
COMPUTER SYSTEMS LABORATORY

STANFORD ELECTRONICS LABORATORIES
DEPARTMENT OF ELECTRICAL ENGINEERING

STANFORD UNIVERSITY· STANFORD. CA 94305

SU-SEL 79-012 SU-326-P.39-32

A THEORY OF INTERPRETIVE

ARCHITECTURES: SOME NOTES ON

DEL DESIGN AND A FORTRAN CASE STUDY

by

L. W. Hoevel

and

M. J. Flynn

February 1979

TECHNICAL REPORT NO. 171

The work described herein was supported in part by the
Army Research Office-Durham under contract no.
DAAG29-78-0205, using laboratory facilities developed
with the support of the Department of Energy under
contract no. EY-76-S-03-0326-PA 39.

SU-SEL 79-012 SU-326-P.39-32

A THEORY OF INTERPRETIVE ARCHITECTURES:

SOME NOTES ON DEL DESIGN AND A FORTRAN CASE STUDY

by

L. W. Hoevel

M. J. Flynn

February 1979

TECHNICAL REPORT NO. 171

This technical report is a revised version of TR 130 (March 1977) and includes
as an appendix an abstracted version of TN 108 (March 1977).

Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, CA 94305

The work described herein was supported in part by the Army Research Office -
Durham under contract no. DAAG29-78-0205, using laboratory facilities
developed with the support of the Department of Energy under contract no.
EY-76-S-03-0326-PA 39.

ABSTRACT

An interpretive architecture is a program representation that

peculiarly suits a particular high level language or class of

languages. The architecture is a program representation which we call

a directly executed language (DEL). In a companion paper we have

explored the theory involved in the creation of ideal DEL forms and

have analyzed how some traditional instruction sets compare to this

measure.

This paper is an attempt to develop a reasonably 'comprehensive

theory of DEL synthesis. By assuming a flexible interpretation

oriented host machine, synthesis involves three particular areas: (1)

sequencing; both between image machine instructions and within the

host interpreter, (2) action rules including both format for transfor­

mation and operation invoked, and finally, (3) the name space which

includes both name structure and name environment.

A complete implementation of a simple version of FORTRAN is

described in the appendix of the paper. This DEL for FORTRAN called

DELtran comes close to achieving the ideal program measures.

KEY WORDS

Computer Architecture

Directly Executed Languages

Emulation

Formats

Inter pretation

i

INTRODUC TION

In our companion paper [5] we examined the role of high level

languages in defining computer architectures. Traditional machine

architectures and program representations that are written for these

architectures make reference to objects and operations which are

presumed to be present in the host machine, i.e. the physical system

that actually interprets the instructions of the image machine or

architecture. An alternate model is possible where the architecture

is specifically designed to be an ideal representation for a particu­

lar high level language. These program representations which we call

Directly Executed Languages or DELs use operations which are in direct

correspondence with operations in the higher level language. Also

object identifiers are in correspondence with names used in the high

level language program. Objects are coded using concise coding tech­

niques to log? of the number of objects in a particular environment.

Environment is a notion chosen to match high level language semantics.

Thus, the model (Figure 1) perceives a program representation which is

quite similar to the source. Only a simple one or two pass compila­

tion process is required to create this representation and representa­

tion is decompilable, i.e. the source can be recreated given the DEL

form. In this model the burden is placed on the interpreter since now

execution and interpretation will occur at higher levels than hith-

erto. The actual interpretation process is no more cumbersome than

the interpretation of a traditional host oriented architecture but one

gains significant advantages with the DEL approach simply because one

1

has and uses more information concerning the source than is possible

with the universal architecture.

HLL Environments HLL Environments

complex
compile

Simole
Interpreter

Traditional Architectures

close
correspondance

Interpreter

DEL's

Figure 1: Directly Executed Languages

simple
compile

Interpreter
Dedicated to
Specific DEL

In order to develop a theory for efficient DEL synthesis, after

an initial discussion of host premises, we consider in some detail

problems of sequencing and operating on data and name space structure.

The problem of DEL synthesis as in any design is a matter of finding a

compromise between conflicting demands: in this case the efficient

representation of the program and the efficient interpretation of that

representation by a host system. In the DEL design we assume that ~.ye

have a good deal more information about the language environment

available than in a traditional machine architecture. Just as the

language plays a crucial role so too does the host. However, for our

2

discussion we deemphasize the role of the host.

A synthesis theory is rather incomplete without a case study. In

the appendix we discuss our DEL for a simple FORTRAN language. We

describe this DEL and the number of considerqtions in its creation in

sufficient detail for the reader to understand, at least in this par-

ticular case, how our theory was applied to practice.

The Host

One may view the host in either one of two ways. (1) it is an

ideal mapping of a DEL representation into hardware state transitions,

i.e. it is a host dedicated to a particular DEL and its corresponding

higher level language. (2) It is a special purpose machine designed

to have high performance for general interpretation. While it is true

that the former approach would be the most efficient, i.e. present the

most expeditious execution of programs, it would refer only to a par-

ticular high level language. Further, since the basic objective of

this paper is to synthesize DEL representations we have an expository

difficulty in assuming that both the host and the image machines are

free variables. Thus, we will assume for the remainder of our discus-

sion that we have selected approach 2: we have a high speed interpre-

tively oriented processor as the host system.

It is important to realize how such a host differs from ordinary

conventional machines. The differences are subtle yet very important.

We assume that the host has:

(1) The register stack,with conventional ALU operations based on

them. Conventional ALU operations based on the registers form the

3

basic time quanta or microinstruction which defines, for our purposes,

the host state transitions.

(2) The ,interpreter consists of programs written in this umicroin-

struction" or state transition form.

(3) The interpreter is contained in a special interpretive storage.

Clearly, the interpretive storage is a very high speed storage, termed

microstorage, since it must control the state transitions. Because of

its high speed it is assumed to have a fixed size of modest propor-

tion, perhaps 16 to 32 thousand bytes.

(4) This microstorage is also presumed to have read-write capabili-

ties, i.e. it is a. primary executable storage resource in the system.

It may, and frequently does, interact with the registers not only to

provide instructions for the interpreter ,but also for data storage.

It holds all of the parameters for the interpreter and intermediate

data required by the interpreter.

(5) Beyond the microstorage there is the "main storage". This is the

image store and active pieces of this program may be brought into the

microstorage tog,ether wi thactive data sets. The main storage then is

the container for the image program representation and its associated

data.

(6) The host instruction set is designed to accomodate rapid

interpretation. Thus, such operations as mask, shift, rotate, etc.

" are performed at high speed.

4

DEL SYNTHESIS

This section addresses the problem of designing high performance

DEL's. We fOGUS on three particular areas:

Sequencing, which has two aspects --

a. Sequencing between actions (program control).
b. Sequencing within an action (context).

Action Rules, which also have two aspects

a. The format or transformation used by the rule.
b. The operation invoked.

Name Space, which addresses two issues --

a. Name structure -- the syntax and semantics of identifiers.
b. Name environment -- referencing of variables and opera­

tors.

Terms and Assumptions

In order to synthesize simple "quasi-ideal" DELs, let us make

some obvious assignments and assumptions.

*

*

*

The DEL program representation lies in the main storage of the
host machine

The interpreter for the DEL lies in microstorage. The interpreter
includes the actual interpretive subroutines as well as certain
parameters associated with interpretation.

Only a small number of registers exist in the host machine that
can be used to contain local and environmental information associ­
ated wi th the interpretation of the current DEL instruction.
Further, it is assumed that communications between interpretive
strorage and this register set can be overlapped (Figure 2(a».

5

DEL

INSTRUCTION

ENVIRONt4ENT

REGISTERS

INSTRUCTION
ENVIRONMENT

DEL

INTERPRETER

PROCESS

ENVIRONMENT

,t.tICRO STORE

FUNCTION &
SCOPE

DEL

PROGRAM

DEL

VARIABLE

SPACE

MAIN MEMORY
PROGRAH

ENVIRONMENT

Fi g ur e 2 (a) : DEL/Host Storage Assignment

An instruction is a binary string partitioned into identifiers

under action of the interpretive program. An identifier is an element

of the vector bit string specifying one of the following:

i. format and (implicitly) the number of operands

ii. the operand s

111. operations to be performed (of at most binary order) on the
identified operands

iv. sequencing information, if required.

A format is a rule defining:

6

i. the instruction partition (i.e. number and meaning of iden-
tifiers).

ii. the order of the operation (i.e., whether the operation is
in nullary, unary or binary).

iii. precedence among operands (i.e., binding of operand identif­
iers to functional operands).

In this paper, it is assumed that DEL instructions are use ordered

i.e., that the internal sequence of identifiers within an instruc-

tion is the same as the sequence in which these identifiers will be

required during interpretation. The 370 architecture is not use

ordered, since the format/operation code appears before operand iden-

tifier information. This forces the interpreter to "save" the opera-

tion code during computation of effective addresses wasting, at

least temporarily, a scarce host register.

The size of an identifier is the width of the field it occupies

within an instruction. It is determined by the number of elements

required in a locality; the structure of a typical DEL instruction is

illustrated in Figure 2(b).

Sequencing Rule

Usually, a program consists of a sequence of action rules. The

sequencing rule provides the ordering relation among the action rules

i.e., it defines the sequence of the action. While it is possible

to conceive of DEL's with unordered action rules (no sequence rule),

this form is of little value in representing familiar high level

language programs.

7

Fi g ur e 2 (b) :

OPERATION IDENTIFIER

'\a
FORMAT .A B C OP

~

I ~ OPERAND IDENTIFIERS

~ INTERFACE IDENTIFIER

Layout of a Typical DEL Instruction

Sequencing Between Actions (Image Machine Sequencing)

In practice only a few sequencing rules have been used with any

degree of success:

Linear: individual instructions are stored in a one dimensional array
within the main store. Execution order is the same as the array
ordering unless modified by a branch instruction.

Binary Tree: instructions are mapped into the nodes of a tree struc­
ture-Jffiaintained in main store. Leaf nodes normally correspond to
data references; ancestor nodes to semantic functions. A standard
traversal algorithm defines the default order of execution, which
can be modified by visiting a branch node.

Linked List: instructions are stored at the links in a chain structure
maintained in main store. The default execution order is again
specified by a traversal algorithm, and can be modified by the
semantics associated with the most recently visited link.

These three forms are abstracted from well known programming

structures. Most tradition~l machine language DELs are based on a

linear form. Tree form are widely used as intermediate data struc-

tures by compilers. Linked lists are the fundamental program and data

structures for LISP and PPL (McCarthy [15], and Standish [18]). Tree

8

and list data structures are widely used in the algorithms employed in

artificial intelligence and information retrieval applications. Fig­

ure 3 illustrates program representations in the linear, tree, and

list forms.

The particular DEL organization used in these, examples is arbi­

trary, for purposes, of illustration only, and is not necessarily

optimal. Similarly, neither the operators nor data structures are

completely specified; they should be assumed to have the same general

interpretation for all three DEL forms. These fragments are con­

structed so that the order of execution will be identical (i.e., the

sequence of functional operations and storage accesses will be the

same) .

Linear Forms

The sequencing rule for a DEL governs the \Olay in which control is

passed from one instruction to another. If a linear form is used, for

example, the normal sequence of execution is implied by the placement

of DEL instructions within the main store. A program counter is usu­

ally maintained within the interpreter, as part of the DEL program

status vector, which points to the word containing the next DEL

instruction to be executed. Wnen the contents of the current instruc­

tion word are interpreted, the '.ford pointed to by the program counter

is fetched, the counter incremented appropriately, and execution con-

tinues. Interpreting a branch instruction causes the DEL program

counter to be loaded with a new address that points to the next

instruction to be executed. The set of branching instructions in a

9

Figure 3:

(a) -- Linear

(b) -- Tree

(c) -- List

Three Representations of " I = J * (K + L)

push @I

push J
push K
push L
+ (add)
* (multiply)
= (assign)

{ = }

I \
I } { * }

I \
J } { +

j
K }

}

\
{ L }

. " ,

DEL is not confined to the simple GOTO, but may also include more com-

plex program control operators such as CALL, RETURN, DO, and IF-THEN-

ELSE.

10

The natural ordering of addressable storage cells can be used to

induce a default order of interpretation, thus, eliminating the need

for explicit sequencing of pointers in linear segments of DEL code.

As individual instructions are more highly compressed, fewer main

store accesses are required to maintain a given DEL instruction

stream.

Tree Forms

Tree structures are used by many compilers as an intermediate form

from Which the final, executable code is generated. Intuitively,

ancestor nodes refer to operators (non-terminals in the source

language syntax), while leaf nodes refer to variables (syntactic ter­

minals). The operation code associated with a node is combined with

two or tree pointers to form a uni t of fixed, uni form si ze • These

units constitute the physical realization of a tree structure within

the main store of the host machine. The units for a binary tree DEL

need contain only two pointers in a minimal realization: (1) the

address of the unit for the left descendent of a node; and (2) the

address of the uni t for its right descendent.

The left and right descendents of an ancestor node which is associated

with a binary operator correspond to its left and right operands,

respectively. Usually, the operators in a DEL are binary if a tree

structure form is selected -- unary operators are treated as degen­

erate binary operators, with null right descendent pointers. Some

auxiliary pointers (usually to the ancestor of a node) may be included

11

Figure 4: Typical Binary Tree Unit

to facilitate tree traversal, however.

List Forms

The simplest examples of linked lists look much like unary or

binary trees; in fact, most of the above tree related comments are

equally applicable to linked list DELs. However, the links within a

list (its nodes) may be their own ancestors -- i.e., cycles are

allowed. Again, instructions are associated with the links in a list

representation. They contain a pointer to a successor link, and

either an atomic value or a pointer to a value link. A unique

pointer, NIL ("0" in Figure 3(c)), is used as the successor pointer in

such terminal links.

Because of their generality, linked lists are not easily address

encoded. While the relative spatial cost of link pointers depends on

the average size of a DEL instruction; a linked list DEL almost always

requires more space than an equivalent linear form DEL, barring exten-

sive factoring of common sUblists. However, the marginal cost of

incorporating additional address references is low for a linked list

DEL re"presentation, and hence it is comparatively easy to implement

12

complex operators that do not easily fit in the binary operator order.

In most cases, the pointers required by tree and list structures

makes them less desirable than the linear array as a potential DEL

form: both because of the space these pointers occupy, and because of

the extra main store access needed to determine the location of suc­

cessor instructions. It is usually far faster to increment a DEL pro­

gram counter (normally maintained in a host register) than to fetch an

address from main store. Unless the flexibility of tree and list

forms can be exploited in an innovative manner, the spatial and tem­

poral overhead associated with this single negative aspect may be of

overriding importance in selecting the form for a DEL.

SEQUENCING WITHIN AN ACTION (HOST MACHINE SEQUENCING)

Defining a sequence rule within,an action is primarily a problem

of exploiting execution context during an action rule interpretation.

Context information may be used to significantl y improve action rule

representation at the expense of some additional complexity in the

interpretation process. We consider five distinct types of context.

No Dependencies

The simplest program representations involve no dependencies, ann

an example of such DELs is "threaded code" in which each field

occupies a full word of storage, and is itself a direct pointer to

either a cell in the DEL data store (operand references) or to a

semantic routine in micro store (operator references). This straight­

forward encoding may, in fact, be optimal if the host has little or no

field extraction capability, since each syllable starts on a word

13

boundary and need not be processed before use during interpretation.

Thread ed code programs are simil ar to highl y subroutini zed ho st

programs in which there is one subroutine for each semantic routine

within the threaded code inte~preter.

The time needed to fetch a threaded code instruction, in main

memory accesses, is k+ 1; where k is the average number of operand s per

instruction. If we let b denote the number of bits per word of

storage, then the space required to represent a threaded code instruc­

tion is b * (k+1).

Memory Dependencies

Given a word oriented host, we view instructions as fixed length

"records" containing a fixed number of subfields at known boundaries.

In this case, use ordering is of minimal importance, since the syll­

able positions are always known. Selecting an optional instruction

layout is basically an al ignment problem; instructions should be

stored on bit addresses that minimize the number of main store

accesses required to extract cri tical fields. This problem is exam­

ined from the perspective of the computer architect in Flyr:tn and

Henderson [6].

This analysis can be applied directly to the DEL synthesis prob­

lem, although there are fewer free variables in this case since the

host machine is fixed. The relevant result is an analytic expression

for the average number of accesses re~uired to retrieve a group of F

characters with character address I into a record of length L.

14

<--------- Record 1 -----------> <--------- Record 2 ---------->

{ i,n}
I ... F bits ~I boundaries , .. F bits ~I

I I I I
I I I I

l-.--.--.---x------------x-------:-----------x------------x------:

t l'
KEY field KEY field

Starting

Address I

<-------------- n bits -------------->

Physical Memory Word

Figure 5: Accessing KEY Fields in DEL Instructions

The group of F characters can be thought of either as an entire

DEL instruction in Which case the notion of a record also

corresponds to an instruction -- or as a critical syllable (e.g., the

KEY code) within an instruction. In the latter case, the instruction

is itself the L character record. If each main store access retrieves

n characters of data, the number of accesses needed to fetch the crit-

ical portion of an instruction is

Accesses = r-;-F 1 + r'~ 1- 1

nf { l,n}

wh ere : f = F Ho d n (1 e~ s t po sit i v e re s id ue; i. e ., x Mo d x = x), i
= L Mod n (least positive residue); i = I Mod {i,n} (least

15

re.sidue, including 0), and {i,n} = greatest common divisor of i
and n.

Although formidable in appearance, this equation is not difficult

to interpret. Clearly, the number of accesses required to fetch a DEL

instruction of length F from a unit of length L will be either rF/nl

or rF/nl + 1, depending on the number of word boundaries crossed.

This is determined by the starting address of the instruction. The

second term is an analytical representation of the average effect of

this placement, assuming that fields occupy integral mul tiples o.f the

basic storage quantum (e.g ~, eight bit bytes for a 360/370 environ-

ment). ~fuile this is a reasonable assumption for a machine designer,

character size is often a free variable to the DEL designer (Hoevel

and Wallach [10]).

If the host is strongly biased toward a particular character size,

then it is probably best to use this as the basic storage quantum for

DEL encodings. If the host is unbiased, however, the size of a char-

acter should be selected to minimize Fin. The Flynn-Henderson equa-

tion shows that it is best to start instructions on character

addresses that are integer multiples of {i,n}. In this case, the time

needed to fetch a typical DEL instruction, in main storage accesses,

is:

f - {i,n}
Access Time = fF/nl +

n

16

while the space needed to represent it is:

Program Size = ~ * bin = w * (k+1) bits

As above, k is the number of syllables that must be fetched and

decoded to execute the entire instruction, and b is the number of bits

per word; w is the average number of bits per syllable.

In most cases F is less than n, and so the average fetch time is

minimal when F is minimized -- i.e., when pointers and/or instructions

occupy as few characters as possible. Decoding algori thmsfor this

type of DEL are usually straight forward. Since instructions are word

al igned, the exact bit offset of each subfield is known, and decoding

is at worst a simple comb~nation of mask and shift operations.

In some cases, special features of the host can be exploited

such as the transform board capability of the CDC 5600 series, which

allows the contents of a micro register to be "exploded" (i.e., dis­

tributed accross several other micro registers in a single micro

instruction). This board must be physically rewired for each such

explosion desired, however, and cannot be changed dynamically during

an emulation.

Inter Instruction Dependencies

Both the sequence in which instructions are encountered and their

placement can affect their interpretation for certain DELs. The pri­

mary reason for selecting a form with inter-instruction dependencies

is to minimize the size of a typical DEL program and, thus, indirectly

reduce the average fetch overhead.

17

To exploit the similarity between integer addressable stores and

linear program structure, a design permitting mul tiple DEL instruc­

tions to be placed in a single word of storage must be devised.

Minimizing the size of individual DEL instructions is quite important

here, although if an execution time advantage is to be realized the

enc~ding must be simple to recognize and decode.

Usually, the DEL program state vector is augm.ented so that the

interpreter can remember unused t but previously fetched portions of

the DEL instruction stream. Specifically t a residual control cell

called the current instruction word (IW) is needed. This word con­

tains those bits in the DEL instruction stream that were brought into

host storage registers during the last instruction stream access to

main store, but which have not been decoded.

This type of dependency is most . effective for hosts wi th wide

storage resources and a large ratio between main and micro store

bandwidths. For an average of m instructions packed into a single

word, . the time needed to fetch a given instruction stream may be

reduced by a factor of m compared to a fully independent technique if

the image machine sequence is linear.

Interpreters for instruction stream dependent DELs must maintain

at least two elements of residual control: a DEL program counter

(PC); and current instruction word (IW). If full pre fetch is imple­

mented, and additional residual control cell is needed -- a successor

instruction word (SW). The interpreter attempts to maintain the next

word of instruction stream bits in 3-1 (i ~e., keep ~.v equal to the con-

18

tents of the successor to the word last loaded into the IW). When all

of the bits in the IW have been decoded, its contents are replaced by

the contents of SW, the PC is updated, and most of the time needed to

transfer instruction words from main store into the internal resources

of the host to be overlapped, but this implies that the PC, IW, and SW

must be maintained in the fastest storage resource (i.e., host regis­

ters). Use ordering of syllables is important in a strongly context

dependent DEL, since such a large fraction of the micro level storage

resources must be dedicated to maintaining the DEL instruction stream.

For example, decoding an operator specification prior to the

specifications of its operands (as in the natural sequence of

interpretation for the 360/370 architecture) forces the interpreter to

store the operation code across. the operand fetch portion of the

interpretation cycle, thus increasing execution time. Also, instruc­

tions need not be word aligned. This means that it may be more diffi­

cult to decode the syllables, since it can no longer be assumed that

they are aligned on specific address boundaries.

Memory Mapping and Word Boundary Dependencies

For the moment, assume that a DEL instruction consists of a

sequence of as yet undifferentiated syllables. These syllables may be

of a single, uniform width (often the case for polish DELs) , any of a

fixed number of different widths, or even of dynamically varying

widths. How does the interpreter fetch the next instruction? Consider

three strategies:

19

i. Dynamically concatenate successive words in the DEL program
store, in effect creating a "bit stream" memory.

ii~ Code the fact that the next n syllables lie within the current
instruction word as part of the semantic interpretation of the
first (or last) syllable in the instruction.

iii. Reserve one syllable code (usually all zeroes) to signify "end
of instruction word" i.e., that the current instruction
word is exhau'sted (i.e., has been interpreted), and a new
instruction word fetch is required.

The first technique is used in the Burroughs S-language implemen-

tat ion for the B1700, a defined field host capable of accessing arbi-

trary sized fields at bit addresses. By packing DEL instructions at

the bit level means th~t "every bit is fully utilized", and "appears

to account for half of all the program compaction which has been real-

ized on the B1700" (Wilner [22J).

There can be a high interpretati?n time penalty associated with

frequency encodings, however, since several sequential level s of

decoding may be required to correlate a syllable code with the proper

semantics. Wilner outlines an "SDL" encoding that is claimed to

obtain most of the compaction resulting from Huffman's code [11],

while still permitting reasonable decode times. The resulting pol ish

form instructions are about thir.teen bits in length (averaged over

both operator and data instructions), and require a maximum of three

stages of decode. Wil ner estimates that a pure Huffman code would be

fourteen per cent slower to decode, but would only reduce the size of

a typical surrogate by one per cent.

These time estimates may be unique to the B1700 and the specific

interpretation algorithm used to process the S-languages. Although

20

Wilner claims only a 2.6 per cent slow down from a straight n-way

binary code to a 4-6-10 staged encoding, the manner in which this is

computed is not clear. It may be that little or no retention is used

by S-language interpreters, or that instruction fetch time is included

in the computation of decode time -- which would certainly tend to

equalize differences between various techniques. Decoding SDL codes

on an EMMY [11] based system (available at our Stanford Emulation

Laboratory) would require more than double the time needed by a simple

n-way binary code. This is equivalent to more than 40 per cent of a

typical instruction execution; if a pure Huffman code were used, this

factor could double again. At least some direct hardware assistance

appears to be necessary for this technique to achieve high perfor-

mance.

The second strategy is nothing more than the familiar fixed field

organization used by most second and third generation "machine

languages". Once the first few bits of such a DEL instruction have

been decoded, the exact length and placement of all the subfields

within that instruction can be determined. In this case, the Flynn­

Henderson equation can be used to adjust the overall length of the

various instruction types so as to minimize the time needed to fetch a

given instruction stream -- i.e., minimize the time needed to access

the critical fields defining the tranformations to be performed.

The last technique was developed independently during the syn­

thesis of DELtran (Hoevel [9], described later in this paper). It

approximates the bit stream packing capability of the B1100, but

21

requires only two registers, the instruction index IX and instruction

word IW, and is easily implemented on hosts with flexible memory

arrangements. Each DEL instruction is treated as a string of syll-

abIes that is fetched and decoded as follows:

1. A syllable is extracted from the IW using ei ther of the two
. method s described above.

2. If the IW is now zero, transfer of the next word in the instruc­
tion stream into the IW is ini tiated •

3. The appropriate routine is invoked, depending on the contents of
the IX, and execution continues with step one.

Using this technique, the all zeros code must be reserved to indicate

t.hat the current instruction word has been exhausted.

The ge/neration algori thm for this is to simpl y place successive

syllable codes into a word until the next code does not fit within

that word. The current word is then filled with zeros, and the pro-

cess is repeated for the next word in the DEL program store.

The following is a simple technique, hinging on the definition of

"fit", that can save some execution phase time and space (Fig. 6).

Suppose that there are M bits in the next syllable code to be packed

into a word that has only N bits remaining, where M is greater than N.

The first N bits of this syllable can be packed into the current word

if its M-N trailing bits are zero -- they will be supplied automati-

cally by the algorithm outlined above. This results in individual

syllables being logically, if not physically, contained within indivi-

dual program store words, but permits entire instructions to cross

word boundaries.

22

1< Physical storage Word -------·~)I

New Instruction
Starting Address

~
previous instruction(s) I ~ b ~I

If identifier = I xxx I 0 ••• 0 ,.

E-b~
then code xxx in field b.

Otherwi se, code 000 in field b
to indicate a new instruction
fetch is required, and code
xxxO ••• O at the beginning of
the next physical storage word.

.~ c --+

I identifier I
leading field of
next instruction

Figure 6: "Fi tting" Syllables at the End of a Storage Word

By assigning these codes such that frequently occuring codes have

a greater number of trailing zeros, the beneficial effects of this

technique should be significantly improved.

Intuitively, this gains some of the spatial advantage of Huffman

like codes (at word boundaries) for the simple straight binary code,

yet permits rapid decode. In theory, it could also be used in con-

junction with more highly encoded forms (either SDL or pure Huffman):

the relative time gain would be smaller since decode overhead would

dominate the instruction fetch, however; and the space gain would be

reduced due to the reservation of the all zeros code. Time and space

23

estimates for this form are:

Access Time = (k+1) * (R*w/b + shift(w) + test)

Program Space = w * (k+1)

R, k, b, and ware again the same as .before; "shift(x)" is the number

of host instructions required to extract an x bit field; and "test" is

the-number of host instructions needed to check for the all zero code

(Which should be 0 or 1 for a well designed DEL host).

Field Dependencies

So far, we have discussed only static dependencies. It is also

possible to take advantage of locality by dynamically changing the

interpretation of specific codes. That is, the semantics associated

wi th special DEL operators may be used to change the tables used by

the decode routine within the interpreter. While this generally

requires rather sophistocated compilation techniques (see Foster and

Gonter [7], and Sweet [19]]), it may be possible to avoid exhorbitant

overhead by applying this stratagem only when DEL control passes from

one module to another. This is because of the one-to-one correspon­

dence between DEL modules and the lexical "scopes" in the source pro­

grams from Which they were derived. Fixing the size of an operand

reference upon entry to a DEL module can result in dramatic compres­

sion of program size, and should be considered when synthesizing a DEL

for any block structured source language.

THE ACTION RULE

The action rule consists of a function applied over a domain of

arguments that produces one result. There are two considerations in

24

synthesizing an action rule: format and operation.

The synthesis objectives for both considerations should be clear

from the discussion of canonic interpretive form in our companion

paper [5].

* Enough formats should be available to provide transformational
. completeness: only unique HLL variable names are allowed in the

DEL instruction and no "memory overhead" instructions (load,
store, move, push, pop, etc) need be introduced.

* Each HLL operation should have a corresponding interpretation
within the limits of interpreter size.

The above requirements imply a 1:1 correspondence between an HLL

operation and a DEL instruction. Also, additional variable names

(TEMP's) are not introduced. In fact, A + B .. A, would have a DEL

representation of [F,+,A,B], (F a format indicator) while A * B + C ~

C would be represented as [F, * ,A, B];. [F ,+, C] - the single "C" is a

result of the uniqueness requirement.

FORMATS

In order to recognize and interpret DEL instructions, the inter-

preter must be able to determine the size and meaning of at least the

next syllable to be fetched and decoded. The leading syllable in an

instruction usually specifies its layout and interpretation; i.e.,

defines the format of the instruction.

In order to select a format set in an orderly manner, it is neces-

sary to first construct a universe of formats that at least covers the

combinatorial bindings found in traditional zero, one, two, and three

address architectures. For the moment, we need only distinguish

between two general classes of operand references: explicit reference,

25

which appear as distinct syllables within an instruction; and implicit

references, which are defined by the instruction's format code.

We use a three letter mnemonic code to describe associations of

implici t and ex pI ic it operand s wi th at most two arguments and one

result (binary order). The first letter identifies the operand to be

bound to the left argument of the operator (if any); the second letter

identifies the operand to be bound to the right argument (if any);

while the third letter identifies the operand to be bound to the

result (if any). Seven letter designations are sufficient to describe

all relevant possibilities:

1. "S", an implicit specification of the cell just above the top of
the evaluation stack (value denoted by ~).

2. "T", an implicit specification of the cell that was the top of the
eval uation stack (value denoted by .~) •

3. "U ", an implicit specification of the cell just below the top of
the ev al ua t ion stack (value denoted by ~).

4. ft A" , the first explicit operand specification appearing in an
instruction (val ue denoted by ~) .

5. " B" , the second explicit operand specification appearing in an
instruction (val ue denoted by E) •

6. " CIt , the third explicit operand specification appearing in an
instruction (val ue denoted by ~) •

7. "", for null, meaning "not applicable"
functional order.

probably due to low

A use ordered analogue to the typical 360/370 instruction 'AR R1

R2' (meaning "add registers R1 and R2, and store the result in R1)

would be written "ABA R1 R2 +" in this notation. A zero address DEL

expansion f6r the same operation might appear as: "AS R1 :=; AS R2

26

. _ . . -,

UTU +; TA R1 :=".

This notation also covers various hybrid formats that use both

implicit and explicit references in a single instruction; for example,

the use ordered hybrid instruction 'TAB X Y means "subtract the

value of X from the value currently on top of the dynamic evaluation

sta6k, store the result in Y, and decrement the stack pointer" (top of

stack is always defined with reference to its state before interpret-

ing the format in question).

It is easy to identify the characteristic formats for traditional

zero (UTU), one (TAT), two (ABA), and three (ABC) address architec-

tures using this system. The restrictive nature of these mono format

DELs is clear in comparison to the 343 potential formats designations

suggested by our three letter mnemonic.

The obvious implementation for all of the formats suggested by

this identification scheme, however, would require 7*7*7 distinct

interface routines and 9 bits per instruction (assuming a straight

forward, n-way binary encoding). Even if the spatial cost were

acceptable in the DEL program space the associated interface routines

would occupy too great a fraction of micro store for most host

machines. Consider the following rules for eliminating formats that

are redundant with respect to our notion of transformational complete-

ness.

1. Formats violating standard LIFO stack accessing conventions are
not required (this would eliminate such formats as UAB, STU, ABU,
etc.) •

27

2. Only one ordering of T and U in the first two (argument) positions
is needed--we use the UT ordering, which is consistent wi th a left
to right, depth first post order taversal of the macro-tree
representation of a program.

3. Formats -that differ only by a permutation of explicit references
are equivalent (e.g., ABC, ACB, BCA, BAC, CBA, and CAB are all
equivalent; we choose the alphabetized element, ABC in this case).

4. . Formats differing only by a permutation of the null designator,
"" in the first two (argument) positions are equivalent--we use
formats with a leading nUll.

All of the above elimination rules can be applied without adversely

affecting either the compilation or execution phase. Using these

rules, the 343 element format universe suggested by our combinatoric

identification rule can be reduced to 30 elements. The table below

lists all distinct combinations remaining after these rules have been

applied, grouped in order of increasing functional order.

The branches in a macro definition tree [3] may be thought of

either as explicit references (if connected to a leaf node), or as

implicit references (if connected to an ancestor node). This estab-

lishes a connection between format structure and the context of opera-

tor nodes in a macro definition tree. By inspection, at least one of

the above formats is directly associated with each possible configura-

tion of an ancestor node.

While we have reduced the spatial requirements of multi-format DEL

structures to a practical order of magnitude, implementing all 30 for-

mats listed in the table may still be prohibitive for some hosts. The

following theorems identify some interesting subsets of this format

universe.

28

Table of Potential Formats

MNEMONIC TEMPLATE SEMANTICS STACK

<OP> call op
S <OP> s := op +1
-A <X> <OP> x := op

T <OP> call op(t) -1
-A- <X> <OP> call op(x)
-TT <OP> t := op(t)
-AS <X> <OP> s := op(x) +1

TA <X> <OP> x := op(t) -1 - AA <X> <OP> x := op(x) - AB <X> <Y> <OP> y := op(x)
UT <OP> call op(u,t) -2
TT <OP> call op(t,t) -1
AT <X> <OP> call op(x,t) -1
TA <X> <OP> call op(t,x) -1
AA- <x> <OP> call op(x,x)
AB- <X> <Y> <OP> call op(x,y)
UTU <OP> u := op(u,t) -1
TTT <OP> t := op(t,t)
UTA <X> <OP> x := op(u,t) -2
TTA <X> <op> x := op(t,t) -1
TAA <X> <OP> x := op(t,x) -1
ATA <x> <OP> x := op(x,t) -1
TAT <X> <OP> t := op(t,x)
AAS <X> <OP> s := op(x,x) +1
TAB <X> <Y> <op> y := op(t,x) -1
ATB <X> <Y> <OP> y := op(x,t)
AAB <X> <y> <OP> y := op(x,x)
ABB <X> <Y> <OP> y := op(x,y)
ABS <X> <Y> <OP> s := op(x,y) +1
ABC <X> <Y> <Z> <OP> z := op(x,y)

Theorem 1: The canonic interpretive form requirements can be satis­
fied using only eleven formats, up to the level of diadic opera­
tors, if "reverse" forms for all non-commutative operators are
included in the set of action functions.

Proof: Consider the following DEL restrictions and interpreter coding
conventions.

1. Semantic routines for monadic operators must increment the
pointer to the top of the DEL eval uation stack before perform­
ing their normal processing.

29

2. "Reverse" forms for all non-commutative (diadic) operators
must be included in the repertoire of DEL action functions.

Given these restrictions, we may eliminate all format codes
whose mnemonic contains the"" by using the binary format con­
taining a "S", "T", or "U" in the same position, but which is oth­
erwise identical (interpreter convention). Formats differing only
by a reversal of the left and right argument binding (e.g., ABA
and ABB) are redundant under the DEL restriction; only one element

-of each such pair is needed. Finally, no format whose code begins
wi th "TT" can be generated by a naive compiler, since this would
require recognition of the use of an intermediate value as a
repeated argument.

The set {UTU, UTA, TAT, TAA, TAB, AAS, ABS, AAA, AAB, ABA,
ABC} satisfies the theorem by inspection.

Theorem 1 demonstrates that the individual advantages of both

stack and register oriented architectures can be merged at a gross

cost of only four bits per instruction, which compares favorably with

typical polish DELs (in which each instruction contains two form bits

to distinguish between "push", "pop", "operate", and "literal"). For

example, a single TAB format is equivalent to the polish sequence

"push A, operate, pop B"; the first requires one instruction and four

format bits, the second requires three instructions and six format

bits.

Theorem 2: Only four formats are required if the DEL evaluation stack
is eliminated.

Proof: The set {A.kA, MB, ABA, ABC} is sufficient, by inspection.

Compilation is somewhat more difficult in this case, however,

since "dummy" variables must be synthesized in order to evaluate com-

pound expressions. Although fewer bits would be needed to indicate

the format code, it is likely that the space and time required during

30

execution would increase because of these extra explicit operand syll-

abIes.

Theorem 3: Only six formats are needed to satisfy all but the "unique
variable" requirement of the canonic interpretive form.

Proof: The set {UTU, UTA, TAT, TAB, ABS, ABC} is sufficient, again by
inspection.

It is difficult to determine whether or not execution phase time

and space would increase or decrease if this reduced format set is

used, however, since the question is sensitive to user behavior. The

smaller format sets are interesting because of their coding compati-

bility with hosts strongly biased toward 8 bit storage quanta. If

only two or three bits are needed to define the format of an instruc-

tion, then it is possible to combine both the format and operator code

in a single byte.

PROCESS NAME SPACE -- GENERAL ISSUES

A name used by a process is a surrogate for a val ue • The set of·

all names that can be accessed by a process is the name space for that

process. Source level names are usually just alphanumeric strings

imbedded within a program text; DEL level names are operand identif-

iers appearing within executable instructions and host level names are

simply addresses of accessable elements of the host storage hierarchy.

Values are associated wi th names via a "contents map"--at any point

during a computation, the contents of a name is its correct value. In

this discussion, we are concerned only with the properties' of names

themselves, not with the form of identifiers for these names or the

31

problem of interpreting identifiers within an executable instruction;

the contents mapping is assumed to be established externally--e.g., by

a loader.

Name Space Synthesis

Providing a flexible and effective name space structure helps

minimize the space and time requirements of a DEL. Good designs are

characterized by both a simple correspondence between the source name

space and the DEL name space (to simplify compilation and preserve

transparency), and a simple correspondence between the DEL name space

and the host name space (to maintain efficiency during execution).

High level language name spaces generally involve effectively

unbounded ranges, one dimensional reference structures (viewing sub­

scripted arrays and other qual ified references as "ex pressions" rather

than primitive symbols), and discrete granularity (i.e., reference

structure does not induce a fixed relation between referands in the

memory space). The identifiers used as references at this level are

syntatically homogeneous, but semantically inhomogeneous--i.e.,

interpretation of the contents map for a referand depends on the con-

text in which its reference appears. In particul ar, the re ferand

associated with a particular source name may be different for dif­

ferent occurrences of that name. This is because the name space of

most source programs is partitioned into distinct scopes of definition

(or "scope" for short; intuitively, a scope is simply a natural group­

ing of references within which the association between references and

referands is fixed, unless altered explicitly by dynamic allocation or

32

redefinition statements).

On the other hand, most host level name spaces are structurally

inhomogeneous, being partitioned into register sets, storage modules,

etc. References to elements in these partitions are rarely inter­

changeable within a host instruction. The association between refer­

ences and referands is usually fixed at this level, however, even

though it may be parameterized in terms of the current contents map

(e.g., as in indexed or indirect referencing). Such .discrepancies

between the source and host name spaces account for much of the diffi­

culty in synthesizing an effective DEL name space.

DEL organizations may be classified according to the placement of

different portions of the information needed to bind reference to a

referand (Chevance [2J). Data is characterized by three distinct

pieces of information: type, locator, and value. The type of a

referand defines the range of values it may assume; its locator

defines the address to be used when accessing its contents; and its

value is the bit pattern assigned by the current contents map, which

must be interpreted according t~ its data type.

Incorporating locator information in the reference itself also

leads to complications in handling changes in scope (e.g., storage

management, passing parameters, and accessing externally defined

referands). Perhaps the best known model for describing the effects

of scope is the Contour Model developed in Johnson [12]. This model

is rich enough to describe the address map transformations required by

the allocation, release, and retention rules of most source languages,

33

and captures all practical methods of bind ing actual arguments to for-

mal parameters as well and suggests itself as a good design base for

DEL name spaces.

Environment and Contours

The notion of environment is fundamental not only to DELs but also

to traditional machine languages as evidenced by widespread adoption

of cache and virtual memory concepts. What is proposed for DELs is to

recognize locality as an important property of a program name space

and handle it explicitly under interpreter control. Thus, locality is

transparent to the DEL name space but recognized and managed by the

interpreter. Thus:

1. The DEL name space is homogeneOus and uniform with an a priori
unbounded range and variable resolution.

2. Operations, involving for example the compOsition of addresses
which use registers, should not be present in the DEL code but
should be part of the interpreter 'code only. Thus, the register
name space and the interpreter name space are largely not part of
the DEL name space and it is the function of the interpreter to
optimize register allocation.

3. The environment locality will be defined by the higher level
language for which this representation is created. In FORTRAN,
for example. it would correspond to function or subroutine scope.

4. Unique to every environment is a scope which includes:

i. a label contour.
ii. an operand contour,
iii. an operation table.

Following the Johnston model. we define a contour to be a vector

(or table) of object descriptors. When an environment is invoked t a

contour of label and variable addresses must be established (if not

already present) in the interpretive storage. For a simple static

34

language like FORTRAN this creation can be done at load time. For

languages that allow recursion, etc., the creation of the contour

would be done before entering a new environment. An entry in the con­

tour consists of the (main memory) address of the variable to be used;

this is the full and complete DEL name space address. Type informa­

tion and other descriptive details may also be included as part of the

entry.

The environment must provide a pointer into the cur~ent contour,

and must define the width of identifiers for labels and variables.

Typically, the contour pointer and identifier width would be main­

tained in the register of the host machine. We denote identifier

width by Wand the pointer to the base of the current contour by EP;

Figure 7 illustrates the process of referencing a DEL entity using

this terminology. Both labels and variables may be indexed off the

same environmental pointer. Subfields within DEL instructions, then,

are actually containers for immediate values that define indices in

the current contour; contour entries at the indexed location define

the mapped address of the desired variable or label in the host name

space. In other words, the operand identifiers within DEL instructions

are simply contour indices that select a particular description for

the image of a given source level object in the host name space.

The Contour r~del differs from other high level architectures in

that the function of references is separated from that of descriptors.

References are one dimensional indices into a current declaration

array, which we call the current contour. The current contour is

35

DEL instruc tion

environment

Host Registers

EP

Interpretive Storage

type Address

Contour

Target Program Storage

Figure 7: Referencing a DEL Variable

always maintained within the host micro store, and a new contour is

created for each distinct incarnation of a source scope. Only W bits

are used to represent a reference--where W is the smallest integer

such that there are less than 2W distinct referands in the current

access environment.

Each contour is uniquely identified by an environment pointer

that, at least logically, denotes its zeroth element. The environment

pointer for the current contour is part of the DEL program state vec­

tor, and must be saved/restored when entering/leaving a scope of

definition. The address map is computed by adding the reference code

to the current environment pointer, and then accessing the appropriate

36

referand descriptor (Figure 8):

descriptor (reference N) = micro store (ep + N

value (reference N) = main store (descriptor N

Figure 8: Normal DEL Addressing Structure

This analysis can be extended by noting that the logical type of a

referand (integer, floating point, logical, or character) can be

separated from its physical type (single, double or varying perci­

sion). We refer to the physical type as "shape". Elements of con­

tours are descriptors, each of which is itself a vector that defines

the shape, type, and locator of a particular DEL entity--or, more pre­

cisely, the algorithm used to access that entity. Distinguishing

shape within the descriptor allows us to use semantic routines

designed for the general case, rather than having one per type:shape

combination.

Given a fully static source language (like BASIC or FORTRAN) a

unique contour for each distinct scope of definition may be preallo­

cated during compilation. In this case, only the descriptors for for­

mal parameters need be modified during execution. For most source

languages, however, a new contour will have to be created each time a

new scope is entered; particularly if the source language supports

recursive procedure invocation.

37

Since the header entries need be evaluated only once per contour

creation, if procedure entry is infrequent in an BLL it can be rela­

tively complex and difficult to evaluate. However, this factors out

the common calculations needed to compute effective addresses; there

will be a sUbstantial time savings whenever variables are accessed

repeatedly within a contour, and the possibility of a time loss when

variables are not accessed at all. The penalty can be avoided by

marking descriptors in the current contour as "unbound" until they are

actually referenced. Each time a DEL reference is processed, its

descriptor must be checked .for validity; this usually means that some

form of hardware support is required for this stratagem to work effi­

cientl y.

The contour technique is easily adapted to most existing parameter

passing conventions. Parameters may be passed "by reference" simply

by copying the appropriate descriptors from the caller's contour into

the callee's contour. Parameters are passed "by value" by initializ­

ing a variable created either in the caller's environment (call by

copy value), or in the callee's environment (call by valup. copy), with

the value of the argument referand in the caller's contour. "By name"

parameter passing involves moving an IP:EP pair into the appropriate

descriptor in the callee contour; the IP:EP, where IP is an instruc­

tion pointer into the time invariant algorithm, and EP is an environ-

ment pointer identifying a particular access environment. No

transformation identified by the IP can depend upon or alter the con­

tents of a memory cell unless that cell is in the ~ddress mapping

38

image of the current access environment.

Operation Contours

Each verb or operation in the higher level language identifies a

corresponding interpretive operator in the DEL program representation

(exclude for the moment control actions which will be discussed

shortly). The routines for interpreting all familiar operations are

expected to lie in interpretive storage. Certain unusual operations,

such as transcendental functions, may not always be contained in the

interpretive storage. A pointer to an operator translation table must

be part of the environment; the actual operations used are indicated

by a small index container off this pointer (Figure 9). The table is

also present in the interpretive storage. For simple languages, this

latter step is probably unnecessary since the total number of opera­

tions may be easily contained in, for example, a six bit field and the

saving in DEL program representation may not justify the added inter­

pretive step.

DELTRAN

Deltran is an intermediate language, described in the appendix,

tailored to a FORTRAN source language EMMY host machine, and typical

community of scientific programmers. Its design is intended to minim­

ize execution time and space, subject to the limitations imposed by a

one pass compilation that performs only single statement optimization.

Our primary objective in synthesizing this language is to demonstrate

the practicality of the DEL design principles, rather than to advance

the state of the art in FORTRAN execution.

39

Host Registers

EOP + OP

J to Host
Instruct ion
Register

// /' ". " /' r/~ I~
.~ EOP ;-

;-

Interpretive Storage Routine Address ~ " 00

f , Semantic Routine
~ .r For Operation OP

Figure 9: Referencing a DEL Operator

The DELtran as described in the appendix was implemented . at the

Stanford Emulation Laboratory in early 1977. The compiler as

developed later is actually a one pl.us one pass process. One pass in

required for the translation while another is required for completion

of the symbol table. The compiler is non optimizing in the sense that

it does not attempt to rearrange the source code (i.e. factor state-

ments out of DO loops, etc.). Of course, optimization in the sense of

register assignment for allocation is meaningless in the DEL con-

struct.

The DELtran interpreter consists of 800 32 bit words excluding the

trignometric functions and I/O. The trig functions are brought in

separately as required from main memory. This resul ting si ze compares

favorably to implementations of PDP-11 and System 360 emulators. The

PDP-11 emulator consists of 1200 words while the System 360 consists

40

of 2100 words of microstorage (all excluding I/O). The 800 words of

interpreter leaves over 300 words available to handle scope entries as

defined in the preceding section. In view of the limited vocabulary

in FORTRAN II, operation tables were not employed hence only labels

and operand entries are required in scope tables. FORTRAN is a static

language (no recursion possible); scopes, then can be created at load

time up to 3000 variable names. Beyond 3000 variables the compiler

would either have to be modified or the program partitioned.

For a variety of different sample program material we achieve a

static code as reduction of between 4 to 1 and 10 to 1. The better

code compaction coming in problems that have a large number of array

operations. This code compaction excludes both prologue and eiplogue

information in traditional machine code as well as scope information

in DELtran. The ratio of header information to scope information

seems quite variable. and while the ratio is in DELtran's favor, it is

not as formidable as the static code size itself.

In dynamic code DELtran interprets between 1/3 and 1/5th the

number of instructions as would be required by a conventional machine

organization. These numbers also exclude a scope creation time much

of which could be overlapped with a suitable host in DELtran. For a

relatively unbiased host system such as EMMY, the time to interpret an

instruction unit is approximately twice as fast with DELtran when com­

pared to either a System 360 or PDP-11 emulation on EMMY. Of course,

EMMY would be considerably slower in interpreting image machines whose

data paths exceed 32 bits and hence would not represent a fair compar-

41

ison. The reason for DELtran's improvement over traditional machines

is rather simple. 'Trad i tional image machines represent the frozen

environment. In DELtran one can make compromises in creation of the

intermediate form and in recognition of the features of the host. The

net effect of minimizing the number of instructions to be interpreted

and in improving the interpretation time is a program execution

improvement factor of between 6 and 10 to 1 when compared to the emu­

lation of a trad itional program representation of the same program on

our ,host system. Of course, hosts dedicated to a particular image

machine will naturally run faster than EMMY emulating that system.

Thus, the actual time improvement ratio is somewhat less clear. Just

as it is possible to build a host dedicated to a tradition81 image

machine it would also be possible to build a host dedicated to DEL-

tran. We would expect such a host to interpret DELtran instructions

at least at the rate that traditional machine instructions could be

processed. Such DEL tailored hosts are subjects of continuing

research and evaluation at, Stanford. A number of other open questions

remain. A more comprehensive ,evaluation of the header vs scope crea-

tion philosophy is underway. In addition, dynamic languages are being

studied such as ALGOL and PASCAL. Actually the run time differences

between languages are not nearly' so' great as at precompiled time.

However, dynamic languages, i.e. languages which support recursion,

cannot use, of course, a scope creation at load time and must in turn

create scope on entry.

42

CONCLUS IONS

At least for most familiar high level languages our synthesis

theory seems to be adequate and comprehensive enough to allow the

careful DEL implementor to achieve something close to the "canonic

form" measures described in our companion paper. Indeed DELtran can,

wi th proper host support, achieve almost all measures missing only on

program size due to the required 5 bit format syllable included in

each instruction.

FORTRAN, being an especially simple and static language, does not

really tax the synthesis theory. DELs for dynamic languages (which

support recursion) are being implemented at the Stanford Emulation

Laboratory. Preliminary indications are that when compared to conven­

tional architectures, the improvement factors in more complex language

may be expanded over those achieved in FORTRAN. This is due to the

relatively complex code required on most traditional machines, whereas

the DEL program representation is largely little changed from that

which was described herein.

Architectural synthesis, like any design process, is a series of

tradeoffs and compromises between user behavior and host characteris­

tics. Thus, of necessity, the strategum, algorithms and design exam­

ple included here may assume different relative weightings in other

env ironments •

43

APPENDIX

DELTRAN: A CASE STUDY IN A FORTRAN DEL

As noted previously, the primary purpose of developing a FORTRAN

DEL is described in the application of DEL design principles. We lim­

ited the magnitude of our task by addressing only a subset of the full

FORTRAN language (Basic FORTRAN), and ignoring a number of questions

relating to a production environment such as higher level data, task,

and job management. The resul ting design does not preclude extension

to features like named COMMON, additional data types and structures,

or random access external files, multiple named COHMON blocks, complex

variables, logical variables, relational operators. The instruction

unit structure and operand referencing mechanism described below

should be compatible with the modifications needed to capture the full

FORTRAN language.

Source Infl uence

The FORTRAN subset of interest here is usually referred to as

Basic FORTRAN (Heising [8]). The adjective "basic" is not applied

lightly; it is indeed a rUdimentary programming language. This turns

to our advantage, however, by holding the size of the design problem

within reason. Some assumed source language features and restrictions

affecting the design of DELtran are:

(1) Its name space is entirely static, except for the binding of

actual arguments to formal parameters.

(2) The natural range of scope of definition is a procedure

specification (i.e., SUBROUTINE or FUNCTION block).

44

(3) Few primitive data types are needed (e.g., only single and

double precision forms of fixed and floating point numbers).

(4) Unstructured program control is permitted (i.e., DO loops need

not be one-in one-out control structures).

(5) Parameters are uniformly passed "by reference", a1 though this is

equivalent to "by copy value" when expressions are used as

actual arguments (this is not required by the standard, but

follows the long established IBM tradition) •

These observations are extracted from the preliminary ANS specifi­

cations for FORTRAN vs Basic FORTRAN [1]. Immediate implications are:

recursive procedure invocation need not be supported; both global and

local storage can be statically allocated during compilation; all type

checking can be performed during compilation (ignoring parameters to

procedures, as is conventional); and program flow analysis can involve

arbitrarily complex constructs.

Host In fl uence

The basic architecture of the EMMY host and its surrounding

laboratory environment are described in Neuhauser [16] and [17]. In

general EMHY is a microprogrammable "universal host" with a 200 ns.

micro store and an 800 ns. main store (50 and 400 ns. access times

respectively). Both stores are 32 bits wide; 4K words of read/write

micro store and 16K words of main store were available during the

development of DELtran.

45

User Influence

The intended user community is assumed to be composed of general

purpose scientific programmers. User characteristics most relevant to

the design of DELtran are:

(1) About half the statements in a typical source program deal wi th

program control, and about hal f are assignment statements

(Wichman [21] and Lunde [14]).

(2) The single, most frequent type of statement is "A = B", followed

at some distance by "A = A + B" (Knuth [13]).

(3) DO statements almost always use an implicit increment (stepping

value of one (Knuth [13]).

(4) Three distinct branches are usually specified for the arithmetic

if statement (implied by the distribution of branch statements

noted in Flynn [4]).

While these assumptions appear applicable to a variety of user commun­

ities and source languages, specific programs could deviate from the

implied statistical distribution of operators, names, etc. A more

detailed behavioral model could, of course, be extracted from

installation-specific trace-tape data.

General Description

Due to the s~quential nature of FORTRAN, both at the source and

machine code level, a linear sequencing rule is used. The natural

scope of definition for source level identifiers is the program or

subprogram -- i.e., MAIN, SUBROUTINE, or FUNCTION blocks. Indeed, the

lack of any other structured control uni ts leaves little choioe in

this matter, especially in light of our intent to minimize compilation

46

compl ex i ty.

Individual DELtran instruction units are broken down into indepen­

dently encoded syllables. Three classes of syllables were required:

operand syllables, which denote DELtran variables (or labels); opera­

tor syllables, which denote transformation rules to be applied to the

DELtran data store; and format syllables, which denote initializations

to be performed in preparation for a deferred operator syllable.

Word boundaries may be crossed immediately before or immediately

after either operator or format syllables: i.a., sequences of operand

syllables must li~ within a single word. (operand lists for n-ary

immediate operators such as CALL, READ, and WRITE excepted). These

syllables may be combined in three general syntatic sequences to form

DELtran instruction units:

Leading Operator:

Leading Format:

Compound:

<OP) [<A) [<B) [...]]]

<F) [<A) [..•]] <OP)

<F) [<A) [..•]] <OP) [<D) [.••]]

Leading operator forms generally deal with program control, involving

functions that do not fit well within the familiar molds of binary or

unary operators (the leading MOVE operator is an exception; it is

coded in this form because of its high frequency of occurrance). The

leading format construction factors out the operand decode and fetch

computations required by common operator functionalities: diadic (two

arguments, one result); monadic (one argument, one result), and onadic

(no argument, no result). The compound form is used only with a few

high order op~rators, or with array access primitives that require

47

information about explicit operand references not provided by the

standard form.at interface. The normal sequence of interpretation is

for leading format constructions:

Decode leading syllable -- extract 5 bit leading syllable from the

current instruction word (IW) ; and transfer control to the

appropriate interface routine.

Form interface -- extract all W bit operand reference syllables; fetch

values of arguments into registers; compute address of

resul t, if any.

Decode operator -- extract operator code, and transfer to appropriate

semantic routine.

Execute -- compute designated transformation; store resul t, if any;

and begin another cycle of interpretation.

The mechanism for communicating information between interface and

semantic routines consists of three host registers: P, Q, and R. For

binary formats, P will contain the val ue of the left argument, Q the

value of the right argument, and R the address of the result. Lower

functionality requirements are derived from this standard interface by

deleting specifications. In the unary case, for example, Q contains

the value of the only (and hence still right most) argument, and R the

result address.

This "PQ" interface has meaning only within the interpretation of

a leading format of an instruction unit. Some residual control infro­

mation, called the DEL program state vector, must be maintained across

instruction interpretations, however. The internal DELtran program

48

state is defined by:

(1) Instruction Word (IW): a buffer for the DELtran instruction

stream.

(2) Instruction Pointer (IP): a pointer to the next word of

instruction units in the DELtran program store.

(3) Control Pointer (CP): a pointer to a linear definition table

for all accessable labels, variables, constants, etc.

(4) Stack Pointer (SP): a pointer to the top of a dynamic evaluation

stack.

(5) Syllable Width (W): A specification for the number of bits in

an operand reference syllable.

(6) Evaluation Stack (ES): A LIFO queue containing the results

of intermediate computations.

Five of these six entities are encoded in three micro registers; the

current instruction word is kept in micro register I, and the current

instruction pointer is kept in micro register IP. The control pointer

CP, the current stack pointer SP, and the current syllable width Ware

all encoded in a single micro register S:

This assignment leaves four micro registers available for general

use. Three of these (P, Q, ~nd R) are temporarily dedicated to the

"PQR" interface when interpreting leading format or compound instruc­

tion forms; but may be reassigned when the standard interface is not

required. The remaining micro register, X, is used for general pur­

pose indexing and scratch storage.

49

The association between DELtran operand references and referands

in the data or program stores is defined by a single linear table

called the current contour. Each element of this table, called a

descriptor, contains two pieces of information -- a shape and a loca­

tor. Shape specifiers (high 8 bits) define an entity's size, justifi­

cation, and the granulari ty of type in the classical sense. Locators

(low 24 bits) are directly the address of a referand in EMMY's main

store.

The current contour is physically divided into two parts: a data

table located at the bottom of micro store; and a label table located

at the top of micro store. Since the current contour is always

located in a fixed position, a dynamic environment pointer (i.e., the

ep in Johnston's Contour Model [12]), is not required -- the control

pointer serves as an environment pointer for CALL and RETURN, but is

not normally used to interpret DELtran reference codes.

Because it is possible to distinguish between references to vari­

ables and references to labels syntactically (for the given FORTRAN

source language), judicious placement of descriptors can reduce the

number of bits required in operand syllables. An operand reference

code N denotes the descriptor at location N if it refers to a vari­

able, and the descriptor at location -2**W+N if it refers to a label

-- where W is the number of bits in an operand reference, and micro

store is treated as a circularly addressable memory. This means that

W may in fact be the least integer such that there are less than 2**W

distinct labels and less than 2**W distinct variables, rather than the

50

least interger such that there are less than 2**W distinct entities

(both labels and variables) in a given scope of definition. This

addressing scheme is illustrated below.

O~

-2**W -?

indexed
relative
to the
same EP

DELtran Reference Structure

Micro Store

descriptors

for variables

•

Interpreter
•

descriptors

for variables

64-4
Main Store

Image of DELtran

Data Store

(unallocated storage)

Image of DELtran

Program Store

This figure also illustrates the general layout of DELtran pro-

grams in EMMY's main store; with COMMON and LOCAL storage allocated

51

just above the 64. word eval uation stack, and program modules allocated

at the upper end of main store. If more than one procedure is

included in a module, COMMON is extended toward the higher addresses

and LOCAL for the n+ 1 th proced ure is allocated just above that for the

n-th procedure (MAIN is the 1st procedure). . The actual bodies and

skeletal contours for procedures are allocated beginning at the high

end of main store and moving towa·rd the lower addresses.

The current contour is ini tial ized by the CALL and RETURN opera­

tors from s.keletal contours pre-allocated during compilation. There

is one skeletal contour for each separate scope of definition; i.e.,

for each SUBROUTINE or FUNCTION (including t1AIN). Each skeletal con­

tourconsists of a label definition table , linkage area t and a data

defini tion table:

The table-of -contents word defines the number of formal parame-

ters, dynamic (overlay) variables, static variables, and label

descriptors for the associated block. The "Caller's ••• n words in the

linkage contain the DELtran program state vector elements that must be

restored upon encountering a RETURN instruction. Skeletal contours

are themsel ves identified by the "-1th" word of a DELtran module; the

"Oth" word contains the returned value, if it is a FUNCTION; while the

n 1 st" word is the actual beginning of the executable code for the

module:

Letting the descriptor for a FUNCTION module identify the referand

of its returned value, as well as its entry point, helps to minimize

the number of distinct entities in a given scope of definition.

52

Descriptor for F ~

Initial IP for F --+
1st

Contour Pointer for F

Returned Value

Instruction Word

•
•
•

for F

Last Instruction Word for F

Layout of a DELtran Module (F)

Syllabl~ Descriptions

All DELtran instruction units begin with a 5 bit leading syllable.

The 32 distinct codes for this key syllable specify either an immedi-

ate operation or a format that describes the preliminary processing

53

required to establish the standard interface for a deferred operator.

Code

00000
10000

01000
11000
00100
01100
10100

11100

00010
00110
01010
01110
10010
10110
11010
11110
00001
00011
00101
00111
01001
01011
01101

01111
10001
10011
10101
10111
11001
11011
11101

11111

Five Bi t Lead Syllable Encoding

Immediate Syntax

FETCH
l-10VE <A.>

TT <oP>
-AB<A> <OP>
~A <A> <OP>
-AS <A> <OP>
. AA <A> <OP>

<oP> .

lITU <OP>
UTA <OP>
ATT <A> <oP>
'rAT <A> <OP>
ABS <A> <OP>
ABC <A> <C> <OP>
TAB <A> <oP>
ATB <A> <OP>
ABA <A> <OP>
ABB <A> <OP>
ATA <A> <OP>
TAA <A> <OP>
AAS <A> <OP>
AAB <A> <OP>
AM <A> <OP>

CALL n <F> <AI> ••• <An>
RETURN
GO <L>
CGO <I> <L>
IFE <E> <L>
1FT <L>
ENDO <N> <I> <H> <L>
ENDl <N> <H> <L>

BREAK

54

Immediate Semantics

fetch next instruction
b :== a

t := OP!t) b := OP a)
a := OP t)
s := OP a)
a := OP a)

execute OP

u
l

:c OP u,t)
a := OP u,t)

·t :-OPa,t)
t := OP t,a)
s := OP a,b
c := OP a,b
b := OP t,a
b := OPa,t
a := OP a,b
b := OP a.b
a :::a OP a,t
a := OP tJa
s := OP a,a
b := OP a,a
a := OF a,a

invoke F(Al~ ••• J An)
return from invocation
goto 1
goto f1+i-l}
goto 1+(e=0)+2*(e>0»
goto 1+(t=O)+2*(t>O»
goto 1 if n=n+i < m
goto 1 if n=n+l < m

trap to monitor function

In practice, lead syllable codes are extracted from the residual

instruction word register (I) using the double shift technique, and

then added to the microprogram counter ($) to effect an indexed

branch.

Instruction units in the table following the extraction may per­

form useful computations as well as transfer microprogram control to

the remaining body of the appropriate routine (due to the semihorizon­

tal nature of EMMY's native language).

The DELtran format set permits full exploitation of. repeated

operands (either as argUments alone, or in combination with the result

specification), and is tranformationally complete in the sense that

any binding of explicit operands (i.e., primitive variables) and

implicit operands (i.e., stack elements) can be generated by local

combinatorial analysis of the FORTRAN source code. Note also that

deferred operators are partitioned into disjoint classes according to

their functionality by the inclusion of distinct binary, unary, and

nullary formats; and that reverse forms of deferred operators are not

needed, since all required argument permutations are contained in the

format set.

The MOVE operator simply transfers the value of the referand iden­

tifed by operand reference <A) to the referand identified by operand

reference . Simple program control operators such as GO, eGO, IFT,

and IFE cause the current instruction word register (I) to be reloaded

from the bit andress in DELtran's program store identified by the

appropriate label descriptor. The single label reference appearing in

55

the eGO, 1FT and IFE constructs is actually the first entry in a subt­

able 'of the current contour; the data dependent index into this table

is determined by the semantic routine for each of theses operators.

ENDO and END1 operators cause the val ue identified by <N> to be

incremented and then execute a GO <L> if the resul t is less than or

equal to <M>. The increment val ue is assumed to be one for the END 1

operator, but is explicitly denoted by <I> for the more general ENDO

operator. . Breaking out the special case of END 1 is ind icated not onl y

by the defaul t specification rule for FORTRAN looping constructs, but

also by empirical user statistics (Knuth [9]).

CALL and RETURN operators are somewhat more compl icated , since

they involve modification of the internal state of the DELtran execu­

tor. CALL causes the volatile portion of the current contour to be

paged out to its static image, which is identified by the control

pointer CP. The instruction pointer, instruction word, and status

registers (IP, I, and S) are also saved in a linkage area within this

skeletal contour, thus saving the DELtran program status vector and,

hence, all information needed to resume the caller's process. The

skeletal contour for the cal lee is then moved into the current con­

tour, and descriptors for formal parameters copied into the appropri­

ate locations~ The IP is set to point to the first word of the

cal lee's program body ,the first instruction word is fetched, and the

state register S is loaded wi th the cal lee 's syllable width and con­

trol po inter.

56

RETURN simply undoes a CALL. Only those descriptor elements in

the original caller's skeleton contour which were overlayed during the

CALL operation need be restored, however, these are easy to determine

by comparing the upper and lower reference indice bounds for both pro­

grams, which are stored in a linkage area in their skeleton contours.

We save and restore the contents of the caller's old instruction word

register to avoid wasting static space in the DELtran program store;

the time required to perform this linkage is greater than that which

would be required simply to fetch a new instruction word from the pro­

gram store.

Operand Syllable

As noted above, the width of operand syllables varies from one

scope of definition to another. The current number of bits in an

operand syllable, W, is maintained in the low order six bits of the

DELtran secondary state register, S, which is automatically saved and

restored by the execution semantics for CALL and RETURN. For short

subroutines or functions, only three or four bits are needed to iden­

tify a unique variable; in larger modules, however, six to eight bits

may be needed.

The map from reference codes to descriptors for DELtran variables

is simple and direct: the descriptor for variable with references

code N is located\ at address N in micro store. It is possible to

extract an operand reference and look up the corresponding descriptor

in a single EMMY instruction.

57

Deferred Operator Syllables

Deferred operators are categorized as diadic (two arguments, one

resuit), modadic (one argument, one result), or onadic (no argument,

no results). Data types are not checked dynamically because FORTRAN

is such a strongly typed language in its own right, and hence, dis­

tinct operator codes are used to denote integer and· floating func-

tions. Some collapsing of the DEL operator set was possible where

only the sign of an operand or equi val ence to zero need be checked, as

wi th the IF statement, since these representations are the same for

both fixed and floating point (internal value representation con­

sistent with the 370 architecture has been used for pragmatic reasons;

see Wallach [20]).

The -A2- operators are perhaps not self defining; in general, the

two argument val ues in the P and Q interface registers to be treated

as the first and second subscripts for the array whose descriptor will

be in the result register, R. A2E causes the effective address of the

indicated array element to be computed, creates a descriptor to this

element by combining the shape field from the array descriptor with

this address, and stores the resul t in the contour slot for the

deferred reference code D. MA2 and A2M operators work in a similar

fashion, but actually cause a state transformation in the DELtran data

space they are simil ar to the MOVE operator. TA2 and A2S are

"push" and "pop" operators that transfer values between the evaluation

stack and array elements.

Bounds checking is not performed, following with the tradition

established by IBM. It would be easy to incorporate by modifying the

58

Four Bit Encoding of Diadic Operators

Code Deferred Syntax

0000
1000
0100
1100
0010
0110
1010
1110
0001

It 00
II 01
" 10
" 11

0011
0101
0111
1001
1011
1101
1111

FETCH
A2E <D>
F+
1+
F-
1-
F*
1*
-A2-

MA2 <0>
A2M <D>
TA2
A2S

FI II
F-F
1 1
FST
1ST
BREAK

Deferred Semantics

fetch the next instruction vord
associate D "'ith (p',q)-th element: of r
r := p+q (floating add)
r := p+q !integer add)
r := p-q floating subtract)
r := p~ integer subtract)
r := p*q floating multiply)
r := p*q integer multiply}
prefix for array accessing operators
r{p,q) := d '
d := r(p,q)
r(p»q) := t
s := r(p;q)
r := plq ~floating divide)
r := p/Q integer divide) ,
r := p*xq floating to floating power)
r := P**l integer to integer power)
r := sgn p)*q (floating sign tr.ansfer)
r := sgn p}*q (integer sign transfer)
trap to monitor

appropriate array accessing routines, and would not involve a high

space or time penalty for the EMMY host. The multiplier needed to

compute the effective address of an indexed array element is stored at

the "base" of the array (i.e., is its zero-th el ement; this works for

FORTRAN since array subscripts must begin with one).

59

Code

0000
1000
0100
1100
0010
0110
1010
1110
0001

II 00
" 01
It 10
II 11

0011
0101
0111
1001
1011
1101
1111

Code

000
100
010
110
001
011
101
III

Four Bit Encoding of Ho-dadic Operators

Deferred SyntaX Deferred Semantics

FETCH
AlE <D>
FLOAT
FIX
F-
r-
LOG
SIN
-AI-

UAI <D>
AIr-! <D>
TAl
AlS

COS
TANH
PAUSE
STOP
TIHE
not used
BREAK

fetch new instruction word
associate reference code D with rep)
r := float{p)
r := fixe!?)
r := -p (floating negate)
r := -p (intep'er negate) .
r := log(p) (Yogarithm)
r := sin(p), (sine)
prefix for array accessing operators
rep) := d
d := rep)
r (p) :=t
s := rep)
r := cos(p) (cosine)
r := tan~(p) (hyperbolic tangent)
pause with code p
stop with code p
r := (current time)-p

trap to monitor

Three Bit Encoding of Onadic Operators

Deferred Syntax

FETCH
SET <U> <F>
READ n <Dl> ••• <Dn>
WRITE n <Dl> ••• <Dn>
REWIND
BACKSPACE
ENDFILE
BREAK

Deferred Semantics

fetch next instruction word
set Un! t = U and Format == F
input to DI ••• Dn as per Unit/Format
output froD Dl ••• Do as per Unit/Format
rewind Unit
backspace Unit
write end-of-file mark on Unit
trap to monitor.

Compound instruction uni ts of the form " <onadic OP) tf are

really nothing more than a partial frequency encoding of infrequent

and/or difficult to handle functions, the bulk of which deal with

input out put. Two residual control cells, Unit and Format, are used

to maintain the status of I/O operations. Unit corresponds to a logi-

cal deSignation of a specific file/device/channel combination, and

would in practice be bound by a surrounding operating system as speci-

fied by some external job control language. The Format cell is merely

a byte pointer into a string of field specifications produced during

60

compilation from the appropriate FORTRAN 'format statement.

Although the full IIO structure indicated above are not imple­

mented the intent is that it should proceed as a subinterpretation,

either the EMMY performing conversions under control of the current

Format, or with the control device for Unit performing these conver­

sions asynchronously. The Unit and Format residual control cells are,

respectively, the environment pointer and instruction pointer for this

subinterpretation. An entire byte is used to encode formatted field

specifications simply to keep this process as simple as possible; the

spatial penalty is low since IIO statements are statically insignifi­

cant.

61

Referenoes

[1 J Amerioan Staociards ASs'Qci.ationSeQtiQoal Committee X3, Comput­
ers and InfQrmG.i:t.i.on (R~ v. &ni.th, ~.Q.), uFORTRAN VS~ Bas:ic
FORTRAN A Progrc,tmmirlg .. Language fqr Info·rrna;tion PrQQess,ing
o.n Automatio Data PrQGe.ssin~ SY'stero$, It Communicatio.ns of the
ACM, Vol. 7', No •. 10, OotQber 196~f) pp,~ 591",,0~5 •.

[2J Che,vanGe ,. R. J." "·Design,of Hi,g.h 4eV'el Langu~~,e Orien,ted Pro~
oessors t" SrGPl..AN Notices ,. Vol. 12, No.. 1, Janyary' 1977 t pp.
40.-51.

[3]. Elson t M~ t and Ra;k.e I $. 1\,. "tCOde Gene.ratio.n. Techniques for
Large.... Language Compilers,," IBM Systems JOl,H!!'nal, Vol. 9, No.
3, 1970, pP. 166-88.

[1~J Flynn, Michael JOt "Trends and Proolems in Computer Organiza-.
tio.ns t" IF'IPS Congress,. StaG kholm, Sweet en, t.August 1974, North
Holland Ptiblfshiri,g Company, 195 PR. 2 10. •.

[5] Flynn" M.ichael J .. t and Hoevel Lee 1"'." '~Int~rpretive Architec
tures: A. Theory of Ideql L.anag.uag~ Machine& ,f' Computer Systems
Laboratory T~chflciGal R~port. 170. Fepr·yary 1979. Stanford
Universi ty, Stanford t California ~

[6J Flynn, Michael JOt ~nd Henderson, D.. So. ~ t nVariable Field
Length Dat.a ManipulgtiQn in a F'ixect Word."..Le.ngth M~mory ,n IEEE
Transactions on Electronic Compqters., Vol.' 8C 12 , NQ,5":"
Ootober '1963, p.p .,512~11.

[7J Foster t C~ c. and Ganter t R~ H., "CQndit.ional Interpretation
of Op.eration Codes ,u IEEE 'l'ransaotions on COnlPl"lters t Vol.
G-20, NQ. 1, January 197f;·pp. 'loa~f1 ~

[8J Heising" W. P., t "'flistory and S~\mmary Of' FQR'l'RAN Standardiza­
tion Development. fQr the ASA," CQlinmunioation~ of the ACM, Vol.
7, No. 10, Oct.ober 1964, p. 590.

[9 J Boevel, Lee W. t "D£.Ltran priOQiples of' Op.eration ,'" Dig i tal
Systems Laboratory, Technical, Not~ No. 108., Stanford Univer
si ty, Stan forci" Cal ifornia" Maron 1977.

[10] Hoavel, Lee W •. and Wallaoh, Wal tar A,~, '·A Tale of Three &llula.,..,
tors t '. Technical Report. No, 98, D,igital Systems. Laboratory,
Stanford Universj.ty, StanfOf,d, California. Ootober 19750

62 .

[11] Huffman, D. A., "A Method
Redundancy Codes," IRE,
1098-101.

for the Construction of Hinimum
Vol. 40, No.9, September 1952, pp.

[12] Johnston, John B., "The Contour Model of Block Structured
Processes," Proceed ings of the SDSPL (SIGPLAN Notices, Vol.
6), February 1971, pp. 55-82.

[13] Knuth, D.
Software
105-33.

E., "An Empirical Study of
Practices and Experience,

FORTRAN Programs,"
Vol. 1, 1971, pp.

[14] Lunde, A., "Empirical Evaluation of Some Features of Instruc­
tion Set Processor Architectures," Communications of the ACM,
Vol. 20, No.3, March 1977, pp. 143-52. -- -- --

[15] McCarthy, J., et al., LISP 1.5 Programmer's Manual, MIT Press,
Cambridge, Massachuset~1965.

[16] Neuhauser, Charles J., "System Description of the JHU Emula­
tion Laboratory and Host Machine ," Proceedings of the 7th
Annual Workshop on Microprogramming (SIGMICRO 7), -september
1974, pp. 28-33.--

[17] Neuhauser, Charles J., "An Emulation Oriented, Dynamic
Microprogrammable Processor (Version 3)," Technical Note No.
65, Digital Systems Laboratory, Stanford University, Stanford,
California, October 1975.

[18] Standish, T. A., "A Preliminary Sketch of a Polymorphic Pro­
gramming Language," Centro de Calculo Electronico, Uni versidad
Nacional Autonoma de Mexico, July 1968.

[19 r Sweet, Richard Eric, Empirical Estimates of Program Entropy,
Ph. D. Dissertation, Department of Computer Science, Stanford
University, Stanford, California, December 1976.

[20] Wallach, Wal ter A., "EMMY/360 Cross Assembler ," Technical Note
No. 74, Digital Systems Laboratory, Stanford University,
Stanford,California, June 1976.

[21] Weber, Helmut, "A Hicroprogrammed Impl ementation of EULER on
IBM System/360 Model 30," Communicatins of the ACM, Vol. 10,
No.9, September 1967, pp. 549-58. -- -- --

[22] Wichman, B. A., "Five Algol Compilers," Computer Journal Vol,
15, No.1, January 19721 pp. 579-86.

63

