
Bootable/Standalone Multiprocessor Diagnostics Manual

This document contains highly-sensitive confidential information

that may only be viewed by employees of Solbourne Computer, Inc.

DO NOT COpy OR DISTRIBUTE THIS MANUAL.

SOLBOURNE COMPUTER, Inc.
1900 Pike Road

Longmont, Colorado 80501
(303) 772-3400

Solboume and Series4l600, and Series4/S00 are trademarks of Solbourne Computer, Inc

Part Number: 101686-AC

October 1989

Copyright © 1989 by Solbourne Computer, Inc. All rights reserved. No part of this publication
may be reproduced, stored in any media or in any type of retrieval system, transmitted in any
form (e.g., electronic, mechanical, photocopying, recording) or translated into any language or
computer language without the prior Written permission of Solboume Computer, Inc., 1900 Pike
Road, Longmont, Colorado 80501. There is no right to reverse engineer, decompile, or
disassemble the information contained herein or in the accompanying software.

Solboume Computer, Inc. reserves the right to revise this publication and to make changes from
time to time without obligation to notify any person of such revisions or changes.

Preface

This manual describes mdg, the Solbourne Computer, Inc., standalone multiprocessor test
controller for the Solbourne systems. This manual contains four sections, as follows:

Section 1 - Introduction
This section introduces the Bootable/Standalone Multiprocessor Diagnostics
program mdg.

Section 2 - Getting Started with mdg
This section explains how to begin using mdg.

Section 3 - mdg Tests
This section presents the tests currently available using mdg.

Section 4 - Commands
This section gives the user commands available when using mdg.

iii

Table of Contents

Section 1: Introduction ... 1-1
1.1 Introduction .. 1-1
1.2 Related Documentation .. 1-1

Section 2: Getting Started with mdg ... 2-1
2.1 Introduction .. 2-1
2.2 Invoking mdg ... 2-1
2.3 The Prompt ... 2-2
2.4 Entering Commands ... 2-2
2.5 Using mdg Commands .. 2-3

2.5.1 Test Control Commands .. 2-3
2.6 Selecting Processors for Testing .. 2-4
2.7 Starting Test Execution ... 2-5

2.7.1 Variations of Test Execution .. 2-6
2.B Handling Test Failures .. 2-6
2.9 Removing and Adding Processors ... 2-7
2.10 Exiting mdg ... 2-B

Section 3: mdg Tests ... 3-1
3.1 Introduction .. 3-1
3.2 Test 01: Atomic Load-Store Test ... 3-1
3.3 Test 02: Memory Data RAM Test .. 3-2
3.4 Test 03: Shared-Memory Pattern Test .. 3-2
3.5 Test 04: Cache Block Alias Test ... 3-3
3.6 Test 05: Floating Point Store Test .. 3-4
3.7 Test 06: Cache Data Request Test ... 3-4
3.B Test 07: Cache Data Bus Pattern Test ... 3-5
3.9 Test OB: Interrupt Test ... 3-6

Section 4: Commands .. 4-1
4.1 Introduction .. 4-1

vii

Section 1: Introduction

1.1 Introduction

mdg is a standalone test controller for use on Solboume multiprocessor systems. This program
is used by design, manufacturing, and field engineering personnel to help in determining
defective boards and in diagnosing these failures. The intended primary user of this program is
the manufacturing organization.

The software for mdg includes:

• the mdg standalone test controller (mdg (1»
• test control commands

• mdg tests

1.2 Related Documentation

Information that may be useful while using the mdg program is available in the following
documenta tion:

• Series4/600 Service Manual, Part number 101249-AA

• Series4/600 Theory Manual, Part number 101250-AA

• Series4/500 Service Manual, Part number 102161-AA

• Extended ROM Resident Diagnostics Manual, Part number 101489-AB

• System Power On Self Test Manual, Part number l01486-AB

Introduction 1-1

Section 2: Getting Started with mdg

2.1 Introduction

This section gives step-by-step instructions and examples for getting started using mdg.

In this section, commands you enter are given in boldface type. Command parameters for
which you substitute a value are given in italic.

2.2 Invoking mdg

The steps to follow the first time mdg is invoked are given below.

The user must first bring the Solbourne system to the ROM> prompt. If UNIX is running, it
must be shutdown using the halt (1) command. . ft I tV ~ .0 ~ 4 t

1. At the ROM> prompt, type: ~ --r ({ u L

ROM>b Sd.Si()~stand/mdg
2. When mdg starts up, the following message is displayed:

MDG - Multiprocessor Diagnostic Test Controller
Version 1.1 September 25, 1989
Copyright (c) 1989 Solbourne Computer, Inc.

3. As mdg starts up, the following steps are undertaken by the MASTER processor:

• Obtain the number of processors in the system and the results of power-up diagnostics
from the diagnostic RAM.

• Calculate the system-wide (shared memory) and CPU-specific (private memory) test
limits.

• Configure the memory configuration table with the number of memory boards in the
system as well as their addressing range.

• Configure the frame buffer configuration table with the values found during power-up.

• Initialize the VMEbus configuration table as empty.

• Awake each SLAVE processor in the system that passed the power-up diagnostics.
Each SLAVE processor will register with the MASTER processor in order for the
MASTER to include it as part of the selected list of available system processors that
mdg maintains.

• By default, all available tests are selected and all the available processors are included
for testing.

4. Upon completion of the previous setup, mdg will display the following message:

Getting Started with mdg 2-1

Solbourne Cormdentiallnformation - Do Not Distribute

CPU Configuration:

2 CPU boards:

Slotf
M 5

6

Power-Up-State
PASS
PASS

Selected
YES
YES

In this example, mdg found two processors in the system, both passed power-up
diagnostics, and as a result both were selected for inclusion in the list of available
processors. In the case of a processor failing power-up diagnostics, mdg will not include
it as one of the SELECTED processors. However, mdg provides to the user the capability
to attempt to include a processor that failed power-up diagnostics at any time.

2.3 The Prompt
The mdg prompt follows the following format:

{ CPUs not included during test I CPUs included during test } <Pass limit> ->

For example: In a system with two processors (in slots 5 and 6), with only the processor in slot 6
to be included during testing, and the pass limit set to 1 the prompt to be displayed will be as
follows:

{ 5/6 } <1> =>

2.4 Entering Commands
mdg commands and parameters are case insensitive and mdg accepts input only when the
prompt is displayed.

The rules for entering commands include:

• In general more than one command can be entered in a single command line to the prompt
at the same time.

{ /5 6 } <1> => tests 1 2 3 names on passl~ 0 between 5 run

The above command line selects tests 1,2, and 3, turns the printing of test names on, sets the
pass limit to 0 (no passlim), the between count is set to 5, and begins test execution with the
run command.

• Commands that process user input in an interactive mode, such as the vmeconf(1) and
fbconfig (1), cause commands that follow on the command line to be ignored.

• Commands must be separated by white space(s), including tabs or spaces. (Semicolons are
not recognized by mdg as spaces.)

2-2 Getting Started with mdg

Solboume Confidential Information - Do Not Distribute

• If any of the command(s} entered return an error condition, all following commands are
ignored and the prompt is redisplayed.

• If a command is unrecognized by mdg, the following is displayed:

Unknown command (command name)

• All command lines are terminated by a Return.

• Some commands may display additional error messages if numeric values are entered
incorrectly or if the numeric values are not legal. These messages identify the value that is
out of range, for example

illegal address (value given)

If an illegal value is given, additional information may be displayed that identifies the legal
range of values.

• Memory and I/O addresses and contents must be entered in hexidecimal format. Any value
that has to do with hardware must also be entered in hexidecimal (e.g., register data,
memory address, or memory data).

• Counters and test numbers should be entered in decimal format (e.g., counts and limits).

• The mdg help (1) command can be used any time the prompt is displayed. A summary of
the command given as an argument to help will be displayed.

2.5 Using mdg Commands
Example usage of each mdg command is given in Section 4 of this manual. All commands can
be used with any other commands. All the mdg commands are for test control.

The test control commands are commands so categorized because they cause execution or alter
the execution of the test programs.

2.5.1 Test Control Commands
The test control commands allow users to control tests run by the mdg debugger. The
command names and their functions follow:

• between (1) - Set or display between count

• config (1) - Display system processor configuration

• continue (1) - Set or display continue on error flag

• cpus (1) - Select or display processors included in tests

'. cpulim (1) - Display or set processor specific memory test limits

• deposit (1) - Deposit data at specified address

• en-lim (1) - Set or display error limit

• errors (1) - Display error count

• examine (1) - Examine contents of memory

• £beonfig (1) - Generates or display the frame buffer configuration

• halt (1) - Remove processors from mdg environment

Getting Started with mdg 2-3

Solboume Confidential Information - Do Not Distribute

• help (1) - Display this command list or information on a specific command

• limit (1) - Display or set memory test limits

• loop (1) - Set or display loop on test flag

• master (1) - Display or set master processor

• memconfig (1) - Display system memory configuration

• menu (1) - Display listing of available tests

• names (1) - Enable or disable printing of test names during test execution

• next (1) - Execute next selected test

• passes (1) - Display pass count

• passlim (1) - Set or display pass limit

• prompt(1) - Set or display prompt flags

• quiet (1) - Set or display error message enable flag

• quit (1) - Exit from mdg

• restart (1) - Restart execution of selected tests

• run (1) - Start execution of selected tests

• status (1) - Display or reset sta te of modes, flags, and coun ts

• tests (1) - Select or display tests to be executed

• time (1) - Set or display print time flag and print current date and time

• vmeconf (1) - Configure VMEbus devices

• wake (1) - Add processor to mdg environment

2.6 Selecting Processors for Testing
By default, when mdg is started all the processors that passed power-up diagnostics are
selected for testing. Processors are selected/deselected for testing with the cpus (1) command. If
the cpus command is entered without an argument, all the selected processors are displayed.
For example:

{ 5/6 } <1> => cpus
selected cpus:

6
{ 5/6 } <1> =>

The processor selection can be modified at any time the prompt is displayed. For example:

2-4 Getting Started with mdg

Solboume Confidential Information - Do Not Distribute

{ 5/6 } <1> -> cpus all
{ /5 6 } <1> => cpus
selected cpus:

5 6
{ /5 6 } <1> .. >

Processors that failed power-up diagnostics, are not automatically included for testing,
however by using the wake (1) command, it may be possible to include processors that failed.
The ability for a processor to start mdg depends heavily on the type of failure it had during
power-up. In that case, where a slave processor that is requested to start mdg, is unable to do
so, the master processor will timeout after a given time period.

For additional information on processor selection, see the cpus and wake commands in section
4.

2.7 Starting Test Execution
When mdg is initially started, all the tests are selected. Tests are executed when the run(1)
command is entered at the command line. For example:

{ /5 6 } <1> -> tests run

If the tests command is entered without an argument, all the selected tests are displayed. For
example:

{ /5 6 } <1> => tests
selected tests:

123

The test selection can be modified at any time the prompt is displayed. For example:

{ /5 6 } <1> => tests 1
{ /5 6 } <1> => tests
selected tests:

1
{ /5 6 } <1> =>

The menu command identifies the test names or their functions. For example

Getting Started with mdg 2-5

Solbourne Confidential Information - Do Not Distribute

{ /5 6 } <1> => menu
Menu of installed test programs:

Test 01: Atomic Load-Store Test
Test 02 : Memory Data RAM Test
Test 03: Shared-Memory Pattern Test
Test 04: Cache Block Alias Test
Test 05: Floating Point Store Test
Test 06: Cache Data Request Test
Test 07: Cache Data Bus Pattern Test
Test 08: Interrupt Test

{ /5 6 } <1> ... >

For additional infonnation on test execution, see the tests (1), run (1), and menu (1) commands
in Section 4.

2.7.1 Variations of Test Execution

This section discusses some of the basic variations that can be applied to test commands. There
are other variations than those given here.

Two results can occur during test execution. The test can pass or the test can fail.

If the test passes, the user can do any of the following:

• Tell the controller how many iterations to run using the passlim (1) command

• Controls whether the test names are printed using the names (1) command

• The user can also stop test execution at any time by entering a Control-C (4C)

Because of the difficulty controlling multi-asynchronous CPUs, mdg tests restart from the
beginning when the loop (1) command is used. Therefore, even though the loop command is
supported, it is not practical for setting up a scope loop. Instead, it is recommended that a logic
analyzer be used for evaluating failures.

If the test fails, the user can do any of the following:

• If required, remove other processors from the test.

• Skip to the next test in the selected sequence of tests using the next (1) command

• Restart the entire sequence using the restart (1) command.

2.8 Handling Test Failures
Several of the commands given in Section 4 that are used for test control can be used when test
failures occur. In the following example, test 3 detects a failure and the loop and quiet

- commands are used to set up a scope loop.

2-6 Getting Started with mdg

Solboume Confidential Information - Do Not Distribute

{ /5 6 } <1> ~> tests 4 run
Starting Test 4: Cache Block Alias Test

Tue Nov 22 14:58:04 1988
TEST 4 ERROR: Tue Nov 22 14:58:10 1988
Data error at vaddr Ox08eOOO, paddr Oxff08eOOO

exp E Ox058eOOO
act .. OxOa21000

Fatal error. Test(s) terminated.
{ /5 6 } <1> =>

Note that test 3 has displayed its error message which identified the failing test case and
returned to the prompt. If the user wishes to evaluate this test failure by setting up a logic
analyzer, the sequence of commands shown in the following illustration may be entered.

{ /5 6 } <1> => run

Starting Test 4: Cache Block Alias Test
Tue Nov 22 14:58:04 1988

TEST 4 ERROR: Tue Nov 22 14:59:25 1988
Data error at vaddr Ox08eOOO, paddr Oxff08eOOO

exp Ox058eOOO
act = OxOa21000

Fatal error. Test(s) terminated.
{ /5 6 } <1> =>

Note that test 3 has been re-executed and has redisplayed the same error message. This
suggests the presence of a solid failure. To speed up the loop and avoid having to reenter the
run command, the sequence of commands in the following illustration may be entered.

{ /5 6 } <1> => passl~ 0 names off run

(Only pass and error count messages are displayed.)

- A Control-C must be entered to halt the program and return to the prompt.

Getting Started with mdg 2-7

Solboume Confidential Information - Do Not Distribute

2.9 Removing and Adding Processors
It may be desirable in many ocassions to completely remove a processor from mdg. The halt (1)
command provides a mechanism to do this. The effect of the halt command is to put the target
processor in an idle loop at the ROM level.

'tl 'tl 'tl NOTE 'tl 'tl 'tl
If the target processor happens to be the master processor, it will
first tell all of the available processors to exit mdg, and then it
will exit from mdg itself.

In the other hand, the wake command provides the user with the ability to tell a processor,
which is idle at the ROM level, to start mdg as as slave processor and be part of the mdg
environment.

See the config (1), halt, and wake commands in Section 4 for additional information.

2.10 Exiting mdg
To exit mdg use the quit (1) command.

2-8 Getting Started with mdg

Section 3: mdg Tests

3.1 Introduction

This section explains the functionality of the tests shipped by Solbourne Computer for use with
the mdg (1) debugger. These tests include:

1.

2.

3.

4.

5.

6.

7.

8.

Atomic Load-Store Test

Memory Data RAM Test

Shared-Memory Pattern Test

Cache Block Alias Test

Floating Point Store Test

Cache Data Request Test

Cache Data Bus Pattern Test

Interrupt Test

,:'t ,:'t ,:'t NOTE ,:'t ,:'t ,:'t

Error messages from one test are not valid, if failures have
occurred during previous tests. The errors from a test must be
corrected before advancing to the next test.

3.2 Test 01: Atomic Load-Store Test

This test verifies the logic related to atomic load-store unsigned byte instructions by having all
processors involved in the test attempt to access and own a resource (byte) in memory for a
predetermined number of iterations.

In a multiprocessor system, two or more processors executing atomic load-store instructions
addressing the same byte simultaneously are guaranteed to execute them in some serial order.

Each processor attempts to lock this resource and assign a unique ownership identification (its
slot number) to the locked resource. Upon sucessfully locking the given byte, the processor will
assign its unique identification to this lock. Other processors should not be able to lock this byte
until it has been unlocked by this processor.

If after attempting to lock this byte, a processor finds that it is its owner but the identification
pattern is not its pattern, an error condition is detected and reported. For example:

mdg Tests 3-1

Solboume Confidential Information - Do Not Distribute

Bad contents of lock
exp Ox03
act .. Ox05

Upon test initialization, the master processor insures that all involved processors register in
order to proceed with the test. If for some reason a processor is unable to register to the master
processor, the master reports this as an error condition as follows:

Processor does not register
Processor = 5

If the prompt flag for this test is set, the test prints out messages indicating the status of the test
(however this may slow down execution).

3.3 Test 02: Memory Data RAM Test

This test is similar the the Memory Data RAM Test in dg except that each installed cpu card
accesses only a portion of each memory block. The test performs a movin inverse test algorithm
but "shares" each tested memory block with all other installed processors.

An example of a Data RAM Test failure follows:

Error occurred in data RAM memory test
Error code - OxeO Virtual addr - Ox00800000 Physical addr - OxOOeaOOOO
Board slot = 2
A data failure was found in the second read on the reverse pass

exp = Ox55555555
act Ox5555555d
xor Ox00000008

3.4 Test 03: Shared-Memory Pattern Test

This test verifies basic cache consistency by having all processors involved in the test work in
sequence during access to the same block of memory in FF space.

During test initialization, the master processor assigns each processor a unique pattern that
each processor writes to memory after waiting for another processor to write its pattern. In this
manner, the entire block of memory is addressed and results in an environment upon where

- each processor is constantly validating/invalidating its cache.

If after a predetennined number of retries, a processor fails to match the expected pattern from
memory, an error condition is detected and reported. For example:

3-2 mdg Tests

Solboume Confidential Information - Do Not Distribute

Expected pattern not matched
Retries = 2000
Address = OxffOc02eO
exp .. Ox04
act = OxOl

Upon test initialization, the master processor insures that all involved processors register in
order to proceed with the test. If for some reason a processor is unable to register to the master
processor, the master reports this as an error condition as follows:

Processor does not register
Processor = 5

If the prompt flag for this test is set, the test prints out messages indicating the status of the test
(however this may slow down execution).

3.5 Test 04: Cache Block Alias Test

This test verifies that the cache tags will reference the correct entry in the cache rams. It verifies
that a reference to the same physical location through different virtual addresses works
differently.

In a multiprocessor environment, this test performs a series of memory page write and reads in
which all physical page addresses from XXXXOOOY to xxxxeOOY (hex) are written and read
using all combinations of virtual page addresses from XXXXOOOY to xxxxeOOY including FF
space addresses. Each processor involved in this test will have a different starting base address
from the other processors (Y).

For Series4

For Series5

A write to a physical block using a virtual block address creates a unique
physical-to-virtual mapping within the MMU. When the physical block is
accessed using a different virtual address, the MMU must break the existing
physical-to-virtual mapping, write the data block to its physical location in
memory, and re-read it into the cache at the new virtual index. This creates
the new physical-to-virtual mapping.

This test insures that the MMU logic which detects the purge condition is
operational and that the data (unique for each processor and for each
physical page) is correctly transferred between the cache and the memory
system among all the processors.

Since the Series5 processor does not have a virtual/physical cache this test
simply exercises the TLB and cache.

Possible error message:

mdg Tests 3-3

Solboume Confidential Information - Do Not Distribute

Data error at vaddr Ox8eOOO, paddr Oxff08eOOO
exp Ox058eOOO
act = OxOa21000

Upon test initialization, the master processor insures that all involved processors register in
order to proceed with the test. If for some reason a processor is unable to register to the master
processor, the master will report this as an error condition as follows:

Processor does not register
Processor = 5

If the prompt flag for this test is set, the test prints out status messages that indicate which
physical and logical addresses are being used (however this slows down execution).

3.6 Test 05: Floating Point Store Test

This test is executed on all installed processors and is designed to exercise Kbus cache
consistency protocols when each processor's floating point unit is busy doing store operations
to its cache.

Each active processor is given a unique 64 Kbyte region of memory by the master processor.
This 64 Kbyte region is then divided into two 32 Kbyte regions by each processor. Each
processor then tags the first 32 Kbyte region with the floating point representation of its BID
pattern and the integer representation of its BID pattern into the second 32 Kbyte region. Each
processor, then begins a loop in which it alternates between writing its own memory regions
and verifying the two regions for all other processors.

An example error message is show below:

Data error in non-FP store region of CPU in slot 2
FP store region = Oxff800000:0xff807fff
non-FP store region = Oxff808000:0xff80ffff
failing address = Oxff807002
exp Ox22222222
act = Ox20222222

3.7 Test 06: Cache Data Request Test

- This test is executed on all installed processors and is designed to exercise each processors
ability to supply data in response to a Kbus data request (cacheable read) while busily
performing cache/memory operations.

Each processor begins by initializing memory with a sequence of patterns. 32-byte memory
blocks are allocated to each processor (modulo the number of processors) with each memory

3-4 mdg Tests

Solboume Confidential Information - Do Not Distribute

block containing a unique data pattern for the processor it is allocated to. The data pattern
consists of an address tag in words 0, 2, 4 and 6 of the memory block and the BID of the
processors which owns the memory block distributed across each nibble of words 1 and 5.
Words 3 and 7 are initialized with the complement of the pattern in words 1 and 5.

After memory has been initialized by all the processors, each processor gets synchronized with
the other processors and begins to read and check each the contents of the other processor's
caches for the correct data. This creates the desired kbus data request traffic.

An example error message is show below:

Data error detected by cpu X
block address = Oxbbbbbbbb
word address = Oxwwwwwwww
exp = Oxeeeeeeee
act = Oxaaaaaaaa
block contents:

11111111 22222222
33333333 44444444
55555555 66666666
77777777 88888888

Data belonged to cpu Y

3.8 Test 07: Cache Data Bus Pattern Test

This test is similar to the Cache Data Request Test except that when each processor reads data
from another processors cache, a dirty cache block must first be flushed from the cache of the
processor initiating the data request.

Each processor begins by initializing its allocated memory segment (64 Kbytes for Series4, 128
Kbytes for SeriesS) with alternating walking ones and walking zeroes patterns in successive
cache lines. The memory segments allocated for each processor are equal in size to the cache
size and segments are contiguous within the physical address space. This is done so that blocks
within the cache of one processor must be flushed out to memory when the corresponding
block within the cache of another processor is read.

After memory has been initialized by all the processors, each processor gets synchronized with
the other processors and reads the contents of the other processor's caches. The data read is not
checked. The read operations cause data within the processor performing the read to be flushed
out to memory. When all blocks from the other processors cache have been read, ECC is
enabled and the original data which was flushed out to memory is re-read and checked to be
correct.

If the test fails, one of the following error messages will be displayed:

Data fault occurred accessing block at address Oxaaaaaaaa
Fv.AR = Oxbbbbbbbb

This indicates that a data fault exception occurred when the cpu accessed address "Oxaaaaaaaa"

mdg Tests 3-5

Solboume Confidential Information - Do Not Distribute

ECCS fault occurred accessing block at address Oxaaaaaaaa
FPAR - Oxbbbbbbbb
FES = Oxcc

This indicates that an ECC single bit exception occurred when the cpu accessed the cache block
at address "Oxaaaaaaaa"

Data error occurred at address Oxaaaaaaaa
Pass N
exp = Oxeeeeeeee
act = Oxaaaaaaaa
block contents:

11111111 22222222
33333333 44444444
55555555 66666666
77777777 88888888

This indicates that the cpu read incorrect data at the specified address. ''Pass'' indicates how
many repetitions were completed when the error occurred.

3.9 Test 08: Interrupt Test
This test verifies that each processor can send directed interrupts to all other processors, and
that each processor receives an interrupt from all others.

For SeriesS, the global interrupt capability is verified in the same manner as for directed
interrupts.

Each processor starts by getting synchronized with all other processors, then all processors
simultaneously begin sending interrupts to another processor. 10,000 iterations of the test are
performed.

The following error may occur:

Never received directed interrupt from cpu in slot X
passes completed = YY

This indicates that all processors finished sending directed interrupts but one processor failed to
receive it.

If executed on a SeriesS machine, the following error could also occur:

3-6 mdg Tests

Solboume Confidential Information - Do Not Distribute

Never received global interrupt from cpu in slot X
passes completed = YY

This indicates that all processors finished sending global interrupts but one processor failed to
receive it.

mdg Tests 3-7

Section 4: Commands

4.1 Introduction

This section offers printed copies of man pages for all commands associated with mdg (1). The
commands are presented in the UNIX man page reference format.

A summary of command usage is displayed on-line when mdg is running by typing:

{ /5 6 } <1> => ?

The following is a listing of the mdg commands available in this section:

between (1)
config (1)
continue (1)
cpus(1)
cpulim (1)
depositO)
errlim (1)

errors (1)
examine (1)
fb config (1)
haIt(1)
help (1)
limit (1)
loop (1)
master (1)
mdg(1)
memconfig (1)
menu (1)
names (1)
next (1)
passes (1)
passlim (1)
prompt (1)
quiet(1)
quit (1)
restart (1)
run(1)
status (1)
time (1)
tests (1)
vmeconf(1)
wake (1)

Commands 4-1

BETWEEN(1) UNIX Programmer's Manual BETWEEN(1)

NAME
between - Set or display between count

SYNOPSIS
between [count]

DESCRIPTION
between sets or displays the current setting of the between count. between suppresses
printing test completed messages to the screen until count passes have completed.

When the status (1) reset command is used, the between count is reset to 1.

OPTION
count Specifies the number of test passes that must be completed before a completion

message is displayed. By default the between count is always set to 1.

EXAMPLE
User input in the example is shown in boldface type.

The following example illustrates how to set and redisplay the between count.

SEE ALSO

/5 6 } <1> => between 4
/5 6 } <1> => between

Between count = 4
/5 6 } <1> =>

mdg (1), passlim (1), status (1)

SoIbourne Computer, Inc. 1 December 1988 1

CONTINUE (1) UNIX Programmer's Manual CONTINUE (1)

NAME
continue - Set or display continue on error flag

SYNOPSIS
continue [on I off]

DESCRIPTION
continue sets or displays the continue-on-error flag. If no parameters are specified, con
tinue displays the current setting of the continue-on-error flag.

The continue flag commands tests to continue executing after a test failure occurs. Tests
are designed to check the continue flag to determine if test execution should be halted
(the default condition) or if the next test case should be executed.

OPTIONS
on Turns on the continue-on-error flag.

off Turns off the continue-on-error flag.

EXAMPLES
User input in the examples is shown in boldface type.

The following example causes the current error message enable flag to be displayed.

/5 6 } <1> => continue
continue = off

/5 6 } <1> =>

The following example illustrates how the continue flag is changed and redisplayed.

SEE ALSO

/5 6 } <1> => continue on
/5 6 } <1> => continue

continue = on
/5 6 } <1> =>

mdg (1), status (1)

SoIbourne Computer, Inc. 1 December 1988 1

CPUS(1) UNIX Programmer's Manual CPUS(1)

NAME
cpus - Select or display processors included in testing

SYNOPSIS
CpUS [all I cpu... I cpu:cpu ••.]

DESCRIPTION
cpus select the processors that are to be tested by the selected tests. By default, all pro
cessors are selected for testing when the program is initialized.

Single processors or a range of processors may be selected by specifying the processor
numbers or range of processors number.

OPTIONS
all Select all the available processors. all can be Specified at any time to reselect all

processors.

cpu Select Specified cpu. If cpu is not specified, the cpus command displays the
current processor selection.

EXAMPLES
User input in the examples is shown in boldface type.

The following example illustrates how to display the processor selection.

{ /5 6 } <1> => cpus
selected cpus:

5 6
{ /5 6 } <1> =>

In the following example, processor 5 is selected and then displayed.

{ /5 6 } <1> => cpus 5
{ 6/5 } <1> => cpus
selected cpus:

5
{ 6/5 } <1> =>

In the following example, processors 6 and 5 are selected and displayed. Note that pro
cessors may be selected in any order.

{ 6/5 } <1> => cpus 6:5
{ /5 6 } <1> => cpus
selected cpus:

6 5
{ /5 6 } <1> "'>

In the following example, all processors are selected and displayed.

{ /5 6 } <1> => cpus all
{ /5 6 } <1> => cpus
selected cpus:

5 6
{ /5 6 } <1> =>

SoIboume Computer, Inc. 1 December 1988 1

CPUS(1)

SEE ALSO
mdg(1)

Solbourne Computer, Inc.

UNIX Programmer's Manual CPUS(1)

1 December 1988 2

CPULIM(l) UNIX Programmer's Manual CPULIM(l)

NAME
cpulim - Display or set processor specific memory test limits

SYNOPSIS
cpulim [cpu I [low high I reset]]

DESCRIPTION
cpulim displays or sets the processor specific (private) memory test limits. By default,
cpulim displays all memory limits for all of the processors in the system.

cpulim is calculated using the amount of free memory and the number of processors in
the system.

Some test programs examine the private memory limits to determine how much memory
to test.

OPTION
reset Resets the limits back to the default settings. The default settings are deter

mined by the amount of free memory and the number of processors in the sys
tem.

low high
low is the first address and high is the last address to test, inclusive.

EXAMPLE
User input in the example is shown in boldface type.

The following example displays the current limit settings for all the processors in the sys
tem.

{ /5 6 } <1> => cpul~
CPU Specific Memory limits:

Slott LOW
5 dfOOO
6 4c4000

{ /5 6 } <1> =>

HIGH
4a3fff
82bfff

The following example resets the memory limit to their default values.

{ /5 6 } <1> => cpul~ reset
{ /5 6 } <1> => cpul~
CPU Specific Memory limits:

Slott LOW
5 dcOOO
6 4a4000

{ /5 6 } <1> =>

HIGH
4a3fff
86bfff

The follOwing example sets the memory limit for processor 5 to the range efOOO through
400000 hex, inclusive.

{ /5 6 } <1> => cpul~ 5 efOOO 400000
{ /5 6 } <1> => cpul~ 5
CPU Specific Memory limits:

Slott LOW HIGH
5 efOOO 400000

Solboume Computer, Inc. 1 December 1988 1

CPULIM(1) UNIX Programmer's Manual CPULIM(1)

{ /5 6 } <1> .. >

SEE ALSO
config 0), limit 0), mdg (1)

SoIbourne Computer, Inc. 1 December 1988 2

DEPOSIT(l) UNIX Programmer's Manual

NAME
deposit - Deposit data at specified address

SYNOPSIS
deposit [-b I h I w] [addr Jange] = value

DESCRIPTION
deposit writes data to an address or range of addresses.

OPTIONS
[-b I h I w]

Specifies the width of the data to be examined.
-b - byte (8 bits)
-h - half word (16 bits)
-w - word (32 bits)
If the width is not specified, a width of -b (1 byte) is assumed.

addrJange
One of the following forms:
addr - the location addr
addr #count - count locations starting from addr
addrl :addr2 - all locations from addrl to addr2.

=value Value to be written to the specified address.

EXAMPLES
The following example writes 32 bits of data (zero) to address flOOOOOO hex.

/5 6 <1> => deposit -w Oz££OOOOOO=O
/5 6 } <1> =>

SEE ALSO
mdg(l), examine (1)

Solbourne Computer, Inc. 1 December 1988

DEPOSIT(l)

1

ERRLIM(1) UNIX Programmer's Manual ERRLIM(l)

NAME
errlim - Set or display error limit

SYNOPSIS
errlim [limit]

DESCRIPTION
errlim sets or displays the current setting of the test error limit.

OPTION
- limit Specifies the number of test errors that can occur before test execution is halted.

By default, the limit is set to zero (no error limit). However, the error limit may
be changed by specifying a new limit value. The limit value must be entered in
unsigned decimal format and be between 0 and 2,147,483,647, inclusive.

EXAMPLES
User input in the examples is shown in boldface type.

The following example illustrates how to display the current error limit.

{ /5 6 } <1> => errlim
Error limit = 0

/5 6 } <1> =>

The following example illustra tes how to change and re-display the error limit.

{ /5 6 } <1> => errlim 100
{ /5 6 } <1> => errlim

Error limit = 100
/5 6 } <1> =>

SEE ALSO
errors (1), mdg (1), status (1)

Solbourne Computer, Inc. 1 December 1988 1

ERRORS(l) UNIX Programmer's Manual

NAME
errors - Display error count

SYNOPSIS
errors

DESCRIPTION

ERRORS(l)

errors displays the number of test errors that have occurred since the last run(1) com
mand.

EXAMPLE
User input in the example is shown in boldface type.

The following example illustrates how to display the error count.

SEE ALSO

/5 6 } <1> => errors
Total test errors 0

/5 6 } <1> =>

errlim (1), mdg (1), status (1)

Solboume Computer, Inc. 1 December 1988 1

EXAMINE(1) UNIX Programmers Manual

NAME
examine - Examine contents of memory

SYNOPSIS
examine [-b I h I w] [addr Jange]

DESCRIPTION
examine reads data from the specified address or addresses.

OPTIONS
[-b I h I w]

Specifies the width of the data to be examined.
-b - byte (8 bits)
-h - half word (16 bits)
-w - word (32 bits)

addrJange
One of the following forms:
addr - the location addr
addr #count - count locations starting from addr
addrl :addr2 - all locations from addrl to addr2.

EXAMINE(1)

If range is not specified, the address range used on the previous examine com
mand is used.

EXAMPLES
The following example shows how to examine a byte from location 17000000 hex.

{ /5 6 } <1> => ex~ne -b Ox17000000
(Ox17000000): Ox3d
{ /5 6 } <1> =>

SEE ALSO
mdg (1), deposit (1)

SoJbourne Computer, Inc. 1 December 1988 1

FBCONFIG (1) UNIX Programmer's Manual

NAME
fbconfig - displays the frame buffer configuration file

SYNOPSIS
fbconfig

DESCRIPTION

FBCONFIG (1)

The frame buffer configuration is read from the diagnostic RAM when MDG is invoked.

The board must be configured in descending slot order.

EXAMPLE
User input in the example is shown in boldface type.

SEE ALSO
mdg(1)

{ /5 6 } <1> => fbconfig

Frame Buffer Configuration:

1 graphics board(s) :
Slot 10 address Board Type
1 a1000000 monochrome

Slot number of default board to test: 1
{ /5 6 } <1> =>

SoJboume Computer, Inc. 1 December 1988

Resolution
low

1

HALT (1) UNIX Programmer's Manual HALT(1)

NAME
halt - Remove processors from mdg environment

SYNOPSIS
halt [all I cpu ... I cpu:cpu ...]

DESCRIPTION
halt removes the specified processors from the mdg environment. The effect of removing
a processor from mdg is to put the specified processor in an idle loop at the ROM level,
thus exiting from mdg.

If the specified processor is the master processor, the master processor will first tell all of
the available processors in the system to exit mdg, and then it will exit mdg itself.

OPTIONS
all Halt all the available processors. all can be specified at any time to halt all pro

cessors.

cpu Halt specified cpu.

EXAMPLES
User input in the examples is shown in boldface type.

In the following example, processor 6 is halted and removed from mdg.

{ /5 6 } <1> => halt 6
{ /5 } <1> =>

In the following example, processors 6 and 5 are both halted, thus in effect both proces
sors exiting from mdg. Note that processors may be selected in any order.

{ 6/5 } <1> => halt 6:5
In the following example, all processors are halted. This results in both processors exit
ing from mdg.

{ /5 6 } <1> => halt all

SEE ALSO
COMg (1), mdg (1), wake (1)

Solboume Computer, Inc. 1 December 1988 1

HELP (1) UNIX Programmer's Manual HELP(1)

NAME
help - Display command list or information on a specific command

SYNOPSIS
help [command. . .]

DESCRIPTION
The help command with no arguments causes a list of command and command usages to
be displayed. This is equivalent to the? command.

The help command with an argument causes the command usage for the specified com
mand to be displayed.

OPTIONS
command

EXAMPLE

name of command for which help is desired.

The following example causes the command usage for the tests command to be
displayed:

/5 6 } <1> => help tests
Usage: tests [all I test ... I test:test ...]

/5 6 } <1> =>

SEE ALSO
mdg(1)

SoIbourne Computer, Inc. 1 December1988 1

LIMIT(l) UNIX Programmer's Manual UMIT(1)

NAME
limit - Display or set memory test limits

SYNOPSIS
limit [reset I memname [low high I reset]]

DESCRIPTION
limit displays or sets the memory test limits of the system. By default, limit displays all
the memory limits.

limit is set to the amount of installed memory for each memory devices in the system.
Memory devices include physical shared memory, VMEbus address map memory, and
VMEbus resident memory boards.

The test programs examine the memory limits to determine how much memory to test.

OPTION
reset Resets the limits back to the default settings. The default settings are deter

mined by the amount of installed memory and the number of processors in the
system.

low high
low is the first address and high is the last address to test, inclusive.

EXAMPLE
User input in the example is shown in boldface type.

The following example displays the current limit settings for all the memory devices.

{ /5 6) <1> => limit
System Memory limits: LOW

sysmem 87cOOO
vrnemap = 20
vrnemem = 3

{ /5 6) <1> =>

HIGH
afffff

7ff
5ff

The following example resets the memory limits to their default values.

{ /5 6) <1> => limit reset
{ /5 6) <1> => limit
System Memory limits:

sysmem
vrnemap =
vrnemem =

{ /5 6) <1> =>

LOW
86eOOO

20
o

HIGH
ffffff

7ff
7ffff

The following example sets the memory limits for physical shared memory to the range
86eOOO through cfffff hex and set the VMEbus address map limits to 20 through ff hex,
inclusive.

Solboume Computer. Inc. 1 December 1988 1

UMIT(1) UNIX Programmer's Manual UMIT(l)

/5 6 <1> ... > l~t mem 86eOOO cfffff
/5 6 <1> => limit vmemap 20 ff
/5 6 <1> => limit

System Memory limits: LOW HIGH
sysmem = 86eOOO cfffff
vrnemap = 20 ff
vrnemem ... 0 7ffff

{ /5 6 } <1> =>

The following example resets only the VMEbus address map limits to their default
values. The physical shared memory values are not modified.

SEE ALSO

{ /5 6 } <1> -> limit vmemap reset
{ /5 6 } <1> => limit
System Memory limits: LOW

sysmem = 86eOOO
vrnemap = 20
vrnemem = 0

{ /5 6 } <1> =>

HIGH
cfffff

7ff
7ffff

config (1), mdg (1)

Solboume Computer, Inc. 1 December 1988 2

LOOP(1) UNIX Programmer's Manual LOOP(1)

NAME
loop - Set or display loop on test flag

SYNOPSIS
loop [on I off]

DESCRIPTION
loop sets or displays the loop on error flag. If no parameters are specified, loop displays
the current setting of the loop flag.

The loop flag commands tests to loop on the failing test case in the event a test error
occurs. Tests are designed to halt when errors occur so that the loop command may be
entered.

OPTIONS
on Turns on the loop flag.

off Turns off the loop flag.

EXAMPLES
User input in the examples is shown in boldface type.

The following example causes the current loop flag do be displayed.

/5 6 } <1> => loop
loop = off

/5 6 } <1> =>

The following example illustrates how the loop flag is changed and re-displayed.

SEE ALSO

/5 6 } <1>
/5 6 } <1>

loop =
/5 6 } <1>

mdg (1), status (1)

SoIbourne Computer, Inc.

=> loop on
=> loop
on
=>

1 December 1988 1

MASTER(l) UNIX Programmer's Manual MASTER(l)

NAME
master - Set or display master processor

SYNOPSIS
master [cpu]

DESCRIPTION
master sets or displays the current master cpu of the system. The master cpu is the pro
cessor that is responsible for controlling all of mdg. This processor is in charge of moni
toring the other processors, as well as handling any requests for service initiated by the
these.

This command should be used when it is desired to have a specific processor control the
mdg environment.

OPTION
cpu Select specified cpu to be the master. If cpu is not specified, the master command

displays the current master processor.

EXAMPLES
User input in the examples is shown in boldface type.

The following example illustrates how to display the current master processor.

/5 6 } <1> => master
Master CPU = 5

/5 6 } <1> =>

The following example illustrates how to change and re-display the master processor.

SEE ALSO
mdg(1)

/5
/5

/5

6
6

6

} <1>
} <1>

Master
} <1>

=> master 6
=> master
CPU = 6
=>

1 December 1988 1

MDG(1) UNIX Programmers Manual MOG(1)

NAME
mdg - description of the standalone multiprocessor diagnostic test controller

SYNOPSIS
mdg

DESCRIPTION
mdg is a standalone multiprocessor test controller. The test controller provides the com
mands necessary to randomly select and execute any of the available test programs on
any or all of the processors in the system. The operator has control over test execution
and can command test programs to loop on error or repeat execution indefinitely.

The following is a list of the mdg commands with the shortest possible abbreviation in
capital letters. Command names and abbreviations are not case sensitive.

The acceptable commands follow (bold, uppercase letters represent the abbreviated
usage of the command name):

? Display summary of mdg commands

between Set or display between count

config Display system processor configuration

continue
Set or display continue on error flag

cpus Select or display processors included in test

cpulim Set or display processor specific memory test limits

deposit Deposit data at specified address

errlim Set or display error limit

errors Display error count

examine Examine contents of memory

fbconfig
Displays the frame buffer configuration

halt Remove processor from mdg environment

help Display summary of mdg commands

limit Display or set system memory test limits

loop Set or display loop on test flag

master Set or display master processor

memconfig
Display system memory configuration

menu Display listing of the available tests

names Enable or disable printing of test names during test exe
cution

next Execute next selected test

passes Display pass count

passlim Set or display pass limit

prompt Set or display prompt flags

SoIbourne Computer. Inc. 1 December 1988 1

MDG(1)

quiet

quit

UNIX Programmer's Manual

Set or display error message enable flag

Exit from mdg program

restart Restart execution of selected tests

run Start execution of selected tests

status Display or reset state of modes, flags and counts

tests Select or display tests to be executed

MDG(1)

time Set or display print time flag and display current date
and time

vmeconf Configure VMEbus devices

wake Add processor to mdg environment

Solbourne Computer, Inc. 1 December 1988 2

MEMCONFIG (1) UNIX Programmer's Manual

NAME
memconfig - Display memory configuration file

SYNOPSIS
memconfig

DESCRIPTION

MEMCONFIG (1)

memconfig displays the memory configuration. When MDG is invoked it creates a
memory configuration table based on the memory configuration information saved in the
diagnostic RAM during the power-up self-tests.

EXAMPLES
User input in the examples is shown in boldface type.

In the following example, memconfig is entered at the prompt. The contents of the
memory configuration table is displayed.

SEE ALSO
mdg(1)

{ /5 6 } <1> c> memconfig
Memory Configuration:

2 boards totaling 32 Mbytes
Slot 1 16 Mbytes
Slot 2 16 Mbytes

/5 6 } <1> =>

SoIbourne Computer. Inc. 1 December 1988

Base address
Base address

00000000
01000000

1

MENU(1) UNIX Programmer's Manual

NAME
menu - Display listing of available tests

SYNOPSIS
menu

DESCRIPTION

MENU(1)

menu lists the names of all available tests in the default order of execution. menu
displays tests in the default order of execution.

EXAMPLE
User input in the example is shown in boldface type.

The following example displays the list of installed tests.

SEE ALSO

{ /5 6 } <1> => menu
Menu of installed test programs:

Test 01: Atomic Load-Store Test·
Test 02: Memory Data RAM Test
Test 03: Shared-Memory Pattern Test
Test 04: Cache Block Alias Test
Test 05: Floating Point Store Test
Test 06: Cache Data Request Test
Test 07: Cache Data Bus Pattern Test
Test 08: Interrupt Test

{ /5 6 } <1> =>

mdg(1), tests (1)

Solbourne Computer, Inc. 1 December 1988 1

NAMES(l) UNIX Programmer's Manual NAMES(l)

NAME
names - Enable or disable printing of test names during test execution

SYNOPSIS
names [on I off]

DESCRIPTION
names enables or disables the printing of test names during test execution.

OPTIONS
on Enables the printing of the test names during test execution. This is the default

setting.

off Disables the printing of the test names during test execution.

EXAMPLES
User input in the examples is shown in boldface type.

The following example causes the state of the name flag to be displayed.

/5 6 } <1> => names
names = on

/5 6 } <1> =>

The following example illustrates how the names flag is changed and redisplayed.

SEE ALSO

/5 6 } <1> => names off
/5 6 } <1> => names

names = off
/5 6 } <1> =>

mdg (1), status (1)

SoIboume Computer, Inc. 1 December 1988 1

NEXTO) UNIX Programmer's Manual

NAME
next - Execute next selected test

SYNOPSIS
next

DESCRIPTION

NEXT(1)

next causes the test sequence to be continued, starting with the next selected test. It is
used when a test halts on an error and the user wishes to continue test execution with the
next test in the sequence.

EXAMPLE
User input in the example is shown in boldface type.

In the folJowing example run was entered to begin test execution. The current test selec
tion was executed until an error was encountered in test 1. next was entered to continue
the test sequence starting with the next test in the sequence.

SEE ALSO

{ /5 6 } <1> => run
Starting Test 1: (testname)
Test 1 error: (error message)

{ /5 6 } <1> => next
Starting Test 2: (testname)

Starting Test n: (testname)

Tests completed: Passes = 1
{ /5 6 } <1> =>

Errors = 1

between (1), errlim (1), mdg (1), passlim (1), restart (1), run(1)

Solbourne Computer, Inc. 1 December 1988

Tue Nov 22 14:58:04 1988

1

PASSES (1) UNIX Programmer's Manual

NAME
passes - Display pass count

SYNOPSIS
passes

DESCRIPTION

PASSES (1)

passes displays the number of complete test passes that have made since the last run
command.

EXAMPLE
User input in the example is shown in boldface type.

The follo ing example illustrates how to use the passes command.

/5 6 } <1> => passes
Total passes = 0

/5 6 } <1> -=>

SEE ALSO
mdg (1), passlim (1)

SoIbourne Computer, Inc. 1 December 1988 1 .

PASSLIM(l) UNIX Programmer's Manual PASSLIM(l)

NAME
passlim - Set or display pass limit

SYNOPSIS
passlim [limit]

DESCRIPTION
passlim sets or displays the current setting of the test pass limit. passlim specifies the
number of test passes that can occur before test execution is halted.

This command should be used when it is desired to execute numerous passes of the test
sequence.

OPTION
limit Sets the number of test passes that will be run. By default, limit is set to one.

Limit must be entered in unsigned decimal format in the range O-to-
2,147,483,647, inclusive. A limit of 0 specifies that tests execute continuously
until a Control-C is entered.

EXAMPLES
User input in the examples is shown in boldface type.

The following example illustrates how to display the current pass limit.

/5 6 } <1> => passl~
Pass limit = 1

/5 6 } <1> =>

The following example illustrates how to change and re-display the pass limit.

SEE ALSO

/5 6 } <1> => passlirn 0
/5 6 } <0> => passl~

Pass limit = 0
/5 6 } <0> =>

mdg (1), passes (1)

SoJboume Computer, Inc. 1 December 1988 1

PROMPT(I) UNIX Programmers Manual PROMPT(l)

NAME
prompt - Set or display prompt flags

SYNOPSIS
prompt [all I oft I test test... I test:test ...]

DESCRIPTION
prompt sets or displays the prompt flag for each test program. The command allows the
user to selectively alter the default behavior of the test programs by turning the flag for
the specified tests on or off.

Only a few of the mdg tests use the prompt flag. The behavior of the test depends on
what the test is attempting to accomplish. In some case, if a test isn't prompted it does
not execute. In others, it modifies the test algorithm or enables the printing of informa
tional messages.

Single tests or a range of tests may be prompted by specifying the test numbers or range
of tests number.

The menu (1) command indicates which tests examine their prompt flags.

OPTIONS
all

oft

test

EXAMPLES

Set prompt flags for all tests. all can be specified at any time to prompt all tests.

Turns prompt flags for all tests off. oft can be specified at any time to turn off
prompts for all tests.

Prompt specified test. If test is not specified, the prompt command displays the
current status of the prompt flags.

User input in the examples is shown in boldface type.

The following example illustrates how to display the prompt flags.

SEE ALSO

{ /5 6 } <1> => prompt
no prompted tests
{ /5 6 } <1> => prompt all
{ /5 6 } <1> => prompt
prompted tests:

1 2 3
/5 6 } <1> => prompt
/5 6 } <1> => prompt
/5 6 } <1> => prompt

prompted tests:
2 3

{ /5 6 } <1> =>

off
2 3

mdg (1), menu (1), tests (1)

SoJbourne Computer, Inc. 1 December 1988 1

QUIET (1) UNIX Programmer's Manual QUIET(l)

NAME
quiet - Set or display error message enable flag

SYNOPSIS
quiet [on I off]

DESCRIPTION
quiet sets or displays the error message enable flag. If no parameters are specified, quiet
displays the current setting of the flag.

The error message enable flag prevents error messages from being displayed on test
failures. This feature should be used to create the tightest possible loop when the loop
flag is on. A Control-C must be entered to stop the loop and return to the prompt.

OPTIONS
on Turns on the quiet flag.

off Turns off the quiet flag.

EXAMPLES
User input in the examples is shown in boldface type.

The following example causes the current error message enable flag to be displayed.

/5 6 } <1> => quiet
quiet = off

/5 6 } <1> =>

The following example illustrates how the quiet flag is changed and redisplayed.

SEE ALSO

/5 6 } <1> => quiet on
/5 6 } <1> => quiet

quiet = on
/5 6 } <1> =>

mdg (1), status (1)

Solbourne Computer, Inc. 1 December 1988 1

QUITO)

NAME
quit - Exit from mdg

SYNOPSIS
quit

DESCRIPTION

UNIX Programmer's Manual QUITO)

quit exits from the mdg debugger program and returns the user to the ROM> prompt.

SEE ALSO
mdg(1)

SoIbourne Computer, Inc. 1 December 1988 1

RESTART(1) UNIX Programmer's Manual RESTART(l)

NAME
restart - Restart execution of selected tests

SYNOPSIS
restart

DESCRIPTION
restart causes the current test (1) selection to be executed beginning with the first test
current test selection. The major difference between restart and run (1) is that restart goes
back to the first test in the sequence, while run continues execution with the next selected
test.

The number of times the test selection is executed depends on the value of the passlim (1)
limit.

EXAMPLE
User input in the example is shown in boldface type.

In the following example run was entered to begin test execution. The current test selec
tion were executed until an error was encountered in test 1. restart was entered to start
the test sequence again from the beginning.

SEE ALSO

{ /5 6 } <1> => run
Starting Test 1: (testname)
Test 1 error: (error message)

{ /5 6 <1> => restart
Starting Test 1: (testname)

Starting Test n: (testname)

Tests completed: Passes = 1
{ /5 6 } <1> =>

mdg (1), next (1), passlim (1), run (1)

--- ---------

Errors

Solbourne Computer, Inc. 1 December 1988

o Tue Nov 22 14:58:04 1988

1

RUN (1) UNIX Programmer's Manual

NAME
run - Start execution of selected tests

SYNOPSIS
run

DESCRIPTION

RUN(1)

run causes the current test (1) selection to be executed. The number of times the test
selection is executed depends on the value of the passlim (1) limit.

EXAMPLE
User input in the example is shown in boldface type.

In the follOwing example run was entered to begin test execution. The current test selec
tion was executed once (passlim = 1) followed by a tests completed message. If passlim's
limit is set to a value other than one, the complete test sequence would be repeatedly exe
cuted until limit is reached, at which time the program would return to the prompt. The
test completed message is displayed after each pass.

SEE ALSO

{ /5 6 } <1> => run
Starting Test 1: (testname)

Starting Test n: (testname)

Tests completed: Passes = 1
{ /5 6 } <1> =>

mdg (1), next (1), passlim (1), restart (1)

Errors

SoIbourne Computer, Inc. 1 December 1988

o Tue Nov 22 14:58:04 1988

1

STATUS(l) UNIX Programmer's Manual STATUS(l)

NAME
status - Display or reset state of modes, flags, and counts

SYNOPSIS
status [reset] [flags]

DESCRIPTION
status displays the current state of all modes, program flags, and counters. flags resets all
the flags, which includes names, continue, loop, quiet, and xbuf.

OPTION
reset Resets the status of flags, counts, and limits to the default setting. reset also

resets the test selection back to default values.

flags Resets the status of flags to the default settings.

EXAMPLE
User input in the example is shown in boldface type.

{ /5 6 } <1> c> status
Tue Nov 22 12:45:20 1988

Names on
Continue off
Loop off
Quiet off
Time off

Pass count = 0 Pass limit = 1
Error count 0 Error limit 0
Between count = 1

{ /5 6 } <1> =>

SEE ALSO
between (1), continue (1), ecc(1), errlim(1), errors (1), loop (1), mdg(1), names (1),
passes (1), passlim (1), quiet(l), time (1)

Solbourne Computer, Inc. t December 1988 1

TESTS(1) UNIX Programmers Manual TESTS (1)

NAME
tests - Select or display tests to be executed

SYNOPSIS
tests [all I test test ... I test:test .•.]

DESCRIPTION
tests select the tests for execution by the run (1) command. By default, all tests are
selected for execution when the program is initialized.

Single tests or a range of tests may be selected by specifying the test numbers or range of
tests number.

OPTIONS
all Execute all the tests. all can be specified at any time to reselect all tests.

test Execute specified test. If test is not specified, the tests command displays the
current test selection.

EXAMPLES
User input in the examples is shown in boldface type.

The following example illustrates how to display the test selection.

{ /5 6 } <1> ~> tests
selected tests:

123
{ /5 6 } <1> =>

In the following example, tests 1 and 2 are selected and then displayed.

{ /5 6 } <1> => tests 1 2
{ /5 6 } <1> => tests
selected tests:

1 2
{ /5 6 } <1> =>

In the following example, tests 3 through 1 are selected and displayed. Note that tests
may be selected to run in any order.

{ /5 6 } <1> => tests 3:1
{ /5 6 } <1> => tests
selected tests:

3 2 1
{ /5 6 } <1> =>

In the following example, all installed tests are selected and displayed.

{ /5 6 } <1> => tests all
{ /5 6 } <1> => tests
selected tests:

123
{ /5 6 } <1> =>

4 5

Solbourne Computer, Inc. 1 December 1988

6 7 8

1

TESTS(1) UNIX Programmer's Manual TESTS(1)

SEE ALSO
mdg (1), next (1), restart (1), run (1)

Solbourne Computer, Inc. 1 December 1988 2

TIME 0) UNIX Programmer's Manual TIME(1)

NAME
time - Set or display print time flag

SYNOPSIS
time [on I off]

DESCRIPTION
time sets or displays the print-time flag. If no parameters are specified, time displays the
current setting of the print-time flag and the current time and data. The print-time flag
controls whether the current time and date is printed when test names are displayed dur
ing test execution. The default state of the print-time flag is off (no time printed). If both
the names flag and print-time flag are on, the time and date is printed on the line follow
ing the test name during test execution.

OPTIONS
on Turns on the print-time flag.

off Turns off the print-time flag.

EXAMPLES
The following example causes the current print-time flag to be displayed:

{ /5 6 } <1> => time
Tue Nov 22 14:20:00 1988

Time = off
{ /5 6 } <1> =>

The following example illustrates how the print-time flag is changed and redisplayed.

{ /5 6 } <1> => time on
{ /5 6 } <1> m> time
Tue Nov 22 14:20:00 1988

Time = on
{ /5 6 } <1> Ie>

SEE ALSO
mdg 0), names 0), status 0)

Solbourne Computer, Inc. 1 December 1988 1

VMECONF(l) UNIX Programmer's Manual VMECONF(l)

NAME
vmeconf - Configure VMEbus devices

SYNOPSIS
vmeconf

DESCRIPTION
vmeconf generates or displays the VMEbus configuration table.

When mdg is invoked, it does not asks the user to generate a VMEbus configuration
table. Therefore, if the user wishes to perform tests of the VMEbus chassis, they must
first execute this command.

vmeconf prompts for all user input. It accepts no options or arguments at the command
line.

Currently, vmeconf supports the Ciprico Rimfire, Excelan Ethernet, and Plessy RAM
boards.

EXAMPLE
User input in the example is shown in boldface type.

The following example shows how vmeconf is used to remove an Excelan Ethernet
VMEbus board from the configuration, then how the program would be used to put the
board back into the configuration table.

{ IS 6 } <1> => v.meconf

VMEbus Configuration consists of four boards
(0) Ciprico Rimfire 3500 VMEbus-to-SCSI

Am = Ox2d Addr Ox5000 Physaddr
(1) Excelan Ethernet

Ox85ff5000

Am = Ox3d Addr = OxdOOOOO
(2) Plessey RAM (512K)

Physaddr = Ox87dOOOOO

Am = Ox3d Addr Ox100000 Physaddr = Ox87100000

Do you wish to change this configuration? (yin) y
Do you want the default configuration? (yin) n
Do you want to delete any entries? (yin) y
Entry number to delete (q to quit)? 1
Entry number to delete (q to quit)? q
Do you want to add any entries? (yin) n

(0) Ciprico Rimfire 3500 VMEbus-to-SCSI
Am = Ox2d Addr Ox5000 Physaddr

(2) Plessey RAM (512K)
Am = Ox3d Addr OxlOOOOO Physaddr

Do you wish to change this configuration? (yin) y
Do you want the default configuration? (yin) n
Do you want to delete any entries? (yin) n
Do you want to add any entries? (yin) y
How many vrne boards are to be added? (0-5) 1

Enter information for board 1:

Solbourne Computer, Inc. 1 December 1988

Ox85ff5000

Ox87100000

1

VMECONF(l) UNIX Programmer's Manual VMECONF(l)

SEE ALSO
mdg(1)

Valid vrne board types are:
0: none
1: Ciprico Rimfire 3500 VMEbus-to-SCSI
2: Excelan Ethernet
3: Plessey RAM (512K)

Type of board? 2

Valid address modifiers are:
9: extended user data access
d: extended supervisor data access
39: standard user data access
3d: standard supervisor data access
29: short user data access
2d: short supervisor data access

Address modifier? 3d
Address? dOOOOO

VMEbus Configuration consists of 3 boards
(0) Ciprico Rimfire 3500 VMEbus-to-SCSI

Am = Ox2d Addr = Ox5000 Physaddr
(1) Excelan Ethernet

Am = Ox3d Addr
(2) Plessey RAM (512K)

Am = Ox3d Addr

OxdOOOOO Physaddr

Ox100000 Physaddr

Do you wish to change this configuration? (yin) n
{ IS 6 } <1> =>

SoJbourne Computer. Inc. 1 December 1988

Ox85ff5000

Ox87dOOOOO

Ox87100000

2

WAKE (1) UNIX Programmer's Manual WAKE (1)

NAME
wake - Add processor to mdg environment

SYNOPSIS
wake [cpu]

DESCRIPTION
wake provides a method to tell a processor, which is idle at the ROM level, to start mdg
as a slave processor. The specified processor must be recognized by the master as a valid
processor in the system.

OPTIONS
cpu Add specified cpu. The specified processor is told to start mdg as a slave proces

sor.

EXAMPLES
User input in the examples is shown in boldface type.

In the following example, processor 6 is awaken and added to mdg.

SEE ALSO

{ /5 6 } <1> => wake 6
{ /5 6 } <1> =>

config (1), halt(1), mdg (1)

Solboume Computer, Inc. 1 December 1988 1

PDELSTRUCT (3P) UNIX Programmer's Manual

NAME
pdelstruct - delete structure

SYNOPSIS
'include ''phigs.li'

void
pdelstruct(strucCid)
Pint strucCid; ,* structure identifier */

DESCRIPTION
Call pdelstruct (3P) to delete a structure and its contents.

OPERATING STATES
(PHOP,.,.,.)

EFFEcr

PDELSTRUCT (3P)

The specified structure is deleted; its identifier, its contents and all references to it are
removed from PHIGS. It is unposted from all workstations to which it is posted. In the
event the specified structure is the open structure, the resulting functionality is
equivalent to the following sequence:

CLOSE STRUCTURE
DELETE STRUCTURE (structure identifier)
OPEN STRUCTURE (structure identifier)

If the specified structure does not exist, no action is taken.

SEE ALSO
pdelallstruct (3P), pdelstructnet (3P)

DIAGNOSTICS
002 Ignoring function, function requires state (PHOP,. ,. ,.)

Solbourne Computer, Inc. 25 September 1989 1

A

Awake SLAVE processor, 2-1

c

Calculate CPU test limits, 2-1
Calculate shared memory, 2-1

F

Frame buffer configuration table, 2-1

H

Handling test failures, 2-6

mdg tests, 3-1
Test 01,-3
Test 02,-3
Test 03,-3
Test 04,-3
Test 05,-3
Test 06,-3
Test 07,-3
Test 08,-3

mdg:

M

Available commands, 4-1
Definition, 1-1
Entering commands, 2-2
Error messages, 2-3
Exiting, 2-8
help command, 2-3
Instructions, 2-1

- Invoking, 2-1
Prompt, 2-2
Related documentation, 1-1
Selecting processors for testing, 2-4
Test contro] commands, 2-3

Index

Using commands, 2-3
Memory configuration table, 2-1

R

Removing and adding processors, 2-8

s

Starting text execution, 2-5

v

Variations of test exectution, 2-6
VMEbus configuration table, 2-1

Index 1-1

