Stardent

WINDOW
SYSTEM
TOOLKIT

tttttttttttttttttttt

Change History

340-0035-02 Original (;
340-0112-01 January, 1990

Copyright © 1985, 1986, Massachusetts Institute of Technology

Copyright © 1990 |
an unpublished work of Stardent Computer Inc.
All Rights Reserved.

This document has been provided pursuant to an agreement with Stardent Computer Inc. containing restrictions on
its disclosure, duplication, and use. This document contains confidential and proprietary information constituting
valuable trade secrets and is protected by federal copyright law as an unpublished work. This document (or any
portion thereof) may not be: (a) disclosed to third parties; (b) copied in any form except as permitted by the
agreement; or (c) used for any purpose not authorized by the agreement.

This document is a derivative work prepared by Stardent Computer Inc. based on pre-existing work of
Massachusetts Institute of Technology (MIT). Nothing in this notice or in the above-mentioned agreement with
Stardent Computer Inc. shall act to limit rights as to the pre-existing work. The pre-existing work of MIT
included the following restrictive legend:

Permission to use, copy, modify and distribute this document (the pre-existing work) for any purpose

and without fee is hereby granted, provided that the above copyright notice (Copyright © 1985, 1986, (
Massachusetts Institute of Technology) appear in all copies, and that the name of Massachusetts -
Institute of Technology not be used in advertising or publicity pertaining to distribution of the

software without specific, written prior periission. Massachusetts Institute of Technology makes no

representations about the suitability of the software described herein for any purpose. It is provided

‘‘as is’” without any express or implied warranty. (Italicized text added.)

Restricted Rights Legend for Agencies of the U.S. Department of Defense
Use, duplication or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013 of the DoD
Supplement to the Federal Acquisition Regulations. Stardent Computer Inc., 880 West Maude Avenue,
Sunnyvale, California 94086.

Restricted Rights Legend for civilian agencies of the U.S. Government
Use, reproduction or disclosure is subject to restrictions set forth in subparagraph (a) through (d) of the
Commercial Computer Software—Restricted Rights clause at 52.227-19 of the Federal Acquisitions
Regulations and the limitations set forth in Stardent’s standard commercial agreement for this software.
Unpublished—rights reserved under the copyright laws of the United States.

Stardent™, Doré™ | and Titan™ are trademarks of Stardent Computer Inc.

CONTENTS %

The Window System Toolkit manual contains:

X Toolkit Athena Widgets — C Language Interface

The following Intrinsics man pages:

XtTransC
XtStrCW
XtSetVal
XtSetSns
XtSetKTr
XtSetKFc
XtSetArg
XtRealze
XtQryGeo
XtPrTTab
XtPrATab
XtPpdown
XtPopup
XtOwnSel
XtOffset
XtNmTWd
XtMnChld
XtMkGReq
XtMapWid
XtMalloc
XtGtRLst
XtGetSrs
XtGetSV1
XtDsplyl
XtGetGC
XtDsplay
XtCreWin
XtCreWid
XtCrePSh
XtCrACon

Contents [Release 3.0 preliminary: 10-6]

Window System Toolkit i

XtCnvert
XtCnfWid
XtClass
XtCICbks
XtClAFoc
XtBEMask
XtAppNEv
XtAppGDB
XtAppGTO
XtAppEM
XtAppE
XtAppCSh
XtAppAWP
XtAppATO
XtAppAl
XtAppAC
XtAppAAc
XtAddGrb
XtAddCbk
XtAdETRg
XtAdEHnd

* The following Widgets man pages:

XwArrow
XwBBoard
XwButton
XwCascade
XwCreateTi
XwForm
XwFrame
XwImageEdi
XwlList
XwManager
XwMenuBtn
XwMenuMgr
XwMenuPane
XwMenuSep
XwMoveFocu
XwPButton
XwPanel
XwPopupMgr
XwPrimitiv
XwPulldown
XwRCManage
XwRegister
XwSash

ii Window System Toolkit Contents [Release 3.0 preliminary: 10-6]

XwScrollBa
XwScrollW
XwStaticR
XwStaticT
XwTextEdit
XwTitleBar
XwToggle
XwVPW
XwValuator
XwWorkSpac

Contents [Release 3.0 preliminary: 10-6]

Window System Toolkit iii

ATHENA %
WIDGETS

CHAPTER ONE

Athena Widgets [Release 3.0 preliminary: 10-6] Window System Toolkit 1-1

The X Window System is a trademark of MIT.

Copyright © 1985, 1986, 1987, 1988 Massachusetts Institute of Technology, Cambridge, Massachusetts, and Digital
Equipment Corporation, Maynard, Massachusetts.

Permission to use, copy, modify and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appears in all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of M.L.T. or Digital not be used in in advertising or
publicity pertaining to distribution of the software without specific, written prior permission. M.LT and Digital
makes no representations about the suitability of the software described herein for any purpose. It is provided *‘as
is’” without express or implied warranty.

Table of Contents

ACKNOWISAGIMEIILS ...eeouiieiiiiieeieeie sttt ettt st b eetee et seeseeesaeesaeeraesbaesresbs e s s e besaasshas b iii
Chapter 1 — Athena Widgets and The INtrinsiCs ..c.ccevvevevrieviiiininiiiinn e 1
1.1. Introduction to the X T0OIKit LIDIaryccccecvireiimnieiiiinie e 1
1.2, TEIMINOIOZY cvveeiieeeiitieitie ettt st e s e s st sr e st bae s srae s b s sbaeesant s snn e e saassane s 2
1.3. Underlying MOGELccooiiiviiriirriie e itersree st sttt et srae b b as e 3
1.4. Design Principles and PhilOSOPHYccccccvivvriiiiiiiiniiiiii i 3
Chapter 2 — USINZ WIAZELS ...eiiiiiriieiiiie ettt ettt e s s saas s e 5
2.1, Initializing the TOOLKILccecievieeriecieeeree et sie sttt e e e e s emaes e seneemeeses e cone 5
2.2, CreatiNg @ WIAZEL ...oovvveirieeieiee st st ceee e eie e be ettt e s e se e ses st e sseessseent e eaesaeennesasesas 5
2.4. Realizing @ WIAZEL ..coveriiiiiieeienieie ettt st s b e st b s 7
2.5. Standard Widget Manipulation FUNCHONScccevverieriiiieieciieieiecrere e s 7
2.6. Using the Client Callback INtEIfaCecccceeiiiinieriiiiiiiriinee et s 9
2.7. Programming CONSIAETATIONScceervurrrueerneirieerieerientieee ettt srre s srsesaassns s senesnes 11
Chapter 3 - Athena WIidZEE SELeoviiiiiiiiieeie ettt st e s 15
3.1, Command WIAZELceorviviieerieriieritet ettt ettt ettt et seae s s sn e sresaaesanen 15
3.2, Label WIAZEL .eeiiiiiiieiie ettt ettt st et st et et en e e e e e sene st e a e 20
3.3, TEXL WIAZEL oveeiiiiie ettt ettt et et et st st sb e sab e srae s sabesnaesamseesre e 21
3.4, SCTOIIDAT WIAZEL .vvveevireiiiieeeeiiie ettt ettt st e sttt eesatesssaesaaeeesabes sebeesanaesneas 32
3.5, VIEWPOTE WIAZEL ...evviieiiiiiiiiiire ettt st ettt sebe et ee et e e saees s e sbbnees st e seaesaneesaseennsens 37
3.0, BOX WIAZEL .oveieiiiie ettt st ettt ettt st sh e st et st et et e e et sneeseeenneene 38
3.7, VPANEA WIAZEL ..ovvecvviieeeieeteese ettt et st saeeve e e s te e et e ba e saesssessaesbesnbesnnesueens 39
3.8, FOIM WIAZEL ..vveiiiieieeiiicieie sttt sttt e ettt sttt et st ettt eabesbesareeneenbenaeene 41
3.9, DHAlOZ WIAZEL ..eeiviieiiieieiiiesiie et eee e st st e sttt essteesteesabeesbbeeaeaesbe s sbeesnsesssesnnseesneessrenens 43
310, LISE WIAZET .oevveeeeeieetieiee ettt et sttt et et est s e bt e e et seesban e se e st entesse st anbesbeebesnennene 44
311, GIIP WIAZEL vttt ettt ettt e st sttt eb b et b st e e e e e seesanene 47
3.12. TOZEIE WIAZEL oveeiiie ettt ettt e sre s 48
3.13. Template Widget - Creating A Custom WIAZELccceverereiirenirirnieece e 53

Acknowledgments

The implementation of the Athena Widgets was the responsibility of Ralph Swick, Ron New-
man (Project Athena), and Mark Ackerman (Project Athena). Additional contributions to their
implementation was made by:

Rich Hyde (Digital WSL)

Terry Weissman (Digital WSL)
Mary Larson (Digital UEG)

Joel McCormack (Digital WSL)
Jeanne Rich (Digital WSL)

Charles Haynes (Digital WSL)
Loretta Guarino-Reid (Digital WSL)

The contributors to the X10 toolkit also deserve much of the credit for this work. The Athena

Widgets borrow heavily on the their counterparts in the X10 toolkit. The design and implemen-
tation of the X10 toolkit were done by:

Terry Weissman (Digital WSL)
Smokey Wallace (Digital WSL)
Phil Karlton (Digital WSL)
Charles Haynes (Digital WSL)
Ram Rao (Digital UEG)

Mary Larson (Digital UEG)
Mike Gancarz (Digital UEG)
Kathleen Langone (Digital UEG)

Thanks go to Al Mento of Digital’s UEG Documentation Group for formatting and generally
improving this document and to Chris Peterson of Project Athena for testing the many versions
of the code and reviewing this document.

Ralph R. Swick

Digital Equipment Corporation
External Research Group

MIT Project Athena

Chapter 1
Athena Widgets and The Intrinsics

The Athena widget set and the Intrinsics make up the X Toolkit. In the X Toolkit, a widget is
the combination of an X window or subwindow and its associated input and output semantics.
The Athena widgets provide the base functionality necessary to build a wide variety of applica-
tion environments. Because the Intrinsics mask implementation details from the widget and
application programmer, the Athena widgets and the application environments built with them
are fully compatible with the other widget sets built with the Intrinsics. For information about
the Intrinsics, see the X Toolkit Intrinsics — C Language Interface.

The Athena widget set is a library package layered on top of the Intrinsics and Xlib. This layer
extends the basic abstractions provided by X and provides the next layer of functionality pri-
marily by supplying a cohesive set of sample widgets.

To the extent possible, the X Toolkit is policy free. The application environment, not the X
Toolkit, defines, implements, and enforces:

o Policy

. Consistency

. Style

Each individual widget implementation defines its own policy. The X Toolkit design allows for

but does not necessarily encourage the free mixing of radically differing widget implementa-
tions.

1.1. Introduction to the X Toolkit Library

The X Toolkit library provides tools that simplify the design of application user interfaces in the
X Window System programming environment. It assists application programmers by providing
a set of common underlying user-interface functions. It also lets wid get programmers modify
existing widgets or add new widgets. By using the X Toolkit library in their applications, pro-
grammers present a similar user interface across applications to all workstation users.

The X Toolkit consists of:

. A set of Intrinsics functions for building widgets
* An architectural model for constructing widgets
e A sample interface (widget set) for programming

While the majority of the Intrinsics functions are intended for the widget programmer, a subset
of the Intrinsics functions are to be used by application programmers (see X Toolkit Intrinsics —
C Language Interface). The architectural model lets the widget programmer design new wid-
gets by using the Intrinsics and by combining other widgets. The application interface layers
built on top of the X Toolkit include a coordinated set of widgets and composition policies.
Some of these widgets and policies are specific to an application domain, and others are com-
mon across a number of application domains.

The X Toolkit also can implement one or more application interface layers to:
. Verify the toolkit architecture

. Provide a base set of widgets and composition policies that can be incorporated in other
application interface layers

. Make the X Toolkit immediately usable by those application programmers who find that a
supplied application interface layer meets their needs

X Toolkit Athena Widgets X11, Release 3

The remainder of this chapter discusses the X Toolkit:
o Terminology

° Model

° Design principles and philosophy

1.2. Terminology

In addition to the terms already defined for X programming (see Xlib — C Language X Inter-
face), the following terms are specific to the Intrinsics and used throughout this book.

Application programmer
A programmer who uses the X Toolkit to produce an application user interface.

Child '
A widget that is contained within another ("parent") widget.

Class
The general group to which a specific object belongs.

Client
A function that uses a widget in an application or for composing other widgets.

Full name
The name of a widget instance appended to the full name of its parent.

Instance
A specific widget object as opposed to a general widget class.

Method
The functions or procedures that a widget class implements.

Name
The name that is specific to an instance of a widget for a given client.

Object
A software data abstraction consisting of private data and private and public functions that
operate on the private data. Users of the abstraction can interact with the object only
through calls to the object’s public functions. In the X Toolkit, some of the object’s pub-
lic functions are called directly by the application, while others are called indirectly when
the application calls the common Intrinsics functions. In general, if a function is common
to all widgets, an application uses a single Intrinsics function to invoke the function for all

types of widgets. If a function is unique to a single widget type, the widget exports the
function as another ‘‘Xt’’ function.

Parent

A widget that contains at least one other ("child") widget. A parent widget is also known
as a composite widget.

Resource

A named piece of data in a widget that can be set by a client, by an application, or by user
defaults.

Superclass

A larger class of which a specific class is a member. All members of a class are also
members of the superclass.

User
A person interacting with a workstation.

X Toolkit Athena Widgets X11, Release 3

Widget
An object providing a user-interface abstraction (for example, a Scrollbar widget).
Widget class

The general group to which a specific widget belongs, otherwise known as the type of the
widget.

Widget programmer
A programmer who adds new widgets to the X Toolkit.

1.3. Underlying Model
The underlying architectural model is based on the following premises:
Widgets are X windows

Every user-interface widget is contained in a unique X window. The X window ID for a
widget is readily available from the widget ID, so standard Xlib window manipulation
procedures can operate on widgets.

Information hiding

The data for every widget is private to the widget and its subclasses. That is, the data is
neither directly accessible nor visible outside of the module implementing the widget. All
program interaction with the widget is performed by a set of operations (methods) that are
defined for the widget.

Widget semantics and widget layout geometry

Widget semantics are clearly separated from widget layout geometry. Widgets are
concerned with implementing specific user-interface semantics. They have little control
over issues such as their size or placement relative to other widget peers. Mechanisms are
provided for associating geometric managers with widgets and for widgets to make
suggestions about their own geometry.

1.4. Design Principles and Philosophy

The X Toolkit follows two design principles throughout, which cover languages and language
bindings as well as widget IDs.

1.4.1. Languages and Language Bindings

The X Toolkit facilitates access from objective languages. However, the X Toolkit library is
conveniently usable by application programs written in nonobjective languages. Procedural
interface guidelines are required when the X Toolkit is used with nonobjective languages.

The guidelines for the procedural interfaces are:
e Strings are passed as null-terminated character arrays.

. Most other arrays are passed using two parameters: a size and a pointer to the first ele-
ment.

. Most numeric arguments are passed by value.

o Structures as arguments are avoided, unless a method for building them is provided for
languages without pointers. Pointers embedded in structures are allowed, but they should
be avoided if an equivalent alternative is available.

. Pointers are not recommended as return arguments, unless they will never have to be
dereferenced by the caller. If they need to be dereferenced, the caller should allocate
storage and pass the address to the procedure to fill in.

N Procedures can be passed as parameters.

° The ownership of dynamically allocated storage is determined on a case-by-case basis.
The application is also permitted to replace the standard memory allocation and freeing

X Toolkit Athena Widgets X11, Release 3

routines used by the library at build time.

1.4.2. Widget IDs

All references to widgets use a unique identifier that is known as the widget ID. The widget ID
is returned to the client by the XtCreateWidget function. From an application programmer’s
perspective, a widget ID is an opaque data type; no particular interpretation can be assigned to
it. Given a widget ID, you can retrieve the corresponding X window ID, the Display and
Screen structures, and other information by using Intrinsics functions.

From a widget programmer’s perspective, the widget ID actually is a pointer to a data structure
known as the widget instance record. Several parts of the data structure are common to all wid-
get types, while other parts are unique to a particular widget type. The widget’s private data
that is associated with a particular widget instance normally is included directly in the widget
instance record.

X Toolkit Athena Widgets X11, Release 3

Chapter 2
Using Widgets

Widgets serve as the primary tools for building a user interface or application environment. The
widget set consists of primitive widgets (for example, a command button) and composite wid-
gets (for example, a Dialog widget).

The remaining chapters of this guide explain the widgets and the geometry managers that work
together to provide a set of user-interface components. These user-interface components serve
as a default interface for application programmers who do not want to implement their own wid-
gets. In addition, they serve as examples or a starting point for those widget programmers who,
using the Intrinsics mechanisms, want to implement alternative application programming inter-
faces.

This chapter discusses the common features of the X Toolkit widgets.

2.1. Initializing the Toolkit

You must invoke the toolkit initialization function XtInitialize before invoking any other
toolkit routines. XtInitialize opens the X server connection, parses standard parts of the com-
mand line, and creates an initial widget that is to serve as the root of a tree of widgets that will
be created by this application.

Widget XtInitialize(shell - name, application_class, options, num_options, argc, argv)
String shell_name,
String application_class,
XrmOptionDescRec options(];
Cardinal num_options;
Cardinal *argc;
String argv[l;
shell_name Specifies the name of the application shell widget instance, which usually is
something generic like ‘‘main’’.

application_class
Specifies the class name of this application, which usually is the generic name
for all instances of this application. By convention, the class name is formed by
reversing the case of the application’s first significant letter. For example, an
application named ‘‘xterm’’ would have a class name of ‘‘XTerm’’.

options Specifies how to parse the command line for any application-specific resources.
The options argument is passed as a parameter to XrmParseCommand. For
further information, see XIib — C Language X Interface.

num_options Specifies the number of entries in the options list.

argce Specifies a pointer to the number of command line parameters.
argv Specifies the command line parameters.

For further information about this function, see the Intrinsics.

2.2. Creating a Widget

Creating a widget is a three-step process. First, the widget instance is allocated, and various
instance-specific attributes are set by using XtCreateWidget. Second, the widget’s parent is
informed of the new child by using XtManageChild. Finally, X windows are created for the
parent and all its children by using XtRealizeWidget and specifying the top-most widget. The

X Toolkit Athena Widgets X11, Release 3

first two steps can be combined by using XtCreateManagedWidget. In addition, XtReal-
izeWidget is automatically called when the child becomes managed if the parent is already real-
ized.

To allocate and initialize a widget, use XtCreateWidget.

Widget XtCreateWidget(name, widget_class, parent, args, num_args)
String name;
WidgetClass widget_class;
Widget parent,
ArgList args;
Cardinal num_args;,
name Specifies the instance name for the created widget that is used for retrieving
widget resources.
widget_class Specifies the widget class pointer for the created widget.
parent Specifies the parent widget ID.

args Specifies the argument list. The argument list is a variable-length list composed
of name and value pairs that contain information pertaining to the specific wid-
get instance being created. For further information, see Section 2.7.2.

num_args Specifies the number of arguments in the argument list. When the num_args is
zero, the argument list is never referenced.

When a widget instance is successfully created, the widget identifier is returned to the applica-
tion. If an error is encountered, the XtError routine is invoked to inform the user of the error.

For further information, see the Intrinsics.

2.3. Common Arguments in the Widget Argument List

Although a widget can have unique arguments that it understands, all widgets have common
arguments that provide some regularity of operation. The common arguments allow arbitrary
widgets to be managed by higher-level components without regards to the individual widget
type. All widgets ignore any argument that they do not understand.

The following resources are retrieved from the argument list or from the resource database by
all X Toolkit widgets:

Name Type Default Description

XtNbackground Pixel XtDefaultBackground ~ Window background color
XtNbackgroundPixmap Pixmap None Window background pixmap
XtNborderColor Pixel XtDefaultForeground ~ Window border color
XtNborderPixmap Pixmap None Window border pixmap
XtNborderWidth Dimension 1 Width of the border in pixels
XtNdestroyCallback XtCallbackList NULL Callback for XtDestroyWidget
XtNheight Dimension Widget dependent Height of the widget
XtNmappedWhenManaged Boolean True Whether XtMapWidget is automatic
XtNsensitive Boolean True ‘Whether widget should receive input
XtNtranslations TranslationTable None Event-to-action translations
XtNwidth Dimension Widget dependent Width of the widget

XtNx Position 0 x coordinate within parent

XtNy Position 0 y coordinate within parent

The following additional resources are retrieved from the argument list or from the resource
database by many X Toolkit widgets:

Name Type Default Description

XtNcallback XtCallbackList NULL Callback functions and client data

(

X Toolkit Athena Widgets X11, Release 3

Name Type Default Description
XtNcursor Cursor None Pointer cursor
XtNforeground Pixel XtDefaultForeground Foreground color

The value for the XtNcursor resource can be specified in the resource database as a string,
which can be specified as one of the following:

. A standard X cursor name from <X11/cursorfont.h>
. FONT font-name glyph-index [[font-name] glyph-index]
. A relative or absolute file name

The first font and glyph specify the cursor source pixmap. The second font and glyph specify
the cursor mask pixmap. The mask font defaults to the source font, and the mask glyph index
defaults to the source glyph index.

If a relative or absolute file name is specified, that file is used to create the source pixmap.
Then the string "Mask" is appended to locate the cursor mask pixmap. If the "Mask" file does
not exist, the suffix "msk" is tried. If "msk" fails, no cursor mask will be used. If a relative file
name is used, the directory specified by the resource name bitmapFilePath or class Bitmap-
FilePath is added to the beginning of the file name. If the bitmapFilePath resource is not
defined, the default directory on a UNIX-based system is /usr/include/X11/bitmaps.

2.4. Realizing a Widget
The XtRealizeWidget function performs two tasks:

. Creates an X window for the widget and, if it is a composite widget, for each of its
managed children.

o Maps each window onto the screen.
void XtRealizeWidget(w)
Widget w;
w Specifies the widget.
For further information about this function, see the X Toolkit Intrinsics — C Language Interface.

2.5. Standard Widget Manipulation Functions

After a widget has been created, a client can interact with that widget by calling either of the
following:

o One of the standard widget manipulation routines that provide functions that all widgets
support

. A widget class-specific manipulation routine

The X Toolkit provides generic routines to provide the application programmer access to a set
of standard widget functions. These routines let an application or composite widget manipulate

widgets without requiring explicit knowledge of the widget type. The standard widget manipu-
lation functions let you:

. Control the location, size and mapping of widget windows
o Destroy a widget instance

o Obtain an argument value

* Set an argument value

X Toolkit Athena Widgets X11, Release 3

2.5.1. Mapping Widgets

By default, widget windows automatically are mapped (made viewable) by XtRealizeWidget.
This behavior can be changed by using XtSetMapped WhenManaged, and it then is the
client’s responsibility to use the XtMapWidget function to make the widget viewable.
void XtSetMapped WhenManaged(w, map_when_managed)

Widget w;

Boolean map_when_managed,

w Specifies the widget.

map_when_managed
Specifies the new value. If map_when_managed is True, the widget is mapped
automatically when it is realized. If map_when_managed is False, the client
must call XtMapWidget or make a second call to XtSetMappedWhen-
Managed to cause the child window to be mapped.

The definition for XtMapWidget is:
XtMapWidget(w)

Widget w;
w Specifies the widget.

When you create several children in sequence for a common parent after it has been realized, it
is generally more efficient to construct a list of children as they are created and use
XtManageChildren to inform their parent of them all at once, instead of causing each child to
be managed separately. By managing a list of children at one time, the parent can avoid waste-
ful duplication of geometry processing and the associated "screen flash".

void XtManageChildren(children, num_children)
WidgetList children;
Cardinal num_children;
children Specifies a list of children to add.
num_children Specifies the number of children to add.

If the parent is already visible on the screen, it is especially important to batch updates so that
the minimum amount of visible window reconfiguration is performed.

For further information about these functions, see the Intrinsics.

2.5.2. Destroying Widgets
To destroy a widget instance of any type, use XtDestroyWidget.
void XtDestroyWidget(w)
Widget w;
w Specifies the widget.

XtDestroyWidget destroys the widget and recursively destroys any children that it may have,
including the windows created by its children. After calling XtDestroyWidget, no further
references should be made to the widget or to the widget IDs of any children that the destroyed
widget may have had.

X Toolkit Athena Widgets X11, Release 3

2.5.3. Retrieving Widget Resource Values

To retrieve the current value of a resource attribute associated with a widget instance, use
XtGetValues.

void XtGetValues(w, args, num_args)

Widget w;
ArglList args;
Cardinal num_args;
w Specifies the widget.
args Specifies a variable-length argument list of name and address pairs that contain

the resource name and the address into which the resource value is stored.
num_args Specifies the number of arguments in the argument list.

The arguments and values passed in the argument list are dependent on the widget. Note that
the caller is responsible for allocating space into which the returned resource value is copied;
the ArgList contains a pointer to this storage. The caller must allocate storage of the type as
represented in the widget. For example, x and y must be allocated as Position and so on. For
further information, see the X Toolkit Intrinsics — C Language Interface.

2.5.4. Modifying Widget Resource Values

To modify the current value of a resource attribute associated with a widget instance, use
XtSetValues.

void XtSetValues(w, args, num_args)
Widget w;
Arglist args;
Cardinal num_args;

w Specifies the widget.

args Specifies a variable-length argument list of name and value pairs that contain
the arguments to be modified and their new values.

num_args Specifies the number of arguments in the argument list.

The arguments and values passed in the argument list depend on the widget being modified.
Some widgets may not allow certain resources to be modified after the widget instance has been
created or realized. No notification is given if any part of a XtSetValues request is ignored.

For further information about these functions, see the Intrinsics.

Note

The argument list entry for XtGetValues specifies the address to which the caller
wants the value copied. The argument list entry for XtSetValues, however, con-
tains the new value itself if the size of value is less than sizeof(XtArgVal) (architec-
ture dependent, but at least sizeof(long)); otherwise, it is a pointer to the value.
String resources are always passed as pointers, regardless of the length of the string.

2.6. Using the Client Callback Interface

Widgets communicate changes in their state to their clients by means of a callback facility. The
format for a client’s callback handler is:

X Toolkit Athena Widgets X11, Release 3

void CallbackProc(w, client_data, call_data)
Widget w;
caddr_t client_data,
caddr_t call data;

w Specifies widget for which the callback is registered.

client_data Specifies arbitrary client-supplied data that the widget should pass back to the
client when the widget executes the client’s callback procedure. This is a way
for the client registering the callback to also register client-specific data: a
pointer to additional information about the widget, a reason for invoking the
callback, and so on. It is perfectly normal to have client_data of NULL if all
necessary information is in the widget. This field is also frequently known as
the closure.

call_data Specifies any callback-specific data the widget wants to pass to the client. For
example, when Scrollbar executes its jumpProc callback list, it passes the
current position of the thumb in the call_data argument.

Callbacks can be registered with widgets in one of two ways. When the widget is created, a
pointer to a list of callback procedure and data pairs can be passed in the argument list to
XtCreateWidget. The list is of type XtCallbackList:

typedef struct {
XtCallbackProc callback;
caddr_t closure;

} XtCallbackRec, *XtCallbackList;

The callback list must be allocated and initialized before calling XtCreateWidget. The end of
the list is identified by an entry containing NULL in callback and closure. Once the widget is
created, the client can change or de-allocate this list; The widget itself makes no further refer-
ence to it. The closure field contains the client_data passed to the callback when the callback
list is executed.

The second method for registering callbacks is to use XtAddCallback after the widget has been
created.

void XtAddCallback(w, callback_name, callback, client_data)

Widget w;

String callback_name;

XtCallbackProc callback;

caddr_t client_data;
w Specifies the widget to add the callback to.
callback_name Specifies the callback list within the widget to append to.
callback Specifies the callback procedure to add.

client_data Specifies the data to be passed to the callback when it is invoked.
XtAddCallback adds the specified callback to the list for the named widget.

All widgets provide a callback list named XtNdestroyCallback where clients can register pro-
cedures that are to be executed when the widget is destroyed. The destroy callbacks are exe-
cuted when the widget or an ancestor is destroyed. The call_data argument is unused for des-
troy callbacks. : : : '

The X Toolkit Intrinsics provide additional functions for further manipulating a callback list.
For information about these functions, see XtCallCallbacks, XtRemoveCallback,

10

X Toolkit Athena Widgets X11, Release 3

XtRemoveCallbacks, and XtRemoveAllCallbacks in the X Toolkit Intrinsics — C Language
Interface.

2.7. Programming Considerations

This section provides some guidelines to set up an application program that uses the X Toolkit.
This section discusses:

* Writing applications
. Creating argument lists

2.7.1. Writing Applications

When writing an application that uses the toolkit, you should make sure that your application
performs the following:

1. Include <X11/Intrinsic.h> in your application programs. This header file automatically
includes <X11/Xlib.h>, so all Xlib functions also are defined.

2. Include the widget-specific header files for each widget type that you need to use. For
example, <X11/Label.h> and <X11/Command.h>.

3. Call the XtInitialize function before invoking any other toolkit or Xlib functions. For
further information, see Section 2.1 and the X Toolkit Intrinsics — C Language Interface.

4. To pass attributes to the widget creation routines that will over-ride any site or user cus-
tomizations, set up argument lists. In this document, a list of valid argument names that
start with XtN is provided in the discussion of each widget.

For further information, see Section 2.7.2.

5. When the argument list is set up, create the widget by using the XtCreateWidget func-
tion. For further information, see Section 2.2 and the X Toolkit Intrinsics — C Language
Interface.

6. If the widget has any callback routines, which are usually defined by the XtNcallback
argument or the XtAddCallback function, declare these routines within the application.

7. After a widget has been created, use XtManageChild to manage it. If there is no mani-
pulation of the widget between XtCreateWidget and XtManageChild, you can do this
in a single step by using XtCreateManagedWidget. For further information about these
functions, see the Intrinsics.

8. After creating the initial widget hierarchy, windows must be created for each widget by
calling XtRealizeWidget on the top level widget.

9. Most applications now sit in a loop processing events using XtMainLoop, for example:

XtCreateManagedWidget(name, class, parent, args, num_args);
XtRealizeWidget(parent);
XtMainLoop();

For information about this function, see the X Toolkit Intrinsics — C Language Interface.

10. Link your application with libXaw.a (the Athena widgets), libXmu.a (miscellaneous
utilities), libXt.a (the X Toolkit Intrinsics), and libX11.a (the core X library). The fol-
lowing provides a sample command line:

cc -0 application application.c —-1Xaw —1Xmu —1Xt -1X11

11

X Toolkit Athena Widgets X11, Release 3

2.7.2. Creating Argument Lists

To set up an argument list for the inline specification of widget attributes, you can use one of
the four approaches discussed in this section. You should use whichever approach fits the needs
of the application and you are most comfortable with, In general, argument lists should be kept
as short as possible to allow widget attributes to be specified through the resource database.
Whenever a client inserts a specific attribute value in an argument list, the user is prevented
from customizing the behavior of the widget. Resource names in the resource database, by con-
vention, correspond to their symbolic names that are used in argument list without the XtN
prefix. For example, the resource name for XtNforeground is ‘‘foreground’’. For further
information, see the Intrinsics. '

The Arg structure contains:

typedef struct {
String name;
XtArgVal value;
} Arg, *ArgList;

The first approach lets you statically initialize the argument list. For example:
static Arg arglist[] = { ,
{XtNwidth, (XtArgVal) 400},
{XtNheight, (XtArgVal) 300},
b
This approach makes it easy to add or delete new elements. The XtNumber macro can be used

to compute the number of elements in the argument list, thus preventing simple programming
errors. The following provides an example:

XtCreateWidget(name, class, parent, arglist, XtNumber(arglist));

The second approach lets you use the XtSetArg macro. For example:
Arg arglist[10];

XtSetArg(arglist[1], XtNwidth, 400);

XtSetArg(arglist[2], XtNheight, 300);

To make it easier to insert and delete entries, you also can use a variable index, as in this exam-
ple:

Arg arglist[10];

Cardinal i=0;

XtSetArg(arglist[i], XtNwidth, 400); i++;

XtSetArg(arglist[i], XtNheight, 300); i++;

The i variable can then be used as the argument list count in the widget create function. In this
example, XtNumber would return 10, not 2, and therefore is not useful.
Note

You should not use auto-increment or auto-decrement within the first argument to
XtSetArg. As it is currently implemented, XtSetArg is a macro that dereferences
the first argument twice.

The third approach lets you individually set the elements of the argument list array, one piece at
a time. For example:

12

(\,

X Toolkit Athena Widgets X11, Release 3

Arg arglist[10];

arglist[0].name = XtNwidth;
arglist[0].value = (XtArgVal) 400;
arglist[1].name = XtNheight;
arglist[1].value = (XtArgVal) 300;

Note that in this example, as in the previous example, XtNumber would return 10, not 2, and
therefore is not useful.

The fourth approach lets you use a mixture of the first and third approaches: you can statically
define the argument list but modify some entries at runtime. For example:

static Arg arglist[] = {
{XtNwidth, (XtArgVal) 400},
{XtNheight, (XtArgVal) NULL},
b
arglist[1].value = (XtArgVal) 300;

In this example, XtNumber can be used, as in the first approach, for easier code maintenance.

2.7.3. Sample Program

The following program creates one command button that, when pressed, causes the program to
exit. This example is a complete program that illustrates:

. Toolkit initialization

. Optional command-line arguments
. Widget creation

. Callback routines

13

X Toolkit Athena Widgets X11, Release 3

#include <stdio.h>
#include <X11/Intrinsic.h>
#include <X11/Command.h>

static XrmOptionDescRec options[] = {
{"~label", "*button.label", XrmoptionSepArg, NULL}

b
Syntax(call)
char *call;
{
fprintf(stderr, "Usage: %s\n", call);
}
void Activate(w, client_data, call_data)
Widget w;
caddr_t client_data; /* unused */
caddr_t call_data; /* unused */
{
printf("button was activated.\n");
exit(0);
}

void main(argc, argv)
unsigned int argc;
char **argv;

Widget toplevel;
static XtCallbackRec callbacks[] = {
{ Activate, NULL },
{ NULL, NULL },
b
static Arg args[] = {
{ XtNcallback, (XtArgVal)callbacks },
b

toplevel = XtInitialize("main", "Demo", options, XtNumber(options), &argc, argv);
if (argc != 1) Syntax(argv[0]);

XtCreateManagedWidget("button",commandWidgetClass,toplevel,args, X tNumber(args));

XtRealizeWidget(toplevel);
XtMainLoop();

14

—

X Toolkit Athena Widgets

Chapter 3

Athena Widget Set

This chapter describes the following Athena widgets:

e Command
° Label
. Text

° Scrollbar
o Viewport

L Box

. VPaned
e Form

. Dialog
. List

° Grip

. Toggle

3.1. Command Widget

X11, Release 3

The Command widget is a rectangular button that contains a text or pixmap label. When the
pointer cursor is on the button, the button border is highlighted to indicate that the button is
available for selection. Then, when a pointer button is pressed and released the button is
selected, and the application’s callback routine is invoked.

The class variable for the Command widget is commandWidgetClass.

When creating a Command widget instance, the following resources are retrieved from the argu-
ment list or from the resource database:

Name Type Default Description

XtNbackground Pixel XtDefaultBackground ~ Window background color
XtNbackgroundPixmap Pixmap None Window background pixmap
XtNbitmap Pixmap None Pixmap to display in place of the label
XtNborderColor Pixel XtDefaultForeground =~ Window border color
XtNborderPixmap Pixmap None Window border pixmap
XtNborderWidth Dimension 1 Width of button border

XtNcallback XtCallbackList NULL Callback for button select

XtNcursor Cursor None Pointer cursor

XtNdestroyCallback XtCallbackList NULL Callbacks for XtDestroyWidget
XtNfont XFontStruct* XtDefaultFont Label font

XtNforeground Pixel XtDefaultForeground Foreground color

XtNheight Dimension Text height Button height

XtNhighlightThickness Dimension 2 Width of border to be highlighted
XtNinsensitiveBorder Pixmap Gray Border when not sensitive
XtNinternalHeight Dimension 2 Internal border height for highlighting
XtNinternalWidth

15

X Toolkit Athena Widgets X11, Release 3

Name Type Default Description

Dimension

16

X Toolkit Athena Widgets X11, Release 3

Name Type Default Description

Internal border width for highlighting

17

X Toolkit Athena Widgets

X11, Release 3

Name Type Default Description

XtNjustify Xtlustify XtlustifyCenter Type of text alignment

XtNlabel String Button name Button label
XtNmappedWhenManaged Boolean True Whether XtMapWidget is automatic
XtNresize Boolean True Whether to auto-resize in SetValues
XtNsensitive Boolean True Whether widget receives input
XtNtranslations TranslationTable see below Event-to-action translations
XtNwidth Dimension Text width Button width

XtNx Position 0 x coordinate

XtNy Position 0 y coordinate

The new resources associated with the Command widget are:

XtNbitmap

XtNheight

XtNinternalHeight

XtNinternal Width

XtNjustify

XtNlabel

XtNresize

XtNsensitive

XtNwidth

Specifies a bitmap to display in place of the text label. See the
description of this resource in the Label widget for further
details.

Specifies the height of the Command widget. The default value
is the minimum height that will contain:

XtNinternalheight + height of XtNlabel + XtNinternalHeight

If the specified height is larger than the minimum, the label
string is centered vertically.

Represents the distance in pixels between the top and bottom of
the label text or bitmap and the horizontal edges of the Com-
mand widget. HighlightThickness can be larger or smaller than
this value.

Represents the distance in pixels between the ends of the label
text or bitmap and the vertical edges of the Command widget.
HighlightThickness can be larger or smaller than this value.

Specifies left, center, or right alignment of the label string
within the Command widget. If it is specified within an
ArgList, one of the values XtJustifyLeft, XtJustifyCenter, or
XtJustifyRight can be specified. In a resource of type
“‘string’’, one of the values ‘‘left’’, ‘‘center’’, or ‘‘right’’ can be
specified.

Specifies the text string that is to be displayed in the Command
widget if no bitmap is specified. The default is the widget
name of the Command widget.

Specifies whether the Command widget should attempt to resize
to its preferred dimensions whenever XtSetValues is called for
it. The default is True.

If set to False, the Command widget will change its window
border to XtNinsensitiveBorder and will stipple the label
string.

Specifies the width of the Command widget. The default value

18

X Toolkit Athena Widgets X11, Release 3

is the minimum width that will contain:

XtNinternalWidth + width of XtNlabel + XtNinternal Width

If the width is larger or smaller than the minimum, XtNjustify
determines how the label string is aligned.

The Command widget supports the following actions:
® Switching the button between the foreground and background colors with set and unset

° Processing application callbacks with notify
® Switching the internal border between highlighted and unhighlighted states with highlight

and unhighlight
The following are the default translation bindings that are used by the Command widget:
<EnterWindow>: highlight()
<LeaveWindow>: reset()
<Btn1Down>: set()
<Btn1Up>: notify() unset()

With these bindings, the user can cancel the action before releasing the button by moving the
pointer out of the Command widget.

3.1.1. Command Actions
The full list of actions supported by Command is:

highlight(condition) Displays the internal highlight border in the color (XtNforeground or
XtNbackground) that contrasts with the interior color of the Command
widget. This action procedure takes one of the following conditions:
WhenUnset and Always. If no argument is passed then WhenUnset is
assumed, this maintains backwards compatibility.

unhighlight() Displays the internal highlight border in the color (XtNforeground or
XtNbackground) that matches the interior color of the Command wid-
get.

set() Enters the "set" state, in which notify is possible and displays the inte-

rior of the button in the XtNforeground color. The label is displayed
in the XtNbackground color.

unset() Cancels the "set" state and displays the interior of the button in the
XtNbackground color. The label is displayed in the XtNforeground
color.

reset() Cancels any set or highlight and displays the interior of the button in

the XtNbackground color, with the label displayed in the XtNfore-
ground color.

notify() Executes the XtNcallback callback list if executed in the set state. The
value of the call_data argument is undefined.

To create a Command widget instance, use XtCreateWidget and specify the class variable
commandWidgetClass.

To destroy a Command widget instance, use XtDestroyWidget and specify the widget ID of
the button.

The Command widget supports two callback lists: XtNdestroyCallback and XtNcallback.
The notify action executes the callbacks on the XtNcallback list. The call_data argument is
unused.

19

X Toolkit Athena Widgets

3.2. Label Widget

X11, Release 3

A Label is an noneditable text string or pixmap that is displayed within a window. The string is
limited to one line and can be aligned to the left, right, or center of its window. A Label can
neither be selected nor directly edited by the user.

The class variable for the Label widget is labelWidgetClass.

When creating a Label widget instance, the following resources are retrieved from the argument
list or from the resource database:

Name Type Default Description

XtNbackground Pixel XtDefaultBackground ~ Window background color
XtNbackgroundPixmap Pixmap None Window background pixmap
XtNbitmap Pixmap None Pixmap to display in place of the label
XtNborderColor Pixel XtDefaultForeground ~ Window border color
XtNborderPixmap Pixmap None Window border pixmap
XtNborderWidth Dimension 1 Border width in pixels

XtNcursor Cursor None Pointer cursor

XtNdestroyCallback XtCallbackList NULL Callbacks for XtDestroyWidget
XtNfont XFontStruct* XtDefaultFont Label font

XtNforeground Pixel XtDefaultForeground Foreground color

XtNheight Dimension text height Height of widget
XtNinsensitiveBorder Pixmap Gray Border when not sensitive
XtNinternalHeight Dimension 2 See note

XtNinternalWidth Dimension 4 See note

XtNjustify XtJustify XtJustifyCenter Type of text alignment

XtNlabel String label name String to be displayed
XtNmappedWhenManaged Boolean True Whether XtMapWidget is automatic
XtNresize Boolean True Whether to auto-resize in SetValues
XtNsensitive Boolean True Whether widget receives input
XtNwidth Dimension text width Width of widget

XtNx Position 0 x coordinate in pixels

XtNy Position 0 y coordinate in pixels

The new resources associated with Label are:

XtNbitmap

XtNheight

Specifies a bitmap to display in place of the text label. The bit-
map can be specified as a string in the resource data base. The
StringToPixmap converter will interpret the string as the name
of a file in the bitmap utility format that is to be loaded into a
pixmap. The string can be an absolute or a relative file name.
If a relative file name is used, the directory specified by the
resource name bitmapFilePath or the resource class Bitmap-
FilePath is add to the beginning of the specified file name. If
the bitmapFilePath resource is not defined, the default direc-
tory on a UNIX-based system is /usr/include/X11/bitmaps.

Specifies the height of the Label widget. The default value is
the minimum height that will contain;

XtNinternalheight + height of XtNlabel + XtNinternalHeight
If the specified height is larger than the minimum, the label
string is centered vertically.

20

X Toolkit Athena Widgets X11, Release 3

XtNinternalHeight Represents the distance in pixels between the top and bottom of
the label text or bitmap and the horizontal edges of the Label
widget.

XtNinternalWidth Represents the distance in pixels between the ends of the label

text or bitmap and the vertical edges of the Label widget.

XtNjustify Specifies left, center, or right alignment of the label string
within the Label widget. If it is specified within an ArgList,
one of the values XtJustifyLeft, XtJustifyCenter, or XtJus-
tifyRight can be specified. In a resource of type ‘‘string’’, one
of the values “‘left’’, “‘center’’, or ‘‘right’’ can be specified.

XtNlabel Specifies the text string that is to be displayed in the button if
no bitmap is specified. The default is the widget name of the
Label widget.

XtNresize Specifies whether the Label widget should attempt to resize to

its preferred dimensions whenever XtSetValues is called for it.

XtNsensitive If set to False, the Label widget will change its window border
to XtNinsensitiveBorder and will stipple the label string.

XtNwidth Specifies the width of the Label widget. The default value is
the minimum width that will contain:
XtNinternal Width + width of XtNlabel + XtNinternal Width
If the width is larger or smaller than the minimum, XtNjustify
determines how the label string is aligned.

To create a Label widget instance, use XtCreateWidget and specify the class variable
labelWidgetClass.

To destroy a Label widget instance, use XtDestroyWidget and specify the widget ID of the
label.

The Label widget supports only the XtNdestroyCallback callback list.

3.3. Text Widget

A Text widget is a window that provides a way for an application to display one or more lines
of text. The displayed text can reside in a file on disk or in a string in memory. An option also
lets an application display a vertical Scrollbar in the Text window, letting the user scroll
through the displayed text. Other options allow an application to let the user modify the text in
the window.

The Text widget is divided into three parts:

e Source

° Sink

. Text widget

The idea is to separate the storage of the text (source) from the painting of the text (sink). The
Text widget coordinates the sources and sinks. Clients usually will use AsciiText widgets that
automatically create the source and sink for the client. A client can, if it so chooses, explicitly
create the source and sink before creating the Text widget.

21

X Toolkit Athena Widgets X11, Release 3

The source stores and manipulates the text. The X Toolkit provides string and disk file sources.
The source determines what editing functions may be performed on the text.

The sink obtains the fonts and the colors in which to paint the text. The sink also computes
what text can fit on each line. The X Toolkit provides a single-font, single-color ASCII sink.

If a disk file is used to display the text, two edit modes are available:

. Append

o Read-only

Append mode lets the user enter text into the window, while read-only mode does not. Text
may only be entered if the insertion point is after the last character in the window.

If a string in memory is used, the application must allocate the amount of space needed. If a
string in memory is used to display text, three types of edit mode are available:

o Append-only

. Read-only

. Editable

The first two modes are the same as displaying text from a disk file. Editable mode lets the user
place the cursor anywhere in the text and modify the text at that position. The text cursor posi-
tion can be modified by using the key strokes or pointer buttons defined by the event bindings.
Many standard keyboard editing facilities are supported by the event bindings. The following
actions are supported:

Cursor Movement Delete
forward-character
backward-character
forward-word
backward-word
forward-paragraph

delete-next-character
delete-previous-character
delete-next-word
delete-previous-word
delete-selection

backward-paragraph

beginning-of-line

end-of-line Selection

next-line select-word
previous-line select-all
next-page select-start

previous-page
beginning-of-file
end-of-file
scroll-one-line-up
scroll-one-line-down

New Line

newline-and-indent

select-adjust
select-end
extend-start
extend-adjust
extend-end

Miscellaneous

redraw-display

newline-and-backup insert-file
newline insert-char
insert-string
do-nothing
Kill Unkill
kill-word unkill
backward-kill-word stuff

22

X Toolkit Athena Widgets X11, Release 3

kill-selection insert-selection
kill-to-end-of-line
kill-to-end-of-paragraph

Note

1. A page corresponds to the size of the Text window. For example, if the Text win-
dow is 50 lines in length, scrolling forward one page is the same as scrolling for-
ward 50 lines.

2. The insert-char action may only be attached to a key event. It calls XLookup-
String to translate the event into a (rebindable) Latin-1 character (sequence) and
inserts that sequence into the text at the current position. The insert-string action
takes one or more arguments and inserts the arguments into the text at the current
position. An argument beginning with the characters "0x" and containing only
valid hexadecimal digits in the remainder is interpreted as a hexadecimal constant
and the corresponding single character is inserted instead.

3. The delete action deletes a text item. The Kill action deletes a text item and puts
the item in the kill buffer (X cut buffer 1).

4. The unkill action inserts the contents of the kill buffer into the text at the current
position. The stuff action inserts the contents of the paste buffer (X cut buffer 0)
into the text at the current position. The insert-selection action retrieves the value

of a specified X selection or cut buffer, with fall-back to alternative selections or cut
buffers.

The default event bindings for the Text widget are:
char defaultTextTranslations[] = ‘\

Ctrl<Key>F: forward-character() \n\
Ctrl<Key>B: backward-character() \n\
Ctrl<Key>D: delete-next-character() \n\
Crl<Key>A: beginning-of-line() \n\
Ctrl<Key>E: end-of-line() \n\
Ctrl<Key>H: delete-previous-character() \n\
Ctrl<Key>J: newline-and-indent() \n\
Curl<Key>K: kill-to-end-of-line() \n\
Cul<Key>L: redraw-display() \n\
Cul<Key>M: newline() \n\
Ctrl<Key>N: next-line() \n\
Ctrl<Key>0: newline-and-backup() \n\
Ctrl<Key>P: previous-line() \n\
Ctrl<Key>V: next-page() \n\
Ctri<Key>W: kill-selection() \n\
Ctrl<Key>Y: unkill() \n\

Cul<Key>Z: scroll-one-line-up() \n\
Meta<Key>F: forward-word() \n\
Meta<Key>B: backward-word() \n\
Meta<Key>I: insert-file() \n\
Meta<Key>K: kill-to-end-of-paragraph() \m\
Meta<Key>V: previous-page() \n\
Meta<Key>Y: stuff() \n\

23

X Toolkit Athena Widgets X11, Release 3

Meta<Key>Z.: scroll-one-line-down() \n\
:Meta<Key>d: delete-next-word() \n\
:Meta<Key>D: kill-word() \n\
‘Meta<Key>h: delete-previous-word() \n\
‘Meta<Key>H: backward-kill-word() \n\
‘Meta<Key>\<: beginning-of-file() \n\
:Meta<Key>\>: end-of-file() \n\
:Meta<Key>]: forward-paragraph() \n\
‘Meta<Key>[: backward-paragraph() \n\
~Shift Meta<Key>Delete: delete-previous-word() \n\

Shift Meta<Key>Delete:

~Shift Meta<Key>Backspace:

Shift Meta<Key>Backspace:
<Key>Right:

backward-kill-word() \n\
delete-previous-word() \n\
backward-kill-word() \n\
forward-character() \n\

<Key>Left: backward-character() \n\

<Key>Down: next-line() \n\

<Key>Up: previous-line() \n\

<Key>Delete: delete-previous-character() \n\
<Key>BackSpace: delete-previous-character() \n\
<Key>Linefeed: newline-and-indent() \n\

<Key>Retumn: newline() \n\

<Key>: insert-char() \n\

<FocusIn>: focus-in() \n\

<FocusOut>: focus-out() \n\

<Btnl1Down>; select-start() \n\

<Btn1Motion>: extend-adjust() \n\

<Btn1Up>: extend-end(PRIMARY, CUT_BUFFERO) \n\
<Btn2Down>: insert-selection(PRIMARY, CUT_BUFFERO) \n\
<Btn3Down>: extend-start() \n\

<Btn3Motion>: extend-adjust() \n\

<Btn3Up>: extend-end(PRIMARY, CUT_BUFFEROQO) \

A user-supplied resource entry can use application-specific bindings, a subset of the supplied
default bindings, or both. The following is an example of a user-supplied resource entry that
uses a subset of the default bindings:

Xmh*Text. Translations: \

<Key>Right: forward-character() \n\
<Key>Left: backward-character() \n\
Meta<Key>F: forward-word() \n\
Meta<Key>B: backward-word() \n\
:Meta<Key>]: forward-paragraph() \n\
:Meta<Key>[: backward-paragraph() \n\
<Key>: insert-char()

An augmented binding that is useful with the xclipboard utility is:

*Text. Translations: #override \

Button1 <Btn2Down>: extend-end(CLIPBOARD)

A Text widget lets both the user and the application take control of the text being displayed.
The user takes control with the scroll bar or with key strokes defined by the event bindings.
The scroll bar option places the scroll bar on the left side of the widget and can be used with

24

X Toolkit Athena Widgets

X11, Release 3

any editing mode. The application takes control with procedure calls to the Text widget to:

° Display text at a specified position

. Highlight specified text areas

o Replace specified text areas

The text that is selected within a Text widget may be assigned to an X selection or copied into a
cut buffer and can be retrieved by the application with the Intrinsics XtGetSelectionValue or

the Xlib XFetchBytes functions respectively. Several standard selection schemes (e.g.
character/word/paragraph with multi-click) are supported through the event bindings.

The class variable for the Text widget is textWidgetClass.

To create a Text string widget, use XtCreateWidget and specify the class variable asciiS-

tringWidgetClass.

To create a Text file widget, use XtCreateWidget and specify the class variable asci-

iDisk WidgetClass.

Note

If you want to create an instance of the class textWidgetClass, you must provide a
source and a sink when the widget is created. The Text widget cannot be instan-

tiated without both.

When creating a Text widget instance, the following resources are retrieved from the argument

list or from the resource database:

Name Type Default Description

XtNbackground Pixel XtDefaultBackground ~ Window background color
XtNbackgroundPixmap Pixmap None Window background pixmap
XtNborderColor Pixel XtDefaultForeground ~ Window border color
XtNborderPixmap Pixmap None Window border pixmap
XtNborderWidth Dimension 4 Border width in pixels
XtNcursor Cursor XC_xterm Pointer cursor
XtNdialogHOffset int 10 Offset of insert file dialog
XtNdialogVOffset int 10 Offset of insert file dialog
XtNdestroyCallback XtCallbackList NULL Callbacks for XtDestroyWidget
XtNdisplayPosition int 0 Character position of first line
XtNeditType XtEditType XttextRead Edit mode (see note)

XtNfile char* tmpnam() File for asciiDiskWidgetClass
XtNforeground Pixel Black Foreground color

XtNfont XFontStruct* Fixed Fontname

XtNheight Dimension Font height Height of widget
XtNinsertPosition int 0 Character position of caret
XtNleftMargin Dimension 2 Left margin in pixels

XtNlength int String length Size of the string buffer
XtNmappedWhenManaged Boolean True Whether XtMapWidget is automatic
XtNselectTypes XiTextSelectType* See below Selection units for multi-click
XtNsensitive Boolean True Whether widget receives input
XtNstring char* Blank String for asciiStringWidgetClass
XtNtextOptions int None See below

XtNtextSink XtTextSink None See below

XtNtextSource XtTextSource None See below

XtNtranslations TranslationTable See above event-to-action translations
XtNwidth Dimension 100 Width of widget (pixels)

XtNx Position 0 x coordinate in pixels

XtNy Position 0 y coordinate in pixels

25

X Toolkit Athena Widgets X11, Release 3

Name Type Default Description

Note
1. You cannot use XtNeditType, XtNfile, XtNlength, and XtNfont with the
XtTextSetValues and the XtTextGetValues calls.

2. The XtNeditType attribute has one of the values XttextAppend, XttextEdit, or
XttextRead.

3. If asciiStringWidgetClass is used, the resource XtNstring specifies a buffer con-
taining the text to be displayed and edited. AsciiStringWidget does not copy this
buffer but uses it in-place.

The options for the XtNtextOptions attribute are:

Option Description

editable Whether or not the user is allowed to modify the text.

resizeHeight ~ Makes a request to the parent widget to lengthen the widget if all the
text cannot fit in the window.

resizeWidth Makes a request to the parent widget to widen the widget if the text
becomes too long to fit on one line. ‘

scrollOnOverflow Automatically scrolls the text up when new text is entered below the
bottom (last) line.

scrollVertical Puts a scroll bar on the left side of the widget.

wordBreak Starts a new line when a word does not fit on the current line.

These options can be ORed together to set more than one at the same time.

XtNselectionTypes is an array of entries of type XtTextSelectType and is used for multiclick.
As the pointer button is clicked in rapid succession, each click highlights the next “‘type’’
described in the array.

XtselectAll Selects the contents of the entire buffer.

XtselectChar Selects text characters as the pointer moves over them.

XtselectLine Selects the entire line.

XtselectNull Indicétes the end of the selection array.

XtselectParagraph Selects the entire paragraph (delimited by newline characters).

XtselectPosition Selects the current pointer position.

XtselectWord Selects whole words (delimited by whitespace) as the pointer moves
onto them.

The default selectType array is:
{XtselectPosition, XtselectWord, XtselectLine, XtselectParagraph, XtselectAll, XtselectNull}

26

X Toolkit Athena Widgets X11, Release 3

For the default case, two rapid pointer clicks highlight the current word, three clicks highlight
the current line, four clicks highlight the current paragraph, and five clicks highlight the entire
text. If the timeout value is exceeded, the next pointer click retumns to the first entry in the
selection array. The selection array is not copied by the Text widget. The client must allocate
space for the array and cannot deallocate or change it until the Text widget is destroyed or until
a new selection array is set.

3.3.1. Selection Actions

The Text widget fully supports the X selection and cut buffer mechanisms. The following
actions can be used to specify button bindings that will cause Text to assert ownership of one or
more selections, to store the selected text into a cut buffer, and to retrieve the value of a selec-
tion or cut buffer and insert it into the text value.

insert-selection(name([,name,...])
Retrieves the value of the first (left-most) named selection that exists or the cut
buffer that is not empty and inserts it into the input stream. The specified name
can be that of any selection (for example, PRIMARY or SECONDARY) or a

cut buffer (i.e. CUT_BUFFERO through CUT_BUFFER7). Note that case
matters.

select-start() Unselects any previously selected text and begins selecting new text.

select-adjust()
extend-adjust()
Continues selecting text from the previous start position.

start-extend() Begins extending the selection from the farthest (left or right) edge.

select-end(namel,name,...])

extend-end(name[,name,...])
Ends the text selection, asserts ownership of the specified selection(s) and stores
the text in the specified cut buffer(s). The specified name can be that of a selec-
tion (for example, PRIMARY or SECONDARY) or a cut buffer (i.e.
CUT_BUFFERO through CUT_BUFFER?7). Note that case is significant. If

CUT_BUFFERQO is listed, the cut buffers are rotated before storing into buffer
0.

3.3.2. Selecting Text
To enable an application to select a piece of text, use XtTextSetSelection.
typedef long XtTextPosition,;

void XtTextSetSelection(w, left, right)
Widget w;
XtTextPosition left, right;

w Specifies the widget ID.
left Specifies the character position at which the selection begins.
right Specifies the character position at which the selection ends.

If redisplay is not disabled, this function highlights the text and makes it the PRIMARY selec-
tion.

27

X Toolkit Athena Widgets X11, Release 3

3.3.3. Unhighlighting Text
To unhighlight previously highlighted text in a widget, use XtTextUnsetSelection.

void XtTextUnsetSelection(w)
Widget w;

3.3.4. Getting Selected Text Character Positions

To enable the application to get the character positions of the selected text, use XtTextGet-
SelectionPos.

void XtTextGetSelectionPos(w, posl, pos2)
Widget w;
XtTextPosition *posl, *pos2;

w Specifies the widget ID.

posl Specifies a pointer to the location to which the beginning character position of
the selection is returned.

pos2 Specifies a pointer to the location to which the ending character position of the
selection is returned.

If the returned values are equal, there is no current selection.

3.3.5. Replacing Text
To enable an application to replace text, use XtTextReplace.
int XtTextReplace(w, start_pos, end_pos, text)

Widget w;

XtTextPosition start pos, end_pos;,

XtTextBlock *text,

w Specifies the widget ID.

start_pos Specifies the starting character position of the text replacement.
end_pos Specifies the ending character position of the text replacement.
text Specifies the text to be inserted into the file.

The XtTextReplace function deletes text in the specified range (startPos, endPos) and inserts
the new text at startPos. The return value is XawEditDone if the replacement is successful,
XawPositionError if the edit mode is XttextAppend and startPos is not the last character of
the source, or XawEditError if either the source was read-only or the range to be deleted is
larger than the length of the source.

The XtTextBlock structure (defined in <X11/Text.h> contains:

typedef struct {
int firstPos;
int length;
char *ptr;
Atom format;
} XtTextBlock, *TextBlockPtr;

The firstPos field is the starting point to use within the ptr field. The value is usually zero. The
length field is the number of characters that are transferred from the ptr field. The number of
characters transferred is usually the number of characters in ptr. The format field is not
currently used, but should be specified as FMTSBIT. The XtTextReplace arguments

28

X Toolkit Athena Widgets X11, Release 3

start_pos and end_pos represent the text source character positions for the existing text that is
to be replaced by the text in the XtTextBlock structure. The characters from start_pos up to
but not including end_pos are deleted, and the characters that are specified by the text block are
inserted in their place. If start_pos and end_pos are equal, no text is deleted and the new text is
inserted after start_pos.

Note

Only ASCII text is currently supported, and only one font can be used for each Text
widget.

3.3.6. Redisplaying Text
To redisplay a range of characters, use XtTextInvalidate.

void XtTextInvalidate(w, from, to)

Widget w;

XtTextPosition from, to;
The XtTextInvalidate function causes the specified range of characters to be redisplayed
immediately if redisplay is enabled or the next time that redisplay is enabled.

To enable redisplay, use XtTextEnableRedisplay.
void XtTextEnableRedisplay(w)
Widget w;

The XtTextEnableRedisplay function flushes any changes due to batched updates when
XtTextDisableRedisplay was called and allows future changes to be reflected immediately.

To disable redisplay while making several changes, use XtTextDisableRedisplay.
void XtTextDisableRedisplay(w)
Widget w;

The XtTextDisableRedisplay function causes all changes to be batched until XtTextDisplay
or XtTextEnableRedisplay is called.

To display batched updates, use XtTextDisplay.
void XtTextDisplay(w)
Widget w;
The XtTextDisplay function forces any accumulated updates to be displayed.

To notify the source that the length has been changed, use XtTextSetLastPos.

void XtTextSetLastPos(w, last);
Widget w;
XtTextPosition last;

The XtTextSetLastPos function notifies the text source that data has been added to or removed
from the end of the source.

29

X Toolkit Athena Widgets X11, Release 3

3.3.7. Changing Resources

The following procedures are convenience procedures that replace calls to XtSetValues or
XtGetValues when only a single resource is to be modified or retrieved.

To assigns a new value to XtNtextOptions resource, use XtTextChangeOptions.

void XtTextChangeOptions(w, options)
Widget w;
int options;

To obtain the current value of XtNtextOptions for the specified widget, use XtTextGetOptions.

int XtTextGetOptions(w)
Widget w;

To obtain the character position of the left-most character on the first line displayed in the wid-
get (that is, the value of XtNdisplayPosition), use XtTextTopPosition.

XtTextPosition XtTextTopPosition(w)
Widget w;

To move the insertion caret to the specified source position, use XtTextSetInsertionPoint.
void XtTextSetInsertionPoint(w, position)

Widget w; ~

XtTextPosition position;
The text will be scrolled vertically if necessary to make the line containing the insertion point
visible. The result is equivalent to setting the XtNinsertPosition resource.

To obtain the current position of the insertion caret, use XtTextGetInsertionPoint.
XtTextPosition XtTextGetlnsertionPoint(w)

Widget w;
The result is equivalent to retrieving the value of the XtNinsertPosition resource.

To replace the text source in the specified widget, use XtTextSetSource.

void XtTextSetSource(w, source, position)
Widget w;
XtTextSource source;
XtTextPosition position;

A display update will be performed if redisplay has not been disabled.
To obtain the current text source for the specified widget, use XtTextGetSource.

XtTextSource XtTextGetSource(w)
Widget w;

30

X Toolkit Athena Widgets X11, Release 3

3.3.8. Creating Sources and Sinks

The following functions for creating and destroying text sources and sinks are called automati-
cally by AsciiStringWidget and AsciiDiskWidget and it is therefore only necessary for the
client to use them when creating an instance of textWidgetClass.

To create a new ASCII text sink, use XtAsciiSinkCreate.

XtTextSink XtAsciiSinkCreate(w, args, num_args)
Widget w;
ArgList args;
Cardinal num_args,

The resources required by the sink are qualified by the name and class of the parent and the
sub-part name XtNtextSink and class XtCTextSink.

To deallocate an ASCII text sink, use XtAsciiSinkDestroy.
void XtAsciiSinkDestroy(sink)
XtTextSink sink;

The sink must not be in use by any widget or an error will result.

To create a new text disk source, use XtDiskSourceCreate.
XtTextSource XtDiskSourceCreate(w, args, num_args)
Widget w;
ArgList args;
Cardinal num_args,

The resources required by the source are qualified by the name and class of the parent and the
sub-part name XtNtextSource and class XtCTextSource.

To deallocate a text disk source, use XtDiskSourceDestroy.
void XtDiskSourceDestroy(source)
XtTextSource source;

The source must not be in use by any widget or an error will result.

To create a new text string source, use XtStringSourceCreate.

XtTextSource XtStringSourceCreate(w, args, num_args)
Widget w;
ArglList args;
Cardinal num_args,

The resources required by the source are qualified by the name and class of the parent and the
sub-part name XtNtextSource and class XtCTextSource.

To deallocate a text string source, use XtStringSourceDestroy.

void XtStringSourceDestroy(source)
XtTextSource source;

31

X Toolkit Athena Widgets X11, Release 3

The source must not be in use by any widget or an error will result.

3.4. Scrollbar Widget

The Scrollbar widget is a rectangular area that contains a slide region and a thumb (slide bar).
A Scrollbar can be used alone, as a valuator, or it can be used within a composite widget (for
example, a Viewport). A Scrollbar can be aligned either vertically or horizontally.

When a Scrollbar is created, it is drawn with the thumb in a contrasting color. The thumb is
normally used to scroll client data and to give visual feedback on the percentage of the client
data that is visible.

Each pointer button invokes a specific scroll bar action. That is, given either a vertical or hor-
izontal alignment, the pointer button actions will scroll or return data as appropriate for that
alignment. Pointer buttons 1 and 3 do not perform scrolling operations by default. Instead,
they return the pixel position of the cursor on the scroll region. When pointer button 2 is
clicked, the thumb moves to the current pointer position. When pointer button 2 is held down
and the pointer pointer is moved, the thumb follows the pointer.

The cursor in the scroll region changes depending on the current action. When no pointer but-
ton is pressed, the cursor appears as an arrow that points in the direction that scrolling can
occur. When pointer button 1 or 3 is pressed, the cursor appears as a single-headed arrow that
points in the logical direction that the client will move the data. When pointer button 2 is
pressed, the cursor appears as an arrow that points to the thumb.

While scrolling is in progress, the application receives notification from callback procedures.

For both scrolling actions, the callback returns the Scrollbar widget ID, the client_data, and the

pixel position of the pointer when the button was released. For smooth scrolling, the callback

routine returns the scroll bar widget, the client data, and the current relative position of the

thumb. When the thumb is moved using pointer button 2, the callback procedure is invoked (
continuously. When either button 1 or 3 is pressed, the callback procedure is invoked only

when the button is released and the client callback procedure is responsible for moving the

thumb.

The class variable for the Scrollbar widget is scrollbarWidgetClass.

When creating a Scrollbar widget instance, the following resources are retrieved from the argu-
ment list or from the resource database:

Name Type Default Description

XtNbackground Pixel white Window background color
XtNbackgroundPixmap Pixmap None Window background pixmap
XtNborderColor Pixel XtDefaultForeground Window border color

XtNborderPixmap Pixmap None Window border pixmap

XtNborderWidth Dimension 1 Width of button border

XtNdestroyCallback XtCallbackList NULL Callbacks for XtDestroyWidget
XtNforeground Pixel black Thumb color

XtNheight Dimension See below Height of scroll bar

XtNjumpProc XtCallbackList NULL Callback for thumb select

XtNlength Dimension None Major dimension (height of XtorientVertical)
XtNmappedWhenManaged Boolean True Whether XtMapWidget is automatic
XtNorientation XtOrientation XtorientVertical Orientation (vertical or horizontal)
XtNscrollDCursor Cursor XC_sb_down_arrow Cursor for scrolling down

XtNscrollHCursor Cursor XC_sb_h_double_arrow Idle horizontal cursor

XtNscrollLCursor Cursor XC_sb_left_arrow Cursor for scrolling left

XtNscrollProc XtCallbackList NULL Callback for the slide region
XtNscrollRCursor (

32

X Toolkit Athena Widgets X11, Release 3

Name Type Default Description

Cursor

XC_sb_right_arrow

33

X Toolkit Athena Widgets

X11, Release 3

Name

Type

Default

Description

34

Cursor for scrolling right

X Toolkit Athena Widgets X11, Release 3

Name Type Default Description
XtNscrollUCursor Cursor XC_sb_up_arrow Cursor for scrolling up
XtNscrollVCursor Cursor XC_sb_v_double_arrow Idle vertical cursor
XtNsensitive Boolean True Whether widget receives input
XtNshown float NULL Percentage the thumb covers
XtNthickness Dimension 14 Minor dimension (height if XtorientHorizontal)
XtNthumb Pixmap Grey Thump pixmap

XtNtop float NULL Position on scroll bar
XtNtranslations TranslationTable See below Event-to-action translations
XtNwidth Dimension See below Width of scroll bar

XtNx Position NULL X position of scroll bar

XNy Position NULL y position of scroll bar

The class for all cursor resources is XtCCursor.

You can set the dimensions of the Scrollbar two ways. As for all widgets, you can use the
XtNwidth and XtNheight resources. In addition, you can use an alternative method that is
independent of the vertical or horizontal orientation:

XtNlength Specifies the height for a vertical Scrollbar and the width for a horizon-
tal Scrollbar.
XtNthickness Specifies the width for a vertical Scrollbar and the height for a horizon-

tal Scrollbar.

To create a Scrollbar widget instance, use XtCreateWidget and specify the class variable
scrollbarWidgetClass.

To destroy a Scrollbar widget instance, use XtDestroyWidget and specify the widget ID for the
Scrollbar.

The arguments to the XtNscrollProc callback procedure are:

void ScrollProc(scrollbar, client_data, position)
Widget scrollbar,
caddr_t client_data,
caddr_t position; /* int */

scrollbar Specifies the ID of the Scrollbar.
client_data Specifies the client data.
position Returns the pixel position of the thumb in integer form.

The XtNscrollProc callback is used for incremental scrolling and is called by the NotifyScroll
action. The position argument is a signed quantity and should be cast to an int when used.
Using the default button bindings, button 1 returns a positive value, and button 3 returns a nega-
tive value. In both cases, the magnitude of the value is the distance of the pointer in pixels
from the top (or left) of the Scrollbar. The value will never be less than zero or greater than the
length of the Scrollbar.

The arguments to the XtNjumpProc callback procedure are:

35

X Toolkit Athena Widgets X11, Release 3

void JumpProc(scrollbar, client_data, percent)
Widget scrolibar;
caddr_t client_data;
caddr_t percent ptr; [* float* */
scrollbar Specifies the ID of the scroll bar widget.
client_data Specifies the client data.
percent_ptr Specifies the floating point position of the thumb (0.0 — 1.0).

The XtNjumpProc callback is used to implement smooth scrolling and is called by the
NotifyThumb action. Percent_ptr must be cast to a pointer to float before use; i.e.

float percent = *(float*)percent_ptr;

With the default button bindings, button 2 moves the thumb interactively, and the
XtNjumpProc is called on each new position of the pointer.

Note

An older interface used XtNthumbProc and passed the percentage by value rather
than by reference. This interface is not portable across machine architectures and
therefore is no longer supported but is still implemented for those (non-portable)
applications which used it.

To set the position and length of a Scrollbar thumb, use XtScrollbarSetThumb.
void XtScrollbarSetThumb(w, top, shown)

Widget w;
float top;
float shown;
w Specifies the Scrollbar widget ID.
top Specifies the position of the top of the thumb as a fraction of the length of the
Scrollbar.
shown Specifies the length of the thumb as a fraction of the total length of the
Scrollbar.

XtScrollbarThumb moves the visible thumb to position (0.0 — 1.0) and length (0.0 — 1.0).
Either the top or shown arguments can be specified as —1.0, in which case the current value is
left unchanged. Values greater than 1.0 are truncated to 1.0.

If called from XtNjumpProc, XtScrollbarSetThumb has no effect.

The actions supported by the Scrollbar widget are:

StartScroll(vaiue)
The possible values are Forward, Backward, or Continuous. This must be the
- first action to begin a new movement.

NotifyScroll(value)
The possible values are Proportional or FullLength. If the argument to
StartScroll was Forward or Backward, NotifyScroll executes the XtNscrollProc
callbacks and passes either the position of the pointer if its argument is Propor-
tional or the full length of the scroll bar if its argument is FullLength. If the
argument to StartScroll was Continuous, NotifyScroll returns without executing
any callbacks.

36

X Toolkit Athena Widgets X11, Release 3
EndScroll()
MoveThumb() Repositions the scroll bar thumb to the current pointer location.

NotifyThumb()
Calls the XtNjumpProc callbacks and passes the relative position of the
pointer as a percentage of the scroll bar length.

This must be the last action after a movement is complete.

The default bindings for Scrollbar are:

<Btn1Down>: StartScroll(Forward)

<Btn2Down>; StartScroll(Continuous) MoveThumb() NotifyThumb()
<Btn3Down>: StartScroll(Backward)

<Btn2Motion>: MoveThumb() NotifyThumb()

<BtnUp>: NotifyScroll(Proportional) EndScroll()

Examples of additional bindings a user might wish to specify in a resource file are:

*Scrollbar. Translations: \
~Meta<KeyPress>space:
Meta<KeyPress>space:

StartScroll(Forward) NotifyScroll(FullLength) \n\
StartScroll(Backward) NotifyScroll(Fulll.ength) \n\
EndScroll()

3.5. Viewport Widget

The Viewport widget consists of a frame window, one or two Scrollbars, and an inner window.

The frame window is determined by the viewing size of the data that is to be displayed and the

dimensions to which the Viewport is created. The inner window is the full size of the data that
is to be displayed and is clipped by the frame window. The Viewport widget controls the scrol-
ling of the data directly. No application callbacks are required for scrolling.

When the geometry of the frame window is equal in size to the inner window, or when the data
does not require scrolling, the Viewport widget automatically removes any scroll bars. The for-

ceBars option causes the Viewport widget to display any scroll bar permanently.

The class variable for the Viewport widget is viewportWidgetClass.

When creating a Viewport widget instance, the following resources are retrieved from the argu-
ment list or from the resource database:

Name Type Default Description

XtNallowHoriz Boolean False Flag to allow horizontal scroll bars
XtNallowVert Boolean False Flag to allow vertical scroll bars
XtNbackground Pixel XtDefaultBackground =~ Window background color
XtNbackgroundPixmap Pixmap None Window background pixmap
XtNborderColor Pixel XtDefaultForeground ~ Window border color
XtNborderPixmap Pixmap None Window border pixmap
XtNborderWidth Dimension 1 Width of the border in pixels
XtNdestroyCallback XtCallbackList NULL Callback for XtDestroyWidget
XtNforceBars Boolean False Flag to force display of scroll bars
XtNheight Dimension height of child Height of the widget
XtNmappedWhenManaged Boolean True Whether XtMapWidget is automatic
XtNsensitive Boolean True Whether widget should receive input
XtNtranslations TranslationTable None Event-to-action translations
XtNuseBottom Boolean False Flag to indicate bottom/top bars
XtNuseRight Boolean False Flag to indicate right/left bars
XtNwidth Dimension width of child Width of the widget

XtNx Position 0 x coordinate within parent

XtNy Position 0 y coordinate within parent

37

X Toolkit Athena Widgets X11, Release 3

Name Type Default Description

(
The Viewport widget manages a single child widget. When the size of the child is larger than
the size of the Viewport, the user can interactively move the child within the Viewport by repo-

sitioning the Scrollbars.

The default size of the Viewport before it is realized is the width and/or height of the child.
After it is realized, the viewport will allow its child to grow vertically or horizontally if XtNal-
lowVert or XtNallowHoriz were set, respectively. If the corresponding vertical or horizontal
scrolling were not enabled, the viewport will propagate the geometry request to its own parent
and the child will be allowed to change size only if the (grand) parent allows it. Regardless of
whether or not scrolling was enabled in the corresponding direction, if the child requests a new
size smaller than the viewport size, the change will be allowed only if the parent of the viewport
allows the viewport to shrink to the appropriate dimension.

To create a Viewport widget instance, use XtCreateWidget and specify the class variable
viewportWidgetClass.

To insert a child into a Viewport widget, use XtCreateWidget and specify the widget ID of the
previously created Viewport as the parent.

To remove a child from a Viewport widget, use XtUnmanageChild or XtDestroyWidget and
specify the widget ID of the child.

To delete the inner window, any children, and the frame window, use XtDestroyWidget and
specify the widget ID of the Viewport widget.

3.6. Box Widget

The Box widget provides geometry management of arbitrary widgets in a box of a specified (
dimension. The children are rearranged when resizing events occur either on the Box or when

children are added or deleted. The Box widget always attempts to pack its children as closely

as possible within the geometry allowed by its parent.

Box widgets are commonly used to manage a related set of Command widgets and are fre-
quently called ButtonBox widgets, but the children are not limited to buttons.

The children are arranged on a background that has its own specified dimensions and color.

The class variable for the Box widget is boxWidgetClass.

When creating a Box widget instance, the following resources are retrieved from the argument
list or from the resource database:

Name Type Default Description

XtNbackground Pixel XtDefaultBackground ~ Window background color
XtNbackgroundPixmap Pixmap None Window background pixmap
XtNborderColor Pixel XtDefaultForeground ~ Window border color
XtNborderPixmap Pixmap None Window border pixmap
XtNborderWidth Dimension 1 Border width on button box
XtNdestroyCallback XtCallbackList NULL Callbacks for XtDestroyWidget
XtNhSpace Dimension 4 Pixel distance left and right of children
XtNheight Dimension see below Viewing height of inner window
XtNmappedWhenManaged Boolean True Whether XtMapWidget is automatic
XitNtranslations TranslationTable None Event-to-action translations
XtNvSpace Dimension 4 Pixel distance top and bottom of children
XtNwidth Dimension width of widest child Viewing width of inner window

XtNx Position 0 Widget location x coordinate

XNy Position 0 Widget location y coordinate

38

X Toolkit Athena Widgets X11, Release 3

Name Type Default

Description

The Box widget positions its children in rows with XtNhSpace pixels to the left and right of
each child and XtNvSpace pixels between rows. If the Box width is not specified, the Box
widget uses the width of the widest child. Each time a child is managed or unmanaged, the Box
widget will attempt to reposition the remaining children to compact the box. Children are posi-
tioned in order left to right, top to bottom. When the next child does not fit on the current row,
a new row is started. If a child is wider than the width of the box, the box will request a larger
width from it parent and will begin the layout process from the beginning if a new width is
granted. After positioning all children, the Box widget attempts to shrink its own size to the
minimum dimensions required for the layout.

To create a box widget instance, use XtCreateWidget and specify the class variable
boxWidgetClass.

To add a child to the Box, use XtCreateWidget and specify the widget ID of the Box as the
parent of the new widget.

To remove a child from the Box, use XtUnmanageChild or XtDestroyWidget and specify the
widget ID of the child.

To destroy a Box widget instance, use XtDestroyWidget and specify the widget ID of the Box
widget. All the children of this box are automatically destroyed at the same time.

3.7. VPaned Widget

The VPaned widget manages children in a vertically tiled fashion. A region, called a grip,
appears on the border between each child. When the pointer is positioned on a grip and
pressed, an arrow is displayed that indicates the significant pane that is being resized. While
keeping the pointer button down, the user can move the pointer up or down. This, in turn,
changes the window borders, causing one pane to shrink and some other pane to grow. The
cursor indicates the pane that is of interest to the user; some other pane in the opposite direction
will be chosen to grow or shrink an equal amount. The choice of alternate pane is a function of
the XtNmin, XtNmax and XtNskipAdjust constraints on the other panes. With the default
bindings, button 1 resizes the pane above the selected grip, button 3 resizes the pane below the
selected grip and button 2 repositions the border between two panes only.

The class variable for the VPaned widget is vPanedWidgetClass.

When creating a VPaned widget instance, the following resources are retrieved from the argu-
ment list or from the resource database:

Name Type Default Description
XtNbackground Pixel XtDefaultBackground Window background color
XtNbackgroundPixmap Pixmap None Window background pixmap
XtNbetweenCursor Cursor XC_sb_left_arrow Cursor for changing the boundary
between two panes
XtNborderColor Pixel XtDefaultForeground Window border color
XtNborderPixmap Pixmap None Window border pixmap
XtNborderWidth Dimension 1 Border width (pixels)
XtNdestroyCallback XtCallbackList NULL Callbacks for XtDestroyWidget
XtNforeground Pixel Black Pixel value for the foreground color
XtNgripCursor Cursor XC_sb_v_double_arrow Cursor for grip when not active
XtNgripIndent Position 10 Offset of grip from margin (pixels)
XtNgripTranslations TranslationTable internal button bindings for grip
XtNheight Dimension sum of child heights Height of vPane

39

X Toolkit Athena Widgets X11, Release 3

Name Type Default Description

XtNlowerCursor Cursor XC_sb_down_arrow Cursor for resizing pane below grip
XtNmappedWhenManaged Boolean True Whether XtMapWidget is automatic
XtNrefigureMode Boolean On Whether vPane should adjust children
XtNsensitive Boolean True Whether widget receives input
XtNtranslations TranslationTable None Event-to-action translations
XtNupperCursor Cursor XC_sb_up_arrow Cursor for resizing pane above grip
XtNwidth Dimension width of widest child Width of vPane

XtNx Position 0 X position of vPane

XtNy Position 0 y position of vPane

To create a VPaned widget instance, use XtCreateWidget and specify the class variable
vPanedWidgetClass.

Once the parent frame is created, you then add panes to it. Any type of widget can be paned.

To add a child pane to a VPaned frame, use XtCreateWidget and specify the widget ID of the
VPaned widget as the parent of each new child pane.

During the creation of a child pane, the following resources, by which the VPaned widget con-
trols the placement of the child, can be specified in the argument list or retrieved from the
resource database:

Name Type Default Description

XtNallowResize Boolean False If False, ignore child resize réquesrs
XtNmax : Dimension unlimited Maximum height for pane

XtNmin Dimension 1 Minimum height for pane
XtNskipAdjust Boolean False True if VPaned widget should not

automatically resize pane

To delete a pane from a vertically paned window frame, use XtUnmanageWidget or XtDes-
troyWidget and specify the widget ID of the child pane.

To enable or disable a child’s request for pane resizing, use XtPanedAllowResize.
void XtPanedAllowResize(w, allow_resize)
Widget w;
Boolean allow_resize;
w Specifies the widget ID of the child widget pane.
allow_resize Enables or disables a pane widget for resizing requests.

If allow_resize is True, VPane allows geometry requests from the child to change the pane’s
height. If allow_resize is False, VPane ignores geometry requests from the child to change the
pane’s height. The default state is True before the VPane is realized and False after it is real-
ized. This procedure is equivalent to changing the XtNallowResize resource for the child.

To change the minimum and maximum height settings for a pane, use XtPanedSetMinMax.

void XtPanedSetMinMax(w, min, max)
Widget w;
int min, max;

w Specifies the widget ID of the child widget pane.

40

X Toolkit Athena Widgets X11, Release 3

min New minimum height of the child, expressed in pixels.
max New maximum height of the child, expressed in pixels.
This procedure is equivalent to setting the XtNmin and XtNmax resources for the child.

To enable or disable automatic recalculation of pane sizes and positions, use
XtPanedSetRefigureMode.

void XtPanedSetRefigureMode(w, mode)
Widget w;
Boolean mode;

w Specifies the widget ID of the VPaned widget.
mode Enables or disables refiguration.

You should set the mode to FALSE if you add multiple panes to or remove multiple panes from
the parent frame after it has been realized, unless you can arrange to manage all the panes at
once using XtManageChildren. After all the panes are added, set the mode to TRUE. This
avoids unnecessary geometry calculations and ‘‘window dancing’’.

To delete an entire VPaned widget and all associated data structures, use XtDestroyWidget and
specify the widget ID of the VPaned widget. All the children of the VPaned widget are
automatically destroyed at the same time.

3.8. Form Widget

The Form widget can contain an arbitrary number of children or subwidgets. The Form pro-
vides geometry management for its children, which allows individual control of the position of
each child. Any combination of children can be added to a Form. The initial positions of the
children may be computed relative to the positions of other children. When the Form is resized,
it computes new positions and sizes for its children. This computation is based upon informa-
tion provided when a child is added to the Form.

The class variable for a Form widget is formWidgetClass.

When creating a Form widget instance, the following resources are retrieved from the argument
list or from the resource database:

Name Type Default Description
XtNbackground Pixel XtDefaultBackground ~ Window background color
XtNbackgroundPixmap Pixmap None Window background pixmap
XtNborderColor Pixel XtDefaultForeground ~ Window border color
XtNborderPixmap Pixmap None Window border pixmap
XtNborderWidth Dimension 1 Width of border in pixels
XtNdefaultDistance int 4 Default value for XtNhorizDistance
and XtNvertDistance
XtNdestroyCallback XtCallbackList NULL Callbacks for XtDestroyWidget
XtNheight Dimension computed at realize Height of form
XtNmappedWhenManaged Boolean True Whether XtMapWidget is automatic
XtNsensitive Boolean True Whether widget receives input
XtNtranslations TranslationTable None Event-to-action translations
XtNwidth Dimension computed at realize Width of form
XtNx Position NULL x position of form
XNy Position NULL y position of form

To create a Form widget instance, use XtCreateWidget and specify the class variable
formWidgetClass.

41

X Toolkit Athena Widgets X11, Release 3

To add a new child to a Form, use XtCreateWidget and specify the widget ID of the previ-
ously created Form as the parent of the child.

When creating children that are to be added to a Form, the following additional resources are
retrieved from the argument list or from the resource database:

Name Type Default Description

XtNbottom XtEdgeType XtRubber See text

XtNfromHoriz Widget NULL See text

XtNfromVert Widget NULL See text
XtNhorizDistance int XtdefaultDistance See text

XtNleft XtEdgeType XtRubber See text

XtNresizable Boolean FALSE TRUE if allowed to resize
XtNright XtEdgeType XtRubber See text

XtNtop XtEdgeType XtRubber See text

XtNvertDistance int XtdefaultDistance See text

When a widget is added to a Form, constraints can be specified to the Form to indicate where
the child should be positioned within the Form.

The resources XtNhorizDistance and XtNfromHoriz let the widget position itself a specified
number of pixels horizontally away from another widget in the form. As an example, XtNhor-
izDistance could equal 10 and XtNfromHoriz could be the widget ID of another widget in the
Form. The new widget will be placed 10 pixels to the right of the widget defined in
XtNfromHoriz. If XtNfromHoriz equals NULL, then XtNhorizDistance is measured from
the left edge of the Form.

Similarly, the resources XtNvertDistance and XtNfromVert let the widget position itself a
specified number of pixels vertically away from another widget in the Form. If XtNfromVert
equals NULL, then XtNvertDistance is measured from the top of the Form. Form provides a
StringToWidget conversion procedure. Using this procedure, the resource database may be used
to specify the XtNfromHoriz and XtNfromVert resources by widget name rather than widget
id. The string value must be the name of a child of the same Form widget parent.

The XtNtop, XtNbottom, XtNleft, and XtNright resources tell the Form where to position
the child when the Form is resized. XtEdgeType is defined in <X11/Form.h> and is one of
XtChainTop, XtChainBottom, XtChainLeft, XtChainRight or XtRubber.

The values XtChainTop, XtChainBottom, XtChainLeft, and XtChainRight specify that a
constant distance from an edge of the child to the top, bottom, left, and right edges respectively
of the Form is to be maintained. The value XtRubber specifies that a proportional distance
from the edge of the child to the left or top edge of the Form is to be maintained when the form
is resized. The proportion is determined from the initial position of the child and the initial size
of the Form. Form provides a StringToEdgeType conversion procedure to allow the resize con-
straints to be easily specified in a resource file.

The default width of the Form is the minimum width needed to enclose the children after com-
puting their initial layout, with a margin of XtNdefaultDistance at the right and bottom edges.
If a width and height is assigned to the Form that is too small for the layout, the children will
be clipped by the right and bottom edges of the Form.

To remove a child from a Form, use XtUnmanageChild or XtDestroyWidget and specify the
widget ID of the child widget.

To destroy a Form widget instance, use XtDestroyWidget and specify the widget ID of the
Form. All children of the Form are automatically destroyed at the same time.

42

X Toolkit Athena Widgets X11, Release 3

When a new child becomes managed or an old child unmanaged, Form will recalculate the posi-
tions of its children according to the values of the XtNhorizDistance, XtNfromHoriz,
XtNvertDistance and XtNfromVert constraints at the time the change is made. No re-layout
is performed when a child makes a geometry request.

To force or defer a re-layout of the Form, use XtFormDoLayout.

void XtFormDoLayout(w, do_layout)
Widget w;
Boolean do_layout,

w Specifies the Form widget.
do_layout Enables (if True) or disables (if False) layout of the Form widget.

When making several changes to the children of a Form widget after the Form has been real-
ized, it is a good idea to disable re-layout until all changes have been made, then allow the lay-
out. Form increments an internal count each time XtFormDoLayout is called with do_layout
False and decrements the count when do_layout is True. When the count reaches 0, Form per-
forms a re-layout.

3.9. Dialog Widget

The Dialog widget implements a commonly used interaction semantic to prompt for auxiliary
input from a user. For example, you can use a Dialog widget when an application requires a
small piece of information, such as a file name, from the user. A Dialog widget is simply a spe-
cial case of the Form widget that provides a convenient way to create a ‘ ‘preconfigured form”’.
The typical Dialog widget contains three areas. The first line contains a description of the func-
tion of the Dialog widget, for example, the string ‘‘Filename:’’. The second line contains an
area into which the user types input. The third line can contain buttons that let the user confirm
or cancel the Dialog input.

The class variable for the Dialog widget is dialogWidgetClass.

When creating a Dialog widget instance, the following resources are retrieved from the argu-
ment list or from the resource database:

Name Type Default Description

XtNbackground Pixel XtDefaultBackground ~ Window background color
XtNbackgroundPixmap Pixmap None Window background pixmap
XtNborderColor Pixel XtDefaultForeground ~ Window border color
XtNborderPixmap Pixmap None Window border pixmap
XtNborderWidth Dimension 1 Width of border in pixels
XtNdestroyCallback XtCallbackList NULL Callbacks for XtDestroyWidget
XtNheight Dimension computed at create Height of dialog

XtNlabel String Label name String to be displayed
XtNmappedWhenManaged Boolean True Whether XtMapWidget is automatic
XtNmaximumLength int 256 Maximum number of input characters
XtNsensitive Boolean True Whether widget receives input
XtNtranslations TranslationTable None Event-to-action translations
XtNvalue char* NULL Pointer to default string

XtNwidth Dimension computed at create Width of dialog

XtNx Position NULL x position of dialog

XtNy Position NULL y position of dialog

The instance name of the label widget within the Dialog widget is ‘‘label’’, and the instance
name of the Dialog value widget is *‘value’’.

43

X Toolkit Athena Widgets

X11, Release 3

To create a Dialog widget instance, you can use XtCreateWidget and specify the class variable

dialogWidgetClass.

To add a child button to the Dialog box, use XtCreateWidget and specify widget ID of the
previously created Dialog box as the parent of each child. When creating buttons, you do not
have to specify form constraints. The Dialog box will automatically add the constraints.

To return the character string in the text field, use XtDialogGetValueString. .
char *XtDialogGetValueString(w)

Widget w;

w Specifies the widget ID of the Dialog box.
If a string was specified in the XtNvalue resource, Dialog will store the input directly into the

string.

To remove a child button from the Dialog box, use XtUnmanageChild or XtDestroyWidget
and specify the widget ID of the child.

To destroy a Dialog widget instance, use XtDestroyWidget and specify the widget ID of the
Dialog widget. All children of the Dialog are automatically destroyed at the same time.

3.10. List Widget

The List widget is a rectangle that contains a list of strings formatted into rows and columns. -
When one of the strings is selected, it is highlighted, and an application callback routine is

invoked.

The class variable for the List widget is listWidgetClass.

When creating a List widget instance, the following resources are retrieved from the argument
list or from the resource database:

Name Type Default Description
XtNbackground Pixel XtDefaultBackground ~ Window background color
XtNbackgroundPixmap Pixmap None Window background pixmap
XtNborderColor Pixel XtDefaultForeground =~ Window border color
XtNborderPixmap Pixmap None Window border pixmap
XtNborderWidth Dimension 1 Width of border
XtNcallback XtCallbackList NULL Selection callback function
XtNcolumnSpacing Dimension 6 Space between columns in the list
XtNcursor Cursor left_ptr Pointer cursor
XtNdefaultColumns int 2 Number of columns to use
XtNdestroyCallback XtCallbackList NULL Callbacks for XtDestroyWidget
XtNfont XFontStruct* XtDefaultFont Font for list text
XtNforceColumns Boolean False Force the use of XtNdefaultColumns
XtNforeground Pixel XtDefaultForeground - Foreground (text) color
XtNheight Dimension Contains list exactly Height of widget
XtNinsensitiveBorder Pixmap Gray Border when not sensitive
XtNinternalHeight Dimension 2 Spacing between list and widget edges
XtNinternalWidth Dimension 4 Spacing between list and widget edges
XtNlist String * List name An array of strings that is the list
XtNlongest int Longest item Length of the longest list item in pix-
els
XtNmappedWhenManaged Boolean True Whether XtMapWidget is automatic
XtNnumberStrings int Number of strings Number of items in the list
XtNpasteBuffer Boolean False Copy the selected item to cut buffer 0

44

X Toolkit Athena Widgets

X11, Release 3

Name Type Default Description

XtNrowSpacing Dimension 4 Space between rows in the list
XtNsensitive Boolean True Whether widget receives input
XtNtranslations TranslationTable None Event-to-action translations
XtNverticalList Boolean False Specify the layout of list items
XtNwidth Dimension Contains list exactly Width of widget

XtNx Position 0 Widget x coordinate

XtNy Position 0 Widget y coordinate

The new resources associated with the List widget are:

XtNcolumnSpacing
XtNrowSpacing

XtNdefaultColumns

XtNforceColumns

XtNheight

XtNinternalHeight

XtNinternalWidth

XtNlist

XtNlongest

XtNnumberStrings

XtNpasteBuffer

XtNsensitive

Specify the amount of space between each of the rows and
columns in the list.

Specifies the default number of columns, which is used when
neither the width nor the height of the List widget is specified
or when XtNforceColumns is True.

Specifies that the default number of columns is to be used no
matter what the current size of the List widget is.

Specifies the height of the List widget. The default value is the
minimum height that will contain the entire list with the spacing
values specified. If the specified height is larger than the
minimum, the list is put in the upper left comer.

Represents a margin, in pixels, between the top and bottom of
the list and the edges of the List widget.

Represents a margin, in pixels, between the left and right edges
of the list and the edges of the List widget. :

Specifies the array of text strings that is to displayed in the List
widget. If the default for XtNnumberStrings is used, the list
must be null-terminated. If a value is not spccilied for the list,
the number of strings is set to 1, and the namc of the widget is
used as the list.

Specifies the length of the longest string in the current list in
pixels. If the client knows the length, it should specify it. The
List widget will compute a default length by searching through
the list.

Specifies the number of strings in the current list. If a value is
not specified, the list must be null-terminated.

If this is True, then the value of the string selected will be put
into X cut buffer 0.

If set to False, the List widget will change its window border
to XtNinsensitiveBorder and display all items in the list as
stippled strings. While the List widget is insensitive, no item in

45

X Toolkit Athena Widgets ' X11, Release 3

the list can be selected or highlighted.

XtNverticalList If this is True, the elements in the list are arranged vertically;
if False, the elements are arranged horizontally.

XtNwidth Specifies the width of the List widget. The default value is the
minimum width that will contain the entire list with the spacing
values specified. If the specified width is larger than the
minimum, the list is put in the upper left corner.

The List widget has three predefined actions: Set, Unset, and Notify. Set and Unset allow
switching the foreground and background colors for the current list item. Notify allows pro-
cessing application callbacks.

The following is the default translation table used by the List Widget:
<Btm1Down>,<Btn1Up>: Set() Notify()

To create a List widget instance, use XtCreateWidget and specify the class variable
listWidgetClass.

To destroy a List widget instance, use XtDestroyWidget and specify the widget ID of the List
widget.

The List widget supports two callback lists:

. XtNdestroyCallback

o XtNcallback

The notify action executes the callbacks on the the XtNcallback list.

The call_data argument passed to callbacks on the XtNcallback list is a pointer to an XtLis-
tReturnStruct structure, defined in <X11/List.h>:

typedef struct _XtListReturnStruct {
String string; /* string shown in the list. */
int index; /* index of the item selected. */
} XtListReturnStruct;

3.10.1. Changing the List
To change the list that is displayed, use XtListChange.
void XtListChange(w, list, nitems, longest, resize)
Widget w;
String * list;
int nitems, longest,
Boolean resize;

w Specifies the widget ID.

list Specifies the new list for the list widget to display.

nitems Specifies the number of items in the list. If a value less than 1 is specified, list
must be null terminated.

longest Specifies the length of the longest item in the list in pixels. If a value less than

1 is specified, the List widget calculates the value for you.

resize Specifies a Boolean value that indicates whether the List widget should try to
resize itself (True) or not (False) after making the change. Note that the

46

(

X Toolkit Athena Widgets X11, Release 3

constraints of the parent of this widget are always enforced, regardless of the
value specified.

XtListChange changes the list of strings that the List widget is to display.

3.10.2. Highlighting an Item
To highlight an item in the list use, XtListHighlight
void XtListHighlight(w, item);

Widget w;
int item;
w Specifies the widget ID.
item Specifies the index into the current list that indicates the item to be highlighted.

Only one item can be highlighted at a time. If an item is already highlighted when
XtListHighlight is called, the highlighted item is immediately unhighlighted and the new item
is highlighted.

3.10.3. Unhighlighting an Item
To unhighlight the currently highlighted item in the list, use XtListUnhighlight
void XtListUnhightlight(w);

Widget w;

w Specifies the widget ID.

3.10.4. Retrieving the Currently Selected Item
To retrieve an item in the list use, XtListShowCurrent
XtListReturnStruct *XtListShowCurrent(w);
Widget w;
w Specifies the widget ID.

The XtListShowCurrent function returns a pointer to an XtListReturnStruct structure, con-
tains the currently highlighted item. If the value of the index member is XT_LIST_NONE, the
string member is undefined, which indicates that no item is currently selected.

3.11. Grip Widget

The Grip widget provides a small region in which user input events (such as ButtonPressor
ButtonRelease) may be handled. The most common use for the grip is as an attachment point
for visually repositioning an object, such as the pane border in a VPaned widget.

The class variable for the Grip widget is gripWidgetClass.

When creating a Grip widget instance, the following resources are retrieved from the argument
list or from the resource database:

Name Type Default Description

XtNborderColor Pixel XtDefaultForeground ~ Window border color
XtNborderPixmap Pixmap None Window border pixmap
XtNborderWidth Dimension 0 Width of the border in pixels
XtNcallback XtCallbackList None Action routine

XtNcursor Cursor None Cursor for the grip
XtNdestroyCallback XtCallbackList NULL Callback for XtDestroyWidget

47

X Toolkit Athena Widgets X11, Release 3

Name Type Default Description

XtNforeground Pixel XtDefaultForeground =~ Window background color
XtNheight Dimension 8 Height of the widget
XtNmappedWhenManaged Boolean True Whether XtMapWidget is automatic
XtNsensitive Boolean True Whether widget should receive input
XtNtranslations TranslationTable None Event-to-action translations
XtNwidth Dimension 8 Width of the widget

XtNx Position 0 . x coordinate within parent

XtNy Position 0 y coordinate within parent

Note that the Grip widget displays its region with the foreground pixel only.

The Grip widget does not declare any default event translation bindings, but it does declare a
single action routine named GripAction in its action table. The client specifies an arbitrary
event translation table giving parameters to the GripAction routine.

The GripAction action executes the callbacks on the XtNcallback list, passing as call_data a
pointer to a GripCallData structure, defined in <X11/Grip.h>

typedef struct _GripCallData {
XEvent *event;
String *params;
Cardinal num_params;

} GripCallDataRec, *GripCallData;

In this structure, the event field is a pointer to the input event that triggered the action, and
params and num_params give the string parameters specified in the translation table for the par-
ticular event binding.

The following is an example of a GripAction translation table:

<Btn1Down>: GripAction(press)
<Btn1Motion>: GripAction(move)
<Btn1Up>: GripAction(release)

For a complete description of the format of action routines, see the X Toolkit Intrinsics — C
Language Interface.

To create a Grip widget instance, use XtCreateWidget and specify the class variable
gripWidgetClass.

To destroy a Command button widget instance, use XtDestroyWidget and specify the ID of the
Grip widget.

3.12. Toggle Widget

The Toggle widget is a rectanglular button that contains a text label or pixmap. This widget
maintains a Boolean state (e.g. True/False or On/Off) and changes state whenever it is selected.
When the pointer cursor is on the Toggle it highlights to indicate that the Toggle is available for
selection. When the pointer button is pressed the Toggle is selected. This causes the state of the
Toggle to reverse and its callback routine to be invoked.

Toggle buttons may also be part of a radio group. A radio group is a list of Toggle buttons in
which only one Toggle may be set at any time. A radio group is identified by giving the widget
id of any one of its members. There is a convenience routine, XtToggleGetCurrent that will
return information about the Toggle in the radio group that is currently set. More information
on radio groups is presented below.

48

X Toolkit Athena Widgets

The class variable for the Toggle widget is toggleWidgetClass.

X11, Release 3

When creating a Toggle widget instance, the following resources are retrieved from the argu-
ment list or from the resource database:

Name Type Default Description
XtNbackground Pixel XtDefaultBackground ~ Window background color
XtNbackgroundPixmap Pixmap None Window background pixmap
XtNbitmap Pixmap None Pixmap to display in place of the label
XtNborderColor Pixel XtDefaultForeground ~ Window border color
XtNborderPixmap Pixmap None Window border pixmap
XtNborderWidth Dimension 1 Width of button border
XtNcallback XtCallbackList NULL Callback for button select
XtNcursor Cursor None Pointer cursor
XtNdestroyCallback XtCallbackList NULL Callbacks for XtDestroyWidget
XtNfont XFontStruct* XtDefaultFont Label font
XtNforeground Pixel XtDefaultForeground Foreground color
XtNheight Dimension Text height Button height
XtNhighlightThickness Dimension 2 Width of border to be highlighted
XtNinsensitiveBorder Pixmap Gray Border when not sensitive
XtNinternalHeight Dimension 2 Internal border height for highlighting
XtNinternalWidth Dimension 4 Internal border width for highlighting
XtNjustify Xtlustify XtJustifyCenter Type of text alignment
XtNlabel String Button name Button label
XtNmappedWhenManaged Boolean True Whether XtMapWidget is automatic
XtNradioData Pointer Name of widget Value that will be returned by XtToggleGetCurrent
XtNradioGroup Widget NULL Any other widget in the Toggle’s radio group
XtNresize Boolean True Whether to auto-resize in SetValues
XtNsensitive Boolean True Whether widget receives input
XtNstate Boolean Off State of the Toggle widget
XtNtranslations TranslationTable see below Event-to-action translations
XtNwidth Dimension Text width Button width
XtNx Position 0 x coordinate
XtNy Position 0 y coordinate
XtNbitmap Specifies a bitmap to display in place of the text label [See the
description of this resource in the Label widget for further
details].
XtNcallback Specifies the callback list of functions to be called when the
Toggle widget changes state. This usually occurs when the
Toggle widget’s notify action is called, but when a toggle is in
a radio group it may change state at other times. The places
where this can occur include: XtToggleSetCurrent, XtTog-
gleUnsetCurrent, XtToggleChangeRadioGroup, the set
action, XtSetValues, and XtCreateWidget.
XtNheight Specifies the height of the Toggle widget. The default value is

the minimum height that will contain:

XtNinternalheight + height of XtNlabel + XtNinternalHeight
If the specified height is larger than the minimum, the label
string is centered vertically.

49

X Toolkit Athena Widgets

XtNinternalHeight

XtNinternalWidth

XtNjustify

XtNlabel

XtNradioData

XtNradioGroup

XtNresize

XtNsensitive

XtNstate

XtNwidth

X11, Release 3

Represents the distance in pixels between the top and bottom of
the label text or bitmap and the horizontal edges of the Toggle
widget. HighlightThickness can be larger or smaller than this
value.

Represents the distance in pixels between the ends of the label
text or bitmap and the vertical edges of the Toggle widget.
HighlightThickness can be larger or smaller than this value.

Specifies left, center, or right alignment of the label string
within the Toggle widget. If it is specified within an ArgList,
one of the values XtJustifyLeft, XtJustifyCenter, or XtJus-
tifyRight can be specified. In a resource of type ‘‘string’’, one
of the values ‘‘left”’, ‘‘center’’, or ‘‘right’’ can be specified.

Specifies the text string that is to be displayed in the Toggle
widget if no bitmap is specified. The default is the widget
name of the Toggle widget.

Specifies the data that will be returned from a call to XtTog-
gleGetCurrent if this widget is the one that is set in a radio
group. This data is also used to identify the toggle that will be
set by a call to XtToggleSetCurrent. The value NULL is
returned by XtToggleGetCurrent if no widget is set in a radio
group. Programmers not specify NULL as XtNradioData, if
they intend to use XtToggleGetCurrent

Specifies another Toggle widget which is in the radio group to
which this Toggle widget should be added. A radio group is a
group of Toggle widgets, only one of which may be "set" at a
time. If this value is NULL (the default) then the Toggle will
not be part of any radio group and can change state without
effecting any other Toggle widgets. If the widget specified in
this resource is not already in a radio group then a new radio
group will be created containing these two Toggle widgets. No
Toggle widget can be in multiple radio groups.

Specifies whether the Toggle widget should attempt to resize to
its preferred dimensions whenever XtSetValues is called for it.
The default is True.

If set to False, the Toggle widget will change its window
border to XtNinsensitiveBorder and will stipple the label
string.

Specifies whether the Toggle widget is set (True/On) or unset
(False/Off).

Specifies the width of the Toggle widget. The default value is
the minimum width that will contain:

XtNinternalwidth + width of XtNlabel + XtNinternalWidth
If the width is larger or smaller than the minimum, XtNjustify

50

X Toolkit Athena Widgets X11, Release 3

determines how the label string is aligned.

The Toggle widget supports the following actions:

. Switching the button between the foreground and background colors with set, unset and
toggle

o Processing application callbacks with notify.
. Switching the internal border between highlighted and unhighlighted states with highlight

and unhighlight
The following are the default translation bindings that are used by the Toggle widget:
<EnterWindow>: highlight(Always)
<LeaveWindow>: unhighlight()

<Btn1Down>,<Bm1Up>: toggle() notify()

With these bindings, the user can cancel the action before releasing the button by moving the
pointer out of the Toggle widget.

3.12.1. Toggle Actions
The full list of actions supported by the Toggle widget is:

highlight(value) Displays the internal highlight border in the color (XtNforeground or
XtNbackground) that contrasts with the interior color of the Toggle
widget. This action procedure takes one of the following conditions:
WhenUnset and Always. If no argument is passed then WhenUnset is
assumed, this maintains backwards compatibility.

unhighlight() Displays the internal highlight border in the color (XtNforeground or
XtNbackground) that matches the interior color of the Toggle widget.
set() Enters the "set" state, in which notify is possible and displays the inte-

rior of the button in the XtNforeground color. The label is displayed
in the XtNbackground color. If the widget to be set is in a radio
group then this procedure may unset another widget, which will cause
all routines on its callback list to be invoked. Since only one toggle in
a radio group may be set at a time the callback routines for the toggle
that is to be unset will be called before the one that is to be set.

unset() Cancels the "set" state and displays the interior of the button in the
XtNbackground color. The label is displayed in the XtNforeground
color.

toggle() Changes the current state of the Toggle widget, causing to be set if it

was previously unset, and unset if it was previously set. If the widget is
to be set, and is in a radio group then this procedure may unset another
widget, which will cause all routines on its callback list to be invoked.
Since only one toggle in a radio group may be set at a time the callback
routines for the toggle that is to be unset will be called before the one
that is to be set.

reset() Cancels any set or highlight and displays the interior of the button in
the XtNbackground color, with the label displayed in the XtNfore-
ground color.

notify() Executes the XtNcallback callback list. The call_data contains a
Boolean which is the current state of the widget.

51

X Toolkit Athena Widgets X11, Release 3

To create a Toggle widget instance, use XtCreateWidget and specify the class variable tog-
gleWidgetClass.

To destroy a Toggle widget instance, use XtDestroyWidget and specify the widget ID of the
Toggle widget.

The Toggle widget supports two callbacks: XtNdestroyCallback and XtNcallback. The
notify action executes the callbacks on the the XtNcallback list.

Changing the Toggle’s Radio Group.

To enable an application to change the Toggle’s current radio group, add the Toggle to a radio
group, or remove the Toggle from a radio group, use XtToggleChangeRadioGroup.

void XtToggleChangeRadioGroup(w, radio_group)
Widget w, radio_group;,

w Specifies the widget ID of the Toggle widget.

radio_group This should be any Toggle on the new radio group. If NULL then the Toggle
will be removed from any radio group of which it is a member.

If a toggle is already in the set state in the new radio group, and the toggle to be added is also
set then the previously set toggle in the new radio group is unset and its callback procedures are
invoked.

Finding the Currently selected Toggle in a radio group of Toggles

To find the currently selected Toggle in a radio group of Toggle widgets use XtTog-
gleGetCurrent.

caddr_t XtToggleGetCurrent(radio_group);
Widget radio_group;

radio_group Specifies the widget ID of any Toggle in the radio group.

The value returned by this function is the data pointed to by XtNradioData, for the Toggle in
the radio group that is currently set. The default value for XtNradioData is the name of that
Toggle widget. If no Toggle is set in the radio group specified then NULL is returned.

Changing the Toggle that is set in a radio group.
To change the Toggle that is currently set in a radio group use XtToggleSetCurrent.

void XtToggleSetCurrent(radio_group, radio_data);
Widget radio_group;
caddr_t radio_data;

radio_group Specifies the widget ID of any Toggle in the radio group.

radio_data Specifies the XtNradioData identifying the Toggle that should be set in the
radio group specified by the radio_group argument.

XtToggleSetCurrent locates the Toggle widget to be set by matching radio_data against the
XtNradioData for each Toggle in the radio group. If none match XtToggleSetCurrent returns
without making any changes. If more than one Toggle matches, XtToggleSetCurrent will
choose a Toggle to set arbitrarily. If this causes any Toggle widgets to change state all routines
in their callback lists will be invoked. Since only one toggle in a radio group may be set at a
time the callback routines for a Toggle that is to be unset will be called before the one that is to
be set.

52

X Toolkit Athena Widgets X11, Release 3

Unsetting all Toggles in a radio group.
To unset all Toggle widgets in a radio group use XtToggleUnsetCurrent.
void XtToggleUnsetCurrent(radio group);
Widget radio_group;
radio_group Specifies the widget ID of any Toggle in the radio group.
If this causes a Toggle widget to change state all routines on its callback list will be invoked.

3.13. Template Widget - Creating A Custom Widget

Although the task of creating a new widget may at first appear a little daunting, there is a basic
simple pattern that all widgets follow. The Athena widget library contains three files that are
intended to assist in writing a custom widget.

Reasons for wishing to write a custom widget include:

¢ Convenient access to resource management procedures to obtain fonts, colors, etc., even if
user customization is not desired.

e Convenient access to user input dispatch and translation management procedures.
e Access to callback mechanism for building higher-level application libraries.

* Customizing the interface or behavior of an existing widget to suit a special application
need.

e Desire to allow user customization of resources such as fonts, colors, etc., or to allow con-
venient re-binding of keys and buttons to internal functions.

e Converting a non-Toolkit application to use the Toolkit.

In each of these cases, the operation needed to create a new widget is to "subclass” an existing
one. If the desired semantics of the new widget are similar to an existing one, then the imple-
mentation of the existing widget should be examined to see how much work would be required
to create a subclass that will then be able to share the existing class methods. Much time will
be saved in writing the new widget if an existing widget class Expose, Resize and/or
GeometryManager method can be shared by the subclass.

Note that some trivial uses of a ‘‘bare-bones’’ widget may be achieved by simply creating an
instance of the Core widget. The class variable to use when creating a Core widget is
widgetClass. The geometry of the Core widget is determined entirely by the parent widget.

It is very often the case than an application will have a special need for a certain set of functions
and that many copies of these functions will be needed. For example, when converting an older
application to use the Toolkit, it may be desireable to have a "Window Widget" class that might
have the following semantics:

e Allocate 2 drawing colors in addition to a background color.

e Allocate a text font.

e Execute an application-supplied function to handle exposure events.
e Execute an application-supplied function to handle user input events.

It is obvious that a completely general-purpose WindowWidgetClass could be constructed that
would export all class methods as callbacks lists, but such a widget would be very large and
would have to choose some arbitrary number of resources such as colors to allocate. An appli-
cation that used many instances of the general-purpose widget would therefore un-necessarily
waste many resources.

53

X Toolkit Athena Widgets X11, Release 3

In this section, an outline will be given of the procedure to follow to construct a special-purpose
widget to address the items listed above. The reader should refer to the appropriate sections of
the X Toolkit Intrinsics — C Language Interface for complete details of the material outlined
here. Section 1.4 of the Intrinsics should be read in conjunction with this section.

All Athena widgets have three separate files associated with them:

* A "public" header file containing declarations needed by applications programmers

e A "private" header file containing additional declarations needed by the widget and any sub-
classes

* A source code file containing the implementation of the widget

This separation of functions into three files is suggested for all widgets, but nothing in the
Toolkit actually requires this format. In particular, a private widget created for a single applica-
tion may easily combine the "public" and "private" header files into a single file, or merge the
contents into another application header file. Similarly, the widget implementation can be
merged into other application code.

In the following example, the public header file <X11/Template.h>, the private header file
<X11/TemplateP.h> and the source code file <X11/Template.c> will be modified to produce
the "WindowWidget" described above. In each case, the files have been designed so that a glo-
bal string replacement of ‘‘Template’’ and ‘‘template’’ with the name of your new widget, using
the appropriate case, can be done.

3.13.1. Public Header File

The public header file contains declarations that will be required by any application module that
needs to refer to the widget; whether to create an instance of the class, to perform an XtSet-
Values operation, or to call a public routine implemented by the widget class.

The contents of the Template public header file, <X11/Template.h>, are:

#include <X11/copyright.h>

/¥ XConsortium: Template.h,v 1.2 88/10/25 17:22:09 swick Exp $ */
/* Copyright Massachusetts Institute of Technology 1987, 1988 */

#ifndef _Template_h
#define _Template_h

/**
*

* Template widget
*

stttk sk ke ok s ke skttt el ekt ool ook ok o stk ok s koo ok ook

/* Resources:

Name Class RepType Default Value
background Background Pixel XtDefaultBackground
border BorderColor Pixel XtDefaultForeground
borderWidth BorderWidth Dimension 1

destroyCallback Callback Pointer NULL

height Height Dimension 0
mappedWhenManaged MappedWhenManaged Boolean True

sensitive Sensitive Boolean True

width Width Dimension 0

X Position Position 0

54

X Toolkit Athena Widgets X11, Release 3

y Position Position 0

*/

/* define any special resource names here that are not in <X11/StringDefs.h> */
#define XtNtemplateResource "templateResource"

#define XtCTemplateResource "TemplateResource"

/* declare specific TemplateWidget class and instance datatypes */

typedef struct _TemplateClassRec* TemplateWidgetClass;
typedef struct _TemplateRec* TemplateWidget;

/* declare the class constant */
extern WidgetClass templateWidgetClass;

#endif _Template_h

You will notice that most of this file is documentation. The crucial parts are the last 8 lines
where macros for any private resource names and classes are defined and where the widget class
datatypes and class record pointer are declared.

For the "WindowWidget", we want 2 drawing colors, a callback list for user input and an
XtNexposeCallback callback list, and we will declare three convenience procedures, so we
need to add

/* Resources:

callb.;ck Callback Callback NULL
drawingColorl Color Pixel XtDefaultForeground
drawingColor2 Color Pixel XtDefaultForeground
exposeCallback Callback Callback NULL
font Font XFontStruct* XtDefaultFont
*/

#define XtNdrawingColorl "drawingColor1"

#define XtNdrawingColor2 "drawingColor2"

#define XtNexposeCallback "exposeCallback"

extern Pixel WindowColorl(/* Widget */);
extern Pixel WindowColor2(/* Widget */);
extern Font WindowFont(/* Widget */);

Note that we have chosen to call the input callback list by the generic name, XtNcallback,
rather than a specific name. If widgets that define a single user-input action all choose the same
resource name then there is greater possibility for an application to switch between widgets of
different types.

3.13.2. Private Header File

The private header file contains the complete declaration of the class and instance structures for
the widget and any additional private data that will be required by anticipated subclasses of the
widget. Information in the private header file is normally hidden from the application and is
designed to be accessed only through other public procedures; e.g. XtSetValues.

55

X Toolkit Athena Widgets X11, Release 3

The contents of the Template private header file, <X11/TemplateP.h>, are:

#include <X11/copyright.h>

/* XConsortium: TemplateP.h,v 1.2 88/10/25 17:31:47 swick Exp $ */
/* Copyright Massachusetts Institute of Technology 1987, 1988 */

#ifndef _TemplateP_h
#define _TemplateP_h

#include "Template.h"
[* include superclass private header file */
#include <X11/CoreP.h>

/* define unique representation types not found in <X11/StringDefs.h> */
#define XtRTemplateResource "TemplateResource"

typedef struct {
int empty;
} TemplateClassPart;

typedef struct _TemplateClassRec {
CoreClassPart core_class;
TemplateClassPart template_class;
} TemplateClassRec;

extern TemplateClassRec templateClassRec;

typedef struct {
/* resources */
char* resource;
[* private state */
} TemplatePart;

typedef struct _TemplateRec {
CorePart core;
TemplatePart template;
} TemplateRec;

#endif _TemplateP_h

The private header file includes the private header file of its superclass, thereby exposing the
entire internal structure of the widget. It may not always be advantageous to do this; your own
project development style will dictate the appropriate level of detail to expose in each module.

The "WindowWidget" needs to declare two fields in its instance structure to hold the drawing
colors, a resource field for the font and a field for the expose and user input callback lists:

typedef struct {
/* resources */
Pixel color_1;
Pixel color_2;
XFontStruct* font;
XtCallbackList expose_callback;
XtCallbackList input_callback;
[* private state */
/* (none) */

} WindowPart;

56

X Toolkit Athena Widgets

3.13.3. Widget Source File

The source code file implements the widget class itself. The unique part of this file is the
declaration and initialization of the widget class record structure and the declaration of all
resources and action routines added by the widget class.

#include <X11/copyright.h>

The contents of the Template implementation file, <X11/Template.c>, are:

/* XConsortium: Template.c,v 1.2 88/10/25 17:40:25 swick Exp $ */
/* Copyright Massachusetts Institute of Technology 1987, 1988 */

#include <X11/IntrinsicP.h>
#include <X11/StringDefs.h>

#include "TemplateP.h"

static XtResource resources[] = {
#define offset(field) XtOffset(TemplateWidget, template.field)

/* {name, class, type, size, offset, default_type, default_addr}, */
{ XtNtemplateResource, XtCTemplateResource, XtRTemplateResource, sizeof(char*),

#undef offset
|5

static void TemplateAction(/* Widget, XEvent*, String*, Cardinal* */);

offset(resource), XtRString, "default" },

static XtActionsRec actions[] =

{
/¥ {name,
{"template",

1

static char translations[] =
" <Key>:

",
3

procedure}, */
TemplateAction},

template() \n\

TemplateClassRec templateClassRec = {

{ /* core fields */
/* superclass
/* class_name
[* widget_size
/* class_initialize

*/
*/
*/
*/

/* class_part_initialize */

/* class_inited

/* initialize

/* initialize_hook
/* realize

/* actions

/* num_actions

/* resources

/* num_resources

/* xrm_class

/* compress_motion

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/¥ compress_exposure */
/* compress_enterleave */

/* visible_interest

/* destroy

/¥ resize

/* expose

/* set_values

/* set_values_hook
/* set_values_almost
/* get_values_hook
/* accept_focus

*/
*/
*/
*/
*/
*/
*/
*/
*/

(WidgetClass) &widgetClassRec,

"Template",
sizeof(TemplateRec),
NULL,

NULL,

FALSE,

NULL,

NULL,
XtInheritRealize,
actions,
XtNumber(actions),
resources,
XtNumber(resources),
NULLQUARK,
TRUE,

TRUE,

TRUE,

FALSE,

NULL,

NULL,

NULL,

NULL,

NULL,

XtInheritSetValuesAlmost,

NULL,
NULL,

57

X11, Release 3

X Toolkit Athena Widgets X11, Release 3

/* version */ XtVersion,
[* callback_private */ NULL,
/* tm_table */ translations,
[* query_geometry */ XtlnheritQueryGeometry,
[* display_accelerator */ XtInheritDisplay Accelerator,
/* extension */ NULL

}’
{ /* template fields */
/* empty */ 0

b

WidgetClass templateWidgetClass = (WidgetClass)&teniplateClassRec;

The resource list for the "WindowWidget" might look like the following:

static XtResource resources[] = {
#define offset(field) XtOffset(WindowWidget, window.field)
/* {name, class, type, size, offset, default_type, default_addr}, */
{ XtNdrawingColorl, XtCColor, XtRPixel, sizeof(Pixel),
offset(color_1), XtRString, XtDefaultForeground },
{ XtNdrawingColor2, XtCColor, XtRPixel, sizeof(Pixel),
offset(color_2), XtRString, XtDefaultForeground },
{ XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct*),
offset(font), XtRString, XtDefaultFont },
{ XtNexposeCallback, XtCCallback, XtRCallback, sizeof(XtCallbackList),
offset(expose_callback), XtRCallback, NULL },
{ XtNcallback, XtCCallback, XtRCallback, sizeof(XtCallbackList),
offset(input_callback), XtRCallback, NULL },
#undef offset
|8

The user input callback will be implemented by an action procedure which passes the event
pointer as call_data. The action procedure is declared as:

/* ARGSUSED */
static void InputAction(w, event, params, num_params)

Widget w;
XEvent *event;
String *params; /* unused */
Cardinal *num_params; /* unused */
{
XtCallCallbacks(w, XtNcallback, (caddr_t)event);
)
static XtActionsRec actions[] =
{
/* {name, procedure}, */
{"input", InputAction},
B

and the default input binding will be to execute the input callbacks on KeyPress and But-
tonPress:

static char translations[] =
" <Key>: input() \n\
<BtnDown>: input()\

",
>

In the class record declaration and initialization, the only field that is different from the Tem-
plate is the expose procedure:

58

X Toolkit Athena Widgets X11, Release 3

/* ARGSUSED */

static void Redisplay(w, event, region)
Widget w;
XEvent *event; /* unused */
Region region;

XtCallCallbacks(w, XtNexposeCallback, (caddr_t)region);
}

WindowClassRec windowClassRec = {

[* expose */ Redisplay,

The "WindowWidget" will also declare three public procedures to return the drawing colors and
the font id, saving the application the effort of constructing an argument list for a call to XtGet-
Values:

Pixel WindowColorl(w)
Widget w;

return ((WindowWidget)w)->window.color_1;

}

Pixel WindowColor2(w)
Widget w;
{

return ((WindowWidget)w)->window.color_2;
Font WindowFont(w)

‘Widget w;
{

return ((WindowWidget)w)->window.font->fid;

The "WindowWidget" is now complete. The application can retrieve the two drawing colors
from the widget instance by calling either XtGetValues, or the WindowColor functions. The
actual window created for the "WindowWidget" is available by calling the XtWindow function.

To test the new ‘‘“WindowWidget’’, you may substitute ‘‘window’’ for ‘‘command’’ in the sam-
ple program given in Section 2.7.3.

59

X Toolkit Widgets

, Table at line 3019 file Xtk.widgets is too wide -
4823 units, Table at line 5032 file Xtk.widgets is

too wide - 4942 units
/

/ust/include/X11/bitmaps, 7, 20

XtToggleChangeRadioGroup", 52

XtToggleGetCurrent", 52
XtToggleSetCurrent”, 52
XtToggleUnsetCurrent", 53

A

Application programmer, 2
Arg, 12

ArgList, 9, 12, 18, 20, 49
AsciiDiskWidget, 31
asciiDiskWidgetClass, 25
AsciiStringWidget, 26, 31
asciiStringWidgetClass, 25, 26
AsciiText, 21

B

BitmapFilePath, 7
bitmapFilePath, 7
BitmapFilePath, 20
bitmapFilePath, 20
Box widget, 38
adding children, 39
creating, 39
destroying, 39
removing children, 39
resources, 38
boxWidgetClass, 38, 39
ButtonPress, 47, 58
ButtonRelease, 47

C

CallbackProc, 9
Child, 2
Class, 2
Client, 2

Index

Command widget, 15
creating, 19
destroying, 19
resources, 15

commandWidgetClass, 15, 19

Creating widgets:
Box, 39
Command, 19
Dialog, 44
Form, 41
Grip, 48
Label, 21
List, 46
Scrollbar, 35
Text file, 25
Text string, 25
Toggle, 52
VPaned, 40

CUT_BUFFERO, 27

CUT_BUFFER7, 27

D

Destroying widgets:
Box, 39
Command, 19
Dialog, 44
Form, 42
Grip, 48
Label, 21
list, 46
Scrollbar, 35
toggle, 52
Viewport, 38
VPaned, 41
Dialog widget, 43
adding children, 44
creating, 44
destroying, 44
removing children, 44
resources, 43
dialogWidgetClass, 43, 44
Display, 4

E

. X11, Release 3

X Toolkit Widgets

editable, 26
F

False, 8, 18, 20, 40, 43, 45, 46, 49

FMTS8BIT, 28

forceBars, 37

Form widget, 41
adding children, 42
child resources, 42
creating, 41
deleting children, 42
destroying, 42
re-layout, 43
resources, 41

formWidgetClass, 41

Fullname, 2

G

Grip widget, 47
creating, 48
destroying, 48
GripAction table, 48

GripAction, 48

GripCallData, 48

GripCallDataRec, 48

gripWidgetClass, 47, 48

) |
Instance, 2

J

JumpProc, 35
K

KeyPress, 58
L

Label widget, 20
creating, 21
destroying, 21
resources, 20

labelWidgetClass, 20, 21

libX11l.a, 11

libXaw.a, 11

libXmu.a, 11

libXt.a, 11

List widget, 44

creating, 46

destroying, 46

resources, 44
listWidgetClass, 44, 46

M
Method, 2
N

Name, 2
O

Object, 2
P

Parent, 2
PRIMARY, 27

R

resizeHeight, 26
resizeWidth, 26
Resource, 2

S

Screen, 4
Scrollbar widget, 32
creating, 35
destroying, 35
resources, 32
setting thumb values, 36
scrollbarWidgetClass, 32, 35
scrollOnOverflow, 26
ScrollProc, 35
scrollVertical, 26
SECONDARY, 27
set, 49
Superclass, 2

T

Template widget, 53
Text widget, 21
creating, 25
default bindings, 23
edit modes, 22
resources, 25
textWidgetClass, 25, 31

X11, Release 3

X Toolkit Widgets

Toggle widget, 48

creating, 52

destroying, 52

resources, 49
toggleWidgetClass, 49, 52
True, 8, 18, 40, 43, 45, 46, 49

U
User, 2

v

Viewport widget, 37

creating, 38

destroying, 38

inserting a child, 38

removing a child, 38

resources, 37
viewportWidgetClass, 37, 38
VPaned widget, 39

adding pane, 40

change height settings, 40

child resources, 40

creating, 40

deleting pane, 40

destroying, 41

disable auto-reconfiguring, 41

disable pane resizing, 40

enable auto-reconfiguring, 41

enable pane resizing, 40

resources, 39
vPanedWidgetClass, 39, 40

\ul

Widget class, 3
Widget programmer, 3
Widget, 3
widgetClass, 53
wordBreak, 26

X

X11/Command.h, 11
X11/cursorfont.h, 7
X11/Form.h, 42
X11/Grip.h, 48
X11/Intrinsic.h, 11
X11/Label.h, 11
X11/List.h, 46
X11/Template.c, 54, 57
X11/Template.h, 54

X11, Release 3

X11/TemplateP.h, 54, 56
X11/Text.h, 28

X11/Xlib.h, 11

XawEditDone, 28
XawEditError, 28
XawPositionError, 28
XFetchBytes, 25
XrmParseCommand, 5
XtAddCallback, 10, 11
XtAsciiSinkCreate, 31
XtAsciiSinkDestroy, 31
XtCallbackList, 10
XtCallbackProc, 10
XiCallCallbacks, 10
X1CCursor, 35
XtChainBottom, 42
XtChainLeft, 42

XiChainRight, 42

XtChainTop, 42
XiCreateManagedWidget, 6, 11
XiCreateWidget., 49
X(CreateWidget, 4, 5, 6, 10, 11, 19, 21, 25, 35,
38, 39, 40, 41, 42, 44, 46, 48, 52
XtCTextSink, 31
XiCTextSource, 31
X(DestroyWidget, 6, 8, 15, 19, 20, 21, 25, 32, 35,
37,38, 39,40, 41, 42, 43, 44, 46, 47, 48, 49, 52
XtDialogGetValueString, 44
XtDiskSourceCreate, 31
XiDiskSourceDestroy, 31
X(EdgeType, 42

XtError, 6

XtFormDoLayout, 43
XiGetSelectionValue, 25
XtGetValues, 9, 30, 59
Xnitialize, 5, 11
XdustifyCenter, 18, 20, 49
XUustifyLeft, 18, 20, 49
XtJustifyRight, 18, 20, 49
Xi(ListChange, 46, 47
XtListHighlight, 47
XtListReturnStruct, 46, 47
XtListShowCurrent, 47
XtListUnhighlight, 47
XtMainLoop, 11
XtManageChild,, 11
XtManageChild, 5, 11
XManageChildren, 8, 41
XtMapWidget, 6, 8, 15, 20, 25, 32, 37, 38, 39, 41,
43,44, 47, 49

XN, 11, 12

XtNallowHoriz, 38
X(NallowResize, 40

X Toolkit Widgets

XtNallowVert, 38
XtNbackground, 19, 51
XtNbitmap, 18, 20, 49
XtNbottom, 42

XtNcallback, 11, 19, 46, 48, 49, 51, 52, 55
XtNcolumnSpacing, 45
XtNdefaultColumns, 45
XtNdefaultDistance, 42
XtNdestroyCallback, 10, 19, 21, 46, 52
XtNeditType, 26

XtNfile, 26

XtNfont, 26
XtNforceColumns, 45
XtNforeground, 12, 19, 51
XtNfromHoriz, 42, 43
XtNfromVert, 42, 43
XtNheight, 18, 20, 35, 45, 49
XtNhorizDistance, 42, 43
XtNhSpace, 39
XtNinsensitiveBorder, 18, 20, 45, 49
XtNinternalHeight, 18, 20, 45, 49
XtNinternalWidth, 18, 20, 45, 49
XtNjumpProc, 35, 36, 37
XtNjustify, 18, 20, 49
XtNlabel, 18, 20, 49

XtNleft, 42

XtNlength, 26, 35

XtNlist, 45

XtNlongest, 45

XtNmax, 39, 41

XtNmin, 39, 41
XtNnumberStrings, 45
XtNpasteBuffer, 45
XtNradioData,, 52
XtNradioData, 49, 52
XtNradioGroup, 49
XtNresize, 18, 20, 49
XNright, 42
XtNrowSpacing, 45
XtNscrollProc, 35, 36
XtNselectionTypes, 26
XtNsensitive, 18, 20, 45, 49
XtNskipAdjust, 39

XtNstate, 49

XtNstring, 26
XtNtextOptions, 26
XtNtextSink, 31
XtNtextSource, 31
XtNthickness, 35
XtNthumbProc, 36

XtNtop, 42

XtNumber, 12, 13

XtNvalue, 44

X11, Release 3

XtNvertDistance, 42, 43
XtNverticalList, 45
XtNvSpace, 39

XtNwidth, 18, 20, 35, 45, 49
XtPanedAllowResize, 40
XtPanedSetMinMax, 40
XtPanedSetRefigureMode, 41
XtRealizeWidget, 5, 6, 7, 8, 11
XtRemoveAllCallbacks, 11
XtRemoveCallback, 10
XtRemoveCallbacks, 10
XtRubber, 42
XtScrollbarSetThumb, 36
XtScrollbarThumb, 36
XtSetArg, 12
XtSetMappedWhenManaged, 8
XtSetValues,, 49

XtSetValues, 9, 18, 20, 30, 49, 54, 55
XtStringSourceCreate, 31
XtStringSourceDestroy, 31
XttextAppend, 26, 28
XtTextBlock, 28, 29
XtTextChangeOptions, 30
XtTextDisableRedisplay, 29
XtTextDisplay, 29

XttextEdit, 26
XtTextEnableRedisplay, 29
XtTextGetInsertionPoint, 30
XitTextGetOptions, 30
XiTextGetSelectionPos, 28
XtTextGetSource, 30
XtTextGetValues, 26
XtTextInvalidate, 29
XttextRead, 26
XtTextReplace, 28
XtTextSelectType, 26
XtTextSetInsertionPoint, 30
XtTextSetLastPos, 29
XiTextSetSelection, 27
XiTextSetSource, 30
XtTextSetValues, 26
XtTextTopPosition, 30
XtTextUnsetSelection, 28
XtToggleChangeRadioGroup., 52
XtToggleChangeRadioGroup, 49
XtToggleGetCurrent., 52
XtToggleGetCurrent, 48, 49
XtToggleSetCurrent., 49, 52
XtToggleSetCurrent, 49
XtToggleUnsetCurrent., 53
XtToggleUnsetCurrent, 49
XtUnmanageChild, 38, 39, 42, 44
XtUnmanageWidget, 40

X Toolkit Widgets X11, Release 3

XtWindow, 59
XT_LIST_NONE, 47

INTRINSICS 4
MAN PAGES

CHAPTER TWO

Intrinsics man Pages [Release 3.0 preliminary: 10-6] Window System Toolkit 2-1

1 September 1988

XtAddEventHandler (3Xt) XtAddEventHandler (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

XtAddEventHandler, XtAddRawEventHandler, XtRemoveEventHandler XtRemo-
veRawEventHandler — add and remove event handlers

void XtAddEventHandler(w, event_mask, nonmaskable, proc, client_data)
Widget w;
EventMask event_mask;
Boolean nonmaskable;
XtEventHandler proc;
caddr_t client_data;

void XtAddRawEventHandler(w, event_mask, nonmaskable, proc, client_data)
Widget w;
EventMask event_mask;
Boolean nonmaskable;
XtEventHandler proc;
caddr_t client_data;

void XtRemoveEventHandler(w, event_mask, nonmaskable, proc, client_data)
Widget w;
EventMask event_mask;
Boolean nonmaskable;
XtEventHandler proc;
caddr_t client_data;

void XtRemoveRawEventHandler(w, event_mask, nonmaskable, proc, client_data)
Widget w;
EventMask event_mask;
Boolean nonmaskable;
XtEventHandler proc;
caddr_t client_data;

client_data Specifies additional data to be passed to the client’s event handler.
event_mask Specifies the event mask for which to call or unregister this pro-
cedure.

nonmaskable Specifies a Boolean value that indicates whether this procedure
should be called or removed on the nonmaskable events (Gra-
phicsExpose, NoExpose, SelectionClear, SelectionRequest, Selec-
tionNotify, ClientMessage, and MappingNotify).

proc Specifies the procedure that is to be added or removed.

w Specifies the widget for which this event handler is being registered.

The XtAddEventHandler function registers a procedure with the dispatch mechan-
ism that is to be called when an event that matches the mask occurs on the specified
widget. If the procedure is already registered with the same client_data, the
specified mask is ORed into the existing mask. If the widget is realized, XtAd-
dEventHandler calls XSelectInput, if necessary.

The XtAddRawEventHandler function is similar to XtAddEventHandler except that
it does not affect the widget’s mask and never causes an XSelectInput for its events.
Note that the widget might already have those mask bits set because of other nonraw
event handlers registered on it.

Ardent Computer Corporation — Release 3.0 1

1 September 1988

XtAddEventHandler (3Xt) XtAddEventHandler (3Xt)

The XtAddRawEventHandler function is similar to XtAddEventHandler except that
it does not affect the widget’s mask and never causes an XSelectInput for its events.
Note that the widget might already have those mask bits set because of other nonraw
event handlers registered on it.

The XtRemoveRawEventHandler function stops the specified procedure from
receiving the specified events. Because the procedure is a raw event handler, this
does not affect the widget’s mask and never causes a call on XSelectInput.

SEE ALSO
XtAppNextEvent(3Xt), XtBuildEventMask(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib - C Language X Interface
2 Ardent Computer Corporation — Release 3.0

(

1 September 1988

XtAddExposureToRegion (3Xt) XtAddExposureToRegion (3Xt)
NAME
XtAddExposureToRegion — merge exposure events into a region
SYNTAX
void XtAddExposureToRegion(event, region)
XEvent *event;
Region region;
ARGUMENTS
event Specifies a pointer to the Expose or GraphicsExpose event.
region Specifies the region object (as defined in <X11/Xutil.h>).
DESCRIPTION
The XtAddExposureToRegion function computes the union of the rectangle defined
by the exposure event and the specified region. Then, it stores the results back in
region. If the event argument is not an Expose or GraphicsExpose event, XtAddEx-
posureToRegion returns without an error and without modifying region.
This function is used by the exposure compression mechanism (see Section 7.9.3).
SEE ALSO

X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

Ardent Computer Corporation — Release 3.0 3

XtAddCallback (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

1 September 1988
XtAddCallback (3Xt)

XtAddCallback, XtAddCallbacks, XtRemoveCallback, XtRemoveCallbacks, XtRemo-
veAllCallbacks — add and remove callback procedures

void XtAddCallback(w, callback_name, callback, client_data)
Widget w;
String callback_name;
XtCallbackProc callback;
caddr_t client_data;

void XtAddCallbacks(w, callback_name, callbacks)
Widget w;
String callback_name;
XtCallbackList callbacks;

void XtRemoveCallback(w, callback_name, callback, client_data)
Widget w;
String callback_name;
XtCallbackProc callback;
caddr_t client_data;
void XtRemoveCallbacks(w, callback_name, callbacks)
Widget w;
String callback_name;
XtCallbackList callbacks;

void XtRemoveAllCallbacks(w, callback_name)
Widget w;
String callback_name;

callback Specifies the callback procedure.

callbacks Specifies the null-terminated list of callback procedures and
corresponding client data.

callback_name Specifies the callback list to which the procedure is to be appended
or deleted.

client_data Specifies the argument that is to be passed to the specified procedure
when it is invoked by XtCallbacks or NULL, or the client data to
match on the registered callback procedures.

w Specifies the widget.

The XtAddCallback function adds the specified callback procedure to the specified
widget’s callback list.

The XtAddCallbacks add the specified list of callbacks to the specified widget’s call-
back list.

The XtRemoveCallback function removes a callback only if both the procedure and
the client data match.

The XtRemoveCallbacks function removes the specified callback procedures from
the specified widget’s callback list.

The XtRemoveAllCallbacks function removes all the callback procedures from the
specified widget’s callback list.

Ardent Computer Corporation — Release 3.0

(

1 September 1988
XtAddCallback (3Xt) XtAddCallback (3Xt)

SEE ALSO
XtCallCallbacks(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

Ardent Computer Corporation — Release 3.0 5

XtAddGrab (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

SEE ALSO

1 September 1988
XtAddGrab (3Xt)

XtAddGrab, XtRemoveGrab — redirect user input to a modal widget

void XtAddGrab(w, exclusive, spring_loaded)
Widget w;
Boolean exclusive;
Boolean spring_loaded;

void XtRemoveGrab(w)
Widget w;

exclusive Specifies whether user events should be dispatched exclusively to
this widget or also to previous widgets in the cascade.

spring_loaded Specifies whether this widget was popped up because the user
pressed a pointer button.

w Specifies the widget to add to or remove from the modal cascade.

The XtAddGrab function appends the widget (and associated parameters) to the
modal cascade and checks that exclusive is True if spring_loaded is True. If these are
not True, XtAddGrab generates an error.

The modal cascade is used by XtDispatchEvent when it tries to dispatch a user event.
When at least one modal widget is in the widget cascade, XtDispatchEvent first
determines if the event should be delivered. It starts at the most recent cascade entry
and follows the cascade up to and including the most recent cascade entry added
with the exclusive parameter True.

This subset of the modal cascade along with all descendants of these widgets
comprise the active subset. User events that occur outside the widgets in this subset
are ignored or remapped. Modal menus with submenus generally add a submenu
widget to the cascade with exclusive False. Modal dialog boxes that need to restrict
user input to the most deeply nested dialog box add a subdialog widget to the cas-
cade with exclusive True. User events that occur within the active subset are

delivered to the appropriate widget, which is usually a child or further descendant of
the modal widget.

Regardless of where on the screen they occur, remap events are always delivered to
the most recent widget in the active subset of the cascade that has spring_loaded
True, if any such widget exists.

The XtRemoveGrab function removes widgets from the modal cascade starting at
the most recent widget up to and including the specified widget. It issues an error if
the specified widget is not on the modal cascade.

X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

Ardent Computer Corporation— Release 3.0

1 September 1988

XtAppAddActions (3Xt) XtAppAddActions (3Xt)
NAME
XtAppAddActions - register an action table
SYNTAX
void XtAppAddActions(app_context, actions, num_actions)
XtAppContext app_context;
XtActionList actions;
Cardinal num_actions;
ARGUMENTS
app_context Specifies the application context.
actions Specifies the action table to register.
num_args Specifies the number of entries in this action table.
DESCRIPTION
The XtAppAddActions function adds the specified action table and registers it with
the translation manager.
SEE ALSO

XtParseTranslationTable(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

Ardent Computer Corporation — Release 3.0 7

XtAppAddConverter (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

SEE ALSO

1 September 1988

XtAppAddConverter - register resource converter

void XtAppAddConverter(app_context, from_type, to_type, converter, convert_args,
num_args)

XtAppContext app_context;
String from_type;

String to_type;

XtConverter converter;
XtConvertArgList convert_args;
Cardinal num_args;

app_context Specifies the application context.
converter Specifies the type converter procedure.

convert_args Specifies how to compute the additional arguments to the converter
or NULL.

from_type Specifies the source type.

num_args Specifies the number of additional arguments to the converter or
Zero.

to_type Specifies the destination type.
The XtAppAddConverter registers a the specified resource converter.

XtConvert(3Xt), XtStringConversionWarning(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

Ardent Computer Corporation — Release 3.0

XtAppAddConverter (3Xt)

1 September 1988
XtAppAddinput (3Xt) XtAppAddinput(3Xt)

NAME
XtAppAddInput, XtRemovelnput - register and remove an input source

SYNTAX
XtInputld XtAppAddInput(app_context, source, condition, proc, client_data)
XtAppContext app_context;
int source;
caddr_t condition;
XtInputCallbackProc proc;
caddr_t client_data;

void XtRemovelnput(id)
XtInputld id;

ARGUMENTS
app_context Specifies the application context that identifies the application.

client_data Specifies the argument that is to be passed to the specified procedure
when input is available.

condition Specifies the mask that indicates a read, write, or exception condition
or some operating system dependent condition.

id Specifies the ID returned from the corresponding XtAppAddInput
call.

proc Specifies the procedure that is to be called when input is available.

source Specifies the source file descriptor on a UNIX-based system or other
operating system dependent device specification.

DESCRIPTION
The XtAppAddInput function registers with the Intrinsics read routine a new source
of events, which is usually file input but can also be file output. Note that file should
be loosely interpreted to mean any sink or source of data. XtAppAddInput also
specifies the conditions under which the source can generate events. When input is
pending on this source, the callback procedure is called.

The legal values for the condition argument are operating-system dependent. Ona
UNIX-based system, the condition is some union of XtInputReadMask, XtInputWri-
teMask, and XtInputExceptMask. The XtRemoveInput function causes the Intrin-
sics read routine to stop watching for input from the input source.

SEE ALSO
XtAppAddTimeOut(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

Ardent Computer Corporation —Release 3.0 9

1 September 1988

XtAppAddTimeOut (3Xt) XtAppAddTimeOut (3Xt)
NAME
XtAppAddTimeOut, XtRemoveTimeOut - register and remove timeouts
SYNTAX
XtIntervalld XtApp Add TimeOut(app_context, interval, proc, client_data)
XtAppContext app_context;
unsigned long interval;
XtTimerCallbackProc proc;
caddr_t client_data;
void XtRemoveTimeQut(timer)
XtIntervalld timer;
ARGUMENTS
app_context Specifies the application context for which the timer is to be set.
client_data Specifies the argument that is to be passed to the specified procedure
wheninput is available.
interval Specifies the time interval in milliseconds.
proc Specifies the procedure that is to be called when time expires.
timer Specifies the ID for the timeout request to be destroyed.
DESCRIPTION
The XtAppAddTimeQut function creates a timeout and returns an identifier for it.
The timeout value is set to interval. The callback procedure is called when the time
interval elapses, and then the timeout is removed.
The XtRemoveTimeOut function removes the timeout. Note that timeouts are
automatically removed once they trigger.
SEE ALSO
XtAppAddInput(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib~ C Language X Interface
10 Ardent Computer Corporation — Release 3.0

(

1 September 1988

XtAppAddWorkProc (3Xt) XtAppAddWorkProc (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

SEE ALSO

XtAppAddWorkProc, XtRemoveWorkProc — Add and remove background process-
ing procedures

XtWorkProcld XtAppAddWorkProc(app_context, proc, client_data)
XtAppContext app_context;
XtWorkProc proc;
caddr_t client_data;

void XtRemoveWorkProc(id)

XtWorkProcld id;
app_context Specifies the application context that identifies the application.
client_data Specifies the argument that is to be passed to the specified procedure
when it is called.
proc Specifies the procedure that is to be called when time expires.
id Specifies which work procedure to remove.

The XtAppAddWorkProc function adds the specified work procedure for the appli-
cation identified by app_context.

The XtRemoveWorkProc function explicitly removes the specified background work
procedure.

XtAppNextEvent(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

Ardent Computer Corporation — Release 3.0 11

XtAppCreateShell (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

SEE ALSO

1 September 1988

XtAppCreateShell - create top-level widget instance

Widget XtAppCreateShell(application_name, application_class, widget_class, display,

args, num_args)

String application_name;

String application_class;

WidgetClass widget_class;

Display *display;

ArglList args;

Cardinal num_args;

application_class Specifies the class name of this application.

application_name
Specifies the name of the application instance.

args Specifies the argument list in which to set in the WM_COMMAND
property.

display Specifies the display from which to get the resources.

num_args Specifies the number of arguments in the argument list.

widget_class Specifies the widget class that the application top-level widget
should be.

The XtAppCreateShell function saves the specified application name and application
class for qualifying all widget resource specifiers. The application name and applica-
tion class are used as the left-most components in all widget resource names for this
application. XtAppCreateShell should be used to create a new logical application
within a program or to create a shell on another display. In the first case, it allows
the specification of a new root in the resource hierarchy. In the second case, it uses
the resource database associated with the other display.

Note that the widget returned by XtAppCreateShell has the WM_COMMAND pro-
perty set for session managers (see Chapter 4).

XtCreateWidget(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib - C Language X Interface

12

Ardent Computer Corporation — Release 3.0

XtAppCreateShell (3Xt)

(|

(

1 September 1988
XtAppError (3Xt) XtAppError (3Xt)

NAME
XtAppError, XtAppSetErrorHandler, XtAppSetWarningHandler, XtAppWarning -
low-level error handlers
SYNTAX
void XtAppError(app_context, message)
XtAppContext app_context;
String message;

void XtAppSetErrorHandler(app_context, handler)
XtAppContext app_context;
XtErrorHandler handler;

void XtAppSetWarningHandler(app_context, handler)
XtAppContext app_context;
XtErrorHandler handler;

void XtAppWarning(app_context, message)
XtAppContext app_context;
String message;
ARGUMENTS
app_context Specifies the application context.

message Specifies the nonfatal error message that is to be reported.

handler Specifies the new fatal error procedure, which should not return, or
the nonfatal error procedure, which usually returns.

message Specifies the message that is to be reported.

DESCRIPTION
The XtAppError function calls the installed error procedure and passes the specified
message.

The XtAppSetErrorHandler function registers the specified procedure, which is
called when a fatal error condition occurs.

The XtAppSetWarningHandler registers the specified procedure, which is called
when a nonfatal error condition occurs.

The XtAppWarning function calls the installed nonfatal error procedure and passes
the specified message.
SEE ALSO
XtAppGetErrorDatabase(3Xt), XtAppErrorMsg(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

Ardent Computer Corporation —Release 3.0 13

1 September 1988

XtAppErrorMsg (3Xt) XtAppErrorMsg (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

XtAppErrorMsg, XtAppSetErrorMsgHandler, XtAppSetWarningMsgHandler,
XtAppWarningMsg — high-level error handlers

void XtAppErrorMsg(app_context, name, type, class, default, params, num_params)
XtAppContext app_context;
String name;
String type;
String class;
String default;
String *params;
Cardinal *num_params;
void XtAppSetErrorMsgHandler(app_context, msg_handler)

XtAppContext app_context;
XtErrorMsgHandler msg_handler;

void XtAppSetWarningMsgHandler(app_context, msg_handler)
XtAppContext app_context;
XtErrorMsgHandler msg_handler;

void XtAppWarningMsg(app_context, name, type, class, default, params, num_params)
XtAppContext app_context;
String name;
String type;
String class;
String default;
String *params;
Cardinal *num_params;

app_context Specifies the application context.

class Specifies the resource class.

default Specifies the default message to use.
name Specifies the general kind of error.

type Specifies the detailed name of the error.

msg_handler ~ Specifies the new fatal error procedure, which should not return or
the nonfatal error procedure, which usually returns.

num_params Specifies the number of values in the parameter list.

params Specifies a pointer to a list of values to be stored in the message.

The XtAppErrorMsg function calls the high-level error handler and passes the
specified information.

The XtAppSetErrorMsgHandler function registers the specified procedure, which is
called when a fatal error occurs.

The XtAppSetWarningMsgHandler function registers the specified procedure,
which is called when a nonfatal error condition occurs.

The XtAppWarningMsg function calls the high-level error handler and passes the
specified information.

14

Ardent Computer Corporation— Release 3.0

1 Seetember 1988

XtAppErrorMsg (3Xt) XtAppErrorMsg (3Xt)

SEE ALSO
XtAppGetErrorDatabase(3Xt), XtAppError(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

Ardent Computer Corporation — Release 3.0 15

1 September 1988

XtAppGetErrorDatabase (3Xt) XtAppGetErrorDatabase (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

SEE ALSO

XtAppGetErrorDatabase, XtAppGetErrorDatabaseText — obtain error database

XrmDatabase *XtAppGetErrorDatabase(app_context)
XtAppContext app_context;

void XtAppGetErrorDatabaseText(app_context, name, type, class, default, buffer_return,
nbytes, database)

XtAppContext app_context;

char *name, *type, *class;

char *default;

char *buffer_return;

int nbytes;

XrmDatabase database;

app_context Specifies the application context.
buffer_return Specifies the buffer into which the error message is to be returned.
class Specifies the resource class of the error message.

database Specifies the name of the alternative database that is to be used or
NULL if the application’s database is to be used.

default Specifies the default message to use.

name

type Specifies the name and type that are concatenated to form the
resource name of the error message.

nbytes Specifies the size of the buffer in bytes.

The XtAppGetErrorDatabase function returns the address of the error database. The
Intrinsics do a lazy binding of the error database and do not merge in the database
file until the first call to XtAppGetErrorDatbaseText.

The XtAppGetErrorDatabaseText returns the appropriate message from the error
database or returns the specified default message if one is not found in the error
database.

XtAppError(3Xt), XtAppErrorMsg(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

16

Ardent Computer Corporation —Release 3.0

1 September 1988

XtAppGetSelectionTimeout (3Xt) XtAppGetSelectionTimeout (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

SEE ALSO

XtAppGetSelectionTimeout, XtAppSetSelectionTimeout — set and obtain selection
timeout values

unsigned long XtAppGetSelectionTimeout(app_context)
XtAppContext app_context;

void XtAppSetSelectionTimeout(app_context, timeout)
XtAppContext app_context;
unsigned long timeout;

app_context Specifies the application context.

timeout Specifies the selection timeout in milliseconds.

The XtAppGetSelectionTimeout function returns the current selection timeout
value, in milliseconds. The selection timeout is the time within which the two com-
municating applications must respond to one another. The initial timeout value is set
by the selectionTimeout application resource, or, if selectionTimeout is not
specified, it defaults to five seconds.

The XtAppSetSelectionTimeout function sets the Intrinsics’s selection timeout
mechanism. Note that most applications should not set the selection timeout.

XtOwnSelection(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib - C Language X Interface

Ardent Computer Corporation — Release 3.0 17

1 September 1988

XtAppNextEvent (3Xt) XtAppNextEvent (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

XtAppNextEvent, XtAppPending, XtAppPeekEvent, XtAppProcessEvent,
XtDispatchEvent, XtAppMainLoop — query and process events and input

void XtAppNextEvent(app_context, event_return)
XtAppContext app_context;
XEvent *event_return;

Boolean XtAppPeekEvent(app_context, event_return)
XtAppContext app_context;
XEvent *event_return;

XtInputMask XtAppPending(app_context)
XtAppContext app_context;

void XtAppProcessEvent(app_context, mask)
XtAppContext app_context;
XtInputMask mask;

Boolean XtDispatchEvent(event)
XEvent *event;

void XtAppMainLoop(app_context)
XtAppContext app_context;

app_context Specifies the application context that identifies the application .

event Specifies a pointer to the event structure that is to be dispatched to
the appropriate event handler.

event_return Returns the event information to the specified event structure.

mask Specifies what types of events to process. The mask is the bitwise
inclusive OR of any combination of XtIMXEvent, XtIMTimer, and
XtIMAlternateInput. As a convenience, the X Toolkit defines the
symbolic name XtIMALI to be the bitwise inclusive OR of all event

types.

If no input is on the X input queue, XtAppNextEvent flushes the X output buffer and
waits for an event while looking at the other input sources and timeout values and
calling any callback procedures triggered by them. This wait time can be used for
background processing (see Section 7.8).

If there is an event in the queue, XtAppPeekEvent fills in the event and returns a
nonzero value. If no X input is on the queue, XtAppPeekEvent flushes the output
buffer and blocks until input is available (possibly calling some timeout callbacks in
the process). If the input is an event, XtAppPeekEvent fills in the event and returns a
nonzero value. Otherwise, the input is for an alternate input source, and
XtAppPeekEvent returns zero.

The XtAppPending function returns a nonzero value if there are events pending
from the X server, timer pending, or other input sources pending. The value returned
is a bit mask that is the OR of XtIMXEvent, XtIMTimer, and XtIMAlternateInput

(see XtAppProcessEvent). If there are no events pending, XtAppPending flushes the

output buffer and returns zero.

The XtAppProcessEvent function processes one timer, alternate input, or X event. If
there is nothing of the appropriate type to process, XtAppProcessEvent blocks until
there is. If there is more than one type of thing available to process, it is undefined

18

Ardent Computer Corporation— Release 3.0

1 September 1988

XtAppNextEvent (3Xt) XtAppNextEvent (3Xt)

SEE ALSO

which will get processed. Usually, this procedure is not called by client applications
(see XtAppMainLoop). XtAppProcessEvent processes timer events by calling any
appropriate timer callbacks, alternate input by calling any appropriate alternate
input callbacks, and X events by calling XtDispatchEvent.

When an X event is received, it is passed to XtDispatchEvent, which calls the
appropriate event handlers and passes them the widget, the event, and client-specific
data registered with each procedure. If there are no handlers for that event
registered, the event is ignored and the dispatcher simply returns. The order in
which the handlers are called is undefined.

The XtDispatchEvent function sends those events to the event handler functions that
have been previously registered with the dispatch routine. XtDispatchEvent returns
True if it dispatched the event to some handler and False if it found no handler to
dispatch the event to. The most common use of XtDispatchEvent is to dispatch
events acquired with the XtAppNextEvent procedure. However, it also can be used
to dispatch user-constructed events. XtDispatchEvent also is responsible for imple-
menting the grab semantics for XtAddGrab.

The XtAppMainLoop function first reads the next incoming X event by calling
XtAppNextEvent and then it dispatches the event to the appropriate registered pro-
cedure by calling XtDispatchEvent. This constitutes the main loop of X Toolkit
applications, and, as such, it does not return. Applications are expected to exit in
response to some user action. There is nothing special about XtAppMainLoop; it is
simply an infinite loop that calls XtAppNextEvent and then XtDispatchEvent.

Applications can provide their own version of this loop, which tests some global ter-
mination flag or tests that the number of top-level widgets is larger than zero before
circling back to the call to XtAppNextEvent.

X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

Ardent Computer Corporation — Release 3.0 19

XtBuildEventMask (3Xt)

1 September 1988

NAME
XtBuildEventMask — retrieve a widget’s event mask

SYNTAX
EventMask XtBuildEventMask(w)

Widget w;

ARGUMENTS
w Specifies the widget.

DESCRIPTION
The XtBuildEventMask function returns the event mask representing the logical OR
of all event masks for event handlers registered on the widget with XtAd-
dEventHandler and all event translations, including accelerators, installed on the
widget. This is the same event mask stored into the XSetWindowAttributes struc-
ture by XtRealizeWidget and sent to the server when event handlers and translations
are installed or removed on the realized widget.

SEE ALSO
XtAddEventHandler(3Xt)
X Toolkit Intrinsics — C Language Interface
XIib - C Language X Interface

20 Ardent Computer Corporation —Release 3.0

XtBuildEventMask (3Xt)

1 Seetember 1988

XtCallAcceptFocus (3Xt) XtCallAcceptFocus (3Xt)
NAME
XtCallAcceptFocus - call a widget’s accept_focus procedure
SYNTAX
Boolean XtCallAcceptFocus(w, time)
Widget w;
Time *time;
ARGUMENTS
time Specifies the X time of the event that is causing the accept focus.
w Specifies the widget.
DESCRIPTION
The XtCallAcceptFocus function calls the specified widget’s accept_focus procedure,
passing it the specified widget and time, and returns what the accept_focus pro-
cedure returns. If accept_focus is NULL, XtCallAcceptFocus returns False.
SEE ALSO

XtSetKeyboardFocus(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

Ardent Computer Corporation — Release 3.0 21

XtCallCallbacks (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

SEE ALSO

1 September 1988
XtCallCallbacks (3Xt)

XtCallCallbacks, XtHasCallbacks — process callbacks

void XtCallCallbacks(w, callback_name, call_data)
Widget w;
String callback_name;
caddr_t call_data;

typedef enum {XtCallbackNoList, XtCallbackHasNone, XtCallbackHasSome}
XtCallbackStatus;

XtCallbackStatus XtHasCallbacks(w, callback_name)
Widget w; ‘
String callback_name;

callback_name Specifies the callback list to be executed or checked.

call_data Specifies a callback-list specific data value to pass to each of the call-
back procedure in the list.

w Specifies the widget.

The XtCallCallbacks function calls each procedure that is registered in the specified
widget’s callback list.

The XtHasCallbacks function first checks to see if the widget has a callback list
identified by callback_name. If the callback list does not exist, XtHasCallbacks
returns XtCallbackNoList. If the callback list exists but is empty, it returns
XtCallbackHasNone. If the callback list exists and has at least one callback
registered, it returns XtCallbackHasSome.

XtAddCallback(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

22

Ardent Computer Corporation — Release 3.0

(

1 Seetember 1988

XtClass (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

XtClass (3Xt)

XtClass, XtSuperClass, XtIsSubclass, XtCheckSubclass, XtIsComposite, XtIsManaged
— obtain and verify a widget’s class

WidgetClass XtClass(w)
Widget w;

WidgetClass XtSuperclass(w)
Widget w;

Boolean XtIsSubclass(w, widget_class)
Widget w;
WidgetClass widget_class;

void XtCheckSubclass(w, widget_class, message)
Widget w;
WidgetClass widget_class;
String message;

Boolean XtIsComposite(w)
Widget w;

Boolean XtlsManaged(w)
Widget w;

w Specifies the widget.

widget_class Specifies the widget class that the application top-level widget
should be.

message Specifies the message that is to be used.

The XtClass function returns a pointer to the widget’s class structure.

The XtSuperclass function returns a pointer to the widget’s superclass class struc-
ture.

The XtIsSubclass function returns True if the class of the specified widget is equal to
or is a subclass of the specified widget class. The specified widget can be any number
of subclasses down the chain and need not be an immediate subclass of the specified
widget class. Composite widgets that need to restrict the class of the items they con-
tain can use XtIsSubclass to find out if a widget belongs to the desired class of
objects.

The XtCheckSubclass macro determines if the class of the specified widget is equal
to or is a subclass of the specified widget class. The widget can be any number of
subclasses down the chain and need not be an immediate subclass of the specified
widget class. If the specified widget is not a subclass, XtCheckSubclass constructs an
error message from the supplied message, the widget’s actual class, and the expected
class and calls XtErrorMsg. XtCheckSubclass should be used at the entry point of
exported routines to ensure that the client has passed in a valid widget class for the
exported operation.

XtCheckSubclass is only executed when the widget has been compiled with the com-
piler symbol DEBUG defined; otherwise, it is defined as the empty string and gen-
erates no code.

The XtIsComposite function is a convenience function that is equivalent to XtIsSub-
class with compositeWidgetClass specified.

Ardent Computer Corporation — Release 3.0 23

XtClass (3Xt)

1 September 1988

XtClass (3Xt)
The XtIsManaged macro (for widget programmers) or function (for application pro-
grammers) returns True if the specified child widget is managed or False if it is not.
SEE ALSO
XtAppErrorMsg(3Xt), XtDisplay(3Xt)
X Toolkit Intrinsics — C Language Interface
X1ib — C Language X Interface
24

Ardent Computer Corporation— Release 3.0

(

1 September 1988
XtConfigureWidget (3Xt) XtConfigureWidget (3Xt)

NAME
XtConfigureWidget, XtMoveWidget, XtResizeWidget — move and resize widgets

SYNTAX
void XtConfigureWidget(w, x, y, width, height, border_width)

Widget w;

Position x;

Position y;

Dimension width;

Dimension height;

Dimension border_width;

void XtMoveWidget(w, x, y)
Widget w;
Position x;
Position ;

void XtResizeWidget(w, width, height, border_width)
Widget w;
Dimension width;
Dimension height;
Dimension border_width;

void XtResizeWindow(w)
Widget w;
ARGUMENTS
width
height
border_width ~ Specify the new widget size.

w Specifies the widget.

x
Y Specify the new widget x and y coordinates.

DESCRIPTION
The XtConfigureWidget function returns immediately if the specified geometry
fields are the same as the old values. Otherwise, XtConfigureWidget writes the new

X, y, width, height, and border_width values into the widget and, if the widget is
realized, makes an Xlib XConfigureWindow call on the widget's window.

If either the new width or height is different from its old value, XtConfigureWidget

calls the widget’s resize procedure to notify it of the size change; otherwise, it simply
returns.

The XtMoveWidget function returns immediately if the specified geometry fields are
the same as the old values. Otherwise, XtMoveWidget writes the new x and y values
into the widget and, if the widget is realized, issues an Xlib XMoveWindow call on
the widget’s window.

The XtResizeWidget function returns immediately if the specified geometry fields
are the same as the old values. Otherwise, XtResizeWidget writes the new width,
height, and border_width values into the widget and, if the widget is realized, issues
an XConfigureWindow call on the widget’s window.

If the new width or height are different from the old values, XtResizeWidget calls
the widget’s resize procedure to notify it of the size change.

The XtResizeWindow function calls the XConfigureWindow Xlib function to make
the window of the specified widget match its width, height, and border width. This
request is done unconditionally because there is no way to tell if these values match

Ardent Computer Corporation — Release 3.0 25

, 1 September 1988
XtConfigureWidget (3Xt) XtConfigureWidget (3Xt)

the current values. Note that the widget’s resize procedure is not called.

There are very few times to use XtResizeWindow; instead, you should use
XtResizeWidget.
SEE ALSO
XtMakeGeometryRequest(3Xt), XtQueryGeometry(3Xt)
X Toolkit Intrinsics — C Language Interface
XIib — C Language X Interface

26 Ardent Computer Corporation— Release 3.0

1 Seetember 1988

XtConvert (3Xt) XtConvert (3Xt)
NAME
XtConvert, XtDirectConvert — invoke resource converters
SYNTAX
void XtConvert(w, from_type, from, to_type, to_return)
Widget w;
String from_type;
XrmValuePtr from;
String to_type;
XrmValuePtr to_return;
void XtDirectConvert(converter, args, num_args, from, to_return)
XtConverter converter;
XrmValuePtr args;
Cardinal num_args;
XrmValuePtr from;
XrmValuePtr to_return;
ARGUMENTS
args Specifies the argument list that contains the additional arguments
needed to perform the conversion (often NULL).
converter Specifies the conversion procedure that is to be called.
from Specifies the value to be converted.
from_type Specifies the source type.
num_args Specifies the number of additional arguments (often zero).
to_type Specifies the destination type.
to_return Returns the converted value.
w Specifies the widget to use for additional arguments (if any are
needed).
DESCRIPTION
The XtConvert function looks up the type converter registered to convert from_type
to to_type, computes any additional arguments needed, and then calls XtDirectCon-
vert.
The XtDirectConvert function looks in the converter cache to see if this conversion
procedure has been called with the specified arguments. If so, it returns a descriptor
for information stored in the cache; otherwise, it calls the converter and enters the
result in the cache.
Before calling the specified converter, XtDirectConvert sets the return value size to
zero and the return value address to NULL. To determine if the conversion was suc-
cessful, the client should check to_return.address for non-NULL.
SEE ALSO

XtAppAddConverter(3Xt), XtStringConversionWarning(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

Ardent Computer Corporation — Release 3.0 27

1 September 1988

XtCreateApplicationContext (3Xt) XtCreateApplicationContext (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

SEE ALSO

XtCreateApplicationContext, XtDestroyApplicationContext, XtWidgetToApplica-
tionContext, XtToolkitInitialize — create, destroy, and obtain an application context

XtAppContext XtCreateApplicationContext()

void XtDestroyApplicationContext(app_context)
XtAppContext app_context;

XtAppContext XtWidgetToApplicationContext(w)
Widget w;

void XtToolkitInitialize()

app_context Specifies the application context.

w Specifies the widget to use for additional arguments (if any are
needed).

The XtCreateApplicationContext function returns an application context, which is an
opaque type. Every application must have at least one application context.

The XtDestroyApplicationContext function destroys the specified application con-
text as soon as it is safe to do so. If called from with an event dispatch (for example, a
callback procedure), XtDestroyApplicationContext does not destroy the application
context until the dispatch is complete.

The XtWidgetToApplicationContext function returns the application context for the
specified widget.

The semantics of calling XtToolkitInitialize more than once are undefined.
XtDisplaylInitialize(3Xt)

X Toolkit Intrinsics — C Language Interface
X1ib — C Language X Interface

28

Ardent Computer Corporation — Release 3.0

1 September 1988

XtCreatePopupShell (3Xt) XtCreatePopupShell (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

SEE ALSO

XtCreatePopupShell - creates a popup shell

Widget XtCreatePopupShell(name, widget_class, parent, args, num_args)
String name;
WidgetClass widget_class;
Widget parent;
ArglList args;
Cardinal num_args;

args Specifies the argument list to override the resource defaults.
name Specifies the text name for the created shell widget.
num_args Specifies the number of arguments in the argument list.
parent Specifies the parent widget.

widget_class Specifies the widget class pointer for the created shell widget.

The XtCreatePopupShell function ensures that the specified class is a subclass of
Shell and, rather than using insert_child to attach the widget to the parent’s children
list, attaches the shell to the parent’s pop-ups list directly.

A spring-loaded pop-up invoked from a translation table already must exist at the
time that the translation is invoked, so the translation manager can find the shell by
name. Pop-ups invoked in other ways can be created “on-the-fly”” when the pop-up
actually is needed. This delayed creation of the shell is particularly useful when you
pop up an unspecified number of pop-ups. You can look to see if an appropriate
unused shell (that is, not currently popped up) exists and create a new shell if
needed.

XtCreateWidget(3Xt), XtPopdown(3Xt), XtPopup(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

Ardent Computer Corporation — Release 3.0 29

1 September 1988

XtCreateWidget (3Xt) XtCreateWidget (3Xt)

NAME (|
XtCreateWidget, XtCreateManagedWidget, XtDestroyWidget — create and destroy
widgets

SYNTAX

Widget XtCreateWidget(name, widget_class, parent, args, num_args)
String name;
WidgetClass widget_class;
Widget parent;
ArglList args;
Cardinal num_args;

Widget XtCreateManagedWidget(name, widget_class, parent, args, num_args)
String name;
WidgetClass widget_class;
Widget parent;
Arglist args;
Cardinal num_args;

void XtDestroyWidget(w)

Widget w;
ARGUMENTS
args Specifies the argument list to override the resource defaults.
name Specifies the resource name for the created widget, which is used for
retrieving resources and, for that reason, should not be the same as
any other widget that is a child of same parent.
num_args Specifies the number of arguments in the argument list. (
parent Specifies the parent widget.
w Specifies the widget.
widget_class Specifies the widget class pointer for the created widget.
DESCRIPTION

The XtCreateWidget function performs much of the boilerplate operations of widget
creation:

. Checks to see if the class_initialize procedure has been called for this class and
for all superclasses and, if not, calls those necessary in a superclass-to-subclass
order.

e Allocates memory for the widget instance.

. If the parent is a subclass of constraintWidgetClass, it allocates memory for the
parent’s constraints and stores the address of this memory into the constraints
field.

e Initializes the core nonresource data fields (for example, parent and visible).

e Initializes the resource fields (for example, background_pixel) by using the
resource lists specified for this class and all superclasses.

. If the parent is a subclass of constraintWidgetClass, it initializes the resource
fields of the constraints record by using the constraint resource list specified for
the parent’s class and all superclasses up to constraintWidgetClass.

* Calls the initialize procedures for the widget by starting at the Core initialize
procedure on down to the widget’s initialize procedure.

30 Ardent Computer Corporation — Release 3.0

1 September 1988
XtCreateWidget (3Xt) XtCreateWidget (3Xt)

. If the parent is a subclass of compositeWidgetClass, it puts the widget into its
parent’s children list by calling its parent’s insert_child procedure. For further
information, see Section 3.5.

o If the parent is a subclass of constraintWidgetClass, it calls the constraint ini-
tialize procedures, starting at constraintWidgetClass on down to the parent’s
constraint initialize procedure.

Note that you can determine the number of arguments in an argument list by using
the XtNumber macro. For further information, see Section 11.1.

The XtCreateManagedWidget function is a convenience routine that calls
XtCreateWidget and XtManageChild.

The XtDestroyWidget function provides the only method of destroying a widget,
including widgets that need to destroy themselves. It can be called at any time,
including from an application callback routine of the widget being destroyed. This
requires a two-phase destroy process in order to avoid dangling references to des-
troyed widgets.

In phase one, XtDestroyWidget performs the following:
e If the being_destroyed field of the widget is True, it returns immediately.

e Recursively descends the widget tree and sets the being_destroyed field to
True for the widget and all children.

e Adds the widget to a list of widgets (the destroy list) that should be destroyed
when it is safe to do so.

Entries on the destroy list satisfy the invariant that if w2 occurs after w1 on the des-
troy list then w2 is not a descendent of w1. (A descendant refers to both normal and
pop-up children.)

Phase two occurs when all procedures that should execute as a result of the current
event have been called (including all procedures registered with the event and trans-
lation managers), that is, when the current invocation of XtDispatchEvent is about to
return or immediately if not in XtDispatchEvent.

In phase two, XtDestroyWidget performs the following on each entry in the destroy

list:

o Calls the destroy callback procedures registered on the widget (and all descen-
dants) in post-order (it calls children callbacks before parent callbacks).

. If the widget’s parent is a subclass of compositeWidgetClass and if the parent
is not being destroyed, it calls XtUnmanageChild on the widget and then calls
the widget’s parent’s delete_child procedure (see Section 3.4).

o If the widget’s parent is a subclass of constraintWidgetClass, it calls the con-
straint destroy procedure for the parent, then the parent’s superclass, until
finally it calls the constraint destroy procedure for constraintWidgetClass.

* Calls the destroy methods for the widget (and all descendants) in post-order.
For each such widget, it calls the destroy procedure declared in the widget
class, then the destroy procedure declared in its superclass, until finally it calls
the destroy procedure declared in the Core class record.

e Calls XDestroyWindow if the widget is realized (that is, has an X window).
The server recursively destroys all descendant windows.

e Recursively descends the tree and deallocates all pop-up widgets, constraint
records, callback lists and, if the widget is a subclass of compositeWidgetClass,
children.

Ardent Computer Corporation — Release 3.0 31

1 September 1988
XtCreateWidget (3Xt) XtCreateWidget (3Xt)

SEE ALSO (|
XtAppCreateShell(3Xt), XtCreatePopupShell(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

(|

32 Ardent Computer Corporation— Release 3.0

1 September 1988

XtCreateWindow (3Xt) XtCreateWindow (3Xt)
NAME
XtCreateWindow — window creation convenience function
SYNTAX
void XtCreateWindow(w, window_class, visual, value_mask, attributes)
Widget w;
unsigned int window_class;
Visual *visual;
XtValueMask value_mask;
XSetWindowAttributes *attributes;
ARGUMENTS
attributes Specifies the window attributes to use in the XCreateWindow call.
value_mask Specifies which attribute fields to use.
visual Specifies the visual type (usually CopyFromParent).
w Specifies the widget that is used to set the x,y coordinates and so on.
window_class Specifies the Xlib window class (for example, InputOutput, Inpu-
tOnly, or CopyFromParent).
DESCRIPTION
The XtCreateWindow function calls the Xlib XCreateWindow function with values
from the widget structure and the passed parameters. Then, it assigns the created
window to the widget’s window field. ,
XtCreateWindow evaluates the following fields of the Core widget structure:
e depth
i screen
o parent -> core.window
LI
¢y
o width
e height
o border_width
SEE ALSO

X Toolkit Intrinsics — C Language Interface
Xlib ~ C Language X Interface

Ardent Computer Corporation — Release 3.0 33

XtDisplay (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

SEE ALSO

1 September 1988
XtDisplay (3Xt)

)
XtDisplay, XtParent, XtScreen, XtWindow — obtain window information about a (’
widget

Display *XtDisplay(w)
Widget w;

Widget XtParent(w)
Widget w;

Screen *XtScreen(w)
Widget w;

Window XtWindow(w)
Widget w;

w Specifies the widget.

XtDisplay returns the display pointer for the specified widget.
XtParent returns the parent widget for the specified widget.
XtScreen returns the screen pointer for the specified widget.

XtWindow returns the window of the specified widget.

XtClass(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface (

34

Ardent Computer Corporation— Release 3.0

1 September 1988
XtDisplaylnitialize (3Xt) XtDisplaylnitialize (3Xt)

NAME
XtDisplaylInitialize, XtOpenDisplay, XtDatabase, XtCloseDisplay — initialize, open, or
close a display

SYNTAX
void XtToolkitInitialize()

void XtDisplaylnitialize(app_context, display, application_name, application_class,
options, num_options, argc, argv)
XtAppContext app_context;
Display *display;
String application_name;
String application_class;
XrmOptionDescRec *options;
Cardinal num_options;
Cardinal *argc;
String *argv;
Display *XtOpenDisplay(app_context, display_string, application_name,
application_class,
options, num_options, argc, argv)
XtAppContext app_context;
String display_string;
String application_name;
String application_class;
XrmOptionDescRec *options;
Cardinal num_options;
Cardinal *argc;
String *argv;
void XtCloseDisplay(display)
Display *display;
XrmDatabase XtDatabase(display)
Display *display;
ARGUMENTS
arge Specifies a pointer to the number of command line parameters.

argv Specifies the command line parameters.
app_context Specifies the application context.

application_class Specifies the class name of this application, which usually is the gen-
eric name for all instances of this application.

application_name
Specifies the name of the application instance.

display Specifies the display. Note that a display can be in at most one
application context.

num_options Specifies the number of entries in the options list.

options Specifies how to parse the command line for any application-specific
resources. The options argument is passed as a parameter to
XrmParseCommand. For further information, see XIlib — C Language
X Interface.

DESCRIPTION

The XtDisplaylInitialize function builds the resource database, calls the Xlib XrmPar-
seCommand function to parse the command line, and performs other per display

Ardent Computer Corporation — Release 3.0 35

1 September 1988

XtDisplaylnitialize (3Xt) ‘ XtDisplaylnitialize (3Xt)

initialization. After XrmParseCommand has been called, argc and argv contain only
those parameters that were not in the standard option table or in the table specified
by the options argument. If the modified argc is not zero, most applications simply
print out the modified argv along with a message listing the allowable options. On
UNIX-based systems, the application name is usually the final component of argv[0].
If the synchronize resource is True for the specified application, XtDisplayInitialize
calls the Xlib XSynchronize function to put Xlib into synchronous mode for this
display connection. If the reverseVideo resource is True, the Intrinsics exchange
XtDefaultForeground and XtDefaultBackground for widgets created on this
display. (See Section 9.6.1).

The XtOpenDisplay function calls XOpenDisplay the specified display name. If
display_string is NULL, XtOpenDisplay uses the current value of the —display
option specified in argv and if no display is specified in argv, uses the user’s default
display (on UNIX-based systems, this is the value of the DISPLAY environment vari-
able).

If this succeeds, it then calls XtDisplayInitialize and pass it the opened display and
the value of the -name option specified in argv as the application name. If no name
option is specified, it uses the application name passed to XtOpenDisplay. If the
application name is NULL, it uses the last component of argv[0]. XtOpenDisplay
returns the newly opened display or NULL if it failed.

XtOpenDisplay is provided as a convenience to the application programmer.

The XtCloseDisplay function closes the specified display as soon as it is safe to do so.
If called from within an event dispatch (for example, a callback procedure),
XtCloseDisplay does not close the display until the dispatch is complete. Note that
applications need only call XtCloseDisplay if they are to continue executing after

closing the display; otherwise, they should call XtDestroyApplicationContext or just
exit.

The XtDatabase function returns the fully merged resource database that was built
by XtDisplaylInitialize associated with the display that was passed in. If this display
has not been initialized by XtDisplayInitialize, the results are not defined.

SEE ALSO
XtAppCreateShell(3Xt), XtCreate ApplicationContext(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface
36 Ardent Computer Corporation— Release 3.0

(

(

XtGetGC (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

SEE ALSO

1 September 1988
XtGetGC (3Xt)

XtGetGC, XtReleaseGC — obtain and destroy a sharable GC

GC XtGetGC(w, value_mask, values)

Widget w;

XtGCMask value_mask;

XGCValues *values;
void XtReleaseGC(w, gc)

Widget w;

GC gc;
gc Specifies the GC to be deallocated.
values Specifies the actual values for this GC.
value_mask Specifies which fields of the values are specified.
w Specifies the widget.

The XtGetGC function returns a sharable, read-only GC. The parameters to this
function are the same as those for XCreateGC except that a widget is passed instead
of a display. XtGetGC shares only GCs in which all values in the GC returned by
XCreateGC are the same. In particular, it does not use the value_mask provided to
determine which fields of the GC a widget considers relevant. The value_mask is
used only to tell the server which fields should be filled in with widget data and
which it should fill in with default values. For further information about value_mask
and values, see XCreateGC in the XIib — C Language X Interface.

The XtReleaseGC function deallocate the specified shared GC.

X Toolkit Intrinsics — C Language Interface
Xlib - C Language X Interface

Ardent Computer Corporation — Release 3.0 37

1 September 1988

XtGetSelectionValue (3Xt) XtGetSelectionValue (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

XtGetSelectionValue, XtGetSelectionValues — obtain selection values

void XtGetSelectionValue(w, selection, target, callback, client_data, time)
Widget w;
Atom selection;
Atom target;
XtSelectionCallbackProc callback;
caddr_t client_data;
Time time;

void XtGetSelectionValues(w, selection, targets, count, callback, c<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>