

9 Networks

symbolicS™

Cambridge, Massachusetts

Networks
999005

June 1986

This document corresponds to Genera 7.0 and later releases.

The software, data, and information contained herein are proprietary to, and comprise
valuable trade secrets of, Symbolics, Inc. They are given in confidence by Symbolics
pursuant to a written license agreement, and may be used, copied, transmitted, and
stored only in accordance with the terms of such license. This document may not be
reproduced in whole or in part without the prior written consent of Symbolics, Inc.

Copyright © 1986, 1985, 1984, 1983, 1982, 1981, 1980 Symbolics, Inc. All Rights
Reserved.
Portions of font library Copyright © 1984 Bitstream Inc. All Rights Reserved.
Portions Copyright © 1980 Massachusetts Institute of Technology. All Rights Reserved.

Symbollcs, Symbolics 3600, Symbolics 3670, Symbolics 3675, Symbolics 3640,
Symbollcs 3645, Symbollcs 3610, Genera, symbolics-Lisp®, Wheels, Symbolics
Common LIsp, Zetalisp®, Dynamic Windows, Document Examiner, Showcase,
SmartStore, SemantiCue, Frame-Up, Firewall, S-DYNAMICS®, S-GEOMETRY,
S-PAINT, S-RENDER®, MACSYMA, COMMON LISP MACSYMA, CL-MACSYMA,
LISP MACHINE MACSYMA, MACSYMA Newsletter and Your Next Step In
Computing are trademarks of Symbolics, Inc.

DEC net is a trademark of Digital Equipment Corporation.

Multlcs is a trademark of Honeywell, Inc.

UNIX is a trademark of AT&T Bell Laboratories.

DEC, VAX, VMS and TOPS-20 are trademarks of Digital Equipment Corporation.

Restricted Rights Legend
Use, duplication, and disclosure by the Government are subject to restrictions as set
forth in subdivision (b)(3)(ii) of the Rights in Technical Data and Computer Software
Clause at FAR 52.227-7013.

Symbolics, Inc.
4 New England Tech Center
555 Virginia Road
Concord, MA 01742

Text written and produced on Symbolics 3600-family computers by the Documentation
Group of Symbolics, Inc.
Text masters produced on Symbolics 3600-family computers and printed on Symbolics
LGP2 Laser Graphics Printers.
Cover design: Schafer/LaCasse
Printer: CSA Press
Printed in the United States of America.

Printing year and number: 88 87 86 9 8 7 6 5 43 2 1

iii

June 1986 Networks

Table of Contents

Page

I. Introduction to Symbolics Networks 1

1. Concepts of Symbolics Networks 3

1.1 Design Goals of the Network System 3
1.2 What is a Network? 3
1.3 What is a Network Service? 4
1.4 What is a File Server? 5
1.5 Concepts of Service, Medium, and Protocol 5
1.6 Networks Supported by Symbolics Computers 6
1.7 Concept of Network Addresses 7

1.7.1 Setting the Chaosnet Address 8
1.8 Concepts of the N amespace System 8
1.9 Concept of Namespace Objects 9
1.10 Concept of service Attribute 10
1.11 A Sample Host Object in the Namespace Database 11
1.12 Glossary of Networking Terminology 11

2. Using the Network 13

2.1 Commands That Use the Network 13
2.2 Activities That Use the Network 14
2.3 Connecting to a Remote Host Over the Network 14
2.4 Using Peek to Get Information on Networks 15
2.5 Recovering From a Network Problem 15

3. Remote Login 19

3.1 The Remote Login Capability 19
3.2 Using the Remote Login Facilities 20
3.3 Functions Used in Remote Login 21

II. Symbolics Generic Network System 25

4. Network Users and Servers 27

5. Service Attributes in the Namespace Database 29

iv

Networks June 1986

6. Network Mediums 31

6.1 Generic and Specific Mediums 31
6.2 Descriptions of Defined Mediums 32

7. Generic Network Services 35

7.1 Protocols Supported by All Symbolics Computers as Users 35
7.2 Protocols Supported by All Symbolics Computers as Servers 36
7.3 TCP and UDP Protocols Supported by Symbolics Computers as 37

Users
7.4 TCP and UDP Protocols Supported by Symbolics Computers as 38

Servers
7.5 DNA Protocols Supported by Symbolics Computers as Users 39
7.6 DNA Protocols Supported by Symbolics Computers as Servers 39
7.7 Descriptions of Defined Generic Services 39

8. Finding a Path to a Service on a Remote Host 43

8.1 Finding a Path to a Local Service 43
8.2 Determining What Kinds of Connections a Symbolics Computer Can 44

Make
8.3 Determining What Kinds of Connections a Remote Host Can Make 44
8.4 Finding the Possible Paths to a Host 45
8.5 Example of Finding a Path to a Host 47
8.6 Desirability of Network Protocols 50

9. Enabling and Disabling Network Services 51

III. Network Addressing 53

10. Format of Chaosnet Addresses 55

11. Format of Internet Addresses 57

12. Format of DNA Addresses 59

13. Choosing a Network Addressing Scheme 61

13.1 How to Obtain an Internet Address 62
13.2 Mapping an Internet Address Into a Chaos Address 62
13.3 Mapping a Chaos Address Into a DNA Address 63

v

June 1986 Networks

IV. Namespace System 67

14. Introduction to the Namespace System 69

14.1 ~amespace System Classes 69
14.2 ~ amespace System Attributes 70
14.3 Data Types of ~amespace System Attributes 70
14.4 ~ames and ~amespaces 71

15. Updating the Namespace Database 73

15.1 Editing a ~amespace Object 74
15.2 Creating a ~ew ~amespace Object 74

16. Namespace System Object Definitions 77

16.1 ~amespace System Host Objects 77
16.2 ~amespace System User Objects 82
16.3 ~amespace System ~etwork Objects 86
16.4 ~amespace System Printer Objects 88
16.5 ~amespace System Site Objects 92
16.6 ~amespace Objects 95

17. Details of the User Interface to the Namespace System 99

18. Managing the Namespace Database 101

18.1 ~ amespace Server Files 101
18.1.1 Record Format 101

18.2 ~amespace Database Descriptor Files 102
18.2.1 ~amespace Database Object Files 102
18.2.2 ~amespace Database Log Files 103
18.2.3 ~ amespace Database Changes Files 103

18.3 ~amespace System Administrative Functions 105

19. Software Interface to the Namespace System 107

19.1 ~amespace System Lisp Data Types 107
19.2 ~amespace System Variables 107
19.3 ~amespace System Functions 108
19.4 Messages to ~amespace ~ames and Objects 110

19.4.1 Messages to neti:name 110
19.4.2 Messages to net:object 110

19.5 ~ amespace Server Access Paths 111
19.6 Defining ~amespace Classes 112

vi

Networks

v. Interfacing to the Generic Network System
20. How a Network Service is Performed

21. Invoking Network Services

21.1 Service Access Path
21.2 File Access Path
21.3 Functions for Invoking Network Services

22. Defining a New Network Service

June 1986

113
115

117

117
119
119

123

22.1 Example of Defining a New Network Service 123
22.2 Relationships of Names of Services and Protocols on User, Server, 126

and Namespace
22.3 Summary of Functions for Defining Users and Servers 127
22.4 Functions for Defining Users and Servers 127

VI. Implementation of the Generic Network System

23. Packets

23.1 The Packet Pool
23.2 Functions Related to Packets
23.3 Subpackets and Coercing Packets
23.4 Example of Programming with Packets
23.5 Miscellaneous Notes on Packets

24. Network Interfaces

24.1 Standard Communication with Interfaces
24.2 Sending a Packet to an Interface
24.3 Miscellaneous Notes on Interfaces

25. Implementation of Networks

25.1 Defining a Network
25.2 Implementation of Network Addresses
25.3 Invoking Mediums
25.4 Packet Reception
25.5 Packet Transmission
25.6 Initializing, Resetting, and Enabling Networks
25.7 Byte Stream Conventions
25.8 Interfacing to Ethernets
25.9 Interaction with Peek Network Mode

135

137

137
139
140
142
144

147

147
148
149

151

151
152
153
153
154
154
156
156
157

vii

June 1986 Networks

26. Implementation of Network Mediums 159

26.1 Examples of Defined Mediums 161

27. Implementation of the Service Lookup Mechanism 165

27.1 Summary of Functions for Service Lookup and Invocation 165
27.2 Functions for Service Lookup and Invocation 166
27.3 Messages Related to Service Lookup 168

28. Starting Network Servers 171

28.1 Finding a Server Description 171
28.2 Calling the Server Function 171

28.2.1 Commonly Used Arguments to Servers 172
28.2.2 Commonly Used Arguments to Mediums 172

28.3 Functions Related to Starting Servers 173

VII. Network, Medium, and Protocol Descriptions 175

29. Chaosnet 177

29.1 Introduction to Chaosnet 177
29.1.1 References to Chaosnet Protocol Specifications 178

29.2 Overview of the Chaosnet Software Protocol 178
29.2.1 Chaosnet Connections 178
29.2.2 Chaosnet Contact Names 179
29.2.3 Chaosnet Addresses and Indices 180
29.2.4 Chaosnet Packet Numbers 181
29.2.5 Chaosnet Packet Contents 182
29.2.6 Chaosnet Data Formats 183
29.2.7 Chaosnet Routing 184
29.2.8 Chaosnet Flow and Error Control 187

29.3 Technical Details of the Chaosnet Software Protocol 190
29.3.1 Chaosnet Connection Establishment 191
29.3.2 Chaosnet Status Packets 195
29.3.3 Chaosnet Data 196
29.3.4 Chaosnet End-of-Data 196
29.3.5 Chaosnet Connection Closing 197
29.3.6 Chaosnet Broadcast 197
29.3.7 Chaosnet Low-level Details 199
29.3.8 Chaosnet Connection States 200

29.4 Application-Level Chaosnet Protocols 201
29.4.1 Chaosnet Status Protocol 201
29.4.2 Chaosnet Telnet and Supdup Protocols 203
29.4.3 Chaosnet File Access Protocols 203

viii

Networks June 1986

29.4.4 Chaosnet Send Protocol
29.4.5 Chaosnet Name Protocol
29.4.6 Chaosnet Time Protocol

29.5 Using Foreign Protocols in Chaosnet
29.6 Symbolics Implementation of Chaosnet

29.6.1 Opening and Closing Chaosnet Connections
29.6.2 Functions for Chaosnet Connection States
29.6.3 Chaosnet Stream I/O
29.6.4 Chaosnet Packet I/O
29.6.5 Chaosnet Connection Interrupts
29.6.6 Chaosnet Information and Control

203
204
204
204
207
207
209
210
211
212
213

30. Symbolics Dialnet 217

30.1 Dial Network Medium 217
30.2 Dial Network Addressing 217
30.3 Reducing Call Cost with Public Carrier Networks 219

31. Internet Networks 221

31.1 Introduction to Internet Networks 221
31.2 Internet Domain Names 222
31.3 References to IPfrCP Protocol Specifications 224

32. DNA Networks 227

32.1 Introduction to DNA Networks 227
32.2 References to DECnet Protocol Specifications 228

33. BYTE-STREAM-WITH-MARK Network Medium 229

33.1 Introduction to BYTE-STREAM-WITH-MARK Network Medium 229
33.2 BYTE-STREAM-WITH-MARK Abortable States 231
33.3 Interfacing to the Lisp Machine Byte-Stream-With-Mark 233

34. Token List Transport Layer 237

34.1 Introduction to the Token List Transport Layer 237
34.2 Token List Stream 238

34.2.1 Types of Tokens and Token Lists 238
34.2.2 Token List Stream Example 240
34.2.3 Mapping of Lisp Objects to Token List Stream 242

Representation
34.2.4 Flavors and Messages Related to the Token List Stream 243
34.2.5 Aborting and the Token List Stream 246

ix

June 1986 Networks

34.3 Token List Data Stream 247
248 34.3.1 Flavors Related to the Token List Data Stream

35. NFILE File Protocol 251

251
252
253
253
254
255

35.1 Introduction to NFILE
35.2 Starting to Use NFILE
35.3 Reference Information on NFILE

35.3.1 NFILE Concepts
35.3.2 NFILE File Transfer Philosophy
35.3.3 NFILE Character Set Translation
35.3.4 Mapping Data Types Into Token List Representation 257
35.3.5 NFILE Control and Data Connections 258
35.3.6 Establishing an NFILE Control Connection 260
35.3.7 Notifications From the NFILE Server 261
35.3.8 NFILE Resynchronization Procedure 261
35.3.9 NFILE Command Descriptions 265
35.3.10 NFILE Commands 269
35.3.11 NFILE Error Handling 304

36. Namespace Protocols 311

36.1 Network Namespace Protocol 311
36.2 Namespace Timestamp Protocol 313

Index 315

List of Figures

Figure 1. Namespace Object Editor Window

Table 1.
Table 2.

List of Tables

Translations Between Symbolics Characters and Standard ASCII
Translations in SUPER-IMAGE Mode

73

256
258

June 1986 Introduction to Symbolics Networks

PART I.

Intr.oduction to Symbolics Networks

Networking capabilities are an essential part of Symbolics computers. Via
networks, Symbolics computers communicate with each other and with different
kinds of computers at a site. The goal of that communication is for one computer
to provide a service for another computer. This allows a site to share its resources
among the users at the site. For example, a network enables many users to share
printers, tape drives, and disks. This reduces redundancy and often saves money.

This section gives a general description of the Symbolics networking capability.
Users of Symbolics computers can read this section to gain an understanding of
what the networking capability provides and how to use the network services.

2

Networks June 1986

3

June 1986 Introduction to Symbolics Networks

1. Concepts of Symbolics Networks

1.1 Design Goals of the Network System

In designing the network capability, Symbolics had three major goals. The
network system should:

• Do its job automatically for the user.

There is no special program to learn in order to use the network. Instead,
you use familiar commands from the editor, Zmail, or the command
processor; these commands use the network for you, when' needed. Many
commonly used commands and functions use the network, such as Show
Users, Find File (M-X), Copy File, and Get Inbox. Many complex interactions
must occur for these commands to successfully do their jobs, but they
happen quickly, reliably, and automatically.

• Provide a way for programmers to deal uniformly with computers that run
different operating systems and different networking software.

For example, programmers use a single set of functions (such as
with-open-file) to access files, whether they are stored locally or on a remote
host, regardless of the type of operating system or networking software
supported by that host. The same principle applies to programs such as the
mailer, the Terminal program, Tape, and so on.

• Be easily extensible by the programmer.

The extensibility of the networking software should prove valuable to
programmers who want to add new networking capabilities. The software is
divided into layers of protocol so that programmers can build new
applications on the foundation of a chosen layer of protocol. This unique
design of a networking system is called the Symbolics Generic Network
System: See the section "Symbolics Generic Network System", page 25.

1.2 What is a Network?

When a site has more than one computer, it is often desirable for the computers
to be able to communicate. The goal of that communication is for one computer
to perform a service for another computer, such as transferring files, sending
mail, and so on.

4

Networks June 1986

A network consists of hardware and software that allow two or more computers to
communicate with each other. The hardware provides a physical link and the
software governs the communication. Computers that are connected by a network
are often called hosts.

There are different types of computer networks, but they all have these things in
common:

• Each host on the network must have a network address.

• One host must know the address of another host to communicate with it.

• Every host can communicate with any other host on the· network.

Networks differ in three main ways:

• Types of services supplied.

• Format of network addresses.

• The way that data is transmitted from one host to another.

A "type of network" does not refer specifically to hardware. The hardware used
by Symbolics computers is an Ethernet cable. One Ethernet cable can be used to
support a Chaosnet network, an Internet network, or both.

1.3 What is a Network Service?

When computers are connected to a network, each computer gains certain new
capabilities. That is, one computer is capable of performing a service for another
computer. Here are some examples:

Name of
Service

FILE

MAIL

LOGIN

SEND

HARDCOPY

Description of Service

Ability to access files on a remote host.

Ability to send electronic mail to a user on a remote host.

Ability to log in to· a remote host.

Ability to send conversational messages to a user on a remote
host.

Ability to hardcopy a file on a printer attached to a remote host.

5

June 1986 Introduction to Symbolics Networks

The names of the services are in capital letters, as they appear in the namespace
database. In other networking environments, the same services are called by
different names.

1.4 What is a File Server?

One important capability of the network is that of transferring files from one
machine to another. This capability is called FILE service. FILE service also
enables a user to perform file operations on a remote host, such as copying and
deleting files, probing for the existence of a file, listing and expunging directories.

A machine that provides FILE service to other machines is called a file server.
Most sites designate one or more machines as file servers for all machines at the
site. Users can store their files on the file server machine rather than on the
Symbolics computer they use every day. This shared file system retains the
traditional advantages of a timesharing system, such as:

• Users can have access to the same files and programs.

• Resources at the site are shared, such as disks.

• Users benefit from centralized backups and maintenance.

File servers can be Symbolics computers or any computer accessible via the
network. For example, a time-sharing computer such as a VAX. can be a file
server for the Symbolics computers at the site if it has the necessary hardware
and software to be connected to the network.

Some other important servers are:

Print Server A computer that is attached to a hardcopy device; it offers to
print (or spool) files for other computers on the network.

Namespace Server A Symbolics computer that stores the namespace database.

1.5 Concepts of Service, Medium, and Protocol

The Symbolics networking system has three important and related concepts:
service, medium, and protocol. These are the conceptual layers of the networking
software.

Service A capability provided by one host for another. Examples
include: FILE, LOGIN, MAIL.

6

Networks June 1986

Protocol

Medium

A particular high-level type of stylized dialogue supported by one
computer that provides a particular service to another computer.
Examples include: TCP-FrP, 3600-LOGIN, SMTP.

A definition of what types of paths are adequate for providing a
service using a particular protocol. Examples include: TCP,
CHAOS, DNA

Requesting a service and getting served involves a stylized dialogue between two
hosts. The details of that dialogue are called the protocol. For example, if we
imagine that food is a service, the protocol for requesting food is different if you
are at a restaurant or a vending machine:

RESTAURANT protocol
for FOOD service

1. Ask for food.
2. Receive food on plate.
3. Pay with cash or credit.

VENDING-MACIDNE protocol
for FOOD service

1. Pay with coins.
2. Press buttons.
3. Receive food in package.

A medium is a system underlying the protocol; it defines the low-level details of
the communication. We can extend the food analogy to include mediums: You
can request food service using restaurant protocol with the IN-PERSON medium
or the TELEPHONE medium.

The concepts of service, medium, and protocol are described in more detail
elsewhere:

See the section "Concept of service Attribute", page 10.
See the section "Service Attributes in the Namespace Database", page 29.
See the section "How a Network Service is Performed", page 115.

1.6 Networks Supported by Symbolics Computers

A computer supports a type of network if the computer has the hardware and
software required for that network. The hardware that physically links Symbolics
computers together is called an ethernet. This is a coaxial cable of the type used
for cable television. Each Symbolics computer has a hardware interface to the
ethernet. In the following model, a site has four Symbolics computers connected
to an ethernet:

7

June 1986 Introduction to Symbolics Networks

Hi ckey Donal d Hi nni e Pl uta <- Symbolics computers
I I I <- hardware interface

=============================== <- the ethernet

A Symbolics computer can be on many different networks even if it has only one
hardware interface; it requires the software to support the different networks.
Symbolics computers have the software (some of it is purchased separately) to
support the following types of networks:

Chaos

Dial

Internet

DNA

SNA

All Symbolics computers support Chaosnet, which was originally
developed at M.1. T.

Any Symbolics computer with a modem can support Dialnet, the
international telephone network. This is the only network that
does not use Ethernet hardware; it uses a modem and the
existing telephone network. The function of Dialnet is to
provide a reliable transport medium over possibly unreliable
common carrier facilities. The primary uses of Dialnet are mail
transfer and remote login.

Symbolics makes available optional software (the IP/TCP
software package) that enables Symbolics computers to support
Internet networks.

Symbolics makes available optional software (the Digital
Network Architecture software package) that enables Symbolics
computers to support DECnet, also called DNA.

Symbolics makes available optional software (the System
Network Architecture facility) that enables Symbolics computers
to support a subset of SNA capabilities.

Typically, Symbolics computers use Chaosnet to communicate with one another.
When a site has other kinds of computers, often those computers are already
connected to a network, such as an Internet or a DECnet network. The optional
software packages enable the Symbolics computer to be connected to the network
already in use at a site.

1.7 Concept of Network Addresses
\

Each host on a network needs a unique network address. The network address is
an identifier for the host. For example, when an electronic mail message is sent
over the network, the sending host must include the network address of the
destination host in the message. When you send a letter through the postal
system, you write an address on the envelope for the same purpose.

8

Networks June 1986

One computer can support two different networks (for example, Chaosnet and
Internet), if it has the necessary software. Such a host needs to have both a
Chaosnet address and an Internet address.

The following examples show typical addresses on different networks:

Chaosnet

Internet

Dialnet

DECnet

402

192.10.41.21

16175771234

3.1

For one host on the network to communicate with another, it must know or be
able to find out the address of that host. This information is stored in the
names pace database. For an introduction to the namespace database: See the
section "Concepts of the Namespace System", page 8.

For more detailed information: See the section "Network Addressing", page 53.

1.7.1 Setting the Chaosnet Address

Every Symbolics computer on a Chaosnet needs to set its Chaos address in its boot
file. This is a line resembling:

Set Chaos-address octal-value

The default value of octal-value is the previous Chaosnet address, which is set to
zero when the FEP is started.

The FEP checks for an acceptable Chaosnet address before starting Lisp. If none
is specified as argument to this command, it warns you, asks whether the current
setting is acceptable, and allows you to change it if necessary.

1.8 Concepts of the Namespace System

When computers are connected by a network to form a distributed computing
environment, the computers should all be able to share information that describes
that environment. The type of information typically needed by computers on a
network includes:

• The names of other computers with which they can communicate

• The network addresses of those computers

• What printers are available on the various server computers

9

June 1986 Introduction to Symbolics Networks

• Which host stores the mailbox for a particular user

Most network implementations have some method for storing and updating such
information; in general, this is called a network database. The Synlbolics
implementation of a network database is called the namespace database.

The namespace database is maintained by a computer designated as the names pace
server. Only Symbolics computers can be namespace servers.

All computers on the network can query or make changes to the namespace
database by communicating over the network with the namespace server. The
names pace editor is the tool for viewing and altering information stored in the
namespace database. You can invoke the namespace editor by choosing it from the
System menu, or giving the command Edit Namespace Object.

The database is structured to understand that there can be many different
networks in a distributed environment. Hosts can be on more than one network,
and so~e hosts that are on two networks can serve as gateways frOlTI one network
to the other. One of the purposes of the database is to let a user host find a path
to a server host, using whichever networks and gateways are necessary.

Summary of Namespace Terminology

names pace database
The Symbolics implementation of network databases.

names pace server
The computer on which the namespace database is stored.

names pace system
The namespace database itself and the tools to use it.

names pace editor
The tool used to view or alter objects in the namespace database.

1.9 Concept of Namespace Objects

The namespace database consists of a collection of objects. The namespace
database has several different kinds of objects for different purposes. For
example, the namespace database has a host object for each host on the network.

. .

Examples of Namespace Objects

host object

user object

Contains information on a computer on the network, such as:
its name, its network addresses, and the services it provides.

Contains information on a user of the network, such as the
user's login name and mail address.

10

Networks June 1986

printer object Contains information on a printer connected to the network,
such as the printer's name, its type, the host to which it is
attached, and the options it supports.

1.10 Concept of service Attribute

Each service is implemented on a network medium using a protocol. Hosts that
are on two networks can often provide a service over two network mediums using
two different protocols. For example:

On Internet:

FILE service is implemented on the TCP medium using the TCP-FTP protocol.
Often FILE service is implemented also on the UDP medium using the UDP-FTP
protocol.

On Chaosnet:

FILE service is implemented on the CHAOS medium using the NFILE protocol.

The namespace database stores information on the services, media, and protocols
that each host supports. The information is stored in the service attributes of
each host object. A service attribute has three parts: the service, the medium,
and the protocol. If you view a host object, you might see these entries:

Service: Set: FILE CHAOS NFILE
Service: Set: FILE TCP TCP-FTP

When one computer needs a service from another computer, it consults the
namespace database to determine:

• Does the computer provides the requested service?

• What is the best route to get that service? The medium and protocol are
part of the route.

Finding a path to a host can be a complicated procedure, but it is all done
automatically by the Symbolics Generic Network System. The necessary
information is stored in the namespace database, and the namespace system
provides tools that use the information to find the best route. For more
information: See the section "Finding a Path to a Service on a Remote Host",
page 43.

For more details on how services are requested and performed: See the section
"How a Network Service is Performed", page 115.

For more details on service entries: See the section "Service Attributes in the
Namespace Database", page 29.

11

June 1986 Introduction to Symbolics Networks

1.11 A Sample Host Obje~t in the Namespace Database

By viewing a sample host object in the namespace database, many of the concepts
of Symbolics networking become clearer. Host objects can contain much more
information than shown here; however, this example illustrates the most important
attributes of a host object.

System Type*: L~SPM

Machine Type: 3699

Address: Pair: CHAOS 24469

Address: Pair: INTERNET 192.19.41.48

Service: Set: FILE TCP TCP-FTP

Service: Set: FILE CHAOS NFILE

This host is a Symbolics 3600-family computer that is on two networks: Chaos
and Internet. The host therefore has two network addresses.

The service attributes show that this host can provide FILE service in two ways:
across the Internet network (using the TCP medium and TCP-FTP protocol), and
across the Chaos network (using the CHAOS medium and the NFILE protocol).

1.12 Glossary of Networking Terminology

This section gives brief definitions of the terms used frequently in the networking
documentation.

Host

Machine

Medium

Used interchangeably with computer and machine. Examples
are: Symbolics computers and VAX. computers.

Used interchangeably with computer and host. Examples are:
Symbolics computers and VAX. computers.

Defines how one computer can provide a service using a given
protocol; that is, defines what type of paths are adequate for a
given protocol. Examples are: TCP, CHAOS, DNA.

Namespace database
The Symbolics implementation of network databases.

Namespace editor The set of tools used to view or alter objects in the namespace
database.

N amespace server The computer on which the namespace database is stored.

Namespace system
The namespace database itself and the tools to use it.

12

Networks

Network

Network type

Protocol

Service

Site

User host

Server host

June 1986

The hardware and software that enables two computers to
communicate. The goal of that communication is for one
computer to provide a service for the other computer.

There are many different types of networks; each type has a
designated way of transmitting data, format of network
addresses, and types of services supplied. Examples are:
Internet, Chaos, Dial.

A stylized dialogue between two computers that takes place
when one computer requests a service from another computer.
Examples are: TCP-FTP, 3600-LOGIN.

A capability that one computer provides for another computer on
the network. Examples are: FILE, LOGIN, MAIL.

A collection of computers located in one small geographic
location; usually the computers are connected to one another by
means of a network. A site can also be a single computer; these
sites have no need for a network. Examples: the Symbolics
Cambridge Research Center, ACME Corporation building 21.

A computer that requests a service from another computer on
the network.

A computer that provides a service to another computer on the
network.

13

June 1986 Introduction to Symbolics Networks

2. Using the Network

Symbolics designed the network to be used by commands, functions, and activities,
instead of being invoked directly by a user. This section describes some of the
commands and activities that use the network automatically, when needed.

The only time you need to do anything special to use the network is when logging
in to a remote host. Then you use the Terminal program. See the section
"Connecting to a Remote Host Over the Network", page 14.

You can connect to a remote Symbolics computer from an ASCII terminal or
another Symbolics computer: For more information: See the section "Remote
Login", page 19.

2.1 Commands That Use the Network

The following commands provide some examples of the use of the network. The
commands listed below are Zmacs commands, Zmail commands, and CP commands.
Many other functions and programs also use the network.

Show Users This CP command requests the SHOW-USERS service from a
given host on the network, or from all hosts reachable on the
network.

Find File (M-X) This Zmacs command (c-X c-F) requests the FILE service from
the host on the network where the given file is stored. The file
is copied from that host to an editor buffer.

Save File (M-X) When you later save the file (c-X c-S), Zmacs again requests
FILE service to copy the altered contents of the file from your
editor buffer to the host on the network where the file is stored.

Mail This Zmail command requests STORE-AND-FORW ARD-MAIL
service on the host where the recipient receives mail. STORE
AND-FORWARD-MAIL handles the mail delivery.

Get Inbox Many Zmail commands use the network. When you use the Get
Inbox command, Zmail requests FILE service from your mail
host. Your inhox is copied from your mail host to a Zmail
huffer.

Hardcopy File This command requests HARDCOPY service from a print server.
Your host sends the contents of the file to the print server,
which in turn sends it to the printer.

14

Networks June 1986

2.2 Activities That Use the Network

The following activities use the network for you:

SELECT C

SELECT T

SELECT D

The Converse facility requests SEND service on one or more
hosts on the network, to send your conversational message to its
recipients.

The Terminal facility requests LOGIN service from the given
host, enabling you to log in to that host over the network. For
more information: See the section "Connecting to a Remote
Host Over the Network", page 14.

The Document Examiner frequently requests FILE service from
the host that stores the online documentation files. Commands
like Find Candidate, Show Documentation, and Show Table of
Contents make use of the network.

2.3 Connecting to a Remote Host Over the Network

If your Symbolics computer is on a network and configured properly, you can
access other hosts on the network with the Terminal program.

To use the Terminal program, press SELECT T. The prompt is:

Connect to host:

Type the name of the host to which you want to connect. The network system
makes a connection, and you will see the prompt of the remote host displayed on
the screen. You are now communicating directly with the remote machine.

When you are connected to a remote host, the NETWORK key provides several useful
commands. For example:

NETWORK HELP

NETWORK L

NETWORK D

Displays the list of options for the NET WORK key.

Logs out of remote host, and breaks the connection.

Disconnects without logging out first.

See the section "NETWORK Key" in User's Guide to Symbolics Computers.

If you want to use the Terminal program to log in to a remote Symbolics
computer when someone is logged in to that machine, you must first enable
remote login by evaluating the form (net:remote-Iogin-on> on that machine. See
the function net:remote-Iogin-on, page 21.

15

June 1986 Introduction to Symbolics Networks

2.4 Using Peek to Get Information on Networks

The Peek facility displays and updates status information on various aspects of the
network. The best way to find out what information Peek offers is to experiment
with it. Press SELECT P.

Peek has four network-related options: [Networks], [File System], [Servers], and
[Hostat]. [Networks] and [File System] are the most interesting. Click on one of
those headings at the top of the screen. When you move the mouse over the
different parts of the display, the mouse documentation line offers options that are
appropriate to that mouse-sensitive area of the screen.

For more information: See the section "Using Peek" in User's Guide to Symbolics
Computers.

2.5 Recovering From a Network Problem

In general, the symptom of a network problem is the inability of your Symbolics
computer to communicate with other hosts on the network. This section describes
how to recognize some common network problems, some possible causes of them,
and suggestions for solving the problem.

In brief, the first step is to isolate the problem. A network problem could be a
problem in the software or hardware of your local machine, the software or
hardware of the remote machine, the information stored in the namespace
database, or the hardware of the network itself. The Reset Network command is
useful for resetting the network software in your machine, but it cannot solve any
problems in the remote host, the network itself, or the hardware.

Once you have located the problem, you can take steps to solve it. If the problem
is the remote host, the namespace, or the network itself, you should probably
consult with your Site Administrator for help.

Symptoms of Network Problems

• File transfer stuck or slow.

When a file is being transferred, the pathname is displayed in the bottom
right-hand corner of the screen, along with the number of bytes and the
percentage of the file that has been copied. If the percent and byte-count
figures do not change, the file transfer seems to be stuck.

The local program might be running slowly. If the status line is Run, at
least you know that the program is'running. Another possible cause of a
stuck or slowed-down file transfer is that the server on the remote host is

16

Networks June 1986

responding slowly. It is also possible that the network is highly congested.
In any of these cases, little can be done other than just waiting.

If the file transfer remains stuck for a long time (several minutes),
sometimes the connection is broken and you are offered some choices in a
debugging menu. You can choose to restart or abort the file transfer.

A hardware problem could also halt a file transfer. See below.

• Broken Terminal connection.

When you are using the Terminal program and are connected to a remote
host, the connection can be broken. An error message is displayed, and the
prompt "Connect (name of host):" is redisplayed. This can happen if the
remote host goes down unexpectedly or for scheduled maintenance, or if
someone resets its network interface. Similarly, if you give the Reset
Network command, this would break all your network connections. Once the
connection is broken, the only thing you can do is try to open another
connection by answering the Terminal prompt with the name of the desired
host. If you cannot log in to that host, you should check with the Host
Administrator for that host to see if there is a problem with that host.

A hardware problem could also break a Terminal connection. See below.

• No network operations work successfully.

Occasionally, you will notice several problems with network-related tasks.
For example, a file transfer gets stuck, the Terminal program stops
responding, and you cannot queue a file to a printer. To test the network
software on your host, give some simple commands, such as Show Users and
Show Hosts for several hosts. If you do not get the expected response, it is
possible that the network software is somehow compromised. You can give
the Reset Network command. This resets much of the networking software,
breaks any outstanding network connections, and restarts the network again.
Once you have done this, try "Show Users" again.

It is also possible that the network itself is causing the problems. Check
with other users at the site to see if they are also having trouble with
network operations. If so, the problem probably lies in the network itself.

If other users are not having problems, but your host still cannot
communicate over the network, it is probably a hardware problem specific to
your host. One common cause of this is the transceiver cable somehow
falling out of the back of the Symbolics computer. If this has happened,
plug it in again. If the network does not immediately work, use the Reset
Network command.

17

June 1986 Introduction to Symbolics Networks

• Error message: Host does not have services enabled.

Sometimes the remote host is up and running, but does not have its network
services enabled. This is often true when a host is just coming up and is
not yet fully initialized. It is also possible that a user of that host has
decided to disable services. You can either wait and try again later, or call
the host Administrator to see why services are not enabled.

This symptom does not indicate a hardware problem.

• Error message: Host does not support this service.

This error message indicates that the target host does not support the
network service you requested. Sometimes the network system offers to try
another protocol for the same service; you can try that. In a heterogeneous
networking environment, there are some services that you cannot obtain
from some hosts.

It is also possible that the host does have the capability of performing that
service, but the information in its host object in the namespace is incorrect.
You can ask the person who is responsible for maintaining the namespace
database if that is the case.

This symptom does not indicate a hardware problem.

Hardware Problems

A hardware problem usually halts all network operations. There are two
categories of problems: a problem that is isolated to your machine, and a problem
that affects all users of the network.

If only your machine is affected, the first thing to check is that the transceiver is
properly connected to the back of your machine. If it has been dislodged, plug it
in again. If it is properly connected and the network still does not work, the
transceiver hardware might be the problem.

If the whole site is affected, the cause of the problem could be one of these:

• Ethernet cable is not terminated at both ends.

• Ethernet cable is broken in the middle.

• Ethernet cable is shorted.

• A network host is jamming the cable by transmitting continuously.

18

Networks June 1986

19

June 1986 Introduction to Symbolics Networks

3. Remote Login

3.1 The Remote Login Capability

The remote login facilities allow up to four ASCII terminals to be connected
directly via a Symbolics computer's serial ports. See the section "The Serial I/O
Facility" in Reference Guide to Streams, Files, and I/O.

Also, any number of terminals can be connected via the network. If a modem is
connected to the machine, it is also possible to dial up the machine from an ASCII
terminal or from another Symbolics computer. Video operations are supported
only on ASCII terminals that support ANSI X3.64 display codes (Ann Arbor
Ambassador, Digital Equipment VT100, and so forth).

Network servers are available for the remote login protocols 3600-LOGIN,
TELNET, and SUPDUP. 3600-LOGIN is used only in communication between two
Symbolics computers. TELNET and SUPDUP are standard protocols used on the
Arpanet.

The following programs can be run from terminals connected via a network, a
serial port, or a modem:

• Lisp Listener (not a Dynamic Window)
• Input editor
• Debugger (not the Window Debugger)
• Command processor

Zmacs, Zmail, and other programs that use the window system or the mouse
cannot be used.

The remote login facility is useful for applications such as the following:

• Examining the status of a physically distant machine, such as a file server.
• Monitoring the status of a long computation from home.
• Simple data-entry or query-and-answer applications.

Note that the remote login feature cannot support sev~ral programmers on the
same machine, because program-development tools, such as Zmacs, cannot be used
remotely.

For further information:

See the section " Using the Remote Login Facilities", page 20.
See the section "Functions Used in Remote Login", page 21.

20

Networks June 1986

3.2 Using the Remote Login Facilities

This section discusses how to prepare to use the remote login facilities. The
server host is the Symbolics computer to which you want to connect remotely.

Preparing the Server Host for Remote Login

If the server host has no user logged in, there are no restrictions on logging into
it from a remote terminal. However, if a user is logged in, remote login
connections are rejected by default. To change this, use the function
net:remote-Iogin-on on the server host. You cannot do this step remotely; you
heed to evaluate that form on the server host itself. .

Editing the Namespace

If you are not connecting via the serial line, you need to decide which generic
network service, medium, and protocol you want to use. Edit the host object of
the server host to add the appropriate service attribute.

To connect to a Symbolics computer from another Symbolics computer, the service
attribute is one of these:

Service: Set: LOGIN CHAOS 3600-LOGIN

Service: Set: LOGIN TCP 3600-LOGIN

To connect to a Symbolics computer from a terminal attached to a host that is on
the same network as the Symbolics computer, or from a terminal attached to a
terminal concentrator that is on the network, you need to know which protocol the
host or terminal concentrator uses. These are the possibilities:

Service: Set: LOGIN CHAOS SUPDUP

Service: Set: LOGIN CHAOS TELNET

Servi ce: Set: LOG I N Tep TELNET

Servi ce: Set: LOG I N TCP SUPDUP

Preparing to Connect via a Serial Line

To use a terminal connected via a serial line, use the function
neti:enable-serial-tcrminal on the server host. There is no need to edit the
namespace database when connecting directly to a serial line.

Describing the Characteristics of the Terminal

This step is required when you use the TELNET protocol or the serial line. You
need to use either the function neti:ask-terminal-parameters or the function

21

June 1986 Introduction to Symbolics Networks

neti:set-terminal-parameters on the server host to describe the terminal. (If the
terminal automatically echoes a newline when a character is printed in the
rightmost column, then decrement the width by one.)

When the SUPDUP or 3600-LOGIN protocol is used, terminal information is
communicated automatically.

Additional Notes

• The SUPDUP server works only if the terminal supports character insertion
and deletion.

• There are no asynchronous characters. If your program starts looping, it
must be aborted from the main console.

• Only one interactive process is allowed per remote terminal.

• If you are logging in from an ASCII keyboard, a translation scheme exists to
allow you to refer to Symbolics computer keys that do not exist on an ASCII
keyboard. From the logged-in ASCII keyboard, type c-_ H for online
documentation describing this scheme.

• If you are logging in from one Symbolics computer to another, the keyboard
operation is identical except that when you use these keys, they are not
transmitted through to the server:

NETWORK
LOCAL
FUNCTION
SELECT
c-ABORT
c-M-ABORT
c-SUSPEND
c-M-SUSPEND

3.3 Functions Used in Remote Login

net:remote-Iogin-on &optional (mode t) Function
The function net:remote-Iogin-on controls the acceptance or rejection of
remote login requests to a Symbolics computer that has a user logged in at
the main console. The mode argument specifies the treatment of remote
login requests, as follows:

t or unspecified Allow remote login connections even when the main
console is in use.

22

Networks

nil

: notify

June 1986

Reject remote login requests.

Allow remote login requests but send the main-console
user a notification.

neti:ask-terminal-parameters Function
Asks you for information about the ASCII terminal currently associated
with *terminal-io*. You are asked whether the terminal supports ANSI
x3.64 escape sequences, whether it has a META key, and for its height and
width in characters. Your answers are used to set or change the terminal's
parameters. If you supply nil for height and width, the current settings do
not change.

neti:set-terminal-parameters x3.64 meta-key? width height Function
Sets the parameters of the terminal associated with *terminal-io*. The
argument x3.64 specifies whether the terminal supports escape sequences
meeting this ANSI standard; meta-key? says whether the terminal has a
Meta key; width and height are the terminal's width and height in
characters, respectively. If you supply nil for height and width, the current
settings do not change.

neti:enable-serial-terminal &rest options &key (top-level Function
'si:lisp-top-Ievell) (herald t) (x3.64 nil) (width
79) (height 1073741824) (unit 1)
(share-kill-history nil) &allow-other-keys

The function neti:enable-serial-terminal allows an ASCII terminal to
communicate with a Symbolics computer process through one ofi the
machine's serial ports (specified by the unit argument). unit can be 1, 2,
or 3 to indicate one of the bulkhead ports (these are DTEs); or 0 to
indicate the serial I/O port located at the back of the console (a

l

DCE). For
more information on the serial I/O ports: See the section "The :Serial I/O
Facility" in Reference Guide to Streams, Files, and 110. '

The argument x3.64 specifies whether the terminal supports escape
sequences meeting this ANSI standard. width and ·height are the terminal's
width and height in characters, respectively. If you supply nil for height
and width, the current settings do not change. top-level specifies the
process. herald specifies whether the herald is displayed on the terminal.

Sample use:

(neti:enable-serial-terminal :X3.64 T :HEIGHT 48.
:WIDTH 80. :UNIT 3 :BAUD 9600.)

This creates a Lisp Listener process to communicate with the terminal. If
you wish to have some other program communicating with the terminal,
either invoke the program from the Lisp Listener, or use the :top-Ievel

23

June 1986 Introduction to Symbolics Networks

keyword argument. The value of this keyword should be a function of one
argument, which is the stream going to the terminal.

neti:disable-serial-terminal unit Function
neti:disable-serial-terminal kills the Symbolics Lisp Machine process
associated with a terminal connected to a serial port, closes the stream,
and clears the serial port so it can be used again. unit specifies the serial
port to which the terminal is connected. unit can be 0, 1, 2 or 3.

Communication between the terminal and the Symbolics Lisp Machine is
begun with the neti:enable-serial-terminal function.

Sample use:

(neti:disable-serial-terminal 2)

24

Networks June 1986

25

June 1986 Symbolics Generic Network System

PART II.

Symbolics Generic Network System

This section provides information useful to anyone who is maintaining the
namespace database and wants to understand more about how it fits into the
networking system. In brief, this section describes some of what goes on
automatically, when a network service is requested by one host and performed by
another host.

The generic network system is the conceptual framework of Symbolics'
implementation of network communications. This section describes some key
aspects of network communication, including: the roles of the two computers, the
service entries stored in the namespace database, network addresses, and the
process of finding a path to a desired service on a remote host.

This section describes mediums, and defines the terms generic and specific
medium. This section also lists the mediums and protocols supported by Symbolics
computers.

26

Networks June 1986

27

June 1986 Symbolics Generic Network System

4. Network Users and Servers

When a network service is performed, the work is done in a dialogue between two
hosts. A protocol is a specification of the dialogue that occurs over the network.
The host that requests the service is called the user host, and the host that
performs the service is the server host.

Each network protocol has two implementations, a user side and a server side.
The user side is a program that runs on the user host; the server side is a
program that runs on the server host. A service is obtained by a user side using
a protocol to communicate via a network medium with a server side.

In many cases, a host provides both a user side and a server side for the same
protocol. Sometimes the Symbolics computer supports a protocol with a user side
but no server side. This means that the Symbolics computer can use the service if
another host provides it. The :tcp-gateway protocol is one example of this.

In other cases, the Symbolics computer supports a protocol with a server side but
no user side. If another host supports a user protocol, that host can take
advantage of the server on the Symbolics computer. Or, you could write such a
user program on another host.

Some services are provided locally. The medium of such a service is :local.
These services are performed without using the network when the user host is the
same as the server host.

28

Networks June 1986

29

June 1986 Symbolics Generic Network System

5. Service Attributes in the Namespace Database

This section describes the role of the namespace database service attributes.

Purpose of Service Attributes

Typically, host objects contain one or more service attributes. The purpose of
each attribute is to inform all hosts on the network that this host can provide a
given service, and the details of how it can provide the service (the protocol and
medium).

When you request a generic network service, your machine is the user host. The
user host consults the namespace database and looks at the host object of the
server host to determine if it provides the desired service. Therefore, every host
at the site that is expected to perform network services should have information
on all services it can provide entered in the service attributes of its host object.

Thus, a computer that acts as a file server must contain a :file service attribute
for each medium and protocol for which it provides :file service in its host object.
Similarly, a computer that acts as a namespace server must have service
attributes for the :namespace and :namespace-timestamp services in its host
object.

Three Parts of a Service Attribute

A service attribute has three parts: service, medium, and protocol. Each generic
network service is implemented by a protocol, communicating through a medium.
The service attribute of a host object resembles:

Servi ce: Set: service medium protocol

Although the names of services, mediums, and protocols are keywords, you should
not enter the colon when editing the namespace database.

service is the name of the generic network service. Some services are
implemented on more than one medium or protocol. For example, a host might
contain the following service attributes:

Service: Set: FILE TCP NFILE
Service: Set: FILE CHAOS NFILE
Service: Set: FILE CHAOS QFILE

medium is a specific medium in the namespace database, even if the protocol is
defined to be built on a generic medium. For example, :file service is defined for
the generic : byte-stream-with-mark medium, using the :nfile protocol.

30

Networks June 1986

: byte-stream-with-mark is implemented over two specific mediums: :chaos and
:tcp. Therefore, the host object has two separate service attributes that contain
the two specific mediums for :file service and :nfile protocol. To match a generic
medium with the specific medium or mediums that implement it: See the section
"Descriptions of Defined Mediums", page 32.

Some generic network services are implemented on the :local medium. It is not
necessary to have a service attribute for any service implemented on :local. A
host that provides a :local service stores that information internally and does not
consult the namespace when such a service is requested and performed.

protocol is the name of the protocol that the server offers. In some cases, the
names of the service and the protocol are the same, as in this service attribute:

Servi ce: Set: SEND CHAOS SEND

Symbolics computers are capable of providing many generic network services. The
services themselves are described elsewhere: See the section "Descriptions of
Defined Generic Services", page 39.

31

June 1986 Symbolics Generic Network System

6. Network Mediums

A medium is one of the layers of abstraction in the network paradigm. Each
protocol is associated with a medium. The medium provides a way for the
information of the protocol to be communicated; it fills in some lower-level details
of the communication. For example, the medium knows how to open a connection
to a remote host. Because there are different ways to open connections to hosts,
there are different mediums. Some examples of mediums are: :chaos, :tcp, and
:dna.

6.1 Generic and Specific Mediums

The network system has two types of mediums: generic mediums and specific
mediums.

Examples of
Generic Mediums

: byte-stream
: byte-stream-with-mark
: datagram

Examples of
Specific Mediums

:chaos
:chaos-simple
:tcp
: dna
:dial

Generic mediums are useful because some protocols are written in such a way that
they require only a generic byte stream or generic datagram medium, and do not
care about the details of how those things are implemented. Generic mediums can
operate over many kinds of network. Each generic medium is implemented by one
or more specific mediums, because the generic medium does not understand the
lower-level details that are necessary to communicate over a particular kind of
network.

The specific mediums sometimes take advantage of the features peculiar to a
specific network in order to provide higher performance or special services.

It is not possible to make a strictly dualistic distinction between generic and
specific mediums, because one medium can be implemented by another, which is
implemented by a third, and so on. The structure is really a directed graph
rather than a pair of layers.

Here are the definitions of two generic mediums,. : byte-stream and :datagram:

32

Networks June 1986

(define-medium :byte-stream ())

(define-medium :datagram ())

When a specific medium is defined, it usually implements one more more generic
mediums. Thus the specific medium provides a specific implementation of the
generic medium. The second subform of the net:define-medium form contains the
generic mediums on which this medium is built. The following form defines the
:chaos medium, which is built on two generic mediums, : byte-stream and
: byte-stream-with-mark:

(define-medium :chaos (:byte-stream :byte-stream-with-mark)
(((: network : chaos)) lambda-list
body))

Similarly, the definition of the :chaos-simple medium shows that it is built on the
:datagram generic medium:

(define-medium :chaos-simple (:datagram)
(((: network : chaos)) lambda-list
body))

Generic mediums never appear in the service attributes of host objects. If a host
claimed to provide some service over the : byte-stream medium, it would have to
support every kind of medium that is built on : byte-stream, which is unlikely.
Generic mediums often appear in server and protocol definitions. When a service
is requested, a specific medium is chosen based on what is found in the service
attribute of the host object of the server host.

6.2 Descriptions of Defined Mediums

It is customary that user and server sides of protocols are defined to use a generic
medium (in the net:define-server and net:define-protocol forms). Each generic
medium is supported by one or more of the specific mediums listed below.

Generic Mediums:

: byte-stream Delivers bytes reliably from one end of the connection to the
other. The bytes arrive intact and in the original order. This
medium is used for protocols that require a stream of data
bytes, such as the :nfile protocol.

: byte-stream-with-mark
Provides the same functionality as : byte-stream, with the
additional feature that either side may safely interrupt the flow
of data. This medium has a mark that makes it possible to

June 1986

: datagram

Specific Mediums:

: chaos

: chaos-simple

: dial

:local

:tcp

:udp

33

Symbolics Generic Network System

resynchronize the connections between the two hosts, should it
be required. See the section "BYTE-STREAM-WITH-MARK
Network Medium", page 229.

A datagram is some small number of bytes of data. The
datagram arrives at the destination intact, but might arrive
multiple times or fail to arrive at all. If you send two
datagrams, they might not arrive in the order that they were
sent. This medium is used by protocols that provide their own
error checking, or do not require error checking. :datagram is
appropriate for protocols that perform simple tasks, such as
requesting the time of day.

Supports the :byte-stream and :byte-stream-with-mark generic
network mediums. All Symbolics computers support the :chaos
medium, which is used by the Chaosnet type of networks.
Chaosnets usually use Ethernet hardware.

Supports the :datagram generic network medium. All
Symbolics computers support the :chaos-simple medium, which
is used by the Chaosnet type of networks.

Supports communications over the international telephone
network. All Symbolics computers support the :dial medium
software; however, they require a modem to physically connect
to the telephone network. :dial supports the : byte-stream
medium. The primary use of the :dial medium is mail transfer.
See the section "Dial Network Medium", page 217.

Enables a host to provide a service locally, without using the
network.

Supports the :byte-stream and :byte-stream-with-mark generic
mediums. It is used to communicate with hosts on IP/TCP
networks, such as the ARPA Internet. This medium is supplied
with the optional IP/TCP software package. :tcp is the
Transmission Control Protocol medium as described in ARPA
RFC 793, available from ARPA Network Information Center.

Supports the :datagram generic medium. It is used to
communicate with hosts on IP/TCP networks, such as the ARPA
Internet. This medium is supplied with the optional IP/TCP
software package. :udp is the User Datagram Protocol medium
as described in ARPA RFC 768, available from ARPA Network
Information Center.

34

Networks

:dna

June 1986

Supports the : byte-stream generic medium. Provides
commun~cations using DECnet protocols, as described in DECnet
Digital Network Architecture (Phase IVJ General Description,
available from Digital Equipment Corporation. This medium is
supplied with the optional DNA software package.

35

June 1986 Symbolics Generic Network System

7. Generic Network Services

For information on how to write application programs built on the foundation of
the generic network system: See the section "Defining a New Network Service",
page 123.

7.1 Protocols Supported by All Symbolics Computers as Users

This chart lists the generic services that are supported by user sides on all
Symbolics computers, and the specific medium and protocol on which each service
is implemented. For related information: See the section "Descriptions of Defined
Generic Services", page 39.

The optional software packages support additional capabilities; these are listed
separately.

The variable neti:*protocol-list* is a list of user-side descriptions.

Service Medium Protocol

BAND-TRANSFER CHAOS BAND-TRANSFER
CHAOS-STATUS CHAOS-SIMPLE CHAOS-STATUS
CONFIGURATION CHAOS CONFIGURATION
DOMAIN CHAOS DOMAIN
ECHO-XCN-TOKEN-LIST CHAOS ECHO-XCN-TOKEN-LIST
EXPAND-MAIL-RECIPIENT CHAOS EXPAND-MAILING-LIST
EXPAND-MAIL-RECIPIENT CHAOS SMTP
FILE CHAOS NFILE
FILE CHAOS QFILE
HARDCOPY-STATUS CHAOS LGP-QUEUE
HARDCOPY CHAOS LGP
HARDCOPY CHAOS PRINTER-QUEUE
LISPM-FINGER CHAOS-SIMPLE LISPM-FINGER
LOGIN CHAOS 3600-LOGIN
LOGIN CHAOS SUPDUP
LOGIN CHAOS TELNET
LOGIN CHAOS TELSUP
LOGIN CHAOS TTY-LOGIN
LOGIN DIAL TELNET
MAIL-PROBE DIAL MAIL-PROBE

36

Networks June 1986

MAIL-TO-USER CHAOS CHAOS-MAIL
MAIL-TO-USER CHAOS SMTP
MAIL-TO-USER DIAL SMTP
NAMESPACE-TIMESTAMP CHAOS-SIMPLE NAMESPACE-TIMESTAMP
NAMESPACE CHAOS NAMESPACE
NOTIFY CHAOS NOTIFY
PRINTER-CONTROL-QUEUE CHAOS PRINTER-QUEUE
PRINTER-CONTROL CHAOS PRINTER-QUEUE
RESET-TIME-SERVER CHAOS-SIMPLE RESET-TIME-SERVER
SEND CHAOS CONVERSE
SEND CHAOS SEND
SEND CHAOS SMTP
SHOW-USERS CHAOS NAME
STORE-AND-FORWARD-MAIL CHAOS CHAOS-MAIL
STORE-AND-FORWARD-MAIL CHAOS SMTP
STORE-AND-FORWARD-MAIL DIAL SMTP
TAPE CHAOS RTAPE
TIME CHAOS-SIMPLE TI ME-S I MPLE
UPTIME CHAOS-SIMPLE UPTIME-SIMPLE
WHO-AM-I CHAOS-SIMPLE WHO-AM-I

7.2 Protocols Supported by All Symbolics Computers as Servers

This chart lists the generic services that are supported by server sides on all
Symbolics computers, and the medium and protocol on which each service is
implemented.

See the section "Descriptions of Defined Generic Services", page 39.

The variable neti:*servers* is a list of server-side descriptions.

Service Medium Protocol

BAND-TRANSFER CHAOS BAND-TRANSFER
CHAOS-STATUS CHAOS-SIMPLE CHAOS-STATUS
CONFIGURATION CHAOS CONFIGURATION
DOMAIN CHAOS DOMAIN
EXPAND-MAIL-RECIPIENT CHAOS SMTP
FILE CHAOS NFILE
FILE CHAOS QFILE
HARDCOPY-STATUS CHAOS LGP-QUEUE
HARDCOPY CHAOS LGP

37

June 1986 Symbolics Generic Network System

HARDCOPY CHAOS PRINTER-QUEUE
LISPM-FINGER CHAOS-SIMPLE LISPM-FINGER
LOGIN CHAOS 3600-LOGIN
LOGIN CHAOS SUPDUP
LOGIN CHAOS TELNET
LOGIN CHAOS TTY-LOGIN
LOGIN DIAL TELNET
MAIL-PROBE DIAL MAIL-PROBE
MAIL-TO-USER CHAOS CHAOS-MAIL
MAIL-TO-USER DIAL SMTP
NAMESPACE-TIMESTAMP CHAOS-SIMPLE NAMESPACE-TIMESTAMP
NAMES PACE CHAOS NAMESPACE
NOTIFY CHAOS NOTIFY
PRINTER-CONTROL-QUEUE CHAOS PRINTER-QUEUE
PRINTER-CONTROL CHAOS PRINTER-QUEUE
RESET-TIME-SERVER CHAOS-SIMPLE RESET-TIME-SERVER
SEND CHAOS CONVERSE
SEND CHAOS SEND
SEND CHAOS SMTP
SHOW-USERS CHAOS NAME
STORE-AND-FORWARD-MAIL CHAOS CHAOS-MAIL
STORE-AND-FORWARD-MAIL DIAL SMTP
TAPE CHAOS RTAPE
TIME CHAOS-SIMPLE TIME-SIMPLE
UPTIME CHAOS-SIMPLE UPTIME-SIMPLE
WHO-AM-I CHAOS-SIMPLE WHO-AM-I

The server protocols related to the mailer are available only if the mailer is
installed. The server protocols related to hardcopy and printers are available only
if the print spooler is installed.

7.3 rcp and UDP Protocols Supported by Symbolics Computers as
Users

The IP/TCP software package enables Symbolics computer users to access the
following services provided by other hosts:

Service

CONFIGURATION
DOMAIN

Medium

TCP
TCP

Protocol

CONFIGURATION
DOMAIN

38

Networks June 1986

DOMAIN UDP DOMAIN-SIMPLE
EXPAND-MAIL-RECIPIENT TCP SMTP
FILE TCP NFILE
FILE TCP TCP-FTP
FILE UDP TFTP
LISPM-FINGER UDP LISPM-FINGER
LOGIN TCP 3600-LOGIN
LOGIN TCP SUPDUP
LOGIN TCP TEL NET
MAIL-TO-USER TCP SMTP
SEND TCP SMTP
SHOW-USERS TCP ASCII-NAME
STORE-AND-FORWARD-MAIL TCP SMTP
TCP-GATEWAY CHAOS TCP-GATEWAY
TIME TCP TIME-MSB
TIME UDP TIME-SIMPLE-MSB

7.4 TCP and UDP Protocols Supported by Symbolics Computers as
Servers

The IP/TCP software package enables Symbolics computers to provide the
following services:

Service Medium Protocol

CONFIGURATION TCP CONFIGURATION
DOMAIN TCP DOMAIN
DOMAIN UDP DOMAIN-SIMPLE
EXPAND-MAIL-RECIPIENT TCP SMTP
FILE TCP NFILE
FILE TCP TCP-FTP
FILE UDP TFTP
IEN-116 UDP IEN-116
LISPM-FINGER UDP LISPM-FINGER
LOGIN TCP 3600-LOGIN
LOGIN TCP SUPDUP
LOGIN TCP TELNET
MAIL-TO-USER TCP SMTP
SEND TCP SMTP
SHOW-USERS TCP ASCII-NAME
STORE-AND-FORWARD-MAIL TCP SMTP

39

June 1986 Symbolics Generic Network System

TIME
UNIX-RWHO

UDP
UDP

TIME-SIMPLE-MSB
UNIX-RWHO

The server protocols related to the mailer are available only if the mailer is
installed.

7.5 DNA Protocols Supported by Symbolics Computers as Users

The DNA software package enables Symbolics computer users to access the
following services provided by other hosts:

Service Medium Protocol

FILE DNA DAP
LOGIN DNA CTERM
MAIL-TO-USER DNA DNA-MAIL
SHOW-USERS DNA ASCII-NAME
TAPE DNA RTAPE
TIME DNA DNA-LMTIME
UPTIME DNA DNA-LMUPTIME

7.6 DNA Protocols Supported by Symbolics Computers as Servers

The DNA software package enables Symbolics computers to provide the following
services:

Service

FILE
LOOPBACK
MAIL-TO-USER

Medium

DNA
DNA
DNA

Protocol

DAP
DNA-LOOPBACK-MIRROR
DNA-MAIL

7.7 Descriptions of Defined Generic Services

: band-transfer

'rtrv, A ~ v,c---------_.----------
.s.~tw "FE r D,~ It

Cor ,/ wo,l~

ex) p-J1(¢:> i"'t->~a--IJJ!J

The user side requests that a copy of a world load be transferred.
This transfer can be in either direction. The Copy World command
uses this service.

40

Networks June 1986

: configuration
The server reports its hardware configuration to the user. The Show
Machine Configuration command uses this service.

: domain The server is capable of being an Internet Domain Server. This is
used when parsing host names. See the section "Internet Domain
Names", page 222.

:expand-mail-recipient
The server returns the elements of a mailing list. The Show Expanded
Mailing List (M-X) Zmail command uses this service.

: file The user host performs operations on files stored on a remote host.
The server host responds to requests from the user host relating to file
access. File access can include these file operations: open, close, read,
write, probe, directory, and so on.

: hardcopy-status
The server sends a description of the current status of a local hardcopy
device and its spooler to the user. This is used by sites that have one
or more Symbolics computers running Release 6.1 software.

:hardcopy The server prints a file on a local hardcopy device. The Hardcopy File
command and the hardcopy:make-hardcopy-stream function use this
service. This is used by sites that have one or more Symbolics
computers running Release 6.1 software.

:lispm-finger

: login

The server host provides information on the users currently logged in
to this host. Returns a list of (host-name user-id host-location idle-time
personal-name group). The Show Users command uses this. If you
prefer to keep certain fields of your user object private, such that the
:lispm-finger protocol does not return them: See the section
"Censoring Fields for lispm-finger and name Services" in User's Guide
to Symbolics Computers.

The server permits a user to log in remotely. The Terminal program
uses this service.

: mail-to-user
The server delivers an electronic mail message to the mailbox of the
recipient of the message. :mail-to-user service performs delivery only
if the mailbox is stored locally on the server host.

41

June 1986 Symbolics Generic Network System

:namespace-timestamp
This service is used to determine whether the data in the namespace
database has changed. The server returns a timestamp of the last
update to the database. It is necessary for any namespace server to
provide this service.

:namespace

: notify

The namespace system uses this service to query and update the
namespace database. It is necessary for any namespace server to
provide this service. For information on the protocol used to provide
this service: See the section "Network Namespace Protocol", page 311.

The server issues an asynchronous message to a local user or users.
chaos:notify and chaos:notify-all-lispms use this service.

:printer-control
The server manipulates a local hardcopy device, as requested by the
user. The Halt Printer command uses this service.

:printer-queue-control
The server manipulates the queue of a local hardcopy device, as
requested by the user. The Delete Printer Request command uses this
service.

:reset-time-server

:send

The server host resets its own internal time to the time returned by
one of the network hosts.

The server host sends an interactive message containing to a
designated user (person) on that host. The Converse program uses this
service.

: show-users
The server returns information on the users currently logged in to this
host. The Show Users command uses this service. If you prefer to keep
certain fields of your user object private, such that the :name protocol
does not return them: See the section "Censoring Fields for
lispm-finger and name Services" in User's Guide to Symbolics
Computers.

:store-and-forward-mail
The server participates in the delivery of an electronic mail message.
The message is forwarded to another host on the network which is
closer to the target host. If the next host in the path is down, the

42

Networks

:tape

:time

June 1986

server holds the message (hence the "store" in the name of the
service) and retransmits it when the host is up.

The server side transfers data between a tape and the user side. The
transfer can be in either direction. tape:make-tape-stream uses this
service.

The server returns the current universal time, or nil if it cannot find
the current time. See the section "Representation of Dates and Times"
in Programming the User Interface.

(\ to ':) \.

:tcp-gateway u~'--~' W' \. •

The server host is capable of being a TCP gateway, which means it
can create TCP connections on behalf of the user side. This is useful
when the user host has no IP-TCP medium directly connected to it.

:uptime The server returns the amount of time it has been up, in sixtieths of a
second.

:who-am-i The server provides information about itself. Returns three values:
the keyword that names the namespace of this host; the host name (or
:unknown); and the host that responded with this information. This is
used by Symbolics computers at boot time.

43

June 1986 Symbolics Generic Network System

8. Finding a Path to a Service on a Remote Host

This section describes how the Symbolics Generic Network system finds paths to a
service. In this section, the user host is a Symbolics computer. When a service is
requested, it is possible that the remote host has more than one way of providing
the desired service; it is also possible that the remote host has no way of
providing the service. The user host is responsible for determining which paths
(if any) are possible, and choosing the most efficient path.

The user host must find the answers to the following questions:

• What kinds of connections is it capable of making?

This question has two parts. First, which mediums and protocols does this
host support for the desired service? Symbolics hosts store that information
in net:define-medium and net:define-protocol forms. Second, which
network connections are available to this host? The networks that a
Symbolics host supports are listed in the address attributes of its host
object .

• What kinds of connections is the server host capable of making?

To determine which mediums and protocols the server host supports for the
desired service, the user host consults the service attributes of the server's
host object. To determine which networks are supported by the server host,
the user host consults the address attributes of the server's host object.
(When a service is requested locally, there is no need to consult the
namespace database.)

When the user host has gathered all the required information, it generates a list
of possible paths, and chooses the best path.

8.1 Finding a Path to a Local Service

Some network services can be satisfied locally, without actually using the network.
Symbolics computers support a medium called :local for this purpose. For
example, some computers have their own built-in time-of-day clocks, and servers
can be provided for the time-of-day service.

When a service is requested locally, there is no need to consult the namespace
database. The Symbolics computer looks for a net:define-server form for the
requested service on the :local medium. If such a form exists, the Symbolics
computer has all the information it needs to perform the service for itself.

44

Networks June 1986

When a host is capable of performing local services, there is no need to have a
service attribute with the :local medium in its host object because the host does
not consult the namespace for this purpose. No protocol is required because user
and server sides communicate by Lisp function calls, passing Lisp objects directly,
rather than by sending bytes through a network.

8.2 Determining What Kinds of Connections a Symbolics Computer
Can Make

To answer the question "Which protocols and mediums does the local host support
for the desired service?" the user host looks up all the net:define-protocol forms
that define a user side for the desired service. If the desired service is :file, the
host might find that it supports :file service as follows:

• With :nfile protocol and the : byte-stream-with-mark medium.

• With :qfile protocol and the :chaos medium.

To answer the question "Which networks does this host support?", the user host
looks at the address attributes in its own host object. For example:

Address: Pair: CHAOS 413

Address: Pair: INTERNET 192. 10.41 . 135

This host is on two networks: one is named CHAOS and the other is named
INTERNET.

8.3 Determining What Kinds of Connections a Remote Host Can Make

I t is the user host that must determine what kinds of connections the server host
can make. In all networking environments, the user host has some mechanism for
figuring out what services, protocols, and mediums are supported by the other
hosts on the network. Symbolics computers use the namespace database for this
purpose.

Specifically, the Symbolics computer consults the host object for the server host.
To answer the question "Which mediums and protocols does the server host
support for the desired service?", the user host looks at the service attributes.
For example if the desired service is :file, these service attributes apply:

Service: Set: FILE CHAOS NFILE

Service: Set: FILE TCP NFILE

45

June 1986 Symbolics Generic Network System

Service: Set: FILE CHAOS QFILE

This host can provide :file service using the :nfile protocol over the :chaos
medium or the :tcp medium. It can also provide :file service using the :qfile
protocol over the :chaos medium.

To answer the question "Which networks does the server host support?", the user
host looks at the address attributes of the server's host object.

To see how the :address attributes are interpreted: See the section "Determining
What Kinds of Connections a Symbolics Computer Can Make", page 44.

8.4 Finding the Possible Paths to a Host

To find paths to a remote host, the user host needs detailed information on the
mediums it supports. The definition of a medium (in the net:define-medium
form) describes in detail what criteria must be satisfied for a connection to be
possible.

The definition of a medium includes a set of possible implementations of the
medium. Each implementation describes a way to form a network connection
using that medium. See the special form net:define-medium, page 159.

Each implementation contains one or more steps. A one-step implementation is a
way to connect directly to the server host. A two-step implementation is a way to
connect first to a gateway (a host on more than one network); the gateway then
connects to the server host. (A three-step implementation is a way to go through
two levels of gateway. None of the defined mediums actually do this, but it could
be done to any number of levels.)

Steps are of the following three types:
: network
: medium
:service

The last step of any implementation must be either :network or :medium; steps
other than the last step must be : service. This means that a one-step path must
be either :network or : medium.

Steps and implementations are represented as lists in the net:define-medium
special form. An implementation is a list of steps. A step is a two-element list
whose first element is the type of step (either :network, : medium, or :service).

The three types of steps are defined as follows:

(:network network-type)
A connection is possible if the user host and the server host

46

Networks June 1986

(:medium medium)

(:service service)

are both on the same network of type network-type. The
connection can be formed directly over that network. For
networks of type CHAOS, DIAL, or INTERNET, the "same
network" means that the name of the network is the same
(in the address attribute of the host object) for both hosts.
For networks of type DNA, the area number must also be
the same for both hosts.

A connection is possible if the two hosts can connect with
the specified medium.

A connection is possible if a a connection can be formed to
a server providing service, and that server can complete the
remaining steps of the path.

For example, the following form defines the :chaos medium:

(define-medium :chaos (:byte-stream)
(((:network :chaos»
(service-access-path &rest connection-args)
body))

The :chaos medium includes only one implementation, which is a one-step
implementation. To establish a :chaos or :chaos-simple connection to a target
host, both hosts must be on the same :chaos network. (Note that the keyword
:chaos is being used in two independent ways here: as a medium, and as a
network type.)

For the purposes of this example, the following form defines the medium called
:tcp and provides two implementations:

(define-medium :tcp (:byte-stream)
((:network :internet»
((:service :tcp-gateway) (:medium :tcp»)

The first implementation is a one-step implementation; it says that you can
establish a :tcp connection with a host if you are on the same :internet as it.
The second implementation says that you can establish a :tcp connection by
finding a path to any gateway host that provides the :tcp-gateway service, and
that can, itself, form a :tcp connection to the target host. Note that the second
step is a :medium step. This allows many levels of gateway to be used.

This becomes clearer with an example: See the section "Example of Finding a
Path to a Host", page 47.

47

June 1986 Symbolics Generfgfletwork System

/"G l~ :: "IW,/'
"'.'---.'

1
P,~ (,

, I

8.5

This section provides an example to show how the user host finds a path to a
desired service on the server host.

In this example, the host named Pokey requests :file service from the host named
Gumby. Both Pokey and Gumby are Symbolics computers.

The request for :file service happened when the user of Pokey gave the Edit File
command, and entered the pathname of a file stored on Gumby. Thus, Pokey is
the user side and Gumby is the server side of this transaction.

Pokey needs to answer the question "Which protocols and mediums are supported
locally for the desired service?" It checks the net:define-protocol forms, and
finds that it supports three different user protocols for :file service:

• :qfile protocol over the :chaos medium
• :nfile protocol over the : byte-stream-with-mark medium
• :dap protocol over the :dna medium

I

Pokey supports the :nfile protocol over the generic : byte-stream-with-mark
medium, which is built on : byte-stream, another generic medium. With generic
mediums, it is necessary to find the set of specific mediums that support it; a
generic medium is not sufficient in itself to make a connection. Each definition of
a specific medium that implements : byte-stream (and hence, .-
:byte-stream-with-mark) includes information on how Pokey can make a
connection using that medium.

Pokey finds three net:define-medium forms that provide implementations for the
: byte-stream medium: :tcp, :chaos, and : dna. Thus Pokey has determined that
it supports :nfile over the :tcp, :chaos, and :dna mediums. Pokey thus supports
the following user protocols and specific mediums:

• :qfile protocol over the :chaos medium\r"
• :nfile protocol over the :chaos medium .. " ~\
• :nfile protocol over the :tcp medium »""- "~\
• :dap protocol over the :dna medium \ 1)

Pokey must now answer the question "Which ~r,P4cols and mediums axe supported
by the remote host for the desired service?" ~t/ cpecks the host object for Gumby,
and sees the following two attributes: ,./ " '/ /

" i)
/// .. -',,/

Service: Set: FILE CHAOS QFILE~ ,_/
Service: Set: FILE CHAOS NFILE -------------~-:
Service: Set: FILE rcp NFILE ,,-'

48

Networks June 1986

This indicates that Gumby supports the following server protocols for :file service:

• :qfile protocol over the :chaos medium
• :nfile protocol over the :chaos medium
• :nfile protocol over the :tcp medium

Pokey eliminates the :dna medium as a possibility because Gumby does not
support a server side for :dap protocol over the :dna medium.

At this point there are two possibilities that Pokey must investigate: using the
:chaos medium or the :tcp medium.

Pokey investigates the first possibility: using the :chaos medium. The definition
of the :chaos medium contains a single implementation, which is:

(:network :chaos)

This implementation means that to establish a connection to a remote host using
the :chaos medium, both hosts must be on the same Chaos network. Pokey must
now determine whether Pokey and Gumby are on the same :chaos network. Pokey
checks its own host object for the address attributes, and finds:

Address: Pair: CHAOS 1843
Address: Pair: INTERNET 192.18.41.135
Add ress: Pair: DNA 3. 7

Pokey then looks at the host object for Gumby, and finds the following
address attribute:

Address:]Pair: PRIVATE-CHAOS 424
Address:]Pair: INTERNET 139.5.17.135

Both Pokey and Gumby are on networks of type CHAOS. (To find out the type of
a network, look in the network object for its type attribute.) Pokey is on a
network called CHAOS, and Gumby is on a network called PRIVATE-CHAOS.
Since the networks have different names, they are different Chaos networks. Thus
Pokey eliminates the possibility of using the :chaos medium to connect to Gumby.

Pokey now considers the :tcp medium. The definition of the :tcp medium contains
two implementations:

((:network :internet))
((:service :tcp-gateway) (:medium :tcp)))

The first implementation of the :tcp medium indicates that you can establish a
:tcp connection with a host if you are on the same :internet as it. Pokey looks at
the address attributes again to decide whether Pokey and Gumby are on the same
Internet. They are both on the network named INTERNET, so they are on the

49

June 1986 Symbolics Generic Network System

same Internet network. Pokey has succeeded in finding the first possible path:
using the :tcp medium to make a one-step connection to Gumby, over the same
Internet network.

The second implementation of the :tcp medium says that you can establish a :tcp
connection by finding a path to any gateway host that provides the :tcp-gateway
service, and that can, itself, form a :tcp connection to the target host.

Pokey searches the namespace database for hosts that provide :tcp-gateway
service. This time Pokey is not asking for that service on a specific host, but on
any host.

Pokey finds a host named Collie, whose host object contains the following service
attribute:

Service: Set: TCP-GATEWAY CHAOS TCP-GATEWAY

(Note that Symbolics computers do not support :tcp-gateway service; Collie is a
different kind of host.)

To be able to connect to Collie and request the :tcp-gateway service, Pokey must
use the :chaos medium. It is necessary that Pokey and Collie are on the same
Chaosnet. Collie's host object contains the following address attributes:

Add ress: Pair: CHAOS 1055
Address: Pair: INTERNET 192.10.41.266

Both Pokey and Collie are on the network named CHAOS. Pokey can request the
:tcp-gateway service using the :chaos medium.

Pokey now investigates whether Collie can connect to Gumby using :tcp. Both
Collie and Gumby are on the same Internet network, so this too is possible.

Pokey has succeeded in finding a second path to :file service on Gumby. Pokey can
connect to Collie using :chaos medium. In turn, Collie can connect to Gumby
using the :tcp medium.

It is up to Pokey to choose the more efficient of the two possible paths. Pokey
chooses the one-step path (using :tcp to connect directly) rather than the more
time-consuming two-step path (using :chaos to connect to Collie, and then :tcp to
connect to Gumby).

For information on how application programs can interface to this mechanism:
See the section "Invoking Network Services", page 117.

For more details on the implementation of the mechanism described here: See the
section "Implementation of the Service Lookup Mechanism", page 165.

50

Networks June 1986

8.6 Desirability of Network Protocols

When you request a network service the Symbolics generic network system finds
the possible paths to that service. When more than one path to the service exists,
the generic network system tries to choose the most efficient path. The network
system computes a number representing the desirability of each path.

Desirability is a floating point number between 0 and 1. When computing
desirability, the network system takes into account three factors: the desirability
of the protocols (as indicated in the net:define-protocol forms), the
host-protocol-desirability attribute of site objects in the namespace, and per
network dynamic information.

The relative desirability factors of the various Symbolics network protocols are as
follows:

• IPfrCP protocols have the highest desirability.

• Chaos protocols are less desirable than IPfrCP.

• DNA protocols are less desirable than Chaos.

You cannot change the desirability of the protocol, or the dynamic information.
But you can alter the desirability factors at your site by entering a value for the
host-protocol-desirability site attribute in the namespace database. See the
section "host-protocol-desirability: Site Object Attribute", page 93.

51

.June 1986 Symbolics Generic Network System

9. Enabling and Disabling Network Services

If a network service is enabled on your host, your host performs the service when
requested to do so by another network host. If a service is not enabled, your host
refuses to perform the service when it is requested.

When you cold or warm boot your machine, the function sys:enable-services is
called. It enables the network services indicated by the variable
neti:*standard-services-enabIed* .

You can enable or disable selected network services using sys:enable-services and
sys: disable-services.

sys:enable-services &optional (services Function
neti:*standard-services-enabIed*)

Enables selected network services. services can be a symbol that names a
single service to enable, or a list of symbols naming services to enable, or
: all, to enable all services. If no argument is provided, only those services
indicated by the variable neti:*standard-services-enabIed* are enabled.

If the keyword symbol that names a service has a sys:enable-services
property, that function is called with the name of the service as its sole
argument.

sys:disable-services &optional (particular-services ':all) Function
Disables network services. particular-services can be a symbol that names a
service, or a list of symbols to disable. If no argument is provided, all
services are disabled. For example:

(sys:disable-services ':send)

If the keyword symbol that names a service has a sys:disable-services
property function, that function is called with the name of the service as
its sole argument.

neti:*standard-services-enabIed* Variable
Contains the services that are enabled by sys:enable-services by default.
This variable is one of:

: all

nil

list

All services are enabled; this is the default.

No services are enabled.

Only the services in list are enabled.

52

Networks June 1986

neti:*new-services-enable* Variable
A non-nil value ensures that when a new service is defined it is also
enabled (if any services are enabled). The default is nil.

neti:service-enabled-p protocol-name Function
protocol-name is a keyword symbol that names a protocol. If the service
implemented by that protocol is currently enabled, the list of enabled
services is returned. protocol-name is the first element of the list.

Returns nil if the service is not currently enabled.

For example:

(neti:service-enabled-p ':send)

net:*services-enabled* Variable
Contains a list of the network services currently enabled on this host.

sys:enable-services Property
Server name symbols can have a sys:enable-services property. This
function is called when the function sys:enable-services is called; the
function should enable the service. The argument is always the name of
the service. For example:

(defun (:property service sys:enable-serv;ces) (arg)
body ...)

sys:disable-services Property
Server name symbols can have a sys:disable-services property. This
function is called when the function sys:disable-services is called; the
function should disable the service. The argument is always the name of
the service. For example:

(defun (:property service sys:d;sable-serv;c8s) (arg)
body ...)

53

June 1986 Network Addressing

PART III.

Network Addressing

This section describes the format of Chaosnet addresses, DNA addresses, and
Internet addresses.

We propose that all sites choose network addresses for their hosts with the
perspective that they might eventually support another type of network, or connect
to another existing network. Thus we recommend coordination among sites that
might later be connected via a gateway. We also propose a scheme for choosing
DNA and Chaosnet addresses based on a valid Internet address.

The recommendations are described at the end of this section: See the section
"Choosing a Network Addressing Scheme", page 61.

54

Networks June 1986

55

June 1986 Network Addressing

10. Format of Chaosnet Addresses

A Chaos address is a 16-bit quantity, in which the high-order 8 bits represent the
subnet number, and the low-order 8 bits represent the host number on that
subnet. Neither the subnet number nor the host number can be zero. Chaos
addresses are expressed in octal.

Example: Chaos Address 401

15 14 13 12 11 18 9 8 7 6 5 4 3 2 1 8

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

I 8 I 8 181 8 I 8 I 8 I 8 I 1 I 8 I 8 I 8 I 8 I 8 I 8 I 8 I 1 I
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

I<-------Subnet number--------->I<---------Host number--------->I

The subnet number is 1.
The host number is 1.
The Chaos address is 401 octal.

For technical details on how the Chaosnet address is used: See the section
"Chaosnet Addresses and Indices", page 180.

56

Networks June 1986

57

June 1986 Network Addressing

11. Format of Internet Addresses

Internet addresses are expressed in decimal, in four octets separated by periods.
Each octet is 8 bits long. There are three kinds of Internet addresses: Class A,
Class B, and Class C.

Examples of Internet addresses:

• 10.2.0.7 is host 2.0.7 on Class A network 10.

• 139.41.0.3 is host 0.3 on Class B network 139.41.

• 192.10.0.200 is host 200 on Class C network 192.10.0.

Class A Addresses

A Class A Internet address is a 32-bit number, in which the high-order octet (8-
bits) represents the network number and the following three octets represent the
host number. The first octet is less than 128.

Example of Class A Internet Address: 10.2.0.7

+--------+--------+--------+--------+
1000010101000000101000000001000001111

+--------+--------+--------+--------+

1 <-net-->1 <--------host------------>1

Class 8 Addresses

A Class B Internet address is a 32-bit number, in which the two high-order octets
represent the network number and the following two octets represent the host
number. The first octet of a Class B network is greater than or equal to 128 and
less than 192.

Example of Class B Internet Address: 139.41.0.3

..A>~ fI./ 0 .3-
+--------+--------+--------+--------+
110001011100101001 10000000el00000011 1

+--------+--------+--------+--------+

I<---network----->I<-----host------>I

58

Networks June 1986

Class C Addresses

A Class C Internet address is a 32-bit number, in which the three high-order
octets represent the network number and the low-order octet represents the host
number. The first octet of a Class C network is greater than or equal to 192, and
less than 224.

Example of Class C Internet Address: 192.10.0.200

+--------+--------+--------+--------+
1110000001000010101000000001110010001

+--------+--------+--------+--------+

I<-------network---------->I<-host->1

", '

59

June 1986 Network Addressing

12. Format of DNA Addresses

DNA addresses have two components: an area and a node number in that area.
For example, a DNA address of 3.7 indicates the host is node 7 in area 3. Hosts
with different area numbers cannot communicate with each other.

DNA addresses are 16 bit quantities, where the high-order 6 bits constitute the
area, and the low-order 10 bits constitute the node number. DNA addresses are
expressed in decimal notation.

Example: DNA Address 3.7

15 14 13 12 11 Hl 9 8 7 6 5 4 3 2 1 0

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
1010101011111010101010\0\0\1\1\1\

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

\<---------Area-------->\<------------Node number-------------->\

Bits 0-9 represent the node number, in this example 7.
Bits 10-15 represent the area number, in this example 3.

You can choose DNA addresses for your hosts in any way you like, as long as:

• Each host that will use DNA protocols, whether the machine is a VAX. or a
Symbolics computer, has a valid and unique DNA address.

• Any two hosts that want to communicate with each other are in the same area.
For example, the Symbolics computer area numbers must be the same as the
area number for any VAX. that is a server machine.

• The area number is in the range of 1 to 63 inclusive.

• The node number is in the range of 1 to 1023 inclusive.

Some sites choose to assign DNA addresses sequentially, from 1.1, 1.2, 1.3 and so
on.

60

Networks June 1986

61

June 1986 Network Addressing

13. Choosing a Network Addressing Scheme

This section proposes a scheme for convenient handling of network addresses in a
multi-networking environment, and recommends coordination among sites that
might in the future be connected via gateways. It is not necessary or required
that you follow the suggestions in this section.

The primary intent of this section is to advise site administrators to consider the
possibility that the site might want to connect to an existing network, or support
another type of network sometime in the future. Many sites already support more
than one type of network. Some sites support Chaosnet and Internet networks;
other sites support Chaosnet and DNA networks.

A standalone site can set up the network addressing in such a way that the
transition to a larger networking environment will go smoothly in the future. For
example, consider the requirement that each network host (for Chaosnet, DNA, or
Internet types of networks) must have a unique address. If your site intends to
connect to another existing network, it is to your advantage to coordinate with the
site administrator of that network to ensure that no two hosts on either network
have the same address. This type of coordination would obviate the need for
changing the network addresses of hosts when the two networks become
connected.

We also recommend choosing network addresses by a scheme of mapping one type
of address into another, such that if you know the Internet address of a host, you
can derive its Chaosnet address and vice versa. We propose a similar mapping
between Chaosnet and DNA addresses. When a site uses such a scheme, the site
administrator has one method for assigning network addresses for hosts. This
should reduce the complexity of assigning two or three types of addresses to each
host.

As a general note, all sites might consider requesting a valid Internet address. If
you set up your site based on a valid Internet address, it is unlikely that your
addresses will collide with the addresses of other sites. You can receive a valid
Internet address without being connected to the Internet. If your site ever does
connect to the Internet in the future, the transition will go smoothly if your site is
already using valid Internet addresses.

Once you have an Internet address, you can use the mapping schemes to derive a
Chaos address and a DNA address based on the Internet address.

62

Networks June 1986

13.1 How to Obtain an Internet Address

If your site does not already have an Internet network number, you can request
one by contacting:

Joyce Reynolds
USC - Information Sciences Institute
4676 Admiralty Way
Marina del Rey, California 90292
(213) 822-1511
ARPANET: jkreynolds@Usc-isi.arpa

The Internet address you receive is the network part of the address. You assign
the host number part of the address yourself. Each host on the local network
must have a unique host number.

13.2 Mapping an Internet Address Into a Chaos Address

Once you have an Internet address for a host, you can map that address into a
Chaos address. You can then assign sequential Chaos addresses for all Chaos
hosts on the network. If you are on the Internet, you can use each host's Internet
address to derive a Chaos address.

The mapping process is best explained by example. The following two examples
show the mapping of a Class B and Class C Internet address into a Chaosnet
address:

Class C Internet address: 192.10.41.48 decimal.

Step 1: Get the Chaos subnet number and host number.

192. HL 41 .48 is the Internet address.
192

10
41

is unused in the mapping.
is unused in the mapping.
is the Chaos subnet number.

48 is the Chaos host number.

Step 2: Convert the decimal sub net and host numbers to octal.

The subnet number (41 decimal is 51 octal.)
The host number (48 decimal is 60 octal.)

63

June 1986 NetwDrk Addressing

Step 3: Insert subnet and host numbers into two eight-bit bytes.

15 14 13 12 11 18 9 8 7 6 5 4 3 2 8

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

1 8 1 8 1 1 181 1 1 8 1 8 1 1 1 8 1 8 1 1 1 1 1 8 1 8 1 8 181
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

I<-------Subnet number--------->I<---------Host number--------->1

Step 4: Express the quantity in octal notation; this is the Chaos
address.

8 818 188 188 118 888
2 4 4 6 8

(binary representation)
(octal representation)

The resulting Chaos address is 24460 octal.

Class B Internet address: 139.41.9.3 decimal.

The subnet number is 9 decimal.
The host number is 3 decimal.

15 14 13 12 11 18 9 8 7 6 5 4 3 2 1 8

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

181818181118181118181818181811111

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

I<-------Subnet number--------->I<---------Host number--------->1

The resulting Chaos address is 4403 octal.

13.3 Mapping a Chaos Address Into a DNA Address

We recommend that you choose DNA addresses for the hosts at your site based on
the Chaos addresses. Each Symbolics computer already has a unique Chaos
address. By choosing a DNA address derived from the Chaos address, you can
always determine a DNA address from the Chaos address (thus assuring that the
DNA address is unique), and you can derive the Chaos address from the DNA
address.

64

Networks June 1986

It is not necessary or required that you derive DNA addresses based on the Chaos
addresses. This is just a suggestion.

Some sites cannot use this mapping scheme. If your site has several V AXNMS
hosts that are already using DNA protocols, they already have DNA addresses
assigned to them. In that case, you must be sure to assign DNA addresses to the
Symbolics computers that have the same DNA area number as the V AXNMS hosts
on the network. These addresses must be unique within the DNA database.

If you use this mapping scheme, keep in mind that the node numbers of each host
must be below the VAX's limit, which is the MAX ADDRESS parameter of the
NCP. The NCP does not accept network communication from hosts with node
numbers higher than MAX ADDRESS. By default, MAX ADDRESS is 32. It is an
easy matter to set the MAX. ADDRESS higher.

Start by figuring out the Chaos address of the first host to have DNA installed on
it. You can do this by entering the namespace database (choose it from the
System menu): use [View], then use [Host], then enter the name of the host.
Each Symbolics computer host object should contain a Chaos address (expressed in
octal notation) that resembles:

Address: Pair: CHAOS 401

To map a Chaos address into a DNA address, first determine the Chaos host
number and subnet number from the address. The Chaos host number is the
DNA node number. The Chaos subnet number is the DNA area number.

Chaos Address 401

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

I 0 I 0 I 0 101 0 I 0 I 0 I 1 I 0 I 0 I 0 I 0 I 0 I 0 I 0 111
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

I<----Chaos Subnet Number------>I<-----Chaos Host Number------->I

The Chaos subnet number is 1.
The Chaos host number is 1.
The Chaos address is 401 octal.

In this example, the Chaos subnet number is 1, so the DNA area number is 1.
The Chaos host number is 1, so the DNA node number is 1. The Chaos address
401 maps into a DNA address of 1.1.

Note that this mapping of Chaos subnet number to DNA area number works only

65

June 1986 Network Addressing

if the Chaos subnet number uses six or less of the available eight bits, that is, if
the Chaos subnet number is 128 or less. Any Chaos address that is 37777 or less
can be fully mapped into a DNA address. Chaos addresses greater than 37777 can
be partially mapped into DNA addresses, by mapping only the Chaos host number
into the DNA node number.

66

Networks June 1986

67

June 1986 Namespsce System

PART IV.

Namespace System

The basic concepts and terminology of the namespace system are presented
elsewhere: See the section "Concepts of the Namespace System", page 8.

This section is useful for maintainers of the namespace database. It documents
the different classes of objects in the namespace, the attributes of each class of
object, the data types of the attributes, and how to use the namespace editor.

One good way to learn about the namespace system is to use the namespace editol
to explore the objects stored in the database. You can invoke the namespace
database editor with the CP command Edit Namespace Object. You can then click
on the [View] command, choose one of the classes of objects (such as Host), and
enter the name of a host at your site. Once you have viewed host objects, user
objects, site objects, and so on, many of the concepts of the namespace system
become more clear.

This section also documents the tools that comprise the software interface to the
namespace system.

68

Networks June 1986

69

June 1986 Namespace System

14. Introduction to the Namespace System

The namespace database consists of a collection of objects. Each object has:

• A class: See the section "Namespace System Classes", page 69 .
• Attributes: See the section "Namespace System Attributes", page 70.
• A name: See the section "Names and Namespaces", page 71.

Each type of object contains a few required attributes and many optional
attributes. Note that when you are using the namespace editor, the required
attributes appear with an asterisk (*) after them.

All objects except namespaces themselves are added to the namespace database by
using the namespace editor, which is invoked with the CP command Edit
Namespace Object, or by choosing Namespace from the System menu. See the
section "Updating the Namespace Database", page 73.

14.1 Namespace System Classes

Every object has a class, which indicates its type. Each class is identified by a
global-name. For a discussion of global-names: See the section "Data Types of
Namespace System Attributes", page 70.

The following classes are especially important to the Symbolics system:

host

user

network

printer

site

namespace

A host object represents any computer, usually connected to a
network.

A user object represents a person who uses any of the hosts, or
a daemon user, for example, a Symbolics computer.

A network object represents a computer network, to which some
hosts are attached.

A printer object represents a device for producing hardcopy.

A site object represents a collection of hosts, printers, and
networks, grouped together in one physical location.

A namespace object represents a mapping from object names to
objects.

70

Networks June 1986

14.2 Namespace System Attributes

Attributes represent characteristics of an object. Each attribute has an indicator
(the name of the attribute) and a value; they work like property lists in Lisp. For
example, every host has a system-type (saying which operating system it runs),
every printer has a type (saying what type of printer it is), and every user has a
personal-name.

Each object class has one or more required attributes. However, most attributes
are optional; for example, hosts can optionally have a pretty-name, printers can
have a default-font, and a user can have a home-address. Some attributes can
occur more than once for a given object; for example, a host object can have
multiple addresses if it is attached to multiple networks.

When editing a namespace object, you can easily determine whether an attribute is
required or optional. Required attributes contain an asterisk by them, whereas
optional attributes do not.

Each object class has a IlXed set of required and optional attributes. You cannot
create additional attributes.

14.3 Data Types of Namespace System Attributes

Each class has attributes defined to have specific data types. Since the actual
representation of the various types of data represented in the database varies from
system to system, the namespace system uses the following system-independent
types:

Data type

object-class

name

global-name

token

set

pair

Value

An object in the database, for example, a site object. See the
section "Namespace System Classes", page 69.

A name in some namespace; name is not shared by all
namespaces.

A name which is not specific to a particular namespace but is
shared by all namespaces.

An arbitrary character string.

An ordered set of elements of the same data type. For example,
a value can be a set of names or a set of triples.

A list of two elements of specific data types; each element can
be of a different data type.

71

June 1986 Namespace System

triple' A list of three elements; each element can be of a different data
type.

Name, global-name and token require simple values, whereas set, pair and triple
require compound values.

Note: Namespace data types specific to the Symbolics computer are described
elsewhere: See the section "Namespace System Lisp Data Types", page 107.

14.4 Names and Namespaces

Every object has a name, which is a character string. Two objects of different
classes can have the same name. For example, there can be a printer named
george and a user named george; the two are unrelated. An object is identified by
its class and its name. If you want to look up an object in the database and you
know its name, you have to say "Find the printer named george" or "Find the
user named george", not just "Find george".

When long-distance networks are used to link together different sites, however, the
possibility of name conflicts arises; that is, two sites might use the same name in
the same class for conflicting purposes. For example, suppose you had a host
named orange, and you wanted to connect your site over a long-distance network
to some other site that happens to have picked the name orange for one of its own
hosts. Neither site is forced to change its host names just because it wants to
connect to the other site.

To avoid these naming conflicts, the database can include more than one
namespace. A namespace is a mapping from names to objects, and names in one
namespace are unrelated to names in another namespace. More strictly, a
namespace is a mapping from [class, name] pairs to objects, since an object is
identified by its class and its name. Normally each site has one namespace, and
the names of all the objects at that site are in that namespace. An object in some
namespace other than your own can be referred to by a qualified name, which
consists of the name of the namespace, a vertical bar, and the name of the object
in that namespace.

For example, suppose both Harvard and Yale have computer centers. Harvard has
three hosts named yellow, orange, and blue, and Yale has three hosts named apple,
orange, and banana. Each computer center would have its own namespace, one
named harvard and one named yale. At Harvard, the Harvard computers would be
referred to by their unqualified names (yellow, orange, and blue), whereas the Yale
computers would be referred to (by users at Harvard) by qualified names
(yalelapple, yalelorange, and yalelbanana). At Yale it would all work the other way
around.

Each namespace also has a list of namespaces called search rules. When a name

72

Networks June 1986

is looked up, each of the namespaces in the search rules list is consulted in turn,
until an object of that name is found in one of the namespaces. If you have some
other namespace in your search list, it is easier to refer to objects in that
namespace, because you do not have to use qualified names unless a name conflict
exists.

For example, in the scenario above, the search list for the harvard namespace
could have the harvard namespace first and the yale namespace second. Then
users at Harvard could refer to Yale's computers as apple, yalelorange, and
banana. The qualified name is only necessary if a name conflict exists.

Actually, only some classes of objects have names that are in namespaces; other
classes of objects are globally named, which means that the names are universal,
and conflicts are not permitted. In particular, classes, namespaces, and sites are
globally named; networks, hosts, printers, and users are named within namespaces.
There is never a need for multiply-qualified names; the names of namespaces are
global and never need to be qualified themselves.

Some namespaces do not correspond to any local site. Most large nationwide or
worldwide networks have their own host-naming convention. For example, the
u.S. Department of Defense Arpanet has its own set of host names, and this is
considered a namespace. If a local site includes some hosts that are on the
Arpanet, it might want to put the Arpanet namespace into its search list, and
install gateways on its Arpanet machine so that other machines on the local
network can access the Arpanet.

Some objects can also have nicknames. In particular, networks and hosts can have
nicknames; objects of other classes cannot. A nickname serves as an alternative
name for the object. Sometimes you give an object a nickname because its full
name is too long to type conveniently, such as a host whose name you type
frequently. However, each object has one primary name, which is always used
when the object is printed.

It is possible for an object to be in several namespaces at once. For example, a
host which is on both the Arpanet and a local network at some site might be in
both the Arpanet namespace and the local namespace. In this case, each
namespace maintains its own separate information on the object. The information
from each namespace is merged before being presented to the user.

Note: Search lists are not followed recursively. If a user at Harvard looks up a
name and Yale's namespace is in Harvard's search list, Yale's search list is not
relevant.

73

June 1986 Namespace System

15. Updating the Namespace Database

To begin editing the namespace database, use the CP command Edit Namespace
Object or choose [Namespace] from the System menu. Once in the namespace
window, you can use the [Edit] command to modify information stored in the
database, or use the [View] command to examine information without changing it.

Figure 1 shows the initial window.

Top

'\

,

~ottoM -,
Help EdIt. .;:iave .Creat.e View Copy

Delet.e Primary Name Add Namespace Locally Quit .0 cu,.,.eni: object. CI ick on Edit, Vie." 0" C,.eate.

Figure 1. Namespace Object Editor Window

The namespace editor window has three parts. The top pane shows the current
information about the object being edited. The middle pane is the command pane;
the commands that appear here are mouse-sensitive. The namespace editor uses
the bottom pane to prompt you for new information.

74

Networks June 1986

The namespace editor commands include:

Help Displays a brief explanation.

View Displays information about an object for inspection but not
editing.

Edit Displays information about an object for editing.

Locally Toggles whether to edit the local or global copy of the
information for an object. The initial state is global.

Save Saves the current information about an object.

Delete Removes an object from the database.

Create Adds a new object to the database.

Quit Exits from the namespace editor, without saving the current
information. If you want to save information, use [Save] before
using [Quit].

Copy Creates a new object by copying the current one.

Add Namespace Adds an existing object to a new namespace.

Primary Name Changes the primary name of the current object.

15.1 Editing a Namespace Object

First select the Namespace editor by using the Edit Namespace Object command.
To edit an existing namespace object, click on [Edit]. A menu of object classes
pops up. Click on the class of object you want to edit. You are prompted for the
name of an object to edit. The current information for the object is retrieved
from the namespace database and displayed in the top window.

The attribute fields are mouse-sensitive. Clicking on an attribute prompts you for
information in the bottom window. Mouse clicks have the following meaning:

Left

Middle

Right

Replace the information in the attribute.

Delete information in the attribute.

Edit the information in the attribute.

The window can be scrolled. See the section "Scrolling with the Mouse" in User's
Guide to Symbolics Computers.

Once you have finished editing the information, you have three possible ways to
proceed. You can [Quit] without saving the changed information. If you are just
practicing using the namespace editor, that would be appropriate.

75

June 1986 Namespace System

The other two choices are to save the information locally or globally. If you save
it globally, the new information is stored in the site's namespace database. If you
save it locally, the new information is stored only in your machine's local copy of
the namespace; these changes would affect only your machine.

The initial state of the namespace editor is the global mode. When you are in
global mode the top line of the screen looks like:

Editing: Host SCRCIJUNCO

If you have clicked on [Locally], you are in local mode. The top line of the screen
looks like:

Editing: Host SCRCIJUNCO (locally)

You can click on [Locally] to toggle the mode between global and local. When you
are ready, click on [Save] to save the information. Then click on [Quit] to exit
the namespace editor.

15.2 Creating a New Namespace Object

First select the Namespace editor by using the Edit Namespace Object command.
To create a new namespace object, click on [Create]. A menu of object classes
pops up. Click on the class of object you want to create. You are prompted for
the name of the new object. A template for the information is displayed in the
top window. The attributes are mouse-sensitive. Clicking on an attribute prompts
you in the bottom window for the information to put in the attribute.

Note that the required attributes appear with an asterisk (*) after them. All
object classes have a small number of required attributes, and several optional
attributes.

You can also create a new object by copying an existing object by clicking on
[Copy] and then editing the object as appropriate.

The window can be scrolled. See the section "Scrolling with the Mouse" in User's
Guide to Symbolics Computers.

When you are satisfied with the information, you can enter it in the database by
clicking on [Save]. Then click on [Quit] to exit the namespace editor.

For a discussion of saving (locally or globally) new information in the namespace
database: See the section "Editing a Namespace Object", page 74.

76

Networks June 1986

77

June 1986 Namespace System

16. Namespace System Object Definitions

This chapter provides a description of the attributes and values for the following
classes:

host
user
network
printer
site
namespace

The examples in the following sections show how a sample attribute appears when
you are in the namespace editor.

16.1 Namespace System Host Objects

A host object represents any computer connected to a network. The database lists
what networks a host is connected to, and at what addresses. It also says what
high-level services the host provides to the network community.

The following is a list of all attributes that hosts can have, together with
examples of what those attributes can look like. The name and
system-type attributes are required; all others are optional. Some of the
attributes are useful only for Symbolics computer hosts.

name: Host Object Attribute

Specifies the primary name of the host; a name (required).
When editing the namespace, the name appears at the top of the
screen. For example, if the host name is Junco and it is in the
SCRC namespace, you see:

Editing: Host SCRCIJunco

system-type: Host Object Attribute

Specifies the operating system run on the host; a global-name
(required). The Symbolics system uses this information to
figure out how to parse pathnames for a given host; be sure to
enter this information correctly. For example:

System Type*: LISPM

Common values are:

78

Networks

Value

1 ispm
unix42
unix
vms4
vms
tops-2B
alto
its
multics
minits
magicsix
mos
ms-dos

Type and Version of Software

Symbolics software, any version
UNIX version 4.2BSD and later versions
UNIX versions prior to 4.2BSD
VMS version 4 and later versions
VMS versions prior to version 4
TOPS-20 software, any version
ALTO software, any version
ITS software, any version
MULTICS software, any version
MINITS software, any version
MAGICSIX software, any version
MOS software, any version
MS-DOS software, any version

June 1986

site: Host Object Attribute

Specifies the site at which this host is located; a site object
(required) .

Site: SCRC

nickname: Host Object Attribute

Specifies alternate names for the host; a set of names.

Nickname: Junko

short-name: Host Object Attribute

Specifies additional nicknames; a set of names. A short-name is
used when a program wants to display a host's name without
using up too much space. This is also used in the printed
representation of pathnames.

Short Name: J

user-property: Object Attribute

Specifies a user-chosen property for this object; a pair whose
first element is an indicator (by analogy with property lists) and
whose second element is a token denoting whatever the user
chooses to associate with that indicator. Several classes of
objects have the user-property attribute, including users, hosts,

June 1986

79

Namespace System

printers, sites, namespaces, and networks. This is simply a
place-holder where you can store any extra information. For
example:

User Property: IO-number 123-45-6789

machine-type: Host Object Attribute

Specifies the kind of machine this host is; a global-name. For
example:

Machine Type: 3600

Common values for machine-type are:

3600 (for any 3600-family machine)
vax
pdp10
pdp11
ibmpc
honeywell-dps-8m
alto
pe3230
cadr

address: Host Object Attribute

Specifies the network addresses of this host; a set of pairs or
triples. Each triple is of the form (network address interface>,
where network is a network object, address is a token, and
interface (optionally) identifies the interface for which this
address is valid. Addresses are always represented as tokens
because each kind of network has a different kind of address;
the individual network types and their corresponding address
conventions are discussed later in this document. An example of
a pair:

Address: CHAOS 401

pretty-name: Host Object Attribute

Specifies a "pretty" version of the name of the host; a token.
Unlike the real name, the nicknames, and the short name, this
does not count as a name as far as the database system is
concerned (you cannot use it to find the host).

Pretty name: "Slate-colored Junco"

80

Networks June 1986

console .. locatlon: Host Object Attribute

Describes the physical location of the host's console; a triple.
Each element of the triple is a token. The first element
identifies the building. The second element is the floor number.
The third element is a textual description.

Console-location: 11CC 3 "In common area"

flnger .. locatlon: Host Object Attribute

Describes the physical location of the host itself; a token.

Finger-location: "In the 2nd floor lab"

Note: This is used by Release 6 systems when they are
performing the lispm-finger and show-users services. Genera
7.0 systems use the console-location attribute instead, unless it
is not filled in.

location: Host Object Attribute

Specifies a description of the physical location suitable for
programs to understand; a pair. The first element is a token
that identifies the building the machine is in. The second
element is a token that says what floor of the building the
machine is on.

Location: Lab 2

Note: This is used by Release 6 systems. Genera 7.0 systems
use the console-location attribute instead, unless it is not filled
in.

printer: Host Object Attribute

Specifies the preferred printer for this host; a printer object.
This printer is used by default when files are hardcopied from
this host. If this attribute is not provided, the site's
default-printer attribute is used.

Printer: Enquirer

bltmap"prlnter: Host Object Attribute

Specifies the preferred bitmap printer for this host; a printer
object. This printer is used by default when screen images are
hardcopied from this host. If this attribute is not provided,
site's default-bitMap-printer attribute is used.

81

June 1986 Namespace System

Bitmap Printer: Asahi

prlnt-spooler-optlons: Host Object Attribute

Specifies options for any print spoolers running on this host; a
set of pairs of global-names and tokens. A typical global-name
for print-spooler-options is Home-directory; its value denotes the
directory where hardcopy requests are stored. The default for
Symbolics computers is local:>print>spooler>.

Print Spooler Options: Home-directory local:>print-spooler>

spooled-printer: Host Object Attribute

Specifies printers for which this host provides a spooling
service; a printer object followed by a set of pairs of global
names and tokens describing the spooling service for that
printer. Allowed global-names are:

spool-via Method of spooling, for example, "network"
(the default) or "file".

file-name Name of spooling file of spool-via file.

protocol Special spooling protocol, when spool-via is
"network". If protocol is not specified, the
generic hardcopy service to the host is used.

home-directory Directory where hardcopy requests are stored.
The default for Symbolics computers is
local:>print-spooler>.

For Symbolics spoolers no keywords are normally necessary.

For example:

Spooled printer: caspian-sea spool-via file

service: Host Object Attribute

Specifies services and protocols supported by this host; a list of
triples of the form service medium protocol. Each triple
specifies that the host is capable of providing service when you
connect to it using medium and protocol.

Service: FILE CHAOS NFILE

Services, mediums, and protocols are discussed elsewhere: See
the section "Service Attributes in the Namespace Database",
page 29.

82

Networks June 1986

server-machine: Host Object Attribute

Specifies whether the object described is a server machine; a
token. If the value is YES, then this host is a server machine;
if the attribute is not present, the host is not a server machine.
Values other than YES are undefined and should not be used.

Server Machine: YES

This attribute only applies to Symbolics computers. Server
machines do not automatically enable their services when you
boot them. This is to prevent premature creation of servers
before the machine has completely initialized.

flie-control-lifetlme: Host Object Attribute

Specifies the lifetime of a file control connection; a token. The
value is a string representing a number in decimal. When a
Symbolics computer connects to this host as a user of the
file service, it will automatically close its control connection if
that connection has been idle for this number of sixtieths of a
second.

File Control Lifetime: 1B8BBB

peripheral: Host Object Attribute

Specifies a peripheral device; a set of pairs. The first element
is a peripheral type and is a global-name. The second element
describes the device and is a set of pairs of global-names and
tokens.

Peripheral: kanji-tablet unit 2 baud 24BB

16.2 Namespace System User Objects

A user object represents either a person who uses any of the hosts, or a daemon
pseudo-user. Each person who uses Symbolics computers should be registered in
the database; this means that there is a corresponding user object. Symbolics
computers log in as daemon users when they need to conduct operations even
though there is no particular person identifiable as the user. This typically
happens when the Symbolics computer is acting as a file server or a mail server,
or when it is performing maintenance functions, such as saving a world with
patches loaded.

83

June 1986 Namespace System

The following is a list of all attributes that user objects can have. The name,
lispm-name, personal-name, home-host, and mail-address attributes are
required; all others are optional.

name: User Object Attribute

Names the user, a token (required). This name can be used as
an argument to the Login command on a Symbolics computer.
When editing this user object, you see the name attribute
displayed at the top of the screen:

Editing User: SCRCIGWASH

IIspm-name: User Object Attribute

Specifies the name displayed in the status line; a token
(required). Used by the lispm-finger service as the user name.
The Lisp variable zl:user-id is set from this attribute. Typically
it is similar to the actual name of the user object, but uses
upper- and lower-case.

LispM Name*: GWash

personal-name: User Object Attribute

Specifies the user's personal name; a token (required).

Personal Name*: "George Washington"

home-host: User Object Attribute

Specifies the user's host machine; a token (required).

Home Host*: VIXEN

mall-address: User Object Attribute

Specifies the network mailbox at which the user wants to
receive mail; a pair (required). The first element is the mailbox
name (a token), and the second element is a host object.
Defaults to name@home-host.

Mail Address*: GWash VIXEN

login-name: User Object Attribute

Specifies the appropriate login name for each of several hosts; a
set of pairs. The first element of each pair is a token giving

84

Networks June 1986

the login name, and the second element is the host object that
corresponds to that name. Generally, you should have one
login-name attribute filled in for every account that you have
on a host on the network.

The Symbolics computer uses these login names when it
connects to a host to log in a file server or a tape server.
login-name is not required, but lack of this attribute causes the
Symbolics computer to ask for the name to use for each server,
which might be inconvenient. Passwords are not stored in the
database because it is not secure; the Symbolics computer
prompts the user for a password interactively when one is
required.

Login Name:
Login Name:

GWash VIXEN
GWash PEGASUS

nickname: User Object Attribute

Specifies a personal nickname; a token. Unlike host nicknames,
user nicknames cannot be used to look up the user.

Nickname: "Georgie"

user-property: Object Attribute

Specifies a user-chosen property for this object; a pair whose
first element is an indicator (by analogy with property lists) and
whose second element is a token denoting whatever the user
chooses to associate with that indicator. Several classes of
objects have the user-property attribute, including users, hosts,
printers, sites, namespaces, and networks. This is simply a
place-holder where you can store any extra information. For
example:

User Property: ID-number 123-45-6789

work-address: User Object Attribute

Specifies a work (business) address; a token.

Work Address: "The White House, Washington D.C."

work-phone: User Object Attribute

Specifies the work (business) phone number; a token.

Work Phone: 202-555-1212

85

June 1986 Namespace System

home-address: User Object Attribute

Specifies the home address; a token.

Home Address: "Mount Vernon VA"

home-phone: User Object Attribute

Specifies the home phone number; a token.

Home Phone: 202-999-1234

birthday: User Object Attribute

Specifies the user's birthday; a token.

Birthday: "Feb 22"

project: User Object Attribute

Specifies what the user is working on; a token.

Project: "being President of the United States"

supervisor: User Object Attribute

Specifies who the user is working for; a token.

Supervisor: "the People"

affiliation: User Object Attribute

Specifies the user's group affiliation; a single-character token.
The letter is arbitrary and can refer to different sets of users at
different sites.

Affiliation: p

remarks: User Object Attribute

Specifies other relevant information; a token.

Remarks: "I cannot tell a lie."

86

Networks June 1986

16.3 Namespace System Network Objects

A network object represents a computer network, to which some hosts are
attached. The name and type attributes are required; all others are optional.

name: Network Object Attribute

Specifies the name of the network; a name object (required).
When editing this object, the name appears at the top of the
screen:

Editing Network: IlARVARDIHARVNET

type: Network Object Attribute

Specifies the type of network; a global-name (required). For
example:

Type*: INTERNET

Common network types include:

CHAOS

INTERNET

DIAL

X25

A network using the Chaos protocols.
Addresses are I6-bit numbers represented in
octal.

17006

A network using the DOD Internet protocols.
Addresses are the 32-bit Internet addresses as
four octets, represented in decimal, separated
by periods.

10.0.0.6

A direct-dial telephone network. Usually
there is only one of these, called dial by
convention. Addresses are telephone numbers
governed by the dialing conventions of the
installation.

15551212

A packet-switching network with a CCITT
Recommendation X.25 interface. Addresses
are X.12I addresses.

311061700138

June 1986

87

Namespace System

GATEWA~PSEUDONET

A network actually implemented by direct
connection of a gateway to a terminal line.
Address is service-name = contact name on
gateway host, for example, tty-l ogi n=pri me.

nickname: Network Object Attribute

Specifies alternate names for the network; a set of names. The
network may be found by these names.

Nickname: HNET

site: Network Object Attribute

Specifies the site at which this network is located; a site object.

Site: HARVARD

subnet: Network Object Attribute

Specifies characteristics of a subnetwork for this network; a
pair. The first element is a token naming the subnet in that
network's conventions. The second element is a set of pairs of
global-names and tokens that provide extra information on that
subnet. For example:

Subnet: 81 cable-start "Room 2" cable-end "Room 15"

user-property: Object Attribute

Specifies a user-chosen property for this object; a pair whose
first element is an indicator (by analogy with property lists) and
whose second element is a token denoting whatever the user
chooses to associate with that indicator. Several classes of
objects have the user-property attribute, including users, hosts,
printers, sites, namespaces, and networks. This is simply a
place-holder where you can store any extra information. For
example:

User Property: ID-number 123-45-6789

88

Networks June 1986

16.4 Namespace System Printer Objects

A printer object represents a hardcopy output device. The name, type, and
host attributes are required; the rest are optional.

name: Printer Object Attribute

Specifies the name of the printer (required); a name. When
editing this object, the name appears at the top of the screen:

Editing Printer: SCRCICASPIAN-SEA

type: Printer Object Attribute

Specifies the device type of the printer; a global-name
(required). This attribute implies some data formats that are
interpreted by the device. For example:

Type*: LGP2

Common values are:

19p
Igp2
ascii
press
xgp

host: Printer Object Attribute

Specifies the host to which the printer is directly connected; a
host object (required).

Host*: LETHE

site: Printer Object Attribute

The site where the printer is located; a site object. Generally
all printers at a site are offered in menus of potential output
devices for the destination of a hardcopy request.

Site: SCRC

pretty-name: Printer Object Attribute

Specifies a name for the printer; a token.

Pretty Name: "Caspian Sea"

89

June 1986 Namespace System

printer-location: Printer Object Attribute

Describes the physical location of the printer; a triple. The first
element is a token that identifies the building. The second
element is a token that is the floor number. The third element
is a textual description.

Printer Location: 11CC 3 "In joseph's office"

format: Printer Object Attribute

Specifies the print formats supported by the device; a set of
global-names. These are in addition to those il'!lplied by the
type attribute.

Format: LGP

Common print formats are:

19p
Igp2
press
xgp
ascii
tektronix

interface: Printer Object Attribute

Specifies the type of interface by which this printer is attached
to its host; a global-name.

Interface: SERIAL

Possible values are:

serial
dr11-c

interface-options: Printer Object Attribute

Specifies parameters of the hardware interface; a set of pairs of
global-names and tokens. For each interface attribute, give the
permissible option names and their default values.

Interface Options: UNIT 2 BAUD 9600

90

Networks June 1986

protocol: Printer Object Attribute

Specifies the protocols to use for direct unspooled printing; a set
of global-names. If protocol is not specified, the HARDCOPY
service is invoked on the host to which the printer is directly
connected.

body-character-style: Printer Object Attribute

Specifies the name of the character style that should normally
be used for this printer; a triple. Each element of the triple is
a global-name. The first element is the family; the second
element is the face; the third element is the size. See the
section "Character Styles" in Reference Guide to Symbolics
Common Lisp - Language Concepts. If not specified, the default
character style is usually determined by the type of printer.

Body Character Style: SWISS ROMAN LARGE

default-font: Printer Object Attribute

Specifies the name of the font that should normally be used for
this printer; a token. If not specified, the default-font is usually
determined by the type of printer.

Note: This attribute is used when a Release 6 system requests
hardcopy. Genera 7.0 systems use the
body-character-style attribute instead, unless it is not filled in.

header-character-style: Printer Object Attribute

Specifies the name of the character style that should be used for
headers for this printer; a triple. Each element of the triple is
a global-name. The first element is the family; the second
element is the face; the third element is the size. See the
section "Character Styles" in Reference Guide to Symbolics
Common Lisp - Language Concepts. If not specified, the default
character style is usually determined by the type of printer.

Header Character Style: SWISS ROMAN VERY-LARGE

header-font: Printer Object Attribute

Specifies the name of the header font that should normally be
used; a token. If not specified, the header-font is usually
determined by the type of printer.

June 1986

91

Namespace System

Note: This attribute is used when a Release 6 system requests
hardcopy. Genera 7.0 systems use the
header-character-style attribute instead, unless it is not filled
in.

dplt-Iogo: Printer Object Attribute

Specifies the name of the logo printed by DPLT; a global-name.

DPLT-LOGO: Symbolics

character-size: Printer Object Attribute

Specifies the size of a character in micas; a pair of width and
height, in decimal. (A mica is 10 microns, or 1/2540 of an inch.)

page-size: Printer Object Attribute

Specifies the size of the page in device units; a pair of width
and height, in decimal.

Page Size: 135 88

font-widths-file: Printer Object Attribute

Specifies the name of the fonts. widths file for this printer; a
token. It is best if this is a fully qualified physical pathname
instead of a logical pathname, for example:

Font Widths File: SCRCIA:>sys>stats>lgp-1>fonts.widths

user-property: Object Attribute

Specifies a user-chosen property for this object; a pair whose
first element is an indicator (by analogy with property lists) and
whose second element is a token denoting whatever the user
chooses to associate with that indicator. Several classes of
objects have the user-property attribute, including users, hosts,
printers, sites, namespaces, and networks. This is simply a
place-holder where you can store any extra information. For
example:

User Property: ID-number 123-45-6789

92

Networks June 1986

16.5 Namespace System Site Objects

A site object represents a collection of hosts, printers, and networks grouped
together in one physical location, within one timezone. The name, local
namespace, site-directory, host-for-bug-reports, and timezone attributes are
required; the rest are optional.

name: Site Object Attribute

Specifies the name of the site (required); a name. When editing
this object, the name appears at the top of the screen:

Editing Site: SCRC

local-namespace: Site Object Attribute

Specifies the site's local namespace; a namespace object
(required). This is the namespace that will be used at the site.
Normally, there is exactly one namespace for each site.

Local Namespace*: harvard

site-directory: Site Object Attribute

Specifies the file name of the directory that holds the Symbolics
computer system's site-specific files at this site; a token
(required). This is used only to find the files that define the
logical hosts, such as sys:. All other site-specific pathnames are
managed by logical pathname translations or by the descriptor
file attribute of a namespace.

Site Directory*: blue:>sys>site>

host-for-bug-reports: Site Object Attribute

Specifies the host to which bug reports should be sent
(required). The Report Bug CP command, and the commands in
the Debugger, Editor, and Zmail for reporting bugs use this
attribute.

Host for Bug Reports*: blue

timezone: Site Object Attribute

The timezone at this site; a global-name (required).

Timezone*: EST

93

June 1986 Namespace System

pretty-name: Site Object Attribute

Specifies a version of the name suitable for people to read; a
token.

Pretty Name: "Harvard University"

site-system: Site Object Attribute

Specifies the name of a system (in the defsysten1t sense) to be
loaded automatically into Symbolics computer worlds at this site;
a token.

Site System: HARV-SPECIFIC

default-printer: Site Object Attribute

Specifies the default printer to use for printing text files at this
site; a printer object. This will be used by hosts that do not
have their own printer attribute.

default-bltmap-prlnter: Site Object Attribute

Specifies the default printer to use for printing screen images at
this site; a printer object. This attribute is for hosts that do
not have their own bitmap-printer attribute.

host-protocol-desirability: Site Object Attribute

Specifies a tuning factor to be used in the Generic Network
System's cost estimates when trying to construct a path to a
service; a triple of the form (host protocol desirability), in which
host represents a host, protocol names some protocol that host
supports, and desirability is a token expressing a floating-point
factor for the cost calculations. See the section "Desirability of
Network Protocols", page 50.

For example:

Host Protocol Desirability: YUKON CHAOS-MAIL 0.75

Services and protocols are discussed elsewhere: See the section
"Symbolics Generic Network System", page 25.

If you change the value of host-protocol-desirahility, you must
either cold boot or use the following function, to Inake the
change take effect: See the function neti:recompute-all
namespace-server-access-paths, page 111.

94

Networks June 1986

secure-subnets: Site Object Attribute

Specifies an association of networks and secure subnet numbers;
a set of pairs. The first element of each pair is a type of
network; it must be CHAOS or INTERNET. The second
element of each pair is a set of subnet numbers, the
interpretation of which depends on the type of the network. For
a CHAOS network, the set is represented as octal character
strings. For an INTERNET network, the set is represented as
decimal character strings.

This attribute controls the subnet security feature of the
Symbolics file server as well as other servers which use the
:trusted-p or :reject-unless-trusted keywords to
net:define-server. Hosts on these subnets are considered
trustworthy.

dont-reply-to-malllng-lists: Site Object Attribute

Specifies a set of names of mailing lists to which Zmail does not
r~ly by default; tokens. This attribute is useful only to those
who have not set the PEOPLE NOT TO REPLY TO option in
their Zmail init files.

other-sltes-Ignored-In-zmall-summary: Site Object Attribute

Specifies a set of site objects. Zmail does not display the host
names of hosts from the specified sites in its summary window
as well as not doing so for this site.

standalone: Site Object Attribute

Specifies whether the host at this site is a standalone machine;
a token. If the value is the string "yes", then only one host
exists at this site and no response to the who-am-! network
broadcast request at boot time is expected. If the attribute is
not present or the value is not "yes", then multiple Symbolics
computer hosts exist at this site; when one host is booted,
another host answers its who-am-I query.

valldate-Imfs-dump-tapes: Site Object Attribute

Specifies whether the LMFS backup dumper attempts to validate
backup tapes; a token. If the value is "yes", then the LMFS
backup dumper validates backup tapes. If the value is not "yes"
or if the attribute is not provided, no validation is done.

95

June 1986 Namespace System

termlnal-f-argument: Site Object Attribute

An associate set of specifications for what the various
arguments to the FUNCT I ON F key should do. Each component is
a triple consisting of a number (a string of the decimal number)
or the string "none", a global name, and a set of hosts. The
global names can be:

login The login file computer.

local-lisp-machines
All Symbolics computers at this site.

all-lisp-machines All Symbolics computers on the local network.

host The hosts in the third element of the triple.

For example:

Terminal F Argument: NONE LOCAL-LISP-MACHINES
Terminal F Argument: B ALL-LISP-MACHINES
Terminal F Argument: 1 HOST VIXEN CUPID COMET
Terminal F Argument: 2 LOGIN

user-property: Object Attribute

Specifies a user-chosen property for this object; a pair whose
first element is an indicator (by analogy with property lists) and
whose second element is a token denoting whatever the user
chooses to associate with that indicator. Several classes of
objects have the user-property attribute, including users, hosts,
printers, sites, namespaces, and networks. This is simply a
place-holder where you can store any extra information. For
example:

User Property: ID-number 123-45-6789

16.6 Namespace Objects

A namespace object represents a mapping from names of objects to the objects
themselves. The name, search-rules, and descriptor-file attributes are required;
the rest are optional. Normally, either one site or no site is contained in each
namespace.

96

Networks June 1986

name: Namespace Object Attribute

Specifies the name of the namespace (required); a name. When
editing this object, the name appears at the top of the screen:

Editing Namespace: HARVARD

search-rules: Namespace Object Attribute

Specifies the search rules, expressed as a set of namespaces
(required) .

Search Rules*: HARVARD YALE

descriptor-file: Namespace Object Attribute

Specifies the descriptor file for the namespace; a token
(required). See the section "Namespace Database Descriptor
Files", page 102.

Descriptor File*: BLUE:>SYS>SITE>HRV-NAMESPACE.TEXT

prlmary-name-server: Namespace Object Attribute

Specifies those hosts that are primary namespace servers for
this namespace; a set of host objects. A primary server is an
authority regarding its namespace. The namespace data are
stored in files controlled by the primary namespace server.

Primary Name Server: BLUE

secondary-name-server: Namespace Object Attribute

Specifies secondary namespace servers for this namespace; a set
of host objects. A secondary server is not an authority on a
namespace, but can provide a backup in case the primary server
is temporarily unavailable. It attempts to keep a copy of the
namespace information current by querying the primary server
more often than a nonserver machine would.

Secondary Name Server: ORANGE PINK

Internet-domain-name: Namespace Object Attribute

The Internet Domain Name associated with the namespace; a
token. See the section "Dialnet and Internet Domain Names" in
Installation and Site Operations.

97

June 1986 Namespace System

Internet Domain Name: SCRC.Symbolics.COH

user-property: Object Attribute

Specifies a user-chosen property for this object; a pair whose
first element is an indicator (by analogy with property lists) and
whose second element is a token denoting whatever the user
chooses to associate with that indicator. Several classes of
objects have the user-property attribute, including users, hosts,
printers, sites, namespaces, and networks. This is simply a
place-holder where you can store any extra information. For
example:

User Property: ID-number 123-45-6789

98

Networks June 1986

99

June 1986 Namespace System

17. Details of the User Interface to the Namespace
System

When you edit an object that lives in more than one namespace (for example, a
host that is on both the local Chaosnet and the Arpanet), a pop-up window appears
that lists the name of each namespace and asks which "view" (that is, which
namespace) you want to edit.

When you are editing an object, the namespace editor shows each attribute (shown
in Roman type) for the object and its permissible data type(s). Attributes followed
by an asterisk (*) are required; all others are optional. Data types are shown in
regular italics and bold italics. By clicking on the data types shown in italics, you
can enter values for the attribute. The value replaces the data type in the
display. Data types shown in bold italics indicate compound values and remain in
the display, as in Login Name: Pair: sr VIXEN. Existing values are also mouse
sensitive; click right on a value to edit it.

Some attributes can occur more than once for the same object (for example, login
name); each attribute-value appears on its own line. An attribute with multiple
values is not the same as an attribute which has a set as its value.

Example: The spooled printer attribute entries for a particular host object look
like this:

Spool ed Pri nter: Pair: WALDEN Set: Pair: DI RECTORY p:>printer> Pair:
Spool ed Pri nter: Pair: Printer Set: Pair:
Global-name Token

The two entry lines for spooled printer indicate that the host object can have more
than one such attribute. The second line, which is not yet filled in, shows that
the value of the spooled printer attribute is a pair, whose first element is a
printer object and whose second element is a set of one or more pairs. Each pair
consists of a global-name and a token. Pair: at the end of the first line indicates
that you can continue to enter pair values for the printer object called Walden.

100

Networks June 1986

101

June 1986 Namespace System

18. Managing the Namespace Database

Each site must designate one machine as the primary namespace server for your
namespace. You make this selection when software supporting the database is
first installed at your site. The primary namespace server maintains permanent
copies of the namespace database in some file system, usually its own, and
distributes the information to other systems across the network.

18.1 Namespace Server Files

The Namespace Server maintains four kinds of files to store the namespace
information.

• Namespace database descriptor files

• Object files

• Log files

• Changes files

All of these are text files. As in a lisp file, characters found between a semicolon
and the end of a line are considered comments.

18.1.1 Record Format

The printed representation of an object and its attributes in files and over a
network byte stream is in records. A record is a set of lines followed by a blank
line. Each line is a set of tokens separated by spaces. A token is a sequence of
characters except space, newline, semicolon, and double quote, or any sequence of
characters between double quotes. Quoting within the double-quoted case is via
the backslash character. Double quotes and backslashes must be quoted inside
double quotes.

For example,

SIZE EXTRA-LARGE
COLORS RED WHITE BLUE
MANUFACTURER "Symbolics, Inc."
SLOGAN "\"Yow!\", he said."

Due to the similarity to a property list, the first token in a line is called the
indicator and the other tokens the value.

102

Networks June 1986

18.2 Namespace Database Descriptor Files

Each namespace has one descriptor file. Its pathname is stored as the
descriptor-file attribute of the namespace. This file gives the locations of the
other files which make up the namespace.

Each line of the file is either a comment or an indicator followed by a pathname.
Valid indicators are the names of the classes and the special indicators version,
changes, and *.

Indicator Value

class name The pathname of the object file for that class. See the section
"Namespace Database Object Files", page 102.

version The pathname of the log file.

changes The pathname of the changes file.

*

;-*-Text-*-

The pathname of the object file for all classes that have not
been explicitly named. See the section "Namespace Database
Object Files", page 102.

VERSION BLUE:>SYS>SITE>HARVARD-NAMESPACE-LOG.TEXT
CHANGES BLUE:>SYS>SITE>HARVARD-NAMESPACE-CHANGES.TEXT
HOST BLUE:>SYS>SITE>HARVARD-HOSTS.TEXT
USER BLUE:>SYS>SITE>HARVARD-USERS.TEXT
* BLUE:>SYS>SITE>HARVARD-OTHERS.TEXT

18.2.1 Namespace Database Object Files

Object files, the heart of the namespace database, contain the stored attributes of
all database objects. An object file contains the information for some subset of the
classes in a namespace, as specified in that namespace's descriptor file. It begins
with a file attribute list which specifies the namespace to which it belongs with
the network-namespace attribute. This is followed by a series of records
separated by blank lines.

Each record describes one object. The first line of the record consists of the class
name and the primary name of the object. Each following line contains an
indicator and a value for that attribute. Indicators defined as elements in the
class definition may occur several times. The values are gathered together into a
set.

A sample from HARVARD-USERS. TEXT:

103

June 1986 Namespace System

;-*- Mode: Text; Network-Namespace: Harvard -*
USER GEORGE
LISPM-NAME George
PERSONAL-NAME "Washington, George"
HOME-HOST BLUE
MAIL-ADDRESS George BLUE
LOGIN-NAME George BLUE
LOGIN-NAME Washington.States MITIMULTICS
LOGIN-NAME GW MITIMC
NICKNAME Georgie
WORK-ADDRESS "The White House, Washington D.C., 10001"
WORK-PHONE 202-555-1212
HOME-ADDRESS "Mount Vernon VA"
HOME-PHONE 202-999-1234
PROJECT "being President of the United States"
SUPERVISOR "the People"
REMARKS "I cannot tell a lie."

18.2.2 Namespace Database Log Files

The log file for a namespace is a text file containing all changes to the database.
In addition, its file system version number is used as a timestamp for the change
which resulted in that version being written out. This timestamp is used by the
database system to identify obsolete data.

An example from HARVARD-NAMESPACE-LOG.TEXT:

10/24/86 16:39:22 USER GEORGE by George. Old timestamp was 607.
10/24/86 22:09:10 HOST BLUE by JAdams. Old timestamp was 608.
10/26/86 07:23:45 HOST GREEN deleted by JAdams.

18.2.3 Namespace Database Changes Flies

The changes file for a namespace is a chronological record of all changes to the
namespace. It is kept so that systems need only process changes since the last
time they contacted the namespace server, rather than the entire database.

Each entry in the changes file consists of:
• a timestamp line

• an optional series of deleted object lines

• a blank line

• an optional series of changed or added object records

The timestamp line consists of the word TIMESTAMP followed by the version

104

Networks June 1986

number of the log file before the change was made. Deleted objects are identified
by their class name and primary name. Changed objects appear just as they do in
the object file.

As changes are nlade, old entries in the changes fue are winnowed. Thus, if an
object is changed twice, only the newest record for it will appear. Older entries in
the file are thus likely to consist of just a timestamp line and a blank line. Run
neti:prune-nrunespace-changes-file.

An example frOln HARVARD-NAMESPACE-CHANGES.TEXT:

T I MESTAt'lP 607

USER GEDI~GE

LISPM-NAl1E George
PERSONAL-NAME "Washington, George"
HOME-HOST BLUE
MAIL-ADDRESS George BLUE
LOGIN-NAME George BLUE
LOGIN-NAME Washington.States MITIMULTICS
LOGIN-NAtll: GW MITIMC
NICKNAME Georgie
WORK-ADDRESS "The White House, Was~ington D.C., 1BBB1"
WORK-PHONE 202-555-1212
HOME-ADDRESS "Mount Vernon VA"
HOME-PHONE 202-999-1234
PROJECT Ubeing President of the United States"
SUPERVISOR "the People"
REMARKS "I cannot tell a lie."

T I MEST At1P 608

105

June 1986 Namespace System

HOST BLUE
SYSTEM-TYPE LISPM
SERVICE CHAOS-STATUS CHAOS-SIMPLE CHAOS-STATUS
SERVICE SHOW-USERS CHAOS NAME
SERVICE TIME CHAOS-SIMPLE TIME-SIMPLE
SERVICE UPTIME CHAOS-SIMPLE UPTIME-SIMPLE
SERVICE LOGIN CHAOS TELNET
SERVICE SEND CHAOS SEND
SERVICE MAIL-TO-USER CHAOS CHAOS-MAIL
SERVICE NAMESPACE CHAOS NAMESPACE
SERVICE NAMESPACE-TIMESTAMP CHAOS-SIMPLE NAMESPACE-TIMESTAMP
SERVICE LISPM-FINGER CHAOS-SIMPLE LISPM-FINGER
SERVICE FILE CHAOS QFILE
LOCATION Kiosk 1
FINGER-LOCATION "Harvard Square Kiosk"
PRETTY-NAME Yellow
ADDRESS CHAOS 24412
MACHINE-TYPE LISPM
NICKNAME YEL
SHORT-NAME Y
SITE HARVARD

TIMESTAMP 6B9
HOST GREEN

TIMESTAMP 61B

18.3 Namespace System Administrative Functions

neti:read-object-file-and-update namespace class-name Function
Update the namespace database from an object file. names pace can be a
namespace object or the name of one. This function is used for namespaces
which are maintained outside of the Symbolics namespace database, but
which should be accessible to it. It reads an object file (usually generated
from some external source of information) and makes the namespace
database agree with it by adding, changing, and deleting objects. The
changes and log files are updated. It can be invoked only on the primary
namespace server for the namespace to be updated.

(neti:read-object-file-and-update
:arpanet :host)

106

Networks June 1986

neti:prune-namespace-changes-file names pace starting-timestamp Function
Eliminate the record of changes to namespace before starting-timestamp.
This reduces the amount of information which must be processed by the
primary namespace server when it is booted. The changes file is best
pruned only when there are no world load files that were saved before the
earliest remaining change; they will take quite awhile to boot.

neti:translate-hosts.text-file &key input-host-file input-lmlocs-file Function
output-file allowed-pre{zxes
destination-names pace short-names
file-control-lifetimes server-machines
tape-lisp-machines hosts-with-printers
hosts-with-kanji-tablets

Convert the M.LT. files HOSTS.TEXT and LMLOCS into the namespace
database format. Do only the Chaosnet part of hosts. text. Additionally, if
the host is on the Arpanet, its primary name is given as a nickname to the
corresponding name in the arpanet namespace, so that the object is
properly shared. allowed-prefixes is a list of strings that can start the
primary name. Give ("") to get everything, normally this would be
("MIT-"). destination-names pace is put in the file attribute list. The other
arguments provide information that was not present in the M.I.T. files.
Use of this function should generally be followed by using
neti:read-object-file-and-update to update the database.

neti:write-hosts.text-file output-file &rest args Function
Writes an ITS-style HOSTS. TEXT file from the namespace database. This
file can be used to initialize the host table on a timesharing system from
the database being maintained on the Symbolics computer.

107

June 1986 Namespace System

19. Software Interface to the Namespace System

Symbolics computer programmers who want to use the capabilities provided by the
network database should read this section. It describes the Lisp data types,
variables, and functions for interacting with the network facilities.

19.1 Namespace System Lisp Data Types

The various database data types are implemented on the Symbolics computer as
follows:

object

name

An instance of some flavor based on net:object.

An instance of flavor neti:name.

global-name

token

A symbol in the keyword package.

A string.

set

pair

triple

A list.

A list of two elements.

A list of three elements.

19.2 Namespace System Variables

net:*local-site* Variable
Specifies the site object representing the local site, that is, the value of
this variable answers the question "What site am I at?"

net:*local-host* Variable
Specifies the host object representing the local host, that is, the value of
this variable answers the question "What host am I?"

si:*user* Variable
Specifies the user object representing the user logged in to the machine,
that is, the value of this variable answers the question "What user am I?"

net:*namespace* Variable
Specifies the current namespace object.

108

Networks June 1986

net:*namespace-search-list* Variable
Specifies the search rules, represented as a list of namespace objects.

19.3 Namespace System Functions

net:find-object-named class name &optional (error-p t) Function
Returns the object of the given class named name. class is a keyword
symbol; name is a string. This function searches through all namespaces
in the search rules in order. If no object is found, the action taken
depends on error-p:

t

nil

Signal a neti:object-not-found-in-search-list error. This
is the default.

Return nil.

net:find-object-named also returns a second value, which is t if the object
is valid and nil if it is not.

(net:find-object-named :host "apple")
=> #<HOST APPLE>

T

(net:find-object-named :host "yalelorange")
=> #<HOST YALEIORANGE>

T

net:find-object-from-property-list class property-list... Function
Returns the first object of class that matches all of the properties in
property-list. class is a keyword symbol; property-list is an alternating list
of keywords and values. If no object is found, the function returns nil. If
many objects are found, it returns one of them. This function searches
through all namespaces in the search rules in order.

For example, to find one UNIX host:

(net:find-object-from-property-list
:host
:system-type :unix)

net:find-objects-from-property-list class property-list... Function
Returns a list of all objects of class that match all of the properties in
property-list. class is a keyword symbol; property-list is an alternating list
of keywords and values. If no objects are found, it returns nil. Objects
from all namespaces in the search rules are accumulated.

109

June 1986 Namespace System

Example: To get a list of all Symbolics computers at the local site:

(net:find-objects-from-property-list
:host
:system-type :lispm
:site net:*local-site*)

A property value from an object matches a pattern from the arguments to
this function if one of the following conditions holds:

• The Lisp function zl:equal returns t.

• The attribute is of the element or pair type and each element of the
pattern list matches some element of the value; wildcards in the
elements of a pattern are considered to match anything.

A wildcard is the keyword symbol :* or the string .. *.. . (Note: The
symbol * is not a wildcard.)

Example: To find a user who has an account on the blue host, use
the :* to match any login name.

(net:find-objects-from-property-list
:user
:login-name '((:* J(net:parse-host UblueU))))

zl:site-name Variable
The value is a keyword, the name of the site at which this machine is
located. zl:site-name can be used to conditionalize programs. For
example:

(when (eq zl :site-name :acme)
(load uapricot:>smith>cerebrum-serverU)

Site names are described in more detail: See the section "N amespace
System Site Objects", page 92.

si:get-site-option keyword Function
Finds out the value of a site option. keyword is the keyword symbol
naming the option. This function returns the value of the option.

(si:get-site-option :timezone)
:EST

110

Networks June 1986

si:parse-host host &optional no-error-p ignore Function
host is a string representing the name of a host. The namespace database
is searched for a host object corresponding to the name supplied. If the
host is not found, an error is signalled unless no-error-p is supplied and is
non-null.

19.4 Messages to Namespace Names and Objects

19.4.1 Messages to neti:name

:namespace Message
Returns the namespace for the name.

(send (send si:*user* :name) :namespace) => #<NAMESPACE HARVARD>

: qualified -string Message
Returns a qualified character string representation of a name.

(send (send si:*user* :name) :qualified-string) => "HARVARDIGEORGE"

:string Message
Returns an unqualified character string representation of a name.

(send (send si:*user* :name) :string) => "GEORGE"

:possibly-qualified-string Message
Returns the qualified name if shadowed. The single argument is a class
name.

(send (send si:*user* :name) :possibly-qualified-string :user)
=> "GEORGE" (or "HARVARDIGEORGE")

19.4.2 Messages to net:obJect

:class
Returns the name of the class of the object, as a keyword symbol.

(send net:*local-host* :class) => :host

Message

:get indicator Message

:name

The :get message looks up the object's indicator property. If it finds such
a property, it returns the value; otherwise it returns nil.

Message
Returns the primary name of the object, as a name object.

111

June 1986 Namespace System

(send s;:*user* :name) => #<NAME HARVARDIGEORGE 2346253>

:primary-name Message
Returns the primary name of the object, as a name object.

(send net:*local-host* :pr;mary-name)
=> #<NAME SCRCIJUNCO 36747263>

: names Message
Returns a list of all of the names by which an object can be found.

(send net:*local-host* :names) => (#<NAME HARVARDIJUNCO 2346253>
#<NAME HARVARDIJ 2346267>
#<NAME HARVARDIJUNKO 2346303»

:user-get indicator Message
Gets the value of this object's particular user-property attribute as
indicated by indicator. indicator is a keyword symbol. If no such
user-property attribute exists, :user-get returns nil.

(send s;:*user* :user-get :favor;te-color) => "Dusty Plum"

19.5 Namespace Server Access Paths

for a definition of service access paths: See the section "Service Access Path",
page 117.

Once the network system has computed a service access path for the :namespace
service for a given host, it does not recompute that path again unless you use
neti:recompute-namespace-server-access-paths, or
neti:recompute-all-namespace-server-access-paths, or cold boot.

neti:show-namespace-server-access-paths &optional namespace Function
Displays the currently cached service access paths for the given names pace,
along with their desirability. If names pace is not given, only those service
access paths for the local names pace are displayed.

neti:recompute-all-namespace-server-access-paths Function
Forces the generic network system to compute fresh service access paths
for all namespaces instead of depending on paths computed earlier. It is
necessary to use this function after altering the
host-protocol-desirability site attribute to make the change take effect.

112

Networks June 1986

neti:recompute-namespace-server-access-paths &optional Function
names pace

Forces the generic network system to compute fresh service access paths
for the names pace, instead of depending on paths computed earlier. If
namespace is not given, this function operates on service access paths for
the local namespace.

19.6 Defining Namespace Classes

New namespace classes can be defined with the special operator neti:define-class.
The definitions for the classes used in the system can be found in
sys: network;class-defmitions. lisp.

113

June 1986 Interfacing to the Generic Network System

PARTV.

Interfacing to the Generic Network System

This section describes how to write programs that interface to the Generic
Network System, including how to invoke network services in a program and how
to implement new services.

I t is also possible to write new mediums and even new types of networks.
However, implementing new code at the medium and network level is considerably
more complex than at the service level. These subjects are described elsewhere:
See the section "Implementation of the Generic Network System", page 135.

114

Networks June 1986

115

June 1986 Interfacing to the Generic Network System

20. How a Network Service is Performed

This section describes the course of events that takes place when a generic service
is requested and performed:

1. A program on the user side makes a request for a generic network service.

Usually the request occurs via net:invoke-service-on-host (used when the
service must be performed by a particular host, such as for access to a file),
or net:invoke-multiple-services (used when it is unimportant which network
host provides the service, such as returning the time of day).

2. The user side tries to find a path to the service.

When net:invoke-service-on-host is used, the generic network system on the
user side tries to find the best path to the given service on the host. When
net:invoke-multiple-services is used, the generic network system seeks
multiple paths to the service. In either case, the application program that
requested the generic service is not involved in finding the path; this is
accomplished by the generic network system.

The generic network system uses one of several functions to find a path. It
uses net:find-paths-to-service-on-host when the service must be performed
by a particular host, and net:find-paths-to-service when it is unimportant
which host provides the service. These two functions return a service access
path, a structure representing a path to a service on a host, including a
description of the protocol and medium to be used. See the section "Service
Access Path", page 117.

The user side uses the namespace database to locate paths to services and
hosts. This is described in detail elsewhere: See the section "Finding a
Path to a Service on a Remote Host", page 43.

If the generic network system cannot find a path to the service, the service
cannot be performed. An error is signalled.

3. The user side gets the contact identifier for the service.

The service access path describes the protocol and medium to be used; the
next step is to find the contact identifier for that protocol. Each medium
has a function that associates a contact identifier with a protocol.

116

Networks June 1986

Medium
CHAOS
TCP
UDP
DNA

Function that Defines a Contact Identifier
chaos:add-contact-name-for-protocol
tcp:add-tcp-port-for-protocol
tcp:add-udp-port-for-protocol
dna:add-dna-contact-id-for-protocol

If the contact name is defined, the user side makes a request for connection
to the server host (or hosts) on that contact identifier. If no contact name
for this protocol is defined on the user host, an error is signalled.

4. The user side tries to make initial contact with the server side using the
contact identifier.

The server operating system examines the contact identifier and creates a
server process. The operating system can either reject the request from the
user side, or complete the connection. When the server side is a Symbolics
computer, the same form that defines the contact identifier also identifies
where, the code that performs the service is defined. The server process
finds that code (in a net:define-server form).

If no server for this contact identifier is defined on the server host, an error
is signalled (on the user host).

5. The user and server side exchange data.

When the service is implemented with the generic :byte-stream or
: byte-stream-with-mark medium, the user program often opens a stream via
one of the possible mechanisms. The stream is set up to receive whatever
information comes from the server side. When the :datagram medium is
used, no stream is opened; instead, the server fills in an array with data and
sends it to the user side.

All actions of the user program are defined in the net:define-protocol form.
All actions of the server program are defined in the net:define-server form.

6. The user side finishes its job.

The user program typically processes the data in some way. If the
:byte-stream or :byte-stream-with-mark medium is used, the user program
closes the stream.

117

June 1986 Interfacing to the Generic Network System

21. Invoking Network Services

This section describes the functions, variables, and data structures related to
invoking network services. The primary data structures of interest are service
access paths and file access paths:

See the section "Service Access Path", page 117.
See the section "File Access Path", page 119.

The functions and variables for invoking network services are:

net:invoke-service-on-host
Provides the simplest way to invoke a network service.
Appropriate when it is important which host should perform the
service, such as for :login or :file service.

neti:*invoke-service-automatic-retry*
Controls whether net:invoke-service-on-host automatically tries
all paths.

net:invoke-multiple-services
Provides a way to follow multiple paths to a service at once.
Useful when it is unimportant which host provides the service;
for example, for :time service.

net:find-paths-to-service
Returns a list of service access paths for a given service on any
hosts to which a path exists. Often used to compute service
access paths for net: invoke-multiple-services.

For information on the lower-level functions that implement service lookup and
invocation: See the section "Implementation of the Service Lookup Mechanism",
page 165.

21.1 Service Access Path

Application programs request services using either net:invoke-service-on-host or
net: invoke-multiple-services. The generic network system then has two steps to
accomplish: find a path to the service, and invoke it.

A service accessfiath is a structure that represents a path to a service on a host.
It describes the name of the service, any arguments to the service, the server
host, the protocol, the medium, and the desirability of the path.

118

Networks June 1986

Several functions used by the generic network system return one or more service
access paths, including:

net:find-paths-to-service
net:find-path-to-service-on-host
net:find-paths-to-service-on-host
net:find-path-to-protocol-on-host
net:find-paths-to-protocol-on-host

For example:

(net:find-path-to-service-on-host :send (net:parse-host 'card))
-->#<SERVICE-ACCESS-PATH SEND (CONVERSE) -- CARDINAL on CHAOS 61631064>

(describe *)
-->#<SERVICE-ACCESS-PATH SEND (CONVERSE) -- CARDINAL on CHAOS 100156265>

is a NETI:SERVICE-ACCESS-PATH
NETI:SERVICE: :SEND
ZL:ARGS:
NET:HOST:
NETI:PROTOCOL:
NETI:HEDIUH:
NETI:DESIRABILITY:
NETI:STREAH:

NIL
#<LISPH-HOST CARDINAL 6406456>
#<PROTOCOL CONVERSE 245141204>
#<HEDIUH-DESCRIPTION on CHAOS 100156261>
0.9
NIL

#<SERVICE-ACCESS-PATH SEND (CONVERSE) -- CARDINAL on CHAOS 100156265>
is implemented as an ART-Q type array.
It uses !ARRAY-DISPATCH-WORD; it is 8 elements long.

Several functions used by the generic network system require one or more service
access paths as an argument, including:

net:invoke-service-access-path
neti:most-desirable-service-access-path
net:start-service-access-path-future
net:service-access-path-future-connected-p
net:continue-service-access-path-future
net:abort-service-access-path-future

For information on how the generic network system finds one or more service
access paths: See the section "Finding a Path to a Service on a Remote Host",
page 43.

119

June 1986 Interfacing to the Generic Network System

21.2 File Access Path

A file access path is an internal data structure that represents a path from one
host (on which an application program requested :file service) to a file. That file
can be stored on a remote host, or on the local Fep file system. If the file access
path describes a path to a file on a remote host, part of the data structure is a
service access path. See the section "Service Access Path", page 117.

A file access path is created by the generic network system when an application
program performs an operation on a file. For example, when you give the Delete
File command, the generic network system creates a file access path to the
targeted file, and then invokes the "DELETE" operation on it.

The most important operation done on file access paths is the "OPEN" operation,
which returns a stream. The type of stream depends on the network protocol
being used and the arguments given to "OPEN".

In summary, when an application program performs file operations, a file access
path provides a link to the file. Some file operations are performed directly on
file access paths (such as "DELETE", "RENAME", and so on). When significant
input or output is necessary, the program sends an "OPEN" command to the file
access path, and receives a stream in return. The program then sends input or
output commands to the stream, finally closing the stream.

When you select the PEEK program, and click on [File Systems], the display
shows the active and inactive file access paths. A file access path is represented
as follows:

Host STONY-BROOK
Access path to S using NFILE

You can click left on "Access path to S using NFILE" for a menu of operations to
perform on the access path, which typically includes:

Reset
Describe
Inspect

21.3 Functions for Invoking Network Services

The following functions (and variable) provide an interface to the part of the
generic network system that finds paths to services and invokes them.

The internal functions that implement this mechanism are described elsewhere:
See the section "Implementation of the Service Lookup Mechanism", page 165.

120

Networks June 1986

net:invoke-service-on-host service host &rest service-args Function
service is a keyword symbol, host a host object. service-args are any
arguments the specified service takes. service-args and the values returned
are service-dependent. For example, the following invocation prints host
Junco's idea of the current time.

(time:print-universal-time
(net:invoke-service-on-host :time (net:parse-host "Junco")))

Whether or not net:invoke-service-on-host automatically tries all paths
depends on the value of the variable neti:*invoke-service-automatic-retry*.

neti:*invoke-service-automatic-retry* Variable
If the value of this variable is not nil, net:invoke-service-on-host
automatically tries all paths. The default is nil.

net:invoke-multiple-services (service-access-paths timeout &optional Special Form
whostate service-variable) (host-variable &rest
results-variables) &body clauses

A useful macro for following multiple paths to a service at once. It starts
up service futures for multiple hosts, and invokes the service on each host
when the connection is complete. The argument service-access-paths
includes the information on the services requested of the hosts.

A service future is a request for a service whose connection establishment
is outstanding. For simple services, like :time, this allows you to have
requests outstanding to more than one host at the same time. You can
then pick the first or best of several responses without a long waiting
period.

Note that unlike net:invoke-service-on-host, this function is not given
service-args. net:invoke-multiple-services is intended for simple services
that do not take arguments. If you need to invoke services that do take
arguments on mUltiple hosts, you can use some of the internal functions in
the generic networks system, such as net:start-service-access-path-future.
See the section "Implementation of the Service Lookup Mechanism", page
165.

service-access-paths

timeout

whostate

A form that will return a list of service access paths.
Often this is a call to net:find-paths-to-service.

The maximum time to wait for anyone host to respond,
in sixtieths of a second.

Optional; the state to put in the status line while waiting
for a future to complete. Defaults to "service wait".

June 1986

service-variable

host

121

Interfacing to the Generic Network System

Optional; the name of a variable to be bound to the
service access path describing the service.

A variable name to be bound to the host on which the
service was invoked.

results-variables Variables to be bound to the results of invoking the

clauses

service.

Clauses as for condition-case. Actually, that means that
the service-results variables are bound inside the
condition-case form, so that the first of service-results
would be the error object if an error were generated.

For example:

(defun all-hosts-time ()
(net:invoke-multiple-services

((net:find-paths-to-service :time) (* 60. 10.) "Time")
(host time)

(sys:network-error
(format t "-&-A: -A" host time))

(:no-error
(format t "-&-A: -:[unknown-;-\TIME\-]"

(if (eq host net:*local-host*) "local" host)
time time))))

net:find-paths-to-service service Function
Returns a list of service access paths for the particular service and only
one service access path for any given host. The list is sorted by decreasing
desirability. For example:

(net:find-paths-to-service :time)

Note that net:find-paths-to-service is not given service-args. This is
because the mechanism that finds service paths does not implement a very
fine weeding-out process. The namespace database knows whether network
protocols and hosts implement a service, but does not contain information
on whether that service can be performed service under some restricted set
of arguments A higher-level mechanism must handle this filtering. For
example, the :namespace service is sought only among hosts known to be
namespace servers for the particular namespace desired.

122

Networks June 1986

123

June 1986 Interfacing to the Generic Network System

22. Defining a New Network Service

You can easily define a new network service that is built on the foundation of the
generic network system, taking advantage of the layers of network software
already in place on Symbolics computers. Specifically, the new service should use
a medium that is already defined.

The functions related to derming new user and server sides of protocols are
described in detail at the end of this section: See the section "Functions for
Defining Users and Servers", page 127.

22.1 Example of Defining a New Network Service

In this example, we write a new network service that uses the : byte-stream
medium. This example defines a network service that can be requested from the
user host and performed by the server host. In this case, you cannot request the
service from the server host because the server host does not have a user program
defined, nor does the user host have a server program defined. You can make the
service available in both directions by defining a user and a server program on
both hosts.

The new service is called : show-herald. It simply executes the Show Herald
command on the server host and displays the results on the standard output of the
user host.

The steps to defining the new network service are outlined here and described in
further detail below. These steps can be performed in any order.

• Define the server side on the server host with net: define-server.

• Define the user side on the user host with net:define-protocol.

• Edit the namespace database on the user host .

• Add contact identifiers for the new service on both user and server hosts.

In this example, we add a CHAOS contact name. If you prefer to implement
the new service on the TCP, UDP, or DNA medium, you need to add a
contact identifier appropriate for the particular medium. The functions that
add contact identifiers for these mediums are:

124

Networks June 1986

Medium Function for Defining Contact Identifier
CHAOS chaos:add-contact-name-for-protocol
rcp tcp:add-tcp-port-for-protocol
UDP tcp:add-udp-port-for-protocol
DNA dna:add-dna-contact-id-for-protocol

• Define a user side for the :local medium on the user host.

Defining the Server Side

The following form defines the server side. The name of the protocol is
:show-remote-herald. It is built on the generic medium : byte-stream.

;;; server side
(net:define-server :show-remote-herald

(:medium :byte-stream :stream *standard-output*)
(cp:execute-command "show herald"))

Defining the User Side

The following form defines the user side. The name of the protocol is
:show-remote-herald. This user side provides the generic network service called
: show-herald. It is built on the generic medium :byte-stream.

;;; user side
(net:define-protocol :show-remote-herald

(:show-herald :byte-stream)
(:invoke-with-stream-and-close (stream)

(stream-copy-until-eof stream *standard-output*)))

Editing the Namespace Database

The service attribute has three parts: service, medium, and protocol.

Servi ce: Set: service medium protocol

When the network system tries to determine if the user host and the server host
have a common path, it consults the net:define-protocol forms to determine the
protocols it (the user host) supports for the desired service. The network system
consults the namespace host object for the remote host to determine which
protocols and mediums it (the server host) supports for the desired service.
Therefore, the namespace host object for the server host should contain names for
service, medium, and protocol equivalent to those in the net:define-protocol form
that is evaluated on the user host.

(net:define-protocol :protocol (:service : medium) ...)

125

June 1986 Interfacing to the Generic Network System

Typically, the net:define-protocol form contains a generic medium (in this case,
:byte-stream), but the namespace host object indicates a specific medium, such as
:chaos or :tcp. A service dermed to use the generic : byte-stream medium can
use the specific medium :chaos, or :tcp, or :dna. In this case we use :chaos.

On the user host, edit the host object for the server host. Add the service
attribute:

Service: Set: SHOW-HERALD CHAOS SHOW-REMOTE-HERALD

Adding Contact Identifiers

The contact identifier is used when the user host initially makes. contact with the
server host. The contact identifier must be known to both hosts, and must be the
same on both hosts. The contact identifier serves two purposes. First, it enables
the two hosts to communicate, by informing the server host to listen on that
contact identifier and the user host to request the service on that contact
identifier. Second, it links the contact identifier with the actual code that
performs the service (on the server host) and the code that requests the service
(on the user side).

In this case, we choose "HERALD" as the CHAOS contact name. On the server
side, we provide :show-remote-herald as the first argument to
chaos:add-contact-name-for-protocol. . This (:show-remote-herald) must be the
same as the name of the protocol that is given as the first argument to the
net:define-server function.

On both the user and the server host, evaluate the form:

(chaos:add-contact-name-for-protocol :show-remote-herald "HERALD")

Using the New Service

We can use the new service from the user host as follows:

(net;:;nvoke-serv;ce-on-host :show-herald
(net: parse-host server-hast-name))

Often it is convenient to define a function on the user host that invokes the
service:

(defun show-herald-any (host-name)
(net:invoke-service-on-host :show-herald

(net:parse-host host-name)))

Now we can use the service as follows:

(show-heral d-any "server-host-name")

126

Networks June 1986

Defining a User Side for the :Iocal Medium

As a final step, we define a user side to be used when the :show-herald service is
requested locally (when the user and server host are the same machine):

(net:define-protocol :show-local-herald (:show-herald :local)
(:invoke (ignore) (cp:execute-command "show herald"»)

There is no need to edit the namespace database for a local service.

22.2 Relationships of Names of Services and Protocols on User,
Server, and Namespace

This section describes the relationships among the names of services and protocols
on the server host, the user host, and the namespace database. This section
discusses CHAOS contact names and the form that defines them
(chaos:add-contact-name-for-protocol). For other mediums, the contact identifier
is defined with the appropriate function.

There are certain requirements:

• The CHAOS contact name must be the same on the user and server hosts.
That is, the second argument to chaos:add-contact-name-for-protocol must
be the same for both the user and server hosts.

• When chaos:add-contact-name-for-protocol is evaluated on the user host,
the first argument must be the same as the first argument supplied to the
net:define-protocol function. That is, the name of the protocol must be the
same in the two forms; this is the link between the code that is the user
side of the protocol and the contact name for the protocol.

• When chaos:add-contact-name-for-protocol is evaluated on the server host,
the first argument must be the same as the first argument supplied to the
net:define-server function. That is, the name of the protocol must be the
same in the two forms; this is the link between the code that is the server
side of the protocol and the contact name for the protocol.

• The service attribute in the server host's host object (in the copy of the
namespace that is local to the user host) must contain the same service and
protocol that are defined in the net:define-protocol form.

You can often avoid confusion by choosing one name and using it for the service
and the protocol on both the user and server hosts.

127

June 1986 Interfacing to the Generic Network System

22.3 Summary of Functions for Defining Users and Servers

net: define-protocol
Defines the user side of a protocol.

net: get-connection-for-service
Can be used inside of an :invoke clause of net:define-protocol
to get a network stream to the service on the correct medium.

net:define-server Defines the server side of a protocol.

chaos:add-contact-name-for-protocol
Associates a Chaosnet contact name with the protocol name.

neti:with-server-error-disposition
Creates an environment for handling errors within a server.
Used in conjunction with net: define-server.

neti:change-server-error-disposition
Changes the error disposition for a server. Used in conjunction
with net: define-server.

22.4 Functions for Defining Users and Servers

net:define-protocol protocol-name (service-name base-medium) Special Form
&body options

Defines the protocol protocol-name, a keyword symbol, which provides the
generic network service service-name. base-medium is the minimum
medium needed for this protocol; it can be a specific medium, such as
:chaos for protocols that require those features, or a generic medium such
as :datagram or :byte-stream. It can also be :local, meaning that the
protocol is not implemented in the network at all, but via some functions
running on the local machine.

options are each a list whose first element is a keyword. Defined keywords
are:

(:desirability number)
number is a number between 0.0 and 1.0 that describes
how well this protocol provides the service. The default
is 1.0.

(:property indicator property)
Used for higher-level protocol-defining macros that save
their own information.

128

Networks June 1986

(:invoke function) When the service is invoked, function is called with the
service access path as an argument. (The service access
path is returned by the network system when it finds a
path to the remote host; this happens automatically.)

(:invoke-with-stream function)
Similar to : invoke, except that a network stream is
gotten first via the appropriate medium, using
net:get-connection-for-service. The first argument to
function is the stream, and the remaining arguments are
the arguments to the service invocation.

(:invoke-with-stream-and-close function)
Similar to :invoke-with-stream, except that when
function returns, the network system closes the stream,
so the function need not do that.

:desirability and :property are optional, but you must supply exactly one
of these: : invoke, :invoke-with-stream, or :invoke-with-stream-and-close.
In : invoke, :invoke-with-stream, and :invoke-with-stream-and-close,
function can either be a symbol, which is the name of a function, or the
rest of the list can be a lambda-list and body for the function. For
:invoke-with-stream and :invoke-with-stream-and-close the first element
of the lambda-list is the stream variable, which will be bound to the stream
returned by net:get-connection-for-service; the other elements are
arguments to the service invocation. See the function net:get-connection
net:get-connection-for-service, page 129. If you want to pass connection-args to
net:get-connection-for-service, the first element of the lambda-list should
not be a stream variable, but rather a list whose first element is the
stream variable and whose other elements are the connection-args.

For example, the following defines a local version of the time service.
Note that nil is returned if the time is not known locally. In general, how
a protocol indicates that it cannot provide a service after all is defined by
the service itself. For some services, such as time, this is done via the
returned value. For others, an error is signalled. This error can then be
caught by the net:invoke-multiple-services macro.

(net:define-protocol :local-time (:time :local)
(:invoke (ignore)
(and time:*time-is-known-p*

(time:get-universal-time))))

The following example defines the Chaosnet RFC/ANS version of the time
protocol. time-simple is a function that just takes the bytes from the
:read-input-buffer message to stream and deposits them together into a
32-bit time, returning nil if the datagram is malformatted (for example,
does not contain exactly four data bytes).

June 1986

129

Interfacing to the Generic Network System

(define-protocol :time-simple (:time : datagram)
(:desirability .75)
(:invoke-with-stream-and-close (stream)
(time-simple stream nil)))

Higher-level protocols such as login and file provide their own mechanisms
for informing the service system of the implementation of new protocols.
These are macros that expand into a net:define-protocol form with
suitable options. They are not documented.

net:get-connection-for-service service-access-path &rest Function
connection-args

Can be used inside of an :invoke clause of net:define-protocol to get a
network stream to the service on the correct medium. connection-args are
passed on to the stream creator; normally they would be keyword pairs
such as :ascii-translation t, specifying that the ASCII character set be
used over the network.

This gets the contact identifier from the protocol field of the service access
path, over the medium given by the medium field.

net:define-server protocol-name options &body body Special Form
Define the top-level function of a network server. When a host receives a
request for connection for this service, the generic network system creates
a process, and the body given here is run in that process.

protocol-name is a keyword, the same as for net:define-protocol. options is
an alternating list of keywords and values. Some of these keyword-value
pairs specify the names of variables which are bound inside body, which is
the server itself. How the names are extracted is explained further on.
This is, in fact, implemented by the system's defining a function whose
arguments are those variables and whose body is body.

The main keyword in the options list is :medium, whose value is a keyword
specifying the medium type over which this protocol operates. Normally,
this is a generic medium, such as :byte-stream, :byte-stream-with-mark or
: datagram. Sometimes, it is a specific medium, such as :chaos. It is
usually preferable to use the generic medium, when possible, even if the
protocol is only used over some particular type of network.

The following other keywords are recognized for all values of the :medium
keyword:

:address The value of this keyword is the name of a variable that
is bound to the parsed address of the user host.

:error-disposition A keyword that determines what should happen if an

130

Networks

:host

: network

:process-name

June 1986

unhandled error condition is signalled in the server.
Valid error dispositions are:

nil or :notify
A notification is given on the server machine when
any error occurs, and the server exits (abnormally
because of the error). :notify is the default.

For finer control of error notification, you can
specify the :notify keyword with one or more error
flavors, as follows: (:notify error-/lavor-l
error-/lavor-2 ...). For example, :error-disposition
(:notify sys:remote-network-error) means to send
notifications of errors of the
sys:remote-network-error flavor and ignore all
others.

: ignore
The server exits but no notification is given. As
with :notify you can exercise finer control over
error notification by specifying one or more error
flavors with the :ignore keyword. For example,
: error-di sposi t ion (: ignore sys:remote-network
error) means ignore errors of the
sys:remote-network-error flavor but notify for all
others.

: debugger
The server process enters the debugger when an
error occurs.

The value of this keyword is the name of a variable that
is bound to the host object that is the user host.

The value of this keyword is the name of a variable that
is bound to the network object through which the user is
connected.

A string, defaulting to "protocol-name server", which is
the name of the process created to run the server.

: reject-unless-trusted

:trusted-p

The value of this keyword is t by convention. It causes
the server request to be rejected if the host wanting the
service is not trusted.

The value of this keyword is the name of a variable that
is bound to t if the host using the service is "trusted".

June 1986

:who-line

131

Interfacing to the Generic Network System

The value of this keyword is t by convention. It causes a
message to be displayed in the status line while the
server is active. It also causes the server to appear in
the Peek active server display.

The following keywords are recognized for the : byte-stream and
:byte-stream-with-mark medium types:

:stream

:no-close

The value of this keyword is either a symbol, which is
the name of a variable that is bound to a bidirectional
stream, or a list of such a variable name and alternating
keyword and value options that specify how the stream is
made. Keywords at this level are:

:ascii-transla tion
If the value is t, the protocol uses the ASCII
character set rather than the Symbolics character
set. The default is nil. The issue of character set
translation is covered elsewhere: See the section
"NFILE Character Set Translation", page 255.

:accept-p
If nil, :accept-p says that the stream should not be
fully opened, but the body is allowed to decide
whether to accept, by sending the :accept message,
or reject the service by sending the stream a
:reject message along with a reason for rejection.

: direction
:input or :output if server needs only one
direction. Note that the connection itself is
bidirectional, but the stream accepts only one class
of messages. Default is a bidirectional stream.

: token-list
A token list stream is constructed on the supplied
medium, which must be :byte-stream-with-mark.
See the section "Token List Transport Layer", page
237.

The value of this keyword is t by convention. It causes
the network stream to be left untouched when the body
returns, rather than closed or aborted. This is used for
some protocols in which closing the stream is part of the
protocol.

132

Networks

:no-eof

June 1986

The value of this keyword is t by convention. It causes
the network stream to be aborted when the body returns,
rather than closed. This is used for some protocols in
which closing the stream is part of the protocol.

The following keywords are recognized for the :datagram medium type:

: request-array The value of this keyword is a list of three variable
names, which are bound to an array, its starting index,
and its ending index. If any of the variable names is nil,
or the list is not long enough to include it, no such
variable is bound. The array within the given bounds
contains any arguments to the service that the user
specified. On the Chaos network, that means that it
points to the portion of the RFC packet after the space
following the contact name.

:response-array The value of this keyword is a list of variable names like
:request-array. The server fills in the array with the
response data and returns two values; the first is t, if
the service is successful, or nil, if the request is rejected.
The second value is the byte index after the last byte
stored in the array. Alternatively, the body can return a
second value that is a string, which the system stores as
the contents of the array itself. In that case, it is not
necessary to specify the :response-array keyword.

The :chaos medium is provided for use by any network protocols that take
advantage of special features of Chaosnet, and would be inconvenient to
implement over a generic medium. The following keyword is recognized for
the :chaos medium type:

: conn The value is a variable to be bound to the Chaos
connection, which will be in RFC-Received state. I t is
not necessary to do a chaos:listen. It is still necessary
to do chaos:accept or chaos:reject as appropriate, and
to do chaos:remove-conn when done.

chaos:add-contact-name-for-protocol protocol &optional Function
contact-name

Creates an association between a protocol and a Chaosnet contact name
when opening connections. protocol is a keyword that identifies the
protocol. contact-name is a string that the Chaosnet uses when opening a
connection (sending an RFC or listening for a request). contact-name
defaults to (string protocol).

133

June 1986 Interfacing to the Generic Network System

Examples:

(chaos:add-contact-name-for-protocol :1110ad)
(chaos:add-contact-name-for-protocol :chaos-status "STATUS")

neti:with-server-error-disposition server &body body Macro
Creates an environment for handling errors within a server. Using the
server's error-disposition property, this macro sets up a condition-ease-if
to handle any errors not caught by the server itself.

A server's error-disposition property is set in one of two ways: by explicit
specification when the server is defined (using the :error-disposition
keyword argument to net:define-server) or by explicitly changing the
error-disposition of a defined server with the
neti:change-server-error-disposition function.

A server's error-disposition property is ignored when
neti:*server-debug-flag* evaluates to something other than nil; if this is
the case, the server process always enters the Debugger on an error not
caught by the server itself.

Note that the environment for error disposition is set up when the server
is started, and subsequent use of neti:change-server-error-disposition or
binding of neti:*server-debug-flag* has no effect on that server.

neti:change-server-error-disposition protocol-name new-disposition Function
Changes the error disposition for the server handling protocol-name. Valid
dispositions are the same as those used in net: define-server.

134

Networks June 1986

135

June 1986 Implementation of the Generic Network System

PART VI.

Implementation of the Generic Network System

This section describes the internals of the network system, including the
implementation of packets (the basic unit of communication), interfaces (software
to move packets from one machine to another), networks, mediums, the service
lookup mechanism, and servers. Before reading this section, you should be
familiar with the standard issues involved with implementing networks.

The functions described here are not intended to be used by application programs
nor directly by the service mechanism. Application programs interact with the
user interface described elsewhere: See the section "Interfacing to the Generic
Network System", page 113.

Note that the term "protocol" is used in this section to mean something different
than it does at the higher network levels. In this section, protocols are at a
lower-level than mediums.

136

Networks June 1986

137

June 1986 Implementation of the Generic Network System

23. Packets

Packets are the basic unit of communication between network hosts. The
Symbolics computer implements a packet as an array of fIXnums, typically
sys:art-8b or sys:art-16b. A Chaosnet packet is a sys:art-16b array, but a TCP
packet might be a sys:art-8b array.

sys:art-string is another useful array type. The Chaosnet often views the data
portion of the packet as a string, and it uses the subpacket mechanism to make a
sys:art-string "packet" out of the data portion of the Chaos packet.

23.1 The Packet Pool

Packets are the most volatile item of the network. They are allocated and
deallocated at rates of possibly hundreds per second. It is inefficient and
impractical in both time and space to create a new packet each time one is
needed. Therefore, a pool of packets exists; users request packets from that pool,
and later return packets to it.

This section describes the implementation of packets and provides some of the
design considerations.

The microcode operates under one restriction: the packets with which it deals
must be wired (that is, not pageable), because it is not allowed to take a page
fault during packet transmission or reception. This restriction leaves the network
four ways to implement packets:

• Have two pools of packets: one pool is wired, and thus acceptable to the
microcode; the other pool is available to users and networks, and is not
wired. Unwired packets are copied to wired packets for transmission, and
wired packets are copied to unwired packets after reception.

• Have one pool of packets. Some packets are wired and accessible to the
microcode for reception, and are unwired after reception. The other packets
are available to users and networks and are wired before transmission.

• Have one pool of packets that are always wired.

• Have two pools of packets: one pool is wired and acceptable to the
microcode; the second pool is composed of packets that are created and wired
when needed. When a user requests a packet, the wired pool is checked
first. If the wired pool is empty, the unwired pool is checked. If the
unwired pool is empty, more packets are created (with restrictions) and put

138

Networks June 1986

on the unwired pool. When a packet is taken from the unwired pool, it is
wired and is considered part of the wired pool.

The first two possibilities allow for a large number of user packets, because these
packets do not need to be wired in physical memory and can therefore be created
if more are needed immediately. However, the first possibility (used before
Release 5.0) requires copying between the wired and unwired packets. Copying
can be a time-consuming operation and might take a page fault on the unwired
packet. The second possibility does not require copying, but wiring and unwiring
also take time.

The third possibility does not require extra time to copy or to wire and unwire,
nor can it take page faults on the packets. It also removes the need to keep track
of the exact state of each packet (copied, wired, or unwired). For these reasons,
the core network system for Release 5 implemented one pool of always-wired
packets.

This implementation had a few drawbacks. Because all packets were wired, there
had to be a limited number so they would not take up too much physical space.
Extreme measures had to be taken to ensure that applications and protocol
implementations deallocated all packets.

The Release 6.0 network implementation used the fourth possibility; it is still in
use now. The rationale is that under extreme circumstances or heavy load, as on
a file server, the preallocated number of wired packets might not be enough.
However, to keep from wiring and unwiring packets continuously, the user still
sees a wired packet.

The restriction for creating more packets is that not more than one-fifth of the
physical memory is wired. Therefore, a server machine with four memory boards
might have more packets than a user machine with one memory board.

To minimize the number of wired packets, the system unwires packets in an
attempt to make the number of wired packets no greater than the value of
neti:*target-number-of-wiredrpacket-buffers*. Packets are created and wired as
the need arises, and possibly unwired to minimize physical memory requirements.

You should use unwind-protect to be sure to deallocate all packets that are
allocated. For example:

(defun do-something-eventually-freeing-packet (packet)
(unwind-protect

(progn ... do some things ...
(pass-the-packet-along-eventually-freeing-packet

(prog1 packet (setq packet nil»)
... do some more things ...)

(when packet (deallocate-packet packet»»

If an error occurs during do some things and the function is exited, the

139

June 1986 Implementation of the Generic Network System

unwind-protect frees the packet, which is part of the function's contract. When
the packet is passed along, the progl arranges for the packet to be passed as an
argument and the variable to be set to nil in the scoping of the outer function. It
is now the responsibility of the called function to return the packet. Do some
more things is not allowed to use the packet (because it is supposed to have been
freed) and the unwind-protect clause does not free the packet, both because the
variable packet was set to nil.

23.2 Functions Related to Packets

neti:allocate-packet-buffer &optional (wait-p t) Function
Gets a packet from the free pool if there is one available and returns it to
the caller. If there is no available packet and wait-p is nil, then
neti:allocate-packet-buffer returns nil. Otherwise the function waits for
an available packet and returns it. There is also an :allocate-packet
message to interfaces, which might be useful in some applications. See the
message : allocate-packet, page 149.

neti:allocate-packet-buffer is the lowest level function to allocate a packet
and is not normally the function for networks or applications to call
directly. Networks usually define their own packet allocation routine
which, in addition to calling neti:allocate-packet-buffer, coerces the packet
to its own format and fills in default fields. See the section "Example of
Programming with Packets", page 142.

The variable neti:raw-packet-buffer-size has the number of bytes in the
array returned by the function. See the variable neti:raw-packet-buffer
size, page 139.

neti:deallocate-packet-buffer packet-buffer Function
Gives packet-buffer back to the free pool of packets. packet-buffer may be a
packet or any of its subpackets. neti:deallocate-packet-buffer is the
lowest level function to deallocate a packet. Networks usually define their
own packet deallocate routine, which can be a stub (that is, it just calls
neti:deallocate-packet-buffer) or which can adjust meters and do other
internal bookkeeping.

neti:raw-packet-buffer-size Variable
The variable stores the number of bytes in the array returned by
neti:allocate-packet-buffer. This is the maximum number of bytes that
any packet can have. The value depends on the architecture of the
machine and, to a lesser extent, on the particular system release. It is not
guaranteed to be the same from one release to another. Nevertheless,
since packet buffers can be used as temporary storage, knowing their size
can be important.

140

Networks June 1986

neti:*target-number-of-wired-packet-buffers* Variable
The number of packet buffers the system tries to keep wired. Users can
set this to a higher value on machines that have a need for many packets
(for example, on a server machine).

neti:*actual-number-of-wired-packet-buffers* Meter
The number of wired packet buffers actually wired. When a packet is
returned to the packet pool this is compared with
neti:*target-number-of-wired-packet-buffers* to determine whether the
packet should be unwired.

neti:*number-of-unwired-packet-buffers* Meter
The number of unwired packet buffers. This can be thought of as the
number of extra packets needed during the most extreme use of the
network.

23.3 Subpackets and Coercing Packets

The packet that neti:aIlocate-packet-buffer returns is a sys:art-8b array of some
length that is dependent on the architecture of the machine: See the variable
neti:raw-packet-buffer-size, page 139. Raw sys:art-8b arrays are insufficient for
some network purposes. For example:

• Chaosnet views the packet as 16-bit words, so it prefers an sys:art-16b array.
Chaosnet also views the data portion of a Chaos packet (that is offset 16
bytes from the beginning of the packet) as a string. Control information is
associated with each packet that is not part of the packet data.

• It is often desirable to give the array a name using the named-structure
symbol feature of arrays so the packet prints out nicely and describe prints
out the fields of the packet.

The array type and byte offset can be done with displaced arrays. The extra
control information can be stored in the array leader. The named-structure-symbol
can also be stored in the array leader. We refer to an array of this type that is
displaced to a packet as a subpacket. The function neti:get-sub-packet takes a
packet or subpacket and returns a subpacket with the desired attributes.

neti:get-suh-packet sub-packet array-type nbytes &optional Function
leader-length named-structure-symbol

Returns an array of type array-type that is displaced nbytes (not array
elements) from the beginning of sub-packet with a leader length of
leader-length, if supplied, and a named structure symbol of

141

June 1986 Implementation of the Generic Network System

named-structure-symbol, if supplied. Note: array-type must be a symbol.
For example, the following is wrong:

(neti:get-sub-packet sub-packet art-8b e)

It should be:

(neti:get-sub-packet sub-packet 'art-8b e).

The byte offset is from the beginning of the subpacket passed as the argument,
which is not necessarily the beginning of the network packet. The byte offset is
in bytes, not array elements. For example, a TCP packet is offset from the
beginning of an Internet packet, and the data portion of the TCP packet is offset
from the beginning of the TCP packet, not the beginning of the Internet packet.
A simplified TCP/IP implementation might look like this: .

(setq ip-packet (neti:get-sub-packet packet 'art-8b e))

(setq tcp-packet (neti:get-sub-packet ip-packet 'art-8b tcp-packe~offset))
(setq tcp-data (neti:get-sub-packet tcp-packet 'art-string tcp-data-offset))

A common way to define the elements of an array leader is to use the
:array-Ieader option of defstruct. However, this is not sufficient for subpackets.
The system requires several array-leader elements for its own use. The proper
method is to include the neti:sub-packet structure' using the :include option of
defstruct. You should also use the :size-symbol option to get the size of the
resulting leader, which can then be used as the leader-length argument to
neti:get-sub-packet. See the section "Example of Programming with Packets",
page 142.

The leader-length argument to neti:get-sub-packet is not required. If it is not
supplied, the system supplies its own. Subpackets always have a fill-pointer that
is available for general use. The named-structure-symbol argument to
neti:get-sub-packet is also not required.

neti:get-sub-packet creates new displaced arrays only if it is necessary. When it
is necessary to create a new subpacket with specific attributes,
neti:get-sub-packet caches the information in the packet buffer. The next time
the same attributes are requested, neti:get-sub-packet returns the cached
subpacket instead of creating a new one.

Note: When using sys:art-16b arrays, the first byte is the least significant byte of
the l6-bit word and the second byte is the most significant. This Symbolics
computer byte ordering (known as little-ender) is the same as that of PDP-lls and
VAX-lIs, but is reversed from the big-ender ordering used by PDP-lOs, PDP-20s
and 68000s. Chaosnet is a little-ender protocol, but the DoD Internet Protocol (lP)
and the DoD Transmission Control Protocol (TCP) are big-ender protocols. Thus,
care must be taken when forming multibyte words from a packet or depositing a
multibyte word into a packet.

142

Networks June 1986

A negative byte offset can be used to get space for a header at the beginning of a
subpacket. When this is done, it is necessary to copy the packet if there is not
enough space at the beginning for the new header. Unless the caller knows that
enough space is available, it should call neti:get-sub-packet-maybe-copying
instead of neti:get-sub-packet.

neti:get-sub-packet-maybe-copying free-flag length sub-packet
array-type nbytes &optional (leader-length
neti:sub-packet-size) (named-structure-symbol
nil)

Function

Returns an array of type array-type that is displaced nbytes (not array
elements) from the beginning of sub-packet with a leader length of
leader-length, if supplied, and a named structure symbol of
named-structure-symbol, if supplied. It also returns a new value for the
free-flag. If a negative offset (nbytes) forces copying of the data, free-flag
indicates whether the old packet should be freed. In this case, t is
returned as its new value.

23.4 Example of Programming with Packets

In this example we define a packet named my-packet that we abbreviate to
mypkt. mypkts have a protocol header that is 16-bit words, so we view a
mypkt as a sys:art-16b array. We view the data, however, as a string (an array
of type sys:art-string). In order to link mypkts together, we define a link slot in
the packet's array-leader. This avoids creating conses that are likely to be
scattered throughout virtual memory and that will soon be discarded.

First we define the packet structure and the byte offset to the data portion. Note
that my-packet-Ieader includes the structure neti:sub-packet. This is required
for all packets that have a meaningful array leader.

(defstruct (my-packet :array

opcode
destination-address
source-address
number)

(:conc-name mypkt-)
(:constructor nil)
(:size-symbol mypkt-data-start))

;packet opcode
;protocol address of packet's destination
;protocol address of packet's origin
;packet number for sequencing

143

June 1986 Implementation of the Generic Network System

(defstruct (my-packet-leader (:include neti:sub-packet)
(:constructor nil)
(:conc-name mypkt-)

1 ink)
(:size-symbol mypkt-leader-length))

;the link to the next packet in a list
;NIL means end of list, T means not on list

'" we multiply by 2 because we consider my-packet an art-16b array
'" which has two bytes per element.
(defconst mypkt-data-start-byte-offset (* mypkt-data-start 2))

We now define coercion routines to convert a packet given to us by somebody else
into a mypkt. We also define a routine that, given a mypkt, extracts the data
portion as a string. Note in packet-my-packet both the leader length and the
named structure symbol are supplied. The leader length is required here since we
define and use a link slot in the array leader. The named structure symbol is
supplied so a packet will print as #<my-packet 7042346> and so describe will
print the header fields. my-packet-data-string supplies neither the leader length
nor a named structure symbol because we have no immediate need for either of
them. The string does have a fill-pointer, which we are allowed to modify.

(defun packet-my-packet (packet)
(neti:get-sub-packet packet 'art-16b B

mypkt-leader-length 'my-packet))

(defun my-packet-data-string (mypkt)
(neti:get-sub-packet mypkt 'art-string

mypkt-data-start-byte-offset))

Here we defme allocation and deallocation meters, and a simple routine that
allocates a mypkt.

;;; Allocation and deallocation meters.
(defvar *mypkts-allocated* B)
(defvar *mypkts-deallocated* B)

(defun get-mypkt ()
(prog1 (packet-my-packet (neti:allocate-packet-buffer))

(incf *mypkts-allocated*)))

Alternatively, if we want to 'wait optionally and. fill in some extra fields, we could
define get-mypkt this way:

144

Networks June 1986

(defun get-mypkt (&optional (wait-p t))
(let* ((packet (neti:allocate-packet-buffer wait-p))

(mypkt nil))
(when packet

(incf *mypkts-allocated*)
(setq mypkt (packet-my-packet packet))
(alter-my-packet mypkt

opcode initial-opcode
dest i nat ion-address initial-destination-address
sou rce-add ress initial-destination-address
number initial-number)

(alter-my-packet-leader mypkt link T)) ;not on a list
mypkt))

Finally, we create a routine to free a mypkt:

(defun return-mypkt (mypkt)
(incf *mypkts-deallocated*)
(neti:deallocate-packet-buffer mypkt))

23.5 Miscellaneous Notes on Packets

neti:packet-being-transmitted sub-packet Function
Returns non-nil if sub-packet is on the transmit list of some interface and
nil if not. A packet can be deallocated when it is on a transmit list
(neti:deallocate-packet-buffer is careful), but packets cannot be queued for
transmission more than once. This routine is commonly used by
retransmission routines. If a packet is already on some transmit list, it
cannot be requeued for transmission.

neti:map-packet-buffers function &rest other-function-args Function
Applies function (with any given arguments other-function-args) to each
packet buffer, not just allocated packet buffers, not just free packet buffers.
For example:

(neti:map-packet-buffers #'print)

prints each packet buffer. This is primarily a debugging tool to scan all
the packets. A network implementor might determine some module is not
freeing packets. By scanning all existing packet buffers, the implementor
might be able to find the missing packets and determine why and/or where
they were not freed.

Because there are a limited number of packet buffers, and because some network
implementations have internal packet buffering (for example, the Chaosnet buffers

145

June 1986 Implementation of the Generic Network System

packets that arrive out of order), it is possible to run out of packets in the free
pool. When this happens a deadlock is reached, since no packets can be allocated
to cause communication to relieve the deadlock and no packets can be received by
the microcode. neti:allocate-packet-buffer is usually the first to notice when
there are no packet buffers in the free pool. Mter too long a period of inactivity,
connections might timeout, close down, and return packets. This might spark a
complete recovery, but at the expense of losing one or more connections.

To try and recover before timeouts happen a packet buffer panic is triggered. A
packet buffer panic informs all known networks and all known interfaces that a
packet buffer panic is happening. Networks and interfaces then try to deallocate
packet buffers in such a way that no information is lost. For example, interfaces
that do not guarantee packet delivery might free packets on the transmit list, and
networks that do not depend on reliable transmission might free packets on out of
order lists. In both of these cases the packets will be retransmitted eventually so
no information is lost.

Packet buffer panics can be triggered for two reasons:

• neti:allocate-packet-buffer will trigger one if there are no packets in the
free pool of packets.

• The free pool can be periodically checked and a packet buffer panic triggered
if it is empty.

These are accomplished using the following two functions:

neti:packet-buffer-panic Function
Triggers a packet buffer panic. All known networks and all known
interfaces are sent a :packet-buffer-panic message inside a
without-interrupts. This function should not be called unless a packet
buffer panic is needed.

neti:maybe-packet-buffer-panic Function
Triggers a packet buffer panic if the free pool of packets is empty. It is
safe to call this function periodically; the Chaosnet does so every 15
seconds.

146

Networks June 1986

147

June 1986 Implementation of the Generic Network System

24. Network Interfaces

An interface, here, means the software that communicates with an individual piece
of hardware (or sometimes software) that causes packets to be moved from one
host to another. An interface's contract is twofold. On transmit, an interface
formats the packet so that it is acceptable to the hardware. For example, the
3600 family determines the Ethernet address, does some extra formatting of the
packet, and puts the packet on the microcode's transmit list. On receive, an
interface accepts a packet from the hardware, performs some validity checks,
determines for what network the packet is, and delivers the packet to the network.

An interface can also be an encapsulation interface. For example, it is possible to
put non-Chaosnet protocol packets in Chaos UNC packets and use the Chaosnet as
the transmission medium. In this case the interface puts the non-Chaosnet packet
in a Chaos UNC packet for transmitting. On reception it extracts the non
Chaosnet packet from the UNC packet (using neti:get-sub-packet) and delivers it
to the appropriate network.

Interfaces (and networks) are represented as flavor instances. Interfaces and
networks send messages to each other to agree on parameters, to determine state,
and to transmit and receive packets.

24.1 Standard Communication with Interfaces

This section describes the common uses of interfaces. It does not describe how to
write your own interface. The information here should be sufficient for you to
make your network protocol implementation communicate correctly with the
existing software.

All active interfaces are kept on the variable neti:*interfaces*. Networks should
use this list when they need to know about all the available interfaces. When a
network is enabled it usually adds itself as one of the network users of each
interface that supports the network protocol. This list can also be used to
initialize routing information and to distribute routing information.

neti:*interfaces* Variable
The list of all active interfaces. Interfaces add themselves to this list as
part of network initialization.

Interfaces and networks do not automatically start sending packets back and forth;
they are explicitly informed about each other. Specifically, for each interface in
neti:*interfaces* a network should determine if the interface supports the network
and if there is a local protocol address that can be assigned to the interface. If

148

Networks June 1986

these conditions are met, the interface can add itself as one of the network users
of the interface. This is done with the :add-network message to interfaces.

:add-network network local-address Message
Requests the interface to start receiving packets for, and to start accepting
packets for transmit from, network. protocol-address is to be the interface's
local protocol address for network.

If the network wishes, all of this can be performed automatically by the function
neti:find-network-interfaces.

neti:find-network-interfaces network Function
Asks all known interfaces whether they support network. Returns a list of
conses, one cons for each interface that supports network. Each cons is of
the form (interface. protocol-address). An interface that requests a specific
address gets it if it is available; other interfaces are assigned the
remaining addresses arbitrarily. neti:find-network-interfaces returns nil if
no interface supports network. An :add-network message is sent to each
interface that is assigned an address.

It is not necessary for networks to remember the protocol address of each
interface. Instead, you can use the :protocol-address message to an interface.
This can be useful for initializing and distributing routing information, and for
determining if the interface is currently supporting the network.

:protocol-address network Message
Returns network's local protocol address of the interface if the interface is
currently supporting the network. Otherwise, nil is returned.

24.2 Sending a Packet to an Interface

After networks and interfaces negotiate and a network adds itself as one of the
users of an interface, it is possible to receive and transmit packets on the
interface. Networks transmit packets by sending a message to the appropriate
interface, as described in this section. In the other direction, interfaces deliver
packets to networks. See the section "Packet Reception", page 153.

Simply asking an interface to transmit a raw (sub)packet is not sufficient. If the
packet contains data that may need to be retransmitted, the interface should not
free the packet. Networks also send control information that is not retransmitted,
so it is allowable for the interface to free such a packet after transmission.
Therefore, an interface needs to be told whether or not it must free the
(sub)packet after transmission.

149

June 1986 Implementation of the Generic Network System

The interface must also know to whom to send the packet. A network is
responsible for determining to what protocol address the packet should be sent,
but it is not responsible for determining the hardware address of the foreign host.
An interface is given both the network and the protocol address of the destination
and does whatever is necessary to deliver the packet to the network
implementation of the foreign host.

:transmit-packet protocol-packet free-flag network protocol-address Message
Causes protocol-packet to be transmitted on the interface. The destination
of the packet is protocol-address within network's addressing domain. It is
the responsibility of the interface to convert the protocol address into a
hardware address, if necessary. It uses protocol-address, lJ-etwork, and the
information communicated during the :add-network message to do the
conversion. If free-flag is nil the packet is not freed by the interface after
it is transmitted. This is common for packets that might need to be
retransmitted. If free-flag is not nil, the packet will be freed by the
interface after transmission.

24.3 Miscellaneous Notes on Interfaces

Some interfaces need to prepend bytes to a packet before transmission. A
Chaosnet UNC encapsulation interface would require 16 bytes for the Chaosnet
header. If it can be determined beforehand which interface will probably transmit
a packet, it is desirable to allocate a packet with the necessary number of
available bytes at the beginning. Otherwise, the packet would have to be copied
in order to make room for the additional bytes. The :allocate-packet message to
a network interface returns such a packet.

:allocate-packet &optional (wait-p t) Message
Similar to the neti:allocate-packet-buffer function. It gets a packet from
the free pool of packets if one is available, possibly waiting. The
(sub)packet that is returned to the caller might have an additional byte
offset, depending on the transmit needs of the interface.

150

Networks June 1986

151

June 1986 Implementation of the Generic Network System

25. Implementation of Networks

An implementor of a network protocol or protocols usually writes code for routing
packets on output, processing packets on input, connection control, handling
overdue events (timeouts), opening and closing of connections, and receiving
packets from and delivering packets to users and applications. These issues are
quite specific to the particular protocol(s) being implemented and are beyond the
scope of this document. What is documented here are the conventions for
integrating a network protocol implementation with the mechanisms of the system.

25.1 Defining a Network

Networks are represented as flavor instances. Networks that are in the
namespace database are based on the net:network flavor. Each network flavor
has a keyword associated with it that identifies the type of the network. The
namespace system uses this to convert from the network type to the appropriate
flavor to instantiate. The flavor the namespace system uses is stored on the
net:network-type-flavor property of the type keyword.

net: network Flavor
The flavor on which networks that are in the namespace database are built.

net:network-type-flavor Property
A property given to keyword symbols. The symbol identifies the type of
network; the value is the flavor to instantiate. If there is no such
property, the namespace system defaults the flavor to net: network.

For example, the first step in the system's definition of the Chaosnet is:

(defflavor chaos-network () (network))
(defprop :chaos chaos-network net:network-type-flavor)

You can define a network that is not in the namespace database. This is useful
when developing and debugging a network or when implementing a private
network that does not need to be in the namespace database. You must define
appropriate methods to sufficiently masquerade as a network based on the
net:network flavor. As part of this masquerading, simply define a flavor without
any base flavors. You need not define a type and give the type symbol a
net:network-type-flavor, but it will not do any harm. For example:

(defflavor magic-network () ())
(defprop :magic magic-network net:network-type-flavor)

152

Networks June 1986

As an inverse of the net:network-type-flavor property, networks based on the
net:network flavor can be sent a :type message that returns the keyword
identifying the type of the network. By convention, a method should be defined
for masquerading networks as well.

: type Message
Returns the type keyword of the network.

For our magic network, this would be defined as:

(defmethod (:type magic-network) () ':magic)

25.2 Implementation of Network Addresses

People usually refer to hosts by textual names. Applications usually convert the
name into a host object by calling si:parse-host. The lower-level portions of
networks, however, deal with parsed addresses. A parsed address is an object that
represents the network address of a host in the form most convenient for the
machine and network implementation. This representation is often not very useful
for a human or for transmitting as text (for example, when transacting with a
namespace server). The textual form of an address is the unparsed address and is
a string. For example, the hexadecimal number #X+OA000006 is the parsed form
of the unparsed Internet address "10.0.0.6". To convert between the two formats,
methods for :parse-address and :unparse-address need to be defined.

:parse-address address Message
Returns a network address by parsing address, which is a string. address
is a textual representation of a network address. The result may be any
object and depends on the addressing format and needs of the network, and
is usually a number or sys:art-8b array. The method of the net:network
base flavor returns the argument address.

:unparse-address parsed-address Message
Returns a string that is the textual representation of the network address
parsed-address. The methods for :parse-address and :unparse-address
should be inverses; eq-ness is not required. The method of the
net:network base flavor returns the argument parsed-address.

For example, parsing "401" as a Chaosnet address returns the octal number 401,
which in turn unparses as a string "401". This is accomplished by the following
definitions.

(defmethod (:parse-address chaos-network) (string)
(parse-number string 0 nil 8 t))

153

June 1986 Implementation of the Generic Network System

(defmethod (:unparse-address chaos-network) (address)
(format nil "-0" address))

25.3 Invoking Mediums

Once a path to the service is chosen, the service lookup mechanism has enough
information to know what to do, but it is not quite able to do it yet. It can ask
the network to convert a base medium for a protocol into a network-specific
medium. It must also be able to invoke the specific medium. To do this, you use
the net:define-medium macro. If the network medium implements a generic base
medium (for example, :byte-stream or : datagram) , then existing protocol
implementations defined with net:define-protocol will be able to use the network
medium. For nongeneric mediums you can use net:define-protocol to support
high-level protocols in the ways specific to the network.

See the special form net: define-medium, page 159.

25.4 Packet Reception

Mter a network adds itself as a user of an interface, using the :add-network
message to interfaces, the interface may start receiving packets on behalf of the
network. When a packet arrives and the interface determines to which network
the packet should be delivered, it sends the network a :receive-packet message
with the packet as the first argument. The interface supplies two more
arguments: the interface on which the packet was received, and the network's
protocol address of the interface. These arguments might be useful in updating
routing tables or implementing an interface keep-alive count.

The packet that is delivered to the network is just a packet. One of the first
things that should be done is to extract the protocol packet from the packet by
using neti:get-sub-packet or by using a function for that purpose as in the
packet-my-packet example described elsewhere: See the section "Example of
Programming with Packets", page 142.

Note: There are some circumstances when the interface argument is nil. This
usually happens when a network or an interface determines that the packet is
destined for itself. In this case, the interface on which the packet was received
does not really have a meaning since the packet was not really received. Even
though the interface is nil, the network's protocol address of the intended
interface is still supplied.

154

Networks June 1986

:receive-packet packet interface interface-protocol-address Message
Processes packet according to the definition of the network. interface is the
interface from which the packet was received, or possibly nil if the packet
was not really received by an interface. interface-protocol-address is the
network's protocol address of the interface and is always valid even if
interface is nil.

25.5 Packet Transmission

The routing layer of a network determines the interface and the immediate
destination host for a packet by using algorithms and databases defined by the
particular network. The routing layer then sends the packet and immediate
destination host as arguments in the :transmit-packet message to the interface.
See the section "Sending a Packet to an Interface", page 148.

25.6 Initializing, Resetting, and Enabling Networks

Once a network is fully defined, instances of it can be made. This is often done
automatically by the namespace system as needed. Of all the known networks,
only local networks, networks to which the machine is attached, actually receive
and transmit packets. They must be initialized when the machine is cold or warm
booted. You may also reinitialize individual networks or the entire network system
manually.

The first part of initializing local networks is for the networks to be declared
local. This is done by putting them on the list neti:*local-networks*. When Lisp
is initialized during booting, the system scans the network addresses of the local
machine, as determined by the namespace database, and puts the networks it finds
there on neti:*local-networks*.

neti:*local-networks* Variable
The list of networks to which the local machine is directly attached.

If a network is local but is masquerading as a namespace object then it will not
be automatically put on net:*local-networks*. To interact with global network
operations, the network should add itself to net:*local-networks*. The proper
time to do this is after the primary network is enabled but before the system
enables all other local networks. This is done by adding an initialization to the
following list.

155

June 1986 Implementation of the Generic Network System

net:after-network-initialization-list Variable
This variable is an initialization list that contains initializations that are
performed after the primary network is determined and enabled.

For example (remember, this is only for masquerading networks):

;;; make an instance that we always consider to be local
(defvar *magic-network* (make-instance 'magic-network))

;;; put it on *local-networks* when the file is loaded
(push *magic-network* neti:*local-networks*)

;;; and make sure it gets on *local-networks* when the
;;; machine is warm or cold booted.
(add-initialization "Add Magic Network"

'(push *magic-network* neti:*local-networks*)
ni 1 'net i : after-network-i ni ti al i zat i on-1 i st)

You can perform two major operations on networks: reset and enable. There is
also a minor operation that some networks support optionally or internally: disable.
Resetting a network completely shuts down the operation of the network and
everything associated with it. Enabling a network initializes databases, attaches
the network to interfaces that support it, and makes the network available for use.
Disabling a network puts it in a quiescent state where packets are not processed.
The network can later be enabled and should continue operation from the point at
which it was disabled. As part of the system's initialization of the network system
it sends each network on net:*local-networks* a :reset message followed by an
:enable message.

:reset Afessage
Requests the network to reset itself. This normally involves closing down
connections, freeing queued packets awaiting processing, entering a state
that refuses to receive or transmit packets, and perhaps informing users
and applications of the network that it is shutting down.

: enable Afessage
Requests the network to enable itself. This normally involves
(re}initializing databases, attaching to interfaces that support the network,
and perhaps announcing to users and applications that the network is now
available.

: disable Afessage
Requests the network to disable itself. This normally involves freeing
queued-up packets and entering a state that refuses to receive or transmit
packets. It does not affect connections. If the network is then enabled, all

156

Networks June 1986

connections should be intact (provided timeout intervals did not expire) and
the network should be able to continue from the point just before disabling.
If disabling is supported, it is usually the first step in a reset operation.

25.7 Byte Stream Conventions

If the network provides a byte stream interface, the stream should support some
additional messages in addition to the standard stream messages.

: foreign-host Message
Returns the host object of the foreign side of the connection.

:accept Message
Accepts a request for connection.

:reject &optional reason Message
Rejects a request for connection. Reason, if supplied, is a textual reason
for refusal and should be communicated to the requestor if the network is
able to do so.

25.8 Interfacing to Ethernets

To convert from protocol addresses to Ethernet hardware addresses, Symbolics
uses the address resolution scheme as described in An Ethernet Address
Resolution Protocol, ARPA document RFC 826. Part of the initial negotiation
between Ethernet interfaces and networks is for the interface to determine what
the value of the Ethernet type field is for the network and other relevant
parameters for address resolution.

:address-resolution-parameters Message
Returns mUltiple values describing the network's Ethernet attributes.
Inapplicable values need not be returned or may be returned as nil. The
values are:

1. The l6-bit Ethernet type field as assigned to this network protocol by
Xerox. Note: The first byte that is transmitted is the most significant
byte of this l6-bit word. This is the opposite of the normal Symbolics
byte ordering within words.

2. The number of bytes in a protocol address for the network.

3. A keyword describing the format of an address for the network. This

June 1986

157

Implementation of the Generic Network System

may be :little if the address is a number and the first byte is the
least significant byte of the address, : big if the address is a number
and the first byte is the most significant byte of the address, :array
if the address is a sys:art-8b array, or :ilXIlum-big if the address is a
fumum and the first byte is the most significant.

4. The network protocol address that should cause hardware broadcast if
the interface supports hardware broadcast and if the interface is
asked to transmit a packet to this protocol address.

For example, the Chaosnet defines this method as:

(defmethod (:address-resolution-parameters chaos-network) ()
(values #x+0804 2 ':little B))

25.9 Interaction with Peek Network Mode

The Peek program can maintain visual information about networks and interfaces.

Networks that are not based on the net:network base flavor may define methods
for the following messages that return nil.

:peek-header Message
Returns a scroll item that is the header display for the network. The
method of the net:network base flavor returns a scroll item that enables
one to reset, enable, describe or inspect the network. I t is usually
unnecessary to provide a primary method.

:peek Message
Returns a scroll item (usually a list of scroll items) detailing various parts
of the network. This can include details of connections, meters, debugging
information, and routing tables. The method of the net:network base
flavor returns nil.

158

Networks June 1986

159

June 1986 Implementation of the Generic Networ~ System

26. Implementation of Network Mediums

Network mediums are defined with the special form net: define-medium:

net:define-medium medium types &body implementations Special Form
Defines a medium named medium, which supports types, which is either a
list of mediums, or an empty list. When defining a generic medium, types
is often an empty list. For example, the following forms define the generic
mediums : byte-stream and : datagram:

(define-medium :byte-stream ())
(define-medium :datagram ())

When defining a specific medium that supports one or more generic
mediums, types contains the names of the generic mediums supported. For
example, this form defines the :chaos medium, which is a specific medium
that supports two generic mediums, : byte-stream and
: byte-stream-with-mark:

(define-medium :chaos (:byte-stream :byte-stream-with-mark)
implementations ...)

An element of the body can either be an implementation or a list of the
following form:

(implementation lambda-list . body)

This syntax provides a function associated with the last step of the
implementation. Note that in a multi-step implementation, steps before the
last must be :service steps, which cannot have an associated function.

Each implementation describes a way to form a network connection using
this medium. Each implementation contains one or more steps. A one-step
implementation is a way to connect directly to the server host. A two-step
implementation is a way to connect first to a gateway (a host on more than
one network); the gateway then connects to the server host. (A three-step
implementation is a way to go through two levels of gateway. None of the
defined mediums actually do this, but it could be done to any number of
levels.)

Steps are of the following three types:
:network
: medium
:service

The last step of any implementation must be either :network or :medium;
steps other than the last step must be : service. This means that a one
step path must be either :network or : medium.

160

Networks June 1986

Steps and implementations are represented as lists in the
net:define-medium special form. An implementation is a list of steps. A
step is a two-element list whose first element is the type of step (either
: network, : medium, or :service).

The three types of steps are defined as follows:

(:network network-type)

(:medium. medium)

(:service service)

A connection is possible if the user host and the
server host are both on the same network of type
network-type. The connection can be formed directly
over that network. For networks of type CHAOS or
INTERNET, the "same network" means that the
name of the network is the same (in the
address attribute of the host object) for both hosts.
For networks of type DNA, the area number must
also be the same for both hosts.

A connection is possible if the two hosts can connect
with the specified medium. See below for additional
notes on the syntax of a :medium step.

A connection is possible if a connection can be
formed to a server providing service, and that server
can complete the remaining steps of the path.

The syntax of an encapsulating :medium step is:

(((: rn ed i urn underlying-medium))
(service-access-path-arg
underlying-connectionlconnection-args
{connection-args}) . body)

service-access-path-arg is a variable that is bound to the service access path.

underlying-connectionlconnection-args may be a symbol or a list. If it is a
symbol, then it is bound to the underlying connection obtained via
underlying-medium. If underlying-medium is a stream medium, then this is
a stream.

If underlying-connectionlconnection-args is a list, then it is of the form:

(underlying-connection {underlying-connection-args})

underlying-connection is as above. {underlying-connection-args} are passed to
the stream as connection arguments. Note that they must be compile-time
constants.

Here is an example of this syntax:

161

June 1986 Implementation of the Generic Network System

(define-medium :byte-stream-with-mark ()
(((:medium :byte-stream»

(ignore (raw-stream :characters nil) &rest connection-args)
(make-instance (if (get (locf connection-args) :token-list)

'buffered-taken-stream
'buffered-stream-with-mark)

:raw-stream raw-stream»)

Normally, a medium with a :medium step receives the following arglist:

(service-access-path stream &rest args)

However, you can include the form (declare (neti:call-with-medium t» in
the body of the medium step, which makes the arglist: .

(service-path medium &rest args)

This allows the medium function to obtain its own connection.

See the section "Examples of Dermed Mediums", page 161.

26.1 Examples of Defined Mediums

:byte-stream-wlth-mark Medium

The following form defines the generic medium : byte-stream-with-mark:

(define-medium :byte-stream-with-mark ()
(((:medium :byte-stream» (ignore (raw-stream :characters nil)

&rest connection-args)
(make-instance (if (get (locf connection-args) :token-list)

'buffered-taken-stream
'buffered-stream-with-mark)

:raw-stream raw-stream»)

:chaos Medium

The following form defines the :chaos medium:

(define-medium :chaos (:byte-stream :byte-stream-with-mark)
(((:network :chaos» (service-access-path &allow-other-keys &key

byte-size (characters t)
&rest args)

; ; ++ futures
(setf args (si:rem-keywords args '(:byte-size»)

162

Networks June 1986

(lexpr-funcall #'open-stream
(neti:service-access-path-host service-access-path)
(get-chaos-contact-name-for-protocol service-access-path)
:byte-size (and (not characters) (or byte-size 8))
args)

))

:chaos is a specific medium that supports two generic mediums: : byte-stream
and :byte-stream-with-mark.

The :chaos medium includes only one implementation, which is a one-step
implementation. To establish a :chaos connection to a target host, both hosts
must be on the same :chaos network. (Note that the keyword :chaos is being
used in two independent ways here: as a medium, and as a network type.)

:chaos-slmple Medium

The following form defines the :chaos-simple medium:

(define-medium :chaos-simple (:datagram)
(((:network :chaos)) (service-access-path &rest connection-args)
(let ((host (neti:service-access-path-host service-access-path))

(contact-name (get-chaos-contact-name-for-protocol
service-access-path)))

(if (eq host I:broadcast)
(lexpr-funcall #'open-broadcast-simple-stream contact-name

connection-args)
(lexpr-funcall #'open-simple-stream host contact-name

connection-args)))))

:tcp Medium

The following form defines the medium called :tcp:

(define-medium :tcp (:byte-stream)
(((:network :internet)) (service-access-path &rest connection-args)
(multiple-value-bind (host network ignore)

(neti:decode-service-access-path-for-medium service-access-path)
(ignore network)
(let* ((protocol-name (neti:protocol-name

(neti:service-access-path-protocol
service-access-path)))

(port-number (tcp:protocol-name-tcp-port protocol-name t)))
(cl :apply #'tcp:open-tcp-stream host port-number

nil

163

June 1986 Implementation of the Generic Network System

connection-args))))
((:service :tcp-gateway) (:medium :tcp))
((:service :byte-stream-gateway) (:medium :tcp)))

:tcp is a specific medium that supports one generic medium: : byte-stream.

This form defines three implementations of the :tcp medium. The one-step
implementation of the :tcp medium is:

(:network :internet)

This implementation says you can establish a :tcp connection with a host if you
are on the same :internet as it.

The two-step implementations are:

((:service :tcp-gateway) (:medium :tcp))
((:service :byte-stream-gateway) (:medium :tcp))

These implementations say that you can establish a :tcp connection by finding a
path to any gateway host that provides either the :tcp-gateway or the
: byte-stream-gateway service, and that can, itself, form a :tcp connection to the
target host. Note that the second step is a :medium step. This allows many
levels of gateway to be used.

:pseudonet Medium

The :pseudonet medium always uses a gateway to access a network of type
:gateway-pseudonet. This is used for accessing hosts that are not really on a
network but are connected to some other host via something weaker, like serial
lines.

(define-medium :pseudonet (:byte-stream)
((:service :pseudonet-gateway)
(:network :gateway-pseudonet)))

164

Networks June 1986

165

June 1986 Implementation of the Generic Network System

27. Implementation of the Service Lookup Mechanism

This section describes the internal functions and variables that are used by the
generic network system when the Symbolics computer is requesting a service from
another host. Thus in this section the Symbolics computer is the user side. For
information on activities performed when the Symbolics computer is the server
side: See the section "Starting Network Servers", page 171.

27.1 Summary of Functions for Service Lookup and Invocation

The user interface for looking up and invoking services is described elsewhere:
See the section "Invoking Network Services", page 117.

Finding Paths to Services and Protocols

A service access path is a structure that represents a path to a service on a host.
I t describes the name of the service, any arguments to the service, the server
host, the protocol, the medium, and the desirability. See the section "Service
Access Path", page 117.

Note that the functions that find paths are not given service-args, because the
mechanism that finds service access paths does not implement a very fine
weeding-out process. The namespace database knows whether network protocols
and hosts implement a service, but does not contain information on whether that
service can be performed under some restricted set of arguments. Thus
service-args are given only to the functions that invoke services.

net:find-paths-to-service-on-host
Returns a list of all possible service access paths for a
particular service on a given host.

net:find-path-to-service-on-host
Returns a single service access path for a particular service on
a given host, or signals an error if none can be found.

net:find-paths-to-protocol-on-host
Similar to net:find-paths-to-serVice-on-host, except that the
protocol itself is specified.

net:find-path-to-protocol-on-host
Similar to net:find-path-to-service-on-host, except that the
protocol itself is specified.

166

Networks June 1986

net:invoke-service-access-path
Takes a service access path and returns the service-dependent
values, as net:invoke-service-on-host would.

neti:most-desirable-service-access-path

Service Futures

Takes a list of service access paths sorted by desirability and
randomly chooses one from the equally desirable subset at the
front. This distributes the server load evenly in the long run.

A service future is a request for a service whose connection establishment is
outstanding. For simple services, like :time, this allows you to have requests
outstanding to more than one host at the same time. You can then pick the first
or best of several responses without a long waiting period.

net:start-service-access-path-future
Initiates a request for service on a given service access path.

net:service-access-path-future-connected-p
Takes a service path previously given to
net:start-service-access-path-future and returns t if the
connection is now complete.

net:continue-service-access-path-future
Takes a service access path that is connected, and returns the
values that invoking the service would. If the connection was
not completed successfully, an error is signalled.

net:abort-service-access-path-future
Takes a service path previously given to
net:start-service-access-path-future and cancels the outstanding
connection.

27.2 Functions for Service Lookup and Invocation

The functions and variables that provide a user interface for invoking network
services include:

net:invoke-service-on-host
neti:*invoke-service-automatic-retry*
net:invoke-multiple-services
net:find -pa ths-to-service

They are described elsewhere: See the section "Functions for Invoking Network
Services", page 119.

167

June 1986 Implementation of the Generic Network System

net:find-paths-to-service-on-host service host &optional Function
only-need-best must-have-one

Returns a list of all possible paths to a particular service on a given host.
The list is sorted by decreasing desirability. For example:

(net:find-paths-to-service-on-host :time (net:parse-host "bronx"»

If only-need-best is supplied and non-nil, this indicates that we are going to
use the best path only, which saves time searching for many longer paths.

If must-have-one is supplied and non-nil, this function signals an error if no
paths are found. Otherwise nil is returned.

net:find-path-to-service-on-host service host Function
Returns a single access path or signals an error if none can be found. For
example:

(net:find-path-to-service-on-host :time (net:parse-host "bronx"»

net:find-paths-to-protocol-on-host protocol host Function
Similar to net:find-paths-to-service-on-host, except that the actual protocol
is specified and only the network path is computed by the system. It is
preferable to specify a service rather than a specific protocol in order to
allow future transparent extension to a new protocol.

net:find-path-to-protocol-on-host protocol host Function
Similar to net:find-path-to-service-on-host, except that the actual protocol
is specified and only the network path is computed by the system. It is
preferable to specify a service rather than a specific protocol in order to
allow future transparent extension to a new protocol.

neti:most-desirable-service-access-path service-access-path-list Function
Takes a list of service access paths sorted by desirability, as returned by
net:find-paths-to-service or net:find-paths-to-service-on-host, and
randomly chooses one from the equally desirable subset at the front. Since
most paths to a service are equally desirable (such as a service provided by
all Symbolics computers at the local site), this function should be used in
preference to first for selection, since it distributes the server load evenly
in the long run.

net:invoke-service-access-path service-access-path service-args Function
Takes a service access path and returns the service dependent values, as
net:invoke-service-on-host would.

net:start-service-access-path-future service-access-path &rest Function
service-args

Initiates the request for service. service-access-path and service-args are as

168

Networks June 1986

for net:invoke-service-access-path. If the service is implemented locally,
or the connection medium does not support asynchronous connections, the
values nil and the values normally returned by this service are returned.
Otherwise, the value t is returned.

net:service-access-path-future-connected-p service-access-path Function
Takes a service access path previously given to
net:start-service-access-path-future and returns t if the connection is now
complete. This can mean either successful or unsuccessful completion.
This is useful for constructing wait predicates.

net:continue-service-access-path-future service-access-path Function
Takes a service access path which is connected (or which you have timed
out on) and returns the values that invoking the service would. If the
connection was not completed successfully, an error is signalled. If you are
starting up several services but only looking for one answer, that means
you must be prepared to intercept the error sys:network-error and go on
to the next one. This is in practice necessary anyway, since byte-stream
oriented protocols can crash in the middle, datagram-oriented protocols can
return malformatted answers that are not detected by the NCP itself, and
so on. The net:invoke-multiple-services macro aids in writing programs
that do this.

net:abort-service-access-path-future service-access-path Function
Takes a service access path previously given to
net:start-service-access-path-future and cancels the outstanding
connection. Useful for cleanup handlers.

27.3 Messages Related to Service Lookup

All networks are not created equal. Networks (and implementations) can differ in
processing speed, amount of overhead, time to recover from lost packets or errors,
size of packets, and supported features (for example, broadcast or existence of out
of-band signals). Desirability is the result of weighing these factors. See the
section "Desirability of Network Protocols", page 50.

The desirability is a floating-point number between 0.0 and 1.0. Most networks
have a constant desirability, though a network may determine the desirability
dynamically. For example, a network based on telephone calls might compute the
desirability based on time of day.

: desirability Message
Returns a floating-point number between 0.0 and 1.0 that is the relative
desirability of using the network as a medium.

169

June 1986 Implementation of the Generic Network System

Some networks can support broadcasting a request for a service throughout the
network. Sometimes the ability to broadcast is based on the protocol. For
example, it is often reasonable to broadcast a request for the current time, but it
might not be reasonable to broadcast a request for login service.

: supports-broadcast protocol-name Message
Returns non-nil if protocol-name, a keyword, can be supported by
broadcasting a request throughout the network. Otherwise, nil is returned.
The method of the net:network base flavor returns nil.

The implementation of a protocol communicates over a medium. General protocols
usually use a : byte-stream or :datagram medium. More specializ.ed protocols can
use more specialized mediums. To actually implement a protocol and its base
medium over a particular network, the network-specific medium must be
determined.

:possible-medium-for-protocol protocol-name base-medium Message
Returns the name of the medium to use to implement base-medium on the
network. If protocol is not supported, or a medium cannot be determined
from base-medium, then nil may be returned. The method of the
net:network base flavor returns nil.

Some networks have services that all machines on the network are expected
(though not required) to support.

: default-services Message
Returns a list of three-element lists that are the default services that each
host that implements the network is expected to provide. The elements of
the lists are:

1. Generic protocol name
2. Network-specific medium name
3. Network-specific protocol name

For example, the Chaosnet might return the following:

((:chaos-status :chaos-simple : chaos-status)
(:uptime :chaos-simple :uptime-simple))

The method of the net:network base flavor returns nil.

170

Networks June 1986

171

June 1986 Implementation of the Generic Network System

28. Starting Network Servers

This section describes the actions taken by a Symbolics computer when it is the
server side of a connection, responding to a request for a network service from
another host. For information on activities performed when the Symbolics
computer is the user side: See the section "Implementation of the Service Lookup
Mechanism", page 165.

28.1 Finding a Server Description

The network first converts the network specific request (for example, contact name
in Chaosnet or port number in TCP) into a protocol keyword. This is done in a
network-dependent manner using a database defined and maintained by the
network.

The network next finds a server description for the protocol. In this discussion a
server description is a structure that identifies what protocol the server
implements, what medium the implementation uses, the function to call to provide
the service, the number and type of arguments the function expects, and a list of
additional properties associated with the server. Server descriptions are kept in
the list neti:*servers* and the protocol the server implements can be obtained by
calling neti:server-protocol-name with the server as the argument.

If a server is found for the protocol, it is customary to spawn a process at this
point (using process-run-function). This allows the network to continue its duties
independently of server establishment and operation. One of the properties on the
property list of the server description is :process-name. Its value is the
suggested name for the process.

28.2 Calling the Server Function

The function neti:funcall-server-internal-function is called to set up for calling
the server function. The first argument is the server description. The rest of the
arguments are keyword-value pairs. Some of the pairs are based on the property
list of the server, some are based on which medium the server uses, and some are
based on the arguments to the server. It is acceptable to supply pairs that are
not necessarily needed. Arguments to the server that are needed but not supplied
default to nil.

172

Networks June 1986

28.2.1 Commonly Used Arguments to Servers

This section describes several commonly used arguments to servers. You can use
neti:server-argument-descriptions to find out what arguments a server takes.

:reject-unless-trusted
If this property is non-nil and the host requesting the service is
not trusted, the request for the service should be refused.

:trusted-p If this is one of the arguments to the server, then :trusted-p
and a determination of the requesting host's trustedness should
be one of the keyword-value pairs given to
neti:funcall-server-internal-function.

:host

: network

If this is one of the arguments to the server, then :host and the
host object for the foreign host should be one of the keyword
value pairs given to neti:funcall-server-internal-function.

If this is one of the arguments to the server, then :network and
the network invoking the server should be one of the keyword
value pairs given to neti:funcall-server-internal-function.

28.2.2 Commonly Used Arguments to Mediums

The major dispatch is based on which medium the server uses. Networks can
support several generic mediums: :byte-stream, :byte-stream-with-mark, and
: datagram. A network can also implement network-specific mediums and network
specific servers that use them.

If the server uses the : byte-stream or : byte-stream-with-mark medium, :stream
and a stream should be one of the keyword-value pairs given to
neti:funcall-server-internal-function. Unless there is an explicit :accept-p nil
pair in the :stream-options property of the server, the request for connection is
automatically accepted. If the :accept-p property is nil, the server is responsible
for accepting or rejecting the request by sending either the :accept or :reject
message, respectively, to the stream. If the server returns normally and if the
:no-eof property of the server is nil or not specified, the stream should be closed
synchronously. Otherwise, the stream should be closed in abort mode.

If the server uses the :datagram medium, a different set of arguments is passed
to neti:funcall-server-internal-function. Three keyword-value pairs are always
supplied. The server does not need to accept these keywords.

• :response-array is a sys:art-8b or sys:art-string array for the response
• :response-array-start is the first array index available for the response
• :response-array-end is the last array index (exclusive) available for the

response

173

June 1986 Implementation of the Generic Network System

If :request-array is one of the arguments to the server, then three additional
keyword-value pairs are supplied.

• :request-array is a sys:art-8b or sys:art-string array that contains the
request .

• :request-array-start is the first array index that contains the request
• :request-array-end is the last array index (exclusive) that contains the

request

Server functions for datagram protocols return two values. The first is a success
flag. If this is nil, the request is refused. If it is not nil, a reply is generated.
The second value is either a number that is the number of bytes in the response
array that are valid, or a string that is the response and that must be copied into
the response array.

If the server uses a network-specific medium, the network should supply whatever
keyword-value pairs it determines are needed by the server.

Remember, it is acceptable to supply keyword-value pairs to
neti:funcall-server-internal-function that are not needed by the server. This
might make setting up the argument list to neti:funcall-server-internal-function
easier.

28.3 Functions Related to Starting Servers

The following functions and variables are used by Symbolics computers that are
responding to a request from another host. The Symbolics computer is the server
side of the connection.

neti:*servers* Variable
The list of all supported servers, as defined by the net:define-server
macro.

neti:server-protocol-name server Function
Returns the keyword that identifies the protocol the server implements.

neti:server-medium-type server Function
Returns the keyword that identifies what medium the server uses.

neti:server-function server Function
Returns the function that gets called to perform the service.

174

Networks June 1986

neti:server-number-of-arguments server Function
Returns the number of arguments the function expects.

neti:server-argument-descriptions server Function
Returns a list of keywords that identify the expected arguments. For
example, the list (:stream :host) means the first argument is a stream and
the second argument is the host object of the requesting host.

neti:server-property-list server Function
Additional properties of the server. This might include a suggested process
name and stream options.

neti:funcall-server-internal-function server &rest arguments Function
This is the general function for invoking a server after the network has
determined the necessary arguments for the server function. server is a
server description structure. arguments are keyword-value pairs containing
any information the server might need to know.
neti:funcall-server-internal-function matches the supplied keywords with
the argument descriptions in server and invokes the server function. This
function is just an argument matcher and does not close byte streams or
handle the result of a datagram server.

175

June 1986 Network, Medium, and Protocol Descriptions

PART VII.

Network, Medium, and Protocol Descriptions

This chapter describes four types of networks: Chaosnet, Dialnet, Internet, and
DNA All Symbolics computers are equipped to support Chaosnet. All Symbolics
computers have the software to support Dialnet; however, a modem is also needed
to use Dialnet.

Sites that purchase the optional IPtrCP software package can support Internet
networks. Similarly, sites that purchase the optional DNA software package can
support DNA networks. A DNA network is one in which hosts communicate using
DECnet protocols.

The Internet and DECnet protocols are fully documented by other sources. See
the section "References to IPtrCP Protocol Specifications", page 224. See the
section "References to DECnet Protocol Specifications", page 228.

In addition to describing the four types of networks, this chapter contains protocol
specifications for the BYTE-STREAM-WITH-MARK network medium, the token list
transport layer, the NFILE file protocol, and two namespace protocols. All
Symbolics computers support these protocols.

176

Networks June 1986

177

June 1986 Network, Medium, and Protocol Descriptions

29. Chaosnet

The documentation in this section describing Chaosnet was originally part of the
Massachusetts Institute of Technology Artificial Intelligence Lab Memo 628,
copyright June, 1981.

29.1 Introduction to Chaosnet

Chaosnet is a local network, that is, a system of communications among a group of
computers located within one or two kilometers of each other. The name Chaosnet
refers to the lack of any centralized control element in the network

All Symbolics computers support Chaosnet. In Symbolics terminology, Chaos is a
type of network. If a site supports Chaosnet:

o The site's namespace database has a network object of type Chaos.

• Hosts have Chaosnet addresses; the addresses are stored in the
address attribute of the host objects.

• Hosts can communicate with other hosts on the Chaosnet using Chaos
protocols; these protocols are stored in the service attributes of the host
object.

Chaosnet was originally developed in 1975 by the Artificial Intelligence Laboratory
of the Massachusetts Institute of Technology, as the internal communications
medium of early Lisp Machine systems. Chaosnets also exist at several other
universities and research laboratories.

The design of Chaosnet was greatly simplified by ignoring problems irrelevant to
local networks. Chaosnet contains no special provisions for problems such as low
speed links, noisy (very high error-rate) links, multiple paths, and long-distance
links with significant transit time. This means that Chaosnet is not particularly
suitable for use across the continent or in satellite applications. Chaosnet also
makes no attempt to provide features unnecessary for local-area networks, such as
multiple levels of service or secure communication (other than by end-to-end
encryption).

The original design of Chaosnet consisted of two parts-the hardware and the
software-which, while logically separable, were designed for each other. Symbolics
no longer uses the Chaosnet-specific hardware, but uses standard Ethernet
hardware instead.

178

Networks June 1986

Network nodes contend for access to an Ethernet cable, over which they can
transmit packets addressed to other network nodes. The software defines higher
level protocols in terms of packets.

See the section "Format of Chaosnet Addresses", page 55.

29.1.1 References to Chaosnet Protocol Specifications

The Symbolics documentation describing Chaosnet was originally part of the
Massachusetts Institute of Technology Artificial Intelligence Lab Memo 628,
copyright June, 198!.

Chaosnet implements several standard Arpanet protocols, which are documented as
ARPANET Requests for Comments. See the section "References to IPfrCP
Protocol Specifications", page 224.

For information on NFILE: See the section "NFILE File Protocol", page 251.

The following documents are of some related interest:

[CPR] C. Ryland, TOPS-20 Chaosnet Manual, unpublished.

[UNIBUS] PDP-II Peripherals Handbook, Digital Equipment Corporation.

29.2 Overview of the Chaosnet Software Protocol

The purpose of the basic software protocol of Chaosnet is to allow high-speed
communication among processes on different machines, with no undetected
transmission errors.

The Chaosnet protocol was designed to be simple, for the sake of reliability and to
allow its use by modest computer systems. A minimal implementation exists for a
single-chip microcomputer. It was important to design out bottlenecks like those
that were found in the Arpanet prior to the advent of IPfrCP, such as the control
link that was shared between multiple connections and the need to acknowledge
each message before the next message could be sent.

29.2.1 Chaos net Connections

The principal service provided by Chaosnet is a connection between two user
processes. This is a full-duplex reliable packet-transmission channel. The network
undertakes never to garble, lose, duplicate, or resequence the packets; in the event
of a serious error it can break the connection off entirely, informing both user
processes. User programs can either deal in terms of packets, or ignore packet
boundaries and treat the connection as two unidirectional streams of 8-bit or 16-bit
bytes.

179

June 1986 Network, Medium, and Protocol Descriptions

On top of the connection facility, "user" programs build other facilities, such as
file access, interactive terminal connections, and data in other byte sizes, such as
36 bits. The meaning of the packets or bytes transmitted through a connection is
defined by the particular higher-level protocol in use.

In addition to reliable communication, the network provides flow control, includes
a way by which prospective communicants can get in touch with each other (called
contacting or rendezvous), and provides various network maintenance and
housekeeping facilities.

29.2.2 Chaosnet Contact Names

When first establishing a connection, it is necessary for the two communicating
processes to contact each other. In addition, in the usual user/server situation,
the server process does not exist beforehand and needs to be created and made to
execute the appropriate program.

We chose to implement contacting in an asymmetric way. (Once the connection
has been established, everything is completely symmetric.) One process is
designated the user, and the other is designated the server. The server has some
contact name to which it listens. The user process requests its local operating
system to connect it to the server, specifying the network node and contact name
of the server. The local operating system sends a message (a Request for
Connection) to the remote operating system, which examines the contact name and
creates a connection to a listening process, creates a new server process and
connects to it, or rejects the request.

The capability of automatically discovering which host to connect to in order to
obtain a particular service is a subject for higher-level protocols and for further
research. Chaosnet makes no provisions for this capability.

Once a connection has been established, there is no more need for the contact
name and it is discarded. Indeed, often the contact name is simply the name of a
service (such as "TELNET") and several users should be able to have simultaneous
connections to separate instances of that service, so contact names must be
reusable.

When two existing processes that already know about each other want to establish
a connection, we arbitrarily designate one as the listener (server) and the other as
the requester (user). The listener somehow generates a "unique" contact name,
somehow communicates it to the requester, and listens for it. The requester
requests to connect to that contact name and the connection is established. In the
most common case of establishing a second connection between two processes
which are already connected, the index number of the first connection can serve as
a unique contact name.

Contact names are restricted to strings of uppercase letters, numbers, and ASCII
punctuation. The maximum length of a contact name is limited only by the packet

180

Networks June 1986

size, although on ITS hosts, the file system limits the names of automatically
started servers to six characters.

The contact names for Chaosnet connections are retained in the connection data
structures. The accessor function is chaos:contact-name.

The complete details about establishing a connection are given elsewhere: See the
section "Chaosnet Connection Establishment", page 191.

29.2.3 Chaosnet Addresses and Indices

Each node (or host) on the network is identified by a unique address: See the
section "Format of Chaosnet Addresses", page 55.

These addresses are used in the routing of packets. There is a table that relates
symbolic host names to numeric host addresses; for Symbolics computers this is
the namespace database.

An address consists of two fields. The most-significant 8 bits identify a 8ubnet,
and the least-significant 8 bits identify a host within that subnet. Both fields
must be nonzero. A subnet corresponds to a single transmission path. Some
subnets are physical Chaosnet or Ethernet cables, while others are other media,
for instance an interface between a PDP-I0 and a PDP-II. The significance of
subnets will become clear when routing is discussed: See the section "Chaosnet
Routing", page 184.

When a host is connected to an Ethernet cable, its hardware address and Chaosnet
address are coordinated through Address Resolution Protocol [ARP]. When a host
is connected to a Chaosnet cable, the host's hardware address on that Chaosnet
cable is the same as its software address, including the subnet field.

A connection is specified by the names of its two ends. Such a name consists of a
16-bit host address and a 16-bit connection index, which is assigned by that host,
as the name of the entity inside the host that owns the connection. The only
requirements placed by the protocol on indices are that they be nonzero and that
they be unique within a particular host; that is, a host may not assign the same
index number to two different connections unless enough time has elapsed between
the closing of the lll'st connection and the opening of the second connection that
confusion between the two is unlikely.

Typically the least-significant n bits of an index are used as a subscript into the
operating system's tables, and the most-significant 16-n bits are incremented each
time a table slot is reused, to provide uniqueness. The number of unique
guarantee bits must be sufficiently large, compared to the rate at which
connection-table slots are reused, that if two connections have the same index, a
packet from the old connection cannot sit around in the network (for example, in
buffers inside hosts or bridges) long enough to be seen as belonging to the new
connection.

181

June 1986 Network, Medium, and Protocol Descriptions

It is important to note that packets are not sent between hosts (physical
computers). They are sent between user processes; more exactly, between
channels attached to user processes. Each channel has a 32-bit identification,
which is divided into subnet, host, index, and unique-guarantee fields. From the
point of a view of a user process using the network, the Network Control Program
section of the host's operating system is part of the network, and the multiplexing
and de multiplexing it performs is no different from the routing performed by other
parts of the network. It makes no difference whether two communicating
processes run in the same host or in different hosts.

Certain control packets, however, are sent between hosts rather than users. This
is visible to users when opening a connection; a contact name is only valid with
respect to a particular host. This is a compromise in the design of Chaosnet,
which was made so that an operational system could be built without first solving
the research and engineering problems associated with making a diverse set of
hosts into a uniform, one-level namespace.

29.2.4 Chaos net Packet Numbers

There are two kinds of packets, controlled and uncontrolled. Controlled packets
are subject to error-control and flow-control protocols, which guarantee that each
controlled packet is delivered to its destination exactly once, that the controlled
packets belonging to a single connection are delivered in the same order they were
sent, and that a slow receiver is not overwhelmed with packets from a fast sender.
(See the section "Chaosnet Flow and Error Control", page 187.) Uncontrolled
packets are simply transmitted; they usually, but not always, arrive at their
destination exactly once. The protocol for using them must take this into account.

Each controlled packet is identified by an unsigned 16-bit packet number.
Successive packets are identified by sequential numbers, with wrap-around from all
1s to aliOs. When a connection is first opened, each end numbers its irrst
controlled packet (RFC or OPN) however it likes, and that sets the numbering for
all following packets.

Packet numbers should be compared modulo 65536 (2 to the 16th), to ensure
correct handling of wrap-around cases. On a PDP-11, use the instructions

CMP A,B
BMI A_is_less

Do not use the BL T or BLO instruction. On a PDP-10, use the instructions

SUB A,B
TRNE A,1eeeee
JRST A_is_less

Do not use the CAMGE instruction. On a Symbolics computer, use the code

182

Networks June 1986

(IF (LOGTEST #o(BBBBB (- A 8))
<A is less»

Do not use the LESSP (or <) function.

29.2.5 Chaosnet Packet Contents

A packet consists of a header, which is eight 16-bit words, and zero or more 8-bit
or 16-bit bytes of accompanying data.

The following are the eight header words:

Operation
The most-significant 8 bits of this word are the Opcode of the packet, a
number which tells what the packet means. The 128 opcodes with high
order bit 0 are for the use of the network itself. The 128 opcodes with
high-order bit 1 are for use by users. The various opcodes are described
elsewhere. See the section "Technical Details of the Chaosnet Software
Protocol", page 190.

The least-significant 8 bits of this word are reserved for future use, and
must be zero.

Count The most-significant 4 bits of this word are the forwarding count, which
tells how many times this packet has been forwarded by bridges. I ts use is
explained elsewhere; See the section "Chaosnet Routing", page 184.

The least-significant 12 bits of this word are the data byte count, which
tells the number of 8-bit bytes of data in the packet. The minimum value
is 0 and the maximum value is 488. Note that the count is in 8-bit bytes
even if the data are regarded as 16-bit bytes.

The byte count must be consistent with the actual length of the hardware
packet. Since the hardware cyclic redundancy check algorithm is not
sensitive to extra zero bits, packets whose hardware length disagrees with
their software length are discarded as hardware errors.

Destination Address
This word contains the network address of the destination host to which
this packet should be sent.

Destination Index
This word contains the connection index at the destination host of the
connection to which this packet belongs, or 0 if this packet does not belong
to any connection.

Source Address
This word contains the network address of the source host which originated
this packet.

183

June 1986 Network, Medium, and Protocol Descriptions

Source Index
This word contains the connection index at the source host of the
connection to which this packet belongs, or 0 if this packet does not belong
to any connection.

Packet Number
If this is a controlled packet, this word contains its identifying number.

Acknowledgement
The use of this word is described elsewhere. See the section "Chaosnet
Flow and Error Control", page 187.

29.2.6 Chaosnet Data Formats

Data transmitted through Chaosnet generally follow Symbolics standards. Bits and
bytes are numbered from right to left, or least-significant to most-significant. The
first 8-bit byte in a 16-bit word is the one in the arithmetically least-significant
position. The first 16-bit word in a 32-bit double-word is the one in the
arithmetically least-significant position.

The character set used is dictated by the higher-level protocol in use. Telnet and
Supdup, for example, each specifies its own ASCII-based character set. The
"default" character set, used for new protocols and for text that appears in the
basic Chaosnet protocol (such as contact names) is the Symbolics character set.
See the section "The Character Set" in Reference Guide to Streams, Files, and I/O.
This is basically ASCII, augmented with additional printing characters and a
different set of format-effector (or "control") characters.

Because the rules for bit numbering conflict with the native byte-ordering in
PDP-lOs, and because it is quite expensive to rearrange the bytes using the
PDP-10 instruction set, PDP-11s that act as front-ends for PDP-lOs must reformat
packets passing through them, and PDP-lOs interfaced directly to the network
must have interfaces capable of rearranging the bytes. This requires that the
network protocols explicitly specify which portions of each type of packet are 8-bit
bytes and which are 16-bit bytes. In general the header is 16-bit bytes and the
data field is 8-bit bytes, but certain packet types (OPN, STS, RUT, and opcodes
300 through 377) have 16-bit bytes in the data field. Use of 32-bit data is rare, so
no provision is made for putting 32-bit data into the standard format for PDP-lOs.
On our current network, PDP-lOs are the only hosts that require this packet
reformatting assistance, because most modern computers number their bits and
bytes from least-significant to most-significant.

The effect of this is that user programs see the data in a packet, and its header
in the native form of the machine they are running on. The Chaosnet
automatically applies the necessary conversions. This statement applies to the
order of bits and bytes within a word, but not to the character set (when packets
contain textual data), which is dictated by protocols.

184

Networks June 1986

Unlike some other network protocols, Chaosnet does not use any software
checksumming. Because of the diversity of hosts with different architectures
attached to the Chaosnet, it is impossible to devise a checksumming algorithm
that can be executed compatibly and efficiently on all hosts. Instead, Chaosnet
relies on error-checking hardware in the network interfaces, and assumes that
other sources of packet damage checksums could detect, such as software bugs in
a Network Control Program, either do not occur or will produce symptoms so
obvious they will be detected and IlXed immediately.

29.2.7 Chaosnet Routing

Routing consists of deciding how to deliver a packet to the network node specified
by the destination address field of the packet. Having reached that node, the
packet can trivially be delivered to the destination user process via the destination
index. In general, routing may be a multistep process involving transmission
through several subnets, since there may not be a direct hardware connection
between the source and the destination. Note that the routing decision is made
separately for each packet, with no reference to the concept of connections.

Any host connected to more than one subnet acts as a bridge and forwards packets
from one subnet to another when necessary. There could also be hard ware
bridges that are not hosts, although we have not yet designed any such device.
Since routing does not depend on connections, a bridge is a very simple device (or
program), which does not need much state. This makes the bridge function
inexpensive to piggyback onto a computer that is also performing other functions,
and makes reliable bridge software easy to implement.

Bridges and gateways differ, in our terminology, in this way: A bridge forwards
packets from one sub-Chaosnet to another, without modifying the packets or
understanding them (other than to look at the destination address and increment
the forwarding count), and does not handle connections or flow control. A
gateway, on the other hand, interconnects two networks with differing protocols
and must understand and translate the information passing through it. Gateways
may also have to handle flow and error control because they connect networks
with slow or differing speeds. Bridges are suitable for local networks, while
gateways are suitable for long-distance networks and for connecting networks not
produced by the same organization.

To prevent routing loops, each packet contains a forwarding-count field. Each
bridge that forwards the packet increments this count; if the count reaches its
maximum value, the packet is discarded. The error-control protocol recovers
discarded packets, or decides that no viable connection can be established between
the two hosts.

The implementation of routing in an operating system is as follows, given a packet
to be routed, which may have come in from the network or may have been
originated by the local host. First, check the packet's destination address. If it is

185

June 1986 Network, Medium, and Protocol Descriptions

this host, receive the packet. Otherwise, increment the forwarding count and
discard the packet if it has been forwarded too many times. If the destination is
some other host on a subnet to which this host is directly connected, transmit the
packet on that subnet; the destination host should receive it. If the destination is
a host on a subnet of which this host has no knowledge, look up the subnet in the
host's routing table to find the best bridge to that subnet, and transmit the packet
to that bridge.

Each host has a routing table, indexed by subnet number, which tells how to get
packets to hosts on that subnet. Each entry contains (exact details may vary
depending on implementation):

type

Address

Cost

The type of connection between the host and this subnet. This
can be one of Direct, Bridge, or Fixed Bridge. Direct means a
physical connection, such as a Chaosnet interface. Bridge means
an indirect connection, via a packet-forwarding bridge. The
routing mechanism discovers which bridge is best to use. Fixed
Bridge is the same, except that the automatic mechanism does
not change which bridge is used. This is useful to set up
explicit routing for purposes such as network debugging.

Identifies the connection to this subnet in a way that depends
on the type. For a direct connection, this identifies the piece of
hardware that implements the connection. (It might be a
UNIBUS address.) For a bridge or a fixed bridge, this is the
network address of the bridge.

A measure of the cost of sending a packet through this route.
Costs are used to select the best route from among alternatives,
in a way described below. For a direct connection, the cost is
10 for a direct interface between two computers (for example,
between a PDP-10 and its front-end PDP-11), 11 for a Chaosnet
ether cable, 20 for a slow medium such as an asynchronous line,
and so on. For a bridge or a fixed bridge, the cost is specified
by the bridge in a RUT packet.

The routing table is initialized with the number of a more or less arbitrary
existing host and a high cost, for each subnet to which the host is not directly
connected. Until the correct bridge is discovered (which normally happens within
a minute of coming up), packets for that subnet are bounced off of that arbitrary
host, which probably knows the right bridge to forward them to.

The cost for subnets accessed via bridges is increased by 1 every 4 seconds, thus
typically doubling after a minute. When the cost reaches a "high" value, it sticks
there, preventing problems with arithmetic overflow. The purpose of the
increasing cost is to discount the value of old information. The cost for subnets
accessed via direct connections and fixed bridges does not increase.

186

Networks June 1986

Every 15 seconds, a bridge advertises its presence by broadcasting a routing (RUT)
packet on each subnet to which it is directly connected. Each host on that subnet
receives the RUT packet and uses it to update its routing table. If the host's
routing table says to access a certain subnet via bridges, and the RUT packet says
that this is the best bridge to that subnet, the routing table is updated to say that
this bridge should be used.

Note that it is important that the rate at which the costs increase with time be
slow enough that it takes more than twice the broadcast interval to increase the
cost of one hop to more than the cost of two hops. Otherwise the routing
algorithm is not well-behaved. Suppose subnet A has two bridges (a. and ~) on it,
and bridge a. is connected to subnet B but bridge ~ is not (it goes to some
irrelevant subnet). Then if the costs increase too fast and bridges a. and ~ do not
broadcast their RUT packets exactly simultaneously, sometimes packets for subnet
B may be sent to bridge ~ because its cost appears lower. Bridge ~ then sends
them to bridge a., where they should have gone directly. In more complicated
situations packets can go around in a circle some of the time.

The source address of a RUT packet must be the hardware address of the bridge
on the particular subnet on which the packet is broadcast. The destination
address of a RUT packet must be zero; RUT packets are not forwarded onto other
subnets. The byte count of a RUT packet is a multiple of 4 and the packet
contains up to 122 pairs of 16-bit words:

word 1

word 2

The subnet number of a subnet which this bridge can get to,
directly or indirectly, right-adjusted.

The cost of sending to that subnet via this bridge. This is the
current cost from the bridge's routing table, plus the cost for
the subnet on which the routing packet is broadcast. Adding
the subnet cost eliminates loops, and selects one-hop paths over
two-hop paths.

When a host receives a RUT packet, it processes each 2-word entry by comparing
the cost for that subnet against its current cost; if it is less than or equal to the
current cost, the cost and the address of the bridge are entered into the routing
table, provided that the subnet's routing table entry is not of the Direct or Fixed
Bridge type.

When mUltiple equivalent bridges exist, the traffic is spread among them only by
virtue of their RUT packets being sent at different times, so that sometimes one
bridge has the lower cost, and sometimes the other. If this isn't adequate, hosts
could have more complex routing tables, which remember more than one possible
route and use them according to their relative costs. So far, however, this has not
been necessary, since the network traffic is not so high as to saturate anyone
bridge.

187

June 1986 Network, Medium, and Protocol Descriptions

The design of this routing scheme is predicated on the assumption that the
network geometry is simple, there are few multiple paths, and the length of any
path is quite short. This makes more sophisticated schemes unnecessary.

An important feature of this routing scheme is that the size of the table is
proportional to the number of subnets, not to the number of hosts. Thus it does
not take up an inordinate amount of memory in a small computer, and no
complicated dynamic allocation schemes are required.

In the case of a PDP-10 that accesses the Chaosnet through a front-end PDP-ll,
we define the interface between the two computers as a subnet, and regard the
PDP-ll as a bridge which forwards packets between the network and the PDP-lO.
This gives the PDP-lO and the PDP-II separate addresses so that we can choose to
talk to either one, even though they are part of the same computer system. This
is occasionally useful for maintenance purposes. It becomes more useful when the
front-end PDP-ll has peripherals which are to be accessed through the Chaosnet,
since they can simply look like hosts on the PDP-Il's private subnet.

In the case of a host attached to more than one subnet, it is undesirable for the
host to have more than one address, since this would complicate user p.rograms
that use addresses. Instead, one of the host's network attachments is designated
as primary, and that address is used as the host's single address. The other
attachments are regarded as bridges which can forward to that host. Sometimes,
we simplify the routing by inventing a new subnet which contains only that host
and has no physical realization. The host's address is an address on the fake
subnet. All of the host's network attachments are regarded as bridges which know
how to forward packets to that subnet.

The ITS host table allows a host to have multiple addresses on multiple networks,
but when you ask for the address of a certain host on a certain network you only
get back the primary address. All packets coming from that host have that as
their source address.

29.2.8 Chaos net Flow and Error Control

The Network Control Programs (NCPs) conspire to ensure that data packets are
sent from user to user with no garbling, duplications, omissions, or changes of
order. Secondarily, the NCPs attempt to achieve a maximum rate of flow of data,
and a minimum of overhead and retransmission.

The fundamental basis of flow-control and error-control in Chaosnet is
retransmission. Packets that are damaged in transmission, that won't fit in
buffers, that are duplicated or out-of-sequence, or that otherwise are embarrassing
are simply discarded. Packets are periodically retransmitted until an indication
that they have been successfully received is returned. This retransmission is end
to-end; any intermediate bridges do not participate in flow-control and error
control, and hence are free to discard any packets they wish.

188

Networks June 1986

There are actually two kinds of packets, controlled and uncontrolled. Controlled
packets are retransmitted and delivered reliably; most packets, including all
packets used by the user (except for UNC packets), are of this type. Uncontrolled
packets are not retransmitted; these are used for certain lower-level functions of
the protocol such as the implementation of flow and error control. The usage of
these packets is designed so that they need not be delivered reliably.

Retransmission of a packet continues until stopped by a signal from the receiver
to the sender, called a receipt. A receipt contains a packet number, and indicates
that all controlled packets with a packet number less than or equal (modulo
65536) to that number have been successfully received, and therefore need not be
retransmitted any more. A receipt does not indicate that these packets have been
processed by the destination user process; it simply indicates that they have
successfully arrived in the destination host, and are guaranteed to be there when
the user process asks for them.

There is another signal from the receiver to the sender, called an
acknowledgement. An acknowledgement also contains a packet number, and
indicates that all controlled packets with a packet number less than or equal
(modulo 65536) to that number have been read by the destination user process.
This is used to implement flow-control. Note that acknowledgement of a packet
implies receipt of that packet. In fact, if the receiving process does not fall
behind, explicit receipts need not be sent, because the receiving host does not have
to buffer any packets, but acknowledges them as soon as they arrive.

The purpose of flow-control is to match the speeds of the sending and receiving
processes. The extremes to be avoided are, on the one hand, too small a "buffer
size" causing the data transmission rate to be slower than it could be, and on the
other hand, large numbers of packets piling up in the network because the sender
is sending faster than the receiver is receiving. It is also necessary to be aware
that receipts and acknowledgements must be transmitted through the network, and
hence have an associated cost.

Chaosnet flow-control operates by controlling the number of packets "in the
network" . These are packets which have been emitted by the sending user
process, but have not been acknowledged. We define a window into the set of
packet numbers. The beginning of this window is the first packet number that
has not been acknowledged, and the width of the window is a IlXed number
established when the connection is opened. The sending process is only allowed to
emit packets whose packet numbers lie within the window. Once it has emitted
all of the packets in the window, the window is said to be full. Thus, the size of
the window is the "buffer size" for the connection, and is the maximum number of
packets that may need to be buffered inside an NCP (sending or receiving).
Acknowledgements move the window, making it not full, and allowing the sending
process to emit additional packets.

We do not receipt and acknowledge every single controlled packet that is

189

June 1986 Network, Medium, and Protocol Descriptions

transmitted through a connection, since that would double or triple the number of
packets sent through the network to move a given amount of data. Instead we
batch the receipts and acknowledgements. But if acknowledgements are not sent
often enough, the data does not flow smoothly, because the window often appears
full to the sender when it is not. If receipts are not sent often enough, there are
unnecessary retransmissions.

Whenever a packet is sent through a connection, an acknowledgement for the
reverse direction of that connection is "piggy-backed" onto it, using the
Acknowledgement field in the packet header. For interactive applications, where
there is much traffic in both directions, this provides all the necessary
acknowledgement and receipting, with no need to send any extra packets through
the network.

When this does not suffice, STS (status) packets are generated to carry receipts
and acknowledgements. STS packets are uncontrolled, since they are part of the
mechanism that implements controlled packets. If an STS packet is duplicated, it
does no harm. If an STS packet is lost, mechanisms exist which cause a
replacement to be generated later. An STS packet carries separate receipt and
acknowledgement packet numbers.

When a user process reads a packet from the network, if the number of packets
that should have been acknowledged but have not been is more than one third the
window size, an STS is generated to acknowledge them. Thus the preferred batch
size for acknowledgement is one third the window size. The advantage of this size
is that if one STS is lost, another is generated before the window fills up (at the
two-thirds point).

When a packet is received with the same packet number as one that has already
been successfully received, this is evidence of unnecessary retransmission, and an
STS is generated to carry a receipt back to the sender. If this STS is lost, the
next retransmission stimulates another one. Thus, receipts are normally implied
by acknowledgements, and only sent separately when there is evidence of
unnecessary retransmission.

Retransmission consists of sending all unreceipted controlled packets, except those
that were last sent very recently (within 1/30 of a second in ITS.) Retransmission
occurs every half second. This interval is somewhat arbitrary, but should be close
to the response time of the systems involved. Retransmission also occurs in
response to an STS packet, so that a receiver may cause a faster retransmission
rate than twice a second if it so desires. This should never cause useless
retransmission, since STS carries a receipt, and very-recently-transmitted packets,
which might still be in transit through the network, are not retransmitted.

Another operation is probing, which consists of sending an SNS packet, in the
hope of eliciting either an STS or a LOS, depending on whether the other side
believes the connection exists. Probing is used periodically as a way of testing
that the connection is still open, and also serves as a way to get STS packets

190

Networks June 1986

retransmitted as a hedge against the loss of an acknowledgement, which could
otherwise stymie the connection. SNS packets are uncontrolled.

We probe every five seconds on connections that have unacknowledged packets
outstanding (a nonempty window) and on connections that have not received any
packets (neither data nor control) for one minute. If a connection receives no
packets for 1-112 minutes, this means that at least 5 probes have been ignored, and
the connection is declared broken; either the remote host is down or there is no
viable path through the network between the two hosts.

The receiver can generate "spontaneous" STSs, to stimulate retransmission and
keep things moving on fast devices with insufficient buffering for one half
second's worth of packets. This provides a way for the receiver to speed up the
retransmission timeout in the sender, and to make sure that acknowledges are
happening often enough.

Note that the network still functions if either or both parties to a connection
ignore the window. The window is simply an improver of efficiency. Receipts
have the same property. This allows very small implementations to be compatible
with the same protocol, which is useful for applications such as bootstrapping
through the network.

It would be possible to have dynamic adjustment of the window size in response to
observed behavior. The STS packet includes the window size so that changes to it
can be communicated. However, this has not been found necessary in practice.
Each higher-level protocol has a standard window size, which it establishes when
it first opens a connection, and this seems to be close enough to optimum that
careful dynamic adjustment of it wouldn't make a big difference.

This scheme for flow-control and error-control is based on several assumptions. It
is assumed that the underlying transmission media have their own checking, so
that they discard all damaged packets, making packet checksums unnecessary at
the protocol level. The transit time through the network is assumed to be fast, so
that a fairly small retransmission interval is practical, and negative
acknowledgements are not necessary. The error rate is assumed to be low so that
overall efficiency is not affected by the simple error recovery scheme of
retransmitting all outstanding packets. It is assumed that no reformatting of
packets occurs inside the network, so that flow-control and error-control can
operate on a packet basis rather than a byte basis.

29.3 Technical Details of the Chaosnet Software Protocol

In the following sections, each of the packet opcodes and the use of that packet
type in the protocol is described. Opcodes are given as a three-letter code.

Unless otherwise specified, the use of the fields in the packet header is as follows.

191

June 1986 Network, Medium, and Protocol Descriptions

The source and destination address and index denote the two ends of the
connection; when an end does not exist, as during initial connection establishment,
that index is zero. The opcode, byte count, and forwarding count fields have no
variations. The packet number field contains sequential numbers in controlled
packets; in uncontrolled packets it contains the same number as the next
controlled packet will contain. The acknowledgement field contains the packet
number of the last packet seen by the user.

29.3.1 Chaos net Connection Establishment

This section presents the protocols and packet types associated with creating and
destroying connections. First the various connection-establishment protocols are
described and then the packets are detailed.

There are several connection-initiation protocols implemented in Chaosnet. In
addition to those described here, there is also a broadcast mechanism. See the
section "Chaosnet Broadcast", page 197.

Note that Chaosnet does not have a symmetric close protocol. This is described
elsewhere: S~e the section "Chaosnet Connection Closing", page 197.

All connections are initiated by the transmission of an RFC from the user to the
server. The data field of the packet contains the contact name. The contact
name can be followed by arbitrary arguments to the server, delimited by a space
character. The destination index field of an RFC contains 0 since the destination
index is not known yet.

RFC is a controlled packet; it is retransmitted until some sort of response is
received. Because RFCs are not sent over normal, error-controlled connections, a
special way of detecting and discarding duplicates is required. When an NCP
receives an RFC packet, it checks all pending RFCs and all connections which are
in the Open or RFC-received state, to see if the source address and index match;
if so, the RFC is a duplicate and is discarded. (See the section "Chaosnet
Connection States", page 200.)

A server process informs the local NCP of the contact name to which it is
listening by sending a LSN packet, with the contact name in the data field. This
packet is never transmitted anywhere through the network. It simply serves as a
convenient buffer to hold the server's contact name. When an RFC and a LSN
containing the same contact name meet, the LSN is discarded and the RFC is
given to the server, putting its connection into the RFC-received state. (See the
section "Chaosnet Connection States", page 200.) The server reads the RFC and
decides whether or not to open the connection.

OPN is the usual positive response to RFC. The source index field conveys the
server's index number to the user; the user's index number was conveyed in the
RFC. The data field of OPN is the same as that of STS; it serves mainly to
convey the server's window-size to the user. The Acknowledgement field of the
OPN acknowledges the RFC so that it will no longer be retransmitted.

192

Networks June 1986

OPN is a controlled packet; it is retransmitted until it is acknowledged. Duplicate
OPN packets are detected in a special way; if an OPN is received for a connection
which is not in the RFC-sent state, it is simply discarded and an STS is sent.
(See the section "Chaosnet Connection States", page 200.) This happens if the
connection is opened while a retransmitted OPN packet is in transit through the
network, or if the STS which acknowledges an OPN is lost in the network.

CLS is the negative response to RFC. It indicates that no server was listening to
the contact name, and one couldn't be created, or for some reason the server
didn't feel like accepting this request for a connection, or the destination NCP was
unable to complete the connection (for example, connection table full.)

CLS is also used to close a connection after it has been open for a while. Any
data packets in transit may be lost. Protocols which require a reliable end-of-data
indication should use the mechanism for that before sending CLS. (See the
section "End-of-data: Chaosnet Software Protocol".)

The data field of a CLS contains a character-string explanation of the reason for
closing, intended to be returned to a user as an error message.

CLS is an uncontrolled packet, so that the program which sends it may go away
immediately afterwards, leaving nothing to retransmit the CLS. Since there is no
error recovery or retransmission mechanism for CLS, the use of CLS is necessarily
optional; a process could simply stop responding to its connection. However, it is
desirable to send a CLS when possible to provide an error message for the user.

FWD is a response to RFC which indicates that the desired service is not available
from the process contacted, but may be available at a possibly different contact
name at a possibly different host. The data field contains the new contact name
and the Acknowledgement field--exceptionally--contains the new host number. The
issuer of the RFC should issue another RFC to that address. FWD is an
uncontrolled packet; if it is lost in the network, the retransmission of the RFC will
presumably stimulate an identical FWD.

ANS is another kind of response to RFC. The data field contains the entirety of
the response, and no connection is established. ANS is an uncontrolled packet; if
it is lost in the network, the retransmission of the RFC will presumably stimulate
an identical ANS.

When an RFC arrives at a host, the NCP finds a user process that is listening for
this RFC's contact name, or creates a server process to provide the desired
service, or responds to the RFC itself, if it knows how to provide the requested
service, or refuses the request for connection. The process that serves the RFC
chooses which connection-initiation protocol to follow. This process is given the
RFC as data, so that it can look at the contact name and any arguments that may
be present.

A stream connection is initiated by an RFC, transmitted from user to server. The
server returns an OPN to the user, which responds with an STS. These three

193

June 1986 Network, Medium, and Protocol Descriptions

packets convey the source and destination addresses, indices, initial packet
numbers, and window sizes between the two NCPs. In addition, a character-string
argument can be conveyed from the user to the server in the RFC.

The OPN serves to acknowledge the RFC and extinguish its retransmission. It
also carries the server's index, initial packet number, and window size. The STS
serves to acknowledge the OPN and extinguish its retransmission. It also carries
the user's window size; the user's index and initial packet number were carried by
the RFC. Retransmission of the RFC and the OPN provides reliability in the face
of lost packets. If the RFC is lost, it is retransmitted. If the STS is lost, the
OPN will be retransmitted. If the OPN is lost, the RFC is retransmitted
superfluously and the OPN'is retransmitted, since no STS will be sent.

The exchange of an OPN and an STS tells each side of the connection that the
other side believes the connection is open; once this has happened data may begin
to flow through the connection. The user process may begin transmitting data
when it sees the OPN. The server process may begin transmitting data when it
sees the STS. These rules ensure that data packets cannot arrive at a receiver
before it knows and agrees that the connection is open. If data packets did arrive
before then, the receiver would reject them with an LOS, believing them to be a
violation of protocol, and this would destroy the connection before it was fully
established.

Once data packets begin to flow, they are subject to the flow and error control
protocol. (See the section "Chaosnet Flow and Error Control", page 187.) Thus a
stream connection provides the desired reliable, bidirectional data stream.

A refusal is initiated by an RFC in the same way, but the server returns a CLS
rather than an OPN. The data field of the CLS contains the reason for refusal to
connect.

A forwarded connection is initiated by an RFC in the same way, but the server
returns an FWD, telling the user another place to look for the desired service.

A simple transaction is initiated by an RFC from user to server, and completed by
an ANS from server to user. Since a full connection is not established and the
reliable-transmission mechanism of connections is not used, the user process
cannot be sure how many copies of the RFC the server saw, and the server
process cannot be sure that its answer got back to the user. This means that
simple transactions should not be used for applications where it is important to
know whether the transaction was really completed, nor for applications in which
repeating the same query might produce a different answer. Simple transactions
are a simple, efficient mechanism for applications such as extracting a small piece
of information (for example, the time of day) from a central data-base.

A connection is initiated by the transmission of an RFC from the user to the
server. The data field of the packet contains the contact name. The contact
name can be followed by arbitrary arguments to the server, delimited by a space

194

Networks June 1986

character. The destination index field of an RFC contains 0 since the destination
index is not known yet.

An RFC is a controlled packet; it is retransmitted until some sort of response is
received. Because RFCs are not sent over normal, error-controlled connections, a
special way of detecting and discarding duplicates is required. When an NCP
receives an RFC packet, it checks all pending RFCs and all connections that are in
the Open or RFC-received state, to see if the source address and index match; if
so, the RFC is a duplicate and is discarded. (See the section "Chaosnet
Connection States", page 200.)

A server process informs the local NCP of the contact name to which it is
listening by sending a LSN packet, with the contact name in the data field. This
packet is never transmitted anywhere through the network. It simply serves as a
convenient buffer to hold the server's contact name. When an RFC and an LSN
containing the same contact name meet, the LSN is discarded and the RFC is
given to the server, putting its connection into the RFC-received state. (See the
section "Chaosnet Connection States", page 200.) The server reads the RFC and
decides whether or not to open the connection.

An OPN is the usual positive response to an RFC. The source index field conveys
the server's index number to the user; the user's index number was conveyed in
the RFC. The data field of an OPN is the same as that of an STS; it serves
mainly to convey the server's window-size to the user. The Acknowledgement field
of the OPN acknowledges the RFC so that it is no longer retransmitted.

An OPN is a controlled packet; it is retransmitted until it is acknowledged.
Duplicate OPN packets are detected in a special way; if an OPN is received for a
connection which is not in the RFC-sent state, it is simply discarded and an STS
is sent. (See the section "Chaosnet Connection States", page 200.) This happens if
the connection is opened while a retransmitted OPN packet is in transit through
the network, or if the STS that acknowledges an OPN is lost in the network.

A CLS is the negative response to an RFC. It indicates that no server was
listening to the contact name and one couldn't be created, or for some reason the
server didn't feel like accepting this request for a connection, or the destination
NCP was unable to complete the connection (for example, connection table full.)

A CLS is also used to close a connection after it has been open for a while. Any
data packets in transit may be lost. Protocols requiring a reliable end-of-data
indication should use the mechanism for that before sending a CLS. (See the
section "Chaosnet End-of-Data", page 196.)

The data field of a CLS contains a character-string explanation of the reason for
closing, intended to be returned to a user as an error message.

A CLS is an uncontrolled packet, so the program that sends it may go away
immediately afterwards, leaving nothing to retransmit the CLS. Since there is no
error recovery or retransmission mechanism for a CLS, its use is necessarily

195

June 1986 Network, Medium, and Protocol Descriptions

optional; a process could simply stop responding to its connection. However, it is
desirable to send a CLS when possible, to provide an error message for the user.

This is a response to an RFC which indicates that the desired service is not
available from the process contacted, but may be available at a different contact
name at a possibly different host. The data field contains the new contact name
and the Acknowledgement field - exceptionally - contains the new host number.
The issuer of the RFC should issue another RFC to that address. An FWD is an
uncontrolled packet; if it is lost in the network, the retransmission of the RFC
presumably stimulates an identical FWD.

This is another kind of response to RFC. The data field contains the entirety of
the response, and no connection is established. An ANS is an uncontrolled packet;
if it is lost in the network, the retransmission of the RFC presumably stimulates
an identical ANS. '

29.3.2 Chaos net Status Packets

An STS is an uncontrolled packet which is used to convey status information
between NCPs. The Acknowledgement field in the packet header contains an
acknowledgement, that is, the packet number of the last packet given to the
receiving user process. The first 16-bit byte in the data field contains a receipt,
that is, a packet number such that all controlled packets up to and including that
one have been successfully received by the NCP. The second 16-bit byte in the
data field contains the window size for packets sent in the opposite direction (to
the end of the connection that sent the STS). The byte count is currently always
4. This will change if the protocol is revised to add additional items to the STS
packet.

An SNS is an uncontrolled packet whose sole purpose is to cause the other end of
the connection to send back an STS. This is used by the probing mechanism. See
the section "Chaosnet Flow and Error Control", page 187.

An LOS is an uncontrolled packet which is used by one NCP to inform another of
an error. The data field contains a character-string explanation of the problem.
The source and destination addresses and indices are simply the destination and
source addresses and indices, respectively, of the erroneous packet, and do not
necessarily correspond to a connection. When an NCP receives an LOS whose
destination corresponds to an existing connection and whose source corresponds to
the supposed other end of that connection, it breaks the connection and makes the
data field of the LOS available to the user as an error message. LOSs that don't
correspond to connections are simply ignored.

An LOS is sent in response to situations such as the arrival of:

o a data packet or an STS for a connection that does not exist or is not open,

196

Networks June 1986

• a packet from the wrong source for its destination,

• a packet containing an undefined opcode or too large a byte count, and so
on.

LOSs are given to the user process so that it may read the error message.

No LOS is given in response to an OPN to a connection not in the RFC-Sent
state, nor in response to an SNS to a connection not in the Open state, nor in
response to an LOS to a nonexistent or broken connection. These rules are
important to make the protocols work witho~t timing errors. An OPN or an SNS
to a nonexistent connection elicits an LOS.

29.3.3 Chaosnet Data

Opcodes 200 through 277 (octal) are controlled packets with user data in 8-bit
bytes in the data field. The NCP treats all 64 of these opcodes identically; some
higher-level protocols use the opcodes for their own purposes. The standard
default opcode is 200.

Opcodes 300 through 377 (octal) are controlled packets with user data in 16-bit
bytes in the data field. The NCP treats all 64 of these opcodes identically; some
higher-level protocols use the opcodes for their own purposes. The standard
default opcode for 16-bit data is 300.

UNC is an uncontrolled packet with user data in 8-bit bytes in the data field. It
exists so that user-level programs may bypass the flow-control mechanism of
Chaosnet protocol. Note that the NCP is free to discard these packets at any
time, since they are uncontrolled. Since UNCs are not subject to flow control,
discarding may be necessary to avoid running out of buffers. A connection may
not have more input packets queued, awaiting the attention of the user program
than the window size of the connection, except that you may always have one UNC
packet queued. If no normal data packets are in use, up to one more UNC packet
than the window size may be queued.

UNC packets are also used by the standard protocol for encapsulating packets of
foreign protocols for transmission through Chaosnet. See the section " Using
Foreign Protocols in Chaosnet", page 204.

29.3.4 Chaosnet End-of-Data

An EOF is a controlled packet which serves as a "logical end of data" mark in the
packet stream. When the user program is ignoring packets and treating a
Chaosnet connection as a conventional byte-stream I/O device, the NCP uses the
EOF packet to convey the notion of conventional end-of-file from one end of the
connection to the other. When the user program is working at the packet level, it
may transmit and receive EOFs.

197

June 1986 Network, Medium, and Protocol Descriptions

It is illegal to put data in an EOF packet; in other words, the byte count should
always be zero. Most Chaosnet implementations simply ignore any data in an
EOF.

EOF packets are used in the recommended protocol for closing a Chaosnet
connection: See the section "Chaosnet Connection Closing", page 197.

29.3.5 Chaos net Connection Closing

This section describes the recommended way to determine reliably that all data
have been transferred before closing a connection (for applications where that is
an important consideration).

The important issue is that neither side may send a CLS until both sides are sure
that all the data have been transmitted. Mter sending all the data it is going to
send, including an EOF packet to mark the end, the sending process waits for all
packets to be acknowledged. This ensures that the receiver has seen all the data
and knows that no more data are to come. The sending process then closes the
connection. When the receiving process sees an EOF, it knows that there are no
more data. It does not close the connection until it sees the sender close it, or
until a brief timeout elapses. The timeout is to provide for the case where the
sender's CLS gets lost in the network (a CLS cannot be retransmitted). The
timeout is long enough (a few seconds) to make it unlikely that the sender will
not have seen the acknowledgement of the EOF by the end of the timeout.

To use this protocol in a bidirectional fashion, where both parties to the
connection are sending data simultaneously, you must use an asymmetrical
protocol. Arbitrarily call one party the user and the other the server. The
protocol is that after sending all its data, each party sends an EOF and waits for
it to be acknowledged. The server, having seen its EOF acknowledged, sends a
second EOF. The user, having seen its EOF acknowledged, looks for a second
EOF and then sends a CLS and goes away. The server goes away when it sees
the user's CLS, or after a brief timeout. This asymmetrical protocol guarantees
that each side gets a chance to know that both sides agree all the data have been
transferred. The first CLS is only sent after both sides have waited for their
(first) EOF to be acknowledged.

29.3.6 Chaos net Broadcast

Chaosnet includes a generalized broadcast facility, intended to satisfy such needs
as:

• Locating services when it is not known what host they are on.

• Internal communications of other protocols using Chaosnet as a transmission
medium, such as routing in their own address spaces.

198

Networks June 1986

• Reloading and remote debugging of Chaosnet bridge computers .

• Experiments with radically different protocols.

A BRD packet works much like an RFC packet; it contains the name of a server to
be communicated with, and possibly some arguments. Unlike an RFC, which is
delivered to a particular host, a BRD is broadcast to all hosts. Only hosts that
understand the service it is looking for respond. The response can be any valid
response to an RFC. Typically, a BRD is used in a simple-transaction mode, and
the response is an ANS packet. Actually, it can be any number of ANS packets
since multiple hosts may respond. BRD can also be used to open a full byte
stream connection to a server whose host is not known. In this case, the response
is an OPN packet; only the first OPN succeeds in opening a connection. A CLS is
also a valid response, but only as a true negative response; BRDs for unrecognized
or unavailable services should be ignored and no CLS should be sent, since some
other host might be able to provide the service.

The TIME and STATUS protocols will work through BRD packets as well as RFC
packets. See the section "Application-Level Chaosnet Protocols", page 201. No
other standard protocols need to be able to work with BRD packets.

The data field of a BRD contains a subnet bit map followed by a contact name and
possible arguments. The subnet bit map has a "1" for each subnet on which this
packet is to be broadcast to all hosts; these bits are turned off as the packets flow
through the network, to avoid loops. The sender initializes the bit map with a 1
for each desired subnet (often all of them).

In the packet header, the destination host and index are o. The source host and
index are the intended recipient of the reply (ANS or OPN). The
acknowledgement field contains the number of bytes in the bit map (this is
normally 32, but may be changed in the future). The number of bytes in the bit
map is required to be a multiple of 4. Bits in the bitmap are numbered from
right to left ,within a byte and from earlier to later bytes; thus the bit for subnet 1
is the bit with weight 2 in the first byte of the data field. Bits that lie outside
the declared length of the bit map are considered zero; thus the BRD is not
transmitted to those subnets.

After the subnet bit map there is a contact name and arguments, exactly as in an
RFC. Operating systems should treat incoming BRD packets exactly like RFCs,
even to the extent that a contact name of STATUS must retrieve the host's
network throughput and error statistics. BRD packets are never refused with a
CLS, however; broadcast requests to nonexistent servers should simply be ignored,
and no CLS reply should be sent. Most operating systems simplify incoming BRD
handling for themselves and their users by reformatting incoming BRD packets to
look like RFCs; deleting the subnet bit map from the data field and decreasing the
byte count. For consistency when this is done, the bit map length (in the
acknowledgement field) should be set to zero. The packet opcode remains BRD
(rather than RFC).

199

June 1986 Network, Medium, and Protocol Descriptions

Operating systems should handle outgoing BRD packets as follows. When a user
process transmits a BRD packet over a closed connection, the connection enters a
special "Broadcast Sent" state. In this state, the user process is allowed to
transmit additional BRD packets. All incoming packets other than OPNs should
be made available for the user process to read, until the allowed buffering capacity
is exceeded; further incoming packets are then discarded. These incoming packets
would normally be expected to consist of ANS, FWD, and CLS packets only. If an
OPN is received, and there are no queued input packets, a regular byte-stream
connection is opened. Any OPNs from other hosts elicit an LOS reply as usual, as
do any ANSs, CLSs, and so on, received at this point.

Operating systems should not retransmit BRD packets, but should leave this up to
the user program, since only it knows when it has received enough answers (or a
satisfactory answer).

BRD packets can be delivered to a host in multiple copies when there are multiple
paths through the network between the sender and that host. The bit map only
serves to cut down looping more than the forwarding-count would, and to allow
the sender to broadcast selectively to portions of the net, but cannot eliminate
mUltiple copies. The usual mechanisms for discarding duplicated RFCs also apply
to most duplicated BRDs.

BRD packets put a noticeable load on every host on the network, so they should be
used judiciously. "Beacons" that send a BRD every 30 seconds all day long should
not be used.

29.3.7 Chaosnet Low-level Details

MNT is a special packet type reserved for the use of network maintenance
programs. Normal NCPs should discard any MNT packets they receive. MNT
packets are an escape mechanism to allow special programs to send packets
guaranteed not to get confused with normal packets. MNT packets are forwarded
by bridges, although usually one would not depend on this.

RUT is a special packet type broadcast by bridges to inform other nodes of the
bridge's ability to forward packets between subnets. The source address is the
network address of the bridge on the subnet from which the RUT was broadcast.
The destination address is zero. The byte count is a multiple of 4, and the data
field contains a series of pairs of 16-bit bytes: a subnet number and the cost of
getting to that subnet via this bridge. The packet number and acknowledgement
fields are not used and should contain zero. See the section "Chaosnet Routing",
page 184.

200

Networks June 1986

29.3.8 Chaos net Connection States

A user process gets to Chaosnet by means of a capability or channel (dependent on
the host operating system) which corresponds to one end of a connection.
Associated with this channel are a number of buffers containing controlled
packets, output by the user and not yet receipted, and data packets received from
the network but not yet read by the user; some of these incoming packets are in
order by packet number and hence may be read by the user, while others are out
of order and cannot be read until packets earlier in the stream have been
received. Certain control packets are also given to the user as if they were data
packets. These are RFC, ANS, CLS, LOS, EOF, and UNC. EOF is the only type
that can ever be out-of-order.

Also associated with the channel is a state, usually called the connection state.
Full understanding of these states depends on the descriptions of packet-types.
The state can be one of:

Open

Closed

Listening

RFC Received

RFC Sent

Broadcast Sent

Lost

The connection exists and data may be transferred.

The channel does not have an associated connection. Either it
never had one or it has received or transmitted a CLS packet,
which destroyed the connection.

The channel does not have an associated connection, but it has
a contact name (usually contained in an LSN packet) for which
it is listening.

A Listening channel enters this state when an RFC arrives. It
can become Open if the user process accepts the request.

The user has transmitted an RFC. The state changes to Open
or Closed when the reply to the RFC comes back.

The user has transmitted a BRD. In this state, the user process
is allowed to transmit additional BRD packets. All incoming
packets other than OPN s are made available for the user
process to read, until the allowed buffering capacity is exceeded;
further incoming packets are then discarded. These incoming
packets would normally be expected to consist of ANS, FWD,
and CLS packets only. If an OPN is received, and there are no
queued input packets, a regular byte-stream connection is
opened (the connection enters the Open state). Any OPNs from
other hosts elicit an LOS reply as usual, as do any ANSs, CLSs,
and so on, received at this point.

The connection has been broken by receipt of an LOS packet.

201

June 1986 Network, Medium, and Protocol Descriptions

Incomplete Transmission

Foreign

The connection has been broken because the other end has
ceased to transmit and to respond to the SNS. Either the
network or the foreign host is down. (This can also happen
when the local host goes down for a while and then is revived,
if its clock runs in the meantime.)

The channel is talking some foreign protocol, whose packets are
encapsulated in UNC packets. As far as Chaosnet is concerned,
there is no connection. See the section "Using Foreign
Protocols in Chaosnet", page 204.

29.4 Application-Level Chaosnet Protocols

This section briefly documents the higher-level protocols of the most general
interest. All protocols other than STATUS are optional and are implemented only
by hosts that need them. All hosts are required to implement the STATUS
protocol since it is used for network maintenance.

29.4.1 Chaosnet Status Protocol

The STATUS protocol is used to:

• Determine whether a host is up.

• Determine whether an operable path through the network exists between two
hosts.

• Monitor network error statistics.

• Debug new Network Control Programs and new Chaosnet hardware.

The zl:hostat function and the Show Hosts command use this protocol.

All network nodes, even bridges, are required to answer RFCs with contact name
STATUS, returning an ANS packet in a simple transaction. This protocol is used
primarily for network maintenance. To provide a rapid response, the reply to a
STATUS request should be generated by the Network Control Program, rather
than by starting up a server process.

The first 32 bytes of the ANS contain the name of the node, padded on the right
with zero bytes. The rest of the packet contains blocks of information expressed
in l6-bit and 32-bit words, low byte first (PDP-ll/Symbolics style). The low-order
half of a 32-bit word comes first. Since ANS packets contain 8-bit data (not 16-
bit), machines such as PDP-lOs, which store numbers high byte first, have to
shuffle the bytes when using this protocol. The first l6-bit word in a block is its

202

Networks June 1986

identification. The second 16-bit word is the number of 16-bit words to follow.
The remaining words in the block depend on the identification.

All items are optional, according to the count field, and extra items not defined
here may be present and should be ignored. Note that items after the first two
are 32-bit words.

word 0

word 1

words 2-3

words 4-5

words 6-7

words 8-9

words 10-11

words 12-13

words 14-15

words 16-17

A number between 400 and 777 octal. This is 400 plus a subnet
number. This block contains information on this host's direct
connection to that subnet.

The number of 16-bit words to follow, usually 16.

The number of packets received from this subnet.

The number of packets transmitted to this subnet.

The number of transmissions to this subnet aborted by collisions
or because the receiver was busy, or for any other reason.

The number of incoming packets from this subnet lost because
the host had not yet read a previous packet out of the interface
and consequently the interface could not capture the packet, or
any other reason involving data arriving faster than the host
can store it.

The number of incoming packets from this subnet with eRe
errors. These were either transmitted wrong from the start, or
damaged in transmission.

The number of incoming packets from this subnet that had no
eRe error when received, but did have an error after being read
out of the packet buffer. This error indicates either a hardware
problem with the packet buffer or an incorrect packet length.
This is zero on most Ethernet hardware.

The number of incoming packets from this subnet that were
rejected due to incorrect length (typically not a multiple of 16
bits).

The number of incoming packets from this subnet rejected for
other reasons (for example, too short to contain a header,
garbage byte-count, forwarded too many times.)

If the identification is a number between 0 and 377 octal, this is an obsolete block
format. The identification is a subnet number and the counts are as above, except
that they are only 16 bits instead of 32 and consequently may overflow. This
format should no longer be sent by any hosts.

Identification numbers of 1000 octal and up are reserved for future use.

203

June 1986 Network, Medium, and Protocol Descriptions

29.4.2 Chaosnet Telnet and Supdup Protocols

The standard Internet Telnet and Supdup protocols exist in identical form in
Chaosnet. These protocols provide :login service, allowing access to a computer
system as an interactive terminal from another network node.

The contact names are TELNET and SUPDUP. The direct borrowing of the Telnet and
Supdup protocols was eased by their use of 8-bit byte streams and only a single
connection. Note that these protocols define their own character sets, which differ
from each other and from the Chaosnet standard character set.

Chaosnet contains no counterpart to the INRIINS attention-getting feature of the
Arpanet. The Telnet protocol sends a packet with opcode 201 in place of the INS
signal. This is a controlled packet and hence does not provide the "out of band"
feature of the Arpanet INS; however, it is satisfactory for the Telnet "interrupt
process" and "discard output" operations on the kinds of hosts attached to
Chaosnet.

29.4.3 Chaos net File Access Protocols

The NFILE and QFILE protocols provide :file service, enabling Symbolics
computers to access files on network file servers. NFILE has a higher desirability
than QFILE, and is the recommended Chaosnet file access protocol. Because
NFILE is built on the : byte-stream-with-mark medium, it provides enhanced
reliability (especially against interrupts) when compared to QFILE, which is built
on :chaos.

For a complete description of NFILE: See the section "NFILE File Protocol",
page 251.

Some computers running ITS, TOPS-20, UNIX, or V AXNMS are equipped to act
as file servers for QFILE. A user end for QFILE also exists for each of these
systems, and is used for general-purpose file transfer.

29.4.4 Chaosnet Send Protocol

The SEND protocol is used to transmit an interactive message (requiring
immediate attention) between users. The sender connects to contact name SEND
at the machine to which the recipient is logged in. The remainder of the RFC
packet contains the name of the person being sent to. A stream connection is
opened and the message is transmitted, followed by an EOF. Both sides close
after following the end-of-data protocol: See the section "Chaosnet End-of-Data" ,
page 196.

The fact that the RFC got an affirmative response indicates that the recipient is
in fact present and accepting messages. The message text should begin with a
suitable header, naming the user who sent the message. The standard for such

204

Networks June 1986

headers, not currently adhered to by all hosts, is one line formatted as in the
following example:

Moon@MIT-MC 6/15/81 82:28:17

Automatic reply to the sender can be implemented by searching for the first "@"
and using the SEND protocol to the host following the "@", with the argument
preceding it.

29.4.5 Chaos net Name Protocol

The standard Internet NameiFinger protocol exists in identical form on the
Chaosnet. Both Symbolics computers and timesharing machines support this
protocol and provide a display of the user(s) currently logged in to them.

The contact name is NAME which can be followed by a space and a string of
arguments like the command line of the Arpanet protocol. A stream connection is
established and the finger display is output in Lisp Machine character set,
followed by an EOF.

Symbolics computers also support the FINGER protocol, a simple-transaction
version of the NAME protocol. An RFC with contact name FINGER is
transmitted and the response is an ANS containing the following items of
information separated by carriage returns: the logged-in user ID, the location of
the terminal, the idle time in minutes or hours:minutes, the user's full name, and
the user's group affiliation.

29.4.6 Chaos net Time Protocol

The standard Internet Time protocol exists on Chaosnet as a simple transaction.
An RFC to contact name TIME evokes an ANS containing the number of seconds
since midnight Greenwich Mean Time, Jan 1, 1900 as a 32-bit number in four 8-
bit bytes, least-significant byte first. Some computers, which do not have
hardware calendar-clocks, use this protocol to find out the date and time when
they first come up.

29.5 Using Foreign Protocols in Chaosnet

Foreign protocols that are based on the idea of a bidirectional (or unidirectional)
stream of 8-bit bytes can simply be adopted wholesale into Chaosnet, using a
Chaosnet stream connection instead of whatever stream protocol the protocol was
originally designed for. This was done with the Arpanet Telnet protocol, for
example.

When using such protocols between a Chaosnet process and a process on a foreign

205

June 1986 Network, Medium, and Protocol Descriptions

network, a protocol-translating gateway stands at the boundary between the two
networks and has a connection on both networks. Bytes received from one
connection are transmitted out the other. If the protocol uses any features besides
a simple stream of bytes, for instance special out-of-band signals, these are
translated appropriately by the gateway. The connection is initially set up by the
user end connecting explicitly to the protocol-translating gateway and demanding
of it a certain service from a certain host on the other network; the gateway then
opens the appropriate pair of connections.

However, there are many packet-oriented protocols in the world and sometimes it
is desirable to access these protocols at the packet level rather than the
connection level, and to transport the packets of these protocols through Chaosnet
links without using a Chaosnet connection. For example, there are gateways
attached to Chaosnet that provide connections to other networks that use Internet
as their packet protocol. User processes in Chaosnet hosts may talk to these other
networks in those networks' own protocols by using the foreign-protocol protocol of
Chaosnet.

A foreign packet is transmitted through Chaosnet by storing it in the data field of
a UNC packet. The foreign packet is regarded as being composed of 8-bit bytes.
The source and destination addresses of the UNC packet are used in the usual
fashion to control the delivery of the packet within Chaosnet. The packet number
and acknowledgement fields of the packet header are not used for their normal
purposes, since this packet is not associated with a Chaosnet stream connection.
By convention, the acknowledgement field of the packet contains a protocol
number. The number 100000 octal means Internet. Other numbers will be
assigned as needed. The packet number field of the packet can be used for any
purpose.

If a user process transmits a UNC packet through a Chaosnet channel that is in
the Closed state, the channel goes into the Foreign state and the NCP assumes
that the user is not using normal Chaosnet protocol, but is using Chaosnet to
transport packets of some other protocol. See the section "Chaosnet Connection
States", page 200. The NCP fills in the source address and index in these
packets, but accepts whatever destination address and index are placed in the
packet by the user. The packet number and acknowledgement fields of the UNC
packets are not touched by the NCP. Any incoming UNC packets addressed to the
user's index on this host are given to the user, regardless of their source
address/index; it is up to the user program to filter out any unwanted packets.
The NCP should also provide a way for one user to receive any unclaimed
incoming UNC packets, so that rendezvous subprotocols of foreign protocols may
be simulated.

When a packet-translating gateway to a foreign network receives a UNC packet
with the appropriate protocol number, it extracts the foreign packet from the data
field and fires it into the foreign network. When it receives packets from the
foreign network, it maps the destination address of the packet into a Chaosnet

206

Networks June 1986

address and index in some suitable fashion, encapsulates the packet in a UNC, and
launches it into Chaosnet.

In the case of Internet, only protocols built on the idea of ports can be
straightforwardly supported without a table of connections in the gateway. The
Internet address space includes the Chaosnet host address space as a subset but
does not provide any address breakdown within a host unless ports are used.
However, it appears that most protocols are built on a protocol that uses ports,
such as the User Datagram Protocol [UDP] or the Transmission Control Protocol
[TCP].

In the case of foreign protocols where the addressing structure is not identical to
Chaosnet, a program must somehow know the Chaosnet address of a packet
translating gateway to the foreign network. By sending UNC packets to this
gateway, a user program can initiate connections to processes on that other
network without requiring the local NCP (nor any bridges involved in routing the
packets) to know anything about the protocol the program is using. If the inter
network gateway translates rendezvous protocols appropriately, connections may be
initiated in the reverse direction also - from a user process on the foreign
network to a server for the foreign protocol that resides on a Chaosnet host.

The foreign-protocol protocol may also be used between two user processes on
Chaosnet, with no foreign network involved, if they simply wish to use a different
protocol from Chaosnet. They are on their own for a rendezvous mechanism,
however, unless they use a Chaosnet simple transaction for rendezvous, or
otherwise have some way of conveying their addresses and index numbers to each
other.

When foreign packets are too large to fit in the data field of a Chaosnet packet
(more than 488 bytes), the user program and the packet-translating gateway must
agree on a technique for dividing packets into fragments and reassembling them,
unless the foreign protocol itself provides for this, as Internet does. The packet
number field. in an UNC packet is available for use by such a technique, since
UNC packets are not normally numbered.

UNC packets not associated with a connection are useful for other things besides
encapsulating foreign protocols. Any application that wants to use Chaosnet as
simply a packet transmission medium, essentially the raw hardware, should use
UNC packets, so that its packets do not interfere with standard packets and so
that the standard routing mechanisms may be used. For example, the M.LT.
Architecture Machine uses UNC packets to communicate with non-stream-oriented
I/O devices such as graphic tablets. Here, Chaosnet is used as an I/O bus which
may be attached to more than one computer.

Numbers between 140000 and 177777 octal in the acknowledgement field of a UNC
packet are reserved for such applications. Note that this number is not part of
the protocol; it is simply a hint about what a packet is being used for. Normally
a program that is not specifically supposed to deal with such packets would never
receive one.

207

June 1986 Network, Medium, and Protocol Descriptions

29.6 Symbolics Implementation of Chaosnet

The Symbolics implementation of Chaosnet consists of a set of Lisp functions and
data structure definitions in the chaos package. There are three important data
structures:

chaos: conn

chaos:pkt

chaos:stream

Represents a connection.

Represents a packet.

Is a standard I/O stream, which transmits to and receives from
a connection.

The details of these data structures are described later.

There are two processes that belong to the Chaosnet NCP. The receiver process
looks at packets as they arrive from the network. Control packets are processed
immediately. Data packets are put on the input packet queue of the connection to
which they are directed. The background process wakes up periodically to do
retransmission, pro bing, and certain "background tasks" such as starting up a
server when an RFC arrives and processing "connection interrupts."

29.6.1 Opening and Closing Chaos net Connections

29.6.1.1 Opening and Closing Chaosnet Connections on the User Side

chaos:connect host contact-name &optional window-size timeout Function
Opens a stream connection, and returns a chaos:conn if it succeeds, or
signals an error. host may be a number or the name of a known host.
contact-name is a string containing the contact name and any additional
arguments to go in the RFC packet. If window-size is not specified, it
defaults to 13. If timeout is not specified, it defaults to 600 (ten seconds).

chaos:simple host contact-name &optional timeout Function
Taking arguments similar to those of chaos:connect, this performs the
user side of a simple-transaction. chaos:simple returns an ANS packet or
signals an error. The ANS packet should be disposed of (using
chaos:return-pkt) when you are done with it.

chaos:remove-conn conn Function
Makes conn null and void. It becomes inactive, all its buffered packets are
freed, and the corresponding Chaosnet connection (if any) goes away.

chaos:close-conn conn &optional reason Function
Closes and removes the connection. If conn is open, a CLS packet is sent
containing the string reason. Don't use this to reject RFCs; use
chaos:reject for that.

208

Networks June 1986

chaos:open-foreign-connection host index &optional pkt-allocation Function
distinguished-port

Creates a chaos:conn that may be used to transmit and receive foreign
protocols encapsulated in UNC packets. host and index are the destination
address for packets sent with chaos:send-unc-pkt. pkt-allocation is the
"window size", that is, the maximum number of input packets which may
be buffered. It defaults to 10. If distinguished-port is supplied, the local
index is set to it. This is necessary for protocols that define the meanings
of particular index numbers.

29.6.1.2 Opening and CloSing Chaosnet Connections on the Server Side

chaos:listen contact-name &optional window-size wait-for-rfc Function
Waits for an RFC for the specified contact name to arrive, then returns a
chaos:conn which will be in the RFC Received state. If window-size is not
specified, it defaults to 13. If wait-for-rfc is specified as nil (it defaults to
t), the chaos:conn is returned immediately without waiting for an RFC to
arrive.

chaos:accept conn Function
conn must be in the RFC Received state. An OPN packet is transmitted
and conn enters the Open state. If the RFC packet has not already been
read with chaos:get-next-pkt, it is discarded. You should read it before
accepting, if it contains arguments in addition to the contact name.

chaos:reject conn reason Function
conn must be in the RFC Received state. A CLS packet containing the
string reason is sent and conn is removed.

chaos:answer·string conn string Function
conn must be in the RFC Received state. An ANS packet containing string
is sent and conn is removed.

chaos:answer conn pkt Function
conn must be in the RFC Received state. pkt is transmitted as an ANS
packet and conn is removed. Use this function when the answer is some
binary data rather than a text string.

chaos:fast-answer-string contact-name string Function
If a pending RFC exists to contact-name, an ANS containing string is sent
in response to it and t is returned. Otherwise nil is returned. This
function involves the minimum possible overhead. No chaos:conn is
created.

209

June 1986 Network, Medium, and Protocol Descriptions

29.6.2 Functions for Chaosnet Connection States

The following two functions return information on the state of the Chaosnet
connection (chaos:state), and implement a wait-or-timeout functionality
(chaos:wait).

chaos:state conn Function
Returns the current state of the specified connection, as one of the
following symbols:

chaos:inactive-state
A chaos:conn which does not correspond to any Chaosnet
connection.

chaos:open-state
An open connection.

chaos:rfc-sent-state
An RFC has been transmitted and no response has yet been
received.

chaos:answered-state
An ANS has been received.

chaos:cls-received-state
A CLS has been received.

chaos:los-received-state
An LOS has been received.

chaos:host-down-state
The connection is in the Incomplete Transmission state;
communications with the foreign host have broken down.

chaos:listening-state
An LSN has been "transmitted" and the connection is awaiting an
RFC.

chaos:rfc-received-state
An RFC has been received while listening and has not yet been
responded to.

chaos:foreign-state
The connection is being used with a foreign protocol, encapsulated
in UNC packets.

chaos:wait conn state timeout &optional whostate Function
Waits until the state of conn is not the symbol state, or until timeout 60ths
of a second have elapsed. If the timeout occurs, nil is returned; otherwise

210

Networks June 1986

t is returned. whostate is the process state to put in the status line; it
defaults to "net wait".

29.6.3 Chaosnet Stream 110

chaos:make-stream connection &key (direction ':bidirectional) Function
(characters t) (byte-size nil) (ascii-translation
nil) (accept-p t) (token-list nil)

Creates a bidirectional stream that accesses connection, which should be
open as a stream connection, as 8-bit bytes. In addition to the usual I/O
operations, the following special operations are supported:

: force-output

:finish

:eof

:clear-eof

:close

Any buffered output is transmitted. Normally, output is
accumulated until a full packet's worth of bytes are
available, so that maximum-size packets are transmitted.

Waits until either all packets have been sent and
acknowledged, or the connection ceases to be open. If
successful, returns t; if the connection goes into a bad
state, returns nil.

Forces out any buffered output, sends an EOF packet,
and does a :finish.

Allows you to read past an EOF packet on input. Each
:tyi returns nil or signals the specified eof error until a
:clear-eof is done.

Behaves like the :eof message if not given an abort-p
argument. The connection is also freed, so this need not
be done manually.

Keyword arguments are:

:direction

: characters

:byte-size

: input, : output, or : bidirectional. The default is
: bidirectional.

Boolean. The default is t. If not nil, character rather
than binary data are to be sent.

S or 16. The default is 16. :byte-size can be specified
only if :characters nil is specified.

:ascii-translation If not nil, characters are translated from ASCII to the
Symbolics internal character set on input, and to ASCII
on output. The default is nil.

:accept-p When not nil and the connection is in RFC Received
state, accepts the connection. The default is t.

211

June 1986 Network, Medium, and Protocol Descriptions

: token-list When not nil, this stream is a token list stream. You
can operate on the stream with token list stream and
BYTE-STREAM-WITH-MARK messages.

29.6.4 Chaosnet Packet 1/0

Input and output on a Chaosnet connection can be done at the whole-packet level,
using the functions in this section. A packet is represented by a chaos:pkt data
structure. The system controls allocation of chaos:pkts; each chaos:pkt that it
gives you must be given back. There are functions to convert between chaos:pkts
and strings. A chaos:pkt is a sys:art-16b array containing the packet header and
data; the chaos:first-data-word-in-pkt'th element of the array is the first 16-bit
data word. The leader of a chaos:pkt contains a number of fields used by the
system.

chaos:pkt-opcode pkt Function
Accessor for the opcode field of pkt's header. For each standard opcode, a
symbol exists in the chaos package, consisting of the standard 3-letter code
and a suffix of "-op". chaos:rfc-op is an example of this. The value of
the symbol is the numeric opcode.

chaos:pkt-nbytes pkt Function
Accessor for the number-of-data-bytes field of pkt's header.

chaos:pkt-string pkt Function
An indirect array, which is the data field of pkt as a string of 8-bit bytes.
The length of this string is equal to (chaos:pkt-nbytes pkt).

chaos:set-pkt-string pkt &rest strings Function
Copies the strings into the data field of pkt, concatenating them, and sets
(chaos:pkt-nbytes pkt) accordingly.

chaos:get-pkt
Allocates a chaos:pkt for use by the user.

chaos:return-pkt pkt
Deallocates a chaos:pkt.

Function

Function

chaos:send-pkt conn pkt &optional (opcode chaos:dat-op) stream Function
Transmits pkt on conn. pkt should have been allocated with chaos:get-pkt
and then had its data field and n-bytes filled in. opcode must be a data
opcode (200 or more) or EOF. An error is signalled, with condition
chaos:not-open-state, if conn is not open. chaos:send-pkt automatically
returns the packet via chaos:return-pkt.

212

Networks June 1986

chaos:send-unc-pkt conn pkt &optional pkt-number ack-number ' Function
Transmits pkt, a UNC packet, on conn. The opcode, packet number, and
acknowledge number fields in the packet header are filled in (the latter two
only if the optional arguments are supplied). chaos:send-unc-pkt does an
implicit chaos:return-pkt, which returns the packet to the free pool at the
appropriate time.

chaos:may-transmit conn Function
A predicate that returns t if there is any space in the window.

chaos:finish-conn conn &optional (whostate "chaos finish") stream Function
Waits until either all packets have been sent and acknowledged, or the
connection ceases to be open. If successful, returns t; if the connection
goes into a bad state, returns nil. whostate is the process state to display
in the status line while waiting.

chaos:conn-finished-p conn Function
A predicate that returns something other than nil if all data that have
been output have been received and acknowledged by the foreign side of
the connection.

chaos:get-next-pkt conn &optional (no-hang-p nil) Function
Returns the next input packet from conn. When you are done with the
packet, you must give it back to the system with chaos:return-pkt. This
can return an RFC, CLS, or ANS packet, in addition to data, UNC, or EOF.
If no-hang-p is t, nil is returned if there are no packets available or the
connection is in a bad state. Otherwise an error is signalled if the
connection is in a bad state, with condition name chaos:host-down,
chaos:los-received-state, or chaos:read-on-closed-connection. If no
packets are available and no-hang-p is nil, chaos:get-next-pkt waits for
packets to come in or the state to change. The process state in the status
line is "NETI".

chaos:data-available conn Function
A predicate that returns t if any input packets are available from conn.

29.6.5 Chaosnet Connection Interrupts

chaos:interrupt-function conn Function
This attribute of a chaos:conn is a function to be called in the background
process when certain events occur on this connection. Normally this is nil,
which means not to call any function, but you can use zl:setf to store a
function here. Since the function is called in the Chaosnet background
process, it should not do any operations that might have to wait for the
network, since that could permanently hang the background process.

213

June 1986 Network, Medium, and Protocol Descriptions

The function's first argument is one of the following symbols, giving the
reason for the "interrupt". The function's second argument is conn.
Additional arguments may be present depending on the reason. The
possible reasons are:

: input

: output

A packet has arrived for the connection when it had no
input packets queued. It is now possible to do
chaos:get-next-pkt without waiting. There are no
additional arguments.

An acknowledgement has arrived for the connection and
made space in the window when formerly it was full.
Additional output packets may now be transmitted with
chaos:send-pkt without waiting. There are no additional
arguments.

:change-of-state The state of the connection has changed. The third
argument to the function is the symbol for the new state.

chaos:read-pkts conn Function
Some interrupt functions want to look at the queued input packets of a
connection when they get an :input interrupt. chaos:read-pkts returns the
first packet available for reading. Successive packets can be found by
following chaos:pkt-link.

chaos:pkt-link pkt Function
Lists of packets in the NCP are threaded together by storing each packet
in the chaos:pkt-link of its predecessor. The list is terminated with nil.

29.6.6 Chaos net Information and Control

chaos:host-data &optional host Function
host may be a number or a known host name, and defaults to the local
host. Two values are returned. The first value is the host name and the
second is the host number. If the host is a number not in the table, it is
asked its name using the status protocol; if no response is received, the
name "unknown" is returned.

zl:hostat &rest hosts Function
Asks each of the hosts for its status, and prints the results. If no hosts are
specified, asks all hosts on the Chaosnet. Hosts can be specified by either
name or octal number.

For each host, a line is displayed that either says that the host is not
responding or gives metering information for the host's network
attachments. If a host is not responding, probably it is down or there is no

214

Networks June 1986

such host at that address. A Lisp Machine can fail to respond if it is
looping inside without-interrupts or paging extremely heavily, such that it
is simply unable to respond within a reasonable amount of time.

To abort the host status report produced by zl:hostat or FUNCT I ON H, press
c-ABORT.

chaos:print-conn conn &optional (verbose t) Function
Prints everything the system knows about the connection. If verbose is
non-nil it also prints everything the system knows about each queued input
and output packet on the connection ..

chaos:print-pkt pht &optional (verbose t) (indent 0) Function
Prints everything the system knows about the packet, except its data field.
If verbose is nil, only the first line of the information is printed.

neti:reset Function
Resets the local networks. Disables and then resets the interfaces. After
using neti:reset you must call neti:enable if you want to turn the network
back on.

neti:general-network-reset Function
Disables and resets the local networks as does neti:reset, and resets the
namespace system. Resetting the namespace system clears information
related to the namespace system from memory. Your host then requests
any needed information from the namespace system. This cures problems
that would occur if that information was somehow corrupt. (Resetting the
namespace system is also done at warm and cold boot.)

After using neti:general-network-reset you must call neti:enable if you
want to turn the network back on.

chaos:assure-enabled Function
Turns on the network if it is not already on. It is normally always on
unless you call one of these functions.

neti:enable Function
Enables the local networks and interfaces.

neti:disable Function
Disables the local networks and interfaces. If you want to reset the local
networks and interfaces and then turn them back on, you should call
neti:reset and then neti:enable.

215

June 1986 Network, Medium, and Protocol Descriptions

chaos:host-up host &optional timeout Function
Asks a host whether or not it is up (responding). If it is up, this function
returns t; if not, it returns two values: nil, and the error that occurred
(usually "Host not responding."). host can be a host object or the name of
a host; timeout is in 60ths of a second and defaults to three seconds. If the
host does not respond after this much time, it is assumed to be down.

Note that if this function returns nil, it is possible that the host is up but
is not connected to the Chaosnet. This function tests whether the
Symbolics computer is capable of communicating with the host over the
Chaosnet.

chaos:notify-Iocal-lispms &optional message &key (report t) Function
Sends message to all Lisp Machines at your site based upon information it
gets from the namespace database about the Lisp Machines at the local
site. message should be a string; if it is not provided, the function prompts
for a message. Each recipient receives the message as a notification,
rather than as an interactive message.

If report is t (the default), the function reports whether it succeeded or
failed to deliver the message to each machine at your site. If report is nil,
it only reports its failures.

chaos:notify host &optional message Function
Sends a message to the specified host. host should be a host (the host
name, as a string, or a host object). message is a string; if it is not
provided, the function prompts for a message. The recipient receives the
message as a notification, rather than as an interactive message.

net:finger-Iocation Variable
This variable sets the location reported by the finger functions. Its value
should be a string to print as the location part of a finger display. When
this variable is nil, (the default), the system uses the value
si:local-finger-Iocation, which is set from the local host's
finger-location attribute in its host object. When the variable has a string
value, it overrides the value in si:local-finger-Iocation.

net:finger-Iocal-lispms Function
Displays a list of who is using each of the Symbolics computers at the
current site.

net:finger-all-lispms Function
Displays a list of who is using each of the Symbolics computers in the host
table.

216

Networks June 1986

217

June 1986 Network, Medium, and Protocol Descriptions

30. Symbolics Dialnet

30.1 Dial Network Medium

The dial network transport mechanism is interfaced to the Symbolics generic
network system and can be used via the :dial medium. This medium is a reliable
byte stream, built on the bare serial line connection between two modems. It
provides the error detection and retransmission functions associated with most
other networks, to protect the communication against line noise and against the
loss of characters due to slow system response.

Any sufficiently generic network protocol can operate using the :dial medium. Of
course, the low transfer rates provided by modems make most interactive uses
impractical. The supplied Symbolics software uses the :dial medium only for
transmitting electronic mail and for limited (that is, text-only) remote login.

30.2 Dial Network Addressing

The international dial network is modeled by a single namespace object: the
dial network in the dial namespace. Addresses on this network are telephone
numbers. Of course, area codes and other dialing prefixes make things more
complicated.

Addresses for the dial network are complete telephone numbers, including country
and area codes. For North American customers, the country code is 1, so a fully
specified number looks like a common long distance sequence. Trunk 7348 in the
577 exchange of the 617 area code would be fully specified as 16175777348.

It is not generally appropriate to just dial a fully specified address; numbers
within the same area code do not require the area code, and often require a 1
preIIX if it is a toll call. The subnet attributes of the dial network encode the
necessary dialing preIIXes. Each subnet represents a telephone company
connection between two exchanges.

Since there are some rules stating which dialing prefIX to use, it is not necessary
to specify every possible binary combination of world-wide phone exchanges and
their associated prefIXes. Instead, Dialnet provides a simple pattern matcher that
can be used to express both specific and general dialing rules. The name of each
subnet on the dial network gives the input pattern to the pattern-matching system;
these patterns are matched against the combined source and destination addresses
for the connection, that is, against the local and foreign telephone numbers.

The pattern consists. of two sequences of digits and letters. The digits represent

218

Networks June 1986

the fIxed parts of the pattern and the letters represent the variable parts. The
two sequences are separated by a > character, indicating that the left-hand part of
the pattern is the calling party and the right-hand part of the pattern is the called
party. Contiguous occurrences of the same letter represent the same variable.
Variable assignment takes place from left to right. If a letter is seen that has no
assignment, the variable sub-sequence is tentatively assigned a value of the
corresponding sub-sequence of the pattern to be matched. If the variable has an
assignment (binding), or if there is a constant digit, it must match the
corresponding part of the pattern to be matched.

A specifIc example clarifIes this. Suppose we ,are calling from 16175777348 to
14155200142. Given the subnet pattern 1xxxyyyyyyy>lzzzwwwwwww, we want to
match it against 16175771212>14155200142. 1 is a IlXed constant and matches. x
has no binding so it is tentatively assigned 617. Likewise y is assigned 5777348, Z

415, and w 5200142. The match is successful and the result is these four
bindings.

Now suppose instead the subnet pattern was 1xxxyyyyyyy>lxxxzzzzzzz. The x
assignment is the same, 617. Similarly the yassignment. On the second
occurrence of x, however, it already has a binding, so this must be matched
against the input. 617 does not match 415, so the whole subnet match fails.

The subnet that best represents a particular phone call is the one with the most
minimal variable bindings. So, if we were making the call
16175777348>16175777344, the pattern 1xxxyyyyyyy>1xxxzzzzzzz would have only
three bindings, and so would be better than 1xxxyyyyyyy>lzzzwwwwwww, which
has four.

The map between abstract subnet patterns and actual dialing sequences is
maintained by the sub net attributes of the namespace object representing the
international dial network. (This network is named dialldial.) Each subnet
pattern has associated pairs of indicators and values that encode the actual dialing
sequence and the relative expense of the phone call.

The dial indicator is a string of numbers and letters that represents the actual
dialing pattern. All of the variables in this attribute must have been assigned
values as a result of the subnet matching process. The cost attribute is a small
number (typically between 1 and 10) indicating the relative expense of the call.
cost attributes are used for hosts with more than one address on the dial network
(that is, hosts with more than one auto answer modem) to determine the number to
call, and to weigh use of a direct call against routing through a public carrier
network.

Here is an example of typical subnet attributes for the dialldial network:

219

June 1986 Network, Medium, and Protocol Descriptions

subnet 1 xxxyyyyyyy>1 xxxzzzzzzz dial zzzzzzz cost 0
subnet 1 xxxyyyyyyy>1 zzzwwwwwww di al 1zzzwwwwwww cost 5

subnet 1212xxxxxxx>1yyyzzzzzzz di al yyyzzzzzzz cost 5
subnet 1617864xxxx>1617774yyyy di al 1774yyyy cost 3

subnet 1xxxyyyyyyy>1800zzzzzzz di al 1800zzzzzzz cost 1

These mean, respectively:

1. When dialing a call within the same area code, just dial the number.

2. When dialing a number outside the local area code, dial a 1, then the area
code and number.

3. When dialing from the 212 area code, you do not have to use a 1 preflx for
long-distance calls.

4. Within the 617 area code (Massachusetts), you need to dial a 1 to get from
Cambridge (864) to East Boston (774).

5. The cost of a wide-area telephone service (WATS) call is less than a normal
long distance call. Note that the cost of WATS is still declared higher than
a local call; this is to avoid making a WATS call when a local call would do,
leaving the WATS trunks available for those who need them.

30.3 Reducing Call Cost with Public Carrier Networks

Dialnet can make use of public carrier networks that provide terminal
multiplexers. This service is often considerably cheaper than a direct long
distance phone call. GTE Telenet, for example, provides local dial-ups attached to
terminal concentrators, called PADs. These PADs connect through their X.25
network to other PADs and to multiplexors at other sites. Connection of a
Symbolics computer to such a multiplexor is straightforward.

The public Dialnet registry shipped by Symbolics contains the dial network
addresses of many Telenet PADs, as well as the Telenet addresses of some hosts.

So far as most of Dialnet is concerned, there is just a serial line connecting the
two hosts. The intervening X.25 network is invisible. The part of Dialnet that
knows how to make phone calls also knows how to make a phone call to the
Telenet PAD and to negotiate with the PAD for a connection to another host on
Telenet. Routing through Telenet occurs automatically if such a route would be
cheaper than a direct dial network call to the same host.

220

Networks June 1986

221

June 1986 Network, Medium, and Protocol Descriptions

31. Internet Networks

31.1 Introduction to Internet Networks

In Symbolics terminology, Internet is a type of network. If a site supports
Internet:

• The site's namespace database has a network object of type Internet.

• One or more hosts have Internet addresses; the addresses are stored in the
address attribute of the host objects. See the section "How to Obtain an
Internet Address", page 62. See the section "Format of Internet Addresses",
page 57.

• Hosts can communicate with other hosts on the Internet using standard
IP/TCP protocols; the known protocols are stored in the service attributes of
the host object.

The optional IP/TCP software package enables Symbolics computers to
communicate with IP/TCP protocols. These protocols are listed elsewhere: See
the section "TCP and UDP Protocols Supported by Symbolics Computers as
Users", page 37. See the section "TCP and UDP Protocols Supported by
Symbolics Computers as Servers", page 38.

Two kinds of sites could take advantage of the IP/TCP software package:

• A site that has other computers that can communicate with IP/TCP
protocols, but cannot communicate with Chaosnet; the IP/TCP software
package would enable the Symbolics computers at the site to communicate
with the other hosts .

• A site that has hosts connected to the ARPA Internet; the IP/TCP software
package would enable the Symbolics computers at the site to have ARPA
Internet access as well.

Extensive documentation on IP/TCP protocols and other aspects of Internet is
made available by the ARPA Network Information Center. For more information:
See the section "References to IP/TCP Protocol Specifications", page 224.

The document Symbolics IPITCP Software Package describes the installation and
site configuration procedure.

222

Networks June 1986

31.2 Internet Domain Names

Symbolics computers support Internet Domain Names. This facility allows sites to
use the Internet Domain Names style of network addressing. Any site can use
this style of addressing, whether or not the site supports IP/TCP protocols. For
example, sites that use DIALNET use Internet Domain Names style of addressing.
This facility is most useful to sites with one or more hosts that use IP/TCP and
are connected to the ARPA Internet or another Internet that uses domains.

This section introduces the Internet Domain Names capability, and describes how
Symbolics computers implement it. A great deal of documentation is available on
the concepts of Internet Domain Names: See the section "References to IP/TCP
Protocol Specifications", page 224.

The Internet Domain Names facility is integrated with the generic network
system's procedure for finding a path to a host. When a network service is
requested from a remote host, the generic network system must find a path to
that host. For example, when you send an electronic mail message, the "To" field
often says something like:

To: kjones@8LUE.MIT.EDU

The generic network system must find the network address of the host named
"BLUE.MIT.EDU" in order to send the message. Symbolics machines consult the
namespace database for that kind of information. Usually the namespace database
contains the requested information, but sometimes it does not. The Internet
Domain Names facility then comes into play. A host name must contain at least
one period to be a candidate for this kind of resolution.

The Name Resolver

If the namespace does not contain the requested information (such as the network
address of a host), the network system uses software known as the name resolver.
The resolver first determines whether it has the requested information stored in a
local cache; this would happen if it had already processed a similar request. This
step saves the resolver from making an unnecessary search for information. If the
requested information is not stored locally, the resolver makes the query.

Because so much of the network software depends on objects being present in the
namespace, the name resolver was implemented to create a host object for hosts
that were not already stored in the namespace, but were located via some domain
server. In the BLUE.MIT.EDU host example, a host object named
"BLUE.MIT.EDU" is created. Also, a namespace called "DOMAIN" is created, if
not already present. The host BLUE.MIT.EDU is automatically part of the
DOMAIN namespace.

The name resolver is code that is part of si:parse-host, which is used often by the

223

June 1986 Network, Medium, and Protocol Descriptions

generic network system. In previous Symbolics software releases, si:parse-host
looked for its information only in the namespace.

Internet Domain Servers

If the information is not found in the local cache, the resolver seeks the
information from one of several designated hosts on the network known as Internet
Domain servers. These hosts are responsible for storing information on users,
hosts, and other objects on the network. They guarantee to provide that
information to other hosts on the network.

Each domain server has an area of responsibility; it has a contract to store
information on those network objects within its domain. If the server finds that
the requested information is not within its domain, it suggests another server to
the user host. Thus, eventually, the user host receives an answer to its question.
It is always possible that the name of the host is not known to any domain server.

Symbolics Computers as Internet Domain Servers

The name resolver lets a Symbolics computer go out to the network to request
information from domain servers. In addition, Symbolics computers can be domain
servers. Any computer that is a designated Internet domain server must support
IP/TCP, because it must be capable of communicating with other hosts on the
Internet using IP/TCP.

When a Symbolics computer is designated as a domain server, it has a
responsibility to provide information to other hosts on the network regarding
hosts, users, and other network objects within its domain. When it is booted, it
must load a file that defines its domain and some other configuration data. Again,
the namespace database is involved; it already stores much of the information that
the domain server needs to share. The implementation takes advantage of that,
and does not require that the domain server duplicate information already stored
in the namespace. When the domain server needs information not present in the
namespace, it is stored locally (in the domain server's local LMFS).

It is not necessary that a Symbolics computer acting as an Internet domain server
have the :domain service attribute in its host object.

Symbolics Computers as Central Name Resolvers

Internet domain servers are hosts that provide a service to all hosts on the
Internet. A central name resolver is a host that provides a service to all hosts at
a site; that service is described below.

Some sites gain advantages when they designate a single host to perform most of
the name resolution for the entire site. Each host at the site contains a name
resolver, but in this configuration that code does not make requests to domain

224

Networks June 1986

servers on the network, but instead makes a request of the central name resolver
host. Note that you can configure your site to have multiple hosts designated as
central name resolvers.

The central name resolver receives requests from hosts at the site, and processes
them by requesting the desired information from domain servers .. When
information is returned, the central name resolver shares it with the user host,
and also stores it in a local cache. Thus if a second host at the site requests the
same information, the central name resolver can return it quickly, without
resorting to another network request.

To designate a host as a central name resolver, you should add the following
service attribute to its host object:

Servi ce: Set: DOHAI N CHAOS DOHAI N

If the resolver supports IP/TCP protocols, you can also add the following:

Servi ce: Set: DOHAI N TCP DOHAI N

31.3 References to IP/TCP Protocol Specifications

All documents identified as ARPANET Requests for Comments (RFCs) are
available from the ARPA Network Information Center:

ARPA Network Information Center
USC - Information Sciences Institute
4676 Admiralty Way
Marina del Rey, California 90292
ARPANET: NIC@SRI-NIC

For those with ARPA Internet access, they are also available online as

SRI-NIC:<RFC>RFC###.TXT

where ### is the RFC number.

Internet References

Reynolds, J. & Postel, J., Official Protocols, RFC 880, October 1983.

Information Sciences Institute, Internet Protocol, RFC 791, September 1981.

Information Sciences Institute, Internet Control Message Protocol, RFC 792,
September 1981.

Information Sciences Institute, Transmission Control Protocol, RFC 793, September
1981.

225

June 1986 Network, Medium, and Protocol Descriptions

Postel, J., User Datagram Protocol, RFC 768, August 1980.

Postel, J., Reynolds, J., TELNET Protocol Specification, RFC 854, May 1983.

Postel, J., File Transfer Protocol, RFC 765, June 1980.

Sollins, K. R., The TFTP Protocol, RFC 783, June 1981.

Postel, J., Simple Mail Transfer Protocol, RFC 821, August 1982.

Harrenstein, K., NAME/FINGER, RFC 742, December 1977.

Postel, J., Harrenstein, K., Time Protocol, RFC 868, May 1983.

Crispin, M., SUPDUP Display Protocol, RFC 734, October 1977.

Harrenstein, K, White, V., Feinler, E., Hostnames Server, RFC 811, March 1982.

Reynolds, J., Postel, J., Assigned Numbers, RFC 870, October 1983.

226

Networks June 1986

227

June 1986 Network, Medium, and Protocol Descriptions

32. DNA Networks

32.1 Introduction to DNA Networks

In Symbolics terminology, DNA is a type of network. On a DNA network, hosts
communicate using standard DECnet protocols. See the section "References to
DECnet Protocol Specifications", page 228.

If a site supports DNA:

• The site's namespace database has a network object of type DNA.

• One or more hosts have DNA addresses. DNA addresses are stored in the
address attributes of the host objects. See the section "Format of DNA
Addresses", page 59.

• Symbolics computers can communicate with other hosts on the DNA network
using standard DNA protocols; the known protocols are stored in the
service attributes of the host object.

The optional Digital Network Architecture (DNA) software package enables the
Symbolics computer to access services provided by a V AXNMS systems using the
DNA protocols. These systems can be located either on the local Ethernet or on
some other DNA network connected to the local Ethernet via a router node.

The primary goal of the Symbolics DNA software package is to enable a V AXNMS
machine to provide services (such as FILE, LOGIN, and MAIL services) to
Symbolics computers using DECnet protocols. Symbolics computers support DNA
user programs that communicate with DNA server programs on the V AXNMS
machine.

The supported protocols are listed elsewhere: See the section "DNA Protocols
Supported by Symbolics Computers as Users", page 39. See the section "DNA
Protocols Supported by Symbolics Computers as Servers", page 39.

Symbolics does not support the use of DNA protocols between two Symbolics
computers.

The document Symbolics DNA Software Package describes the installation and site
configuration procedure.

228

Networks June 1986

32.2 References to DECnet Protocol Specifications

These documents are available from Digital Equipment Corporation:

Software Documentation
1925 Andover Street TW/E07
Tewksbury, Massachusetts 01876

• DECnet Digital Network Architecture (Phase IV) General Description, Order
No. AA-N149A-TC

• DECnet Digital Network Architecture (Phase IV) Ethernet Node Product
Architecture Specification, Order No. AA-X440A-TK

• DNA Session Control Functional Specification, Version 1.0.0, Order No. AA
K182A-TK

• DNA Data Access Protocol (DAP) Functional Specification, Version 5.6.0,
Order No. AA-K177A-TK

• DNA Routing Layer Functional Specification, Version 2.0.0, Order No. AA
X435A-TK

• DNA Network Services Protocol (NSP) Functional Specification, Version 4.0.0,
. Order No. AA-X439A-TK

• Guide to Networking on VAXIV.MS, Order No. AA-Y512A-TE

229

June 1986 Network, Medium, and Protocol Descriptions

33. BYTE-STREAM-WITH-MARK Network Medium

33.1 Introduction to BYTE-STREAM-WITH-MARK Network Medium

A BYTE-STREAM-WITH-MARK implements a reliable, bidirectional byte stream
with one out-of-band (but not out-of-sequence) signal called a mark. The design of
BYTE-STREAM-WITH-MARK ensures that the mark is always recognizable on the
receiving end.

The BYTE-STREAM-WITH-MARK is an encapsulation of an underlying stream,
which must support the transmission of 8-bit bytes.

The Mark as a Synchronization Signal

Marks are used to resynchronize the stream when something has occurred to
interrupt normal operations. For example, an application layer sending data over
the BYTE-STREAM-WITH-MARK can abort in the middle of sending that data.
Recovery is handled by sending a mark.

BVTE-STREAM-WITH-MARK and NFILE

BYTE-STREAM-WITH-MARK is the network medium used for NFILE. NFILE
uses the marks implemented in BYTE-STREAM-WITH-MARK to resynchronize any
unsafe control connections or data channels. For a description of NFILE's use of
marks to resynchronize streams: See the section "NFILE Resynchronization
Procedure", page 261.

BVTE-STREAM-WITH-MARK and Underlying Protocols

The BYTE-STREAM-WITH-MARK medium has been implemented to run on TCP
and Chaos. Marks are implemented differently on the two protocols. However,
the basic design of the BYTE-STREAM-WITH-MARK requires that a mark always
be recognizable in the byte stream. Higher-level protocols ensure that
transmissions are received intact.

Marks on Chaosnet

A mark is recognized on Chaosnet by a packet bearing the opcode 201 (octal).
There are no data in a mark packet, so the data portion of the packet is ignored.

For other (non-Chaos) encapsulated streams that support opcode-bearing packets,
the recommended implementation is the reservation of an opcode for the mark.

230

Networks June 1986

Marks on Tep: Record Mode

It is crucial for marks to always be unambiguously identified. Therefore, for TCP
(and any transport media that do not implement packets natively) a simple record
stream is imposed on the medium. The record boundaries serve only to
distinguish where a mark can occur.

A record consists of a two-byte byte count, most significant byte first, followed by
that many bytes of data. A byte count of zero is recognized as a mark.

Both the sending side and the receiving side, must rigorously maintain the
integrity of the record boundaries. A writer to the stream must never output a
byte count without that number of data bytes following. Similarly, a reader of the
stream, after reading a byte count, has effectively contracted to read that many
bytes from the encapsulated stream, regardless of whether those bytes are
requested by the application layer.

Maintaining Record Integrity

This subsection deals with maintaining record integrity on non-Chaos networks.
Since Chaos implements packets natively, no special care is required to maintain
record integrity on the Chaos network.

The design discussed here guarantees record integrity; the underlying stream must
guarantee data integrity.

The basic design of BYTE-STREAM-WITH-MARK on TCP (and other transport
protocols that do not implement packets natively) is to preserve record integrity by
putting clearly demarcated, byte-counted records in the natural records of the
encapsulated stream. Therefore, when the outer stream requests a buffer's worth
of data from the encapsulated stream, it expects to receive a buffer containing one
entire, integral, record of that stream, complete with byte count.

Because of diverse network implementations on different operating systems, the
software that implements the encapsulated stream might not be able to provide
integral record buffers to the BYTE-STREAM-WITH-MARK implementation. For
example, the writing stream could have written records that are much longer than
available buffers on the receiving system. In this case, a request to read from the
encapsulated stream returns some buffer or some amount of data representing less
than an entire BYTE-STREAM-WITH-MARK record. The input subroutine of the
BYTE-STREAM-WITH-MARK implementation must therefore return a region of
this (smaller) buffer, representing less than the full BYTE-STREAM-WITH-MARK
record. Nevertheless, the BYTE-STREAM-WITH-MARK must extract the count of
the full BYTE-STREAM-WITH-MARK record from the first such buffer of each
BYTE-STREAM-WITH-MARK record, and maintain and update this count as
succeeding component buffers are read.

In this case, if the program reading from the BYTE-STREAM-WITH-MARK aborts

231

June 1986 Network, Medium, and Protocol Descriptions

while reading data, the implementation of BYTE-STREAM-WITH-MARK must
continue to read through the remaining buffers of the BYTE-STREAM-WITH
MARK record that has been subdivided in this fashion.

The user side program will have determined that an abort has occurred, and will
request the BYTE-STREAM-WITH-MARK to read up to and through the next
mark. The BYTE-STREAM-WITH-MARK will have processed a fractional record,
and must discard the remaining buffers of the record now being read.

33.2 BVTE-STREAM-WITH-MARK Abortable States

BYTE-STREAM-WITH-MARK is designed to provide end-to-end stream consistency
in the face of user program aborts. This section describes user program aborts,
and how BYTE-STREAM-WITH-MARK handles them.

Definition of User Program Aborts

Aborting the current execution of a program means to halt that execution and to
abandon it, never to complete it. The data representing the state of the execution
are irrevocably discarded.

User Program Aborts and 110 Streams

Aborting the execution of the code that manipulates I/O streams, in general, poses
significant problems. Given that a stream is a static data object, and is intended
to be used over and over again, aborting the execution of any routine manipulating
a stream can leave it in an inconsistent, unusable state.

Many operating systems solve this problem by manipulating a large subset of
streams within the confines of the supervisor or executive program, which is not
vulnerable to aborts, short of system failure. Nevertheless, the need still exists to
implement streams outside of the boundaries of the supervisor. Furthermore, the
Symbolics Lisp Machine environment has no supervisor or executive program, and
is thus vulnerable to aborts everywhere.

BYTE-STREAM-WITH-MARK Handling of User Program Aborts

The BYTE-STREAM-WITH-MARK medium is designed to be nearly impervious to
the aborting of programs using it. Its design is based on careful analysis of all
possible states of the stream, and of the effect of aborts of the programs using the
stream in each of these states. This section provides that analysis.

A transmission is a collection of user data sent by the application level through
the BYTE-STREAM-WITH-MARK whose end is well-defined, once its start has
been recognized. For instance, the token list stream, when using BYTE-STREAM-

232

Networks June 1986

WITH-MARK, sends token lists. When a token list TOP-LEVEL-L I ST -BEG I N has been
sent, the containing transmission is not considered complete until the
corresponding TOP-LEVEL-LIST -END is read. See the section "Token List Transport
Layer", page 237.

The following cases are possible states of the stream when an abort occurs:

1. Abort occurs when the user program is not manipulating the stream.

This case presents no problem.

2. Abort. occurs after a transmission has been partially sent, at a packet or
record boundary.

This implies that the datum that would indicate the successful complete
sending of that transmission has been not yet been sent.

The BYTE-STREAM-WITH-MARK state is consistent, but the application
level state is not. The application level must determine that the execution
of the code composing and sending its transmission was, in fact, aborted, and
initiate resynchronization via marks.

The receiving side must be careful not to act upon a transmission (that is,
to perform any action or side effect) until the transmission has been
successfully received in entirety. This protects the user program from the
possibility that an abort can occur after a transmission has been partially
sent.

3. Abort occurs during the sending or receiving of a record.

This is the most vulnerable state of the mechanism. This case does not
occur on packet media; it is subsumed by the next case.

This case is handled by minimizing the extent of this window, and killing
the connection when and if the situation is detected. Depending on the
operating system involved, you might minimize this window by using
interrupt-disabling mechanisms, auxiliary processes or tasks, or some other
technique.

For buffered streams, input and output waiting can be done in consistent
states, thus minimizing the amount of time manipUlating the actual
encapsulated stream. For unbuffered streams, a lot of time can be spent in
this window. It is expected that unbuffered streams will be exceedingly
uncommon. Nevertheless, the implementation of BYTE-STREAM-WITH
MARK must detect this case.

233

June 1986 Network, Medium, and Protocol Descriptions

4. Abort occurs during the sending or receiving of fundamental units of the
lowest-level underlying stream (packets, buffers, or bytes).

This case is usually handled by inhibiting interrupts, or other forms of
masking, in the code implementing the encapsulated stream, since no waiting
is possible at unexpected times.

33.3 Interfacing to the Lisp Machine Byte-Stream-With-Mark

This section describes the messages and underlying protocols of the Symbolics Lisp
Machine implementation of BYTE-STREAM-WITH-MARK, with two goals in mind.

This section enables you to:

• Construct applications built on the BYTE-STREAM-WITH-MARK medium.

• Utilize a lower-level medium (other TCP and Chaos, which are both already
implemented) as a foundation for the BYTE-STREAM-WITH-MARK medium.

In either case, you accrue the benefits of the design and implementation of BYTE
STREAM-WITH-MARK, most notably the benefit that this medium is nearly
impervious to user program aborts.

Any programmer designing an application using BYTE-STREAM-WITH-MARK
should also consider using the token list stream, a powerful intermediate-level
application that uses BYTE-STREAM-WITH-MARK See the section "Token List
Transport Layer", page 237.

A Symbolics Lisp Machine BYTE-STREAM-WITH-MARK is a bidirectional,
buffered, binary (8-bit bytes) stream, supporting all the usual stream messages
(:string-in, :string-out, :tyi, :read-input-buffer, and so forth). See the section
"Streams" in Reference Guide to Streams, Files, and I/O.

The raw stream is expected to also be a bidirectional, buffered, binary (8-bit bytes)
stream, supporting the messages:

• :read-input-buffer
• :advance-input-buffer
• :get-output-buffer
• :advance-output-buffer
• :force-output
• :finish

The flavor neti:buffered-stream-with-mark can be instantiated to create such a
stream. This flavor implements the record protocol, which implements marks as

234

Networks June 1986

zero-length records. The implementation of BYTE-STREAM-WITH-MARK via TCP
on the Lisp Machine uses this flavor. The encapsulated stream is accessible via
the :raw-stream message. For further discussion of the record protocol used by
BYTE-STREAM-WITH-MARK: See the section "Introduction to BYTE-STREAM
WITH-MARK Network Medium", page 229.

If a network medium can implement marks natively, as does Chaos on the
Symbolics Lisp Machine, you can directly support the functionality described here,
without the record layer and the encapsulating stream, as long as the semantics of
the BYTE-STREAM-WITH-MARK are preserved and both sides agree upon the
data and mark representations.

: byte-stream-with-mark is a network medium that produces a BYTE-STREAM
WITH-MARK when a connection via it is established on the Symbolics Lisp
Machine. This medium supports the "connection argument" : token-list, whose
value, when non-NIL, causes a token list stream to be created and returned,
encapsulating the BYTE-STREAM-WITH-MARK. The :stream connection
argument identifies the stream to be encapsulated. See the section "Token List
Transport Layer", page 237.

The BYTE-STREAM-WITH-MARK passes the following messages on to its
encapsulated stream, intact:

o :close
o :foreign-host
o :accept
• :reject
• :connected-p
• :close-with-reason
• :complete-connection
• :set-output-exception
o :set-input-exception
• :check-output-exception
o :check-input-exception

:start-open-auxiliary-stream passes through the request for the new stream to the
encapsulated stream, but encapsulates it with a BYTE-STREAM-WITH-MARK after
it has been created. If the parameter :token-list appears among the stream
options with a non-nil value, a token list BYTE-STREAM-WITH-MARK is created.

In addition to the usual buffered stream messages, a BYTE-STREAM-WITH-MARK
supports the :send-mark message. When this message is sent to the BYTE
STREAM-WITH-MARK, the latter forces all output it has buffered, that is, all
byte stream records (in the non-packet case), sends a mark, and forces all this
output into the encapsulated stream.

When, during an input operation from a BYTE-STREAM-WITH-MARK, the BYTE-

235

June 1986 Network, Medium, and Protocol Descriptions

STREAM-WITH-MARK encounters a mark, it signals the error condition of flavor
neti:mark-seen.

The higher-level application must handle this error and interpret it in accordance
with its usage of marks. The signalling routines expect to be aborted after this
condition is signalled. The stream is then in a consistent state, and further input
can be read.

neti:mark-seen Flavor
This condition is signalled during an attempt to read from a BYTE
STREAM-WITH-MARK when a mark is encountered.

This typically occurs when a :read-token-list message is sent to a token
list stream.

:stream can be sent to this condition to access the stream of interest.

236

Networks June 1986

237

June 1986 Network, Medium, and Protocol Descriptions

34. Token List Transport Layer

34.1 Introduction to the Token List Transport Layer

The token list transport layer is a general-purpose protocol. The token list
transport layer sends tokens through its underlying stream. Each token usually
represents a simple quantity, such as a string or integer.

Tokens can be organized into token lists. Special tokens are provided to denote
the starting and ending point of lists. The token list transport layer differentiates
between top-level token lists, which are not contained in other lists, and embedded
token lists, which are contained in other lists. Using lists makes it convenient to
send structured records, such as commands and command responses.

The token list transport layer is a general term that includes two separate but
related subjects: the token list stream and the token list data stream. The token
list stream is commonly used for applications that can easily organize the
information to be transmitted into tokens and lists. The token list data stream is
more appropriate for transmitting a large volume of data that cannot easily be
structured into tokens and lists, such as file data, which are just a sequence of
characters or bytes.

The following table illustrates the main differences between token list streams and
token list data streams:

Token List Data Stream

Built on: Token list stream

Accepts these
Messages: Normal stream I/O

messages, like

Transmits:

Example
of use:

:tyi, :tyo, :string-in

Stream data

NFILE data channels

Token List Stream

BYTE-STREAM-WITH-MARK

:send-token-list
:read-token-list

Tokens, token lists

NFILE control connection

238

Networks June 1986

NFILE and the Token List Transport Layer

NFILE uses the the token list transport layer, and provides an excellent example
of its usefulness. The NFILE commands and command responses are sent over
the control connection in a token list stream. File data are sent across each data
channel in a token list data stream.

See the section "NFILE File Protocol", page 251.

34.2 Token List Stream

34.2.1 Types of Tokens and Token Lists

All numbers in the token list documentation are represented in decimal notation.
Bytes are 8 bits long.

Types of Tokens

Tokens are of the following types:

1. Atomic tokens.

Atomic tokens are of the following subtypes:

• Data tokens. A data token consists of a sequence of bytes with an
effectively infinite maximum length. In some contexts a data token
represents a string; in other contexts, a data token is other arbitrary
data.

Each data token is preceded in the token list stream by a
representation of its length in bytes.

Data tokens that are under 200 bytes long are preceded by one byte
containing their length in bytes. That is, a data token of 34 bytes is
preceded by one byte of value 34.

Data tokens 200 bytes or over are preceded by the byte known as
PUNCTUAT ION-LONG, of value 201. After the 201 comes a four-byte-Iong
number (least significant byte first) containing the length of the data
token that follows.

• Numeric tokens. A sequence of bytes that represent and encode a
nonnegative binary integer. The largest valid integer is 2"63 - 1.

June 1986

239

Network, Medium, and Protocol Descriptions

Numeric tokens are either short integers (less than 256) or long
integers (greater than or equal to 256). Short integers are preceded by
the byte known as PUNCTUATION-SHORT -INTEGER, of value 206.

Long integers are begun by PUNCTUATION-LONG-INTEGER, of value 207.
One byte follows, containing the length (in bytes) of the long integer.
The integer itself is next, least significant byte first.

• Keyword tokens. A sequence of bytes that represent and encode a
named identifier of the implemented protocol. Keyword tokens are
important only for their names.

Each keyword is preceded by the byte known as PUNCTUAT ION-KEYWORD, of
value 208. The data token following PUNCTUAT ION-KEYWORD represents
the name of the keyword as a string. The characters are in upper
case .

• Boolean truth. A special token that represents the Boolean truth
value. This token is known as BOOLEAN-TRUTH, of value 209.

2. Control tokens.

The token list stream supports four control tokens to delimit token lists, and
one padding token.

TOP-LEVEL-LIST-BEGIN 202

TOP-LEVEL-LIST-END 203

LIST-BEGIN 204

LIST-END 205

PUNCTUATION-PAD

This control token appears
at the start of every top-level
token list.

This control token appears at
the end of every top-level token list.

This control token appears at the
start of every embedded token list.

This control token appears at the
end of every embedded token list.

This padding token should be ignored
by the token list stream. It can be
sent to fill buffers.

240

Networks June 1986

Token Lists

A token list consists of a sequence of atomic tokens or token lists. Token lists are
begun and ended by control tokens that delimit the token lists. There are three
types of token lists:

1. Top-level token lists.

Top-level token lists begin with TOP-LEVEL-LIST -BEGIN and end with TOP
LEVEL-LIST-END. Top-level token lists are not contained in other lists.

2. Embedded token lists.

These token lists occur inside other token lists. They begin with LIST -BEG IN
and end with LIST -END.

3. The empty token list.

This is a special example of the embedded token list. In some contexts, the
empty token list represents Boolean falsity. An embedded empty token list is
composed of a LIST-BEG I N followed immediately by a LIST-END. A top-level
empty token list is composed of TOP-LEVEL-LIST -BEGIN followed immediately
by TOP-LEVEL-L I ST -END.

34.2.2 Token List Stream Example

This section contains an example of some data that can appear on a token list
stream. The example is a top-level token list encoding an NFILE DELETE
command.

The DELETE command is composed of the following pieces: a TOP-LEVEL-LIST
BEGIN, the keyword DELETE, a data token containing the transaction identifier,
a LIST -BEG I N, a LIST -END, a data token containing a pathname, and a TOP-LEVEL
LIST-END. Let's use T105 as the transaction identifier, and lusr/maxltemp as the
pathname.

All numbers in this section are expressed in decimal notation.

The pieces of the command are displayed here in order:

1. TOP-LEVEL-LI ST -BEGI N
2. The keyword token whose name is DELETE
3. The data token containing the characters: T105
4. LIST-BEGIN
5. LIST-END
6. The data token containing the characters: lusr/maxltemp
7. TOP-LEVEL-LIST-END

241

June 1986 Network, Medium, and Protocol Descriptions

Now, let's translate each piece of the command into the bytes that are transmitted
through the token list stream.

1. TOP-LEVEL-LIST-BEGIN

202 represents TOP-LEVEL-LIST-BEGIN

2. The keyword token whose name is DELETE.

A keyword token is begun by PUNCTUATION-KEYWORD, which is represented in
the token list stream as the byte 208.

A data token follows, containing the string "DELETE". A data token under
200 bytes long is begun by one byte containing its length in bytes. The
length of this data token is 6 bytes.

The data token continues with the Symbolics Lisp Machine character set
representation of each character in the string DELETE:

208 represents PUNCTUATION-KEYWORD
006 represents the length of this data token
068 represents "D"
069 represents "E"
076 represents "L"
069 represents "E"
084 represents "T"
069 represents "E"

3. The data token containing the characters: Tl05

This data token is begun by its length in bytes (4), and continues with the
Genera character set representation of each character in the string:

004 represents the length of this data token
084 represents "T"
049 represents "l"
048 represents "0"
053 represents "5"

4. LIST -BEGIN

204 represents LIST -BEG I N

242

Networks June 1986

5. LIST -END

205 represents LIST -END

6. The data token containing the characters: lusr/max/temp

013 represents length of this data token
047 represents "I"
117 represents "u"
115 represents "s"
114 represents "r"
047 represents "I"
109 represents "m"
097 represents "a"
120 represents "x"
047 represents "I"
116 represents "t"
101 represents "e"
109 represents "m"
112 represents "p"

7. TOP-LEVEL-LIST-END

203 represents TOP-LEVEL-LIST -END

34.2.3 Mapping of Lisp Objects to Token List Stream Representation

The Symbolics Lisp Machine interface to the token list stream sends Lisp objects
through the underlying BYTE-STREAM-WITH-MARK and produces Lisp objects on
the other end. Not all Lisp objects can be sent in this way: specifically, compound
objects other than lists are not handled. An appropriate analogy is the sending
and reconstruction of list structure via printed representation. These are the
types of objects that can be sent, and their representations:

• Lisp strings are represented as data tokens in the Symbolics Lisp Machine
character set. Only 8-bit strings can be sent; no fat-strings can be sent .

• Keyword symbols are represented as keyword tokens. Although identifiable
and reconstructable as keyword symbols, only their names are sent; their
properties, bindings, and so on are not sent.

243

June 1986 Network, Medium, and Protocol Descriptions

• t is represented as BOOLEAN-TRUTH.

• nil is represented as the empty token list.

• Lists are represented as token lists. The ambiguity between nil and the
empty list presents no problems for Lisp Machines, although this concession
of the protocol to Lisp Machines can present problems on other systems.
Circular lists cannot be sent.

• Integers are represented as numeric tokens. Only nonnegative integers less
than 2"63 can be sent.

34.2.4 Flavors and Messages Related to the Token List Stream

This section describes the flavors and messages of the Symbolics Lisp Machine
implementation of the token list transport layer.

Token list streams are created in two ways:

o If no underlying stream is present, token list streams are implemented as
instances of the flavor neti:token-list-stream.

o If an underlying stream is present, it is not possible to compose a new flavor
to support the token list functionality. For this purpose, the flavor
neti: buffered-token-stream is provided.

In both cases, the token list stream is built on a BYTE-STREAM-WITH-MARK.
See the section "BYTE-STREAM-WITH-MARK Network Medium", page 229.

The flavor neti:mark-seen is part of the BYTE-STREAM-WITH-MARK layer, but
it might be of interest to users of token list streams: See the flavor neti:mark
seen, page 235.

neti:token-list-stream
Token list streams are implemented as instances of the
neti:token-list-stream flavor.

Flavor

This flavor expects to be mixed into the instantiation of its underlying
BYTE-STREAM-WITH-MARK. It expects the stream into which it is mixed
to implement the following messages:

• :listen
• :tyi
o :string-in
• :send-mark
• :tyo

244

Networks June 1986

• :string-out
• :force-output
• :read-input-buffer
• :advance-input-buffer
• :get-output-buffer
• :advance-output-buffer
• :finish

Often an existing underlying stream is present, and it is not possible to
compose a new flavor to support the token list stream functionality. For
this purpose, the flavor neti:buffered-token-stream is provided.

neti: buffered-token-stream Flavor
When an 8-bit binary bidirectional stream is present (usually not a BYTE
STREAM-WITH-MARK), the flavor neti:buffered-token-stream can be
instantiated. The init keyword :raw-stream identifies the stream to be
encapsulated. The result is a token list stream built on a BYTE-STREAM
WITH-MARK, using the record (non-packet) mode of BYTE-STREAM
WITH-MARK. The BYTE-STREAM-WITH-MARK is built on the stream
supplied with the :raw-stream init keyword.

For a description of record mode of BYTE-STREAM-WITH-MARK:

See the section "Introduction to BYTE-STREAM-WITH-MARK Network
Medium", page 229.

:send-token-Iist object &optional mark-p Message
object is a simple Lisp object to be sent through the token list stream. All
token list streams support this message. The given object is sent in its
entirety before any other data is allowed to be sent by the stream (perhaps
from another process).

Not all Lisp objects can be sent through the token list. For details: See
the section "Mapping of Lisp Objects to Token List Stream
Representation", page 242.

If mark-p is non-nil, a mark is sent on the underlying BYTE-STREAM
WITH-MARK before the supplied datum is sent. It is an error to send this
message if the stream is unsafe (on the output side) unless mark-p is
non-nil. If the stream is unsafe on the output side and mark-p is non-nil,
the stream is declared to be safe again. If the execution of this message is
aborted, the stream becomes unsafe on the output side.

Note that since the token list stream is built on its underlying stream (in
the flavor sense), miscellaneous control messages need not be forwarded.
Implementations should not ask the underlying stream to send a mark via
: send-mark; use :send-token-list instead.

245

June 1986 Network, Medium, and Protocol Descriptions

:read-token-list &optional discard-until-mark dont-wait-but-return-this Message
Reads from the token list stream, and returns the representation of one
data object. All token list streams support this message.

If the beginning of a top-level list is encountered, the whole list is read,
constructed according to the mapping of token list representations to Lisp
objects and returned. See the section "Mapping of Lisp Objects to Token
List Stream Representation", page 242.).

If a mark is encountered instead of the data object being read, or at any
point inside it, the neti:mark-seen condition is signalled, and the stream is
marked unsafe on the input side. Note that this implies that a second
mark must be forthcoming to resynchronize the stream. It is an error to
issue this message to a stream that is unsafe on the input side, unless
discard-until-mark is non-nil. If the execution of this message is aborted,
the stream becomes unsafe on the input side.

discard-until-mark specifies that all data are to be discarded until a mark is
read. At that point, the stream is to be declared safe again, on the input
side. When the stream is unsafe on the input side, this is the only valid
operation (other than closing the stream). Note that the only valid
response to receiving an unexpected mark is to supply this argument. This
implies that resynchronizations via marks must either be initiated by some
other communication channel, (as in NFILE), or involve two marks, the
first one of which is no more than an instruction to read for the second.
Higher level protocols usually want to send some kind of meaningful
identifier immediately following the mark.

dont-wait-but-return-this allows the caller to determine if input is present.
If this argument is non-nil (it should be some object that cannot be
transmitted via the token list medium, such as a specific list or a non
keyword symbol), it is returned as the return value of this message if and
only if input is not available. While it might seem that this duplicates the
functionality of :listen, the locking and other aspects of the potential
multiprocess nature of applications of the token-list stream require this
more sophisticated technique. (If :listen were used instead, there would be
a race between processes that had determined that input was available, and
the loser of the race would block.)

neti:token-io-unsafe Flavor
This condition is signalled when any 1/0 operation is attempted on a token
list stream that is unsafe in the given direction. For example, an input
operation was attempted on an unsafe input token list stream.

:stream can be sent to this condition to access the stream of interest.

:direction can be sent to this condition, to determine the direction (:input
or :output) of the stream.

246

Networks June 1986

neti:token-stream-data-error Flavor
This condition is signalled during :read-token-list, if the data being read
do not conform to the defined token list stream organization. For example,
mismatched token list delimiters would signal
:neti-token-stream-data-error. That is, a TOP-LEVEL-L I ST -END was found
that does not correspond to a TOP-LEVEL-LIST -BEGIN.

:stream can be sent to this condition to access the stream of interest.

This condition indicates a serious problem. The problem could be:

• A hardware problem.

• A bug in the implementation of the token list stream (on either side) .

.• A bug in any protocol or network underlying the token list stream.

34.2.5 Aborting and the Token list Stream

A token list stream accrues the benefits of the abort management policy of the
BYTE-STREAM-WITH-MARK on which it is built. In order to fully realize this
benefit, some simple rules must be obeyed by any implementation of the token list
stream.

The term transmission, used often in the following paragraphs, means a complete
top-level token list. The transmission starts with the control token TOP-LEVEL
BEGIN and ends with TOP-LEVEL-END. The top-level token list can contain
embedded token lists.

The interface that writes to the token list stream must be capable of writing the
representation of entire transmissions. When this interface is called, it must
effectively lock the token list stream, excluding access by other processes until the
entire transmission has been encoded and sent.

If the sending is aborted while the stream is locked, the stream enters an unsafe
state. Trying to send data while the stream is unsafe signals an error. The
application and the token list stream must send a mark to cause
resynchronization, and allow the token list stream to be used again. When the
reading side encounters this mark, it resynchronizes itself according to whatever
higher-lever protocol is in use.

Similarly, the interface that reads from the token list stream must be capable of
reading entire transmissions. When this interface is called, it must lock the
stream, excluding access by other processes until the entire transmission has been
read.

If the reading is aborted while the stream is locked, the stream enters an unsafe
state. The only exit from this unsafe state is by means of receiving a mark.
When the stream is unsafe, the only valid operation that can be performed upon it

247

June 1986 Network, Medium, and Protocol Descriptions

is II read and discard all tokens until a mark is encountered; read and discard that
mark; declare the stream safe again".

Depending on the higher-level protocol, the receipt of a mark might cause the
reading side to read for further marks. NFILE implements the resynchronization
of token list streams, and serves as a useful example: See the section II NFILE
Control Connection Resynchronization", page 261.

The Symbolics Lisp Machine implementation has implemented the two mark
handling primitives in this way:

1. Send token (or list) preceded by a mark. When the stream is in the unsafe
state (on the output side), this is the only permitted output operation (other
than closing).

2. Read through to a mark and read the token (or list) following the mark.
When the stream is in the unsafe state (on the input side), this is the only
permitted input operation (other than closing).

34.3 Token List Data Stream

The token list data stream is a facility to transmit stream data through a token
list stream. The Symbolics Lisp Machine implementation avoids consing the data
tokens as strings on the receiving side.

Format of Data Transmitted

The token list data stream imposes the following protocol on the data transmitted:

• Data are sent in the format of loose data tokens, not contained in token lists.

• The keyword token EOF indicates that the end of data has been reached.

• Token lists can be transmitted through the token list data stream.

• No loose tokens other than data tokens or the keyword token EOF can be
sent.

The token list data stream is most appropriate for sending file data. It is
expected (but not required) that its typical mode of use is to send a large number
of data tokens, with an occasional token list. The design intent was that token
lists would be used by the application program to indicate exceptional situations.

Data tokens, the keyword token EOF, and token lists are defined in the token list
stream documentation: See the section II Types of Tokens and Token Lists ", page
238.

248

Networks June 1986

Normal Stream 1/0 Messages Are Accepted

There are no special messages to token list data streams; their whole purpose is to
allow normal 110 stream messages to be used to transfer data through token list
streams. A program can copy files or other massive data through a token list
stream, using normal stream operations and tools such as stream-copy-until-eof.
Data can be read out of the token list data input stream by normal stream
operations without consing strings. The :eof message to an output token list data
stream sends the keyword token EOF, which is in turn recognized by the receiving
side as the end of file indicator.

The Underlying Token List Stream

The token list data stream encapsulates an existing token list stream. As with
most encapsulating streams, :force-output and :eof implicitly force output through
the encapsulated stream, as well. Control messages are not forwarded; for those
purposes the program must deal directly with the underlying token list stream.
The :raw-stream message to a token list data stream accesses the encapsulated
stream.

NFILE's Use of the Token List Data Stream

The NFILE ille protocol provides a good example of the use of token list data
streams. NFILE sends file data through token list data streams; each NFILE data
channel is a token list data stream. Errors such as disk errors during the reading
of a file are conveyed as token lists through the token list data stream.

34.3.1 Flavors Related to the Token List Data Stream

neti:token-list-input-data-stream Flavor
Instantiating this flavor creates a token list input data stream. The
underlying token list stream must be supplied via the :raw-stream init
option.

Stream data are transmitted though the underlying token list stream by a
token list output data stream, and can be read by normal stream
operations. End of file is indicated when the keyword token EOF is
encountered. .

If you should want to use a token list input data stream after receiving the
end-of-file indicator, :clear-eof must be sent to the token list input data
stream.

This stream expects to encounter only loose data tokens, whose
undifferentiated data content is treated as stream data, and the keyword
token EOF, which is treated as an end-of-file indicator. If a list is

249

June 1986 Network, Medium, and Protocol Descriptions

encountered, a condition of flavor neti:token-data-was-list is signalled.
See the flavor neti:token-data-was-list, page 249.

When a :proceed message is sent to the error object, the token list stream
data can once again be read. This capability can be used to embed
asynchronous signals in stream data. Any other kind of token is an error,
and marks are not intercepted or dealt with by the token list data stream
at all.

neti:token-list-output-data-stream Flavor
Instantiating this flavor creates a token list output data stream. The
underlying token list stream must be supplied via the :raw-stream init
option.

The token list output data stream accepts data via normal stream output
operations. The data are sent as undifferentiated loose data tokens through
the encapsulated stream. The tokens bear no correspondence to the order
or type of output operations.

:force-output forces the data through the encapsulated stream as well as
the outer stream that receives the message. :eof sends a :force-output,
and sends and forces through the keyword token EOF.

Should the program wish to send a token list through the underlying
stream in the midst of data, it must force the output of the token list data
stream, and send the list through the encapsulated stream.

No special action must be taken to reuse a token list data output stream.
The message :clear-eof is an input stream message only: do not send it to
output streams, or to bidirectional streams to address output state.

neti:token-list-bidirectional-data-stream Flavor
Instantiating this flavor creates a bidirectional token list data stream. The
underlying token list stream must be supplied via the :raw-stream init
option.

It combines the behaviors of the token list data input and token list data
output streams, encapSUlating one bidirectional stream. It is important not
to confuse input and output messages when using a bidirectional stream.

neti:token-data-was-list Flavor
This condition is signalled when a token list is encountered in a token list
stream as it is being read by a token list data stream.

The :list message can be sent to this condition to access the value of the
list that was read.

:stream can be sent to identify the erring stream.

The proceed type :proceed can be sent to proceed the condition, to
continue use of the token list data stream after handling the just-read list.

250

Networks June 1986

251

June 1986 Network, Medium, and Protocol Descriptions

3S. NFILE File Protocol

35.1 Introduction to NFILE

NFILE is a file protocol that enables you to perform a large set of operations on
files and directories on remote systems, including:

o Read and write 'entire files
o Read and write portions of files
• Delete files
o Rename files
o Create links
o List directories
o Create directories
o Expunge directories
o Obtain properties of files
o Change properties of files

NFILE can be used over any reliable byte-stream medium, such as TCP or
CHAOS. It performs better than the older QFILE protocol in the following areas:

o NFILE is not restricted to the Chaos medium, as is QFILE. NFILE can be
used over any reliable byte-stream medium, including Chaos and TCP.

o NFILE can transfer data faster than QFILE can. NFILE's performance
running on TCP is better than either its performance or QFILE's running on
the Chaos medium.

• NFILE has a robust scheme for handling aborts on the user side; QFILE is
vulnerable to aborts.

• The NFILE server provides more complete information about errors than
does the QFILE server.

o NFILE commands return useful values; in some cases, the analogous QFILE
command does not return any value.

o NFILE offers 25 commands, in comparison to QFILE's 18.

At present, NFILE server programs are provided only for Symbolics Lisp
Machines. Therefore, the NFILE file protocol runs only between two Lisp
Machines, unless you write an NFILE server program for another system.

252

Networks June 1986

As part of the generic network system, NFILE is invoked when the user needs to
read or write a file on a remote host; NFILE then does its job invisibly. For
example, when a user in the Zmacs editor uses the Find File command, the
generic network system goes to work to find the file and bring it into the user's
environment. In certain circumstances NFILE is be called upon to transmit the
data in the file residing on a remote Lisp Machine to the user's Lisp Machine, or
from the Lisp Machine to a remote Lisp Machine.

If you wish to set up your site to use NFILE: See the section "Starting to Use
NFILE", page 252.

If you intend to write NFILE server or user programs for another system: See
the section "Reference Information on NFILE", page 253.

35.2 Starting to Use NFILE

The NFILE file protocol is used to communicate between two Symbolics Lisp
Machines when the namespace database at the site contains the information that
NFILE is available on the server machine. NFILE is available only in Release 6.1
and later releases. If the server machine is running an earlier version, it cannot
provide FILE service using NFILE.

To set up your site to use NFILE, edit the namespace database. If you are
unfamiliar with the namespace database: See the section "Namespace System",
page 67.

Edit the host object for each Symbolics Lisp Machine that will run the NFILE
server. Any Symbolics Lisp Machine used as a file server (that is, one machine
providing file service to many other machines at the site) should be set up to run
the NFILE server. It is not necessary to edit the host objects for Symbolics Lisp
Machines that will use NFILE protocols only to get FILE service from other
machines.

The NFILE protocol provides the FILE service over the Chaos and TCP media.
Therefore, since all Symbolics Lisp Machines use the Chaos medium, all sites
should add this entry to the host objects:

Service: Set: FILE CHAOS NFILE Global-name

Sites that use the TCP medium should add this entry to the host objects:

Service: Set: FILE rcp NFILE Global-name

Sites that use both Chaos and TCP should add both service entries.

Once the NFILE entry or entries are included in the namespace database, the
NFILE protocol is invoked automatically.

253

June 1986 Network, Medium, and Protocol Descriptions

If a site runs both NFILE and QFILE, the network usually chooses NFILE over
QFILE.

35.3 Reference Information on NFILE

35.3.1 NFILE Concepts

NFILE is a layered file protocol. The NFILE commands and command responses
constitute the top layer. These commands and responses are transmitted in token
lists; the token list transport layer is the middle level of protocol. The token list
transport layer is built upon the BYTE-STREAM-WITH-MARK network medium.
Both the token list transport layer and the BYTE-STREAM-WITH-MARK network
medium were originally designed for NFILE, but are general layers of protocol
that are intended to be used for other applications as well.

See the section "Token List Transport Layer", page 237.
See the section "BYTE-STREAM-WITH-MARK Network Medium", page
229.

Throughout the NFILE documentation, the data types of arguments, return values,
asynchronous error descriptions, and notifications are described as being:

• strings
• keywords
• keyword lists
• integers
• Boolean values
• dates
• time intervals
• date-or-never's

However, a string as such is not transmitted over the token list stream; the string
must be expressed in token list representation. Each of the conceptual data types
must be mapped into the appropriate token list representation.

See the section "Mapping Data Types Into Token List Representation",
page 257.

An NFILE session is a dialogue between two hosts. The host that initiates the
NFILE session is known as the user side, and the other host is the server side.
The user side sends all NFILE commands. The server receives each command,
processes it, and responds to it, indicating the success or failure of the command.

The user side keeps track of commands sent and command responses received by
using transaction identifiers to identify each command. The user side generates a

254

Networks June 1986

unique transaction identifier for each command, and sends the transaction
identifier to the server along with the command. Each NFILE server response
includes the transaction identifier of the command with which the response is
associated. The server need not respond to commands in the same order that the
user gave them.

See the section "NFILE Command Descriptions", page 265.
See the section "NFILE Commands", page 269.

The user side sends NFILE commands over a bidirectional network connection
called the control connection. The server sends its command responses on the
same control connection. All communication over the control connection is in the
format of token lists. The control connection governing the NFILE session is
established at the beginning of the session. If the control connection is ever
broken, the NFILE session is ended.

Whereas NFILE commands and responses are transmitted on the control
connection, file data are transferred over data channels. An input data channel is
used to send data from server to user; an output data channel is used to send data
from user to server. Each input data channel is associated with an output data
channel; together these two channels constitute a data connection. Most
communication over data channels is in the format of loose data tokens. In some
cases, token lists are transmitted over the data channels.

See the section "NFILE Control and Data Connections", page 258.

In the case of a user program abort, control connections and data channels can be
marked unsafe. Any unsafe control connection or data channel must be made safe
again before further use, by undergoing a resynchronization procedure.

See the section "NFILE Resynchronization Procedure", page 261.

35.3.2 NFILE File Transfer Philosophy

This section describes how files are transferred from one system to another, using
the NFILE file protocol. NFILE supports two ways of transferring file data, data
stream mode and direct access mode.

Data Stream Mode

Data stream mode of file transfer is the default mode of NFILE's OPEN
command. Data stream mode is appropriate when the entire file is transferred,
either from user to server, or from server to user. Data stream mode is more
common than direct access mode.

When a data stream opening is requested with the OPEN command, a stream is
opened and the data begin to flow immediately. The OPEN command requires a
handle argument to be supplied, which specifies the data channel to be used to

255

June 1986 Network, Medium, and Protocol Descriptions

transfer the data. The handle is used in future commands to reference the open
stream.

The sending side transmits the entire contents of the specified file over the
specified data channel as fast as the network medium and path allow. When the
sending side reaches the end of the file, it transmits a special control token to
signal end of file. The receiving side expects an uninterrupted stream of bytes to
appear immediately on its side of the data channel.

The user gives the CLOSE command to terminate a data stream transfer. CLOSE
results in closing the open stream.

Direct Access Mode

Direct access mode enables reading and writing data from specific starting points
in a file, through a specified number of bytes. In direct access mode, data are
requested and sent in individual transactions. To request a direct access mode
opening, the OPEN command is used with a DIRECT-FILE-ID argument. (In data
stream mode, no DIRECT-FILE-ID is supplied.) The direct file identifier is used
in later commands to reference the direct access stream.

When a file is opened in direct access mode, the flow of data does not start
immediately. Rather, the user gives either a READ command (to request data to
flow from server to user) or a DIRECT-OUTPUT command (to request data to
flow from user to server). In either case, the user specifies the starting point and
the number of bytes of data to transfer. The user can give many READ and
DIRECT-OUTPUT commands, one after another.

The user side terminates the direct access transfer by using the CLOSE command .
. The ABORT command prematurely terminates a direct access transfer.

Direct access file streams are supported by LMFS. For further information on
how LMFS supports direct access file streams: See the section "Direct Access File
Streams" in Reference Guide to Streams, Files, and I/O.

35.3.3 NFILE Character Set Translation

NFILE was designed to provide access between two Symbolics computers, and to
provide access from Symbolics computers to ASCII-based file systems. Symbolics
computers support 8-bit characters and have 256 characters in their character set.
This causes difficulties when communicating with ASCII machines which have 7-
bit characters.

NFILE file transfers are always done using the 8-bit Symbolics computer character
set.

In this section, all numbers designating values of character codes are to be
interpreted in octal.

256

Networks June 1986

Servers on machines not using the Symbolics computer character set are required
to perform character set translations for any character opening. Two Symbolics
Computers communicating with NFILE need not perform any character set
translation.

Table 1 shows the translations between Symbolics computer characters and the
standard ASCII representation, as used on the PDP-10 (where the sequence CRLF,
015 012 represents a new line). Some Symbolics characters expand to more than
one ASCII character. Thus, for character files, when we speak of a given position
in a file or the length of a file, we must specify whether we are speaking in
Symbolics units or server units, for the counting of characters is different.

This causes major problems in file position reckoning. Specifically, it is futile for
the Symbolics computer (or other user side) to carefully monitor file position,
counting characters, during output, whe,1' character translation is in effect. This
is because the operating system interface for "position to point x in a file", which
the server must use, operates in server units, but the Symbolics computer (or
other user end) has counted in Symbolics units. The user end cannot try to
second-guess the translation-counting process without losing host-independence.
(Although the Symbolics mail reader, Zmail, does anyway, as certain types of
PDP-10 mail files contain embedded encoded character counts that are measured
in server units.) See the section "FILEPOS NFILE Command", page 282.

Table 1 contains the standard ASCII table (all values octal). The notation x in
<c1, c2> means "for all character codes x such that c1 <= x <= c2." Hosts using
other variations of ASCII, or other character sets, must translate accordingly.

Table 1. Translations Between Symbolics Characters and Standard ASCII

Symbolics character ASCII character(s)

x in <000, 007> x
x in <010, 012> 177 x
013 013
x in <014, 015> 177 x
x in <016, 176> x
177 177 177
x in <200, 207> 177 <X - 200>
x in <210, 212> <X - 200>
213 177 013
214 014
215 015 012
x in <216, 376> 177 <X - 200>
377 no corresponding code

.'1

257

June 1986 Network, Medium, and Protocol Descriptions

Table 1 might seem confusing at first, but there are some general rules about it
that should make it appear more sensible. First, Symbolics characters in the
range <000, 177> are generally represented as themselves, and x in <200, 377> is
generally represented as 177 followed by <X - 200>. That is, 177 is used to quote
the second 200 Symbolics characters. It was deemed that 177 is more useful and
common character than 377, so 177 177 means 177, and there is no way to
describe 377 with ASCII characters. On the Symbolics computer, the formatting
control characters appear offset up by 200. This explains why the preferred mode
of expressing 210 (backspace) is 010, and 010 turns into 177 010. The same
reasoning applies to 211 (Tab), 212 (Linefeed), 214 (Formfeed), and 215 (Newline).

More special care is needed for the Newline character, which is the mapping of
the system-independent representation of "the start of a new line". Thus, for
ASCII as used on many systems, Symbolics Newline (215) is equivalent to 015 012
(CRLF) in ASCII characters. When converting ASCII characters to Lisp machine
characters, an 015 followed by an 012 therefore turns into a 215. A" stray CR",
that is, an 015 not followed by an 012, therefore causes character-counting
problems. To address this, a stray CR is arbitrarily translated into a single M
(115).

Table 1 applies in the case of NORMAL translation, that is, the default character
translation mode.

The other translation modes available are:

RAW Performs no translation. ASCII characters are obtained by
simply discarding the high order bit of Symbolics characters,
and Symbolics characters supplied by an ASCII server are
always in the range <000, 177>.

SUPER-IMAGE Suppresses the use of Rubout for quoting. That is, each entry
beginning with a 177 in the ASCII column of the translation
table presented above has the 177 removed. The ASCII
character 015 always maps to the Symbolics character 215, as in
normal translation. Here is the SUPER-IMAGE mode table: In
SUPER-IMAGE mode as well, stray CR is translated to
Symbolics character M.

35.3.4 Mapping Data Types Into Token list Representation

The following list shows how each conceptual data type is expressed in token list
representation. This mapping is also illustrated by an extended example of
translating an NFILE command and its arguments into its token list
representation: See the section "Token List Stream Example", page 240.

Keyword Transmitted as a keyword token.

258

Networks June 1986

Keyword list

Integer

String

Boolean Truth

Boolean False

Dates

Date-or-never

Time interval

Table 2. Translations in SUPER-IMAGE Mode

Symbolics character

x in <000, 177>
x in <200, 214>
215
x in <216, 376>
377

ASCII character(s)

X

<X - 200>
015 012
<X - 200>
no corresponding code

Transmitted as a token list of keyword tokens.

Transmitted as a numeric data token.

Transmitted as a data token containing the characters of the
string in the Symbolics Computer character set.

Transmitted as the token known as BOOLEAN-TRUTH.

Transmitted as the empty token list.

Transmitted as numeric data tokens. The date is expressed in
Universal Time format, which measures a time as the number
of seconds since January 1, 1900, at midnight GMT.

Can be either a date or the empty token list, representing
"never". "Never" is used for values such as the time a
directory was last expunged, if it has never been expunged.

Transmitted as a numeric data token. The time interval is
expressed in seconds. A time interval of zero seconds (including
the concept of "never") is represented by the empty token list.

35.3.5 NFILE Control and Data Connections

The user and server communicate through a single control connection and zero or
more data connections. The user side sends NFILE commands to the server over
the control connection. The server responds to every user command, also over this
control connection. The actual file data are transmitted over the data connections.

User aborts can disturb the normal flow of data on the control connection and
data connections. An important aspect of any file protocol is the way it handles
user aborts. NFILE supports a resynchronization procedure to bring the affected
control connection or data channel from an unknown, unsafe state into a known
state, enabling the control connection or data channel to be reused. See the
section "NFILE Resynchronization Procedure", page 261.

259

June 1986 Network, Medium, and Protocol Descriptions

The Control Connection

The control connection is established at the beginning of the NFILE session. See
the section "Establishing an NFILE Control Connection", page 260. The control
connection is the vehicle used by the user to send its commands, and the server to
send its command responses.

These types of communication occur over the NFILE control connection:

• The user side sends NFILE commands.

• The server sends command responses.

o The server sends notifications.

• The server sends asynchronous errors.

• During resynchronization (a special circumstance) either the user or server
sends a mark.

For further information on each type of communication:

See the section "NFILE Command Descriptions", page 265.
See the section " Notifications From the NFILE Server", page 261.
See the section "NFILE Error Handling", page 304.
See the section "NFILE Resynchronization Procedure", page 261.

Format of Control Connection Communication

All commands, command responses, and other data flowing over the NFILE control
connection are transmitted in the format of top-level token lists. The control
connection expects never to receive loose tokens; that is, tokens not contained in
token lists. For a definition of token lists:

See the section "Token List Transport Layer", page 237.

Data Connections

Data connections are established and discarded at user request, by means of two
NFILE commands: DATA·CONNECTION and UNDATA·CONNECTION. Each
data connection is associated with a specific control connection, which is the same
control connection that caused the data connection to be established.

See the section "DATA-CONNECTION NFILE Command", page 275.
See the section "UNDATA-CONNECTION NFILE Command", page 304.

Each data connection is composed of two data channels. Each data channel is

260

Networks June 1986

capable of sending data in one direction. The term input channel refers to the
data channel that sends data from the server to the user side; output channel
refers to the data channel that sends data from the user to the server side.
Throughout the NFILE documentation, the terms input and output channels are
seen from the perspective of the user side.

Data channels can be used for many data transfers, in sequence.

Format of Data Channel Communication

The data being transferred on the data channels are typically loose tokens, that is,
tokens not contained in a token list. When the end of data is reached, the
keyword token EOF is sent. Occasionally, token lists are transmitted over the
data channels. For example, notifications and asynchronous error descriptions are
token lists that are transmitted on data channels. The format of the data
transferred on the data channels is defined as a token list data stream:

See the section "Token List Data Stream", page 247.

35.3.6 Establishing an NFILE Control Connection

NFILE is built upon the BYTE-STREAM-WITH-MARK medium, which is
implemented to use either the Chaos or TCP protocol. This section gives the
necessary information on how to establish a control connection on Chaos and TCP.

The NFILE user program connects to a remote host and establishes a network
connection. This is the control connection of the dialogue that has just begun.

NFILE's Chaos Contact Name

The contact name referring to NFILE on Chaos is: NFILE.

Other sections describe the significance and use of the contact name in
establishing a Chaos connection:

See the section "Chaosnet Contact Names", page 179.
See the section "Chaosnet Connection Establishment", page 191.

NFILE's Well-known rcp Port

The well-known port for NFILE on TCP is 59.

Symbolics does not document the TCP protocol, since documentation on TCP and
the other Internet protocols is readily available elsewhere.

261

June 1986 Network, Medium, and Protocol Descriptions

35.3.7 Notifications From the NFILE Server

The NFILE server can send asynchronous notifications to the user side over the
control connection. The text of the notineation contains information of interest to
the person using NFILE, such as a warning that the server's operating system
will be going down soon. Notifications can come from the server side at any time
that the server is not sending something else.

The format of NFILE notifications is:

(NOTIFICATION '"' text)

The empty string "" takes the place of a transaction identifier. Notifications are
initiated by the server, and are not associated with any transaction originated by
the user side.

Servers should not allow aborting during the sending of notifications. A server
abort could cause the control connection to become unsafe on the server side.

35.3.8 NFILE Resynchronization Procedure

Ordinarily, the user side sends NFILE commands to the server side over the
control connection; the server side responds to every user command, and file data
is transmitted over the data channels. This section describes a resynchronization
procedure that takes place when something disturbs the usual course of events.

First, if the server side aborts while sending or receiving data, nothing can be
done to salvage the connection between the two hosts. The control connection and
any data channels associated with this connection are broken. This happens
rarely, if at all.

It is not unusual for the user side to abort file operations, either commands or
data transfer. On a Symbolics Lisp Machine, the user could do this by pressing
c-ABORT. An important aspect of any file protocol is the way it handles the
situation when the user side aborts file operations.

NFILE reacts to user side aborts by immediately marking the connection unsafe.
When a control connection is unsafe, it must be resynchronized before it can be
used again. Data channels can also be marked unsafe, and must also be
resynchronized before further use. The resynchronization process rids the
connection (whether control or data connection) of data that are now unwanted,
and thus cleans up the channel so it can be used again.

35.3.8.1 NFILE Control Connection Resynchronization

NFILE requires any unsafe control connection to undergo a resynchronization
procedure before further use. Therefore, the resynchronization does not
necessarily occur immediately after the control connection is marked unsafe.
NFILE control connections are marked unsafe by the user side upon aborting, for

262

Networks June 1986

example, when a person using NFILE on a Symbolics Lisp Machine presses
c-ABORT. The user side initiates the control connection resynchronization when
another operation on the control connection is attempted.

User Side Steps: Control Connection Resynchronization

1. The user side sends a mark over the control connection to the server.

2. The user side sends the ASCII characters USER-RESYNC-DUMMY (as a data
token) to the server.

3. The user side sends a second mark to the server.

4. The user side declares the control connection safe (at the token list level).

5. The user side generates and sends a unique data token to the server.

6. The user side then waits, expecting to detect a mark followed by the unique
data token. The user side reads and discards all tokens and marks until the
desired match is found.

Once the user side detects the mark and unique data token, the control connection
has been fully resynchronized, and can be used again.

Server Side Steps: Control Connection Resynchronlzatlon

1. The server side detects a mark instead of the token list normally received
from the user side. The server is thus alerted that the control connection is
unsafe, and that resynchronization is in progress.

2. The server continues to read data coming from the user side until it detects
the second mark, and the token following it.

3. The server checks to see if the token following the mark is USER-RESYNC
DUMMY. This rare situation occurs if the user aborts during the course of
the resynchronization itself. If so, the server side discards the USER
RESYNC-DUMMY token. The control connection is still unsafe, and the user
side restarts the resynchronization procedure; the server side therefore
begins at Step 2 again.

4. If the token following the mark is not USER-RESYNC-DUMMY (this is the
expected circumstance), the server should have received a single data token
that is the unique data token generated by the user side.

a. The server sends a mark to the user side.

263

June 1986 Network, Medium, and Protocol Descriptions

b. The server declares control connection safe (at the token list level).

c. The server sends the unique data token to the user side.

5. If the server detects something following the mark that was neither USER
RESYNC-DUMMY nor a single data token, a protocol error has occurred.

35.3.8.2 NFILE Data Connection Resynchronlzatlon

The NFILE data channel resynchronization procedure is similar to the NFILE
control connection resynchronization. Both procedures are based on a mark
signalling the unsafe condition, then a second mark followed by a unique
identifier. One important difference between the two procedures is the
circumstances in which they occur. Control connections are put into unsafe states
only when the user aborts during control connection I/O operations. Data
channels are made unsafe by a larger set of circumstances:

• User aborts occur during the file protocol operations that assign and
deassign data channels. This is the most common cause of data channels
becoming unsafe.

• A server receives a CLOSE command (with abort-p supplied as Boolean
truth) specifying an open file that has not finished transmitting data. That
is, file reading is aborted.

• The ABORT command is issued, causing data channels to be made unsafe.

• The FILEPOS command is issued, causing the input data channel to become
unsafe.

The resynchronization clears the data channel of unwanted data from aborted
operations and puts the data channel in a known state. The data channel
resynchronization procedure is invoked when the user side gives the
RESYNCHRONIZE-DATA-CHANNEL command over the control connection.

In the Symbolics Lisp Machine implementation, the user side initiates
resynchronization only if it needs the data channel, having first tried to use a free
data channel that does not require resynchronization. Also, the user side
periodically resynchronizes all unsafe data channels.

In giving the RESYNCHRONIZE-DATA-CHANNEL command, the user side
indicates which data channel should be resynchronized. Data channels are
unidirectional, which means that depending on the direction (either input or
output) of the data channel, either the user side or the server side sends the
resynchronization data. This is another difference from the resynchronization of
the control connection, in which the resynchronization data is always sent by the
user side. The resynchronization steps for input data channels are different than
the steps for output data channels.

264

Networks June 1986

Input Data Channel Resynchronlzatlon

1. The user side gives the RESYNCHRONIZE-DATA-CHANNEL command on
the control connection, with only one argument, the handle of the data
channel to be resynchronized.

2. The server side of the data channel generates a unique identifier, and sends
that data token in its regular command response to the user side.

3. The server side sends a mark over the data channel.

4. The server side sends the unique identifier token over the data channel.

5. The user side reads until it detects a mark followed by the unique identifier
token. The resynchronization is then complete. The data channel is no
longer in an unsafe state.

Output Data Channel Resynchronizatlon

1. The user side gives the RESYNCHRONIZE-DATA-CHANNEL command on
the control connection, with two arguments: the handle of the data channel
to be resynchronized, and a unique identifier that it has just generated.

2. The user side of the data channel sends a mark.

3. The user side of the data channel sends a dummy identifier token. The
dummy identifier can be any token that the server could not interpret as
being the unique identifier. One suggestion is the data token DUMMY
IDENTIFIER.

4. The server side of the data channel was alerted by the RESYNCHRONIZE
DATA-CHANNEL command that resynchronization is in progress. The
server side now reads the data, seeking the first mark.

5. The server side reads and discards the first mark and the dummy identifier.

6. The user side sends a second mark.

7. The user side sends the unique identifier.

8. The server side recognizes the mark and the unique identifier that follows,
and the resynchronization is complete. The data channel is no longer in the
unsafe state.

265

June 1986 Network, Medium, and Protocol Descriptions

35.3.9 NFILE Command Descriptions

35.3.9.1 Conventions Used In NFILE Command Descriptions

This section defines the conventions used in the NFILE command descriptions and
explains some· syntax rules that apply to NFILE commands and responses. A
complete understanding of this section is necessary before you begin to write an
NFILE server.

The conceptual data types mentioned in the command descriptions must be mapped
into token list representation to be transmitted in the token list stream.
Arguments and return values are defined as being a "string", "integer",
"keyword", "keyword list", "Boolean truth", and so on. To determine the mapping
of these conceptual data types into token list representation: See the section
"Mapping Data Types Into Token List Representation", page 257.

Command and Response Format

Each of the command descriptions begins by giving the command format and
response format. Here is the beginning of the DATA-CONNECTION command
description:

Command Format:

(DATA-CONNECTION tid new-input-handle new-output-handle)

Response Format:

(DATA-CONNECT I ON tid connection-identifier)

The command descriptions follow these conventions:

1. NFILE commands and responses are transmitted as top-level token lists.

Top-level token lists are enclosed in parentheses in these command
descriptions. These parentheses are not sent literally across the control or
data connections, but are a shorthand representation of special control tokens
that delimit top-level token lists. Specifically, TOP-LEVEL-L I ST -BEG I N starts a
top-level token list; TOP-LEVEL-L I ST -END ends a top-level token list.

2. NFILE command names are keywords.

The command name is required in every command and command response.
All NFILE command names are keywords. Keywords appear in the NFILE
documentation as their names in uppercase. For example, DATA
CONNECTION and DELETE are NFILE command names.

3. A unique transaction identifier (tid) identifies each command.

266

Networks June 1986

The transaction identifier is a string made up by the user side to identify
this particular transaction, which is composed of the command and the
response associated with this command. The transaction identifier is
abbreviated in the command descriptions as tid. Transaction identifiers are
limited to fifteen characters in length. The transaction identifier is required
in every command and command response.

4. Italics are used for placeholder arguments.

The transaction identifier, command ar~ments, and command return values
are italicized to indicate that they are placeholders for real values.

Optional Arguments

Many NFILE commands have optional arguments. Optional arguments can be
supplied (with appropriate values), or left out. If optional arguments are left out,
their omission must be made explicit by means of substituting the empty token list
in their place. Any optional arguments or return values that are trailing can be
omitted without including the empty token list.

For example, the text of the DELETE command description explains that either a
handle or a pathname must be supplied, but not both; therefore, one of them is an
optional argument. Here is the command format of DELETE:

(DELETE tid handle pathname)

If you supply a handle and no pathname, the command format is:

(DELETE tid handle)

If you supply a pathname and no handle, the command format is:

(DELETE tid empty-token-list pathname).

The empty token list in the token list stream appears as a LIST -BEG I N followed
immediately by a LIST -END.

Optional Keyword/Value Pairs

Four NFILE commands have optional keyword/value pairs. These commands are:
COMPLETE, LOGIN, OPEN, and READ. Optional keyword/value pairs can be
either included in the command or omitted entirely. There is no need to explicitly
omit optional keyword tokens, unlike optional arguments. The order of the option
keyword/value pairs is not significant.

If included, optional keyword/value pairs are composed of the keyword itself,
followed by its associated value. The values associated with the keywords can be

267

June 1986 Network, Medium, and Protocol Descriptions

keywords, lists, strings, Booleans, integers, dates, date-or-never's, and time
intervals. The text of each command description states what type of value is
appropriate for each optional keyword.

Optional keyword/value pairs appear in the text as the keyword only, in italicized
uppercase letters. For example, here is the format of the LOGIN command:

Command Format:

(LOGIN tid user password FILE-SYSTEM USER-VERSION)

FILE-SYSTEM and USER-VERSION are two optional keywords associated with
the LOGIN command. The user side can supply USER-VERSION, and omit
FILE-SYSTEM as shown in this example:

(LOGIN T105 tjones abc123 USER-VERSION 2)

As seen above, the optional keyword/value pair USER-VERSION, if supplied in a
command, is replaced by the keyword USER-VERSION, followed by the value to be
used for that keyword (in this example, 2).

35.3.9.2 Data Channel Handles and Direct File Identifiers

Several NFILE commands require an argument that specifies an open stream.
This kind of argument is called a handle in the command description. It is always
a string type argument. A handle can be either a data channel handle or a direct
file identifier, depending on the mode of the opening:

Data Stream

Direct Access

The handle must identify a data channel that is bound to an
open stream.

The general rule is that the handle must be a direct file
identifier. A direct file identifier specifies a direct access
stream. It is the same as the value supplied in the
DIRECT-FILE-ID keyword/value pair in the OPEN command. It
is used for all operations that identify an open server stream
rather than a data channel.

Two NFILE commands applicable to direct access openings are
exceptions to the general rule. The handle supplied in ABORT
and CONTINUE cannot be a direct file identifier, but must be a
data channel handle instead.

35.3.9.3 Full Path name Syntax of the Server Host

Some arguments and return values in the NFILE command descriptions are strings
in the full pathname syntax of the server host. These pathnames contain no host
identifiers of any kind. These pathnames are fully defaulted, in the sense that

268

Networks June 1986

they have a directory and file name (and file type, if the server operating system
supports file types). If appropriate, a device is referenced in the pathname. If the
server file system supports version numbers, there is always an explicit version
number, even if that number or other specification is that system's representation
of "newest" or "oldest".

35.3.9.4 Format of NFILE File Property/Value Pairs

Several NFILE commands request information regarding the properties of files or
directories. These commands include: DIRECTORY, MULTIPLE-FILE-PLISTS,
PROPERTIES, and CHANGE-PROPERTIES. This section describes how file
property information is conveyed over the token list stream.

File property information is usually sent in property/value pairs, where the property
identifies the property, and the following value gives the value of that property for
the specified file. For a list of keywords related to file properties, and the type of
value associated with each keyword: See the section "Recognized Keywords
Denoting File Properties", page 268.

Each property is denoted either by a keyword or an integer. You can mix both
ways of specifying properties (keyword or integer) within a single description. An
integer is interpreted as an index into the Property Index Table, an array of
property keywords. The server can optionally send a Property Index Table to the
user during the execution of the LOGIN command, although it is not required.

In command arguments, file properties cannot be specified with integers; keywords
must be used to specify file properties in command arguments. Integers can be
used to denote file properties only in command responses.

Property values can be any of the following: keywords, keyword lists, integers,
strings, Boolean values, dates, date-or-never's, or time intervals. For information
on how each type of value is mapped into token list representation: See the
section "Mapping Data Types Into Token List Representation", page 257.

35.3.9.5 Recognized Keywords Denoting File Properties

This section lists the keywords associated with file properties. This list is not
intended to be restrictive. If a programmer implementing NFILE needs a new
keyword, a new keyword (not on this list) can be invented. The type of value of
any new keywords is by default string.

The keywords are sorted here by type. For further information on the meaning of
each keyword: See the function fs:directory-list in Reference Guide to Streams,
Files, and I/O.

Integers BLOCK-SIZE, BYTE-SIZE, GENERATION-RETENTION-COUNT,
LENGTH-IN-BLOCKS, LENGTH-IN-BYTES,
DEFAULT-GENERATION-RETENTION-COUNT

269

June 1986 Network, Medium, and Protocol Descriptions

Dates CREATION-DATE, MODIFICATION-DATE

Date-or-never's REFERENCE-DATE, INCREMENTAL-DUMP-DATE,
COMPLETE-DUMP-DATE, DATE-LAST-EXPUNGED,
EXPIRATION-DATE

Time intervals AUTO-EXPUNGE-INTERVAL

Keyword Lists SETTABLE-PROPERTIES, LINK-TRANSPARENCIES,
DEFAULT-LINK-TRANSPARENCIES

Boolean values DELETED, DONT-DELETE, DONT-DUMP, DONT-REAP,
SUPERSEDE-PROTECT, NOT-BACKED-UP, OFFLINE,
TEMPORAR~CHARACTERS, DIRECTORY

Strings ACCOUNT, AUTHOR, LINK-TO, PHYSICAL-VOLUME,
PROTECTION, VOLUME-NAME, PACK-NUMBER, READER,
DISK-SP ACE-DESCRIPTION, and any keywords not on this list

35.3.10 NFILE Commands

It is important to understand the conventions used in each of the following
command descriptions. See the section "NFILE Command Descriptions", page 265.

35.3.10.1 ABORT NFILE Command

Command Format:

(ABORT tid input-handle)

Response Format:

(ABORT tid)

ABORT cleanly interrupts and prematurely terminates a single direct access mode
data transfer initiated with READ. The required input-handle string argument
identifies a data channel on which an input transfer is currently taking place; this
must be a direct access transfer. input-handle must identify a data channel; it
cannot be a direct file identifier.

Upon receiving the ABORT command, the server checks to see if a transfer is still
active on that channel. If so, the server terminates the transfer by telling the
data connection logical process to stop transferring bytes of data. The user side
need issue this command only when there are outstanding unread bytes. This
excludes the case of the data channel having been deestablished or reallocated by
the user side.

Whether or not a transfer is active on that channel, the user side puts the data
channel into the unsafe state. Before the data channel can be used again, it must
be resynchronized.

270

Networks

35.3.10.2 CHANGE-PROPERTIES NFILE Command

Command Format:

(CHANGE-PROPERTIES tid handle pathname property-pairs)

Response Format:

(CHANGE-PROPERTIES tid)

June 1986

CHANGE-PROPERTIES changes one or more properties of a file. Either a handle
or a pathname must be given, but not both. Whichever one is given must be
supplied as a string. handle identifies a data channel that is bound to an open
file. pathname identifies a file on the server machine.

property-pairs is a required token list of keyword/value pairs, where the name of
the property to be changed is the keyword, and the desired new property value is
the value.

The properties that can be changed are host-dependent, as are any restrictions on
the values of those properties. The properties that can be changed are the same
as those returned as settable-properties, in the command response for the
PROPERTIES command. See the section "PROPERTIES NFILE Command", page
299.

The server tries to modify all the properties listed in property-pairs to the desired
new values. There is currently no definition about what should be done if the
server can successfully change some properties but not others.

For further information on file property keywords and associated values:

See the section "Format of NFILE File PropertyN alue Pairs", page 268.
See the section "Recognized Keywords Denoting File Properties", page
268.

35.3.10.3 CLOSE NFILE Command

Command Format:

(CLOSE tid handle abort-p)

Response Format:

(CLOSE tid truename binary-p other-properties)

CLOSE terminates a data transfer, and frees a data channel. The handle must be
a data channel handle for a data stream opening, or a direct file identifier for a
direct access opening. If a data channel is given, a transfer must be active on
that handle. If abort-p is supplied as Boolean truth, the file is close-aborted, as
described below.

"Closing the file" has different implications specific to each operating system. It
generally implies invalidation of the pointer or logical identifier obtained from the

271

June 1986 Network, Medium, and Protocol Descriptions

operating system when the file was .. opened", and freeing of operating system
and/or job resources associated with active file access. For output files, it involves
ensuring that every last bit sent by the user has been successfully written to disk.
The server should not send a successful response until all these things have
completed successfully.

The server sends the keyword token EOF on the data channel, to indicate that the
end of data has been reached.

In either data stream or direct access mode, the user can request the server to
close-abort the open stream, instead of simply closing it. To close-abort a stream
means to close it in such a way, if possible, that it is as if the file had never been
opened. In the specific case of a file being created, it must appear as if the file
had never been created. This might be more difficult to implement on certain
operating systems than others, but tricks with temporary names and close-time
renamings by the server can usually be used to implement close-abort in these
cases. In the case of a file being appended to, close-abort means to forget the
appended data.

An Unsuccessful CLOSE Operation

For the normal CLOSE operation (not a close-abort), after writing every last bit
sent by the user to disk, and before closing the file, the server checks the data
channel specified by handle to see if an asynchronous error description is
outstanding on that channel. That is, the server must determine whether it has
sent an asynchronous error description to the user, to which the user has not yet
responded with a CONTINUE command. If so, the server is unable to close the
file, and therefore sends a command error response indicating that an error is
pending on the channel. The appropriate three-letter error code is EPC. See the
section .. NFILE Error Handling", page 304.

A Successful CLOSE Operation

The return values for OPEN and CLOSE are syntactically identical, but the values
might have changed somewhat between the file being opened and closed. For
example, the truename return value is supplied after all the close-time renaming of
output files is done and the version numbers resolved (for operating systems
supporting version numbers). Therefore, on some systems the truename when the
file was opened is different than the truename after it has been closed.

For a description of the CLOSE return values: See the section .. NFILE OPEN
Response Return Values", page 297.

If the user gives the CLOSE command with abort-p supplied as Boolean truth, thus
requesting a close-abort of the file, the server need not check whether an
asynchronous error description is outstanding on the channel. The server simply
close-aborts the file.

272

Networks

35.3.10.4 COMPLETE NFILE Command

Command Format:

(COMPLETE tid string pathname DIRECTION NEW-OK DELETED)

Response Format:

(COMPLETE tid new-string success)

COMPLETE performs file pathname completion.

June 1986

string is a partial filename typed by the user and pathname is the default name
against which it is being typed. Both string and pathname are required
arguments, and are of type string.

The other arguments are optional keyword/value pairs. NEW-OK is Boolean; if
followed by Boolean truth, the server should allow either a file that already exists,
or a file that does not yet exist. The default of NEW-OK is false; that is, the
server does not consider files that do not already exist.

DELETED is a Boolean type argument; if followed by Boolean truth, the server is
instructed to look for files that have been deleted but not yet expunged, as well as
non-deleted files. The default is to ignore soft-deleted files.

DIRECTION can be followed by READ, to indicate that the file is to be read. If
the file is to be written, DIRECTION can be followed by WRITE. The default is
READ.

The filename is completed according to the files present in the host file system,
and the expanded string new-string is returned. new-string is always a string
containing a file name: either the original string, or a new, more specific string.
The value of success indicates the status of the completion. Either OLD or NEW
means complete success, whereas the empty token list means failure. The
following keyword values of .success are possible:

OLD The string completed to the name of a file that exists.

NEW The string completed to the name of a file that could be created.

Empty token list
The operation failed for one of the following reasons:

• The file is on a file system that does not support completion.
new-string is supplied as the unchanged string.

• There is no possible completion. new-string is supplied as the
unchanged string.

• There is more than one possible completion. The given string is
completed up to the first point of ambiguity, and the result is
supplied as new-string.

273

June 1986 Network, Medium, and Protocol Descriptions

• A directory name was completed. Completion was not successful
because additional components to the right of this directory remain to
be specified. The string is completed through the directory name and
the delimiter that follows it, and the result is returned in new-string.

Filename completion is a host-dependent operation. The Symbolics computer
performs filename completion with the function fs:complete-pathname. The
documentation on that function contains some useful guidelines: See the function
fs:complete-pathname in Reference Guide to Streams, Files, and lID.

35.3.10.5 CONTINUE NFILE Command

Command Format:

(CONT I NUE tid handle)

Response Format:

(CONT I NUE tid)

CONTINUE resumes a data transfer that was temporarily suspended due to an
asynchronous error. Each asynchronous error description has an optional
argument of REST ART ABLE, indicating whether it makes any sense to try to
continue after this particular error occurred. CONTINUE tries to resume the
data transfer if the error is potentially recoverable, according to the
REST ART ABLE argument in the asynchronous error description. For a discussion
of asynchronous errors: See the section "NFILE Error Handling", page 304.

handle is a required string-type argument that refers to the handle of the data
channel that received an asynchronous error. That data channel could have been
in use for a data stream or direct access transfer. handle cannot be a direct file
identifier.

If the asynchronous error description does not contain the REST ART ABLE
argument, and the user issues the CONTINUE command anyway, the server gives
a command error response.

35.3.10.6 CREATE-DIRECTORY NFILE Command

Command Format:

(CREATE-DIRECTORY tid pathname property-pairs)

Response Format:

(CREATE-DIRECTORY tid dir-truename)

CREATE-DIRECTORY creates a directory on the remote file system. The required
pathname argument is a string identifying the pathname of the directory to be
created. The return value dir-truename is the pathname of the directory that was
successfully created. Both of these pathnames are examples of pathname as

274

Networks June 1986

directory. For a discussion of the concept of pathname as directory: See the
section "Directory Pathnames and Directory Pathnames as Files" in Reference
Guide to Streams, Files, and I/O.

property-pairs is a keyword/value list of properties that further define the
attributes of the directory to be created; the allowable keywords and associated
values are operating system dependent. If property-pairs is supplied as the empty
token list, default access and creation attributes apply and should be assured by
the server.

For further information on file property ke~ords and associated values:

See the section "Format of NFILE File PropertyN alue Pairs", page 268.
See the section "Recognized Keywords Denoting File Properties", page
268.

35.3.10.7 CREATE-LINK NFILE Command

Command Format:

(CREATE-LINK tid pathname target-pathname property-pairs)

Response Format:

(CREATE-LINK tid link-truename)

CREATE-LINK creates a link on the remote file system.

pathname is the pathname of the link to be created; target-pathname is the place
in the file system to which the link points. Both are required arguments. The
return value link-truename names the resulting link.

If a server on a file system that does not support links receives the CREATE
LINK command, it sends a command error response.

The arguments pathname and target-pathname, and the return value link-truename,
are all strings in the full pathname syntax of the server host. For further details
on full pathname syntax: See the section "Full Pathname Syntax of the Server
Host", page 267.

The required property-pairs argument is a token list of keyword/value pairs. These
properties and their values specify certain attributes to be given to the link. If no
property pairs are given in the command, the server should apply a reasonable
default set of attributes to the link.

For further information on file property keywords and associated values:

See the section "Format of NFILE File PropertyN alue Pairs", page 268.
See the section "Recognized Keywords Denoting File Properties", page
268.

275

June 1986 Network, Medium, and Protocol Descriptions

35.3.10.8 DATA-CONNECTION NFILE Command

Command Format:

(DATA-CONNECTION tid new-input-handle new-output-handle)

Response Format:

(DATA-CONNECT I ON tid connection-identifier)

DATA-CONNECTION enables the user side to coordinate the establishment of a
new data connection. The user side supplies two required string arguments,
new-input-handle and new-out put-handle. These arguments are used by future
commands to reference the two data channels that constitute the data connection
now being created. new-input-handle describes the server-to-user data channel,
and new-output-handle describes the user-to-server channel. new-in put-handle and
new-output-handle cannot refer to any data channels already in use.

Upon receiving the DATA-CONNECTION command, the server arranges for a
logical port (called socket or contact name on some networks) to be made available
on the foreign host machine. When the server has made that port available, it
must inform the user of its identity. The server relays that information in the
command response, in the required connection-identifier, a string. The server then
listens on the port named by connection-identifier, and waits for the user side to
connect to it.

Upon receiving the success command response, the user side supplies the
connection-identifier to the local network implementation, in order to connect to
the specified port. The data connection is not fully established until the user side
connects successfully to that port. This command is unusual in that the
successful command response' does not signify the completion of the command; it
indicates only that the server has fulfilled its responsibility in the process of
establishing a data connection.

The connection-identifier is used only once; it provides the the user with the
correct identity of the logical port that the server has provided. NFILE expects
the connection-identifier to be a string, but places no further restrictions on the
nature or character of the connection-identifier; the network and its implementation
determine the connection-identifier. In all future NFILE commands that need to
reference either of the data channels that constitute this data connection, the
new-input-handle and new-out put-handle are used.

The DATA-CONNECTION command is used to establish a data connection
whenever one is needed. The two data channels that comprise this data
connection can be used either for data stream transfers or direct access transfers.

For more information about data connections: See the section "NFILE Control
and Data Connections", page 258.

276

Networks

35.3.10.9 DELETE NFILE Command

Command Format:

(DELETE tid handle pathname)

Response Format:

(DELETE tid)

DELETE deletes a file on the remote file system.

June 1986

Either a handle or a pathname must be supplied, but not both. If given, the
handle must be a data channel handle for a data stream opening, or a direct file
identifier for a direct access opening. pathname is a string in the full pathname
syntax of the server host. For further details on full pathname syntax: See the
section "Full Pathname Syntax of the Server Host", page 267.

With a pathname supplied, the DELETE command causes the specified file to be
deleted. DELETE has different results depending on the operating system
involved. That is, DELETE causes soft deletion on TOPS-20 and LMFS, and hard
deletion on UNIX and Multics. If you try to delete a delete-through link on a
LMFS, you delete its target instead.

If the handle argument is supplied to DELETE, the server deletes the open file
bound to the data channel specified by handle at close time. This is true in both
the output and input cases.

The NFILE DELETE command differs from the QFILE DELETE command,
specifically when the handle argument is supplied, to indicate that a stream is to
be "deleted". In QFILE, when a DELETE command is sent to a stream while it is
open, the file is "close-aborted" instead of closed normally. NFILE also offers a
way to close-abort a file: give the NFILE CLOSE command and supply the abort-p
argument as Boolean truth. The NFILE DELETE command cannot be used to
close-abort a file.

35.3.10.10 DIRECT-OUTPUT NFILE Command

Command Format:

(DIRECT -OUTPUT tid direct-handle output-handle)

Response Format:

(DIRECT-OUTPUT tid)

DIRECT-OUTPUT starts and stops output data flow for a direct access file
opening. DIRECT-OUTPUT explicitly controls binding and unbinding of an output
data channel to an open direct stream.

direct-handle is a required argument, and output-handle is optional.

If supplied, output-handle is a request to bind a currently free, user-side-selected

277

June 1986 Network, Medium, and Protocol Descriptions

output data connection (indicated by the output-handle) to the open direct stream
designated by the direct-handle. The server binds the data channel and begins
accepting data from that connection and writing it to the stream.

If the output-handle is omitted, this is a request to unbind the channel and
terminate the active output transfer.

35.3.10.11 DIRECTORY NFILE Command

Command Format:

(01 RECTORY tid input-handle pathname control-keywords properties)

Response Format:

(01 RECTORY tid)

DIRECTORY returns a directory listing including the identities and attributes for
logically related groups of files, directories, and links. If the command is
successful, a single token list containing the requested information is sent over
the data channel specified by input-handle, and the data channel is then implicitly
freed by both sides. For details on the format of the token list: See the section
"NFILE DIRECTORY Data Format", page 279.

pathname specifies the files that are to be described; it is a string in the full
pathname syntax of the server host. For further details on full pathname syntax:
See the section "Full Pathname Syntax of the Server Host", page 267.

The pathname generally contains wildcard characters, in operating-system-specific
format, describing potential file name matches. Most operating systems provide a
facility that accepts such a pathname and returns information about all files
matching this pathname. Some operating systems allow wildcard (potential
multiple) matches in the directory or device portions of the pathname; other
operating systems do not. There is no clear contract at this time about what is
expected of servers on systems that do not allow wildcard matches, when
presented with a wildcard.

properties is a token list of keyword/value pairs. If properties is omitted or
supplied as the empty token list, the server sends along all properties. If any
properties are supplied, the user is requesting the server to send only those
properties. However, it is never an error for the server to send more information
than is requested.

control-keywords Argument to DIRECTORY

control-keywords is a token list of keyword/value pairs. The control-keywords affect
the way the DIRECTORY command works on the server machine. Although some
of the options below request the server to limit (by some filter) the data to be
returned, it is never an error if the server returns more information than is
requested.

278

Networks June 1986

The following keywords are recognized:

DELETED

FAST

Treats soft-deleted files as though they still exist. Without this
option, they are not to be included among the files listed. Such
files have the DELETED property indicated as "true" among
their properties. DELETED is ignored on systems that do not
support soft deletion.

Speeds up the operation and data transmission by not listing any
properties for the files concerned.

NO-EXTRA-INFO Specifies that the server is to suppress listing those properties
that are generally more difficult or expensive to obtain. For
example on Symbolics computers, NO-EXTRA-INFO speeds up
the File System Editor (FSEdit) when listing the top level of
hierarchical directory systems. This option affects the
appearance of directories in the listing by shortening set of
properties listed for directories (as opposed to files and links).
The set of properties is abbreviated by the following rule: Any
property requiring that the file system go to the actual directory
file to extract information (as opposed to extracting information
from the directory entry) need not be listed. This typically
eliminates listing of directory-specific properties such as
information about default generation counts and expunge dates.

DIRECTORIES-ONLY
This option changes the semantics of DIRECTORY fairly
drastically. Normally, the server returns information about all
files, directories, and links whose pathnames match the supplied
pathname. This means that for each file, directory, or link to
be listed, its directory name must match the (potentially
wildcarded) directory name in the supplied pathname, its file
name must match the file name in the supplied pathname, and
so on.

When DIRECTORIES-ONLY is supplied, the server is to list
only directories, not whose pathname matches the supplied
pathname, but whose pathnames expressed as directory
pathnames match the (potentially wildcarded) directory portion of
the supplied pathname. The description of the PROBE
DIRECTORY keyword that can be supplied as the direction
argument of the OPEN command discusses this: See the
section "OPEN NFILE Command", page 288.

It is not yet established what servers on hosts that do not
support this type of action natively are to do when presented

279

June 1986 Network, Medium, and Protocol Descriptions

SORTED

with DIRECTORIES-ONLY and a pathname with a wildcard
directory component.

This causes the directory listing to be sorted. In a sorted
directory listing, multiple versions of a file are consecutive in
increasing version number.

NFILE DIRECTORY Data Format

If the NFILE DIRECTORY command completes successfully, a single token list
containing the requested directory information is sent on the data channel
specified by the input-handle argument in the DIRECTORY command. This
section describes the format of that single token list, and gives further detail on
the properties argument to DIRECTORY.

The token list is a top-level token list, so it is delimited by TOP-LEVEL-LIST -BEGIN
and TOP-LEVEL-L I ST -END. The top-level token list contains embedded token lists.
The first embedded token list contains the empty token list followed by
property/value pairs describing property information of the file system as a whole
rather than of a specific file. NFILE requires one property of the file system to
be present: DISK-SPACE-DESCRIPTION is a string type property describing the

. amount of free file space available on the system. The following embedded token
lists contain the pathname of a file, followed by property/value pairs describing the
properties of that file.

The following example shows the format of the top-level token list returned by
DIRECTORY, for two files. It is expected that the server return several
property/value pairs for each file; the number of pairs returned is not constrained.
In this example, two property/value pairs are returned for the file system, two
pairs are returned for the first file, and only one pair is returned for the second
file.

280

Networks

TOP-LEVEL-LIST-BEGIN
the first embedded token list starts here
an empty embedded token list

LIST-BEGIN
LIST-BEGIN
LIST-END
prop1/value1
prop2/value2
LIST-END
LIST-BEGIN
pathname1
prop1/value1
prop2/value2
LIST-END
LIST-BEGIN
pathname2
prop1/value1
LIST-END
TOP-LEVEL-LIST-END

-- property/value pairs of file system

pathname of the first file
property/value pairs of first file

pathname of the second file
property/value pairs of second file

June 1986

The following example is designed to better show the structure of the top-level
token list by depicting TOP-LEVEL-LIST -BEGIN and TOP-LEVEL-LIST -END by
parentheses and LIST-BEG I Nand LIST-END by square brackets. respectively. The
indentation, blank spaces, and newlines in the example are not part of the token
list, but are used here to make the structure of the token list clear.

([[J propl valuel prop2 value2]
[pathnamel propl valuel prop2 value2]
[pathname2 propl valuel prop2 value2 J)

The pathname is a string in the full pathname syntax of the server host. For
further details on full pathname syntax: See the section "Full Pathname Syntax
of the Server Host", page 267.

For further information on file property/value pairs: See the section "Format of
NFILE File PropertyNalue Pairs", page 268. See the section "Recognized
Keywords Denoting File Properties", page 268.

35.3.10.12 DISABLE-CAPABILITIES NFILE Command

Command Format:

(DISABLE-CAPABILITIES tid capability)

Response Format:

(DISABLE-CAPABILITIES tid cap-l success-l cap-2 success-2 ...)

DISABLE-CAPABILITIES causes a capability to be disabled on the server machine.
capability is a string naming the capability to be disabled. The meaning of the
capability is dependent on the operating system.

281

June 1986 Network, Medium, and Protocol Descriptions

The return values cap-i, cap-2, and so on, are strings specifying names of
capabilities. If the capability named by cap-i was successfully disabled, the
corresponding success-i is supplied as Boolean truth; otherwise it is the empty
token list.

Although the user can specify only one capability to disable, it is conceivable that
the result of disabling that particular capability is the disabling of other, related
capabilities. That is why the command response can contain information on more
than one capability.

35.3.10.13 ENABLE-CAPABILITIES NFILE Command

Command Format:

(ENABLE-CAPABILITIES tid capability password)

Response Format:

(ENABLE-CAPABILITIES tid cap-i success-i cap-2 success-2 ...)

ENABLE-CAPABILITIES causes a capability to be enabled on the server machine.
The password argument is optional, and should be included only if it is needed to
enable this particular capability. Both password and capability are strings. The
meaning of the capability is dependent on the operating system.

The return values cap-i, cap-2 and so on, are strings specifying names of
capabilities. If the capability named by cap-i was successfully enabled, the
corresponding success-i is supplied as Boolean truth; otherwise it is the empty
token list.

Although the user can specify only one capability to enable, it is conceivable that
the result of enabling that particular capability is the enabling of other, related
capabilities. That is why the command response can contain information on more
than one capability.

35.3.10.14 EXPUNGE NFILE Command

Command Format:

(EXPUNGE tid directory-pathname)

Response Format:

(EXPUNGE tid number-of-server-storage-units-freed)

EXPUNG E causes the directory specified by pathname to be expunged. Expunging
means that any files that have been soft deleted are to be permanently removed.

For file systems that do not support soft deletion, the command is to be ignored; a
success command response is sent, but no action is performed on the file system.
In this case, the number-of-server-storage-units-freed return value should be omitted.

directory-pathname is a required string argument in the pathname as directory

282

Networks June 1986

format. The directory-pathname must refer to a directory on the server file
system, and not to a flie. For a discussion of pathname as directory: See the
section "Directory Pathnames and Directory Pathnames as Files" in Reference
Guide to Streams, Files, and I/O.

The return value number-of-server-storage-units-freed is an integer specifying how
many records, blocks, or whatever unit is used to measure file storage on the host
system, were recovered. This return value should be omitted if the server does
not know how many storage units were freed.

The protocol does not define whether directory-pathname is really a pathname as
directory or a wildcard pathname of files to' be expunged. The protocol does not
define whether or not wildcards are permitted, or required to be supported, in the
directory portion of the pathname (representing an implicit request to expunge
many directories).

35.3.10.15 FILEPOS NFILE Command

Command Format:

(FILEPOS tid handle position resync-uid)

Response Format:

(F I LEPOS tid)

FILEPOS sets the file access pointer to a given position. The handle indicates the
file to be affected. handle must be a data channel handle for a data stream
opening, or a direct file identifier for a direct access opening. Both handle and
position are required arguments.

position is an integer indicating to which point in the file the file access pointer is
to be reset. position is either a byte number according to the current byte size
being used, or characters for character openings. Position zero is the beginning of
the file. If this is a character opening, position is measured in server units, not
in Symbolics Computer units.

If the FILEPOS command is given on an input data channel (that is, a data
channel currently sending data from server to user), the affected data channel
must be resynchronized after the FILEPOS is accomplished. The resync-uid is a
unique identifier associated with the resynchronization of the data channel.
resync-uid must be supplied if handle is an input handle, but it is not supplied
otherwise. For more information on the resynchronization procedure: See the
section "NFILE Data Connection Resynchronization", page 263.

In the output case, the user must somehow indicate to the server, on the output
data channel, when the data have come to an end. The user side sends the
keyword token EOF to do so. Upon receiving that control token, the server is free
to position the file pointer according to the position given. When the new file
position is established, the server resumes accepting data at the new file position.

283

June 1986 Network, Medium, and Protocol Descriptions

In most cases, using the direct access mode of transfer is more convenient and
efficient than using FILEPOS with a data stream opening.

There are problems inherent in trying to set a file position of a character-oriented
file on a foreign host, if one machine is a Symbolics Computer and the other is
not. Character set translation must take place. See the section "NFILE
Character Set Translation", page 255. Because of these difficulties, FILEPOS
might not be supported in the future on character files. FILEPOS is not
pro blematic for binary files.

Implementation Hint for FILEPOS NFILE Command

This section provides an implementation hint from the designers and implementors
of the Symbolics Lisp Machine NFILE. This section is useful for any programmer
implementing an NFILE server program.

The server processing of this command (by the control channel handler) must not
attempt to wait for the resynchronization procedure to complete. It is possible
that the user could abort between sending the FILEPOS command and reading for
the mark and resynchronization identifier. That scenario could leave the sender of
the resynchronization identifier, on the server side, blocked for output indefinitely.

Only two commands received on the control connection can break the data channel
out of the blocked state described above: CLOSE with abort-p supplied as Boolean
truth, and the RESYNCHRONIZE-DATA-CHANNEL. Therefore, the control
connection must not wait for the control channel to finish performing the
resynchronization procedure. This wait should instead be performed by the
process managing the data channel.

35.3.10.16 FINISH NFILE Command

Command Format:

(FINISH tid handle)

Response Format:

(FINISH tid truename binary-p other-properties)

FINISH closes a file and reopens it immediately with the file position pointer
saved, thus leaving it open for further I/O. The arguments, results, and their
meaning are identical to those of the CLOSE command. See the section "CLOSE
NFILE Command", page 270. FINISH requires a handle, which has the same
meaning as the handle of the CLOSE command.

In the output case, for both direct mode and data stream mode of openings, the
server writes out all buffers and sets the byte count of the file. The server sends
the keyword token EOF on the data channel, to indicate that the end of data has
been reached. The server leaves the file in such a state that if the system or
server crashes anytime after the FINISH command was given, it would later

284

Networks June 1986

appear as though the file had been closed by this command. However, the file is
not closed now; it is left open for further I/O operations. FINISH is a reliability
feature.

FINISH is somewhat pointless in the input case, but valid. The native Symbolics
file system (LMFS) implements FINISH on an output file by an internal operation
that effectively goes through the work of closing but leaves the file open for
appending.

An Unsuccessful FINISH Operation

Mter writing every last bit sent by the user to disk, and before closing the file,
the server checks the data channel specified by handle to see if an asynchronous
error description is outstanding on that channel. That is, the server must
determine whether it has sent an asynchronous error description to the user, to
which the user has not yet responded with a CONTINUE command. If so, the
server is unable to finish the file, and it must send a command error response
response, indicating that an error is pending on the channel. The appropriate
three-letter error code is EPC. See the section "NFILE Error Handling", page
304.

A Successful FINISH Operation

Mter the user receives the successful response from the server, active data
transfer is resumed. That is, for a data stream input opening, or a direct opening
with an input channel active, the data channel is reactivated and resumes sending
data from the file at the point where the control channel interrupted it. In the
case of a data stream output opening, or a direct opening with an output channel
active, the output channel is set back into a state where it is prepared to receive
data to transmit to the file at the point where it was interrupted by the FINISH
command.

35.3.10.17 HOME-DIRECTORY NFILE Command

Command Format:

(HOME-DIRECTORY tid user)

Response Format:

(HOME-DI RECTORY tid directory-pathname)

HOME-DIRECTORY returns the full pathname of the home directory on the server
machine for the given user.

user is a string that should be recognizable as a user's login name on the server
operating system. directory-pathname is a string in the pathname as directory
format. For a discussion of pathname as directory: See the section "Directory
Pathnames and Directory Pathnames as Files" in Reference Guide to Streams,
Files, and I/O.

285

June 1986 Network, Medium, and Protocol Descriptions

35.3.10.18 LOGIN NFILE Command

Command Format:

(LOGIN tid user password FILE-SYSTEM USER-VERSION)

Response Format:

(LOGIN tid keyword/value-pairs)

LOGIN logs the given user in to the server machine, using the password if
necessary. Both user and password are string arguments; user is required,
password is optional. An omitted password is valid if the host allows the specified
user to log in without a password. Depending on the operating system and server,
it might be necessary to log in to run a program (in this case the NFILE server
program) on the host. LOGIN establishes a user identity that is used by the
operating system to establish the file author and determine file access rights
during the current session.

The server has the option to reject with an error any command except LOGIN if a
successful LOGIN command has not been performed. This is recommended.
Many operating systems perform the login function in a different process and/or
environment than user programs. The portion of the NFILE server running in
the special login environment could conceivably be capable only of processing the
LOGIN command; this is an implementation detail.

FILE-SYSTEM and USER-VERSION are optional keyword/value pairs. The
FILE-SYSTEM keyword/value pair has the same effect as does QFILE's SET-FILE
SYSTEM command; it selects the identity of the file system to which all following
commands in this session are to be directed. This argument has meaning only if
the server host machine has multiple file systems, and the targeted file system is
other than the default file system that a user would get by initiating a dialogue
with that host. The FILE-SYSTEM argument is an arbitrary token list. If the
server does not recognize it, the server gives an appropriate command error
response.

Currently, the only use of FILE-SYSTEM is for Symbolics Lisp Machine servers to
select the FEP hosts. In this case, the first element in the token list is the
keyword FEP, and the second element in the token list is an integer, indicating
the desired FEP disk unit number. If the server discovers there is no such file
system, the server gives a command error response including the three-letter code
NFS, meaning "no file system".

The user tells the server what version of NFILE it is running by including the
optional USER-VERSION keyword/value pair. The value associated with USER
VERSION can be a string, an integer, or a token list. This document describes
NFILE user version 2 and server version 2.

Upon receiving the representation of the user version, the server can either adjust
certain parameters to handle this particular version, or simply ignore the user

286

Networks June 1986

version altogether. Currently, the only released versions of NFILE are user
version 2 and server version 2.

LOGIN Return Values: keyword/value-pairs

The keywordlvalue-pairs is a token list composed of keywords followed by their
values. The server includes any or all of the following keywords and their values;
they are all optional. The following keywords are recognized:

NAME The value associated with NAME is a string specifying the user
identity, in the server host's terms.

PERSONAL-NAME
The value associated with PERSONAL-NAME is a string
representing the user's personal name, last name first. For
example: "McGillicuddy, Aloysius X.".

HOMEDIR-PATHNAME
The value associated with HOMEDIR-PATHNAME is a string in
the pathname as directory format, indicating the home directory
of the user. For a discussion of pathname as directory: See the
section "Directory Pathnames and Directory Pathnames as Files"
in Reference Guide to Streams, Files, and 110.

GROUP-AFFILIATION
The value associated with GROUP-AFFILIATION is a string
specifying the group to which the user belongs.

SERVER-VERSION
The value associated with SERVER-VERSION can be a string,
an integer, or a token list. The value is a representation of the
version of the server is running. Upon receiving the server
version, the user can: adjust certain parameters to handle this
particular version; accept the version; or close the connection.
Currently, the only released versions of NFILE are user version
2 and server version 2.

PROPERTY-INDEX-TABLE
The value associated with PROPERTY-INDEX-TABLE is a token
list of keywords. This return value enables the server to inform
the user which file properties are meaningful on its file system.
The keywords in PROPERTY-INDEX-TABLE can be used by the
DIRECTORY command (a user request for information on file
properties of a specified directory or directories). The server
can specify a certain property by giving an integer that is the
index of that file property into the PROPERTY-INDEX-TABLE.

287

June 1986 Network, Medium, and Protocol Descriptions

This reduces the volume of data sent during directory listings.
The first element in PROPERTY-INDEX-TABLE is indexed by
the number O. See the section "DIRECTORY NFILE
Command", page 277.

35.3.10.19 MUL TIPLE-FILE-PLISTS NFILE Command

Command Format:

(MULTIPLE-FILE-PLISTS tid input-handle pathlist characters properties)

Response Format:

(MULTIPLE-FILE-PLISTS tid)

MULTIPLE-FILE-PLISTS returns file property information of one or more files.
The server sends the information in a data structure (the format is described later
in this section) on the given input-handle. pathlist is a token list composed of the
pathnames in which the user is interested. The pathnames in path list are strings
in the full pathname syntax of the server host. Unlike for the DIRECTORY
command, wildcards are not allowed in these pathnames. For further details on
full pathname syntax: See the section "Full Pathname Syntax of the Server Host",
page 267.

characters is either Boolean truth (indicating that each file is a character file), the
empty token list (each file is a binary file), or the keyword DEFAULT. DEFAULT
indicates that the server itself is to figure out whether a file is a character or
binary file. For more information on the meaning of the DEFAULT keyword: See
the section "OPEN NFILE Command", page 288. The value of characters can
influence some servers' idea of a file's length.

properties is a token list of keywords indicating which properties the user wants
returned. The server is always free to return more properties than those
requested in the properties argument. If properties is supplied as the empty token
list, the server should transmit all known properties on the files. For a list of
keywords associated with file properties: See the section "Recognized Keywords
Denoting File Properties", page 268.

The server transmits as much of the requested information as possible on the
given input-handle. The information is contained in a top-level token list of
elements. Each element corresponds with a supplied pathname; the order of the
original pathlist must be retained in the returned token list. An element is an
empty token list if the corresponding file or any of its containing directories does
not exist. The elements that correspond to successfully located files are lists
composed of truename followed by any properties. properties are keyword/value
pairs. truename is a string in the full pathname syntax of the server host.

The following example shows TOP-LEVEL-LIST -BEGIN and TOP-LEVEL-LIST -END as
parentheses, and LIST -BEG I Nand LIST -END with square brackets.

288

Networks

For example, the user supplied a pathlist argument resembling:

[filel file2 file3]

June 1986

The server could not locate filel or file3, but did locate file2, and found the length
and author of file2. The top-level token list transmitted by the server is:

([] [truename-of-file2 LENGTH 381 AUTHOR wi" i ams] [])

For further detail on how file properties and values are expressed: See the
section "Format of NFILE File PropertyNalue Pairs", page 268.

35.3.10.20 OPEN NFILE Command

Command Format:

(OPEN tid handle pathname direction binary-p
TEMPORARY RAW SUPER-IMAGE DELETED PRESERVE-DATES
SUBMIT DIRECT-FILE-ID ESTIMATED-LENGTH BYTE-SIZE
IF-EXISTS IF-DOES-NOT-EXlST)

Response Format:

(OPEN tid truename binary-p other-properties)

OPEN opens a file for reading, writing, or direct access at the server host. That
means, in general, asking the host file system to access the file and obtaining a
file nu~ber, pointer, or other quantity for subsequent rapid access to the file.

The OPEN command has the most complicated syntax of any NFILE command.
The OPEN command has required arguments, an optional argument, and many
optional keyword/value pairs. For details on the sytnax of each of these parts of
the OPEN command, See the section "NFILE Command Descriptions", page 265.

The following arguments are required: pathname, direction, and binary-po handle
is an optional argument, which must either be supplied or explicitly omitted by
means of SUbstituting in its place the empty token list.

The OPEN command has many optional keyword/value pairs, which encode
conceptual arguments to the server file system for the OPEN operation. The
OPEN optional keyword/value pairs include:

• TEMPORARY
• RAW
• SUPER-IMAGE
• DELETED
• PRESERVE-DATES
• SUBMIT
• DIRECT-FILE-ID
• ESTIMATED-LENGTH
• BYTE-SIZE

289

June 1986 Network, Medium, and Protocol Descriptions

o IF-EXISTS
o IF-DOES-NOT-EXIST

For a detailed description of all the supported OPEN optional keywords: See the
section "NFILE OPEN Optional KeywordNalue Pairs", page 291.

The OPEN return values reflect information about the file opened, when the
opening is successful. In the case of a probe-type opening, this information is
returned when the given file (or link, or directory) exists and is accessible, even
though the file (or link, or directory) is not actually opened. For detail on the
OPEN return values: See the section "NFILE OPEN Response Return Values",
page 297.

The pathname OPEN Argument

The pathname is a required argument specifying the file to be opened. pathname
is a string in the full pathname syntax of the server host. See the section "Full
Pathname Syntax of the Server Host", page 267.

For some purposes (for example, when the OPEN argument direction is supplied
as PROBE-DIRECTORY), only the directory specified by this pathname is utilized.
See the section "NFILE OPEN Optional KeywordNalue Pairs", page 291.

The handle OPEN Argument

The handle argument of the OPEN command specifies a data channel to be used
for the transfer. Future commands in this session use the same handle to specify
the open stream that is created by opening the file. It is the user side's
responsibility to ensure that handle refers to an existing and free data channel
that does not require resynchronization before use. A handle must be supplied,
unless a probe-type opening is desired (that is, the direction is supplied as PROBE,
PROBE-DIRECTORY, or PROBE-LINK) or a direct access opening is being
requested (that is, a DIRECT-FILE-ID is supplied). In those cases, the empty
token list is supplied for handle.

The direction OPEN Argument

The direction argument must be supplied as one of these keywords: INPUT,
OUTPUT, 10, PROBE, PROBE-DIRECTORY, and PROBE-LINK. The meanings of
the direction keywords are as follows:

INPUT

OUTPUT

Specifies that the file is to be opened for input (server-to-user
transfer). To request a direct access opening, supply a value for
DIRECT-FILE-ID. If no DIRECT-FILE-ID is supplied, the
opening is a data stream opening.

Specifies that the file is to be opened for output (user-to-server

290

Networks

10

June 1986

transfer). To request a direct access opening, supply a value for
DIRECT-FILE-ID. If no DIRECT-FILE-ID is supplied, the
opening is a data stream opening.

Specifies that interspersed input and output will be performed
on the file. This is only meaningful in direct access mode. A
DIRECT-FILE-ID must also be supplied. See the section
"NFILE OPEN Optional KeywordNalue Pairs", page 291.

If direction is supplied as PROBE, PROBE-LINK, or PROBE-DIRECTORY, the
opening is said to be a probe-type opening. The DIRECT-FILE-ID option is
meaningless and an error for probe-type openings. The file handle must be
supplied as an empty token list for probe-type openings.

PROBE

PROBE-LINK

Specifies that the file is not to be opened at all, but simply
checked for existence. If the file does not exist or is not
accessible, the error indications and actions are identical to
those that would be given for an INPUT opening. If the file
does exist, the successful command response contains the same
information as it would have if the file had been opened for
INPUT. If it is a link, the link is followed to its source.

Like PROBE, with one difference. PROBE-LINK specifies that
if the pathname is found to refer to a link, that link is not to be
followed, and information about the link itself is to be returned.

PROBE-DIRECTORY
PROBE-DIRECTORY requests information about the directory
designated by the pathname argument. In the PROBE
DIRECTORY case, the pathname argument refers to the
directory on which information is requested. In all other cases,
the pathname refers to a file to be opened. If pathname
contains a file name and file type, these parts of the pathname
are ignored for PROBE-DIRECTORY openings as long as they
are syntactically valid. This option exists because on some
systems it is syntactically impossible to explicitly specify a
directory any way other than as the directory portion of a
pathname.

The blnary-p OPEN Argument

The binary-p argument is supplied as Boolean truth (meaning that the data to be
transferred are binary data), the empty token list (meaning that character type
data are to be transferred), or the keyword DEFAULT. The value of binary-p
affects the mode in which the server opens the file, as well as informing it
whether or not character set translation must be performed.

291

June 1986 Network, Medium, and Protocol Descriptions

If binary-p is supplied as the empty token list, the opening is said to be a
character opening. The server performs character set translation between its
native character set and the Symbolics character set. The data are transferred
over the data connection one character per eight-bit byte. See the section "NFILE
Character Set Translation", page 255. The check (described in the DEFAULT
OPEN option) for Symbolics object files is not performed.

If binary-p is supplied as Boolean truth, the opening is said to be a binary
opening. The user side supplies the byte size via the BYTE-SIZE option; if not
supplied, the default byte size is 16 bits. If byte size is less than 8, the file data
are transferred byte by byte. If the byte size is 8 or greater, the server transfers
each byte of the file as two eight-bit bytes, low-order first. The check for
Symbolics object files is not performed.

binary-p can also be supplied as the keyword DEFAULT. DEFAULT specifies that
the server itself is to determine whether to transfer binary or character data.
DEFAULT is meaningful only for input openings; it is an error for OUTPUT, 10,
or probe-type openings. For file systems that maintain the innate binary or
character nature of a file, the server simply asks the file system which case is in
force for the file specified by pathname.

When binary-p is supplied as DEFAULT, on file systems that do not maintain this
information, the server is required to perform a heuristic check for Symbolics
object files on the first two 16-bit bytes of the file. If the file is determined to be
a Symbolics object file, the server performs a BINARY opening with BYTE-SIZE of
16; otherwise, it performs a CHARACTER opening.

Th~ details of the check are as follows: if the first 16-bit byte is the octal number
170023 and the second 16-bit byte is any number between 0 and 77 octal
(inclusive), the file is recognized as a Symbolics object file. In any other case, it
is not.

NFILE OPEN Optional Keyword/Value Pairs

The OPEN command has many optional keyword/value pairs that encode
conceptual arguments to the file system for the OPEN operation.

The following options are used often:

BYTE-SIZE Must be followed by an integer between 1 and 16, inclusive, or
the empty token list. BYTE-SIZE is meaningful only for binary
openings. BYTE-SIZE can be ignored for probe-type openings.
It can be omitted entirely for character openings, but if
supplied, must be followed by the empty token list. If binary-p
is supplied as DEFAULT, BYTE-SIZE can be omitted entirely,
or followed by the empty token list.

If a binary opening is requested and BYTE-SIZE is not supplied,

292

Networks

DELETED

June 1986

the assumed value is 16 for output openings. For input binary
openings, the default is the host file system's stored conception
of the file's byte size (for those hosts that natively support byte
size). This information is of great value to the Symbolics
computer file copier when it does not know about the particular
file type involved. For file systems that do not natively support
byte size, the default byte-size on binary input is 16.

For file systems that maintain the innate byte-size of each file,
the server should supply this number to the appropriate
operating system interface that performs the semantics of
opening the file. For other operating systems, a file written
with a given byte size must produce the same bytes in the same
order when read with that byte size. In this case, the server or
host operating system can choose any packing scheme that
complies with this rule.

Operating systems that do not support byte size must ensure
that binary files written from user ends of the current protocol
can be read back correctly. However, the server can increase
the utility of the Symbolics computer at a customer site by
choosing packing schemes that allow all bits of the server host's
word to be accessed and concur with other packing schemes
used by native host software.

For example, it would be appropriate for a Multics NFILE
server to pack:

Byte Size

7, 8, or 9 bits
10, 11, or 12 bits
13, 14, 15, or 16 bits

Packing Scheme

four per 36-bit word
three per 36-bit word
two per 36-bit word

In the 9-bit packing mode, native Multics character-oriented
software can access each logical byte sequentially. In 18-bit
packing mode, each Symbolics byte is in a halfword, easily
accessible and visible in an octal representation. To achieve
maximum data transfer rate and access all bits of a Multics
word, a byte size of 12 must be specified.

If supplied as Boolean truth, DELETED specifies that "deleted"
files are to be treated as though they were not "deleted".

June 1986

293

Network, Medium, and Protocol Descriptions

DELETED is meaningful only for operating systems that
support "soft deletion" and subsequent "undeletion" of files.
Other operating systems must ignore this option. Normally,
deleted files are not visible to the OPEN operation; this option
makes them visible.

DELETED can also be followed by the empty token list, which
has the same effect as omitting the DELETED keyword/value
pair entirely. For output openings, DELETED is meaningless
and an error if supplied.

DIRECT-FILE-ID If supplied, the DIRECT-FILE-ID indicates that the opening is
to be a direct access mode opening. If not supplied, the opening
is a data stream opening. The value of DIRECT-FILE-ID is a
string, generated by the user, never before used as a
DIRECT-FILE-ID, and not designating any data channel. The
DIRECT-FILE-ID is a unique identifier for the direct access
stream. It is used for all operations that identify an open
server stream rather than a data channel. The
DIRECT-FILE-ID is used to identify a stream for a direct access
opening, just as a file handle is used to identify an open stream
for a data stream opening. The PROPERTIES, CLOSE, and
RENAME commands use the DIRECT-FILE-ID in this way.
There are only two NFILE commands applicable to direct access
openings (ABORT and CONTINUE) that do not use the
DIRECT-FILE-ID, but use a data channel handle instead.

PRESERVE-DATES
If supplied as Boolean truth, PRESERVE-DATES specifies that
the server is to attempt to prevent the operating system from
updating the "reference date" or "date-time used" of the file.
This is meaningful only for input openings, and is an error
otherwise.

The Symbolics Lisp Machine operating system invokes this
option for operations such as View File in the editor, where it
wishes to assert that the user did not "read" the file, but just
"looked at it". Servers on operating systems that do not support
reference dates or users revising or suppressing update of the
reference dates must ignore this option.

ESTIMATED-LENGTH
The value of ESTIMATED-LENGTH is an integer estimating
the length of the file to be transferred. This option is
meaningful and permitted only for output openings.
ESTIMATED-LENGTH enables the user end to suggest to the

294

Networks

IF-EXISTS

June 1986

server's file system how long the file is going to be. This can
be useful for file systems that must preallocate files or file
maps or that accrue performance benefits from knowing this
information at the time the file is first opened. This estimate,
if supplied, is not required to be exact. It can be ignored by
servers to which it is not useful or interesting. The units of
the estimate are characters for character openings, and bytes of
the agreed-upon byte size for binary openings. The character
units should be server units, if possible, but since this is only
an estimate, Symbolics Lisp Machine units are acceptable. See
the section "NFILE Character Set Translation", page 255.

Meaningful only for output openings, ignored otherwise, but not
diagnosed as an error. The value of IF-EXISTS is a keyword
that specifies the action to be taken if a file of the given name
already exists. The semantics of the values are derived from
the Common Lisp specification and repeated here for
completeness. If the file does not already exist, the IF-EXISTS
option and its value are ignored.

If the user side does not give the IF-EXISTS option, the action
to be taken if a file of the given name already exists depends on
whether or not the file system supports file versions. If it does,
the default is ERROR (if an explicit version is given in the file
pathname) or NEW-VERSION (if the version in the file
pathname is the newest version). For file systems not
supporting versions, the default is SUPERSEDE. These actions
are described below.

IF-EXISTS provides the mechanism for overwriting or
appending to files. With the default setting of IF-EXISTS, new
files are created by every output opening.

Operating systems supporting soft deletion can take different
actions if a "deleted" file already exists with the same name
(and type and version, where appropriate) as a file to be created.
The Symbolics Lisp Machine file system (LMFS) effectively uses
SUPERSEDE, even if not asked to do so. Other servers and file
systems are urged to do similarly. Recommended action is to
not allow deleted files to prevent successful file creation (with
specific version number) even if an IF-EXISTS option weaker
than SUPERSEDE, RENAME, or RENAME-AND-DELETE is
specified or implied.

Here are the possible values and their meanings:

295

June 1986 Network, Medium, and Protocol Descriptions

ERROR Reports an error.

NEW-VERSION Creates a new file with the same file name
but with a larger version number. This is the
default when the version component of the
filename is newest. File systems without
version numbers can implement this by
effectively treating it as SUPERSEDE.

RENAME Renames the existing file to some other name
and then creates a new file with the specified
name. On most file systems, this renaming
happens at the time of a successful close.

RENAME-AND-DELETE

OVERWRITE

TRUNCATE

APPEND

SUPERSEDE

Renames the existing file to some other name
and then deletes it (but does not expunge it,
on those systems that distinguish deletion
from expunging). Then it creates a new file
with the specified name. On most file
systems, this renaming happens at the time of
a successful close.

Output operations on the stream destructively
modify the existing file. New data start
replacing old data at the beginning of the file;
however, the file is not truncated to length
zero upon opening.

Output operations on the stream destructively
modify the existing file. The file pointer is
initially positioned at the beginning of the
file; at that time, TRUNCATE truncates the
file to length zero and frees disk storage
occupied by it.

Output operations on the stream destructively
modify the existing file. New data are placed
at the current end of the file.

Supersedes the existing file. This means that
the old file is removed or deleted and
expunged. The new file takes its place. If
possible, the file system does not destroy the
old file until the new stream is closed, against
the possibility that the stream will be close
aborted. This differs from NEW-VERSION in

296

Networks June 1986

that SUPERSEDE creates a new file with the
same name as the old one, rather than a file
name with a higher version number.

There are currently no standards on what a server can do if it
cannot implement some of these actions.

IF-DOES-NOT-EXIST
Meaningful for input openings, never meaningful for probe-type
openings, and sometimes meaningful for output openings.
IF-DOES-NOT-EXIST takes a value token, which specifies the
action to be taken if the file does not already exist. Like
IF-EXISTS, it is a derivative of Common Lisp. The default is
as follows: If this is a probe-type opening or read opening, or if
the IF-EXISTS option is specified as OVERWRITE,
TRUNCATE, or APPEND, the default is ERROR. Otherwise,
the default is CREATE.

These are the values for IF-DOES-NOT-EXIST:

ERROR

CREATE

Reports an error.

Creates an empty file with the specified name
and then proceeds as if it already existed.

The following optional keyword/value pairs are rarely used, if ever:

RAW

TEMPORARY

If supplied as Boolean truth, RAW specifies that character set
translation is not to be performed, but that characters are to be
transferred intact, without inspection. This option is meaningful
only for character openings; it is an error otherwise. It is also
an error to supply RAW as Boolean truth for probe-type
openings. Servers operating natively in the Symbolics character
set (for example, Symbolics computers) can ignore this option.
RAW can also be followed by the empty token list, which has
the same effect as if the RAW keyword/value pair were omitted
entirely.

Used by the TOPS-20 server only. TEMPORARY says to use
GJ%TMP in the GTJFN. This is useful mainly when writing
files, and indicates that the foreign operating system is to treat
the file as temporary. See TOPS-20 documentation for more
about the implications of this option. Other servers can ignore
it. This option is meaningless and an error for input or probe
type openings. TEMPORARY can also be followed by the empty
token list, which has the same effect as if the TEMPORARY
keyword/value pair were omitted entirely.

297

June 1986 Network, Medium, and Protocol Descriptions

SUPER-IMAGE If supplied as Boolean truth, SUPER-IMAGE specifies that
Rubout quoting is not to be performed. This operation is
meaningful only for character openings; it is an error otherwise.
It is also an error for probe-type openings. SUPER-IMAGE can
also be followed by the empty token list, which has the same
effect as if the SUPER-IMAGE keyword/value pair were omitted
entirely.

SUBMIT

SUPER-IMAGE mode causes the server to read or write
character files where ASCII Rubout characters are a significant
part of the file content (such as ITS XGP files), not where they
are an escape for this protocol. Nevertheless, this is different
than RAW, for other translations are still to be performed: See
the section "NFILE Character Set Translation", page 255.

SUBMIT is meaningful for output only. If supplied as Boolean
truth, SUBMIT causes the server to submit the contents of the
file being written to the operating system as a job, after the file
is closed. VMS is an example of an operating system that could
conveniently support SUBMIT. SUBMIT can also be followed
by the empty token list, which has the same effect as if the
SUBMIT keyword/value pair were omitted entirely. Servers that
do not implement this option should give an error response if
requested to submit a file to the operating system.

NFILE OPEN Response Return Values

The results of a successful OPEN operation are reported in the command
response. Here is the specification of the OPEN response format:

Response Format:

(OPEN tid truename binary-p other-properties)

The return values for OPEN and CLOSE are syntactically identical, but the values
can change in the time between open and close time.

truename is a string representing the pathname of the file in the full pathname
syntax of the server host. It should be determined by the server once it has
opened the file, via some request to its operating system. The request can be of
the form: "What file corresponds to this JFN, file number, pointer, etc.?" If the
operating system supports version numbers, this string always contains an explicit
version number. It always contains a directory name, a file name, and so on.

Some operating systems might not know the true name of an output file until it is
closed. It is permissible not to supply an explicit version number in the pathname
in the OPEN response in this specific case. On these systems the truename when
the file is opened is different than the truename after it has been closed.

298

Networks June 1986

The return value binary-p indicates whether the opening is a binary or character
opening. For binary openings, binary-p is supplied as Boolean truth; for character
openings it is the empty token list.

other-properties is a list of keyword/value pairs. other-properties must contain
CREATION-DATE and LENGTH. AUTHOR should be included if the server
operating system has a convenient mechanism for determining the author of the
file. The other properties described here can be included if desired.

CREATION-DATE The creation date of the file. The date is expressed in
Universal Time format, which measures a time as the number
of seconds since January 1, 1900, at midnight GMT. Creation
date does not necessarily mean the time the file system created
the directory entry or records of the file. For systems that
support modification or appending to files, it is usually the
modification date of the file. Creation date can mean the date
that the bit count or byte count of the file was set by an
application program.

LENGTH

AUTHOR

Some types of file systems support a user-settable quantity,
which the user can set to an arbitrary time, to indicate that the
data in this file were created a long time ago by someone else
on another computer. The default value of this quantity, if the
user has not set it, is the time someone last modified the
information in the file.

This quantity, in the OPEN response for an output file, is
disregarded by the user side, but must nevertheless be present.

The Symbolics computer system software uses this quantity as a
unique identifier of file contents, for a given file name, type,
and version, to prove that a flie has not changed since it last
recorded this quantity for a file.

An integer reporting the length of the file, in characters for
character openings and in bytes of the agreed-upon size for
binary openings. LENGTH should be reported as zero for
output openings, even if appending to an existing file. The
server usually only knows the length for a character opening in
server units; thus, it reports length in server units.

The value of AUTHOR is a string representing the name of the
author of the file. This is some kind of user identifier, whose
format is highly system-specific.

In the best possible case, AUTHOR is a user-settable quantity
that the Symbolics computer software can set to assert a time-

June 1986

BYTE-SIZE

FILEPOS

299

Network, Medium, and Protocol Descriptions

and-space distant creation of the data in the file. The Symbolics
Lisp Machine software also uses AUTHOR as part of a unique
identifier of the data content of the file.

The byte-size agreed upon via the rules described for the BYTE
SIZE option. The value of BYTE-SIZE is an integer. For
details on the ramifications of BYTE-SIZE: See the section
"NFILE OPEN Optional KeywordNalue Pairs", page 291. This
parameter is only meaningful for BINARY openings. However,
if FILEPOS is returned in the other-properties list, BYTE-SIZE
should also be included, even for character openings.

An integer giving the position of the logical file pointer, in
characters or bytes as appropriate for the type of opening. This
is always zero for an input opening and for an output opening
creating a new file. For an output opening appending to an
existing file, FILEPOS is the number of characters or bytes, as
appropriate, currently in the file. This number, for character
openings, is measured in server units: See the section "NFILE
Character Set Translation", page 255.

35.3.10.21 PROPERTIES NFILE Command

Command Format:

(PROPERTIES tid handle pathname control-keywords properties)

Response Format:

(PROPERT I ES tid property-element settable-properties)

PROPERTIES requests the property information about one file. The file is
identified by the pathname argument or the handle argument, but not both. If
pathname is supplied, it is a string in the full pathname syntax of the server host.
For further details on full pathname syntax: See the section "Full Pathname
Syntax of the Server Host", page 267.

If handle is supplied, its value is a string identifying an open stream, which
implicitly identifies a file. For direct access mode openings, handle must be a
direct file identifier.

control-keywords is reserved in the current design. However, it is a required
argument, and must be supplied as the empty token list. Its presence in the
NFILE specification allows for future expansion. In the future the value of
control-keywords might affect the listing mode.

properties is a token list of keywords indicating the properties the user wants
returned. (In command arguments, properties cannot be specified with integers
that are indices into the Property Index Table). For a list of keywords associated

300

Networks

with file properties: See the section "Recognized Keywords Denoting File
Properties", page 268.

June 1986

The server is always free to return more properties than those requested in the
properties argument. If properties is supplied as the empty token list, the server
transmits all known properties on the file.

PROPERTIES Command Response

The server returns the property information for the given file in the command
response. The PROPERTIES command does not use any data channels. If the
specified file does not exist or is not accessible, the server signals an error and
includes an appropriate three-letter error code in the command error response.
See the section "NFILE Error Handling", page ·304.

The return value property-element is a token list. The first element in that token
list is the pathname of the file, in the full pathname syntax of the server host.
The following elements of the property-element token list are property/value pairs.
The server is expected to return several property/value pairs; the number of pairs
is not constrained. For further details on file properties and their associated
values: See the section "Format of NFILE File PropertyNalue Pairs", page 268.

The return value settable-properties is a token list of keywords. The number of
keywords is not constrained. (Note that integers cannot be used in
settable-properties to indicate the file property; keywords are to be used instead.)
Each keyword supplied in settable-properties identifies a property considered
settable by the server. The server is implicitly guaranteeing a mechanism for
changing the properties reported as settable. The user can change any of the
settable properties for this file by using the CHANGE-PROPERTIES command.
See the section "CHANGE-PROPERTIES NFILE Command", page 270.

The following example shows the format of the PROPERTIES command response.
Remember that the number of property/value pairs and keywords is not
constrained; . this example has two property/value pairs and three settable-properties
keywords returned:

301

June 1986 Network, Medium, and Protocol Descriptions

TOP-LEVEL-LIST-BEGIN
PROPERTIES
tid
LIST-BEGIN
pathname of file
prop1/value1
prop2/value2
LIST-END
LIST-BEGIN
keyword-1
keyword-2
keyword-3
LIST-END
TOP-LEVEL-LIST-END

the name of the command
-- the transaction identifier

-- property/value pairs of the file

-- file's settable properties

The following example is designed to better show the structure of the top-level
token list by depicting TOP-LEVEL-LIST -BEGIN and TOP-LEVEL-LIST -END by
parentheses and LIST -BEG I Nand LIST-END by square brackets. The indentation and
newlines in the example are not part of the token list, but are used here to make
the structure of the token list clear.

(PROPERTIES tid [pathname propl valuel prop2 value2 ... J
[keywordl keyword2 keyword3 ...])

35.3.10.22 READ NFILE Command

Command Format:

(READ tid direct-file-id input-handle count FILEPOS)

Response Format:

(READ tid)

READ requests input data flow for direct access openings. The direct-file-id is the
same as the DIRECT-FILE-ID argument that was given when opening the file; it
designates the open stream from which the characters or bytes are to be
transferred. The input-handle specifies which data channel should be used for the
transfer of data from server to user. The data channel should have been already
established, cannot have been deestablished, and must not currently be in use.

count is an integer specifying how many bytes (or Symbolics Lisp Machine unit
characters, as appropriate) to read. count can be supplied as the empty token list,
meaning read to the end of the file. If the user specifies a count greater than the
number of bytes remaining in the file, the server sends the keyword EOF to mark
the end of the file.

FILEPOS is an optional keyword/value pair. If the keyword FILEPOS is supplied,

302

Networks June 1986

it must be followed by an integer. Before any data are transferred, the open
stream is positioned to the point specified by the value of FILEPOS. The position
of the point is measured in server units for character openings; for binary
openings it is measured in binary bytes. See the section "FILEPOS NFILE
Command", page 282.

Upon receiving the READ command, the server binds the data channel to the open
stream and immediately begins transferring data. The server stops when they are
all transferred. After the server sends the last requested byte, it unbinds the data
channel, freeing it for other use. When the user side has processed the last byte,
the user side assumes that the data channel can now be reused for another data
transfer.

35.3.10.23 RENAME NFILE Command

Command Format:

(RENAME tid handle pathname to-pathname)

Response Format:

(RENAME tid from-pathname to-pathname)

RENAME requests the server to give a file a new name. This is NFILE's
interface to the system's native rename operation, with all of its system-specific
semantics and constraints.

Either a handle or a pathname (but not both) specifies the file that is to receive a
new name. The argument to-pathname designates that new name. The return
value from-pathname gives the full original name of the file, and to-pathname gives
the full new name of the file. For systems that support version numbers, the
return values can differ in version number from the values of the arguments given
to RENAME.

The arguments pathname and to-pathname and the return values from-pathname
and to-pathname are strings in the full pathname syntax of the server host. See
the section "Full Pathname Syntax of the Server Host", page 267.

If the file to be renamed is specified by a pathname, the file should be renamed
immediately. If the file is specified by handle, it is acceptable to wait until close
time to rename the file.

Some operating systems can rename only within a directory. Nevertheless, the
to-pathname of the RENAME must be fully specified; the server on these systems
must check for and reject an attempted cross-directory rename.

35.3.10.24 RESYNCHRONIZE-DATA-CHANNEL NFILE Command

Command Format for an Input Handle:

(RESYNCHRON I ZE-OAT A-CHANNEL tid handle)

303

June 1986 Network, Medium, and Protocol Descriptions

Response Format for an Input Handle:

(RESYNCHRON I ZE-OAT A-CHANNEL tid identifier)

Command Format for an Output Handle:

(RESYNCHRON I ZE-OAT A-CHANNEL tid handle identifier)

Response Format for an Output Handle:

(RESYNCHRONIZE-OATA-CHANNEL tid)

RESYNCHRONIZE-DATA-CHANNEL begins a prescribed procedure between user
and server over the unsafe data channel specified by handle. The
resynchronization procedure clears the data channel of any unwanted data, and
restores the data channel to a safe state, ready to transfer data again.

All arguments to RESYNCHRONIZE-DATA-CHANNEL are required.

For a detailed description of how the user and server coordinate the
resynchronization of data channels: See the section "NFILE Data Connection
Resynchronization", page 263.

Implementation Hints for RESYNCHRONIZE-DAT A-CHANNEL NFILE Command

This section provides implementation hints from the designers and implementors
of the Symbolics Lisp Machine NFILE. This section is useful for any programmer
implementing an NFILE server program.

Resynchronizing an Output Data Channel

• The server will probably want to dispatch the looping and reading to the
logical data process. Looping reading for the resynchronization identifier in
the control channel is not a viable option. If the user side fails to send the
resynchronization identifier (for example, due to a user abort) the control
channel can never be broken out of this loop .

• The user side can either send the control channel command first, or send
the marks and identifiers first.

Sending the marks first is problematic, because the data channel at the
other end might not be reading them (for it has not yet been so instructed
by the control channel). The user might then become blocked for output,
thus prohibiting sending of the RESYNCHRONIZE-DATA-CHANNEL
command.

On the other hand, sending the control channel command first requires that
the user side can send the marks and identifiers between sending the control
channel command and receiving a response for it. The response will never

304

Networks June 1986

come until the marks and identifiers have been successfully received. The
user implementation must allow for this one case of a command where a
subroutinal "send command and wait for response" is inapplicable.

Resynchronlzing an Input Data Channel

• The server control process should dispatch the data process to send the
mark, and not wait, lest the data process become blocked for output due to a
user abort. The control process must go back to its command loop, to
possibly receive a command that might break the data process out of that
block.

35.3.10.25 UNDATA-CONNECTION NFILE Command

Command Format:

(UNDAT A-CONNECT I ON tid input-handle output-handle)

Response Format:

(UNDATA-CONNECTION tid)

UNDATA-CONNECTION explicitly deestablishes a data connection from the user
side. The user side has the option of deestablishing data connections at its
discretion. There is no place in the protocol where deestablishment of data
connections is required, other than at the end of the session, where it is implicit.

The data connection to be deestablished is the one designated by the input-handle
and output-handle arguments. These two handles must refer to the same data
connection.

It is not permitted to explicitly deestablish a data connection either of whose
channels is active. If the session'is terminated by the breaking of the control
connection, all file handles become meaningless, and the server must close all data
connections known to it and close-abort all files opened on behalf of the user
during the dialogue.

The Symbolics Lisp Machine user implementation deestablishes data connections
that have not been used for a long time.

For more information about data connections: See the section "NFILE Control
and Data Connections", page 258.

35.3.11 NFILE Error Handling

NFILE recognizes two types of errors: command response errors and asynchronous
errors.

Command response errors:

305

June 1986 Network, Medium, and Protocol Descriptions

• Signify an error associated with the command
• Occur frequently in normal operations

Asynchronous errors:

• Are not related to any specific command
• Are associated with an erring data channel
• Typically indicate a problem in the transfer, such as running out of disk

space or allocation, or a bad disk record
• Occur rarely in normal operations

35.3.11.1 NFllE Command Response Errors

NFILE command response errors are sent over from the server to the user across
the control connection as top-level token lists, in this format:

(ERROR tid three-letter-code error-vars message)

ERROR is a keyword. The tid is the transaction identifier of the command that
encountered this error. The arguments three-letter-code, error-vars, and message
are all required.

The three-letter-code provides the information on what kind of an error was
encountered. For a table of the three-letter codes and their meanings: See the
section "NFILE Three-letter Error Codes", page 306.

message is a string that is displayed to the human user of the protocol.

error-vars is a keyword/value list. The three possible keywords are: PATHNAME,
OPERATION, and NEW-PATHNAME. Before transmitting an error, the server
looks at the type of error to see if it can easily determine the value of any of the
keywords. If so, the server includes the keyword/value pair in its error. If not,
the keyword/value pair is omitted. The value associated with OPERATION is the
keyword naming the NFILE command that failed. The values associated with
PATHNAME and NEW-PATHNAME are strings in the full pathname syntax of
the server host.

For example, the server failed in an attempt to rename a file. The server can
then determine the pathname of the original file, the operation (RENAME), and
the new pathname (the target pathname) of the file; the server includes all three
keywords and their values in its error description.

35.3.11.2 NFllE Asynchronous Errors

When a data channel process, in either direction, encounters an error condition,
the server sends an asynchronous error description. An asynchronous error
description consists of a top-level token list. Typically, asynchronous errors
indicate error conditions in the transfer, such as running out- of disk space or
allocation, or a bad disk record.

306

Networks June 1986

The format of asynchronous error descriptions is:

(ASYNC-ERROR handle three-letter-code error-vars message)

ASYNC-ERROR is a keyword. The handle argument identifies the erring data
channel. The arguments three-letter-code, error-vars, and message are all required.
Their meanings are the same as in NFILE command error responses: See the
section "NFILE Command Response Errors", page 305.

When the server detects an asynchronous error on an input data channel, the
server sends an asynchronous error description on that data channel itself. When
an asynchronous error occurs on an output data channel, the asynchronous error
description is sent on the control connection.

Some asynchronous errors are restartable. In this context, restartable means it
makes sense to try to resume the operation. One example of a restartable error is
an attempt to write a file to a file system that is out of room. The server side
indicates whether an asynchronous error is restartable by prepending the keyword
REST ART ABLE and the associated value Boolean truth to the error-vars list. To
proceed from a restartable error, the user side sends a CONTINUE command over
the control connection.

On any asynchronous error, either input or output, the data channel on the server
side enters an asynchronous error received state. The server can exit that state in
one of two ways: by receiving a CONTINUE command or a CLOSE command
with the abort-p argument supplied as Boolean truth.

On a normal CLOSE (not a close-abort), the server side checks the channel it was
requested to close. If an asynchronous error description has been sent on the data
channel, but not yet processed by CONTINUE, the server side does not close the
channel, but sends a command error response. The same thing happens on a
FINISH command received on a channel that has an asynchronous error pending.
In both cases, the three-letter code included in the command error response is EPC,
for Error Pending on Channel.

35.3.11.3 NFILE Three-letter Error Codes

NFILE recognizes a set of three-letter codes, each one representing an error
condition. The set of codes enables all operating systems to use one error
reporting mechanism. Some operating systems will never encounter certain of the
error conditions. Upon detecting an error, the NFILE server should characterize
the error by choosing the three-letter code that best describes the error. The
three-letter code is an argument in both the command response error and
asynchronous error messages from the server to the user.

Some errors fit logically into two error codes. For example, suppose the server
could not delete a file because the file was not found. This error could be
considered either CDF (Cannot Delete File) or FNF (File Not Found). In this
case, File Not Found gives more specific and valuable information than Cannot

307

June 1986 Network, Medium, and Protocol Descriptions

Delete File. Since the protocol does not allow more than one error code to be
reported when an error occurs, the server must choose the most appropriate error
code.

This is the error table:

ACC Access error. This indicates a protection-violation error.

ATD Incorrect access to directory. A directory could not be accessed because the
user's access rights to it did not permit this type of access.

ATF Incorrect access to file. A file could not be accessed because the user's
access rights to it did not permit this type of access.

BUG File system bug. This includes all protocol violations detected by the server,
as well as by the host file system.

CCD Cannot create directory. An error occurred in attempting to create a
directory.

CDF Cannot delete file. The file system reported that it cannot delete a file.

CCL Cannot create link. An error occurred in attempting to create a link.

CIR Circular link. An operation was attempted on a pathname that designates a
link that eventually links back to itself.

CRF Cannot rename file. An error occurred in attempting to rename a file.

CSP Cannot set property. An error occurred in attempting to change the
properties of a file. This could mean that you tried to set a property that
only the file system is allowed to set, or a property that is not defined on
this type of file system.

DAE Directory already exists. A directory or file of this name already exists.

DAT Data error. The file system contains bad data. This could mean data errors
detected by hardware or inconsistent data inside the file system.

DEV Device not found. The device of the file was not found or does not exist.

DND "Don't delete" flag set. Deleting a file with a "don't delete" flag was
attempted.

DNE Directory not empty. An invalid deletion of a nonempty directory was
attempted.

DNF Directory not found. The directory was not found or does not exist. This
refers specifically to the containing directory; if you are trying to access a
directory, and the actual directory you are trying to access is not found, you
should signal FNF, for File Not Found.

EPC Error pending on channel. The server cannot close the channel in

308

Networks June 1986

attempting to close or finish the channel. This code is used only by
NFILE, and not by QFILE. See the section "CLOSE NFILE Command",
page 270. See the section "FINISH NFILE Command", page 283.

F AE File already exists. The file could not be created because a file or directory
of this name already exists.

FNF File not found. The file was not found in the containing directory. The
TOPS-20 and TENEX "no such file type" and "no such file version" errors
should also report this condition.

FOO File open for output. Opening a file that was already opened for output was
attempted.

FOR Filepos out of range. Setting the file pointer past the end-of-file position or
to a negative position was attempted.

FI'B File too big. File is larger than the maximum file size supported by the file
system.

HNA Host not available The file server or file system is intentionally denying
service to user. This does not mean that the network connection failed; it
means that the file system is explicitly not available.

IBS Invalid byte size. The value of the "byte size" option was not valid.

ICO Inconsistent options. Some of the options given in this operation are
inconsistent with others.

IOD Invalid operation for directory. The specified operation is invalid for
directories, and the given pathname specifies a directory, in directory
pathname as file format.

IOL Invalid operation for link. The specified operation is invalid for links, and
this pathname is the name of a link.

IP? Invalid password. The specified password was invalid.

IPS Invalid pathname syntax. This includes all invalid pathname syntax errors.

IPV Invalid property value. The new value provided for the property is invalid.

IWC Invalid wildcard. The pathname is not a valid wildcard pathname.

LCK File locked. The file is locked. It cannot be accessed, possibly because it is
in use by some other process.

LIP Login problems. A problem was encountered while trying to log in to the
file system.

MSC Miscellaneous problems.

NAV Not available. The file or device exists but is not available. Typically, the

309

June 1986 Network, Medium, and Protocol Descriptions

disk pack is not mounted on a drive, the drive is broken, or the like.
Operator intervention is probably required to fIx the problem, but retrying
the operation is likely to succeed after the problem is solved.

NER Not enough resources.

NET Network problem. The fIle server had some sort of trouble trying to create a
new data connection, or perform some other network operation, and was
unable to do so.

NFS No file system. The fIle system was not available. For example, this host
does not have any fIle systems, or this host's fIle system cannot be
initialized or accessed for some reason, or the fIle system simply does not
exist.

NLI Not logged in. A fIle operation was attempted before logging in. Normally
the fIle system interface always logs in before doing any operation, but this
problem can occur in certain unusual cases in which logging in has been
aborted.

NMR No more room. The fIle system is out of room. This can mean any of
several things:

• The entire fIle system is full.
• The particular volume involved is full.
• The particular directory involved is full.
• The allocate quota has been exceeded.

RAD Rename across directories. The devices or directories of the initial and
target pathnames are not the same, but on this fIle system they are
required to be.

REF Rename to existing file. The target name of a rename operation is the name
of a fIle that already exists.

UKC Unknown operation. An unsupported fIle system operation was attempted, or
an unsupported command was attempted.

UKP Unknown property. The property is unknown.

UNK Unknown user. The specifIed user name is unknown to this host.

UUO Unimplemented option. An option to a command is not implemented.

WKF Wrong kind of file. This includes errors in which an invalid operation for a
fIle, directory, or link was attempted.

WNA Wildcard not allowed.

310

Networks June 1986

311

June 1986 Network, Medium, and Protocol Descriptions

36. Namespace Protocols

36.1 Network Namespace Protocol

Queries and updates to the network database are done over a byte stream with the
names pace protocol. The general format of a request is a single record. The
response is a series of records followed by a blank line. Queries can be serviced
by a primary or secondary namespace server or by a non-server Symbolics
computer; but in case of a secondary namespace server, the information in the
response might be incomplete or out-of-date. Updates can be serviced by the
primary namespace server only.

In the case of a query, you send a record which must at least specify a namespace
and a class. Any additional attributes in the record are matched against objects in
that namespace of that class. The response records describe those objects. Here,
the name of the object is given by the name attribute, rather than the value of
the class name attribute. For attribute values that are pairs or elements, the
special token * matches anything. Actually, * matches anything at any level, but
putting it in as a value with a simple indicator is equivalent to leaving out that
attribute entirely.

For example, the query

NAMESPACE MIT
CLASS HOST
NAME AI

might elicit the response

HOST MIT-AI
NICKNAME AI
SYSTEM-TYPE ITS
MACHINE-TYPE KA-10
ADDRESS CHAOS 2026

(Note the two blank lines at the end; the first ends the record describing MIT-AI.
The second ends the blank record that marks the end of the response.)

Or the query

NAMESPACE MIT
CLASS HOST
SYSTEM-TYPE ITS
ADDRESS CHAOS :+:

312

Networks June 1986

migh~ elicit

HOST MIT-AI
NICKNAME AI
SYSTEM-TYPE ITS
MACHINE-TYPE KA-19
ADDRESS CHAOS 2926

HOST MIT-MC
NICKNAME MC
SYSTEM-TYPE ITS
MACHINE-TYPE KL-19
ADDRESS CHAOS 1449

The format of an update is the same as that of a query, except that the additional
update-by attribute is included. The value of this attribute is the user name of
the person changing the information, for logging purposes. Additional tokens
might be required by some servers for a password if security of the database is
important.

A database deletion request has the special indicator delete in addition to update
by. The value of this attribute is the name of the object to be deleted from the
database.

Incremental updates are accomplished in two ways. Any attribute list can have a
timestamp indicator in addition to the match requests. The server reply lists only
objects that have changed after that timestamp. In other words, the timestamp
corresponds to the user's idea of when encached information was last valid.

A user can also request an incremental update of the database by supplying the
incremental indicator. The value of this indicator is one of the special tokens
brief, full, or complete. In this case, the timestamp indicator is mandatory and
indicates the time from which the user is requesting an update. A brief
incremental update starts with a record that is one of these:

• The word current, if the timestamp supplied is still the correct timestamp
for the namespace.

• A record with just a too-old attribute whose value is the current timestamp.

• A record that starts with a timestamp attribute whose value is the current
timestamp and is followed by the class and name of each object that has
been deleted from the namespace since the given timestamp. This last case
is then followed by a record with a line giving the class and name of each
object that has been changed or added to the namespace.

313

June 1986 Network, Medium, and Protocol Descriptions

A full update has the same format as a changes file. See the section "N amespace
Database Changes Files", page 103.

Finally, an incremental complete update results in one record containing a
timestamp attribute for the namespace, followed by all the objects in the
namespace.

36.2 Namespace Timestamp Protocol

A simple protocol is provided for determining whether any information in a
namespace has changed. On the Chaosnet, this is implemented via an RFC/ANS
transaction. The RFC specifies the name of the namespace and the corresponding
ANS contains the timestamp as characters representing a decimal number.

314

Networks June 1986

June 1986

*

1

4

8

A

315

Index

Index

* *
* descriptor file indicator 102
* string 108

1 1
DAT 16-bit Data packet 196

4 4
UNIX 4.2BSD system type 77

8 8
DAT 8-bit Data packet 196

:* keyword symbol 108

A A
NFILE abort 261

BYTE-STREAM-WITH-MARK Abortable States 231
Aborting and the Token List Stream 246
ABORT NFILE Command 269

net: abort-servlce-access-path-future function 168
chaos: accept function 208

:accept message 156
:accept-p property 172
:accept-p stream option for net:define-server 129

Direct access mode 267
NFILE direct access mode 254

File Access Path 119
Service Access Path 117

Namespace Server Access Paths 111
Chaosnet File Access Protocols 203

Acknowledgement 187
Acknowledgement packet header field 182, 187, 195
Activities That Use the Network 14

neU: *actual-number-of-wlred-packet-buffers·
meter 140

chaos: add-contact-name-for-protocol function 132
Adding new objects to the namespace database 99
:add-network message 148
:add-network message to interfaces 153

Host address 184
How to Obtain an Internet Address 62

Mapping a Chaos Address Into a DNA Address 63
Mapping an Internet Address Into a Chaos Address 62

Setting the Chaosnet Address 8

316

Networks June 1986

:address option for net:deflne-server 129
Concept of Network Addresses 7
Format of Chaosnet Addresses 55

Format of DNA Addresses 59
Format of Internet Addresses 57

Implementation of Network Addresses 152
Numeric host addresses 180

Chaosnet Addresses and Indices 180
address: Host Object Attribute 79

Dial Network Addressing 217
Network Addressing 53

Choosing a Network Addressing Scheme 61
Connection address in routing table 184

Mapping an Internet Address Into a Chaos Address 62
Mapping a Chaos Address Into a DNA Address 63

Destination Address packet header field 182
Source Address packet header field 182

:address-resolutlon-parameters message 156
Namespace System Administrative Functions 105

affiliation: User Object Attribute 85
net: after-network-Inltialization-list variable 155

Sending message to all Lisp Machines at site 215
:allocate-packet message 149

netl: allocate-packet-buffer function 139
List all supported servers 173

Protocols Supported by All Symbolics Computers as Servers 36
Protocols Supported by All Symbolics Computers as Users 35

ANS Answer to a simple transaction packet 191
chaos: answer function 208
chaos: answered-state connection state 209
chaos: answer-string function 208

ANS Answer to a simple transaction packet 191
Answer to STATUS request 201
Application-Level Chaosnet Protocols 201

DNA area number 59, 63
Commonly Used Arguments to Mediums 172
Commonly Used Arguments to Servers 172

ARPA Internet references 224
Arpanet INR/INS attention-getting feature 203
Arpanet Name/Finger protocol 204
Arpanet Telnet and Supdup protocols 203
Arpanet Time protocol 204

Packets with array leader 142
Remote ASCII terminal 20, 21, 22

:ascll-translatlon stream option for
net:deflne-server 129

netl: ask-termlnal-parameters function 22
chaos: assure-enabled function 214
NFILE Asynchronous Errors 305

Channels attached to user processes 180
Arpanet INR/INS attention-getting feature 203

address: Host Object Attribute 79
affiliation: User Object Attribute 85
birthday: User Object Attribute 85

bitmap-printer: Host Object Attribute 80
body-character-style: Printer Object Attribute 90

character-size: Printer Object Attribute 91
Concept of service Attribute 10

console-location: Host Object Attribute 80
default-bUmap-printer: Site Object Attribute 93

default-font: Printer Object Attribute 90

317

June 1986 Index

default-printer: Site Object Attribute 93
descriptor-file attribute 102

descriptor-file: Namespace Object Attribute 96
dont-reply-to-mailing-lists: Site Object Attribute 94

dplt-Iogo: Printer Object Attribute 91
flle-control-lIfetlme: Host Object Attribute 82

finger-location: Host Object Attribute 80
font-widths-file: Printer Object Attribute 91

format: Printer Object Attribute 89
header-character-style: Printer Object Attribute 90

header-font: Printer Object Attribute 90
home-address: User Object Attribute 85

home-host: User Object Attribute 83
home-phone: User Object Attribute 85

host-for-bug-reports: Site Object Attribute 92
host: Printer Object Attribute 88

host-protocol-deslrabllity: Site Object Attribute 93
interface-optlons: Printer Object Attribute 89

Interface: Printer Object Attribute 89
Internet-domaln-name: Namespace Object Attribute 96

IIspm-name: User Object Attribute 83
local-names pace: Site Object Attribute 92

location: Host Object Attribute 80
login-name: User Object Attribute 83

machine-type: Host Object Attribute 79
mall-address: User Object Attribute 83

name: Host Object Attribute 77
name: Namespace Object Attribute 96

name: Network Object Attribute 86
name: Printer Object Attribute 88

name: Site Object Attribute 92
name: User Object Attribute 83

network-namespace attribute 102
nickname: Host Object Attribute 78

nickname: Network Object Attribute 87
nickname: User Object Attribute 84

other-sites-ignored-in-zmail-summary: Site Object Attribute 94
page-size: Printer Object Attribute 91

peripheral: Host Object Attribute 82
personal-name: User Object Attribute 83

pretty-name: Host Object Attribute 79
pretty-name: Printer Object Attribute 88

pretty-name: Site Object Attribute 93
primary-name-server: Namespace Object Attribute 96

printer: Host Object Attribute 80
printer-location: Printer Object Attribute 89

print-spooler-optlons: Host Object Attribute 81
project: User Object Attribute 85

protocol: Printer Object Attribute 90
remarks: User Object Attribute 85

search-rules: Namespace Cbject Attribute 96
secondary-name-server: Namespace Object Attribute 96

secure-subnets: Site Object Attribute 94
server-machine: Host Object Attribute 82

service: Host Object Attribute 81
short-name: Host Object Attribute 78

site-directory: Site Object Attribute 92
site: Host Object Attribute 78

site: Network Object Attribute 87
site: Printer Object Attribute 88

site-system: Site Object Attribute 93

318

Networks June 1986

B

spooled-printer: Host Object Attribute 81
standalone: Site Object Attribute 94
sub net: Network Object Attribute 87
supervisor: User Object Attribute 85

system-type: Host Object Attribute 77
termlnal-f-argument: Site Object Attribute 95

t1mezone: Site Object Attribute 92
type: Network Object Attribute 86

type: Printer Object Attribute 88
update-by attribute 311

user-property: Object Attribute 78,84,87,91,95,97
valldate-Imfs-dump-tapes: Site Object Attribute 94

work-address: User Object Attribute 84
work-phone: User Object Attribute 84

Attribute indicator 70
Data Types of Namespace System Attributes 70

Ethernet attributes 156
Host attributes 77

Namespace attributes 95
Namespace System Attributes 70

Network attributes 86
Site attributes 92

Storing database object attributes 102
User attributes 82

Service Attributes in the Namespace Database 29
Attribute value 70

B
Background process 207
birthday: User Object Attribute 85
bitmap-printer: Host Object Attribute 80
Bit numbering convention 183
body-character-style: Printer Object Attribute 90
BOOLEAN-TRUTH 238
BRD Broadcast packet 197
Bridge connection type 184

Fixed bridge connection type 184
Chaosnet bridges 184
Chaosnet Broadcast 197

BRD Broadcast packet 197
Broadcast Sent connection state 200

Size In bytes of packet buffer 139
nell: buffered-stream-wlth-mark 233
nell: buffered-to ken-stream flavor 244

Packet buffer panic 144
Data byte count 182

Size in bytes of packet buffer 139
:byte-stream medium 32, 172
:byte-stream medium type 129
Byte Stream Conventions 156
:byte-stream-with-mark 233

B

Interfacing to the Lisp Machine Byte-Stream-With-Mark 233
:byte-stream-with-mark medium 32
BYTE-STREAM-WITH-MARK Abortable States 231
BYTE-STREAM-WITH-MARK marks 229
BYTE-STREAM-WITH-MARK Network Medium 229

Introduction to BYTE-STREAM-WITH-MARK Network Medium 229
BYTE-STREAM-WITH-MARK record format 229

June 1986

c

319

Index

c
Reducing Call Cost with Public Carrier Networks 219

Calling the Server Function 171

c
Determining What Kinds of Connections a Remote Host

Can Make 44
Determining What Kinds of Connections a Symbolics Computer

Can Make 44
The Remote Login Capability 19

Reducing Call Cost with Public Carrier Networks 219
CC ITT Recommendation X.25 interface 86
:change-of-state interrupt reason 212
CHANGE-PROPERTIES NFILE Command 270

Eliminate record of changes 106
changes descriptor file indicator 102

neli: change-server-error-dispositlon function 133
Changes files 101

Namespace Database Changes Files 103
Changes to database 103
Changes to namespace database 103

NFILE input data channel 258
NFILE output data channel 258

Unsafe data channel 261
Data Channel Handles and Direct File Identifiers 267
Data channel resynchronization 261

Channels attached to user processes 180
NFILE on Chaos 252

:chaos medium 32, 129
chaos network type 86
chaos: package 207
chaos:accept function 208
chao~:add-contact-name-for-protocol function 132
chaos :answer function 208
chaos:answered-state connection state 209
chaos:answer-string function 208
chaos:assure-enabled function 214
chaos:close-conn function 207
chaos:cls-received-state connection state 209
chaos:connect function 207
chaos:conn-finished-p function 212
chaos:data-available function 212
chaos:fast-answer-string function 208
chaos:finish-conn function 212
chaos:foreign-state connection state 209
chaos:get-next-pkt function 212
chaos:get-pkt function 211
chaos:host-data function 213
chaos:host-down-state connection state 209
chaos:host-up function 215
chaos:lnactlve-state connection state 209
chaos:lnterrupt-functlon function 212
chaos:lIsten function 208
chaos:lIstenlng-state connection state 209
chaos:los-received-state connection state 209
chaos:make-stream function 210
chaos:may-transmlt function 212
chaos:notify function 215
chaos:notify-local-lIspms function 215
chaos:open-foreign-connection function 208
chaos:open-state connection state 209
chaos:pkt-link function 213
chaos:pkt-nbytes function 211

320

Networks June 1986

chaos:pkt-opcode function 211
chaos:pkt-strlng function 211
chaos:prlnt-conn function 214
chaos:prlnt-pkt function 214
chaos:read-pkts function 213
chaos:reject function 208
chaos:remove-conn function 207
chaos:return-pkt function 211
chaos:rfc-recelved-state connection state 209
chaos:rfc-sent-state connection state 209
chaos:send-pkt function 211
chaos:send-unc-pkt function 212
chaos:server-allst 129
chaos:set-pkt-strlng function 211
chaos:slmple function 207
chaos:state function 209
chaos:wait fUnction 209

Mapping an Internet Address Into a Chaos Address 62
Mapping a Chaos Address Into a DNA Address 63

NFILE's Chaos contact name 260
Chaos host number 55
Chaosnet 177

Introduction to Chaosnet 177
Symbolics Implementation of Chaosnet 207

Using Foreign Protocols in Chaosnet 204
Setting the Chaosnet Address 8
Format of Chaosnet Addresses 55

Chaosnet Addresses and Indices 180
Chaosnet bridges 184
Chaosnet Broadcast 197
Chaosnet Connection Closing 197
Chaosnet Connection Establishment 191
Chaosnet Connection Interrupts 212
Chaosnet Connections 178

Opening and Closing Chaosnet Connections 207
Opening and Closing Chaosnet Connections on the Server Side 208
Opening and Closing Chaosnet Connections on the User Side 207

Chaosnet Connection States 200
Functions for Chaosnet Connection States 209

Chaosnet Contact Names 179
Chaosnet Data 196
Chaosnet Data Formats 183
Chaosnet End-of-Data 196
Chaosnet File Access Protocols 203
Chaosnet Flow and Error Control 187
Chaosnet Information and Control 213
Chaosnet Low-level Details 199
Chaosnet Name Protocol 204
Chaosnet Network Control Program 178
Chaosnet Packet Contents 182
Chaosnet Packet 1/0 211
Chaosnet Packet Numbers 181

Application-Level Chaosnet Protocols 201
References to Chaosnet Protocol Specifications 178

Chaosnet RFC/ANS time protocol 127
Chaosnet Routing 184
Chaosnet Send Protocol 203

Overview of the Chaosnet Software Protocol 178
Technical Details of the Chaosnet Software Protocol 190

Chaosnet Status Packets 195
Chaosnet Status Protocol 201

June 1986

Chaosnet Stream I/O 210
Chaosnet Telnet and Supdup Protocols 203
Chaosnet Time Protocol 204
Chaosnet UNC encapsulation Interface 149
:chaos-slmple medium 32
Chaos subnet 180
Chaos subnet number 55
Character sets 183,203

NFILE Character Set Translation 255
character-size: Printer Object Attribute 91
Choosing a Network Addressing Scheme 61
:class message 110
Classes 71

Defining Namespace Classes 112
Namespace System Classes 69

:clear-eof operation 21 0
:close operation 210

chaos: close-conn function 207
CLS Close connection packet 191

Closed connection state 200
CLOSE NFILE Command 270

Chaosnet Connection Closing 197 .
Closing a connection 191, 196, 207

Opening and Closing Chaosnet Connections 207
Opening and Closing Chaosnet Connections on the Server

Side 208

321

Index

Opening and Closing Chaosnet Connections on the User Side 207
CLS Close connection packet 191

Sending a CLS packet 196
chaos: cis-received-state connection state 209

NFILE Three-letter Error Codes 306
Subpackets and Coercing Packets 140

ABORT NFILE Command 269
CHANGE-PROPERTIES NFILE Command 270

CLOSE NFILE Command 270
COMPLETE NFILE Command 272
CONTINUE NFILE Command 273

CREATE-DIRECTORY NFILE Command 273
CREATE-LINK NFILE Command 274

DATA-CONNECTION NFILE Command 275
DELETE NFILE Command 276

DIRECTORY NFILE Command 277
DIRECT-OUTPUT NFILE Command 276

DISABLE-CAPABILITIES NFILE Command 280
Edit Namespace Object command 99

ENABLE-CAPABILITIES NFILE Command 281
EXPUNGE NFILE Command 281

FILEPOS NFILE Command 282
FINISH NFILE Command 283

FUNCTION F command 95
FUNCTICN H command 213

HOME-DIRECTORY NFILE Command 284
Implementation Hint for FILEPOS NFILE Command 283

Implementation Hints for RESYNCHRONIZE-DATA-CHANNEL NFILE
Command 303

LOGIN NFILE Command 285
MULTIPLE-FILE-PLISTS NFILE Command 287

NETWORK X command 14
OPEN NFILE Command 288
OPEN QFILE command 288

PROPERTIES NFILE Command 299

322

Networks June 1986

READ NFILE Command 301
RENAME NFILE Command 302

Reset Network command 15
RESYNCHRONIZE-DATA-CHANNEL NFILE Command 302

UNDATA-CONNECTION NFILE Command 304
Conventions Used in NFILE Command Descriptions 265

NFILE Command Descriptions 265
NFILE Command Response Errors 305
NFILE Commands 269

Commands That Use the Network 13
Commonly Used Arguments to Mediums 172
Commonly Used Arguments to Servers 172

Standard Communication with Interfaces 147
COMPLETE NFILE Command 272

Determining What Kinds of Connections a Symbolics Computer Can Make 44
Networks Supported by Symbolics Computers 6

DNA Protocols Supported by Symbolics Computers as Servers 39
Protocols Supported by All Symbolics Computers as Servers 36

TCP and UDP Protocols Supported by Symbolics Computers as Servers 38
DNA Protocols Supported by Symbolics Computers as Users 39

Protocols Supported by All Symbolics Computers as Users 35
TCP and UDP Protocols Supported by Symbolics Computers as Users 37

Concept of Namespace Objects 9
Concept of Network Addresses 7
Concept of service Attribute 1 0

NFILE Concepts 253
Concepts of Service, Medium, and Protocol 5
Concepts of Symbolics Networks 3
Concepts of the Namespace System 8
Conn 207
:conn option for net:deflne-server 129

chaos: connect function 207
Connecting to a Remote Host Over the Network 14

Closing a connection 191, 196, 207
Establishing a connection 179, 191, 207

Establishing an NFILE Control Connection 260
Forwarded connection 191

Open a stream connection 207
Stream connection 191

Connection address in routing table 184
Chaosnet Connection Closing 197

Connection cost in routing table 184
Chaosnet Connection Establishment 191

Connection index 180
Connection-initiation protocols 191
Connection interrupt functions 212

Chaosnet Connection Interrupts 212
CLS Close connection packet 191

FWD Forward a request for connection packet 191
OPN Open connection packet 191

RFC Request for connection packet 191
NFILE Control Connection Resynchronization 261

NFILE Data Connection Resynchronization 263
Chaosnet Connections 178

NFILE Control and Data Connections 258
Opening and Closing Chaosnet Connections 207

Determining What Kinds of Connections a Remote Host Can Make 44
Determining What Kinds of Connections a Symbolics Computer Can Make 44

Opening and Closing Chaosnet Connections on the Server Side 208
Opening and Closing Chaosnet Connections on the User Side 207

Broadcast Sent connection state 200

June 1986

chaos:answered-state connection state 209
chaos:cls-recelved-state connection state 209

chaos:forelgn-state connection state 209
chaos:host-down-state connection state 209

chaos:lnactlve-state connection state 209
chaos:lIstenlng-state connection state 209

chaos:los-recelved-state connection state 209
chaos:open-state connection state 209

chaos:rfc-received-state connection state 209
chaos:rfc-sent-state connection state 209

Closed connection state 200
Foreign connection state 200

Incomplete Transmission connection state 200
Listening connection state 200

Lost connection state 200
Open connection state 200

RFC Received connection state 200
RFC Sent connection state 200
Chaosnet Connection States 200

Functions for Chaosnet Connection States 209
Bridge connection type 184
Direct connection type 184

Fixed bridge connection type 184
Connection type in routing table 184

chaos: conn-flnlshed-p function 212
Host's console location 80

console-location: Host Object Attribute 80
NFILE's Chaos contact name 260

Chaosnet Contact Names 179
Chaosnet Packet Contents 182

CONTINUE NFILE Command 273

323

Index

net: continue-servlce-access-path-future function 168
Chaosnet Flow and Error Control 187

Chaosnet Information and Control 213
NFILE Control and Data Connections 258

Establishing an NFILE Control Connection 260
NFILE Control Connection Resynchronization 261

Controlled packets 181, 187
Control packets 207

Chaosnet Network Control Program 178
Transmission Control Protocol 204

Control tokens 238
Bit numbering convention 183

Byte Stream Conventions 156
Conventions Used in NFILE Command

Descriptions 265
Connection cost in routing table 184

Reducing Call Cost with Public Carrier Networks 219
Data byte count 182

Forwarding count 182
Count packet header field 182
CREATE-DIRECTORY NFILE Command 273
CREATE-LINK NFILE Command 274
Creating a New Namespace Object 74

324

Networks June 1986

D D D
Daemon users 82
DAT 16-bit Data packet 196
DAT 8-bit Data packet 196

Chaosnet Data 196
Logical end of data 196

chaos: data-avallable function 212
Adding new objects to the namespace database 99

A Sample Host Object in the Namespace Database 11
Changes to database 1 03

Changes to namespace database 103
Editing objects in the namespace database 99

Managing the Namespace Database 1 01
Network not in namespace database 151

Queries to network database 311
Service Attributes in the Namespace Database 29

Updates to network database 311
Update the namespace database 1 05

Updating the Namespace Database 73
Namespace Database Changes Files 103

Database data types 107
Database deletion request 311

Namespace database descriptor files 101, 102
Namespace Database Log Files 103

Storing database object attributes 102
Namespace Database Object Files 102

Data byte count 182
NFILE input data channel 258

NFILE output data channel 258
Unsafe data channel 261

Data Channel Handles and Direct File Identifiers 267
Data channel resynchronization 261
DATA-CONNECTION NFILE Command 275

NFILE Data Connection Resynchronization 263
NFILE Control and Data Connections 258

NFILE DIRECTORY Data Format 279
Chaosnet Data Formats 183

:datagram medium 32, 172
User Datagram Protocol 204

Server functions for datagram protocols 172
DAT 16-bit Data packet 196

DAT 8-bit Data packet 196
UNC Uncontrolled Data packet 196, 204

Data packets 207
Flavors Related to the Token List Data Stream 248

Token list data stream 237,247
NFILE data stream mode 254

Data tokens 238
Database data types 1 07

Namespace System Lisp Data Types 107
Mapping Data Types Into Token List Representation 257

Data Types of Namespace System Attributes 70
neU: deallocate-packet-buffer function 139

References to DECnet Protocol Specifications 228
default-bitmap-printer: Site Object Attribute 93
default-font: Printer Object Attribute 90
default-printer: Site Object Attribute 93
:default-services message 169

Descriptions of Defined Generic Services 39
Descriptions of Defined Mediums 32

Examples of Defined Mediums 161

325

June 1986 Index

net: define-medium special form 159
:desirablllty option for net: define-protocol 127

:Invoke option for net: define-protocol 127
:Invoke-wlth-stream option for net: define-protocol 127

:Invoke-wlth-stream-and-close option for net: define-protocol 127
:property option for net: define-protocol 127

net: define-protocol special form 127
:accept-p stream option for net: define-server 129

:address option for net: define-server 129
:ascll-translatlon stream option for net: define-server 129

:conn option for net: define-server 129
:dlrectlon stream option for net: define-server 129

:error-dlsposltlon option for net: define-server 129
:host option for net: define-server 129

:medium option for net: define-server 129
:network option for net: define-server 129

:no-close stream option for net: define-server 129
:no-eof stream option for net: define-server 129

:process-name option for net: define-server 129
:reJect-unless-trusted option for net: define-server 129

:request-array option for net: define-server 129
:response-array option for net: define-server 129

:stream option for net: define-server 129
:trusted-p option for net: define-server 129
:who-line option for net: define-server 129

net: define-server special form 129
Defining a Network 151
Defining a New Network Service 123

Example of Defining a New Network Service 123
Defining Namespace Classes 112

Functions for Defining Users and Servers 127
Summary of Functions for Defining Users and Servers 127

Namespace System Object Definitions 77
delete indicator 311
DELETE NFILE Command 276

Database deletion request 311
Delivering packets 148

Recognized Keywords Denoting File Properties 268
Finding a Server Description 171

Conventions Used in NFILE Command Descriptions 265
Network, Medium, and Protocol Descriptions 175

NFILE Command Descriptions 265
Descriptions of Defined Generic Services 39
Descriptions of Defined Mediums 32
descriptor-file attribute 102

* descriptor file indicator 102
changes descriptor file indicator 102
version descriptor file indicator 102

descriptor-file: Namespace Object Attribute 96
Namespace database descriptor files 101, 102

Design Goals of the Network System 3
:desirablllty message 168
:desirablllty option for net:deflne-protocol 127
Desirability of Network Protocols 50
Destination Address packet header field 182
Destination Index packet header field 182

Chaosnet Low-level Details 199
Technical Details of the Chaosnet Software Protocol 190

Details of the User Interface to the Namespace
System 99

Determining What Kinds of Connections a Remote

326

Networks June 1986

E

Host Can Make 44
Determining What Kinds of Connections a Symbolics

Computer Can Make 44
:dlal medium 32
dial network type 86

Symbolics Dialnet 217
Dial Network Addressing 217
Dial Network Medium 217
Direct access mode 267

NFILE direct access mode 254
Direct connection type 184
Direct-dial telephone network 86

NFILE direct file identifier 254
Data Channel Handles and Direct File Identifiers 267

:dlrection stream option for net:deflne-server 129
NFILE DIRECTORY Data Format 279

DIRECTORY NFILE Command 277
DIRECT-OUTPUT NFILE Command 276

netl: disable function 214
:dlsable message 155
DISABLE-CAPABILITIES NFILE Command 280

netl: disable-serlal-termlnal function 23
sys: disable-services function 51
sys: disable-services property 52

Disabling a serial terminal 20
Enabling and Disabling Network Services 51

:dna medium 32
Mapping a Chaos Address Into a DNA Address 63

Format of DNA Addresses 59
DNA area number 59, 63
DNA Networks 227

Introduction to DNA Networks 227
DNA node number 59, 63
DNA Protocols Supported by Symbolics Computers

as Servers 39
DNA Protocols Supported by Symbolics Computers

as Users 39
DOD Internet 86

Internet Domain Names 222
dont-reply-to-malIIng-lists: Site Object Attribute 94
dplt-Iogo: Printer Object Attribute 91

E
Editing a Namespace Object 74
Editing objects in the namespace database 99

tv: edit-namespace-object function 99
Edit Namespace Object command 99

Namespace editor 99
Eliminate record of changes 106
Embedded token list 238
Empty token list 238

netl: enable function 214
:enable message 155
ENABLE-CAPABILITIES NFILE Command 281

netl: enable-serlal-termlnal function 22
sys: enable-services function 51
sys: enable-services property 52

Enabling and Disabling Network Services 51
Enabling a serial terminal 20

Initializing, Resetting, and Enabling Networks 154

E

327

June 1986 Index

F

Encapsulation interface 147
Chaosnet UNC encapsulation interface 149

Chaosnet End-of-Data 196
Logical end of data 196

EOF End of File packet 196
Namespace Service Entry for NFILE 252

:eof operation 210
EOF End of File packet 196

NFILE Three-letter Error Codes 306
Chaosnet Flow and Error Control 187

:error-dlsposltlon option for net:deflne-server 129
NFILE Error Handling 304

Passing packet error information 195
NFILE Asynchronous Errors 305

NFILE Command Response Errors 305
Establishing a connection 179, 191, 207
Establishing an NFILE Control Connection 260

Chaosnet Connection Establishment 191
Ethernet attributes 156

Interfacing to Ethernets 156
Token List Stream Example 240

F
FUNCTION

Using the Remote Login
chaos:

Arpanet INR/INS attention-getting
Acknowledgement packet header

Count packet header
Destination Address packet header

Destination Index packet header
Forwarding-count

Opcode pkt header
Operation packet header

Packet Number packet header
Source Address packet header

Source Index packet header
Packet header

Chaosnet

NFILE direct
Data Channel Handles and Direct

* descriptor
changes descriptor
version descriptor

EOF End of

Example of Defining a New Network Service 123
Example of Finding a Path to a Host 47
Example of Programming with Packets 142
Examples of Defined Mediums 161
EXPUNGE NFILE Command 281

F command 95
Facilities 20
fast-answer-strlng function 208
feature 203
field 182, 187, 195
field 182
field 182
field 182
field 184
field 211
field 182
field 182
field 182
field 182
fields 182, 190
File Access Path 119
File Access Protocols 203
file-control-lIfetlme: Host Object Attribute 82
file identifier 254
File Identifiers 267
file indicator 102
file indicator 102
file indicator 102
File packet 196
FILEPOS NFILE Command 282
FILEPOS NFILE Command 283
File Properties 268
File PropertyNalue Pairs 268
File Protocol 251

Implementation Hint for
Recognized Keywords Denoting

Format of NFILE
NFILE

Changes
Log

Namespace Database Changes

files 101
files 101
Files 103

F

328

Networks June 1986

Namespace database descriptor files 101, 102
Namespace Database Log Files 103

Namespace Database Object Files 102
Namespace Server Files 101

Object files 101
What is a File Server? 5

File system version number 103
NFILE File Transfer Philosophy 254

Example of Finding a Path to a Host 47
Finding a Path to a Local Service 43
Finding a Path to a Service on a Remote Host 43
Finding a Server Description 171
Finding the Possible Paths to a Host 45

netl: find-network-interfaces function 148
net: find-object-from-property-list function 108
net: find-object-named function 108
net: find-obJects-from-property-list function 108
net: find-paths-to-protocol-on-host function 167
net: find-paths-to-service function 121
net: flnd-paths-to-service-on-host function 1 67
net: flnd-path-to-protocol-on-host function 167
net: flnd-path-to-service-on-host function 167
net: flnger-all-lIspms function 215
net: finger-Iocal-lispms function 215
net: finger-location variable 215

finger-location: Host Object Attribute 80
FINGER protocol 204
:finish operation 210

chaos: finish-conn function 212
FINISH NFILE Command 283
Fixed bridge connection type 184

net:network flavor 151
netl:buffered-token-stream flavor 244

netl:mark-seen flavor 235
netl:token-data-was-list flavor 249

netl:token-Io-unsafe flavor 245
netl :token-list-bldirectional-data-stream flavor 249

netl:token-list-input-data-stream flavor 248
netl :token-list-output-data-stream flavor 249

netl :token-list-stream flavor 243
netl:token-stream-data-error flavor 246

Flavors and Messages Related to the Token List
Stream 243

Flavors Related to the Token List Data Stream 248
Chaosnet Flow and Error Control 187

Flow-control 187
font-widths-file: Printer Object Attribute 91
:force-output operation 21 0
Foreign connection state 200
:forelgn-host message 156
Foreign packet 204

Using Foreign Protocols in Chaosnet 204
chaos: foreign-state connection state 209

net:define-medlum special form 159
net:deflne-protocol special form 127

net:deflne-server special form 129
net:lnvoke-multlple-servlces special form 120

BYTE-STREAM-WITH-MARK record format 229
NFILE DIRECTORY Data Format 279

Record Format 101
Universal Time format 257

329

June 1986 Index

Format of Chaosnet Addresses 55
Format of DNA Addresses 59
Format of Internet Addresses 57
Format of NFILE File PropertyNalue Pairs 268
format: Printer Object Attribute 89

Chaosnet Data Formats 183
Print formats 89
FWD Forward a request for connection packet 191

Forwarded connection 191
Packet forwarding 184

Forwarding count 182
Forwarding-count field 184
Freeing packets 148
Free pool of packets 144

Recovering From a Network Problem 15
Notifications From the NFILE Server 261

Full Pathname Syntax of the Server Host 267
:request-array option to netl: funcall-server-Internal-functlon 172

:request-array-end option to netl: funcall-server-internal-function 172
:request-array-start option to netl: funcall-server-Internal-functlon 172

:response-array option to netl: funcall-server-Internal-functlon 172
:response-array-end option to netl: funcall-server-Internal-functlon 172

:response-array-start option to netl: funcall-server-internal-functlon 172
netl: funcall-server-Internal-functlon function 171, 174

Calling the Server Function 171
chaos:accept function 208

chaos:add-contact-name-for-protocol function 132
chaos:answer function 208

chaos:answer-strlng function 208
chaos:assure-enabled function 214

chaos:close-conn function 207
chaos:connect function 207

chaos:conn-flnlshed-p function 212
chaos:data-avallable function 212

chaos:fast-answer-strlng function 208
chaos:flnlsh-conn function 212

chaos:get-next-pkt function 212
chaos:get-pkt function 211

chaos:host-data function 213
chaos:host-up function 215

chaos:lnterrupt-functJon function 212
chaos:listen function 208

chaos:make-stream function 210
chaos:may-transmit function 212

chaos:notlfy function 215
chaos:notlfy-Iocal-lispms function 215

chaos:open-forelgn-connectlon function 208
chaos:pkt-link function 213

chaos:pkt-nbytes function 211
chaos:pkt-opcode function 211

chaos:pkt-strlng function 211
chaos:prlnt-conn function 214

chaos:print-pkt function 214
chaos:read-pkts function 213

chaos:reject function 208
chaos:remove-conn function 207

chaos:return-pkt function 211
chaos:send-pkt function 211

chaos:send-unc-pkt function 212
chaos:set-pkt-string function 211

chaos:slmple function 207

330

Networks June 1986

chaos:state function 209
chaos:walt function 209

net:abort-service-access-path-future function 168
net:contlnue-servlce-access-path-future function 168

net:find-obJect-from-property-list function 108
net:find-obJect-named function 108

net:find-objects-from-property-list function 108
net:find-paths-to-protocol-on-host function 167

net:flnd-paths-to-servlce function 121
net:find-paths-to-service-on-host function 167
net:find-path-to-protocol-on-host function 167
net:find-path-to-service-on-host function 167

net:finger-all-lispms function 215
net:finger-Iocal-lispms function 215

net:get-connection-for-servlce function 129
net:invoke-service-access-path function 167

net:invoke-service-on-host function 120
net:remote-Iogln-on function 21

net:service-access-path-future-connected-p function 168
net:start-servlce-access-path-future function 167

neli :allocate-packet-buffer function 139
neli:ask-terminal-parameters function 22

neli :change-server-error-disposltlon function 133
netl:deallocate-packet-buffer function 139

netl:disable function 214
netl:dlsable-serlal-termlnal function 23

netl :enable function 214
netl:enable-serlal-termlnal function 22

neti:find-network-Interfaces function 148
neti:funcall-server-Internal-functlon function 171, 174

netl :general-network-reset function 214
netl:get-sub-packet function 140

neli:get-sub-packet-maybe-copying function 142
neti:map-packet-buffers function 144

neli :maybe-packet-buffer-panic function 145
neli:most-deslrable-service-access-path function 167

neli:packet-being-transmitted function 144
neti:packet-buffer-panic function 145

neti :prune-namespace-changes-file function 106
netl :read-object-file-and-update function 105

neli :recompute-all-namespace-server-access-paths
function 111

neli :recompute-namespace-server-access-paths function 112
neU :reset function 214

neU :server-argument-descrlpUons function 174
neU:server-function function 173

neU :server-medlum-type function 173
neU:server-number-of-arguments function 174

neU :server-property-list function 174
neU :server-protocol-name function 171, 173

neU:service-enabled-p function 52
netl:set-terminal-parameters function 22

neli :show-namespace-server-access-paths function 111
neli :translate-hosts.text-file function 106

neli :write-hosts. text-file function 106
sl :get-site-option function 109

si :parse-host function 110
sys:disable-services function 51
sys:enable-services function 51

tv:edit-namespace-object function 99
zl :hostat function 213

331

June 1986 Index

G

H

FUNCTION F command 95
FUNCTION H command 213

Connection interrupt functions 212
Namespace System Functions 108

Namespace System Administrative Functions 105
Server functions 208

Functions for Chaosnet Connection States 209
Server functions for datagram protocols 172

Functions for Defining Users and Servers 127
Summary of Functions for Defining Users and Servers 127

Functions for Invoking Network Services 119
Functions for Service Lookup and Invocation 166

Summary of Functions for Service Lookup and Invocation 165
Functions Related to Packets 139

G

Functions Related to Starting Servers 173
Functions Used in Remote Login 21
FWD Forward a request for connection packet 191

Protocol-translating gateway 204
gateway-pseudonet network type 86
Gateways 184

netl: general-network-reset function 214
Generic and Specific Mediums 31
Generic Network Services 35

Implementation of the Generic Network System 135
Interfacing to the Generic Network System 113

Symbolics Generic Network System 25
Descriptions of Defined Generic Services 39

:get message 110
net: get-connection-for-servlce function 129

Using Peek to Get Information on Networks 15
chaos: get-next-pkt function 212
chaos: get-pkt function 211

sl: get-slte-optlon function 109
neli: get-sub-packet function 140
netl: get-sub-packet-maybe-copylng function 142

Globally named objects 71
Global-name 1 07

Namespace global-name 70
Glossary of Networking Terminology 11

Design Goals of the Network System 3

H
FUNCTION

Data Channel
NFILE Error

H command 213
Handles and Direct File Identifiers 267
Handling 304

G

H

Acknowledgement packet
Count packet

Destination Address packet
Destination Index packet

Opcode pkt
Operation packet

Packet Number packet
Source Address packet

Source Index packet
Packet

header-character-slyle: Printer Object Attribute 90
headerfi~d 182,187,195
header field 182
header field 182
header field 182
header field 211
header field 182
header field 182
header field 182
header field 182
header fields 182, 190

332

Networks June 1986

header-font: Printer Object Attribute 90
Implementation Hint for FILEPOS NFILE Command 283
Implementation Hints for RESYNCHRONIZE-DATA-CHANNEL NFILE

Command 303
home-address: User Object Attribute 85
HOME-DIRECTORY NFILE Command 284
home-host: User Object Attribute 83
home-phone: User Object Attribute 85

Example of Finding a Path to a Host 47
Finding a Path to a Service on a Remote Host 43

Finding the Possible Paths to a Host 45
Full Pathname Syntax of the Server Host 267

Physical location of host 80
Protocols supported by host 81
Services supported by host 81

:host option for net:deflne-server 129
:host option for server 172

What is a host? 3
Host address 184

Numeric host addresses 180
Quitting Hostat 214

zl: hostat function 213
Host attributes 77

Determining What Kinds of Connections a Remote Host Can Make 44
chaos: host-data function 213
chaos: host-down-state connection state 209

host-for-bug-reports: Site Object Attribute 92
Symbolic host names 180

Chaos host number 55
Host object 69

address: Host Object Attribute 79
bitmap-printer: Host Object Attribute 80

console-location: Host Object Attribute 80
file-control-lifetime: Host Object Attribute 82

finger-location: Host Object Attribute 80
location: Host Object Attribute 80

machine-type: Host Object Attribute 79
name: Host Object Attribute 77

nickname: Host Object Attribute 78
peripheral: Host Object Attribute 82

pretty-name: Host Object Attribute 79
printer: Host Object Attribute 80

print-spooler-options: Host Object Attribute 81
server-machine: Host Object Attribute 82

service: Host Object Attribute 81
short-name: Host Object Attribute 78

site: Host Object Attribute 78
spooled-printer: Host Object Attribute 81

system-type: Host Object Attribute 77
A Sample Host Object in the Namespace Database 11

Namespace System Host Objects 77
Connecting to a Remote Host Over the Network 14

host: Printer Object Attribute 88
host-protocol-desirability: Site Object Attribute 93
Hosts 71
Host's console location 80
Host Status 213
Host status report 213

ITS host table 184
chaos: host-up function 215

How a Network Service is Performed 115

333

June 1986 Index

How to Obtain an Internet Address 62

I I
Chaosnet Packet I/O 211
Chaosnet Stream I/O 210

NFILE direct file identifier 254
Data Channel Handles and Direct File Identifiers 267

Implementation Hint for FILEPOS NFILE
Command 283

Implementation Hints for RESYNCHRONIZE-DATA
CHANNEL NFILE Command 303

Symbolics Implementation of Chaosnet 207
Implementation of Network Addresses 152
Implementation of Network Mediums 159
Implementation of Networks 151
Implementation of the Generic Network System 135
Implementation of the Service Lookup

Mechanism 165
chaos: Inactive-state connection state 209

Incomplete Transmission connection state 200
Incremental indicator 311
Incremental updates 311

Connection index 180
Destination Index packet header field 182

Source Index packet header field 182
* descriptor file indicator 102

Attribute indicator 70
changes descriptor file indicator 102

delete indicator 311
Incremental indicator 311

timestamp indicator 311
version descriptor file indicator 102

Chaosnet Addresses and Indices 180
Passing packet error information 195

Chaosnet Information and Control 213
Using Peek to Get Information on Networks 15

Reference Information on NFILE 253
RUT Routing Information packet 199

Initializing, Resetting, and Enabling Networks 154
:Input interrupt reason 212

NFILE input data channel 258
Arpanet INR/INS attention-getting feature 203

Interaction with Peek Network Mode 157
Transmitting interactive messages 203

CCITT Recommendation X.25 interface 86
Chaosnet UNC encapsulation interface 149

Encapsulation interface 147
Sending a Packet to an Interface 148

Interface-options: Printer Object Attribute 89
interface: Printer Object Attribute 89

:add-network message to interfaces 153
Miscellaneous Notes on Interfaces 149

Network Interfaces 147
Standard Communication with Interfaces 147

netl: *Interfaces* variable 147
Details of the User Interface to the Namespace System 99

Software hilerface to the Namespace System 107
Interfacing to Ethernets 156
Interfacing to the Generic Network System 113
Interfacing to the Lisp Machine

334

Networks June 1986

K

Byte-Stream-With-Mark 233
DOD Internet 86

internet network type 86
How to Obtain an Internet Address 62

Format of Internet Addresses 57
Mapping an Internet Address Into a Chaos Address 62

internet-domain-name: Namespace Object
Attribute 96

Internet Domain Names 222
Internet Networks 221

Introduction to Internet Networks 221
Internet protocol 204

ARPA Internet references 224
chaos: Interrupt-function function 212

Connection interrupt functions 212
:change-of-state interrupt reason 212

:Input interrupt reason 212
:output interrupt reason 212

Chaosnet Connection Interrupts 212
Introduction to BYTE-STREAM-WITH-MARK Network

Medium 229
Introduction to Chaosnet 177
Introduction to DNA Networks 227
Introduction to Internet Networks 221
Introduction to NFILE 251,253
Introduction to Symbolics Networks 1
Introduction to the Namespace System 69
Introduction to the Token List Transport Layer 237

Functions for Service Lookup and Invocation 166
Summary of Functions for Service Lookup and Invocation 165

:invoke option for net:define-protocol 127
net: invol<e-multiple-services macro 127
net: invoke-multiple-services special form 120
net: invoke-servlce-access-path function 167

neli: *invoke-service-automalic-retry* variable 120
net: invoJ<e-service-on-host function 120

:invoJ<e-with-stream option for
net:define-protocol 127

:invoke-with-stream-and-close option for
net:define-protocol 127

Invoking a server 174
Invoking Mediums 153
Invoking Network Services 117

Functions for Invoking Network Services 119
References to IPfTCP Protocol Specifications 224

What is a File Server? 5
What is a host? 3
What is a Network? 3
What is a Network Service? 4

How a Network Service is Performed 115

K
SELECT T

NFILE OPEN Optional
Recognized

.*

ITS host table 184

key 14
KeywordNalue Pairs 291
Keywords Denoting File Properties 268
keyword symbol 108
Keyword tokens 238

K

Determining What
Determining What

Kinds of Connections a Remote Host Can Make 44
Kinds of Connections a Symbolics Computer Can

June 1986

L

Make 44

L
Introduction to the Token List Transport Layer 237

NFILE and the token list transport layer 258
NFILE and token list transport layer 237

Token List Transport Layer 237
Packets with array leader 142

Namespace System Lisp Data Types 107
Interfacing to the Lisp Machine Byte-Stream-With-Mark 233

Sending message to all Lisp Machines at site 215
IIspm-name: User Object Attribute 83

Mapping of Lisp Objects to Token List Stream
Representation 242

Embedded token list 238
Empty token list 238

Top-level token list 238
Transmit list 144

List all supported servers 173
LIST-BEGIN 238

Flavors Related to the Token List Data Stream 248
Token list data stream 237,247

chaos: listen function 208
LIST-END 238
Listening connection state 200

chaos: listening-state connection state 209
LSN Listen packet 191

Mapping Data Types Into Token List Representation 257
Types of Tokens and Token Lists 238

Aborting and the Token List Stream 246
Flavors and Messages Related to the Token List Stream 243

Token list stream 237,238
Token List Stream Example 240

Mapping of Lisp Objects to Token List Stream Representation 242
Introduction to the Token List Transport Layer 237

NFILE and the token list transport layer 258
NFILE and token list transport layer 237

Token List Transport Layer 237
:Iocal medium 32
:Iocal network medium 43

net: *Iocal-host* variable 107
local-namespace: Site Object Attribute 92
Local networks 154

netl: *Iocal-networks* variable 154
Finding a Path to a Local Service 43

net: *Iocal-slte* variable 107
Host's console location 80

location: Host Object Attribute 80
Physical location of host 80

Log files 101
Namespace Database Log Files 103

Logical end of data 196
Functions Used in Remote Login 21

Remote Login 19
The Remote Login Capability 19

Using the Remote Login Facilities 20
login-name: User Object Attribute 83
LOGIN NFILE Command 285
LOG IN service 14

Remote login with machine in use 21

335

Index

L

336

Networks

M

June 1986

Messages Related to Service Lookup 168
Functions for Service Lookup and Invocation 166

Summary of Functions for Service Lookup and Invocation 165
Implementation of the Service Lookup Mechanism 165

LOS Lossage packet 195
chaos: los-recelved-state connection state 209

LOS Lossage packet 195
Lost connection state 200

Chaosnet Low-level Details 199
LSN Usten packet 191

M
Interfacing to the Lisp Machine Byte-Stream-With-Mark 233

Remote login with machine in use 21
Sending message to all Lisp Machines at site 215

machine-type: Host Object Attribute 79
net:lnvoke-multlple-services macro 127

netl :wlth-server-error-dlsposltlon macro 133
mall-address: User Object Attribute 83

MNT Maintenance packet 199

M

Determining What Kinds of Connections a Remote Host Can
Make 44

Determining What Kinds of Connections a Symbolics Computer Can
Make 44

chaos: make-stream function 210
Managing the Namespace Database 101

netl: map-packet-buffers function 144
Mapping a Chaos Address Into a DNA Address 63
Mapping an Internet Address Into a Chaos

Address 62
Mapping Data Types Into Token Ust

Representation 257
Mapping names to objects 71
Mapping of Lisp Objects to Token List Stream

Representation 242
BYTE-STREAM-WITH-MARK marks 229

netl: mark-seen flavor 235
netl: maybe-packet-buffer-panlc function 145

chaos: may-transmit function 212
Implementation of the Service Lookup Mechanism 165

:byte-stream medium 32, 172
:byte-stream-wlth-mark medium 32

BYrE-STREAM-WITH-MARK Network Medium 229
:chaos medium 32, 129

:chaos-slmple medium 32
:datagram medium 32, 172

:dial medium 32
Dial Network Medium 217

:dna medium 32
Introduction to BYTE-STREAM-WITH-MARK Network Medium 229

:Iocal medium 32
:Iocal network medium 43

:tcp medium 32
:udp medium 32

:medlum option for net:deflne-server 129
Concepts of Service, Medium, and Protocol 5

Network, Medium, and Protocol Descriptions 175
Commonly Used Arguments to Mediums 172

Descriptions of Defined Mediums 32
Examples of Defined Mediums 161

337

June 1986 Index

Generic and Specific Mediums 31
Implementation of Network Mediums 159

Invoking Mediums 153
Network Mediums 31

:byte-stream medium type 129
[Namespace] System Menu item 99

:accept message 156
:add-network message 148

:address-resolutJon-parameters message 156
:allocate-packet message 149

:class message 110
:default-servlces message 169

:desirablllty message 168
:dlsable message 155
:enable message 155

:forelgn-host message 156
:get message 110

:name message 110
:names message 111

:namespace message 110
:parse-address message 152

:peek message 157
:peek-header message 157

:posslble-medlum-for-protocol message 169
:posslbly-quallfled-strlng message 110

:prlmary-name message 111
:protocol-address message 148

:quallfled-strlng message 110
:read-token-list message 245
:recelve-packet message 154

:reJect message 156
:reset message 155

:send-token-list message 244
:strlng message 110

:supports-broadcast message 169
:transmit-packet message 149

:type message 152
:unparse-address message 152

:user-get message 111
Transmitting interactive messages 203

Messages Related to Service Lookup 168
Flavors and Messages Related to the Token Ust Stream 243

Messages to Namespace Names and Objects 110
Messages to net:obJect 110
Messages to netl:name 110

Sending message to all Lisp Machines at site 215
:add-network message to Interfaces 153

neti :*actual-number-of-wlred-packet-buffers* meter 140
neti:*number-of-unwired-packet-buffers* meter 140

Mica 91
Miscellaneous Notes on Interfaces 149
Miscellaneous Notes on Packets 144
MNT Maintenance packet 199

Direct access mode 267
Interaction with Peek Network Mode 157

NFILE data stream mode 254
NFILE direct access mode 254

netl: most-deslrable-servlce-access-path function 167
MUL TIPLE·FILE·PLlSTS NFILE Command 287
Multiple paths to a service 120

338

Networks

N

June 1986

N
Name 107

Messages to netl: name 110
NFILE's Chaos contact name 260

Qualified name 71
:name message 110

Arpanet Name/Finger protocol 204
Globally named objects 71

name: Host Object Attribute 77
name: Namespace Object Attribute 96
name: Network Object Attribute 86

Primary name of object 110
name: Printer Object Attribute 88
NAME protocol 204

Chaosnet Name Protocol 204
Name resolver 222

Chaosnet Contact Names 179
Internet Domain Names 222

Symbolic host names 180
:names message 111
Names and Namespaces 71

Messages to Namespace Names and Objects 110
name: Site Object Attribute 92

Relationships of Names of Services and Protocols on User, Server,
and Namespace 126

N

Relationships of Names of Services and Protocols on User, Server, and
Namespace 126

:namespace message 110
net: *namespace* variable 107

Namespace attributes 95
Defining Namespace Classes 112

Adding new objects to the namespace database 99
A Sample Host Object in the Namespace Database 11

Changes to namespace database 103
Editing objects in the namespace database 99

Managing the Namespace Database 101
Network not in namespace database 151

Service Attributes in the Namespace Database 29
Update the namespace database 105

Updating the Namespace Database 73
Namespace Database Changes Files 103
Namespace database descriptor files 101, 102
Namespace Database Log Files 103
Namespace Database Object Files 102
Namespace editor 99
Namespace global-name 70

Messages to Namespace Names and Objects 110
Namespace object 69

Creating a New Namespace Object 74
Editing a Namespace Object 74

descriptor-file: Namespace Object Attribute 96
Internet-domain-name: Namespace Object Attribute 96

name: Namespace Object Attribute 96
prlmary-name-server: Namespace Object Attribute 96

search-rules: Namespace Object Attribute 96
secondary-name-server: Namespace Object Attribute 96

Edit Namespace Object command 99
Namespace Objects 95

Concept of Namespace Objects 9
Namespace pair 70

Network Namespace Protocol 311

June 1986

Names and
net:

Primary

Concepts of the
Details of the User Interface to the

Introduction to the
Software Interface to the

Data Types of

Mapping

:desirability option for
:invoke option for

:Invoke-with-stream option for
:invoke-wlth-stream-and-close option for

:property option for

:accept-p stream option for
:address option for

:ascil-translatlon stream option for
:conn option for

:direction stream option for
:error-disposition option for

:host option for
:medium option for
:network option for

:no-close stream option for
:no-eof stream option for

:process-name option for
:reject-unless-trusted option for

:request-array option for
:response-array option for

:stream option for
:trusted-p option for

Namespace Protocols 311
Namespaces 71
Namespaces 71
namespace-search-lIst variable 108
namespace server 101
Namespace Server Access Paths 111
Namespace Server Files 101
Namespace Service Entry for NFILE 252
Namespace set 70
Namespace System 67
Namespace System 8
Namespace System 99
Namespace System 69
Namespace System 107

339

Index

Namespace System Administrative Functions 105
Namespace System Attributes 70
Namespace System Attributes 70
Namespace System Classes 69
Namespace System Functions 108
Namespace System Host Objects 77
Namespace System Usp Data Types 107
[Namespace] System Menu Item 99
Namespace System Network Objects 86
Namespace System Object Definitions 77
Namespace System Printer Objects 88
Namespace System Site Objects 92
Namespace System User Objects 82
Namespace System Variables 107
Namespace Timestamp Protocol 313
Namespace token 70
Namespace triple 70
names to objects 71
name: User Object Attribute 83
net:abort-service-access-path-future function 168
net:after-network-lnltlaJizatlon-list variable 155
net:continue-service-access-path-future

function 168
net:define-medlum special form 159
net:define-protocol 127
net:deflne-protocol 127
net:deflne-protocol 127
net:define-protocol 127
net:deflne-protocol 127
net:deflne-protocol special form 127
net:deflne-server 129
net:deflne-server 129
net:deflne-server 129
net:deflne-server 129
net:deflne-server 129
net:deflne-server 129
net:deflne-server 129
net:define-server 129
net:define-server 129
net:define-server 129
net:define-server 129
net:define-server 129
net:define-server 129
net:define-server 129
net:define-server 129
net:define-server 129
net:deflne-server 129

340

Networks

:who-line option for

Messages to

:request-array option to
:request-array-end option to

:request-array-start option to
:response-array option to

:response-array-end option to
:response-array-start option to

June 1986

net:deflne-server 129
net:deflne-server special form 129
net:flnd-object-from-property-list function 108
net:flnd-obJect-named function 108
net:flnd-objects-from-property-list function 108
net:find-paths-to-protocol-on-host function 167
net:flnd-paths-to-servlce function 121
net:flnd-paths-to-servlce-on-host function 167
net:f1nd-path-to-protocol-on-host function 167
net:flnd-path-to-servlce-on-host function 167
net:flnger-all-lIspms function 215
net:finger-Iocal-lispms function 215
net:finger-Iocatlon variable 215
net:get-connectlon-for-service function 129
net:lnvoke-multlple-servlces macro 127
net:lnvoke-multlple-servlces special form 120
net:lnvoke-servlce-access-path function 167
net:lnvoke-servlce-on-host function 120
net:*local-host* variable 107
net:*local-site* variable 107
net:*namespace* variable 107
net:*namespace-search-list* variable 108
net:network flavor 151
net:network-type-flavor property 151
net:object 110
net:remote-Iogln-on function 21
net:servlce-access-path-future-connected-p

function 168
net:*servlces-enabled* variable 52
net:start-servlce-access-path-future function 167
netl:*actual-number-of-wired-packet-buffers*

meter 140
netl :allocate-packet-buffer function 139
netl:ask-termlnal-parameters function 22
netl :buffered-stream-wlth-mark 233
netl:buffered-token-stream flavor 244
netl :change-server-error-dlsposltion function 133
netl :deallocate-packet-buffer function 139
netl:dlsable function 214
netl:disable-serial-terminal function 23
netl:enable function 214
netl:enable-serial-termlnal function 22
netl :find-network-Interfaces function 148
netl :funcall-server-Internal-functlon 172
netl :funcall-server-internal-functlon 172
netl :funcall-server-Internal-functlon 172
netl :funcall-server-Internal-functlon 172
netl :funcall-server-Internal-functlon 172
netl :funcall-server-Internal-functlon 172
netl:funcall-server-Internal-functlon function 171,

174
netl:general-network-reset function 214
netl:get-sub-packet function 140
netl :get-sub-packet-maybe-copying function 142
netl:*lnterfaces* variable 147
netl:*lnvoke-servlce-automatic-retry* variable 120
netl :*Iocal-networks* variable 154
netl :map-packet-buffers function 144
netl :mark-seen flavor 235
netl:maybe-packet-buffer-panic function 145
netl: most-desl rabl e-servi ce-access-path

341

June 1986 Index

function 167
Messages to netl:name 110

netl :*new-servlces-enable* variable 52
netl :*number-of-unwlred-packet-buffers*

meter 140
netl:packet-belng-transmltted function 144
netl :packet-buffer-panlc function 145
netl:prune-namespace-changes-flle function 106
netl:raw-packet-buffer-slze variable 139
netl:read-obJect-flle-and-update function 105
neti:recompute-all-namespace-server-access-

paths function 111
netl:recompute-namespace-server-access-paths

function 112
netl:reset function 214
netl:server-argument-descrlptlons function 174
netl:server-functlon function 173
netl :server-medlum-type function 173
netl :server-number-of-arguments function 174
netl :server-property-list function 174
netl :server-protocol-name function 171, 173
netl:*servers* variable 171, 173
neli :service-enabled-p function 52
netl:set-terminal-parameters function 22
neli :show-namespace-server-access-paths

function 111
netl :*standard-servlces-enabled* variable 51
nell :*target-number-of-wlred-packet-buffers·

variable 140
netl:token-data-was-list flavor 249
netl:token-Io-unsafe flavor 245
neli:token-list-bldirectional-data-stream flavor 249
netl:token-list-input-data-stream flavor 248
nell:token-list-output-data-stresm flavor 249
netl:token-list-stream flavor 243
netl:token-stream-data-error flavor 246
netl:transiate-hosts.text-file function 106
netl :with-server-error-dlsposltlon macro 133
netl:write-hosts.text-flle function 106
:netl-mark-seen 233

Activities That Use the Network 14
Commands That Use the Network 13

Connecting to a Remote Host Over the Network 14
Defining a Network 151

Direct-dial telephone network 86
Packet-switching network 86

Using the Network 13
net: network flavor 151

:network option for net:deflne-server 129
:network option for server 172
NETWORK X command 14

What is a Network? 3
Concept of Network Addresses 7

Implementation of Network Addresses 152
Network Addressing 53

Dial Network Addressing 217
Choosing a Network Addressing Scheme 61

Network attributes 86
Reset Network command 15

Chaosnet Network Control Program 178
Queries to network database 311

342

Networks June 1986

Updates to network database 311
Glossary of Networking Terminology 11

Network Interfaces 147
BYTE-STREAM-WITH-MARK Network Medium 229

Dial Network Medium 217
Introduction to BYTE-STREAM-WITH-MARK Network Medium 229

:Iocal network medium 43
Network, Medium, and Protocol Descriptions 175
Network Mediums 31

Implementation of Network Mediums 159
Interaction with Peek Network Mode 157

network-names pace attribute 102
Network Namespace Protocol 311
Network not in namespace database 151
Network object 69

name: Network Object Attribute 86
nickname: Network Object Attribute 87

site: Network Object Attribute 87
subnet: Network Object Attribute 87

type: Network Object Attribute 86
Namespace System Network Objects 86
Recovering From a Network Problem 15

Desirability of Network Protocols 50
Networks 71

Concepts of Symbolics Networks 3
DNA Networks 227

Implementation of Networks 151
Initializing, Resetting, and Enabling Networks 154

Internet Networks 221
Introduction to DNA Networks 227

Introduction to Internet Networks 221
Introduction to Symbolics Networks 1

Local networks 154
Reducing Call Cost with Public Carrier Networks 219

Using Peek to Get Information on Networks 15
Starting Network Servers 171

Defining a New Network Service 123
Example of Defining a New Network Service 123

What is a Network Service? 4
How a Network Service is Performed 115

Enabling and Disabling Network Services 51
Functions for Invoking Network Services 119

Generic Network Services 35
Invoking Network Services 117

Networks Supported by Symbolics Computers 6
Design Goals of the Network System 3

Implementation of the Generic Network System 135
Interfacing to the Generic Network System 113

Symbolics Generic Network System 25
chaos network type 86

dial network type 86
gateway-pseudonet network type 86

Internet network type 86
x25 network type 86
net: network-type-flavor property 151

Network Users and Servers 27
Creating a New Namespace Object 74
Defining a New Network Service 123

Example of Defining a New Network Service 123
Adding new objects to the namespace database 99

neti: *new-servlces-enable* variable 52

June 1986

343

Index

Introduction to NFILE 251, 253
Namespace Service Entry for NFILE 252

Overview of NFILE 253
QFILE and NFILE 251

Reference Information on NFILE 253
Starting to Use NFILE 252

NFILE abort 261
NFILE and the token list transport layer 258
NFILE and token list transport layer 237
NFILE Asynchronous Errors 305
NFILE Character Set Translation 255

ABORT NFILE Command 269
CHANGE-PROPERTIES NFILE Command 270

CLOSE NFILE Command 270
COMPLETE NFILE Command 272
CONTINUE NFILE Command 273

CREATE-DIRECTORY NFILE Command 273
CREATE-LINK NFILE Command 274

DATA-CONNECTION NFILE Command 275
DELETE NFILE Command 276

DIRECTORY NFILE Command 277
DIRECT-OUTPUT NFILE Command 276

DISABLE-CAPABILITIES NFILE Command 280
ENABLE-CAPABILITIES NFILE Command 281

EXPUNGE NFILE Command 281
FILEPOS NFILE Command 282

FINISH NFILE Command 283
HOME-DIRECTORY NFILE Command 284

Implementation Hint for FILEPOS NFILE Command 283
Implementation Hints for RESYNCHRONIZE-DATA-CHANNEL

NFILE Command 303
LOGIN NFILE Command 285

MUL TIPLE-FILE-PLISTS NFILE Command 287
OPEN NFILE Command 288

PROPERTIES NFILE Command 299
READ NFILE Command 301

RENAME NFILE Command 302
RESYNCHRONIZE-DATA-CHANNEL NFILE Command 302

UNDATA-CONNECTION NFILE Command 304
NFILE Command Descriptions 265

Conventions Used in NFILE Command Descriptions 265
NFILE Command Response Errors 305
NFILE Commands 269
NFILE Concepts 253
NFILE Control and Data Connections 258

Establishing an NFILE Control Connection 260
NFILE Control Connection Resynchronization 261
NFILE Data Connection Resynchronization 263
NFILE data stream mode 254
NFILE direct access mode 254
NFILE direct file identifier 254
NFILE DIRECTORY Data Format 279
NFILE Error Handling 304

Format of NFILE File Property/Value Pairs 268
NFILE File Protocol 251
NFILE File Transfer Philosophy 254
NFILE input data channel 258
NFILE on Chaos 252
NFILE on TCP 252
NFILE OPEN Optional Keyword/Value Pairs 291
NFILE OPEN Response Return Values 297

344

Networks June 1986

o

NFILE output data channel 258
NFILE Resynchronization Procedure 261
NFILE's Chaos contact name 260

Notifications From the NFILE Server 261
NFILE specification 253
NFILE's well-known TCP port 260
NFILE Three-letter Error Codes 306
nickname: Host Object Attribute 78
nickname: Network Object Attribute 87
Nicknames 71
nickname: User Object Attribute 84
:no-close stream option for net:deflne-server 129

DNA node number 59, 63
:no-eof property 172
:no-eof stream option for net:define-server 129

Miscellaneous Notes on Interfaces 149
Miscellaneous Notes on Packets 144

Notifications From the NFILE Server 261
chaos: notify function 215
chaos: notify-Iocal-Ilspms function 215

Network not in namespace database 151
Chaos host number 55

Chaos subnet number 55
DNA area number 59, 63
DNA node number 59, 63

File system version number 103
Bit numbering convention 183

netl: *number-of-unwlred-packet-buffers* meter 140
Packet Number packet header field 182

Chaosnet Packet Numbers 181
Window into the set of packet numbers 187

o

Numeric host addresses 180
Numeric tokens 238

Object 107
Creating a New Namespace Object 74

Editing a Namespace Object 74
Host object 69

Messages to net: object 110
Namespace object 69

Network object 69
Primary name of object 110

Printer object 69
Site object 69

User object 69
address: Host Object Attribute 79

affiliation: User Object Attribute 85
birthday: User Object Attribute 85

bitmap-printer: Host Object Attribute 80
body-character-style: Printer Object Attribute 90

character-size: Printer Object Attribute 91
console-location: Host Object Attribute 80

default-bltmap-printer: Site Object Attribute 93
default-font: Printer Object Attribute 90
default-printer: Site Object Attribute 93

descriptor-file: Namespace Object Attribute 96
dont-reply-to-malling-Iists: Site Object Attribute 94

dplt-Iogo: Printer Object Attribute 91
flle-control-Iifetime: Host Object Attribute 82

o

345

June 1986 Index

finger-location: Host Object Attribute 80
font-wldths-flle: Printer Object Attribute 91

format: Printer Object Attribute 89
header-character-style: Printer Object Attribute 90

header-font: Printer Object Attribute 90
home-address: User Object Attribute 85

home-host: User Object Attribute 83
home-phone: User Object Attribute 85

host-for-bug-reports: Site Object Attribute 92
host: Printer Object Attribute 88

host-protocol-desirablllty: Site Object Attribute 93
Interface-options: Printer Object Attribute 89

Interface: Printer Object Attribute 89
Internet-domaln-name: Namespace Object Attribute 96

IIspm-name: User Object Attribute 83
local-namespace: Site Object Attribute 92

location: Host Object Attribute 80
login-name: User Object Attribute 83

machine-type: Host Object Attribute 79
mall-address: User Object Attribute 83

name: Host Object Attribute 77
name: Namespace Object Attribute 96

name: Network Object Attribute 86
name: Printer Object Attribute 88

name: Site Object Attribute 92
name: User Object Attribute 83

nickname: Host Object Attribute 78
nickname: Network Object Attribute 87

nickname: User Object Attribute 84
other-sltes-Ignored-In-zmall-summary: Site Object Attribute 94

page-size: Printer Object Attribute 91
peripheral: Host Object Attribute 82

personal-name: User Object Attribute 83
pretty-name: Host Object Attribute 79

pretty-name: Printer Object Attribute 88
pretty-name: Site Object Attribute 93

primary-name-server: Namespace Object Attribute 96
printer: Host Object Attribute 80

printer-location: Printer Object Attribute 89
prlnt-spooler-optlons: Host Object Attribute 81

project: User Object Attribute 85
protocol: Printer Object Attribute 90

remarks: User Object Attribute 85
search-rules: Namespace Object Attribute 96

secondary-name-server: Namespace Object Attribute 96
secure-sub nets: Site Object Attribute 94

server-machine: Host Object Attribute 82
service: Host Object Attribute 81

short-name: Host Object Attribute 78
site-directory: Site Object Attribute 92

site: Host Object Attribute 78
site: Network Object Attribute 87

site: Printer Object Attribute 88
site-system: Site Object Attribute 93

spooled-printer: Host Object Attribute 81
standalone: Site Object Attribute 94
subnet: Network Object Attribute 87

supervisor: User Object Attribute 85
system-type: Host Object Attribute 77

terminal-f-argument: Site Object Attribute 95
t1mezone: Site Object Attribute 92

346

Networks June 1986

type: Network Object Attribute 86
type: Printer Object Attribute 88

user-property: Object Attribute 78,84,87,91,95,97
valldate-Imfs-dump-tapes: Site Object Attribute 94

work-address: User Object Attribute 84
work-phone: User Object Attribute 84

Storing database object attributes 102
Edit Namespace Object command 99

Namespace System Object Definitions 77
Object files 101

Namespace Database Object Files 102
A Sample Host Object in the Namespace Database 11

Concept of Namespace Objects 9
Globally named objeqts 71

Mapping names to objects 71
Messages to Namespace Names and Objects 110

Namespace Objects 95
Namespace System Host Objects 77

Namespace System Network Objects 86
Namespace System Printer Objects 88

Namespace System Site Objects 92
Namespace System User Objects 82

Editing objects in the namespace database 99
Adding new objects to the namespace database 99

Mapping of Lisp Objects to Token List Stream Representation 242
How to Obtain an Internet Address 62
Packet opcode 182

Opcode pkt header field 211
Packet Opcodes 190

Open a stream connection 207
OPN Open connection packet 191

Open connection state 200
chaos: open-foreign-connection function 208

Opening and Closing Chaosnet Connections 207
Opening and Closing Chaosnet Connections on the

Server Side 208
Opening and Closing Chaosnet Connections on the

User Side 207
OPEN NFILE Command 288

NFILE OPEN Optional KeywordNalue Pairs 291
OPEN QFILE command 288

NFILE OPEN Response Return Values 297
chaos: open-state connection state 209

:clear-eof operation 21 0
:close operation 210

:eof operation 210
:finlsh operation 210

:force-output operation 210
Operation packet header field 182
OPN Open connection packet 191

NFILE OPEN Optional KeywordlValue Pairs 291
:desirablllty option for net:deflne-protocol 127

:Invoke option for net:deflne-protocol 127
:Invoke-wlth-stream option for net:deflne-protocol 127

:Invoke-wlth-stream-and-close option for net:deflne-protocol 127
:property option for net:define-protocol 127

:accept-p stream option for net:deflne-server 129
:address option for net:deflne-server 129

:ascll-translatlon stream option for net:deflne-server 129
:conn option for net:deflne-server 129

:dlrectlon stream option for net:define-server 129

347

June 1986 Index

p

:error-dlsposltlon option for net:deflne-server 129
:host option for net:deflne-server 129

:medlum option for net:deflne-server 129
:network option for net:deflne-server 129

:no-close stream option for net:deflne-server 129
:no-eof stream option for net:deflne-server 129

:process-name option for net:deflne-server 129
:reJect-unless-trusted option for net:deflne-server 129

:request-array option for net:deflne-server 129
:response-array option for net:deflne-server 129

:stream option for net:deflne-server 129
:trusted-p option for net:deflne-server 129
:who-line option for net:deflne-server 129

:host option for server 172
:network option for server 172

:trusted-p option for server 172
:request-array option to netl :funcall-server-Internal-functlon 172

:request-array-end option to netl:funcall-server-Internal-functlon 172
:request-array-start option to netl:funcall-server-Internal-function 172

:response-array option to netl:funcall-server-Internal-function 172
:response-array-end option to netl:funcall-server-Internal-function 172

:response-array-start option to netl:funcall-server-Internal-functlon 172
other-sltes-Ignored-In-zmall-summary: Site Object

Attribute 94
:output Interrupt reason 212

NFILE output data channel 258
Overview of NFILE 253
Overview of the Chaosnet Software Protocol 178

p
chaos: package 207

ANS Answer to a simple transaction packet 191
BRD Broadcast packet 197

CLS Close connection packet 191
OAT 16-bit Data packet 196

OAT 8-bit Data packet 196
EOF End of File packet 196

Foreign packet 204
FWD Forward a request for connection packet 191

LOS Lossage packet 195
LSN Listen packet 191

M NT Maintenance packet 199
OPN Open connection packet 191

RFC Request for connection packet 191
Routing packet 184

RUT packet 184
RUT Routing Information packet 199

Sending a CLS packet 196
SNS Sense ~tatus packet 195

STS Status packet 195
UNC Uncontrolled Data packet 196, 204

netl: packet-belng-transmltted function 144
Size In bytes of packet buffer 139

Packet buffer panic 144
netl: packet-buffer-panlc function 145

Chaosnet Packet Contents 182
Passing packet error information 195

Packet forwarding 184
Acknowledgement packet header field 182, 187, 195

Count packet header field 182

p

348

Networks

Destination Address packet header field 182
Destination Index packet header field 182

Operation packet header field 182
Packet Number packet header field 182
Source Address packet header field 182

Source Index packet header field 182
Packet header fields 182, 190

Chaosnet Packet 1/0 211
Packet Number packet header field 182

Chaosnet Packet Numbers 181
Window into the set of packet numbers 187

Packet opcode 182
Packet Opcodes 190

The Packet Pool 137
Packet Reception 153
Packets 137

Chaosnet Status Packets 195
Control packets 207

Controlled packets 181, 187
Data packets 207

Delivering packets 148
Example of Programming with Packets 142

Freeing packets 148
Free pool of packets 144

Functions Related to Packets 139
Miscellaneous Notes on Packets 144

SNS packets 187
Status packets 187

STS packets 187
Subpackets and Coercing Packets 140

Uncontrolled packets 181, 187
Wired and unwired packets 137

Packet-switching network 86
Packets with array leader 142

Sending a Packet to an Interface 148
Packet Transmission 154
Packet types 191
page-size: Printer Object Attribute 91
Pair 107

Namespace pair 70
Format of NFILE File PropertyNalue Pairs 268

NFILE OPEN Optional KeywordNalue Pairs 291
Packet buffer panic 144

:parse-address message 152
sl: parse-host function 110

Passing packet error information 195
File Access Path 119

Service Access Path 117
Full Pathname Syntax of the Server Host 267

Namespace Server Access Paths 111
Finding the Possible Paths to a Host 45

Multiple paths to a service 120
Example of Finding a Path to a Host 47

Finding a Path to a Local Service 43
Finding a Path to a Service on a Remote Host 43

:peek message 157
:peek-header message 157

Interaction with Peek Network Mode 157
Using Peek to Get Information on Networks 15

How a Network Service is Performed 115
peripheral: Host Object Attribute 82

June 1986

349

June 1986 Index

personal-name: User Object Attribute 83
NFILE File Transfer Philosophy 254

Physical location of host 80
Pkt 207,211

Opcode pkt header field 211
chaos: pkt-link function 213
chaos: pkt-nbytes function 211
chaos: pkt-opcode function 211
chaos: pkt-strlng function 211

The Packet Pool 137
Free pool of packets 144

NFILE's well-known TCP port 260
Ports 204
:posslble-medlum-for-protocol message 169

Finding the Possible Paths to a Host 45
:posslbly-quallfled-strlng message 110
pretty-name: Host Object Attribute 79
pretty-name: Printer Object Attribute 88
pretty-name: Site Object Attribute 93
:prlmary-name message 111
Primary name of object 110
primary-name-server: Namespace Object

Attribute 96
Primary namespace server 101

chaos: print-conn function 214
printer: Host Object Attribute 80
printer-location: Printer Object Attribute 89
Printer object 69

body-character-style: Printer Object Attribute 90
character-size: Printer Object Attribute 91

default-font: Printer Object Attribute 90
dplt-Iogo: Printer Object Attribute 91

font-wldths-flle: Printer Object Attribute 91
format: Printer Object Attribute 89

header-character-style: Printer Object Attribute 90
header-font: Printer Object Attribute 90

host: Printer Object Attribute 88
Interface: Printer Object Attribute 89

Interface-options: Printer Object Attribute 89
name: Printer Object Attribute 88

page-size: Printer Object Attribute 91
pretty-name: Printer Object Attribute 88

printer-location: Printer Object Attribute 89
protocol: Printer Object Attribute 90

site: Printer Object Attribute 88
type: Printer Object Attribute 88

Namespace System Printer Objects 88
Printers 71
Print formats 89

chaos: prlnt-pkt function 214
prlnt-spooler-optlons: Host Object Attribute 81
Probing 187,195

Recovering From a Network Problem 15
NFILE Resynchronization Procedure 261

Background process 207
Receiver process 207

Server process 179
User process 179

Channels attached to user processes 180
:process-name option for net:deflne-server 129

Chaosnet Network Control Program 178

350

Networks June 1986

Supdup program 14
Telnet program 14

Using the Terminal Program 14
Example of Programming with Packets 142

project: User Object Attribute 85
Recognized Keywords Denoting File Properties 268

PROPERTIES NFILE Command 299
:accept-p property 172

net:network-type-flavor property 151
:no-8of property 172

:reject-unless-trusted property 172
:stream-optlons property 172

sys:disable-services property 52
sys:enable-services property 52

:property option for net:define-protocol 127
Format of NFILE File PropertyNalue Pairs 268

Arpanet Name/Finger protocol 204
Arpanet Time protocol 204

Chaosnet Name Protocol 204
Chaosnet RFC/ANS time protocol 127

Chaosnet Send Protocol 203
Chaosnet Status Protocol 201

Chaosnet Time Protocol 204
Concepts of Service, Medium, and Protocol 5

FINGER protocol 204
Internet protocol 204
NAM E protocol 204

Namespace Timestamp Protocol 313
Network Namespace Protocol 311

NFILE File Protocol 251
Overview of the Chaosnet Software Protocol 178

QFILE protocol 203
SEND protocol 203

STATUS protocol 197,201
Supdup protocol 203

Technical Details of the Chaosnet Software Protocol 190
Telnet protocol 203
TIME protocol 197,204

Transmission Control Protocol 204
User Datagram Protocol 204

:protocol-address message 148
Network, Medium, and Protocol Descriptions 175

protocol: Printer Object Attribute 90
Application-Level Chaosnet Protocols 201
Arpanet Telnet and Supdup protocols 203

Chaosnet File Access Protocols 203
Chaosnet Telnet and Supdup Protocols 203

Connection-initiation protocols 191
Desirability of Network Protocols 50

Namespace Protocols 311
Server functions for datagram protocols 172

Using Foreign Protocols in Chaosnet 204
Relationships of Names of Services and Protocols on User, Server, and Namespace 126

References to Chaosnet Protocol Specifications 178
References to DECnet Protocol Specifications 228
References to IPITCP Protocol Specifications 224

Protocols Supported by All Symbolics Computers as
Servers 36

Protocols Supported by All Symbolics Computers as
Users 35

Protocols supported by host 81

351

June 1986 Index

Q

R

DNA Protocols Supported by Symbolics Computers as
Servers 39

TCP and UDP Protocols Supported by Symbolics Computers as
Servers 38

DNA Protocols Supported by Symbolics Computers as
Users 39

TCP and UDP Protocols Supported by Symbolics Computers as
Users 37

Protocol-translating gateway 204
netl: prune-namespace-changes-file function 106

Reducing Call Cost with Public Carrier Networks 219
PUNCTUATION-KEYWORD 238
PUNCTUATION-LONG-INTEGER 238
PUNCTUATION-PAD 238
PUNCTUATION-SHORT-INTEGER 238

Q
QFILE and NFILE 251

OPEN QFILE command 288

R

QFILE protocol 203
Qualified name 71
:qualifled-string message 110
Queries to network database 311
Quitting Hostat 214

neli: raw-packet-buffer-size variable 139
READ NFILE Command 301

neU: read-object-file-and-update function 105
chaos: read-pkts function 213

:read-token-llst message 245
:change-of-state interrupt reason 212

:input interrupt reason 212
:output interrupt reason 212

Receipt 187
RFC Received connection state 200

:recelve-packet message 154
Receiver process 207

Packet Reception 153

Q

R

Recognized Keywords Denoting File Properties 268
CCIIT Recommendation X.25 interface 86

neli: recompute-all-namespace-server-access-paths
function 111

neli: recompute-namespace-server-access-paths
function 112

Record Format 101
BYTE-STREAM-WITH-MARK record format 229

Eliminate record of changes 106
Recovering From a Network Problem 15
Reducing Call Cost with Public Carrier Networks 219
Reference Information on NFILE 253

ARPA Internet references 224
References to Chaosnet Protocol Specifications 178
References to DECnet Protocol Specifications 228
References to IPrrcp Protocol Specifications 224
Refusal 191

chaos: reject function 208
:reject message 156

352

Networks June 1986

:reject-unless-trusted option for
net:deflne-server 129

:reject-unless-trusted property 172
Functions Related to Packets 139
Messages Related to Service Lookup 168
Functions Related to Starting Servers 173

Flavors Related to the Token List Data Stream 248
Flavors and Messages Related to the Token List Stream 243

Relationships of Names of Services and Protocols on
User, Server, and Namespace 126

remarks: User Object Attribute 85
Remote ASCII terminal 20, 21, 22

Finding a Path to a Service on a Remote Host 43
Determining What Kinds of Connections a Remote Host Can Make 44

Connecting to a Remote Host Over the Network 14
Remote Login 19

Functions Used in Remote Login 21
The Remote Login Capability 19

Using the Remote Login Facilities 20
net: remote-login-on function 21

Remote login with machine in use 21
chaos: remove-conn function 207

RENAME NFILE Command 302
Rendezvous subprotocols 204

Host status report 213
Mapping Data Types Into Token List Representation 257

Mapping of Lisp Objects to Token List Stream Representation 242
Answer to STATUS request 201

Database deletion request 311
:request-array option for net:deflne-server 129
:request-array option to

netl :funcall-server-Internal-functlon 172
:request-array-end option to

netl :funcall-server-Internal-functlon 172
:request-array-start option to

netl :funcall-server-Internal-functlon 172
FWD Forward a request for connection packet 191

RFC Request for connection packet 191
net!: reset function 214

:reset message 155
Reset Network command 15

Initializing, Resetting, and Enabling Networks 154
Name resolver 222

:response-array option for net:deflne-server 129
:response-array option to

neti:funcall-server-internal-functlon 172
:response-array-end option to

netl :funcall-server-Internal-function 172
:response-array-start option to

netl :funcall-server-Internal-function 172
NFILE Command Response Errors 305

NFILE OPEN Response Return Values 297
Data channel resynchronization 261

NFILE Control Connection Resynchronization 261
NFILE Data Connection Resynchronization 263

NFILE Resynchronization Procedure 261
RESYNCHRONIZE-DATA-CHANNEL NFILE

Command 302
Implementation Hints for RESYNCHRONIZE-DATA-CHANNEL NFILE

Command 303
Retransmission 187

353

June 1986 Index

s

chaos: return-pkt function 211
NFILE OPEN Response Return Values 297

Chaosnet RFC/ANS time protocol 127
RFC/ANS transaction 313
RFC Received connection state 200

chaos: rfc-received-statB connection state 209
RFC Request for connection packet 191
RFC Sent connection state 200

chaos: rfc-sent-stato connection state 209
Chaosnet Routing 184

RUT Routing Information packet 199
Routing packet 184
Routing table 184

Connection address in routing table 184
Connection cost in routing table 184
Connection type in routing table 184

Search rules 71
RUT packet 184
RUT Routing Information packet 199

s s
A Sample Host Object in the Namespace Database 11

Choosing a Network Addressing Scheme 61
Search rules 71
search-rules: Namespace Object Attribute 96
secondary-name-server: Namespace Object

Attribute 96
secure-subnets: Site Object Attribute 94
SELECT T key 14
Sending a CLS packet 196
Sending a Packet to an Interface 148
Sending message to all Lisp Machines at site 215
:send-mark 233

chaos: send-pkt function 211
SEND protocol 203

Chaosnet Send Protocol 203
:send-token-list message 244

chaos: send-unc-pkt function 212
SNS Sense status packet 195

Broadcast Sent connection state 200
RFC Sent connection state 200

Disabling a serial terminal 20
Enabling a serial terminal 20

:host option for server 172
Invoking a server 174

:network option for server 172
Notifications From the NFILE Server 261

Primary namespace server 101
:trusted-p optiC" n for server 172

What is a File Server? 5
Namespace Server Access Paths 111

chaos: server-allst 129
Relationships of Names of Services and Protocols on User,

Server, and Namespace 126
netl: server-argument-descriptlons function 174

Finding a Server Description 171
Namespace Server Files 101

Calling the Server Function 171
netl: server-function function 173

Server functions 208

354

Networks June 1986

Server functions for datagram protocols 172
Full Pathname Syntax of the Server Host 267

server-machine: Host Object Attribute 82
netl: server-medIum-type function 173
netl: server-number-of-arguments function 174

Server process 179
netl: server-property-list function 174
netl: server-protocol-name function 171, 173

Commonly Used Arguments to Servers 172
DNA Protocols Supported by Symbolics Computers as Servers 39

Functions for Defining Users and Servers 127
Functions Related to Starting Servers 173

List all supported servers 173
Network Users and Servers 27

Protocols Supported by All Symbolics Computers as Servers 36
Starting Network Servers 171

Summary of Functions for Defining Users and Servers 127
TCP and UDP Protocols Supported by Symbolics Computers as

netl:
Opening and Closing Chaosnet Connections on the

Defining a New Network
Example of Defining a New Network

Finding a Path to a Local
LOGIN

Multiple paths to a
Concept of

What is a Network

Servers 38
servers variable 171, 173
Server Side 208
Service 123
Service 123
Service 43
service 14
service 120
service Attribute 10
Service? 4
Service Access Path 117

net: service-access-path-future-connected-p
function 1 68

Service Attributes in the Namespace Database 29
netl: service-enabled-p function 52

Namespace Service Entry for NFILE 252

How a Network
Messages Related to

Functions for
Summary of Functions for

Implementation of the
Concepts of

Finding a Path to a
Descriptions of Defined Generic
Enabling and Disabling Network
Functions for Invoking Network

Generic Network
Invoking Network

Relationships of Names of

service: Host Object Attribute 81
Service is Performed 115
Service Lookup 168
Service Lookup and Invocation 166
Service Lookup and Invocation 165
Service Lookup Mechanism 165
Service, Medium, and Protocol 5
Service on a Remote Host 43
Services 39
Services 51
Services 119
Services 35
Services 11 7
Services and Protocols on User, Server, and

Namespace 126
net: *servlces-enabled* variable 52

Namespace
Window into the

chaos:
Character

neli:

Services supported by host 81
Set 107
set 70
set of packet numbers 187
set-pkt-strlng function 211
sets 183, 203
set-terminal-parameters function 22
Setting the Chaosnet Address 8

NFILE Character Set Translation 255
short-name: Host Object Attribute 78

netI: show-namespace-server-access-paths

June 1986

function 111
sl :get-site-optlon function 109
sl:parse-host function 110
sl:*user* variable 107

355

Index

Opening and Closing Chaosnet Connections on the Server
Side 208

Opening and Closing Chaosnet Connections on the User
Side 207

chaos: simple function 207
Simple transaction 191

ANS Answer to a simple transaction packet 191
Sending message to a" Lisp Machines at site 215

Site attributes 92
site-directory: Site Object Attribute 92
site: Host Object Attribute 78

zl: site-name variable 109
site: Network Object Attribute 87
Site object 69

default-bitmap-printer: Site Object Attribute 93
default-printer: Site Object Attribute 93

dont-reply-to-mailing-lists: Site Object Attribute 94
host-for-bug-reports: Site Object Attribute 92

host-protocol-deslrability: Site Object Attribute 93
local-namespace: Site Object Attribute 92

name: Site Object Attribute 92
other-sites-ignored-in-zmail-summary: Site Object Attribute 94

pretty-name: Site Object Attribute 93
secure-subnets: Site Object Attribute 94

site-directory: Site Object Attribute 92
site-system: Site Object Attribute 93
standalone: Site Object Attribute 94

termlnal-f-argument: Site Object Attribute 95
tlmezone: Site Object Attribute 92

validate-Imfs-dump-tapes: Site Object Attribute 94
Namespace System Site Objects 92

site: Printer Object Attribute 88
Sites 71
site-system: Site Object Attribute 93
Size in bytes of packet buffer 139
SNS packets 187
SNS Sense status packet 195
Software Interface to the Namespace System 107

Overview of the Chaosnet Software Protocol 178
Technical Details of the Chaosnet Software Protocol 190

Source Address packet header field 182
Source Index packet header field 182

net:deflne-medlum special form 159
net:deflne-protocol special form 127

net:define-server special form 129
net:invoke-multiple-services special form 120

NFILE specification 253
References to Chaosnet Protocol Specifications 178

References to DECnet Protocol Specifications 228
References to IPffCP Protocol Specifications 224

Generic and Specific Mediums 31
spooled-printer: Host Object Attribute 81
standalone: Site Object Attribute 94
Standard Communication with Interfaces 147

neU: *standard-services-enabled* variable 51
Starting Network Servers 171

Functions Related to Starting Servers 173

356

Networks

net:
Broadcast Sent connection

chaos:answered-state connection
chaos:cls-recelved-state connection

chaos:forelgn-state connection
chaos:host-down-state connection

chaos:lnactlve-state connection
chaos:lIstenlng-state connection

chaos:los-received-state connection
chaos:open-state connection

chaos:rfc-recelved-state connection
chaos:rfc-sent-state connection

Closed connection'
Foreign connection

Incomplete Transmission connection
Listening connection

Lost connection
Open connection

RFC Received connection
RFC Sent connection

chaos:
BYTE-STREAM-WITH-MARK Abortable

Chaosnet Connection
Functions for Chaosnet Connection

Host
SNS Sense

STS

Chaosnet

Chaosnet
Host

Answer to

Aborting and the Token List
Flavors and Messages Related to the Token List

Flavors Related to the Token List Data
Token list

Token list data

Open a
Byte

Token List
Chaosnet

NFILE data
:accept-p

:ascll-translatlon
:direction
:no-close

:no-eof

Mapping of Lisp Objects to Token List
*

Chaos

June 1986

Starting to Use NFILE 252
start-service-access-path-future function 167
state 200
state 209
state 209
state 209
state 209
state 209
state 209
state 209
state 209
state 209
state 209
state 200
state 200
state 200
state 200
state 200
state 200
state 200
state 200
state function 209
States 231
States 200
States 209
Status 213
status packet 195
Status packet 195
Status packets 187
Status Packets 195
STATUS protocol 197,201
Status Protocol 201
status report 213
STATUS request 201
Storing database object attributes 102
Stream 207
Stream 246
Stream 243
Stream 248
stream 237, 238
stream 237, 247
:stream option for net:define-server 129
Stream connection 191
stream connection 207
Stream Conventions 156
Stream Example 240
Stream 1/0 210
stream mode 254
stream option for net:define-server 129
stream option for net:define-server 129
stream option for net:define-server 129
stream option for net:define-server 129
stream option for net:define-server 129
:stream-options property 172
Stream Representation 242
string 108
:strlng message 110
STS packets 187
STS Status packet 195
Subnet 184
subnet 180

357

June 1986 Index

subnet: Network Object Attribute 87
Chaos subnet number 55

Subpackets and Coercing Packets 140
Rendezvous subprotocols 204

Summary of Functions for Defining Users and
Servers 127

Summary of Functions for Service Lookup and
Invocation 165

Supdup program 14
Supdup protocol 203

Arpanet Telnet and Supdup protocols 203
Chaosnet Telnet and Supdup Protocols 203

supervisor: User Object Attribute 85
Protocols Supported by All Symbolics Computers as

Servers 36
Protocols Supported by All Symbolics Computers as Users 35
Protocols supported by host 81
Services supported by host 81

Networks Supported by Symbolics Computers 6
DNA Protocols Supported by Symbolics Computers as Servers 39

TCP and UDP Protocols Supported by Symbolics Computers as Servers 38
DNA Protocols Supported by Symbolics Computers as Users 39

TCP and UDP Protocols Supported by Symbolics Computers as Users 37
List all supported servers 173

:supports-broadcast message 169
:* keyword symbol 108

Symbolic host names 180
Determining What Kinds of Connections a Symbolics Computer Can Make 44

Networks Supported by Symbolics Computers 6
DNA Protocols Supported by Symbolics Computers as Servers 39

Protocols Supported by All Symbolics Computers as Servers 36
TCP and UDP Protocols Supported by Symbolics Computers as Servers 38

DNA Protocols Supported by Symbolics Computers as Users 39
Protocols Supported by All Symbolics Computers as Users 35

TCP and UDP Protocols Supported by Symbolics Computers as Users 37
Symbolics Dialnet 217
Symbolics Generic Network System 25
Symbolics Implementation of Chaosnet 207

Concepts of Symbolics Networks 3
Introduction to Symbolics Networks 1
Full Pathname Syntax of the Server Host 267

sys:dlsable-servlces function 51
sys:dlsable-servlces property 52
sys:enable-servlces function 51
sys:enable-servlces property 52

Concepts of the Namespace System 8
Design Goals of the Network System 3

Details of the User Interface to the Namespace System 99
Implementation of the Generic Network System 135

Interfacing to the Generic Network System 113
Introduction to the Namespace System 69

Namespace System 67
Software Interface to the Namespace System 107

Symbolics Generic Network System 25
Namespace System Administrative Functions 105

Data Types of Namespace System Attributes 70
Namespace System Attributes 70
Namespace System Classes 69
Namespace System Functions 108
Namespace System Host Objects 77
Namespace System Lisp Data Types 107

358

Networks June 1986

T

[Namespace] System Menu item 99
Namespace System Network Objects 86
Namespace System Object Definitions 77
Namespace System Printer Objects 88
Namespace System Site Objects 92

UNIX 4.2BSD system type 77
system-type: Host Object Attribute 77

VMS system types 77
Namespace System User Objects 82
Namespace System Variables 107

File system version number 103

T
SELECT

Connection address in routing
Connection cost in routing
Connection type in routing

ITS host
Routing

netl:

NFILE on

NFILE's well-known

Direct-dial
Arpanet

Chaosnet

Disabling a serial
Enabling a serial

Remote ASCII

Using the
Glossary of Networking

Activities
Commands

NFILE
Universal

Arpanet
Chaosnet

Chaosnet RFC/ANS

Namespace

Namespace
neli:
neli:

Embedded
Empty

Top-level

T key 14
table 184
table 184
table 184
table 184
table 184
target-number-of-wired-packet-buffers

variable 140
TCP 252
:tcp medium 32
TCP and UDP Protocols Supported by Symbolics

Computers as Servers 38
TCP and UDP Protocols Supported by Symbolics

Computers as Users 37
TCP port 260
Technical Details of the Chaosnet Software

Protocol 190
telephone network 86
Telnet and Supdup protocols 203
Telnet and Supdup Protocols 203
Telnet program 14
Telnet protocol 203
terminal 20
terminal 20
terminal 20, 21, 22
terminal-f-argument: Site Object Attribute 95
Terminal Program 14
Terminology 11
That Use the Network 14
That Use the Network 13
Three-letter Error Codes 306
Time format 257
TIME protocol 197,204
Time protocol 204
Time Protocol 204
time protocol 127
Timestamp 103,311
timestamp indicator 311
Timestamp Protocol 313
tlmezone: Site Object Attribute 92
Token 107
token 70
token-data-was-list flavor 249
token-Io-unsafe flavor 245
token list 238
token list 238
token list 238

T

359

June 1986 Index

netl: token-list-bldirectional-data-stream flavor 249
Token list data stream 237,247

Flavors Related to the Token List Data Stream 248
netl: token-list-input-data-stream flavor 248
netl: token-Jlst-output-data-stream flavor 249

Mapping Data Types Into Token List Representation 257
Types of Tokens and Token Lists 238

Token list stream 237,238
Aborting and the Token List Stream 246

Flavors and Messages Related to the Token List Stream 243
netl: token-list-stream flavor 243

Token List Stream Example 240
Mapping of Lisp Objects to Token List Stream Representation 242

Token List Transport Layer 237
Introduction to the Token List Transport Layer 237

NFILE and token list transport layer 237
NFILE and the token list transport layer 258

Control tokens 238
Data tokens 238

Keyword tokens 238
Numeric tokens 238
Types of Tokens and Token Lists 238

netl: token-stream-data-error flavor 246
TOP-LEVEL-LIST-BEGIN 238
TOP-LEVEL-LIST-END 238
Top-level token list 238

RFC/ANS transaction 313
Simple transaction 191

ANS Answer to a simple transaction packet 191
NFILE File Transfer Philosophy 254

netl: translate-hosts.text-flle function 106
NFILE Character Set Translation 255

Packet Transmission 154
Incomplete Transmission connection state 200

Transmission Control Protocol 204
Transmit list 144
:transmlt-packet message 149
Transmitting interactive messages 203

Introduction to the Token List Transport Layer 237
NFILE and the token list transport layer 258

NFILE and token list transport layer 237
Token List Transport Layer 237

Triple 107
Namespace triple 70

:trusted-p option for net:deflne-server 129
:trusted-p option for server 172
tv:edlt-namespace-object function 99

Bridge connection type 184
:byte-stream medium type 129

chaos network type 86
dial network type 86

Direct connection type 184
Fixed bridge connection type 184

gateway-pseudonet network type 86
internet network type 86

UNIX 4.2BSD system type 77
x25 network type 86

:type message 152
Connection type in routing table 184

type: Network Object Attribute 86
type: Printer Object Attribute 88

360

Networks June 1986

u

Database data types 107
Namespace System Lisp Data Types 107

Packet types 191
VMS system types 77

Mapping Data Types Into Token List Representation 257
Data Types of Namespace System Attributes 70

Types of Tokens and Token Lists 238

u
:udp medium 32

TCP and UDP Protocols Supported by Symbolics Computers
as Servers 38

TCP and UDP Protocols Supported by Symbolics Computers
as Users 37

Chaosnet UNC encapsulation interface 149
UNC Uncontrolled Data packet 196, 204

Uncontrolled packets 181, 187
UNC Uncontrolled Data packet 196, 204
UNDATA-CONNECTION NFILE Command 304
Universal Time format 257
UNIX 4.2BSD system type 77
:unparse-address message 152
Unsafe data channel 261

Wired and unwired packets 137
update-by attribute 311

Incremental updates 311
Updates to network database 311
Update the namespace database 105
Updating the Namespace Database 73

Commonly Used Arguments to Mediums 172
Commonly Used Arguments to Servers 172

Conventions Used in NFILE Command Descriptions 265
Functions Used in Remote Login 21

sl: *user* variable 107
User attributes 82
User Datagram Protocol 204
:user-get message 111

Details of the User Interface to the Namespace System 99
User obj ect 69

affiliation: User Object Attribute 85
birthday: User Object Attribute 85

home-address: User Object Attribute 85
home-host: User Object Attribute 83

home-phone: User Object Attribute 85
lispm-name: User Object Attribute 83
login-name: User Object Attribute 83

mail-address: User Object Attribute 83
name: User Object Attribute 83

nickname: User Object Attribute 84
personal-name: User Object Attribute 83

project: User Object Attribute 85
remarks: User Object Attribute 85

supervisor: User Object Attribute 85
work-address: User Object Attribute 84

work-phone: User Object Attribute 84
Namespace System User Objects 82

User process 179
Channels attached to user processes 180

u

user-property: Object Attribute 78, 84, 87, 91, 95, 97
Users 71

June 1986

Daemon users 82
DNA Protocols Supported by Symbolics Computers as Users 39

Protocols Supported by All Symbolics Computers as Users 35

361

Index

rcp and UDP Protocols Supported by Symbolics Computers as
Users 37

Functions for Defining Users and Servers 127
Network Users and Servers 27

Summary of Functions for Defining Users and Servers 127
Relationships of Names of Services and Protocols on User, Server, and Namespace 126

Opening and Closing Chaosnet Connections on the User Side 207

v

w

v v
validate-Imfs-dump-tapes: Site Object Attribute 94

Attribute value 70
NFILE OPEN Response Return Values 297

net:after-network-Initializatlon-list variable 155
net:finger-Iocation variable 215

net:*local-host* variable 107
net:*local-site* variable 107

net:*namespace* variable 107
net:*namespace-search-Iist* variable 1 08

net:*services-enabled* variable 52
neti:*interfaces* variable 147

netl:*lnvoke-service-automatic-retry* variable 120
netl:*local-networks* variable 154

netl:*new-servlces-enable* variable 52
netl :raw-packet-buffer-size variable 139

neti:*servers* variable 171, 173
netl:*standard-services-enabled* variable 51

netl :*target-number-of-wlred-packet-buffers* variable 140
sl:*user* variable 107

zl:site-name variable 109
Namespace System Variables 107

version descriptor file indicator 102
File system version number 103

VMS system types 77

W
chaos: walt function 209

NFILE's well-known rcp port 260
What is a File Server? 5
What is a host? 3
What is a Network? 3
What is a Network Service? 4

Determining What Kinds of Connections a Remote Host Can
Make 44

w

Determining What Kinds of Connections a Symbolics Computer
Can Make 44

:who-line option for net:define-server 129
Wildcard 108
Window into the set of packet numbers 187
Wired and unwired packets 137

neli: wlth-server-error-disposltlon macro 133
work-address: User Object Attribute 84
work-phone: User Object Attribute 84

netl: write-hosts.text-fiJe function 106

362

Networks June 1986

x X X
NETWORK X command 14

CCITT Recommendation X.25 interface 86
x25 network type 86

Z Z Z
zl:hostat function 213
zl:slte-name variable 109

