SPIRIT-30

APPLICATION NOTES

Sonitech International Inc
14 Mica Lane, Suite 208
Wellesley, MA 02181, USA

Copyright (C) 1989 Sonitech International Inc.

This publication, or parts thereof, may not be reproduced in any form, by any
method, for any purpose, without written permission of Sonitech International Inc.

SPIRIT-30
APPLICATION NOTES

This packet contains the following SPIRIT-30 Application Notes: |
______Porting Application Program onto SPIRIT-30
_____Developing Application Program using SPIRIT-30
______How to speed up applications using SPIRIT-30 and TMS32OC30
_____Serial I/O with AIB-2
_____Parallel I/0 interfacing with SPIRIT-30

_____Other

PORTING APPLICATION PROGRAM ONTO SPIRIT-30

This document describes my experiences of dealing with the SPIRIT-30 board while
writing an application program. I have an application program, which creates fractal
images. I have the program written in Microsoft C, and it works with a CGA or an EGA
graphics adapter. The PC program is called IFC.EXE. I would like to port this program
to SPIRIT-30 board. With this goal in mind, couple of ounces of some magic potion,
and a positive attitude towards computers, I set to do the task. All the files referred to
in this application note are available on the disk named ’APPLICATION NOTE’.

To begin with, modify your C:\AUTOEXEC.BAT file to contain the line

SET SPIRIT DIR = C:\SPIRIT30
(SPIRIT30 is the base directory for the SPIRIT-30 software. If you choose not to have
this name, give your own base directory name). Now, put the disk called
APPLICATION NOTE in your disk drive A: and type A:INSTALL. This will install the
necessary software in the directory C:\SPIRIT30\APPL, where C:\SPIRIT30 is the
base directory as specified in the AUTOEXEC.BAT.

PRELIMINARIES

It is useful to have the following manuals at hand while writing the applications for the
SPIRIT-30.

[1]. The SPIRIT-30 Run Time Library documentation
in the SPIRIT-30 Technical Reference Manual
[2]. The TMS320C30 Compiler User’s Guide
[3]. The TMS320C30 Assembly Language Tools User’s Guide
4

Go through these manuals at least once to be qualified as a C-30 application
programmer.

Make sure that the installation of the TMS320C30 compiler and the other utilities is
done right. In particular check to see if the PATH environment variable is updated to
include the path of the directory containing the tools, and the C_DIR variable is
appropriately set.

STEP 0:

Pray to your favorite spirit. STEPS 1 through 3 deal with writing the C code which will
be compiled using the TMS320C30 compiler. STEPS 5§ through 7 deal with creating the
PC side of the software for this application.

STEP 1:

I have extracted the function ifc() from file ifc.c, and put it in the file difc.c. The prefix
’d’ is added to indicate that this program would reside on the DSP.

Porting Application Program onto SPIRIT-30 - 1

STEP 2:

Later, I added the ’monitor’ program to the difc.c. The result of this operation is in the
file DIFC.C in the application note disk. This now is the entire source file for the DSP
resident code. Take printout of this file. The main() does the following.

1. The DSP loops while checking the semaphor memory location’_wait’ = 0.

2.If wait==IFC, a call to ifc() is made. When the ifc() is executed, the control comes
back to main(). The semaphor wait is asserted to 0. This assertion of wait=0 by the
DSP indicates to the host (PC) that the execution of ifc() is over. The DSP loops again
while _wait == 0. This is one way of writing the monitor program.

An% memory location on the board which needs I/O with the PC must be declared as a
global variable. In the file DIFC.C, all such variables are declared as globals.

Read the file DIFC.C, especially the comments in the program, which are self-
explanatory. :

STEP 3:

Compile and link the program difc.c. Use the following commands:
c30c difc <enter> /* COMPILE difc.c USING THE C-30*/
/* COMPILER */

Ink30 demo.cmd <enter> /* LINK USING THE MEMORY */
/* MAP SPECIFIED IN demo.cmd* /

The file demo.cmd specifies that the executable DSP code is in the file difc.out. This
step completes the creation of the DSP resident code. Read the file difc.cmd. The
object modules linked along with difc.obj, and their contents are as follows

vectors.obj: Source file - vectors.asm
This file contains the code which
resides at the location OH in the
memory. This code is executed at reset.
dspieee.obj: Source file - dspieee.c
Convert an array of numbers to/from TMS
from/to IEEE floating point formats.
convert.obj: Source file - convert.asm
Convert formats of single numbers.
Called by dsp30() and 1eee30().
waitst.obj: Source file - waitst.c
Program the TMS320C30 for a given number
of wait states. At reset, the chip runs
with a default of 7 wait states.

Porting Application Program onto SPIRIT-30 - 2

STEP 4:

Create the PC side software. Let us divide the PC resident software into three modules.
Module 1 is the highest level module, which contains main() on the PC side. This
module handles user I/O, sets up the graphics and handles other DSP-independent
functions. In our example, this module is called drawfern.c. Note that this module is
really the program ifc.c, but it does not have the function ifc(), because we intend to
have this function reside on the DSP. The module 1 contains the function calls initifc()
and xifc(), which form Module 2 and Module 3 respectively.

STEP §:

Create Module 2. This module is in the file initifc.c. The Module 2 contains the
function initifc(), which does the following.

1. Download the code in the file difc.out to the SPIRIT
board.

2. Find the addresses of the various variables in the
program difc.c residing on the SPIRIT.

3. Start the DSP program.

STEP 6:

Create Module 3. This module is in the file xifc.c. The Module 3 contains the function
xifc(), which is the driver for the DSP resident function ifc(). The function xifc() does
the following.

1. Download the input arguments needed by the DSP
resident function ifc() to the SPIRIT board.

2. Ask the DSP to execute ifc() by changing the memory
location _wait =IFC.

3. Wait till ifc() execution is over by polling on _wait.

4. Upload the results of execution of ifc() from SPIRIT
to PC.

STEP 7:

Compile and link the PC software. This is done by using the microsoft MAKE utility.
The makefile is called FERNMAKE. This file compiles the modules 1,2, and 3 if
necessary and links them together along with the run time library S30TOOLS.LIB. The
file drawfern.exe containing the PC executable code is created.

Porting Application Program onto SPIRIT-30 - 3

DEVELOPING APPLICATION PROGRAM USING SPIRIT-30

This document describes the steps I followed in developing an application using
SPIRIT-30 board. I would like to develop a fast floating point matrix multiplication
program using SPIRIT-30. All the files referred to in this application note are included
along with this note.

PRELIMINARIES

It is useful to have the following manuals at hand while writing the applications for the
SPIRIT-30.

[1]. The SPIRIT-30 Run Time Library documentation in
the SPIRIT-30 Technical Reference Manual.
[2]. The TMS320C30 Compiler User’s Guide
[3]. The TMS320C30 Assembly Language Tools User’s Guide

In the rest of this document these manuals will be referred to by their numbers.

I have to create two separate programs, one executing on PC, and one executing on
SPIRIT-30. STEPS 1-2 deal with developing PC side software. STEPS 3-5 deal with
developing software which resides on SPIRIT-30 (DSP program).

STEP 1:

I start writing the PC side software - "matrix.c". In order to interact with the SPIRIT-30,
I need to use the SPIRIT-30 Run Time Library routines. So I include "s30tools.h", which
contains function prototypes of the library routines. I have the basic algorithm:
Download the DSP program, reset the TMS320C30, download the matrices, signal DSP
program to start computation, wait for DSP program to complete multiplication, upload
the resulting matrix and print the results. A simple two way handshaking protocol, isn’t
it? Given below are the details about how to perform these steps. Have a copy of the
file "matrix.c" in hand while you go through the detailed description

(Step 1 of matrix.c)

First thing you need to do is to download the DSP program. What is so special about
downloading DSP program compared to downloading data? The DSP program is
nothing but an executable file, which can be executed by C30. This file is called 'COFF’
file (refer [2]) and has several sections - text, data, etc. Each of these needs to be loaded
at appropriate memory locations on SPIRIT-30. There is a library routine called
"dsp_dl_exec()" (refer [1]) which will do this for you.

Developing Application Program using SPIRIT-30 - 1

(Step 2 of matrix.c)

Now you have downloaded DSP dprogram onto SPIRIT-30. But how to start executing
it? Just reset the C30 using the "dsp_reset()" library routine. Resetting C30 will pass
control to the program pointed by the vector in memory location OH on SPIRIT-30. The
DSP *COFF file contains a section called "vectors" with loading address 0, which
contains the reset vector, and this is downloaded by dsp_dl_exec() routine.

(Steps 3,4 of matrix.c)

The DSP program has started executing, and is waiting for the PC side software to
download the matrices which need to be multiplied. You can download data using the
library routine "dsp_dl long_array()" (refer [1]). But the question is, where (on SPIRIT-
30 memory) to download the data? So the next step is to get the starting addresses of
the matrices used by DSP program. This is IPossible only if the matrices are declared as
global variables in DSP program (see STEP 3), in which case the information about
these variables is given in the "COFF file. The dsp_dl exec() routine not only loads the
file onto SPIRIT-30 memory but also prepares a symbol table of global variables. We
have a library routine called "get laddr()" which, when given the global variable name,
returns the starting address of this variable. So you need to know the variable names of
the matrices used by DSP program. Use get _laddr() routine to get the starting address,
and use this address to download the data.

(Step 5 of matrix.c)

Now signal the DSP program to start computation. This is similar to steps described
above. Get the address of the variable ’flag’, and set the flag by downloading a value
(say) 1 in that location.

(Step 6 of matrix.c)

Wait for DSP program to complete the task. Keep polling the variable ’flag’ by
uploading and checking the value. The DSP program must reset the flag after
completing the task (see STEP 3).

(Step 7 of matrix.c)

Get the starting address of the resulting matrix, and upload the values.

STEP 2:

In STEP 1 we created the PC side software source file matrix.c. Now we have to create
the executable file. First choose the memory model, say X (L for large, M for medium,
S for small). Compile using the command

cl /c /AX matrix.c
where X in /AX is the first letter of the memory model. Then
link using the command

link matrix,,,s30Xtool
where X is the first letter of memory model. s30Xtool is the SPIRIT-30 Run Time
Library.

Developing Application Program using SPIRIT-30 - 2

STEP 3:

My aim is to develop a DSP program which does fast matrix multiplication. So I
organize DSP program into two modules, one written in ’C’ which has the control
software, and other written in C30 Assembly, which does the actual computation. Let us
go through the steps in developing module 1, which I call mult.c. Have a copy of the file
"mult.c" in hand before going through the details.

(Step 1 of mult.c)

In order to achive good performance, the first thing to do is to program C30 to "zero
wait state’ for fast memory access. On reset, the C30 comes up with seven wait states,
which is extremely slow. So we have to specifically program C30 to zero wait states. Use
waitst() routine of waitst.obj.

(Step 2 of mult.c)

Before performing the computation, we need to get the values of the input matrices. In
this case the values are downloaded by the PC side software. So wait for the PC to
initialize the matrices and set the flag. Make sure to declare the flag and matrices as
global variables, so that PC can get the starting addresses of these variables (see STEP
1) and work with these variables using download/upload librarK routines. If you declare
them local, they would be allocated on stack, and PC software has no way of finding out
the addresses. Also make sure to initialize the 'flag’ variable to zero (reset).

(Step 3 of mult.c)

Now PC has given signal to start computation. Can we go ahead and start

multiplicaton? NO! Note that we are working with floating point matrices. PC uses

IEEE format to represent floating point numbers, whereas C30 uses it own format,

which we call TI format. So before we do anything with the numbers, convert them to

'(I‘I Eorma;. Use "dsp30()" routine from "convert.obj" to do the necessary conversion
refer [2]).

(Step 4 of mult.c)

Now you are all set to start the computation. This is the critical part of DSP program.
Use an assembly routine compute() from module 2 to perform a fast multiplication.
Make sure to pass proper parameters.

(Step 5 of mult.c)

We have the resulting matrix now. Can we signal the PC software that computation is
done? NO! First convert the floating point numbers back to IEEE format using
"ieee30()" routine from "dspiee.obj". Note that if you are working with integers you
don’t need to do any conversions, because both PC and C30 use the same
representation for integers.

(Step 6 of mult.c)

Everything is done, so reset the ’flag’ to signal PC software.

Developing Application Program using SPIRIT-30 - 3

STEP 4:

The only thing remaining now is to develop module 2 of DSP program - the fast
assembly routine "compute()", which performs matrix multiplication. Here are some
clues for developing a ’C’ callable assembly routine. First make sure to declare the
function as global.

Note that the arguments to the function are pushed onto the stack in the reverse order.
When control comes to your assembly routine, the stack pointer will be pointing to the
return address. The one just below the return address would be the first parameter.
Have a look at the file "compute.asm".

The code produced by ’C’ compiler makes use of the registers AR3-AR7 and R4-R7. So
if you need to use these as scratch registers, you must save them before you modify
them, and restore them before you return. In "compute.asm”, AR4 and ARS are being
used by the routine.

Refer to the note on "How to speed up Applications using SPIRIT-30" to get tips on
developing efficient code.

STEP 5:

The source files for DSP program are ready now. Now we have to create the C30
executable '"COFF file. Use the command

c30c mult
to compile "mult.c". Link using the command

1nk30 mult.cmd R
where mult.cmd is the command file for linking. Make sure to have the object file of
module 2 (compute.obj) and object files convert.obj (dsp30() routine), dspieee.obj
(ieee30() routine) and waitst.obj (to set zero wait state) in the command gle. Also,
check to see if ".bss" section is in ROM (SPIRIT-30 external memory) or not. You must
have a line "bss: {} > ROM" at the end of the command file mult.cmd. This is to make
sure that the global variables reside in external memory, rather than internal memory.

Developing Application Program using SPIRIT-30 - 4

/***t*ﬁ*.iti*tit*i*i*t***t*t*i*fii'tttﬁttiiiii’ii**ﬁ*itttt***tiﬁﬁ*****t'tt*t/

/* matrix.c - program which demonstrates how to perform matrix */
/* multiplication with the SPIRIT-30 board. */
/* */
/* Steps involved: */
/* 1. Download the C30 executable file "mult.out" which performs */
/* matrix multiplication. See mult.c, compute.asm files. */
/* 2. Reset C30 to start execution of the file loaded in step 1. */
/* 3. Get the addresses of global variables (addresses of all([l,b[1[1,*/
/* c[10], and flag) used in "mult.out". These are the SPIRIT-30 */
/* external memory addresses. */
/* 4. Download the values of matrices all[] and b[1[] using the */
/* addresses obtained from step 3. */
/* 5. Set the flag (using the address obtained from step 3) to inform */
/* DSP program (mult.out) that matrix multiplication can be started*/
/* 6. Wait for the flag to be reset by "mult.out", which indicates */
/* that the product has been computed - result is stored in c[1[]. */
/* 7. Upload the resulting matrix c[1[] using the address obtained in */
/* step 3. Print the results. */
’* */
/* Files: */
/* The PC source file is matrix.c */
/* The PC executable file matrix.exe */
/* The C30 source files are ‘mult.c’ and ‘compute.asm’ */
/* The C30 executable file is ‘mult.out’ */
/* See 'mult.c’ file for instructions to create ‘mult.out’ */
/* */
/* To compile this program with Microsoft’s C 5.1 compiler: */
/* cl /c matrix.c */
/* link matrix,,,s30stool */

/**t*****t******it*ttii*t***t*i*t*t***tR****i*ttt***i***t***tt*t***it*t**tii/

#include "s30tools.h"

float al[4][31=(/* matrix a[lll */
1.0, 2.0, 3.0),
{-1.0, -2.0, -3.0),
5.0, 6.0, 7.03,
{-5.0, -6.0, -7.0)

b

float b[3][4]1=(/* matrix b[1[) */
€ 1.0, -1.0, 2.0, -2.03,
1.0, 1.0, 1.0, 1.0,
¢{ 0.0, 0.0, 0.0, 0.0)

b H

float c[4]1[4]; /* matrix c[1(] */

/* The following are set equal to the corresponding absolute address of the */
/* label in the DSP program by calling ‘get_laddr()’ with the label’s name. */

long a_addr,b_addr,c_addr;
long flag_addr;

matrix.c - 1

main()

L4

/* STEP 1 ¥/
/* download DSP executable file ‘mult.out’ which performs matrix */
/* multiplication */
if (dsp_dl_exec("mult.out") == -1) (

printf("Error in downloading the file\n");
exit(1);

>

/* STEP 2 */
dsp_reset(); /* RESET C30 to give control to mult.out */

/* STEP 3 */
a_addr = get_laddr("_a"); /* Find SPIRIT-30 address of a[l[l */
b_addr = get_laddr("_b"); /* Find SPIRIT-30 address of b1l */
c_addr = get_laddr("_c"); /* Find SPIRIT-30 address of c[l[l */
flag_addr = get_laddr("_flag"); /* Find SPIRIT-30 address of flag */
/* The above addresses are obtained from the symbol table prepared */
/* by dsp_dl_exec() library routine while loading "mult.out" */
matrix(a,b,c); /* Procedure to calculate product */
mat_print(a,b,c); /* Print the results */
exit(0);

>

/*******************t**ﬁ*t****it**iit*************t**i***********t********/

/* Procedure to compute to product of two matrices. c = a*b */
/*****ﬁ*******ttt**i***t*ti***ﬁt**ﬁ***it**i****tt**********************t**/

matrix(a,b,c)
float al4] [3];
float b(3] [4];
float c[4][4];
(

int status;

/* Note: a 4x3 matrix consists of 12 floating pt. numbers */

/* STEP &4 */
dsp_dl_long_array(a_addr,12,(long *)a); /* Download all[l matrix */
dsp_dl_long_array(b_addr,12,(long *)b); /* Download b[] [1 matrix */

matrix.c - 2

/* A ‘1’ is downloaded to SPIRIT-30 at address ‘flag’ which signals the C30 */

/* that the data is ready and to perform a 4x4 product. When the C30 is */
/* done, it sets ‘flag’ = 0 to signal the PC that the data is ready. */
status = 1;

printf("Waiting for DSP program to compute .. \n");

/* STEP 5 */
dsp_dl_int_array(flag_addr,1,&status); /* set the flag */
/* STEP 6 */
while (1) ¢
dsp_up_int_array(flag_addr,1,&status); /* read the flag */
if (status == 0) break; /* check if it is reset */
if (kbhit()) exit(0);
)
/* STEP 7 */

dsp_up_long_array(c_addr, 16, (long *)c); /* Upload cl][] matrix */

/t*****itii****ﬁ**t***t***i*******t****ﬁii***i*i*t**&t'*t***i**t*i*ﬁ**t*tt*tt/

/* print the results */
/******i***i**.i*****t***i*****ﬁ*i**i****i**tt**ti*ﬁ****i**i***i***i****tt***/

mat_print(a,b,c)
float afl4](3];
float bI3](4);
float cl411(4);

(8
register i,j;
printf("\n\n"); /* Print results */
for (i=0; i<4; ++i)
({
for (j=0; j<3; ++j)
printf("%10.4f",alil[j1);
printf("\n");
>
printf("\ntimes\n");
for (i=0; i<3; ++i)
(
for (j=0; j<4; ++j)
printf("%10.4f",b[i1[j1);
printf("\n");
)
printf(“\nequals\n");
for (i=0; i<4; ++i)
{
for (j=0; j<&4; ++j)
printf("%10.4f",clil[j1);
printf("*\n");
>
b

matrix.c - 3

/*t***t*'*t******tt**it***iiiitiitttttiitt*ﬁtit*ﬁ****iit****tiitt*ﬁﬁtt*it****/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/

*/
*/
*/

*/
*/

*/
*/

/* mult.c : €30 program which computes the product of two matrices
/*
/* Steps involved:
/* 1. Program C30 to ’zero wait state’ for fast memory access (default
/* is seven wait states).
/* 2. Wait for the flag to be set by PC program (matrix.exe). PC pgm
/* sets this flag after initializing the matrices all[] and b[1[]
™ 3. Convert the floating point values from IEEE format to TI format.
/* (PC uses IEEE format whereas C30 used Tl format)
Vid 4. Perform the matrix multiplication of afl[]l & b{1(], and place
/* the result in c[1[1. (Use assembly routine for high performance)
/* 5. The resulting matrix c[][] values are in Tl format. Convert
/* them into IEEE format.
/* 6. Reset the flag to inform PC program that results are ready
/'
/* Files:
/* The PC source file is matrix.c
/* The PC executable file is matrix.exe
/* The €30 source files are "mult.c" (this file) & "compute.asm"
/* The C30 executable file is "mult.out".
/*
/* To create mult.out using TMS320C30 compiler -
/* c30c mult ('c’ file)
/* asm30 compute (C30 assembly file)
/* Lnk30 mult.cmd (See mult.cmd file for details)
/**********t*titt**t*itttittitttt*it*ti*it*titt*itt*tti**t'**iitﬁ*t*i****ti**/
float al[4]([3]; /* matrix a{l(] */
float b(3114]; /* matrix b[{1[1 */
float c[4](4]; /* matrix c(1() */
int flag = 0; /* flag - initialize to zero (reset) */
main()
(
/* STEP 1 */
waitst(); /* program C30 to zero wait state */
/* STEP 2 */
while (flag 1= 1); /* wait for the flag to be set by PC program - this
/* flag is set by PC program after initializing
/* the matrices al[l[] and b[]1[]
/* STEP 3 */
dsp30(a,12); /* convert the floating point values of all([]l and
dsp30(b,12); /* b{1[] from IEEE format to Tl format
/* STEP 4 */
compute(a,b,c,4,3,4); /* call assembly routine which computes the
/* product of all{l & b[1[], and puts the
/* results in c(10]
/* STEP 5 */
ieee30(c,16); /* convert the floating point values of c[1[]
/* from TI format to IEEE format
/* STEP 6 */
flag = 0; /* reset the flag to inform PC program that the
/* results are ready
}

mult.c - 1

ARERREARRRARNRNRRERRERRRRRAERRRRRRARARRRRRRRAAARAENRERANAARRRRAAAARAARRRNA NS

compute.asm:

Synopsis:
compute(a,b,c,m,n,p)

float *a,*b,*c: pointers to two dimensional matrices allll,b[1(],cl10]
int m, n, p: dimensions of the matrices ..
aflfl ismXnn, bl isnXp, cOl mXp
Description:
This function multiplies matrices afl[] and b[1[], and puts the result
in matrix c101

Stack structure after the call:

-fp(7) | P I
-fp(6) | n |
-fp(5) | m |
-fp(4) | c |
-fp(3) | b I
-fpc2) | a |
-fp(1) | ret addr |
-fp(0)-> | old fp |

Registers modified:
r0, r1, r2, ar0, ar1, ar2, rs, re, rc

NS4 Me ms N8 ®a Ws Ss Se w5 % Ne ®s ®s Ss Ws We We We We Wy W We Ws we We ws W

Time taken (# cycles):
7m + 19mp + 2mnp (2 for mpyf || addf instr latency)

dedrdeddkd ki dkddhdhkkhddkdkkdkhhdhkhhdhkkkdkkkkkkkkhkhhdkhkhbhdkbddhhhhhhhkhihd

s we =

fp .set ar3
.global _compute
.data
.text
_compute
push fp ; save old fp
tdi ' sp, fp ; point to the top of the stack
push aré ; save aré
push ar5 ; save ar5
tdi *-fp(2),ar0 ; ar0 = a (&al0][0])
ldi *-fp(3),ar1 ; arl = b (&b([01[0])
tdi *-fp(4),ar2 ; ar2 = ¢ (&c(01101)
Ldi *-fp(5),aré ; ard =m
subi 1,aré ; aréd = m-1
ldi *-fp(7),ar5 ; arS5 = p
Ldi ar5,ir0 ; ir0=p
subi 1,ar5 ; ar5 = p-1

compute.asm - 1

; for (i =0; i <= m-1; i++)
: for (j = 0; j <= p-1; j++)

.
.

[FOR LOOP 1]
[FOR LOOP 2]

; Start of the loop: ar0 = &a(il[0] and ar1 = &b[0][j]

loop

s we we we

Ldi ar1,rt

x = 0.0

for (k = 0; k <= n-1; k++)

’

r1 = &b([01Lj1

[FOR LOOP 3]

x += 3a[il[k] * bIkl([j];

clilljl = x;

ldi *-fp(6),rc

subi 1,rc
Ldf 0.0,r0
Ldf 0.0,r2
rpts re
mpy f

addf ro,r2
addf ro,r2

; end of [FOR LOOP 3]

stf r2,*ar2++

dbd ar5, loop

subi *-fp(6),ar0
ldi r1,ar
addi 1,ar1

end of [FOR LOOP 2]

addi *-fp(6),ar0
dbd ar4, loop
Ldi *-fp(7),ar5

. ws wo

subi
tdi

1,ar5
*-fp(3),arl

end of [FOR LOOP 1]

pop ar5
pop aré
pop fp
retsu
.end

’

1

’

*arQ++,*ar1++(ir0),r0

.
.

. we =

s Ss we we

; rc=n

; rc =n-1

; r0 = 0.0

; r2 =0.0

; repeat ’n’ times

; | After this instruction :
| ar0 = &ali+11[0],
| arl = &bInl(j]

clilljl = x;

check index [FOR LOOP 2]

ar0 = &a[il[0] (reposition to i th row)
ar1 = &b[01[j] (reposition to j th column)
ar1’= &b[0]1 [j+11(reposition to j+1 th column)

i th row of c[]l[] has been computed .. so move on to next row

ar0 = &a[i+1)[0] (position to next row)

; check index [FOR LOOP 1]

ar5 = p (index [FOR LOOP 2])
ar5 = p-1
ar1 = &b[0] (0]

restore arS
restore aré

pop the old frame pointer
return to the calling program

compute.asm - 2

/it'*f*i*i**i*iit'*ttt**ﬁ*t‘***ﬁﬁt*ttt*ﬁﬁﬁ***'ﬁ*ﬁﬁttﬁi*i*i*ti**t***i*t****i*t/

/* MULT.CMD - v1.10 COMMAND FILE FOR LINKING C30 C PROGRAMS */
/* */
/* Usage: Lnk30 <obj files...> -o <out file> -m <map file> c.cmd */
/* */
VAd Description: This file is a sample command file that can be used */
/* for linking programs built with the TMS320C30 C */
/* Compiler. Use it a guideline; you may want to change */
/* the allocation scheme according to the size of your */
/* program and the memory layout of your target system. */
/* */
/* Notes: (1) You must specify the directory in which rts.lib is */
/* located. Either add a "-i<directory>" line to this */
/* file, or use the system environment variable C_DIR to */
/* specify a search path for libraries. */
/* */
/* (2) When using the small (default) memory model, be sure */
/* that the ENTIRE .bss section fits within a single page. */
/* To satisfy this, .bss must be smaller than 64K words and */
/* must not cross any 64K boundaries. */
/***t***t***i*t*i**t**t*****titi*ttt'ii**titi*tttt*iii***i*i***t**t*********t/
mult.obj

compute.obj

vectors.obj /* TAKES CARE OF JUMP TO _c_int00 */

convert.obj /* 1EEE TO DSP CONVERSIONS */

dspieee.obj /* CONVERTS ARRAYS OF NUMBERS DSP_IEEE */

waitst.obj /* PROGRAMS THE CPU FOR DESIRED WAITSTATES */

-c /* LINK USING C CONVENTIONS */
-0 mult.out

-m mult.map

-lrts.lib /* GET RUN-TIME SUPPORT */

/* SPECIFY THE SYSTEM MEMORY MAP */

MEMORY
{
VECS: org =0 len = Oxc0
ROM: org = 0x400 len = 0x7b00
RAMO: org = 0x809800 len = 0x400 /* RAM BLOCK O */
RAM1: org = 0x809c00 len = 0x400 /* RAM BLOCK 1, PLUS 4K OF EXT */
)

/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */
/* A SIMPLE MINDED MAP WHICH PUTS EVERYTHING IN THE EXTERNAL MEMORY */
SECTIONS

(<
.text: {3 > ROM /* CODE */
.cinit: (3 > ROM /* INITIALIZATION TABLES */
.stack: {3 > ROM /* SYSTEM STACK */
.data: (3 > ROM /* DATA */
.bss: {3 > ROM /* GLOBAL & STATIC VARS (SEE NOTE 2) */
.sysmem: {3 > ROM /* DYNAMIC MEMORY - DELETE IF NOT USED */

)

mult.cmd - 1

HOW TO SPEED UP APPLICATIONS USING SPIRIT-30 AND TMS320C30

This document gives step by step procedure on how I speeded up an application
executing on SPIRIT-30. I have a sample 'C’ program. My goal is to reduce the
execution time of this program on C30 as much as possible. All the text files (.c’,’.asm’
and ’.cmd’) referred to in this document are enclosed in this packet. This document
expects the reader to have good knowledge about the TMS320C30 processor, Compiler,

and Assembler.

PRELIMINARIES

It is useful to have the following manuals at hand while going through this document.
[1]. The TMS320C30 Compiler User’s Guide
[2]. The TMS320C30 Assembly Language Tools User’s Guide
[3]. The TMS320C30 User’s Guide

In the rest of the document, these manuals are referred to by their numbers.
STEP 1:

First, I wrote down a sample program "dsp1.c" with some integer and floating point
multiplications. Note that there is an outer ’for’ loop which runs 10000 times. I have this
so as to get the execution time in the order of seconds, so that the error percentage is
less.

I compiled it using the command "c30c dsp1" and linked using the command "Ink30
dspl.cmd", ’dspl.cmd’ being the command file. This program took 47.79 seconds.

From next step onwards, for step i’ I plan to create ’dspi.c’ by modifying *dspi-1.c, and
’dspi.cmd’ by modifying ’dspi-1.cmd’ (if necessary).

STEP 2:

How to speed up this application? The first thing which stuck me is that, on reset the
C30 processor by default assumes a ’seven wait state’ external memory. The SPIRIT-30
board supports high speed on board memory, which can be used with zero wait states.
So by using memory in zero wait states, I expect to get about 7 times speed up.

But how to program C30 to zero wait states? Simple! Use the "waitst()’ routine of
‘waitst.obj’ gncluded in Application Diskette). I made two changes: (1) Inserted a call
to waitstd in the very beginning of the dspl.c -> dsp2.c (2) Modified ’dspl.cmd’ to
include 'waitst.obj’ during linking -> *dsp2.cmd’

This program took 7.08 seconds, almost 7 times improvement, as expected.

How to speed up Applications using SPIRIT-30 and TMS320C30 - 1

STEP 3:

Now I am using the fastest memory. So can there be further scope for improvement? I
am using the fastest possible on board memory, but it is still slower than the on-chip
memory, which is internal to the C30 processor. Since there are a lot of data accesses in
this program, I could do better if I use internal memory to store data.

Note that the variables declared in this program are local, and hence the space is
allocated on the stack. If you look at the *dsp2.cmd’ file, the stack is placed in external
memory - observe the 'SECTIONS’ part at the end of the file. The line ".stack: {} >
ROM" (ROM means external memory) makes the linker place the stack in ROM.
Modify this line to ".stack: {} > RAMO0" (RAMO means internal memory Bank-0) to
have stack in internal memory -> dsp3.cmd. ’dsp3.c¢’ is same as ’dsp2.c’.

This program took 5.22 seconds, a significant improvement!

STEP 4:

Is there anything faster than internal memory, for data accesses? CPU Registers,
ofcourse! So next step is to use register variables. Unfortunately, TMSC30 complier
allows only two integer and two floating point register variables. So we have to carefully
choose which of the variables deserve to be placed in registers. To be specific, we must
choose the most heavily used variables. ’dsp4.¢’ is same as "dsp3.c’ with some register
variables. ’dsp4.cmd’ is same as ’dsp3.cmd’.

This program took 5.00 seconds, not much improvement. Why? Because there are still
quite a few memory variables, and also, the CPU registers are not drastically faster than
internal memory.

STEP §:

In all the above steps we have not looked at the actual code. Any ’C’ compiler has its
own limitations, and it cannot produce 100% optimized code. Also, C30 processor
supports repeat and parallel instructions, which are not exploited by the ’C’ compiler.
So in this step we can try to use optimized assembly code in critical regions.

Step 5.1:

Have a look at 'dsp4.c’. There are three ’for loops’, which are numbered. At this stage
you must know how TMSC30 compiler %enerates code. After preprocessing, it converts
the ’.¢’ file into the equivalent assembly file (".asm’), which in turn is assembled by the
TMSC30 assembler, and finally linked by the TMS linker. Have a look at ’dsp4.asm’
file, which is the file generated by the complier. Block 1 is the code for the ’for loo

(1)’. Observe that it takes more than 1200 cycles to execute this part of the code. How

to optimize this?

How to speed up Applications using SPIRIT-30 and TMS320C30 - 2

First of all, note that the for loop’ resembles a simple ’do loop’ with one index running
from 0 to 99. So we can use a repeat (RPTS/RPTB) instruction. Also observe that the
array indices increment by constant amount every iteration of the loop. Both the
instructions can be transformed to two assembly ’STI’ instructions, which can be
executed using a ’parallel STI instruction. Look at the optimized code for Block 1 in
the file ’dsPS.asm’. It takes only about 100 cycles! I modified dsp4.asm by rePlacing the
’for loop 1’ with equivalent optimized assembly code. 'dspS.cmd’ is same as 'dsp4.cmd’.

This program took 4.12 seconds, expected improvement.

Step 5.2:

I did a similar optimization for ’for loop 2’, and the program executed in 3.08 seconds.
Step 5.3:

The last step is to optimize ’for loop 3’, which is very tricky. I took advantage of the fact
that the first two instructions of the loop are independent of the last two instructions. So
I can split up the loop into two for loops. Also the first two instructions can be
combined into a ’parallel MPYI | | ADDI’ instruction, and the last two can be
combined into a ’parallel MPYF || ADDF instruction. As a result, Block 3 can be
optimized using two RTPS parallel instructions.

Looks as though everything is done, but there is a small problem! Once you convert "for
loop 3’ also into assembly, there is absolutely no ’C’ code within the outer ’for loop’
(which runs 10000 times). The compiler doesn’t care what you give within asm("")
instruction. It assumes that it is proper assembly code, and dumps the given instructions
in the proper place. It is the job of assembler to detect errors in this case. Have a closer
look at ’dspS.asm’. The ’C’ compiler uses the register RO as a scratch register to store
index for the outer for loop. As far as the complier is concerned, there is no body for
the loop, so it assumes that R0 remains unchanged. Unfortunately we are corrupting R0
in the optimized assembly code. I got over this problem by adding one more assembly
gnstguc)non at the end of the loop, which restores the correct value of the index (see
spS.c).

Now everything is set, and I executed the program. The outcome is unbelievable - 0.28
seconds! For a moment it looks suspicious, but if you take a closer look at the
’dspS.asm’ file, you will know the truth. Now, most of the program is in assembly, and
bulk of the time is taken by the four repeat instructions, which come to about 400
cycles. Adding the remaining instructions, the body of the outer ’for loop’ must take
about 450 cycles, which at 60ns/cycle comes to 27 micro seconds. Considering the outer
loop which runs 10000 times, the total time is 0.27 seconds, which is the close to the
observed value.

CONCLUSION

So, from step 1 to step 5 we got a Sf)eed up of about 170 times! Here is the summary of
the steps taken to speed up an application using SPIRIT-30: (Note that you cannot
expect this much speed up for all the programs. It depends on how much of the code
you can ;)ptimize using assembly, and how much of the data you can have in internal
memory).

How to speed up Applications using SPIRIT-30 and TMS320C30 - 3

SUMMARY: HOW TO SPEED UP APPLICATIONS

Step 1: First write the program.

Step 2: Program C30 to zero wait states.

Step 3: Place data in internal memory.

Step 4: Have heavily used variables in registers.
Step 5: Program the critical sections in assembly.

To optimize assembly code -

* Make use of repeat (RPTS/RPTB) instructions.

* Try to use Parallel instructions.

* Use delayed branches.

* Avoid register conflicts for latency- you may
have to rearrange some instructions (refer to
’section 10.2: Pipeline conflicts’ of [3]).

* Avoid memory conflicts - distribute data in
different memories (refer to ’section 10.3:
Memory conflicts’ of [3], refer to Appendix
of this document).

APPENDIX

EXAMPLE: SPEEDING UP APPLICATION BY REMOVING MEMORY
CONFLICTS

This appendix explains how I speeded up matrix multiplication program by removing
memory conflicts. The matrix multiplication program is discussed in the document on
"Developing Application Program using SPIRIT-30", and you must go through that
document before reading this section.

Have a look at ’compute.asm’ file. In the beginning of first page, an approximate timing
equation is given in terms of m,n,p, the parameters to the function. For large m,n,p, the
time is proportional to 'mnp’. This is due to the inner most loop, coded using RPTS
instruction. Observe that there is a constant factor of 2’ to this product. Have a closer
look at the RPTS instruction - there are accesses to two different memory locations
(pointed by ARO, AR1) in external memory, and hence there is memory conflict! An
extra cycle is needed to fetch the data. If we can avoid this conflict, we can remove this
factor, and speed up the computation 2 times.

How to speed up Applications using SPIRIT-30 and TMS$320C30 - 4

How do avoid the memory conflict? A good solution is to place the data in internal
memory (refer to section 10.3 of [3]). This means we must have the matrices in internal
memory. In STEP 3 of this document we discussed how to place data in internal
memory by declaring local variables and having stack in internal memory. It works fine
for the example discussed (dsp1.c), since there is no interaction between PC and
SPIRIT-30. But in matrix multiplication, data is initialized by the PC, and so the
matrices must be declared as global variables (they must be in external memory).

How to get over this problem? The only solution seems to be to replicate data. So we
retain the matrices as global variables, but declare exactly same set of variables (with
different names, ofcourse) local, which can be placed in internal memory. Before
calling the compute() function, copy the data from external memory to internal memory
and call the function with local variables. When you return back, you have to copy the
resulting matrix from internal to external memory so that PC can read back the results.
Have a %ook at ’fmult.c’, which is the modified version of mult.c. Also, ’fmult.cmd’ has
stack placed in RAMO. The new PC side software is *fmatrix.c’, which is exactly same as
matrix.c, except that it downloads ’fmult.out’ (modified DSP software) instead of
‘mult.out’.

There are limitations to this method. There are only 2K words of internal memory, and
if data exceeds 2K, you have to follow different strategy to distribute data, for e.g., using
memory on peripheral bus (refer to section 10.3 of [3]%).’

How to speed up Applications using SPIRIT-30 and TMS320C30 - 5

/t****Q**t**ﬁittit**i*i***ﬁ***ﬁt***t*i*ttttit***tﬁ*******t***ﬁ/

/
/

* File: dspl.c */

t*ttﬁ*ﬁi**tt*i***titit***t**iiii**ii**ii***ﬁi*i**t*ttﬁt**/

main()

{

int i;

int index;

int int1, int2, int3;

int array1(100],array2(100];
float f1, f2;

float farray1([100),farray2(100];

for (i=0;i<10000;i++) ¢

for (index=0;index<100; index++) {
arrayi{index] = 10;
array2[lindex] = -12;

)

for (index=0;index<100; index++) (
farray1lindex] = 1.0;
farray2(lindex] = 2.0;

>

f2 = 0.0;
int2 = -1;
int1 = 0;
int3 = 0;

for (index=0;index<100; index++) {
int1 += int3;
int3 = arrayllindex] * array2(index];
f1 = farrayllindex] * farray2(lindex];
f2 += f1;

dspl.c

/ittﬁttﬁ.ti"ttﬁﬁﬁtt*'titﬁiiit.'ii**tttt*ttttiiti‘ﬁ'ﬁi.titi*tt**k*t.ﬁ'itt**ﬁ*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

*/

*/
*/

/* DSP1.CMD - v1.10 COMMAND FILE FOR LINKING C30 C PROGRAMS
/*
/* Usage: Lnk30 <obj files...> -0 <out file> -m <map file> c.cmd
/t
* Description: This file is a sample command file that can be used
/* for linking programs built with the TMS320C30 C
/* Compiler. Use it a guideline; you may want to change
/* the allocation scheme according to the size of your
/* program and the memory layout of your target system.
/t
/* Notes: (1) You must specify the directory in which rts.lib is
/* located. Either add a "-i<directory>" line to this
/* file, or use the system environment variable C_DIR to
* specify a search path for libraries.
/i
/* (2) When using the small (default) memory model, be sure
/* that the ENTIRE .bss section fits within a single page.
/* To satisfy this, .bss must be smaller than 64K words and
/* must not cross any 64K boundaries.
/************t******t**t'*tt*t*****iittttti******i*t*t***t****ttt*t***ﬁ*t***t/
dsp1.obj
vectors.obj /* TAKES CARE OF JUMP TO _c_int00 */
-c /* LINK USING C CONVENTIONS
-o dspl.out
-m dspl.map
-lrts.lib /* GET RUN-TIME SUPPORT
/* SPECIFY THE SYSTEM MEMORY MAP */
MEMORY
{
VECS: org=0 len = Oxc0
ROM: org = 0x400 len = 0x7b00
RAMO: org = 0x809800 len = 0x400 /* RAM BLOCK O
RAM1: org = 0x809c00 len = 0x400 /* RAM BLOCK 1, PLUS 4K OF EXT
}

/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */
/* A SIMPLE MINDED MAP WHICH PUTS EVERYTHING IN THE EXTERNAL MEMORY */

SECTIONS

4
.text: O
.cinit: O
.stack: O
.data: QO
.bss: O
.sysmem: {3

VvV V V VvV Vv V

ROM
ROM
ROM
ROM
ROM
ROM

/* CODE

/* INITIALIZATION TABLES

/* SYSTEM STACK

/* DATA

/* GLOBAL & STATIC VARS (SEE NOTE 2)
/* DYNAMIC MEMORY - DELETE IF NOT USED

*/
*/
*/
*/
*/
*/

dspl.cmd

/t**i*i*****t*******i***i******tt********tt******it******i****l

/* File: dsp2.c */

/**ﬁ*'****ﬁ*t*****ﬁ*****************t*!****t***i********tfiﬁ**/

main()
L4
int i;
int index;
int int1, int2, int3;
int array1(100],array2[100];
float f1, f2;
float farray1([100],farray2(100];

Gaitst(O); _)

for (i=0;i<10000;i++) {

for (index=0; index<100; index++) {
array1lindex] = 10;
array2lindex] = -12;

)

for (index=0;index<100; index++) (
farrayl(index] = 1.0;
farray2lindex] = 2.0;

f2 = 0.0;
int2 = -1;
int1 = 0;
int3 = 0;

for (index=0;index<100; index++) {
int1 += int3;
int3 = arrayllindex] * array2[index];
f1 = farrayllindex] * farray2(index];
f2 += f1;

dsp2.c

/!*t*ﬁﬁttt***Ii*t'lt*ii****tt*****ﬁ’.ti'tti'****tt*tﬁﬁtt***tt#t*ﬁiit*ti*t*t*tti*t/

/* DSP2.CMD - v1.10 COMMAND FILE FOR LINKING C30 C PROGRAMS */
I */
/* Usage: Lnk30 <obj files...> -o <out file> -m <map file> c.cmd */
r* */
* Description: This file is a sample command file that can be used */
/* for linking programs built with the TMS320C30 C */
/* Compiler. Use it a guideline; you may want to change */
/* the allocation scheme according to the size of your */
/* program and the memory layout of your target system. */
/* */
/* Notes: (1) You must specify the directory in which rts.lib is */
/* located. Either add a "-i<directory>" line to this */
/* file, or use the system environment variable C_DIR to */
/* specify a search path for libraries. */
I* */
/* (2) When using the small (default) memory model, be sure */
/* that the ENTIRE .bss section fits within a single page. */
/* To satisfy this, .bss must be smaller than 64K words and */
/* must not cross any 64K boundaries. */
/***********t*******i*******ti****i**ti*ﬁ*ttt**t******it*********************/
dsp2.obj

vectors.obj /* TAKES CARE OF JUMP TO _c_int00 */

¢:f Waltst.ob) ’* PROGRAMS THE CPU FOR DESIRED WAITSTATES */

-c /* LINK USING C CONVENTIONS */
-0 dsp2.out
-m dsp2.map
-lrts.lib /* GET RUN-TIME SUPPORT */

/* SPECIFY THE SYSTEM MEMORY MAP */

MEMORY
<
VECS: org =0 len = 0xc0O
ROM: org = 0x400 len = 0x7b00
RAMO: org = 0x809800 len = 0x400 /* RAM BLOCK 0 */
RAM1: org = 0x809c00 len = 0x400 /* RAM BLOCK 1, PLUS 4K OF EXT */
}

/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */
/* A SIMPLE MINDED MAP WHICH PUTS EVERYTHING IN THE EXTERNAL MEMORY */

SECTIONS

{
.text: () > ROM /* CODE */
.cinit: {3 > ROM /* INITIALIZATION TABLES */
.stack: {3 > ROM /* SYSTEM STACK */
.data: () > ROM /* DATA */
.bss: {3 > ROM /* GLOBAL & STATIC VARS (SEE NOTE 2) */
.sysmem: {3 > ROM /* DYNAMIC MEMORY - DELETE IF NOT USED */

dsp2.cmd

/i*****tﬁ*******ttﬁi*ﬁii*it'iit*’t*iiiﬁ*tﬁt*tt***t**.i!**i*’ﬁiﬁﬁ**ﬁi#iittt**i/

/* DSP3.CMD - v1.10 COMMAND FILE FOR LINKING C30 C PROGRAMS */
/* */
/* Usage: Lnk30 <obj files...> -0 <out file> -m <map file> c.cmd */
/* */
/* Description: This file is a sample command file that can be used */
/* for linking programs built with the TMS320C30 C */
/* Compiler. Use it a guideline; you may want to change */
/* the allocation scheme according to the size of your */
/* program and the memory layout of your target system. */
/* */
/* Notes: (1) You must specify the directory in which rts.lib is */
/* located. Either add a "-i<directory>" line to this */
/* file, or use the system environment variable C_DIR to */
/* specify a search path for libraries. */
/* */
/* (2) When using the small (default) memory model, be sure */
/* that the ENTIRE .bss section fits within a single page. */
/* To satisfy this, .bss must be smaller than 64K words and */
/* must not cross any 64K boundaries. */
/i***********************ﬁ*t***********ti************tt************ﬁ*t**t****/
dsp3.obj
vectors.obj /* TAKES CARE OF JUMP TO _c_int00 */
waitst.obj /* PROGRAMS THE CPU FOR DESIRED WAITSTATES */
-c /* LINK USING C CONVENTIONS */
-o dsp3.out
-m dsp3.map .
-lrts.lib /* GET RUN-TIME SUPPORT */
/* SPECIFY THE SYSTEM MEMORY MAP */
MEMORY
<
VECS: org =20 len = 0xcO
ROM: org = 0x400 len = 0x7b00
RAMO: org = 0x809800 len = 0x400 /* RAM BLOCK O */
RAM1: org = 0x809c00 len = 0x400 ~/* RAM BLOCK 1, PLUS 4K OF EXT */
)
/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */
/* A SIMPLE MINDED MAP WHICH PUTS EVERYTHING IN THE EXTERNAL MEMORY */
SECTIONS
<
.text: {3 > ROM /* CODE . */
.cinit: {3 > ROM /* INITIALIZATION TABLES */
.stack: AMO /* SYSTEM STACK */
.data: 3 > R /* DATA */
.bss: {3 > ROM /* GLOBAL & STATIC VARS (SEE NOTE 2) */
.sysmem: {} > ROM /* DYNAMIC MEMORY - DELETE IF NOT USED */
)

dsp3.cmd

/**'ttt**ﬁit*i***'ﬁ'tttit*i*t****tf*'*titti*ittit*ﬁi*itttttiitl

/* File: dsp4.c */

/ttt*t't*ttt**t**tttﬁ**ittit*itﬁtt**i*i*ttiti**t*****tt**if*tO/

main()

4

int i;

int index;
int int2;
register int int1, int3;
int Brray OU

,

register float f1, f2;
oat farray1(1001,farray2(100];

waitst(0);

for (i=0;i<10000;i++) {

for (index=0; index<100; index++) ¢ ")
arrayllindex] = 10;
array2(index] = -12;
b,
for (index=0; index<100; index++) (
farrayl[index] = 1.0; ‘2)

farray2[index] = 2.0;

)

f2 = 0.0;

int2 = -1;

int1 = 0; ¢
int3 = 0;

for (index=0;index<100; index++) {

int1 += int3; ;,
int3 = arrayl[index] * array2[index]; ‘

f1 = farrayllindex] * farray2(index];

f2 += f1;

dsp4.c

RREAREERRANRENRRAERRNERARAARRARARRRRRNRRRNRRAARRNR RN AR

* TMS320C30 C COMPILER Version 1.10

REARKEXREFEAARRAAERRERR R R A bk hh bk ddddkdirdr kil drdddddkid

FP .set AR3

.sect " cinity
.word 1,_flag+0
.word 2

.globl _flag
.bss _flag,1
.globl _main
.file “dsp4.c"
.text

A e de e ol s e e o e o ok e v ke e sk o o e e e e e e e e e e

* FUNCTION DEF : _main

e e P e e e e v 3 e o e e e e o o o e ok e o ok e o o e e ke o o o e ok o e o o e o e e o e e ok o e o e e e e o

_main:

PUSH FP

LD1 SP,FP

ADDI 403,sP

PUSH R&

PUSH RS

PUSHF R6

PUSHF R7

LDI 0,RO

PUSH RO

CALL _waitst

suBl 1,SP
L2:

LD1 a_flag,RO

CMP1 1,R0

BNZ L2

LDI 0,R1

ST1 R1,*+FP(1)
L5:

LDI *+FP(1),R0

CMP1 10000,R0O
-".BEi"LL--"-'-‘

LDI 0,R1

STI R1,*+FP(2)
L8:

[*+FP(2),R0

CMPI 100,R0

BGE L7

ADDI RO, FP,ARO

LDI 10,R1

STI R1,*+AR0(4)

ADDI RO,FP,ARO

LDI -12,R2

BD L8

STI R2,*+AR0(104)

ADDI 1,R0

ST1 RO, *+FP(2)
k% B L8 ;BRANCH OCCURS
- - - g L p— - a—

dspd.asm - 1

L7: .
LDI
ST1
L11:
LDI
CMPI
BGE
ADDI
LDF
STF
ADDI
LDF
Lol
BD
STF
ADDI
STI
Rk B
L10:
LDF
LDI
ST1
LD1!
LDI
STI
L14:
LDI
CMPI
BGE
ADDI
ADD1
ADDI
LDI
LD!
CALL
LDI
LD!
ADDI
ADDI
LDF
LDI
MPYF
BD
ADDF
ADDI
STI
*kk B
L13:
BD
LDI
ADDI

STI
*hk B

0,R0
RO, *+FP(2)

*+FP(2),R0
100, RO

L10

RO, FP,ARO
QCONST+0,R1
R1,*+AR0(204)
RO, FP,AROD
QCONST+1,R2
304, IR0

L1
R2,*+ARO(CIRO)
1,R0

RO, *+FP(2)
L1 ;BRANCH OCCURS

- - - -— was cas

QCONST+2,R7
-1,R1
R1,*+FP(3)
0,R4

0,RS

OTRO" — e oy - &

RO, *+FP(2)

*+FP(2),R0
100, RO

L13

RS, R4

RO, FP, ARO

RO, FP, AR1
*+AR0(4),RO
*+AR1(104),R1
MPY_1

RO, RS
*+FP(2),R1
R1,FP,ARO
R1,FP,AR1
*+AR0(204),R6
304, IR0
*+AR1(IRO),R6

L14

R6,R7

1,R1

R1,*+FP(2)

L14 ;BRANCH OCCURS _

L5

*+FP(1),R1

1,R1

R1,*+FP(1)

LS ;BRANCH OCCURS

dsp4.asm - 2

LDI 0,R1

STI R1,3_flag
L16:

B L16
P22 22222222 222222222 2222222222222 22222222222 ¢%2 22222
* DEFINE CONSTANTS *

LRl i e 22 st st sl sssd sttt stssilssssdy

.bss CONST,3

.sect " cinit"

.word 3,CONST

.float 1. ;0

.float 2. i1

.float O. ;2
P22 22222232 XTI LLILILLLLL 2222 2232212222 222222222222 2]
* UNDEFINED REFERENCES *

R 2222222222 T2 s el as ittt sttt ssds s
.globl _waitst

.globl MPY_I
.end

dsp4.asm -3

/*t*******i*iitt*************tﬁ*i*'**t****ti*ﬁ**i*i*ti****t***/

/* File: dsp5.c */

/i*#*t**t********tf******ﬁttﬁtt****t*********tﬁ*****f******i*t/

main()
L4
int i;
int index;
int int2;
register int int1, int3; /* Register R4 for int1, RS for int3 */
int array1[100],array2(100];
register float f1, f2; /* Register R6 for f1, R7 for f2 */
float farray1([100],farray2[100];

waitst(0);
while (flag != 1);

for (i=0;i<10000;i++) (

/*
for (index=0;index<100;index++) {

arrayllindex] = 10;
array2lindex] = -12;
>
*/
asm(" LDI 10, RO"); /* constant 10 -> RO */
asm(" LDI -12,R1"); /* constant -12 -> R1 */
asm(" LDI FP, AROM™); /* frame pointer -> ARO */
asm(" ADDI 4, AROM™); /* Address of arrayl -> ARO */
asm(" LDI FP, ARTY); /* frame pointer -> AR1 */
asm(" ADDI 104,AR1T"); /* Address of array2 -> AR1 */
asm(" RPTS 99); /* Do the following parallel instruction 100 times */
asm(" STI RO, *ARO++"); /* 10 -> arrayl[index++] */
asm(" || STI R1, *AR1++M"); /* <12 -> array2[index++] */
/*

for (index=0;index<100; index++) {

farray1lindex] = 1.0;
farray2lindex] = 2.0;
2}
*/
asm(" LDF 1.0, RO™); /* constant 1.0 -> RO */
asm(" LDF 2.0,R1"); /* constant 2.0 -> R1 */
asm(" LDI FP, ARO"); /* frame pointer -> ARO */
asm(" ADDI 204, ARO"); /* Address of farray1l -> ARO */
asm(" LDI FP, ART™); /* frame pointer -> AR1 */
asm(" ADDI 304,AR1"); /* Address of farray2 -> AR1 */
asm(" RPTS , 99"); /* Do the following parallel instruction 100 times */
asm(" STF RO, *ARQO++"); /* 1.0 -> farrayl([index++] */
asm(" || STF R1, *AR1++"); /* 2.0 -> farray2lindex++] */

dspS.c-1

/*

*/

f2 = 0.0;
int2 = -1;
int1 = 0;
int3 = 0;

for (index=0;index<100; index++) {

b

asm("
asm("
asm("
asm("
asm("
asm("
asm("
asm("
asm("
asm("
asm("

asm("
asm("
asm("
asm("
asm("
asm("
asm("
asm("
asm("
asm("
asm("
asm("

asm("

intl +=

int3;

int3 = arrayllindex] * array2(index];
f1 = farrayllindex] * farray2[index];

f2 += f1;
LDI FP, ARO"); /* frame pointer -> ARO */
ADDI 4, ARO"™); /* Address of arrayl -> ARO */
LDI FP, AR1®); /* frame pointer -> ARO */
ADDI 104,AR1T"); /* Address of array2 -> AR1 */
Lol RG, R3"); /* int1 (=0) -> R3 */
LDI RS, R1"); /* int3 (=0) -> R1 */
RPTS 99my; /* Do the following parallel instruction 100 times */
MPYI *ARO++, *AR1++, R1"); /* arrayllindex++] * array2[index++] -> int1 */
|] ADDI R1, R3, R3"); /* int1 += int3 */
LDI R3, R&™); /* R3 -> int1 */
LDl R1, R5"); /* R1 -> int3 */
/* R4,R5 cannot be used in the above parallel */
/* instruction, so R1,R3 are being used */
LDI FP, ARO™); /* frame pointer -> ARO */
ADDI 204, ARO"); /* Address of farrayl -> ARO */
LDI FP, AR1M); /* frame pointer -> AR1 */
ADDI 304,AR1YM); /* Address of farray2 -> AR1 */
LDF R6, RO™); /* £1 () -> RO */
LOF R7, R2"); /* f2 (0.0) -> R1 */
MPYF *ARO++, *AR1++, RO"); /* farrayllindex++] * farray2lindex++] -> f1*/
RPTS 99"y ; /* Do the following parallel instruction 100 times */
MPYF *ARO++, *AR1++, RO"); /* farrayl[index++] * farray2[index++] -> f1 */
|| ADDF RO, R2"); /* f2 += f1 */
LDF ~ RO, R&M); /* RO -> 1 %/
LDF R2, R7™); /* R2 -> f2 */
/* R6,R7 cannot be used in the above parallel */
/* instruction, so RO,R2 are being used */
LDI *+FP(1), RO"™); /* 'C’ compiler uses RO to store the index for */

/* the outer loop,”and assumes that it is not */
/* corrupted. But we are corrupting it - so */
/* restore back its value from variable’index’ */

dspS.c - 2

LA 22 222 a2 A a2t dd a il sl ittt it st sl s s]

* TMS320C30 C COMPILER Version 1.10

RRRARRRRARARAEARAARRRRNAARRRAAA AR IR SRR R AR RR R AR A hkN

FP .set AR3

.sect M.cinit"
.word 1, _flag+0
.word 2

.globl _flag
.bss _flag,1
.globl _main
.file "dsp5.c"
.text

WRERANRRRN AR AR ARA R RN R AR A NRRAA AR AR AR ARA RN RR TR AN

* FUNCTION DEF : _main

KAARAEAREAE AR AR ARERAAAFTRARARRRAE TN R AR ARr IR b kR dekdd

_main:
PUSH FP
LDI SP,FP
ADDI 403,sP
PUSH R4
PUSH RS
PUSHF R6
PUSHF R7
LDI 0,RO
PUSH RO
CALL _waitst
SUBI 1,sp

LDI 80OH, ST

L2: .
LDI a_flag,RO
CMPI 1,RO
BNZ L2
LDI 0,R1
STI R1,*+FP(1)

L5:
LDI *+FP(1),R0
CMPI] 10000,R0
BGE L4

dspS.asm - 1

- — - — \
LDI 10, RO ‘i‘.
LDI -12,R1 \o"

Lol FP, ARO B
ADDI 4, ARO
LDI FP, AR1
ADDI 104,AR1
RPTS 99
STI RO, *ARO++
1] sT1 R1, *AR1++
- <oF . 1.0, RO -
LDF 2.0,R1 L
LI FP, ARD b‘k
ADDI 204, ARO 6
Lol FP, AR1
ADDI 304,AR1
RPTS 99
STF RO, *ARO++
|| STF R o,
- = = DF ACONST+0,R7
Lot -1,R1
STI R1,*+FP(3)
LDI 0,R4
- % = LD.I - 0.,R5‘ - - e
Lol FP, ARO
ADDI 4, ARO
LoI FP, AR1
ADDI 104,AR1
LDI R4, R3
Lo1 R5, R1 :!;
RPTS 99 “‘k
MPYI *ARO++, *AR1++, R1 6
|| ADDI R1, R3, R3
LoI R3, R4
I RLRS | - =
oI FP, ARO
ADDI 204, ARO
LD1 FP, AR1
ADDI 304,AR1
LDF R6, RO
LDF R7, R2
MPYF *ARQ++, *AR1++, RO
RPTS 99
MPYF *ARO++, *AR1++, RO
|| ADDF RO, R2
LOF RO, R6
LDF R2, R7
Rl LRI e —
8D L5
ADDI 1,R0
NOP
STl RO,*+FP(1)
*ax B LS ;BRANCH OCCURS

dspS.asm - 2

Lé4:

LD1 0,R1

STI R1,3_flag
L7:

B L7
LR 2222222222222 2222222222222 22222222222 2222222 2222222
* DEFINE CONSTANTS *

Rhkhhkh bk bbb bbb rkb b Rrhdddbdhdbdkrkkrdddd ki kkiid

.bss CONST,1

.sect M. cinit"

.word 1,CONST

.float 0. ;0
e e P I A e e e e A 9 W e e e o o o o o e o o ok e e o vk v o ok vk o o o o o I o o e o ok o ok o e e e e o e e o
* UNDEFINED REFERENCES *

AR ARRREAAEAN NIRRT AT AR Ak bbbk bk dhkrdrkdhkdkdkkidkk

.globl _waitst
.end

dspS.asm - 3

/*t*tfi*i*tit*tii*tit*i*ﬁ*t**tt*t****t*t**'*t*itf**iﬁ*t*ﬁ*ti*ﬁﬁ*it***t**&i***l

/* fmult.c : C30 program which computes the product of two matrices */
/* - avoids memory conflicts by having data in internal memory - */
/* */
/* Steps involved: */
/* 1. Program C30 to ‘zero wait state’ for fast memory access (default */
/* is seven wait states). */
/* 2. Wait for the flag to be set by PC program (matrix.exe). PC pgm */
/* sets this flag after initializing the matrices alll] and b[I[] */
* 3.(a) Copy the input data into internal memory (arr1(1([],arr2[1[1) */
/* 3.(b) Convert the floating point values from IEEE format to TI */
* format (PC uses IEEE format whereas C30 used TI format) */
/* 4. Perform the matrix multiplication of arr1[1[] & arr2({l[], and */
/* place the result in arr3[]1[]. (Use assembly routine for high */
/* performance) */
/* 5.(a) The resulting matrix arr3[1[] values are in Tl format. */
/* Convert them into IEEE format. */
/* 5.(b) Copy the results (arr3[]({)) back to external memory (cll[l) */
/* 6. Reset the flag to inform PC program that results are ready */
/* */
/* Files: */
/* The PC source file is fmatrix.c */
/* The PC executable file is fmatrix.exe */
/* The €30 source files are "fmult.c" (this file) & “compute.asm" */
/* The C30 executable file is "fmult.out". */
/* */
/* To create fmult.out using TMS320C30 compiier - */
/* c30c fmult (’c’ file) */
/* asm30 compute (C30 assembly file) */
/* tnk30 fmult.cmd (See fmult.cmd file for details) */

/****t****t**ti**********ii****t*******i******if***t******************i******/

float al(4][3]; /* matrix all[] */
float b(3][4]; /* matrix b[{10] */
float cl41[4]; /* matrix c[1[1 */
int flag = 0; /* flag - initialize to zero (reset) */
main()
L4
/* Declare exactly same matrices (a,b,c) with different names. These are */
/* local variables, and will be allocated on stack (internal memory). */
@at arr1(41(31, arr2(3)(4]1, arr3([4]([4];)
int i,];
/* STEP 1 */
waitst(); /* program C30 to zero wait state */
/* STEP 2 */
while (flag = 1); /* wait for the flag to be set by PC program - this */
/* flag is set by PC program after initializing */
/* the matrices all[] and b[1(] */

fmult.c- 1

/i
/*

/*

/'k

/*

/t
/*

/*

STEP 3.(a) */
Replicate data: copy data from external to internal memory */

alil(jl;
blil(jl;

for (i=0;i<4;i++) for (j=0;j<3;j++) arr1[il(j]
for (i=0;i<3;i++) for (j=0;j<4;j++) arr2lil(j]

STEP 3.(b) */

dsp30(arr1,12); /* convert the floating point values of arr1(l[] and */
dsp30(arr2,12); /* arr2[1[] from IEEE format to TI format */
STEP &4 */

compute(arri1,arr2,arr3,4,3,4);/* call assembly routine which computes the */
/* product of arr1[1[] & arr2[1 (], and puts */

/* the results in arr3([][] */
STEP 5.(a) */
ieee30(arr3,16); /* convert the floating point values of arr3([]1[] */
/* from T1 format to IEEE format */
STEP 5.(b) */
copy back the results into matrix c[][] - external memory */ ;
for (i=0;i<4;i++) for (j=0;j<4;j++) cl[illj) = arr3[il([j];
STEP 6 */
flag = 0; /* reset the fiag to inform PC program that the *7
/* results are ready */

fmult.c -2

/***ittiﬁi*it**tt*t*******ttt*t**ﬁﬁi*#*iﬁ******i**ti***ﬁ**ttiﬁi**ii*t*****'k**,

/* FMULT.CMD - v1.10 COMMAND FILE FOR LINKING C30 C PROGRAMS */
/* */
/* Usage: nk30 <obj files...> -o <out file> -m <map file> c.cmd */
/* */
/* Description: This file is a sample command file that can be used */
/* for linking programs built with the TMS320C30 C */
/* Compiler. Use it a guideline; you may want to change */
/* the allocation scheme according to the size of your */
/* program and the memory layout of your target system. */
/* */
/* Notes: (1) You must specify the directory in which rts.lib is */
/* located. Either add a "-i<directory>" line to this */
/* file, or use the system environment variable C_DIR to */
/* specify a search path for libraries. */
/* */
/* (2) When using the small (default) memory model, be sure */
/* that the ENTIRE .bss section fits within a single page. */
/* To satisfy this, .bss must be smaller than 64K words and */
/* must not cross any 64K boundaries. x/
/***f*i**t***t*******i*****i*tﬂ*i**ti*******t**i**i**i********i*i*t*i*******t/
fmult.obj

compute.obj

vectors.obj /* TAKES CARE OF JUMP TO _c_int00 */

convert.obj /* 1EEE TO DSP CONVERSIONS */

dspieee.obj /* CONVERTS ARRAYS OF NUMBERS DSP_IEEE */

waitst.obj /* PROGRAMS THE CPU FOR DESIRED WAITSTATES */

-c /* LINK USING C CONVENTIONS */

-o fmult.out

-m fmult.map

-lrts.lib /* GET RUN-TIME SUPPORT */
/* SPECIFY THE SYSTEM MEMORY MAP */

MEMORY
(
VECS: org=0 len = Oxc0
ROM: org = 0x400 len = 0x7b00
RAMO: org = 0x809800 len = 0x400 /* RAM BLOCK O */
RAM1: org = 0x809c00 len = 0x400 /* RAM BLOCK 1, PLUS 4K OF EXT */
)

/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */
/* A SIMPLE MINDED MAP WHICH PUTS EVERYTHING IN THE EXTERNAL MEMORY */
SECTIONS N
4
.text: {2 > ROM /* CODE */

.cinit: () > ROM /* INITIALIZATION TABLES */
/* SYSTEM STACK */
“data: R /* DATA */
.bss: (3 > ROM /* GLOBAL & STATIC VARS (SEE NOTE 2) */
.sysmem: () > ROM /* DYNAMIC MEMORY - DELETE IF NOT USED */

fmult.cmd - 1

SPIRIT-30
PARALLEL I/O INTERFACE

SPIRIT-30 has a 50 pin bi-directional 16 bit parallel I/O interface for high speed

data acquisition, frame grabber, and memory interface. Using this intertace, the

data transfer can take place directly from an external device to the TMS320C30
roce§§or r(rllcmory. Typical transfer rates of upto 5 Million 16 bit words/sec can
e achieved.

Signal Description:

The 50 pin connector layout and a description is given in the attached table
(Table 2.2). The direction of the signals are from the viewpoint of the SPIRIT-30.
The attached Figure 1.0 shows the P1 connector and IC’s U1, U10, and U18 on
the SPIRIT-30. U1 and U10 are 74ACT245 trancievers for the data signal. U18
is the buffer for the port addresses (A0, A1, A2, A3) and control signals. Other
buffered signals available on the I/O bus are : (Note: ’X’ indicates SPIRIT-30
parallel I/O bus or TMS320C30’s Expansion bus)

X1.RESET* (O) - When low, the device is put in RESET along with the SPIRIT-30
board.

X1.XF0 (O) - External flag pin which needs to be formatted as an output from the
C30. This control signal can be used for synchronization of the external board
with the SPIRIT-30, triggering of acquisition, interlocked operation for
multiprocessing configuration, and other control tasks.

X1.INTI & IACK* (O) - External interrupt

X1.RDY* (I) - Reaccl?l signal from the external board to SPIRIT-30 to indicate that
the device is ready

X1.IOSTRB* - 1/0 strobe to access the external board (indicates valid address)

XI1.R/W* - Read/Write on the parallel I/O port. When this pin is high a Read is
done by the SPIRIT-30.

X1.H1, BUF.CLOCK, X1.H3 - BUF.CLOCK is the buffered 8 Mhz clock, H1 and H3
are 16 Mhz clocks from the DSP.

Board Interface:

Using the buffered address, data, and control signals provided on the SPIRIT-30

arallel /O, a simple hardware interface needs to be designed for an external
goard. The circuitry needed on the external board is shown in Figure 2.0. The
two 74HCT245 bufters are not necessary unless you have several external boards.
Address decoders (74HCT138’s) are needed to decode the lower four addresses
(A0..A4) of the SPIRIT-30I/O port.

Physical Layout:

The SPIRIT-30 has a 50-pin male IDC connector with two rows of 25 pins. The
cable length should be kept as short as possible to avoid problems due to
transmission line effects (max length of 12 inches).

References:
TMS320C30 User’s Guide pages 2-3,8-10..8-18, 13-17..13-20).
SPIRIT-30 Technical Reference Manual, pages 2-5..2-7.

From : Sonitech Int. Inc., 83 Fullerbrook Rd., Wellesly, MA.

wrdzZzaww rrox—HZo0 ’uon

5 S
A 418 8_X1.A0 £ AR
mov: s n BTV REN Y con‘evr:T QU S
ma—oi Epieem R 6
xXostrEw 11 307 AV [CSXiiTostreRp A _
X RW= 3122 2v2 L XL R7WN N S
él-? Y S12a3 2v3 |—=_X.RDY= A DI
LCLOCR 371282 2Y3 [[3 BUF,CLOCK D G T
D N o]
R10 16 R A _
1 24 26 E L P
S S 1
é PARCT A4 3
GND C
10K e
N
() E
C
o
¥ R
LIt
flo SUMM——
+5V ooz ND
—5138
719318
31 90 B350 . cLock
VeC o rrzET= 13| 93 Laxro’
5] 39 [LeTACK=
7] §3 [LEINT 1x
5] 99 [20X1. RDY
38 [z2X1 105TRER
— =500 ggc.ﬁz
Xi.A329| 39 [S0XL; A2
X1.a131] 39 [F2x1: A0
GND o 33 33 Bax1ipis
XLb1d 35 39 [Be X1 D13
X101z 37| 99 Bexiio11
X1.010 39| 39 [40X1:Dd
xi.0841] 39 [32 X107
X1.0643| 39 [aaX1:DS
x1.0aasl 33 [ae X103
X1.0237] 33 [asx1ip1
X1,0049| 33 [OGND

PARALLEL I/0 CONNECTOR

Lh-%o—g— a1 B1 48 X.DO
$Ppd—3a2 B2 HZ xgg.l'
X103 &]R3 B3 o103
x1.0a 6103 BdFaxipa
X1,00 9188 Bi I XTr
A8 B8 :
X, JOSTRB™ _19{
X R 19 81
7AACTSA
x1.08 ;_Um 8 8
: a1 B1 M8 X.
§ L2 a2 B2 I X.09
X1.010 a3 B3 [H& X.
X1.0i? 6174 Bala X
X013 —71R% BS iz
XiLp1a 8108 Bemax,
X1.015 9 A7 B7 FiITxe
G
— i &,
7AACT A4S

VHWN-O

[QLIO X0T™M OMZHr D-DO

wCo FPDMITHIDMD

.
a v
.

ON_BOARD. SPIRIT-20. ...

5T > 8181 A1 |2 ~<X1.00 >
X,D _1_'% ‘12 A2 |— IX1.D1L >
L6 4 <
X, 02 - 2{B3 A3 2 — IX1.D2
. 7
DI~ S>— 2{B4 A4 2 X1.D3
S &«
Y 385 as -5 ZX1.ba_ >
D5 > 51B6 A6 —¢ < X1.D5 >
T i B7 A7 |—5 < X1.D6 >
D7 S— B8 A8 X107 >
ebl2
DIR |—L
74ACT 245 16 BIT DQTQ BUS
55> 8181 A1 }l—2 <X1.D08 >
883 Ze2 A2 |3 X109 >
<X, D10 > 183 a3 f—2 X1.D10 >
gx,:; L{% 182 Aal—2 SX1.01 S
X L4 1 [.D1
X1z S 3186 A6 & XD 3‘%
<X,D14 > 197 A7 |— <X1.D1i4_ >
<X D16 o B8 A8 IX1.0i5 >
¢ b
pIr &
LA4ACT245 L]
W
LRG> Rx
L]
R
[~
A Yo p
A 218 v1 pid L
Al 3lc v2 pis Rx
vee I3 ;Li i
5——2 ¢1 yspid .
————2qG2a Y6 P2 R
XI,I6STRE > T d 628 Y7
PAF138
1 vo pi3 o o—¢
Bﬂuz 1B Y1 Bi3 S %
vee I3 < o o—=
? e 10
iJ&. epz= ADDRESS SELECT
——>dG28 Y7 p——
1 3F135 1 OF 4

FIG 2.9 DECODER CIRCUITRY FOR EXTERNAL BOARD

<OD4HHCOOHO OMUcC O-

External Bus Operation - External Interface Timing

8.2.2 Expansion Bus I/O Cycles

In contrast to primary bus and MSTRB cycles, TOSTRB reads and writes are both
two cycles in duration (with no wait states) and exhibit the same timing.
During these cycles, address always changes on the falling edge of H1, and
TOSTRB is low from the rising edge of the first H1 cycle to the rising edge of
the second H1 cycle. The TOSTRB signa! always goes inactive (high) between
cycles, and XR/W is high for reads and low for writes.

Figure 8-8 illustrates read and write cycles when IOSTRB is active and there
are no wait states. For TOSTRB accesses, reads and writes require a minimum
of two cycles. Some off-chip peripherals may change their status bits when
read or written. Therefore, it is important that valid addresses be maintained
when communicating with these peripherals. For reads and writes when

TOSTRB is active, TOSTRB is completely framed by the address.

.
.
.
.

“e

i
: .wﬂtedat;j-———
N/ N/

Figure 8-8. Read and Write for IOSTRB = 0

.o

External Bus Operation - External Interface Timing

Figure B-9 illustrates a read with one wait state when TOSTRB is active, and
Figure 8-10 illustrates a write with one wait state when 10STRB is active. For
each wait state added, TOSTRB, XR/W, and XA are extended one clock cycle.
Writes hold the data on the bus one additional cycle. The sampling of XRDY
is repeated each cycle.

o TN\ L
L—lxtra .cych-’[.

Figure 8-9. Read with One Wait-State for IOSTRB = 0

External Bus Operation - External Interface Timing

. . .
. . M .
. . .

. .

.

(X)D —-—-—-—-(write data ;
TRIRDY /N \:/

L—oxtra cycle -CJ

Figure 8-10. Write with One Wait-State for IOSTRB =0

8-12

Hardware Applications - Expansion Bus Interface

13.3 Expansion Bus Interface

The TMS320C30s expansion bus interface provides a second complete paral-
lel bus which can be'used to implement data transfers concurrently with, and
independent of, operations on the primary bus. The expansion bus comprises
two mutually exclusive interfaces controlled by the MSTRB and TOSTRB sig-
nals, respectively. These two signals are activated depending on what section
of the memory space is accessed. This subsection discusses interface to the
expansion bus using TOSTRB ; MSTRB cycles are identical in timing to primary
bus cycles, and are discussed in Section 13.2.

Unlike thre primary bus, both read and write cycles on the 1/0O portion of the
expansion bus are two H1 cycles in duration and exhibit the same timing. Thr
XR/W signal is high for reads and low for writes. Since |/Q accesses take two
cycles, many peripherais that require wait states if interfaced either to the pri-
mary bus or using MSTAB may be used in a system without the need for wait
states. Specifically, any devices with address access times greater than the
35 ns required by the primary bus but not less than 46 ns can be interfaced
to the 1/0 bus without wait states.

A/D converters are one common DSP system component which often falls
into this category. These devices are available in many speed ranges and with
a variety of features, and while some may require one or more wait states on
the 1/0 bus, others may be used at full speed.

One A/D converter that interfaces to the |/0 bus without wait states and re-
quires minimal additional logic is the ad 1332 from Analog Devices. Figure
13-12 illustrates an interface to this device.

&

13-17

Hardware Applications - Expansion Bus Interface

74ALS138
XA10
c
XA B vo p—
XA8 A
47k
TMS320C30 +85 V—AAM— 01
{23
2B AD1332
XA(12-0)
' =3
XAO
A0
XRW D wh
74ALS04
74A832
p—————qRb
TOSTRE [.13 4 -
XD(31-0) D11-D0
+85V
4740

Figure 13-12. Expansion Bus Interface to A/D Converter

The interface uses 8 74ALS138 to decode chip select for the converter. This
: configuration is shown assuming that other peripheral devices in the system
: 8iso require chip select decodes. XA(8-10) are decoded to locate the con-
verter at address 0804000h, which is the beginning of the 1/0 address space.
Other peripherals may also use the outputs of the decoder, which generates
chip selects in the 1/0 address space on 256 word boundaries.

XAO is used to drive the single address line required in interfacing to the con-
verter. This input selects between an 4internal 32-word FIFO buffer and the
A/D’s control/status register. Thus, the FIFO is located at address 0804000h
and the control/status register is located at address 0804001h.

/

j 13-18

Hardware Applications - Expansion Bus Interface

’

Sincs the converter requires RD and WR control signals rather than WE and
OE, random logic is used to generate these signals from TOSTRE and XR/W.
The converter's TRG (Interrupt Request) output is used to alert the
TMS320C30 to various qonditions of converter status.

Figure 13-13 shows the timing for read and write operations between the
TMS320C30 and the AD1332. Both operations are shown on the same tim-
ing diagram since, unlike the primary bus, only data bus timing and the state
of XR/W differ between the two ditferent types of cycles.

A A N S

XA(12-0)

KSR

READ DATA

WRITE DATA

X v»» X

! } VALD

tg -

Figure 13-13. Timing of Expansion Bus Interface

In both cases, address and R/W are valid 11 = 10 ns after the falling edge of
H1. After t2 = 17 ns, the propagation delay of the 74ALS138, the A/D con-
verter's chip select goes low, selecting the device. Then, t3 = 10 ns after the
rising edge of H1, IOSTRB goes low, and t4 = 5.8 ns following this, the RD or
WR signal to the converter goes low, initiating either a read or write cycle, re-
spectively. ’

For a read operation, the A/D converter provides data back to the TMS320C30
t4 + t5 = 30.8 ns after RD goes low. This satisfies the TMS320C30's re-
quirement of having data valid 35 ns after I0OSTRB. For write operations, the
A/D converter requires less than 5 ns of data setup and hold time with respect

13-189

Hardware Applications - Expansion Bus Interface

13-20

to the rising edge of WR. This is met with a high degree of margin by the
TMS320C30.

1t should be noted that for the AD1332’s FIFO to be clocked properly, the RD
signal must go high between accesses to the device. Therefore, although the
AD1332 may be fast enough in some cases to be used at speeds approaching
those of the primary bus, the STRE signal on the primary bus stays low for
multiple consecutive read cycles. The 1/O bus, therefore, is the preferable
choice for interface to this device.

