STANDARD
MICROSYSTEMS
CORPORATION

Data CATALOG

 1979| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | - | | | | |
| | | | | | |

INDEX		PAGE
PART NUMBER $\ldots \ldots$	3	
FUNCTIONAL $\ldots \ldots$	4-7	
CROSS REFERENCE $\ldots .$.	$8-9$	

GENERAL INFORMATION
FACILITIES/CUSTOM CAPABILITIES 10-14

QUALITY ASSURANCE 15-16

DATA COMMUNICATION PRODUCTS
17-76

CRT DISPLAY
77-108

TABLE
 OF CONTENTS

PRINTER 109-122

BAUD RATE GENERATOR
123-150

KEYBOARD ENCODER
151-164

MICROPROCESSOR PERIPHERAL
165-187

ORDERING INFORMATION
PACKAGE DATA
188-189
190-191

PART NUMBER INDEX

PART NUMBER	PAGE	PART NUMBER	PAGE
COM 1553A	$18-19$	COM 5036	$128-129$
COM 1671	$20-35$	COM 5036T	$128-129$
FDC 1771	-	CRT 5037	$78-85$
FDC 1791	-	COM 5046	$130-131$
COM 1863	36	COM 5046T	$130-131$
COM 2017	$37-44$	CRT 5057	$78-85$
COM 2017H	$37-44$	FDC 7003	$178-179$
KR 2376XX	$152-155$	CRT 7004A	$104-108$
COM 2502	$37-44$	CRT 7004B	$104-108$
COM 2502H	$37-44$	CRT 7004C	$104-108$
COM 2601	$45-52$	CRT 8002A	$94-103$
COM 2651	$53-54$	CRT 8002B	$94-103$
FDC 3400	$170-177$	CRT 8002C	$94-103$
CCC 3500	$180-187$	COM 8004	67
KR 3600XX	$156-163$	COM 8017	$68-75$
CG 4103	$110-113$	COM 8018	36
ROM 4732	$166-169$	COM 8046	$136-137$
SR 5015XX	$114-117$	COM 8046T	$136-137$
SR 5015-80	$114-117$	COM 8116	$138-139$
SR 5015-81	$114-117$	COM 8116T	$138-139$
SR 5015-133	$114-117$	COM 8126	$140-141$
COM 5016	$124-125$	COM 8126T	$140-141$
COM 5016T	$124-125$	COM 8136	$142-143$
SR 5017	$118-121$	COM 8136T	$142-143$
SR 5018	$118-121$	COM 8146	$144-145$
COM 5025	$55-66$	COM 8146T	$144-145$
COM 5026	$126-127$	COM 8251A	76
COM 5026T	$126-127$	COM 8502	$68-75$
CRT 5027	$78-85$	CRT 96364A/B	$86-93$

FUNCTIONAL INDEX

Data Communication Products

Part Number	Name	Description	Max Baud Rate	Power Supplies	Package	Page
COM 1553A ${ }^{(1)}$	$\begin{aligned} & \text { MIL-STD- } \\ & \text { 1553A UART } \end{aligned}$	MIL-STD 1553 (Manchester) Interface Controller	1 MB	+5	40 DIP	18-19
COM 1671	ASTRO	Asynchronous/Synchronous Transmitter/Receiver, Full Duplex 5-8 data bit, 1X or 32X clock	1 MB	$+5,-5,+12$	40 DIP	20-35
COM 1863 ${ }^{(1)}$	UART	Universal Asynchronous Receiver/ Transmitter, Full Duplex 5-8 data bit, $1,11 / 2,2$ stop bit, enhanced distortion margin	40 KB	+5	40 DIP	36
COM 2017	UART	Universal Asynchronous Receiver Transmitter, Full Duplex 5-8 data bit, 1, $11 / 2,2$ stop bit	25 KB	$+5,-12$	40 DIP	37-44
COM 2017H	UART	Universal Asynchronous Receiver/ Transmitter, Full Duplex 5-8 data bit, 1, $11 / 2,2$ stop bit	40 KB	+5, - 12	40 DIP	37-44
COM 2502	UART	Universal Asynchronous Receiver/ Transmitter, Full Duplex 5-8 data bit, 1, 2 stop bit	25 KB	+5, - 12	40 DIP	37-44
COM 2502H	UART	Universal Asynchronous Receiver/ Transmitter, Full Duplex 5-8 data bit, 1, 2 stop bit	40 KB	+5, - 12	40 DIP	37-44
COM 2601	USRT	Universal Synchronous Receiver/ Transmitter, STR, BSC, Bi-sync compatible	250 KB	+5, - 12	40 DIP	45-52
COM $2651{ }^{(1)}$	USART/PCI	Universal Synchronous/Asynchronous Receiver/Transmitter, Full Duplex; 5-8 Data bits; $1,11 / 2,2$ stop bit, 1X, 16X, 64X clock	1 MB	+5	28 DIP	53-54
COM 5025	Multi-Protocol USRT	SDLC, HDLC, ADCCP, Bi-sync, DDCMP compatible, automatic bit stuffing/ stripping, frame detection/generation, CRC generation/checking, sync detection	1.5 MB	+5, +12	40 DIP	55-66
COM 8004 ${ }^{(1)}$	32 Bit CRC Generator/ Checker	Companion device to COM 5025 for 32 bit CRC	2.0 MB	+5	20 DIP	67
COM 8017	UART	Universal Asynchronous Receiver/ Transmitter, Full Duplex 5-8 data bit, 1, $11 / 2,2$ stop bit	40 KB	+5	40 DIP	68-75
COM 8018(1)	UART	Universal Asynchronous Receiver/ Transmitter, Full Duplex 5-8 data bit, $1,11 / 2,2$ stop bit, enhanced distortion margin	40 KB	+5	40 DIP	36
COM 8251A ${ }^{(1)}$	USART/PCI	Universal Synchronous/Asynchronous Receiver/Transmitter, Full Duplex, 5-8 data bit, $1,1 \frac{1}{2}, 2$ stop bit	$\begin{aligned} & 64 \mathrm{~KB} \text { (sync) } \\ & 9.6 \mathrm{~KB} \text { (async) } \\ & \hline \end{aligned}$	+5	28 DIP	76
COM 8502	UART	Universal Asynchronous Receiver/ Transmitter, Full Duplex 5-8 data bit, 1, 2 stop bit	40 KB	+5	40 DIP	68-75

(1) For future release

CRT Display

Part \#	Description	Features	Display Format	Max Clock	Power Bupplies	Package	Page
CRT 5027	provides all of the timing and control for interlaced and non-interlaced CRT display		programmable	4 MHz	+5, +12	40 DIP	78-85
CRT 5037		balanced beam interlace					
CRT $5057{ }^{(1)}$		line-lock					
CRT 96364/B ${ }^{(1)}$	complete CRT processor	on-chip cursor and write control	$64 \text { column }$ $16 \text { row }$	1.6 MHz	+5	28 DIP	86-93

${ }^{(1)}$ For future release

VDAC ${ }^{\text {TM }}$ DIEPTAE COINTROTITFR8

Part \#	Description	Display	Attributes	Max Clock	Power Supply	Package	Page
CRT 8002A ${ }^{(2,3)}$	provides complete display and attributes control for alphanumeric and graphics display. Consists of $7 \times 11 \times 128$ character generator, video shift register, latches, graphics and attributes circuits	7×11 dot matrix, wide graphics, thin graphics. on-chip cursor	reverse video blank blink underline strike-thru	20 MHz	+5	28 DIP	94-103
CRT 8002 ${ }^{(2,3)}$				15 MHz			
CRT 80020 ${ }^{(2,3)}$				10 MHz			

${ }^{(2)}$ Also available as CRT 8002A,B,C-001 Katakana
CRT 8002A,B,C-003 5X7 dot matrix
${ }^{(3)}$ May be custom mask programmed

CHLARACTHR GFNFRATORS

Part \#	Description	Max Frequency	Power Supply	Package	Page
CRT 7004A ${ }^{(3)}$	$7 \times 11 \times 128$ character generator, latches, video shift register	20 MHz	+5	24 DIP	104-108
CRT 7004B ${ }^{(3)}$		15 MHz			
CRT 7004C ${ }^{(3)}$		10 MHz			

${ }^{(3)}$ May be custom mask programmed

CHARACTHR GFWHRATOR

Part ITumber	Description	Scan	Max Access Time	Power 8upplies	Package	Page
CG $4103^{(3)}$	$5 \times 7 \times 64$	Column	$1.2 \mu \mathrm{sec}$	$+5,-12$ or ± 12	28 DIP	$110-113$

${ }^{(3)}$ May be custom mask programmed
SHINT RHGISMTRR

Part ITumber	Description	Feature	Max Clock Freq.	Power Supply.	Package	Page
SR 5015-XX	Quad Static Shift Register Mask Programmable Length	Load, Recirculate, Shift Controls,	1 MHz	+5	16 DIP	114-117
SR 5015-80	Quad 80 Bit Static					
SR 5015-81	Quad 81 Bit Static					
SR 5015-133	Quad 133 Bit Static					
SR 5017	Quad 81 Bit	Shift Left/Shift Right, Recirculate Controls, Asynchronous clear	1 MHz	+5	16 DIP	118-121
SR 5018	Quad 133 Bit					

All Baud Rate Generators are programmable dividers capable of providing 16 output frequencies* for UARTs or USARTs from either an on-chip crystal oscillator or an external frequency input. " T " versions utilize an external frequency input only. Dual Baud Rate Generators provide two out-
*except as noted
put frequencies simultaneously for full duplex communication.
Baud Rate Generators providing all standard baud rates from various popular crystal frequencies are available. In addition the baud rate generator may be custom mask programmed for other divisors.

Part \#	Description	Features	Power Supplies	Package	Page
COM 5016	Dual Baud Rate Generator	On-chip oscillator or external frequency input	+5, +12	18 DIP	124-125
COM 5016T	Dual Baud Rate Generator	External frequency input	+5, +12	18 DIP	124-125
COM 5026	Single Baud Rate Generator	On-chip oscillator or external frequency input	+5, +12	14 DIP	126-127
COM 5026T	Single Baud Rate Generator	External frequency input	+5, +12	14 DIP	126-127
COM 5036	Dual Baud Rate Generator	COM 5016 with additional output of input frequency $\div 4$	+5, +12	18 DIP	128-129
COM 5036T	Dual Baud Rate Generator	COM 5016T with additional output of input frequency $\div 4$	+5, +12	18 DIP	128-129
COM 5046	Single Baud Rate Generator	COM 5026 with additional output of input frequency $\div 4$	+5, +12	14 DIP	130-131
COM 5046T	Single Baud Rate Generator	COM 5026T with additional output of input frequency $\div 4$	+5, +12	14 DIP	130-131
COM 8046	Single Baud Rate Generator	32 baud rates; 1X, 16X, 32X clock outputs; single +5 volt supply	+5	16 DIP	136-137
COM 8048T	Single Baud Rate Generator	COM 8046 with externail frequency input only	$+5$	16 DIF	136-137
COM 8116	Dual Baud Rate Generator	Single +5 volt version of COM 5016	+5	18 DIP	138-139
COM 8116T	Dual Baud Rate Generator	Single +5 volt version of COM 5016T	+5	18 DIP	138-139
COM 8126	Single Baud Rate Generator	Single +5 volt version of COM 5026.	+5	14 DIP	140-141
COM 8126T	Single Baud Rate Generator	Single +5 volt version of COM 5026T	+5	14 DIP	140-141
COM 8136	Dual Baud Rate Generator	Single +5 volt version of COM 5036	+5	18 DIP	142-143
COM 8136T	Dual Baud Rate Generator	Single +5 volt version of COM 5036T	+5	18 DIP	142-143
COM 8146	Single Baud Rate Generator	Single +5 volt version of COM 5046	+5	14 DIP	144-145
COM 8146T	Single Baud Rate Generator	Single +5 volt version of COM 5046T	+5	14 DIP	144-145

Keyboard Encoder

Part \#	NJo. of Keys	Modes	Features	Standard FontsSuffix Description		Power Supplies	Package	Page
KR-2376 XX ${ }^{(3)}$	88	3	2 Key Rollover	-ST	ASCII	+5, - 12	40 DIP	152-155
KR-3600 XX ${ }^{(3)}$	90	4	2 Key or N Key Rollover	$\begin{aligned} & \text {-ST } \\ & \text {-STD } \\ & \text {-PRO } \end{aligned}$	ASCII ASCII Binary Sequential	+5, -12	40 DIP	156-163

[^0]
Microprocessor Peripheral

ROM

Part INumber	Description	Access Time	Power 8upply	Package	Page
ROM 4732 ${ }^{(3)}$	32K ROM; 32,768 bits organized 4096×8	450 nsec	+5	24 DIP	$166-169$

${ }^{3}{ }^{3}$ May be custom mask programmed

FTOPPY DIEK

Part Number	Description	Sector Format	Density	$\begin{gathered} \text { IBII } \\ \text { Compatible } \end{gathered}$	Write Pre-compensation	Power Supplies	Package	Page
FDC $1771{ }^{(1)}$	Floppy Disk Controller/Formatter	Soft	Single	Yes	No	+5	40 DIP	-
FDC $1791^{(1)}$	Floppy Disk Controller/Formatter	Soft	Double	Yes	External	+5	40 DIP	-
FDC 3400	Floppy Disk Data Handler provides serial/parallel interface, sync detection	Hard	N.A.	N.A.	No	+5, -12	40 DIP	170-177
FDC $7003^{(1)}$	Floppy Disc Controller/Formatter	Soft	Double	Yes	Internal	+5	40 DIP	178-179

CASSETTMTGARTRIDGF

Part Number	Description	Max Data Rate	Features	Power 8upply	Package	Page
CCC 3500	Cassette/Cartridge Data Handler	250 K bps	Sync byte detection, Read While Write	$+5,-12$	40 DIP	$180-187$

SMC CROSS REFERENCE GUIDE

Description	SMC Part \#	AMI	E.A.	Fairchild	G.I.	Harris	Intel	Inter:
UART ($11 / 2 \mathrm{SB}$)**	COM 2017	S1883	-	-	AY 5-1013A	-	-	-
UART (1,2 SB)**	COM 2502	S1863	-	-	AY 5-1013	-	-	-
UART (N-Channel)**	COM 8017	S6850*	-	-	AY 3-1015	HM6402	-	IM64C
UART (N-Channel)**	COM 8502		-	-	AY 3-1015	HM6403*	8251*	IM640
UART (CMOS)**	COM 6402	-	-	-	-	HM6402	-	IM64C
USR/T	COM 2601	S2350*	-	-	-	-	-	-
ASTRO	COM 1671	-	-	-	-	-	8251*	-
Multi-Protocol	COM 5025	-	-	-	-	-	-	-
Dual Baud Rate Gen.	COM 5016/36 COM 8116/36	-	-	-	-	-	-	-
Single Baud Rate Gen.	COM 5026/46 COM 8126/46	-	-	F4702*	-	$\begin{aligned} & \text { HD4702* } \\ & \text { HD6405* } \end{aligned}$	-	-
88 Key KB Encoder	KR 2376	-	-	-	AY 5-2376	-	-	-
90 Key KB Encoder	KR 3600	$-$	$\begin{array}{\|r\|} \hline \text { EA2007* } \\ 2030^{*} \\ 2007^{*} \end{array}$	-	AY 5-3600	-	-	-
Character Generator	CRT 7004	S8564*	-	-	-	-	-	-
Character Generator	CRT 8002	-	-	-	-	-	-	-
Character Generator	CG 4100	S8499	-	-	RO 5-2240S*	-	-	-
Shift Register	SR 5015	S2182/3/5	-	-	-	-	-	-
Shift Register	SR 5017	-	-	-	-	-	-	-
CRT Controller	CRT 5027	-	-	-	-	-	8275*	-
ROM	ROM 4732	S68322	8332	-	RO 3-9332	-	2332	-

*Functional Equivalent
$\left.\begin{array}{l|c|c|c|c|c|c|c|c|c|c|}\hline \begin{array}{l}\text { MOS } \\ \text { chnology }\end{array} & \text { Mostek } & \text { Motorola } & \text { National } & \text { NEC } & \text { Plessy } & \text { Signetics } & \begin{array}{c}\text { Solid } \\ \text { Scientific }\end{array} & \text { Synertec } & \text { T.I. } & \text { W.D. } \\ \hline- & - & - & \text { MM5303* } & \text { HPD369* } & - & - & - & - & \text { TMS6011 } & \text { TR1602 } \\ \hline- & - & - & - & - & - & 2536 & - & - & - & \text { TR1402 } \\ \hline- & - & \text { MC6850* } & - & - & - & - & - & - & - & \text { TR1863 } \\ \hline- & - & - & - & - & - & - & - & - & - & \text { TR1983* } \\ \hline- & - & - & - & - & - & - & \text { SCP1854 } & - & - & - \\ \hline- & - & - & - & - & - & - & - & - & - & - \\ \hline- & - & - & \text { INS1671 } & - & - & 2651^{*} & - & - & - & \text { UC1671 } \\ \hline- & - & - & - & \text { HPD379* } & - & 2652 & - & - & - & \text { SD1933* } \\ \hline- & - & - & - & - & - & - & - & - & - & \text { BR1941L } \\ \hline- & - & - & - & - & \mu P D 2332 & - & 2632 & - & \text { SY2332 } & \text { TMS4732 }\end{array}\right]-$
**Most UART's are interchangeable; consult the factory for detailed information on interchangeability.

Innovation in microelectronic technology is the key to growth at Standard Microsystems.

Since its inception, Standard Microsystems has been a leader in creating new technology for metal oxide semiconductor large scale integrated (MOS/LSI) circuits.

For example, while the first MOS/LSI processes were P-channel, it was recognized very early that an N -channel process would greatly improve switching speeds and circuit density. However, the fundamental problem of parasitic currents needed to be solved. The research and development staff at Standard Microsystems recognized this problem and directed its energy toward the development of its now-famous COPLAMOS ${ }^{\circledR}$ technology. COPLAMOS ${ }^{\circledR}$ defines a self-aligned, field-doped, locally oxidized structure which produces high-speed, high-density N -channel IC's.

In addition, on-chip generation of substrate bias, also pioneered by Standard Microsystems, when added to the COPLAMOS ${ }^{\oplus}$ technology, results in the ability to design dense, high-speed, low-power N-channel MOS integrated circuits through the use of one external power supply voltage.

Again recognizing a need and utilizing its staff of qualified process experts, Standard Microsystems developed the CLASP ${ }^{\circledR}$ process. The need was for fast turnaround, easily programmable semi-custom LSI technology. The development was CLASP, ${ }^{\oplus}$ a process that utilizes ion implantation to define either an active or passive device which allows for the presence of a logical 1 or 0 in the matrix of a memory or logic array. This step is accomplished after all wafer manufacturing steps are performed including metalization and final passiviation layer formation. Thus, the wafer can be tested and stored until customer needs dictate the application, a huge saving in turnaround time and inventory costs.

These innovations in both process and circuit technology have received widespread industry recognition. In fact, many of the world's most prominent semiconductor companies have been granted patent and patent/technology licenses covering various aspects of these technologies. The companies include Texas Instruments, IBM, General Motors, ITT and Western Electric.

Our engineering staff follows the principle that "necessity is the mother of invention."

This philosophy led Standard Microsystems Corporation to COPLAMOS, ${ }^{\circledR}$ CLASP ${ }^{\oplus}$ and other innovative developments. It also brings companies to us to solve tough problems that other suppliers can't.

But it's a philosophy that involves more than just developing the next generation of MOS/LSI devices.

Such exploration, for example, helped Standard Microsystems recognize the need for communication controllers to handle the latest data communication protocols. As a result, Standard Microsystems was the first to introduce a one-chip LSI controller for HDLC protocolsthe COM 5025.

The COM 5025 is so versatile it can actually provide the receiver/ transmitter functions for all the standard bit and byte oriented synchronous protocols, including SDLC, HDLC, ADCCP, bi-sync and DDCMP.

In another area, CRT display systems have traditionally required a great deal of support circuitry for the complex timing, refresh and control functions.

This need led the engineers at Standard Microsystems to develop the CRT 5027 Video Timer and Controller (VTAC ${ }^{\text {® }}$) that provides all these functions on a single chip. This left the display, graphics and attributes control spread over another 20 or 30 SSI, MSI and LSI devices. Standard Microsystems combined all these functions in the CRT 8002 Video Display Attributes Controller VDAC ${ }^{\text {™ }}$). The COPLAMOS $^{\circledR}$ process was used to achieve a 20 MHz video shift register, and CLASP ${ }^{\circledR}$ was used for fast turnaround of character font changes through its last stage programmability.

So from 60 to 80 integrated circuits, Standard Microsystems reduced display and timing to 2 devices, drastically reducing the cost and size of today's CRT terminal.

Achievements like these help keep Standard Microsystems custom and standard products in the forefront of technology with increased speeds and densities, and a lower cost per function.

Improvements in processing and manufacturing keep pace with advances in semiconductors.

With the phenomenal growth of the electronics industry, innovation is, of course, highly desirable. But if the products are to perform as designed, they also have to be reliable.

That's why at Standard Microsystems we take every means to insure the utmost quality and dependability. Consequently, "state-of-the-art" applies not only to our products, but to the way we manufacture them.

In wafer fabrication, the latest equipment and techniques are employed. In addition to conventional processing equipment, we use ion implantation technology extensively. We also use plasma reactors for much of our etching and stripping operations to maintain tight tolerances on process parameters.

To make plastic packaging immune to moisture, we use a process that deposits a protective (passivating) layer of silicon nitride on the device surface.

Standard Microsystems processes include high and low voltage P-channel metal gate, N -channel silicon gate (COPLAMOS ${ }^{\circledR}$), high-speed N -channel silicon gate with depletion mode devices, and CLASP. ${ }^{\oplus}$ In general, these processes have been engineered so that they are also compatible with most industry standard processes.

One obvious advantage our total capability gives customers, is that they can bring us their project at any stage in the development process. For instance, they may already have gone through system definition. Or they may have gone all the way to prototype masks, and only want production runs.

It makes no difference to Standard Microsystems. We can enter the process at any level.

Our full service capability lets us make full use of the technologies we develop. We can produce any quantity of semiconductors customers may require. And we can offer them one of the fastest turnaround times in the industry.

SMC microcircuits are built under the industry's most carefully controlled conditions.

Standard Microsystems uses the latest equipment and techniques for assembly - just as it does for processing. Automatic wire-bonding which we introduced recently to expand Standard Microsystems' capacity is a typical example.

However, nothing is left to chance. To make sure every IC performs the way it should, each product is subjected to 37 quality control checks during assembly. Every run that comes out of wafer fabrication is analyzed to insure that all of its DC electrical characteristics are within specifications. Standard Microsystems' computerized analysis techniques, in fact, are second to none in the industry.

Tightly-controlled QC measures include die and pre-seal inspection and wire-pull, among others. Assembled parts are further subjected to vigorous mechanical tests including centrifuge, temperature cycling, and hermeticity testing.

Naturally, to perform all these tests properly requires adequate personnel. That's why 35% of all Standard Microsystems production technicians are assigned to the Quality Control Department.

Many tests are computer-controlled. In addition, we use dedicated equipment designed to simulate the customers' systems requirements.

Thanks to the dedication of Standard Microsystems' highly-motivated technical staff and well-trained production personnel, Standard Microsystems has one of the highest product yields in the industry.

SMC can supply standard microcircuits or custom-design them to your requirements.

The product mix at Standard Microsystems is approximately half custom products and half standard products.

This makes Standard Microsystems the ideal company to talk with if you're undecided which direction to take.

As a matter of fact, a combination of custom and standard may actually be best for you.

Since our processes are industry compatible, we can enter a program at any level: 1 . Complete system design and definition; 2 . Artwork generation; 3. Wafer processing.

If you need quick turnaround on mask-programmable options, we can also combine COPLAMOS ${ }^{\circledR}$ technology with CLASP ${ }^{\circledR}$ (which stands for COPLAMOS ${ }^{\circledR}$ Last Stage Programmable), to provide the solution.

As for standard products, Standard Microsystems makes one of the widest lines of standard MOS/LSI circuits for data communications and computer peripherals in the industry.

Standard Microsystems custom circuits have found their way into such industrial, computer, and aerospace applications as computer peripherals, modems, telecommunications, data communications, home entertainment, word processing, pay TV, and many other consumer and industrial uses. In fact, Standard Microsystems has created over 100 different custom designs for the above applications.

Standard or custom LSI? Bring your requirements to Standard Microsystems. We'll give you an unbiased recommendation as to which is the best route for you to take.

Quality Assurance

It is well understood at Standard Microsystems that for an integrated circuit to be attractive to a system designer, it must provide not only state-of-the-art circuit function, but do so with a high degree of reliability.

The manufacture of reliable quality product is no accident. Although testing is necessary to flag problems as soon as possible, it is an old adage that quality cannot be tested into a product, but must be designed in and built in.

The design of a reliable product is assured by adherence to tested and proven design rules. Before any change in design rules or processing steps is accepted for production, sample runs are exhaustively evaluated for both basic reliability and consistent manufacturability.

The manufacturing flow is closely monitored by quality assurance to insure not only that all potential failures are identified and rejected, but that proper standards are met for the processing itself. Clean room standards, calibrations and work methods are all monitored.

In addition, test and field failures are analyzed in conjuction with design and process engineering to monitor and correct any possible flaws in either design or manufacture.

Product flow and screening for standard devices is shown on the following flow charts. In addition, MIL-STD-883 level B screening may be done on request.

STANDARD PROCESSING

Data Communication Products

Pant: wiumbers	Firma	Bencriptrion	Mras Raull Bate	Power Eupplles	Packence.	Pase
COM: ISS3A"!	MIL.STD. 155SA TART	MIL-STD 1553 (Manchester) Interface Controller	$1 . \mathrm{MB}$	+5	40 DIP	18.19
$\text { COM: } 16 \mathrm{~T} 1$	ASTRO	Asynchronous/Synchronous Transmitter/Receiver, Full Duplex 5-8 data bit, 1X or 32X clock	$1 \mathrm{MB}$		40 DIP	$2 \mathrm{O}-35$
$\text { COM } 1863^{11}$	UART	Universal Asynchronous Recelvert Transmitter, Full Duplex 5 -8 data bit, 1, $11 / 2,2$ stop bit, enhanced distortion margin	$40 \mathrm{~KB}$	$+5$	$40 \mathrm{DIP}$	36
COM 2017	TAARI	Universal Asynchronous Recelver Transmitter, Full Duplex 5 -8 data bit. 1. $11 / 2,2$ stop bit	$25 \mathrm{~KB}$	+5. -12	40 DIP	37.44
80M 2017 H	UART	Universal Asynchronous Recelver/ Transmitter, Full Duplex 5-8 data bit, 1. $11 / 2,2$ stop bit	40 KB	+5.-12	40 DIP	37.44
30112502	TART	Universal Asynchronous Receiver/ Transmitter, Full Duplex 5 -8 data bit, 1. 2 stop bit	25 KB	+5. 5.12	40 DIP	37.4.4
30M 2502H	UART	Universal Asynchronous Recelver/ Transmitter, Full Duplex 5-8 data bit. 1. 2 stop bit	$40 \mathrm{~KB}$	+5./...12	40 DTP	37.44
$\text { 30M } 2601$	USRT	Universal Synchronous Receiverl Transmitter, STR, BSC, Bi-sync compatible	$250 \mathrm{~KB}$	+5./.-. 12	40 DIP	45.52
$30 \mathrm{M} 2651^{11}$	USARTIPCI	Universal Synchronous/Asynchronous Receiver/Transmitter, Full Duplex; 5-8 Data bits; $1,11 / 2,2$ stop bit, $1 X, 16 X$, 64X clock	1. MB	$+5$	$28 \text { DIP }$	53-54
SOM 5025	Mulu-Protocol USET	SDLC, HDLC, ADCCP, BI-sync, DDCMP compatible, automatic bit stuffing/ stripping, frame detection/generation. CRC generation/checking, sync detection	$1.5 \mathrm{MB}$	$+5 .+12$	$40 \text { DIP }$	
30M 8004"11	32 BIt CRE Generatorl Chesker	Companion device to COM 5OR5 for 32 bit CRC	$20 \mathrm{MB}$	$+5$	20 DIP	67
$\text { 30M } 8017$	UART:	Universal Asynchronous Receiver/ Transmitter, Full Duplex 5-8 data bit, 1. $11 / 2,2$ stop bit	$40 \mathrm{~KB}$	$+5$	40 DIP	68-75
$\text { OM 8018 } 1 \text { ! }$	IUARTI	Universal Asynchronous Receivert Transmitter, Full Duplex 5-8 data bit, 1, $11 / 2,2$ stop bit, enhanced distortion margin	$40 \mathrm{~KB}$	$+5$	$40 \text { DIP }$	36
OM 8251AM	USARTIPCI	Universal Synchronous/Asynchronous Receiver/Transmitter, Full Duplex, 5-8 data bit, 1, 11/2, 2 stop bit	$\begin{aligned} & 64 \mathrm{~KB}(\text { sync }) \\ & 96 \mathrm{~KB}(\text { async }) \end{aligned}$	$+5$	28 DIP	\% 76
OM B602	UARTT	Universal Asynchronous Receivert Transmitter, Full Duplex b-8 data bit, 1, 2 stop bit	$40 \mathrm{~KB}$	$+5$	40 DIP	68.75

[^1]

MIL-STD-1553A "UART"

FEATURES

Support of MIL-STD-1553AOperates as a: Remote Terminal Responding Bus Controller Initiating\square Performs Parallel to Serial Conversion when TransmittingPerforms Serial to Parallel Conversion when ReceivingCompatible with HD-15530 Manchester Encoder/ DecoderAll Inputs and Outputs are TTL CompatibleSingle +5 Volt SupplyCOPLAMOS® N Channel MOS TechnologyAvailable in PC Board Form from Grumman Aerospace Corporation

PIN CONFIGURATION

GENERAL DESCRIPTION

SMC's COM 1553A is a special purpose N Channel MOS/LSI-UART designed to provide a compatible user interface in support of MIL STD 1553A. The COM 1553A meets the requirements of MIL-STD883 Method 5004.1 Level B. It operates at a 1 MHz clock rate over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, with a single +5 v DC power supply.
The COM 1553A performs the following functions in response to a 16 bit Command Word. It provides address detection for the first five bits of the serial data input. If all 1's appear in the address field, a broadcast signal is generated. The sixth bit is decoded as mode: transmit or receive. The next five bits are decoded for zero message flag and special flags in the subaddress/mode field. The last five bits (word-count field) are decoded determining the number of words to be received or transmitted.
When receiving data sync the COM 1553A performs a serial to parallel conversion, buffers the 16 bit message word, and formats it into two parallel
(8 bit) bytes for presentation to the I/O bus under processor or hard wired logic control.
In the transmit mode the COM 1553A takes two parallel 8 bit data words from the I/O bus and serially transmits the resultant 16 bit word to the Harris HD 15530. This is done under the control of Send Data. To facilitate data transfer the COM 1553A provides all necessary buffering and storage for transmitted and received data. It also provides all necessary hand shaking, control flags and interrupts to a processor or hard wired logic terminal. See block diagram 1.
The COM 1553A can be set up as either: a terminal or a bus controller interface.
The COM 1553A is compatible with Harris' HD15530 CMOS Manchester Encoder-Decoder chip and interfaces directly with it. A 3 device kit consisting of: SMC's COM 1553A, Harris' HD-15530 and Circuit Technology's CT1231 forms a complete system interface for the message structure of MIL-STD-1553A. See block diagram 2.

Asynchronous/Synchronous Transmitter-Receiver

ASTRO

FEATURES

SYNCHRONOUS AND ASYNCHRONOUS

Full Duplex Operations
\square SYNCHRONOUS MODE
Selectable 5-8 Bit Characters
Two Successive SYN Characters Sets Synchronization
Programmable SYN and DLE Character Stripping
Programmable SYN and DLE-SYN FillASYNCHRONOUS MODE
Selectable 5-8 Bit Characters
Line Break Detection and Generation
$1-, 11 / 2-$, or 2 -Stop Bit Selection
Start Bit Verification
Automatic Serial Echo Mode
BAUD RATE-DC TO 1MBAUD
8 SELECTABLE CLOCK RATES
Accepts 1X Clock and Up To 4 Different
32X Baud Rate Clock Inputs
Up to 47\% Distortion Allowance With 32X ClockSYSTEM COMPATIBILITY
Double Buffering of Data
8-Bit Bi-Directional Bus For Data, Status, and Control Words
All Inputs and Outputs TTL Compatible
Up To 32 ASTROS Can Be Addressed On Bus
On-Line Diagnostic Capability
ERROR DETECTION
Parity, Overrun and Framing

PIN CONFIGURATION

VBra^{1}	40 V Vod
IACKIC 2	39 DE
Cs 3	38 CA (RTS)
WE 4	37 - BA (TSO)
$\overline{\text { ACKO }} 5$	$36{ }^{\text {CB }}$ (CTS)
RPLYY 6	$35 \mathrm{DBB}(\underline{\overline{X T C O}})$
INTRC 7	$34 ¢ \overline{\mathrm{DD}}$ ($\overline{\overline{\mathrm{XRC}}})$
DALD 8	$33{ }^{\text {P4 }}$
DALTC 9	32 P R
DAL2 10	$31{ }^{1}$ R2
DAL3. 11	30 R 1
DAL4C 12	298 CF (CART)
DAL5- ${ }^{13}$	$28 . \overline{C C}$ (DSR)
${ }^{\text {DAL6. }} 14$	${ }^{27} \mathrm{P}$ BB (RSI)
DALT 15	${ }^{26}{ }^{\text {¢ } 103}$
(DTR) CDO 16	$25] \overline{104}$
107417	$24 \overline{105}$
(RING) CEC 18	${ }^{23} 5 \overline{\text { MR }}$
MSCD 19	22 ¢ $\overline{106}$
	$21 . \mathrm{vco}$

\square COPLAMOS $^{\circledR}$ n-Channel Silicon Gate Technology
Pin for Pin replacement for Western Digital UC1671 and National INS 1671
\square Baud Rate Clocks Generated by COM5036@1X and COM5016-6@32X

APPLICATIONS

Synchronous Communications
Asynchronous Communications
Serial/Parallel Communications

General Description

The COM1671 (ASTRO) is a MOS/LSI device which performs the functions of interfacing a serial data communication channel to a parallel digital system. The device is capable of full duplex communications (receiving and transmitting) with synchronous or asynchronous systems. The ASTRO is designed to operate on a multiplexed bus with other bus-oriented devices. Its operation is programmed by a processor or controller via the bus and all parallel data transfers with these machines are accomplished over the bus lines.

The ASTRO contains several "handshaking" signals to insure easy interfacing with modems or other peripheral devices such as display terminals. In addition, a programmable diagnostic mode allows the selection of an internal looping feature which allows the device to be internally connected for processor testing.

The COM1671 provides the system communication designer with a software responsive device capable of handling complex communication formats in a variety of system applications.

Organization

Data Access Lines - The DAL bus is an 8-bit bi-directional port over which all address, data, control, and status transfers occur. In addition to transferring data and control words the DAL bus also transfers information related to addressing of the device, reading and writing requests, and interrupting information.

Receiver Buffer - This 8-bit parallel register presents assembled received characters to the DAL bus when requested through a Read operation.

Receiver Register - This 8-bit shift register inputs the received data at a clock rate determined by Control Register 2. The incoming data is assembled to the selected character length and then transferred to the Receiver Buffer with logic zeroes filling out any unusedhigh-order bit positions.

Syn Register - This 8-bit register is loaded from the DAL bus by a Write operation and holds the synchronization code used for receiver character synchronization. It serves as a fill character when no new data is available in the Transmitter Buffer during transmission. This register cannot be read onto the DAL bus. It must be loaded with logic zeroes in all unused high-order bits.

Comparator - The 8-bit comparator is used in the Synchronous mode to compare the assembled contents of the Receiver Register and the SYN register or the DLE register. A match between the registers sets up stripping of the received character, when programmed, by preventing the data from being loaded into the Receiver Buffer. A bit in the Status Register is set when stripping is effected. The comparator output also enables character synchronization of the Receiver on two successive matches with the SYN register.

DLE Register - This 8-bit register is loaded from the DAL bus by a Write operation and holds the DLE character used in the Transparent mode of operation in which an idle transmit period is filled with the combination DLE-SYN pair of characters rather than a single SYN character. In addition the ASTRO may be programmed to force a single DLE character prior to any data character transmission while in the transmitter transparent mode.
Status Register - This 8-bit register holds information on communication errors, interface data register status, match character conditions, and communication equipment status. This register may be read onto the DAL bus by a Read operation.
Control Registers - There are two 8-bit Control Registers which hold device programming signals such as mode selection, clock selection, interface signal control, and data format. Each of the Control Registers can be loaded from the DAL bus by a Write operation or read onto the DAL bus by a Read operation. The registers are cleared by a Master Reset.

Transmitter Buffer - This 8-bit parallel register holds data transferred from the DAL bus by a Write operation. This data is transferred to the Transmitter Register when the transmitter section is enabled and the Transmitter Register is ready to send new data.

Transmitter Register - This 8-bit shift register is loaded from the Transmitter Buffer, SYN register, or DLE register. The purpose of this register is to serialize data and present it to the serial data output.

Astro Operation

Asynchronous Mode

Framing of asynchronous characters is provided by a Start bit (logic 0) at the beginning of a character and a Stop bit(s) (logic 1) at the end of a character. Reception of a character is initiated on recognition of the first Start bit by a positive transition of the receiver clock, after a preceding Stop bit(s). The Start and Stop bits are stripped off while assembling the serial input into a parallel character.

The character assembly is completed by the reception of the Stop bit(s) after reception of the last character bit (including the parity bit, if selected). If the Stop bit(s) is a logic 1, the character is determined to have correct framing and the ASTRO is prepared to receive the next character. If the Stop bit(s) is a logic 0, the Framing Error Status flag is set and the Receiver assumes this bit to be the Start bit of the next character. Character assembly continues from this point if the input is still a logic 0 when sampled at the theoretical center of the assumed Start bit. As long as the Receiver input is spacing, all zero characters are assembled and error flags and data received interrupts are generated so that line breaks can be determined. After a character of all zeroes is assembled along with a zero in the Stop bit(s) location, the first sampled logic one is determined as a Stop bit and this resets the Receiver circuit to a Ready state for assembly of the next character.

In the Asynchronous mode the character transmission occurs when information contained in the Transmitter Buffer is transferred to the Transmitter Register. Transmission is initiated by the insertion of a Start bit, followed by the serial output of the character (including the parity bit, if selected), then the insertion of a $1,1.5$, or 2 bit length Stop condition. If the Transmitter Buffer is full, the next character transmission starts after the transmission of the Stop bit(s) of the present character in the Transmitter Register. Otherwise, the Mark (logic 1) condition is continually transmitted until the Transmitter Buffer is loaded.

Synchronous Mode

Framing of characters is carried out by a special Synchronization Character Code (SYN) transmitted at the beginning of a block of characters. The Receiver, when enabled, searches for two contiguous characters matching the bit pattern contained in the SYN register. During the time the Receiver is searching, data is not transferred to the Receiver Buffer, status bits are not updated, and the Receiver interrupt is not activated. After the detection of the first SYN character, the Receiver assembles subsequent bits into characters whose length is determined by the contents of Control Register 2. If, after the first SYN character detection, a second SYN character is present, the Receiver enters the Synchronization mode until the Receiver Enable Bit is turned off. If a second successive SYN character is not found, the Receiver reverts back to the Search mode.

In the Synchronous mode a continuous stream of characters are transmitted once the Transmitter is enabled. If the Transmitter Buffer is not loaded at the time the Transmitter Register has completed transmission of a character, this idle time will be filled by a transmission of the character contained in the SYN register in the Non-transparent mode, or the characters contained in the DLE and SYN registers respectively while in the Transparent mode of operation.

Astro Operation

Receiver

The Receiver Data input is clocked into the Receiver Register by a 1X Receiver Clock from a modem Data Set, or by a local 32X bit rate clock selected from one of four externally supplied clock inputs. When using the 1X clock, the Receiver Data is sampled on the positive transition of the clock in both the Asynchronous and Synchronous modes. When using a 32X clock in the Asynchronous mode, the Receiver Sampling Clock is phased to the Mark-To-Space transition of the Received Data Start bit and defines, through clock counts, the center of each received Data bit with $+0 \%,-3 \%$ at the positive transition 16 clock periods later.

In the Synchronous mode the Sampling Clock is phased to all Mark-To-Space transitions of the Received Data inputs when using a 32X clock. Each transition of the data causes an incremental correction of the Sampling Check by 1/32nd of a bit period. The Sampling clock can be immediately phased to every Mark-To-Space Data transition by setting Bit 4 of Control Register 1 to a logic one, while the Receiver is disabled.

When the complete character has been shifted into the Receiver Register it is transferred to the Receiver Buffer; the unused, higher order bits are filled with logic zero's. At this time the Receiver Status bits (Framing Error/Sync Detect, Parity Error/DLE Detect, Overrun Error, and Data Received) are updated in the Status Register and the Data Received interrupt is activated. Parity Error is set, if encountered while the Receiver parity check is enabled in the Control Registers. Overrun Error is set if the Data Received status bit is not cleared through a Read operation by an external device when a new character is transferred to the Receiver Buffer. This error flag indicates that a character has been lost; new data is lost while the old data and its status flags are saved.

The characters assembled in the Receiver Register that match the content of the SYN or the DLE register are not loaded into the Receiver Buffer, and the DR interrupt is not generated, if Bit 3 of Control Register 2 (CR23) or Bit 4 of Control Register 1 (CR14) are set respectively, and SYN Detect and DLE Detect are set with the next non SYN or non DLE character. When both CR23 and CR14 are set (Transparent mode), the DLE-SYN combination is stripped. The SYN comparison occurs only with the character received after the DLE character. If two successive DLE characters are received only the first DLE character is stripped. No parity check is made while in this mode.

Transmitter

Information is transferred to the Transmitter Buffer by a Write operation. Information can be loaded into this register at any time, even when the Transmitter is not enabled. Transmission of data occurs only when the Request to Send bit is set to a logic 1 in Control Register 1 and the Clear To Send input is logic 0 . Information is normally transferred from the Transmitter Buffer to the Transmitter Register when the latter has completed transmission of a character. However, information in the DLE register may be transferred prior to the information contained in the Transmitter Buffer if the Force DLE signal condition is enabled (Bits 5 and 6 of Control Register 1 set to a logic 1). The control bit CR15 must be set prior to loading of a new character in the Transmitter Buffer to insure forcing the DLE character prior to transmission of the data character. The Transmitter Register output passes through a flip-flop which delays the output by one clock period. When using the 1X clock generated by the Modem Data Set, the output data changes state on the negative clock transition and the delay is one bit period. When using a local 32X clock the the transmitter section selects one of the four selected rate inputs and divides the clock down to the baud rate. This clock is phased to the Transmitter Buffer Empty Flag such that transmission of characters occurs within two clock times of the loading of the Transmitter Buffer, when the Transmitter Register is empty.

When the Transmitter is enabled, a Transmitter interrupt is generated each time the Transmitter Buffer is empty. If the Transmitter Buffer is empty, when the Transmitter Register is ready for a new character, the Transmitter enters an idle state. During this idle time a logic 1 will be presented to the Transmitted Data output in the Asynchronous mode or the contents of the SYN register will be presented in the Synchronous Non-transparent mode (CR16=0). In the Synchronous Transmit Transparent mode (CR16=1), the idle state will be filled by DLE-SYN character transmission in that order. When entering the Transparent mode DLE must precede the contents of the Transmitter Buffer. This is accomplished by setting of Bit 5 of Control Register 1.

If the transmitter section is disabled by a reset of the Request to Send, any partially transmitted character is completed before the transmitter section of the ASTRO is disabled. As soon as the Clear To Send goes high the transmitted data output will go high.

When the Transmitter parity is enabled, the selected Odd or Even parity bit is inserted into the last data bit of the character in place of the last bit of the Transmitter Register. This limits transfer of character information to a maximum of seven bits plus parity or eight bits without parity. Parity cannot be enabled in the Synchronous Transparency mode.

Input/Output Operations

All Data, Control, and Status words are transferred over the Data Access Lines (DAL 0-7). Additional input lines provide controls for addressing a particular ASTRO, and regulating all input and output operations. Other lines provide interrupt capability to indicate to a Controller that an input operation is requested by the ASTRO. All input/output terminology below is referenced to the Controller so that a Read or input takes data from the ASTRO and places it on the DAL bus, while a Write or Output places data from the DAL bus into the ASTRO.

A Read or Write operation is initiated by the placement of an eight-bit address on the DAL bus by the Controller. When the Chip Select signal goes to a logic 0 state, the ASTRO compares Bits $7-3$ of the DAL bus with its hard-wired ID code (Pins 17, 22, 24, 25, and 26) and becomes selected on a Match condition. The ASTRO then sets its $\overline{R P L Y}$ line low to acknowledge its readiness to transfer data. Bit 0 must be a logic O in Read or Write operation. A setup time must exist between $\overline{C S}$ and the $\overline{R E}$ or $\overline{W E}$ signals to allow chip selection prior to read/write operations.

Read
Bits 2-0 of the address are used to select ASTRO registers to read from as follows:

Bits 2-0	Selected Register
000	Control Register 1
010	Control Register 2
100	Status Register
110	Receiver Buffer

When the Read Enable $\overline{(R E)}$ line is set to a logic 0 condition by the Controller the ASTRO gates the contents of the addressed register onto the DAL bus. The Read operation terminates, and the device becomes unselected, when both the Chip Select and Read Enable return to a logic 1 condition. Reading of the Receiver Buffer clears the Data Received Status bit. The data is removed from the DAL bus when the RE signal returns to the logic high state.

Write
Bits 2-0 of the address are used to select ASTRO registers to be written into as follows:

Bits 2-0	Selected Register
000	Control Register 1
010	Control Register 2
100	SYN and DLE Register
110	Transmitter Buffer

When the Write Enable (WE) line is set to a logic 0 condition by the Controller the ASTRO gates the data from the DAL bus into the addressed register. If data is written into the Transmitter Buffer, the TBMT Status bit is cleared to a logic zero.

The 100 address loads both the SYN and DLE registers. After writing into the SYN register the device is conditioned to write into the DLE if followed by another Write pulse with the 100 address. Any intervening Read or Write operation with other addresses or other ASTROs resets this condition such that the next 100 will address the SYN register.

Interrupts

The following conditions generate interrupts:

Data Received (DR)

Indicates transfer of a new character to the Receiver Buffer while the Receiver is enabled.
Transmitter Buffer Empty (TBMT)
Indicates that the Transmitter Buffer is empty while the Transmitter is enabled. The first interrupt occurs when the Transmitter becomes enabled if there is an empty Transmitter Buffer, or after the character is transferred to the Transmitter Register making the Transmitter Buffer empty.

Carrier On
Indicates Carrier Detector input goes low and the Data Terminal Ready (DTR) bit (CR10) is high. Carrier Off
Indicates Carrier Detector input goes high and the Data Terminal Ready (DTR) bit (CR10) is high. Data Set Ready On
Indicates the Data Set Ready input goes low and the Data Terminal Ready (DTR) bit (CR10) is high. Data Set Ready Off
Indicates the Data Set Ready input goes high and the Data Terminal Ready (DTR) bit (CR10) is high. Ring On
Indicates the Ring Indicator input goes low and the Data Terminal Ready (DTR) bit (CR10) is low.
Each time an interrupt condition exists the INTR output from the ASTRO is made a logic low. The following interrupt procedure is then carried out even if the interrupt condition is removed.

The Controller acknowledges the Interrupt request by setting the Chip Select (CS) and the Interrupt Acknowledge Input (IACKI) to the ASTRO to a low state. On this transition all non-interrupting devices receiving the IACKI signal set their Interrupt Acknowledge Output (IACKO) low, enabling lower priority daisy-chained devices to respond to the interrupt request. The highest priority device that is interrupting will then set its $\overline{R P L Y}$ line low. This device will place its ID code on Bit Positions 7-3 of the DAL bus when a low $\overline{R E}$ signal is received. The data is removed from the DAL bus when the Read Enable (RE) signal returns to the logic one state. To reset the Interrupt condition (INTR) Chip Select $\overline{(C S)}$ and $\overline{\text { IACKI }}$ must be received by the ASTRO.

Description of Pin Functions

Pin No.	Symbol	Pin Name	1/0	Function
1	$\mathrm{V}_{\text {Bв }}$	POWER SUPPLY	PS	- 5 Volts
21	$\mathrm{V}_{\text {cc }}$	POWER SUPPLY	PS	+ 5 Volts
40	$V_{\text {D }}$	POWER SUPPLY	PS	+ 12 Volts
20	$\mathrm{V}_{\text {ss }}$	GROUND	GND	Ground
23	$\overline{M R}$	MASTER RESET	1	The Control and Status Registers and other controls are cleared when this input is low.
${ }_{15}^{8-}$	$\frac{\overline{\text { DALO- }}}{\frac{\text { DAL7 }}{}}$	$\overline{\text { DATA ACCESS LINES }}$	$1 / 0$	Eight-bit bi-directional bus used for transfer of data, control status, and address information.
17	$\overline{\text { ID7 }}$	SELECT CODE	1	Five input pins which when hard-wired assign the
22	ID6		1	device a unique identification code used to select
24	ID5		I	the device when addressing and used as an
25	ID4		I	identification when responding to interrupts.
26	ID3		1	
3	$\overline{\text { CS }}$	$\overline{\text { CHIP SELECT }}$	1	The low logic transition of $\overline{\mathrm{CS}}$ identifies a valid address on the DAL bus during Read and Write operations.
39	$\overline{\mathrm{RE}}$	READ ENABLE	1	This input, when low, gates the contents of the addressed register from a selected ASTRO onto the DAL bus.
4	$\overline{W E}$	WRITE ENABLE	1	This input, when low, gates the contents of the DAL bus into the addressed register of a selected ASTRO.
7	$\overline{\text { INTR }}$	INTERRUPT	0	This open drain output, to facilitate WIRE-ORing, goes low when any interrupt conditions occur.
2	$\overline{\text { IACKI }}$	INTERRUPT $\overline{\text { ACKNOWLEDGE IN }}$	1	When the Controller (determining the interrupting ASTRO) makes this input low, the ASTRO places its ID code on the DAL bus and sets reply low if it is interrupting, otherwise it makes IACKO a low.
5	$\overline{\text { IACKO }}$	INTERRUPT ACKNOWLEDGE OUT	0	This output goes low in response to a low $\overline{\text { IACKI }}$ if the ASTRO is not the interrupting device.
6	$\overline{\mathrm{RPLY}}$	$\overline{\text { REPLY }}$	0	This open drain output, to facilitate WIRE-ORing, goes low when the ASTRO is responding to being selected by an address on the DAL bus or in affirming that it is the interrupting source.

Pin No.	Symbol	Pin Name	1/O	Function
30	R1	CLOCK RATES	1	These four inputs accept four different local 32X
31	R2		1	data rate Transmit and Receive clocks. The input on
32	R3		I	R4 may be divided down into a 32X clock from a
33	R4		1	32X, 64X, 128X, or 256X clock input. The clock used in the ASTRO is selected by bits 0-2 of Control Register 2.
37	BA	TRANSMITTED DATA	0	This output is the transmitted serial data from the ASTRO. This output is held in a Marking condition when the transmitter section is not enabled.
27	BB	RECEIVED DATA	1	This input receives serial data into the ASTRO.
38	$\overline{C A}$	REQUEST TO SEND	0	This output is enabled by bit 1 of Control Register 1 and remains in a low state during transmitted data from the ASTRO.
36	$\overline{C B}$	$\overline{\text { CLEAR TO SEND }}$	1	This input, when low, enables the transmitter section of the ASTRO.
28	$\overline{C C}$	$\overline{\text { DATA SET READY }}$	1	This input generates an interrupt when going ON or OFF while the Data Terminal Ready signal is ON. It appears as bit 6 in the Status Register.
16	$\overline{C D}$	DATA TERMINAL READY	0	This output is generated by bit 0 in Control Register 1 and indicates Controller readiness.
18	$\overline{C E}$	$\overline{\text { RING INDICATOR }}$	1	This input from the Data Set generates an interrupt when made low with Data Terminal Ready in the OFF condition.
29	$\overline{C F}$	$\overline{\text { CARRIER DETECTOR }}$	1	This input from the Data Set generates an interrupt when going ON or OFF if Data Terminal Ready is ON. It appears as bit 5 in the Status Register.
35	$\overline{\mathrm{DB}}$	$\begin{aligned} & \text { TRANSMITTER } \\ & \text { TIMING } \end{aligned}$	1	This input is the Transmitter 1X Data Rate Clock. Its use is selected by bits 0-2 of Control Register 2. The transmitted data changes on the negative transition of this signal.
34	$\overline{D D}$	$\overline{\text { RECEIVER TIMING }}$	1	This input is the Receiver 1X Data Rate Clock. Its use is selected by bits $0-2$ of Control Register 2. The Received Data is sampled by the ASTRO on the positive transition of this signal.
19	$\overline{\text { MISC }}$	MISCELLANEOUS	0	This output is controlled by bits 4 and 5 of Control Register 1 and is used as an extra programmable signal.

Device Programming

The two 8-bit Control Registers of the ASTRO determine the operative conditions of the ASTRO chip.

Control Register 1

Bit 0

Controls the Data Terminal Ready output on Pin 16 to control the CD circuit of the Data Set. A logic 1 enables the Carrier and Data Set Ready interrupts. A logic 0 enables only the telephone line Ring interrupt. The DTR output is inverted from the state of CR10.

Bit 1

Controls the Request to Send output on Pin 38 to control the CA circuit of the Data Set. The $\overline{\mathrm{RTS}}$ output is inverted from the state of CR11. A logic 1 combined with a low logic Clear to Send input enables the Transmitter and allows TBMT interrupts to be generated. A logic 0 disables the Transmitter and turns off the external Request to Send signal. Any character in the Transmitter Register will be completely transmitted before the Transmitter is turned off. The Request to Send output may be used for other functions such as Make Busy on 103 Data Sets.

Bit 2

A logic 1 enables the ASTRO to receive data into the Receiver Buffer, update Receiver Status Bits 1,2,3, and 4, and to generate Data Received interrupts. A logic 0 disables the Receiver and clears the Receiver Status bits.

Bit 3

Asynchronous Mode

A logic 1 enables check of parity on received characters and generation of parity for transmitted characters.

Synchronous Mode

A logic 1 bit enables check of parity on received characters only. Note: Transmitter parity enable is controlled by CR15.

Bit 4

Asynchronous Mode

A logic 1 enables the Automatic Echo mode when the receiver section is enabled. In this mode the clocked regenerated data is presented to the Transmitter Data output in place of normal transmission through the Transmitter Register. This serial method of echoịng does not present any abnormal restrictions on the transmit speed of the terminal. Only the first character of a Break condition of all zeroes (null character) is echoed when a Line Break condition is detected. For all subsequent null characters, with logic zero Stop bits, a steady Marking condition is transmitted until normal character reception resumes. Echoing does not start until a character has been received and the Transmitter is idle. The Transmitter does not have to be enabled during the Echo mode.

Synchronous Mode

A logic 1, with the Receiver enabled does not allow assembled Receiver data matching the DLE register contents to be transferred to the Receiver Buffer; also, parity checking is disabled. When the Receiver is not enabled this bit controls the Miscellaneous output on Pin 19, which may be used for New Sync on a 201 Data Set. When operating with a 32X clock and a disabled Receiver, a logic 1 on this bit also causes the Receiver timing to synchronize on Mark-To-Space transitions.

Bit 5

Asynchronous Mode

A logic 1, with the Transmitter enabled, causes a single Stop bit to be transmitted. A logic 0 causes transmission of 2 stop bits for character lengths of 6,7 , or 8 bits and one-and-a-half Stop bits for a character length of 5 bits.
With the Transmitter disabled this bit controls the Miscellaneous output on Pin 19, which may be used for Make Busy on 103 Data Sets, Secondary Transmit on 202 Data Sets, or dialing on CBS Data Couplers.

Synchronous Mode

A logic 1 combined with a logic 0 on Bit 6 of Control Register 1 enables Transmit parity; if CR15=0 or CR16=1 no parity is generated. When set to a logic 1 with Bit 6 also a logic 1 , the contents of the DLE register are transmitted prior to the next character loaded in the Transmitter Buffer as part of the Transmitier Transparent mode.

Bit 6

Asynchronous Mode

A logic 1 holds the Transmitted Data output in a Spacing (Logic 0) condition, starting at the end of any current transmitted character, when the Transmitter is enabled. Normal Transmitter timing continues so that this Break condition can be timed out after the loading of new characters into the Transmitter Buffer.

Synchronous Mode

A logic 1 conditions the Transmitter to a transparent transmission which implies that idie transmitter time will be filled by DLE-SYN character transmission and a DLE character can be forced ahead of any character in the Transmitter Buffer (Bit 5 above). When forcing DLE transmission, Bit 5 should be set to a logic 1 prior to loading the Țransmitter Buffer, otherwise the character in the latter register may be transferred to the Transmitter Register prior to sending the DLE character.

Bit 7

A logic 0 configures the ASTRO into an Internal Data and Control Loop mode and disables the Ring interrupt. In this diagnostic mode the following loops are connected internally:
a. The Transmit Data is connected to the Receive Data with the BA pin held in a Mark condition and the input to the BB pin disregarded.
b. With a 1X clock selected, the Transmitter Clock also becomes the Receive Clock.
c. The Data Terminal Ready (DTR) Control bit is connected to the Data Set Ready (DSR) input, with the Data Terminal Ready (DSR) output pin held in an OFF condition (logic high), and the DSR input pin is disregarded.
d. The Request to Send Control bit is connected to the Clear To Send (CTS) and Carrier Detector (CF) inputs, with the Request To Send (RTS) output pin held in an OFF condition (logic high), and the CTS and Carrier Detector input pins are disregarded.
e. The Miscellaneous pin is held in an OFF (logic high) condition.

A logic 1 on Bit 7 enables the Ring interrupt and returns the ASTRO to the normal full duplex configuration.

Control Register 2

Control Register 2，unlike Control Register 1，cannot be changed at any time．This register should be changed only while both the receiver and transmitter sections of the ASTRO are in the idle state．

$\begin{array}{lll}\text { BIT } & 7 & 6\end{array}$	5	4	3	210
SYNC／ASYNC CHARACTER LENGTH SELECT $\begin{aligned} & 00=8 \text { BITS } \\ & 01=7 \mathrm{BITS} \\ & 10=6 \mathrm{BITS} \\ & 11=5 \mathrm{BITS} \end{aligned}$	$\begin{aligned} & \text { MODE SELECT } \\ & 0-\text { ASYNCHRONOUS } \\ & \text { MODE } \\ & 1-\text { SYNCHRONOUS } \\ & \text { MODE } \end{aligned}$	$\begin{aligned} & \text { SYNC/ASYNC } \\ & 0 \text { - EVEN PARITY } \\ & \text { SELECT } \\ & \text { - ODD PARITY } \\ & \text { SELECT } \end{aligned}$	ASYNC 0 －RECEIVER CLK＝ RATE 1 1－RECEIVER CLOCK DETERMINED BY BITS 2－0 SYNC（CR16＝0） 0 －NO SYN STRIP 1 －SYN STRIP SYNC（CR16＝1） O－NO DLE－SYN STRIP 1 －DLE－SYN STRIP	SYNC／ASYNC CLOCK SELECT 000－1X CLOCK 001 －RATE 1 CLOCK 010 －RATE 2 CLOCK 011 －RATE 3 CLOCK 100 －RATE 4 CLOCK 101 －RATE 4 CLOCK $\div 2$ 110 －RATE 4 CLOCK $\div 4$ 111 －RATE 4 CLOCK 111 －RATE 4 CLOCK $\div 8$

Bits 0－2

These bits select the Tranmit and Receive clocks．

Bits	Clock Source	
210	Tx	Rx
000	1X Clock（Pin 35）	1X Clock（Pin 34）
001	Rate 1 32X c	30）
010	Rate 2 32X clo	31）
011	Rate 3 32X c	32）
100	Rate 4 32X c	33）
101	Rate 4 32X c	33）$(\div 2){ }^{*} \dagger$
110	Rate 4 32X c	33）$(\div 4)^{* \dagger}$
111	Rate 4 32X c	33）$(\div 8){ }^{*+}$

NOTES：

＊Rx clock is modified by bit 3 in the asynchronous mode．
thate 4 is internally dividable so that the required 32 X clock may be derived from an applied $64 \mathrm{X}, 128 \mathrm{X}$ ，or 256 X clock which may be available．

Bits 3

Asynchronous Mode

A logic 0 selects the Rate 132 X clock input（Pin 30）as the Receiver clock rate and a logic 1 selects the same clock rate for the Receiver as selected by Bits 2－0 for the Transmitter．This bit must be a logic 1 for the 1 X clock selection by Bits 2－0．

Synchronous Mode

A logic 1 causes all DLE－SYN combination characters in the Transparent mode when DLE strip（CR14） is a logic 1，or all SYN characters in the Non－transparent mode to be stripped out and no Data Received interrupt to be generated．The SYN Detect status bit is set with reception of the next assembled character as is transferred to the Receiver Buffer．

Bit 4

A logic 1 selects odd parity and a logic 0 selects even parity，when parity is enabled by CR13 and／or CR15．

Bit 5

A logic 1 selects the Synchronous Character mode．A logic 0 selects the Asynchronous Character mode．

Bits 6－7

These bits select the full character length（including parity，if selected）as shown above．When parity is enabled it must be considered as a bit when making character length selection（ 5 bits plus parity $=6$ bits）．

Status Register

The data contained in the Status Register define Receiver and Transmitter data conditions and status of the Data Set.

7	6	5	4	3	2	1	0
- Data Set Change	- Data Set Ready (DSR)	- Carrier Detector	- Framing Error - Syn Detect	- DLE Detect - Parity Error	- Overrun Error	- Data Received (DR)	- Transmitter Buffer Empty (TBMT)

Bit 0

A logic 1 indicates that the Transmitter Buffer may be loaded with new data. It is set to a logic 1 when the contents of the Transmitter Buffer is transferred to the Transmitter Register. It is cleared when the Transmitter Buffer is loaded from the DAL bus, or when the Transmitter is disabled.

Bit 1

A logic 1 indicates that an entire character has been received and transferred into the Receiver Buffer. It is cleared when the Receiver Buffer is read onto the DAL bus, or the Receiver is disabled.

Bit 2

A logic 1 indicates an Overrun error which occurs if the previous character in the Receiver Buffer has not been read and Data Received is not reset, at the time a new character is to be transferred to the Receiver Buffer. This bit is cleared when no Overrun condition is detected (the next character transfer time) or when the Receiver is disabled.

Bit 3

When the DLE Strip is enabled (CR14) the Receiver parity check is disabled and this bit is set to a logic 1 if the previous character to the presently assembled character matched the contents of the DLE register; otherwise it is cleared. The DLE DET remains for one character time and is reset on the next character transfer or on a Status Register Read. If DLE Strip is not enabled this bit is set to a logic 1 when the Receiver is enabled, Receiver parity (CR13) is also enabled, and the last received character has a Parity error. A logic 0 on this bit indicates correct parity. This bit is cleared in both modes when the Receiver is disabled.

Bit 4

Asynchronous Mode

A logic 1 indicates that the received data did not have a valid stop bit, while the Receiver was enabled, which indicates a Framing error. This bit is set to a logic 0 if the stop bit (logic 1) was detected.

Synchronous Mode

A logic 1 indicates that the contents of the Receiver Register matches the contents of the SYN Register. The condition of this bit remains for a full character assembly time. If SYN strip (CR23) is enabled this status bit is updated with the character received after the SYN character.

In both modes the bit is cleared when the Receiver is disabled.

Bit 5

This bit is the logic complement of the Carrier Detector input on Pin 29.

Bit 6

This bit is the logic complement of the $\overline{\text { Data Set Ready }}$ input on Pin 28. With 202-type Data Sets it can be used for Secondary Receive.

Bit 7

This bit is set to a logic 1 whenever there is a change in state of the $\overline{\text { Data Set Ready }}$ or Carrier Detector inputs while Data Terminal Ready (CR10) is a logic 1 or the Ring Indicator is turned ON, with DTR a logic 0 . This bit is cleared when the Status Register is read onto the DAL bus.

Flow Chart Receiver Operations

interrupt

MAXIMUM GUARANTEED RATINGS*
Operating Temperature Range . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range . $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec.) . $+325^{\circ} \mathrm{C}$
Positive Voltage on any Pin, with respect to ground . + 18.0V
Negative Voltage on any Pin, with respect to ground . 0.3 M
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}$, unless otherwise noted)

Parameter		Min	Typ.	Max.	Unit	Comments
D.C. Characteristics						
INPUT VOLTAGE LEVELS						
Low Level, V_{1}				0.8	V	
High Level, V_{IH}		2.4			V	
OUTPUT VOLTAGE LEVELS						
Low Level, V_{OL}			0.4		V	$\mathrm{l}_{\mathrm{OL}}=1.6 \mathrm{ma}$
High Le	V_{OH}	2.4				$\mathrm{I}_{\text {OH }}=100 \mu \mathrm{a}$
INPUT LEAKAGE						
Data Bus			5.0	10.0	$\mu \mathrm{a}$	$0 \leq V_{1 N} \leq 5 v$
All othe			5.0	10.0	$\mu \mathrm{a}$	$\mathrm{V}_{\mathrm{IN}}=+12 \mathrm{v}$
POWER SUPPLY CURRENT						
I_{cc}				80.0	ma	
$I_{\text {DD }}$				10.0	ma	
$\mathrm{I}_{\text {BB }}$				1.0	ma	
A.C. Characteristics						$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
CLOCK-RCP, TCP			1.0		MHz	
DAL Bus						
$\mathrm{T}_{\text {AS }}$	Address Set-Up Time	0			ns	
$\mathrm{T}_{\text {AH }}$	Address Hold Time	150			ns	
$\mathrm{T}_{\text {ARL }}$	Address to RPLY Delay			400	ns	
Tcs	CS Width	250			ns	
$\mathrm{T}_{\text {CSRLF }}$	$\overline{\mathrm{CS}}$ to Reply OFF Relay	0		250	ns	$\mathrm{R}_{\mathrm{L}}=2.7 \mathrm{~K} \Omega$
Read						
$\mathrm{T}_{\text {ARE }}$	Address and $\overline{\mathrm{RE}}$ Spacing	250			ns	
$\mathrm{T}_{\text {RECSH }}$	$\overline{R E}$ and CS Overlap	20			ns	
$\mathrm{T}_{\text {RECS }}$	$\overline{R E}$ to $\overline{C S}$ Spacing	250			ns	
$\mathrm{T}_{\mathrm{RED}}$	$\overline{\mathrm{RE}}$ to Data Out Delay			180	ns	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pf}$
Write						
$\mathrm{T}_{\text {AWE }}$	Address to $\overline{W E}$ Spacing	250			ns	
$\mathrm{T}_{\text {WECSH }}$	WE and $\overline{C S}$ Overlap	20			ns	
T_{WE}	WE Width	200		1000	ns	
T_{DS}	Data Set-Up Time	150			ns	
$\mathrm{T}_{\text {DH }}$	Data Hold Time	100			ns	
$\mathrm{T}_{\text {WECS }}$	WE to CS Spacing	250			ns	
Interrupt						
$\mathrm{T}_{\mathrm{csI}}$	$\overline{\mathrm{CS}}$ to $\overline{\text { IACKI Delay }}$	0			ns	
TCSRE	$\overline{C S}$ to RE Delay	250			ns	
$\mathrm{T}_{\text {CSREH }}$	$\overline{\mathrm{CS}}$ and $\overline{\mathrm{RE}}$ O Overlap	20			ns	
$\mathrm{T}_{\text {RECS }}$	$\overline{\mathrm{RE}}$ to $\overline{\mathrm{CS}}$ Spacing	250			ns	
T_{PI}	IACKI Pulse Width	200			ns	
$\mathrm{T}_{1 / \mathrm{AD}}$	IACKI to Valid ID Code Delay			250	ns	See Note 1.
$\mathrm{T}_{\text {RED }}$	RE OFF to DAL Open Delay			180	ns	
$\mathrm{T}_{\text {IARL }}$	IACKI to $\overline{\text { RPLY }}$ Delay			250	ns	See Note 1. $\mathrm{R}_{\mathrm{L}}=2.7 \mathrm{~K} \Omega$
$\mathrm{T}_{\text {CSRLF }}$	CS to RPLY OFF Delay	0		250	ns	$\mathrm{R}_{\mathrm{L}}=2.7 \mathrm{~K} \Omega$
$\mathrm{T}_{\text {REI }}$	RE OFF to IACKO OFF Delay			250	ns	-

[^2]

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and to supply the best product possible.

COM 1863* COM 8018^{*}

Universal Asynchronous Receiver/Transmitter UART

FEATURES

Single +5 V Power SupplyDirect TTL Compatibility-no interfacing circuits requiredFull or Half Duplex Operation-can receive and transmit simultaneously at different baud ratesFully Double Buffered-eliminates need for precise external timingStart Bit Verification—decreases error rate46.875\% Receiver Distortion ImmunityFully Programmable-data word length; parity mode; number of stop bits: one, one and one-half, or twoHigh Speed Operation-40K baud, 200ns strobesMaster Reset—Resets all status outputs and Receiver Buffer RegisterTri-State Outputs—bus structure oriented\square Low Power-minimum power requirementsInput Protected-eliminates handling problemsCeramic or Plastic DIP Package-easy board insertionCompatible with COM 2017, COM 2502, COM 8017, COM 8502COM 1863 compatible with TR1863 timingHigh accuracy 32X clock mode, 48.4375\% Receiver Distortion ImmunityCompatible with COM 8116, COM 8126, COM 8136, COM 8146 baud rate generators

GENERAL DESCRIPTION

The Universal Asynchronous Receiver/Transmitter is an MOS/LSI monolothic circuit that performs all the receiving and transmitting functions associated with asynchronous data communications. This circuit is fabricated using SMC's patented COPLAMOS® technology and employs depletion mode loads, allowing operation from a single +5 V supply. The duplex mode, baud rate, data word length, parity mode, and number of stop bits are independently programmable through the use of external controls. There may be $5,6,7$, or 8 data bits, odd/even or no parity, and 1, or 2 stop bits or 1.5 stop bits when utilizing a 5 -bit code. These programmable features provide the user with the ability to interface with all asynchronous peripherals. The COM 1863 has no pull up resistors, making it microprocessor bus compatible. The COM 8018 has pull up resistors.

[^3]PIN CONFIGURATION
VCC
V*

Universal Asynchronous Receiver/Transmitter

 UART
FEATURES

\square Direct TTL Compatibility - no interfacing circuits requiredFull or Half Duplex Operation - can receive and transmit simultaneously at different baud ratesFully Double Buffered-eliminates need for precise external timingStart Bit Verification-decreases error rateFully Programmable-data word length, parity mode, number of stop bits; one, one and one-half, or twoHigh Speed Operation - 40K baud, 200ns strobesMaster Reset—Resets all status outputsTri-State Outputs—bus structure orientedLow Power-minimum power requirementsInput Protected-eliminates handling problemsCeramic or Plastic Dip Package-easy board insertion

GENERAL DESCRIPTION

The Universal Asynchronous Receiver/Transmitter is an MOS/LSI monolothic circuit that performs all the receiving and transmitting functions associated with asynchronous data communications. This circuit is fabricated using SMC's P-channel low voltage oxidenitride technology. The duplex mode, baud rate, data word length, parity mode, and number of stop bits are independently programmable through the use of external controls. There may be $5,6,7$ or 8 data bits, odd/even or no parity, and 1, or 2 stop bits or 1.5 stop bits when utilizing a 5 -bit code from the COM 2017 or COM 2017/H. The UART can operate in either the full or half duplex mode. These programmable features provide the user with the ability to interface with all asynchronous peripherals.

DESCRIPTION OF OPERATION - TRANSMITTER

At start-up the power is turned on, a clock whose frequency is 16 times the desired baud rate is applied and master reset is pulsed. Under these conditions TBMT, TEOC, and TSO are all at a high level (the line is marking).
When TBMT and TEOC are high, the control bits may be set. After this has been done the data bits may be set. Normally, the control bits are strobed into the transmitter prior to the data bits. However, as long as minimum pulse width specifications are not violated, TDS and CS may occur simultaneously. Once the date strobe (TDS) has been pulsed the TBMT signal goes low, indicating that the data bits buffer register is full and unavailable to receive new data.
If the transmitter shift register is transmitting previously loaded data the TBMT signal remains low. If the transmitter shift register is empty, or when it is through transmitting the previous character, the data in the buffer register is loaded immediately into the transmitter shift register and data transmission
commences. TSO goes low (the start bit), TEOC goes low, the TBMT goes high indicating that the data in the data bits buffer register has been loaded into the transmitter shift register and that the data bits buffer register is available to be loaded with new data.
If new data is loaded into the data bits buffer register at this time, TBMT goes low and remains in this state until the present transmission is completed. One full character time is available for loading the next character with no loss in speed of transmission. This is an advantage of double buffering.
Data transmission proceeds in an orderly manner: start bit, data bits, parity bit (if selected), and the stop bit(s). When the last stop bit has been on the line for one bit time TEOC goes high. If TBMT is low, transmission begins immediately. If TBMT is high the transmitter is completely at rest and, if desired, new control bits may be loaded prior to the next data transmission.

TRANSMITTER BLOCK DIAGRAM

DESCRIPTION OF OPERATION - RECEIVER

At start-up the power is turned on, a clock whose frequency is 16 times the desired baud rate is applied and master reset is pulsed. The data available(RDA) signal is now low. There is one set of control bits for both the receiver and transmitter.
Data reception begins when the serial input line transitions from mark (high) to space (low). If the RSI line remains spacing for a $1 / 2$ bit time, a genuine start bit is verified. Should the line return to a mark-
ing condition prior to a $1 / 2$ bit time, the start bit verification process begins again. A mark to space transition must occur in order to initiate start bit verification. Once a start bit has been verified, data reception proceeds in an orderly manner: start bit verified and received, data bits received, parity bit received (if selected) and the stop bit(s) received. If the transmitted parity bit does not agree with the received parity bit, the parity error flip-flop of the
status word buffer register is set high, indicating a parity error. However, if the no parity mode is selected, the parity error flip-flop is unconditionally held low, inhibiting a parity error indication. If a stop bit is not received, due to an improperly framed character, the framing error flip-flop is set high, indicating a framing error.
Once a full character has been received internal logic looks at the data available (RDA) signal. If, at this instant, the RDA signal is high the receiver assumes that the previously received character has
not been read out and the over-run flip-flop is set high. The only way the receiver is aware that data has been read out is by having the data available reset low.
At this time the RDA output goes high indicating that all outputs are available to be examined. The receiver shift register is now available to begin receiving the next character. Due to the double buffered receiver, a full character time is available to remove the received character.

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	SYMBOL	NAME	FUNCTION
1	Vcc	Power Supply	+5 volt Supply
2	VDD	Power Supply	-12 volt Supply
3	GND	Ground	Ground
4	$\overline{\mathrm{RDE}}$	Received Data Enable	A low-level input enables the outputs (RD8-RD1) of the receiver buffer register.
5-12	RD8-RD1	Receiver Data Outputs	These are the 8 tri-state data outputs enabled by RDE. Unused data output lines, as selected by NDB1 and NDB2, have a low-level output, and received characters are right justified, i.e. the LSB always appears on the RD1 output.
13	RPE	Receiver Parity Error	This tri-state output (enabled by $\overline{\text { SWE }}$) is at a high-level if the received character parity bit does not agree with the selected parity.
14	RFE	Receiver Framing Error	This tri-state output (enabled by $\overline{\mathrm{SWE}}$) is at a high-level if the received character has no valid stop bit.

PIN NO.	SYMBOL	NAME	FUNCTION
15	ROR	Receiver Over Run	This tri-state output (enabled by $\overline{S W E}$) is at a high-level if the previously received character is not read (RDA output not reset) before the present character is transferred into the receiver buffer register.
16	$\overline{\text { SWE }}$	Status Word Enable	A low-level input enables the outputs (RPE, RFE, ROR, RDA, and TBMT) of the status word buffer register.
17	RCP	Receiver Clock	This input is a clock whose frequency is 16 times (16X) the desired receiver baud rate.
18	$\overline{\text { RDAR }}$	Receiver Data Available Reset	A low-level input resets the RDA output to a low-level.
19	RDA	Receiver Data Available	This tri-state output (enabled by $\overline{\text { SWE }}$) is at a high-level when an entire character has been received and transferred into the receiver buffer register.
20	RSI	Receiver Serial Input	This input accepts the serial bit input stream. A high-level (mark) to low-level (space) transition is required to initiate data reception.
21	MR	Master Reset	This input should be pulsed to a high-level after power turn-on. This sets TSO, TEOC, and TBMT to a high-level and resets RDA, RPE, RFE and ROR to a low-level.
22	TBMT	Transmitter Buffer Empty	This tri-state output (enabled by $\overline{\text { SWE }}$) is at a high-level when the transmitter buffer register may be loaded with new data.
23	$\overline{T D S}$	Transmitter Data Strobe	A low-level input strobe enters the data bits into the transmitter buffer register.
24	TEOC	Transmitter End of Character	This output appears as a high-level each time a full character is transmitted. It remains at this level until the start of transmission of the next character or for one-half of a TCP period in the case of continuous transmission.
25	TSO	Transmitter Serial Output	This output serially provides the entire transmitted character. TSO remains at a high-level when no data is being transmitted.
26-33	TD1-TD8	Transmitter Data Inputs	There are 8 data input lines (strobed by $\overline{T D S}$) available. Unused data input lines, as selected by NDB1 and NDB2, may be in either logic state. The LSB should always be placed on TD1.
34	CS	Control Strobe	A high-level input enters the control bits (NDB1, NDB2, NSB, POE and NPB) into the control bits holding register. This line may be strobed or hard wired to a high-level.
35	NPB	No Parity Bit	A high-level input eliminates the parity bit from being transmitted; the stop bit(s) immediately follow the last data bit. In addition, the receiver requires the stop bit(s) to follow immediately after the last data bit. Also, the RPE output is forced to a low-level. See pin 39, POE.

PIN NO.	SYMBOL	NAME	FUNCTION
36	NSB	Number of Stop Bits	This input selects the number of stop bits. A low-level input selects 1 stop bit; a high-level input selects 2 stop bits. Selection of 2 stop bits when programming a 5 data bit word generates 1.5 stop bits from the COM 2017 or COM 2017/H.

Upon data transmission initiation, or when not transmitting at 100\% line utilization, the start bit will be placed on the TSO line at the high to low transition of the TCP clock following the trailing edge of TDS.

START BIT DETECT/VERIFY
RCP

RSI

[^4] marking condition prior to a $1 / 2$ bit time, the start bit verification process begins again.

MAXIMUM GUARANTEED RATINGS*

Operating Temperature Range . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range . $55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec.) . $+325^{\circ} \mathrm{C}$
Positive Voltage on any Pin, Vcc . $+0.3 V$
Negative Voltage on any Pin, Vcc . -25 C
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in theoperational sections of this specification is not implied.

ELECTRICAL CHARACTERISTICS ($T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=+5 \mathrm{~V} \pm 5 \%, \mathrm{VDD}=-12 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

Parameter	Min.	Typ.	Max.	Unit	Conditions
D.C. CHARACTERISTICS INPUT VOLTAGE LEVELS					
Low-level, VIL High-level, V_{IH}	$\begin{gathered} \text { Vod } \\ \text { Vcc-1.5 } \end{gathered}$		$\begin{aligned} & 0.8 \\ & \text { Vcc } \end{aligned}$	$\begin{aligned} & V \\ & V \end{aligned}$	
OUTPUT VOLTAGE LEVELS					
Low-level, Vol High-level, VOH	2.4	$\begin{aligned} & 0.2 \\ & 4.0 \end{aligned}$	0.4	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{IOL}=1.6 \mathrm{~mA} \\ & \mathrm{IOH}=100 \mu \mathrm{~A} \end{aligned}$
INPUT CURRENT Low-level, IIL			1.6	mA	see note 4
OUTPUT CURRENT Leakage, ILo Short circuit, los**			$\begin{gathered} -1 \\ 10 \end{gathered}$	$\underset{m A}{\mu \mathrm{~A}}$	$\begin{aligned} & \overline{\text { SWE }}=\overline{\mathrm{RDE}}=\mathrm{V}_{\mathrm{IH}}, 0 \leq \mathrm{VOUT} \leq+5 \mathrm{~V} \\ & \text { VOUT }=0 \mathrm{~V} \end{aligned}$
INPUT CAPACITANCE All inputs, CIn		5	10	pf	$V_{\text {IN }}=V_{c c}, \mathrm{f}=1 \mathrm{MHz}$
OUTPUT CAPACITANCE All outputs, Cout		10	20	pf	$\overline{\mathrm{SWE}}=\overline{\mathrm{RDE}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{f}=1 \mathrm{MHz}$
POWER SUPPLY CURRENT Icc IDD			$\begin{aligned} & 28 \\ & 28 \end{aligned}$	mA mA	All outputs $=\mathrm{VOH}$, All inputs $=\mathrm{Vcc}$
A.C. CHARACTERISTICS CLOCK FREQUENCY (COM2502, COM2017) (COM2502H, COM2017H)	$\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$		$\begin{aligned} & 400 \\ & 640 \end{aligned}$	$\begin{aligned} & \mathrm{KHz} \\ & \mathrm{KH} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{RCP}, \mathrm{TCP} \\ & \mathrm{RCP}, \mathrm{TCP} \end{aligned}$
PULSE WIDTH					
Clock	1			$\mu \mathrm{s}$	RCP, TCP
Master reset	500			ns	MR
Control strobe	200			ns	CS
Transmitter data strobe	200			ns	TDS
Receiver data available reset	200			ns	RDAR
INPUT SET-UP TIME					
Data bits	≥ 0			ns	TD1-TD8
Control bits	≥ 0			ns	NPB, NSB, NDB2, NDB1, POE
INPUT HOLD TIME Data bits Control bits	≥ 0			ns	```TD1-TD8 NPB, NSB, NDB2, NDB1, POE```
STROBE TO OUTPUT DELAY Receive data enable Status word enable			$\begin{aligned} & 350 \\ & 350 \end{aligned}$	ns	Load $=20$ pf +1 TTL input RDE: TpD1, Tpdo SWE: TPD1, TPD0
OUTPUT DISABLE DELAY			350	ns	RDE, $\overline{\text { SWE }}$

${ }^{* *}$ Not more than one output should be shorted at a time.

NOTES: 1. If the transmitter is inactive (TEOC and TBMT are at a high-level) the start bit will appear on the TSO line within one clock period (TCP) after the trailing edge of TDS.
2. The start bit (mark to space transition) will always be detected within one clock period of RCP, guaranteeing a maximum start bit slippage of $1 / 16$ th of a bit time.
3. The tri-state output has 3 states: 1) low impedanceto $V c c$ 2) low impedanceto GND 3) high impedance $O F F \cong$ 10M ohms. The "OFF" state is controlled by the SWE and RDE inputs.
4. Under steady state conditions no current flows for TTL or MOS interfacing. (COM 2502 or COM 2502/H)

DATANCONTROL TIMING DIAGRAM

DATA INPUTS $\mathrm{tr}=\mathrm{tf}=20 \mathrm{~ns}$ TSET-UP ≥ 0 THOLD ≥ 0

$\overline{T D S}$

*Input information (Data/Control) need only be valid during the last TPW, min time of the input strobes (TDS, CS).

OUTPUT TIMING DIAGRAM

$\overline{R D E}, \overline{\text { SWE }}$

OUTPUTS
(RD1-RD8, RDA,
RPE, RFE, TBMT)

NOTE: Waveform drawings not to scale for clarity.

COM2601

Universal Synchronous Receiver/Transmitter USRT

FEATURES

STR, BSC-Bi-sync and interleaved bi-sync modes of operation\square Fully Programmable - data word length, parity mode, receiver sync character, transmitter sync characterFull or Half Duplex Operation-can receive and transmit simultaneously at different baud rates
\square Fully Double Buffered-eliminates need for precise external timingDirectly TTL Compatible - no interface components requiredTri-State Data Outputs - bus structure orientedIBM Compatible-internally generated SCR and SCT signals
\square High Speed Operation -250K baud, 200ns strobesLow Power-300mWInput Protected-eliminates handling problemsDip Package - easy board insertion

APPLICATIONS

Bi-Sync CommunicationsCassette I/OFloppy Disk I/O
GENERAL DESCRIPTION

The Universal Synchronous Receiver/Transmitter is an MOS/LSI monolithic circuit that performs all the receiving and transmitting functions associated with synchronous (STR, BSC, Bi-sync, and interleaved bi-sync) data communications. This circuit is fabricated using SMC's P-channel low voltage oxide-nitride technology, allowing all inputs and outputs to be directly TTL compatible. The duplex mode, baud rate, data word length, parity mode, receiver sync character, and transmitter sync character are independently programmable through the use of external controls. The USR/T is fully double buffered and internally generates the sync character received and sync character transmitted signals. These programmable features provide the user with the ability to interface with all synchronous peripherals.

PIN CONFIGURATION

PIN NO.	SYMBOL	NAME	FUNCTION
1	Vcc	Power Supply	+5 volt Supply
2	TBMT	Transmitter Buffer Empty	This output is at a high-level when the transmitter data buffer register may be loaded with new data.
3	TSO	Transmitter Serial Output	This output serially provides the entire transmitted character. This character is extracted from the transmitter data buffer register provided that a TDS pulse occurs during the presently transmitted character. If TDS is not pulsed, the next transmitted character will be extracted from the transmitter sync register.
4	GND	Ground	Ground
5	SCT	Sync Character Transmitted	This output is set high when the character loaded into the transmitter shift register is extracted from the transmitter sync register, indicating that the TDS was not pulsed during the previously transmitted character. This output is reset low when the character to be transmitted is extracted from the transmitter data buffer register. This can only occur if TDS is pulsed.
6	Vod	Power Supply	-12 volt Supply
7-14	DB1-DB8	Data Bus Inputs	This 8 bit bus inputs information into the receiver sync register under control of the RSS strobe, into the transmitter sync register under control of the TSS strobe, and into the transmitter data buffer register under control of the TDS strobe. The strobes operate independently of each other. Unused bus inputs may be in either logic state. The LSB should always be placed on DB1.
15	RR	Receiver Reset	This input should be pulsed to a high-level after power turn-on. This resets the RDA, SCR, ROR, and RPE outputs to a low-level. The transition of the RR input from a highlevel to a low-level sets the receiver into the search mode (bit phase). In the search mode the serially received data bit stream is examined on a bit by bit basis until async character is found. A sync character is found, by definition, when the contents of the receiver sync register and the receiver shift register are identical. When this occurs the SCR output is set high. This character is then loaded into the receiver buffer register and the receiver is set into the character mode. In this mode each character received is loaded into the receiver buffer register.
16	RPE	Receiver Parity Error	This output is a high-level if the received character parity bit does not agree with the selected parity.

PIN NO.	SYMBOL	NAME	FUNCTION
17	SCR	Sync Character Received	This output is set high each time the character loaded into the receiver buffer register is identical to the character in the receiver sync register. This output is reset low the next time the receiver buffer register is loaded with a character which is not a sync character.
18	TSS	Transmitter Sync Strobe	A high-level input strobe loads the character on the DB1DB8 lines into the transmitter sync register.
19	TCP	Transmitter Clock	The positive going edge of this clock shifts data out of the transmitter shift register, at a baud rate equal to the TCP clock frequency.
20	TDS	Transmitter Data Buffer Strobe	A high-level input strobe loads the character on the DB1DB8 lines into the transmitter data buffer register.
21	RSS	Receiver Sync Strobe	A high-level input strobe loads the character on the DB1DB8 lines into the receiver sync register.
22	RSI	Receiver Serial Input	This input accepts the serial bit input stream.
23	RCP	Receiver Clock	The negative-going edge of this clock shifts data into the receiver shift register, at a baud rate equal to the RCP clock frequency.
24	RDAR	Receiver Data Available Reset	A high-level input resets the RDA output to a low-level.
25	RDE	Received Data Enable	A high-level input enables the outputs (RD8-RD1) of the receiver buffer register
26	RDA	Receiver Data Available	This output is at a high-level when an entire character has been received and transferred into the receiver buffer register.
27	ROR	Receiver OverRun	This output is at a high-level if the previously received character is not read (RDA not reset) before the present character is transferred into the receiver buffer register.
28-35	RD8-RD1	Receiver Data Output	These are the 8 tri-state data outputs enabled by RDE. Unused data output lines, as selected by NDB1 and NDB2, have a low level output, and received characters are right justified, i.e. the LSB always appears on the RD1 output.
36,38	NDB2, NDB1	Number of Data Bits	These 2 inputs are internally decoded to select either 5, 6, 7, or 8 data bits/character as per the following truth table:
			NDB2 NDB1 data bits/character L L 5 L H 6 H L 7 H H 8

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	SYMBOL	NAME	FUNCTION
37	NPB	No Parity Bit	A high-level input eliminates the parity bit from being transmitted. In addition, it is necessary that the received character contain no parity bit. Also, the RPE output is forced to a low-level. See pin 40, POE.
39	CS	Control Strobe	A high-level input enters the control bits (NDB1, NDB2, POE, and NPB) into the control bits register. This line may be strobed or hard wired to a high-level.
40	POE	Odd/Even Parity Select	The logic level on this input, in conjunction with the NPB input, determines the parity mode for both the reciever and transmitter, as per the following table:
			NPB POE MODE L L odd parity L H even parity H X no parity $X=$ don't care

ADDITIONAL TIMING INFORMATION (Typical Propagation Delays)

> *Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

ELECTRICAL CHARACTERISTICS ($T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=-12 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

Parameter	Min	Typ	Max	Unit	Conditions
D.C. CHARACTERISTICS					
INPUT VOLTAGE LEVELS					
Low-level, VIL	Vod		0.8	V	
High-level, V_{1}	$\mathrm{Vcc}-1.5$		Vcc	V	
OUTPUT VOLTAGE LEVELS					
Low-level, Vol		0.2	0.4	V	$\mathrm{loL}=1.6 \mathrm{~mA}$
High-level, Vor	2.4	4.0		V	$\mathrm{IOH}=-100 \mu \mathrm{~A}$
INPUT CURRENT					
Low-level, IIL			1.6	mA	see note 1
OUTPUT CURRENT					
Leakage, ILo			-1	$\mu \mathrm{A}$	RDE $=\mathrm{V}_{\text {IL }}, \mathrm{O} \leq$ Vout $\leq+5 \mathrm{~V}$
Short circuit, los**			10	mA	Vout $=0 \mathrm{~V}$
INPUT CAPACITANCE					
All inputs, Cin		5	10	pf	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{cc}}, \mathrm{f}=1 \mathrm{MHz}$
OUTPUT CAPACITANCE					
All outputs, Cout		10	20	pf	Rde $=\mathrm{V}_{\mathrm{IL}}, \mathrm{f}=1 \mathrm{MHz}$
POWER SUPPLY CURRENT					
Icc			28	mA	
lod			28	mA	All outputs $=\mathrm{VOH}$
A.C. CHARACTERISTICS	DC		250	KHz	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
PULSE WIDTH					
Clock	1			$\mu \mathrm{s}$	RCP, TCP
Receiver reset	1			$\mu \mathrm{s}$	
Control strobe	200			ns	CS
Transmitter data strobe	200			ns	TDS
Transmitter sync strobe	200			ns	TSS
Receiver sync strobe	200			ns	RSS
Receiver data available reset	200			ns	RDAR
INPUT SET-UP TIME					
Data bits	>0			ns	DB1-DB8
Control bits	>0			ns	NPB, NDB2, NDB1, POE
INPUT HOLD TIME					
Data bits	>0			ns	DB1-DB8
Control bits	>0			ns	NPB, NDB2, NDB1, POE
STROBE TO OUTPUT DELAY Receive data enable		180			Load $=20 \mathrm{pf}+1$ TTL input
OUTPUT DISABLE DELAY		100	250	ns	RDE

**Not more than one output should be shorted at a time.

NOTES:

1. Under steady state condition no current flows for TTL or MOS interfacing. A switching current of 1.6 mA maximum flows during a transition of the input.
2. The three-state output has 3 states:
1) low impedance to $V c c$
2) low impedance to GND
3) high impedance $O F F \cong 10 \mathrm{M}$ ohms

The OFF state is controlled by the RDE input.

DESCRIPTION OF OPERATION-RECEIVER/TRANSMITTER

The input clock frequency for the receiver is set at the desired receiver baud rate and the desired receiver sync character (synchronous idle character) is loaded into the receiver sync register. When the Receiver Reset input transitions from a highlevel to a low-level the receiver is set into the search mode (bit phase). In the search mode the serially received data bit stream is examined on a bit by bit basis until a sync character is found. A sync character is found, by definition, when the contents of the receiver sync register and the receiver shift register are identical. When this occurs the Sync Character Received output is set high. This character is then loaded into the receiver buffer register and the receiver is set into the character mode. In this mode each character received is loaded into the receiver buffer register. The receiver provides flags for Receiver Data Available, Receiver Over Run, Receiver Parity Error, and Sync Character Received. Full double buffering eliminates the need for precise external timing by allowing one full character time for received data to be read out.
The input clock frequency for the transmitter is set
at the desired baud rate and the desired transmitter sync character is loaded into the transmitter sync register. Internal logic decides if the character to be transmitted out of the transmitter shift register is extracted from the transmitter data register or the transmitter sync register. The next character transmitted is extracted from the transmitter data register provided that a Transmitter Data Strobe pulse occurs during the presently transmitted character. If the Transmitter Data Strobe is not pulsed, the next transmitted character is extracted from the transmitter sync register and the Sync Character Transmitted output is set to a high level. Full double buffering eliminates the need for precise external timing by allowing one full character time to load the next character to be transmitted.
There may be 5, 6, 7 , or 8 data bits and odd/even or no parity bit. All inputs and outputs are directly TTL compatible. Tri-state data output levels are provided for the bus structure oriented signals. Input strobe widths of 200 ns , output propagation delays of 250 ns , and receiver/transmitter rates of 250K baud are achieved.

FLOW CHART-TRANSMITTER

FLOW CHART-RECEIVER

NOTE 1
The transmitter shift register is loaded with the next character at the positive clock transition corresponding to the leading edge of the last bit of the current character on the TSO output. TBMT is set high approximately two microseconds after this clock transition. If it is desired that the next character be extracted from the transmitter data register the leading edge of the TDS should occur at least one microsecond prior to this clock transition.

NOTE 2
In order to avoid an ROR indication the leading edge of the RDAR pulse should occur at least one microsecond prior to the negative clock transition corresponding to the center of the first bit after the last data bit on the RSI input.

NOTE 3

The ROR, RPE, SCR and RD1RD8 outputs are set to their correct levels approximately two microseconds after the negative clock transition corresponding to the center of the first bit after the last data bit on the RSI input. The RDA output is set high at the next negative clock transition.
The solid waveforms correspond to a control register setting of 5 data bits and a parity bit. The dashed waveforms are for a setting of 6 data bits and no parity bit.

[^5]

Programmable Communication Interface PCI

FEATURES

\square Synchronous and Asynchronous Full Duplex or Half Duplex OperationsSynchronous Mode Capabilities
-Selectable 5 to 8-Bit Characters

- Selectable 1 or 2 SYNC Characters
- Internal Character Synchronization
- Transparent or Non-Transparent Mode
- Automatic SYNC or DLE-SYNC Insertion
- SYNC or DLE Stripping
- Odd, Even, or No Parity
- Local or remote maintenance loop back mode
\square Asynchronous Mode Capabilities
-Selectable 5 to 8-Bit Characters
-3 Selectable Clock Rates (1X, 16X, 64X the Baud Rate)
- Line Break Detection and Generation
$-1,11 / 2$, or 2-Stop Bit Detection and Generation
- False Start Bit Detection
-Odd, Even, or No Parity
- Parity, Overrun, and framing error detect
- Local or remote maintenance loop back mode
- Automatic serial echo mode

Baud Rates
-DC to 1.0 M Baud (Synchronous)
-DC to 1.0M Baud (1X, Asynchronous)
-DC to 62.5 K Baud (16X, Asynchronous)
-DC to 15.625 K Baud (64 X , Asynchronous)
Internal or External Baud Rate Clock

- 16 Internal Rates (50 to 19,200 Baud)
\qquad Double Buffering of Data

PIN CONFIGURATION

GENERAL DESCRIPTION

The COM 2651 is an MOS/LSI device fabricated using SMC's patented COPLAMOS® technology that meets the majority of asynchronous and synchronous data communication requirements, by interfacing parallel digital systems to asynchronous and synchronous data communication channels while requiring a minimum of processor overhead. The COM 2651 contains a baud rate generator which can be programmed to either accept an external clock or to generate internal transmit or receive clocks. Sixteen different baud rates can be selected under program control when operating in the internal clock mode.

The COM 2651 is a Universal Synchronous/ Asynchronous Receiver/Transmitter (USART)
designed for microcomputer system data communications. The USART is used as a peripheral and is programmed by the processor to communicate in commonly used asynchronous and synchronous serial data transmission techniques including IBM Bi-Sync. The USART receives serial data streams and converts them into parallel data characters for the processor. While receiving serial data, the USART will also accept data characters from the processor in parallel format, convert them to serial format and transmit. The USART will signal the processor when it has completely received or transmitted a character and requires service. Complete USART status including data format errors and control signals is available to the processor at any time.

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Multi-Protocol
 Universal Synchronous Receiver/Transmitter USYNR/T

FEATURES

Selectable Protocol-Bit or Byte oriented

Direct TTL CompatibilityThree-state Input/Output BUSProcessor Compatible-8 or 16 bitHigh Speed Operation-1.5 M Baud-typicalFully Double Buffered-Data, Status, and Control RegistersFull or Half Duplex Operation-independent Transmitter and Receiver Clocks—individually selectable data length for Receiver and Transmitter
\square Master Reset—resets all Data, Status, and Control Registers \square Maintenance Select-built-in self checking

PIN CONFIGURATION

BIT ORIENTED PROTOCOLS-SDLC, HDLC, ADCCP
\square Automatic bit stuffing and stripping
\square Automatic frame character detection and generation
\square Valid message protection-a valid received message is protected from overrunResidue Handling-for messages which terminate with a partial data byte, the number of valid data bits is available

SELECTABLE OPTIONS:

V Variable Length Data-1 to 8 bit bytesError Checking-CRC (CRC16, CCITT-0, or CCITT-1) -None
\square Primary or Secondary Station Address Mode
\square All Parties Address-APA
\square Extendable Address Field-to any number of bytesExtendable Control Field-to 2 bytesIdle Mode-idle FLAG characters or MARK the linePoint to Point, Multi-drop, or Loop Configuration

BYTE ORIENTED PROTOCOLS-BISync, DDCMP

\square Automatic detection and generation of SYNC characters

SELECTABLE OPTIONS:

\square Variable Length Data-1 to 8 bit bytes
\square Variable SYNC character- $5,6,7$, or 8 bits
\square Error Checking-CRC (CRC16, CCITT-0, or CCITT-1)
—VRC (odd/even parity)
-None
Strip Sync-deletion of leading SYNC characters after synchronization
\square Idle Mode-idle SYNC characters or MARK the line

APPLICATIONS

Intelligent TerminalsLine ControllersRemote Data ConcentractorsNetwork ProcessorsFront End CommunicationsCommunication Test EquipmentComputer to Computer LinksHard Disk Data Handler
General Description

The COM 5025 is a COPLAMOS ${ }^{\circledR} \mathrm{n}$ channel silicon gate MOS/LSI device that meets the majority of synchronous communications requirements, by interfacing parallel digital systems to synchronous serial data communication channels while requiring a minimum of controller overhead.

The COM 5025 is well suited for applications such as computer to modem interfaces, computer to computer serial links and in terminal applications. Since higher level decisions and responses are made or initiated by the controller, some degree of intelligence in each controller of the device is necessary.

Newly emerging protocols such as SDLC, HDLC, and ADCCP will be able to utilize the COM 5025 with a high degree of efficiency as zero insertion for transmission and zero deletion for reception are done automatically. These protocols will be referred to as Bit Oriented Protocols (BOP). Any differences between them will be discussed in their respective sections. Conventional synchronous protocols that are control character oriented such as BISYNC can also utilize this device. Control Character oriented protocols will be referred to as CCP protocols. Other types of protocols that operate on a byte or character count basis can also utilize the COM 5025 with a high degree of efficiency in most cases. These protocols, such as DDCMP will also be referred to as CCP protocols.

The COM 5025 is designed to operate in a synchronous communications system where some external source is expected to provide the necessary received serial data, and all clock signals properly synchronized according to EIA standard RS334. The external controller of the chip will provide the necessary control signals, intelligence in interpreting control signals from the device and data to be transmitted in accord with RS334.

The receiver and transmitter are as symmetrical as possible without loss of efficiency. The controller of the device will be responsible for all higher level decisions and interpretation of some fields within message frames. The degree to which this occurs is dependent on the protocol being implemented. The receiver and transmitter logic operate as two totally independent sections with a minimum of common logic.

References:

1. ANSI—American National Standards Institute X353, XS34/589
202-466-2299
2. CCITT-Consultative Committee for International Telephone and Telegraph
X. 25

202-632-1007
3. EIA-Electronic Industries Association TR30, RS334
202-659-2200
4. IBM

General Information Brochure, GA27-3093
Loop Interface-OEM Information, GA27-3098
System Journal—Vol. 15, No. 1, 1976; G321-0044

Terminology

Term	Definition	Term	Definition
BOP	Bit Oriented Protocols: SDLC, HDLC, ADCCP	GA	01111111 (0 (LSB) followed by 7-1's)
CCP	Control Character Protocols: BiSync, DDCMP	LSB	First transmitted bit, First received bit
TDB	Transmitter Data Buffer	MSB	Last transmitted bit, Last received bit
RDB	Receiver Data Buffer	RDP	Receiver Data Path
TDSR	Transmitter Data Shift Register	TDP	Transmitter Data Path
FLAG	01111110	LM	Loop Mode
ABORT	11111111 (7 or more contiguous 1's)		

Description of Pin Functions

Pin N	Symbol	Name	1/0	Function
1	Vod	Power Supply	PS	+12 volt Power Supply.
2	RCP	Receiver Clock	1	The positive-going edge of this clock shifts data into the receiver shift register.
3	RSI	Receiver Serial Input	1	This input accepts the serial bit input stream.
4	SFR	Sync/Flag Received	0	This output is set high, for 1 clock time of the RCP, each time a sync or flag character is received.
5	RXACT	Receiver Active	0	This output is asserted when the RDP presents the first data character of the message to the controller. In the BOP mode the first data character is the first non-flag character (address byte). In the CCP mode: 1. if strip-sync is set; the first non-sync character is the first data character 2. if strip-sync is not set; the first data character is the character following the second sync. In the BOP mode the trailing (next) FLAG resets RXACT. In the CCP mode RXACT is never reset, it can be cleared via RXENA.
6	RDA	Receiver Data Available	0	This output is set high when the RDP has assembled an entire character and transferred it into the\|RDB. This output is reset by reading the RDB.
7	RSA	Receiver Status Available	0	This output is set high: 1. CCP-in the event of receiver over run (ROR) or parity error (if selected), 2. BOP-in the event of ROR, CRC error (if selected) receiving REOM or RAB/GA. This output is reset by reading the receiver status register or dropping of RXENA.
8	RXENA	Receiver Enable	1	A high level input allows the processing of RSI data. A low level disables the RDP and resets RDA, RSA and RXACT.
9	GND	Ground	GND	Ground
10	DBø8	Data Bus	I/O	Bidirectional Data Bus.
11	DBø9	Data Bus	1/0	Bidirectional Data Bus.
12	DB1ø	Data Bus	1/0	Bidirectional Data Bus.
13	DB11	Data Bus	1/0	Bidirectional Data Bus. Wire "OR" with DBøø-DBø7
14	DB12	Data Bus	1/0	Bidirectional Data Bus. For 8 bit data bus
15	DB13	Data Bus	1/0	Bidirectional Data Bus.
16	DB14	Data Bus	1/0	Bidirectional Data Bus.
17	DB15	Data Bus	1/0	Bidirectional Data Bus.
18	W/R	Write/Read	,	Controls direction of data port. W/R=1, Write. W/R=0, Read.
19	A2	Address 2	1	Address input-MSB.
20	A1	Address 1	$!$	Address input.
21	AD	Address 0	1	Address input-LSB.
22	BYTE OP	Byte Operation	1	If asserted, byte operation (data port is 8 bits wide) is selected. If $B Y T E O P=0$, data port is 16 bits wide.
23	DPENA	Data Port Enable	1	Strobe for data port. After address, byte op, W/R and data are set-up DPENA may be strobed. If reading the port, DPENA may reset (depending on register selected by address) RDA or RSA. If writing into the port, DPENA may reset (depending on register selected by address) TBMT.
24	DB07	Data Bus	1/0	Bidirectional Data Bus-MSB.
25	DB66	Data Bus	1/0	Bidirectional Data Bus.
26	DB65	Data Bus	1/0	Bidirectional Data Bus.
27	DB64	Data Bus	1/0	Bidirectional Data Bus.
28	DB才3	Data Bus	1/0	Bidirectional Data Bus.
29	DBø2	Data Bus	1/0	Bidirectional Data Bus.
30	DBø1	Data Bus	1/0	Bidirectional Data Bus.
31	DBøø	Data Bus	1/0	Bidirectional Data Bus-LSB.
32	Vcc	Power Supply	PS	+5 volt Power Supply.
33	MR	Master Reset	1	This input should be pulsed high after power turn on. This will: clear all flags, and status conditions, set TBMT=1,TSO $=1$ and place the device in the primary BOP mode with 8 bit TX/RX data length, CRC CCITT initialized to all 1 's.
34	TXACT	Transmitter Active	0	This output indicates the status of the TDP. TXACT will go high after asserting TXENA and TSOM coinsidently with the first TSO bit. This output will reset one half clock after the byte during which TXENA is dropped.
35	TBMT	Transmitter Buffer Empty	0	This output is at a high level when the TDB or the TX Status and Control Register may be loaded with the new data. TBMT $=0$ on any write access to TDB or TX Status and Control Register. TBMT returns high when the TDSR is loaded.
36	TSA	Transmitter Status Available	0	TERR bit, indicating transmitter underflow. Reset by MR or assertion of TSOM.
37	TXENA	Transmitter Enable	1	A high level input allows the processing of transmitter data.
38	TSO	Transmitter Serial Output	0	This output is the transmitted character.
39	TCP	Transmitter Clock	1	The positive going edge of this clock shifts data out of the transmitter shift register.
40	MSEL	Maintenance Select	1	Internally RSI becomes TSO and RCP becomes TCP. Externally RSI is disabled and TSO $=1$.

Definition of Terms
 Register Bit Assignment Chart 1 and 2

*For data length only, not to be used for SYNC character (CCP mode).

Strip Sync or Loop Mode-W/R bit. Effects receiver only. In BOP mode-allows recognition of a GA character. In CCP-after second SYNC, strip SYNC; when first data character detected, set RXACT = 1, stop stripping. PROTOCOL-W/R bit. $B O P=0, C C P=1$
All Parties Address-W/R bit. If selected, modifies secondary mode so that the secondary address or 8-1's will activate the RDP.

313-15 TXDL Transmitter Data Length-W/R bits.
TXDL3 TXDL2 TXDL1 LENGTH

0	0	0	Eight bits per character

$111 \quad 1$ Seven bits per character
$1010 \quad$ Six bits per character
101 Five bits per character
$100 \quad 0 \quad$ Four bits per character*
$011 \quad 1$ Three bits per character*
010 Two bits per character*

Receiver Data Length-W/R bits.
RXDL3 RXDL2 RXDL1 LENGTH

0	0	0	Eight bits per character
1	1	1	Seven bits per character
1	1	0	Six bits per character
1	0	1	Five bits per character
1	0	0	Four bits per character
0	1	1	Three bits per character
0	1	0	Two bits per character
0	0	1	One bit per character

JB11	EXCON	Extended Control Field-W/R bit. In receiver only; if set, will receive control field as two 8 -bit bytes. Excon bit should
not be set if SEC ADD =1.		
JB12	EXADD	Extended Address Field-W/R bit. In receiver only; LSB of address byte tested for a " 1 ". If NO-continue receiving
		address bytes, if YES go into control field. EXADD bit should not be set if SEC ADD $=1$.

Register Bit Assignment Chart 1

REGISTER	DP07	DP96	DP\%5	DP94	DP93	DPø2	DP61	DPøø
Receiver Data Buffer	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RDØ
(Read OnlyRight JustifiedUnused Bits=0)	MSB							LSB
Transmitter Data Register	TD7	TD6	TD5	TD4	TD3	TD2	TD1	TDØ
(Read/WriteUnused Inputs=X) '	MSB							LSB
Sync/Secondary Address	SSA7	SSA6	SSA5	SSA4	SSA3	SSA2	SSA1	SSAø
(Read/Write-	MSB							LSB
Right Justified- Unused Inputs $=X$)								

Register Bit Assignment Chart 2

REGISTER	DP15	DP14	DP13	DP12	DP11	DP1б	DP99	DPб8
Receiver Status (Read Only)	ERR CHK	C	B	A	ROR	RAB/GA	REOM	RSOM
TX Status and Control (Read/Write)	TERR (Read Only)) 0	0	0	TXGA	TXAB	TEOM	TSOM
Mode Control (Read/Write)	*APA P	PROTOCOL	$\begin{aligned} & \text { STRIP } \\ & \text { SYNC/ } \\ & \text { LOOP } \end{aligned}$	SEC ADD	IDLE	Z	Y	X
Data Length Select (Read/Write)	TXDL3	TXDL2	TXDL1	EXADD	EXCON	RXDL3	RXDL2	RXDL1

* Note: Product manufactured before 1Q79 may not have this feature.

Register Address Selection

1) $\mathrm{BYTE} \mathrm{OP}=0$, data port 16 bits wide

$A 2$	$A 1$	$A \varnothing$
0	0	X
0	1	X
1	0	X
1	1	X

$X=$ don't care
2) $\mathrm{BYTE} O P=1$, data port 8 bits wide

A2	A1	AØ
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Register

Receiver Data Buffer
Receiver Status Register
Transmitter Data Buffer
Transmitter Status and Control Register
SYNC/Address Register
Mode Control Register
Data Length Select Register

BOP TRANSMITTER OPERATION

BOP RECEIVER TIMING

BOP TRANSMITTER OPERATION

AC TIMING DIAGRAMS

RCP

RXACT

RDA, RSA

DPENA W/R=0 to Receiver Registers

Resets: RDP-RDA, RSA, RXACT, receiver into search mode (for FLAG)
Note: Unless otherwise specified all times are maximum.
Data Port Timing

READ FROM USYNR/T

WRITE TO USYNR/T

	PRELIMINARY Notice: This is not a fmat spor Some parametric limits are at
MAXIMUM GUARANTEED RATINGS*	
Operating Temperature Range	Chat $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec.$)$	$+325^{\circ} \mathrm{C}$
Positive Voltage on any Pin, with respect to ground.	+18.0V
Negative Voltage on any Pin, with respect to ground	-0.3V
*Stresses above those listed may cause permanent functional operation of the device at these or at any sections of this specification is not implied.	mage to the device. This is a stress rating only and er condition above those indicated in the operational

NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. For example, the bench power supply programmed to deliver +12 volts may have large voltage transients when the AC power is switched on and off. If this possibility exists it is suggested that a clamp circuit be used.

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

COM 8004*
μ PC FAMILY

Dual 32 Bit CRC SDLC Generator/Checker CRC-32

FEATURES

\square SDLC 32 bit CRCCOM 5025 USYNRT CompanionData Rate-2MHz typicalAll Inputs and Outputs are TTL CompatibleSingle +5 Volt SupplyCOPLAMOS® N-Channel MOS Technology

GENERAL DESCRIPTION

SMC's COM 8004 is a dual 32-bit CRC generator/ checker for use with SDLC protocols. It is a companion device to SMC's COM 5025 USYNRT. It operates at bit rates from DC to 2.0 MHz from a single +5 v supply and is housed in a 20 lead $\times 0.3$ inch DIP. All inputs and outputs are TTL compatible with full noise immunity.
The COM 8004 is comprised of two independent halves, and each half may be operated in the check or generate mode. The polynominal used in computations is:
$\mathrm{X}^{32}+\mathrm{X}^{26}+\mathrm{X}^{23}+\mathrm{X}^{22}+\mathrm{X}^{16}+\mathrm{X}^{12}+\mathrm{X}^{11}+\mathrm{X}^{10}+\mathrm{X}^{8}+\mathrm{X}^{7}+\mathrm{X}^{5}+$ $X^{4}+X^{2}+X+1$.
The CRC register is initialized to all ones and the result is inverted before being appended to the message. The expected remainder is:
$X^{31}+X^{30}+X^{26}+X^{25}+X^{24}+X^{18}+X^{15}+X^{14}+X^{12}+X^{11}+X^{10}+$ $X^{8}+X^{6}+X^{5}+X^{4}+X^{3}+X+1$.
Each half has a nine-bit serial data shift register. Data moves on the positive edge of the clock, and all clocked inputs are designed for zero-hold-time (e.g. 7474). A "clock out" pin provides gated clocks to the accompanying USYNRT (COM 5025).
In the generate mode, computation is initiated upon detection of a flag character in the serial bit stream. CRC computation proceeds upon the serial data until a second flag is detected. CLK OUT to the SDLC transmitter is then halted, and the 32-bit CRC is passed out; CLK OUT is then resumed, and the flag character is passed out. Nonsignificant zeros are automatically stripped and stuffed, and shared flags are supported. If the data between flags is less than two full bytes, the CRC is discarded and the serial data stream remains unaltered.
In the check mode, computation is similarly initiated upon detection of a flag. Detection of a second flag causes the conditional setting of the error flag. A separate reset pin is provided for the error flag. No error is flagged on messages of less than two full bytes between flags. Detection of an abort character (7 consecutive ones) in either mode causes computation to be reset and a search for an opening flag resumed.

PIN CONFIGURATION

Universal Asynchronous Receiver/Transmitter

 UART
FEATURES

Single +5V Power SupplyDirect TTL Compatibility - no interfacing circuits requiredFull or Half Duplex Operation - can receive and transmit simultaneously at different baud ratesFully Double Buffered—eliminates need for precise external timingStart Bit Verification—decreases error rateFully Programmable - data word length; parity mode; number of stop bits: one, one and one-half, or twoHigh Speed Operation-40K baud, 200ns strobesMaster Reset—Resets all status outputsTri-State Outputs—bus structure orientedLow Power-minimum power requirementsInput Protected-eliminates handling problemsCeramic or Plastic Dip Package-easy board insertionCompatible with COM 2017, COM 2502Compatible with COM 8116, COM 8126, COM 8136, COM 8146, COM 8046 Baud Rate Generators
GENERAL DESCRIPTION

The Universal Asynchronous Receiver/Transmitter is an MOS/LSI monolothic circuit that performs all the receiving and transmitting functions associated with asynchronous data communications. This circuit is fabricated using SMC's patented COPLAMOS® technology and employs depletion mode loads, allowing operation from a single +5 V supply. The duplex mode, baud rate, data word length, parity mode, and number of stop bits are independently programmable through the use of external controls. There may be $5,6,7$ or 8 data bits, odd/even or no parity, and 1, or 2 stop bits. In addition the COM 8017 will provide 1.5 stop bits when programmed for 5 data bits and 2 stop bits. The UART can operate in either the full or half duplex mode. These programmable features provide the user with the ability to interface with all asynchronous peripherals.

Pin Configuration	
vcc 1	40 TCP
NC 2	${ }^{39}$ Poe
Gnd 3	${ }^{38}$ NDB1
RDE ${ }^{4}$	${ }^{37}$ N NB2
RD8 5	36 nsb
RD7 RD6	${ }^{35} \mathrm{NPB}$
RD6 7	${ }^{34}$ Cs
RD5 8	${ }^{33}$ TD8
RD4 9	${ }^{32} \mathrm{~T}_{\text {to }}$
RD3 10	${ }^{31}{ }^{\text {T }}$ T06
RD2 ${ }^{11}$	${ }^{3}-1$.
RD1 ${ }^{12}$	$\left.{ }^{29}\right]^{\text {TD4 }}$
RPE ${ }^{13}$	${ }^{28} \mathrm{P}^{\text {to3 }}$
RFE ${ }^{14}$	${ }^{27}$ To ${ }^{\text {c }}$
ROR 15	${ }^{26}$ TD1
SWE 16	${ }^{25}$ Tso
RCP 17	24 TEOC
$\overline{\text { RDA }} 18$	${ }^{23}$ TDS
RDA 19	22 твмт
RSI ${ }^{20}$	21.1 MR
PACKAGE: 40-Pin D.I.P.	

DESCRIPTION OF OPERATION - TRANSMITTER

At start-up the power is turned on, a clock whose frequency is 16 times the desired baud rate is applied, and master reset is pulsed. Under these conditions TBMT, TEOC, and TSO are all at a high level (the line is marking).
When TBMT and TEOC are high, the control bits may be set. After this has been done the data bits may be set. Normally, the control bits are strobed into the transmitter prior to the data bits. However, as long as minimum pulse width specifications are not violated, TDS and CS may occur simultaneously. Once the data strobe (TDS) has been pulsed the TBMT signal goes low, indicating that the data bits buffer register is full and unavailable to receive new data.
If the transmitter shift register is transmitting previously loaded data the TBMT signal remains low. If the transmitter shift register is empty, or when it is through transmitting the previous character, the data in the buffer register is loaded immediately into the transmitter shift register and data transmission
commences. TSO goes low (the start bit), TEOC goes low, and TBMT goes high indicating that the data in the data bits buffer register has been loaded into the transmitter shift register and that the data bits buffer register is available to be loaded with new data.
If new data is loaded into the data bits buffer register at this time, TBMT goes low and remains in this state until the present transmission is completed. One full character time is available for loading the next character with no loss in speed of transmission. This is an advantage of double buffering.
Data transmission proceeds in an orderly manner: start bit, data bits, parity bit (if selected), and the stop bit(s). When the last stop bit has been on the line for one bit time TEOC goes high. If TBMT is low, transmission begins immediately. If TBMT is high the transmitter is completely at rest and, if desired, new control bits may be loaded prior to the next data transmission.

DESCRIPTION OF OPERATION-RECEIVER

At start-up the power is turned on, a clock whose frequency is 16 times the desired baud rate is applied and master reset is pulsed. The data available (RDA) signal is now low. There is one set of control bits for both the receiver and transmitter.
Data reception begins when the serial input line transitions from mark (high) to space (low). If the RSI line remains spacing for a $1 / 2$ bittime, a genuine start bit is verified. Should the line return to a mark-
ing condition prior to a $1 / 2$ bit time, the start bit verification process begins again. A mark to space transition must occur in order to initiate start bit verification. Once a start bit has been verified, data reception proceeds in an orderly manner: start bit verified and received, data bits received, parity bit received (if selected) and the stop bit(s) received. If the transmitted parity bit does not agree with the received parity bit, the parity error flip-flop of the
status word buffer register is set high, indicating a parity error. However, if the no parity mode is selected, the parity error flip-flop is unconditionally held low, inhibiting a parity error indication. If a stop bit is not received, the framing error flip-flop is set high, indicating a framing error.
Once a full character has been received internal logic looks at the data available (RDA) signal. If, at this instant, the RDA signal is high, the receiver assumes that the previously received character has
not been read out and the over-run flip-flop is set high. The only way the receiver is aware that data has been read out is by having the data available reset low.
At this time the RDA output goes high indicating that all outputs are available to be examined. The receiver shift register is now available to begin receiving the next character. Due to the double buffered receiver, a full character time is available to remove the received character.

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	SYMBOL	NAME	FUNCTION
1	Vcc	Power Supply	+5 volt Supply
2	NC	No connection	No connection
3	GND	Ground	Ground
4	$\overline{\text { RDE }}$	Received Data Enable	A low-level input enables the outputs (RD8-RD1) of the receiver buffer register.
$5-12$	RD8-RD1	Receiver Data Outputs	These are the 8 tri-state data outputs enabled by $\overline{\text { RDE. }}$ Unused data output lines, as selected by NDB1 and NDB2, have a low-level output, and received characters are right justified, i.e. the LSB always appears on the RD1 output.
13	RPE	Receiver Parity Error	This tri-state output (enabled by $\overline{\text { SWE) is at a high-level if }}$ the received character parity bit does not agree with the selected parity.
14	RFE	Receiver Framing Error	This tri-state output (enabled by $\overline{\text { SWE) is at a high-level if }}$ the received character has no valid stop bit.

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	SYMBOL	NAME	FUNCTION
15	ROR	Receiver Over Run	This tri-state output (enabled by $\overline{\text { SWE }}$) is at a high-level if the previously received character is not read (RDA output not reset) before the present character is transferred into the receiver buffer register.
16	$\overline{\text { SWE }}$	Status Word Enable	A low-level input enables the outputs (RPE, RFE, ROR, RDA, and TBMT) of the status word buffer register.
17	RCP	Receiver Clock	This input is a clock whose frequency is 16 times (16X) the desired receiver baud rate.
18	$\overline{\text { RDAR }}$	Receiver Data Available Reset	A low-level input resets the RDA output to a low-level.
19	RDA	Receiver Data Available	This tri-state output (enabled by $\overline{\text { SWE }}$) is at a high-level when an entire character has been received and transferred into the receiver buffer register.
20	RSI	Receiver Serial Input	This input accepts the serial bit input stream. A high-level (mark) to low-level (space) transition is required to initiate data reception.
21	MR	Master Reset	This input should be pulsed to a high-level after power turn-on. This sets TSO, TEOC, and TBMT to a high-level and resets RDA, RPE, RFE and ROR to a low-level.
22	TBMT	Transmitter Buffer Empty	This tri-state output (enabled by $\overline{\text { SWE }}$) is at a high-level when the transmitter buffer register may be loaded with new data.
23	$\overline{\text { TDS }}$	Transmitter Data Strobe	A low-level input strobe enters the data bits into the transmitter buffer register.
24	TEOC	Transmitter End of Character	This output appears as a high-level each time a full character is transmitted. It remains at this level until the start of transmission of the next character or for one-half of a TCP period in the case of continuous transmission.
25	TSO	Transmitter Serial Output	This output serially provides the entire transmitted character. TSO remains at a high-level when no data is being transmitted.
26-33	TD1-TD8	Transmitter Data Inputs	There are 8 data input lines (strobed by $\overline{\mathrm{TDS}}$) available. Unused data input lines, as selected by NDB1 and NDB2, may be in either logic state. The LSB should always be placed on TD1.
34	CS	Control Strobe	A high-level input enters the control bits (NDB1, NDB2, NSB, POE and NPB) into the control bits holding register. This line may be strobed or hard wired to a high-level.
35	NPB	No Parity Bit	A high-level input eliminates the parity bit from being transmitted: the stop bit(s) immediately follow the last data bit. In addition, the receiver requires the stop bit(s) to follow immediately after the last data bit. Also, the RPE output is forced to a low-level. See pin 39, POE.

MAXIMUM GUARANTEED RATINGS*

> Operating Temperature Range $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
> Storage Temperature Range . $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
> Lead Temperature (soldering, 10 sec .) $+325^{\circ} \mathrm{C}$
> Positive Voltage on any Pin, with respect to ground +8.0 V
> Negative Voltage on any Pin. with respect to ground . $-0.3 V$
> Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
> NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists it is suggested that at clamp circuit be used.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

Parameter	Min.	Typ.	Max.	Unit	Comments
D.C. CHARACTERISTICS INPUT VOLTAGE LEVELS					
Low-level, VIL	0		0.8	V	
High-level, V_{IH}	2.0		Vcc	V	
OUTPUT VOLTAGE LEVELS					
Low-level, Vol			0.4	V	$\mathrm{IOL}=1.6 \mathrm{~mA}$
High-level, Voh	2.4			V	$\mathrm{IOH}=-100 \mu \mathrm{~A}$
INPUT CURRENT					
Low-level, IIL			200	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{G}_{\mathrm{ND}}$
OUTPUT CURRENT					
Leakage, ILo			± 10	$\mu \mathrm{A}$	$\overline{S W E}=\overline{\mathrm{RDE}}=\mathrm{V}_{\mathrm{IH}}, 0 \leq \mathrm{V}_{\text {OUT }} \leq+5 \mathrm{~V}$
Short circuit, los**			20	mA	Vout $=0 \mathrm{~V}$
INPUT CAPACITANCE All inputs, Cin		5	10	pf	
OUTPUT CAPACITANCE All outputs, Cout		10	20	pf	$\overline{\mathrm{SWE}}=\overline{\mathrm{RDE}}=\mathrm{V}_{\mathrm{IH}}$
POWER SUPPLY CURRENT Icc			25	mA	All outputs $=\mathrm{VOH}$, All inputs $=$ Vcc
A.C. CHARACTERISTICS					$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
COM8502, COM 8017	DC		640	KHz	RCP, TCP
PULSE WIDTH					
Clock	0.7			$\mu \mathrm{s}$	RCP, TCP
Master reset	500			ns	MR
Control strobe	200			ns	CS
Transmitter data strobe	200			ns	TDS
Receiver data available reset	200			ns	RDAR
INPUT SET-UP TIME					
Data bits	≥ 0			ns	TD1-TD8
Control bits	≥ 0			ns	NPB, NSB, NDB2, NDB1, POE
INPUT HOLD TIME					
Data bits	≥ 0			ns	
Control bits	≥ 0			ns	NPB, NSB, NDB2, NDB1, POE
STROBE TO OUTPUT DELAY					Load $=20 \mathrm{pf}+1$ TTL input
Receive data enable			350	ns	RDE: TPD1, TPDo
Status word enable			350	ns	SWE: TPD1, TPD0
OUTPUT DISABLE DELAY			350	ns	$\overline{R D E}, \overline{\text { SWE }}$

**Not more than one output should be shorted at a time.

NOTES: 1. If the transmitter is inactive (TEOC and TBMT are at a high-level) the start bit will appear on the TSO line within one clock period (TCP) after the trailing edge of TDS.
2. The start bit (mark to space transition) will always be detected within one clock period of RCP, guaranteeing a maximum start bit slippage of $1 / 16$ th of a bit time.
3. The tri-state output has 3 states: 1) low impedance to Vcc 2) low impedance to GND 3) high impedance OFF \cong 10M ohms The "OFF" state is controlled by the SWE and RDE inputs.

DATA/CONTROL TIMING DIAGRAM

DATA INPUTS
$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$
TSET-UP ≥ 0
THOLD ≥ 0

$\overline{T D S}$

*Input information (Data/Control) need only be valid during the last TPW, min time of the input strobes (TDS, CS).

NOTE: Waveform drawings not to scale for clarity.

FLOW CHART-TRANSMITTER

FLOW CHART-RECEIVER

Universal Synchronous/Asynchronous Receiver/Transmitter USART
 PIN CONFIGURATION
 FEATURES

Asynchronous or Synchronous Operation- Asynchronous:

5-8 Bit Characters
Clock Rate-1, 16 or $64 \times$ Baud Rate Break Character Generation
$1,11 / 2$ or 2 Stop Bits
False Start Bit Detection
Automatic Break Detect and Handling
-Synchronous:
5-8 Bit Characters
Internal or Exfernal Character Synchronization Automatic Sync Insertion
Single or Double Sync Characters
Programmable Sync Character(s)
Baud Rate-Synchronous-DC to 64K Baud
-Asynchronous-DC to 9.6K BaudFull Duplex, Double Buffered Transmitter and ReceiverOdd parity, even parity or no parity bitParity, Overrun and Framing Error FlagsModem Interface Controlled by ProcessorAll Inputs and Outputs are TTL Compatible

GENERAL DESCRIPTION

The COM 8251A is an MOS/LSI device fabricated using SMC's patented COPLAMOS® technology that meets the majority of asynchronous and synchronous data communication requirements by interfacing parallel digital systems to asynchronous and synchronous data communication channels while requiring a minimum of processor overhead. The COM 8251A is an enhanced version of the 8251.
The COM 8251A is a Universal Synchronous/ Asynchronous Receiver/Transmitter (USART) designed for microcomputer system data communications. The USART is used as a peripheral and is programmed by the processor to communicate in commonly used asychronous and synchronous serial data transmission techniques including IBM Bi-Sync. The USART receives serial data streams and converts them into parallel data characters for the processor. While receiving serial data, the USART will also accept data characters from the processor in parallel format, convert them to serial format and transmit. The USART will signal the processor when it has completely received or transmitted a character and requires service. Complete USART status, including data format errors and control signals such as TxE and SYNDET, is available to the processor at any time.

Single +5 Volt Supply
Separate Receive and Transmit TTL ClocksEnhanced version of 825128 Pin Plastic or Ceramic DIP Package COPLAMOS® ${ }^{\text {N-Channel MOS Technology }}$

BLOCK DIAGRAM

manum CRT Display
 VMAC ${ }^{\text {© }}$ TMMING CONTROLTHRS

Part \#	Description	Features	$\begin{aligned} & \text { Display } \\ & \text { Format } \end{aligned}$	Mrax	Fower Suppllio:	Package	Page
CRT 50R7	provides all of the timing and control for interlaced and non-interlaced CRT display		programmable	4 MHz	+5, +12	40 DIP	78-85
CRT 5037		balanced beam interlace					
CRT 5057 ${ }^{(1)}$		line-lock					
CRT 96364/B ${ }^{(1)}$	complete CRT processor	on-chip cursor and write control	$64 \text { column }$ $16 \text { row }$	1.6 MHz	$+5$	28 DIP	86-93

${ }^{(1)}$ For future release
VDAC ${ }^{T M}$ DISPIAY CONTROLTWR8

Part \#	Description	Display	Attributes	chock	Power supply	Packerge	Page
CRT 8002A ${ }^{(2.3)}$	provides complete display and attri butes control for alphanumeric and graphics display. Consists of $7 \times 11 \times 128$ character generator, video shift register, latches, graphics and attributes circuits	7×11 dot matrix, wide graphics, thin graphics. on-chip cursor	reverse video blank blink underline strike-thru	20 MHz			
CRT 8002B ${ }^{(23)}$				16 MHz		28 DIP	94-103
CRT 8002C ${ }^{(23)}$		1		10 MHz			

${ }^{(2)}$ Also available as CRT 8002A,B,C-001 Katakana
CRT 8002A,B,C-003 5X7 dot matrix
${ }^{(3)}$ May be custom mask programmed

CHARACTHR GFNFRATORS

[^6]

CRT Video Timer-Controller VTAC ${ }^{\circledR}$

FEATURES
Fully Programmable Display Format Characters per data row (1-200) Data rows per frame (1-64) Raster scans per data row (1-16)
\square Programmable Monitor Sync Format Raster Scans/Frame (256-1023) "Front Porch" Sync Width "Back Porch" Interlace/Non-Interlace Vertical Blanking
Lock Line Input (CRT 5057)
Direct Outputs to CRT Monitor Horizontal Sync Vertical Sync Composite Sync (CRT 5027, CRT 5037) Blanking Cursor coincidence
\square Programmed via: Processor data bus External PROM Mask Option ROM
Standard or Non-Standard CRT Monitor Compatible
Refresh Rate: $60 \mathrm{~Hz}, 50 \mathrm{~Hz}, \ldots$
Scrolling Single Line Multi-Line
Cursor Position Registers
Character Format: $5 \times 7,7 \times 9, \ldots$
Programmable Vertical Data Positioning
Balanced Beam Current Interlace (CRT 5037)
\square Graphics Compatible

PIN CONFIGURATION

GENERAL DESCRIPTION

The CRT Video Timer-Controller Chip (VTAC) ${ }^{\circledR}$ is a user programmable 40-pin COPLAMOS®n channel MOS/LSI device containing the logic functions required to generate all the timing signals for the presentation and formatting of interlaced and non-interlaced video data on a standard or non-standard CRT monitor.

With the exception of the dot counter, which may be clocked at a video frequency above 25 MHz and therefore not recommended for MOS implementation, all frame formatting, such as horizontal, vertical, and composite sync, characters per data row, data rows per frame, and raster scans per data row and per frame are totally user programmable. The data row counter has been designed to facilitate scrolling.

Programming is effected by loading seven 8 bit control registers directly off an 8 bit bidirectional data bus. Four register address lines and a chip select line provide complete microprocessor compatibility for program controlled set up. The device can be "self loaded" via an external PROM tied on the data bus as described in the OPERATION section. Formatting can also be programmed by a single mask option.

In addition to the seven control registers two additional registers are provided to store the cursor character and data row addresses for generation of the cursor video signal. The contents of these two registers can also be read out onto the bus for update by the program.

Three versions of the VTAC® are available. The CRT 5027 provides non-interlaced operation with an even or odd number of scan lines per data row, or interlaced operation with an even number of scan lines per data row. The CRT 5037 may be programmed for an odd or even number of scan lines per data row in both interlaced and non-interlaced modes. Programming the CRT 5037 for an odd number of scan lines per data row eliminates character distortion caused by the uneven beam current normally associated with odd field/even field interlacing of alphanumeric displays.

The CRT 5057 provides the ability to lock a CRT's vertical refresh rate, as controlled by the VTAC's® vertical sync pulse, to the 50 Hz or 60 Hz line frequency thereby eliminating the so called "swim" phenomenon. This is particularly well suited for European system requirements. The line frequency waveform, processed to conform to the VTAC's® specified logic levels, is applied to the line lock input. The VTAC® will inhibit generation of vertical sync until a zero to one transition on this input is detected. The vertical sync pulse is then initiated within one scan line after this transition rises above the logic threshold of the VTAC.©

To provide the pin required for the line lock input, the composite sync output is not provided in the CRT 5057.

Operation

The design philosophy employed was to allow the device to interface effectively with either a microprocessor based or hardwire logic system. The device is programmed by the user in one of two ways; via the processor data bus as part of the system initialization routine, or during power up via a PROM tied on the data bus and addressed directly by the Row Select outputs of the chip. (See figure 4). Seven 8 bit words are required to fully program the chip. Bit assignments for these words are shown in Table 1. The information contained in these seven words consists of the following:

Horizontal Formatting:

Characters/Data Row

Horizontal Sync Delay
Horizontal Sync Width

Horizontal Line Count
Skew Bits
A 3 bit code providing 8 mask programmable character lengths from 20 to 132. The standard device will be masked for the following character lengths; 20,32 , $40,64,72,80,96$, and 132.
3 bits assigned providing up to 8 character times for generation of "front porch".
4 bits assigned providing up to 16 character times for generation of horizontal sync width.
8 bits assigned providing up to 256 character times for total horizontal formatting.
A 2 bit code providing from a 0 to 2 character skew (delay) between the horizontal address counter and the blank and sync (horizontal, vertical, composite) signals to allow for retiming of video data prior to generation of composite video signal. The Cursor Video signal is also skewed as a function of this code.

Vertical Formatting: Interlaced/Non-interlaced

Scans/Frame 8 bits assigned, defined according to the following equations: Let $\mathrm{X}=$ value of 8
This bit provides for data presentation with odd/even field formatting for interlaced systems. It modifies the vertical timing counters as described below. A logic 1 establishes the interlace mode. assigned bits.

1) in interlaced mode-scans/frame $=2 X+513$. Therefore for 525 scans, program $X=6(00000110)$. Vertical sync will occur precisely every 262.5 scans, thereby producing two interlaced fields.
Range $=513$ to 1023 scans/frame, odd counts only.
2) in non-interlaced mode-scans/frame $=2 X+256$. Therefore for 262 scans, program $X=3$ (00000011).
Range $=256$ to 766 scans/frame, even counts only.
In either mode, vertical sync width is fixed at three horizontal scans ($\equiv 3 \mathrm{H}$).
Vertical Data Start

Data Rows/Frame
Last Data Row

Scans/Data Row
8 bits defining the number of raster scans from the leading edge of vertical sync until the start of display data. At this raster scan the data row counter is set to the data row address at the top of the page.
6 bits assigned providing up to 64 data rows per frame.
6 bits to allow up or down scrolling via a preload defining the count of the last displayed data row.
4 bits assigned providing up to 16 scan lines per data row.

Additional Features

Device Initialization:

Under microprocessor control-The device can be reset under system or program control by presenting a $1 \varnothing 1 \varnothing$ address on A3-ø. The device will remain reset at the top of the even field page until a start command is executed by presenting a $111 \varnothing$ address on A3- \varnothing.

Via "Self Loading"-In a non-processor environment, the self loading sequence is effected by presenting and holding the 1111 address on $A 3-\emptyset$, and is initiated by the receipt of the strobe pulse $(\overline{\mathrm{DS}})$. The 1111 address should be maintained long enough to insure that ali seven registers have been loaded (in most applications under one millisecond). The timing sequence will begin one line scan after the 1111 address is removed. In processor based systems, self loading is initiated by presenting the $\varnothing 111$ address to the device. Self loading is terminated by presenting the start command to the device which also initiates the timing chain.

Scrolling-In addition to the Register 6 storage of the last displayed data row a "scroll" command (address 1ø11) presented to the device will increment the first displayed data row count to facilitate up scrolling in certain applications.

Control Registers Programming Chart

Horizontal Line Count: Characters/Data Row:

Horizontal Sync Delay: Horizontal Sync Width:

Skew Bits

Scans/Frame

Vertical Data Start:
Data Rows/Frame:
Last Data Row:

Mode:

Scans/Data Row:

Total Characters/Line $=N+1, N=0$ to $255(D B 0=L S B)$ DB2 DB1 DB0

0	0	$0=20$
0	0	$1=32$
0	1	$0=40$
0	1	$1=64$
1	0	$0=72$
1	0	$1=80$
1	1	$0=96$
1	1	$1=132$

$=\mathrm{N}$, from 1 to 7 character times $(\mathrm{DBO}=\mathrm{LSB})(\mathrm{N}=0$ Disallowed $)$
$=N$, from 1 to 15 character times $(D B 3=L S B)(N=0$ Disallowed) Sync/Blank Delay Cursor Delay
DB7 DB8
(Character Times)

0	0	0	0
1	0	1	0
0	1	2	1
1	1	2	2

8 bits assigned, defined according to the following equations:
Let $X=$ value of 8 assigned bits. ($D B 0=L S B$)

1) in interlaced mode-scans/frame $=2 X+513$. Therefore for 525 scans, program $X=6$ (00000110). Vertical sync will occur precisely every 262.5 scans, thereby producing two interlaced fields.
Range $=513$ to 1023 scans/frame, odd counts only.
2) in non-interlaced mode-scans/frame $=2 X+256$. Therefore for 262 scans, program X = 3 (00000011).
Range $=256$ to 766 scans/frame, even counts only.
In either mode, vertical sync width is fixed at three horizontal scans ($=3 \mathrm{H}$).
$\mathrm{N}=$ number of raster lines delay after leading edge of vertical sync of vertical start position. (DBO = LSB)
Number of data rows $=N+1, N=0$ to 63 (DBO = LSB)
$N=$ Address of last dsplayed data row, $N=0$ to 63 , ie; for 24 data rows,
program $N=23$. (DBO = LSB)
Register, 1, DB7 = 1 establishes Interlace.
Interlace Mode
CRT 5027: Scans per Data Row $=\mathbf{N}+1$ where $\mathbf{N}=$ programmed number of data rows. $N=0$ to 15 . Scans per data row must be even counts only.
CRT 5037, CRT 5057: Scans per data Row $=N+2 . N=0$ to 14, odd or even counts.

Non-Interlace Mode

CRT 5027, CRT 5037, CRT 5057: Scans per Data Row $=\mathbf{N}+1$, odd or even count. $\mathrm{N}=0$ to 15 .

Register Selects/Command Codes

A3 A2 A1 Aø

0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1

1	0	0	0
1	0	0	1
1	0	1	0

10101

1	1	0	0
1	1	0	1
1	1	1	0

1111

Select/Command
Load Control Register \emptyset
Load Control Register 1
Load Control Register 2
Load Control Register 3
Load Control Register 4
Load Control Register 5
Load Control Register 6
Processor Initiated Self Load

Read Cursor Line Address
Read Cursor Character Address Reset

Up Scroll

Load Cursor Character Address*
Load Cursor Line Address*
Start Timing Chain

Non-Processor Self Load

Description

See Table 1

Command from processor instructing VTAC ${ }^{8}$ to enter Self Load Mode (via external PROM)

Resets timing chain to top left of page. Reset is latched on chip by DS and counters are held until released by start command. Increments address of first displayed data row on page. ie; prior to receipt of scroll command-top line $=0$, bottom line $=23$. After receipt of Scroll Command-top line = 1, bottom line $=0$.

Receipt of this command after a Reset or Processor Self Load command will release the timing chain approximately one scan line later. In applications requiring synchronous operation of more than one CRT 5027 the dot counter carry should be held low during the $\overline{\mathrm{DS}}$ for this command.
Device will begin self load via PROM when $\overline{\mathrm{DS}}$ goes low. The 1111 command should be maintained on A3- \varnothing long enough to guarantee self load. (Scan counter should cycle through at least once). Self load is automatically terminated and timing chain initiated when the all " 1 's" condition is removed, independent of $\overline{\mathrm{DS}}$. For synchronous operation of more than one VTAC ${ }^{\circledR}$, the Dot Counter Carry should be held low when the command is removed.
*NOTE: During Self-Load, the Cursor Character Address Register (REG 7) and the Cursor Row Address Register (REG 8) are enabled during states $\emptyset 111$ and $1 \emptyset \emptyset \emptyset$ of the R3-R \emptyset Scan Counter outputs respectively. Therefore, Cursor data in the PROM should be stored at these addresses.

TABLE 1

MAXIMUM GUARANTEED RATINGS*

Operating Temperature Range . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range . $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec.) . $325^{\circ} \mathrm{C}$
Positive Voltage on any Pin, with respect to ground . +18.0 V
Negative Voltage on any Pin, with respect to ground . -0.3 V
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transientș on the AC power line may appear on the DC output. For example, the bench power supply programmed to deliver +12 volts may have large voltage transients when the AC power is switched on and off. If this possibility exists it is suggested that a clamp circuit be used.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=+5 \mathrm{~V} \pm 5 \%, \mathrm{VDD}=+12 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

Parameter	Min.	Typ.	Max.	Unit	Comments
D.C. CHARACTERISTICS INPUT VOLTAGE LEVELS					
Low Level, Vil	Vcc-1.5		0.8	V	
High Level, $\mathrm{V}_{\mathbf{1 H}}$			Vcc	V	
OUTPUT VOLTAGE LEVELS					
Low Level-Vol for Rø-3			0.4	V	$1 \mathrm{cL}=3.2 \mathrm{ma}$
Low Level-Vol all others			0.4	V	$1 \mathrm{l}=1.6 \mathrm{ma}$
High Level-Vон for Rø-3, DBø-7	2.4				$1 \mathrm{loH}=80 \mu \mathrm{a}$
High Level-Vон all others	2.4				1 Ін $=40 \mu \mathrm{a}$
INPUT CURRENT					
Low Level, IIL (Address, CS only)			250	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
Leakage, IIL (All Inputs except Address, CS			10	$\mu \mathrm{A}$	$\mathrm{O} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\text {cc }}$
INPUT CAPACITANCE					
Data Bus, Cin		10	15	pF	
$\overline{\mathrm{DS}}$, Clock, Cin		25	40	pF	
All other, CIN		10	15	pF	
DATA BUS LEAKAGE in INPUT MODE					
IDb			10	$\mu \mathrm{A}$	$0.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 5.25 \mathrm{~V}$
POWER SUPPLY CURRENT					
Icc		80	100	mA	
lod		40	60	mA	
A.C. CHARACTERISTICS					$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
DOT COUNTER CARRY					
frequency	0.2		4.0	MHz	Figure 1
PWH	35			ns	Figure 1
PWL	215			ns	Figure 1
$\mathrm{tr}^{\text {, } \mathrm{ff} \text { }}$		10	50	ns	Figure 1
DATA STROBE					
PWDS	150ns		$10 \mu \mathrm{~S}$		Figure 2
ADDRESS, CHIP SELECT					
Set-up time	125			ns	Figure 2
Hold time	50			ns	Figure 2
DATA BUS-LOADING					
Set-up time	125			ns	Figure 2
Hold time	75			ns	Figure 2
DATA BUS—READING					
Tdela			125	ns	Figure 2, CL=50pF
Tdel4	5		60	ns	Figure 2, $\mathrm{CL}=50 \mathrm{pF}$
OUTPUTS: $\mathrm{H} \varnothing-7, \mathrm{HS}, \mathrm{VS}, \mathrm{BL}, \mathrm{CRV}$, CS-Tdelı			125	ns	Figure 1, CL= 20 pF
OUTPUTS: Rø-3, DRø-5					
Tdel3	*		500	ns	Figure $3, C L=20 p F$

Restrictions

1. Only one pin is available for strobing data into the device via the data bus. The cursor X and Y coordinates are therefore loaded into the chip by presenting one set of addresses and outputed by presenting a different set of addresses. Therefore the standard WRITE and READ control signals from most microprocessors must be "NORed" externally to present a single strobe ($\overline{\mathrm{DS}}$) signal to the device.
2. In interlaced mode the total number of character slots assigned to the horizontal scan must be even to insure that vertical sync occurs precisely between horizontal sync pulses.

Start-up, CRT 5027

When employing microprocessor controlled loading of the CRT 5027's registers, the following sequence of instructions is necessary:

ADDRESS

1	1	1	0
1	0	1	0
0	0	0	0
		\vdots	
0	1	1	0
1	1	1	0

COMMAND

Start Timing Chain Reset Load Register 0
-
-
Load Register 6
Start Timing Chain
The sequence of START RESET LOAD START is necessary to insure proper initialization of the registers.
This sequence is not required if register loading is via either of the Self Load modes. This sequence is optional with the CRT 5037 or CRT 5057. and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

CRT Controller

FEATURES

Single +5 v power supply16 line x 64 character displayOn chip sync oscillatorComplete cursor controlAutomatic scrollingErase functions built inPerforms character entry during horizontal syncInternal blinking cursorPage linking logic built inLS-TTL compatibleCompatible with CRT 8002, CRT 7004
GENERAL DESCRIPTION

The CRT 96364A/B is a CRT Controller which controls all of the functions associated with a 16 line $x 4$ character video display. Functions include CRT refresh, character entry, and cursor management.
The CRT 96364A/B contains an internal oscillator which produces the composite sync output. The CRT 96364 B generates a 60 Hz vertical sync while the CRT 96364A generates a 50 Hz vertical sync.

PIN CONFIGURATION

Standard functions such as ERASE PAGE, ERASE LINE, and ERASE TO END OF LINE make the CRT 96364 A/B easy to interface to any computer or microprocessor, or to use as a stand-alone video processor.

The CRT 96364A/B requires only +5 v power at less than 100 mA . It is manufactured in COPLAMOS ${ }^{\text {® }}$ N channel silicon gate technology.

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	NAME	SYMBOL	FUNCTION
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Crystal in Crystal out	$\begin{aligned} & \mathrm{X} \emptyset \\ & \mathrm{X} 1 \end{aligned}$	Pin one is the sync clock input. It may be driven directly from a TTL gate or from a parallel mode crystal connected between pins one and two. When a crystal is used, a $10 \mathrm{M} \Omega$ resistor should be connected in parallel. For standard 60 Hz line operation, a 1.018 MHz frequency source or crystal is required (with the CRT 96364 B). For 50 Hz line operation, the CRT 96364 A requires a 1.008 MHz crystal.
3	Page Select	PS	PS provides automatic page selection when two pages of memory are used. A "zero" output indicates selection of page 1; a logic "one" indicates page 2.
4-8	Memory Address	A9-A5	Upper order memory address lines; A6-A9 determine which lines of text are being refreshed or written. A5 along with Aø-A4 determine the character position.
9	Character Clock	DCC	Character clock input. Addresses are changed on the trailing edge of DCC.
10	Dot Clock Enable	DCE	A logic zero from DCE is used to inhibit oscillation of the dot clock for retrace blanking.
11-13	Row Address	RØ-R2	Character Generator row addresses. Blanks are generated by forcing RØ-R2 to " 000 '. During character entry, R2 gates data into memory to control the erase function. Row addressing follows the sequence 0-1-2-3-4-5-6-7-0-0-0-0-increment text line-0-1-2-etc.
14	Ground	GND	Ground
15	Cursor	CRV	Cursor video output. Indicates cursor location by a 2 Hz blinking underline.
16	Data Strobe	$\overline{\text { DS }}$	The rising edge of $\overline{\mathrm{DS}}$ strobes the appropriate $C \emptyset-\mathrm{C} 2$ control word into the CRT 96364A/B.
17	Write	W	A positive going signal which indicates that the CRT 96364A/B is allowing a memory write. W is approximately $4 \mu \mathrm{~s}$, and occurs during H sync. Memory address lines are latched at the cursor address during W .
18-22	Memory Address	AØ-A4	Lower order memory addresses. Aø-A4 plus A5 (pin 8) determine the character position.
23-25	Command Inputs	Cø-C2	Command inputs are strobed into the CRT $96364 \mathrm{~A} / \mathrm{B}$ by $\overline{\mathrm{DS}}$. Functions are as follows: Function Page erase and cursor home (top-left) Erase to end of line and return cursor (to left) Line feed (cursor down) No operation* Cursor left (one position) Erasure of cursor-line Cursor up (one position) Normal character. Write signal is generated and cursor position is incremented * In order to suppress non-displayed characters
26	Composite Sync	CSYN	Positive logic composite sync output. Horizontal sync is generated during VSYNC and VSYNC time. A vertical sync output may be generated by logically "ANDing" CSYN and DCE.
27	End of Page	$\overline{\mathrm{EOP}}$	This output is used to increment an external page counter when using more than one page of memory.
28	Power Supply	V_{cc}	+ 5 volt supply.

OPERATION

The CRT $96364 \mathrm{~A} / \mathrm{B}$ provides all of the control functions required by a CRT display with a minimum of external circuitry.
The cursor and erase commands may be decoded from the data bus by a low cost 256×4 PROM. The CRT 96364A/B then provides the necessary cursor movement and gates the memory for writing or erasing. Erase is controlled by providing a write signal to RAM, and
gating "zeros" to the RAM input bus. Use of an external PROM allows user selection of control words.
The RAM write command, "W', is generated during horizontal retrace. At this time, the RAM address is set to the cursor address. Immediately following the write command, the RAM addresses revert to refresh addressing and the cursor is shifted one character.

CURSOR

The cursor location is indicated by an alternating high on pin 15 (CRV) at row 7, and a low on pin 15 with Rø-R2 forced low at rows 0-6. These alternate at a 2 Hz rate. If CRV is used to
force the display on, the result will be a blink of the cursor character position alternating with an underline at a 2 Hz rate.

CHARACTER ENTRY

When a Normal Character code (C2, C1, CØ = 1, $1,1)$ and a Data Strobe are received, the write command will be generated during horizontal retrace. If, at the end of the horizontal retrace, the cursor is at the last position on a line, a car-
riage return and line feed will automatically occur. When the cursor is at the last position of the last line, a carriage return and up-scroll will automatically occur.

EXTRA FUNCTIONS

By using the fourth bit of the decoder PROM as a write enable signal, and properly programming the PROM, the additional commands of Home Cursor, Return Cursor, and Roll Screen may be generated. This is done by inhibiting the

W signal to the page memory and inputting the control codes, respectively, of Page Erase and Home Cursor, Erase to end of line and Return Cursor, and Line Feed.

SCROLLING

Scrolling of the screen text will occur under any of the following characteristics:

1. Inputting a line feed command when the cursor is at the bottom line of the screen.
2. Inputting a character when the cursor is at the bottom right hand side of the screen. Scrolling will result in the entire top line of the
screen being erased and all of the remaining lines shifting up. Alternatively, a Roll (defined as all of the lines shifting up with the previous top line reappearing at the bottom of the screen) may be performed by inhibiting the write signal to the page memory as described in "Extra Functions."

Operating Temperature Range

$$
.0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
$$

Lead Temperature (soldering, 10 sec .)
$+325^{\circ} \mathrm{C}$
Positive Voltage on any Pin, with respect to ground
$+7.0 \mathrm{~V}$
Negative Voltage on any Pin, with respect to ground
$-0.3 \mathrm{~V}$
"Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

ELECTRICAL CHARACTERISTICS ($T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{Vcc}=+5 \mathrm{~V} \pm 5^{\circ} \%$, unless otherwise noted)

AC CHARACTERISTICS

PARAMETERS	SYMBOL	VALUES			UNIT
		MIN.	TYP.	MAX.	
Frequency of control clock DCC	$f_{\text {dCC }}$		1.6		MHz
Crystal Frequency CRT 96364A CRT 96364B	$\begin{aligned} & \hline f_{x} \\ & f_{x} \end{aligned}$		$\begin{aligned} & 1.008 \\ & 1.018 \end{aligned}$		$\begin{aligned} & \hline \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
DCC pulse width	$\mathrm{t}_{\mathrm{DCC}}$	200			ns
Rise and fall times	t_{r} t_{f} r		20	40	ns
Refresh memory address access time	t_{CA}		200	250	ns
Character memory address access time	$\mathrm{t}_{\text {cro }}$		200	250	ns
PS access time (read)	$t_{\text {cPS }}$		300	1000	ns
CRV access time	$\mathrm{t}_{\text {crV }}$		200	250	ns
DCE access time (high to low)	$t_{\text {DCE }}$		100		ns
SYNC period	$t_{\text {PS }}$		64		$\mu \mathrm{s}$
SYNC pulse width	$t_{\text {WP }}$		4		$\mu \mathrm{s}$
DCE access time (low to high level)	$\mathrm{t}_{\text {sc }}$		11		$\mu \mathrm{s}$
$\overline{\text { EOP access time (high to low level) }}$	$\mathrm{t}_{\text {SP }}$		1	1.5	$\mu \mathrm{s}$
W access time (low to high)	$\mathrm{t}_{\text {sw }}$		500	1000	ns
W pulse width	$t_{\text {pw }}$		4		$\mu \mathrm{s}$
EOP pulse width	$t_{\text {EOP }}$		10		$\mu \mathrm{s}$
Address to rising edge of DCE delay	$t_{\text {AD }}$	0		2.1	$\mu \mathrm{s}$
Falling edge of DCE to Address delay	$t_{\text {DA }}$	0		1	$\mu \mathrm{s}$
Row to rising edge of DCE delay	$t_{\text {RD }}$	0		2.1	$\mu \mathrm{s}$
Falling edge of DCE to row delay	$t_{\text {DR }}$	0		1	$\mu \mathrm{s}$
PS to rising edge of DCE delay	$t_{\text {PSD }}$	0			$\mu \mathrm{s}$

LINE TIMING

SYNC TIMING

FRAME TIMING

DATA INPUT TIMING
Asynchronous Operation

		Value			
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
DS Pulse Width	tpw	0.5			$\mu \mathrm{S}$
Cø-C2 Set Up Time	tcos	1			$\mu \mathrm{s}$
Cø-C2 Hold Time	tosc	90			$\mu \mathrm{s}$
Minimum Strobe Period (Operation Execution Time)	tos				
FUNCTION		C1	Cø		
Page Erase \& Cursor Home		0	0	132	ms
Erase to End of Line \& Return Cursor		0	1	4.2	ms
Line Feed (Cursor Down)		1	0	130*	$\mu \mathrm{S}$
No Operation		1	1	80	$\mu \mathrm{S}$
Cursor Left		0	0	80	$\mu \mathrm{s}$
Erasure of Cursor Line		0	1	8.3	ms
Cursor Up		1	0	80	$\mu \mathrm{S}$
Normal Character		1	1	130*	$\mu \mathrm{S}$

*Will increase to 8.3 ms when text scroll occurs. See "Scrolling" for conditions.
Synchronous Operation

		Value			
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
DS Pulse Width	tpw	0.5			$\mu \mathrm{s}$
C0-C2 Set-Up Time	tcos	1			$\mu \mathrm{s}$
C0-C2 Hold Time	tosc	16			$\mu \mathrm{s}$
DS Set Up Time	tsos	1			$\mu \mathrm{s}$
Minimum Strobe Period (Operation Execution Time)	tos				
FUNCTION		C1	Cø		
Page Erase \& Cursor Home		0	0	132	ms
Erase to End of Line \& Return Cursor		0	1	4.2	ms
Line Feed (Cursor Down)		1	0	64*	$\mu \mathrm{s}$
No Operation		1	1	64	$\mu \mathrm{s}$
Cursor Left		0	0	64	$\mu \mathrm{s}$
Erasure of Cursor Line		0	1	8.3	ms
Cursor Up		1	0	64	$\mu \mathrm{s}$
Normal Character		1	1	64*	$\mu \mathrm{s}$

MULTIPLE PAGE DISPLAY

When linking two or more pages, the EOP and RS signals may be used to allow a "moving window' text display. PS (Page Select) indicates the end of page location. If a scroll has occurred, PS will show the transition from the end of line 15 of page P and the beginning of line 0 of page $P+1$.

To properly maintain the memory address when displaying more than two pages, EOP pulses low at the point in time when page P is scrolled completely off the screen. At this time, RS will remain low for the entire frame since page $P+1$ is now the only displayed page.
The circuit at the right will allow scrolling through 4 pages of memory.

4 PAGE DISPLAY

TYPICAL SYSTEM APPLICATION

CRT Video Display-Controller Video Generator VDAC' ${ }^{\text {" }}$

FEATURES

On chip character generator (mask programmable)128 Characters (alphanumeric and graphic)
7×11 Dot matrix blockOn chip video shift register
Maximum shift register frequency

CRT 8002A	20 MHz
CRT 8002 B	15 MHz
CRT 8002 C	10 MHz

Internal character generator (ROM)
Wide graphics
Thin graphics
External inputs (fonts/dot graphics)On chip attribute logic-character, field Reverse video Character blank Character blink Underline Strike-thruFour on chip cursor modes Underline Blinking underline Reverse video Blinking reverse videoProgrammable character blink rateProgrammable cursor blink rate

\square SubscriptableExpandable character set
External fonts
Alphanumeric and graphic
RAM, ROM, and PROMOn chip address bufferOn chip attribute buffer+5 volt operationTTL compatibleMOS N-channel silicon-gate COPLAMOS ${ }^{\circledR}$ processCLASP ${ }^{\text {® }}$ technology-ROM and optionsCompatible with CRT 5027 VTAC ${ }^{\text {® }}$

General Description

The SMC CRT 8002 Video Display-Controller (VDAC) is an N -channel COPLAMOS ${ }^{\circledR}$ MOS/LSI device which utilizes CLASP® technology. It contains a 7X11X128 character generator ROM, a wide graphics mode, a thin graphics mode, an external input mode, character address/data latch, field and/or character attribute logic, attribute latch, four cursor modes, two programmable blink rates, and a high speed video shift register. The CRT 8002 VDACTM is a companion chip to SMC's CRT 5027 VTAC. Together these two chips comprise the circuitry required for the display portion of a CRT video terminal.
The CRT 8002 video output may be connected directly to a CRT monitor video input. The CRT 5027 blanking output can be connected directly to the CRT 8002 retrace blank input to provide both horizontal and vertical retrace blanking of the video output.
Four cursor modes are available on the CRT 8002. They are: underline, blinking underline, reverse video block, and blinking reverse video block. Any one of these can be mask programmed as the cursor function. There is a separate cursor blink rate which can be mask programmed to provide a 15 Hz to 1 Hz blink rate.

The CRT 8002 attributes include: reverse video, character blank, blink, underline, and strike-thru. The character blink rate is mask programmable from 7.5 Hz to 0.5 Hz and has a duty cycle of $75 / 25$. The underline and strike-thru are similar but independently controlled functions and can be mask programmed to any number of raster lines at any position in the character block. These attributes are available in all modes.
In the wide graphic mode the CRT 8002 produces a graphic entity the size of the character block. The graphic entity contains 8 parts, each of which is associated with one bit of a graphic byte, thereby providing for 256 unique graphic symbols. Thus, the CRT 8002 can produce either an alphanumeric symbol or a graphic entity depending on the mode selected. The mode can be changed on a per character basis.
The thin graphic mode enables the user to create single line drawings and forms.
The external mode enables the user to extend the onchip ROM character set and/or the on-chip graphics capabilities by inserting external symbols. These external symbols can come from either RAM, ROM or PROM.

MAXIMUM GUARANTEED RATINGS*

Operating Temperature Range
Storage Temperature Range .. $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec .)
$+325^{\circ} \mathrm{C}$
Positive Voltage on any Pin, with respect to ground
$+8.0 \mathrm{~V}$
Negative Voltage on any Pin, with respect to ground
$-0.3 \mathrm{~V}$
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists it is suggested that a clamp circuit be used.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}, \mathrm{Vcc}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

AC TIMING DIAGRAM

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	SYMBOL	NAME	INPUT/ OUTPUT	FUNCTION
1	VIDEO	Video Output	0	The video output contains the dot stream for the selected row of the alphanumeric, wide graphic, thin graphic, or external character after processing by the attribute logic, and the retrace blank and cursor inputs. In the alphanumeric mode, the characters are ROM programmed into the 77 dots, (7X11) allocated for each of the 128 characters. See figure 5 . The top row (Rø) and rows R12 to R15 are normally all zeros as is column C7. Thus, the character is defined in the box bounded by R1 to R11 and Cø to C6. When a row of the ROM, via the attribute logic, is parallel loaded into the 8-bit shift-register, the first bit serially shifted out is C7 (A zero; or a one in REVID). It is followed by C6, C5, through Cø. The timing of the Load/ Shift pulse will determine the number of additional (- -, zero to N) backfill zeros (or ones if in REVID) shifted out. See figure 4. When the next Load/ Shift pulse appears the next character's row of the ROM, via the attribute logic, is parallel loaded into the shift register and the cycle repeats.
2	LD/SH	Load/Shift	I	The 8 bit shift-register parallel-in load or serial-out shift modes are established by the Load/Shift input. When low, this input enables the shift register for serial shifting with each Video Dot Clock pulse. When high, the shift register parallel (broadside) data inputs are enabled and synchronous loading occurs on the next Video Dot Clock pulse. During parallel loading, serial data flow is inhibited. The Address/Data inputs (AD-A7) are latched on the negative transition of the Load/Shift input. See timing diagram, figure 7.
3	VDC	Video Dot Clock	1	Frequency at which video is shifted.
4-11	AØ-A7	Address/Data	I	In the Alphanumeric Mode the 7 bits on inputs (A $\varnothing-A 6$) are internally decoded to address one of the 128 available characters ($A 7=X$). In the External Mode, A $\emptyset-A 7$ is used to insert an 8 bit word from a user defined external ROM, PROM or RAM into the on-chip Attribute logic. In the wide Graphic Modes $A \emptyset$-A7 is used to define one of 256 graphic entities. In the thin Graphic Mode Aø-A2 is used to define the 3 line segments.
12	V cc	Power Supply	PS	+ 5 volt power supply
13,14,15,16	R2,R3,R1, $\overline{\mathrm{R}} \boldsymbol{\square}$	Row Address	1	These 4 binary inputs define the row address in the current character block.
17	GND	Ground	GND	Ground
18	ATTBE	Attribute Enable	1	A positive level on this input enables data from the Reverse Video, Character Blank, Underline, Strike-Thru, Blink, Mode Select \emptyset, and Mode Select 1 inputs to be strobed into the on-chip attribute latch at the negative transition of the Load/Shift pulse. The latch loading is disabled when this input is low. The latched attributes will remain fixed until this input becomes high again. To facilitate attribute latching on a character by character basis, tie ATTBE high. See timing diagram, figure 7.
19	STKRU	Strike-Thru	I	When this input is high and RETBL $=0$, the parallel inputs to the shift register are forced high (SR \varnothing-SR7), providing a solid line segment throughout the character block. The operation of strike-thru is modified by Reverse Video (see table 1). In addition, an on-chip ROM programmable decoder is available to decode the line count on which strike-thru is to be placed as well as to program the strike-thru to be 1 to N raster lines high. Actually, the strike-thru decoder (mask programmable) logic allows the strike-thru to be any number or arrangement of horizontal lines in the character block. The standard strikethru will be a double line on rows R5 and R6.
20	UNDLN	Underline	1	When this input is high and RETBL $=0$, the parallel inputs to the shift register are forced high (SR \varnothing-SR7), providing a solid line segment throughout the character block. The operation of underline is modified by Reverse Video (see table 1). In addition, an on-chip ROM programmable decoder is available to decode the line count on which underline is to be placed as well as to program the underline to be 1 to N raster lines high. Actually, the underline decoder (mask programmable) logic allows the underline to be any number or arrangement of horizontal lines in the character block. The standard underline will be a single line on R11.
21	REVID	Reverse Video	I	When this input is low and RETBL $=0$, data into the Attribute Logic is presented directly to the shift register parallel inputs. When reverse video is high data into the Attribute Logic is inverted and then presented to the shift register parallel inputs. This operation reverses the data and field video. See table 1.
22	CHABL	Character Blank	I	When this input is high, the parallel inputs to the shift register are all set low, providing a blank character line segment. Character blank will override blink. The operation of Character Blank is modified by the Reverse Video input. See table 1.
23	V SYNC	V SYNC	I	This input is used as the clock input for the two on-chíp mask programmable blink rate dividers. The cursor blink rate ($50 / 50$ duty cycle) will be twice the character blink rate ($75 / 25$ duty cycle). The divisors can be programmed from $\div 4$ to $\div 62$ for the cursor ($\div 8$ to $\div 124$ for the character).
24	BLINK	Blink	I	When this input is high and RETBL $=0$ and CHABL $=0$, the character will blink at the programmed character blink rate. Blinking is accomplished by blanking the character block with the internal Character Blink clock. The standard character blink rate is 1.875 Hz .
$\begin{aligned} & 25 \\ & 26 \end{aligned}$	$\begin{aligned} & \text { MS1 } \\ & \text { MS } \end{aligned}$	Mode Select 1 Mode Select \emptyset	i	These 2 inputs define the four modes of operation of the CRT 8002 as follows: 11 Alphanumeric Mode-In this mode addresses $A \emptyset-A 6$ ($A 7=X$) are internally decoded to address 1 of the 128 available ROM characters. The addressed character along with the decoded row will define a 7 bit output from the ROM to be loaded into the shift register via the attribute logic. 01 Thin Graphics Mode-In this mode $A \emptyset-A 2$ ($A 3-A 7=X$) will be loaded into the thin graphic logic along with the row addresses. This logic will define the segments of a graphic entity as defined in figure 2. The top of the entity will begin on row 0000 and will end on a mask programmable row.

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	SYMBOL	NAME	INPUT/ OUTPUT	FUNCTION
				10 External Mode-In this mode the inputs $A \varnothing$-A7 go directly from the character latch into the shift register via the attribute logic. Thus the user may define external character fonts or graphic entities in an external PROM, ROM or RAM. See figure 3. 00 Wide Graphics Mode-In this mode the inputs A \emptyset-A7 will define a graphic entity as described in figure 1. Each line of the graphic entity is determined by the wide graphic logic in conjunction with the row inputs R \varnothing to R3. In this mode each segment of the entity is defined by one of the bits of the 8 bit word. Therefore, the 8 bits can define any 1 of the 256 possible graphic entities. These entities can butt up against each other to form a contiguous pattern or can be interspaced with alphanumeric characters. Each of the entities occupies the space of 1 character block and thus requires 1 byte of memory. These 4 modes can be intermixed on a per character basis.
27	CURSOR	Cursor	1	When this input is enabled 1 of the 4 pre-programmed cursor modes will be activated. The cursor mode is on-chip mask programmable. The standard cursor will be a blinking (at 3.75 Hz) reverse video block. The 4 cursor modes are: Underline-In this mode an underline (1 to N raster lines) at the programmed underline position occurs. Blinking Underline-In this mode the underline blinks at the cursor rate. Reverse Video Block-In this mode the Character Block is set to reverse video. Blinking Reverse Video Block-In this mode the Character Block is set to reverse video at the cursor blink rate. The Character Block will alternate between normal video and reverse video. The cursor functions are listed in table 1.
28	RETBL	Retrace Blank	1	When this input is latched high, the shift register parallel inputs are unconditionally cleared to all zeros and loaded into the shift register on the next Load/Shift pulse. This blanks the video, independent of all attributes, during horizontal and vertical retrace time.

TABLE 1

CURSOR	RETBL	REVID	CHABL	UNDLN*		FUNCTION
X	1	X	X	X	"0"	S.R. All
0	0	0	0	0	" ${ }^{\text {D, }}$	(S.R.) All
	0				D	(S.R.) All others
0	0	0	1	X	"0"	(S.R.) All
0	0	1	0	0	D	(S.R.) All
0	0	1	0	1	" 0 "	(S.R.)*
0	0	1	1	X	"1"	(S.R.) All others
Underline*	0	0	0	X	"1"	(S.R.)*
						(S.R.) All others
Underline*	0	0	1	X	"1"	(S.R.) ${ }^{*}$
Underline*	0	1	0	X	"0"	(S.R.) All others
					$\overline{\text { D }}$	(S.R.) All others
Underline*	0	1	1	X	"0"	(S.R.)**
					"1"	(S.R.) All others
Blinking** Underline*	0	0	0	X	"1"	(S.R.)* Blinking
					${ }_{\text {D }}$,	(S.R.) All others
Blinking** Underline*	0	0	1	X	"0"	(S.R.) ${ }^{\text {* }}$ (Blinking
Blinking** Underline*	0	1	0	X	" 0 "	(S.R.)* ${ }^{\text {A }}$ (inking
Blinking** Underline*	0	1	1	x	" 0	(S.R.) All others
					"1"	(S.R.) All others
REVID Black	0	0	0	0	$\overline{\text { D }}$	(S.R.) All
REVID Block	0	0	0	1	" 0	(S.R.)*
REVID Block	0	0	1	0	"1"	(S.R.) All others
REVID Block	0	0	1	1	" 0 '	(S.R.)*
					"1"	(S.R.) All others
REVID Block	0	1	0	0	D	(S.R.) All
REVID Block	0	1	0	1	" ${ }^{\text {D }}$	(S.R.)* (S.R.) All others
REVID Block	0	1	1	X	'0'	(S:R.) All
Blink** REVID Block	0	0	0	0	Alternate Normal Video/REVID At Cursor Blink Rate	
Blink** REVID Block	0	0	0			
Blink**REVID Block	0	0	1	X		
Blink** REVID Block	0	1		0		
Blink** REVID Block	0	1	1	+		

*At Selected Row Decode **At Cursor Blink Rate
Note: If Character is Blinking at Character Rate, Cursor will change it to Cursor Blink Rate.

FIGURE 5
ROM CHARACTER BLOCK FORMAT

										ROWS	R3	R2	R1	$R \varnothing$
$(A L L ~ Z E R O S)$$\rightarrow 0$	0	0	0	0	0	0	0	-	-	Rø	0	0	0	0
	0	0	0	0	0	0	0	-	-	R1	0	0	0	1
	0	0	0	0	0	0	0	-	-	R2	0	0	1	0
	0	0	0	0	0	0	0	-	-	R3	0	0	1	1
	0	0	0	0	0	0	0	-	-	R4	0	1	0	0
	0	0	0	0	0	0	0	-	-	R5	0	1	0	1
	0	0	0	0	0	0	0	-	-	R6	0	1	1	0
	0	0	0	0	0	0	0	-	-	R7	0	1	1	1
	0	0	0	0	0	0	0	-	-	R8	1	0	0	0
	0	0	0	0	0	0	0	-	-	R9	1	0	0	1
	0	0	0	0	0	0	0	-	-	R1ø	1	0	1	0
	0	0	0	0	0	0	0	-	-	R11	1	0	1	1
(ALL ZEROS) $\{$	0	0	0	0	0	0	0	-	-	R12	1	1	0	0
	0	0	0	0	0	0	0	-	-	R13	1	1	0	1
	0	0	0	0	0	0	0	-	-	R14	1	1	1	0
	0	0	0	0	0	0	0	-	-	R15	1	1	1	1

*C7 C6 C5 C4 C3 C2 C1 Cø

EXTENDED ZEROS (BACK FILL) FOR INTERCHARACTER SPACING (NUMBER CONTROLLED BY LD/SH, VDC TIMING)

CONSULT FACTORY FOR CUSTOM FONT AND OPTION PROGRAMMING FORMS.

FIGURE 1

 WIDE GRAPHICS MODE
*ON CHIP ROM PROGRAMMABLE TO 2, 3, OR 4 LINE MULTIPLES \because CAN BE PROGRAMMED FROM 1 TO 7 BITS **LENGTH DETERMINED BY LD/SH, VDC TIMING

EXAMPLE: 10010110

MS $=\varnothing$ MS1 $=\varnothing$

$B F=$ back fill

FIGURE 2
THIN GRAPHICS MODE

FIGURE 3
EXTERNAL MODE

MS $\varnothing=1$ MS1= \emptyset

	C7	C6	C5	C4	C3	C2	C1	Cø	BF	BF	
Rø. - R15	A7	A6	A5	A4	A3	A2	A1	AD	A7	A7	

FIGURE 4 TYPICAL VIDEO OUTPUT

VIDEO DATA 9 DOT FIELD

SMC reserves the right to make changes at any time in order to improve design and to supply the best product possible.

CRT 8002-001 (KATAKANA) CODING INFORMATION

CRT Video Display-Controller Video Generator VDAC ${ }^{\text {" }}$

ATTRIBUTES

Underline

Underline will be a single horizontal line at row R11
Cursor
Blink Rate
The character blink rate will be 1.875 Hz
Cursor will be a blinking reverse video block, blinking at 3.75 Hz The strike-thru will be a double line at rows R5 and R6

CRT 8002-003
 (5×7 ASCII) CODING INFORMATION

CRT Video Display-Controller Video Generator VDAC ${ }^{\text {" }}$

ATTRIBUTES

Underline

Underline will be a single horizontal line at R8

Cursor

Cursor will be a blinking reverse video block, blinking at 3.75 Hz

Blink Rate
The character blink rate is 1.875 Hz
Strike-Thru
The strike-thru will be a single horizontal line at R4

μ PC FAMILY

Dot Matrix Character Generator
 128 Characters of 7×11 Bits

FEATURES

On chip character generator (mask programmable) 128 Characters 7×11 Dot matrix blockOn chip video shift registerMaximum shift register frequency
CRT 7004A 20 MHz
CRT 7004B $\quad 15 \mathrm{MHz}$
CRT 7004C $\quad 10 \mathrm{MHz}$
Access time 400nsNo descender circuitry requiredOn chip cursorOn chip character address bufferOn chip line address bufferSingle +5 volt power supplyTTL compatibleMOS N-channel silicon-gate COPLAMOS ${ }^{\oplus}$ processCLASP ${ }^{\oplus}$ technology-ROM
Compatible with CRT 5027 VTAC®Enhanced version of CG5004L-1

PIN CONFIGURATION

PACKAGE: 24-Pin D.I.P.

GENERAL DESCRIPTION

SMC's CRT 7004 is a high speed character generator with a high speed video shift register designed to display 128 characters in a 7×11 dot matrix. The CRT 7004 is an enhanced, pin for pin compatible, version of SMC's CG5004L-1. It is fabricated using SMC's patented COPLAMOS ${ }^{\oplus}$ and CLASP ${ }^{\oplus}$ technologies and employs depletion mode loads, allowing operation from a single +5 v supply. This process permits reduction of turn-around time for ROM patterns. The CRT 7004 is a companion chip to SMC's CRT 5027 VTAC ${ }^{\ominus}$. Together these two chips comprise the circuitry required for the display portion of a CRT video terminal.

FUNCTIONAL BLOCK DIAGRAM

MAXIMUM GUARANTEED RATINGS*
Operating Temperature Range . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range . $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec.) . $+325^{\circ} \mathrm{C}$
Positive Voltage on any Pin, with respect to ground . +8.0 V
Negative Voltage on any Pin, with respect to ground . -0.3 V
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists it is suggested that a clamp circuit be used.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

Parameter	Min.	Typ.	Max.	Unit	Comments
D.C. CHARACTERISTICS INPUT VOLTAGE LEVELS Low-level, $\mathrm{V}_{\text {IL }}$ High-level, V_{IH}	2.0		0.8	V	excluding VDC excluding VDC
INPUT VOLTAGE LEVELS-CLOCK Low-level, $\mathrm{V}_{\text {IL }}$ High-level, V_{IH}	4.3		0.8	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	See AC Timing Diagram
OUTPUT VOLTAGE LEVELS Low-level, V_{OL} High-level, V_{OH}	2.4		0.4	V	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=0.4 \mathrm{~mA}, 74 \mathrm{LSXX} \text { load } \\ & \mathrm{I}_{\mathrm{OH}}=-20_{\mu \mathrm{A}} \end{aligned}$
INPUT CURRENT Leakage, I_{L}		100 10		$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{O} \leq \mathrm{V}_{1 \mathrm{~N}} \leqslant \mathrm{~V}_{\mathrm{cc}}, \text { LS, AS, A1-A7 } \\ & \mathrm{O} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant \mathrm{~V}_{\mathrm{cc}}, \text { All others } \end{aligned}$
INPUT CAPACITANCE Data PE CLOCK		10 20 25		pF pF pF	@ 1 MHz @ 1 MHz @ 1 MHz
POWER SUPPLY CURRENT $I_{c c}$		100		mA	
A.C. CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$					5

SYMBOL	PARAMETER	CRT 7004A		CRT 7004B		CRT 7004C		UNITS
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
CLK	Video Dot Clock Frequency	1.0	20	1.0	15	1.0	10	MHz
PW_{H}	VDC - High Time	13.5		21		36		ns
PW ${ }_{\text {L }}$	VDC - Low Time	13.5		21		36		ns
$\mathrm{t}_{\mathrm{Cr}} \mathrm{AS}$	Address strobe to PE high	400		533		800		ns
$\mathrm{t}_{\mathrm{CY}} \mathrm{LS}$	Line strobe to PE high	1.0		1.0		1.0		$\mu \mathrm{S}$
t_{r}, t_{f}	Rise, fall time		10		10		10	ns
t_{1}	PE set-up time	5		20		20		ns
t_{2}	PE hold time	15		15		15		ns
$\mathrm{AS}_{\text {PW }}$	Address strobe pulse width	50		50		50		ns
$\mathrm{LS}_{\text {PW }}$	Line strobe pulse width	50		50		50		ns
$\mathrm{t}_{\text {SEt-UP }}$	Input set-up time	$\geqslant 0$		≥ 0		≥ 0		ns
$\mathrm{t}_{\text {HOLD }}$	Input hold time	15		15		15		ns
$t_{\text {PdI }}, t_{\text {Pdo }}$	Output propagation delay		45		60		90	ns

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	SYMBOL	NAME	FUNCTION
1	NC	No Connection	
2	SO	Serial Output	The output of the dynamic shift register is clocked out on this pin. The serial input to this shift register is internally grounded; thus zeros are shifted in while data is shifted out.
3	$V_{c c}$	Power Supply	+5 volt supply
4	LS	Line Strobe	A positive pulse on this input enters data from the L1, L2, L4, L8 lines into the line address holding register. The LS input may be left open, in which case it is pulled up to $V_{c c}$ by an internal resistor. Data on the L1 to L8 inputs is then entered directly into the register without any latching action.
5	PRST	Preset	A high level on this input forces the last stage of the shift register and the serial output to a logic high.
6,8,9,10	$\begin{aligned} & \hline \mathrm{L} 1, \mathrm{~L} 2, \\ & \mathrm{L4}, \mathrm{~L} 8 \end{aligned}$	Line Address	A binary number N , on these four inputs address the N th line of the character font for $\mathrm{N}=1-11$. If lines $0,12,13$, 14 or 15 are addressed, the parallel inputs to the shift register are all forced low.
7	CLR	Clear	A high level on this input forces the last stage of the shift register and the serial output to a logic low and will be latched (for a character time) by PE. Clear overrides preset.
11-17	A1-A7	Character Address	The seven-bit word on these inputs is decoded internally to address one of the 128 available characters.
18	LCI	Lower Case Inhibit	A high level on this input transforms the address of a lower case character into that of the equivalent upper case character. This is internally achieved by forcing A6 low whenever A7 and LCI are high.
19	AS	Address Strobe	A positive pulse on this input enters data from the A1-A7, LCI and CUR inputs into the holding register. The AS input may be left open, in which case it is pulled up to $\mathrm{V}_{c c}$ by an internal resistor. The data on the A1-A7, LCI and CUR inputs is then entered directly into the register without any latching action.
20	CUR	Cursor*	A high level on this input causes the cursor pattern to be superimposed on the pattern of the character addressed i.e., the two patterns are OR-ed to generate the parallel inputs to the shift register. The standard cursor is presented as a double underscore on rows 10 and 11.
21	CLK	Clock	Frequency at which video (SO) is shifted.
22	NC	No Connection	
23	PE	Parallel Enable	A high level on this input loads the word at the output of the ROM into the shift register. The PE input must then be brought low again to allow the shift register to clock out this word.
24	GND	Ground	Ground

NOTE
The differences between the CRT 7004 and CG5004L-1 are detailed below:

CG5004L-1

1. If both the Preset and Clear inputs are brought high simultaneously the Serial Output is disabled and may be wire-ORed.
2. All Inputs $V_{I H}=V_{c C}-1.5 \mathrm{v}$
3. $S O V_{\mathrm{OL}}=0.4 \mathrm{v} @ \mathrm{I}_{\mathrm{OL}}=0.2 \mathrm{~mA}$
4. Shift Register is static
5. Clear-directly forces the output low; when released, the output is determined by the state of the shift register output.
6. General Timing Differences-See Timing Diagram

CRT 7004

1. Clear overrides Preset, no output disable is possible.
2. All inputs (except CLK) $\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{v}$, min. $C L K V_{H H}=4.3 \mathrm{v}, \mathrm{min}$.
3. $S O V_{\mathrm{OL}}=0.4 \mathrm{v} @ \mathrm{I}_{\mathrm{OL}}=0.4 \mathrm{~mA} 74 \mathrm{LSXX}$ load
4. Shift Register is dynamic
5. Clear directly forces the output low and will be latched (for a character time) by PE.
6. General Timing Differences-See Timing Diagram

CHARACTER GENERATOR

Part Nimbier	Pescription	Ecan	Matar Accose tima	Powar Supphies		Paclatge	Fage
ca $4103^{(3)}$	$5 \times 7 \times 64$	Column	$1.2 \mu \mathrm{sec}$	+6. -12	$r \pm 12$	88 DIf	110-113
8ITIN RHCTEYPR							
Fart Finmber	Demeription		Fenthere	Giook frion.	Power Enyply	Packetse	Paga
SR 5015-xx	Quad Static Shift Register Mask Programmable Length		Load, Recirculate, Shift Controls.	1 Mrz	+5	16 DIP	114-117
8R 5016-80	Quad 80 Bit Static						
SR 5015-81	Quad 81 Bit Static						
8R 5015-133	Quad 133 Bit Static						
8R 6017	Quad 81 Bit		Shitt Left/Shift Right, Recirculate Controls, Asynchronous clear	1 MHz	+5	16 DIP	118-121
8R 6018	Quad 133 Bit						

CHARACTER GENERATOR 2240-Bit Programmable (ROM) 64 Characters of 5×7 Bits

FEATURES

Static Operation, no clocks required.2240-Bit Capacity, fully decoded.64 Characters of 35 Bits (5×7)Column by Column Output-Column Scan
TTL CompatibleWired "OR" Capability for memory expansionPower Supplies: $+14 v,-14 v$ or $+12 v$, $-12 v$, or $+5 v,-12 v$Eliminates need for $+12 v$ power supplySingle mask custom programming

APPLICATIONS

Matrix PrintersVertical Scan Alphanumeric DisplaysBillboard and Stock Market DisplaysStrip PrinterLED Matrix Arrays

PIN CONFIGURATION

General Description

The CG4100 Series MOS Read Only Memories (ROMs) are designed specifically for dot-matrix character generation where column by column output data is desired. Each ROM contains 2240 bits of programmable storage, organized as 64 characters, each having 5 columns of 7 bits.

The output word appears as a 5 word sequence on each of the output lines. Sequence is controlled by the 5 Column Select lines. By strobing the first select line, the first group of 7 bits (first column) is obtained at the output. By sequentially strobing C_{1} through C_{5} the font of the addressed character would be displayed. The character address may remain fixed while the column select changes.

Since only 6 address bits are required in order to decode the 64 stored characters, the seventh bit (A_{7}) may be used as a chip enable. The chip enable (CE) in conjunction with the single ended open drain output buffers allow for memory expansion through wired "OR" connection.

The CG4100 Series contains an USASCII character font. Custom memory patterns are provided through the use of customer provided encoding sheets, tapes, or card decks.

MAXIMUM GUARANTEED RATINGS*

*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

RECOMMENDED OPERATING CONDITIONS $\left(-25^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Min.	Typ.	Max.	Unit	
Suppy Voltage	Vss		0.0		V	
Supply Voltage	Vdo	-12.0	-14.0	-16.0	V	
Supply Voltage	VGg	-24.0	-28.0	-29.0	V	
Input Voltage, logic "O" Logic "O" = most positive level	$\mathrm{VIH}^{\text {H}}$	Vss-1.5	Vss		V	
Input Voltage, logic " \mid " Logic " $\\|$ "= most negative, level	VIL		VDD	Vss-11	V	

Note: The design of the CG4100 permits a broad range of operation that allows the user to take advantage of readily available power supplies; e.g. $+5 \mathrm{~V},-12 \mathrm{~V}$. See "Operational Interface-To/From TTL logic" diagram.

ELECTRICAL CHARACTERISTICS ($\mathrm{Vss}=+14 \mathrm{v}, \mathrm{V}_{\mathrm{GG}}=-14 \mathrm{v}, \mathrm{V}_{\mathrm{DD}}=$ Ground, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted)

Parameter	Symbol	Min.	Typ.	Max.	Units	Comments
Output Blank Current	lob	-	-	10	$\mu \mathrm{a}$	Vod applied to output see Note 1. Vod applied to output see Note 1.
Output Dot Current	lod	2.5	-	-	ma	
Input Leakage Current	lin	-	-	10	$\mu \mathrm{a}$	$\mathrm{VIN}=\mathrm{OV}$
Output Voltage	Vo	-	2.0	-	V	lo=0.5ma
Address Access Time		-	5.0	-	V	lo=2.0ma
Column Select Access Time	tca	-	-	1200	ns	
Chip Enable Access Time	tce	-	-	600	ns	
Power Dissipation		-	-	400	ns	

Note 1: An output dot is defined as the ON state of the MOS output transmitter. An output blank is defined as the OFF state.

Description of Pin Functions

Pin No.	Symbol	Name	Function
$1,3,5,7$	$\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}, \mathrm{O}_{4}$	Outputs	7 Data Outputs
$9,11,13$	$\mathrm{O}_{5}, \mathrm{O}_{6}, \mathrm{O}_{7}$		
14	$\mathrm{~V}_{\mathrm{DD}}$	$V_{D D}$	Usually connected to Ground
15	VGG_{6}	$V_{G G}$	Negative power supply: -14 v or -12 v
16	$\mathrm{~A}_{6}$	Address	Bit 6 of the character address
17	$\mathrm{~V}_{5 s}$	Vss	Positive power supply: +14 v or +12 v or +5 v
$18-22$	$\mathrm{C}_{1-}-\mathrm{C}_{5}$	Column Select	Column Select inputs
$23-27$	$\mathrm{~A}_{5}-\mathrm{A}_{1}$	Address	Bits 1 through 5 of the character address
28	$C E(A 7)$	Chip Enable	Chip Enable for memory expansion

COLUMN SELECT ACCESS TIMING

All Column Select inputs are at logic " 0 " except one under test. Address inputs are set in a dc state.
Chip Enable input is at logic "1."
OPTIONAL INTERFACE TO/FROM TTL LOGIC

CHIP ENABLE ACCESS TIMING

AC TEST CIRCUIT

$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{t}}<50 \mathrm{~ns}$ for all timing diagram forcing functions. All output waveforms are measured at the output of the 7400 TTL gate.

Pin-for-Pin Equivalent for: TMS 4103 MK2002 S8499. complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

Quad Static Shift Register

FEATURES

\square COPLAMOS ${ }^{\circledR}$ N Channel Silicon Gate
Technology
\square Variable Length—Single Mask
Programmable-1 to 134 bitsDirectly TTL-compatible on all inputs, outputs, and clock
\square Clear functionOperation guaranteed from DC to 1.0 MHzRecirculate logic on-chipSingle +5.0 V power supplyLow clock input capacitance16 pin ceramic DIP PackagePin for Pin replacement for AMI S2182, 83, 85

APPLICATIONS

\square Memory Buffering
\square Unique Buffering Lengths
\square Terminals
BLOCK DIAGRAM

General Description

The SMC SR 5015-XXX is a quad static shift register family fabricated using SMC's COPLAMOS ${ }^{\oplus}$ N channel silicon gate process which provides a higher functional density and speed on a monolithic chip than conventional MOS technology. The COPLAMOS ${ }^{\circledR}$ process provides high speed operation, low power dissipation, low clock input capacitance, and single +5 volt power supply operation.

These shift registers can be driven by either $\mathrm{T}^{2} \mathrm{~L}$ circuits or by MOS circuits and provide driving capability to MOS or $\mathrm{T}^{2} \mathrm{~L}$ circuits. This device consists of four separate static shift registers with independent input and output terminals and logic for loading, recirculating or shifting information. The SR 5015-80, SR 5015-81, and SR 5015-133 are respectively 80, 81, and 133 bit quad shift registers.

The recirculate control pin is common for registers A, B, and C. Register D has an independent recirculate control pin as well as a recirculate input pin.

A clear pin has been provided that will cause the shift register to be cleared when the pin is at Vcc . A single $\mathrm{T}^{2} \mathrm{~L}$ clock is required for operation.

The transfer of data into the register is accomplished on the low-to-high transition of the clock with the recirculate control low. For long term data storage the clock may be stopped and held in either logic state. Recirculate occurs when the recirculate control is high. Output data appears on the low-to-high transition of the clock pulse.

Bits 81 and 133 are available for flag storage.
This device has been designed to be used in high speed buffer storage systems and small recirculating memories.
Special custom configurations are achieved via single mask programming in lengths of 1 to 134 bits.

```
MAXIMUM GUARANTEED RATINGS*
```


Parameter	Min.	Typ.	Max.	Unit	Comments
D.C. Characteristics INPUT VOLTAGE LEVELS					
Low Level, Vil			0.8	V	
High Level, $\mathrm{VIH}^{\text {I }}$	Vcc-1.5		Vcc	V	
OUTPUT VOLTAGE LEVELS					
Low Level, Vol			0.4	V	$l \mathrm{los}=1.6 \mathrm{ma}$
High Level, Vон	$\mathrm{Vcc}-1.5$	4.0		V	Іон $=100 \mu \mathrm{a}$
INPUT LEAKAGE CURRENT			1.0	$\mu \mathrm{a}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{Vcc}$
CLOCK, CLEAR			25	pf	
All Other			10	pf	
POWER SUPPLY CURRENT •			80	ma	
A.C. Characteristics					$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
CLOCK					
PWH	.300			ns	
PWL	600			ns	
Transition, $\mathrm{tr}^{\text {, } \mathrm{tf}^{\prime} \text { }}$		0.02	1.0	$\mu \mathrm{s}$	
Repetition Rate, 1/T	0		1.0	MHz	
t Delay	300			ns	
INPUT DATA 100					
to, set-up	100			ns	
to, hold	200			ns	
PWD	300			ns	
OUTPUT DATA					
RECIRCULATE CONTROL					
tr, set-up	200			ns	
tr, hold	300			ns	
PWh	500			ns	
CLEAR PWclear	20			$\mu \mathrm{S}$	

TIMING DIAGRAMS

Description of Pin Functions

Pin No.	Symbol	Name	Function
1	A	Input A	Input signal which is either high or low depending on what word is to be loaded into shift register.
2	RECABC	Recirculate ABC	Input signal when high disconnects inputs from registers and connects outputs to inputs, thus recirculating data. Recirculates only A, B, C outputs.
3	CLR	Clear	Input signal when high forces outputs to a low state immediately and clears all the registers.
4	B	Input B	Input signal for B register.
5	Ob	Output B	Output signal for B register.
6	GND	GND	Power supply Ground.
7	Vcc	+5 Volt	5 volt power supply.
$\begin{aligned} & 8 \\ & 9 \end{aligned}$	Oc CLK	Output C Clock Input	Output signal for C register. Input signal which is normally low and pulses high to shift data into the registers. The data is clocked in on low to high edge of clock.
10	C	Input C	Input signal for C register.
11	NC	NC	
12	RECD	Recirculate Control D	Input signal which is normally low and, when goes high, disconnects Input D to register and connects Recirculate Input D to register.
13	D	Input D	Input signal for D register.
14	Od	Output D	Output signal for D register.
15	RID	Recirculate Input D	Input signal which is the input to the D register when Recirculate Control D is high: $R E C D=1$.
16	OA	Output A	Output signal for A register.

Line Buffer for CRT Display . . . 80 Characters per line.

Line Buffer for Matrix Printer . . . 132 Characters per line.

Quad Static Shift Right/Shift Left Shift Register Last In First Out Buffer LIFO
 FEATURES

\square COMPLAMOS $^{\circledR}$ N-Channel Silicon
Gate Technology.
\square Quad 81 bit or Quad 133 bit
\square Directly Compatible with T²L, MOSOperation Guaranteed from DC to 1.0 MHzRecirculate logic on-chip
\square Single +5.0 V power supply
\square Low clock input capacitance
\square Single phase clock at $\mathrm{T}^{2} \mathrm{~L}$ levelsClear function16-pin Ceramic DIP Package

APPLICATIONS

Bi-Directional Printer

Computers-Push DownStack-LIFO
Buffer data storage-memory buffer
Delay lines-delay line processing
Digital filtering

PIN CONFIGURATION
Telemetry SystemsTerminalsPeripheral Equipment

BLOCK DIAGRAM

General Description

The SMC SR 5017 and SR 5018 are quad 133 (SR 5017) and quad 81 (SR 5018) bit static shift registers utilizing SMC's COPLAMOS ${ }^{\circledR} \mathrm{N}$ channel silicon gate process. The COPLAMOS ${ }^{\circledR}$ process provides high speed operation, low power dissipation, low clock input capacitance, and requires only a single +5 volt power supply.

These shift registers can be driven by either $\mathrm{T}^{2} \mathrm{~L}$ circuits or by MOS circuits and provide driving capability to MOS to $\mathrm{T}^{2} \mathrm{~L}$ circuits.

This device consists of four separate static shift registers with independent input and output terminals and logic for loading, recirculating or shifting information right or left. This shift left/shift right (L/R Control) control input is common to all registers.

The recirculate control input is common for registers A, B, and C. Register D has an independent recirculate control input as well as a Recirculate Input.

A Clear input has been provided that will cause the shift register to be cleared when the input is at Vcc. A single T² clock input is required for operation.

The transfer of data into the register is accomplished on the low-to-high transition of the clock with the recirculate control low. For long term data storage the clock may be stopped and held in either logic state. Recirculate occurs when the recirculate control is high. Output data appears on the low-to-high transition of the clock pulse.

Bits 81 or 133 are available for flag storage.

Parameter	Min.	Typ.	Max.	Unit	Comments
D.C. Characteristics INPUT VOLTAGE LEVELS					
Low Level, VIL			0.8	V	
High Level, V_{iH}	Vco-1.5		Vcc	V	
OUTPUT VOLTAGE LEVELS					
Low Level, Vol			0.4	V	$\mathrm{loL}=1.6 \mathrm{ma}$
High Level, Vor	Vco-1.5	4.0		V	$1 \mathrm{loh}=100 \mu \mathrm{a}$
INPUT LEAKAGE CURRENT			1.0	$\mu \mathrm{a}$	$\mathrm{Vin}=\mathrm{Vcc}$
CLOCK, CLEAR			25	pf	
All Other			10	pf	
POWER SUPPLY CURRENT			100	ma	
A.C. Characteristics					$\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
CLOCK					
PWH	300			ns	
PWL	600			ns	
Transition, $\mathrm{tr}^{\text {, } \mathrm{tf}^{\prime} \text { }}$		0.02	1.0	$\mu \mathrm{s}$	
Repetition Rate, 1/T	0		1.0	MHz	
t Delay	500			ns	
INPUT DATA					
to, set-up	150			ns	
to, hold	150			ns	
PWo	300			ns	
OUTPUT DATA					
RECIRCULATE CONTROL					
tr, set-up	200			ns	
tr, hold	300			ns	
PWh	500			ns	
CLEAR					
PWclear	20			$\mu \mathrm{S}$	

Timing Diagram

Description of Pin Functions

Symbol	Name	Pin	Function
D	Input D	1	Input signal for D register. Input signal which is the input to the D register when recirculate control D is high: RECD $=1$.
RID	Recirculate Input D	2	3
OD	Output signal for D register. Input signal when high forces outputs to a low state immediately and clears all the registers.		
CLR	Clear	5	Output signal for A register. Input signal which is low for loading data and for shifting right.
OA	Output A	Shift Left/Shift	Right Control

Logic Diagram

APPLICATION

Line Buffer for Bidirectional Matrix Printer . . . 80/132 characters per line

(9) Baud Rate Generator

All Baud Rate Generators are programmable dividers capable of providing 16 output frequencies* for UARTs or USARTs from either an on-chip crystal oscillator or an external frequency input. " T " versions utilize an external frequency input only. Dual Baud Rate Generators provide two out-
put frequencies simultaneously for full duplex communication.
Baud Rate Generators providing all standard baud rates from various popular crystal frequencies are available. In addition the baud rate generator may be custom mask programmed for other divisors.
*except as noted

2amer \#	Batherevition	Thander	rower Fuynnc:	Ficherse	P:\%
Com 5016	Dual Baud Rate Generator	On-chip oscillator or external frequency input	$+5 .+12$	16. DIP	124-125
COM 5016T	Dual Baud Fate Generator	Extremnal frequency input	+ 8. + 12	18.815	124.125
com sore	Single Baud Rate Cenerator	On-chip osclllator or external frequency imput	$+6 .+12$	14 DIP	126-12\%
COM EORBT	Single Band Rate Cenerator	Sxiternas frequency Input	+6. +112	14 DIP	126.127
com 5036	Dual Baud Rate Generator	COM 5016 with additional outjut of input frecuency $: 4$	$+6 .+12$	$18 \text { DIP }$	128-129.
com 5086 H	Dual Baud Rate Generator	COM EOL EI with additional output of imput frequency : 4	$+6,+12$	$18 \mathrm{DIP}$	128-128
$\text { COM } 5046$	Single Baud Rate Generator	COM 5026 with additional output of input frequency	$+6 .+12$	$14 \text { DIP }$	$130-131$
COM 5046T	Single Baud Rate Generator	COM 5026I with additional output of input frequency 44	$+5 .+12$	14: DIP	$130 \cdot 131$
$\text { COM } 8046$	Single Baud Rate Generator	32 baud rates; 1X, 16X, 32X clock outputs; single +6 volt supply	$+6$	16 DIP	$136-137$
COM: 804ET	Single Baud Rate Generator	COM 8046 with external frequency input only	$+5$	16.11 P	$136 \cdot 137$
COM 81.16	Dual Baud Rate Cenerator	Single +5 volt version of COM 5016	$+5$	$18 \text { DIP }$	$138-139$
COM $8116 T$	Dual Baud Rate Generator	Single +5 valt verstion of COML 5016π	$+5$	18. DIP	138-139
COM S126	Single Baud Rate Generator	Single +5 volt version of COM 5026	$+5$	14. DIP	140-141\%
COM 8186T	Single Baud Rate Generator	Single +5 volt veraion of COM 5026T	+5	14. DIP	140-141.
com 8136	Dual Baud Rate Cenerator	single +6 volt version of COMF 5036	$+8$	18, DIP	148-143
com. 8136 T	Dual Baud Rate Cenerator	Single +5 volt version of COM 5036T	$+5$	18. DIP	142.143
come 8146	Single Baud Rate Generator	Single +5 volt version of COM 5046	$+5$	14. DIP	144.145.
com 8146 L	Single Baud Rate Generator	Single +5 volt version of COM 5046π	$+5$	$14 \text { DIP }$	$144-145$

COM 5016
COM 5016T

Dual Baud Rate Generator Programmable Divider

FEATURES

On chip crystal oscillator or external frequency inputChoice of 2×16 output frequencies16 asynchronous/synchronous baud ratesDirect UART/USRT/ASTRO/USYNRT compatibilityFull duplex communication capabilityTTL, MOS compatibilityPIN CONFIGURATION

	$\begin{cases}18 & \text { XTAL/EXT2 } \\ 17 & f_{T} \\ 16 & T_{A} \\ 15 & T_{B} \\ 14 & T_{C} \\ 13 & T_{D} \\ 12 & S T T \\ 11 & G N D \\ 10 & \text { NC }\end{cases}$

BLOCK DIAGRAM

General Description

The Standard Microsystems COM 5016 Dual Baud Rate Generator/Programmable Divider is an N-channel COPLAMOS " MOS/LSI device which, from a single crystal (on-chip oscillator) or input frequency is capable of generating 32 externally selectable frequencies.

The COM 5016 is specifically dedicated to generating the full spectrum of 16 asynchronous/synchronous data communication frequencies as shown in Table 1. One of the sixteen output frequencies is externally selected by four address inputs, on each of the independent dividers, as shown in Table 1.

Internal re-programmable ROM allows the generation of other frequencies from other crystal frequencies or input
 baud rate generator, full duplex (independent receive and transmit'frequencies) operation is possible.

The COM 5016 is basically a programmable 15-stage feedback shift register capable of dividing any modulo up to $\left(2^{15}-1\right)$.

By using one of the frequency outputs it is possible to generate additional divisions of the master clock frequency by cascading COM 5016's. The frequency output is fed into the XTAL/EXT input on a subsequent device. In this way one crystal or input frequency may be used to generate numerous output frequencies.

The COM 5016 can be driven by either an external crystal or TTL logic level inputs; COM 5016T is driven by TTL logic level inputs only.

Description of Pin Functions

Pin No.	Symbol	Name	Function
1	XTAL/EXT1	Crystal or External Input 1	This input is either one pin of the crystal package or one polarity of the external input.
2	V_{cc}	Power Supply	+ 5 volt supply
3	f_{R}	Receiver Output Frequency	This output runs at a frequency selected by the Receiver divisor select data bits.
4-7	$\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}, \mathrm{R}_{\mathrm{C}}, \mathrm{R}_{\mathrm{D}}$	Receiver-Divisor Select Data Bits	The logic level on these inputs, as shown in Table 1, selects the receiver output frequency, f_{R}.
8	STR	Strobe-Receiver	A high level input strobe loads the receiver data ($R_{A}, R_{B}, R_{C}, R_{D}$) into the receiver divisor select register. This input may be strobed or hard-wired to a high level.
9	$V_{\text {D }}$	Power Supply	+12 volt supply
10	NC	No Connection	
11	GND	Ground	Ground
12	STT	StrobeTransmitter	A high level input strobe loads the transmitter data ($T_{A}, T_{B}, T_{C}, T_{D}$) into the transmitter divisor select register. This input may be strobed or hard-wired to a high level.
13-16	$T_{D}, T_{C}, T_{B}, T_{A}$	TransmitterDivisor Select Data Bits	The logic level on these inputs, as shown in Table 1, selects the transmitter output frequency, f_{T}.
17	f_{T}	Transmitter Output Frequency	This output runs at a frequency selected by the Transmitter divisor select data bits.
18	XTAL/EXT2	Crystal or External Input 2	This input is either the other pin of the crystal package or the other polarity of the external input.

COM 5026
 COM 5026T

Baud Rate Generator
 Programmable Divider

FEATURES

On chip crystal oscillator or external frequency inputChoice of 16 output frequencies16 asynchronous/synchronous baud ratesDirect UART/USRT/ASTRO/USYNRT compatibilityTTL, MOS compatibilityPIN CONFIGURATION

BLOCK DIAGRAM

GENERAL DESCRIPTION

The Standard Microsystems COM 5026 Baud Rate Generator/Programmable Divider is an N-channel COPLAMOS ${ }^{\circledR}$ MOS/LSI device which, from a single crystal (on-chip oscillator) or input frequency is capable of generating 16 externally selectable frequencies.

The COM 5026 is specifically dedicated to generating the full spectrum of 16 asynchronous/synchronous data communication frequencies as shown in Table 1. One of the sixteen output frequencies is externally selected by four address inputs, as shown in Table 1.

Internal re-programmable ROM allows the generation of other frequencies from other crystal frequencies or input frequencies. The four address inputs may be strobe (150ns) or DC loaded.

The COM 5026 is basically a programmable 15 -stage feedback shift register capable of dividing any modulo up to (25-1).
By using the frequency output, it is possible to generate additional divisions of the master clock frequency by cascading COM 5026's. The frequency output is fed into the XTAL/EXT input on a subsequent device. In this way one crystal or input frequency may be used to generate numerous output frequencies.

The COM 5026 can be driven by either an external crystal or TTL logic level inputs; COM 5026T is driven by TTL logic level inputs only.

Description of Pin Functions

COM 5036 COM 5036T

Dual Baud Rate Generator Programmable Divider

FEATURES

\square On chip crystal oscillator or external frequency inputChoice of 2×16 output frequencies16 asynchronous/synchronous baud ratesDirect UART/USRT/ASTRO/USYNRT compatibilityFull duplex communication capabilityHigh frequency reference outputTTL, MOS compatibility

PIN CONFIGURATION

XTAL/EXT1	1
$+5 v$	2
f_{R}	3
R_{A}	4
R_{B}	5
R_{C}	6
R_{D}	7
STR	8
$+12 v$	9

BLOCK DIAGRAM

General Description

The Standard Microsystems COM 5036 Dual Baud Rate Generator/Programmable Divider is an N-channel COPLAMOS ${ }^{\circledR}$ MOS/LSI device which, from a single crystal (on-chip oscillator) or input frequency is capable of generating 32 externally selectable frequencies.

The COM 5036 is specifically dedicated to generating the full spectrum of 16 asynchronous/synchronous data communication frequencies as shown in Table 1. One of the sixteen output frequencies is externally selected by four address inputs, on each of the independent dividers, as shown in Table 1.

Internal re-programmable ROM allows the generation of other frequencies from other crystal frequencies or input frequencies. The four address inputs on each divider section may be strobe (150 ns) or DC loaded. As the COM 5036 is a dual baud rate generator, full duplex (independent receive and transmit frequencies) operation is possible.

The COM 5036 is basically a programmable 15-stage feedback shift register capable of dividing any modulo up to $\left(2^{15}-1\right)$.

By using one of the frequency outputs it is possible to generate additional divisions of the master clock frequency by cascading COM 5036's. The frequency output is fed into the XTAL/EXT input on a subsequent device. In this way one crystal or input frequency may be used to generate numerous output frequencies.

The COM 5036 can be driven by either an external crystal or TTL logic level inputs; COM 5036T is driven by TTL logic level inputs only.

The COM 5036 provides a high frequency reference output at one-quarter (1/4) the XTAL/EXT input frequency.

Description of Pin Functions

Pin No.	Symbol	Name	Function
1	XTAL/EXT1	Crystal or External Input 1	This input is either one pin of the crystal package or one polarity of the external input.
2		Power Supply	+ 5 volt supply
3	f_{R}	Receiver Output Frequency	This output runs at a frequency selected by the Receiver divisor select data bits.
4-7	$\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}, \mathrm{R}_{\mathrm{C}}, \mathrm{R}_{\mathrm{D}}$	Receiver-Divisor Select Data Bits	The logic level on these inputs, as shown in Table 1, selects the receiver output frequency, f_{R}.
8	STR	Strobe-Receiver	A high level input strobe loads the receiver data ($\mathbf{R}_{A}, \mathbf{R}_{B}, \mathbf{R}_{C}, \mathbf{R}_{\mathrm{D}}$) into the receiver divisor select register. This input may be strobed or hard-wired to a high level.
9	$V_{\text {D }}$	/	+12 volt supply
10	$\mathrm{f}_{\mathrm{x}} / 4$	$\mathrm{f}_{\mathrm{x}} / 4$	1/4 crystal/clock frequency reference output.
11	GND	Ground	Ground
12	STT	StrobeTransmitter	A high level input strobe loads the transmitter data ($T_{A}, T_{B}, T_{C}, T_{D}$) into the transmitter divisor select register. This input may be strobed or hard-wired to a high level.
13-16	$\mathrm{T}_{\mathrm{D}}, \mathrm{T}_{\mathrm{C}}, \mathrm{T}_{\mathrm{B}}, \mathrm{T}_{\mathrm{A}}$	TransmitterDivider Select Data Bits	The logic level on these inputs, as shown in Table 1, selects the transmitter output frequency, f_{T}.
17	f_{T}	Transmitter Output Frequency	This output runs at a frequency selected by the Transmitter divisor select data bits.
18	XTAL/EXT2	Crystal or External Input 2	This input is either the other pin of the crystal package or the other polarity of the external input.

COM 5046T

Baud Rate Generator
 Programmable Divider

FEATURES

On chip crystal oscillator or external frequency inputChoice of 16 output frequencies16 asynchronous/synchronous baud ratesDirect UART/USRT/ASTRO/USYNRT compatibilityHigh frequency reference outputTTL, MOS compatibilityPIN CONFIGURATION

XTAL/EXT1	1
XTAL/EXT2	20
$+5 v$	30
NC	40
GND	5
NC	60
$+12 v$	7

13

12\end{array}\right.\)

BLOCK DIAGRAM

GENERAL DESCRIPTION

The Standard Microsystems COM 5046 Baud Rate Generator/Programmable Divider is an N-channel COPLAMOS* MOS/LSI device which, from a single crystal (on-chip oscillator) or input frequency is capable of generating 16 externally selectable frequencies.

The COM 5046 is specifically dedicated to generating the full spectrum of 16 asynchronous/synchronous data communication frequencies as shown in Table 1. One of the sixteen output frequencies is externally selected by four address inputs; as shown in Table 1.

Internal re-programmable ROM allows the generation of other frequencies from other crystal frequencies or input frequencies. The four address inputs may be strobe (150ns) or DC loaded.

The COM 5046 is basically a programmable 15 -stage feedback shift register capable of dividing any modulo up to (215-1).

By using the frequency output, it is possible to generate additional divisions of the master clock frequency by cascading COM 5046's. The frequency output is fed into the XTAL/EXT input on a subsequent device. In this way one crystal or input frequency may be used to generate numerous output frequencies.

The COM 5046 can be driven by either an external crystal or TTL logic level inputs; COM 5046T is driven by TTL logic level inputs only.

The COM 5046 provides a high frequency reference output at one-quarter (1/4) the XTAL/EXT input frequency.

Description of Pin Functions			
Pin No.	Symbol	Name	Function
1	XTAL/EXT1	Crystal or External Input 1	This input is either one pin of the crystal package or one polarity of the external input.
2	XTALEXT2	Crystal or External Input 2	This input is either the other pin of the crystal package or the other polarity of the external input.
3	Vcc	Power Supply	+5 volt Supply.
4,6	NC	No Connection	
5	GND	Ground	Ground
7	VDD	Power Supply	+12 volt Supply.
8	$\mathrm{f}_{\mathrm{x} / 4}$	Reference Frequency	High frequency reference output @ (1/4) fin
9	ST	Strobe	A high-level strobe loads the Input Address ($A_{A}, A_{B}, A_{c}, A_{d}$) into the Input Address register. This input may be strobed or hard wired to a high-level,
10-13	$A d, A c, A b, A A$	Input Address	The logic level on these inputs. as shown in Table 1, selects the output frequency.
14	fout	Output Frequency	This output runs at a frequency as selected by the Input Address.

ELECTRICAL CHARACTERISTICS COM5016, COM5016T, COM5026, COM5026T,

 COM5036, COM5036T, COM5046, COM5046TMAXIMUM GUARANTEED RATINGS*

CHARACTERISTICS ($T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, V C C=+5 \mathrm{~V} \pm 5 \%, V D D=+12 \mathrm{~V} \pm 5 \%$, unless otherwise noted

Parameter	Min.	Typ.	Max	Unit	Comments
D.C. CHARACTERISTICS INPUT VOLTAGE LEVELS					
Low-level, VIL			0.8	V	excluding XTAL inputs
High-level, $\mathrm{V}_{\text {IH }}$	2.0		Vcc	V	
OUTPUT VOLTAGE LEVELS					
Low-level, Vol			0.4	V	$1 \mathrm{ol}=1.6 \mathrm{ma}$
			0.5	V	$1 \mathrm{lo}=3.2 \mathrm{ma}$
High-level, V он	$\mathrm{Vcc}-1.5$	4.0		V	$\mathrm{IOH}=100 \mu \mathrm{~A}$
INPUT CURRENT					
Low-level, lic			0.3	mA	VIN $=$ GND, excluding XTAL inputs
INPUT CAPACITANCE					
All inputs, CIN		5	10	pf	VIN $=$ GND, excluding XTAL inputs
EXT INPUT LOAD		8	10		Series 7400 unit loads
POWER SUPPLY CURRENT					
Icc		28	45	mA	
100		12	22	mA	
A.C. CHARACTERISTICS					$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
CLOCK FREQUENCY		5.0688		MHz	XTAL, EXT
PULSE WIDTH					
Clock					50\% Duty Cycle $\pm 5 \%$
Strobe	150		DC	ns	See Note 1.
INPUT SET-UP TIME					
Address	50			ns	See Note 1.
INPUT HOLD TIME					
Address	50			ns	
STROBE TO NEW FREQUENCY DELAY			3.5	$\mu \mathrm{S}$	$=1 / \mathrm{f}_{\mathrm{IN}}(18)$

Note 1: Input set-up time can be decreased to $\geqslant 0$ ns by increasing the minimum strobe width by 50 ns to a total of 200 ns .

For ROM re-programming SMC has a computer program available whereby the customer need only supply the input frequency and the desired output frequencies.

The ROM programming is automatically generated.

Crystal Specifications

User must specify termination (pin, wire, other)
Prefer: HC-18/U or HC-25/U Frequency - 5.0688 MHz , AT cut

Temperature range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Series resistance $<50 \Omega$
Series Resonant
Overall tolerance $\pm .01 \%$ or as required

Crystal manufacturers (Partial List) Northern Engineering Laboratories 357 Beloit Street Burlington, Wisconsin 53105 (414) 763-3591

Bulova Frequency Control Products
61-20 Woodside Avenue
Woodside, New York 11377
(212) 335-6000

CTS Knights Inc.
101 East Church Street
Sandwich, Illinois 60548
(815) 786-8411

Crystek Crystals Corporation
1000 Crystal Drive
Fort Myers, Florida 33901
(813) 936-2109

APPLICATIONS INFORMATION

Charge pump techniques using the +5 volt power supply can be used to generate the +12 volt power supply required. The +12 volt power supply of figure 1 will supply the 22 milli-amps that is typically required.

Table 2. ${ }_{\text {2. }}^{\text {CRYSTAL }}$ (16X clock)									
D		Recel		Baud Rate	Theoretical Frequency 16x Clock	Actual Frequency 16X Clock	Percent Error	Duty Cycle	Divisor
0	0	0	0	50	0.8 KHz	0.8 KHz	-	50/50	6144
0	0	0	1	75	1.2	1.2	-	50/50	4096
0	0	1	0	110	1.76	1.7589	-0.01		2793
0	0	1	1	134.5	2.152	2.152	-	50/50	2284
0	1	0	0	150	2.4	2.4	-	50/50	2048
0	1	0	1	300	4.8	4.8	-	50/50	1024
0	1	1	0	600	9.6	9.6	-	50/50	512
0	1	1	1	1200	19.2	19.2	-	50/50	256
1	0	0	0	1800	28.8	28.7438	-0.19	*	171
1	0	0	1	2000	32.0	31.9168	-0.26	50/50	154
1	0	1	0	2400	38.4	38.4	-	50/50	128
1	0	1	1	3600	57.6	57.8258	0.39	+	85
1	1	0	0	4800	76.8	76.8	0.39	50/50	64
1	1	0	1	7200	115.2	114.306	-0.77	*	43
1	1	1	0	9600	153.6	153.6	-	50/50	32
1	1	1	1	19,200	307.2	307.2	-	50/50	16

Tr'mit/Recelv Address D C B		Table 4.				(16X clock)					
		Baud Rate	Theoretical Frequency 16x Clock	Actual Frequency 16X Clock	Percent Error	$\begin{aligned} & \text { Duty } \\ & \text { Cyce } \end{aligned}$	Divisor				
0	000					-	-	6.93406 KHz	-	-	731
0	0001	-	-	6.91514	-	-	733				
0	$\begin{array}{lll}0 & 1 & 0\end{array}$	-	-	6.89633	-	-	735				
0	011	-	-	6.87761	-	-	737				
0	100	-	-	6.84049	-	-	741				
0	101	-	-	6.82207	-	-	743				
0	110	-	-	6.80376	-	-	745				
0	$\begin{array}{lll}1 & 1 & 1\end{array}$	-	-	6.74940	-	-	751				
1	000	45.45	0.7272 KHz	0.72723	-	50/50	6970				
1	0	56.88	0.91008	0.91018	0.01		5569				
1	0 0 10	58.30	0.93280	0.93290	0.02		5433				
1	$\begin{array}{lll}0 & 1 & 1\end{array}$	66.66	1.06656	1.06666	-01	50/50	4752				
1	100	74.20	1.18720	1.18735	0.01		4269				
1	101	165.00	2.64000	2.64000	.	50/50	1920				
1	110	200.00	3.20000	3.20000		50/50	1584				
1	111	1050.00	16.80000	16.83980	0.24		301				

D	Recelve Address C B	A	$\begin{gathered} \text { Table } 5 . \\ \text { CRYSTAL FREQUENCY }=4.608 \mathrm{MHz} \end{gathered}$				(16X clock)	
			Baud Rate	Theoretical Frequency 16X Clock	Actual Frequency 16X Clock	Percent Error	$\begin{aligned} & \text { Duty } \\ & \text { Cycle } \\ & \% \end{aligned}$	Divisor
0	00	0	50	0.8 KHz	0.8 KHz	-	50/50	5760
0	00	1	75	1.2	1.2	-	50/50	3840
0	01	0	110	1.76	1.76012	0.007	50/50	2618
0	01	1	134.5	2.152	2.15226	0.01		2141
0	10	0	150	2.4	2.4	-	50/50	1920
0	10	1.	300	4.8	4.8	-	50/50	960
0	11	0	600	9.6	9.6	-	50/50	480
0	11	1	1200	19.2	19.2	-	50/50	240
1	00	0	1800	28.8	28.8	-	50/50	160
1	00	1	2000	32.0	32.0	-	50/50	144
1.	01	0	2400	38.4	38.4	-	50/50	120
1	01	1	3600	57.6	57.6	-	50/50	80
1	10	0	4800	76.8	76.8	-	50/50	60
1	10	1	7200	115.2	115.2	-	50/50	40
1	11	0	9600	153.6	153.6	-	50/50	30
1	11	1	19200	307.2	307.2	-		15

COM 8046 COM 8046T

Baud Rate Generator
 Programmable Divider

FEATURES

\square On chip crystal oscillator or external frequency inputSingle + 5v power supplyChoice of 32 output frequencies32 asynchronous/synchronous baud ratesDirect UART/USRT/ASTRO/USYNRT compatibilityRe-programmable ROM via CLASP® technology allows generation of other frequencies
TTL, MOS compatible1X Clock via fo/ 16 outputCrystal frequency output via fx and $\mathrm{fx} / 4$ outputs

PIN CONFIGURATION

Output disable via FENA

BLOCK DIAGRAM

General Description

The Standard Microsystems COM 8046 is an enhanced version of the COM 5046 Baud Rate Generator. It is fabricated using SMC's patented COPLAMOS ${ }^{\circledR}$ and CLASP ${ }^{\circledR}$ technologies and employs depletion mode loads, allowing operation from a single $+5 v$ supply.
The standard COM 8046 is specifically dedicated to generating the full spectrum of 16 asynchronous/ synchronous data communication frequencies for 1X, 16X and 32X UART/USRT/ASTRO/USYNRT devices.
The COM 8046 features an internal crystal oscillator which may be used to provide the master reference frequency. Alternatively, an external reference may be supplied by applying complementary TTL level signals to pins 1 and 2. Parts suitable for use only with an external TTL reference are marked COM 8046T. TTL outputs used to drive the COM 8046 or COM 8046T should not be used to drive other TTL inputs, as noise immunity may be compromised due to excessive loading.
The reference frequency (fx) is used to provide two high frequency outputs: one at fx and the other at $f x / 4$. The fx/4 output will drive one standard 7400 load, while the fx output will drive two 74LS loads.

The output of the oscillator/buffer is applied to the divider for generation of the output frequency f_{0}. The divider is capable of dividing by any integer from 6
to $2^{19}+1$, inclusive. If the divisor is even, the output will be square; otherwise the output will be high longer than it is low by one $f x$ clock period. The output of the divider is also divided internally by 16 and made available at the $\mathrm{f}_{0} / 16$ output pin. The $\mathrm{f}_{0} / 16$ output will drive one and the f_{0} output will drive two standard 7400 TTL loads. Both the f_{0} and $f_{0} / 16$ outputs can be disabled by supplying a low logic level to the FENA input pin. Note that the FENA input has an internal pull-up which will cause the pin to rise to approximately V_{CC} if left unconnected.
The divisor ROM contains 32 divisors, each 19 bits wide, and is fabricated using SMC's unique CLASP ${ }^{\circledR}$ technology. This process permits reduction of turn-around-time for ROM patterns.
The five divisor select bits are held in an externally strobed data latch. The strobe input is level sensitive: while the strobe is high, data is passed directly through to the ROM. Initiation of a new frequency is effected within $3.5 \mu \mathrm{~s}$ of a change in any of the five divisor select bits; strobe activity is not required. This feature may be disabled through a CLASP ${ }^{\circledR}$ programming option causing new frequency initiation to be delayed until the end of the current f_{0} half-cycle All five data inputs have pull-ups identical to that of the FENA input, while the strobe input has no pull-up.

COM 8116
 COM 8116T

Dual Baud Rate Generator Programmable Divider

FEATURES

\square On chip crystal oscillator or external frequency input
Single +5 v power supply
Choice of 2×16 output frequencies16 asynchronous/synchronous baud ratesDirect UART/USRT/ASTRO/USYNRT compatibilityFull duplex communication capabilityRe-programmable ROM via CLASP® technology allows generation of other frequenciesTTL, MOS compatibilityCompatible with COM 5016

PIN CONFIGURATION

BLOCK DIAGRAM

General Description

The Standard Microsystem's COM 8116 is an enhanced version of the COM 5016 Dual Baud Rate Generator. It is fabricated using SMC's patented COPLAMOS ${ }^{\circledR}$ and CLASP ${ }^{-}$technologies and employs depletion mode loads, allowing operation from a single $+5 v$ supply.

The standard COM 8116 is specifically dedicated to generating the full spectrum of 16 asynchronous/ synchronous data communication frequencies for 16X UART/USRT devices. A large number of the frequencies available are also useful for 1X and 32X ASTRO/USYNRT devices.

The COM 8116 features an internal crystal oscillator which may be used to provide the master reference frequency. Alternatively, an external reference may be supplied by applying complementary TTL level signals to pins 1 and 18. Parts suitable for use only with an external TTL reference are marked COM 8116T. TTL outputs used to drive the COM 8116 or COM 8116T XTAL/EXT inputs should not be used to drive
other TTL inputs, as noise immunity may be compromised due to excessive loading.
The output of the oscillator/buffer is applied to the dividers for generation of the output frequencies f_{T}, f_{R}. The dividers are capable of dividing by any integer from 6 to $2^{19}+1$, inclusive. If the divisor is even, the output will be square; otherwise the output will be high longer than it is low by one fx clock period.
Each of the two divisor ROMs contains 16 divisors, each 19 bits wide, and is fabricated using SMC's unique CLASP ${ }^{\circledR}$ technology allowing up to 32 different divisors on custom parts. This process permits reduction of turn-around time for ROM patterns. Each group of four divisor select bits is held in an externally strobed data latch. The strobe input is level sensitive: while the strobe is high, data is passed directly through to the ROM. Initiation of a new frequency is effected within $3.5 \mu \mathrm{~s}$ of a change in any of the four divisor select bits (strobe activity is not required). The divisor select inputs have pull-up resistors; the strobe inputs do not.

Description of Pin Functions

Pin No.	Symbol	Name	Function
1	XTAL/EXT1	Crystal or External Input 1	This input is either one pin of the crystal package or one polarity of the external input.
2	V_{cc}	Power Supply	+5 volt supply
3	f_{R}	Receiver Output Frequency	This output runs at a frequency selected by the Receiver divisor select data bits.
4-7	$\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}, \mathrm{R}_{\mathrm{C}}, \mathrm{R}_{\mathrm{D}}$	Receiver-Divisor Select Data Bits	The logic level on these inputs, as shown in Table 1, selects the receiver output frequency, f_{R}.
8	STR	Strobe-Receiver	A high level input strobe loads the receiver data ($\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}, \mathbf{R}_{\mathrm{C}}, \mathbf{R}_{\mathrm{D}}$) into the receiver divisor select register. This input may be strobed or hard-wired to a high level.
9	NC	No Connection	
10	NC	No Connection	
11	GND	Ground	Ground
12	STT	StrobeTransmitter	A high level input strobe loads the transmitter data ($T_{A}, T_{B}, T_{C}, T_{D}$) into the transmitter divisor select register. This input may be strobed or hard-wired to a high level.
13-16	$\mathrm{T}_{\mathrm{D}}, \mathrm{T}_{\mathrm{C}}, \mathrm{T}_{\mathrm{B}}, \mathrm{T}_{\mathrm{A}}$	TransmitterDivisor Select Data Bits	The logic level on these inputs, as shown in Table 1, selects the transmitter output frequency, f_{T}.
17	f_{T}	Transmitter Output Frequency	This output runs at a frequency selected by the Transmitter divisor select data bits.
18	XTAL/EXT2	Crystal or External Input 2	This input is either the other pin of the crystal package or the other polarity of the external input.

COM 8126

COM $8126 T$

Baud Rate Generator
 Programmable Divider

FEATURES

On chip crystal oscillator or external frequency inputSingle +5 v power supplyChoice of 16 output frequencies16 asynchronous/synchronous baud ratesDirect UART/USRT/ASTRO/USYNRT compatibilityRe-programmable ROM via CLASP® technology allows generation of other frequenciesTTL, MOS compatibilityCompatible with COM 5026

PIN CONFIGURATION

BLOCK DIAGRAM

General Description

The Standard Microsystem's COM 8126 is an enhanced version of the COM 5026 Baud Rate Generator. It is fabricated using SMC's patented COPLAMOS ${ }^{\circledR}$ and CLASP ${ }^{\circledR}$ technologies and employs depletion mode loads, allowing operation from a single $+5 v$ supply.
The standard COM 8126 is specifically dedicated to generating the full spectrum of 16 asynchronous/ synchronous data communication frequencies for 16X UART/USRT devices. A large number of the frequencies available are also useful for 1X and 32X ASTRO/USYNRT devices.
The COM 8126 features an internal crystal oscillator which may be used to provide the master reference frequency. Alternatively, an external reference may be supplied by applying complementary TTL level signals to pins 1 and 2. Parts suitable for use only with an external TTL reference are marked COM 8126T. TTL outputs used to drive the COM 8126 or COM 8126T XTAL/EXT inputs should not be used to drive other TTL inputs, as noise immunity may be com-
promised due to excessive loading.
The output of the oscillator/buffer is applied to the divider for generation of the output frequency. The divider is capable of dividing by any integer from 6 to $2^{19}+1$, inclusive. If the divisor is even, the output will be square; otherwise the output will be high longer than it is low by one fx clock period.
The divisor ROM contains 16 divisors, each 19 bits wide, and is fabricated using SMC's unique CLASP ${ }^{\circledR}$ technology. This process permits reduction of turnaround time for ROM patterns. The four divisor select bits are held in an externally strobed data latch. The strobe input is level sensitive: while the strobe is high, data is passed directly through to the ROM. Initiation of a new frequency is effected within $3.5 \mu \mathrm{~s}$ of a change in any of the four divisor select bits (strobe activity is not required). This feature may be disabled through a CLASP ${ }^{\oplus}$ programming option causing new frequency initiation to be delayed until the end of the current $f_{\text {OUT }}$ half-cycle. The divisor select inputs have pull-up resistors; the strobe input does not.

Description of Pin Functions

Pin No.	Symbol	Name	Function
1	XTAL/EXT1	Crystal or External Input 1	This input is either one pin of the crystal package or one polarity of the external input.
2	XTAL/EXT2	Crystal or External Input 2	This input is either the other pin of the crystal package or the other polarity of the external input.
3	V_{cc}	Power Supply	+ 5 volt supply
4,6,7,8	NC	No Connection	
5	GND	Ground	Ground
9	ST	Strobe	A high level strobe loads the input data (A, B, C, D) into the input divisor select register. This input may be strobed or hard-wired to a high level.
10-13	D, C, B, A	Divisor Select Data Bits	The logic level on these inputs as shown in Table 1, selects the output frequency.
14	$\mathrm{f}_{\text {OUT }}$	Output Frequency	This output runs at a frequency selected by the divisor select data bits.

COM 8136
 COM 8136T

Dual Baud Rate Generator Programmable Divider

FEATURES
\square On chip crystal oscillator or external frequency inputSingle +5 v power supplyChoice of 2×16 output frequencies16 asynchronous/synchronous baud rates Direct UART/USRT/ASTRO/USYNRT compatibilityFull duplex communication capability High frequency reference output Re-programmable ROM via CLASP® technology allows generation of other frequencies
TTL, MOS compatibilityCompatible with COM 5036
BLOCK DIAGRAM

General Description

The Standard Microsystem's COM 8136 is an enhanced version of the COM 5036 Dual Baud Rate Generator. It is fabricated using SMC's patented COPLAMOS ${ }^{\circledR}$ and CLASP ${ }^{\circledR}$ technologies and employs depletion mode loads, allowing operation from a single +5 v supply.
The standard COM 8136 is specifically dedicated to generating the full spectrum of 16 asynchronous/ synchronous data communication frequencies for 16X UART/USRT devices. A large number of the frequencies available are also useful for 1X and 32X ASTRO/USYNRT devices.

The COM 8136 features an internal crystal oscillator which may be used to provide the master reference frequency. Alternatively, an external reference may be supplied by applying complementary TTL level signals to pins 1 and 18. Parts suitable for use only with an external TTL reference are marked COM 8136T. TTL outputs used to drive the COM 8136 or COM $8136 T$ XTAL/EXT inputs should not be used to drive other TTL inputs, as noise immunity may be compromised due to excessive loading.

The output of the oscillator/buffer is applied to the dividers for generation of the output frequencies f_{T}, f_{R}. The dividers are capable of dividing by any integer from 6 to $2^{19}+1$, inclusive. If the divisor is even, the output will be square; otherwise the output will be high longer than it is low by one fx clock period.
The reference frequency (fx) is used to provide a high frequency output at fx/4.
Each of the two divisor ROMs contains 16 divisors, each 19 bits wide, and is fabricated using SMC's unique CLASP ${ }^{\circledR}$ technology allowing up to 32 different divisors on custom parts. This process permits reduction of turn-around time for ROM patterns. Each group of four divisor select bits is held in an externally strobed data latch. The strobe input is level sensitive: while the strobe is high, data is passed directly through to the ROM. Initiation of a new frequency is effected within 3.5μ s of a change in any of the four divisor select bits (strobe activity is not required). The divisor select inputs have pull-up resistors; the strobe inputs do not.

Description of Pin Functions

Pin No.	Symbol	Name	Function
1	XTAL/EXT1	Crystal or External Input 1	This input is either one pin of the crystal package or one polarity of the external input.
2	V_{cc}	Power Supply	+ 5 volt supply
3	f_{R}	Receiver Output Frequency	This output runs at a frequency selected by the Receiver divisor select data bits.
4-7	$\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}, \mathrm{R}_{\mathrm{C}}, \mathrm{R}_{\mathrm{D}}$	Receiver-Divisor Select Data Bits	The logic level on these inputs, as shown in Table 1, selects the receiver output frequency, f_{R}.
8	STR	Strobe-Receiver	A high level input strobe loads the receiver data ($R_{A}, R_{B}, R_{C}, R_{D}$) into the receiver divisor select register. This input may be strobed or hard-wired to a high level.
9	NC	No Connection	
10	$\mathrm{f}_{\mathrm{X}} / 4$	$\mathrm{f}_{\mathrm{x}} / 4$	1/4 crystal/clock frequency reference output.
11	GND	Ground	Ground
12	STT	StrobeTransmitter	A high level input strobe loads the transmitter data ($T_{A}, T_{B}, T_{C}, T_{D}$) into the transmitter divisor select register. This input may be strobed or hard-wired to a high level.
13-16	$T_{D}, T_{C}, T_{B}, T_{A}$	TransmitterDivider Select Data Bits	The logic level on these inputs, as shown in Table 1, selects the transmitter output frequency, f_{T}.
17	f_{T}	Transmitter Output Frequency	This output runs at a frequency selected by the Transmitter divisor select data bits.
18	XTAL/EXT2	Crystal or External Input 2	This input is either the other pin of the crystal package or the other polarity of the external input.

COM 8146
 COM 8146T

Baud Rate Generator Programmable Divider

FEATURES

\square On chip crystal oscillator or external frequency inputSingle $+5 v$ power supplyChoice of 16 output frequencies16 asynchronous/synchronous baud ratesDirect UART/USRT/ASTRO/USYNRT compatibilityHigh frequency reference outputRe-programmable ROM via CLASP® technology allows generation of other frequenciesTTL, MOS compatibilityCompatible with COM 5046

PIN CONFIGURATION

| | |
| ---: | ---: | ---: |
| XTAL/EXT1 | 1 |
| XTAL/EXT2 | 20 |
| $+5 v$ | 30 |
| NC | 40 |
| GND | 5 |
| NC | 60 |
| NC | 7 |

BLOCK DIAGRAM

General Description

The Standard Microsystem's COM 8146 is an enhanced version of the COM 5046 Baud Rate Generator. It is fabricated using SMC's patented COPLAMOS ${ }^{\oplus}$ and CLASP ${ }^{\circledR}$ technologies and employs depletion mode loads, allowing operation from a single +5 v supply.

The standard COM 8146 is specifically dedicated to generating the full spectrum of 16 asynchronous/ synchronous data communication frequencies for 16X UART/USRT devices. A large number of the frequencies available are also useful for 1X and 32X ASTRO/USYNRT devices.
The COM 8146 features an internal crystal oscillator which may be used to provide the master reference frequency. Alternatively, an external reference may be supplied by applying complementary TTL level signals to pins 1 and 2. Parts suitable for use only with an external TTL reference are marked COM 8146T. TTL outputs used to drive the COM 8146 or COM 8146T XTAL/EXT inputs should not be used to drive other TTL inputs, as noise immunity may be compromised due to excessive loading.

The output of the oscillator/buffer is applied to the divider for generation of the output frequency. The divider is capable of dividing by any integer from 6 to $2^{19}+1$, inclusive. If the divisor is even, the output will be square; otherwise the output will be high longer than it is low by one $f x$ clock period.

The reference frequency (fx) is used to provide a high frequency output at $\mathrm{fx} / 4$.

The divisor ROM contains 16 divisors, each 19 bits wide, and is fabricated using SMC's unique CLASP ${ }_{-}^{\text {® }}$ technology. This process permits reduction of turnaround time for ROM patterns. The four divisor select bits are held in an externally strobed data latch. The strobe input is level sensitive: while the strobe is high, data is passed directly through to the ROM. Initiation of a new frequency is effected within $3.5 \mu \mathrm{~s}$ of a change in any of the four divisor select bits (strobe activity is not required). This feature may be disabled through a CLASP@ programming option causing new frequency initiation to be delayed until the end of the current $f_{\text {Out }}$ half-cycle. The divisor select inputs have pull-up resistors; the strobe input does not.

For electrical characteristics, see page 146

ELECTRICAL CHARACTERISTICS COM8046, COM8046T, COM8116, COM8116T. COM8126,

 COM8126T, COM8136, COM8136T, COM8146, COM8146TMAXIMUM GUARANTEED RATINGS*

*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists it is suggested that a clamp circuit be used.
ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

Parameter	Min.	Typ.	Max.	Unit	- Comments
D.C. CHARACTERISTICS					
INPUT VOLTAGE LEVELS					
Low-level, $\mathrm{V}_{\text {IL }}$			0.8	V	
High-level, V_{1+}	2.0			V	excluding XTAL inputs
output voltage levels					
			0.4 0.4	V	$\mathrm{l}_{\mathrm{oL}}=1.6 \mathrm{~mA}$, for $\mathrm{f}_{\mathrm{x}} / 4, \mathrm{f}_{\mathrm{O}} / 16$ $\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$, for $\mathrm{f}_{\mathrm{O}}, \mathrm{f}_{\mathrm{R}}, \mathrm{f}_{\mathrm{T}}$
			0.4	V	$\mathrm{I}_{\mathrm{OL}}=0.8 \mathrm{~mA}$, for f_{X}
High-level, $\mathrm{V}_{\text {or }}$	3.5			V	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$; for $\mathrm{f}_{\mathrm{x}}, \mathrm{I}_{\text {OH }}=-50 \mu \mathrm{~A}$
INPUT CURRENT					$V_{\text {IN }}=$ GND, excluding XTAL inputs
INPUT CAPACITANCE All inputs, $\mathrm{C}_{\text {IN }}$		5	10	pF	$V_{1 N}=G N D$, excluding XTAL inputs
EXT INPUT LOAD		8	10		Series 7400 equivalent loads
POWER SUPPLY CURRENT Icc			50	mA	
A.C. CHARACTERISTICS					$\mathrm{T}_{\wedge}=+25^{\circ} \mathrm{C}$
CLOCK FREQUENCY, $\mathrm{fin}^{\text {N }}$	0.01		7.0	MHz	XTAL/EXT, 50% Duty Cycle $\pm 5 \%$ COM 8046, COM 8126, COM 8146
	0.01		5.1	MHz	XTAL/EXT, 50% Duty Cycle $\pm 5 \%$ COM 8116, COM 8136
STROBE PULSE WIDTH, $t_{\text {pw }}$ INPUT SET-UP TIME	150		DC	ns	
tos	200			ns	
INPUT HOLD TIME toh	50			ns	
STROBE TO NEW FREQUENCY DELAY			3.5	$\mu \mathrm{S}$	@ $f_{x}=5.0 \mathrm{MHz}$

TIMING DIAGRAM

For ROM re-programming SMC has a computer program available whereby the customer need only supply the input frequency and the desired output frequencies.

The ROM programming is automatically generated.

Crystal Specifications

User must specify termination (pin, wire, other)
Prefer: HC-18/U or HC-25/U
Frequency -5.0688 MHz , AT cut
Temperature range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Series resistance $<50 \Omega$
Series Resonant
Overall tolerance $\pm .01 \%$
or as required

Crystal manufacturers (Partial List)
Northern Engineering Laboratories
357 Beloit Street
Burlington, Wisconsin 53105
(414) 763-3591

Bulova Frequency Control Products
61-20 Woodside Avenue
Woodside, New York 11377
(212) 335-6000

CTS Knights Inc.
101 East Church Street
Sandwich, Illinois 60548
(815) 786-8411

Crystek Crystals Corporation
1000 Crystal Drive
Fort Myers, Florida 33901
(813) 936-2109

COM 8046 COM 8046T

Table 2
REFERENCE FREQUENCY $=5.068800 \mathrm{MHz}$

Divisor Select EDCBA	Desired Baud Rate	Clock Factor	Desired Frequency (KHz)	Divisor	Actual Baud Rate	Actual Frequency (KHz)	Deviation
00000	50.00	32X	1.60000	3168	50.00	1.600000	0.0000\%
00001	75.00	32 X	2.40000	2112	75.00	2.400000	0.0000\%
00010	110.00	32 X	3.52000	1440	110.00	3.520000	0.0000\%
00011	134.50	32X	4.30400	1177	134.58	4.306542	0.0591\%
00100	150.00	32 X	4.80000	1056	150.00	4.800000	0.0000\%
00101	200.00	32 X	6.40000	792	200.00	6.400000	0.0000\%
00110	300.00	32 X	9.60000	528	300.00	9.600000	0.0000\%
00111	600.00	32 X	19.20000	264	600.00	19.200000	0.0000\%
01000	1200.00	32X	38.40000	132	1200.00	38.400000	0.0000\%
01001	1800.00	32 X	57.60000	88	1800.00	57.600000	0.0000\%
01010	2400.00	32 X	76.80000	66	2400.00	76.800000	0.0000\%
01011	3600.00	32X	115.20000	44	3600.00	115.200000	0.0000\%
01100	4800.00	32X	153.60000	33	4800.00	153.600000	0.0000\%
01101	7200.00	32X	230.40000	22	7200.00	230.400000	0.0000\%
01110	9600.00	32X	307.20000	16	9900.00	316.800000	3.1250\%
01111	19200.00	32X	614.40000	8	19800.00	633.600000	3.1250\%
10000	50.00	16X	0.80000	6336	50.00	0.800000	0.0000\%
10001	75.00	16X	1.20000	4224	75.00	1.200000	0.0000\%
10010	110.00	16X	1.76000	2880	110.00	1.760000	0.0000\%
10011.	134.50	16X	2.15200	2355	134.52	2.152357	0.0166\%
10100	150.00	16X	2.40000	2112	150.00	2.400000	0.0000\%
10101	300.00	16X	4.80000	1056	300.00	4.800000	0.0000\%
10110	600.00	16X	9.60000	528	600.00	9.600000	0.0000\%
10111	1200.00	16X	19.20000	264	1200.00	19.200000	0.0000\%
11000	1800.00	16X	28.80000	176	1800.00	28.800000	0.0000\%
11001	2000.00	16X	32.00000	158	2005.06	32.081013	0.2532\%
11010	2400.00	16X	38.40000	132	2400.00	38.400000	0.0000\%
11011	3600.00	16X	57.60000	88	3600.00	57.600000	0.0000\%
11100	4800.00	16X	76.80000	66	4800.00	76.800000	0.0000\%
11101	7200.00	16X	115.20000	44	7200.00	115.200000	0.0000\%
11110	9600.00	16X	153.60000	33	9600.00	153.600000	0.0000\%
11111	19200.00	16X	307.20000	16	19800.00	316.800000	3.1250\%

COM 8116 COM 8116T COM 8126 COM $8126 T$ COM 8136 COM 8136T COM 8146 COM 8146T

Table 1
REFERENCE FREQUENCY $=5.068800 \mathrm{MHz}$

Divisor Select DCBA	Desired Baud Rate	Clock Factor	Desired Frequency (KHz)	Divisor	Actual Baud Rate	Frequency (KHz)	Deviation
0000	50.00	$16 X$	0.80000	6336	50.00	0.800000	0.0000%
0001	75.00	$16 X$	1.20000	4224	75.00	1.200000	0.0000%
0010	110.00	$16 X$	1.76000	2880	110.00	1.760000	0.0000%
0011	134.50	$16 X$	2.15200	2355	134.52	2.152357	0.0166%
0100	150.00	$16 X$	2.40000	2112	150.00	2.400000	0.0000%
0101	300.00	$16 X$	4.80000	1056	300.00	4.800000	0.0000%
0110	600.00	$16 X$	9.60000	528	600.00	9.600000	0.0000%
0111	1200.00	$16 X$	19.20000	264	1200.00	19.200000	0.0000%
1000	1800.00	$16 X$	28.80000	176	1800.00	28.800000	0.0000%
1001	2000.00	$16 X$	32.00000	158	2005.06	32.081013	0.2532%
1010	2400.00	$16 X$	38.40000	132	2400.00	38.400000	0.0000%
1011	3600.00	$16 X$	57.60000	88	3600.00	57.600000	0.0000%
1100	4800.00	$16 X$	76.80000	66	4800.00	76.800000	0.0000%
1101	7200.00	$16 X$	115.20000	44	7200.00	115.200000	0.0000%
1110	9600.00	$16 X$	153.60000	33	9600.00	153.600000	0.0000%
1111	19200.00	$16 X$	307.20000	16	19800.00	316.800000	3.1250%

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

Keyboard Encoder

Part \#	2fo. or mays	Modes	Fentures			$\begin{aligned} & \text { Fowor } \\ & \text { Buppulice } \end{aligned}$	Paotrate	Paga
K12-2376 xux ${ }^{(3)}$	88	3	a Key Rollover	-8T	AscII	+6. -12	40 DIP	152-155
KR-3600 $\mathrm{xxx}^{(3)}$	90	4	2 Key or N Key Rollover	$\begin{aligned} & \text {-STH } \\ & \text {-STD } \\ & \text {-PRO } \end{aligned}$	AscII AscII Binary Sequential	$+6,-12$	40 DIP	166-163

${ }^{3)}$ May be custom mask programmed

Keyboard Encoder Read Only Memory

FEATURES

Outputs directly compatible with TTL/DTL or MOS logic arrays.External control provided for output polarity selection.External control provided for selection of odd or even parity.Two key roll-over operation.N-key lockout.Programmable coding with a single mask change.Self-contained oscillator circuit.Externally controlled delay network provided to eliminate the effect of contact bounce.One integrated circuit required for complete keyboard assembly.Static charge protection on all input and output terminals.Entire circuit protected by a layer of glass passivation.
PIN CONFIGURATION

GENERAL DESCRIPTION

The SMC KR2376-XX is a 2376-bit Read Only Memory with all the logic necessary to encode single pole single throw keyboard closures into a usable 9-bit code. Data and strobe outputs are directly compatible with TTL/DTL or MOS logic arrays without the use of
any special interface components.
The KR2376-XX is fabricated with low threshold, P-channel technology and contains 2942 P-channel enhancement mode transistors on a single monolithic chip, available in a 40 pin dual-in-line package.

TYPICAL CONNECTION OF KR2376-XX

Fig. 1

[^7]
MAXIMUM GUARANTEED RATINGS \dagger

Operating Temperature Range ... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

GND and VGG, with respect to Vcc . -20 V to +0.3 V
Logic Input Voltages, with respect to Vcc . -20 V to +0.3 V
\dagger Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

ELECTRICAL CHARACTERISTICS

($\mathrm{TA}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{Vcc}=+5 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{VGG}=-12 \mathrm{~V} \pm 1.0 \mathrm{~V}$, unless otherwise noted)

Characteristics	Min	Typ	Max	Unit	Conditions
CLOCK	20	50	100	KHz	see fig. 1 footnote (**) for typical $\mathrm{R}-\mathrm{C}$ values
DATA INPUT					
Logic "0" Level			+0.8	V	
Logic "1" Level	Vcc-1.5			V	
Input Capacitance			10	pf	
INPUT CURRENT					
*Control, Shift \& YO					
thru Y10	10	100	140	$\mu \mathrm{A}$	$\mathrm{ViN}_{\mathrm{IN}}=+5.0 \mathrm{~V}$
*Control, Shift \& YO thru Y10	5	30	50	$\mu \mathrm{A}$	$\mathrm{VIN}=$ Ground
Data Invert, Parity Invert		. 01		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=-5.0 \mathrm{~V}$ to +5.0 V
DATA OUTPUT \& X OUTPUT					
Logic "0" Level			+0.4	V	$\mathrm{loL}=1.6 \mathrm{~mA}$ (see fig. 7)
Logic "1" Level	Vcc-1.0			V	Іон $=100 \mu \mathrm{~A}$
POWER CONSUMPTION		140	200	mW	Nom. Power Supp. Voltages (see fig. 8)

SWITCH CHARACTERISTICS

Minimum Switch Closure
Contact Closure Resistance
between X1 and Y1
Contact Open Resistance see timing diagram-fig. 2 between X 1 and Y 1
1×10^{7}
Ohm
puts with Internal Resistor to VGG

DESCRIPTION OF OPERATION

The KR2376-XX contains (see Fig. 1), a 2376-bit ROM, 8-stage and 11-stage ring counters, an 11-bit comparator, an oscillator circuit, an externally controllable delay network for eliminating the effect of contact bounce, and TTL/DTL/MOS compatible output drivers.

The ROM portion of the chip is a 264 by 9 -bit memory arranged into three 88 -word by 9 -bit groups. The appropriate levels on the Shift and Control inputs selects one of the three 88 -word groups; the 88 -individual word locations are addressed by the two ring counters. Thus, the ROM
address is formed by combining the Shift and Control Inputs with the two ring counters.

The external outputs of the 8 -stage ring counter and the external inputs to the 11-bit comparator are wired to the keyboard to form an $\mathrm{X}-\mathrm{Y}$ matrix with the 88-keyboard switches as the crosspoints. In the standby condition, when no key is depressed, the two ring counters are clocked and sequentially address the ROM; the absence of a Strobe Output indicates that the Data Outputs are 'not valid' at this time.

When a key is depressed, a single path is completed between one output of the 8 -stage ring counter (X0 thru X7) and one input of the 11-bit comparator (YO-Y10). After a number of clock cycles, a condition will occur where a level on the selected path to the comparator matches a level on the corresponding comparator input from the 11-stage ring counter. When this occurs, the comparator generates a signal to the clock control and to the Strobe Output (via the delay network). The clock control stops the clocks to the ring counters and the Data Outputs
(B1-B9) stabilize with the selected 9-bit code, indicated by a 'valid' signal on the Strobe Output. The Data Outputs remain stable until the key is released.

As an added feature two inputs are provided for external polarity control of the Data Outputs. Parity Invert (pin 6) provides polarity control of the Parity Output (pin 7) while the Data and Strobe Invert Input (pin 20) provides for polarity control of Data Outputs B1 thru B8 (pins 8 thru 15) and the Strobe Output (pin 16).

SPECIAL PATTERNS

Since the selected coding of each key is defined during the manufacture of the chip, the coding can be changed to fit any particular application of the keyboard. Up to 264 codes of up to 8 bits (plus one parity bit) can be programmed into the KR2376-XX

ROM covering most popular codes such as ASC11, EBCD1C, Selectric, etc., as well as many specialized codes. The ASC11 code is available as a standard pattern. For special patterns, use Fig. 9.

Fig. 2

POWER SUPPLY CONNECTIONS FOR TTL/DTL OPERATION

POWER SUPPLY CONNECTIONS FOR MOS OPERATION

Fig. 3

OUTPUT DRIVER \& "X" OUTPUT STAGE TO KEYBOARD

"Y" INPUT STAGE FROM KEYBOARD

Fig. 4

Fig. 5

OSCILLATOR FREQUENCY VS. C_{2}

Fig. 6

TYP. OUTPUT ON RESISTANCE VS. GATE BIAS VOLTAGE

Fig. 7

TYP. POWER CONSUMPTION VS. TEMPERATURE

Fig. 8

CODE ASSIGNMENT CHART
 KR2376-ST 8 Blt ASCII, odd parity

Fig. 9

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently. complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

Keyboard Encoder Read Only Memory

FEATURES

- Data output directly compatible with TTL
- N Key rollover or lockout operation
- Quad mode
- Lockout/rollover selection externally selected as option
- On chip-master/slave oscillator
- All 10 output bits available
- Fully buffered data outputs
- Output enable provided as option
- Data compliment control provided as option
- Pulse or level data ready output signal provided as an option
- Any key down output provided as an option
- Contact bounce circuit provided to eliminate contact bounce
- Static charge protection on all input/outputs
- Pin for Pin replacement for GI AY-5-3600

GENERAL DESCRIPTION

The SMC Microsystems KR3600-XX is a Keyboard Encoder containing a 3600 bit read only memory and all the logic necessary to encode single pole single throw keyboard closures into a 10 bit code.

The KR3600-XX is fabricated with a low voltage p channel technology and contains the equivalent of 5000 transistors on a monolithic chip in a 40 lead dip ceramic package.

PIN CONFIGURATION

Function			
Option	1	40	X_{c}
Option See	2	39	X_{1}
Option ${ }^{\text {"Pin }}$	3	38	X_{2}
Option $\begin{gathered}\text { Assignment } \\ \text { Chart" }\end{gathered}$	4	37	X_{3}
Option	5	36	X_{4}
Data Output B9	6	35	- X_{5}
Data Output B8	7	34	$\square \mathrm{X}_{6}$
Data Output B7	8	33	X_{7}
Data Output B6	9	32	$]^{1} X_{8}$
Data Output B5	10	31	Delay Node Input
Data Output B4	11	30	V_{cc}
Data Output B3	12	29]. Shift Input
Data. Output B2	13	28	Control Input
Data Output B1	14	27	$] \mathrm{V}_{\mathbf{G G}}$
$V_{D D}$	15	26	$\square \mathrm{Y}$,
Data Ready	16	25	- Y_{8}
Y_{0}	17	24	$\square \mathrm{Y}_{7}$
Y_{1}	18	23	$\square \mathrm{Y}_{6}$
Y_{2}	19	22] Y_{5}
Y_{3}	20	21	- Y_{4}
	AC	D.	

BLOCK DIAGRAM

DESCRIPTION OF OPERATION

The KR3600 contains a 3600 bit ROM, 9 -stage and 10 -stage ring counters, a 10 bit comparator, timing circuitry, a 90 bit memory to store the location of encoded keys for n key rollover operation, an externally controllable delay network for eliminating the effect of contact bounce, an output data buffer, and TTL/DTL/MOS compatible output drivers.

The ROM portion of the chip is a 360 by 10 bit memory arranged into four 90 -word by 10 -bit groups. The appropriate levels on the Shift and Control Inputs selects one of the four 90-word groups; the 90-individual word locations are addressed by the two ring counters. Thus, the ROM address is formed by combining the Shift and Control Inputs with the two ring counters.

The external outputs of the 9 -stage ring counter and the external inputs to the 10-bit comparator are wired to the keyboard to form an X-Y matrix with the 90-keyboard switches as the crosspoints. In the standby conditions, when no key is depressed, the two ring counters are clocked and sequentially address the ROM, thereby scanning the key switches for key closures.

When a key is depressed, a single path is completed between one output of the 9-stage ring counter (X0 thru X 8) and one input of the 10-bit comparator ($\mathrm{Y}_{0}-\mathrm{Y}_{9}$). After a number of clock cycles, a condition will occur where a level on the selected path to the comparator matches a level on the corresponding comparator input from the 10 -stage ring counter.

N KEY ROLLOVER - When a match occurs, and the key has not been encoded, the switch bounce delay network is enabled. If the key is still depressed at the end of the selected delay time, the code for the depressed key is transferred to the output data buffer, the data ready signal appears, a one is stored in the encoded key memory and the scan sequence is resumed. If a match occurs at another key location, the sequence is repeated thus encoding the next key. If the match occurs for an already encoded key, the match is not recognized. The code of the last key encoded remains in the output data buffer.

N KEY LOCKOUT - When a match occurs, the delay network is enabled. If the key is still depressed at the end of the selected delay time, the code for the depressed key is transferred to the output data buffer, the data ready signal appears and the remaining keys are locked out by halting the scan sequence. The scan sequence is resumed upon key release. The output data buffer stores the code of the last key encoded.

SPECIAL PATTERNS - Since the selected coding of each key and all the options are defined during the manufacture of the chip, the coding and options can be changed to fit any particular application of the keyboard. Up to 360 codes of up to 10 bits can be programmed into the KR3600 ROM covering most popular codes such as ASCII, EBCDIC, Selectric, etc., as well as many specialized codes.

Storage Temperature Range. $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec.) . $+325^{\circ} \mathrm{C}$

*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is not implied.

ELECTRICAL CHARACTERISTICS

$\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=\mathrm{GND}$, unless otherwise noted)

Characteristics	Min	Typ**	Max	Units	Conditions
Clock Frequency	10	50	100	KHz	See Block diagram footnote* for typical R-C values
External Clock Width	7	-	-	$\mu \mathrm{S}$	
Data \& Clock Input (Shift, Control, Compliment Control, Lockout/Rollover, Chip Enable \& External Clock) Logic " 0 " Level Logic "1" Level Shift \& Control Input Current					
	$V_{G G}$	-	+0.8	V	
	$V_{C C}-1.5$	-	$v_{c c}+0.3$	V	
	75	150	220	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=+5 \mathrm{~V}$
$\begin{aligned} & \text { X Output (} \left.X_{0}-X_{8}\right) \\ & \text { Logic " } 1 \text { " Output Current } \end{aligned}$					
	40 600	$\begin{gathered} 250 \\ 1300 \end{gathered}$	$\underline{500}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\text {оut }}=\mathrm{V}_{\text {cc }}(\text { See Note 2) } \\ & \mathrm{V}_{\text {оut }}=\mathrm{V}_{\text {cc }}-1.3 \mathrm{~V} \end{aligned}$
	900	2000	6500	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {cc }}-2.0 \mathrm{~V}$
	1500	2000	14,000	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUt }}=\mathrm{V}_{\text {cc }}-5 \mathrm{~V}$
	3000	10,000	23,000	$\mu \mathrm{A}$	$\mathrm{V}_{\text {оит }}=\mathrm{V}_{\text {cc }}-10 \mathrm{~V}$
Logic "0" Output Current	8	30	60	$\mu \mathrm{A}$	$V_{\text {OUt }}=V_{\text {cc }}$
	6	25	50	$\mu \mathrm{A}$	$V_{\text {out }}=\mathrm{V}_{\text {cc }}-1.3 \mathrm{~V}$
	5	20	45	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUt }}=\mathrm{V}_{\text {cc }}-2.0 \mathrm{~V}$
	2	10	30 5	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}}-5 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}}-10 \mathrm{~V} \end{aligned}$
\mathbf{Y} Input ($\mathbf{Y}_{\mathbf{0}} \mathbf{-} \mathbf{Y}_{\mathbf{9}}$)					
Trip Level Hysteresis	$\mathrm{V}_{\mathrm{cc}-5} 0.5$	$\mathrm{V}_{\mathrm{cc}}-3$ 0.9	$\mathrm{V}_{\mathrm{cc}-2}{ }_{1.4}$	V V	Y Input Going Positive (See Note 2) (See Note 1)
Selected Y Input Current	18	100	170	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {cc }}$
	14	80	150	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {cc }}-1.3 \mathrm{~V}$
	13	50	130	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {cc }}-2.0 \mathrm{~V}$
	5	40	110	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{cc}}-4.0 \mathrm{~V}$
Unselected Y Input Current	9	40	80	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {cc }}$
	7	30	70	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{cc}}-1.3 \mathrm{~V}$
	6	25	60	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{Cc}}-2.0 \mathrm{~V}$
	3	15 0.5	40	$\mu \mathbf{A}$ $\mu \mathrm{A}$	$\begin{aligned} & V_{I N}=V_{c c}-5 V \\ & V_{I N}=V_{c c}-10 V \end{aligned}$
Input Capacitance	-	3	10	pF	at OV (All Inputs)
Switch Characteristics					
Minimum Switch Closure	-	-	-	-	See Timing Diagram
Contact Closure Resistance	-	-	300	$\dot{\Omega}$	$\mathbf{Z}_{\text {cc }}$
	1×10^{7}	-	-	Ω	$\mathrm{Z}_{\text {co }}$
Strobe Delay					
Trip Level (Pin 31)	$\mathrm{V}_{\mathrm{cc}}-4$	$\mathrm{V}_{\mathrm{cc}}-3$	$\mathrm{V}_{\mathrm{cc}}-2$	V	
Hysteresis	0.5	0.9 -5	1.4	V	(See Note 1)
Quiescent Voltage (Pin 31)	-3	-5	-9	V	With Internal Switched Resistor
Data Output (B1-B10), Any Key Down Output, Data Ready					
Logic " 0 "	-	-	0.4	V	$\mathrm{l}_{\mathrm{ol}}=1.6 \mathrm{~mA}$
Logic "1"	$V_{c c}-1$ $V_{c c}-2$	二	-	V	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=1.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=2.2 \mathrm{~m} \mathrm{~A} \end{aligned}$
Power					
$l_{c c}$ $l_{G G}$	-	12	$\begin{aligned} & 22 \\ & 22 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & V_{c C}=+5 V \\ & V_{G G}=-12 V \end{aligned}$

[^8]
NOTE

1. Hysteresis is defined as the amount of return required to unlatch an input.
2. Precharge of X outputs and Y inputs occurs during each scanned clock cycle.

TIMING DIAGRAM

MINIMUM SWITCH CLOSURE $=$ SWITCH BOUNCE $+\left(90 \times \frac{1}{l}\right)+$ STROBE DELAY + STROBE WIDTH

"Y" INPUT STAGE FROM KEYBOARD

OUTPUT DRIVER

NOTE: Output driver capable of driving one TTL load with no external resistor. Capable of driving two TTL loads using an external $6.8 \mathrm{~K} \Omega$ resistor to V_{GG}
'X' OUTPUT STAGE TO KEYBOARD

STROBE DELAY vs. C_{2}

OSCILLATOR FREQUENCY vs. C_{1}

Options:
Internal oscillator (pins 1, 2, 3)
Any key down (pin 4) positive output
N key rollover only

KR 3600-ST

XY	$\begin{gathered} \text { Normal } \\ \mathrm{B}-123456789 \end{gathered}$	$\begin{aligned} & \text { Shift } \\ & \text { B-123456789 } \end{aligned}$	$\begin{gathered} \text { Control } \\ \text { B-123456789 } \end{gathered}$	$\begin{aligned} & \text { Shift/Control } \\ & \mathrm{B}-123456789 \end{aligned}$
00	$\backslash 000001101$	~ 011111101	NUL 000000001	RS 011110001
01	$=101111010$	+ 110101001	GS 101110001	VT 110100010
02	DC3 110010010	DC3 110010010	DC3 110010010	DC3 110010010
03	- 101101001	- 111110101	CR 101100010	US 111110010
04	BS 000100010	BS 000100010	BS 000100010	BS 000100010
05	0000011001	0000011001	0000011001	0000011001
06	- 011101001	- 011101001	- 011101001	- 011101001
07	000000000	000000000	000000000	000000000
08	000000000	000000000	000000000	000000000
09	000000000	000000000	000000000	O 000000000
10	/ 111101010	? 111111001	ST 111100001	US 111110010
11	- 011101001	≥ 011111010	SO 011100010	RS 011110001
12	? 001101010	< 001111001	FF 001100001	FS 001110010
13	m 101101110	M 101100101	CR 101100010	CR 101100010
14	n 011101110	N 011100101	SO 011100010	SO 011100010
15	b 010001110	B 010000101	STX 010000010	STX 010000010
16	$\checkmark 011011110$	V 011010101	SYN 011010010	SYN 011010010
17	c 110001101	C 110000110	ETX 110000001	ETX 110000001
18	$\times 000111101$	$\times 000110110$	CAN 000110001	CAN 000110001
19 20	2010111110 LF 010100001	Z 010110101 LF 010100001	SUB 010110010	SUB 010110010
21	$\checkmark 001110101$: 001111110	FS 001110010	FS 001110010
22	DEL 111111110	DEL 111111110	DEL 111111110	DEL 111111110
23	[110110110] 101110110	ESC 110110001	GS 101110001
24	7111011010	7111011010	7111011010	7111011010
25	8000111010	8000111010	8000111010	8000111010
26	9100111001	9100111001	9100111001	9100111001
27	000000000	000000000	000000000	000000000
28	000000000	000000000	000000000	000000000
29	000000000	000000000	000000000	000000000
30	; 110111010	: 010111001	ESC 110110001	SUB 010110010
31	i 001101101	L 001100110	FF 001100001	FF 001100001
32	k 110101110	K 110100101	VT 110100010	VT 110100010
33	j 010101101	J 010100110	LF 010100001	LF 010100001
34	h 000101110	H 000100101	BS 000100010	BS 000100010
35	g 111001110	G 111000101	BEL 111000010	BEL 111000010
36	f 011001101	F 011000110	ACK 011000001	ACK 011000001
37	d 001001110	D 001000101	EOT 001000010	EOT 001000010
38	s 110011110	S 110010101	DC3 110010010	DC3 110010010
39	a 100001110	A 100000101	SOH 100000010	SOH 100000010
40	000000000	000000000	000000000	000000000
41	(110111101) 101111101	ESC 110110001	GS 101110001
42	GR 101100010	GR 101100010	GR 101100010	GR 101100010
43	- 111001001	" 010001001	BEL 111000010	STX 010000010
44	4001011010	4001011010	4001011010	4001011010
45	5101011001	5101011001	5101011001	5101011001
46	6011011001	6011011001	6011011001	6011011001
47	000000000	000000000	000000000	000000000
48	000000000	000000000	000000000	000000000
49	000000000	000000000	000000000	000000000
50	p 000011110	P 000010101	DEL 000010010	DEL 000010010
51	- 111101101	- 111100110	SI 111100001	SI 111100001
52	i 100101101	I 100100110	HT 100100001	HT 100100001
53	u 101011110	U 101010101	NAK 101010010	NAK 101010010
54	y 100111110	Y 100110101	EM 100110010	EM 100110010
55	t 001011101	T 001010110	DC4 001010001	DC4 001010001
56	r 010011101	R 010010110	DC2 010010001	DC2 010010001
57	e 101001101	E 101000110	ENQ 101000001	ENQ 101000001
58 59	w 111011101	W 111010110 Q 100010110	ETB 111010001	ETB DC1 11100010001
59	q 100011101	Q 100010110	DC1 100010001	DC1 100010001
60	000000000 00000000	000000000 00000000	000000000 00000000	000000000 000000000
62	DC2 010010001	DC2 010010001	DC2 010010001	DC2 010010001
63	000000000	000000000	000000000	000000000
64	1100011010	1100011010	1100011010	1100011010
65	2010011010	2010011010	2010011010	2010011010
66	3110011001	3110011001	3110011001	3110011001
67	000000000	000000000	000000000	000000000
68	000000000	000000000	000000000	000000000
69	000000000	000000000	00000000	000000000
70	0000011001) 100101010	DLE 000010010	HT 100100001
71	9100111001	(000101001	EM 100110010	BS 000100010
72	8000111010	* 010101010	CAN 000110001	LF 010100001
73	7111011010	\& 011001010	ETB 111010001	ACK 011000001
74	6011011001	^ 011110110	SYN 011010010	RS 011110001
75	5101011001	\% 101001010	NAK 101010010	ENQ 101000001
76	4001011010	\$ 001001001	DC4 001010001	EOT 001000010
77	3110011001	\# 110001010	DC3 110010010	ETX 110000001
78	2010011010	@ 000000110	DC2 010010001	NUL 000000001
79	1100011010	! 100001001	DC1 100010001	SOH 100000010
80	000000000	000000000	000000000	000000000
81	000000000	000000000	000000000	000000000
82	000000000	000000000	000000000	000000000
83	000000000	000000000	000000000	000000000
84	000000000	000000000	000000000	000000000
85	SP 000001010	SP 000001010	NUL 000000001	NUL 000000001
86	000000000	000000000	000000000	000000000
87	DC1 100010001	DC1 100010001	DC1 100010001	DC1 100010001
88	HT 100100001	HT 100100001	HT 100100001	HT 100100001
89	ESC 110110001	ESC 110110001	ESC 110110001	ESC 110110001

XY	Normal	Shift	Control	Shift/Control
00	000000000	001000000	010000000	011000000
01	000000001	001000001	010000001	011000001
02	000000010	001000010	010000010	011000010
03	000000011	001000011	010000011	011000011
04	000000100	001000100	010000100	011000100
05	000000101	001000101	010000101	011000101
06	000000110	001000110	010000110	011000110
07	000000111	001000111	010000111	011000111
08	000001000	001001000	010001000	011001000
09	000001001	001001001	010001001	011001001
10	000001010	001001010	010001010	011001010
11	000001011	001001011	010001011	011001011
12	000001100	001001100	010001100	011001100
13	000001101	001001101	010001101	011001101
14	000001110	001001110	010001110	011001110
15	000001111	001001111	010001111	011001111
16	000010000	001010000	010010000	011010000
17	000010001	001010001	010010001	011010001
18	000010010	001010010	010010010	011010010
19	000010011	001010011	010010011	011010011
20	000010100	001010100	010010100	011010100
21	000010101	001010101	010010101	011010101
22	000010110	001010110	010010110	011010110
23	000010111	001010111	010010111	011010111
24	000011000	001011000	010011000	011011000
25	000011001	001011001	010011001	011011001
26	000011010	001011010	010011010	011011010
27	000011011	001011011	010011011	011011011
28	000011100	001011100	010011100	011011100
29	000011101	001011101	010011101	011011101
30	000011110	001011110	010011110	011011110
31	000011111	001011111	010011111	011011111
32	000100000	001100000	010100000	011100000
33	000100001	001100001	010100001	011100001
34	000100010	001100010	010100010	011100010
35	000100011	001100011	010100011	011100011
36	000100100	001100100	010100100	011100100
37	000100101	001100101	010100101	011100101
38	000100110	001100110	010100110	011100110
39	000100111	001100111	010100111	011100111
40	000101000	001101000	010101000	011101000
41	000101001	001101001	010101001	011101001
42	000101010	001101010	010101010	011101010
43	000101011	001101011	010101011	011101011
44	000101100	001101100	010101100	011101100
45	000101101	001101101	010101101	011101101
46	000101110	001101110	010101111	011101110
47	000101111	001101111	010101111	011101111
48	000110000	001110000	010110000	011110000
49	000110001	001110001	010110001	011110001
50	000110010	001110010	010110010	011110010
51	000110011	001110011	010110011	011110011
52	000110100	001110100	010110100	011110100
53	000110101	001110101	010110101	011110101
54	000110110	001110110	010110110	011110110
55	000110111	001110111	010110111	011110111
56	000111000	001111000	010111000	011111000
57	000111001	001111001	010111001	011111001
58	000111010	001111010	010111010	011111010
59	000111011	001111011	010111011	011111011
60	000111100	001111100	010111100	011111100
61	000111101	001111101	010111101	011111101
62	000111110	001111110	010111110	011111110
63	000111111	001111111	010111111	011111111
64	100000000	101000000	110000000	111000000
65	100000001	101000001	110000001	111000001
66	100000010	101000010	110000010	111000010
67	100000011	101000011	110000011	111000011
68	100000100	101000100	110000100	111000100
69	100000101	101000101	110000101	111000101
70	100000110	101000110	110000110	111000110
71	100000111	101000111	110000111	111000111
72	100001000	101001000	110001000	111001000
73	100001001	101001001	110001001	111001001
74	100001010	101001010	110001010	111001010
75	100001011	101001011	110001011	111001011
76	100001100	101001100	110001100	111001100
77	100001101	101001101	110001101	111001101
78	100001110	101001110	110001110	111001110
79	100001111	101001111	110001111	111001111
80	100010000	101010000	110010000	111010000
81	100010001	101010001	110010001	111010001
82	100010010	101010010	110010010	111010010
83	100010011	101010011	110010011	111010011
84	100010100	101010100	110010100	111010100
85	100010101	101010401	110010101	111010101
86	100010110	101010110	110010110	111010110
87	100010111.	101010111	110010111	111010111
88	100011000	101011000	110011000	111011000
89	100011001	101011001	110011001	111011001

DESCRIPTION

The KR 3600 PRO is a MOS/LSI device intended to simplify the interface of a microprocessor to a keyboard matrix. Like the other KR 3600 parts, the KR 3600 PRO contains all of the logic to de-bounce and encode keyswitch closures, while providing either a 2-key or N -key rollover.

The output of the KR 3600 PRO is a simple binary code which may be converted to a standard information code by a PROM or directly by a microprocessor. This permits a user maximum flexibility of key layout with simple field programming.

The code in the KR 3600 is shown in Table I. The format is simple: output bits $9,8,7,6,5,4$ and 1 are a binary sequence. The count starts at $X 0, Y O$ and increments through XOY1, XOY2...X8Y9. Bit 9 is the LSB; bit 1 is the MSB.

Bits 2 and 3 indicate the mode as follows:

Bit 2	Bit 3	
0	0	Normal
0	1	Shift
1	0	Control
1	1	Shift Control

For maximum ease of use and flexibility, an internal scanning oscillator is used, with pin selection of N-key lockout (also known as 2-key rollover) and N-key rollover. An "any-key-down" output is provided for such uses as repeat oscillator keying.
Figure 1 shows a PROM-encoded 64 key, 4 mode application, using a 256×8 PROM, and Figure 2 afull 90 key, 4 mode application, utilizing a 512×8 PROM.
If N -key rollover operation is desired, it is recommended that a diode be inserted in series with each switch as shown. This prevents "phantom" key closures from resulting if three or more keys are depressed simultaneously.

Microprocessor Peripheral

ROM

Bart ITrmber	Pesaription	Access Timo	Power Eupply	Pacirage	Page
ROM $4738^{(3)}$	32K ROM; 32,768 bits organized 4096×8	450 nsec	+ 5	24 DIP	166-169

${ }^{\text {i }}$ May be custom mask programmed

FTOPPY DI8K

$\begin{aligned} & \text { Part } \\ & \text { Wrmber } \end{aligned}$	Description	Eector Format	Dennity	Compatib10	$\begin{aligned} & \text { Write } \\ & \text { Iro-com- } \\ & \text { pensation } \end{aligned}$	Puwnor	Package	Page
FDC $17711^{(1)}$	Moppy Disk Controller/Formatter	Soft	Single	Yes	No	+5	40 DIP	
FDC $1791{ }^{(1)}$	Floppy Disk Controller/Formatter	Soft	Double	Ye8	External	+5	40 DIP	-
FDC 3400	Floppy Disk Data Handier provides serial/parallal interface, sync detection	Hard		N.A.		$+6 .-12$	$40 \mathrm{pIP}$	170-177
FDC 7003 ${ }^{\text {(1) }}$	Floppy Disc Controller/Formatter	Soft	Double	Yes	Internal	+5	40 DIP	178-179

CASBETTE/CARTRIDGF

Part Numbor	Doseription	Data Rate	Features	Powror Eupply	Pacteage	Page
ccc 3500	Cassette/Cartridge Data Hander	250K bps	Sync byte detection, Read While Write	+5, -12	40 DIP	180-187

4096 X 8-Bit Static Read-Only Memory 32K ROM

FEATURES

4096×8 OrganizationAll Inputs and Outputs TTL-CompatibleFully Static (No Clocks, No Refresh)Single +5 v Power SupplyMaximum Access Time...450nsMinimum Cycle Time...450nsTypical Power Dissipation...580mWThree-State Outputs for Wire-OR ExpansionIndustry Standard 24 pin DIP Pin OutPin Compatible with TMS 4732, TMS 4700, TMS 2708 and Intel 2316ETwo programmable chip select inputs for Chip Select FlexibilityAutomated Custom Programming-FormatsMediaCOPLAMOS® ${ }^{\text {N-Channel MOS Technology }}$
PIN CONFIGURATION

A7 1 d] 24 Vcc
A6 2 -] 23 A8
A5 3 -	$\bigcirc 22$ A9
A4 4 -	$\square 21$ CS2 or CS2
A3 5 -	- 20 CS1 or CS1
A2 6 -	-19 A10
A1 7 -	-18 A11
AØ 8 C] 17 Q8
Q1 9 -	-16 Q7
Q2 10 -	-15 Q6
Q311	14 Q5
GND 12 -]13 Q4
PACKAGE: 24-pin D.I.P.	

GENERAL DESCRIPTION

The ROM 4732 is a 32,768 -bit read-only memory organized as 4096 words of 8 -bit length. This makes the ROM 4732 ideal for microprocessor based systems. The device is fabricated using N -channel silicon-gate technology for high speed and simple interface with bipolar circuits.
All inputs can be driven directly by Series 74 TTL circuits without the use of any external pull-up resistor. Each output can drive one Series 74 or 74 S load without external resistors. The data outputs are three-state for OR-tieing multiple devices on a common bus, facilitating easy memory expansion. Two chip select controls allow data to be read.

These controls are programmable, providing additional system decode flexibility allowing four 32K ROMs to be OR-tied without external decoding. The data is always available, it is not dependent on external CE clocking.

The ROM 4732 is designed for high-density fixedmemory applications such as logic function generation and microprogramming. Systems utilizing 1024×8-bit ROMs or 1024×8-bit EPROMs can expand to the 4096×8-bit ROM 4732 with changes only to pins 18,19 , and 21 . To upgrade from the 2316 E, simply replace CS2 with A11 on pin 18.

BLOCK DIAGRAM

MAXIMUM GUARANTEED RATINGS*

Operating Temperature Range
Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec.) . $+325^{\circ} \mathrm{C}$
Positive Voltage on any Pin, with respect to ground . +7.0 V
Negative Voltage on any Pin, with respect to ground . 0.3 V
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists it is suggested that a clamp circuit be used.

ELECTRICAL CHARACTERISTICS

($T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{c c}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

Parameter	Min.	Typ.	Max.	Unit	Comments
D.C. CHARACTERISTICS					
INPUT VOLTAGE LEVELS					
Low-level, $\mathrm{V}_{\text {IL }}$			0.65	V	
High-level, $\mathrm{V}_{1 \text { H }}$	2.0			V	
OUTPUT VOLTAGE LEVELS					
Low-level, Vol			0.4	V	$1 \mathrm{lol}=2.0 \mathrm{~mA}$
High-level, $\mathrm{V}_{\text {OH }}$	2.4			V	$\mathrm{IOH}^{\text {O }}=-200 \mu \mathrm{~A}$
INPUT CURRENT			10	$\mu \mathrm{A}$	$\mathrm{O}_{\mathrm{V}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{Cc}}$
OUTPUT CURRENT			10	$\mu \mathrm{A}$	$\mathrm{O}_{\mathrm{v}} \leq \mathrm{V}_{\mathrm{iN}} \leq \mathrm{V}_{\mathrm{cc}}$
lol			± 10	$\mu \mathrm{A}$	Chip Deselected
INPUT CAPACITANCE All inputs, $\mathrm{C}_{\text {In }}$			7	pF	
OUTPUT CAPACITANCE All Outputs, Cout			10	pF	
POWER SUPPLY CURRENT Icc			150	mA	
A.C. CHARACTERISTICS					$\begin{aligned} & 1 \text { Series } 74 \text { TTL load, } \\ & C_{L}=100 \mathrm{pF} \end{aligned}$
	450			ns	
Access time from address, $\mathrm{t}_{\mathrm{a}(\mathrm{ad})}$			450	ns	
Access time from chip select, $t_{\text {a(cs) }}$			200	ns	
Previous output data valid after address change, $t_{\text {pux }}$			450	ns	
Output disable time from chip select, $t_{\text {pxz }}$			200	ns	

READ CYCLE TIMING

Description of Pin Functions

PIN NO.	SYMBOL	NAME	INPUT/ OUTPUT	FUNCTION
$\begin{gathered} 1,2,3,4,5,6 \\ 7,8,18,19,22 \\ 23 \end{gathered}$	$\begin{gathered} \text { A7, A6, A5, A4, } \\ \text { A3, A2, A1, A }, \\ \text { A11, A10, A9, } \\ \text { A8 } \end{gathered}$	Addresses	1	The 12-bit positive-logic address is decoded on-chip to select one of 4096 words of 8-bit length in the memory array. $A \emptyset$ is the least significant bit and A11 the most significant bit of the word address. The address valid interval determines the device cycle time.
$\begin{aligned} & 9,10,11,13 \\ & 14,15,16,17 \end{aligned}$	$\begin{aligned} & \text { Q1, Q2, Q3, Q4, } \\ & \text { Q5, Q6, Q7, Q8 } \end{aligned}$	Data Outputs	0	The eight outputs must be enabled by both chip select controls before the output word can be read. Data will remain valid until the address is changed or the outputs are disabled (chip deselected). When disabled, the three-state outputs are in a high-impedance state. Q1 is considered the least significant bit, Q8 the most significant bit. The outputs will drive TTL circuits without external components.
12	GND	Ground	GND	Ground
20, 21	CS1, CS2	Chip Select	1	Each chip select control can be programmed during mask fabrication to be active with either a high or a low level input. When both chip select signals are active, all eight outputs are enabled and the eight-bit addressed word can be read. When either chip select is not active, all eight outputs are in a highimpedance state.
24	Vcc	Power Supply	PS	+5 volt power supply

PROGRAMMING DATA

PROGRAMMING REQUIREMENTS: The ROM 4732 is a fixed program memory in which the programming is performed via computer aided techniques by SMC at the factory during the manufacturing cycle to the specific customer inputs supplied in the punched computer card format below. The device is organized as 40968 -bit words with address locations numbered \emptyset to 4095. The 8-bit words can be coded as a 2-digit hexadecimal number between $\emptyset \emptyset$ and FF. All data words and addresses in the following format are coded in hexadecimal numbers. In coding, all binary words must be in positive logic before conversion to hexadecimal. Q1 is considered the least significant bit and Q8 the most significant bit. For addresses, $A \emptyset$ is least significant bit and A11 is the most significant bit.
Every card should include the SMC Custom Device Number in the form ROXXXX (4 digit number to be assigned by SMC) in column 75 through 80.
PROGRAMMABLE CHIP SELECTS: The chip select inputs shall be programmed according to the data punched in columns 73 and 74 . Every card should include in column 73 a 1 if the output is to be enabled with a high level at CS2 or a \emptyset (zero) to enable the output with a low level at CS2. The column 74 entry is the same for programming CS1.
PROGRAMMED DATA FORMAT: The format for the cards to be supplied to SMC to specify that data to be programmed is provided below. The card deck for each device consists of 128 cards with each card containing data for 32 memory locations.

CARD COLUMN	HEXADECIMAL FORMAT
1 to 3	Hexadecimal address of first word on the card
4	Blank
5 to 68	Data. Each 8-bit memory byte is represented by two ASCII characters to represent a hexadecimal value of ' 00^{\prime} ' ${ }^{\prime}$ ' $F F$ '.
69, 70	Checksum. The checksum is the negative of the sum of all 8 -bit bytes in the record from column 1 to 68, evaluate modulo 256 (carry from high order bit ignored). (For purposes of calculating the checksum, the value of Column 4 is defined to be zero.) Adding together, modulo 256, all 8 -bit bytes from Column 1 to 68 (Column $4=0$), then adding the checksum, results in zero.
71,72	Blank
73	One (1) or zero (\emptyset) for CS2
74	One (1) or zero (\emptyset) for CS1
75,76	RO
77 to 80	XXXX (4 digit number assigned by SMC)

ALTERNATIVE INPUT MEDIA

In addition to the preferred 80 column "IBM Card," customers may submit their ROM bit patterns on 9-track 800-BPI mag tape, 8-channel perforated paper tape, EPROM, ROM, etc. Where one of several nationwide time sharing services is mutually available, arrangements may be made with the factory to communicate the ROM definition data directly through the service computer. Format requirements and other information required to use alternative input media may be obtained through SMC sales personnel.

ALTERNATIVE DATA FILE FORMATS

In addition to the standard SMC format, it is possible to furnish data to SMC in other formats if prearranged with the factory. Non-standard formats may be acceptable. Contact SMC sales personnel.

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and to supply the best product possible.

FDC3400

Floppy Disk Hard Sector Data Handler HSDH

FEATURES

\square Hard-Sectored Operation - performs all data operationsSingle or Double Density Operation recording code independentMinifloppy or Standard Floppy compatibleProgrammable Sync ByteInternal Sync Byte Detection and Byte FramingFully Double BufferedData Overrun/Underrun DetectionDual Disk Operation - Write on one disk drive while simultaneously reading from anotherTri-State Output Bus for processor compatibilityTTL Compatible Inputs and Outputs

FUNCTIONAL BLOCK DIAGRAM

DESCRIPTION OF OPERATION

Prior to reading or writing on the disk, the read/write head must be positioned and loaded onto the desired track.

Write Operation

The Write Clock is set at the desired bit rate (usually 125,250 , or 500 KHz), and the desired fill byte is written into the Write Fill Register. After the external logic makes the write enable to the drive active, the first byte to be written should be loaded into the Write Data Register. This byte is then loaded into the Write Output Register and shifted out bit serially to the external write encoding logic. The first bit shifted out of each byte is the LSB. Whenever a byte is transferred from the Write Data Register to the Write Output Register, Write Data Request becomes active and requests another byte from the processor. If new data is not loaded into the Write Data Register before the Write Output Register becomes empty, then the Write Output Register is loaded with data from the Write Fill Register and the Write Data Underrun status line is set. WDU is reset the next time WDS is pulsed. At the end of the write operation, the processor should return the external write enable line to an inactive state.

Read Operation

The Read Clock is set at the desired bit rate (usually 125,250 , or 500 KHz) and the desired sync byte is loaded into the Sync Byte Register. When the processor wishes to read a sector of data it causes a transition on the Read Gate input to set the read logic into a sync byte search mode. In the search mode the serial read data bit stream is examined on a bit by bit basis until a sync byte is found. A sync byte is found, by definition, when the contents of the Sync Byte Register and the Read Input Register are identical. When this occurs the Sync Byte Detected output is set high. This byte is then loaded into the Read Data Register and the read logic is set into the
byte mode. In this mode each byte read is loaded into the Read Data Register and Read Data Request is made active high for each byte. The processor responds to each Read Data Request by enabling the output bus with Read Data Enable, reading the data byte from the Read Data Register, and resetting Read Data Request by pulsing Read Data Request Reset. If the processor fails to respond to Read Data Request within one byte time, the Read Data Lost status line is set. When the processor has read the required amount of data it may reset Read Gate to an inactive-high level.

System Operation - Additional Features

Automatic Sector Fill
In some applications, such as the end of a logical file, the system buffer may contain less than a full sector of data. In this case the processor need supply only this data to the FDC3400. The FDC3400 will then underrun, setting the Write Data Underrun Status line and thereby causing the remainder of the sector to fill with bytes taken from the Write Fill Register. This operation continues until the processor returns the disk's write enable signal to an inactive level.

Byte Search

After byte synchronization has been established during a read operation, the processor may load a different byte into the Sync Byte Register. Whenever that byte occurs in the data being read, the Sync Byte Detected status line will go high. This feature permits the processor to search for the occurence of a specific byte while reading a sector.
Multiple Byte Synchronization
Some systems use two or more contiguous sync bytes to establish byte synchronization. For these applications, the number of Read Data Requests received while Sync Byte Detected remains active-high may be counted by the processor to establish valid synchronization.

FLOW DIAGRAM - WRITE DATA

FLOW DIAGRAM - READ DATA

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	SYMBOL	NAME	FUNCTION
1	RD	Read Data	The Read Data input accepts the serial data stream from the floppy disk data separator.
2	RCK	Read Clock	The negative-going edge of the Read Clock input shifts Read Data into the Read Input Register.
3	RDRR	Read Data Request Reset	An active-high pulse input on the Read Data Request Reset input resets the RDR output to a low level.
4	RDE	Read Data Enable	An active-high level on the Read Data Enable line gates the outputs of the Read Data Register onto the Read Data Output lines.
5	RDR	Read Data Request	The Read Data Request output is made active-high when an assembled byte is transferred from the Read Input Register to the Read Data Register.
6	RDL	Read Data Lost	The Read Data Lost output is made active-high, if the byte presently in the Read Data Register is not read (RDR not reset) by the processor before the next byte is loaded into the Read Data Register.
7-14	RD7-RDØ	Read Data Output	When enabled by RDE the tri-state Read Data Output lines present the data in the Read Data Register to the processor. When RDE is inactive-low the RD7-RD \varnothing lines are held at a high-impedance state.
15-19	NC		Not Connected
20	Vcc	Power Supply	+ 5 volt supply
21	NC		Not Connected
22	WDR	Write Data Request	The Write Data Request output is made active-high when the Write Data Register becomes empty and requires a data byte. It is reset to a low level when WDS occurs to load the Write Data Register. If WDR is not serviced by the time the next byte is required by the Write Output Register, the byte stored in the Write Fill Register is written onto the disk and the WDU line is made active high.
23	WD	Write Data	The Write Data output presents the serial stream of data to the external write data encoder. Each byte is normally provided from the W'rite Data Register provided that a WDS pulse occurs during the presently written byte. If WDS is not pulsed, the next byte to be written will be extracted from the Write Fill Register.
24	GND	Ground	Ground
25	WDU	Write Data Underrun	The Write Data Underrun output is set active-high when the processor fails to respond to the WDR signal within one byte time. When WDU occurs the data written on the disk is extracted from the Write Fill Register. This line is reset when WDS is pulsed.
26	VDD	Power Supply	-12 volt supply
27-34	WD0-WD7	Write Data Input	The Write Data Input lines present information to the Write Data Register, the Write Fill Register, and the Sync Byte Register under control of their respective strobes. The strobes operate independently of each other. The LSB should always be placed on WD0.
35	RG	Read Gate	This input should be pulsed to a high-level after power turn on to reset RDR, SBD, and RDL to an inactivelow level. The high-to-low transition of RG sets the read logic into the sync byte search mode. In this mode the serial Read Data stream is examined on a bit by bit basis until a sync byte is found. A sync byte is found by definition when the contents of the Sync Byte Register and the Read Input Register are identical. When this occurs the SBD output is set active-high. The sync byte just read is then transferred into the Read Data Register; RDR is set high, and the read logic is set into the byte mode. In this mode each byte read is transferred into the Read Data Register.
36	SBD	Sync Byte Detected	The Sync Byte Detected output is set active-high each time the byte loaded into the Read Data Register is identical to the byte in the Sync Byte Register. This output is reset low the next time the Read Data Register is loaded with a byte which is not a sync byte.

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	SYMBOL	NAME	FUNCTION
37	FBS	Fill Byte Strobe	The Fill Byte Strobe is an active-high input strobe which loads the byte on the WD W-WD7 lines into the Write Fill Register.
38	WCK	Write Clock	Each positive-going edge of this clock shifts one bit out of the Write Output Register onto WD.
39	WDS	Write Data Strobe	The Write Data Strobe is an active-high input strobe which loads the byte on the WD \varnothing-WD7 lines into the Write Data Register.
40	SBS	Sync Byte Strobe	The Sync Byte Strobe is an active-high input strobe which Ioads the byte on the WD \emptyset-WD7 lines into the Sync Byte Register.

ADDITIONAL TIMING INFORMATION (Typical Propagation Delays)

READ DATA

HSDH TIMING DIAGRAM

NOTE 1
The Write Output Register is loaded with the next byte at the positive clock transition corresponding to the leading edge of the last bit of the current byte on the WD output. WDR is set high approximately two microseconds after this clock transition. If it is desired that the next byte be extracted from the Write Data Register the leading edge of the WDS should occur at least one microsecond prior to this clock transition.

NOTE 2
In order to avoid an RDL indication the leading edge of the RDRR pulse should occur at least one microsecond prior to the negative clock transition corresponding to the center of the first bit after the last bit of the previous byte on the RD input.

NOTE 3

The RDL, SBD and RD0-RD7 output are set to their correct levels approximately two microseconds after the negative clock transition corresponding to the center of the first bit after the last bit of the previous byte on the RD input. The RDR output is set high at the next negative clock transition.

MAXIMUM GUARANTEED RATINGS*

*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\wedge}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V} \pm 5 \% \mathrm{~V}_{\mathrm{oo}}=-12 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

Parameter	Min.	Typ.	Max.	Unit	Conditions
D.C. CHARACTERISTICS					
INPUT VOLTAGE LEVELS Low-level, Vic High-level, V_{H}	$V_{\mathrm{cc}-1.5}^{V_{\mathrm{DD}}}$		$\stackrel{0.8}{\text { V }} \mathrm{cc}$	V	
OUTPUT VOLTAGE LEVELS Low-level, Vo High-level, Voн	2.4	0.2 4.0	0.4	V	$\begin{aligned} & \mathrm{l}_{\mathrm{ol}}=1.6 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \end{aligned}$
INPUT CURRENT Low-level, It			1.6	mA	See note 1
OUTPUT CURRENT Leakage, lıo Short circuit, los**			$\begin{aligned} & -1 \\ & 10 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \mathrm{RDE}=\mathrm{V}_{\mathrm{iL}}, 0 \leq \mathrm{V}_{\text {out }} \leq+5 \mathrm{~V} \\ & \mathrm{~V}_{\text {out }}=0 \mathrm{~V} \end{aligned}$
INPUT CAPACITANCE All inputs, $\mathrm{C}_{\text {I }}$		5	10	pF	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {cc }}, \mathrm{f}=1 \mathrm{MHz}$
OUTPUT CAPACITANCE All outputs, Cour		10	20	pF	$\mathrm{RDE}=\mathrm{V}_{\mathrm{LL}}, \mathrm{f}=1 \mathrm{MHz}$
POWER SUPPLY CURRENT lcc loo			$\begin{aligned} & 28 \\ & 28 \end{aligned}$	$\mathrm{mA}_{\mathrm{mA}}^{\mathrm{mA}}$	All outputs $=\mathrm{V}_{\text {OH }}$
A.C. CHARACTERISTICS					$\mathrm{T}_{\wedge}=+25^{\circ} \mathrm{C}$
CLOCK FREQUENCY	$\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$		$\begin{aligned} & 250 \\ & 500 \end{aligned}$	$\begin{aligned} & \mathrm{KHz} \\ & \mathrm{KHz} \end{aligned}$	RCK, WCK RCK, WCK, FDC3400-1
PULSE WIDTH Clock	1			$\mu \mathrm{S}$	RCK, WCK
	0.5			$\mu \mathrm{S}$	RCK, WCK, FDC3400-1
Read Gate	1			$\mu \mathrm{S}$	RG
Write Data Strobe	200			ns	WDS
Fill Byte Strobe	200			ns	FBS
Sync Byte Strobe	200			ns	SBS
Read'Data Request Reset	200			ns	RDRR
INPUT SET-UP TIME Write Data Inputs	0			ns	WDØ-WD7
INPUT HOLD TIME Write Data Inputs	0			ns	WD0-WD7
STROBE TO OUTPUT DELAY Read Data Enable		180	250	ns	Load $=20 \mathrm{pf}+1$ TTL input RDE: $T_{p o l}, T_{p \infty}$
OUTPUT DISABLE DELAY		100	250	ns	RDE

**Not more than one output should be shorted at a time.
NOTES:

1. Under steady state condition no current flows for TTL or MOS interfacing.

A switching current of 1.6 mA maximum flows during a high to low transition of the input.
2. The tri-state output has 3 states:

1) low-impedance to $V_{c c}$
2) low-impedance to GND
3) high-impedance OFF $\cong 10 \mathrm{M}$ ohms

The OFF state is controlled by the RDE input.

TYPICAL CCC 3500 INTERFACE TO PROCESSOR AND CASSETTE/CARTRIDGE DRIVE

Floppy Disk Controller FDC II

FEATURES

FULLY PROGRAMMABLE DATA FORMATSSingle or Double Density IBM Soft-Sectored Format (up to 500 K Bps)
Number of Sectors (up to 128)
Number of Bytes per Sector (up to 8K)
\square DATA OPERATIONS
Automatic Sector Search and Verification
Macro Read/Write Commands-Seek/Read or Seek/Write/Verify in One Command
Multiple Sector Read/Write-via Sector Count Register
Fully Double Buffered
Write Data Verification
String Search Command-Compares Data in Memory to Data on the Disk
Optional On-Chip Data Separator
Internal Address Mark Detection
CRC Data Error Checking
Data Overrun/Underrun Detection
Write Protect Capability
Write Precompensation Outputs
\square TRACK MOTION OPERATION
Seek Command-Moves Head to Desired Track
Programmable Track-to-Track Seek Time
Selectable Head Settling Time
Programmáble Head Load Time
Up to 256 Tracks per Side
Programmaple Head Unload Delay
Two Current Track Registers for Control of 2 Drives
\square SYSTEM INTERFACE
8-Bit Bi-Directional Three-State Bus for Transfer of Data, Status, and Control
Byte-Oriented DMA or Programmed I/O Data Transfer Interrupts System at Completion of Operation
Read/Write on one Drive while Seeking on another for Enhanced System Throughput
Three On-Chip Status Registers
TTL Compatible Inputs and Outputs
+5 Volt Only Operation
\square FLOPPY DISK INTERFACE
Controls up to 4 Double-Sided Drives
Compatible with Standard ($8^{\prime \prime}$) Floppy Disk Drives
Compatible with Mini-Floppy ($51 / 4^{\prime \prime}$) Disk Drives

GENERAL DESCRIPTION

The FDC 7003 is a 40 pin DIP COPLAMOS ${ }^{\circ}$ n-channel depletion-load MOS/LSI device which performs the complex interface function between a processor and a Floppy Disk Drive. The FDC offers many features which reduce computer service overhead resulting in greater system throughput. For example, the controller performs track seek/verify, write, and write verification without processor intervention. Enhanced system throughput is offered by the ability to seek on one drive while reading or writing on another.
The device is capable of reading, writing, and initializing diskettes in single or double density. It is compatible with both the single density and double density IBM soft-sectored formats. The FDC provides the system designer with the flexibility needed to accommodate various disk data formats. The number of bytes per sector, the number of sectors per track and the number of tracks per side are fully programmable.
The FDC interfaces to a processor via an 8-bit bidirectional Three-State bus. This assures efficient data transfer and processor compatibility. Three addressable internal Status Registers provide complete status
information to the processor. The processor operates upon the FDC via eight registers which are used during command execution: a Command Register, a Data Register, two Current Track Registers, a Desired Track Register, a Desired Sector Register, a Sector Count Register, and a Compare Count Register. Four additional control registers permit customizing the FDC to the selected drive and modes of operation.
The following command functions are available:

Restore	Step-Out Seek	Read Data	
Step	Step-In	Software Reset	Search Track
Write Data	Read Address	Write Track	
Write Verify	Read Track		

The FDC will interface to both the standard ($8^{\prime \prime}$) floppy disk drive and the minifloppy ($51 / 4^{\prime \prime}$) drive. Compatibility with the products of several manufacturers is assured by the inclusion of a wide range of programmable Track-to-Track Seek Times and Head Load Times.
The FDC requires +5 volts only and all inputs and outputs are TTL compatible.

Cassette/Cartridge Data Handler CCDH

FEATURES

Facilitates Magnetic Tape Cassette or Cartridge to Processor Interfacing ,Performs All Data OperationsUp to 250K bps Data Transfer RateRecording Code IndependentCompatible with Standard and Mini CassettesCompatible with Standard and Mini 3M-type CartridgesRead-While-Write Operation for Write Verification In Dual Gap Head SystemsProgrammable Sync ByteInternal Sync Byte Detection and Byte FramingFully Double BufferedData Overrun/Underrun Detection
\square
Tri-State Output Bus for Processor Compatibility
\square TTL Compatible Inputs and Outputs

PIN CONFIGURATION

GENERAL DESCRIPTION

The CCC 3500 is an MOS integrated circuit which simplifies the data interface between a processor and a magnetic tape cassette or cartridge drive. During a write operation the CCDH receives data from the processor and shifts it out bit serially to the cassette/cartridge data encoding logic. Similarly during a read operation the CCDH receives a bit-serial stream of read data from the cassette/cartridge data recovery circuit, establishes byte synchronization by detecting the sync byte, and transfers data on a byte by byte basis to the processor.
The CCDH detects data overrun and underrun conditions and indicates these conditions on its status lines. A data underrun causes data from a special programmable fill register to be written onto the cassette/cartridge until new data is entered into the write data buffer or until the write operation is ended.
Separate read and write data registers permit simultaneous read and write operations. Drives with dual gap heads may utilize this read-whilewrite feature for write data verification thereby enhancing system throughput and reliability. The CCDH is fully double buffered and all inputs and outputs are TTL compatible.

FUNCTIONAL BLOCK DIAGRAM

DESCRIPTION OF OPERATION

Write Operation

After power-on, the Write Clock is set at the desired bit rate and the desired fill byte is written into the Write Fill Register. After the external control logic has caused the tape to come up to operating speed and activated the write enable signal, the first byte to be written should be loaded into the Write Data Register. This byte is then loaded into the Write Output Register and shifted out bit serially to the external write encoding logic. The first bit shifted out of each byte is the LSB. Whenever a byte is transferred from the Write Data Register to the Write Output Register, Write Data Request becomes active and requests another byte from the processor. If new data is not loaded into the Write Data Register before the Write Output Register becomes empty, then the Write Output Register is loaded with data from the Write Fill Register and the Write Data Underrun status line is set. WDU is reset the next time WDS is pulsed. At the end of the write operation, the processor should return the external write enable line to an inactive state.

Read Operation

After power-on, the desired sync byte is loaded into the Sync Byte Register. After the external control logic has initiated forward motion and the tape has come up to operating speed, the processor produces a positive-to-negative transition on the Read Gate input to set the read logic into the sync byte search mode. In the search mode the serial read data bit stream is examined on a bit by bit basis until a sync byte is found. A sync byte is found, by definition, when the contents of the Sync Byte Register and the Read Input Register are identical. When this occurs the Sync Byte Detected output is set high. This byte is then loaded into the Read Data Register and the read logic is set into the byte mode. In this mode each byte read is loaded into the Read Data Register and Read Data Request is made active high for each byte. The processor responds to
each Read Data Request by enabling the output bus with Read Data Enable, reading the data byte from the Read Data Register, and resetting Read Data Request by pulsing Read Data Request Reset. If the processor fails to respond to Read Data Request within one byte time, the Read Data Lost status line is set. When the processor has read the required amount of data it may reset Read Gate to an inactive-high level and stop tape motion.

System Operation - Additional Features

Automatic Block Fill

In some applications, such as the end of a logical file, the system buffer may contain less than a full block of data. In this case the processor need supply only this data to the CCC 3500 . The CCC 3500 will then underrun, setting the Write Data Underrun Status line and thereby causing the remainder of the block to fill with bytes taken from the Write Fill Register. This operation continues until the processor returns the drive's write enable signal to an inactive level.

Byte Search

After byte synchronization has been established during a read operation, the processor may load a different byte into the Sync Byte Register. Whenever that byte occurs in the data being read, the Sync Byte Detected status line will go high. This feature permits the processor to search for the occurrence of a specific byte while reading a block.

Multiple Byte Synchronization

Some systems use two or more contiguous sync bytes to establish byte synchronization. For these applications, the number of Read Data Requests received while Sync Byte Detected remains active-high may be counted by the processor to establish valid synchronization.

FLOW DIAGRAM - WRITE DATA

FLOW DIAGRAM - READ DATA

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	SYMBOL	NAME	FUNCTION
1	RD	Read Data	The Read Data input accepts the serial data stream from the cassette/cartridge data recovery circuit.
2	RCK	Read Clock	The negative-going edge of the Read Clock input shifts Read Data into the Read Input Register.
3	RDRR	Read Data Request Reset	An active-high pulse input on the Read Data Request Reset input resets the RDR output to a low level.
4	RDE	Read Data Enable	An active-high level on the Read Data Enable line gates the outputs of the Read Data Register onto the Read Data Output lines.
5	RDR	Read Data Request	The Read Data Request output is made active-high when an assembled byte is transferred from the Read Input Register to the Read Data Register.
6	RDL	Read Data Lost	The Read Data Lost output is made active-high, if the byte presently in the Read Data Register is not read (RDR not reset) by the processor before the next byte is loaded into the Read Data Register.
7-14	RD7-RDØ	Read Data Output	When enabled by RDE the tri-state Read Data Output lines present the data in the Read Data Register to the processor. When RDE is inactive-low the RD7-RD \emptyset lines are held at a high-impedance state.
15-19	NC		Not Connected
20	Vcc	Power Supply	+5 volt supply
21	NC		Not Connected
22	WDR	Write Data Request	The Write Data Request output is made active-high when the Write Data Register becomes empty and requires a data byte. It is reset to a low level when WDS occurs to load the Write Data Register. If WDR is not serviced by the time the next byte is required by the Write Output Register, the byte stored in the Write Fill Register is written onto the cassette/cartridge and the WDU line is made active high.
23	WD	Write Data	The Write Data output presents the serial stream of data to the external write data encoder. Each byte is normally provided from the Write Data Register provided that a WDS pulse occurs during the presently written byte. If WDS is not pulsed, the next byte to be written will be extracted from the Write Fill Register.
24	GND	Ground	Ground
25	WDU	Write Data Underrun	The Write Data Underrun output is set active-high when the processor fails to respond to the WDR signal within one byte time. When WDU occurs the data written on the disk is extracted from the Write Fill Register. This line is reset when WDS is pulsed.
26	$V_{\text {DD }}$	Power Supply	-12 volt supply
27-34	WD0-WD7	Write Data Input	The Write Data Input lines present information to the Write Data Register, the Write Fill Register, and the Sync Byte Register under control of their respective strobes. The strobes operate independently of each other. The LSB should always be placed on WDD.
35	RG	Read Gate	This input should be pulsed to a high-level after power turn on to reset RDR, SBD, and RDL to an inactivelow level. The high-to-low transition of RG sets the read logic into the sync byte search mode. In this mode the serial Read Data stream is examined on a bit by bit basis until a sync byte is found. A sync byte is found by definition when the contents of the Sync Byte Register and the Read Input Register are identical. When this occurs the SBD output is set active-high. The sync byte just read is then transferred into the Read Data Register; RDR is set high, and the read logic is set into the byte mode. In this mode each byte read is transferred into the Read Data Register.
36	SBD	Sync Byte Detected	The Sync Byte Detected output is set active-high each time the byte loaded into the Read Data Register is identical to the byte in the Sync Byte Register. This output is reset low the next time the Read Data Register is loaded with a byte which is not a sync byte.

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	SYMBOL	NAME	FUNCTION
37	FBS	Fill Byte Strobe	The Fill Byte Strobe is an active-high input strobe which loads the byte on the WD \varnothing-WD7 lines into the Write Fill Register.
38	WCK	Write Clock	Each positive-going edge of this clock shifts one bit out of the Write Output Register onto WD.
39	WDS	Write Data Strobe	The Write Data Strobe is an active-high input strobe which loads the byte on the WD \emptyset WD lines into the Write Data Register.
40	SBS	Sync Byte Strobe	The Sync Byte Strobe is an active-high input strobe which loads the byte on the WD W-WD7 lines into the Sync Byte Register.

ADDITIONAL TIMING INFORMATION (Typical Propagation Delays)

MAXIMUM GUARANTEED RATINGS＊

Operating Temperature Range $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range ．．．$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Load Temperature（soldering， 10 sec．）．．$+325^{\circ} \mathrm{C}$
Positive Voltage on any Pin，Vcc．．． 0.3 C
Negative Voltage on any Pin，Vcc
$-25 \mathrm{~V}$

> *Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\wedge}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V} \pm 5 \% \mathrm{~V}_{\mathrm{DD}}=-12 \mathrm{~V} \pm 5 \%$ ，unless otherwise noted）

Parameter	Min．	Typ．	Max．	Unit	Conditions
D．C．CHARACTERISTICS					
input voltage levels Low－level， V_{I} High－level， V_{H}	$\begin{gathered} V_{C c}-1.5 \end{gathered}$		0.8 V cc	V	
OUTPUT VOLTAGE LEVELS Low－level，Vo High－level， V $_{\text {н }}$	2.4	0.2 4.0	0.4	V	$\begin{aligned} & \mathrm{I}_{\mathrm{oc}}=1.6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \end{aligned}$
INPUT CURRENT Low－level，IL			1.6	mA	See note 1
OUTPUT CURRENT Leakage，lıo Short circuit，los＊＊			$\begin{aligned} & -1 \\ & 10 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \mathrm{RDE}=\mathrm{V}_{\mathrm{IL}}, 0 \leq \mathrm{V}_{\text {out }} \leq+5 \mathrm{~V} \\ & \mathrm{~V}_{\text {out }}=0 \mathrm{~V} \end{aligned}$
INPUT CAPACITANCE All inputs， $\mathrm{C}_{\text {IN }}$		5	10	pF	$\mathrm{V}_{\mathrm{iN}}=\mathrm{V}_{\mathrm{cc}}, \mathrm{f}=1 \mathrm{MHz}$
OUTPUT CAPACITANCE All outputs，Cout		10	20	pF	$\mathrm{RDE}=\mathrm{V}_{\mathrm{LL}}, \mathrm{f}=1 \mathrm{MHz}$
POWER SUPPLY CURRENT Icc IDo			$\begin{aligned} & 28 \\ & 28 \end{aligned}$	$\underset{m A}{m A}$	All outputs $=\mathrm{V}_{\mathrm{OH}}$
A．C．CHARACTERISTICS					$\mathrm{T}_{\wedge}=+25^{\circ} \mathrm{C}$
CLOCK FREQUENCY	DC		250	KHz	RCK，WCK
PULSE．WIDTH Clock	1			$\mu \mathrm{S}$	RCK，WCK
Read Gate	1			$\mu \mathrm{S}$	RG ${ }^{\text {R }}$
Write Data Strobe	200			ns	WDS
Fill Byte Strobe	200			ns	FBS
Sync Byte Strobe	200			ns	SBS
Read Data Request Reset	200			ns	RDRR
INPUT SET－UP TIME Write Data Inputs	0			ns	WDØ－WD7
INPUT HOLD TIME Write Data Inputs	0			ns	WDØ－WD7
STROBE TO OUTPUT DELAY Read Data Enable		180	250	ns	Load $=20 \mathrm{pf}+1$ TTL input RDE：$T_{\text {PDI }}, T_{\text {PDo }}$
OUTPUT DISABLE DELAY		100	250	ns	RDE

＊＊Not more than one output should be shorted at a time．

NOTES：

1．Under steady state condition no current flows for TTL or MOS interfacing．
A switching current of 1.6 mA maximum flows during a high to low transition of the input．
2．The tri－state output has 3 states：
1）low－impedance to $V_{c c}$
2）low－impedance to GND
3）high－impedance $O F F \cong 10 \mathrm{M}$ ohms
The OFF state is controlled by the RDE input．

CCDH TIMING DIAGRAM

NOTE 1
The Write Output Register is loaded with the next byte at the positive clock transition corresponding to the leading edge of the last bit of the current byte on the WD output. WDR is set high approximately two microseconds after this clock transition. If it is desired that the next byte be extracted from the Write Data Register the leading edge of the WDS should occur at least one microsecond prior to this clock transition.

NOTE 2
In order to avoid an RDL indication the leading edge of the RDRR pulse should occur at least one microsecond prior to the negative clock transition corresponding to the center of the first bit after the last bit of the previous byte on the RD input.

NOTE 3
The RDL, SBD and RDO-RD7 output are set to their correct levels approximately two microseconds after the negative clock transition corresponding to the center of the first bit after the last bit of the previous byte on the RD input. The RDR output is set high at the next negative clock transition.

TYPICAL CCC 3500 INTERFACE TO PROCESSOR AND CASSETTE/CARTRIDGE DRIVE

Package Outlines

14, 16, 18, 20 PIN HERMETIC PACKAGE

	14 LEAD		16 LEAD		18 LEAD		20 LEAD	
DIM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
A	.670	.760	.790	.810	.885	.915	.965	.995
C		.175		.175		.175		.175
D	.015	.021	.015	.021	.015	.021	.015	.021
F	.048	.060	.048	.060	.048	.060	.048	.060
G	.090	.110	.090	.110	.090	.110	.090	.110
J	.008	.012	.008	.012	.008	.012	.008	.012
K	.100		.100		.100		.100	
L	.295	.325	.295	.325	.295	.325	.295	.325
M		10°		10°		10°		10°
N	.025	.060	.025	.060	.025	.060	.025	.060

24, 28, 40 LEAD HERMETIC DIP

DIM	24 LEAD		28 LEAD		40 LEAD	
	MIN	MAX	MIN		MAX	MIN
MAX						
B	1.188	1.212	1.386	1.414	1.980	2.020
B	.568	.598	.568	.598	.568	.598
C	.590	.610	.590	.610	.590	.610
D	.070	.090	.070	.090	.070	.090
E	.025	.060	.025	.060	.025	.060
F	.100		.100		.100	

14 LEAD PLASTIC DIP

16 LEAD PLASTIC DIP

18 LEAD PLASTIC DIP

24, 28, 40 PIN PLASTIC DIP

| | 24 LEAD | | 28 LEAD | | 40 LEAD | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DIM | MIN | MAX | MIN | MAX | MIN | MAX |
| A | 1.245 | 1.255 | 1.445 | 1.455 | 2.045 | 2.055 |
| C | .145 | .155 | .145 | .155 | .145 | .155 |
| D | 018 TYP | | .018 TYP | | .018 TYP | |
| F | .060 TYP | | .060 TYP | | .060 TYP | |
| G | .099 | .101 | .099 | .101 | .099 | .101 |
| J | .010 | .014 | .010 | .014 | .010 | .014 |
| K | .120 | | .120 | | .120 | |
| L | .645 | .675 | .645 | .675 | .645 | .675 |
| M | .210 | | .210 | | .210 | |

SALES REPRESENTATIVES

Domestic and International

ALABAMA
EMA
2309 Starmount Circle Huntsville, AL 35801
(205) 533-6640

ARIZONA

Mercury Eng. Sales, Inc.
6031 E. Windsor Ave
P.O.B. 3130

Scottsdale, AZ 85257
(602) 949-5054

ARKANSAS
Kruvand Assoc., Inc.
10300 North Central Exp.
Dallas, TX 75231
(214) 691-4592

CALIFORNIA (Southern) Babco Associates 3723 Birch Street Newport Beach, CA 92660 (714) 751-8375
(Northern)
NOR-CAL Associates
1121 San Antonio Road
Palo Alto, CA 94303
(415) 961-8121

COLORADO
D/Z Associates, Inc. 70 West 6th Avenue Suite 109
Denver, CO 80204
(303) 534-3649

CONNECTICUT
Orion Group
27 Sunset Circle
(Westlake)
Guilford, CT 06437
(203) 621-5941

Orion Group
26 Highwood Ave.
Southington, CT 06489
(203) 621-5941

DELAWARE
QED Electronics, Inc 300 North York Road
Hatboro, PA 19040
(215) 674-9600

FLORIDA
"C" Associates 2500 Hollywood Blvd.
Suite 302
Hollywood, FL 33020
(305) 922-5230
(305) 922-8917
"C" Associates
249 Maitland Ave.
Suite 317
Altamonte Springs, FL 32701
(305) 831-1717

GEORGIA

EMA

6755 Peach Tree Ind. Blvd.
Quail Hollow Executive Park
Suite No. 103
Atlanta, GA 30360
(404) 449-9430

IDAHO
SDR ${ }^{2}$ Products \& Sales Co.
14042 N.E. 8th Street
Bellevue, WA 98007
(206) 747-9424

ILLINOIS

Mar-Con
4836 Main Street
Skokie, IL 60076
(312) 675-6450

INDIANA

Mar-Con
4836 Main Street
Skokie, IL 60076
(312) 675-6450

IOWA
Dy-Tronix Inc.
Suite 201
23 Twixt Town Rd. E.
Cedar Rapids, IA 52402
(313) 377-8275

KANSAS

Dy-Tronix Inc.
11190 Natural Bridge Road Bridgeton, MO 63044
(314) 731-5799

Dy-Tronix Inc.
Suite 202
13700 East 42nd Terrace Independence, MO 64055 (816) 373-6600

KENTUCKY

G \& H Sales Company
10599 Chester Road
Cincinnati, OH 45215
(513) 771-8231

LOUISIANA
Kruvand Assoc., Inc.
7333 Harwin
Suite 120
Houston, TX 77036
(713) 780-9710

MAINE
Contact Sales, Inc.
101 Cambridge Street Burlington, MA 01803
(617) 273-1520

MARYLAND

Stemler Associates, Inc.
6707 Whitestone Road Baltimore, MD 21207 (301) 944-8262

MASSACHUSETTS
Contact Sales, Inc. 101 Cambridge Street Burlington, MA 01803
(617) 273-1520

MICHIGAN

A. Blumenberg Assoc., Inc. 25900 Greenfield Suite 222
Oak Park, MI 48237
(313) 968-3230

MINNESOTA

TWC

763 Torchwood Drive New Brighton, MN 55112 (612) 636-1770

MISSISSIPPI
EMA
2309 Starmount Circle
Huntsville, AL 35801
(205) 533-6640

MISSOURI

Dy-Tronix Inc 11190 Natural Bridge Road Bridgeton, MO 63044
(314) 731-5799

Dy-Tronix Inc.
Suite 202
13700 East 42nd Terrace Independence, MO 64055 (816) 373-6600

MONTANA
SDR ${ }^{2}$ Products \& Sales Co. 14042 N.E. 8th Street
Bellevue, WA 98007
(206) 747-9427

NEBRASKA

Dy-Tronix Inc.
11190 Natural Bridge Road Bridgeton, MO 63044
(314) 731-5799

Dy-Tronix Inc.
Suite 202
13700 East 42nd Terrace Independence, MO 64055

NEW JERSEY

(Northern)
Lorac Sales Electronics, Inc. 580 Valley Rd.
Wayne, NJ 07470
(201) 696-8875

(Southern)

QED Electronics, Inc. 300 North York Road
Hatboro, PA 19040
(215) 674-9600

NEW HAMPSHIRE
Contact Sales, Inc.
101 Cambridge Street Burlington, MA 01803
(617) 273-1520

NEW MEXICO
Mercury Eng. Sales, Inc. 6031 E. Windsor Ave. P.O.B. 3130

Scottsdale, AZ 85257
(602) 949-5054

NEW YORK

Lorac Sales Electronics, Inc. 550 Old Country Rd.
Room 410
Hicksville, NY 11801
(516) 681-8746
(Upstate)
L-Mar Assoc., Inc.
216 Tilden Drive
E. Syracuse, NY 13057
(315) 437-7779

L-Mar Assoc., Inc.
P.O. Box 7945 Lyell Station Rochester, NY 14606
(716) 328-5240

L-Mar Assoc., Inc.
372 Second Ave.
Vestal, NY 13850
(607) 748-1482

NORTH DAKOTA

TWC
763 Torchwood Drive
New Brighton, MN 55112
(612) 636-1770

OHIO

G \& H Sales Co.
10599 Chester Rd.
Cincinnati, OH 45215
(513) 771-8231

G \& H Sales Co.
P.O. Box 91

Grove City, OH 43123
(614) 878-1128

OKLAHOMA
Kruvand Assoc., Inc. 10300 North Central Exp. Dallas, TX 75231
(214) 691-4592

OREGON

SDR ${ }^{2}$ Products \& Sales Co. 14042 N.E. 8th Street Bellevue, WA 98007
(206) 747-9424

PENNSYLVANIA
(Eastern)
QED Electronics, Inc. 300 North York Road Hatboro, PA 19040
(215) 674-9600
(Western)
G \& H Sales Co.
10599 Chester Road
Cincinnati, OH 45215
(513) 771-8231

RHODE ISLAND
Contact Sales, Inc. 101 Cambridge Street Burlington, MA 01803 (617) 273-1520

SOUTH DAKOTA

TWC
763 Torchwood Drive
New Brighton, MN 55112
(612) 636-1770

TENNESSEE

EMA
11305 Silver Spring Drive
Knoxville, TN 37922
(615) 966-1286

TEXAS

Kruvand Assoc., Inc 10300 North Central Exp.
Dallas, TX 75231
(214) 691-4592

Kruvand Assoc., Inc.
7333 Harwin
Suite 120
Houston, TX 77036
(713) 780-9710

Area Salas
Mancgement © Ithers
EASTERN:AMEA
35 Marcus Bobllovard hauppauga, NY/1787 (516)272-5100

VESTERM AREA
Turl Enterprtses: 2172 Dupont Drive Patio blocs.
Irvina, ca 92715
(24) $955-155^{5}$

Wiv 910 -505-2006

UTAH
D/Z Associates, Inc.
2520 South State Street
Suite 167
Salt Lake City, UT 84115
(801) 486-4251

VERMONT
Contact Sales, Inc.
101 Cambridge Street
Burlington, MA 01803
(617) 273-1520

VIRGINIA

Stemler Associates, Inc.
206 N. Washington St.
Alexandria, VA 22314
(703) 548-7818

WASHINGTON
SDR2 Products \& Sales Co.
14042 N.E. 8 th Street
Bellevue, WA 98007
(206) 747-9424
(206) 624-2621

WASHINGTON D.C.
Stemler Associates, Inc.
6707 Whitestone Road
Baltimore, MD 21207
(301) 944-8262

WEST VIRGINIA
G \& H Sales Co.
10599 Chester Road
Cincinnati, OH 45215
(513) 771-8231

WISCONSIN

(Northern)
twC
763 Torchwood Drive
New Brighton, MN 55112
(612) 636-1770
(Southern)
Mar-Con
4836 Main Street
Skokie, IL 60076
(312) 675-6450

WYOMING
SDR ${ }^{2}$ Products \& Sales Co.
14042 N.E. 8th Street
Bellevue, WA 98007
(206) 747-9424

mational Canada

ITRALIA

. Systems \& Comp., Pty., Ltd. rospect Road
pect, South Australia 5082 895

BTRIA
tronische Bavelmente raete
erstrasse 4/13
10 Vienna
-7318153

20NA
ina Electronic Dist.
N.27th Lane
nix, AZ 85009
!) 269-6201
.IFORNIA
3.E. Electronics

2 Assembly Lane
tington Beach, CA 92649
) 894-1303
) 598-9633
omat Electronics, Inc.
F Mt. View-Alviso Rd.
iyvale, CA 94086
b) 734-1900

CO
3 W. Jefferson Blvd.
er City, CA 90230
i) 827-2224

CO
Balboa Avenue
3106
Diego, CA 92111
) 292-7349
tern Microtechnology Sales
0 Bubb Road
ertino, CA 95014
b) $\mathbf{7 2 5 - 1 6 6 0}$

3/West, Inc.
Hawk Circle
neim, CA 92807

1) 632-6880

LORADO

Industries
tronic Distributor Div.
W. 48th Avenue
atridge, CO 80033
3) 424-1985
omat Electronics, Inc.
| Broadway
ver, CO 80221
3) 427-5544

JRIDA
omat Electronics, Inc.
Calumet St.
irwater, FL 33512
b) $443-4514$
omat Electronics, Inc.
loodlake Drive West
e 3, Bidg. A
? Bay (Melbourne), FL 32905
5) 725-4520
omat Electronics, Inc.
N.W. 20th Ave

Lauderdale, FL 33309
5) 971-7160

BENELUX COUNTRIES
Famatra Benelux
P.O. Box 721

Ginnekenweg 128
Breda
Netherlands
(76) 133457

CANADA (QUEBEC)
R.F.Q. Ltd.
P.O. Box 213

Dollard Des Ormeaux Quebec, Canada H9G2H8
(514) 626-8324

CANADA (ONTARIO)
R.F.Q. Ltd.

385 The West Mall
Suite 209
Etobicoke, Ontario
Canada M9C1E7
(416) 626-1445

DENMARK
EGA A/S
Hjalmar Brantings Vei6
Osio 5 Norway
(2) 221900

EASTERN PACIFIC
Teijin Advanced
Products Corp.
1-1 Uchisaiwai-Cho
2 Chome, Chiyoda-Ku
Tokyo 100 Japan
506-4670
FINLAND
Havulinna Oy
P.O. Box 468

SF 00101 Helsinki 10
Finland
(90) 661-451

FRANCE
Tekelec Airtronic
B.P. No. 2

Cite Des Bruyeres
Rue Carle Vernet
92310 Serves
027-75-35
GREAT BRITAIN
Rastra Electronics Ltd. 275-281 King Street
Hammersmith
London W6 9NF
(1) 7483143

ITALY
AMD Elettronica S.R.L
VIA G. Pascoli, 70/4
20133 Milano
TLX: 843/311 250

NORWAY
EGA ASS
Hjalmar Brantings Vei6
Oslo 5
(2) 221900

SWEDEN

EGAASS
Hjalmar Brantings Vei6
Oslo 5 Norway
(2) 221900

SWITZERLAND
Dimos AG
Badener Strasse 701
8048 Zurich
(51) 626140

WEST GERMANY
Atlantik Elektronik GmbH
Hofmannstrasse 20
8000 Munich 70
(89) 7853112

DISTRIBUTORS Domestic and International

Hammond Electronics, Inc. P.O. Box 3671

1230 West Central Blvd.
Orlando, FL 32805
(305) 849-6060

ILLINOIS
Diplomat Electronics, Inc 2451 Brickvale Drive
Elk Grove Village, IL 60007
(312) 595-1000

Mar-Con
4836 Main Street
Skokie, IL 60076
(312) 675-6450

MARYLAND
Whitney Distributors, Inc. 6707 Whitestone Road
Baltimore, MD 21207
(301) 944-8080

Diplomat Electronics, Inc. 9150 Rumsey Rd.
Columbia, MD 21045
(301) 428-3287

MASSACHUSETTS
Diplomat Electronics, Inc
559 East Street
Chicopee, MA 01020
(413) 592-9441

Diplomat Electronics, Inc.
Kuniholm Drive
Holliston, MA 01746
(617) 429-4120

RC Components
10 Cornell Place
Wilmington, MA 01887
(617) 657-4310

Zeus/New England, Inc.
16 Adam Street
Burlington, MA 01803
(617) 273-0750

MICHIGAN

Diplomat Electronics, Inc. 32708 W. Eight Mile Road Farmington, MI 48024
(313) 477-3200

MINNESOTA

Diplomat Electronics, Inc. 3816 Chandler Drive
Minneapolis, MN 55421
(612) 788-8601

MISSOURI
Diplomat Electronics, Inc.
2725 Mercantile Drive
St. Louis, MO 63144
(314) 645-8550

NEW JERSEY

Diplomat Electronics, Inc. 137 Gaither Drive
Mt. Laurel, NJ 08059
(609) 234-8080

Diplomat Electronics, Inc. 490 South Riverview Dr.
Totowa, NJ 07512
(201) 785-1830

NEW JERSEY (Con't)
Falk-Baker Assoc.
382 Franklin Ave.
Nutley, NJ 07110
(201) 661-2430
(201) 661-2431

NEW MEXICO

Bell Industries
Century Electronic Div.
11728 Linn N.E.
Albuquerque, NM 87123
(505) 292-2700

NEW YORK

Diplomat Electronics, Inc. 303 Crossways Park Drive Woodbury, NY 11797
(516) 921-9373

L-DUN Electronics 315 Mount Read Blvd. P.O. Box 7945

Rochester, NY 14606
(716) 328-0830

Zeus Components Corp. 401 Broad Hollow Road
Suite L-150
Melville, NY 11746
(516) 752-9551

Zeus Components, Inc.
500 Executive Blvd.
Elmsford, NY 10523
(914) 592-4120

NORTH CAROLINA

Hammond Electronics, Inc. 2923 Pacific Ave.
P.O. Box 21728

Greensboro, NC 27406
(919) 275-6391

PENNSYLVANIA

QED Electronics, Inc 300 North York Road Hatboro, PA 19040
(215) 674-9600

SOUTH CAROLINA
Hammond Electronics, Inc. 100 Augusta Rd.
P.O. Box 2308

Greenville, SC 29601
(803) 233-4121

TEXAS
Quality Components, Inc. 4303 Alpha Road
P.O. Box 401645

Dallas, TX 75240
(214) 387-4949

Quality Components, Inc. 6126 Westline Road Houston, TX 77036
(713) 772-7100

Quality Components, Inc.
10201 McKalla Place
Suite D
Austin, TX 78758
(512) 838-0551

UTAH
Bell Industries
Electronic Distributor Div. 2258 S. 2700 W.
Salt Lake City, UT 84119
(801) 972-6969

Diplomat Electronics, Inc. 3007 S.W. Temple
Salt Lake City, UT 84115
(801) 486-4134

International and Canada

AUSTRALIA
A.J.F. Systems \& Comp. Pty., Ltd.
44 Prospect Road
Prospect, South Australia 5082
516895
AUSTRIA
Elektronische Bavelmente +Geraete
Singerstrasse 4/13
A-1010 Vienna
222-7318153
BENELUX COUNTRIES
Famatra Benelux
P.O. Box 721

Ginnekenweg 128
Breda
Netherlands
(76) 133457

CANADA

Future Electronics Inc.
5647 Ferrier Street
Montreal, Quebec H4P 2 K 5
(514) 735-5775

TWX 610-421-3251,
-3500, -4437, -3587
Future Electronics Inc. 4800 Dufferin Street
Downsview, Ontario M3H 5S8
(416) 663-5563

Future Electronics Inc.
Baxter Center
1050 Baxter Road
Ottawa, Ontario
K2C 3P2
(613) 820-9471

Conti Electronics Limited
5656 Fraser Street
Vancouver V5W 2Z4
(604) 324-0505

TWX 610-922-6037
DENMARK
EGA A/S
Hjalmar Brantings Vei6
Osio 5 Norway
(2) 221900

FRANCE
Tekelec Airtronic
B.P. No. 2

Cite Des Bruyeres
Rue Carle Vernet
92310 Serves
027-75-35
GREAT BRITAIN
Rastra Electronics Ltd.
275-281 King Street
Hammersmith
London W69NF
(1) 7483143

ITALY
Cramer Italia S.P.A.
VIA C. Colombo, 134
00147 Roma
TLX: 843/62 517

JAPAN

Teijin Advanced Prod. Corp.
1-1 Uchisaiwai-Cho
2 Chome, Chiyoda-Ku
Tokyo 100 Japan
506-4670
NORWAY
EGA A/S
Hjalmar Brantings Vei6
Oslo 5
(2) 221900

SWEDEN

EGAA/S

[^0]: ${ }^{(3)}$ May be custom mask programmed

[^1]:) For future release

[^2]: Note 1: If $\overline{R E}$ goes low after $\overline{\mathrm{ACKI}}$ goes low, the delay will be from the falling edge of $\overline{\mathrm{RE}}$.

[^3]: *If pin 2 is taken to a logic 1 the COM 1863 or the COM 8018 will operate in a 32 X clock mode. If pin 2 is connected to -12 V , GND, a valid logic zero, or left unconnected, the 32 X clock feature is disabled, and UART will operate in a 16X clock mode.

[^4]: If the RSI line remains spacing for a $1 / 2$ bit time, a genuine start bit is verified. Should the line return to a

[^5]: Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and to supply the best product possible.

[^6]: ${ }^{3}$)May be custom mask programmed

[^7]: * R1 ($680 \mathrm{~K} \Omega$), C 1 ($.001 \mu \mathrm{f}$) provide approx. 1.5 ms delay
 ** R2 (100K Ω), C2 (50 pf) provide 50 KHz clock frequency (see figure 6)

[^8]: **Typical values are at $+25^{\circ} \mathrm{C}$ and nominal voltages.

