. print returns object. For example: 

(print "A simple string") => 
"A simple string" 

"A simple string" 

prine object &optional output-stream Function 
Like prinl except that the output is not slashified. A symbol is printed as 
simply the characters of its print name, a string is printed without 
surrounding double quotes, and so on. The general rule is that output 
from prine is intended to look good to people, while output from prinl is 
intended to be acceptable to the function read. prine returns object. 

(prine "A simple string") => A simple string 
"A simple string" 

prine-to-string object Function 
The object is printed as if by prine, and the characters that would be 
output are made into a string, which is returned. For example: 

(prine-to-string 'Iredl) => "Iredl" 

pprint object &optional output-stream Function 
The printed representation of object is written to the output-stream using 
the pretty printer. The printed representation is preceded by a newline 
and escape characters are used as appropriate. pprint returns no values. 
For example: 

(pprint "A simple string") => 
"A simple string" 

write-byte integer binary-output-stream Function 
Writes one byte, the value of integer to binary-output-stream. It is an error 
if integer is not of the type specified as the :element-type argument to 
open when the stream was created. write-byte returns integer. 



295 

August 1986 Input/Output Facilities 

write-char character &optional output-stream Function 
Outputs character as a printing character to output-stream, and returns 
character as a character object. character must be a character object. For 
example: 

(write-char #\a) => a 
#\a 

write-line string &optional output-stream &key (start 0) end Function 
Writes the characters of the specified substring of string to output-stream, 
followed by a newline. The :start and :end parameters delimit a substring 
of string. write-line returns string. For example: 

(write-line "hello") => hello 
"hello" 

(setq stream (make-string-output-stream») 
=> #<lEXICAl-ClOSURE ClI: :STRING-OUTPUT-STREAM 35643762> 

(write-line "two words" stream :start 4) 
=> "two words" ;returns the full string 

(get-output-stream-string stream) 
=> "words 

;writes the substring plus NEWLINE to the stream 

write-string string &optional output-stream &key (start 0) end Function 
Writes the characters of the specified substring of string to output-stream, 
without a following newline. The :start and :end parameters delimit a 
substring of string. write-string returns string. For example: 

(write-string "hello") => hello"hello" 

(setq s (make-string-output-stream» 
=> #<lEXICAl-ClOSURE ClI: :STRING-OUTPUT-STREAM 14372772> 

(write-string "two words" s :start 4) 
=> "two words" ;returns the full string 

(get-output-stream-string s) 
=> "words" ;writes the substring to the stream 

write-to-string object &key escape radix base circle pretty level length 
case gensym array readably array-length 
string-length pretty level length case gensym 

Function 



296 

Reference Guide to Streams, Files, and 110 August 1986 

array structure-contents 
The object is printed as if by write, and the characters that would be 
output are made into a string, which is returned. The other keyword 
arguments specify values used to control the generation of the printed 
representation. See the function write, page 293. 

For example: 

(write-to-string 'Iredl) => "\"Iredl\"" 

si:print-object object prindepth slashify-p stream &optional Function 
which-operations 

Outputs the printed representation of object to stream, as modified by 
prindepth and slashify-p. This is the guts of the Lisp printer. When a 
stream's :print handler calls this function, it should supply the list 
(:string-out) for which-operations, to prevent itself from being called 
recursively. It can supply nil if it does not want to receive :string-out 
messages. 

Advising this function is the way to customize the behavior of all printing 
of Lisp objects. See the special form advise in Program Development 
Utilities. 

si:print-list list prindepth slashify-p stream Which-operations Function 
This is the part of the Lisp printer that prints lists. A stream's :print 
handler can call this function, passing along its own arguments and its own 
which-operations, to arrange for a list to be printed the normal way and 
the stream's :print hook to get a chance at each of the list's elements. 

zl:tyo char &optional stream Function 
Outputs the character char to stream. 

fresh-line &optional output-stream Function 
Outputs a newline only if the stream is not already at the start of a line. 
If for any reason this cannot be determined, then a newline is output 
anyway. This guarantees that the stream will be on a fresh line while 
consuming as little vertical space as possible. fresh-line returns t if it 
output a newline, otherwise it returns nil. 

terpri &optional output-stream Function 
Outputs a newline to output-stream, and returns nil. It is identical in 
effect to: 

(write-char #\Newline output-stream) 



297 

August 1986 Input/Output Facilities 

zl:terpri &optional stream Function 
Outputs a carriage return character to stream. 

clear-output &optional output-stream Function 
Some streams are implemented in an asynchronous, or buffered, manner. 
clear-output attempts to abort any outstanding output operation in 
progress in order to allow as little output as possible to continue to the 
destination. This is useful, for example, to abort a lengthy output to the 
terminal when an asynchronous error occurs. clear-output returns nil. 

finish-output &optional output-stream Function 
Some streams are implemented in an asynchronous, or buffered, manner. 
finish-output attempts to ensure that all output sent to output-stream has 
reached its destination, and only then returns nil. 

force-output &optional output-stream Function 
Some streams are implemented in an asynchronous, or buffered, manner. 
force-output initi~tes the emptying of any internal buffers, but returns nil 
without waiting for completion or acknowledgment. 

15.1 Print Control Variables 

There are a number of print variables that affect the performance of print 
functions. 

*print-Ievel* Variable 
The variable *print-Ievel* control how many levels of a nested data object 
will be printed. Its value can be either nil (the default), or any positive 
integer up to 231 _1. This variable replaces zl:prinlevel, which is obsolete. 

The entire object prints if 

o the value of *print-Ievel* is nil 

o the value of *print-Ievell/,c is equal to or greater than the number of 
levels in the object 

If *print-Ievel* is an integer, it indicates the maximum level to be printed. 
The object itself is level 0; its components (as for a list or vector) are level 
1; and so on. If any part the object to be printed has components at or 
greater than the value of *print-Ievel*, then that part of the object is 
printed as simply #. 

Examples: 



298 

Reference Guide to Streams, Files, and VO August 1986 

(setq 1 i st J (a (b c) (d (e f) g))) => (A (8 C) (0 (E F) G)) 

(let «*print-level* nil)) 
(print list) nil) => 

(A (8 C) (0 (E F) G)) NIL 

(let «*print-level* 2)) 
(print list) nil) => 

(A (8 C) (0 # G)) NIL 

(let «*print-level* 3)) 
(print list) nil) => 

(A (8 C) (0 (E F) G)) NIL 

*print-Iength* Variable 
The variable *print-Iength* controls how many elements at a given level 
are printed. Its value can be either nil (the default), or any positive 
integer up to 231 _1. This variable replaces zl:prinlength, which is obsolete. 

The entire object prints if 

• the value of *print-Iength* is nil 

• The value of *print-Iength* is equal to or greater than the number of 
of components in any given level of the object 

If *print-Iength* is an integer, it indicates the maximum number of 
components to be printed. If the object to be printed has components at or 
greater than the value of *print-Ievel*, then the object's structure name is 
printed. Note that the number of components begins with 0, so the entire 

Examples: 

(setq list J(a b (c) (d (e f) g))) => (A 8 (C) (0 (E F) G)) 

(let «*print-length* nil)) 
(print list) nil) => (A B (C) (0 (E F) G)) NIL 

(let «*print-length* 2)) 
(print list) nil) => (A B ... ) NIL 

(let «*print-length* 4)) 
(print list) nil) => (A B (C) (0 (E F) G)) NIL 



299 

August 1986 Input/Output Facilities 

*print-abbreviate-quote* Variable 
The variable *print-abbreviate-quote* provides a way to print quoted 
forms in their short form. It is incorporated into *print-pretty*, so the 
value of *print-pretty* must be nil in order for *print-abbreviate-quote* 
to have any effect. 

Examples: 

(let «*print-abbreviate-quote* nil) 
(*print-pretty* nil)) 

(print '(quote faa)) nil) => (QUOTE FOO) NIL 

(let «*print-abbreviate-quote* t) 
(*print-pretty* nil)) 

(print '(quote faa)) nil) => 'FOa NIL 

(let «*print-abbreviate-quote* t) 
(*print-pretty* nil)) 

(print '(function faa)) nil) => #'FOO NIL 

(let «*print-abbreviate-quote* t) 
(*print-pretty* nil)) 

(print "(foo ,@bar ,baz)) nil) 
=> '(FOO ,@BAR ,BAZ) NIL 

*print-array* Variable 
The variable *print-array* is a boolean which controls whether the 
contents of arrays other than strings are printed. If the value of 
*print-array* is nil, then the array's structure name is printed in a concise 
form, such as #<ART-Q-4-2 270017201>, that identifies the array and gives 
the dimensions. If the value is t, non-string arrays are printed using #(, 
#*, or #nA syntax. 

This variable replaces si:prinarray, which is obsolete. 

*print-array-Iength* Variable 
The variable *print-array-Iength* controls the number of objects in the 
array that will be printed. Its value can be either nil (the default), or any 
positive integer up to 231 _l. 

The entire array prints if 

• the value of *print-array-Iength* is nil 

• the value of °print-array-Iength* is equal to or greater than the 
length of the array to be printed 



300 

Reference Guide to Streams, Files, and 110 August 1986 

This variable is dependent on the value of the variable *print-array*. If 
the value of ·print-array* is nil, the array's structure name (which 
includes the array's length) is printed, no matter what the value of 
·print-array-Iength* is. The array's structure name is also printed when 
the array is longer than the integer value of *print-array-Iength*. 

Examples: 

(setq array (make-array '(4 2) :initial-contents 
I «a b) 
(1 2) 

("faa" "bar") 
(#\a #\b»» 

=> #2A«A B) (1 2) ("faa" "bar") (#\a #\b» 

(let «*print-array-length* nil» 
(print array) nil) 

=> #2A«A B) (1 2) ("faa" "bar") (#\a #\b» NIL 

(let «*print-array-length* 2» 
(print array) nil) 

=> #<ART-Q-4-2 10004306> NIL 

(let «*print-array-length* 8» 
(print array) nil) 

=> #2A«A B) (1 2) ("faa" "bar") (#\a #\b» NIL 

*print-base· Variable 
The value of this variable determines the radix in which the printer prints 
rational numbers (integers and ratios). 

·print-base· can have any integer value from 2 to 36, inclusive; its default 
value is 10 (decimal radix). For values above 10, letters of the alphabet are 
used to represent digits above "9. 

If no radix specifier is set (see ·print-radix*) integers in base ten are 
printed without a trailing decimal point. 

If the value of *print-base* is a symbol that has a si:princ-function 
property (such as :roman or:english), the value of the property is applied 
to two arguments 

• - of the number to be printed 

• the stream to which to print it 

This allows output in roman numerals and the like. 



301 

August 1986 Input/Output Facilities 

Examples: 

(setq *print-base* ':roman) 
(* 5 5) ==> XXV 

(setq *print-base* ':english) 
(* 5 5) ==> twenty-five 

*print-bit-vector-Iength· Variable 
The variable ·print-bit-vector-Iength· controls the number of objects in 
the bit vector that will be printed. Its value can be either nil (the default), 
or any positive integer up to 231 _1. 

When the value of *print-bit-vector-Iength* is nil, 
*print-bit-vector-Iength* interacts with *print-array*. Here is a table 
that shows the interactions: 

*print-bit
vector-length· 

t 

integer 

nil 

nil 

·print-array* 

* 

* 

t 

nil 

Result 

always print the bit vector 

print the bit vector if the value of 
·print-bit-vector-Iength· is equal 
to or greater than the length of the 
bit vector to be printed 

always print the bit vector 

never print the bit vector 

* means that the value of this variable does not affect the result 

Examples: 



302 

Reference Guide to Streams, Files, and VO August 1986 

(setq bit-vector (make-array 5 :element-type 'bit 
:initial-contents '(1 881 8») => #*18818 

(let «*print-bit-vector-length* 2) 
(*print-array* t» 

(print bit-vector) nil) 
=> #<ART-1B-5 18852423> NIL 

(let «*print-bit-vector-length* 5) 
(*print-array* t» 

(print bit-vector) nil) 
=> #*18818 NIL 

*print-case* Variable 
The variable *print-case* controls the case in which to print any uppercase 
characters in the names of symbols when vertical-bar syntax is not used. 
The read function normally converts lowercase characters appearing in 
symbol names to their corresponding uppercase characters. This means 
that normally internal print names contain only uppercase letters. 
However, users may prefer to see output using lowercase or mixed case 
letters. 

Lowercase characters in the internal print name are always printed in 
lowercase and are preceded by a single escape character or enclosed by 
multiple escape characters. Uppercase characters in the internal print 
name are printed in uppercase, lowercase, or in mixed case so as to 
capitalize words, according to the value of *print-case*. The convention 
for what constitutes a "word" is the same as for the function 
string-capitalize. 

The value of *print-case* must be one of the keywords :upcase (the 
default), :downcase, or :capitalize. This variable replaces si:princase, 
which is obsolete. 

*print-circle* Variable 
The variable *print-circle* controls whether or not the printer tries to 
detect cycles in the structure to be printed. When the value of 
*print-circle* is nil (the default), then the printing process proceeds by 
recursive descent. Attempts to print a circular structure may lead to 
looping behavior and failure to terminate. 

When the value is non-nil, then the printer tries to detect cycles in the 
structure to be printed, and uses #n= and #n# syntax to indicate the 
circulari ties. 



'303 

August 1986 Input/Output Facilities 

*print-escape* Variable 
The variable *print-escape* controls whether or not the printer outputs 
escape characters. When the value of *print-escape* is nil, then escape 
characters are not output when an expression is printed. In particular, a 
symbol is printed by simply printing the characters of its print name. The 
function prine effectively binds *print-escape* to nil. 

When the value is t (the default), then an attempt is made to print an 
expression in such a way that it can be read again to produce an equal 
structure. The function print effectively binds *print-escape* to t. 

*print-gensym* Variable 
The variable *print-gensym* controls whether the preflx #: is printed 
before symbols that have no home package. The preflx is printed if the 
value of *print-gensym* is non-nil. The initial value is t. 

*print-pretty* Variable 
The variable *print-pr~tty* controls the amount of whitespace output when 
printing an expression. When the value of *print-pretty* is nil, then only 
a small amount of whitespace is output. When the value is non-nil, the 
output is adjusted to be more readable. Common Lisp only uses the values 
t and nil. Symbolics has added the values :code, :data, :plist and :alist. 

The permissible values are: 

Value 

nil 

t 

: code 

:data 

:plist 

:alist 

Effect 

Disable pretty printing 

Print in the default format (tb-e default is :code) 

Prints lists as if they were lisp code (SCL extension) 

Prints lists with a format based on the flrst element 
(SCL extension) 

Prints lists as property lists, with two elements per line 
(SCL extension) 

Prints lists as association lists, giving a dotted cdr for 
each sublist, even when there is a proper list (SCL 
extension) 

Examples: 

(write '(defun defvar defparameter defflavor) :pretty t) 
=> (OEFUN OEFVAR OEFPARAHETER 

OEFFLAVOR) 



304 

Reference Guide to Streams, Files, and 110 August 1986 

(write '(defun defvar defparameter defflavor) :pretty :data) 
=> (DEFUN DEFVAR DEFPARAHETER DEFFLAVOR) 

(write '«defun function) 
(defvar variable) 
(defflavor flavor» 

:pretty t) 
=> «DEFUN FUNCTION) (DEFVAR VARIABLE) (DEFFLAVOR FLAVOR» 

(write J«defun function) 
(defvar variable) 
(defflavor flavor» 

:pretty :alist) 
=> «DEFUN . (FUNCTION» 

(DEFVAR . (VARIABLE» 
(DEFFLAVOR . (FLAVOR») 

*print-pretty-printer* Variable 
The variable ·print-pretty-printer* allows wholesale replacement of the 
pretty printer used by Common Lisp. Its value is a function, which will be 
called with three arguments: the object to be printed, the value of 
·pretty-printer*, and the output stream. The default is the Common Lisp 
pretty printer. 

*print-radix* Variable 
If this variable is set to t, rational numbers are printed with a radix 
specifier indicating what radix the printer is using. (The current radix is 
controll~d by the value of variable *print-base*). 

The default value of *print-radix* is nil. 

The radix specifier has the general format 

#nnrddddd 

where n is an unsigned decimal integer in the range 2 - 36 (inclusive) 
representing the radix, and ddddd denotes the number in radix n. 

When the value of *print-base* is 2, 8, or 16 (that is, binary, octal, or 
hexadecimal) the radix specifier is printed in the abbreviated form, #b, #0, 
#x, using lower case letters. 

For printing integers, base ten is indicated by a trailing decimal instead of 
a leading radix specifier; for ratios, however, the specifier #10r is printed. 



305 

August 1986 Input/Output Facilities 

*print-readably* Variable 
The variable *print-readably* is a boolean that signals an error if the 
object to be printed is not in a form that the reader will accept. This is 
useful for objects such as arrays and flavor instances which are not forms 
that the reader accepts. 

(defflavor food () (» => FOOD 

(setq apple (make-instance Jfood» => #<FOOD 19974492> 

(let «*print-readably* nil» (print apple) nil) => 
#<FOOD 19974492> NIL 

(let «*print-readably* t» (print apple) nil) 
Rebinding the following specials; 
use Show Standard Value Warnings for detail s: 

*PRINT-PRETTY*J *PRINT-READABLY*J and GPRINT:*INSPECTING* 

Error: CanJt print #<FOOD 19974492> readably 

SYS:PRINT-NOT-READABLE: 
Arg 9 (SI:OBJECT): #<FOOD 43123626> 

s-AJ <RESUME>: Proceed without any special action 
s-BJ <ABORT>: Return to Lisp Top Level in Dynamic Lisp Listener 1 
~ Abort Abort 
Return to Lisp Top Level in Dynamic Lisp Listener 1 
Back to Lisp Top Level in Dynamic Lisp Listener 1. 

*print-string-length* Variable 
The variable *print-string-length* controls the number of string characters 
that will print. Its value can be either nil (the default), or any positive 
integer up to 231 _1. 

The entire string prints if 

• the value of *print-string-Iength* is nil 

• the value of *print-string-length* is equal to or greater than the 
length of the string to be printed 

Only the structure name (which includes the string's length) is printed 
when the string is longer than the integer value of *print-string-length*. 

Examples: 



306 

Reference Guide to Streams, Files, and 110 August 1986 

(let «*print-string-length* nil» 
(print "This is a very long string") nil) 

=> "This is a very long string" NIL 

(let «*print-string-length* 4» 
(print "This is a very long string") nil) 

=> #<ART-STRING-26 36459275> NIL 

(let «*print-string-length* 4» 
(print "chip") nil) => "chip" NIL 

The format function can do anything any of the above functions can do and is 
very useful for producing nicely formatted text. See the function "format", page 
309. format can generate a string or output to a stream. 

The grindef function is useful for formatting Lisp programs. See the special form 
grindef, page 329. 

See the special form with-output-to-string, page 139. 

stream-copy-until-eof from-stream to-stream &optionalleader-size Function 
Inputs characters from from-stream and outputs them to to-stream, until it 
reaches the end-of-file on the from-stream. For example, if x is bound to a 
stream for a file opened for input, then (stream-copy-until-eof x 
zl:terminal-io) prints the file on the console. 

If from-stream supports the :line-in operation and to-stream supports the 
:line-out operation, then stream-copy-until-eof uses those operations 
instead of :tyi and :tyo, for greater efficiency. leader-size is passed as the 
argument to the :line-in operation. 

beep &optional beep-type (stream zl:terminal-io) Function 
Tries to attract the user's attention by causing an audible beep, or flashing 
the screen, or something similar. If the stream supports the : beep 
operation, then this function sends it a : beep message, passing type along 
as an argument. Otherwise it just causes an audible beep on the terminal. 
type is a keyword selecting among several different beeping noises. The 
allowed types have not yet been defmed; type is currently ignored and 
should always be nil. See the message : beep, page 42. 

zl:cursorpos &rest args Function 
Exists primarily for Maclisp compatibility. Usually it is preferable to send 
the appropriate messages. 

zl:cursorpos normally operates on the zl:standard-output stream; however, 



307 

August 1986 Input/Output Facilities 

if the last argument is a stream or t (meaning zl:terminal-io), 
z1:eursorpos uses that stream and ignores it when doing the operations 
described below. Note that zl:eursorpos only works on streams that are 
capable of these operations, such as windows. A stream is taken to be any 
argument that is not a number and not a symbol, or a symbol other than 
nil with a name more than one character long. 

(zl:eursorpos) => (line. column), the current cursor position. 

(zl:eursorpos line column) moves the cursor to that position. It returns t 
if it succeeds and nil if it does not. 

(zl:eursorpos op) performs a special operation coded by op, and returns t if 
it succeeds and nil if it does not. op is tested by string comparison, is not 
a keyword symbol, and can be in any package. 

f Moves one space to the right. 

b Moves one space to the left. 

d Moves one line down. 

u Moves one line up. 

t Homes up (moves to the top left corner). Note that t as the last 
argument to zl:eursorpos is interpreted as a stream, so a stream 
must be specified if the t operation is used. 

z Home down (moves to the bottom left corner). 

a Advances to a fresh line. See the :fresh-line stream operation. 

e Clears the window. 

e Clear from the cursor to the end of the window. 

I Clear from the cursor to the end of the line. 

k Clear the character position at the cursor. 

x b then k. 

zl:exploden x Function 
Returns a list of characters (as integers) that are the characters that would 
be typed out by (prine x) (that is, the unslashified printed representation of 
x). Example: 

(exploden '(+ /12 3» => (#/( #/+ #/Space #/1 #/2 #/Space #/3 #/» 

zl:explodee x Function 
Returns a list of characters represented by symbols that are the characters 
that would be typed out by (prine x) (that is, the unslashified printed 
representation of x). Example: 



308 

Reference Guide to Streams, Files, and VO August 1986 

(explodec '(+ 112 3» => (I (I + 1 1 111 121 1 1 131 I) I) 

zl:explode X Function 
Returns a list of characters represented by symbols that are the characters 
that would be typed out by (prinl x) (that is, the slashified printed 
representation of x). Example: 

(exp lode '( + 112 3» => (I (I + 1 1 II 11 1 121 II 1 1 131 I) 1 ) 

(Note that there are slashified spaces in the above list.) 

sys:flatsize x Function 
Returns the number of characters in the slashified printed representation 
of x. Example: 

(flatsize '(+ 112 3» => 12 

sys:flatc x Function 
Returns the number of characters in the unslashified printed representation 
of x. Example: 

(flatsize '(+ 112 3» => 19 



309 

August 1986 Input/Output Facilities 

16. Formatted Output 

General formatted output is done using the format function. format uses a 
control string written in a special format specifier language to control the output 
format. 

For simple tasks in which only the most basic format specifiers are needed, . 
format is easy to use and has the advantage of brevity. For more complicated 
tasks, the format specifier language becomes somewhat obscure and hard to read, 
but has the advantage of being extremely powerful. 

Additional tools are available for formatting Lisp code (as opposed to text and 
tables). See the section "Formatting Lisp Code", page 329. 

format destination control-string &rest args Function 
Produces formatted output. format outputs the characters of control-string, 
except that a tilde ("') introduces a directive. The character after the tilde, 
possibly preceded by prefix parameters and modifiers, specifies the kind of 
formatting desired. Most directives use one or more elements of args to 
create their output; the typical directive puts the next element of args into 
the output, formatted in some special way. 

The output is sent to destination. If destination is nil, a string is created 
that contains the output; this string is returned as the value of the call to 
format. In all other cases format returns no interesting value (generally 
nil). If destination is a stream, the output is sent to it. If destination is t, 
the output is sent to ·standard-output·. If destination is a string with an 
array-leader, such as would be acceptable to string-nconc, the output is 
added to the end of that string. 

A directive consists of a tilde, optional prefix parameters separated by 
commas, optional colon (:) and at-sign (@) modifiers, and a single character 
indicating the kind of directive. The alphabetic case of the character is 
ignored. The prefix parameters are generally decimal numbers. Examples 
of control strings: 

"-5" 
"-3,4:~5" 

"-,45" 

This is an S directive with no parameters. 
This is an S directive with two parameters, 3 and 4, 

and both the colon and at-sign flags. 
The first prefix parameter is omitted and takes 

on its default value, while the second is 4. 

format includes some extremely complicated and specialized features. I t is 
not necessary to understand all or even most of its features to use format 
efficiently. The more sophisticated features are there for the convenience 
of programs with complicated formatting requirements. 



310 

Reference Guide to Streams, Files, and liD August 1986 

Sometimes a prefIx parameter is used to specify a character, such as the 
padding character in a right- or left-justifying operation. In this case a 
single quote ( , ) followed by the desired character can be used as a prefIx 
parameter, so that you do not have to know the decimal numeric values of 
characters in the character set. For example, you can use the following to 
print a decimal number in five columns with leading zeros. 

"-5, '0d" instead of "-5,48d" 

In place of a prefIx parameter to a directive, you can put the letter V, 
which takes an argument from args as a parameter to the directive. 
Normally this should be a number but it does not have to be. This feature 
allows variable column-widths and the like. Also, you can use the 
character # in place of a parameter; it represents the number of arguments 
remaining to be processed. 

Here are some relatively simple examples of how format is used. 

(format nil "foo") => "foo" 
(setq x 5) 

(format nil "The answer is -D." x) => "The answer is 5." 
(format nil "The answer is -3~.'' x) => "The answer is 5." 

(setq y "elephant") 
(format nil "Look at the -A!" y) => "Look at the elephant!" 
(format nil "The character -:@C is strange." #01003) 

=> "The character Meta-Beta (Symbol-shift-B) is strange." 

(setq n 3) 

(format nil "-0 item-:P found." n) => "3 items found." 
(format nil "-R dog-:[s are-; is-] here." n (= n 1» 

=> "three dogs are here." 
(format nil "-R dog-:*-[-1; is-:;s are-] here." n) 

=> "three dogs are here." 
(format nil "Here -[-1;is-:;are-] -:*-R pupp-:@P." n) 

=> "Here are three puppies." 

'" A The next element from the args of the format function, any Lisp 
object, is printed without slashification (as by prine). "':A prints 
( ) if the element is nil; this is useful when printing something that 
is always supposed to be a list. "'nA inserts spaces on the right, if 
necessary, to make the column width at least n. The @ modifier 
causes the spaces to be inserted on the left rather than the right. 
"'mincol,colinc,minpad,padcharA is the full form of "'A, which allows 
elaborate control of the padding. The string is padded on the right 
with at least minpad copies of padchar; padding characters are then 
inserted coline characters at a time until the total width is at least 



August 1986 

311 

Input/Output Facilities 

mincol. The defaults are 0 for mincol and minpad, 1 for colinc, and 
space for padchar. 

"'S The next element from the args of the format function, any Lisp 
object, is printed with slashification (as by prinl). "':S prints ( ) if 
the element is nil; this is useful when printing something that is 
always supposed to be a list. "'nS inserts spaces on the right, if 
necessary, to make the column width at least n. The @ modifier 
causes the spaces to be inserted on the left rather than the right. 
"'mincol,colinc,minpad,padcharS is the full form of ... s, which allows 
elaborate control of the padding. The string is padded on the right 
with at least minpad copies of padchar; padding characters are then 
inserted colinc characters at a time until the total width is at least 
mincol. The defaults are 0 for mincol and minpad, 1 for coli,!-c, and 
space for padchar. 

"'D The next element from the args of the format function, normally a 
number, is printed as a decimal integer. Unlike print, "'D never 
puts a decimal point after the number. "'nD uses a column width of 
n; spaces are inserted on the left if the number requires fewer than 
n columns for its digits and sign. If the number does not fit in n 
columns, additional columns are used as needed. "'n,mD uses m as 
the pad character instead of space. The @ modifier causes the 
number's sign to be printed always; the default is to print it if only 
the number is negative. The: modifier causes commas to be 
printed between groups of three digits; the third prefix parameter 
can be used to change the character used as the comma. Thus the 
most general form of "'D is "'mincol,padchar,commacharD. 

If the element is not an integer, it is printed in ... A format and 
decimal base. Thus this directive can be used to print some list 
structure showing all flXnums in decimal. 

... 0 The next element from the args of the format function, normally a 
number, is printed as an octal integer. "'nO uses a column width of 
n; spaces are inserted on the left if the number requires fewer than 
n columns for its digits and sign. If the number does not fit in n 
columns, additional columns are used as needed. ... n,mO uses m as 
the pad character instead of space. The @ modifier causes the 
number's sign to be printed always; the default is to print it only if 
the number is negative. The: modifier causes commas to be 
printed between groups of three digits; the third prefix parameter 
can be used to change the character used as the comma. Thus the 
most general form of "'0 is "'mincol,padchar,commacharO. 



312 

Reference Guide to Streams, Flies, and VO August 1986 

If the element is not an integer, it is printed in ... A format and octal 
base. Thus this directive can be used to print some list structure 
showing all ilXIlums in octal. 

-B Formats a number in binary. For example: 

(format t "-8" 19.) 
1919 
NIL 

-x In Common Lisp, formats a number in hexadecimal; in Zetalisp, 
prints spaces. For example: 

(cl:format t "-X" 59.) 
32 
NIL 

(format t "-X" 59.) 

NIL 

-F The next element from the args of the format function is printed in 
floating-point format. -nF rounds the element to a precision of n 
digits. The minimum value of n is 2, since a decimal point is 
always printed. If the magnitude of the element is too large or too 
small, it is printed in exponential notation. If the element is not a 
number, it is printed in -A format. Note that the preIlX parameter 
n is not mincol; it is the number of digits of precision desired. 

The Common Lisp version of -F produces a different format. 
Examples: 

(format nil "-2F" 5) => "5.9" 
(format ni 1 "-4F" 5) => "5.9" 
(format nil "-4F" 1.5) => "1 .5" 
(format ni 1 "-4F" 3.14159265) => "3.142" 
(format ni 1 "-3F" 1e19) => "1.ge19" 

(format nil "-2F" 5) ==> #"5." 
(format ni 1 "-4F" 3.14159265) ==> #"3.14" 

-E The next element from the args of the format function is printed in 
exponential format. -nE rounds the element to a precision of n 
digits. The minimum value of n is 2, since a decimal point is 
always printed. If the element is not a number, it is printed in -A 
format. Note that the preilX parameter n is not mincol; it is the 
number of digits of precision desired. 



313 

August 1986 Input/Output Facilities 

The Common Lisp version of "E is not supported. 

"'$ The format for using it follows: 

'" rdig ,ldig,field,padchar$ 

It expects a flonum argument. The modifiers for "'$ are all optional. 

rdig 

ldig 

field 

padchar 

: 

@ 

Examples: 

The number of digits after the decimal point. 
The default is 2. 

The minimum number of digits before the decimal 
point. The default is 1. It pads on the left with 
leading zeros. 

The full width of the field to print in. The 
default is the number of characters in the output. 
The field is padded to the left with padchar if 
necessary. 

The character for padding the field if the field is 
wider than the number. The default is #\space. 

The sign character is to be at the beginning of 
the field, before the padding, rather than just to 
the left of the number. 

The number must always appear signed. 

(format t "-&Pi is -$" (atan 8 -1» => 
Pi is 3.14 
(format t "-&Pi is -a$" (atan 8 -1» => 
Pi is 3.14159265 
(format t "-&Pi is -a,2@:$" (atan 8 -1» => 
Pi is +83.14159265 
(format t "-&Pi is -a,2,28$" (atan 8 -1» => 
Pi is 83.14159265 
(format t "-&Pi is -a,,28,'x@$" (atan 8 -1» => 
Pi is xxxxxxxxx+3.14159265 

It uses free format ("'@A) for very large values of the argument. 

"'C <character arg) is put in the output, where arg is the next element 
from the args of the format function. arg is treated as a keyboard 
character and thus can contain extra modifier bits. The constants 
char-control-bit, char-meta-bit, char-hyper-bit, char-super-bit, and 



314 

Reference Guide to Streams, Files, and VO August 1986 

char-bits return the modifier bits for characters. The modifier bits 
are printed first, represented as appropriate prefIXes: c- for 
Control, m- for Meta, c-m- for Control plus Meta, h- for Hyper, 5-

for Super. 

With the colon flag ('" :C), the names of the modifier bits are spelled 
out (for example, "Control-Heta-F"), and nonprinting characters are 
represented by their names (for example, "Return") rather than 
being output as themselves. 

With both colon and at-sign ('" :@C), the colon-only format is printed, 
and then if the character requires the sv MBOl or SHI FT shift keyes) 
to type it, this fact is mentioned (for example, "Symbol-l "). This is 
the format used for telling the user about a key he or she is 
expected to press, for instance, in prompt messages. 

For all of these formats, if the character is not a keyboard character 
but a mouse II character", it is printed as House-, the name of the 
button, -, and the number of clicks. 

With only an at-sign ("'@C), the character is printed in such a way 
that the Lisp reader can understand it, using II #/" or II #\" . 

'" 0 Takes a character as its argument and prints the name of the 
character inside a lozenge. The" C directive does this with some 
characters, but .. 0 does it with all of them. 

'" ( Format a string in lowercase. The" ( directive must be matched by 
a corresponding .. ) directive. For example: 

(format t "-(-S-)" 'fs:pathname) 
fs:pathname 
NIL 

(format t "-S" 'fs:pathname) 
FS:PATHNAHE 
NIL 

"'% A carriage return is written to the output. "'n% outputs n carriage 
returns. No argument is used. Simply putting a carriage return in 
the control string would work, but "'% is usually used because it 
makes the control string look nicer in the Lisp source program. 

'" & The :fresh-line operation is performed on the output stream. 
Unless the stream knows that it is already at the front of a line, 
this outputs a carriage return. "'n& does a :fresh-line operation and 
then outputs n-l carriage returns. 



August 1986 

"I 

315 

Input/Output Facilities 

Outputs a page separator character (#\page). "nl does this n times. 
With a : modifier, if the output stream supports the :clear-screen 
operation this directive clears the screen; otherwise it outputs page 
separator character(s) as if no : modifier were present. 

Outputs a tilde. "n" outputs n tildes . 

.. ? The next argument in args of the format function must be a string, 
and the argument after that must be a list. The string is processed 
as a format control string, with the elements of the list as the 
corresponding arguments. The processing of the format string 
containing .. ? resumes when the processing of "?'s string is finished. 

If the @ modifier is supplied, the next argument in args must be a 
string; it is processed as part of the main format string, as if it 
were substituted for the .. @? directive. 

Examples: 

(format nil "-? -0" "<-A -0>" J("Hyname" 50.) 7) ==> "<Hyname 50> 7" 

(format nil "-@? -0" "<-A -0>" "Hyname" 50. 7) ==> "<Myname 50> 7" 

.. <CR> Tilde immediately followed by a carriage return ignores the carriage 
return and any whitespace at the beginning of the next line. With 
a :, the whitespace is left in place. With an @, the carriage return 
is left in place. This directive is typically used when a format 
control string is too long to fit nicely into one line of the program. 

"nG 

The next element in the args of the format function is ignored. 
"n* ignores the next n arguments. ..:* "ignores backwards"; that is, 
it backs up in the list of arguments so that the argument last 
processed will be processed again. .. n:* backs up n arguments. 
When within a .. { construct, the ignoring (in either direction) is 
relative to the list of arguments being processed by the iteration. 

"n@* branches to the nth argument (0 is the first). ..@* or 
"O@* goes back to the first argument in the args of the format 
function. Directives after a .. n@* take sequential arguments after 
the one that is the target of the branch. When within a .. { 
construct, the branch is relative to the list of arguments being 
processed by the iteration. This is an "absolute branch". The 
directive for a relative branch is described elsewhere. See the 
function "format", page 309. 

In Zetalisp, "goes to" the nth argument. "OG goes back to the first 



316 

Reference Guide to Streams, Files, and 110 August 1986 . 

argument in the args of the format function. Directives after this 
one correspond to the sequence of arguments following the 
argument that is the target of -G. Inside a -{construct, the "goto" 
is relative to the list of arguments being processed by the iteration. 

This is an II absolute II goto; for a relative goto: See the function 
format, page 309. 

The Common Lisp floating-point format specified by -G is not 
supported. 

-p If the next element in the args of the format function is not 1, a 
lowercase s is output. ("P" is for "plural. ") -:P does the same 
thing, after doing a -:* to back up one argument; that is, it prints a 
lowercase s if the last argument were not 1. -@P outputs II y" if 
the argument is 1 or "ies" if it is not. - :@P does the same thing 
but backs up first. 

-T Spaces over to a given column. -n,mT outputs enough spaces to 
move the cursor to column n. If the cursor is already past column 
n, spaces are output to move it to column n+mk, for the smallest 
integer value k possible. nand m default to 1. Without the colon 
flag, nand m are in units of characters; with it, they are in units 
of pixels. 

Note: This operation works properly only on streams that support 
the :read-cursorpos and :set-cursorpos stream operations. On 
other streams, any -T operation simply outputs two spaces. 

When format is creating a string, -T works, assuming that the first 
character in the string is at the left margin. 

-@T -@T outputs a space. -n@T outputs n spaces. 

-R -R prints arg as a cardinal English number, for example, four. -:R 
prints arg as an ordinal number, for example, fourth. -@R prints 
arg as a Roman numeral, for example, IV. -:@R prints arg as an 
old Roman numeral, for example, IIII. 

-nR prints arg in radix n. 

The full form is -radix,mincol,padchar,commacharR. 

-radix,nR uses a column width of n; spaces are inserted on the left 
if the number requires fewer than n columns for its digits and sign. 
If the number does not fit in n columns, additional columns are 
used as needed. 



August 1986 

317 

Input/Output Facilities 

"radix,n,mR uses m instead of the space as the pad character. 

The @ modifier causes the number's sign to be printed always; the 
default is to print it only if the number is negative. 

The : modifier causes commas to be printed between groups of three 
digits; the commachar parameter can be used to change the 
character used as the comma. 

"cstr":J 
.. character-stylectexr:J formats text in character-style. See the 
section "Character Styles" in Symbolics Common Lisp: Language 
Concepts. The" c directive must be matched by a corresponding ":J 

directive. 

With the colon flag, -: C ... -:J binds the line-height of the output 
stream. See the macro with-character-style in Programming the 
User Interface, Volume A. 

You can supply character-style parameter in the format control string 
as a single character, as in - J i c ... -:J. In that case, the character 
should be one of the following: 

J i 

Jb 

J p 

J r 

: italic 

:bold 

:bold-italic 

: roman 

You can also have the character-style parameter taken as an 
argument, using -vc ... -:J. In that case, it may be a character style 
face code, like : italic; or else something acceptable to 
si:parse-character-style, such as a list like (:ilX :italic nil) or an 
actual character style object. See the section "Character Styles" in 
Symbolics Common Lisp: Language Concepts. 

For example: 

(format t "Moose bites can be -JicverY-:J nasty, mind you.") 
Moose bites can be very nasty, mind you. 
NIL 

(format T "Half the square root of -Jictwo-:J is -vC-S-:J." 
J(:fix :bold :normal) (sind 45» 

Half the square root of two is 0.7071068. 
NIL 



318 

Reference Guide to Streams, FiJe~, and VO August 1986 

... [strO'" ;strl'" ; ...... ;strn"'] 
This is a set of alternative control strings. The alternatives (called 
clauses) are separated by"'; and the construct is terminated by"'] . 
... ] is undefined elsewhere. "'; is also used as a separator in 
justification ( ... <) constructions but is undefined elsewhere. 

For example: 

"-[Siamese -;Manx -;Persian -;Tortoise-Shell -
-;Tiger -;Yu-Hsiang -]kitty" 

Where arg is the next element from the args of the format 
function, the argth alternative is selected; 0 selects the first. If a 
prefix parameter is given (that is, "'n[), then the parameter is used 
instead of an argument (this is useful only if the parameter is "#"). 
If arg is out of range, no alternative is selected. After the selected 
alternative has been processed, the control string continues after the 
"']. 

~[strO~;strl~; ... ~;strn~:;defaulr] has a default case. If the last "'; used 
to separate clauses is instead "':;, then the last clause is an "else" 
clause, which is performed if no other clause is selected. For 
example: 

"-[Siamese -;Hanx -;Persian -;Tiger -
-;Yu-Hsiang -:;Bad -] kitty" 

~ [~tagOO,tagOl, ... ;strO~taglO,tagll, ... ;strl. .. ~] allows the clauses to have 
eXJ:!.Iicit tags. The parameters to each "'; are numeric tags for the 
clause that follows it. That clause is processed that has a tag 
matching the argument. If "'al,a2,bl,b2, ... :; (note the colon) is used, 
the following clause is tagged not by single values but by ranges of 
values al through a2 (inclusive), bl through b2, and so on. "':; with 
no parameters can be used at the end to denote a default clause. 
For example: 

"-[-'+,'-,'*,'II;operator -'A,'Z,'a,'z:;letter -
-'8,'9:;digit -:;other -]" 

"':[false"';true"'] selects the false control string if arg is nil, and 
selects the true control string otherwise. 

"'@[true"'] tests the argument. If it is not nil, then the argument is 
not used up, but is the next one to be processed, and the one clause 
is processed. If it is nil, then the argument is used up, and the 
clause is not processed. For example: 



August 1986 

319 

Input/Output Facilities 

(setq prin1eve1 nil prin1ength 5) 
(format nil "-@[ PRINLEVEL=-O-]-@[ PRINLENGTH=-O-]" 

prin1eve1 prin1ength) 
=> "PRINLENGTH=5" 

The combination of -[ and # is useful, for example, for dealing with 
English conventions for printing lists: 

(setq faa "Items:-#[ none-; -5-; -5 and -
-5-:;-@{-#[-1; and-] -5--,-)-].") 

(format nil faa) 
=> "Items: none." 

(format nil faa 'faa) 
=> "Items: FDD." 

(format nil faa 'faa 'bar) 
=> "Items: FDD and BAR." 

(format nil faa 'faa 'bar 'baz) 
=> "Items: FDD, BAR, and BAZ." 

(format nil faa 'faa 'bar 'baz 'quux) 
=> "Items: FDD, BAR, BAZ, and QUUX." 

-{str-} This is an iteration construct. The corresponding argument of the 
format function should be a list, which is used as a set of 
arguments as if for a recursive call to format. (The terminator -} 
is undefined elsewhere.) 

The string str is used repeatedly as the control string. Each 
iteration can absorb as many elements of the list as it likes; if str 
uses up two arguments by itself, two elements of the list are used 
up each time around the loop. 

If, before any iteration step, the list is empty, the iteration is 
terminated. Also, if a prefix parameter n is given, there will be at 
most n repetitions of processing of str. Here are some simple 
examples: 

(format nil "Here it is:-{ -5-)." '(a be» 
=> "Here it is: A B C." 

(format nil "Pairs of things:-{ <-5,-5>-)." '(a 1 b 2 c 3» 
=> "Pairs of things: <A,1> <B,2> <C,3>." 

-:{str-} is similar, but the argument should be a list of sublists. At 
each repetition step, one sublist is used as the set of arguments for 
processing str; on the next repetition a new sublist is used, whether 
or not all of the last sublist had been processed. Example: 



320 

Reference Guide to Streams, Files, and 110 August 1986 

(format nil "Pairs of things:-:{ <-S,-S>-)." 
, «a 1) (b 2) (c 3»)) 

=> "Pairs of things: <A,1> <8,2> <C,3>." 

"'@{str"'} is similar to '" {str"'}, but instead of using one argument 
that is a list, all the remaining format arguments are used as the 
list of arguments for the iteration. Example: 

(format nil "Pairs of things:-@{ <-S,-S>-)." 
, a 1 'b 2 ' c 3) 

=> "Pairs of things: <A,1> <8,2> <C,3>." 

"':@{str"'} combines the features of "':{str"'} and "'@{str"'}. All the 
remaining arguments are used, and each must be a list. On each 
iteration, the next argument is used as a list of arguments to str. 
Example: 

(format nil "Pairs of things:-:@{ <-S,-S>-)." 
'(a 1) '(b 2) '(c 3» 

=> "Pairs of things: <A,1> <8,2> <C,3>." 

Terminating the repetition construct with "':} instead of "'} forces str 
to be processed at least once even if the initial list of arguments is 
null (however, it will not override an explicit prefIx parameter of 
zero). 

If str is empty, an argument is used as str. I t must be a string and 
precedes any arguments processed by the iteration. As an example, 
the following are equivalent: 

(lexpr-funcall #'format stream string args) 
(format stream "-1{-:)" string args) 

This will use string as a formatting string. The "'1{ says it will be 
processed at most once, and the "':} says it will be processed at least 
once. Therefore it is processed exactly once, using args as the 
arguments. 

As another example, the format function itself uses format-error (a 
routine internal to the format package) to signal error messages, 
which in turn uses zl:ferror, which uses format recursively. 
format-error takes a string and arguments, like format, but also 
prints some additional information: if the control string in etl-string 
actually is a string (it might be a list), it prints the string and a 
small arrow showing where in the processing of the control string 
the error occurred. The variable etl-index points one character 
after the place of the error. 



August 1986 

321 

Input/Output Facilities 

(defun format-error (string &rest args) 
(if (stringp ctl-string) 

(ferror nil "-1{-:}-X-VT!-X-3X/"-A/"-X" 
string args (+ ctl-index 3) ctl-string) 

(ferror nil "-1{-:)" string args») 

This first processes the given string and arguments using '''If":}, 
then tabs a variable amount for printing the down-arrow, then 
prints the control string between double-quotes. The effect is 
something like this: 

(format t "The item is a -[Foo-;8ar-;Loser-]." 'quux) 
»ERROR: The argument to the FORMAT "-en command 

must be a number 
! 

"The item is a -[Foo-;8ar-;Loser-]." 

... < "'mincol,colinc,minpad,padchar<text""> justifies text within a field at 
least mincol wide. text can be divided into segments with ... ;; the 
spacing is evenly divided between the text segments. The 
terminator ... > is undefined elsewhere. 

With no modifiers, the leftmost text segment is left justified in the 
field, and the rightmost text segment right justified; if there is only 
one, as a special case, it is right justified. 

The : modifier causes spacing to be introduced before the first text 
segment. The @ modifier causes spacing to be added after the last. 
Minpad, default 0, is the minimum number of padchar padding 
characters (default is the space character) to be output between 
each segment. If the total width needed to satisfy these constraints 
is greater than mincol, then mincol is adjusted upwards in coline 
increments. coline defaults to 1. mincol defaults to O. For 
example: 

(format ni 1 "-10<foo-;bar->") 
(format nil "-10:<foo-;bar->") 
(format nil "-10:@<foo-;bar->") 
(format nil "-10<foobar->") 
(format nil "-10:<foobar->") 
(format nil "-10@<foobar->") 
(format ni 1 "-10:@<foobar->") 
(format ni 1 "$-10",'*<-3f->" 2.59023) 

=> 
=> 
=> 
=> 
=> 
=> 
=> 
=> 

"faa bar" 
faa bar" 
foo bar" 

foobar" 
foobar" 

"foobar 
foobar " 

"$******2.59" 

Note that text can include format directives. The last example 
illustrates how the ... < directive can be combined with the -f 



322 

Reference Guide to Streams, Flies, and VO August 1986 

directive to provide more advanced control over the formatting of 
numbers. 

Here are some examples of the use of _.. within a -<construct. 
eliminates the segment in which it appears and all following 
segments if there are no more arguments. 

(format ni 1 "-15<-5-;---5-;---5->" 'foo) 
=> Faa" 

(format ni 1 "-15<-5-;---5-;---5->" 'foo 'bar) 
=> "Faa BAR" 

(format nil "-15<-5-;---5-;---5->" 'foo 'bar 'baz) 
=> "Faa BAR BAZ" 

If a segment contains a _ .. , and format runs out of arguments, it 
stops there instead of getting an error, and it as well as the rest of 
the segments are ignored. 

If the first clause of a '" < is terminated with -:; instead of -;, it is 
used in a special way. All the clauses are processed (subject to _ .. , 
of course), but the first one is omitted in performing the spacing 
and padding. When the padded result has been determined, if it 
will fit on the current line of output, it is output, and the text for 
the first clause is discarded. If, however, the padded text will not 
fit on the current line, the text segment for the Irrst clause is 
output before the padded text. The Irrst clause should contain a 
carriage return (-%). The first clause is always processed, and so 
any arguments to which it refers are used; the decision is whether 
to use the resulting segment of text, not whether to process the 
first clause. If the -:; has a prefix parameter n, the padded text 
must fit on the current line with n character positions to spare to 
avoid outputting the first clause's text. For example, the following 
control string can be used to print a list of items separated by 
commas, without breaking items over line boundaries, and beginning 
each line with ";; ". 

The preIlX parameter 1 in "'I:; accounts for the width of the comma 
that will follow the justified item if it is not the last element in the 
list, or the period if it is. If -:; has a second preIlX parameter, it is 
used as the width of the line, overriding the natural line width of 
the output stream. To make the preceding example use a line width 
of 50, you would write: 



August 1986 

323 

Input/Output Facilities 

If the second argument is not specified, then format sees whether 
the stream handles the :size-in-characters message. If it does, then 
format sends that message and uses the first returned value as the 
line length in characters. If it does not, format uses 95. as the line 
length. 

Rather than using this complicated syntax, you can often call the 
function format:print-list. 

This is an escape construct. If there are no more arguments 
remaining to be processed, then the immediately enclosing .. { or .. < 
construct is terminated. If there is no such enclosing construct, 
then the entire formatting operation is terminated. In the .. < case, 
the formatting is performed, but no more segments are processed 
before doing the justification. The" A should appear only at the 
beginning of a .. < clause, because it aborts the entire clause. can 
appear anywhere in a .. { construct. 

If a prefix parameter is given, then termination occurs if the 
parameter is zero. (Hence" A is the same as "#A.) If two 
parameters are given, termination occurs if they are equal. If three 
are given, termination occurs if the second is between the other two 
in ascending order. Of course, this is useless if all the prefix 
parameters are constants; at least one of them should be a # or a V 
parameter. 

If "A is used within a .. :{ construct, it merely terminates the current 
iteration step (because in the standard case it tests for remaining 
arguments of the current step only); the next iteration step 
commences immediately. To terminate the entire iteration process, 
use ":A . 

.. -) .. -)texr (- indents text at the cursor positIon that is current at the 
time of the .. -). A" ~ must be terminated with a .. (-, which is 
undefmed elsewhere. ..~ and .. (- can be nested like .. [ .. ] and .. < .. >; 

if they are nested, the indention of an inner pair is relative to the 
margin set by the pair containing it. A numeric argument, if 
supplied, specifies how far to indent. This directive is especially 
useful in making error messages indent properly. For example: 

(format t "-&Error: -~-A-(-" ·"Fil e not found 

for FOO.LISP.1") 

prints 



324 

Reference Guide to Streams, Files, and VO August 1986 

Error: File not found 
for FOO.LISP.1 

-Q An escape to arbitrary user-supplied code. arg is called as a 
function; its arguments are the prefIx parameters to -Q, if any. 
args can be passed to the function by using the V prefIx parameter. 
The function can output to *standard-output* and can look at the 
variables format:colon-flag and format:atsign-flag, which are t or 
nil to reflect the: and @ modifIers on the -Q. For example, 

(format t "-VQ" foo bar) 

is a fancy way to say 

(funcall bar fool 

and discard the value. Note the reversal of order; the V is 
processed before the Q. 

-\date\ Prints its argument as a date and time, assuming the argument is a 
universal time. It uses the function time:print-universal-date. 

(format nil "Today is -\date\" (time:get-universal-time» 
=> "Today is Tuesday the fourteenth of May, 1985; 3:87:85 pm" 

-\time\ Prints its argument as a time, assuming the argument is a 
universal time. It uses the function time:print-universal-time. 
(format nil "Today is -\time\" (time:get-universal-time» 
"Today is 5//14//85 15:88:41" 

-\datime\ 
Prints the current time of day. It does not take an argument. It 
uses the function time:print-current-time. 
(format nil "Today is -\datime\") 
"Today is 5//14//85 15:19:86" 

-\time-interval\ 
Prints the length of a time interval. It uses the function 
time:print-interval-or-never. 
(setq a (time:get-universal-time» 

(format nil "It is -\time-interval\ since I set this variable" 
(- (time:get-universal-time) a» 

"It is 1 hour 5 minutes 9 seconds since I set this variable" 

You can use the special form format:defformat to defIne your own 
directives. 



325 

August 1986 Input/Output Facilities 

format:defformat directive (arg-type) arglist body ... Special Form 
Defines a new format directive. 

directive is a symbol that names the directive. If directive is longer 
than one character, it must be enclosed in backslashes in calls to 
format: 

(format t "-\foo\" ... ) 

directive is usually in the format package; if it is in another 
package, the user must specify the package in calls to format. For 
example, we've defined a format directive called si:keystroke that 
prints out the short names for all characters. 

(defun gtest 0 
(loop for (name char) in '«"Space" #\space) 

("c-Space" #\c-space) 
("Tab" #\tab) 

do 

("Page" #\page) 
("Left" #\mouse-L) 
("c-Left" #\c-mouse-L) 
(" A" #\A) 
(" c-A" #\c-A» 

(format t "-X-A: -C, -\\keystroke\\" name char char») => 
Space: ,Space 
c-Space: c- , c-Space 
Tab: ,Tab 
Page: , Page 
Left: Mouse-L, Mouse-L 
c-Left: c-Mouse-L, c-Mouse-L 
A: A, A 
c-A: c-A, c-A 
NIL 

format:defformat defines a function to be called when format is 
called using directive. body is the body of the function definition. 
arg-type is a keyword that determines the arguments to be passed to 
the function as arglist: 

:no-arg 

:one-arg 

The directive uses no arguments. The function is 
passed one argument, a list of parameters to the 
directive. The value returned by the function is 
ignored. 

The directive uses one argument. The function is 
passed two arguments: the argument associated 



326 

Reference Guide to Streams, Files, and 110 August 1986 

with the directive and a list of parameters to the 
directive. The value returned by the function is 
ignored. 

:multi-arg The directive uses a variable number of 
arguments. The function is passed two 
arguments. The first is a list of the first 
argument associated with the directive and all the 
remaining arguments to format. The second is a 
list of parameters to the directive. The function 
should cdr down the list of arguments, using as 
many as it wants, and return the tail of the list 
so that the remaining arguments can be given to 
other directives. 

The funttion can examine the values of format:colon-flag and 
format:atsign-flag. If format:colon-flag is not nil, the directive 
was given a : modifier. If format:atsign-flag is not nil, the 
directive was given a @ modifier. 

The function should send its output to the stream that is the value 
of format:*format-output*. 

Here is an example of a format directive that takes one argument 
and prints a number in base 7: 

(format:defformat format:base-7 (:one-arg) (argument parameters) 
parameters ; ignored 
(1 et «base 7)) 

(prine argument format:*format-output*))) 

Now: 

(format nil U> -\base-7\ <u 8) => u> 11 <u 

format:print-list destination element-format-string list Function 
&optional (separator-format-string ", ") 
(start-line-format-string" ") 
(tilde-brace-options "") 

Provides a simpler interface for the specific purpose of printing 
comma-separated lists with no list element split across two lines. 

The destination argument tells where to send the output; it can be 
t, nil, a string suitable for zl:string-nconc, or, as with format, a 
stream. 

element-format-string is a format control string specifying how to 
print each element of list. It is used as the body of an iteration 



August 1986 

327 

Input/Output Facilities 

construction (as in -{element-format-string-}). See the function 
"format", page 309. 

separator-format-string, which defaults to ", " (comma, space), is a 
string that is placed after each element except the last. format 
control directives are allowed in this string but should not take 
arguments from the list. 

start-line, which defaults to three spaces, is a format control string 
that is used as a prefIx at the beginning of each line of output 
except the first. 

tilde-brace-options is a string inserted before the opening brace ({) of 
the iteration construct. It defaults to the null string but allows you 
to insert a colon or at-sign. The line width of the stream is 
computed in the same way as with the -{str} format directive. It 
is not possible to override the natural line width of the stream. 

sys:with·indentation (stream-var relative-indentation) &body body Macro 
Within the body of sys:with·indentation, any output to stream-var is 
preceded by a number of spaces. At every recursion, the additional 
indentation is specified by relative-indentation. The macro does not work 
this way with the :item message used to display mouse-sensitive items; the 
items appear, but without indentation. (See the section "Interactive 
Streams and Mouse-Sensitive Items" in Programming the User Interface, 
Volume B.) 

(defun traced-factorial (n) 
(format t "-ZArgument: -0" n) 
(sys:with-indentation (standard-output 2) 

(let «value (if (~ n 1) 
1 

(:t: n (traced-factorial (1- n»»» 
(format t "-ZValue: -0" value) 
value») 

(traced-factorial 5) 



328 

Reference Guide to Streams, Files, and VO 

Argument: 5 
Argument: 4 

Argument: 3 
Argument: 2 

Argument: 1 
Value: 1 

Value: 2 
Value: 6 

Val ue:' 24 
Value: 129 
129 

August 1986 



329 

August 1986 Input/Output Facilities 

17. Formatting Lisp Code 

grindef &rest fens Special Form 
Prints the definitions of one or more functions, with indentation to make 
the code readable. Certain other "pretty-printing" transformations are 
performed: 

• The quote special form is represented with the ' character. 

• Displacing macros are printed as the original code rather than the 
result of macro expansion. 

• The code resulting from the backquote (') reader macro is represented 
in terms of '. 

The subforms to grindef are the function specs whose definitions are to be 
printed; ordinarily, grindef is used with a form such as (grindef foo) to 
print the defmition of foo. When one of these subforms is a symbol, if the 
symbol has a value its value is prettily printed also. Definitions are 
printed as defun special forms, and values are printed as setq special 
forms. 

If a function is compiled, grindef says so and tries to find its previous 
interpreted defmition by looking on an associated property list. See the 
function uncompile in Program Development Utilities. This works only if 
the function's interpreted definition was once in force; if the definition of 
the function was simply loaded from a BIN file, grindef does not find the 
interpreted definition and cannot do anything useful. 

With no subforms, grindef assumes the same arguments as when it was 
last called. 

zl:grind-top-Ievel exp &optional (grind-width nil) (grind-real-io Function 
zl:standard-output) (grind-untyo-p nil) 
(grind-displaced 'si:displaced) (terpri-p t) 
(grind-notify-fun nil) (loc (ncons exp» 

Pretty-prints obj on stream, inserting up to width characters per line. This 
is the primitive interface to the pretty-printer. Note that it does not 
support variable-width fonts. If the width argument is supplied, it is how 
many characters wide the output is to be. If width is unsupplied or nil, 
zl:grind-top-Ievel tries to determine the "natural width" of the stream by 
sending a :size-in-characters message to the stream and using the first 
returned value. If the stream does not handle that message, a width of 95. 
characters is used instead. 

The remaining optional arguments activate various features and usually 
should not be supplied. These options are for internal use by the system, 



330 

Reference Guide to Streams, Files, and VO August 1986 

and are documented here only for completeness. If untyo-p is t, the :untyo 
and :untyo-mark operations are used on stream, speeding up the algorithm 
somewhat. displaced controls the checking for displacing macros; it is the 
symbol that flags a place that has been displaced, or nil to disable the 
feature. If terpri-p is nil, zl:grind-top-Ievel does not advance to a fresh 
line before printing. 

If notify-fun is non-nil, it is a function of three arguments and is called for 
each "token" in the pretty-printed output. Tokens can be atoms, open and 
close parentheses, and reader macro characters such as '. The arguments 
to notify-fun are the token, its "location" (see next paragraph), and t if it is 
an atom or nil if it is a character. 

loc is the "location" (typically a cons) whose car is obj. As the grinder 
recursively descends through the structure being printed, it keeps track of 
the location where each thing came from, for the benefit of the notify-fun, 
if any. This makes it possible for a program to correlate the printed 
output with the list structure. The "location" of a close parenthesis is t, 
because close parentheses have no associated location. 



331 

August 1986 Input/Output Facilities 

18. The Serial I/O Facility 

18.1 Introduction to Serial 110 

3600-family computers have a serial input/output facility, which uses the EIA 
RS-232 protocol to receive and transmit serial data. Many computer peripherals 
can communicate using the RS-232 protocol, and so can be connected to the 3600-
family computer through this facility. This chapter explains the capabilities of the 
facility, gives a brief description of the hardware performing the serial I/O and 
how to interface to it, and describes the 3600-family software driving that 
hardware. 

Before reading this chapter, you should be familiar with the basic concepts of 
serial data communication, including the RS-232 standard. i' ou should also be 
familiar with Symbolics Common Lisp, which is the systems programming 
language for the 3600-family computer. In particular, you should understand what 
streams are. See the section "Streams", page 3. 

18.2 Hardware Description for Serial I/O 

This section gives a brief description of the hardware that performs serial I/O on 
3600-family computers. You do not have to understand everything in this section 
to use the serial I/O facility. 

18.2.1 Overview of Serial I/O Hardware 

Symbolics 3600-family computers support four serial I/O ports. Three ports are 
located on the bulkhead at the back of the processor. The fourth port is located 
in the rear of the console. The console serial port requires the new FEP system, 
Release 6.1 software, and the new console EPROM to be installed. 

The external data communication signals appear on RS-232 25-pin D-type 
connectors. All serial I/O communication is controlled by the 3600-family 
computer's FEP. 

The RS-232 protocol provides for communication between Data Circuit Terminating 
Equipment (DCEs, also known as "data sets"; for example, modems), and Data 
Terminal Equipment (DTEs, also known as "data terminals"; for example, 
computer terminals, computers, or most devices that use serial lines). 

The single console port is configured differently than the three ports on the 
bulkhead: 



332 

Reference Guide to Streams, Files, and liD August 1986 

Each of the three ports on the bulkheads of the 3600-family computer is a DTE. 
You can connect a bulkhead serial port directly to a DCE, but if you want to 
connect the serial port to a DTE, you must supply a null modem. 

In contrast, the console port is a DCE. You can connect the console serial port 
directly to a DTE, but if you want to connect the serial line to a DCE, you must 
supply a null terminal. 

For example, a Kanji tablet is configured as a DCE. You can connect a Kanji 
tablet directly to a bulkhead port (a DTE), but you must supply a null terminal to 
connect a Kanji tablet to the console port (a DCE). 

18.2.2 Console Serial 1/0 Port 

The external data communication signals appear on one female RS-232 25-pin D
type connector in the rear of the console of Symbolics 3600-family computers. The 
console serial I/O port is labelled "RS-232". 

The correspondence between connector pins and RS-232 signals is given in Table 
1. 

Console 
connector pin 

2 
3 
4 
5 
6 
8 

20 
1 
7 

RS-232 signal 

Transmitted Data [Input] 
Received Data [Output] 
RTS (Request To Send) [Input] 
CTS (Clear To Send) [Output] 
DSR (Data Set Ready) [Output] 
DCD (Data Carrier Detect) [Output] 
DTR (Data Terminal Ready) [Input] 
Chassis Ground 
Signal Ground 

Table 1. Assignment of RS-232 Signals to Pins 

To build a cable that includes a null terminal for asynchronous communications, 
follow the wiring instructions in Table 2. Both ends of the cable should be male 
25-pin RS-232 connectors. 



333 

August 1986 Input/Output Facilities 

Pin at back of the console (DeE) Pin at remote end (DTE) 

2 Receive data (from DCE) 3 Transmit data (from DTE) 
3 Transmit data (to DCE) 2 Receive data (to DTE) 
4 Request to send (to DCE) 5 Clear to send (to DTE) 
5 Clear to send (from DCE) 4 Request to send (from DTE) 
7 Signal ground 7 Signal ground 
8 Carrier detect (from DCE) 20 Data Terminal ready (from DTE) 
18 Special DTE-DSR input 6 Data set ready (to DTE) 
19 Special DTE-RI input 22 Ring Indicator (to DTE) 
20 Data terminal ready (to DCE) 8 Carrier detect (to DTE) 

Table 2. Assignment of RS-232 Signals to Pins in Asynchronous Null Terminals 

18.2.3 Bulkhead Serial 1/0 Ports 

The external data communication signals appear on three RS-232 25-pin D-type 
connectors on the rear bulkhead (in the back of the processor). 

The gender and labeling of these connectors varies with the processor model: 

• The 3600 I/O bulkhead presents 3 female connectors labelled "EIA 1", "EIA 
2", and "EIA 3". (The male connector labelled "ElA 4" is not a serial port 
at all, but the connection to an inboard Vadic V A3450 modem, if present. 
See the section "Physical Connection to the Dial Network".) 

• The 3670 I/O bulkhead presents 3 male connectors labelled "EIA 1", "EIA 2", 
and "EIA 3". 

• The 3640 I/O bulkhead presents 3 male connectors labelled "SERIAL 1", 
"SERIAL 2", and "SERIAL 3". 

The correspondence between connector pins on the rear bulkhead and RS-232 
signals is given in Table 1. 



334 

Reference Guide to Streams, Files, and liD 

Rear bulkhead 
connector pin 

2 
3 
4 
5 
6 
8 

20 
1 
7 

RS-232 signal 

Transmitted Data [Output] 
Received Data [Input] 
RTS (Request To Send) [Output] 
CTS (Clear To Send) [Input] 
DSR (Data Set Ready) [Input] 
DCD (Data Carrier Detect) [Input] 
DTR (Data Terminal Ready) [Output] 
Chassis Ground 
Signal Ground 

Table 3. Assignment of RS-232 Signals to Pins 

August 1986 

To build a cable that includes a null modem for asynchronous communications, 
follow the wiring instructions in Table 2. 

One Other 
side 

3 
2 
5 
4 

20 
20 

6 
8 
1 
7 

side 

2 
3 
4 
5 
6 
8 

20 
20 

1 
7 

RS-232 signal 

Data Out (from data set to terminal) 
Data In (from terminal to data set) 
RTS (Request To Send) 
CTS (Clear To Send) 
DSR (Data Set Ready) 
DCD (Data Carrier Detect) 
DTR (Data Terminal Ready) 
DTR (Data Termina~ Ready) 
Chassis Ground 
Signal Ground 

Table 4. Assignment of RS-232 Signals to Pins in Asynchronous Null Modems 

Note that this null modem is suitable only for asynchronous communications; a 
synchronous null modem is considerably more complex. 



335 

August 1986 Input/Output Facilities 

When using the 3600-family computer with a device that does not supply RS-232 
modem control signals, it is necessary to supply Clear To Send and Data Carrier 
Detect inputs to the 3600-family computer, for example by jumpering pin 4 to pin 
5, and pins 6, 8, and 20 together. This should be done in the cable or in the 
device connector, not in the 3600-family computer's connector or inside the 3600-
family computer. 

18.3 The Serial I/O Stream 

The function of the serial I/O facility is to receive and transmit data over a serial 
communications channel. The unit of communication is the character; each 
character is represented as a binary number. The facility has two independent 
parts: a receiver, which receives a sequence of characters from the external 
device, and a transmitter, which transmits a sequence of characters to the external 
device. 

A Symbolics Common Lisp program uses the facility through an I/O stream. The 
output operations, such as :tyo, send characters to the transmitter and from there 
to the external device; the input operations, such as :tyi, read characters from the 
receiver, which gets them from the external device. In addition to regular 110 
operations, the serial 110 stream also supports special operations that examine and 
alter parameters of the serial I/O facility. To perform serial 110, a program 
should first get the serial I/O stream by calling the function 
si:make-serial-stream, setting up the parameters of the serial I/O facility as it 
needs them; then it can use normal stream operations to read and write 
characters. When the program is done with the serial I/O stream, it should close 
it; programs that use the serial 110 stream should include an unwind-protect form 
whose cleanup handler closes the stream. The with-open-stream special form is a 
good way to do this when the entire lifetime of the stream is to be enclosed in the 
body of one Symbolics Common Lisp form. Closing the stream frees up a buffer in 
main memory and disables interrupts. 

The serial 110 stream is different from most streams in that the characters you 
send to it and get from it are probably not interpreted as being in the Symbolics 
character set. Of course, the interpretation of the characters depends completely 
on the external device, but most devices that are likely to use serial 
communications use the standard ASCII character set. You can tell the stream 
whether or not to convert between ASCII characters and Symbolics characters. 

The serial 110 stream is also different from some streams in being buffered on the 
output side. If you send characters to the serial stream using, for example, :tyo 
or :string-out, the characters are placed into a buffer for eventual transmission 
over the serial line. They are not actually transmitted until the buffer fills up, 
the serial stream is closed, or a :force-output operation is done on the stream. 



336 

Reference Guide to Streams, Files, and 110 August 1986 

The :force-output option to si:make-serial-stream causes characters to be 
transmitted immediately; this makes the serial stream easier to use but degrades 
its performance. 

The serial I/O stream has several parameters. Each parameter is denoted by a 
keyword symbol. These keywords are passed to the si:make-serial-stream function 
and to the :get and :put operations to specify which parameter the caller is 
interested in. (Some parameters make sense only when creating a stream, or 
affect the flavor of the stream; these parameters are not valid for :get and :put.) 
For descriptions of the parameters: See the section "Parameters for Serial I/O", 
page 337. 

si:make-serial-stream &rest options Function 
Initializes the serial I/O facility and returns the serial I/O stream. 

options are alternating keyword symbols, naming parameters, and initial 
values for those parameters. They let you initialize parameters when you 
start using the serial I/O stream. You can change most of them later with 
the :put operation. 

si:make-serial-stream, which accesses a serial line, causes the accessing 
process to wait if all ports are in use. The command c-M-8U8PEND allows 
you to invoke a restart handler to close a line that you believe has been 
left open by mistake. 

For documentation of parameters for serial I/O: See the section 
"Parameters for Serial I/O", page 337. 

The serial I/O stream supports all standard stream operations. Of the optional 
input operations, it supports :listen and : clear-input; the latter is relevant because 
input from the serial port is buffered. There is also a :reset operation, which 
resets the state of the hardware and the FEP. The :tyi-no-hang special-purpose 
operation is supported as well. The :force-output and :finish optional output 
operations are supported, since output is buffered. 

The serial I/O stream also supports two nonstandard operations: :get and :put. 
These two operations respectively allow you to examine and alter various 
properties of the serial I/O facility. The names of these operations are intended to 
suggest the zl:get and zl:putprop functions in Symbolics Common Lisp. 

:get parameter of si:serial-stream Method 
parameter should be one of the symbols that name parameters of the serial 
I/O facility. This message returns the value of that parameter. See the 
section "Parameters for Serial I/O", page 337. 

:put parameter value of si:serial-stream Method 
parameter should be one of the symbols that name parameters of the serial 



337 

August 1986 Input/Output Facilities 

1/0 facility. The value of that parameter is set to value. See the section 
"Parameters for Serial I/O", page 337. 

If you are using serial I/O streams, you might also be interested in the remote 
login facilities: 

See the section "Using the Remote Login Facilities" in Networks. 
See the function neti:enable-serial-terminal in Networks. 

18.4 Parameters for Serial 110 

This section lists all parameters of the serial I/O facility. For each parameter, it 
lists the keyword symbol, the meaning of the parameter, and the default value. A 
few parameters can be examined but not altered; they are so marked in their 
descriptions. Parameters whose functions are similar are grouped together. 

Parameters from the following group are used only when the stream is being 
created, as arguments to si:make-serial-stream. You cannot use the :put 
operation with them, and you can use the :get operation only with :unit. 

: unit This parameter says which of the serial ports to create a stream 
to. Its value can be 1, 2, or 3 to indicate one of the three 
bulkhead ports (each of which is a DTE); or 0 to indicate the 
serial I/O port located at the back of the console (a DCE). The 
default is 2. For more information on the serial I/O ports: See 
the section "Overview of Serial 1/0 Hardware", page 331. 

:ascii-characters If the value of this parameter is t, the serial stream is a 
Zetalisp character stream. The characters are translated from 
ASCII to the Symbolics internal character set on input, and to 
ASCII on output. If the value of this parameter is nil, the 
serial stream is a binary stream. Binary streams do not support 
: line-out, :fresh-line, and similar messages. The default is nil. 

:flavor The value of this parameter is the flavor of stream to create. 
Normally, the value is computed automatically, based on the 
values of the :ascii-characters and :force-output parameters; 
this parameter is needed only if you want to use some special 
flavor that includes the serial stream flavors and other mixins. 

: force-output If the value of this is t, a :force-output stream operation is 
done after every :tyo and every : string-out. If it is nil (the 
default), output is not transmitted until the output buffer fills 
up, a :force-output is done explicitly, or the stream is closed 
(and the close mode is not :abort). The nonforcing mode is 



338 

Reference Guide to Streams, Files, and 110 August 1986 

usually more efficient, although efficiency depends on the 
application. 

The following group of parameters controls the format of the transmitted 
characters. I t is important to set the parameters to be compatible with the 
external device, or else proper communication is impossible. These parameters 
apply to both the transmitter and the receiver. 

:mode 

:baud 

The kind of communications protocol used over the port. The 
two possible values are : asynchronous , for asynchronous 
operation, and :hdlc, for the HDLC-like bit-stuffing protocol. 
See the section "HDLC Serial 1/0", page 344. The default is 
: asynchronous. 

The data transmission rate, in bits per second. This should be 
one of the following integers (in decimal): 300, 600, 1200, 1800, 
2000, 2400, 3600, 4800, 7200, 9600, 19200. The default is 1200. 

:number-of-data-bits 

:parity 

The number of bits in each character. This should be one of 
the following f'lXllums: 5, 6, 7, or 8. The default is 7. 

The kind of parity bit that should be sent. If the value of this 
parameter is nil, no parity bit is sent. If it is : even, even 
parity is transmitted. If it is :odd, odd parity is transmitted. 
The default is : even. This parameter also controls what kind of 
parity checking is done on received characters. 

:number-of-stop-bits 
The number of "stop" bits transmitted after each character. It 
should be one of the following numbers: 1, 1.5, or 2. The 
default is 1. 

The following parameters control error checking in the receiver. After a character 
is read by an input stream operation, the stream checks for error conditions 
detected by the receiver when the character arrived. If any of the enabled error 
conditions occurred, the stream signals an error. 

:check-parity-errors 
If the value of this parameter is nil, parity errors are ignored; if 
it is t, a parity error causes an error to be signaled when the 
character is read. The default is nil. A parity error occurs 
when the parity of the data bits disagrees with the value of the 
received parity hit. This never happens if parity checking is not 
being used, that is, if the :parity option is nil. 



339 

August 1986 Input/Output Facilities 

:input-error-character 
The value is a character to be substituted for any input 
character in which a parity error is detected. This is 
independent of the :check-parity-errors flag. If the value is nil 
(the default), the character is left alone. 

:check-over-run-errors 
If the value of this parameter is nil, over-run errors are 
ignored; if it is t, then an over-run error causes an error to be 
signaled when the character is read. The default is nil. An 
over-run error occurs if input arrives faster than it can be read. 

:check-framing-errors 
If the value of this parameter is nil, framing errors are ignored; 
if it is t, then a framing error causes an error to be signaled 
when the character is read. The default is nil. A framing 
error occurs when the "stop" bit (the bit after all the data bits, 
and after the parity bit if parity is being checked) is not 1. 
This indicates a line error, a baud rate mismatch between the 
external device and the receiver, or the sending of a "break". 

The following parameters to si:make-serial-stream deal with the "modem control" 
signals (signals other than Data In and Data Out) defined by the RS-232 protocol. 
Note that the interpretation of the parameters differs for the three bulkhead serial 
ports and the single console serial port. This difference reflects the different 
hardware configurations: The bulkhead serial ports (:unit 1, 2, and 3) are DTEs, 
whereas the console serial port (:unit 0) is a DCE. For more information on the 
serial 1/0 ports: See the section "Overview of Serial I/O Hardware", page 331. 

: carrier-detect For the bulkhead serial ports: If the value of this parameter is 
t, the external device is asserting the DCD ("data carrier 
detect") signal; otherwise it is not. This parameter can be 
examined but not altered. 

: clear-to-send 

For the console serial port: If the value of this parameter is t, 
the external device is asserting the DTR ("data terminal ready") 
signal; otherwise it is not. This parameter can be examined but 
not altered. 

For the bulkhead serial ports: If the value of this parameter is 
t, the external device is asserting the CTS (" clear to send") 
signal; otherwise it is not. This parameter can be examined but 
not altered. 

For the console serial port: If the value of this parameter is t, 
the external device is asserting the RTS ("request to send") 
signal; otherwise it is not. This parameter can be examined but 
not altered. 



340 

Reference Guide to Streams, Files, and liD August 1986 

:request-to-send For the bulkhead serial ports: If the value of this parameter is 
t, assert the RTS ("request to send") signal; otherwise do not. 
The default is nil. 

For the console serial port: If the value of this parameter is t, 
assert the CTS ("clear to send") signal; otherwise do not. The 
default is nil. 

:data-terminal-ready 
For the bulkhead serial port: If the value of this parameter is 
t, assert,the DTR ("data terminal ready") signal; otherwise do 
not. The default is nil. 

For the console serial port: If the value of this parameter is t, 
assert the DCD ("data carrier detect") signal; otherwise do not. 
The default is nil. 

The following parameters control the use of the XONIXOFF protocol. 

:xon-xoff-protocol If this is t, output to the serial stream is flow-controlled using 
the ASCII XONIXOFF (Control-S/Control-Q) protocol. While the 
stream is transmitting characters, it checks the receiver to see 
if any characters have arrived. If an ASCII XOFF or Control-S 
character (octal 23, decimal 19) has arrived, transmission is 
stopped. Then the stream reads characters from the receiver 
until an ASCII XON or Control-Q character (octal 21, decimal 
17) arrives, and then proceeds with the transmission. 

This feature allows the external device to limit the rate at 
which characters are transmitted to it by the serial I/O facility. 
The default is nil (XONIXOFF feature not enabled). 

Interpretation of incoming XONIXOFF signals is done at 
interrupt level in the FEP, and is therefore quite fast. After an 
XOFF is received, the 3600-family computer ceases transmission 
after two or three characters (buffered in the multiprotocol 
chip). 

:output-xoff-character 
The value is a character that is used to control flow of data 
from the Symbolics computer to the external device. It is used 
to suspend the flow of data when the :xon-xoff-protocol 
parameter is set. The default is #0023. 

:output-xon-character 
The value is a character that is used to control flow of data 
from the Symbolics computer to the external device. It is used 



August 1986 

341 

Input/Output Facilities 

to resume the flow of data when the :xon-xoff-protocol 
parameter is set. The default is #0021. 

:generate-xon-xoff 
If the value of this parameter is t, then the serial port 
generates XON and XOFF controls itself. This can be used to 
accept input at high speed from devices that understand the 
XONIXOFF protocol. The default is nil. 

The XON and XOFF characters are transmitted directly by the 
FEP, so the response time is excellent. Mter the FEP 
transmits an XOFF, the device is required to cease transmission 
after no more than about 100 characters, so the device is not 
required to act very quickly. 

:input-xoff-character 
The value is a character that is used to control flow of data 
from the external device to the Symbolics computer. I t is sent 
by the Symbolics computer to suspend the flow of data when the 
:generate-xon-xoff flag is set. The default is #0023. 

:input-xon-character 
The value is a character that is used to control flow of data 
from the external device to the Symbolics computer. It is sent 
by the Symbolics computer to resume the flow of data when the 
:generate-xon-xoff flag is set. The default is #0021. 

18.5 Simple Examples: Serial 1/0 

The following two examples illustrate the use of the serial I/O facility. For 
further information on the function si:make-serial-stream and its parameters: 

See the section "The Serial I/O Stream", page 335. 
See the section "Parameters for Serial I/O", page 337. 

Both examples below assume that the serial I/O port numbered 1 is hooked to an 
ASCII computer terminal operating on a normal RS-232 asynchronous connection 
at 300 baud, with one stop bit and odd parity. It types the characters "Hello 
there." on the terminal. A null modem is used between the serial port and the 
terminal, because both ends are acting as DTEs. 

The first example illustrates creating a serial stream, saving the result in a 
variable, sending output to the stream, and closing the stream: 



342 

Reference Guide to Streams, Files, and VO August 1986 

(setq 55 (si:make-serial-stream 
:unit 1 
:baud 3BB 
:ascii-characters t 
: number-of-stop-bits 
:parity :odd 
:force-output t)) 

(send 55 :string-out "Hello there.") 
(close ss) 

The second example uses :with-open-stream, thereby enclosing the entire lifetime 
of the serial stream in the body of one Symbolics Common Lisp form: 

(defun type-greeting-message () 
(with-open-stream (stream (si:make-serial-stream 

:unit 1 
:baud 3BB 
:ascii-characters t 
:number-of-stop-bits 1 
:parity :odd)) 

(send stream :string-out "Hello there."))) 

You can also use the function neti:enable-serial-terminal to enable a terminal to 
communicate with a Symbolics computer: See the function 
neti:enable-serial-terminal in Networks. 

18.6 Troubleshooting: Serial 1/0 

If you have trouble making your device communicate with the 3600-family 
computer through a serial port, there are several things to try: 

• Make sure that the baud rate, the number of data bits, the parity checking, 
and the number of stop bits are set the same way on the device as they are 
in your serial stream parameters. 

• Make sure that the device is connected to the proper serial port. The 
bulkhead serial ports are labelled "EIAl" (or on 3640s, "SERIAL 1"), "EIA2" 
("SERIAL 2"), and "EIA3" ("SERIAL 3"). The console serial port is labelled 
"RS-232". You must use the port corresponding to the value of the :unit 
keyword to si:make-serial-stream. The default value is 2, so if you do not 
specify anything, the "EIA2" ("SERIAL 2") connector is the appropriate one . 

• If you are using anyone of the three bulkhead serial ports (units 1, 2, or 3, 



343 

August 1986 Input/Output Facilities 

you can connect the port directly to a DCE device. However, if the device is 
a DTE, make sure that there is a null modem between your device and the 
serial connectors. Since most devices are DTEs, the null modem is probably 
necessary . 

• If you are using the console serial port (unit 0) you can connect the port 
directly to a DTE device. However, if the device is a DCE, make sure that 
there is a null terminal between your device and the serial connectors . 

• Try using a different port. Remember both to plug your device into a 
different connector, and to change the program to specify a different value 
for the :unit keyword. 

18.7 Notes on Serial 1/0 

The receiver is implemented using the 3600-family computer's general front end 
processor (FEP) "channel" facility. When a character arrives at the serial port, 
the FEP buffers it and transfers it to the 3600-family computer over a "channel". 
Therefore, it is not necessary for the program doing input from the stream to read 
in characters as quickly as they arrive from the external device. The :clear-input 
operation to the serial stream resets this buffer (including the buffers in 
Symbolics Common Lisp, and the buffers in the FEP). The buffering capacity is 
about 500 characters. If the buffer is full and another character arrives, an over
run error occurs; if the :check-over-run-errors parameter is used, this is reflected 
by the signalling of an error. 

A useful debugging technique is to create a serial stream with the desired 
parameters and set a variable (say, s) to it, and do: 

(stream-copy-until-eof s standard-output) 

This prints received characters on the screen until you type c-ABORT. This 
technique works only with the :number-of-data-bits parameter set to 7, so that 
the Symbolics computer does not see the ASCII parity bit. Unless character set 
translation is enabled (via the :ascii-characters parameter), ASCII control 
characters, including carriage return and line feed, are displayed as special 
symbols, such as circle-cross or delta, because of the differences between the 
Symbolics character set and ASCII. See the seci-ion "The Character Set", page 
355. 



344 

Reference Guide to Streams, Files, and liD August 1986 

18.8 HOLC Serial 110 

The 3600 family supports synchronous serial I/O using HDLC-like bit-stuffing 
protocols. The CCITT-16 CRC polynomial is used. 

This facility requires that the computer be running with FEP version 14 or later. 
Also, some older 3600s might require that a special adapter cable be connected to 
serial port 1. Baud rates of 9600 or lower are recommended. 

An HDLC stream is a stream of flavor si:serial-hdlc-stream. Use the function 
si:make-serial-stream to make one of these streams. HDLC can be used only on 
serial port 1, so you must supply a :unit argument to si:make-serial-stream with 
a value of 1 (it defaults to 2). HDLC streams accept :read-frame and 
:write-frame messages. 

si:serial-hdlc-stream Flavor 
An HDLC serial I/O stream. This flavor is built on si:serial-binary-stream 
and si:serial-hdlc-mixin. 

:read-frame string &optional (start 0) end of si:serial-hdlc-mixin Method 
Reads an HDLC frame into string. Returns the length actually read. 

:write-frame string &optional (start 0) end of si:serial-hdlc-mixin Method 
Writes string as an HDLC frame. This method never calls process-wait 
and can be used in a simple process. If insufficient buffers are available, 
it returns a form that evaluates to t when buffers become available. 

18.9 Using the Terminal Program with Hosts Connected to the Serial 
Line 

You can connect a 3600-family machine to another host via the serial line. 
Specifically, you can use the terminal program to communicate with another host 
when the 3600-family computer's serial line is connected to a terminal port on the 
other host. 

The network system treats the set of hosts connected to the serial lines of a 3600-
family computer as a special network, a pseudonet. Before you can use the . 
terminal program to talk to another host over the serial line, you must use the 
tv:edit-namespace-object or the Edit Namespace Object command to create this 
network and assign an address on that network to the 3600-family computer. You 
might want to create or modify the remote host as well. 

1. Create the network. Give it a name attribute associated with the 3600-
family computer and a type attribute of serial-pseudonet. 



345 

August 1986 Input/Output Facilities 

In the following example, Merrimack is the name of the 3600-family 
computer: 

NETWORK MERRIMACK-SERIAL 
TYPE SERIAL-PSEUDONET 

2. Add an entry to the address attribute of the 3600-family computer to specify 
that the 3600-family computer is connected to the new network. Each 
address entry is usually a pair of the form (network address). By 
convention, the 3600-family computer is assigned address 0 on a serial 
pseudonet. Following is an example of a new address entry for the 3600-
family computer Merrimack: 

ADDRESS MERRIMACK-SERIAL 0 

3. If the line rate of the serial line is other than 9600 baud, supply a 
peripheral entry for the 3600-family computer giving the correct baud rate. 
The peripheral type is serial-pseudonet, and the unit attribute is the unit 
number of the serial line. Following is an example of a peripheral entry for 
the 3600-family computer: 

PERIPHERAL SERIAL-PSEUDONET UNIT 2 BAUD 4800 

4. If you want the terminal program to start out simulating one of the 
supported terminal types, add a terminal-type attribute to the peripheral. 
Currently supported terminal types are the VT100 and Ann Arbor 
Ambassador. For example, to make the terminal program simulate an 
Ambassador, add to the 3600-family computer a peripheral entry of this 
form (note that the entry must actually be on one line): 

PERIPHERAL SERIAL-PSEUDONET UNIT 2 BAUD 9600 
TERMINAL-TYPE Ambassador 

You can now use the terminal program to connect to the remote host. At the 
"Connect to host:" prompt, you must supply an address of the form MERRIMACK
SERIALI2. If you want to type a name or nickname of the remote host instead, 
add address and service entries for the remote host's namespace object. If the 
remote host does not exist in the network database, use the Edit Namespace 
Object command or the function tv:edit-namespace-object to create it. 

For the address entry, specify the serial pseudonet and an address that 
corresponds to the unit number of the serial line to which the host is connected. 
The service entry is a triple of the form (service medium protocol). For the 
regular host login server, service is login, medium is serial-pseudonet, and 
protocol is tty-login, Following is an example of address and service entries for 
the remote host Blue connected to the 3600-family computer Merrimack: 



346 

Reference Guide to Streams, Files, and 110 

HOST BLUE 
SYSTEM-TYPE TENEX 
ADDRESS MERRIMACK-SERIAL 2 
SERVICE LOGIN SERIAL-PSEUDONET TTY-LOGIN 

August 1986 

You can also use the serial line to connect to servers other than normal login on a 
remote host. You must add a service entry for the remote host to specify the kind 
of service, the serial-pseudonet medium, and the protocol that the remote host 
uses. You must also add an address entry on the serial pseudonet for the remote 
host. In the address entry, specify the address in the form protocol=unit instead 
of just unit. Following are examples of address and service entries for a file 
server using protocol myftp on remote host Blue: 

HOST BLUE 
SYSTEM-TYPE TENEX 
ADDRESS MERRIMACK-SERIAL MYFTP=2 
SERVICE FILE SERIAL-PSEUDONET MYFTP 

For information on the Terminal program: See the section "Connecting to a 
Remote Host Over the Network" in Networks. 

For information on network and host attributes: See the section "Namespace 
System Object Definitions" in Networks. 

For information on services, media, and protocols: See the section "Symbolics 
Generic Network System" in Networks. 



347 

August 1986 Input/Output Facilities 

19. Writing Programs That Use Magnetic Tape 

19.1 The tape:make-stream Function 

tape:make-stream Function 
tape:make-stream is used to create streams that read or write magnetic 
tape. It handles both cartridge and industry-compatible tape. With 
tape:make-stream, you can access tape on the local machine, or on any 
machine with a tape server. 

tape:make-stream creates a stream. with-open-stream and other standard 
tools for managing streams should be used to ensure proper closing of a 
stream made with tape:make-stream. 

Tape streams accept (for output) and return (as input) 8-bit characters. 
Normal stream messages can be used to tape streams. See the section 
"Streams", page 3. There are a few other messages: See the section 
"Messages to Tape Streams", page 350. 

tape:make-stream takes a large number of optional keyword arguments: 

:host 

: unit 

:reel 

: direction 

The host on which the tape drive to be used is located. 
This can be a string or a host object. The keyword 
:local is also accepted for the local host. If this argument 
is not provided, tape:make-stream prompts for the name 
of the host. 

The host must already be registered in the network 
database for supporting TAPE service. 

The identifier of the tape drive on the selected host that 
is to be used. Hosts having only one tape drive generally 
do not require this information. The value of this 
argument is generally a character string. "" or nil 
specifies "don't care", which is the usual value. 

The name of the tape reel to be mounted. This 
information is needed by tape servers that have 
operators, who need to know the name of a tape in order 
to mount it. It is also needed by servers who have tape 
access control systems. Currently (Release 5.0) no such 
servers are supported. "" or nil, the usual default, 
means "don't care". 

Specifies whether reading, writing, or intermixed reading 



348 

Reference Guide to Streams, Files, and 110 August 1986 

and writing are to be performed. The valid values of 
this argument are thus :input, : output, and 
: bidirectional, respectively. 

:input-stream-mode 

:record-Iength 

: density 

:pad-char 

This argument, which is only valid if the :direction 
argument is :input or : bidirectional, controls whether 
record boundaries, on input, are reflected to you. The 
default is t, meaning that they are not. It is not 
meaningful for cartridge tapes: record boundaries are 
never visible to the user of cartridge tape. 

In input stream mode (a value of t), input bytes are 
transferred from the tape records to you until a file mark 
(tape mark, EOF) is encountered, at which time you see 
an end-of-file in your stream. 

In input record mode (a value of nil), input bytes are 
transferred from the tape records to you until a record 
boundary, at which time you see an end-of-file in your 
stream. To progress beyond the record boundary, the 
message :discard-current-record must be sent to the 
stream. 

Controls the maximum length, in bytes, of tape records. 
This is ignored for cartridge tape. For reading, it must 
provide for the largest record to be read. Not all input 
records need be this long, although in some cases the 
server decides whether to allow records of other than 
this size. See also the keywords 
:minimum-record-Iength and 
:minimum-record-Iength-granularity. The default is 
4096. 

Density of the tape in bits per inch. This is ignored for 
cartridge tape. The default is 1600 for servers that have 
the capability of multiple densities. 

A number that is the single character with which to pad 
records when short records are padded. (This is ignored 
for cartridge tape.) The default pad character is o. For 
compatibility with previous releases, supplying this 
argument and not supplying a value for either 
:minimum-record-Iength or 
:minimum-record-Iength-granularity implies a value of 
:full for :minimum-record-Iength. 



349 

August 1986 Input/Output Facilities 

:minimum-record-Iength 
A number that is the minimum record length, in bytes, 
to which all output records will be padded. (This is 
ignored for cartridge tape.) This ability is present 
because many tape controllers cannot read records 
shorter than some minimum. Arguments to this keyword 
can be: 

not supplied 

integer 

: full 

nil 

If this argument is not supplied, a 
value of 64 is assumed. 

Some number smaller than the value of 
the :record-Iength argument. Short 
records are padded with 0, or the value 
of the :pad-char argument, if that is 
supplied. 

All records are padded to their 
maximum length, namely, the value of 
the :record-Iength argument. Short 
records are padded with 0, or the value 
of the :pad-char argument, if that is 
supplied. 

The Lisp Machine does not enforce any 
minimum record length. The tape 
server and/or the tape hardware on 
that server might enforce some 
minimum of its own. 

:minimum-record-Iength-granularity 

:prompt 

An integer, or nil, establishing a granularity, or enforced 
integral divisor, for the length of all tape records 
written. If non-nil, all records written are padded (with 
0, or the value of the :pad-char argument, if that is 
supplied) to be multiples of this number in length. This 
value is ignored for cartridge tape. It is also ignored if 
short records are not to be written, that is, 
:minimum-record-Iength is given as :full or the same as 
:record-Iength. 

All Lisp Machine tape applications (LMFS and 
distribution dumpers and carry tape) enforce a 
granularity of 4. 

This is an optional string that is formatted into 



350 

Reference Guide to Streams, Files, and VO August 1986 

tape:make-stream's prompt for a host name, if one is 
issued. It should describe the tape to be mounted in 
terms of the application program running. For instance, 
if this string is supplied as "billing master", 
tape:make-stream might prompt 

Type name of tape host for billing master: 

:no-bot-prompt Normally, tape:make-stream notices if the tape is 
offline, or not at BOT (beginning-of-tape) when it is 
called. If the tape is offline, tape:make-stream queries 
you to wait for it to become ready. If the tape is not at 
BOT, tape:make-stream queries you about rewinding it. 
Supplying a non-nil value for :no-bot-prompt suppresses 
these checks, allowing you to handle these exigencies in 
any way you choose. The message : bot-p can be sent to 
a tape stream to determine if it is at BOT, and 
:check-ready to wait for a tape to become ready. 

:norewind Normally, tape:make-stream rewinds the tape at the 
time the stream is closed. Supplying a non-nil value for 
:norewind suppresses this behavior. 

:lock~reason Another optional string describing the application. This 
string· is used in error messages sent to other users who 
try to access the tape drive you are using. For instance, 
if it is supplied as "daily billing run", another user 
might see a message like: 

Cannot mount tape: 
Drive e in use by daily billing run. 

19.2 Messages to Tape Streams 

The following messages to tape streams are important. Tape streams, of course, 
also support standard stream messages appropriate to input or output streams. 
See the section "Streams", page 3. 

These are the messages relevant to any kind of tape stream: 

:close (&optional (abort-p nil) 
Closes the stream. Normally, causes a rewind, and all the 
operations associated with :rewind (see the description of 
:rewind) to take place. The :norewind argument suppresses 
this rewind, although, for an output stream, buffered output is 



August 1986 

: rewind 

: await-rewind 

:set-offline 

: clear-error 

351 

Input/Output Facilities 

written, along with two EOFs. The tape is left positioned 
between the two EOFs, for industry-compatible tape, or after 
them, for cartridge tape. 

Rewinds the tape. For input streams, buffered input is 
discarded before the rewind. For output streams, buffered 
output is written out, possibly padded, according to the current 
padding parameters, and then two EOFs written, before the 
rewind. No read-ahead is performed. This message does not 
wait for the rewind to complete. 

Waits for a previously started rewind to complete. 

A :rewind is done, and the tape is set offline, or unloaded, as 
befits the controller and drive. The setting of the tape offline 
does not wait for the rewind to complete. 

If a tape error occurs, and is handled by you, you must send 
this message before attempting to continue using the stream. 
Otherwise, it remains in the error state, where it can only be 
closed. 

:skip-file (&optional (n 1)) 

:host-name 

:bot-p 

: check-ready 

Skips to, and past, a file mark (EOF). n is how many to skip, 
and can be negative, indicating backward motion. For input 
streams, all buffered input is discarded before the motion. For 
output streams, this operation is not valid unless the last thing 
written was an EOF, not a data record. Cartridge tape cannot 
skip backward. Forward motion is not allowed immediately after 
output. 

The name of the host on which the tape is mounted. 

Returns t if the tape is at BOT (beginning of tape), and nil if 
not. 

Checks to make sure the tape drive is ready, and informs you, 
waiting interactively, if not. 

These are the messages specifically relevant to tape input streams. Most of them 
are relevant only to input record mode, which is the mode requested by a value of 
nil for :input-stream-mode. See the description of the :input-stream-mode 
argument to the function tape: make-stream. 

:clear-eof This clears the EOF state that results from reading an EOF 
mark. When an EOF is encountered, all character-reading 
operations encounter an end-of-file indication until :clear-eof is 
sent. This is needed in input stream mode as well as input 
record mode. 



352 

Reference Guide to Streams, Files, and 110 August 1986 

:discard-current-record 
This discards the remainder of the current record, when in 
input record mode, and allows reading the next record. This 
message must be issued to progress past a record boundary in 
input record mode, even if all of the bytes in the record have 
been read. This is meaningless for cartridge tape. 

:record-status (&optional (error-p t» 
This is only valid in input record mode, and meaningless for 
cartridge tape. This call is only valid at the beginning of a 
record, that is, if no bytes have been read from the current 
record. It describes, via its return value, the record that is 
about to be read by the user. Here are the possible values: 

an error object 

integer 

:eof 

The next record cannot be read, due to error. 
An error object is returned. If error-p is t, 
which is the default, an error is signalled in 
this case, instead of an error object being 
returned. 

The length of a good record, in bytes. 

The next record is not a record at all, but an 
EOF (a file mark). 

These are the messages relevant to tape output streams: 

:write-eof 

: force-output 

Writes an EOF (a file mark). If a record is being built, it is 
written out. Whether or not it is padded depends upon the 
values of the arguments :minimum-record-Iength and 
:minimum-record-Iength-granularity. 

Writes out any record being buffered. Whether or not it is 
padded depends upon the values of the arguments 
:minimum-record-Iength and 
:minimum-record-Iength-granularity. This is the normal way 
to end a record when record boundaries are significant, or short 
records are written. Otherwise, records are written when they 
are full. 

:write-error-status (&optional error-p) 
Verifies that all records have been written correctly. Tape 
streams often buffer many records ahead. :write-error-status 
waits for all buffered I/O to complete. If there was no error, nil 
is returned. If there was an error, an error object is returned 
describing the error. If error-p is non-nil, an error is signalled 



353 

August 1986 Input/Output Facilities 

instead. If the error is end of tape, however, and error-p is nil, 
:end-of-tape is returned. 

19.3 Tape Error Flavors 

tape: tape-error Flavor 
This set includes all tape errors. This flavor is built on error. 

tape:mount-error Flavor 
A set of errors signalled because a tape could not be mounted. This 
includes problems such as no ring and drive not ready. Normally, 
tape:make-stream handles these errors and manages mount retry. This 
flavor is built on tape:tape-error. 

tape:tape-device-error Flovor 
A hardware data error, such as a parity error, controller error, or interface 
error, occurred. This flavor has tape:tape-error as a : required-flavor. 

tape:end-of-tape Flavor 
The end of the tape was encountered. When this happens on writing, the 
tape usually has a few more feet left, in which the program is expected to 
finish up and write two end-of-file marks. Normally, closing the stream 
does this automatically. Whether or not this error is ever seen on input 
depends on the tape controller. Most systems do not see the end of tape on 
reading, and rely on the software that wrote the tape to have cleanly 
terminated its data, with EOFs. 

This flavor is built on tape:tape-device-error and tape:tape-error. 



354 

Reference Guide to Streams, Files, and VO August 1986 



August 1986 

Appendix A 
The Character Set 

355 

Input/Output Facilities 

Characters in the Symbolics standard character set whose codes are less than 200 
octal (with the 200 bit off), and only those, are "printing graphics"; when output 
to a device they are assumed to print a character and move the "cursor" one 
character position to the right. (All software provides for variable-width character 
styles, so the term "character position" should not be taken too literally.) 

Characters in the range of 200 to 236 inclusive are used for special characters. 
Character 200 is a "null character", which does not correspond to any key on the 
keyboard. The null character is not used for anything much. Characters 201 
through 236 correspond to the special function keys on the keyboard such as 
RET URN. Some characters are reserved for future expansion. 

It should never be necessary for a user or a source program to know these 
numerical values. Indeed, they are likely to be changed in the future. There are 
symbolic names for all characters; see below. 

When characters are written to a file server computer that normally uses the 
ASCII character set to store text, Symbolics characters are mapped into an 
encoding that is reasonably close to an ASCII transliteration of the text. When a 
file is written, the characters are converted into this encoding, and the inverse 
transformation is done when a file is read back. No information is lost. Note 
that the length of a file, in characters, will not be the same measured in original 
Symbolics characters as it will measured in the encoded ASCII characters. 

In TOPS-20, Tenex, and ITS, in the currently implemented ASCII file servers, the 
following encoding is used. All printing characters and any characters not 
mentioned explicitly here are represented as themselves. Codes 010 (lambda), 011 
(gamma), 012 (delta), 014 (plus-minus), 015 (circle-plus), 177 (integral), 200 
through 207 inclusive, 213 (delete/vt), and 216 and anything higher, are preceded 
by a 177; that is, 177 is used as a "quoting character" for these codes. Codes 210 
(overstrike), 211 (tab), 212 (line), and 214 (page), are converted to their ASCII 
cognates, namely 010 (backspace), 011 (horizontal tab), 012 (line feed), and 014 
(form feed) respectively. Code 215 (return) is converted into 015 (carriage return) 
followed by 012 (line feed). Code 377 is ignored completely, and so cannot be 
stored in files. 

Most of the special characters do not normally appear in files (although it is not 
forbidden for files to contain them). These characters exist mainly to be used as 
"commands" from the keyboard. 

A few special characters, however, are "format effectors" which are just as 
legitimate as printing characters in text files. The following is a list of the names 
and meanings of these characters: 



356 

Reference Guide to Streams, Files, and VO August 1986 

Return 

Page 

Tab 

The "carriage return" character which separates lines of text. 
Note that the PDP-10 convention that lines are ended by a pair 
of characters, "carriage return" and "line feed", is not used. 

The "page separator" character which separates pages of text. 

The "tabulation" character which spaces to the right until the 
next "tab stop". Tab stops are normally every 8 character 
positions. 

The Space character is considered to be a printing character whose printed image 
happens to be blank, rather than a format effector. 

There are some characters which are not typeable as keys on a Symbolics 3600 
console, even though there are codes and names for such characters. Those 
characters are: 

205 Macro 
216 Quote 
217 Hold-Output 

220 Stop-Output 
223 Status 
230 Roman-IV 

231 Hand-Up 
233 Hand-Left 
234 Hand-Right 

The Symbolics standard character set consists of mappings for the octal codes 
000-241. The codes 242-377 are unused in this character set. The names of the 
characters are in the table in sys:io;rddefs.lisp. Here is a table of the code 
mappings: 



357 

August 1986 Input/Output Facilities 

000 . Center-Dot 040 Space 100 @ 140 l 

001 J, Down-Arrow 041 I 101 A 141 a 
002 a. Al pha 042 " 102 8 142 b 
003 ~ Beta 043 # 103 C 143 c 
004 1\ And-sign B44 $ 1B4 0 144 d 
B05 --, Not-si gn B45 % 105 E 145 e 
006 e Epsilon 046 & 1B6 F 146 f 
007 1t Pi B47 ' 1B7 G 147 9 
B1 B A, Lambda B5B ( Open 11B H 15B h 
B11 Y Gamma 051 ) Close 111 I 151 i 
012 0 Delta 052 * 112 J 152 j 
B13 i Up-Arrow B53 + Pl us-si £-n 113 K 153 k 
B14 + Plus-Minus 054 , 114 L 154 1 
B15 ED Circle-Plus 055 - Minus-sign 115 M 155 m 
B16 00 Infinity B56 . 116 N 156 n 
017 a Partial-Delta 857 / 117 0 157 a 
B20 cLeft-Horseshoe 86B B 128 P 160 P 
821 ~ Right-Horseshoe 061 1 121 Q 161 q 
822 (l Up-Horseshoe 062 2 122 R 162 r 
B23 ~ Down-Horseshoe 863 3 123 S 163 s 
B24 ~ Universal-Quantifier 864 4 124 T 164 t 
825 3 Existential-Quantifier B65 5 125 U 165 u 
026 ® Ci rcl e-X B66 6 126 V 166 v 
027 ~ Double-Arrow 067 7 127 W 167 w 
B3B ~ Left-Arrow 070 8 138 X 17B x 
031 -7 Right-Arrow 871 9 131 Y 171 Y 
B32 ::t Not-Equals B72 : 132 Z 172 z 
033 0 Lozenge 873 ; 133 [ 173 { 
B34 ~ Less-Dr-Equal B74 < Less-sign 134 \ 174 I 
035 ~ Greater-Dr-Equal 875 = Equal-sign 135 ] 175 } 
836 = Equivalence 876 > Greater-sign 136 - 176 -
037 v Or-sign 077 ? 137 177 J Integral 

2B0 Null 21B Back-Space 220 Stop-Output 23B Roman-IV 
2B1 Suspend 211 Tab 221 Abort 231 Hand-Up 
202 Clear-Input 212 Line 222 Resume 232 Scroll 
2B3 Reserved 213 Refresh 223 Status 233 Hand-Left 
2B4 Function 214 Page 224 End 234 Hand-Right 
205 Macro 215 Return 225 Square 235 Select 
206 Help 216 Quote 226 Circle 236 Network 
2B7 Rubout 217 Hold-Output 227 Triangle 237 Escape 

24B Complete 
241 Symbol-Help 



358 

Reference Guide to Streams, Files, and 110 August 1986 



359 

August 1986 Index 

Index 

f-
- ~ 323 

--7 
- ~ format Directive 323 

! character file not backed up flag 216 

" " " 
"goto" format directive 315 

# # # 
#0 Reader Macro 232 
#- Reader Macro 232 
#' Reader Macro 230 
#+ Reader Macro 231 
#, Reader Macro 230 
#. Reader Macro 230 

#\Or #1 Reader Macro 229 
#: Reader Macro 231 
#< Reader Macro 232 
#b Reader Macro 231 
#m Reader Macro 231 

Sharp-sign (#) macro character 228 
#n Reader Macro 231 
#0 Reader Macro 231 
#q Reader Macro 231 
#r Reader Macro 231 
# reader macros 229 
#:symbol-zl-user:syn-stream 30 
#x Reader Macro 231 
#:zl-user:syn-stream 30 
#\ Or #1 Reader Macro 229 
#1\ Reader Macro 230 
#1 Reader Macro 232 

$ $ $ 
$ character do not reap file flag 216 



360 

Reference Guide to Streams, Flies, and VO August 1986 

( ( ( 
prompt-and-read (:pathname :vlslble-c:lefault) example 55, 56, 58, 59 

) ) 
prompt-and-read (:pathname :vlslble-c:lefault ) example 55, 56,58,59 

) 

* * * 
-*- 156 

-@ * format Directive 315 
* character 79 
* :wlld pathname component specifier 113 

. 
"'[StrO"';Str1"'; ...... ;Strn ... ] format Directive 318 

3 3 3 
Circle-plus ( ED) character 234 

4 4 4 
Canonical types in UNIX 4.2 Path names 105 

UNIX 4.2 Path names 105 

< < < 
< :oldest version specifier 113 
< :oldest version specifier 112 

- - -
=> link indicator in directory listings 216 

> > > 
>BAO-BLOCKS.FEP file 201 
>DIR FEP file type 201 
>DISK-LABEL.FEP file 201 
>FREE-PAGES.FEP file 201 
>fspUspt file 191 
> :newest version specifier 113 
> :newest version specifier 112 
>repatriations directory 194 
>SEQUENCE-NUMBER.FEP file 201 



361 

August 1986 Index 

@ 

A 

@ @ 
@ character do not delete file flag 216 

- @* format Directive 315 
... @T format Directive 316 

A 
BABYL pathname type abbreviation 107 

CWARNS pathname type abbreviation 107 
Function abbreviation 230 

INIT pathname type abbreviation 107 
LISP pathname type abbreviation 107 
MAIL pathname type abbreviation 107 

MIDAS pathname type abbreviation 107 
OUTPUT pathname type abbreviation 107 

PATCH-DIRECTORY pathname type abbreviation 107 
(PDIR) pathname type abbreviation 107 

PRESS pathname type abbreviation 107 
QFASL pathname type abbreviation 107 

QWABL pathname type abbreviation 107 
TEXT pathname type abbreviation 107 

ULOAD pathname type abbreviation 107 
UNFASL pathname type abbreviation 107 

XMAIL pathname type abbreviation 107 
UNIX pathname abbreviations 107 

VAXNMS pathname abbreviations 107 
Abort character 234 

More About Defaults 56 
Absolute branch format directive 315 

File and Directory Access 129 
Direct Access Bidirectional File Streams 15 

Introduction to Access Control 170 
Access Control Usts 170 
Access Control Model: What You Can and Cannot 

Protect 171 
Direct Access File Streams 13 

Effect of Character Set Translation on Direct Access File Streams 15 
Accessing Directories 160 

Functions for Accessing Directories 161 
Accessing FEP Files 204 
Accessing Files 129 
Access Modes 172 

Direct Access Output File Streams 14 
ACL 170,171,173,174,176,177,179,180 

Edit ACL Command 177 
ACLs 129, 170 

Splitting Logical Hosts Across Physical Hosts 116 
:actlvatlon option 276 

The File Server Activity 174 
Adding a LM FS Partition 210 
Adding a Paging File From Lisp 221 
Adding a Partition to LMFS 197 

A 

Adding a Spare World Load as LMFS File Space 210 
fs: add-Ioglcal-pathname-host 123 

Add Paging File command 209, 221 
Translate relative file block number into disk address 205 

Administering Names, Capabilities, and 
Passwords 174 

Advanced General-Purpose Stream Operations 36 
:advance-Input-buffer message 44 



362 

Reference Guide to Streams, Files, and 110 August 1986 

B 

:advance-output-buffer message 44 
Defaults alist 58, 73, 74 
Disable all character set translation In ASCII files 129 

:allocate message 205 
:allocate-margln method of 

hardcopy:baslc-hardcopy-stream 22 
Allocating Extra Paging Space 220 

sl: alphabetic syntax description 237 
Altmode character 234 

[free Edit Any] File System Maintenance menu item 211 
:any-tyl message 32 

Bulkhead serial ports are DTEs 331 
Printed Representation of Arrays That Are Named Structures 289 
Printed Representation of Arrays That Are Not Named Structures 289 

:macro argument to zl:setsyntax 241 
nil argument to zl:setsyntax 241 

:slngle argument to zl:setsyntax 241 
:spllclng argument to zl:setsyntax 241 

Arrays in compiled code files 223 
Printed Representation of Arrays That Are Named Structures 289 
Printed Representation of Arrays That Are Not Named Structures 289 

:ascll option for wlth-open-file 129 
ASCII characters 355 
:ascll-characters serial I/O parameter 337 
ASCII character set 335, 337 

Disable all character set translation in ASCII files 129 
Disable special treatment of Rubout in ASCII files 129 

Assignment of RS-232 Signals to Pins 331 
Assignment of RS-232 Signals to Pins in 

Asynchronous Null Modems 331 
Output streams to buffered asynchronous devices 41, 46 

Assignment of RS-232 Signals to Pins in Asynchronous Null Modems 331 
Backspace file attribute 156 

Base file attribute 156 
Fonts file attribute 156 

Lowercase file attribute 156 
Mode File Attribute 156 

Package file attribute 156 
Patch-File file attribute 156 

Syntax file attribute 156 
File attribute list 156 

Parser for file attribute list 156 
File Attribute Usts 156 

Parsing file attribute lists 156 
Reading file attributes 158 

User-defined file attributes 156 
File attributes as pathname properties 64 

Audible beep 42 

B 

:author FEP file property 207 
:author file property 161 
:awalt-rewlnd message to tape streams 350 

BABYL path name type abbreviation 107 
! character file not backed up flag 216 

Back-Next character 234 
Backquote (') macro character 228 
Backspace character 234 
Backspace file attribute 156 
:back-translated-pathname method of 

B 



363 

August 1986 Index 

fs:loglcal-pathname 126 
Back-translation 117 

LMFS Backup 190 
Base file attribute 156 
Basic General-Purpose Stream Operations 33 

:allocate-margln method of hardcopy: basic-hard copy-stream 22 
:convert-from-devlce-unlts method of hardcopy: baslc-hardcopy-stream 21 

:convert-to-devlce-unlts method of hardcopy: basic-hard copy-stream 21 
:home-cursor method of hardcopy: baslc-hardcopy-stream 21 

:increment-cursorpos method of hardcopy: basic-hard copy-stream 21 
:inslde-slze method of hardcopy: baslc-hardcopy-slream 22 

:read-cursorpos method of hardcopy: basic-hard copy-stream 20 
:set-cursorpos method of hardcopy: baslc-hardcopy-stream 20 

:show-ilne method of hardcopy: baslc-hardcopy-stream 20 
:show-rectangle method of hardcopy: basic-hard copy-stream 20 

:slze method of hardcopy: basic-hard copy-stream 21 
:strlng-Iength method of hardcopy: basic-hard copy-stream 22 

:un-relatlve-coordlnates method of hardcopy: basic-hard copy-stream 21 
hardcopy: basic-hard copy-stream flavor 19 

Basic Special-Purpose Stream Operations 41 
:baud serial I/O parameter 337 

Audible beep 42 
beep function 306 
:beep message 42 
Bidirectional disk streams 204, 206 
Bidirectional file streams 13 

Direct Access Bidirectional File Streams 15 
:bln canonical type 127 

Read rational number in binary 231 
:blnary-file-byte-slze 90 
Binary format directive 312 
Binary mode 129 

Modifier bits 355 
Number of bits per byte 129 

:bllp-handler option 275 
:block disk stream 204 
:block option for wlth-open-file 129 
Block disk stream messages 206 
Block Disk Streams 206 
:block-In message 206 
:block-Iength message 206 
Block mode disk streams 199 

File block number 199, 206 
Translate relative file block number into disk address 205 

:block-out message 207 
:block-slze file property 161 
:bot-p message to tape streams 350 

Absolute branch format directive 315 
Relative branch format directive 315 

zl: break syntax description 237 
Break character 234 
:brlef-help option 274 
BS character 234 

Free buffer 192 
Output streams to buffered asynchronous devices 41, 46 

Clear buffered input 40 
Special-Purpose Stream Operations for Buffered Input Streams 43 

Clear buffered output 41 
Buffered output stream 44 

Special-Purpose Stream Operations for Buffered Output Streams 44 
Buffered serial I/O 335 



364 

Reference Guide to Streams, Files, and 110 August 1986 

c 

Buffering capacity 343 
Bulkhead Serial 110 Ports 333 
Bulkhead serial ports are DTEs 331 

Number of bits per byte 129 

c 

:byte-slze file-opening option 129 
:byte-slze file property 161 
:byte-slze option for wlth-open-flle 129 
:byte-slze option for zl :copyf 152 

Call character 234 
Access Control Model: What You Can and Cannot Protect 171 

Access Control Model: What You Can and Cannot Protect 171 
:bln canonical type 127 
:lIsp canonical type 127 

:qbln canonical type 127 
:canonlcal-type message 77 
:canonlcal-type method of path name 93 

Correspondence of Canonical Types and Editor Modes 79 
Canonical types example 55 
Canonical Types In Pathnames 77 
Canonical types in UNIX 4.2 Pathnames 105 
Canonical types in UNIX Pathnames 104 
Canonical types in VMS Path names 107 

Administering Names, Capabilities, and Passwords 174 
Disable Capabilities Command 176 
Enable Capabilities Command 176 

Buffering capacity 343 
Cardinal format directive 316 
Carriage return character 355 
Carriage return format directive 314 
:carrler-detect serial 110 parameter 337 

Native pathname component case 71 
Raw pathname component case 71 

Lower case format directive 314 
Case in Path names 71 

Interchange case in path names 71 
Raw case in path names 71 

Interchange case representation 71 
Native case representation 71 

Raw case representation 71 
Center-dot character In TOPS-20 pathname 

display 110 
Functions That Change Characters Into Macro Characters 238 
Functions That Change Character Syntax 236 

fs: change-flle-propertles function 151, 166 
:change-propertles message 46 
:change-property message 207 

FEP channel facility 343 
* character 79 

Abort character 234 
Altmode character 234 

Back-Next character 234 
Backquote (') macro character 228 

Backspace character 234 
Break character 234 

BS character 234 
Call character 234 

Carriage return character 355 
Circle-pius (e) character 234 

c 



August 1986 

Clear 
Clear-Input 

Clear-Screen 
Comma (,) macro 

CR 
Delta (OP) 

Double-arrow 
End 
ESC 
Form 

Gamma (y) 
Hand-Down 

Hand-Left 
Hand-Right 

Hand-Up 
Help 

Hold-Output 
Integral (J) 

Lambda (/..) 
LF 

Line 
Macro 

Network 
Overstrike 

Page 
Page separator 
Plus-Minus (±) 

Quote 
Quote (') macro 

Resume 
Return 

Roman-I 
Roman-II 
Roman-III 
Roman-IV 

Rubout 
Semicolon (;) macro 

Sharp-sign (#) macro 
SP 

Space 
Status 

Stop-Output 
System 

Tab 
Terminal 

Up-Arrow (i) 

@ 
$ 
! 

Keyboard 
ITS 

Equivalence sign 
Right horseshoe 

Double-arrow 
Equivalence sign 

Enclose 
Echo 

character 234 
character 234 
character 234 
character 228 
character 234 
character 234 
character 112 
character 234 
character 234 
character 234 
character 234 
character 234 
character 234 
character 234 
character 234 
character 234 
character 234 
character 234 
character 234 
character 234 
character 234 
character 228, 234 
character 234 
character 234 
character 234, 355 
character 355 
character 234 
character 234 
character 228 
character 234 
character 234, 355 
character 234 
character 234 
character 234 
character 234 
character 234 
character 228 
character 228 
character 234 
character 234 
character 234 
character 234 
character 234 
character 234, 355 
character 234 
character 234 
:character file-opening option 129 
Character code for nonprinting characters 229 
Character codes 229 
Character constants 229 
character do not delete file flag 216 
character do not reap file flag 216 
character file not backed up flag 216 
character format directive 313 
character handling 355 
character in ITS path names 112 
character in ITS path names 112 
character in logical pathnames for nil 113 
character in logical pathnames for quoting 113 
character in lozenge 314 
character input 243 

365 

Index 



366 

Reference Guide to Streams, Files, and VO August 1986 

Center-dot character In TOPS-20 pathname display 110 
Circle-X character In TOPS-20 pathnames 110 

Character mode 129 
Special Character Names 234 

Character object 257 
Printed Representation of Common Usp Character Objects 288 

Character representation 355 
ASCII characters 355 

Character code for nonprinting characters 229 
Functions That Change Characters Into Macro Characters 238 

Graphics characters 355 
How the Reader Recognizes Macro Characters 228 

Keyboard characters 355 
Octal representation of characters 355 

Special characters 234 
:characters message 35,45 
:characters option for zl:copyf 152 

ASCII character set 335, 337 
The Character Set 355 

Character set translation 15 
Disable all character set translation in ASCII files 129 

Effect of Character Set Translation on Direct Access File 
Streams 15 

Reading characters from an input stream 38 
Functions That Change Characters Into Macro Characters 238 
Functions That Change Character Syntax 236 

:check-framlng-errors serial 110 parameter 337 
:check-over-run-errors serial 1/0 parameter 337 
:check-parlty-errors serial 110 parameter 337 
:check-ready message to tape streams 350 

USART chip 331 
sl: clrclecross syntax description 237 

Circle-plus {$} character 234 
Circle-X character in TOPS-20 pathnames 110 

Data Circuit Terminating Equipment 331 
Clear buffered input 40 
Clear buffered output 41 
Clear character 234 
:clear-eof message to input tape streams 350 
:clear-error message to tape streams 350 
clear-Input function 259 
:clear-Input message 40, 335, 343 
Clear-Input character 234 
clear-output function 297 
:clear-output message 41 
:clear-rest-of-line message 37 
Clear-Screen character 234 
:clear-to-send serial 110 parameter 337 
:clear-window message 43 
close function 149 

zl: close function 149 
:close message 41 
:close message to tape streams 350 
:close operation 141 

fs: close-all-files function 154 
FSEdit [Close] Command 215 

[Close] File System Editor menu item 213 
Opening and Closing a Directory 212 

Formatting Lisp Code 329 
Arrays in compiled code files 223 

Compiled code objects in compiled code files 223 



August 1986 

Instances In complied 
Usts In complied 

Numbers In complied 
Putting Data In Complied 

Symbols In compiled 
Character 
Complied 
Character 

Add Paging File 
Copy File (m-X) Zmacs 

Copy Microcode 
Declare Paging-files 
Disable Capabilities 

EditACL 
Enable Capabilities 

FSEdit [Close] 
FSEdit [Create Inferior Directory] 

FSEdlt [Create Link] 
FSEdit [Decache] 

FSEdit [Delete] 
FSEdlt [Delete (Immediate)] 

FSEdit [Edit] 
FSEdlt [Edit Properties] 

FSEdit [Expunge] 
FSEdlt [Hardcopy] 

FSEdit [Unk Transparencies] 
FSEdlt [Load] 

FSEdlt [New Property] 
FSEdit [Open] 

FSEdit [Rename] 
FSEdit [Selective Open] 

FSEdit [Undelete] 
FSEdit [View] 

FSEdit [View Properties] 
FSEdit [Wildcard Delete] 

Remove Password 
Rename File 

Rename File (m-X) Zmacs 
SELECT F 

Set Password 
Show FEP Directory 

Using FSEdit 
FEP File 

Disk label 

Printed Representation of 

Standard 
Readtable Functions for Maclisp 

Arrays in 
Complied code objects In 

Instances in 
Lists In 

Numbers In 
Putting Data In 

Symbols in 

code flies 223 
code files 223 
code files 223 
Code Flies 223 
code files 223 
code for nonprlntlng characters 229 
code objects In compiled code files 223 
codes 229 
Comma (,) macro character 228 
command 209, 221 
command 79, 152 
Command 208 
command 209 
Command 176 
Command 177 
Command 176 
Command 215 
Command 214 
Command 214 
Command 215 
Command 213 
Command 213 
Command 216 
Command 214 
Command 214 
Command 215 
Command 215 
Command 216 
Command 214 
Command 215 
Command 213 
Command 215 
Command 213 
Command 214 
Command 213 
Command 213 
Command 177 
command 209 
command 79 
command 191 
Command 176 
Command 203 
:command option 276 
Command Loop Input Editor Example 269 
Commands 213 
Comment Properties 203 
comments 203 
Comments in macros 228 
Common Lisp Character Objects 288 
Common Lisp readtable 228 
Common Lisp Streams 7 
Compatibility 241 
compiled code files 223 
compiled code files 223 
compiled code files 223 
compiled code files 223 
compiled code files 223 
Compiled Code Files 223 
compiled code files 223 

367 

Index 

Compiled code objects in compiled code files 223 
:complete-connectlon message 47 



368 

Reference Guide to Streams, Files, and 110 August 1986 

:complete-help option 273 
:deleted option for 1s: complete-pathname 85, 166 

:In option for 1s: complete-path name 85, 166 
:new-ok option for 1s: complete-path name 85, 166 

:old option for 1s: complete-path name 85, 166 
:out option for 1s: complete-path name 85, 166 

:prlnt option for 1s: complete-pathname 85, 166 
:read option for 1s: complete-path name 85, 166 
:wrlte option for 1s: complete-pathname 85,166 

1s: complete-pathname function 85, 166 
Completion 85, 166 

Details of Completion 86, 167 
Directory Completion 87, 169 
Filename completion 161 

Rules for Successful Completion 88, 169 
Device generic pathname component 75 

Directory generic pathname component 75 
Directory TOPS-20 pathname component 110 

Host generic pathname component 75 
:newest pathname component 66, 97 

nil pathname component 66 
:oldest pathname component 66 

:relatlve pathname component 66 
Type generic pathname component 75 

Type ITS pathname component 112 
:unspeclflc pathname component 66, 97 

:up pathname component 66 
Version generic pathname component 75 

Version ITS pathname component 112 
Version TENEX pathname component 110 

Version TOPS-20 pathname component 110 
:wlld pathname component 66 

:wild-Inferiors pathname component 66 
Native pathname component case 71 

Raw pathname component case 71 
Lowercase in pathname components 71 

Merging path name components 73, 84 
Other Components 88, 169 

Uppercase in pathname components 71 
Values of Pathname Components 66 

* :wlld pathname component specifier 113 
File server computer 51 

LMFS Concepts 181 
Conditional format directive 318 

Read-time conditionalization facility 231 
Configuration Files 202 

FEP configuration files 202 
Configuring a File Server 173 
:connected-p message 46 

Using the Terminal Program with Hosts Connected to the Serial Line 344 
Console Serial 1/0 Port 332 
Console serial port is DCE 331 

Character constants 229 
Pathname Defaulting From the Current Context 59 

Continuation format directive 315 
Introduction to Access Control 170 

Controlling the Printed Representation of an 
Object 291 

Controlling the reader 261 
Access Control Lists 170 
Access Control Model: What You Can and Cannot 



August 1986 

369 

Index 

Protect 171 
Modem control parameters 337 
Modem Control Parameters To sl:make-serlal-stream 339 

Print Control Variables 297 
Read Control Variables 261 

File name conventions 51 
Init File Naming Conventions 127 

:convert-from-devlce-unlts method of 
hardcopy:baslc-hardcopy-stream 21 

Converting logical pathname to physical 
path name 113, 126 

Converting physical pathname to logical 
pathname 126 

:convert-to-devlce-unlts method of 
hardcopy:baslc-hardcopy-stream 21 

:byte-slze option for zl: copyf 152 
:characters option for zl: copyf 152 

:create-dlrectorles option for zl: copyf 152 
:report-stream option for zl: copyf 152 

zl: copyf function 152 
Copy File (m-X) Zmacs command 79, 152 
Copying files 152 
Copy Microcode Command 208 

fs: copy-pathname-defaults function 89 
copy-read table function 236 

zl: copy-readtable function 236 
Imfs: copy-salvager-output-tape-to-flle function 196 

sl: coroutlne-bldlrectlonal-stream flavor 13 
sl: coroutlne-Input-stream flavor 13 
sl: coroutlne-output-stream flavor 13 

Coroutine Streams 10 
Functions for Creating Coroutine Streams 12 

Correspondence of Canonical Types and Editor 
Modes 79 

CR character 234 
:create symbol In :If-does-not-exlst option for 

open 204 
:create-data-map message 205 
:create-dlrectorles option for zl:copyf 152 

FSEdit [Create Inferior Directory] Command 214 
[Create Inferior Directory] File System Editor menu 

item 213 
FSEdit [Create Unk] Command 214 

[Create Unk] File System Editor menu item 213 
Create new logical host 123 

Functions That Create New Readtables 236 
Creating a serial I/O stream 335 

Functions for Creating Coroutine Streams 12 
Creating More Room on the Local Disk 219 
:creatlon-date FEP file property 207 
:creatlon-date file property 161 
:creation-date message 45 
Cross-host translation functions 71 

Pathname Defaulting From the Current Context 59 
zl: cursorpos function 306 

CWARNS path name type abbreviation 107 



370 

Reference Guide to Streams, Files, and VO August 1986 

D D 
Data Circuit Terminating Equipment 331 

Putting Data in Compiled Code Files 223 
FEP file data map 205 

Data sets 331 
Data Terminal Equipment 331 
:data-termlnal-ready serial 1/0 parameter 337 
Data terminals 331 

Printed Representation of Miscellaneous Data Types 289 
Date and time format directive 324 

X= date directory last expunged indicator 216 
dbg:*debug-lo-overrlde* variable 10 
DCE 331 

Console serial port is DCE 331 
zl: debug-Io variable 9 

*debug-Io* variable 8 
dbg: *debug-Io-overrlde* variable 10 

FSEdit [Decache] Command 215 
[Decache] File System Editor menu item 213 
Decimal format directive 311 
Declare Paging-files command 209 

Stream default handler 5 
Run-example with Simple Defaulting 54, 55 

Defaulting an Output File Pathname From an Input 
File 56 

Pathname Defaulting From the Current Context 59 
Special Defaulting of the Name 87, 168 
Special Defaulting of the Type 87, 168 

fs: default-pathname example 55,56,59 
fs: default-path name function 89 
fs: *default-pathname-defaults* example 55 
fs: *default-pathname-defaults* variable 74 

Manipulating defaults 83 
More About Defaults 56 

Pathname defaults 73, 84 
Sticky pathname defaults 56,58 

Tailoring Pathname Defaults 55 
Using pathname defaults 53 

Defaults alist 58, 73, 74 
Pathname Defaults and Merging 73 

Sticky pathname defaults example 58 
Default surface type 77 
Default translation rule 117 
Default type 73 
Default version 73 

format: defformat special form 325 
fs: deflne-canonlcal-type special form 90 

Defining a Translation Rule 119 
Formatted print of function definitions 329 

defsystem 123 
:delete message 45 

FSEdit [Delete] Command 213 
FSEdit [Wildcard Delete] Command 213 

D 

:deleted option for fs:complete-pathname 85, 166 
:deleted option for fs:dlrectory-list 161 
:deleted option for wlth-open-file 129 
:deleted option to open 141 

zl: deletef function 151 
Delete file 151 

@ character do not delete file flag 216 
[Delete] File System Editor menu item 213 



371 

August 1986 Index 

[Wildcard Delete) File System Editor menu item 213 
FSEdit [Delete (Immediate)) Command 213 

[Delete (immediate)) File System Editor menu 
item 213 

LMFS Deletion, Expunging, and Versions 187 
Delta (OP) character 234 
:density option to tape:make-stream 347 
Depth of recursion of printing lists 288 

Is: describe-logical-host function 123 
fs: descrlbe-pathname function 91 

macro syntax description 237 
sl:alphabetlc syntax description 237 

sl:clrclecross syntax description 237 
sl:doublequote syntax description 237 

sl:slngle syntax description 237 
sl :slash syntax description 237 

sl:vertlcalbar syntax description 237 
sl:whltespace syntax description 237 

zl :break syntax description 237 
Hardware Description for Serial 110 331 

Details of Completion 86, 167 
Host Determination in Pathnames 62 

:devlce message 71 
:devlce method of path name 92 
Device generic pathname component 75 

Output streams to buffered asynchronous devices 41, 46 
Supported Hardcopy Devices 16 

:devlce-wlld-p method of pathname 100 
Direct Access Bidirectional File Streams 15 
Direct Access File Streams 13 

Effect of Character Set Translation on Direct Access File Streams 15 
Direct Access Output File Streams 14 
:dlrection file-opening option 129 
:dlrectlon message 35 
:dlrection option for open 204, 208 
:dlrectlon option for wlth-open-file 129 
:dlrectlon option to tape:make-stream 347 

"goto" format directive 315 
Absolute branch format directive 315 

Binary format directive 312 
Cardinal format directive 316 

Carriage return format directive 314 
Conditional format directive 318 

Continuation format directive 315 
Date and time format directive 324 

Decimal format directive 311 
Escape format directive 323 

Exponential format directive 312 
Fixed-point format directive 313 

Floating-point format directive 312 
Free format directive 310 

Fresh line format directive 314 
Hexadecimal format directive 312 

Indention format directive 323 
Indirection format directive 315 

Iteration format directive 319 
Justification format directive 321 

Keyboard character format directive 313 
Lowercase format directive 314 
Lower case format directive 314 

Lozenge format directive 314 



372 

Reference Guide to Streams, Files, and VO August 1986 

Octal format directive 311 
Ordinal format directive 316 

Page separator format directive 315 
Plural format directive 316 

Radix directive 316 
Relative branch format directive 315 
Roman numeral format directive 316 

Slashification format directive 311 
Space format directive 316 

Tabulation format directive 316 
Tilde format directive 315 
Time format directive 324 

Time Interval format directive 324 
Time-of-day format directive 324 

User-function format directive 324 
... ~ format Directive 323 

"'0 format Directive 314 
-$ format Directive 313 

... % format Directive 314 
... & format Directive 314 
... * format Directive 315 

... <CR> format Directive 315 
... < format Directive 321 
... 1 format Directive 315 

-@* format Directive 315 
"'@T format Directive 316 

-A format Directive 310 
... 8 format Directive 312 
-c format Directive 313 
-0 format Directive 311 
-E format Directive 312 
-F format Directive 312 
"'G format Directive 315 
-0 format Directive 311 
... p format Directive 316 
"'0 format Directive 324 
... R format Directive 316 
-5 format Directive 311 

.. [StrD---;Str1 ... ; ...... ;Stm ... ] format Directive 318 
... T format Directive 316 
"'X format Directive 312 

"'\Date\ format Directive 324 
"'\Datime\ format Directive 324 

"'\Time-interval\ format Directive 324 
... \Time\ format Directive 324 

... /\ format Directive 323 
... , format Directive 315 

...... format Directive 315 
"'c and ... :::> format Directives 317 

... ( and ... ) format Directives 314 
Accessing Directories 160 

Functions for Accessing Directories 161 
>repatriations directory 194 

File directory 160 
Home directory 90 

Opening and Closing a Directory 212 
Sys: I-ucode; logical directory 208 

:dlrectory FEP file property 207 
:dlrectory message 71 
:dlrectory method of pathname 92 

File and Directory Access 129 



373 

August 1986 Index 

FSEdit [Create Inferior Directory] Command 214 
Show FEP Directory Command 203 

Directory Completion 87,169 
File system editor directory display 216 

[Create Inferior Directory] File System Editor menu item 213 
Directory generic pathname component 75 

X= date directory last expunged indicator 216 
fs: directory-link-opaque-dlrllst instead of fs:directory

list example 56 
:deleted option for fs: directory-list 161 
:noerror option for fs: directory-list 161 

:no-extra-Info option for fs: directory-list 161 
:sorted option for fs: directory-list 161 

fS:directory-link-opaque-dlrllst ihstead of fs: directory-list example 56 
fs: directory-list function 161 

=> link indicator in directory listings 216 
How to Interpret Directory Listings 216 

Wildcard Directory Mapping 81 
FEP directory name 200 

:dlrectory-pathname-as-file method of 
path name 69 

Directory Pathnames and Directory Pathnames as 
Files 68 

Directory Pathnames and Directory Pathnames as Files 68 
:relative relative directory specifier syntax in logical pathnames 113 

Directory TOPS-20 path name component 110 
Site directory translation 122 

:dlrectory-wlld-p method of pathname 100 
[free Edit home dir] File System Maintenance menu item 211 

Disable all character set translation in ASCII files 129 
Disable Capabilities Command 176 
Disable special treatment of Rubout in ASCII 

files 129 
:dlscard-current-record message to input tape 

streams 350 
Creating More Room on the Local Disk 219 

Translate relative file block number into disk address 205 
Disk label comments 203 

:block disk stream 204 
:input disk stream 204 

:output disk stream 204 
:probe disk stream 204 

Disk stream messages 204 
Block disk stream messages 206 

Disk streams 199 
Bidirectional disk streams 204, 206 

Block Disk Streams 206 
Block mode disk streams 199 

Input and Output Disk Streams 206 
Operating on Disk Streams 204 

Center-dot character in TOPS-20 pathname display 110 
File system editor directory display 216 

Displaying Help Messages in the Input Editor 279 
Displaying Prompts in the Input Editor 278 

What the Salvager Does 197 
@ character do not delete file flag 216 

:do-not-echo option 275 
$ character do not reap file flag 216 

:dont-delete FEP file property 207 
Double-arrow character 112 
Double-arrow character in logical pathnames for 



374 

Reference Guide to Streams, Files, and 110 August 1986 

E 

nil 113 
sl: doublequote syntax description 237 

Delta ( BP) character 234 
DTE 331 

Bulkhead serial ports are DTEs 331 
sys: dump-forms-to-flle function 223 

E 

[free 
FSEdit 

[free 

Displaying Help Messages in the Input 
Displaying Prompts in the Input 

Entering the File System 
Examples of Use of the Input 

File System 
Input 

Invoking the Input 
Reading function to use input 

Using the File System 

File system 
Command Loop Input 

[Close] File System 
[Create Inferior Directory] File System 

[Create Link] File System 
[Decache] File System 

[Delete] File System 
[Delete (immediate)] File System 

[Edit] File System 
[Edit Properties] File System 

[Expunge] File System 
[Hardcopy] File System 

[Link Transparencies] File System 
[Load] File System 

[New Properties] File System 
[Open] File System 

[Rename] File System 
[Selective Open] File System 

[Undelete] File System 
[View] File System 

[View Properties] File System 
[Wildcard Delete] File System 

Input 
Correspondence of Canonical Types and 

Input 
The Input 

How the Input 
FSEdit 

£ prefix 355 
Echo character Input 243 
Edit ACL Command 177 
Edit Any] File System Maintenance menu item 211 
[Edit] Command 216 
[Edit] File System Editor menu item 213 
Edit home dir] File System Maintenance menu 

item 211 
Editing terminal input 265 
Editor 279 
Editor 278 
Editor 211 
Editor 279 
Editor 211 
editor 265,272,273,274,275,276,277 
Editor 266 
editor 270 
Editor 212 
:editor-command option 276 
editor directory display 216 
Editor Example 269 
Editor major mode for file 156 
Editor major modes 79 
Editor menu item 213 
Editor menu item 213 
Editor menu item 213 
Editor menu item 213 
Editor menu item 213 
Editor menu item 213 
Editor menu item 213 
Editor menu item 213 
Editor menu item 213 
Editor menu item 213 
Editor menu item 213 
Editor menu item 213 
Editor menu item 213 
Editor menu item 213 
Editor menu item 213 
Editor menu item 213 
Editor menu item 213 
Editor menu item 213 
Editor menu item 213 
Editor menu item 213 
Editor Messages to Interactive Streams 283 
Editor Modes 79 
Editor Options 272 
Editor Program Interface 265 
Editor Works 265 
[Edit Properties] Command 214 

E 

[free 
[Edit Properties] File System Editor menu item 213 
Edit Root] File System Maintenance menu item 211 
Effect of Character Set Translation on Direct Access 



August 1986 

375 

Index 

File Streams 15 
Format effectors 355 

Effects of Slashification on Printing 287 
EIA RS-232 protocol 331 
Enable Capabilities Command 176 
Enclose character in lozenge 314 
Encoding keyboard input 355 

Hardcopy Front End and Formatting Functions 25 
End character 234 
End-of-file marker 34 
End-of-file on input streams 243 

tape: end-of-tape flavor 353 
Entering the File System Editor 211 
EOF 243 
:eof message 41 
Eof-error-p 243 
EOf-option 243 
Eof-value 243 

Data Circuit Terminating Equipment 331 
Data Terminal Equipment 331 

Equivalence sign character in ITS pathnames 112 
Equivalence sign character in logical pathnames for 

quoting 113 
:error file-opening option 129 
:error Option To open 132, 145 
:error symbol in :If-does-not-exist option for 

open 204 
:error symbol in :If-exlsts option for open 204 
:error symbol in :If-Iocked option for open 204 

Tape Error Flavors 353 
Error message stream 9 

zl: error-output variable 9 
*error-output* variable 7 
Escape format directive 323 
ESC character 234 
:estlmated-Iength option for open 204 

Canonical types example 55 
Command Loop Input Editor Example 269 

fs:default-pathname example 55, 56,59 
fs:*default-pathname-defaults* example 55 

fs:dlrectory-link-opaque-dlrllst instead of fS:directory-list 
example 56 

fs:merge-pathnames example 58, 59 
Output From Hardcopy Stream Example 24 

Pathname wildcard example 56 
prompt-and-read (:pathname :vlslble-default) example 55, 56, 58, 59 

Sticky pathname defaults example 58 
:translate-wlld-pathname message to pathname example 56 

:wlld-p example 56 
Example of a Hardcopy Stream 22 

Pathname examples 53 
Examples of Use of the Input Editor 279 

Simple Examples: Serial 110 341 
zl: explode function 308 
zl: explodec function 307 
zl: exploden function 307 

Exponential format directive 312 
Reader macro for infix expressions 232 

FSEdit [Expunge] Command 214 
X= date directory last expunged indicator 216 

[Expunge] File System Editor menu item 213 



376 

Reference Guide to Streams, Files, and lID 

LMFS Deletion, Expunging, and Versions 187 
Extra paging space 209 

Allocating Extra Paging Space 220 

F F 
SELECT F command 191 

InpuVOutput Facilities 225 
FEP channel facility 343 

Read-time conditionalization facility 231 
The Serial 110 Facility 331 

:fasd-form message 223 
Fasdump 223 
FEP 170,171,173 
FEP channel facility 343 
FEP configuration files 202 

Show FEP Directory Command 203 
FEP directory name 200 
FEP FEP file type 201 

Increase size of FEP file 204 
FEP File Comment Properties 203 
FEP file data map 205 
FEP File Locks 208 
FEP filename format 200 
FEP file properties 203, 207 

:author FEP file property 207 
:creatlon-date FEP file property 207 

:dlrectory FEP file property 207 
:dont-delete FEP file property 207 

:Iength FEP file property 207 
:truename FEP file property 207 
Accessing FEP Files 204 
Naming of FEP Files 200 

FEP File System 199 
FEP File System Pathnames 103 

>DIR FEP file type 201 
FEP FEP file type 201 
FILE FEP file type 201 

FLOD FEP file type 201 
FSPT FEP file type 201 
LOAD FEP file type 201 

MIC FEP file type 201 
PAGE FEP file type 201 

FEP File Types 201 
FEP host 200 

Translating pathname type field 77 
>BAD·BLOCKS.FEP file 201 

>DISK-LABEL.FEP file 201 
>FREE-PAGES.FEP file 201 

>fspUspt file 191 
>SEQUENCE-NUMBER.FEP file 201 

Defaulting an Output File Pathname From an Input File 56 
Delete file 151 

Editor major mode for file 156 
Increase size of FEP file 204 

Init file 90 
ITS Init file 112 

Lmfs.file file 191 
Print file 152 

Program source file 155 
Rename file 149 

August 1986 

F 



August 1986 

TOPS-20 Init 
True name of 

Undelete specified 

Backspace 
Base 
Fonts 

Lowercase 
Mode 

Package 
Patch-File 

Syntax 
fs: 

Parser for 

Parsing 
Reading 

User-defined 

Translate relative 
Add Paging 

Rename 
FEP 
FEP 

$ character do not reap 
@ character do not delete 

Adding a Paging 
FEP 

Patch 
Copy 

Rename 

Host -independent 

FEP 
Getting a 

Init 
I character 
:byte-slze 
:character 
:dlrectlon 

:error 
:preserve-dates 

Defaulting an Output 

FEP 
fs: 

:author 
:author FEP 
:block-slze 
: byte-size 

:creatlon-date 
:creatlon-date FEP 

:dlrectory FEP 

file 110 
file 154 
file 151 
:flle-access-path message 205 
File and Directory Access 129 
file attribute 156 
file attribute 156 
file attribute 156 
file attribute 156 
File Attribute 156 
file attribute 156 
file attribute 156 
file attribute 156 
flle-attrlbute-blndlngs function 159 
File attribute list 156 
file attribute list 156 
File Attribute Lists 156 
file attribute lists 156 
file attributes 158 
file attributes 156 
File attributes as pathname properties 64 
File block number 199, 206 
file block number Into disk address 205 
File command 209, 221 
File command 209 
File Comment Properties 203 
file data map 205 
File directory 160 
FILE FEP file type 201 
file flag 216 
file flag 216 
File From Lisp 221 
File Locks 208 
file logical pathname translation 123 
File (m-X) Zmacs command 79, 152 
File (m-X) Zmacs command 79 
Filename 51 
file name 77 
Filename completion 161 
File name conventions 51 
filename format 200 
Filename From the User 53 
File Naming Conventions 127 
file not backed up flag 216 
file-opening option 129 
file-opening option 129 
file-opening option 129 
file-opening option 129 
file-opening option 129 
File Path name From an Input File 56 
File properties 161, 182, 213 
file properties 203, 207 
file-properties function 151, 166 
File property 182 
file property 161 
file property 207 
file property 161 
file property 161 
file property 161 
file property 207 
file property 207 

377 

Index 



378 

Reference Guide to Streams, Files, and VO August 1986 

:dont-delete FEP file property 207 
:Iength FEP file property 207 

:Iength-In-blocks file property 161 
:Iength-In-bytes file property 161 
:not-backed-up file property 161 
:reference-date file property 161 
:truename FEP file property 207 

Files 49, 129 
Accessing Files 129 

Accessing FEP Files 204 
Arrays in compiled code files 223 

Compiled code objects in compiled code files 223 
Configuration Files 202 

Copying files 152 
Directory Pathnames and Directory Pathnames as Files 68 

Disable all character set translation in ASCII files 129 
Disable special treatment of Rubout in ASCII files 129 

FEP configuration files 202 
Instances in compiled code files 223 

Lists in compiled code files 223 
Loading Files 155 

Loading text files 156 
Naming of Files 51 

Naming of FEP Files 200 
Numbers in compiled code files 223 

Pathname Messages: Naming of Files 92 
Putting Data in Compiled Code Files 223 

Relative Pathnames: Files 75 
Renaming LMFS files 103 

Repatriating files 194 
Special-Purpose Stream Operations for Files 43 

Symbols in compiled code files 223 
Configuring a File Server 173 

PDP-10 file server 129 
The File Server Activity 174 

File server computer 51 
Remote file servers 129 

TOPS-20 file servers 129 
Adding a Spare World Load as LMFS File Space 210 

File specification 77 
File Stream Operations 44 

Bidirectional file streams 13 
Direct Access File Streams 13 

Direct Access Bidirectional File Streams 15 
Direct Access Output File Streams 14 

Effect of Character Set Translation on Direct Access File Streams 15 
Messages to file streams 44 

FEP File System 199 
Lisp Machine File System 181 

Shared file system 51 
File System Editor 211 

Entering the File System Editor 211 
Using the File System Editor 212 

File system editor directory display 216 
[Close] File System Editor menu item 213 

[Create Inferior Directory] File System Editor menu item 213 
[Create Link] File System Editor menu item 213 

[Decache] File System Editor menu item 213 
[Delete] File System Editor menu item 213 

[Delete (immediate)) File System Editor menu item 213 
[Edit] File System Editor menu item 213 



August 1986 

[Edit Properties] File System Editor menu Item 213 
[Expunge] File System Editor menu Item 213 

[Hardcopy] File System Editor menu item 213 
[Unk Transparencies] File System Editor menu Item 213 

[Load] File System Editor menu item 213 
[New Properties] File System Editor menu item 213 

[Open] File System Editor menu item 213 
[Rename] File System Editor menu item 213 

[Selective Open] File System Editor menu item 213 
[Undelete] File System Editor menu item 213 

[View] File System Editor menu item 213 
[View Properties] File System Editor menu item 213 
[Wildcard Delete] File System Editor menu item 213 

[Tree Edit Any] File System Maintenance menu item 211 
[Tree Edit home dir] File System Maintenance menu item 211 

[Tree Edit Robt] File System Maintenance menu item 211 
File system partition table 191 

FEP File System Pathnames 103 
Pathnames on Supported Host File Systems 101 

>DIR FEP file type 201 
FEP FEP file type 201 
FILE FEP file type 201 

FLOD FEP file type 201 
FSPT FEP file type 201 
LOAD FEP file type 201 

MIC FEP file type 201 
PAGE FEP file type 201 

fs: *file-type-mode-allst* variable 79 
FEP File Types 201 

fs: flnd-file-wlth-type function 91 
:flnlsh 44 
:flnlsh message 41, 46 
finish-output function. 297 

379 

Index 

:finlsh-typeout method of sl:lnteractive-stream 284 
Fixed-point format directive 313 
:flxnum option for wlth-open-flle 129 

! character file not backed up flag 216 
$ character do not reap file flag 216 

@ character do not delete file flag 216 
Flashing the screen 42 

sys: flatc function 308 
sys: flatslze function 308 

hardcopy:baslc-hardcopy-stream flavor 19 
List valid init-options for flavor 151 

pathname flavor 79 
sl :coroutlne-bldlrectlonal-stream flavor 13 

sl:coroutlne-Input-stream flavor 13 
sl:coroutlne-output-stream flavor 13 

sl:serlal-hdlc-stream flavor 344 
tape:end-of-tape flavor 353 

tape:mount-error flavor 353 
tape :tape-devlce-error flavor 353 

tape:tape-error flavor 353 
:flavor serial I/O parameter 337 

Tape Error Flavors 353 
Floating-point format directive 312 
FLOD FEP file type 201 
:fn1 method of fs:lts-pathname 113 
:fn2 method of fs:lts-pathname 113 
Fonts file attribute 156 
force-output function 297 



380 

Reference Guide to Streams, Files, and 110 August 1986 

:force-output message 41 
:force-output messages 44 
:force-output message to output tape streams 350 
:force-output serial I/O parameter 335, 337 
:force-rescan method of sl:lnteractive-stream 284 

format:defformat special form 325 
fs:deflne-canonlcal-type special form 90 

grlndef special form 329 
sys:wlth-open-file-search special form 141 

wlth-Input-edltlng special form 270 
wlth-Input-edltlng-optlons special form 267 

with-Input-edltlng-optlons-If special form 268 
with-Input-from-strlng special form 137 

wlth-open-file special form 135 
with-open-file-case special form 135 

with-open-file-case-If special form 136 
wlth-open-stream special form 136, 335 

with-open-stream-case special form 136 
with-open-stream-case-If special form 136 

wlth-output-to-strlng special form 139 
with-standard-Io-envlronment special form 136 

zl :with-input-from-strlng special form 137 
zl:with-output-to-strlng special form 139 

FEP filename format 200 
-~ format Directive 323 

-0 format Directive 314 
-$ format Directive 313 
-% format Directive 314 
-& format Directive 314 
-* format Directive 315 
-< format Directive 321 

-<CR> format Directive 315 
-? format Directive 315 

-@* format Directive 315 
-@T format Directive 316 

-A format Directive 310 
-8 format Directive 312 
-C format Directive 313 
-D format Directive 311 
-E format Directive 312 
-F format Directive 312 
-G format Directive 315 
-0 format Directive 311 
-p format Directive 316 
-Q format Directive 324 
-R format Directive 316 
-5 format Directive 311 

-[StrD-;Str1-; ... -;Stm-] format Directive 318 
- T format Directive 316 
-X format Directive 312 

-\Date\ format Directive 324 
-\Datime\ format Directive 324 

-\Time-interval\ format Directive 324 
-\Time\ format Directive 324 

-'" format Directive 323 
-I format Directive 315 

format Directive 315 
-c and -::> format Directives 317 

-( and -) format Directives 314 
format function 309 

zl: format function 293 



381 

August 1986 Index 

format:defformat special form 325 
format:print-llst function 326 

"goto" format directive 315 
Absolute branch format directive 315 

Binary format directive 312 
Cardinal format directive 316 

Carriage return format directive 314 
Conditional format directive 318 

Continuation format directive 315 
Date and time format directive 324 

Decimal format directive 311 
Escape format directive 323 

Exponential format directive 312 
Fixed-point format directive 313 

Floating-point format directive 312 
Free format directive 310 

Fresh line format directive 314 
Hexadecimal format directive 312 

Indention format directive 323 
Indirection format directive 315 

Iteration format directive 319 
Justification format directive 321 

Keyboard character format directive 313 
Lowercase format directive 314 
Lower case format directive 314 

Lozenge format directive 314 
Octal format directive 311 

Ordinal format directive 316 
Page separator format directive 315 

Plural format directive 316 
Relative branch format directive 315 
Roman numeral format directive 316 

Slashification format directive 311 
Space format directive 316 

Tabulation format directive 316 
Tilde format directive 315 
Time format directive 324 

Time interval format directive 324 
Time-of-day format directive 324 

User-function format directive 324 
Format effectors 355 
Formatted Output 309 
Formatted print of function definitions 329 

Keyword Options for Formatting 26 
Keyword Options for Formatting and Spooling 27 

Hardcopy Front End and Formatting Functions 25 
Formatting Lisp Code 329 
Form character 234 
Free buffer 192 
Free format directive 310 
Free record map 192 
Free Records 192 
fresh-line function 296 
:fresh-line message 37 
Fresh line format directive 314 

Defaulting an Output File Pathname From an Input File 56 
Output From Hardcopy Stream Example 24 

Adding a Paging File From Lisp 221 
Pathname Defaulting From the Current Context 59 

Getting a Filename From the User 53 
Hardcopy Front End and Formatting Functions 25 



382. 

Reference Guide to Streams, Files, and 110 August 1986 

Front-end Processor 199 
fs:add-Ioglcal-pathname-host 123 
fs:change-flle-propertles function 151, 166 
fs:close-all-files function 154 

:deleted option for fs:complete-pathname 85, 166 
:In option for fs:complete-pathname 85, 166 

:new-ok option for fs:complete-pathname 85, 166 
:old option for fs:complete-pathname 85, 166 
:out option for fs:complete-pathname 85, 166 

:prlnt option for fs:complete-pathname 85, 166 
:read option for fs:complete-pathname 85, 166 
:wrlte option for fs:complete-pathname 85, 166 

fs:complete-pathname function 85, 166 
fs:copy-pathname-defaults function 89 
fs:default-pathname example 55, 56, 59 
fs:default-pathname function 89 
fs:*default-pathname-defaults* example 55 
fs:*default-pathname-defaults* variable 74 
fs:deflne-canonlcal-type special form 90 
fs:descrlbe-Ioglcal-host function 123 
fs:descrlbe-pathname function 91 
fs:dlrectory-link-opaque-dlrllst instead of 

fs:dlrectory-list example 56 
:deleted option for fs:dlrectory-list 161 
:noerror option for fs:dlrectory-list 161 

:no-extra-Info option for fs:dlrectory-list 161 
:sorted option for fs:dlrectory-llst 161 

fs:dlrectory-link-opaque-dlriist instead of fs:dlrectory-llst example 56 
fs:dlrectory-llst function 161 
fs:flle-attrlbute-blndlngs function 159 
fs:flle-propertles function 151, 166 
fs:*flle-type-mode-allst* variable 79 
fs:flnd-flle-wlth-type function 91 
fs:lnlt-flle-pathname function 90 
fs:lnltlallze-secure-server function 179 

:fn1 method of fs:lts-pathname 113 
:fn2 method of fs:lts-pathname 113 

fs:*lts-unlnteresting-types* variable 112 
fs:*known-types* variable 75 
fs:load-pathname-defaults variable 75 

:back-translated-pathname method of fs:loglcal-pathname 126 
:translated-pathname method of fs:loglcal-pathname 126 

fs:make-Ioglcal-pathname-host function 123 
fs:make-pathname function 71, 88 
fs:make-pathname-defaults 56, 58 
fs:make-pathname-defaults function 89 
fs:merge-pathnames example 58, 59 
fs:merge-pathnames function 84 
fs:merge-pathnames-and-set-defaults function 84 
fs:multlple-flle-pllsts function 163 
fs:parse-pathname function 83 
fs:patch-flle Translation Rule 123 
fs:pathname-attribute-list function 158 
fs:pathname-pllst function 92 
fs:read-attribute-list function 156, 158 
fs:*remember-passwords* variable 154 
fs:set-default-pathname 58 
fs:set-default-pathname function 89 
fs:set-Ioglcal-pathname-host 115, 116 
fs:set-Ioglcal-pathname-host function 124 
fs:setup-file-server function 180 



August 1986 

Using 

:translate-wlld-pathname message to 
:translate-wlld-pathname-reverslble message to 

beep 
clear-Input 

clear-output 
close 

copy-readtable 
finish-output 
force-output 

format 
format:print-llst 

fresh-line 
fs:change-flle-propertles 

fs:close-all-file$ 
fs:complete-pathname 

fs:copy-pathname-defaults 
fs:default-pathname 

fs:descrlbe-Ioglcal-host 
fs :descrlbe-pathname 

fs:directory-list 
fs:flle-attrlbute-blndings 

fs:file-properties 
fs:find-flle-with-type 
fs:init-file-pathname 

fs:lniUallze-secure-server 
fs:make-Iogical-pathname-host 

fs:make-pathname 
fs:make-pathname-defaults 

fs:merge-pathnames 
fs :merge-pathnames-an d-set-defau Its 

fs:multlple-file-pllsts 

383 

Index 

fs:*unlx-mlcrocode-translatlon-allst* 121 
fs:user-homedlr function 90 
fs:*vms-mlcrocode-translatlon-allst* 121 
FSEdit 211 
FSEdit [Close] Command 215 
FSEdit Commands 213 
FSEdit [Create Inferior Directory] Command 214 
FSEdit [Create Link] Command 214 
FSEdit [Decache] Command 215 
FSEdit [Delete] Command 213 
FSEdit [Delete (Immediate)] Command 213 
FSEdit [Edit] Command 216 
FSEdit [Edit Properties] Command 214 
FSEdit [Expunge] Command 214 
FSEdit [Hardcopy] Command 215 
FSEdit [Link Transparencies] Command 215 
FSEdit [Load] Command 216 
FSEdit [New Property] Command 214 
FSEdit [Open] Command 215 
FSEdit [Rename] Command 213 
FSEdit [Selective Open] Command 215 
FSEdit [Undelete] Command 213 
FSEdit [View] Command 214 
FSEdit [View Properties] Command 213 
FSEdit [Wildcard Delete] Command 213 
Fs:file-property-bindings 159 
Fs:file-read-property-list 158 
fs:pathname 119 
fs:pathname 119 
FSPT 191 
FSPT FEP file type 201 
:full-rubout option 272 
function 306 
function 259 
function 297 
function 149 
function 236 
function 297 
function 297 
function 309 
function 326 
function 296 
function 151, 166 
function 154 
function 85, 166 
function 89 
function 89 
function 123 
function 91 
function 161 
function 159 
function 151, 166 
function 91 
function 90 
function 179 
function 123 
function 71, 88 
function 89 
function 84 
function 84 
function 163 



384 

Reference Guide to Streams, Files, and 110 August 1986 

fs:parse-pathname function 83 
fs:pathname-attribute-list function 158 

fs:pathname-pllst function 92 
fs:read-attribute-list function 156, 158 

fs:set-default-pathname function 89 
fs:set-Ioglcal-pathname-host function 124 

fs:setup-flle-server function 180 
fs:user-homedlr function 90 

get-dlspatch-macro-character function 239 
get-macro-character function 240 

get-output-stream-strlng function 30 
hardcopy:get-hardcopy-devlce function 18 

hardcopy:hardcopy-file function 26 
hardcopy:hardcopy-from-stream function 26 

hardcopy:hardcopy-text-flle function 25 
hardcopy:make-hardcopy-stream function 17 

Input-stream-p function 33 
listen function 259 

Imfs:copy-salvager-output-tape-to-flle function 196 
Imfs:prlnt-salvager-output-tape function 196 

Imfs:rename-Iocal-flle-tool function 103 
make-broadcast-stream function 29 

make-concatenated-stream function 29 
make-dlspatch-macro-character function 238 

make-echo-stream function 29 
make-strlng-Input-stream function 29 

make-strlng-output-stream function 29 
make-synonym-stream function 30 
make-two-way-stream function 31 

open function 204 
open function 141 

output-stream-p function 33 
parse-Integer function 260 

peek-char function 258 
pprlnt function 294 

press:hardcopy-press-flle function 25 
press:hardcopy-press-stream function 26 

prln1 function 293 
prln1-to-strlng function 294 

prlnc function 294 
prlnc-to-strlng function 294 

print function 294 
read function 244 

read-byte function 257 
read-char function 257 

read-char-no-hang function 257 
read-delimited-list function 253 

read-dellmlted-strlng function 254 
read-from-strlng function 259 

read-line function 249 
read-line-no-echo function 251 

read-line-trim function 250 
read-or-end function 248 

read-preservlng-whltespace function 256 
readtablep function 235 

set-character-translatlon function 237 
set-dlspatch-macro-character function 238 

set-macro-character function 239 
set-syntax-from-char function 236 
sl:lnstall-mlcrocode function 208 

sl:make-coroutlne-Input-stream function 12 



385 

August 1986 Index 

sl :make-coroutlne-output-stream function 12 
sl:make-serlal-stream function 336 

sl:print-list function 296 
sl:prlnt-obJect function 296 

sl:read-recurslve function 228 
stream-copy-untll-eof function 306 
stream-element-type function 33 

streamp function 33 
sys:dump-forms-to-file function 223 

sys:flatc function 308 
sys:flatslze function 308 

sys:make-coroutlne-bldlrectlonal-stream function 12 
sys:null-stream function 33 

sys:read-character function 245 
sys:read-for-top-Ievel function 246 

sys:stream-default-handler function 32 
tape:make-stream function 347 

terprl function 296 
The tape:make-stream Function 347 

undelete-file function 151 
unread-char function 257 

write function 293 
write-byte function 294 
write-char function 295 
write-line function 295 

write-string function 295 
wrlte-to-strlng function 296 

zl :close function 149 
zl :copyf function 152 

zl:copy-readtable function 236 
zl:cursorpos function 306 

zl:deletef function 151 
zl:explode function 308 

zI :explodec function 307 
zl :exploden function 307 

zl:format function 293 
zl:grlnd-top-Ievel function 329 

zl:lIstf function 170 
zl:load function 155 

zl :make-syn-stream function 30 
zl:prln1-then-space function 293 

zl :probef function 154 
zl:read function 47,244,287 

zl:read-and-eval function 249 
zl :readch function 257 

zl:read-dellmlted-strlng function 255 
zl:read-expresslon function 246 

zl :readflle function 156 
zl:read-form function 247 

zI:read-from-strlng function 260 
zl:readllne function 249 

zl:readllne-no-echo function 252 
zl:readllne-or-nll function 251 

zI:readline-trlm function 250 
zl:readllst function 261 

zI:read-or-character function 249 
zl:renamef function 149 

zI :setsyntax function 241 
zl:set-syntax-#-macro-char function 229,241 

zI :set-syntax-from-char function 237 
zl:set-syntax-from-descrlptlon function 237 



386 

Reference Guide to Streams, Files, and VO August 1986 

G 

zl:set-syntax-macro-char function 228,240 
zl:setsyntax-sharp-macro function 242 

zl :terprl function 297 
zl:tyl function 246 

zl:tylpeek function 258 
zl :tyo function 296 

zl:undeletef function 151 
zl:vlewf function 152 

Function abbreviation 230 
Formatted print of function definitions 329 

Special function keys 355 
Cross-host translation functions 71 

General Stream Functions 33 
Hardcopy Front End and Formatting Functions 25 

Input Functions 243 
Non-stream Input Functions 259 

Output Functions 293 
Pathname Functions 83 

Slashification-related output functions 307 
Functions for Accessing Directories 161 
Functions for Creating Coroutine Streams 12 

Readtable Functions for Maclisp Compatibility 241 
Functions That Change Characters Into Macro 

Characters 238 
Functions That Change Character Syntax 236 
Functions That Create New Readtables 236 

Input Functions That Work on Streams 244 
Reading function to use Input editor 270 

G 
Gamma (y) character 234 

Gamma ( YJ character 234 
General-Purpose Stream Operations 33 

Advanced General-Purpose Stream Operations 36 
Basic General-Purpose Stream Operations 33 

General Stream Functions 33 
:generate-xon-xoff serial 1/0 parameter 337 
:generlc-pathname message to pathnames 75 
:generlc-pathname method of path name 98 

Device generic pathname component 75 . 
Directory generic path name component 75 

Host generic path name component 75 
Type generic pathname component 75 

Version generic pathname component 75 
Generic Pathnames 75 
:get message 207 
:get method of pathname 98 
:get method of sl:serlal-stream 336 
get-dlspatch-macro-character function 239 

hardcopy: get-hardcopy-devlce function 18 
:getl method of pathname 99 
get-macro-character function 240 
:get-output-buffer message 44 
get-output-stream-strlng function 30 
Getting a Filename From the User 53 
Global translation rules 117 
Granularity 347 
Graphics characters 355 
grlndef special form 329 

zl: grind-tap-level function 329 

G 



August 1986 

H 

387 

Index 

:grow message 204 

H 
Hand-Down character 234 
Hand-Left character 234 

Stream default handler 5 
ITS character handling 355 

Hand-Right character 234 
Hand-Up character 234 

:allocate-margln method of hardcopy:baslc-hardcopy-stream 22 
:convert-from-devlce-unlts method of hardcopy:baslc-hardcopy-stream 21 

:convert-to-devlce-unlts method of hardcopy:baslc-hardcopy-stream 21 
:home-cursor method of hardcopy:baslc-hardcopy-stream 21 

:Increment-cursorpos method of hardcopy:baslc-hardcopy-stream 21 
:Inslde-slze method of hardcopy:baslc-hardcopy-stream 22 

:read-cursorpos method of hardcopy:baslc-hardcopy-stream 20 
:set-cursorpos method of hardcopy:baslc-hardcopy-stream 20 

:show-Ilne method of hardcopy:baslc-hardcopy-stream 20 
:show-rectangle method of hardcopy:baslc-hardcopy-stream 20 

:slze method of hardcopy:baslc-hardcopy-stream 21 
:strlng-Iength method of hardcopy:baslc-hardcopy-stream 22 

:un-relatlve-coordlnates method of hardcopy:baslc-hardcopy-stream 21 
hardcopy:baslc-hardcopy-stream flavor 19 
hardcopy:get-hardcopy-devlce function 18 
hardcopy:hardcopy-file function 26 
hardcopy:hardcopy-from-stream function 26 
hardcopy:hardcopy-text-flle function 25 
hardcopy:mako-hardcopy-stream function 17 

FSEdit [Hardcopy] Command 215 
Supported Hardcopy Devices 16 
hardcopy: hardcopy-file function 26 

[Hardcopy] File System Editor menu item 213 
hardcopy: hardcopy-from-stream function 26 

Hardcopy Front End and Formatting Functions 25 
Hardcopy Options 26 

press: hardcopy-press-flle function 25 
press: hardcopy-press-stream function 26 

Example of a Hardcopy Stream 22 
Output From Hardcopy Stream Example 24 

The Hardcopy Stream Model 16 
Hardcopy Streams 16 

Making Hardcopy Streams 17 
Using Hardcopy Streams 19 

Hardcopy Streams Reference Information 25 
hardcopy: hardcopy-text-file function 25 

Overview of Serial 110 Hardware 331 
Hardware Description for Serial 110 331 
HDLC Serial 110 344 
Help character 234 

Displaying Help Messages in the Input Editor 279 
Translation heuristics for VAXNMS 116 

Hexadecimal format directive 312 
Hold-Output character 234 
:home-cursor method of 

hardcopy:baslc-hardcopy-stream 21 
Home directory 90 

[Tree Edit home dir] File System Maintenance menu item 211 
Right horseshoe character in ITS pathnames 112 

Create new logical host 123 
FEP host 200 

H 



388 

Reference Guide to Streams, Files, and 110 August 1986 

SYS logical host 113 
:host method of path name 92 
:host option to tape:make-stream 347 
Host Determination in Pathnames 62 

Pathnames on Supported Host File Systems 101 
Host generic pathname component 75 
Host-independent file name 77 
:host-name message to tape streams 350 

Logical hosts 115 
Multiple physical hosts 116 

Splitting Logical Hosts Across Physical Hosts 116 
Translating logical hosts to physical hosts 113 

Splitting Logical Hosts Across Physical Hosts 116 
Using the Terminal Program with Hosts Connected to the Serial Line 344 

Translating logical hosts to physical hosts 113 
How the Input Editor Works 265 
How the Printer Works 287 

Buffered serial 
Hardware Description for Serial 

HDLC Serial 
Introduction to Serial 

Notes on Serial 
Parameters for Serial 

Simple Examples: Serial 
Troubleshooting: Serial 

The Serial 
Overview of Serial 

:ascli-characters serial 
:baud serial 

:carrler-detect serial 
:check-framlng-errors serial 

:check-over-run-errors serial 
:check-parity-errors serial 

:clear-to-send serial 
:data-terminal-ready serial 

:flavor serial 
:force-output serial 

:generate-xon-xoff serial 
:input-error-character serial 
:input-xoff-character serial 
:input-xon-character serial 

:mode serial 
:number-of-data-bits serial 
:number-of-stop-bits serial 

:output-xoff-character serial 
:output-xon-character serial 

:parlty serial 
:request-to-send serial 

:unit serial 
:xon-xoff-protocol serial 

Reading serial 
Setting serial 

Console Serial 

How the Reader Recognizes Macro Characters 228 
How the Reader Recognizes Symbols 227 
How the Reader Works 227 
How to Interpret Directory Listings 216 

1/0 225 
110 335 
110 331 
110 344 
110 331 
110 343 
110 337 
110 341 
110 342 
110 Facility 331 
110 Hardware 331 
110 parameter 337 
110 parameter 337 
110 parameter 337 
110 parameter 337 
110 parameter 337 
110 parameter 337 
110 parameter 337 
1/0 parameter 337 
110 parameter 337 
110 parameter 335, 337 
110 parameter 337 
110 parameter 337 
110 parameter 337 
110 parameter 337 
110 parameter 337 
110 parameter 337 
1/0 parameter 337 
110 parameter 337 
110 parameter 337 
110 parameter 337 
110 parameter 337 
110 parameter 337 
110 parameter 337 
110 parameters 335 
110 parameters 335 
110 Port 332 



August 1986 

Bulkhead Serial I/O Ports 333 
Creating a serial I/O stream 335 

The Serial I/O Stream 335 
Introduction to the 1/0 System 1 

:If-does-not-exlst option for open 204 
:creato symbol in :If-does-not-exlst option for open 204 

:orror symbol in :If-does-not-exlst option for open 204 
nil symbol in :If-does-not-exlst option for open 204 

:If-oxlsts option for open 204 
:orror symbol in :If-exlsts option for open 204 

:new-vorslon symbol In :If-oxlsts option for open 204 
nil symbol In :If-exlsts option for open 204 

:overwrlte symbol In :If-exlsts option for open 204 
:suporsede symbol in :If-exlsts option for open 204 

:If-Iocked option for open 204, 208 
:error symbol in :If-Iocked option for open 204 

:sharo symbol in :If-Iocked option for open 204 
FSEdit [Delete (Immediate)] Command 213 

[Delete (immediate)] File System Editor menu item 213 
:In option for fs:complete-pathname 85, 166 
:In option for wlth-open-fllo 129 
Increase size of FEP file 204 
:Incroment-cursorpos method of 

hardcopy:baslc-hardcopy-stream 21 
Indention format directive 323 

X= date directory last expunged Indicator 216 
=> link Indicator in directory listings 216 

Indirection format directive 315 
FSEdit [Create Inferior Directory] Command 214 

389 

Index 

[Create Inferior Directory] File System Editor menu item 213 
Reader macro for infix expressions 232 

:Info message 45 
Hardcopy Streams Reference Information 25 

Init file 90 
ITS init file 112 

TOPS-20 init file 110 
Init File Naming Conventions 127 

fs: Inlt-flle-pathname function 90 
:Inltlal-Input option 274 

fs: Inltlallze-securo-servor function 179 
sl: Inltlal-readtable variable 235 

Ust valid init-options for flavor 151 
INIT pathname type abbreviation 107 

Clear buffered input 40 
Echo character input 243 
Editing terminal input 265 

Encoding keyboard input 355 
Stream input 38 

:Input disk stream 204 
Input/Output Facilities 225 
Input and Output Disk Streams 206 
Input editor 265,272,273,274,275,276,277 

Displaying Help Messages In the Input Editor 279 
Displaying Prompts In the Input Editor 278 

Examples of Use of the Input Editor 279 
Invoking the Input Editor 266 

Reading function to use input editor 270 
:Input-edltor message 42, 266 
:Input-edltor method of sl:lnteractive-stream 283 

Command Loop Input Editor Example 269 
Input Editor Messages to Interactive Streams 283 



390 

Reference Guide to Streams, Files, and 110 

The 
How the 

Defaulting an Output File Pathname From an 

Non-stream 

Reading characters from an 
Tokens in the 

End-of-file on 
Special-Purpose Stream Operations for Buffered 

:clear-eof message to 
:dlscard-current-record message to 

:record-status message to 

sl: 
Printed Representation of 

fs:dlrectory-link-opaque-dlrllst 

:flnlsh-typeout method of sl: 
:force-rescan method of sl: 
:Input-edltor method of sl: 

:nolse-strlng-out method of sl: 
:read-bp method of sl: 

:replace-Input method of sl: 
:rescannlng-p method of sl: 
:start-typeout method of sl: 

Input Editor Messages to 

The Input Editor Program 

How to 
Time 

Console serial port 

Input Editor Options 272 
Input Editor Program Interface 265 
Input Editor Works 265 

August 1986 

:Input-error-character serial 110 parameter 337 
Input File 56 
Input Functions 243 
Input Functions 259 
Input Functions That Work on Streams 244 
:Input-hlstory-default option 274 
Input operations on serial streams 335 
input stream 38 
input stream 227 
:Input-stream-mode option to 

tape:make-stream 347 
Input-stream-p function 33 
input streams 243 
Input Streams 43 
Input stream specification 243 
input tape streams 350 
input tape streams 350 
input tape streams 350 
:Input-walt message 36 
:Input-walt option 277 
:Input-walt-handler option 277 
:Input-xoff-character serial VO parameter 337 
:Input-xon-character serial 110 parameter 337 
:Inslde-slze method of 

hardcopy:baslc-hardcopy-stream 22 
Installing Microcode 208 
Install-microcode function 208 
Instances 288 
Instances in compiled code files 223 
instead of fs:dlrectory-list example 56 
Integral (J) character 234 
:Interactlve message 36 
Interactive-stream 284 
Interactive-stream 284 
Interactive-stream 283 
Interactive-stream 285 
Interactive-stream 285 
Interactive-stream 285 
Interactive-stream 284 
Interactive-stream 283 
Interactive streams 243, 265 
Interactive Streams 283 
Interchange case in pathnames 71 
Interchange case representation 71 
Interface 265 
Interning of Pathnames 64 
Interpret Directory Listings 216 
interval format directive 324 
Introduction to Access Control 170 
Introduction to LMFS 181 
Introduction to Serial 110 331 
Introduction to Streams 5 
Introduction to the I/O System 1 
Invoking the Input Editor 266 
is DCE 331 
Iteration format directive 319 
ITS 127 
ITS character handling 355 



August 1986 

J 

K 

L 

391 

Index 

ITS init file 112 
:1n1 method of 1s: Its-path name 113 
:1n2 method of 1s: Its-pathnamo 113 

Type ITS pathname component 112 
Version ITS path name component 112 

ITS Path names 112 
Equivalence sign character in ITS path names 112 
Right horseshoe character in ITS pathnames 112 

1s: *lts-unlntorostlng-typos* variable 112 

J 

K 

Justification format directive 321 

Keyboard character format directive 313 
Keyboard characters 355 

Encoding keyboard input 355 
Special function keys 355 

:wlld keyword 79 
Keyword Options for Formatting 26 
Keyword Options for Formatting and Spooling 27 
Keyword Options for the Spooler 27 

1s: *known-types* variable 75 

L 
A. prefix 355 

Disk label comments 203 
Lambda (A.) character 234 

X= date directory last expunged indicator 216 
Lambda ( A.) character 234 

:Iength FEP file property 207 
:Iength message 45 
:Iength-In-blocks file property 161 
:Iongth-In-bytos file property 161 
LF character 234 

J 

K 

L 

Using the Terminal Program with Hosts Connected to the Serial 
Line 344 

Line character 234 
Fresh line format directive 314 

:lIno-ln message 32, 39 
Testing :lIno-ln operation 34 

:lIne-out message 38 
FSEdit [Create Link] Command 214 

[Create Link] File System Editor menu item 213 
=> link indicator in directory listings 216 

LMFS Links 189 
FSEdit [Link Transparencies] Command 215 

[Link Transparencies] File System Editor menu 
item 213 

Adding a Paging File From Lisp 221 
:lIsp canonical type 127 

Printed Representation of Common Lisp Character Objects 288 
Formatting Lisp Code 329 

Lisp Machine File System 181 
LISP pathname type abbreviation 107 

Common Lisp readtable 228 



392 

Reference Guide to Streams, Files, and VO August 1986 

Standard Common Usp Streams 7 
File attribute list 156 

Parser for file attribute list 156 
listen function 259 
:lIsten message 37,335 

zl: IIstf function 170 
=> link Indicator In directory listings 216 

How to Interpret Directory Ustings 216 
Access Control Usts 170 

Depth of recursion of printing lists 288 
File Attribute Usts 156 

Manipulating pathname property lists 92 
Parsing file attribute lists 156 

Printing lists 326 
Usts in compiled code files 223 
Ust valid Inlt-options for flavor 151 
LMFS 127,151,170,171,173,174,176,177,179, 

180 
Adding a Partition to LMFS 197 

Introduction to LMFS 181 
Lmfs.file file 191 
Imfs:copy-salvager-output-tape-to-flle 

function 196 
Imfs:prlnt-salvager-output-tape function 196 
Imfs:rename-Iocal-flle-tool function 103 
LMFS Backup 190 
LMFS Concepts 181 
LMFS Deletion, Expunging, and Versions 187 

Renaming LMFS files 103 
Adding a Spare World Load as LMFS File Space 210 

LMFS Links 189 
LMFS Multiple Partitions 191 

Adding a LMFS Partition 210 
LMFS Pathnames 101 
LMFS Properties 182 

zl: load function 155 
Adding a Spare World Load as LMFS File Space 210 

FSEdit [Load) Command 216 
LOAD FEP file type 201 
[Load) File System Editor menu item 213 

Using a Spare World Load for Paging 209 
Loading 155 
Loading Files 155 
Loading text files 156 

fs: load-pathname-defaults variable 75 
Creating More Room on the Local Disk 219 

:Iock-reason option to tape:make-stream 347 
FEP File Locks 208 

Sys: I-ucode; logical directory 208 
Create new logical host 123 

SYS logical host 113 
Logical hosts 115 

Splitting Logical Hosts Across Physical Hosts 116 
Translating logical hosts to physical hosts 113 

:back-translated-pathname method of fs: logical-path name 126 
Converting physical path name to logical pathname 126 

:translated-pathname method of fs: logical-path name 126 
Logical Pathnames 113 

;relative relative directory specifier syntax in logical pathnames 113 
:wlld-Inferlors in logical pathnames 115 

Double-arrow character In logical pathnames for nil 113 



393 

August 1986 Index 

M 

Equivalence sign character in logical pathnames for quoting 113 
Converting logical pathname to physical pathname 113, 126 

Logical Path name Translation 115, 117 
Patch file logical pathname translation 123 

VMS logical pathname translation rules 120 
Logical Pathname Wildcard Syntax 115 

Command Loop Input Editor Example 269 
Lost records 192 
Lowercase file attribute 156 
Lower case format directive 314 
Lowercase format directive 314 
Lowercase in pathname components 71 

Endose character in lozenge 314 
Lozenge format directive 314 

Sys: I-ucode; logical directory 208 

M 
Copy File ( m-X) Zmacs command 79,152 

Rename File ( m-X) Zmacs command 79 
Usp Machine File System 181 

Readtable Functions for Maclisp Compatibility 241 
#0 Reader Macro 232 
#- Reader Macro 232 
#' Reader Macro 230 

#+ Reader Macro 231 
#, Reader Macro 230 
#. Reader Macro 230 
#: Reader Macro 231 
#< Reader Macro 232 
#b Reader Macro 231 
#m Reader Macro 231 
#n Reader Macro 231 
#0 Reader Macro 231 
#q Reader Macro 231 
#r Reader Macro 231 
#x Reader Macro 231 

#\ Or #1 Reader Macro 229 
#" Reader Macro 230 

#1 Reader Macro 232 
sys:prlntlng-random-obJect macro 290 

sys:wlth-Indentatlon macro 327 
:macro argument to zl:setsyntax 241 
macro syntax description 237 
Macro character 228, 234 

Backquote (') macro character 228 
Comma (,) macro character 228 

Quote (') macro character 228 
Semicolon (;) macro character 228 

Sharp-sign (#) macro character 228 
Functions That Change Characters Into Macro Characters 238 

How the Reader Recognizes Macro Characters 228 
Reader macro for infix expressions 232 

# reader macros 229 
Comments in macros 228 

Sharp-sign Reader Macros 229 
Streams that read or write magnetic tape 347 

Writing Programs That Use Magnetic Tape 347 
MAIL pathname type abbreviation 107 

[Tree Edit Any] File System Maintenance menu item 211 
[Tree Edit home dir] File System Maintenance menu item 211 

M 



394 

Reference Guide to Streams, Files, and I/O August 1986 

[Tree Edit Root] File System Maintenance menu item 211 
Editor major mode for file 156 

Major modes 79 
Editor major modes 79 

make-broad cast-stream function 29 
make-concatenated-stream function 29 

sys: make-coroutlne-bldlrectlonal-stream function 12 
sl: make-coroutlne-lnput-stream function 12 
sl: make-coroutlne-output-stream function 12 

make-dlspatch-macro-character function 238 
make-echo-stream function 29 

hardcopy: make-hardcopy-stream function 17 
fs: make-logical-path name-host function 123 
fs: make-path name function 71, 88 
fs: make-pathname-defaults 56,58 
fs: make-pathname-defaults function 89 

Modem Control Parameters To sl: make-serlal-stream 339 
sl: make-serlal-stream function 336 

:denslty option to tape: make-stream 347 
:dlrectlon option to tape: make-stream 347 

:host option to tape: make-stream 347 
:Input-stream-mode option to tape: make-stream 347 

:Iock-reason option to tape: make-stream 347 
:mlnlmum-record-Iength option to tape: make-stream 347 

:mlnimum-record-Iength-granularlty option to tape: make-stream 347 
:no-bot-prompt option to tape: make-stream 347 

:norewlnd option to tape: make-stream 347 
:pad-char option to tape: make-stream 347 

:prompt option to tape: make-stream 347 
:record-Iength option to tape: make-stream 347 

:reel option to tape: make-st.~eam 347 
:unlt option to tape: make-stream 347 

tape: make-stream function 347 
The tape: make-stream Function 347 

make-strlng-Input-stream function 29 
make-strlng-output-stream function 29 
make-synonym-stream function 30 

zl: make-syn-stream function 30 
make-two-way-stream function 31 
Making Hardcopy Streams 17 
Making Your Own Stream 29 
Manipulating defaults 83 
Manipulating pathname property lists 92 
Manipulating the readtable 235 

FEP file data map 205 
Free record map 192 

:map-block-no message 205 
Wildcard Directory Mapping 81 

Wildcard Path name Mapping 79 
End-of-file marker 34 

[Close] File System Editor menu item 213 
[Create Inferior Directory] File System Editor menu item 213 

[Create Link] File System Editor menu item 213 
[Decache] File System Editor menu item 213 

[Delete] File System Editor menu item 213 
[Delete (immediate)] File System Editor menu item 213 

[Edit] File System Editor menu item 213 
[Edit Properties] File System Editor menu item 213 

[Expunge] File System Editor menu item 213 
[Hardcopy] File System Editor menu item 213 

[Link Transparencies] File System Editor menu item 213 



395 

August 1986 Index 

[Load] File System Editor menu item 213 
[New Properties] File System Editor menu item 213 

[Open] File System Editor menu item 213 
[Rename] File System Editor menu item 213 

[Selective Open] File System Editor menu item 213 
[Tree Edit Any] File System Maintenance menu item 211 

[Tree Edit home dir] File System Maintenance menu item 211 
[Tree Edit Root] File System Maintenance menu item 211 

[Undelete] File System Editor menu item 213 
[View] File System Editor menu item 213 

[View Properties] File System Editor menu item 213 
[Wildcard Delete] File System Editor menu item 213 

:merged-help option 273 
fs: merge-path names example 58,59 
fs: merge-path names function 84 
fs: merge-pathnames-and-set-clefaults function 84 

Pathname merging 53 
Path name Defaults and Merging 73 

Merging pathname components 73, 84 
:advance-Input-buffer message 44 

:advance-output-buffer message 44 
:allocate message 205 
:any-tyl message 32 

:beep message 42 
:block-In message 206 

:block-Iength message 206 
:block-out message 207 

:canonlcal-type message 77 
:change-propertles message 46 

:change-property message 207 
:characters message 35, 45 
:clear-lnput message 40, 335, 343 

:clear-output message 41 
:clear-rest-of-Ilne message 37 

:clear-wlndow message 43 
:close message 41 

:complete-connection message 47 
:connected-p message 46 

:create-data-map message 205 
:creatlon-date message 45 

:delete message 45 
:devlce message 71 

:dlrection message 35 
:dlrectory message 71 

:eof message 41 
:fasd-form message 223 

:flle-access-path message 205 
:flnlsh message 41,46 

:force-output message 41 
:fresh-line message 37 

:get message 207 
:get-output-buffer message 44 

:grow message 204 
:Info message 45 

:Input-edltor message 42, 266 
:Input-walt message 36 

:Interactlve message 36 
:Iength message 45 
:lIne-ln message 32, 39 

:lIne-out message 38 
:lIsten message 37,335 



396 

Reference Guide to Streams, Files, and 110 August 1986 

:map-block-no message 205 
:name message 71 

:new-default-pathname message 66, 71 
:new-pathname message 66, 71 

:new-raw-devlce message 71 
:new-raw-dlrectory message 71 

:new-raw-name message 71 
:new-raw-type message 71 

:operatlon-handled-p message 35 
:pathname message 44 

:prlnt message 47 
:prlnt-self message 288 

:propertles message 45 
:raw-devlce message 71 

:raw-dlrectory message 71 
:raw-name message 71 
: raw-type message 71 

:read message 47 
:read-bytes message 14 

:read-cursorpos message 42 
:read-Input-buffer message 43 

:read-polnter message 43 
:rename message 45 

:reset message 335 
:send-If-handles message 35 

:set-cursorpos message 43 
:set-Input-interrupt-functlon message 47 

:set-polnter message 43 
:start-open-auxillary-stream message 46 

:strlng-in message 38 
:string-line-in message 40 

:strlng-out message 38 
:truename message 44 

:tyl message 34 
:tyl-no-hang message 42, 335 

:tylpeek message 37 
:tyo message 33 

:type message 71 
:untyl message 34 

:untyo message 42 
:untyo-mark message 42 

:whlch-operatlons message 35 
:write-data-map message 205 

Block disk stream messages 206 
Disk stream messages 204 

:force-output messages 44 
Stream Messages 14 

Displaying Help Messages in the Input Editor 279 
Pathname Messages: Naming of Files 92 

Messages to file streams 44 
Input Editor Messages to Interactive Streams 283 

Messages to Tape Streams 350 
Error message stream 9 

:translate-wlld-pathname message to fs:pathname 119 
:translate-wild-pathname-reverslble message to fs:pathname 119 

:clear-eof message to Input tape streams 350 
:discard-current-record message to input tape streams 350 

:record-status message to input tape streams 350 
:force-output message to output tape streams 350 

:wrlte-eof message to output tape streams 350 
:wrlte-error-status message to output tape streams 350 



August 1986 

:translate-wlld-pathname 
:generlc-pathname 

:rename 
:rename 

:awalt-rewlnd 
:bot-p 

:check-ready 
:clear-error 

:close 
:host-name 

:rewlnd 
:set-offllne 

:sklp-flle 
:fn1 
:fn2 

:back-translated-path name 
:translated-path name 

:allocate-margln 
:convert-from-devlce-unlts 

:convert-to-devlce-unlts 
:home-cursor 

:Increment-cursorpos 
:Inslde-slze 

:read-cursorpos 
:set-cursorpos 

:show-Ilne 
:show-rectangle 

:slze 
:strlng-Iength 

:un-relatlve-coordlnates 
:canonlcal-type 

:devlce 
:devlce-wlld-p 

:dlrectory 
:dlrectory-pathname-as-flle 

:dlrectory-wlld-p 
:generlc-pathname 

:get 
:getl 

:host 
:name 

:name-wlld-p 
:new-canonlcal-type 

:new-default-pathname 
:new-devlce 

:new-dlrectory 
:new-name 

:new-pathname 
:new-raw-devlce 

:new-raw-d Irectory 
:new-raw-name 
:new-raw-lype 

:new-typo 
:new-verslon 

:parse-truename 
:pathname-as-dlrectory 

:pathname-match 
:pllst 

:putprop 
:raw-devlce 

:raw-dlrectory 

message to path name example 56 
message to path names 75 
message to pathnames 149 
message to streams 149 
message to tape streams 350 
message to tape streams 350 
message to tape streams 350 
message to tape streams 350 
message to tape streams 350 
message to tape streams 350 
message to tape streams 350 
message to tape streams 350 
message to tape streams 350 
method of fs :lts-pathname 113 
method of fs :lts-pathname 113 
method of fs:loglcal-pathname 126 
method of fs:loglcal-pathname 126 

397 

Index 

method of hardcopy:baslc-hardcopy-stream 22 
method of hardcopy:baslc-hardcopy-stream 21 
method of hardcopy:baslc-hardcopy-stream 21 
method of hardcopy:baslc-hardcopy-stream 21 
method of hardcopy:baslc-hardcopy-stream 21 
method of hardcopy:baslc-hardcopy-stream 22 
method of hardcopy:baslc-hardcopy-stream 20 
method of hardcopy:baslc-hardcopy-stream 20 
method of hardcopy:baslc-hardcopy-stream 20 
method of hardcopy:baslc-hardcopy-stream 20 
method of hardcopy:baslc-hardcopy-stream 21 
method of hardcopy:baslc-hardcopy-stream 22 
method of hardcopy:baslc-hardcopy-stream 21 
method of path name 93 
method of pathname 92 
method of pathname 100 
method of path name 92 
method of path name 69 
method of pathname 100 
method of path name 98 
method of path name 98 
method of path name 99 
method of path name 92 
method of path name 93 
method of path name 100 
method of path name 96 
method of pathname 97 
method of path name 94 
method of path name 94 
method of pathname 94 
method of path name 96 
method of path name 95 
method of path name 95 
method of path name 95 
method of path name 95 
method of path name 94 
method of path name 95 
method of pathname 98 
method of path name 69 
method of pathname 99 
method of path name 99 
method of pathname 99 
method of pathname 93 
method of pathname 93 



398 

Reference Guide to Streams, Files, and 110 August 1986 

:raw-name method of pathname 93 
: raw-type method of path name 93 
:remprop method of pathname 99 

:strlng-for-dlrectory method of pathname 98 
:strlng-for-dired method of pathname 98 

:strlng-for-edltor method of pathname 98 
:string-for-host method of pathname 98 

:strlng-for-prlntlng method of path name 98 
:string-for-wholine method of pathname 98 

:system-type method of path name 95 
:translate-wild-pathname method of pathname 101 

:type method of pathname 93 
:types-for-canonical-type method of path name 96 

:type-wild-p method of path name 100 
:version method of pathname 93 

:version-wild-p method of path name 100 
:wild-p method of pathname 100 

:finish-typeout method of sl:lnteractive-stream 284 
:force-rescan method of sl:lnteractive-stream 284 
:Input-edltor method of sl:lnteractive-stream 283 

:nolse-strlng-out method of sl:lnteractive-stream 285 
:read-bp method of sl:lnteractive-stream 285 

:replace-Input method of sl:lnteractive-stream 285 
:rescannlng-p method of sl:lnteractive-stream 284 
:start-typeout method of sl:lnteractlve-stream 283 

:read-frame method of sl:serial-hdlc-mlxin 344 
:wrlte-frame method of sl:serlal-hdlc-mlxln 344 

:get method of sl:serlal-stream 336 
:put method of sl:serlal-stream 336 

Mica 19 
MIC FEP file type 201 

Installing Microcode 208 
Copy Microcode Command 208 

MIDAS pathname type abbreviation 107 
:mlnlmum-record-Iength option to 

tape:make-stream 347 
:mlnlmum-record-Iength-granularlty option to 

tape:make-stream 347 
Printed Representation of Miscellaneous Data Types 289 

Binary mode 129 
Character mode 129 

:mode serial I/O parameter 337 
Block mode disk streams 199 

Mode File Attribute 156 
Editor major mode for file 156 

The Hardcopy Stream Model 16 
Access Control Model: What You Can and Cannot Protect 171 

Modem 331 
Null modem 331 

Modem control parameters 337 
Modem Control Parameters To 

sl:make-serlal-stream 339 
Assignment of RS-232 Signals to Pins in Asynchronous Null 

Modems 331 
Access Modes 172 

Correspondence of Canonical Types and Editor Modes 79 
Editor major modes 79 

Major modes 79 
Modifier bits 355 
More About Defaults 56 

Creating More Room on the Local Disk 219 



399 

August 1986 Index 

N 

tape: mount-error flavor 353 
Mouse-1-1 234 
Mouse-1-2 234 
Mouse-2-1 234 
Mouse-2-2 234 
Mouse-3-1 234 
Mouse-3-2 234 
Mouse-L-1 234 
Mouse-L-2 234 
Mouse-M-1 234 
Mouse-M-2 234 
Mouse-R-1 234 
Mouse-R-2 234 
Mouse signals 355 
MS-DOS Pathnames 113 
Multics Path names 111 

fs: mUltiple-flle-plists function 163 
LMFS Multiple Partitions 191 

Multiple physical hosts 116 

N 
FEP directory name 200 

Host-Independent file name 77 
Special Defaulting of the Name 87, 168 

:name message 71 
:name method of path name 93 

File name conventions 51 
Printed Representation of Arrays That Are Named Structures 289 

Printed Representation of Arrays That Are Not Named Structures 289 
True name of file 154 

Special Character Names 234 
Administering Names, Capabilities, and Passwords 174 

:name-wlld-p method of path name 100 
Init File Naming Conventions 127 

Naming of FEP Files 200 
Naming of Files 51 

Pathname Messages: Naming of Files 92 
Native case representation 71 
Native pathname component case 71 
Network character 234 
Network Stream Operations 46 
:new-canonlcal-type method of pathname 96 
:new-default-pathname message 66, 71 
:new-default-pathname method of pathname 97 
:new-devlce method of path name 94 
:new-dlrectory method of pathname 94 
:newest pathname component 66, 97 

> :newest version specifier 113 
> :newest version specifier 112 

Create new logical host 123 
:new-name method of path name 94 

N 

:new-ok option for fs:complete-pathname 85, 166 
:new-pathname message 66, 71 
:new-pathname method of path name 96 
:new-pathname Translation Rule 120 
[New Properties] File System Editor menu item 213 

FSEdit [New Property] Command 214 
:new-raw-devlce message 71 
:new-raw-devlce method of pathname 95 
:new-raw-dlrectory message 71 



400 

Reference Guide to Streams, Files, and VO August 1986 

o 

:new-raw-dlrectory method of pathname 95 
:new-raw-name message 71 
:new-raw-name method of pathname 95 
:new-raw-type message 71 
:new-raw-type method of pathname 95 

Functions That Create New Readtables 236 
:new-type method of path name 94 
:new-verslon method of pathname 95 
:new-verslon symbol In :If-exlsts option for 

open 204 
Double-arrow character In logical pathnames for nil 113 

nil argument to zl:setsyntax 241 
nil pathname component 66 
nil symbol in :If-does-not-exlst option for open 204 
nil symbol in :If-exlsts option for open 204 
:no-bot-prompt option to tape:make-stream 347 
:noerror option for fs:dlrectory-list 161 
:noerror option for wlth-open-flle 129 
:no-extra-Info option for fs:dlrectory-llst 161 
:no-Input-save option 276 
:nolse-strlng-out method of 

sl:lnteractive-stream 285 
Character code for nonprinting characters 229 

Non-stream Input Functions 259 
:norewlnd option to tape:make-stream 347 
:not-backed-up file property 161 

! . character file not backed up flag 216 
@ character do not delete file flag 216 

Notes on Serial I/O 343 
:notlflcatlon-handler option 277 

Printed Representation of Arrays That Are Not Named Structures 289 
$ character do not reap file flag 216 

Null modem 331 
Assignment of RS-232 Signals to Pins in Asynchronous 

Null Modems 331 
sys: null-stream function 33 

Null terminal 332 
File block number 199,206 

Read rational number in binary 231 
Translate relative file block number into disk address 205 

Number of bits per byte 129 
:number-of-data-blts serial I/O parameter 337 
:number-of-dlsk-blocks option for open 204, 206 
:number-of-stop-blts serial I/O parameter 337 
Numbers in compiled code files 223 

Roman numeral format directive 316 

o 
Character object 257 

Controlling the Printed Representation of an Object 291 
Printed Representation of Common Lisp Character Objects 288 

Compiled code objects in compiled code files 223 
Octal format directive 311 
Octal representation of characters 355 
:old option for fs:complete-pathname 85, 166 
:oldest pathname component 66 

< :oldest version specifier 113 
< :oldest version specifier 112 

:create symbol in :If-does-not-exlst option for open 204 
:deleted option to open 141 

o 



401 

August 1986 Index 

:dlrectlon option for open 204, 208 
:error Option To open 132,145 

:error symbol In :If-does-not-exlst option for open 204 
:error symbol in :If-exlsts option for open 204 

:error symbol In :If-Iocked option for open 204 
:estlmated-Iength option for open 204 
:If-does-not-exlst option for open 204 

:If-exlsts option for open 204 
:If-Iocked option for open 204, 208 

:new-verslon symbol in :If-exlsts option for open 204 
nil symbol in :If-does-not-exlst option for open 204 

nil symbol In :If-exlsts option for open 204 
:number-of-dlsk-blocks option for open 204, 206 

:overwrJte symbol In :If-exlsts option for open 204 
:share symbol In :If-Iocked option for open 204 

:submlt option to open 141 
:supersede symbol in :If-exlsts option for open 204 

open function 141 
open function 204 

FSEdit [Open] Command 215 
FSEdit [Selective Open] Command 215 

[Open] File System Editor menu item 213 
[Selective Open] File System Editor menu item 213 

Opening and Closing a Directory 212 
Operating on Disk Streams 204 

:close operation 141 
:read operation 47 

Testing :lIne-ln operation 34 
Testing :strlng-In operation 34 

Testing :string-line-in operation 34 
:tyl stream operation 129 

:operatlon-handled-p message 35 
Advanced General-Purpose Stream Operations 36 

Basic General-Purpose Stream Operations 33 
Basic Special-Purpose Stream Operations 41 

File Stream Operations 44 
General-Purpose Stream Operations 33 

Network Stream Operations 46 
Special-Purpose Stream Operations 41 

Stream Operations 29 
The :read And :prlnt Stream Operations 47 

Special-Purpose Stream Operations for Buffered Input Streams 43 
Special-Purpose Stream Operations for Buffered Output Streams 44 
Special-Purpose Stream Operations for Files 43 

Input operations on serial streams 335 
Output operations on serial streams 335 

:actlvatlon option 276 
:bllp-handler option 275 

:brlef-help option 274 
:byte-slze file-opening option 129 
:character file-opening option 129 

:command option 276 
:complete-help option 273 

:dlrection file-opening option 129 
:do-not-echo option 275 

:edltor-command option 276 
:error file-opening option 129 

:full-rubout option 272 
:Inltlal-Input option 274 

:Input-hlstory-default option 274 
:Input-walt option 277 



402 

Reference Guide to Streams, Files, and VO August 1986 

:Input-walt-handler option 277 
:merged-help option 273 

:no-lnput-save option 276 
:notlflcatlon-handler option 277 

:partlal-help option 273 
:pass-through option 272 
:preemptable option 276 

:preserve-dates file-opening option 129 
:prompt option 272 

:reprompt option 272 
:suppress-notlflcatlons option 277 

:deleted option for fs:complete-pathname 85, 166 
:In option for fs:complete-pathname 85, 166 

:new-ok option for fs:complete-pathname 85, 166 
:old option for fs:complete-pathname 85, 166 
:out option for fs:complete-pathname 85, 166 

:prlnt option for fs:complete-pathname 85, 166 
:read option for fs:complete-pathname 85, 166 
:wrlte option for fs:complete-pathname 85, 166 

:deleted option for fs:dlrectory-list 161 
:noerror option for fs:dlrectory-list 161 

:no-extra-Info option for fs:dlrectory-list 161 
:sorted option for fs:dlrectory-list 161 

:create symbol In :If-does-not-exlst option for open 204 
:dlrectlon option for open 204, 208 

:error symbol in :If-does-not-exlst option for open 204 
:error symbol in :If-exlsts option for open 204 

:error symbol in :If-Iocked option for open 204 
:estlmated-Iength option for open 204 
:If-does-not-exlst option for open 204 

:If-exlsts option for open 204 
:If-locked option for open 204, 208 

:new-verslon symbol in :If-exlsts option for open 204 
nil symbol In :If-does-not-exlst option for open 204 

nil symbol in :If-exlsts option for open 204 
:number-of-dlsk-blocks option for open 204, 206 

:overwrlte symbol In :If-exlsts option for open 204 
:share symbol in :If-Iocked option for open 204 

:supersede symbol in :If-exlsts option for open 204 
:ascll option for wlth-open-flle 129 

:block option for wlth-open-flle 129 
:byte-slze option for wlth-open-flle 129 

:deleted option for wlth-open-flle 129 
:dlrectlon option for wlth-open-flle 129 

:flxnum option for wlth-open-flle 129 
:In option for wlth-open-flle 129 

:noerror option for wlth-open-flle 129 
:out option for wlth-open-flle 129 

:prlnt option for wlth-open-flle 129 
:probe option for wlth-open-flle 129 

:raw option for wlth-open-flle 129 
:read option for wlth-open-flle 129 

:slngle option for wlth-open-flle 129 
:super-Image option for wlth-open-flle 129 

:temporary option for wlth-open-flle 129 
:wrlte option for wlth-open-flle 129 

:byte-slze option for zl :copyf 152 
:characters option for zl:copyf 152 

:create-dlrectorles option for zl:copyf 152 
:report-stream option for zl:copyf 152 

Hardcopy Options 26 



403 

August 1986 Index 

p 

Input Editor Options 272 
Keyword Options for Formatting 26 
Keyword Options for Formatting and Spooling 27 
Keyword Options for the Spooler 27 
:deleted option to open 141 

:error Option To open 132, 145 
:submlt option to open 141 
:denslty option to tape:make-stream 347 

:dlrectlon option to tape:make-stream 347 
:host option to tape:make-stream 347 

:Input-stream-mode option to tape:make-stream 347 
:Iock-reason option to tape:make-stream 347 

:mlnlmum-record-Iength option to tape:make-stream 347 
:mlnlmum-record-Iength-granularity option to tape:make-stream 347 

:no-bot-prompt option to tape:make-stream 347 
:norewind option to tape:make-stream 347 
:pad-char option to tape:make-stream 347 

:prompt option to tape:make-stream 347 
:record-Iength option to tape:make-stream 347 

:reel option to tape:make-stream 347 
:unlt option to tape:make-stream 347 

Ordinal format directive 316 
Orphans 194 
Other Components 88, 169 
:out option for fs:complete-pathname 85, 166 
:out option for with-open-file 129 

Clear buffered output 41 
Formatted Output 309 

:output disk stream 204 
Input and Output Disk Streams 206 

Defaulting an Output File Pathname From an Input File 56 
Direct Access Output File Streams 14 

Output From Hardcopy Stream Example 24 
Output Functions 293 

Slashification-related output functions 307 
Output operations on serial streams 335 
OUTPUT pathname type abbreviation 107 

Buffered output stream 44 
output-stream-p function 33 

Special-Purpose Stream Operations for Buffered Output Streams 44 
Output streams to buffered asynchronous 

devices 41,46 
:force-output message to output tape streams 350 

:write-eof message to output tape streams 350 
:wrlte-error-status message to output tape streams 350 

:output-xoff-character serial 110 parameter 337 
:output-xon-character serial 1/0 parameter 337 
Overstrike character 234 
Overview of Serial 1/0 Hardware 331 
:overwrite symbol in :If-exists option for open 204 

Making Your Own Stream 29 

p 
1t prefix 355 
Package file attribute 156 
:pad-char option to tape:make-stream 347 
Page character 234, 355 
PAGE FEP file type 201 
Page separator character 355 
Page separator format directive 315 

p 



404 

Reference Guide to Streams, Files, and 110 August 1986 

Using a Spare World Load for Paging 209 
Add Paging File command 209, 221 

Adding a Paging File From Lisp 221 
Dedare Paging-files command 209 

Allocating Extra Paging Space 220 
Extra paging space 209 

:ascll-characters serial I/O parameter 337 
:baud serial I/O parameter 337 

:carrler-detect serial I/O parameter 337 
:check-framlng-errors serial I/O parameter 337 

:check-over-run-errors serial 1/0 parameter 337 
:check-parlty-errors serial I/O parameter 337 

:cloar-to-send serial I/O parameter 337 
:data-termlnal-ready serial I/O parameter 337 

:flavor serial 110 parameter 337 
:force-output serial 110 parameter 335, 337 

:generate-xon-xoff serial 110 parameter 337 
:Input-error-character serial 110 parameter 337 
:Input-xoff-character serial 110 parameter 337 
:Input-xon-character serial 110 parameter 337 

:mode serial 110 parameter 337 
:number-of-data-blts serial 110 parameter 337 
:number-of-stop-blts serial 1/0 parameter 337 

:output-xoff-character serial 110 parameter 337 
:output-xon-character serial 110 parameter 337 

:parlty serial 110 parameter 337 
:request-to-send serial 110 parameter 337 

:unlt serial 1/0 parameter 337 
:xon-xoff-protocol serial 110 parameter 337 

Modem control parameters 337 
Reading serial 110 parameters 335 

Setting serial 110 parameters 335 
XONIXOFF protocol parameters 337 

Parameters for Serial 110 337 
Modem Control Parameters To sl:make-serlal-stream 339 

:parlty serial 1/0 parameter 337 
parse-Integer function 260 

fs: parse-path name function 83 
Parser for file attribute list 156 
:parse-truename method of path name 98 
Parsing file attribute lists 156 
Parsing path names 83 
:partlal-help option 273 

Adding a LMFS Partition 210 
LMFS Multiple Partitions 191 

File system partition table 191 
Adding a Partition to LMFS 197 

:pass-through option 272 
Remove Password Command 177 

Set Password Command 176 
Administering Names, Capabilities, and Passwords 174 

Suppress prompting for passwords 154 
PATCH-DIRECTORY pathname type 

abbreviation 107 
fs: patch-file Translation Rule 123 

Patch-File file attribute 156 
Patch file logical pathname translation 123 

:canonlcal-type method of path name 93 
Converting logical pathname to physical pathname 113, 126 
Converting physical pathname to logical path name 126 

:devlce method of path name 92 



405 

August 1986 Index 

:devlco-wlld-p method of path name 100 
:dlrectory method of pathname 92 

:dlrectory-pathname-as-file method of path name 69 
:dlrectory-wlld-p method of path name 100 

:generlc-pathname method of path name 98 
:get method of path name 98 
:getl method of path name 99 

:host method of path name 92 
:name method of path name 93 

:name-wlld-p method of path name 100 
:new-canonlcal-type method of path name 96 

:new-default-pathname method of path name 97 
:new-devlco method of path name 94 

:new-dlrectory method of path name 94 
:new-name method of path name 94 

:new-pathname method of path name 96 
:new-raw-devlco method of path name 95 

:new-raw-dlrectory method of path name 95 
:new-raw-name method of path name 95 
:new-raw-type method of path name 95 

:new-type method of path name 94 
:new-verslon method of path name 95 

:parse-truename method of path name 98 
:pathname-as-dlrectory method of path name 69 

:pathname-match method of path name 99 
:pllst method of path name 99 

:putprop method of path name 99 
:raw-devlco method of path name 93 

:raw-dlrectory method of path name 93 
:raw-name method of path name 93 

:raw-type method of path name 93 
:remprop method of path name 99 

:strlng-for-dlrectory method of path name 98 
:strlng-for-dlred method of path name 98 

:strlng-for-edltor method of path name 98 
:strlng-for-host method of pathname 98 

:strlng-for-prlntlng method of path name 98 
:strlng-for-whollne method of path name 98 

:system-type method of path name 95 
:translate-wlld-pathname method of path name 101 

:type method of path name 93 
:types-for-canonlcal-type method of path name 96 

:type-wlld-p method of path name 100 
:verslon method of path name 93 

:verslon-wlld-p method of path name 100 
:wlld-p method of path name 100 

:translate-wlld-pathname message to path name example 56 
path name flavor 79 
:pathname message 44 

prompt-and-read ( :pathname :visible-default) example 55, 56, 58, 59 
UNIX pathname abbreviations 107 

V AXNMS path name abbreviations 107 
:pathname-as-directory method of path name 69 

fs: pathname-attribute-Iist function 158 
Device generic path name component 75 

Directory generic pathname component 75 
Directory TOPS-20 pathname component 110 

Host generic pathname component 75 
:newest pathname component 66,97 

nil pathname component 66 
:oldest pathname component 66 



406 

Reference Guide to Streams, Files, and 110 August 1986 

:relatlve path name component 66 
Type generic pathname component 75 

Type ITS path name component 112 
:unspeclflc pathname component 66, 97 

:up pathname component 66 
Version generic pathname component 75 

Version ITS path name component 112 
Version TENEX pathname component 110 

Version TOPS-20 pathname component 110 
:wild pathname component 66 

:wlld·lnferlors pathname component 66 
Native pathname component case 71 

Raw path name component case 71 
Lowercase in path name components 71 

Merging pathname components 73, 84 
Uppercase in pathname components 71 

Values of Pathname Components 66 
* :wlld pathname component specifier 113 

Pathname Defaulting From the Current Context 59 
Pathname defaults 73, 84 

Sticky pathname defaults 56, 58 
Tailoring Pathname Defaults 55 

Using path name defaults 53 
Pathname Defaults and Merging 73 

Sticky path name defaults example 58 
Center-dot character in TOPS-20 pathname display 110 

Path name examples 53 
Defaulting an Output File Pathname From an Input File 56 

Pathname Functions 83 
Wildcard Pathname Mapping 79 

:pathname-match method of pathname 99 
Path name merging 53 
Pathname Messages: Naming of Files 92 

fs: pathname-pllst function 92 
File attributes as path name properties 64 

Manipulating pathname property lists 92 
Path names 51, 129 

Canonical Types in Path names 77 
Canonical types in UNIX Pathnames 104 

Canonical types in UNIX 4.2 Pathnames 105 
Canonical types in VMS Pathnames 107 

Case in Path names 71 
Circle-X character in TOPS-20 pathnames 110 

Equivalence sign character in ITS pathnames 112 
FEP File System Pathnames 103 

Generic Path names 75 
:generlc-pathname message to pathnames 75 

Host Determination in Pathnames 62 
Interchange case in pathnames 71 

Interning of Path names 64 
ITS Path names 112 

LMFS Pathnames 101 
Logical Path names 113 

MS-DOS Path names 113 
Multics Pathnames 111 

Parsing pathnames 83 
Printing Pathnames 64 

Raw case in pathnames 71 
Relative path names 66 

:relative relative directory specifier syntax in logical path names 113 
:rename message to path names 149 



407 

August 1986 Index 

Right horseshoe character in ITS pathnames 112 
Surface type in path names 77 

TENEX pathnames 110 
TOPS-20 pathnames 110 

TOPS-20 and TENEX Path names 110 
UNIX Pathnames 104 

UNIX 4.2 Pathnames 105 
Using path names 53 

Using prompt-and-road with pathnames 53 
V AXNMS Path names 107 
Wildcard pathnames 79 

:wlld-Inforlors in logical path names 115 
Directory Pathnames and Directory Pathnames as Files 68 

Directory Pathnames and Directory Pathnames as Files 68 
Relative Pathnames: Files 75 

Double-arrow character in logical pathnames for nil 113 
Equivalence sign character in logical pathnames for quoting 113 

Pathnames on Supported Host File Systems 101 
Pathname special variables 73 

Simple Usage of the Pathname System 53 
Converting physical pathname to logical pathname 126 

Converting logical pathname to physical path name 113, 126 
Logical Pathname Translation 115, 117 

Patch file logical pathname translation 123 
Reversible wild pathname translation 117 

Reversible Wildcard Pathname Translation 118 
Wild path name translation 117 

VMS logical pathname translation rules 120 
BABYL pathname type abbreviation 107 

CWARNS pathname type abbreviation 107 
INIT pathname type abbreviation 107 

LISP path name type abbreviation 1 07 
MAIL pathname type abbreviation 107 

MIDAS pathname type abbreviation 107 
OUTPUT pathname type abbreviation 107 

PATCH-DIRECTORY pathname type abbreviation 107 
(PDIR) pathname type abbreviation 107 

PRESS pathname type abbreviation 107 
QFASL pathname type abbreviation 107 

QWABL pathname type abbreviation 107 
TEXT pathname type abbreviation 107 

ULOAD pathname type abbreviation 107 
UNFASL pathname type abbreviation 107 

XMAIL pathname type abbreviation 107 
Translating pathname type field 77 

Standard path name types 107 
Simple pathname usage 53 

Path name wildcard example 56 
Logical Path name Wildcard Syntax 115 
Delta (B P) character 234 

Plus-Minus ( ±) character 234 
(PDIR) pathname type abbreviation 107 
PDP-10 file server 129 
peok-char function 258 

Number of bits per byte 129 
Permanent translation rules 117 

Multiple physical hosts 116 
Splitting Logical Hosts Across Physical Hosts 116 

Translating logical hosts to physical hosts 113 
Converting logical pathname to physical pathname 113,126 

Converting physical pathname to logical pathname 126 



408 

Reference Guide to Streams, Files, and 110 August 1986 

Assignment of RS-232 Signals to Pins 331 
Assignment of RS-232 Signals to Pins in Asynchronous Null Modems 331 

Pixel 19 
:pllst method of pathname 99 
Plural format directive 316 
Plus-Minus (±) character 234 

Console Serial I/O Port 332 
Console serial port is DCE 331 

Bulkhead Serial I/O Ports 333 
Bulkhead serial ports are DTEs 331 

pprlnt function 294 
:preemptable option 276 
Preferred surface type 77 

a prefix 355 
p prefix 355 
£ prefix 355 
).. prefix 355 
7t prefix 355 

:preserve-dates file-opening option 129 
press:hardeopy-press-flle function 25 
press:hardeopy-press-stream function 26 
PRESS pathname type abbreviation 107 
Pretty-printing 329 
prln1 function 293 

zl: prln1-then-space function 293 
prln1-to-strlng function 294 
prine function 294 
prlne-to-strlng function 294 
print function 294 
:prlnt message 47 
:prlnt option for fs:eomplete-pathname 85, 166 
:prlnt option for wlth-open-flle 129 

The :read And :prlnt Stream Operations 47 
*prlnt-abbrevlate-quote* variable 299 
*print-array* variable 299 
*prlnt-array-Iength* variable 299 
*print-base* variable 300 
*prlnt-blt-veetor-Iength* variable 301 
*prlnt-ease* variable 302 
*prlnt-clrcle* variable 302 
Print Control Variables 297 
Printed Representation 287 

Controlling the Printed Representation of an Object 291 
Printed Representation of Arrays That Are Named 

Structures 289 
Printed Representation of Arrays That Are Not Named 

Structures 289 
Printed Representation of Common Lisp Character 

Objects 288 
Printed Representation of Instances 288 
Printed Representation of Miscellaneous Data 

Types 289 
Printed Representation of Strings 288 
Printed Representation of Symbols 288 
Printer 287 

What the Printer Produces 288 
How the Printer Works 287 

*prlnt-escape* variable 303 
Print file 152 
*prlnt-gensym* variable 303 

Effects of Slashification on Printing 287 



August 1986 

409 

Index 

Printing lists 326 
Depth of recursion of printing lists 288 

Printing Path names 64 
sys: prlntlng-random-obJect macro 290 

*prlnt-Iength* variable 298 
*prlnt-Ievel* variable 297 

format: print-list function 326 
sl: print-list function 296 
sl: print-obJect function 296 

Formatted print of function definitions 329 
*prlnt-pretty* variable 303 
*prlnt-pretty-prlnter* variable 304 
*prlnt-radlx* variable 304 

sl: print-readably variable 290 
*prlnt-readably* variable 305 

Imfs: prlnt-salvager-output-tape function 196 
:prlnt-self message 288 
*prlnt-strlng-Iength* variable 305 
:probe disk stream 204 
:probe option for wlth-open-flle 129 

zl: probef function 154 
Front-end Processor 199 

What the Printer Produces 288 
The Input Editor Program Interface 265 

Program source file 155 
Writing Programs That Use Magnetic Tape 347 

Using the Terminal Program with Hosts Connected to the Serial Line 344 
:prompt option 272 
:prompt option to tape:make-stream 347 
prompt-and-read (:pathname :vlslble-default) 

example 55, 56, 58, 59 
Using prompt-and-read with pathnames 53 

Suppress prompting for passwords 154 
Displaying Prompts in the Input Editor 278 

FEP file properties 203, 207 
FEP File Comment Properties 203 

File properties 161, 182, 213 
File attributes as pathname properties 64 

LMFS Properties 182 
:propertles message 45 

FSEdit [Edit Properties] Command 214 
FSEdit [View Properties] Command 213 

[Edit Properties] File System Editor menu item 213 
[New Properties] File System Editor menu Item 213 
[View Properties] File System Editor menu item 213 

:author FEP file property 207 
:author file property 161 

:block-slze file property 161 
:byte-slze file property 161 

:creatlon-date FEP file property 207 
:creatlon-date file property 161 
:dlrectory FEP file property 207 

:dont-delete FEP file property 207 
File property 182 

:Iength FEP file property 207 
:Iength-In-blocks file property 161 
:Iength-In-bytes file property 161 
:not-backed-up file property 161 
:reference-date file property 161 
:truename FEP file property 207 

FSEdit [New Property] Command 214 



410 

Reference Guide to Streams, Files, and VO August 1986 

Q 

R 

Manipulating pathname property lists 92 
Access Control Model: What You Can and Cannot Protect 171 

EIA RS-232 protocol 331 
XONIXOFF protocol parameters 337 

Q 

:put method of sl:serlal-stream 336 
:putprop method of pathname 99 
Putting Data in Compiled Code Files 223 

:qbln canonical type 127 
QF ASL path name type abbreviation 107 

zl: query-Io variable 9 
*query-Io* variable 8 
Quote character 234 
Quote (') macro character 228 

Equivalence sign character in logical pathnames for quoting 113 
QWABL pathname type abbreviation 107 

R 
Radix directive 316 

Read rational number in binary 231 
:raw option for wlth-open-flle 129 
Raw case in pathnames 71 
Raw case representation 71 
:raw-devlce message 71 
:raw-devlce method of path name 93 
:raw-dlrectory message 71 
:raw-dlrectory method of pathname 93 
:raw-name message 71 
:raw-name method of path name 93 
Raw pathname component case 71 
:raw-type message 71 
:raw-type method of pathname 93 

The :read And :prlnt Stream Operations 47 
read function 244 

zl: read function 47,244,287 
:read message 47 
:read operation 47 
:read option for fs:complete-pathname 85, 166 
:read option for wlth-open-flle 129 

zl: read-and-eval function 249 
1s: read-attribute-list function 156, 158 

:read-bp method of sl:lnteractive-stream 285 
read-byte function 257 
:read-bytes message 14 

zl: readch function 257 
read-char function 257 

sys: read-character function 245 
read-char-no-hang function 257 
Read Control Variables 261 
:read-cursorpos message 42 
:read-cursorpos method of 

hardcopy:baslc-hardcopy-stream 20 
read-dellmited-list function 253 
read-dellmited-strlng function 254 

zl: read-dellmlted-string function 255 
Reader 287 

Controlling the reader 261 

Q 

R 



August 1986 

411 

Index 

#- Reader Macro 232 
#0 Reader Macro 232 
#' Reader Macro 230 

#+ Reader Macro 231 
#, Reader Macro 230 
#. Reader Macro 230 
#: Reader Macro 231 
#< Reader Macro 232 
#b Reader Macro 231 

#m Reader Macro 231 
#n Reader Macro 231 
#0 Reader Macro 231 
#q Reader Macro 231 
#r Reader Macro 231 
#x Reader Macro 231 

#\ Or #1 Reader Macro 229 
#/\ Reader Macro 230 

#1 Reader Macro 232 
Reader macro for infix expressions 232 

# reader macros 229 
Sharp-sign Reader Macros 229 

What the Reader Recognizes 227 
How the Reader Recognizes Macro Characters 228 
How the Reader Recognizes Symbols 227 
How the Reader Works 227 

zl: read-expresslon function 246 
zl: readfile function 156 
zl: read-form function 247 
zl: *read-form-completlon-allst* variable 263 
zl: *read-form-completlon-dellmlters* variable 264 
zl: *read-form-edlt-trlvlal-errors-p* variable 263 

sys: read-for-top-Ievel function 246 
:read-frame method of sl:serlal-hdlc-mlxin 344 
read-from-strlng function 259 

zl: read-from-string function 260 
Reading characters from an input stream 38 
Reading file attributes 158 
Reading function to use input editor 270 
Reading serial 1/0 parameters 335 
:read-Input-buffer message 43 
read-line function 249 

zl: readllne function 249 
read-llne-no-echo function 251 

zl: readllne-no-echo function 252 
zl: readllne-or-nll function 251 

read-line-trim function 250 
zl: readllne-trim function 250 
zl: readllst function 261 

Read-locked 208 
zl: read-or-character function 249 

read-or-end function 248 
Streams that read or write magnetic tape 347 

:read-pointer message 43 
zl: read-preserve-dellmlters variable 263 

read-preservlng-whitespace function 256 
Read rational number in binary 231 

sl: read-recursive function 228 
*read-suppress* variable 261 
Readtable 235 

Common Lisp readtable 228 
Manipulating the readtable 235 



412 

Reference Guide to Streams, Files, and 110 August 1986 

The Readtable 235 
zl: readtable variable 235 

*readtable* variable 235 
Readtable Functions for Maclisp Compatibility 241 
readtablep function 235 

Functions That Create New Readtables 236 
Read-time conditionalization facility 231 

$ character do not reap file flag 216 
What the Reader Recognizes 227 
How the Reader Recognizes Macro Characters 228 
How the Reader Recognizes Symbols 227 

:record-Iength option to tape:make-stream 347 
Free record map 192 
Free Records 192 
Lost records 192 

Records in use 192 
:record-status message to input tape streams 350 

Depth of recursion of printing lists 288 
:reel option to tape:make-stream 347 
:reference-date file property 161 

Hardcopy Streams Reference Information 25 
:relatlve pathname component 66 
Relative branch format directive 315 

:relative relative directory specifier syntax in logical 
path names 113 

Translate relative file block number into disk address 205 
Relative pathnames 66 
Relative Pathnames: Files 75 
:relative relative directory specifier syntax in logical 

pathnames 113 
fs: *remember-passwords* variable 154 

Remote file servers 129 
Remove Password Command 177 
:remprop method of pathname 99 
:rename message 45 
:rename message to pathnames 149 
:rename message to streams 149 

FSEdit [Rename] Command 213 
zl: renamef function 149 

Rename file 149 
Rename File command 209 
Rename File (m-X) Zmacs command 79 
[Rename] File System Editor menu item 213 

Imfs: rename-local-flJe-tool function 103 
Renaming LMFS files 103 
Repatriating files 194 
:replace-Input method of sl:lnteractlve-stream 285 
:report-stream option for zl:copyf 152 

Character representation 355 
Interchange case representation 71 

Native case representation 71 
Printed Representation 287 

Raw case representation 71 
Controlling the Printed Representation of an Object 291 

Printed Representation of Arrays That Are Named 
Structures 289 

Printed Representation of Arrays That Are Not Named 
Structures 289 

Octal representation of characters 355 
Printed Representation of Common Lisp Character 

Objects 288 



413 

August 1986 Index 

Printed Representation of Instances 288 
Printed Representation of Miscellaneous Data Types 289 
Printed Representation of Strings 288 
Printed Representation of Symbols 288 

:reprompt option 272 
:request-to-send serial I/O parameter 337 
:rescannlng-p method of sl:lnteractive-stream 284 
:reset message 335 
Resume character 234 
Return character 234, 355 

Carriage return character 355 
Values Returned 85, 167 

Carriage return format directive 314 
Reversible Wildcard Pathname Translation 118 
Reversible wild pathname translation 117 
:rewlnd message to tape streams 350 
Right horseshoe character in ITS path names 112 
Roman-I character 234 
Roman-II character 234 
Roman-III character 234 
Roman-IV character 234 
Roman numeral format directive 316 

Creating More Room on the Local Disk 219 
[Tree Edit Root] File System Maintenance menu item 211 

EIA RS-232 protocol 331 
Assignment of RS-232 Signals to Pins 331 
Assignment of RS-232 Signals to Pins in Asynchronous Null 

Modems 331 
Rubout character 234 

sys: rubout-handler variable 267 
Disable special treatment of Rubout in ASCII files 129 

Default translation rule 117 
Defining a Translation Rule 119 

fs:patch-file Translation Rule 123 
:new-pathname Translation Rule 120 

:slte-directory Translation Rule 122 
:tops20-heuristicate-directory Translation Rule 121 

:translate-wild Translation Rule 119 
:unlx-font Translation Rule 122 

:unlx-mlcrocode Translation Rule 121 
:unlx-type-and-verslon Translation Rule 122 

:vms-font Translation Rule 120 
:vms-heurlsticate Translation Rule 120 

:vms-heurlsticate-dlrectory Translation Rule 120 
:vms-heurlsticate-name Translation Rule 120 

:vms-mlcrocode Translation Rule 121 
:vms-new-pathname Translation Rule 120 

Global translation rules 117 
Permanent translation rules 117 

Site translation rules 117 
Supplied translation rules 117 

Translation Rules 116 
VMS logical pathname translation rules 120 

Rules for Successful Completion 88, 169 
Run-example with Simple Defaulting 54, 55 



414 

Reference Guide to Streams, Files, and liD August 1986 

s s 
Salvager 192, 194 

Using the Salvager 194 
What the Salvager Does 197 

Flashing the screen 42 
Security 170,171,173,174,176,177,179,180 
SELECT F command 191 

FSEdit [Selective Open] Command 215 

s 

[Selective Open] File System Editor menu item 213 
Semicolon (;) macro character 228 
:send-If-handles message 35 

Page separator character 355 
Page separator format directive 315 

:read-frame method of sl: serlal-hdlc-mlxln 344 
:write-frame method of sl: serlal-hdlc-mlxln 344 

sl: serlal-hdlc-stream flavor 344 
Buffered serial 110 335 

Hardware Description for Serial lio 331 
HDLC Serial 110 344 

Introduction to Serial 110 331 
Notes on Serial 110 343 

Parameters for Serial 110 337 
Simple Examples: Serial 110 341 
Troubleshooting: Serial 110 342 

The Serial 110 Facility 331 
Overview of Serial 1/0 Hardware 331 

:ascll-characters serial 110 parameter 337 
:baud serial 110 parameter 337 

:carrler-detect serial 110 parameter 337 
:check-framlng-errors serial 110 parameter 337 

:check-over-run-errors serial 110 parameter 337 
:check-parlty-errors serial 110 parameter 337 

:clear-to-send serial 1/0 parameter 337 
:data-termlnal-ready serial 110 parameter 337 

:flavor serial 110 parameter 337 
:force-output serial 1/0 parameter 335, 337 

:generate-xon-xoff serial 110 parameter 337 
:input-error-character serial 110 parameter 337 
:input-xoff-character serial 110 parameter 337 
:input-xon-character serial 1/0 parameter 337 

:mode serial 110 parameter 337 
:number-of-data-blts serial 110 parameter 337 
:number-of-stop-blts serial 110 parameter 337 

:output-xoff-character serial 110 parameter 337 
:output-xon-character serial 110 parameter 337 

:parlty serial 110 parameter 337 
:request-to-send serial 110 parameter 337 

:unlt serial 110 parameter 337 
:xon-xoff-protocol serial 110 parameter 337 

Reading serial 110 parameters 335 
Setting serial 110 parameters 335 

Console Serial 110 Port 332 
Bulkhead Serial 1/0 Ports 333 

Creating a serial 110 stream 335 
The Serial 110 Stream 335 
Using the Terminal Program with Hosts Connected to the 

Serial Line 344 
Console serial port is DCE 331 

Bulkhead serial ports are DTEs 331 
:get method of sl: serial-stream 336 
:put method of sl: serial-stream 336 



August 1986 

415 

Index 

Input operations on serial streams 335 
Output operations on serial streams 335 

Configuring a File Server 173 
PDP-10 file server 129 

The File Server Activity 174 
File server computer 51 

Remote file servers 129 
TOPS-20 file servers 129 

ASCII character set 335,337 
The Character Set 355 

set-character-translatlon function 237 
:set-cursorpos message 43 
:set-cursorpos method of 

hardcopy:baslc-hardcopy-stream 20 
fs: set-default-pathname 58 
fs: set-default-pathname function 89 

set-dlspatch-macro-character function 238 
:set-Input-Interrupt-functlon message 47 

fs: set-Ioglcal-pathname-host 115, 116 
fs: set-logical-path name-host function 124 

set-macro-character function 239 
:set-offllne message to tape streams 350 
Set Password Command 176 
:set-polnter 13 
:set-polnter message 43 

Data sets 331 
:macro argument to zl: setsyntax 241 

nil argument to zl: setsyntax 241 
:slngle ak-gument to zl: setsyntax 241 

:spllclng argument to zl: setsyntax 241 
zl: setsyntax function 241 
zl: set-syntax-#-macro-char function 229,241 

set-syntax-from-char function 236 
zl: set-syntax-from-char function 237 
zl: set-syntax-from-descrlptlon function 237 
zl: set-syntax-macro-char function 228, 240 
zl: setsyntax-sharp-macro function 242 

Setting serial I/O parameters 335 
Character set translation 15 

Disable all character set translation inASCIl files 129 
Effect of Character Set Translation on Direct Access File Streams 15 

fs: setup-file-server function 180 
:share symbol in :If-Iocked option for open 204 
Shared file system 51 
Sharp-sign (#) macro character 228 
Sharp-sign Reader Macros 229 
Show FEP Directory Command 203 
:show-Ilne method of 

hardcopy:baslc-hardcopy-stream 20 
:show-rectangle method of 

hardcopy:baslc-hardcopy-stream 20 
sl:alphabetlc syntax description 237 
sl:clrclecross syntax description 237 
sl :coroutlne-bldlrectlonal-stream flavor 13 
sl :coroutlne-Input-stream flavor 13 
sl:coroutlne-output-stream flavor 13 
sl:doublequote syntax description 237 
sl:lnltial-readtable variable 235 
sl:lnstall-mlcrocode function 208 

:flnlsh-typeout method of sl :Interactlve-stream 284 
:force-rescan method of sl :Interactlve-stream 284 



416 

Reference Guide to Streams, Files, and 110 August 1986 

:Input-edltor method of sl:lnteractive-stream 283 
:nolse-strlng-out method of sl:lnteractive-stream 285 

:read-bp method of sl:lnteractive-stream 285 
:replace-Input method of sl:lnteractlve-stream 285 
:rescannlng-p method of sl:lnteractlve-stream 284 
:start-typeout method of sl:lnteractive-stream 283 

sl :make-coroutlne-Input-stream function 12 
sl :make-coroutlne-output-stream function 12 

Modem Control Parameters To sl:make-serlal-stream 339 
sl:make-serlal-stream function 336 
sl:print-list function 296 
sl:prlnt-obJect function 296 
sl:prlnt-readably variable 290 
sl:read-recurslve function 228 

:read-frame method of sl:serlal-hdlc-mlxln 344 
:wrlte-frame method of sl:serlal-hdlc-mlxln 344 

sl:serlal-hdlc-stream flavor 344 
:get method of sl :serlal-stream 336 
:put method of sl :serlal-stream 336 

sl:slngle syntax description 237 
sl:slash syntax description 237 
sl:*typeout-default* variable 284 
sl:vertlcalbar syntax description 237 
sl:whltespace syntax description 237 

Mouse signals 355 
Assignment of RS-232 Signals to Pins 331 
Assignment of RS-232 Signals to Pins in Asynchronous Null Modems 331 

Equivalence sign character In ITS pathnames 112 
Equivalence sign character In logical pathnames for quoting 113 

Run-example with Simple Defaulting 54, 55 
Simple Examples: Serial I/O 341 
Simple pathname usage 53 
Simple Usage of the Pathname System 53 
:slngle argument to zl:setsyntax 241 
:slngle option for wlth-open-flle 129 

sl: single syntax description 237 
Single-character symbol 237 
:slte-dlrectory Translation Rule 122 
Site directory translation 122 
Site translation rules 117 
:slze method of 

hardcopy:baslc-hardcopy-stream 21 
Increase size of FEP file 204 

:skip-file message to tape streams 350 
sl: slash syntax description 237 

Slashlfication format directive 311 
Effects of Slashlfication on Printing 287 

Slashlfication-related output functions 307 
:sorted option for fs:dlrectory-list 161 

Program source file 155 
Adding a Spare World Load as LMFS File Space 210 

Allocating Extra Paging Space 220 
Extra paging space 209 

Swap space 209 
Space character 234 
Space format directive 316 

Adding a Spare World Load as LMFS File Space 210 
Using a Spare World Load for Paging 209 

SP character 234 
Special Character Names 234 
Special characters 234 



August 1986 

417 

Index 

Special Defaulting of the Name 87, 168 
Special Defaulting of the Type 87,168 

format:defformat special form 325 
fs:deflne-canonlcal-type special form 90 

grlndef special form 329 
sys:wlth-open-flle-search special form 141 

wlth-lnput-edltlng special form 270 
wlth-Input-edltlng-optlons special form 267 

wlth-lnput-edltlng-optlons-lf special form 268 
wlth-lnput-from-strlng special form 137 

wlth-open-flle special form 135 
wlth-open-flle-case special form 135 

wlth-open-flle-case-If special form 136 
wlth-open-stream special form 136, 335 

wlth-open-stream-case special form 136 
wlth-open-stream-case-If special form 136 

wlth-output-to-strlng special form 139 
wlth-standard-Io-envlronment special form 136 

zl :wlth-lnput-from-strlng special form 137 
zl:wlth-output-to-strlng special form 139 

Special function keys 355 
Special-Purpose Stream Operations 41 

Basic Special-Purpose Stream Operations 41 
Special-Purpose Stream Operations for Buffered 

Input Streams 43 
Special-Purpose Stream Operations for Buffered 

Output Streams 44 
Special-Purpose Stream Operations for Files 43 

Disable special treatment of Rubout in ASCII files 129 
Pathname special variables 73 

File specification 77 
Input stream specification 243 

Undelete specified file 151 
* :wlld pathname component specifier 113 

< :oldest version specifier 113 
< :oldest version specifier 112 

> :newest version specifier 113 
> :newest version specifier 112 

:relatlve relative directory specifier syntax In logical pathnames 113 
:spllclng argument to zl :setsyntax 241 
Splitting Logical Hosts Across Physical Hosts 116 

Keyword Options for the Spooler 27 
Keyword Options for Formatting and Spooling 27 

Standard Common Lisp Streams 7 
zl: standard-Input variable 8 

*standard-Input* variable 7 
zl: standard-output variable 8 

*standard-output* variable 7 
Standard pathname types 107 
Standard Zetallsp Streams 8 
:start-open-auxlllary-stream message 46 
:start-typeout method of sl:lnteractive-stream 283 
Status character 234 
Sticky pathname defaults 56, 58 
Sticky pathname defaults example 58 
Stop-Output character 234 

... [ StrO ... ;Str1 ... ; ...... ;Strn ... ] format Directive 318 
"'[StrO"'; Str1 ... ; ...... ;Stm ... ] format Directive 318 

Stream 8, 9, 10, 139 
:block disk stream 204 

Buffered output stream 44 



418 

Reference Guide to Streams, Files, and 110 August 1986 

Creating a serial 1/0 stream 335 
Error message stream 9 

Example of a Hardcopy Stream 22 
:Input disk stream 204 

Making Your Own Stream 29 
:output disk stream 204 
:probe disk stream 204 

Reading characters from an input stream 38 
Synonym stream 30 

The Serial 1/0 Stream 335 
Tokens in the input stream 227 

stream-copy-untll-eof function 306 
Stream default handler 5 

sys: stream-default-handler function 32 
stream-element-type function 33 

Output From Hardcopy Stream Example 24 
General Stream Functions 33 

Stream input 38 
Stream Messages 14 

Block disk stream messages 206 
Disk stream messages 204 

The Hardcopy Stream Model 16 
:tyl stream operation 129 

Stream Operations 29 
Advanced General-Purpose Stream Operations 36 

Basic General-Purpose Stream Operations 33 
Basic Special-Purpose Stream Operations 41 

File Stream Operations 44 
General-Purpose Stream Operations 33 

Network Stream Operations 46 
Special-Purpose Stream Operations 41 

The :read And :prlnt Stream Operations 47 
Special-Purpose Stream Operations for Buffered Input Streams 43 
Special-Purpose Stream Operations for Buffered Output Streams 44 
Special-Purpose Stream Operations for Flies 43 

streamp function 33 
Streams 3,331 

:await-rewlnd message to tape streams 350 
Bidirectional disk streams 204, 206 
Bidirectional file streams 13 

Block Disk Streams 206 
Block mode disk streams 199 

:bot-p message to tape streams 350 
:check-ready message to tape streams 350 

:clear-eof message to input tape streams 350 
:clear-error message to tape streams 350 

:close message to tape streams 350 
Coroutine Streams 10 

Direct Access Bidirectional File Streams 15 
Direct Access File Streams 13 

Direct Access Output File Streams 14 
:dlscard-current-record message to input tape streams 350 

Disk streams 199 
Effect of Character Set Translation on Direct Access File 

Streams 15 
End-of-file on input streams 243 

:force-output message to output tape streams 350 
Functions for Creating Coroutine Streams 12 

Hardcopy Streams 16 
:host-name message to tape streams 350 

Input and Output Disk Streams 206 



August 1986 

Input Editor Messages to Interactive Streams 283 
Input Functions That Work on Streams 244 

Input operations on serial streams 335 
Interactive streams 243, 265 

Introduction to Streams 5 
Making Hardcopy Streams 17 
Messages to file streams 44 

Messages to Tape Streams 350 
Operating on Disk Streams 204 

Output operations on serial streams 335 
:record-status message to input tape streams 350 

:rename message to streams 149 
:rewlnd message to tape streams 350 

:set-offllne message to tape streams 350 
:sklp-flle message to tape streams 350 

Special-Purpose Stream Operations for Buffered Input Streams 43 

419 

Index 

Special-Purpose Stream Operations for Buffered Output 
Streams 44 

Standard Common Lisp Streams 7 
Standard Zetalisp Streams 8 

Synonym streams 8 
Tape streams 347 

Types of Streams 7 
Using Hardcopy Streams 19 

:wrlte-eof message to output tape streams 350 
:write-error-status message to output tape streams 350 

Input stream specification 243 
Hardcopy Streams Reference Information 25 

Streams that read or write magnetic tape 347 
Output streams to buffered asynchronous devices 41, 46 

:strlng-for-dlrectory method of pathname 98 
:strlng-for-dlred method of pathname 98 
:strlng-for-edltor method of pathname 98 
:strlng-for-host method of path name 98 
:strlng-for-prlntlng method of pathname 98 
:strlng-for-whollne method of pathname 98 
:strlng-In message 38 

Testing :strlng-In operation 34 
:strlng-Iength method of 

hardcopy:baslc-hardcopy-stream 22 
:string-line-in message 40 

Testing :string-line-in operation 34 
:strlng-out message 38 

Printed Representation of Strings 288 
... [5trO ... ;5tr1 ... ; ...... ; 5trn ... ] format Directive 318 

Printed Representation of Arrays That Are Named Structures 289 
Printed Representation of Arrays That Are Not Named Structures 289 

:submlt option to open 141 
Rules for Successful Completion 88, 169 

:super-Image option for with-open-file 129 
:supersede symbol In :If-exlsts option for open 204 
Supplied translation rules 117 
Supported Hardcopy Devices 16 

Pathnames on Supported Host File Systems 101 
:suppress-notlflca~'ons option 277 
Suppress prompting for passwords 154 

Default surface type 77 
Preferred surface type 77 

Surface type in pathnames 77 
Swap space 209 

Single-character symbol 237 



420 

Reference Guide to Streams, Files, and 110 August 1986 

:create symbol in :If-does-not-exlst option for open 204 
:error symbol in :If-does-not-exlst option for open 204 

nil symbol in :If-does-not-exlst option for open 204 
:error symbol in :If-exlsts option for open 204 

:new-verslon symbol in :If-exlsts option for open 204 
nil symbol in :If-exlsts option for open 204 

:overwrlte symbol in :If-exlsts option for open 204 
:supersede symbol in :If-exlsts option for open 204 

:error symbol in :If-Iocked option for open 204 
:share symbol in :If-Iocked option for open 204 

How the Reader Recognizes Symbols 227 
Printed Representation of Symbols 288 

Uninterned symbols 231 
Symbols in compiled code files 223 

#: symbol-zl-user:syn-stream 30 
Synonym stream 30 
Synonym streams 8 

#:symbol-zl-user: syn-stream 30 
#:zl-user: syn-stream 30 

Functions That Change Character Syntax 236 
Logical Pathname Wildcard Syntax 115 

macro syntax description 237 
sl:alphabetic syntax description 237 

sl :clrclecross syntax description 237 
si:doublequote syntax description 237 

sl:single syntax description 237 
sl :slash syntax description 237 

sl:vertlcalbar syntax description 237 
sl:whltespace syntax description 237 

zl:break syntax description 237 
Syntax file attribute 156 

:relative relative directory specifier syntax in logical pathnames 113 
sys:dump-forms-to-flle function 223 
sys:flatc function 308 
sys:flatslze function 308 
sys:make-coroutlne-bldlrectlonal-stream 

function 12 
sys:null-stream function 33 
sys:prlntlng-random-obJect macro 290 
sys:read-character function 245 
sys:read-for-top-Ievel function 246 
sys:rubout-handler variable 267 
sys:stream-default-handler function 32 
sys:wlth-Indentatlon macro 327 
sys:with-open-file-search special form 141 
SYS logical host 113 
Sys: I-ucode; logical directory 208 

FEP File System 199 
Introduction to the 1/0 System 1 

Lisp Machine File System 181 
Shared file system 51 

Simple Usage of the Pathname System 53 
System character 234 

Entering the File System Editor 211 
File System Editor 211 

Using the File System Editor 212 
File system editor directory display 216 

[Close] File System Editor menu item 213 
[Create Inferior Directory] File System Editor menu item 213 

[Create Link] File System Editor menu item 213 
[Oecache] File System Editor menu item 213 



421 

August 1986 Index 

T 

[Delete] File System Editor menu item 213 
[Delete (immediate)] File System Editor menu item 213 

[Edit] File System Editor menu item 213 
[Edit Properties; File System Editor menu item 213 

[Expunge] File System Editor menu item 213 
[Hardcopy] File System Editor menu item 213 

[Link Transparencies] File System Editor menu item 213 
[Load] File System Editor menu item 213 

[New Properties] File System Editor menu item 213 
[Open] File System Editor menu item 213 

[Rename] File System Editor menu item 213 
[Selective Open] File System Editor menu item 213 

[Undelete] File System Editor menu Item 213 
[View] File System Editor menu item 213 

[View Properties] File System Editor menu item 213 
[Wildcard Delete] File System Editor menu item 213 

[Tree Edit Any] File System Maintenance menu item 211 
[Tree Edit home dir] File System Maintenance menu item 211 

[Tree Edit Root] File System Maintenance menu item 211 
File system partition table 191 

FEP File System Pathnames 103 
Pathnames on Supported Host File Systems 101 

:system-type method of pathname 95 

T 
Tab character 234,355 

File system partition table 191 
Tabulation format directive 316 
Tailoring Pathname Defaults 55 

Streams that read or write magnetic tape 347 
Writing Programs That Use Magnetic Tape 347 

tape:end-of-tape flavor 353 
:denslty option to tape:make-stream 347 

:dlrectlon option to tape:make-stream 347 
:host option to tape:make-stream 347 

:Input-stream-mode option to tape:make-stream 347 
:Iock-reason option to tape:make-stream 347 

:mlnlmum-record-Iength option to tape:make-stream 347 
:mlnlmum-record-Iength-granularity option to tape:make-stream 347 

:no-bot-prompt option to tape:make-stream 347 
:norewlnd option to tape:make-stream 347 
:pad-char option to tape:make-stream 347 

:prompt option to tape:make-stream 347 
:record-Iength option to tape:make-stream 347 

:reel option to tape:make-stream 347 
:unlt option to tape:make-stream 347 

tape:make-stream function 347 
The tape:make-stream Function 347 

tape:mount-error flavor 353 
tape:tape-devlce-error flavor 353 
tape:tape-error flavor 353 

tape: tape-devlce-error flavor 353 
tape: tape-error flavor 353 

Tape Error Flavors 353 
Tape streams 347 

:awalt-rewlnd message to tape streams 350 
:bot-p message to tape streams 350 

:check-ready message to tape streams 350 
:clear-eof message to input tape streams 350 

:clear-error message to tape streams 350 

T 



422 

Reference Guide to Streams, Files, and VO August 1986 

:close message to tape streams 350 
:dlscard-current-record message to input tape streams 350 

:force-output message to output tape streams 350 
:host-name message to tape streams 350 

Messages to Tape Streams 350 
:record-status message to input tape streams 350 

:rewlnd message to tape streams 350 
:set-offllne message to tape streams 350 

:sklp-file message to tape streams 350 
:wrlte-eof message to output tape streams 350 

:wrlte-error-status message to output tape streams 350 
:temporary option for wlth-open-flle 129 

Version TENEX pathname component 110 
TENEX pathnames 110 

TOPS-20 and TENEX Pathnames 110 
Null terminal 332 

Terminal character 234 
Data Terminal Equipment 331 

Editing terminal input 265 
zl: termlnal-Io variable 9 

*termlnal-Io* variable 7 
Using the Terminal Program with Hosts Connected to the Serial 

Line 344 
Data terminals 331 

Data Circuit Terminating Equipment 331 
terpri function 296 

zl: terprl function 297 
Testing :lIne-ln operation 34 
Testing :strlng-In operation 34 
Testing :string-line-in operation 34 

Loading text files 156 
TEXT pathname type abbreviation 1 07 

-@ T format Directive 316 
Printed Representation of Arrays That Are Named Structures 289 
Printed Representation of Arrays That Are Not Named Structures 289 

Functions That Change Characters Into Macro Characters 238 
Functions That Change Character Syntax 236 
Functions That Create New Readtables 236 

Streams that read or write magnetic tape 347 
Writing Programs That Use Magnetic Tape 347 

Input Functions That Work on Streams 244 
Tilde format directive 315 
Time format directive 324 

Date and time format directive 324 
Time Interval format directive 324 
Time-of-day format directive 324 
Tokens in the input stream 227 

:error Option To open 132,145 
TOPS-20 127 
TOPS-20 and TENEX Pathnames 110 
TOPS-20 file servers 129 
:tops20-heurlstlcate-dlrectory Translation Rule 121 
TOPS-20 Inlt file 110 

Directory TOPS-20 pathname component 11 0 
Version TOPS-20 pathname component 110 

Center-dot character in TOPS-20 pathname display 110 
TOPS-20 pathnames 110 

Circle-X character in TOPS-20 pathnames 110 
Modem Control Parameters To sl:make-serlal-stream 339 

zl: trace-output variable 9 
*trace-output* variable 8 



August 1986 

:translated-pathname method of 
fs:loglcal-pathname 126 

Translate relative file block number Into disk 
address 205 

423 

Index 

:translate-wlld Translation Rule 119 
:translate-wlld-pathname message to 

fs:pathname 119 
:lranslate-wlld-pathname message to pathname 

example 56 
:translate-wlld-pathname method of path name 101 
:translate-wild-pathname-reverslble message to 

fs:pathname 119 
Translating logical hosts to physical hosts 113 
Translating pathname type field 77 

Character set translation 15 
Logical Pathname Translation 115, 117 

Patch file logical pathname translation 123 
Reversible Wildcard Pathname Translation 118 

Reversible wild pathname translation 117 
Site directory translation 122 

Wild path name translation 117 
Cross-host translation functions 71 

Translation heuristics for VAXNMS 116 
Disable all character set translation in ASCII files 129 

Effect of Character Set Translation on Direct Access File Streams 15 
Default translation rule 117 

Defining a Translation Rule 119 
fs:patch-flle Translation Rule 123 

:new-pathname Translation Rule 120 
:slte-dlrectory Translation Rule 122 

:tops20-heurlsticate-dlrectory Translation Rule 121 
:translate-wild Translation Rule 119 

:unlx-font Translation Rule 122 
:unlx-mlcrocode Translation Rule 121 

:unlx-type-and-verslon Translation Rule 122 
:vms-font Translation Rule 120 

:vms-heurlstlcate Translation Rule 120 
:vms-heurlsticate-dlrectory Translation Rule 120 

:vms-heurlstlcate-name Translation Rule 120 
:vms-mlcrocode Translation Rule 121 

:vms-new-pathname Translation Rule 120 
Translation Rules 116 

Global translation rules 117 
Permanent translation rules 117 

Site translation rules 117 
Supplied translation rules 117 

VMS logical pathname translation rules 120 
FSEdit [Unk Transparencies] Command 215 

[Unk Transparencies] File System Editor menu item 213 
Disable special treatment of Rubout in ASCII files 129 

[Tree Edit Any] File System Maintenance menu 
. item 211 

[Tree Edit home dir] File System Maintenance menu 
item 211 

[Tree Edit Root] File System Maintenance menu 
item 211 

Troubleshooting: Serial I/O 342 
:truename FEP file property 207 
:truename message 44 
True name of file 154 

zl: tyi function 246 



424 

Reference Guide to Streams, Files, and 110 . August 1986 

:tyl message 34 
:tyl stream operation 129 
:tyl-no-hang message 42, 335 

zl: tylpeek function 258 
:tylpeek message 37 

zl: tyo function 296 
:tyo message 33 

>DIR FEP file type 201 
:bln canonical type 127 

Default type 73 
Default surface type 77 

FEP FEP file type 201 
FILE FEP file type 201 

FLOD FEP file type 201 
FSPT FEP file type 201 
:lIsp canonical type 127 
LOAD FEP file type 201 

MIC FEP file type 201 
PAGE FEP file type 201 

Preferred surface type 77 
:qbln canonical type 127 

Special Defaulting of the Type 87, 168 
:type message 71 
:type method of pathname 93 

BABYL pathname type abbreviation 107 
CWARNS pathname type abbreviation 107 

INIT pathname type abbreviation 107 
LISP pathname type abbreviation 107 
MAIL pathname type abbreviation 107 

MIDAS pathname type abbreviation 107 
OUTPUT pathname type abbreviation 107 

PATCH-DIRECTORY pathname type abbreviation 107 
(PDIR) pathname type abbreviation 107 

PRESS pathname type abbreviation 107 
OFASL pathname type abbreviation 107 

OWABL pathname type abbreviation 107 
TEXT pathname type abbreviation 107 

ULOAD pathname type abbreviation 107 
UNFASL pathname type abbreviation 107 

XMAIL pathname type abbreviation 107 
Translating path name type field 77 

Type generic pathname component 75 
Surface type in pathnames 77 

Type ITS pathname component 112 
sl: *typeout-default* variable 284 

FEP File Types 201 
Printed Representation of Miscellaneous Data Types 289 

Standard path name types 107 
Correspondence of Canonical Types and Editor Modes 79 

Canonical types example 55 
:types-for-canonlcal-type method of pathname 96 

Canonical Types in Pathnames 77 
Canonical types in UNIX 4.2 Pathnames 105 
Canonical types In UNIX Pathnames 104 
Canonical types in VMS Pathnames 107 

Types of Streams 7 
:type-wlld-p method of pathname 100 



425 

August 1986 Index 

u u U 
ULOAD path name type abbreviation 107 

FSEdit [Undelete] Command 213 
zl: undeletef function 151 

undelete-file function 151 
[Undelete] File System Editor menu item 213 
Undelete specified file 151 
UNFASL pathname type abbreviation 107 
Unlnterned symbols 231 
:unlt option to tape:make-stream 347 
:unlt serial I/O parameter 337 
UNIX 127 
UNIX 4.2 Pathnames 105 

Canonical types in UNIX 4.2 Pathnames 105 
:unlx-font Translation Rule 122 
:unlx-mlcrocode Translation Rule 121 

fs: *unlx-mlcrocode-translatlon-allst* 121 
UNIX pathname abbreviations 107 
UNIX Pathnames 104 

Canonical types in UNIX Pathnames 104 
:unlx-type-and-verslon Translation Rule 122 
unread-char function 257 
:un-relatlve-coordlnates method of 

hardcopy:baslc-hardcopy-stream 21 
:unspeclflc pathname component 66, 97 
:untyl message 34 
:untyo message 42 
:untyo-mark message 42 
:up path name component 66 
Up-Arrow (i) character 234 

! character file not backed up flag 216 
Uppercase in pathname components 71 

Simple pathname usage 53 
Simple Usage of the Pathname System 53 

USART chip 331 
Getting a Filename From the User 53 

User-defined file attributes 156 
User-function format directive 324 

fs: user-homedlr function 90 

V V V 
List valid init-options for flavor 151 

Values of Pathname Components 66 
Values Returned 85, 167 

dbg:*debug-Io-overrlde* variable 10 
*debug-Io* variable 8 

*error-output* variable 7 
fs:*default-pathname-defaults* variable 74 

fs:*file-type-mode-allst* variable 79 
fs:*lts-unlnteresting-types* variable 112 

fs:*known-types* variable 75 
fs:load-pathname-defaults variable 75 
fs:*remember-passwords* variable 154 

*prlnt-abbrevlate-quote* variable 299 
*prlnt-array* variable 299 

*prlnt-array-Iength* variable 299 
*p rl nt-base * variable 300 

*prlnt-blt-vector-Iength* variable 301 
*prlnt-case* variable 302 



426 

Reference Guide to Streams, Files, and liD August 1986 

*prlnt-clrcle* variable 302 
*print-escape* variable 303 

*prlnt-gensym* variable 303 
*prlnt-Iength* variable 298 

*prlnt-Ievel* variable 297 
*prlnt-pretty* variable 303 

*print-pretty-prlnter* variable 304 
*prlnt-radlx* variable 304 

*prlnt-readably* ve.riable 305 
*prlnt-string-Iength* variable 305 

*query-Io* variable 8 
*read-suppress* variable 261 

*readtable* variable 235 
si:lnltlal-readtable variable 235 

sl:prlnt-readably variable 290 
sl:*typeout-default* variable 284 

*standard-Input* variable 7 
*standard-output* variable 7 

sys:rubout-handler variable 267 
*termlnal-Io* variable 7 

*trace-output* variable 8 
zl:debug-Io variable 9 

zl:error-output variable 9 
zl:query-Io variable 9 

zl:*read-form-compleUon-alist* variable 263 
zl :*read-form-completion-dellmiters* variable 264 

zl :*read-form-edit-trlvlal-errors-p* variable 263 
zl:read-preserve-delimlters variable 263 

zl:readtable variable 235 
zl:standard-Input variable 8 

zl :standard-output variable 8 
zl:termlnal-Io variable 9 

zl:trace-output variable 9 
Pathname special variables 73 

Print Control Variables 297 
Read Control Variables 261 

Translation heuristics for VAXNMS 116 
VAXNMS pathname abbreviations 107 
VAXNMS Pathnames 107 

Default version 73 
:verslon method of path name 93 
Version generic pathname component 75 
Version ITS pathname component 112 

LMFS Deletion, Expunging, and Versions 187 
< :oldest version specifier 112 

< :oldest version specifier 113 
> :newest version specifier 113 
> :newest version specifier 112 

Version TENEX pathname component 110 
Version TOPS-20 pathname component 110 
:verslon-wlld-p method of path name 100 

sl: vertlcalbar syntax description 237 
FSEdit [View] Command 214 

zl: vlewf function 152 
[View] File System Editor menu item 213 

FSEdit [View Properties] Command 213 
[View Properties] File System Editor menu item 213 

prompt-and-read (:pathname :vlslble-default) example 55, 56, 58, 59 
VMS 127 
:vms-font Translation Rule 120 
:vms-heurlstlcate Translation Rule 120 



August 1986 

w 

427 

Index 

:vms-heurlstlcate-dlrectory Translation Rule 120 
:vms-heurlstlcate-nama Translation Rule 120 
VMS logical pathname translation rules 120 
:vms-mlcrocode Translation Rule 121 

fs: *vms-mlcrocoda-translatlon-allst* 121 
:vms-new-pathname Translation Rule 120 

Canonical types in VMS Pathnames 107 

W 
What the Printer Produces 288 
What the Reader Recognizes 227 
What the Salvager Does 197 

Access Control Model: What You Can and Cannot Protect 171 
:whlch-operatlons message 35 

sl: whltespace syntax description 237 
:wlld keyword 79 
:wlld pathname component 66 

* :wlld pathname component specifier 113 
FSEdit [Wildcard Delete] Command 213 

w 

[Wildcard Delete] File System Editor menu item 213 
Wildcard Directory Mapping 81 

Pathname wildcard example 56 
Wildcard Pathname Mapping 79 
Wildcard pathnames 79 

Reversible Wildcard Pathname Translation 118 
Wildcards 115 

Logical Path name Wildcard Syntax 115 
:wild-Inferiors in logical pathnames 115 
:wild-inferiors pathname component 66 
:wild-p example 56 
:wild-p method of path name 100 
Wild pathname translation 117 

Reversible wild pathname translation 117 
sys: with-Indentation macro 327 

wlth-Input-edlting special form 270 
with-Input-edlting-optlons special form 267 
wlth-Input-adlting-optlons-If special form 268 
wlth-Input-from-strlng special form 137 

zl: wlth-input-from-string special form 137 
:ascll option for with-opan-fila 129 

:block option for wlth-opan-fila 129 
:byte-size option for wlth-open-fila 129 

:deleted option for wlth-open-fila 129 
:directlon option for wlth-open-fila 129 

:flxnum option for wlth-open-file 129 
:In option for wlth-open-file 129 

:noarror option for wlth-open-fila 129 
:out option for wlth-opan-fila 129 

:prlnt option for wlth-opan-fila 129 
:probe option for wlth-open-fila 129 

:raw option for wlth-open-fila 129 
:raad option for wlth-opan-flla 129 

:slngla option for wlth-opan-fila 129 
:supar-Imaga option for wlth-opan-fila 129 

:tamporary option for wlth-opan-fila 129 
:wrlta option for wlth-opan-fila 129 

wlth-open-flle special form 135 
wlth-open-fila-c&sa special form 135 
wlth-opan-fila-c8sa-lf special form 136 

sys: wlth-opan-fila-saarch special form 141 



428 

Reference Guide to Streams, Files, and I/O August 1986 

x 

y 

z 

wlth-open-stream special form 136, 335 
wlth-open-stream-case special form 136 
wlth-open-stream-case-If special form 136 
wlth-output-to-strlng special form 139 

zl: wlth-output-to-strlng special form 139 
wlth-standard-Io-envlronment special form 136 

Input Functions That Work on Streams 244 
How the Input Editor Works 265 

How the Printer Works 287 
How the Reader Works 227 
Adding a Spare World Load as LMFS File Space 210 

Using a Spare World Load for Paging 209 
write function 293 
:wrlte option for fs:complete-pathname 85, 166 
:write option for wlth-open-file 129 
write-byte function 294 
write-char fUnction 295 
:wrlte-data-map message 205 
:wrlte-eof message to output tape streams 350 
:write-error-status message to output tape 

streams 350 
:wrlte-frame method of sl:serlal-hdlc-mlxin 344 
write-line function 295 
Write-locked 208 

Streams that read or write magnetic tape 347 
write-string function 295 
wrlte-to-strlng function 296 

x 

y 

Writing Programs That Use Magnetic Tape 347 

X= date directory last expunged indicator 216 
XMAIL pathname type abbreviation 107 
XONIXOFF protocol parameters 337 
:xon-xoff-protocol serial I/O parameter 337 

Access Control Model: What You Can and Cannot Protect 171 
Making Your Own Stream 29 

Z 
Standard Zetalisp Streams 8 

zJ:break syntax description 237 
zJ:close function 149 

:byte-slze option for zJ :copyf 152 
:characters option for zl :copyf 152 

:create-dlrectorles option for zl :copyf 152 
:report-stream option for zJ :copyf 152 

zJ:copyf function 152 
zJ:copy-readtable function 236 
zI:cursorpos function 306 
zI :debug-Io variable 9 
zl :deletef function 151 
zJ :error-output variable 9 
zJ :explode function 308 
zI:explodec function 307 
zI:exploden function 307 

x 

y 

z 



429 

August 1986 Index 

zl:format function 293 
zl:grlnd-top-Ievel function 329 
zl :lIstf function 170 
zl:load function 155 
zl:make-syn-stream function 30 
zl:prln1-then-space function 293 
zl:probef function 154 
zl:query-Io variable 9 
zl:read function 47,244,287 
zl:read-and-eval function 249 
zl:readch function 257 
zl:read-dellmlted-strlng function 255 
zl:read-expresslon function 246 
zl :readfile function 156 
zl:read-form function 247 
zl:*read-form-completion-allst* variable 263 
zl:*read-form-completlon-delimiters* variable 264 
zl :*read-form-edlt-trivlal-errors-p* variable 263 
zl:read-from-strlng function 260 
zl:readllne function 249 
zl:readllne-no-echo function 252 
zl:readllne-or-nll function 251 
zl:readllne-trlm function 250 
zl:readllst function 261 
zl:read-or-character function 249 
zl:read-preserve-dellmlters variable 263 
zl:readtable variable 235 
zl:renamef function 149 

:macro argument to zl:setsyntax 241 
nil argument to zl:setsyntax 241 

:slngle argument to zl:setsyntax 241 
:spllclng argument to zl:setsyntax 241 

zl :setsyntax function 241 
zl :set-syntax-#-macro-char function 229, 241 
zl:set-syntax-from-char function 237 
zl:set-syntax-from-descrlptlon function 237 
zl:set-syntax-macro-char function 228,240 
zl :setsyntax-sharp-macro function 242 
zl:standard-Input variable 8 
zl:standard-output variable 8 
zl:termlnal-Io variable 9 
zl:terprl function 297 
zl:trace-output variable 9 
zl :tyl function 246 
zl :tylpeek function 258 
zl :tyo function 296 
zl:undeletef function 151 
zl:vlewf function 152 
zl:wlth-Input-from-strlng special form 137 
zl:with-output-to-string special form 139 

#: zl-user:syn-stream 30 
#:symbol- zl-user:syn-stream 30 

Copy File (m-X) Zmacs command 79,152 
Rename File (m-X) Zmacs command 79 



430 

Reference Guide to Streams, Files, and 110 August 1986 

Backquote (') macro character 228 

,.., ,.., 
-c and -:J format Directives 317 

-c and -~ format Directives 317 
-~ 323 
-~ format Directive 323 
-0 format Directive 314 
-$ format Directive 313 
-% format Directive 314 
-& format Directive 314 
-* format Directive 315 

-[StrO-;Str1 -; ... -;Stm-] format Directive 318 
-<CR> format Directive 315 
-< format Directive 321 
-? format Directive 315 
-@* format Directive 315 
-@T format Directive 316 
-A format Directive 310 
-( and -) format Directives 314 
-B format Directive 312 
-C format Directive 313 
-0 format Directive 311 
-E format Directive 312 
-F format Directive 312 

-[StrO-;Str1-; ... -;Strn -] format Directive 318 
-( and -) format Directives 314 

-G format Directive 315 
-0 format Directive 311 
-p format Directive 316 
-Q format Directive 324 
-R format Directive 316 
-S format Directive 311 
-[StrD-;5tr1-; ... -;5tm-] format Directive 318 

-[5trO -;5tr1-; ... -;5trn-] format Directive 318 
-[Stro-;5tr1-;... -;Strn-] format Directive 318 

-T format Directive 316 
-X format Directive 312 
-\Date\ format Directive 324 
-\Datime\ format Directive 324 
-\Time-interval\ format Directive 324 
-\Time\ format Directive 324 
_" format Directive 323 
-I format Directive 315 
-- format Directive 315 


