
AU [flULAT IOU ORIEtlTED, DYtlArJIC fnCROPROGRAtmABLE PROCESSOR
(VERSIOn 3)

by

Charles Neuhauser

25 October 1975

7echnical ~Jote no .. 65

Digital Systecs Laboratory

itanford Electronics Lab~ratorles

Stanford University

Stanford, California 94305

7hc \.Iork dcscr-ibcd herein \las partially supported by the U.~.
Encr~y Hcnearch and Develop~ent Administration under contract
UAT(04-3) 326PA39.

Dir,ital Systens Laboratory

Stanford Electronics Laboratories

Technical Hote No. 65

25 October 1915

All EIJULATIOR ORIEIlTED, DYNAt1IC tlICROPROGRA~n'IABLE PROCESSOR
(VERSION 3)

by

Charles Neuhauser

ABSTRACT

This report describes the CPU of the Stanford
Eoulation Laboratory, known as the EMHY systea. The
El1t1Y CPU is a 32 hit nicroproerammable prooessor
desir-ned specifically for the ta~k of emulation
research. £he control store is dynamic, that is, it
is uri table by the CPU and thus serves for data
storage as well as for ~icroinstruction stora~e.

This report is a reissue of two previous
reports, of the same ti tIe, issued at J.ohn.s Hopkins
Univer5ity as Hopkins Computer Research Reports 128
and '28.1. Ilouever, the r.m.terial in this report
d1fCers sODewhat fro~ the previous reports in that
the previous reports provided a desien specification,
and this report describes the sY3te~ 8S it is nov
i~plcDented Specifically, this report provides an
Ern·IY syster.1 user with the basic information necessary
to cicropror,raC'l the E~ntY CPU. and to desir.n hardware
and softuare interfaces to the systeo bus.

PREFACE

7his report describes the Stanford Emulation Laboratory.
7his laboratory is the result of several years of development
first begun at the Johns Hopkins University. Because of its
scope, the EMUY project includes the contributions of several
individuals. Specifically, the nuthor wishes to acknowledre t~e
follow people:

System Design Affiliation

Joe Davison
Lee Hoevel
Dr. Robert McClure
Dr. Hichael Flynn

Syste~ Implementation

Bob Donenico
Hike Fung
Dan Davies
Stan Levy

Affiliation:

(1)
(1 +2)
(3)
(1+2)

(3)
(3)
(2+3)
(3)

(1) The Johns Hopkins University
(2) Stanford University
(3) Palyn Associates Inc.

Baltioore, rtaryland
Stanford, California
4100 Moorpark Ave.
San Jose, California 95117

--- TABLE OF CONTENTS ---

EMHY PROCESSOR -- PRINCIPLES OF OPERATION

1. GENERAL INTRODUCTION

1.1 Principal Features

1.2 Processor Specifications and Implementation

1.2.1 General Spec~fications
1.2.2 Implementation

1.3 EHHY System Conri~uratlon

2. PROCESSOR STRUCTURAL DETAILS

2.1 Processor Structure

2.1.1 General Principles
2.1.2 Specific Structure

2.1.2.1 I-~achirie Sequence
~.1.2.2 T-machine Sequence
2.1.2.3 A-machine Sequence
2.1.2.4 Special Sequences

2.2 Microinstruction Set Stucture

2.2.1 General Structure
2.2.2 Brief Description of the Microinstruction Set

2.2.2.1 Functional Instructions
2.2.2.2 Memory Instructions
2.2.2.3 Procedural Instructions

2.3 Address Structure

2.3.1 Registers
2.3.2 Control Store
2.3.2 Bus Addresses

2.4 Machine State Word

2.4.1 Condition Code Semantics
2.4.2 Condition Code Testing

2.5 Determination of Microinstruction Execution Time

2.5.1 Basic Microinstruction Execution Time
2.5.2 Control Store Contention
2.5.3 Bus Access Timing

1-1

1-2

1-2
1-3

1-4

2-1

2-1

2-1
2-2

2-2
2-3
2-3
2-4

2-4

2-4
2-5

2-5
2-6
2-7

2-8

2-8
2-8
2-9

2-9

2-10
2-10

2-11

2-11
2-12
2-12

2.& Exceptions

3. ~IICROINSTRUCTION ~YNTAX AND SEMANT Ies

Lor,ical
Arithr.letic
Shift/Rotate
Extended Arithmetic
Extract
Insert
Conditional

Store Register
Load Register
Load Icmediate
Indirect Access
Pointer ~]odif'ication and Loop
Branch

2-13

3- 1

3-2
3-3
3-4
3-5
3-7
3-8
3-9

3-10
3-11
3-12
3-13
3-15
3-16

4. BUS SYSTEtJ INTERFACING 4·-1

4.1 Inter-unit Communication Philosophy 4-1

4.2 Bus Line Semantics 4-1

4.2.1 Electrical Semantics 4-1
.4.2.2 Logical Semantics 4-2

4.2.2.1 Direct.Lines 4-2
4.2.2.2 Access Control Lines 4-3
4.2.2.3 Transfer Control Lines 4-3
4.2.2.4 Data Lines 4-4

4.3 Sequencing of Bus Operations 4-4

4.3.1 Lor,ical Structure of the Access Controller 4-5
4.3.2 Logical Structure of the Transfer Controller 4-7

4.3.2.1 Address Transmission Sequence 4-7
4.3.2.2 Data Transmission Sequence 4-9
4.3.2.3 Bus Error Conditions 4-10

4.4 Electrical Requirements of the Bus System 4-10

EtIrlY PROCE,sSOR -- PRIr-.sCIPLES OF OPERA7ION

1. General Introd~ction

The EtHIY processor is a dynar::lically Glicroprorrammable nachine
specifically desir.ne~ for emulation oriented tasks 1n research,
education and production environments. By ~akinr use of hirh
speed RAIl technolorY in the processor control store, this system
allous for convenient user micropror,ramminr,. In fact, the Ettrty
system is desir,ned to allow the end user to become directly
involved with the ~anipulation of the processor's prinitive
computational and storar.e resources.

This report provides the user with the 1nformat1on necessary
to desisn micropro~rams for the EMHY processor and to de5i~n
hardware and softuare interfaces to the bus system. Principles of
operation for the various system bus devices cur~ently available
in the laboratory will be the subject of a future report.

1.1 Principal Features

One of the principal design obJectives of EHMY has been to
give the user direct access to the pri~itive resources such as
adders, shifters and storage. This is necessary if the user is to
e~ulate conventional processor structures efficiently. Primitive
resources in the processor are directed in their operation 'by a
microprogram stored 1n a 4096 word control store, whose locations
may be written in a ti~e comparable to the read cycle. This
dynamic accessing capability of control store allows the user to
quickly load and codify control ~icropro~rams for the purpose of
dehugr.ing and experimentation. ~econd, because the control store
may be accessed under the direction of the current
microinstruction word, control store may serve as the primary fast
storage resource in a tar~et machine emulation. Thus, control
store locations cay be used, for example, to hold data emulatin~
the registers of a tarGet machine. Finally, the two level storage
hierarchy consisting of main meaory and control store allows the
user to establish an explicit caching situation in which low usage
cicroinstructlon and data sequences may be held in main store and
subsequently moved into control store on a demand basis.

In choosing the microinstruction set or E~mY the primary
objective WB3 to y,ive the user explicit access to primitive
resources in a way which reflects the implicit usage or primitive
resources in conventional processors. For purposes of d~scussion
the primitive resources of EHMY oay be divided into three classes:

1) Functional -- adder, shifter, etc.,
2) Uecory, and
3) Procedural -- testing, branching, etc .•

1- 1

To control these resources efficiently the 32 hit nicroin~~rt:ction
uord hns been divided into tvo h;llves. In 0s~cnce, one h~li'
controls functional resources antI the other half controls ~e~orv
resources,wlth both halves havlnr. the capability of aontrol11nr
procedural resources. In conventional ter~~ one ~ay think of the
~icroinstruction as being a hybrid of 'horizontal' and 'vertical'
control orp.anization in that half of the microinstruction appears
to be 'verticallY' microprogracming a subset of the available
resources. This hybrid approach allows the user to capture in the
emulator the icplicit parallelis~ available in conventionally
structured target nachines.

Pricitive resources in the EHMY have been designed to be
~inirnally structured and easily accessible, in order to allow the
user to structure them as required. All internal data paths are
32 bits in lJldth, the same aJ the microinstruction ~ord width.
The principal runctional resources available include a fast
arith~etic/lor.ical unit and a fast single and double word shifter.
Henory·resources consist of an eiy.ht rer,ister file, control store
and the processor bus system where main memory resides. for
purposes of specifying the sequencing of microinstructions a full
range of condition codes are r,enerated and stored by the
processor. These codes maybe tested flexibly by the
~icropro~rammer and used to influence the sequencing of
microinstructions.

Since it is intended as an emulator host for a wide class of
machines, the EHttY processor is capable of handling a variety of
resource requirements with respect to word size. This is
accomplished by using the fast shifter resource in conjunction
with immediate mask data from the current microinstruction word to
allow the micropro~rammer tQ manipulate directly bits and fields
within data words. Thus, the EMilY processor provides the user
with a ereat deal of freedom when oatch1nRthe resources in the
processor to particular tarr.et machine requirements. While the
general desiGn philosophy has been to provide eenerality in the
ErIMY resources and their access, several microinstruction classes
have been specified which give the microprogrammer the capability
of build specific high level operations such as multiply and
divide efficiently.

1.2 Processor Specifications and Implementation

1.2.1 General Specifications

All data paths in the EHHY are 32 bits in width. which is the
same as the cicroinstruction word width. Within the processor are
ei~ht progracoer accessible registers of which sev~n are eeneral
purpose and one is reserved for oachine state information.
Control store consists of 4K words, which may be used for both
cicroinstruction and dynamic data stora~e. All EHHY arithmetic
operations including cricroinstructlon address formation are two's

1- 2

ao~plenent arithmetjc.

The processor host bus system has a 32 bit data word
capability and is based on a 24 bit addressiny. schene, thu~
allouing direct access to 16M discrete locations. Lorically, the
host bus syste~ uses an asynchronous intercon~unication sehe~e to
allow devices of various speeds to cooperate efficiently. _~ the
basic system confir,ura~ion the main memory systen consists c~ ~4K
bytes of storage with a cycle time of approximately 1 usec.

tlicroinst ruction execution times require varying lengtt~ of
tir.1e to complete based on multiples of the 35 nsec internal
~achine cycle. In a simple situation in which control memory is
referenced only for the microinstruction a complete cycle consunes
385 nsec or eleven internal cycles, of which 6 cycle~ are used in
the cic~oinstruction fetch and the remainder are spent in actual
operand processinr,. If subsequent data accesses to control ~torc
ar~ required the cycle will be extended by 180 nsec.

Host bus interactions (with the processor as either active or
passive participant) require varying a~ounts of time dependln~ on
the particular bus units involved. When the EMHY CPU initiates
the access, however, it is able to resume processine while
awaiting the response.

1.~.2 Implementation

The EMHY system is based on several technologies,
specifically:

1) Processor Loelc
2) Control Store
3) Bus System

Emitter coupled lo~lc (HEeL 10K)
N-channel MOS (AMS 7001)
Open Collector TTL

Fi~ure 1-1 shows the system layout. The majority of the CPU is
contained on a single 12" x 15" wlrewrap board and consists of
approximately 300 Ie packages. Below the processor board is a
card frace which holds the control store and peripheral bus units.
Interconnection on the backplane of this card rack serves as the
physical system bus. Control store consists of nine cards each
containing a 4 bit by 4K slice of the total system (one card is
used to store the parity check bit) and a single additional card
containing ciscellaneous address circuitry. The CPU communicates
with the bus and the control store through another card called the
'I-Board'. This card is used to control micromemory seQuencin~
and some aspects of bus communications. Access to the bus is
controlled by an 'Arbiter Card' uhich performs the access control
functions described in section 4.

The reoainine card slots a~e available for bus devices, such
as, the Datapoint Interface, Maintenance Console, and Main Memory
Controller.

1- 3

1 • 3 ElmY ~ys ter.l Con fic;ura t ion

FiGure 1-2 illustrates a typical systeM confip,uration of the
r.rtr1Y processor. The particular confis;uration shown is intended to
~ervc as ~n e~ulation research l~boratory in which variou~ machine
architectures, both 'hard' and '~oft' t ~ay be studied and
analyzed. Laboratory facilities enable the experimenter to
r,enerate emulator ~icropro~rams and tarr,et machine test pro~ra~s.
load these proerams, control their operation during the experiment
and eather results for analysis upon termination.

Accessibility and observability of the EMMY and other
laboratory resources is the key to success in this environment and
is dependent upon efficient inter-unit communications. Primary
corununications in the laboratory syster.l take place on the host bus
system which provides a 32 bit, asynchronously controlled data
path betYeen units. In addition to the basic EMMY processor,
consisting of the EUMY CPU, cont~ol store and an emulation
oriented, main mecory, the host bus may also include the
following:

1) Disk controller,
2) Pror.rarnrner~s con~ole,
3) Block access controller,
4) Datapoint 2200 interface, and
5) Auxiliary bus translator.

Host hus structure is such that any two units (with adequate
logical capability) oay use the bus for communication w~thout the
intervention of the EUNY CPU. Furthermore, the EHMY CPU and
control store are directly accessible from the bus, thus allowing
the experimenter to control the system from an external bus unit
such as Datapoint 2200 terminal. The Datapoint 2200 is an
'intelligent' terminal systeo consisting of a processor, 8K
(bytes) of memory, a CRT, keyboard and two cassette tape drives.
During laboratory operation the experimenter will use the
Datapoint 2200 to initialize the EMMY processor and control its
operation. By usinr, the limited, though specialized, proceSSing
capabilities of the Datapoint 2200 to handle user/system
interaction the EMHY processor system can be devoted to the
emulat,ion task.

For special purpose applications auxiliary bUB translators
cay added to match the EMHY host bus electrically and logically to
the requirements of a particular manufacturer-s peripheral line.
Also included on the host bus system is a block access controller
designed to Dove blocks or data between the host bus memory
devices in an efficient manner without constant CPU supervision.

1- 4

EXPANSION
AREA

CPU

VENT

CONSOlE
MEMORY

M9I>RY

POWER SUPPLY

EftlY SYSTEM FRAME

CPU - T and A machines

Q
a:
< a::

CONTROL MEMORY 0 L&J PERIPHERAL UNIT m -• cc INTERFACES !IX - cc

CPU and CARD RACK

E:MMY SYSTEM - PHYSICAl ARRMIGEMENT

FIGURE 1-1

I , .. " r~ .. ~,. ••• lJu.u ,~ •• u , ... " .. , "' ... 4tU III'P •• ,:U ... ;'~~.

I

i

~ f1AIN HOST BUS

32

EMMY BLOCK 2200 PDP-ll
ACCESS INTER- BUS

MAIN CPU CTL FACE XLATER

MEMORV

'HeRO
MEMORY

11111111111111."11111111111111 111111 .. 1111 .. 1 _._._...................... " .. 1................ "" ,

FIgure 1.2

............................. _, · .. ··· .. · .. ·1
--~----r-----~--~----~-p----8

Il i _ .. _ .. I." ~ I

MG
TAPE

Structure of Emulation Laboratory FacilIty

DISK PRT

2. Proces~or ~tructural Details

In order to micropropram thp. EMHY processor effectively the
user must be familiar with the rencral principles of the
processor's internal structure. However, unlike many other
~icroprogramoable machines, the user is not required to cOMprehend
minute details of the processor operation. Likewise, due to the
'hybrid' nature of the processor's instruction set,
microinstruction specification is as straip.ht f~rward as in a
~vertical' architecture but retains the resource access
characteristic of 'horizontal' organizations. In this section the
user will be introduced to the basic structural aspects of EMMI,
the general microinstruction formats, a~d a procedure for
est1Qat1ng the t1min~ of microinstructions •. In the following
section (3) the syntactic and senant1c details of each instruction
type are presented.

2.1 Processor Structure

2.1.1 General Principles

Microprogramming is an activity concerned with the direct
control of machine resources. Within the E~fMY CPU machine
resources fall rouehly into three catagories:

1) Functional - concerned with data transformation,
2) Memory - concerned with stora~e access, and
3) Procedural - concerned ~ith the selection (perhaps

conditionally) of the next microinstruction.

The organization of EHt1Y allows the programmer to access and
control these resources independently.

Figure 2-1 illustrates the functional structure of the EMMY
resources (the actual stucture is discussed later and is shown in
figures 2-2 through 2-5). 70 control the three resource groups
(functional, memory and procedural) the microinstruction word is
divided into two halves: the left half (bits 31-18) which controls
the functional resources and the right half (bits 17-0) which
controls the aemoryresources. Microinstructions are normally
selected sequentially from control store. This order may be
changed conditionally or unconditionally by instructions from
either half of the current oicroinstructlon word.

Associated with the control of the resource groups in EHMY
are three rinite state sub-~achines designated as follows:

1) T-machine (Transformation)

2) A-machine (Auxiliary)

2- 1

- controls runctional
resources

- controls memory
resources, and

3) I-~achine (Instruction fetch) - controls procedural
renource3.

Thesc sllb-r.Jach-inc~ CClC!h control t~heir assQciutcd resources under
the direction of" the applicable :iep;ment of the microinstructIon
word. Each machine functions independently of the others except
when data dependent conflicts occur. Thus, for exa~ple, the
I-machine is continually attemptin~ to fetch the next
Q~croinstruction except when it finds the control memory busy,
possibly answering a request by the A-machine.

In addition to the three sub-machines discussed above the
EMHY also has a forth sub-~achlne, the bus controller. The bus
controller is not under the direct control of the microinstruction
word but rather answers requests presented to it by the A-~achine
or the system bus. When requested by the A-machine the bus­
controller yill oversee the movement of data between EMMY internal
storage (i.e. rep.isters or control store) and the EHMY bus system.
Once initialzied the bus controller will carry out the bus
operation requested independently thus allowing the A-~achine (and
consequently the EHMY CPU) to continue process1n~
microinstructions. THe bus controller also handles bus requests
for access to EMHY re~isters and control store by interveninr in
the normal sequencin~ of the I-machine.

2.1.2 Specific Structure

Figure 2-2 illustrates the important data paths and units
which comprise the EMMY processor. In Reneral, the processing of
an EMMY mlcroin~truction proceeds in three steps each under
control of one processor sub-machine. The normal sequencing is:
I-machine first, T-machine second and A-machine last. Dependin~
on the particular microinstruction one or more of the sub-machine
sequences may be omitted. In addition to these sequences, EMMY
may also carry out special purpose sequences associated with bus
access and interrupt handling.

2.1.2.1 I-machine Sequence (Figure 2-2)

The address of the next microinstruction and other state
information is maintained in register 0 of the register file. At
the start ,of the I-sequence this address is fetched from HO and
placed in ufofAR, the micromemory address register. The micromemory
is cycled and the results or the ~ead operation are deposited in
the MIR (microinstruction register) for decoding. Simultaneously,
RO is incremented, using the ALU, so that it points to the next
(assumed) microinstruction.

2- 2

2.1.2.2 T-machine Sequence (Fi~ure 2-3)

A typical 7-Qachine sequence begins with the retchin~ of one
or two operands from the reeister file. These operands are placed
in the auxiliary rer.isters Ra and Rb. Operands are processed as
required by the ALU and the result is returned to the register
iile. If condition codes are r,enerated by the result then the
~achine state information contained in RO of the register file is
u~dated. A functional instruction may obtain one operand froM the
11IH as i~mediate data via the data path between the MIR and the
second operand input to the ALU.

On microinstructions requirinr. a shift or rotate operation
the auxiliary reeisters Ra and Rb are used together to ror~ a 64
bit shift and rotate unit. Shiftinc is controlled by the ~hift
counter and ALU.

2.1.2.3 A-machine Sequence (Figure 2-4)

Generally, A-machine sequences move data between two memory
resources (e.g. register to micromemory, Qicromemory to bus
neoory). In addition, some A-machine sequences may update
rer.isters using the ALU to perform simple operations such as
addition. Address input to the micromemory 1s via the rnicrocemory
address reeister (ulfAR). Durinf A-machine sequences the uHAR
obtains an address from either the register file, the current
microinstruction word residing in the MIR or the EMMY bus systen.
Data input to micromemory resides in the rnicromemory data rep.ister
(uMDR). Inputs to the uHDR originate in the re~ister file or on
the systen bus. l1icromernory outputs are directed to either the
bus system via the bus data rey.ister (SDR) or the 're~ister file
via the ALU~

A-machine sequences which involve the EUMY bus system beein
by moving an address into the BDR and initializing the bus control
unit. On bus write operations the EDR is loaded with data (fron
the register file or micromemory) after the address is accepted by
the bus system. On bus read operations data is returned to the
CPU and is deposited in the register file or micromemory as
required.

Due to the asynchronous nature of the EMMY bus system, the
A-cachine only initiates the bus transfer action., while the
actual transaction is completed later. In the meantime,
oicroinstruction fetching may continue unles another attempt is
made to access the bus system. In this case the A-machine will
not proceed until the previous transaction is completed.

2- 3

2.1.2.4 Speci?l 3equencez (figure 2-5)

BU3 unit~ external to the EMHY processor may read or write
rerister f~~e a~rl micromemory locations on a shared basis with the
CPU. for s~c~ operations address information from tho bus is
directed ~c ~~~her the uHAR or re~ister file access controller
(not Sho~n;. Ja~a paths and sequences correspond to the CPU
initiated se~:ences described above for register file, micronemory
and bus systEm transfer.

An' L1t'2~-- U~G sequence begins with. a special cor.lInand from the
bus system. ;.ie d2.ta is transferred, but instead the address
received fr0~ ~he bus system is used to address micromemory via
the uMAR. R~~ister 0 fr6m the register a rrom the register file
is then pla~~c in this micromemory location. New contents ror
register 0 ~re retrieved from the even-odd pair associated with
the given :~:atjon and loaded into HO of tbe register file. By
this pr~cess th~ old machine state is saved and the new machine
sta te S;,!t wi 7.~o~t any interveninr. CPU processing.

2.2 Mlcroin3~r~c~ion Set Structure

2_2.1 Gener&: Structure

EHMY 171 ;_i'oi!1~tructions are designed to allow the
microprof.ru[~er to access primitive resources in a direct ~anner.
This accoM~L:~hed by logically dividing the 32 bit
microinstr~~tion into two halves; a left half, 14 bits wide, and a
right half ~ l;: N. ts wide. The three resource groups discussed
earlier are tesignated functional, memory and procedural (F t M,
and P respe~~ively). Each half may designate control for one
group of r~~Cl.rces and additionally the right half may be used as
imoediate cata in functional resource operations. This then gives
rise to five basic microinstruction formats which designate
control for pa~ticular resources:

LEFT HALF
F-control
F-contr'ol
F-control
P-control
P-control

RIGHT HALF
F-data
H-control
P-control
M-control
P-control

For each microinstruction (F, H or p) a 'NOP' code exists thus
allowing the microprogrammer to use a specific resource
independently.

Unless microinstruction sequencing is explicitly modified the
normal sequence of cicroinstruction fetch is sequential by control
store location. Because the current microinstruction address is
maintained in the register file the microinstruction fetch
sequence may be modified by a functional or memory

2- ~

l!1icro inst r'lC t ion ..

2.2.2 nrie~ rycscription or the ~Iicroinstruction Set

Because ~he microinstruction word in EMMY is a hybrid of
vertical and horizontal format, the microinstruction set consists
of sever~l t~ou3and instructions even ~here rer.lster and me~ory
address de~irnations are excluded. To make discussion easier the
Qicroinstruc:~0ns have been divided into classes and sub-classes.
The basic ~~ct33e~ of microinstrutions are:

1) Functional ~ data transformation,
2) t1emc·r·y - data storaee and address calculation, and
3) Pro'Jedural - microinstruction flow of control.

In the discussion below the general features and characteristics
of each class are examined. Specific details are given in Section
3.

2.2.2.1 Functional Instructions

Functional microinstructions are designed primarily to
perform opspations which transform data (i.e. arithmetic and
lor-icaloper3tions). These microinstructions are performed by the
T-machin~ and are specified by the left half field of the
microinstruction word. Figure 2-6 shows bit formats of the six
currently implemented functional microinstructions. By sub-class
the functio~al microinstructions are:

1) Lcr:ical
2) Aritor.letic

3) Shi~'t/Rotate

.4) Ex:'ended

5) Extract

6) Insert

- performs bitwise Boolean operations,
- performs two's complement arithmetic and

compare operations,
- performs single and double length shift

and rotate operations,
- perfor~s fragments of specialized

arithoetic operations,
- isolates a specific field within a data

word, and
- inserts a specific field into a data word.

The left three bits of the left half field of the microinstruction
specify the microinstruction sub-class as shown in figure 2-6.
For the first four sub-classes (Logical, Arithmetic, Shift/Rotate
and Extended) the use of the remaining hits is the same. Four
fields are identified:

1) I - use or non-use of immediate data,
2) OP - specific operation,
3) BF or BF/VAL - operand register or small immediate value
4) AF - operand source and sink register.

2- 5

Generally speakinrt these cicroinstructions process two operands
and produce a sin~le result which is returned to the register
specified by the AF field. The I field determines the source of
one operand; either from the rer,ister file (as specified by the BF
field) or f~om the riy.ht half of the microinstruction word
(expanded as described below)_

For the Insert and Extract instructions the fields desi~natod
ha~e the followinp, meaniny.:

1) ~OS - amount of field rotation,
2) AF - operand source and sink register, and
3) BF - operand source.

The insert and extract instructions always use immediate data from
the right half field of tbe current microin3tructioll_ When used
for immediate data the 18 bit quantity in the right half field i3
expanded to form a 32 bit quantity as shown in figure 2-7. The
right 16 bits of the field are data and the left two bits (17 and
16) specify whether the 16 bit data quantity given is to b~ right
or left justified and whether the remaining 16 bits are to be zero
or one filled.

2.2_2.2 Memory Microinstructions

Hernory microinstructions are used by the micropro~rammer to
move data between the various memory ~esource3 of the EMHY system
and to perform simple memory relRted arithmetic operations, such
as address calculation. All memory type microinstructions are
specified in the 18 bit right half field of the ~icroin5tructipn
\lord. Execution of these microinstructions is controlled by the
A-~achine. Five memory microinstructins are specified:

1) Load Register - load register from control store,
2) Store Register - store register to control store,
3) Load Imcediate - load register with immediate data,
4) Indirect Access - memory to memory transfer, and
5) Pointer Modification - register address calculation and

test.

The first three bits of the 18 bit field are used to designate the
particular memory sub-microinstruction desired (figure 2-8). For
the first three sub-classes (Load Register, Store Register and
Load Immediate) have two field3 specified:

1) CF - designates a register, and
2) ADR - designates a control store address or immediate data.

The Load Immediate instruction is used primarily to load control
store addresses into registers. An operation useful in
microprogram branching.

2- 6

The remaininr, two sub-classes (Indirect Acce and ?ointe~
tlodification) have rive fields specified:

1) CF - source and/or sink operand re~ister,
2) OF - sink operand or small im~edlate value,
3) CF - sub-opcode field,
4) XOP - sub-opcode field, and
5) VAL - im~ediate value (-8 to +7).

The pOinter modification instruction, in addition to its adc~ess
calculation capability, is also used to directly control the
sequencing of the microinstruction stream. Its primary usefulness
is in the microproeramrning of short counting loops.

2.2.2.3 Procedural Microinstructions

Procedural microinstruction are used to control the
sequencin~of the ~icroinstruction stream. A procedural
microinstruction may be specified in either half of the
miroin~truction word. This class of microinstructions may be
considered to control the I machine, in that procedural
instructions may modIfy the current microinstruction address in
rerrister 0 either directly or indirectly. FiBure 2-9 shows the
formats of t~e three procedural class microinstructions:

1) Conditional,
2) Branching, and
3) Looping (Pointer Modification).

A Conditional cicroinstruction appears only in the left half field
of the nicroinstruction word. Two fields are given:

1) CHASK - code test mask, and
2) COP - test type specification.

The Conditional microinstruction performs a test on the condition
or indicator codes (see section 2.4.2) maintained in reeister o.
Depending on the outcome of this test the microinstruction
specified in the right half field of the microinstruction word is
executed or skipped. Since the microinstruction in the right half
field may, among other thingst modify the current microinstruction
address 1n register 0, conditional branching may be implicitly
specified.

In performing the test specified, the Conditional instruction
uses the CMASK rield as a mask to identify relevant bits in the
condition or indicator codes'and uses the COP to specify the test
type and the logical sense (i.e. true or false) of the result.
The nature of the conditional test is explained ~ore fully in
section 2.4.2 and the exact definition is given in section 3.

2- 7

The Branch oicroinstruction, which appears only in the ri~ht
half field of the microinstruction word, perforMs tests on the
condition or indicator codes in the sa~e nanner a~ the Conditional
microinstruction. An additonal field, the VAL field, is
specified. If the test result 13 logically 'true' then the sir.n
extended value of the VAL field is added to the next
microinstruction address pointer, thus causinr. a short relative
branch. The fields DNASK and XOP correspond function~lly to the
CMASK and COP fields of the Conditional m1croinstruct~on.

The 'Loopine' procedural microinstruction is anothe~ aspect
of the Pointer Modification microinstruction described in the
preceeding section. In addition to performing simple arithmetic
calculations (addition, subtraction) on two registers, the Pointer
Modification microinstruction may test the results of the
calculation and based on these results perCorm a short relative
branch. The distance of the relative branch 1s given by the VAL
riel~ (sign extended). The Pointer Modification or 'Looping'
microinstruction is intended primarily to allow the
oicropro~rammer to specify short counting loops in microcode, such
as might be required in multiply or normalize operations.

2.3 Address Structure

Basic Memory resources within the EMMY system consist of
~egisters, control store and the bus memory system. Nearly all
memory locations are general purpose 1n nature. Those which have
special segnificance will be discussed below.

2.3.1 Registers

Eight reGisters are provided in the EHMY CPU. One o~ these,
register 0, is dedicated (in hardware) as the machine state
rep.ister containing information such as the next microinstruction
address pointer and the current condition codes. The remaining
seven registers are available for general use by the
microprogrammer.

2.3.2 Control Store

Control store consists of 4096 locations. All locations are
available for general purpose use by the programmer except
locations 044 through 04D which are reserved, by convention, for
interrupt information according to the following scheme:

Address
044-045
046-047"
048-049
04A-04B
04C-04D

Interrupt Source
Programmer's Console
Main Memory System
Datapoint Interface
Block Access COntroller
Bus Time-out.

2- 8

When an interrupt occurs the EHHY hardware will store the current
contents of register 0 into the odd location of the appropriate
interrupt address pair. Then the contents of the even location
are used to replace the current contents of rer,ister a and thus
initialize c new ~achine state. No other reristers are chanred.

2.3.3 Bus Addre3ses

Bus adaresses are specified by a 24 bit quautity which allows
the rnicroprocrammer to directly access 16M locations. The
follcw~ng locations have been assi~ned specific purposes:

Address
FFOOOO-FFOFFF
FF1000-FF1007
FEOOOO-FE0003
FDOOOO
000000-03FFFF

Purpose
Control store Access
CPU Register Access
Programmer's Console
Datapoint Interface
Main Memory.

2.4 Machine State Word (Reeister 0)

(000 to FFF)
(0 to 7)
(see Appendix)
(see Appendix)
(see Appendix)

Register 0 of the register file contains information about
the cur~ent state of the EMHY processor. Bit formats of this
re~ister are eiven in figure 2-10. The contents of rer,ister 0 may
be divided lor,ically into four groups:

1) Nicroaddress Register (MAR),
2) State,
3) Indicator Codes, and
4) Condition Codes.

7he MAR (bits 11-0) contains the pointer to the next
~icroinstruction. By manipulating this pOinter, either directly
with functional or memory microinstructions or indirectly with
procedural microinstructions, the microprogramrner may change the
normal sequential fetching of microinstructions.

In the four bit State field only two bits are currently used.
One bit (15) designates whether the EMHY processor is halted or
running, and the other bit (14) specifies whether interrupts are
enabled or disabled.

The high 8 bits (31-24) of register 0 contain the processor
set condition codes and the following 8 hits (23-16) contain the
programmer set indicator codes. The contents of either code group
may be tested using the Conditional or Branch ~icroistruction
described in the previous section.

Indicator codes are intended for use by the microprogrammer
to maintain temporary information which is used directly in
conditional tests. Indicator codes are not disturbed by the
processor when it updates other register 0 information, such as

2- 9

the MAR or the condition codes. ?he indicator codes usually Cint
application in holdinr state information about the e~ulated tar~e~
Qachine, such as whether the current emulated instruction starts
on a full or half word boundary.

2.4.1" Condition Code Semantics

Eight condition code bits are specified. Condition codes are
set according to the results of Lo~ical, Arithmetic and some
Extended class microinstructions. Bit semantics, as shown in
fiGure 2-11, are relatively independent thus facilitating complex
conditional testing using the Conditional or Branch
microinstruction.

The first two bits of the condition codes t.ive direct data
relatln~ to ar1thmetic results. The overflow combination is set
if the carry into the sign bit (bit 31) differs from the carry
out. Bits 29,28 and 27 of the condition code correspond to the
generated carry and the high and low bits of the result. Bit 26
deSignates whether all bit positions of the result are the same or
~ot, and bit 25 indicates whether the result had even parity (bit
25 = 1) or not (bit 25 = 0). Bit 24 (BUSY) indicates the status
of the last bus operation issued by the CPU. If it is uncompleted
bit 24 is '1', otherwise bit 24 is '0'.

2.4.2 Condition Code Testing

Testing of the condition and programmer codes is by means of
the Conditional or Branch microinstructions. Test information
consists of an eight bit mask and a three bit test type. The mask
indicates the subset of the condition codes to be tested and, the
test type specification ind1cate~ how the test is to be carried
out. The three bits in the test type are:

1) V - sense (normal or inverted),
2) C - complement codes before masking, and
3) S - code to be tested (condition or indicator).

Generation of the test result proceeds as follows. Depending
upon the'S' bit either the condition or indicator codes are
selected for testing. The selected codes are then complemented or
not according to the 'c' hit. Results are then product masked
(i.e. ANDed) with the eight bit mask given in the test instruction
and all bits of the result are ORed together. The resulting bit
gives the ~ense of the test (i.e. valid or invalid) and may be
further complemented by the 'V' bit to get the desired sense of
the test. This procedure, though complex, allows the
microprogrammer a great deal of flexibility in defining
conditional statements.

In effect, the programmer isolates a group of bits from the
appropriate code field (condition or indicator) using the mask and

2-10

te3ts these bits as follows:

V C lest
0 0 Any bit 1s set
0 , Any bit is not set
1 0 All bits are not set
1 1 All bits are set

2.5 Determination of Hicroinstruction Execution Time

Determination of ~icroinstruction execution time~ in EHMY is
co~plicated by several factors, some of which, 1n a practical
sense, are not under the direct control of the microprogrammer.
Because of various indeterminate and uncontrollable factors (such
as bus contention) exact timing for a given sequence of microcode
nay be impo~sible. However, microinstruction timing may be made
with sufficie~t accuracy to allow the microprogramoer to choose
between alternative sequences which perform the same function.

To esti~ate execution time the microprogrammer must consider
the following:

1) Basic microinstruction execution time
2) Possible degradation due to contention for control store
3) Effects of bus accesslne

2.5.1 Basic flicroinstr~ctlon Execution Time

Fipure 2-11 illustrates the components of a complete EMMY
cycle. The basic cycle (in execution order) consists of a
microinstruction fetch (IFETCH), execution of the T-machine
operation and execution of the A-machine operation. CPU accesses,
by other bus units, may occur prior to the IFETCH or between the
T- and A-machine execution phases.

Ignoring external accesses to the CPU, the execution time for
a given microinstruction may be determined by adding the time
required for the IFETCH, T-operation and A-operation. The times
given in figure 2-11 are in terms of the number of minor cycles
each stage of execution consumes. In the current wire wrapped
implementation a minor cycle is 35 nsec in length.

Some microinstructions, such as Indirect Access, take
variable amounts or time depending upon the options speciCied.
Others, such as Pointer Modifiy and Multiply Step take varying
lengths of 'time in a data dependent manner. Further, the
A-machine execution stage may be skipped entirely for one of the
following reasons:

2-11

1) Conditional test fails
2) The ACF field is used as im~ediate data
3) Bit 28 is set on Extended Arithnetic microinstructions

2.5.2 Control Store Contention

Conceptually, the control store cycle in the current EMry
implementation consists of two phases; an access phase and a
recovery phase. r!icro~nstruction processing will continue
iogediately followinr the access phase. However, a subsequent
control store access may encounter delay if it ber,ins before the
recovery phase is complete. There are two sources of control
store contention of concern to the micropro~raMmer: fi~st,
contention betyeen the IFETCH and a following control store access
and, second, between the bus and the A-machine.

Nine minor cycles must elapse between the start of an IFETCH
and the next control store access. Usually there is no conflict,
since the IFETCH consumes six oinor cycles and most T-machine
instructions consume three or more. Currently, only the Extended
Arith~etic 'transfer' operation consumes less than three cycles.
If this T-instruction is followed by a control store access
(either from the bus or the A-machine) then a delay of one minor
cycle will result.

If the A-machine instruction requires an imMediate access to
control store and a bus operation occurs between the T- and
A-execution cycles~ a d~lay of two minor cycles will occur. This
happens on all bus accesses even those which involve only the
rer,ister file.

2.5.3 Bus Access Timinp.

CPU delays due to bus acces~ing are, in general, to deter~ine
exactly. Rou~hly speaking, there are four sources of delay:

1) Coopletlon of deferred operation
2) Initialization of access
3) Response time of the accessed device
4) Asynchronous slave access

Operations in which the CPU reads slave bus devices (R <- X
or H <- X) are termed deferred operations, since the acoess is
only initiated by the CPU. Later, the data requested will be
returned at which time the CPU must 'eive up' cycles to the slave
device.' Completion or 'deferred' bus operations requires six or
eight minor cycles depending upon where in the microinstruction
cycle the co~pletion occurs and the delay due to contention for
control store. .

2-12

Uhenever the CPU initiates a bus access it will be delayed
until its requeat for bus access has been answered (see section
ll). This delay depends upon bus traffic and the contention for
specific bus devices. Once the bus access requent has been
accepted. CPU processinp. may proceed. If another bus access is
attempted before completion of a pending request the CPU will
delay until the -first request is cOr.lp!eted.

Bus devices have widely varying response times which rnay
cause delays i~ nicroinstruction execution. After bus access is
obtained there may be a sipriificant delay before the addressed
slave device recognizes its address and respoGds. This delay 1s
device dependent.

The final consideration in CPU timing is the effect of
asynchronous slave accesses to the CPU. At a minicum, a read of
the CPU requires six minor cycles, and a write requires fourtp.en
cycles. Much longer delays may occur if the accessing slave
device is slow in sending data or responding to a read.
Interrupts require a minimum of sixteen cycles.

To summarize, the determination of microinstruction timir.r­
should proceed as follows:

1) Determine the su~ of times consummed in the IFETCH,
T- and A- mincroir.struction execution phases,

2) Add delays associated with control store contention,
3) Account for delays due to deferred'operations,
4) Consider possible effects due to contention for the

systern bus, and
5) Allow for delays due to asynchronous slave accesses.

2 .. 6 Exceptions

Two error conditions are detected by the EMMY processor
during normal operation:

1) Control store parity fault, and
2) Bus time-out.

Each control store word is protected by a single parity bit.
Parity is generated on write operations and is checked on read
operations. If a parity failure is detected durin~ a read
operation, the EMMY CPU will halt and indicate a '1' on the bus
PARITY ERROR line. The parity error condition rnay be reset using
the PARITY RESET bus line. however, the EMMY CPU will not resume
processing until the RUN line is pulsed.

Bus tine-out occurs when a single device holds the system bus
for longer than 75 usee. A bus time-out will cause an interrupt
to the control store address pair 04C-O~D and indicate a '1· on
the TIMEOUT bus line. The time-out condition rnay be cleared by

2-13

insuinr, a MASTER CLEAR zi~nal. In r,eneral, hu~ time-outs occur
whon an attempt is made to address a non-existant device or use a
device i~properly in a data tranrofer operation.

Both the PARITY RESET and MASTER CLEAR lines are available on
the system bus (see section 4.) but are not accessible directly by
the CPU. Thus, from the" viewpoint of the microprogramrner, the CPU
is unable to clear the parity or time-out conditions
independently.

2-14

MICRO-INSTRUCTION
REGISTER

P-CONTROl
~----~------~~----I I I I

,/
"'" ,

1l=FT HAl ~ RIGHT HALF PROCEDURAL
RESOURCE

"" i'\...

I ,
I
I
I
I

....II c
~ ti .-1 Q

81 I
~

J..I
1

, t
I .. FUNCTIONAL

RESOURCES

z
0

~ ~
I U

I ::l a:: ... L ~':£'ll!T!9L ___ V)

%

I -•
I 0

Q!
u _.;... _______ L _____ ~
--..,~----.

I
I
I .
I
I
I
I
I
I .
I
J
I
I

REGISTER

FILE

.. .

I
I

CONTROL I
STORE ... - I

I
liOST I
BUS ~ "PlCES

I SAMPLE I ARITHMETIC
UNIT, I

I I
I I t ____ .!~~ .!iE~~C~ ______ __ J.

FIgure 2.1 Functional Structure of Emmy

:: • • · • • ·

· • • : • · : • · =: • • · • • • • • ...
;

Register

File

..... ----'

Figure 2.2 '-Machine Sequence

1 NTERRUPT __ t!'1
ADDRESS

Mi¥

jJ
M
e
~
~

B
D~""'-<
R

iIiEiE!I.DiEIM Micro-instruction Path
........ 18 RI) U pdofe Path

Register

File

--.

4 ~
I ---I

F'~urt 2.3 T ~Maclt;ne Sequence

8

M B
A U
~ S

o ~ --<
R

~I
~

Primary Data Path
......... Immediate Doto Path

-'-'- CondItional Code Set

--- Shift Count and Control

Register

File

Figure 2.4 A-Machine Sequence

1J •••• a •••••• I ••• la~D.aJ.oa~ •• 021.~Q.!.a •• I •• II.~!~I •• 1leIDDII.8IB.II"lJ

I'· • -• · • • 1IIIIIU· 5
:
• • II

I NTERRUPT ----+I
ADDRESS

jJ
M e
~

1".1 r y

.
Ii B :
AU·
I :
~I S :

~I
~

•:

Reglste r /JJ Memory Access

......... , Bus Access

r-'-'-'---"---'
I :.~--------~
i
i
i ,
! ,
\ , , ,
I

i
~ .

!
t ,
I
\ ',-,-,-,-,-"

Register

File

Figure 2.5 Special Sequences

J.I
M e m o
r
y

-• • • • • • • • • · • • • • •

B

M B
A U
I S
N

D ~.-.-..
R

~I
~

~'I"'I'I""'."""'~
: • • • • · · • • · • · :

- Interrupt Sequence

._-,_ ... External Access Sequence

.......... Combined

31 30 29 28 27 26 25 24 23 22 21 20 19 18 11 -----
LOGICAL I 0 0 0 I OP BF AF ACF

ARITHMETIC [1 0 I OP BF/VAL AF ACF

SHIFT/ROT r;r 0 I OP BF/VAL AF ACF

EXTENDED I 0 I OP BF AF ACF

EXTRACT 0 01 POS BF AF ACF

ItJSERT (0 1 I POS BF AF ACF

CONDITIONAL I 01 (See figure 2-9)

T-SPARE 1 "I

Notes: The ACF field is used as follows:

(1) As immediate data or as an A-machine instruction
depending upon the I bit (28):

!=O => A-machine instruction
1=1 => Immediate data

(2) As A-machine instruction or A-machine NOP depending
upon the I bit (28):

!=o => A-machine instruction
1=1 => A-machine nop (skip A-cycle)

(3) As immediate data only

FUNCTIONAL MICROINSTRUCTION FORMATS

FIGURE 2-6

00

(1)

(1)

~ 1 ~

(2)

(3) I
(3) I

I

ACF 1"7 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
I EXP I IF 1

EXP Expansion specification
a Ri~ht justify IF field
1 Left justify IF field

o Zero fill remainder
1 One fill remainde~

IF Sixteen bit immedintc
data quantity

Notes: Example of expansion

EXP RESULTING IMMEDIATE DATA
31 ------------ 16 15 ------------ 00

o 0 o ------------ a IF

o IF

o IF o ------------ 01
IF ------------ 11

EXPANSION OF ACF FIELD TO FORM IMMEDIATE DATA

FIGURE 2-7

ACF 17 16 15 14 13 12 11 10 09 08 01 06 05 04

BRANCH I a 0 01 ~see figure 2-9)

STORE REG I 0 0 1 I CF ADR

A-SPARE1 I 0 01

LOAD REG I 0 1 I CF ADR

POInTER HOD I 0 o I CF QF ~F XQf

IND ACCESS 0 , I Cf OF EF XOP

A-SPARE2 o I
LOAD IMED [1 1 I CF ADR

notes: The pOinter modification instruction also acta
a procedural instruction (see figure 2~9).

MEMORY MICROINSTRUCTION FORMATS

FIGURE 2-8

03 02 01 00

.::J

]

VAL

VAL

aa

Tel" 31 30 29 28 27 26 25 24 23 22 21 20 19 18

CONDITIONAL ~I ~1 __ 0~_1~' ________ ~C~M~A~SI~~ ____________ ~G_O~P __

ACF 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

BRAtlCH 10 0 0 I Bt1ASK BOP VAL

LOOPING o 0 I CF DF EF- XOP VAL

Notes: 1) Conditional microinstruction controls the A-machine
execution of the ACF field.

2) -Looping' is another aspect of the Pointer Modification
~icroinstruction.

PROCEDURAL MICROINSTRUCTION FORMATS

FIGURE 2-9

REGISTER 0 31 ------ 24 23 16 15 12 11 00
I CCODES ICODES ~TATE I-iAR

CCODES -- 31 30 29 28 27 26 2'; 24
I cc I C I H I Lis I p I BI ALU result on Lo~1cal or

Arithmetic operations

o 0
o 1
1 0
1 1

o
1

o
1

o
1

Zero
Less than
Greater than
Overflow/Underflow

CARRY = 0
CARRY = 1

HIGH bit (31) = 0
HIGH bit (31) = 1

LOW bit (00) = 0
LOW bit (00) = 0

o Bits 31 - 00 not the same
1 Bits 31 - 00 are the same

o Even parity
1 Odd parity

a CPU bus access not in progress
1 CPU bus access in progress

ICODES -- 23 22 21 20 19 18 11 16
I I -- Programmer set, ~achine tested

STATE -- 15 14 13 12
IHIII- -I

o
1

o
1

Processor State

Running
Halted

Interrupts disabled
Interrupts enabled

MAR -- 11 10 09 08 07 06 05 04 03 02 01 00 , I Pointer to next
Microinstruction

FORMAT OF REGISTER 0 (PROCESSOR STATE WORD)

FIGURE 2-10

~
fl WrE RRtJP'" 16 i
SLAVE ACCESS I READ 8 'i (1)

URITE 16 (1)
IDEFERRED 8 1
NO ACTION 0

+
IFETCH 6 ,

it OGrCAl I 1
ARITHHE7IC J 4;
SHIFT/ROTATE (~INGLE I ~J+1

nmrru.R N+4
r'lULTIPLY 6/7

EXTENDED DIVIDE 7
ARITHMETIC EXCESS SIX ~

TRANSFER 2
INSERT N+ol
IEXTRACT N+3
CONDITIONAL 31

POSSIBLE DELAY 1 (3)

,.
SLAVE ACCESS READ 6 (1)

~/RITE 14 (1)
DEFERRED 6
HO ACTION 0

POSSIBLE DELAY 2 (3)
.. ~

lLOAD IM~lEnIATE 2
ILOAD RF.GTT~F.R 2
l!lTORE REGISTER 9
POINTER nODIFY I~O LOOP ~

LOOP 6
BRANCH 3

XOP Re~ister mods
7.ArO one both

R <= X 3 5 8
X <= R 3 5 8

Il~DIRECT X <= .1 9 9 12
ACCESS R <= M 9 9 11

M <= R 9 9 10
H <= X 3 5 8
R <= R 1 5 8

I

FIG. 2-11 TItlING ESTIMATION
(See notes on following page)

~

i
~ ,
~

1

i
~
~

~ .
;

,
i'
I

(2)
,.

(2) j
l
r

~
i (2)

(2) I

i
l
~

i·
... ~
"1

~ ,
" • t

I
I

(4) I
~

(4) ~
;

(5) (6)

(~) (6)
(4)
(4)
(5) (6)
(6)

NOTES POR FIGURE 2-11

NOTE 1: TiMes for slave access to the E!1MY CPU assu~e that
the accessinr. master device acts instantaneouslv.
Thus the times shown are minimun times and do not
take into consideration device characteristic3_

NOTE 2: 'u' stands for the number of bit shift steps required
to perform the operation.

NOTE 3: A delay is possible here if the control store is
still busy serving a previous request and, it is
~equired by one of the A-machine instructions
indicated in note (4). Delays are as follows:

Delay of 1 cycle - If the contol store is still
busy with the IFETCH because
the T-~achine operation executed
in fewer than 3 cycles. This
currently applies only to the
extended arithmetic transfer.

Delay of 2 cycles - If a slave access or deferred
operation takes place between
the T- and A-machine cycles.
The delay occurs even if the
operation involves only the
register rl1es~

NOTE 4: Operations shown require immediate use of the control
store and thus may affect the delay mentioned above.

NOTE 5: Operations shown require a deferred access which will
occur at sooe future point in time.

NOTE 6: An indeterminate delay is associated with the bus
operations shown since the CPU will not continue
processing until bus access is granted and the bus
address is accepted as valid. Aside from delay
caused by contention on the system bus, a delay may
may occur if a previous CPU bus request is still
outstanding.

3. MICROINSTRUCTION SYNTAX AND SEMANTICS

In this section the bit syntax and semantics of the Et1t·1Y
r:1icroinstructlon set i~ riven. Each microinstruction class (e.~.
Lo~lcal) 1s explained on a separate pare for convenient reference.

The following symbols have been used to denote co~monly
encountered oper£tions:

+
e
* I ,
plus
EXT
11EH
REG
BAR

Logical NOT
Logical OR
Logical EXCLUSIVE OR
Logical AND
Concatenation of bit fields
Two~s complement addition
External Demory (i.e. the syste~ bus)
Control store memory
Rer,ister file memory
Microaddress register (bits 0 to 11 of Register 0)

3- ,

-\1 30 29 2B ;:'7 2() ') ,- 211 c..".}

rU 0 o I 11 UP

0 OP2 (::

1 OP2 <=

OP
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1

0 0 0
0 0 1
0 1 0
0 1 1

1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1

0 0
0 1
1 0
1 1

--- LOGICAL ---

')')
'-J 22 21 20 1<) 10

I Of I A[" I
HEG[BF]
EXPANDED IMMEDIATE

Seplanics
-REG[AF]
-(REG(AF];tOP2)
-REG[AF]+OP2
LOGICAL 1

-(REG[AF]+OP2)
-OP2
-(REG[AF]GXlP2)
REG[AF]+-OP2

-REO[AI-'] *OP2
REG[AF](BOP2
OP2
REG[AF]+OP2

LOGICAL 0
REG[AF]*-OP2
REG[AF]*OP2
REG[AF]

FIELD

Nane
CO~tPLEHENT
NAND

OUES

NOR
COMPLEMENT NUMBER
XNOR

XOR
TRANSFER
OR

CLEAR

AND
TEST

NO~ES: 1) Result is returned to REG[AF].

2) All condition codes except OVERFLOW are set as
required.

2) OP field is the same as function select on HC10181.

3) Operators used are:

+ stands for
EB stands for

stands for
* stands for

'OR ..
"EXCLUSIVE OR'
'NOT ..
'AND'

3- 2

ARI71111E7IC ---

~ 1 3 () 2 <) ? B '27 2 () 2 ~j 21~ 2 3 22 2 1 20 1 <) 1 B r 0 () 11 11 OP I Be/vAL I A(!, 1

o rop <= REG[BF]
1 lOP <== EXPANDED I~IMEDIATE FIELD

a Store result in REG[AF] and set condition coces
1 Set condition codes only

o OP2 <= lOP
1 OP2 <= VAL

o 0 REG[AF] plus - OP2 plus 1
o 1 REG[AF] plus - OP2 plus C
1 0 REG[AF] plus OP2
1 1 REG[AF] plus OP2 plus C

U0?ES: 1) Conditions codes are ~et on result.

2) OVERFLOW results when carry into sign bit is not the
same as the carry out of the s~gn bit.

3) VAL field is not sign extended when used as OP2.

4) The operator 'plus' is two's complenent addition.

3- 3

- - - ~lll I F' 'i' I nOT ATE - - -

3i 30 29 28 2r 26 25 24 23 22 21 20 19 18
o 1 0 I I I OP I BP/VAL I Af J

o P <= REG[BF]
1 P <= EXPANDED IMMEDIATE FIELD

o Single length operation
1 Double length operation

a Shift amount is specified by P
1 Sh~ft amount is specified by VAL

o 0 LEFT SHIFT LOGICAL
o 1 LEFT ROTATE
, 0 RIGHT SHIFT LOGICAL
1 1 RIG HT SHIFT ARITHt1ETIC

!40J:E:::: ;) Cond i t ion codoes are not set.

2) 3inble length shift: REG[AF]

3) Double length shift: REG[AF]

is source and desti­
nation.

is source and desti­
nation of high order
32 bits.

REG[AFel] is source and desti­
nation of low order
32 bits.

4) Bit 25 is direction: 0;> LEFT
1 => RIGHT

5) On RIGHT SHIFT ARITHMETIC the sien bit is preserved.

3- 4

--- ~XTENDED AHI'l'Hr1ET le

31 30 29 28 27 26 25 24 23 22 21 20 19 18
! 0 , 1 I I) OP I BF I AF I

o Execute A-machine instruction
~kip A-machine instruction

OP Name
0 0 0 O· UNASSIGNED
0 0 0 1
0 0 1 0
0 0 1

0
0
0
0

0 0
0 1
1 0
1 1

000
001
010
o 1

100
101
110
1 1 1

UNASSIGNED

DIVIDE STEP
TRANSFER
EXCESS SIX
r-iULTIPLY STEP

NOTES: l)"DIVIDE STEP
initialize: REG[Af): RI:a[AFel] is dividend

REG[BF] i~ divisor

finalize: REG[AF] i~ remainder
REG[AFel] is quotient

Sequence: 1) if REG (AF] minus REG (BF] ~ 0
then REG[AF] <= REG[AF] minus REG[BF]

2) Shift REG[AF]:REG[AFe1] LEFT LOGICAL by
one bit.

3) If result of step 1 was ~ 0
then shift 1 into REG(AF91]

4} No condition codes are set.

2) TRANSFER REG[AF] <= REG[BF]
(no condition codes are set)

--- (Continued on next page) ---

3- 5

3) EXCr:~3 :rx

EXTENDED AR IHt1E7IC --­
(Cont.inued)

for each 4 bit dir:it po::dtion of REG[DF'!
which i~ ~reater than 9 (1001) store 6 -
(0110) in the correspondin~ dir,it
position of REG[AF). No condition codes
are set

4) HULTIPLY STEP
initializ~: REG[BF] is nultiplicand.

REG(AF91] is multiplier.

finalize: REG[AF]:REG[AFe1] holds double len~th
result.

·Sequence: 1) Shi ;'t REG(AF]: REG [AF(81] RIGHT ARITHMETIC
by cnr hit.

2) If OVERFLOW was set on previous MULT STEP
then Complement sir,n bit of REG[AF]

3) If bit n of REG[AF4>1] was a 1
then REG(AF] <= REG[AF]+REG[BF]

Set OVERFLOW it necessary
else clear OVER~LOW bit

4) No condition codes are set.

3- 6

I

--- EXTnACT ---

31 30 ~9 28 21 26 25 24 23 22 21 20 19 18 11 16 15 ---------- 00
1 0 01 PO!,) I BF AP I EXP IF :.J

POS Amount of LEFT ROTATE

EXP IF
(immediate mask data)

NOTES: 1) Sequence: 1) Left rotate contents of REG[BF] by amount
specified by POS field.

2) 'AND' with MASK generated from expanded
ACF field.

3) Place result in REG[AF).

2) Al~ebraicallYJ the sequence is defined as:

REG[AF] (= (left rotate(REG[BF],POS»-MASK

3) HASK is expanded immediate field.

4) Condition codes are not ~et.

3- 7

--- IlJSERT

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 ---------- 00
I 1 0 1.1 POS I BF I AF I EX? I IF I

POS Amount of LEFT ROTATE

EXP IF
(imnediate ~ask data)

NOTES: 1) Sequence: 1) Left ~ctate contents of REG[BF] by amount
specified by the POS field.

2) Generate a MASK from the expanded ACF
field.

3) The result from step (1) will be 'inserted'
into REG[AF] bit by bit where ever the
the corresponding bit position of the MASK
is '1'. Uhere a bit position of the MASK
is '0' then the corresponding bit position
of REG[AF] 1s unchanged.

2) Alrebraically, the sequence above maY.be expressed as:

REG[AF] <= (Left Rotate(REG[BF],POS»)*HASK)+(REG[AF]*-MASK)

3) flASK is immediate data from expanded ACF field.

4) No condition codes are set.

3- 8

CONDITIONAL

3i 30 29 28 27 26 25 23 22 21 20 19 18 11 ------------- 00
I 1 1 0 I C~1ASK I COP I ACF I

CHASK Mask for code bit selection

COP
V C S
o

o
1

o
1

Test Specification

[Jormal sense
Inverted sense
rIormal codes
Inverted codes
Test condition codes
Test indicator code~

ACF
(Conditionally
executed A-machine
instruction)

N07ES: 1) Skip A-machine instruction specified by the ACF field if:

1
ve LJ (CMASKi * (C e (-S*CCODEi) + (S*ICODEi))))

i=O

2) Se~antically, the's' bit selects either the condition
codes or the indicator codes for testing. The particular
bits of ·the selected codes to be tested are specified
by l's in the CHASK field. Bits 'V' and 'e' specify
the test of these bits as follows:

v C Skip A-machine instruction if:
0 0 Any bit is set
0 1 Any bit is not set
1 0 All bits are not set
1 1 All bits are set

3- 9

DGPUB1058865

--- STORE REGISTER ---

17 1 G 15 14 13 12 11 10 09 08 07 06 05 04 03 02 a 1 00
1 0 0 1 I CF I ADR I

Cf Source rerister

ADR Destination address
in micromer.lory

N07ES: 1) The rerister designated by the CF field is stored in
the micromemory address given in the ADR field.
Algebraically:

IJEH(ADR] <= REG[CF]

3-10

--- LOAD RI~GISTr;H ---

17 16 15 14 13 12 l' 10 09 08 07 06 05 o~ 03 02 01 00
I 0 1 I CF I ADR I

CF Destination rer,ister

ADR Source address in
micromemory

NOTES: 1) The contents of the cicromemory address specified in the
ADH field is loaded into the register specified by CF.
Alr,ebraically:

REG(CF) <= MEM[ADR]

3-11

•

--- LOAD IMIIEDIAL'E ---

17 1(, 1~ 14 13 12 11 10 09 08 01 06 0') 04 03 02 01 00
I 1 1 1 I CF J ADR J

CF Destination register

ADR Immediate data

NOTES: 1) The register designated by CF is loaded with the
immediate data specified by the ADR field. ADR is
sign extended to form the 32 b1t immediate data
quantity.

3-12

--- INDIREC',' ACCr:SS ---

17 Hi 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
I 1 0 , I CF I DF I EF I XOp I VAL I

CF Destination address pofnter

DF Source address pointer

0
0
0
0

EF
o o·
a 1
1 0
1 1

XO?
0 ()

0 1
1 n
1 1

1 0 0
1 0 1
1 1 0
1 1 1

Modification specification
No modification
REG[DF] <= REG[DF] plus VAL
REG[CF] <= REG[CF] plus VAL
REG[DF] <= REG[DF] plus VAL

(and)
REG[CF] <= REG[CF] plus VAL

T~ansfer specification
r1EH[REG(CF J] <= EXT(REG[DF]]
REG[CF] <= EXT[REG[DF]]
EXT[REG[CF]] <= REG[DF]
EXT[REG[Cr']] <= MEM[REG[DF]J

REG[CF] <= MEM(REG[DF]]
[",EM [REG [CF]] <= REG(DF]
REG[eF] <= REG[DF]
Unassigned

VAL Immediate value for
pointer modification

NOT~S: 1) Abbreviation~ in transfer specification are:
REG Register file address
tlEH Hicromemory address
EXT External bus system address

2) VAL is sign extended to Corm a 32 bit quantity for use
in the pointer modification step whjch follows the
transfer step.

3) Yhen external bus operations are specified the address
pointer register involved is used as follows:

Bits
15 - 00
23 - 16
31 - 24

Usage
Unit internal address
Unit address
Command

--- (Continued on next page)

3-13

IUDIREC? ACCESS
(Contjnued)

Bit 24 of the command word is ignored and the
correspondinr. bit on the system bus is set explicitly
by the transfer specification as follows:

XOP
000
001
010
o 1 1

Bit 24
o
o
1
1

4) The access busy bit of rer.ister 0 is set whenever an
external access is started and cleared when the access
is completed. Once the external access has been started
the CPU ~ay continue to execute microinstructions provided
the external memory is not accessed while the busy bit
is '1'. If an externaJ access does occur while the busy
bit is set the CPU will cease execution until the busy
bit is cleared (i.e. when the previous CPU issued bus
operation finishes).

3-14

--- POINTER MODIFICATION and LOOP ---

17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
I 1 0 0 I CF I DF I EF I XOp I VAL I

CP Source and sink register

DF Source register

EF Modification specification
(REG[CF] gets result)

0 0 REG[CF] plus 1
0 1 REG[eF] plus -1
1 0 REG[CF] plus REG[DF]
1 , REG[CF] plus -REG(DF] plus

XOP Loop specification
0
1 Loop if REG[CF] < 0

0
1

0
1

HOTES: 1) VAL is sign extended

Loop if REG[CF] = 0

Loop if REG(CF] > 0

VAL Amount of
relative
branch

2) Sequence: 1) Perform operation specified in EF field
and place ~esult in REG[CF]

-1

2) Test the resulting contents of register CF as
specified by the XOP field.

3) If the loop test is 'true'
then MAR <= MAR plus VAL
else MAR is unchan~ed

3-15

--- BRAlICH

17 lu 15 14 13 12 11 10 0') 08 01 06 05 04 03 02 01 00
I 0 0 0 I Bl1ASK I BOP I VAL I

BtlASK Mask for code

BOP
V C S
0
1

0
1

0
1

bit selection

Test specification

Normal sense
Inverted sense
Uormal codes
Inverted codes
Test condition codes
Test indicator codes

VAL Amount of
relative
branch

NOTES: 1) VAL is sign extended to form amount of relative branch

2) MAR <= MAR plus VAL if:

1
V ED U {Bt1ASKi ~ (C (9 «(-S*CCODEi) + (S*ICODti»)

i=O

3) Semantically, the'S' bit selects either the condition
codes or the indicator codes for testing. The particular
bits of the selected codes to be tested are specified
by '1's in the BHASK field. Bits 'V' and 'e' specify
the test of these bis as follows:

v
o
o
1
1

c
o
1
o
1

Branch to [1AR plus VAL 1 f:
Any bit is set
Any hit is not set
All bits .are not set
All hits are set

3-16

T.l':'S chapter surplie::; the hasic information necessary for an
:~rlilY ~y3t.er.J u~er to desi(yn and j nterface un! ts wi th the processor
bus system. Both lor,ieal and electrical considerations are
discussed. To deterolne the specific pin assi~nments on the
systen backplane and card slot assignments the user should refer
to the applicable system schematic drawin~s and wire list
d.Jcur.:ler.ta tion.

4.1 Inter-unit Communication Philosophy

The ErUlY processor bus system is a bi-directional, 32 bi t
wide data bus which makes use of a fully interlocked, asynchronous
data transfer scheme. Control is distributed acong the bus units,
and ap.y bus unit which is electrically and logically capable may
~ain control of the bus system for the purposes of transferin~
data. Bus access is based on a ~simple' priority system in which
the hiChest priority device is always ~ranted access.

Conceptually a complete bus operation sequence cay be divided
into t~0 sub-sequences:

1) Access sequence, and
2) Data Transfer sequence.

During the access sequence, bus devices bid for control of the bus
system. A device which gains control of the bus during this
sequence is refered to as a 'master' device, and this device
controls the subsequent data transfer cycle. During this transfer
cycle the device will issue an address on the bus system which
will designate another bus unit as a participant in the data
transfer. This unit is refered to as a 'slave' unit. All
unaddressed units remain inactive with respect to the bus during
the data transfer phase of the bus operation. Any unit may be
desi~ned to have 'master' and/or 'slave' capability_ The CPU, for
example, has both accessinp, capabilities.

In addition to the data transfer capability outlined above,
the bus also contains a group of direct signalling lines which are
related to control and status functions of the CPU.

4.2 Bus Line Seoantlcs

4.2.1 Electrical Semantics

Electrically, the processor bus system is based on open
collector TTL logic. Thus, a "1" on the bus (assuming positive
device logic) corresponds to 0 volts on the actual bus lines, and,
conversely, a "0" corresponds to +5 volts. In this section we
will refer to the bus signals "1" and UOIt as they appear to a

4- 1

devic~ before trans~ission and after reception.

4.2.~ Lo~ical Sc~antic3

Before rivin~ the details of' inter-unit co~munications on the
Em1Y bus system we \.1ill briefly outline the semantics of the bus
lines from a lor-ieal standpoint. These lines may be grouped as
follows:

~) Direct Lines Used to directly indicate and
control the status of the DUlY
CPU.

2) Access Control Lines Used to resolve multiple
requests for bus service.

3) Transfer Control Lines -- Used to synchronize data
transfer between a master and
slave unit.

ij) Data Lines Used to transfer address and
data information between units.

4.2.2.1 Direct Lines

:'he eip:ht direct lines are divided into two r:roups: control
~nd 3tatus. These lines may be used by bus units to sense CPU
~t~tus and to influence the status of the CPU and other bus units.

Direct Status Lines

RUN/HALT - 1 => CPU is halted
o => CPU is running

PARITY ERROR - Indicates a control memory parity error has
been detected ..

TIMEOUT - Indicates that a bus operation has not been
completed within 75 usee.

INTERRUPT - 1 => Interrupts enabled
a => Interrupts disabled

Direct Control Lines

RUN

HALT/STEP

- Signals the CPU to enter run mode.

- Signals the CPU to halt. When the CPU is
halted a siRnal on this control line will
cause the CPU to execute one additional
microinstruction.

4- 2

PAR:TY 1iE:!,ET - Resets the CPU parity error condition.

MASTEH CLEAR - Si~nals all bus units to initialize.

4.2.2.2 Access Control Lines

At the sta~t of a bus cycle the four access control lines are
used by all devices which are requesting master status to resolve
possible conflicts.

BUSCLK - This line is driven by a 100 nsee clock
which operates whenever the bus is idle and
seekinR requests.

nEQUEST/USING - Signals that one or more devices are
requesting the bus, or that a single device
is currently in ~aster status and is usinfl
the bus.

AVAILABLE

CREJ

- This sir,nal is chained from one potential
~aster unit to the next on the bus. When
REQUEST/USINGs "1" the seoantics of
AVAILABLE at the input of a 'unit are:

1 =) Bus is available for access by
receiving unit ..

0 :;) Bus is being used by a hip:her
priority unit ..

Semantics of AVAILABLE at a unit output are:

1 =) AVAILABLE at the unit input 1s one
and the unit does not wish to use
the bus.

o =) AVAILABLE at the input is "Oil or
AVAILABLE at the input is "1" and
the unit is using the bus.

- When "1", this line indicates that an access
control cycle has completed.

4.2.2.3 Transfer Control Lines

The six transfer control lines are used by master and slave
units to synchronize the transfer of data on the bus data lines ..

ASIG - Indicates that the bus data lines contain
valid address information.

4- 3

ISlG

AACK

REJECT

DSIG

DACI:

4.2.2.4 Data Lines

- Indicates that the bus data lines contain a
valid CPU interrupt vector.

- Indicates that bus data has been recor.nized
as a valid :lddress by a slave unit or as an
interrupt vl!ctor by the CPU.

- Indicates that inrornation on the data lines
has been recor,nized as a valid address by a
slave unit, but that the slave unit cannot
respond at the present time.

- Indicates that the bus data lines contain
valid data.

- Indicates that dat~ on the bus data lines
has been accepted ~, the receiving bus unit.

The thirty two data lines are used for the transfer of
address, interrupt vector and data information ~etween
cornmunicatin~ bus units.

4.3 Sequencinr. of Bus Operations

A complete bus operation consists of two phases: competition
among requestine ma3ter units for control of the bus system and an
asynchronous transfer of data between a single master and slave
unit pair. Figure 4-1 schematically illustrates the sub-structure
of a typical 'naster' device. Such a device has three internal
controllers:

1) Device controller,
2) Access controller, and
3) Transfer c6ntroller.

The device controller works directly with the device itself and
its associated internal storage mechanism. The access controller
handles the first phase of the bus sequence, gaining control of
the bus, while the transfer controller oversees the transfer of
data to the 'slave' bus unit once bus access has been obtained.
The three internal controllers are linked logically by three
internal signals:

1) REQ - Signals the access controller that the device
controller is ready to initiate a bus data transfer
operation.

2) GO - Indicates to the transfer controller that the

4- 4

access con~roller has obtained the bus.

3) DONi: - 'J~ed hy thp. transl"flr controller tc) indicate to the
dpvicc controller that the tran~f~r operation is
cOr.lplcte.

In the followin~ sections we will outline the lo~ical structure of
the access and transfer controllers. The lor-ieal structure of the
device controller is, of course, dependent upon the
characteristics of the particular device involved.

4.3.1 Logical Structure of the Acce~s Controller

Loeically speakin~, the access controller responds to
requests (via the REO line) for bus service from the device
controller by using control access lines to obtain control of the
bus syste~. After doing this it signals the transfer controller
(via GO) to begin the transfer operation. In gaining control of
the bus the accez~ controller uses the following lines:

1) BUSCLK
2) REQUEST/USING
3) AVAILABLE (IN and OUT)
4) REJECT (a signal from the transfer controller)
5) HASTER CLEAR

The AVAILABLE line originates at the bus controller and is chained
down the bus system from one potential master unit to the next.
Priority on the processor bus system is determined by access·
controller position on the AVAILABLE line with the device
electrically closest to the bus system controller having the
highest priority and the ellectrically most distant access
controller having lowest priority. This chaining is illustrated
in fi~ure 4-2. Note that the AVAILABLE(OUT) line of one unit
become the AVAILABLE(IN) line of the next. Further AVAILABLE(OUT)
from the last unit in the chain is returned to the bus system
controller where it is 'OR'ed with the ASIG and ISrG transfer
cont·rol lines to generate CREJ _ Thus, semantically t the CREJ line
is used to signal all bus units that an access cycle has been
completed.

Figure 4-3 sumarizes the logical requirements placed on
access controller operation in the form or a state diagram. A
controller begins its request sequence in state 0 (idle). When
the bus itself is idle the REQUEST/USING LINE will be "0" and the
BUSCLK line will show a 100 nsec clock signal. On the rising edge
of this clock all maste~ devices receiving REQ from their
assoc1ated device controllers will enter state 1 (requesting bus).

Each access controller in state 1 will send "11f on the
REQUEST/USING line. REQUEST/USING signals from all access
controllers are in the system are 'OR'ed on the bus since this is

4- 5

an open col:~.ector syster.l. 7he bus systen controller upon
recei v ior. this ~ir.na I \-/i11 s"Cop the BUSCLK line and issue a "1 tl on
the AVAILkBLE line. AVAILABLE p~sses from the hinhest priority
master unit to the lowest. If a master unit is in state 0 (idle)
it should allow AVAILABLE to continue to the next unit 1n the
chain. However, if a master unit is in state 1 (requestln~ bus)
it should not pass AVAILABLE and instead trnnsition to state 2
(us in£, bUs).

At this pciint, of those units \:hich initially requested the
bus only a single master unit will be in state 2. This unit will
continue to send 1'1" on the REQUEST/USING line and will issue a GO
signal to its associated transfer controller. During the
operation of the transfer controller an ASIG or ISrG will be
issued. Either of these signals will cause the bus controller to
send "1" momentarily on the CREJ line. Semantically, this event
indicates that an access cycle has ended, and all units in state
should return to state 0 to await a new bus access cycle.

The current bus oaster will remain in state 2 awaiting the
completion of the data transfer phase of the bus operation. If
the transfel~ operation completes normally, the transfer controller
will signal DONE to the device controller which in turn will set
REO to "0" returning the master to state O. In state 0 the master
\lil1 release the REQUEST/USING line which in tu~n causes the bus
controller to set AVAILABLE to ~O" and restart the system clock.
The access cycle then beeins anew.

Alternatively, the operation of the transfer controller may
cause a REJECT signal from the selected slave device, indicating
that the slave is busy servicinr a previous request. In this
event the transfer controller will terminate the transfer sequence
and the access controller ~ill release REQUEST/USING and enter
state 3.

Once a REJECT is received the rejected master unit enters a
state sequence in which it must wait for three complete access
cycles to pass before being allowed to obtain bus assess again.
This is represented in figure 4-3 by the sequence (3-4-5-6-7-8).
This state sequence is paired as follows: (3-4), (5-6) and (7-8).
Transitions between state pairs occur when the access controller
sees the CREJ signal~ Transitions within a state pair occur when
the bus clock rises to "1". In states 4,6 and 8 the accesss
controller must signal "1" on the REQUEST/USING line, however, it
must allow AVAILABLE to pass through to lower priority devices.
This allows devices other than the rejeoted unit to gain the bus.
If, however, no other devices are requesting the bus, the
AVAILABLE(OUT) signal from the last access controller will cause
the system bus controller to sirnal CREJ and thus advance the
state of the rejected access controller. In states 3, 5 and 1 the
rejected access controller must lower REQUEST/USING (as if it were
in state 0) and allow the bus clock to run. This will assure that
eventually the rejected access controller will be reset to state 0

4- 6

within thr'ee bus cycles even if it is the only device ~equestin~
the bus.

A device controller may elect to take special action when
rejected. It may, for examole, remove its request to the access
controller (i.c. set REO to "on). In any event the access
controller will allow at least 3 complete acceSD cycles to pass
before allowinr, a new REQ sir-nal to be answered.

A "1" on the MASTER CLEAR line, by definition, should set all
access controllers to state 0 and reinitialize their associated
device an~ transfer cor.tro~lers.

4.3.2 Logical Structure of the Transfer Controller

The transfer controller oversees the trans~ission of address
and data ~nfornation on the bus data lines. Typically, the
transfer control phases consists of two sub-phases in which the
data lines are used first for address transmission and then for
data tranEmiss~on. Each t~ansrnission is controlled in an
asynchronous manner by ~aKing use of the six transfer control
lines:

1) ASIG
2) ISlG
3) AACK
4) RELECT
5) DSIG
6) DACK

DurinG the address transmi;.sion a slave device is identified.
Durin~ the data transmission data information is passed between
the master and the selected slave device.

Currently, three types of bus transmission sequences are
defined:

1) READ - A master unit receives data from a slave unit,
2) WRITE - A master unit sends data to a slave unit, and
3) INTERRUPT - A master unit sends an interrupt vector to the

CPU

The READ and WRITE operations are essentially similar (except for
the direction of data transmission) and both involve address and
data transmission cycles. The INTERRUPT operation, however,
requires only an address transmission.

4.3.2.1 Address Transmission Sequence

The standard address transnission sequence, as shown in
figure 4-4a, involves the use of the data lines and the ASIG and

4- 7

AACK transfer control lines. lhe master unit be~ins by placine
address infor~ation on the tus data lines. After a delay of at
least 60 nEe~7 to allow fer cata skewi~~ on the bus, it signals
\.lith a "1" on ASIG. Upon receiving ASIG all slave devices on the
bus compare the address sent to th~ir o~n internally set address.
If the address is valid t a sinple slave unit will recognize it.
This unit should store any portion of tne address it needs for
future ref8rence (e.~. the com~and and internal address) and sene
a II,n on th~ on the AACK (addre~s acknowled~e) line. The master
unit upon" seein~ AACK will remove the address information from the
lines and "lower" ASIG. In :'esponse t the slave uni twill "lo'rler"
AACK corapletinr the addres0 t.ransmission cycle.

Accord!ng to the transmisaion scheme discussed above the
semantics cf the ASIG and AACK lines are as follows:

ASIG
o , ,
o

AACK
o
o

SeClan~ics
Idle (transnission complete)
Valid address on data lines
Address recognized by a slave unit
Address removed from data lines

There are two variations on the address scheoe described
above: the interrupt and reject sequences.

The interrupt sequence (fi~ure ~-4b) is essentially the S8me
as the nornal address transmission except that the ISIG line is
used instead of the ASIG line to si~nal address validity. The low
12 bits of the interrupt vector sent on the bus data lines must be
even and specifics an eve~-odd pair of control store locations.
Register 0 is stored 1n the odd control store location, and a nc~
register 0 is fetched from the ('ven location of the pair. Control
store addresses are assi~ned by convention to the various bus
units for interrupt purposes as outlined in section 2.3.2.

Althou~h the CPU may be interrupted at any time. bus devices
should not attempt to interrupt the CPU when the INTERRRUPT line
is "0". Interrupt sequences are not followed by a data
transmissic~ sequence.

A slave unit which is addressed by a master may respond with
a REJECT signal instead of an AACK. This indicates that the
slave, while recognizing its address, is currently unable to serve
the master unit. This usually occurs when the slave is still busy
completing a previous request. The reject sequence is shown in
figure 4-4c. A master unit which is rejected will not begin a
data transmission sequence. It may resubmit its request to the
slave unit in accordance with the restrictions outlined in section
4.3.1.

During the address transmission sequence the thirty-two data
lines are used to send address and command information according
to the following convention:

4- 8

lJata Line!:; ,. -
?,e v"

Bits 15 to 00 l:rl t: Internal Addres~
Bits 23 to 1(j Jr: t Addrt!ss
Bits 3 '1 to 24 COr.lmand

Currently, slave unit addresses are assigned as follows:

Address
FF
FE
FD

00 03

Unit
CFG
Console
Datapoint Interface
[lairJ liemory

Bit 24, the low bit of the command, determines the direction of
the data transmission on the bus:

Bit 24
o
1

Semantics
Read (oaster receives from the slave)
Write (~aster sends to the sla¥e)

The other bits of the command may be used as required by the
individua: bus units.

q.3.2.2 De~a Transmission Sequence

A data transmission sequence, as shown in figure 4-4d,
follOWS th'e address transmission except in the case of an
interrupt or reject sequence. Depending upon the command sent
durinr. the address transmission, either the master or the slave
unit will be desienated as the sender. The other unit will be the
receiver (e.c. on Writes the master unit is the sender while the
slave unit is the receiver). The sending unit begins by placin~
data on the data lines and after a 60 nsec deskewing delay sends a
"1" on OSLO. Upon reception of DSIG the receiving unit stores
from the rlata line and sends a "1" on DACK (data acknowledne)~
Upon receivin~ DACK, the sendinr. unit removes data from the data
lines and "lowers" DSIG. The re3ponse or the receivin~ unit is to
lower DACK co~pleting the ~ata transmission sequence. At this
point the the master device should release control of the bus
system.

Secantically, the states of the DSIG and DACK lines may be
represented as follows:

DSIG
o
1
1
o

DACK
o
a
1
1

Semantics
Idle (transmission complete)
Valid data on the data lines
Data latched at the receiving unit
Data removed from the data lines

4- 9

4.3.2.3 Bus Error Conditions

A CPU timine circuit monitors the BUSCLK line and if BUSCLK
is "0" for lancer than 75 usee the TIMEOUT line is "raised" and
the CPU is interrupted. A timeout interrupt indicates that a bus
naster has failed to complete its operation in the allocated time.
Normally this is caused by addressing a non-existant slave unit.

4.4 Electrical Requireme~ts of the Bus System

The processor bus system is based on open collector,
non-Schottky TTL lo~ic. Bus drivers 1n the system are 7438 and
6T26 ~ates capable of sinking 48ma and 40ma respectively. A
central pull-up resistor of 220 ohms is provided.

Each bus unit shall interface to a bus line throu~h a sin~le
non-Schottky TTL "driver and receiver. Further, a bus unit shall
not extend the bus electrically from the backplane without
providing input/output buffering. The number of bus units is
licited electrically (but not lo~ical1y) to 9.

~-10

DGPUB1058882

01 RECT{ /'A"'TER AL"
LINES ' .:l L. t\

ACCESS {- ~V:CLK
CONTROL CREJ
LINES. REQUESTI

USING

AVAILABLE
(IN)

TRANSfER {
CONTROL
LINES

DATA LINES -{

_ _ .. _~ .

.,....., '-' -.. , .. ~~-.r.

I'

r

·ACCESS

CONTROLLER

REJECT GO

TRANSFER
CONTROLLER

,~

,
,

., -....... -

-
REO

"

DONE

-
(CONTROL)

FI {lure 4.1 Schematic of a Bus Master Unit

_ _. __ ..•

. ~ --.,._ _
_.

DEVICE DATA
~

CONTROLLER ... STORAGE
..

<=d DATA
BUFFER

11 .- ., p.,---. .. -

AVAI LABlE
(OUT)

BUS
SYSTEM

CONTROLLER

ASIG
+ AVA lJ(SU ISIG (IN)

j

AVAILABLE (OUTl

IA~~ESS ~UNIKUL LJNES 1

It

HASTER MASTER
UNIT (OUT) (IN UNIT

AVAIL.

fII
.4 ~ .. ~

If

SLAVE
UNIT

--
~ -

4 ~

It

SLAVE
UNIT

DIRECT
TINES

rACCESS
CONTROL
LINES

--

~\

......... _____ ,..,...~..-----"""""'-...;;...,..---- ... -,--L. -., .• ,--~-.~~~.-,. __ ._ ..• __ TRANSFER

________ ..JI~~ ______ •. _L ... ,______ _~ .. _ .. ____ ... ~_~ ____ ~:T::~ALI NES
LI NES

F' gure 4. 2 Bus· System S tr ucture

,.......------ MASTER ClEl.R

~15)"
--REQ.

~p
CREJ : REQ 1\ T BUSClK

t~)
:,~

Y
;~VAILABLE (IN)

{tS)'i. ~, ,
'--

t REJ
,.-~--

: @l .
t . I 1 ;. I REQ.A T BUSClK

r ni\ I
t \~l '--'--~

,;
~,

t: CREJ
i,:

r~l : "'_. I REQ AT BUSCLK

i@! --r- J

---L-r CREJ

I (-;\ :
I. \fl. REQ At aUSCLK . I

:®l --r-' CREJ

Figure 4.3 Access Controller logic

:!
.!

.j

I

,~uRHAL AODRESS SEQUENCE (a)

:~ ~~ ~){::i::::::;:::;::t\=ADOR E S 5

" ~. t r -. __ ..,,1 ,
TO DATA TRANSMISSION SEQUENCE

\
"', ----- ---

~~TERF UPT SEQUENCE (b)

~ ATt. _ I~II
• t\E~ __ ~h;MlMWiI!::i:i;i;:::::;i;i;::~:ii1£~A_DiiiiiiD_R_ES_S--. ___ _

;~IG: __ ... I ,
END OF SEQUENCE

I- ACK:' ___ J,,.--IIIiIII\."" ____ _

'·£JECi SEQUENCE (c)

\""------- END OF SEQ.UENCE
.::. E:.('T=t ___ rJl1 ,"-------

DATA ~EQUENCE (d)

DATAJ
lINE~ __ _

DSIG~. __ ..

DACK:t .. -_ ..

ADDRESS
TRANSHI 5S ION
SEQ.UEt~CE

__ .,1 ,,'-________ _

~

~

___ will

A = 60 nsec Deskewing Delay

r-igure 4.4 Transfer Sequences

\.,._ _-----

